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a+ b = x+ n





Choose Life. Choose a job. Choose a career. Choose
a family. Choose a fucking big television, choose wash-
ing machines, cars, compact disc players and electrical tin
openers. Choose good health, low cholesterol, and den-
tal insurance. Choose fixed interest mortgage repayments.
Choose a starter home. Choose your friends. [...] Choose
your future. Choose life...

—Mark "Rent-boy" Renton
Transpotting (1996)
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CHAPTER 1

Introduction

One of the most relevant traits of human beings is the deep knowledge of the
world around. This has granted us the possibility of adaptation and control
over it, and thus it has allowed us to advance technologically and overcome
the adversities that nature presents. Long ago we reached such a level of
sophistication that simple observation is not enough to collect the informa-
tion needed to get deeper knowledge. However, knowledge itself provides us
with technological tools to construct measurement devices with increasing
accuracy. Moreover, advanced statistical tools have been developed in order
to infer information from the noisy data and asses error in the estimation.
Metrology is the field of research on statistical tools and technological design
of measurement devices to infer accurate information about parameters of
physical systems. This work is devoted to the theoretical part of this field,
in particular in the sub-field of quantum metrology, which has the special
feature that the measurement itself has to be theoretically designed. The
reason for this is that quantum measurements do not give in general per-
fect access to the system magnitudes. Instead, their outcomes are randomly
distributed among a set of possible values. As a result, quantum metrology
attempts to find the measurement that yields a distribution from which the
statistical tools achieve the optimal estimation precision.

A process of estimation can be divided into the following parts: first the
system is initialised in some probe state. Then the system goes through
some interaction process that imprints an unknown parameter on it. This
interaction process is what the experimentalist is aimed to study, and the
parameter codifies the knowledge that she can learn about it. To this end
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she performs a measurement over the system and obtains a data sample. A
last step of statistical inference extracts from that sample an estimate value
for the parameter.

Classical parameter estimation has been widely studied. Its main target
is to develop mathematical techniques that most efficiently infer the value of
the parameter [Kay, 1993]. Yet, there is still some controversy in a concept
that is one of the cornerstones of estimation theory, namely the probability.
To state it briefly, the main difference between definitions comes from the
role that an agent takes. Typically, the concrete values for probabilities can
be based either on the agent beliefs or only on observation. This yields two
main schools for parameter estimation which differ in the treatment of the
parameter itself as a stochastic or a deterministic variable, the Bayesian and
the Frequentist approaches respectively. Within the Bayesian approach, the
experimentalist codifies its knowledge about the parameter as a probability
distribution and she uses the collected data to update it. The main criticism
about this approach is that before obtaining any data a prior probability
distribution has to be chosen. This fact can have in principle a significant
influence on the estimate. On the other hand, the Frequentist approach define
the probability as frequencies in the limit of infinite repetitions. Hence, it
considers the parameter to have a fixed (unknown) value.

Classically, a measurement gives access to the magnitudes of a system
with a precision limited only by the possible noise caused by experimental
imperfections. The only option that the experimentalist has to reduce the
effects of such noise is to repeat the experiment. The amount of information
gathered reduces the estimation error by dividing it by the squared root of the
number of repetitions. On the other hand, in those cases in which the system
is governed by the laws of quantum mechanics the choice of the measurement
itself becomes another important aspect of metrology. The stochastic nature
of quantum measurements adds an inherent noise that can not be reduced
by means of technology advances. However, in a fully quantum mechanical
setting, the experimentalist has more options than repeating the experiment,
namely, the possibility of using entangling operations in the preparation and
measurement steps. This can provide a change of scaling the estimation error,
i.e. it is divided by the number of used systems (which takes an equivalent
role in the quantum setting as the number of repetitions in the classical),
instead of its square root. Since this result is a direct consequence of the
uncertainty principle takes the name of Heisenberg scaling. Nevertheless, in
the last years the agenda of quantum-enhanced metrology has been put under
scrutiny by a number of results [Demkowicz-Dobrzański et al., 2012; Escher
et al., 2011; Knysh et al., 2011; Aspachs et al., 2009; Huelga et al., 1997] that
show that under quite generic experimental noise, the estimation precision



3

do not reach the Heisenberg limit. This has made that a lot of research
effort focus on finding alternative schemes that push forward the limits and
circumvent or diminish the detrimental effect of noise. This has entailed
the of study particular systems with non-trivial noise-models [Chaves et al.,
2013; Chin et al., 2012; Jeske et al., 2014; Ostermann et al., 2013; Szańkowski
et al., 2014], and non-linear interactions Boixo et al. [2007]; Napolitano et al.
[2011], which enable quantum error-correction codes [Dür et al., 2014; Kessler
et al., 2014; Arrad et al., 2014].

In the process of designing an estimation protocol, the experimentalist
uses a figure of merit to evaluate the performance of such protocols. This
figure of merit allows her to order the different protocols in terms of her
needs, taking into account what use will be given to the estimated value. Up
until now most quantum metrology schemes and known bounds have been
deterministic, that is, they are optimized in order to provide a valid estimate
for each possible measurement outcome. In these cases, the used figure of
merit is related only with the averaged error of the possible estimates in
comparison with the true value of the parameter. This benchmarking of a
protocol by its average performance is very natural and convenient, but there
can be some scenarios in which this is not enough to express the concrete use
that will be given to the obtained value.

For the sake of exemplification, consider a situation in which an exper-
imentalist wants to distinguish between different processes that a system
could have gone through. Each of the processes imprints to the system a
different value of a parameter that characterise them. Hence, by estimat-
ing it she can discriminate between them. In order to be able to decide with
some certainty which is the process, the experimentalist needs the estimation
error to be smaller than the interval between the possible imprinted values
of the parameter. Imagine now that the needed precision surpasses the de-
terministic limits. This does not mean that the experimentalist will never
obtain an outcome that allows her to choose some option with high certainty.
There may exist measurements that, although the average precision does not
exceed these bounds, a better precision can be associated with some of the
outcomes. The average precision tells you very little about the confidence
that you have on a particular outcome. Notice that for this to happen there
must be other highly imprecise outcomes to compensate the average. It is
important to remark that the experimentalist must be able to tell surely if
she has obtained one of these outcomes, because if not, the precision that she
will have to report will be the average one. In this sense, we say that a prob-
abilistic scheme is heralded. The protocol guarantees a minimal precision
upon a heralded outcome. This can be understood as the experimentalist
putting forward an extra feature that is always available to her, namely the
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possibility of post-selecting the outcomes of their measurements and giving
with some probability an inconclusive answer.

In this thesis we choose a figure of merit that reflects the maximum preci-
sion one can obtain. We optimise the precision of a set of heralded outcomes,
and quantify the chance of such outcomes to occur, or in other words the
probability that the protocol fails to provide an estimate. With this we
open the door to protocols that may provide an estimate with a guaranteed
precision, way below the average optimal one. Returning to the example,
if the experimentalist wants to make the right choice with high confidence,
then it is clear that protocol that provides heralded outcomes might be very
interesting to her. Classically this seems a mere characterisation problem,
where different figures of merit describe different aspects of a protocol; and
in practice the issue is rapidly solved if a complete characterisation is given
by labelling every outcome with the precision they provide. However, as
mentioned above, in quantum mechanics there are many ways in which data
can be read-off from a quantum system. Hence, in order to talk about an op-
timal measurement we need to fix a particular figure of merit, and typically
what optimizes one figure of merit gives a suboptimal performance regarding
another figure of merit. We want to capture the fact that some outcomes can
be ultra-precise, and hence we characterize the strategies using the optimal
guaranteed precision obtained for a given success probability, in contrast to
deterministic protocols that are based on averaging over all outcomes, re-
gardless of their precision.

This use of probabilistic strategies in Quantum Information were firstly
used precisely in the field of quantum state discrimination. Only recently, it
was shown that for quantum parameter estimation schemes with fixed probe
state and in the absence of noise, the precision of the favourable outcomes
can be greatly enhanced well beyond the limits set for deterministic strate-
gies [Fiurášek, 2006; Marek, 2013], of course at the price of discarding or
abstaining on the unfavourable outcomes.

In this work we design probabilistic protocols for phase, direction and
reference frame estimation. We show that for pure states post-selection can
compensate a bad choice of probe state, or in other words, it can attain opti-
mal precision bounds in situations where the probe state is given. However,
probabilistic protocols are more effective where some noise is present in the
state system or in the measurement process. In these cases the possibility
of abstention can counterbalance the negative effects of noise. In particu-
lar, we show that adding the possibility of abstaining in phase estimation
in presence of noise can produce an enhancement in precision that overtake
the ultimate bound of deterministic protocols (obtained by optimising also
the probe state). It is important to remark that the probabilistic protocols
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do not ensure the experimentalist such good precision for all the measure-
ment instances, only for those cases in which the probabilistic protocol gives
a favourable outcome. However, the bound derived is the best precision
that can be obtained, and in this sense one can speak of ultimate bound in
precision.

1.1 Outline
The main purpose of this thesis is to discuss the role of the abstention in
protocols of quantum parameter estimation. We begin with a review of the
basics of probability theory in Chapter 2. The different interpretations and
definitions of the concept of probability are treated with special interest as
they have an impact in the different approaches of parameter estimation.
Chapter 2 has also a second part in which we introduce the basic aspects of
quantum theory.

Chapter 3 is intended to introduce the reader to metrology tasks. It
begins with a review of the classical parameter estimation. It presents both
Bayesian and Frequentist approaches and its main results and properties. In
the next section of the Chapter we examine quantum state discrimination
problems, for the purpose of giving an initial grasp of quantum decisions
tasks. We also present an unpublished solution for the discrimination of
general symmetric states with a fixed rate of inconclusive results. In the last
part of the Chapter we discuss the main topic of this Thesis, namely, the
quantum parameter estimation. We review previous results on this field and
introduce the theoretical framework of probabilistic protocols that will be
used in the following Chapters.

Chapters 4 to 7 present the main contributions of this Thesis. We be-
gin by discussing in Chapter 4 quantum metrology with pure probe states.
Within this scheme, the problems of phase, direction and frame estimation
are solved. In Chapters 5 and 6 the effect of noise is introduced in direction
and phase estimation, respectively. Particularly, in Chapter 6 the ultimate
bound for phase estimation is derived. The technical details have been moved
to Appendix A.

In Chapter 7 we work out the problem of probabilistic cloning. We show
that probabilistic protocols do not challenge the fundamental equivalence be-
tween estimation and cloning, i.e. they are asymptotically equivalent. The
particular case of quantum clocks is derived explicitly, considering also gen-
eral Hamiltonians with rationally independent energies. Some of the com-
putations in this Chapter are rather specialise and they are presented in
Appendix B. It is worth noticing that some of technical results gathered
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here may be useful in other contexts.
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CHAPTER 2

Preliminary concepts

2.1 Basic concepts on Probability theory
Since the work presented in this thesis is built upon Probability Theory, I
shall devote the first part of this Chapter to present the basic definitions and
properties about probability that will be used throughout. I will also discuss
the different interpretations given to this strongly controversial concept. For
a further and more rigorous discussion about probability theory and algebra
of events see Stirzaker [2003]; Borkar [1995].

2.1.1 The concept of probability: definition and interpretations
One can define experiment as a procedure done without being sure of the end
result of it. These final results are called the outcomes of the experiment and
will be denoted by ω. The set of possible outcomes is the so-called sample
space and will be denoted by Ω. Any subset A of the sample space Ω is
called event. Each event can be associated to a binary question about the
outcome. For example, the question "Does the outcome have the property
a?" will correspond to the subset of all the elements of Ω that present this
property. Events can be combined with the logical operators and, or and not,
which correspond respectively to the union, intersection and complementary
of the subsets. These combinations allow for more complex questions like
"Does the outcome have the property a and/or have (not) the property b?".

With this at hand, we can now define mathematically the concept of
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probability: probability is a function, defined on the set of events of Ω, that
fulfils the following properties:

1. Non-negativity: P (A) ≥ 0 ∀A ∈ Ω;

2. Unitarity: P (Ω) = 1;

3. Aditivity: for any pair {A,B} of mutually exclusive events (A∩B = ∅)
we have P (A ∪B) = P (A) + P (B);

where we have denoted the probability of event A by P (A). A trivial con-
sequence is that P (A) ≤ 1 for any event A ∈ Ω. From the mathematical
definition above, the probability of an event is a measure of the chance to
occur that this event has. But how do we translate "chance" into a number?
What is the interpretation of this probability? There is controversy around
the meaning of probabilities. In fact, almost every author interprets probabil-
ities in his own way, but we can distinguish two major schools: Bayesianism
and Frequentism. The principal difference of interpretation is the role of an
agent, i.e., the individual that assigns probabilities to events.

The Bayesian approach is a subjective interpretation. It considers that
probability codifies the information about the events that the agent has. It
represents the state of belief or knowledge the agent has about the experiment.
Therefore, probabilities are not fixed, they can evolve whenever the agent gets
new information. The numerical value can be understood as a measure of
the agent disposition to bet in favour of the event. In this sense, different
agents can assign different probabilities to the same experiment. Despite
the fact that there is no "true probability" and therefore no "right choice"
of probability assignments, some will be more reasonable than others in the
sense that they represent better the knowledge of the agent. In order to
reasonably update the probability, the Bayes rule, which gives the name to
this approach, can be applied. It states how the probability of an event may
be modified after gathering new information, in terms of the "old" probability
of the event in question and the probability of having obtained the gathered
information. A formal expression for the Bayes rule is given below.

On the other hand, there are some other interpretations based on objec-
tivity. Namely, they consider the probabilities as physical properties of the
systems or states of reality. In these approaches the numerical value of prob-
ability has definitions like "the ratio between favourable cases and the equally
probable possible cases" or "the frequency that the event will have if we re-
peat independently the experiment infinitely many times", hence the term
Frequentism. Despite the objective appearance of these definitions, the im-
possibility of defining "equally probable cases" or on repeating independently
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the experiment imply also some subjective elements. A very illustrative ex-
ample of the problems associated to the Frequentist approach is asking what
is the probability of the Sun exploding tomorrow. Before entering deeper
in the implications that the choice of approach has in parameter estimation
problems I discuss some probability and random variable concepts.

2.1.2 Random variables and Probability Distributions
A random variable X : Ω→ E is a function that associates for every outcome
ω, a real number X(ω) from the set E. If the set E is finite (or infinitely
countable) the variable is called a discrete random variable. One can associate
a probability to each value xj ∈ E of X by the trivial relation p(xj) =
P (X−1(xj)). The sub-indices notation will be used to label the different
values of a discrete random variable. The function p(xj) is called Probability
Mass Function and has to be interpreted as the probability of the random
variable taking the value xj.

On the contrary, if the set E is uncountable the random variable is called
continuous. In this case, due to the large amount of outcomes, each of
them has an infinitely small probability. Therefore, the function f(x) =
P (X−1(x)), called the Probability Density Function, can not be interpreted
directly as a probability. Instead, only events (i.e., subsets of E) have finite
probabilities, which take values P (A ⊆ E) =

∫
A f(x) dx. In what follows I

will refer to both probability mass functions and probability density func-
tions with the term Probability Distribution Function (PDF) and they will
be denoted as p(x).It should be clear from the context whether it refers to
the discrete or continuous case.

It is worth noticing that the controversy in the definition of probability
is translated to the concept of random variable. While the objective view
of probability considers as random variables only those quantities that can
have different realisations, from the subjective approach any quantity with
an unknown value (by the agent) can be treated like that.

Some experiments might be described using a set of n variables. In these
cases, the outcomes will be represented by n random variables X(1), . . . , X(n),
which can be discrete, continuous or a mixture of the two types. In these cases
one might define the joint probability distribution function as p(x(1), . . . , x(n)),
which contain all the information about the random variables and gives the
probability that the variables take the values {x(1), . . . , x(n)} jointly. In the
situations that involve a wider set of random variables but the attention is
limited to a reduced number m of those variables, the distribution of the
variables of interest can be computed by summing (or integrating) the rest
of the variables over all their possible values x(i) ∈ Ei, i.e.,
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p(x(1), . . . , x(m)) =
∑

x(m+1)

· · ·
∑
x(n)

p(x(1), . . . , x(n)) . (2.1)

This new distribution is called themarginal probability distribution. In doing
this marginalisation the information about the m− n marginalised variables
is traced out.

Suppose now an experiment that is described by a pair X, Y of random
variables with a joint PDF p(x, y). Suppose further that we are told that
the second variable has resulted in a value y0. We can then ask what are
the PDF for the first variable with under this condition. The probability
distribution then can be updated with the called conditional probability

p(x | y0) = p(x, y0)
p(y0) (2.2)

where the denominator p(y0) > 0 ensures that the distribution is normalised.
This "new" distribution, or conditional distribution, has the same mathemat-
ical properties, and hence it must be considered the PDF in the "new world"
resulting from the occurrence of the event represented by the realisation of
the variable Y taking the value y0. It may happen that any realisation of a
variable Y does not affect the information we have about the variable X, i.e.,
p(x | y) = p(x) ∀y ∈ EY . From Eq. (2.2) it is easy to see that this implies
that the joint probability satisfies p(x, y) = p(x) p(y). When this holds the
variables X and Y are said to be independent random variables. The con-
cept of independence is crucial in the Frequentist definition of probability,
inasmuch as the concept of frequency of an event depends on the possibility
of the identical repetition of the experiment, that is, independently of the
past realisations of it. Moreover, the objective definition of probability can
yield to situations in which two or more variables with an unknown PDF are
modelled as independent using symmetries of the system. But the realisation
of one of them increased the information about the others. Therefore, from
the subjective definition, this new information will modify the probability of
the remaining variable in such a way that they can not be considered inde-
pendent. In order to discuss this fact in a deeper way, I need to introduce
two important theorems: the Bayes rule and the de Finetti representation
theorem.

2.1.3 Bayes rule and de Finetti theorem
From the definition of conditional probability in (2.2), the joint distribution of
two variables can be written as p(x, y) = p(y | x) p(x) = p(x | y) p(y). From
this relation one can derive the Bayes rule, i.e.,
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p(y | x) = p(x | y) p(y)
p(x) = p(x | y) p(y)∑

y p(x | y) p(y) . (2.3)

This rule can be simply interpreted as a relation between the proportion
p(y |x) of events labelled by y out of the events with a value x, and its coun-
terpart p(x | y). But within the subjective approach, which receives its name
from it, has also a more profound implication: consider a system charac-
terised by two random variables X and Y with a known conditional proba-
bility p(x | y). Before performing any experiment the agent may have some
prior knowledge about the possible value of Y , and hence a a priori PDF p(y)
can be defined. When an experiment is performed and some data x is ac-
quired about the variable X, this new information affects also the knowledge
the agent has about Y . Therefore, the PDF must be updated to incorporate
it. The Bayes rule tells us that the resulting a posteriori PDF is propor-
tional to the a priori PDF p(y) and the conditional distribution p(x | y).
The denominator p(x) ensures that the new distribution is normalised, i.e.∑
y p(y |x) = 1. Summarising, the Bayes theorem gives us the recipe about

how to update our knowledge when we are given some data and it is the
cornerstone of the Bayesian methods of parameter estimation.

With the Bayes rule at hand, I now present the de Finetti representation
theorem. Its goal is to show light on the concept of independence of events
and its repeatability, which is a crucial point in the difference between the
two approaches presented. Let me consider the following example[de Finetti,
2008]: we are given N urns labelled by Ai with i = 1, 2, . . . , N . Inside each
urn there are black and white balls. The proportion qi of black balls in each
urn Ai is known. An agent chooses secretly an urn and I randomly take one
ball, look its color and put it back into the urn. I repeat this process m
times. What is the probability of getting a black ball in each round? Or
more specifically, are the events of getting a black ball in each shot indepen-
dent? From an objective point of view, all the events are independent, due
to the fact that the reposition ensures that in each shot the proportion of
black balls is the same, although unknown. On the contrary, if we take the
subjective interpretation, a prior probability is assigned to each urn, taking
into account any information we have about the process of election that the
agent had followed. Every time we take a ball from the urn, the probability
of which urn has been chosen can be updated by the Bayes rule (2.3). There-
fore, the probability of getting a black ball in the k−th shot will depend on all
the previous shots, so the events can not considered independent within this
approach. Nevertheless, since only the proportion of black/white balls but
not the order in which are taken affects the a posteriori joint probability, it
will be invariant under any permutation of the sequence of balls taken. This
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example yields another important concept related to random variables, pro-
posed by de Finetti [De Finetti, 1990]: a sequence is said to be exchangeable
if any permutation π of the variables conforming it has the same joint prob-
ability distribution, i.e., p(x1, x2, . . . ) = p(xπ(1), xπ(2), . . . ). Furthermore, if
we can extend the sequence adding extra random variables and the sequence
remains exchangeable, then is said to be infinitely/unbounded exchangeable.
De Finetti proved that the joint probability for an infinitely exchangeable
sequence {x1, x2, . . . } is a "mixture" of distributions for sequences of inde-
pendent random variables, i.e.

p(x1, x2, . . . , xm) =
∑
i

qi
∏
k

pi(xk) (2.4)

where qi must be interpreted as probabilities are hence ∑i qi = 1. This result
is given the name of de Finetti’s representation theorem. In the example of
the urns, consider the random variables Xk that refers to the kth shot and
can take the values 1 (black ball) or 0 (white ball). The joint probability
of getting a sequence {xn+1, . . . , xm} given that the previous balls taken are
described by the sequence {x1, x2, . . . , xn} can be written as

p(xn+1, . . . , xm |x1, . . . , xn) =
N∑
i=1

p(Ai |x1, . . . , xn) p(xn+1, . . . , xm|Ai) (2.5)

where p(Ai |x1, . . . , xn) is the probability that the agent has taken the urn Ai
given that the first n balls taken are {x1, x2, . . . , xn}, and p(xn+1, . . . , xm|Ai) =
qsi (1 − qi)m−n−s is the probability of getting {xn+1, . . . , xm} conditioned to
the urn Ai, which only depends in the number of black balls s = ∑m

k=n+1 xk.
Furthermore, de Finetti also shows that in the limit of a large sample, the
proportion of black balls ∑m

k=1 xk/m will tend, almost surely, to the concrete
value qi. This is known as the de Finetti strong law of large numbers. Given
this value qi, the sequence of observations xi is said to be conditionally in-
dependent. This results can be generalised to a more general cases where an
unknown source from a given collection produce sequences of independent
and identically distributed events. The collection of sources can even be a
infinite and hence labelled by a continuous variable. In this case, the sum
in (2.4) has to be changed by an integral.

The de Finetti representation theorem motivates the use of parametric
statistical models to solve statistical inference problems, yet it is not actually
used in general for its implementation. In this kind of models, the stochastic
behaviour of the system is modelled by some parametric family {p(x|φ) |φ ∈ Φ},
where φ is a random variable that codifies the lack of knowledge about the
system. This could be the case, for instance, if one wants to infer which urn
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the agent had taken in the above example, with Ai taking the role of φ. After
acquiring some new information, the PDF of φ is updated by means of the
Bayes rule 2.3. However, instead of giving the mixture of distributions as
in Eq. 2.4, some value for the parameter is inferred from p(φi|x1, . . . , xm).
Parameter estimation is discussed with more detail in the next chapter.

2.2 Quantum preliminaries
One of the main goals of this work is to design optimal measurements to
reveal some properties of quantum systems. To this end a mathematical
description for the state of a system and for the measurements is needed.

2.2.1 The quantum state
The term quantum state refers to a mathematical description of a physical
system that is governed by the laws of quantum mechanics. In contrast to
classical mechanics, we can not associate a fixed value to all the physical prop-
erties of a quantum systems. For the classical systems we can know all the
physical magnitudes with certainty, except for the technological limitations
in the measuring devices, and therefore they can in principle be distinguished
perfectly from each other. In contrast, the quantum states are describe as
wave functions, from which one can extract the probability distributions of
the possible measurement outcomes [Nielsen and Chuang, 2010]. In fact,
as it will discussed in Section 2.2.7, the set of possible outcomes of a mea-
surement depends only on the measurement itself and two different quantum
states differ only on how those values are distributed. As a consequence,
quantum states can not be distinguished in general by means of measure-
ment. Due to this stochastic nature, the controversy on the interpretation
of probabilities translates to quantum states with a debate about the reality
of quantum states: are they real or just a description of our knowledge of
them?[Plotnitsky and Khrennikov, 2015].

To every physical system is associated a complex vector space with an
inner product, a Hilbert spaceH. Each unit column vector (or ket) |ψ〉 ∈ H is
called a state vector, and it is the mathematical representation of the system
state. Its dual (or bra) is expressed as 〈ψ|. The absolute value of the inner
product between two state vectors |〈ψ|ϕ〉|, also called its overlap, gives us
a measure of how close they are. Since by definition the state vector |ψ〉
are unit vectors, what is usually called normalisation condition, the inner
product with itself 〈ψ|ψ〉 = 1. On the contrary, if a pair quantum states
are distinguishable, they will be represented by orthogonal state vectors, i.e.,
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with null overlap |〈ψ|ϕ〉| = 0. In general, a quantum state can be written as
a complex linear combination of a set of other states, i.e.

|ψ〉 =
∑

αi |ϕi〉 . (2.6)

In this sense, the state |ψ〉 is said to be a superposition of the states {|ϕi〉}
with the complex numbers αi being its amplitudes. In the case that the
set {|ϕi〉} form an orthonormal base for H, the normalisation condition im-
plies ∑ |αi|2 = 1.

But we might not know exactly the state of a system. Instead, we could
only know that the system state is one of an ensemble of possible states{|ψi〉},
with probabilities {pi} associated to each one. In this cases, the state is
described by a density matrix, i.e.

ρ =
∑
i

pi |ψi〉〈ψi| . (2.7)

In general, a density matrix is a unit-trace hermitian semidefinite operator,
i.e. ρ ≥ 0 and tr ρ = 1.When the operator is of rank 1the state is called pure
state, and it represents the state of maximal knowledge about the system.
Conversely, higher-rank matrices correspond to mixed states, and represent
those cases in which the agent has only a partial knowledge about the system.
Note that different ensembles of states can produce the same density matrix,
therefore, given a density matrix an ensemble cannot be assigned uniquely.
Nevertheless, there is a particular ensemble decomposition in which all its
the states are orthogonal to each other. This ensemble {|ψi〉 , pi} is called the
spectral decomposition, and the states and probabilities are the eigenvectors
and eigenvalues of the density matrix respectively.

2.2.2 Qubits
The simplest and paradigmatic case, which is the main case studied in this
thesis, is the two-dimensional Hilbert space. Any two-dimensional state, or
qubit state, can be expressed as a linear combination of the so-called com-
putational basis{|0〉 , |1〉}. Since only the relative phase between amplitudes
has a physical meaning, and together with the normalisation condition, the
state of a qubit can be parametrised with only two parameter, i.e.

|ψ〉 = cos (θ/2) |0〉+ e−φ/2 sin (θ/2) |1〉 (2.8)

with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. With this parametrisation, each pure qubit
state can be mapped to a point at the surface of an sphere. Furthermore,
each qubit density matrix can be written as
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ρ = 1
2 (11 + b.σ) (2.9)

where σ = (σx, σy, σz) with σi being the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.10)

and the vectors b = 〈σ〉 are called Bloch vectors. In order to maintain the

Figure 2.1. Representation of the Bloch sphere.

positivity of ρ, the norm of the Bloch vector, also named the purity of the
state, must satisfy r = |b| ≤ 1. Therefore, the possible density matrices are
in one-to-one correspondence with the points of an sphere, which is called the
Bloch sphere (see Fig.2.1). The pure states correspond to those points at the
surface (r = 1) of the Bloch sphere, while the points in the interior (r < 1)
tally with the mixed states. The center of the sphere (r = 0) correspond
the completely mixed state ρ = 11/2 that represents the minimal-knowledge
state of a qubit system. Note in passing that any vector with r < 1 can be
expressed as many linear combinations of unit vector. This manifests the idea
expressed in the last section of the non uniqueness of ensemble decomposition
of mixed states. Nevertheless, one can always decompose the Bloch vector
as b = 1+r

2 b+ + 1−r
2 b− where b+ = −b− = b/r are the Bloch vectors of the

eigenstates of its spectral decomposition.

2.2.3 Composite systems
In a wide number of situations the system under study is a composite system
comprised of two or more subsystems. The state spaces Hi of the n subsys-
tems are combined through tensor product in order to form the state space
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of the global system HG = H(1) ⊗ H(2) ⊗ · · · ⊗ H(n). Therefore, the state
vector |Ψ〉 of the global system can be expressed as a superposition of states
like |ei1〉 ⊗ |ei2〉 ⊗ · · · ⊗ |ein〉, i.e.,

|Ψ〉 =
∑

i1,i2,...,in

αi1,i2,...,in |ei1〉 ⊗ |ei2〉 ⊗ · · · ⊗ |ein〉 (2.11)

where the sets {|eik〉} are basis of each subsystem H(k). As in the case of non-
composite system, density matrices can be defined through the expression in
Eq.(2.7), and they will be all the unit-trace semidefinite operators on HG.

When dealing with composite systems one can ask about the correlations
between its subsystems. Quantum mechanics allows stronger correlations
between systems than classical mechanics. We have to distinguish between
two types of pure composite systems. In some cases the global state can
be factorised in terms of the states of the subsystems, i.e., there exist states∣∣∣ψ(k)

〉
for each subsystem H(k) such that |Ψ〉 =

∣∣∣ψ(1)
〉 ∣∣∣ψ(2)

〉
. . .
∣∣∣ψ(n)

〉
.1 Those

states are referred to as product states and they have no correlation between
subsystems. An analogy can be made between product states and indepen-
dent random variables. In contrast, when no factorisation is possible and,
therefore, the subsystems are quantumly correlated, the states are named
entangled states.

Since mixed states comprise quantum states and classical probability dis-
tribution, they can combine also classical and quantum correlations. As in
the pure case, when there is no correlation the states are called product
states and they can be expressed as tensor product of density matrices, i.e.,
ρG = ρ(1) ⊗ ρ(2) ⊗ . . . ρ(n). The composite states that only have classical
correlation can be decomposed as convex combination of product states as

ρG =
∑
k

pk ρ
(1)
k ⊗ ρ

(2)
k ⊗ . . . ρ

(n)
k . (2.12)

When such a decomposition is possible the global state is named separable
state. Finally, a state that is not separable is called entangled and it presents
quantum correlations. It is not at all easy to determine if an state is separable
or entangled and it is a current field of research [Gühne and Tóth, 2009].

2.2.4 Identical copies and block decomposition
A very usual paradigm found in quantum estimation tasks is when the system
is compounded of identically prepared and uncorrelated subsystems. Hence,
1Sometimes the tensor product symbol ⊗ is omitted between vectors of different subsys-
tems, or even the notation

∣∣ψ(1), ψ(2), . . . , ψ(n)〉 is used when no confusion arises.
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the states of these systems should be invariant under permutations. This
symmetry can be used to derive a particular decomposition that ease the
computations. This decomposition was introduced by Vidal et al. [1999];
Cirac et al. [1999] (See also Bagan et al. [2006] for a more detailed presenta-
tion).

The global state of n qubit systems identically prepared in a state ρ is
written as ρ⊗n. The state remains unchanged under the exchange of a pair
of subsystems, thus it is invariant under the action of the symmetric group
Sn. One can use the group Sn to define the basis {|j,m, α〉}jm=−j for the
(2j + 1)-dimensional SU(2)-invariant subspaces of (1

2)⊗n. Each of these sub-
spaces is labelled by the pair of indices {j, α}, where j = mod2(j)/2, . . . , n/2.
The extra index α = 1, . . . , νj keeps track of the equivalent irreducible repre-
sentations j of SU(2) with multiplicity νj. The relation between the invariant
subspaces and the tensor product representations can be expressed as

(1
2)⊗n =

⊕
νj j (2.13)

Therefore, the global state density matrix can be decomposed into a direct
sum of (2j+1)-dimensional square matrices ρ(j) for each invariant subspaces,
i.e.

ρ⊗n =
⊕
j

νj ρ
(j). (2.14)

Notice that in each invariant subspace with equal j the state takes the same
form independently of α. In order to get a closed expression for νj, note
that the sets of vectors with fixed j and m form a basis for each of the
νj-dimensional irreducible representations of the symmetric group Sn. Each
of these representations of Sn is associated to a Young diagram of shape
(n/2 + j, n/2− j), i.e., a set of n boxes arranged in two left-justified rows of
lengths n/2 + j and n/2 − j, with the additional condition that the length
of any row must be of the same length or shorter than the one above, i.e.
2j ≥ n − 2j. For instance, the three possible Young diagrams with n = 5
that can be constructed are

, , ;

with j = 5/2, j = 3/2 and j = 1/2 respectively. By filling the Young
diagrams with the numbers 1, 2, . . . , n in each box, one might construct the
so-called standard Young tableaux, which one of them is associated a different
value α. Hence, the multiplicity νj corresponds to the number of different
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standard Young tableaux for this particular value of j. To construct them,
the diagram must be filled with the numbers in increasing order from left
to right and from top to bottom. Following the above example, the possible
Young tableaux for j = 1/2 are

1 3 5
2 4

, 1 3 4
2 5

, 1 2 5
3 4

, 1 2 4
3 5

, 1 2 3
4 5

.

Given a diagram with n boxes defined by the index j, a simple way to com-
pute how many of these tableaux can be constructed is as follows: associate
a value of ik = +1/2 (ik = −1/2) to the boxes in the top (bottom) row with
k being the corresponding number in it. This particular association is made
by considering the multiple-qubit system as spin-1/2 coupled particles, and
considering a ordered coupling, i.e. we first couple the first two particles, the
a third one is coupled with the first pair and so on. 2 Following this intuition,
construct now the sequence of partial sums, i.e. s = {s0, s1, . . . , sn}, where
s0 = 0 and sr = ∑r

k=1 ik for 1 ≤ r ≤ n. Each sr corresponds to the intermedi-
ate angular momentum when r particles are coupled. For example, the Young
tableau 1 2 5

3 4
, leads to the sequence (+1/2,+1/2,−1/2,−1/2,+1/2), and

hence s = (0, 1/2, 1, 1/2, 0, 1/2). It is straightforward to see, by construction
of the Young tableaux, that s has non negative entries and sn = j. This
agrees with the angular momentum interpretation. Therefore, the number
of different Young tableaux related to a given diagram is equal to the num-
ber of positive sequences s with sn = j. To simplify the computation, I
first count how many sequences can be constructed with n/2 + j positive
steps and n/2 − j negative steps, independently of the positivity condition.
Then, the multiplicity can be computed by subtracting from them the ones
with negatives entries. Although at first sight it seems complicated, there
is a clever way to compute this number: Notice that each of the "negative"
sequence must take the value −1/2 at least at one point. If one vertically
reflects with respect to −1/2 the points before the first one that take this
value (see Fig. 2.2), one gets a sequence starting with −1 and ending with j.
This new sequence has one less negative step than the original one. One can
see that there is a one-to-one correspondence between the sequences starting
with −1 and the "negative" sequences starting with 0. This is the so-called re-
flection theorem of random walks [Stirzaker, 2003]. Hence, the computation
of the two terms involved is reduced to counting the ways to distribute the
negative steps into each sequence, given by the binomial coefficients

(
n

n/2−j

)
2There are different ways to define the different invariant subspaces, and hence the indices
α. However, in the identical-copies case they are equivalent since the state has identical
expressions ρ(j) in each invariant subspace due to the invariance under permutations.
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Figure 2.2. Example of sequence with n = 12 going from 0 to j = 1 in steps of 1/2 with
negative values (blue line). Reflecting with respect −1/2 (dotted line) the
points on the left of the first negative one, the resulting sequence (orange line)
starts at −1 and ends at j .

and
(

n
n/2−j−1

)
respectively. Therefore,

νj =
(

n
n/2− j

)
−
(

n
n/2− j − 1

)
. (2.15)

It only remains to compute an explicit form for the blocks ρ(j). To do
so, consider the single system density matrix with Bloch vector b = z. The
density matrix of such state is diagonal and reads

ρ = 1
2 [(1 + r) |0〉〈0|+ (1− r) |1〉〈1|], (2.16)

where r is its purity. Thus, the tensor product leads to diagonal global density
matrix too, and only the terms corresponding to |j,m, α〉〈j,m, α| should be
computed. Since all the blocks with the same j have identical expressions
and, hence, ρ(j) are independent of the particular definition of the subspaces
we take, it is convenient to consider the basis for the first subspace3

|j,m, α = 1〉 = |j,m〉
∣∣∣Ψ−〉⊗n/2−j (2.17)

On one hand, the last n− 2j subsystems are, by pairs, in the antisymmetric
state |Ψ−〉 = (|01〉 − |10〉)/

√
2 and thus each pair contributes with a factor

1
4(1− r2) to each matrix element. On the other hand, the first 2j subsystems
3The other subspaces can be constructed by imposing orthogonality.
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are in the symmetric state |j,m〉 with j +m subsystems in the state |0〉 and
j −m in the state |1〉. With this, the matrices ρ(j) take the form

ρ⊗nz =
∑
j,α

(
1− r2

4

)n/2−j∑
m

(1 + r

2

)j+m (1− r
2

)j−m
|j,m, α〉〈j,m, α|

(2.18)
Notice that pure states (r = 1) have only projection to the symmetric in-
variant subspace with j = n/2. For arbitrary Bloch vectors b, it suffices to
rotate the basis |j,m, α〉 with the Wigner matrices D(b) [Edmonds, 1957] .
Hence, a general expression for the global state can be cast as

ρ⊗n = D(b) ρ⊗nz D†(b) =

=
∑
j,α

(
1− r2

4

)n/2−j ∑
m′,m

|j,m, α〉〈j,m′, α| ×

×
j∑

k=−j

(1 + r

2

)j+k (1− r
2

)j−k
D(j)
m,k(b) D∗

(j)
m′,k(b) (2.19)

where D(j)
m′,m(b) = 〈j,m′, α|D(b) |j,m, α〉 are the elements of the Wigner

matrix D(b).
The permutation invariance of the identical copies states translates to

the sequence of measurement outcomes being exchangeable. Furthermore, if
more identically prepared subsystems are measured, the resulting sequence of
outcomes remains exchangeable. Accordingly, the state produces an infinitely
exchangeable sequence. In analogy with the classical case, a quantum version
of the de Finetti theorem can be obtained. First, a composite state with n
subsystems ρn is said to be a exchangeable if it is symmetric, i.e., invariant
under any permutation of its subsystems, and if, for any m > 0 there is a
symmetric state ρn+m of n+m subsystems such that the marginal state for
the n subsystems is ρn, i.e.

trmρn+m = ρn (2.20)

where the partial trace is taken only on the m additional subsystems. This
distinction between symmetric and exchangeable states has its analogy in
the classical case between exchangeable and infinitely exchangeable sequence.
However, in the quantum case the possibility of extend the system plays the
role of excluding the entangled states. The quantum de Finetti theorem
[Caves et al., 2002] states that any exchangeable state of n subsystems can
be uniquely written as a separable state of the form

ρn =
∫
D
p(ρ) ρ⊗n dρ (2.21)
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where p(ρ) is a normalised positive function and dρ is a suitable measure
over the set of all possible density operators D. The function p(ρ) can be
interpreted as the probability distribution representing the knowledge the
agent has about the state of the subsystems. Like in the classical case, the
de Finetti theorem ensures that two different agents, with different initial
knowledges and after measuring m < n subsystems, will converge in the
states assigned to the remaining n−m subsystems as m grows.

2.2.5 Evolution
So far I have described the quantum states as instant pictures of the systems.
Now let me talk about its dynamics. The time evolution of a closed system
of dimension d, i.e. a system without any interaction with the environment,
is described by an hermitian operator H, named Hamiltonian, through the
Shcrödinger equation

H |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 (2.22)

where i is the imaginary unit and ~ is the Planck constant. For simplicity I
will take the units such that ~ = 1. To understand the effect of this equation,
let me focus first to the eigenstates of the Hamiltonian. This eigenstates
are defined through H |ek〉 = ek |ek〉, where the eigenvalues ek denote the
energy of the eigenstates |ek〉. Plugging this into the Schrödinger one gets
|ek(t)〉 = e−i ek t |ek(t = 0)〉. That is to say, if the system is in an eigenstate of
the Hamiltonian, it will remain unchanged since a global phase has not any
physical effect. In general, the state will be in a superposition of eigenstates
|ψ〉 = ∑

k αk |ek〉 and, because of linearity, each one will get a relative phase,
i.e., |ψ(t)〉 = ∑

k αk e−i ek t |ek〉. Moreover, the linearity allows us to express
the time evolution of the state with a unitary operator which takes a diagonal
form in the eigenbasis of the Hamiltonian, i.e.

Ut =
d∑

k=1
e−i ek t |ek〉〈ek| ⇒ |ψ(t)〉 = Ut |ψ(0)〉 (2.23)

This unitary formalism is used in the problems of phase estimation.
In this kind of problems the phase to be determined corresponds to the
factor φ = ek t of the exponential. Furthermore, by experimentally tuning
the Hamiltonian of a system and controlling the interaction time a concrete
phase can be codified.

Since the real-world systems are rarely isolated, we have to deal with
open systems. For instance, this is the case where some environmental noise
affects the dynamics of the system. The time evolution of such systems can
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not be described by unitary transformations. Instead, the general formalism
that allows interaction with the environment is that of quantum operations.
Mathematically, a quantum operation is described by a linear map ε : Md →
Md′ which transforms density matrices into density matrices. In order to be
physically realizable, performing a quantum operation on a state must yield
another state. Furthermore, since ρ can be extended by the tensor product
with some ancillary system, the extended map must also ensure that its
images are states. Mathematically it can be summarised by the following
properties:

1. Linearity: ε(p1ρ1 + p2ρ2) = p1ε(ρ1) + p2ε(ρ2);

2. Trace preserving: tr [ε(ρ)] = tr [ρ];

3. Positivity: ρ ≥ 0⇒ ε(ρ) ≥ 0;

4. Complete positivity: ε⊗ 11k must be a positive map ∀k ≥ 1, where 11k
is the identity map of dimension k.

The Stinespring dilation theorem [Kraus, 1971; Choi, 1975] ensures that
for any completely-positive trace-preserving(CPTP) map acting on Hd can
be interpreted as a unitary evolution on an extended closed system with
Hd ⊗ Henv. As a consequence of this theorem, the quantum CPTP maps
can be expressed using the Kraus operators representation, i.e. for any linear
CP map ε there exists a set of operators {Ak} such that ε(ρ) = ∑

k AkρA
†
k,

where A†k is the hermitian conjugate of Ak. The set of operators must satisfy
the constraint ∑k A

†
kAk = 11 in order to the map to be trace preserving.

Since there is no need to explicitly define the properties of the environment,
this representation simplifies the calculations in situations where we are only
interested in the main system. Moreover, since there is no constraint in
the effect of the map in the ancillary system Henv, there is also freedom
in the election of the set of Kraus operators. In fact, a set of operators
{Bj = ∑

k uj,k Ak}, with uj,k being a unitary matrix, are an equivalent Kraus
representation for the channel.

2.2.6 Examples of noise models for qubits
In this section I present here some usual qubit noise models. This serves as
an exemplification of the quantum operations formalism presented above. It
also illustrates the mathematical description of the action of noise in physical
systems.
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The bit flip channel flips the state |0〉 to |1〉 and vice-versa with some
probability (1− p). It can be represented by the Kraus operators:

A0 = √p 11 A1 =
√

1− p σx (2.24)
where σx is the Pauli matrix defined in Eq. (2.10) and 0 ≤ p ≤ 1 since
it is a probability. The pure states with Bloch vectors in the x direc-
tion |±〉 = 1√

2

(
|0〉 ± |1〉

)
remain unchanged through this channel. A pure

state pointing in any other direction will probabilistically suffer a change,
thus the state will become a mixed state. A geometrical interpretation of
the effect of this channel can be seen using the Bloch sphere: the channel
squeeze the y and z directions by a factor 2p − 1. In other words, in terms
of the Bloch vectors the channel can be described as the map

ε :
(
nx, ny, nz

)
→
(
nx, (2p− 1)ny, (2p− 1)nz

)
(2.25)

In the particular case of p = 1
2 , the resulting Bloch vector points to the x

direction. This means that all the information we have about the other two
directions vanishes.

The phase flip channel has a similar effect than the bit-flip one, but it
is the z direction that remains unaffected instead of x direction. It can be
understood as a flip of the relative phase with probability (1−p). The Kraus
operators are the same that in the previous case except for that the Pauli
matrix involved is σz.

A third obvious case is the bit-phase flip channel, which is a combination
of the bit flip and phase flip channels, and corresponds to the channel that
leaves the y component of the Bloch vector unchanged. In Table 2.1 can be
found a summary of this channels.

The three presented channels have in common that they have a privileged
basis that remains unchanged. In general, the effect of these dephasing chan-
nels is to reduce the quantum coherence between the states of this basis, i.e.
it reduces the off-diagonal entries of the state density matrix written in this
concrete basis.

Another important channel is the depolarising channel. In contrast to
dephasing channels, it has no privileged direction. Instead, with probability
(1 − p) the input state is completely depolarised, i.e., it is changed by the
completely mixed state 11/2. Thus, the output state of the system after the
channel can be expressed as

ε(ρ) = p ρ+ (1− p) 11
2 . (2.26)

Plugging into this expression the Bloch form in Eq.(2.9), it is straightforward
to see that the effect of depolarising channel can be seen as a shrinking of
the Bloch vector by a factor p.
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Channel Explicit expression Kraus operators

Bit flip ε(ρ) = p ρ+ (1− p)σxρ σx A0 = √p 11 A1 =
√

1− p σx

Phase flip ε(ρ) = p ρ+ (1− p)σzρ σz A0 = √p 11 A1 =
√

1− p σz

Bit-phase flip ε(ρ) = p ρ+ (1− p)σyρ σy A0 = √p 11 A1 =
√

1− p σy

Depolarising ε(ρ) = p ρ+ (1− p)112 A0 =
√

1+3p
4 11

Ai =
√

1−p
4 σi i = x, y, z

Table 2.1. Summary of typical noise channels for qubits systems.

Using the relation
11
2 = ρ+ σx ρ σx + σy ρ σy + σz ρ σz

4 (2.27)

it is straightforward to obtain the Kraus operators of this channel as de-
picted in Table 2.1. This representation suggest another interpretation for
the depolarising channel: the state is left unchanged with some probability
q = (1 + 3p)/4 or it suffers a bit flip, a phase flip or both with probability
(1− q)/3 each.

2.2.7 Measurement
There is a especial case of interaction that a quantum system can suffer, the
one that are realised by an agent in order to extract information about the
system, namely a measurement. Two main facts cause quantum measurement
be a controversial subject: it reveals the quantum stochastic nature of quan-
tum mechanics and substantially affects the state of the measured system.
Following the initial formalism of von-Neumann, to every measurable quan-
tity Q is associated an observable, i.e., a linear self-adjoint operator Q acting
on the state space H of the system. The only outcome values that can be
obtained by measuring Q coincide with its eigenvalues λk. Let Q = ∑

k λk Pk
be the spectral decomposition of Q, with Pk being the projector over the
eigenspace related to λk. The probability of obtaining a concrete value λk
from a measurement over the state ρ is given by the Born rule

p(λk|ρ) = tr (Pk ρ). (2.28)

In other words, the state of the system only specifies the PDF of the mea-
surement outcome. Despite this, if the same measurement if sequentially



2.2. Quantum preliminaries 25

repeated on a quantum system, the same outcome λk will be obtained. This
is due to the fact that, when a measurement is performed, the state of the
system abruptly changes to a projection over the eigenspace corresponding
to the obtained outcome, i.e. the state of the system after obtaining outcome
λk in the measurement is

ρk = Pk ρPk
tr (Pk ρ) . (2.29)

This sudden perturbation of the state is known as the wave function collapse.
The projective measurements described above, also known as Projection-

Valued Measurements (PVM) or von-Neumann measurements, can have at
most as many outcomes as the dimension of the Hilbert state. However, one
can increase the number of possible outcomes by letting the system interact
with an ancillary system. In doing so, it might appear some information
flow between the two systems, which can then be extracted by measuring
jointly the composite system. As in the case of quantum channels, using
the Stinespring dilation theorem, one can define a more general paradigm
for quantum measurements. These generalised measurements, also called
Positive Operator-Valued Measurement (POVM), are represented by a set
of positive semi-definite operators {Πk ≥ 0} that fulfils the completeness
relation ∑k Πk = 11. Each of the elements Πk corresponds to an outcome of
the measurement, and they are no necessarily orthogonal. The probability
of obtaining each outcome is given by

p(k|ρ) = tr (Πkρ) (2.30)

The fact that in these generalised measurements the ancillary system
is traced out implies that they are not necessarily related to any physical
quantity, and also that the state after the measurement can not be specified
uniquely.

The POVM formalism only captures one aspect of quantum measure-
ments, namely the gathering of information, i.e. the relation between the
probe state and the outcome probabilities. It is often important to describe
the state of the system after the measurement. Since the measurement pro-
cess is inherently random the map between input and state after the mea-
surement is described by a stochastic quantum operation, labelled by the
different outcomes k:

ρ′|k = εk(ρ) =
∑
l

A
(k)
l ρA

(k)
l
†/p(k|ρ) (2.31)

where the outcome probability is p(k|ρ) = tr
(∑

lA
(k)
l ρA

(k)
l
†
)

= tr (Πkρ)
and we have identified the POVM element Πk = ∑

lA
(k)
l
†A

(k)
l . These channels

describe the stochastic filtering operations that are widely used in this thesis.
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As a final remark, consider a situation where the experimentalist first toss
a coin and depending on the result applies one POVM or another. Notice
that this kind of probability mixtures of two or more POVMs can also be
described as a single POVM. Therefore, the set of all POVMs on a Hilbert
space is convex. This can be used the other way around, a complex POVM
with a large number of outcomes can be decomposed into a mixture of simpler
POVMs [Sentís et al., 2013b].

2.2.8 No-cloning theorem and indistinguishability of quantum states

To end this Chapter, here I present two immediate consequences of the quan-
tum formalism that have a crucial effect and pose a genuine handicap in the
estimation and discrimination tasks discussed later in this Thesis.

No-cloning theorem

Consider a composite system of three parties: a data system Hd in which we
are given an unknown state |ψ〉 that we want to clone into a target system
Ht, and an auxiliary system Hanc. Initially the system is prepared in the
state |ψ〉⊗ |0〉⊗ |i〉, where |0〉 and |i〉 are arbitrary states. A general cloning
machine is described then by a unitary operator U acting on Hd⊗Ht⊗Hanc

transforming the initial state as

U
(
|ψ〉 ⊗ |0〉 ⊗ |i〉

)
= |ψ〉 ⊗ |ψ〉 ⊗ |f〉 . (2.32)

where |f〉 is some arbitrary state in which the ancillary system result. But
we want the machine to be universal, so for a different initial state

U
(
|ϕ〉 ⊗ |0〉 ⊗ |i〉

)
= |ϕ〉 ⊗ |ϕ〉 ⊗ |g〉 . (2.33)

where the ancillary system can result to another state |g〉. By taking the
inner product of the last two equation we get

〈ψ|ϕ〉 = 〈ψ|ϕ〉2〈f |g〉 (2.34)

Taking into account that each of the inner product are upper bounded by 1,
the two only solutions are 〈ψ|ϕ〉 = 0 and 〈ψ|ϕ〉 = 1. Therefore, a cloning
machine can only be implemented to clone pairs of orthogonal states and no
universal one is possible.
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Indistinguishability of non-orthogonal quantum states

In order to perfectly distinguish two quantum states {ψ1, ψ2} we need a
POVM with two outcomes {Π1,Π2} that identifies unambiguously each state,
i.e.

p(1|ψ1) = 〈ψ1|Π1 |ψ1〉 = 1 ; (2.35)
p(2|ψ2) = 〈ψ2|Π2 |ψ2〉 = 1 . (2.36)

Let assume Eq. (2.35) as true and see that Eq. (2.36) implies that the states
must be orthogonal. From the completeness relation and Eq. (2.35) one
can see that 〈ψ1|Π2 |ψ1〉 = 0, which in turn implies

√
Π2 |ψ1〉 = 0. Since

the Hilbert space spanned by this two states is of dimension 2, one can
write |ψ2〉 = α |ψ1〉 + β

∣∣∣ψ⊥1 〉, where ∣∣∣ψ⊥1 〉 is an state orthogonal to |ψ1〉 and
|α|2 + |β|2 = 1. With this at hand one can see that

〈ψ2|Π2 |ψ2〉 = |β|2
〈
ψ⊥1
∣∣∣Π2

∣∣∣ψ⊥1 〉 ≤ |β|2 (2.37)

Comparing this last expression with Eq. (2.36), we see that in order to |ψ1〉
and |ψ2〉 be perfectly distinguishable, we must impose β = 1, which also
means that the two states are orthogonal.

No cloning and indistinguishability are closely related, if cloning were
possible one could produce infinitely many copies of a state and, by measuring
them, perfectly identify the state.





CHAPTER 3

Basics on quantum metrology

In this Chapter I introduce quantum metrology tasks. One of the main
goals of metrology is to infer unknown properties from physical systems from
gathered data. Some questions arise: which is the best way to gather such
information? Which procedure has to be followed in order to extract most
efficiently the information contained in the data about the sought property?
To answer these questions, one has to firstly fix a criterion to evaluate the
possible options that will help to take a decision. We will see that this crite-
rion can have a significant effect in the final choice. In this sense, choosing
an estimator or optimising a quantum measurement can be cast as a decision
problem.

I begin this Chapter by briefly introducing such decision problems, and
then I move to metrology tasks. First I consider classical estimation theory
and I discuss how the controversy in the definition of probability presented
in the previous Chapter leads to different estimation methods. Secondly, the
two paradigmatic quantum metrology problems of quantum state discrimi-
nation and quantum parameter estimation are discussed. I close the Chapter
by introducing probabilistic quantum state estimation protocols, which is the
main topic of this thesis.

3.1 Decision Problems
Decision-making is present in almost any aspect of life. Although in every-
day situations it is based in intuition, some problems can be tackled by means
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of logic and statistical methods. In fact, there are a lot of cases in which the
logical and rigorous methods shows that intuition has a powerful A decision
problem can be described by {A, E , C, U} [Bernardo and Smith, 1994], where

(i) A = {ai} is a set of possible actions;

(ii) E = {ei,j} is the set of possible outcomes of taking any action ai ∈ A.
We can decompose E = ⋃

i Ei, where each subset Ei contains the possible
outcomes of each action ai;

(iii) C = {ci,j} is the set of consequences, or decisions, based on the taken
action ai and its resulting outcome ei,j;

(iv) and U : A → R is a utility function, or a figure of merit, that assigns
a number to each action, depending through its set of consequences.
This figure of merit U defines an order of preference in A, and thus, an
optimal action to be taken.

For sake of exemplification, consider a physical system with some unknown
properties. In this case the set of actions is the possible measurements that
can be performed to the system and the set E contains its possible outcomes.
The possible values that can be inferred for the properties under study form
the set C. The function G : E → C that maps each outcome ei,j to an inferred
value for the desired quantity is called guessing rule or guessing function.
Finally, a figure of merit U evaluates the mean accuracy of each possible
measurement together with the guessing rule.

I will refer to a statistical protocol as a pair made up of a measurement
M (an action ai with its set of outcomes {ei,j}) and a guessing function G.
In order to find the optimal protocol these two ingredients have to be taken
into account when evaluating the figure of merit.

3.2 Classical Parameter Estimation
The aim of classical parameter estimation is to determine a set of unknown
parameters φ = (φ1, φ2, . . . , φk) that characterises a given probability density
function (PDF) p(X |φ) for a random variable X. The set of actions in this
case has only one element: to get a data set x = {x1, x2, . . . , xν} consisting
on ν realisations of X. Therefore, our goal is to find a guessing function φ̂(x),
called in this framework estimator, that outputs the most accurate estimate
for the parameters φ given the data x. For the sake of simplicity, I will
consider the case with only one parameter.
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The problem of estimation can be tackled using different approaches de-
pending on the interpretation of probabilities (see Chapter 2): typically, the
Bayesian and the Frequentist approaches. The former considers the proba-
bilities as a representation of the knowledge (or ignorance) about the random
variable to which is concerned, and thus the parameter itself is considered as
random. Hence, after acquiring more information (e.g. through a measure-
ment) the PDF for φ is updated. On the other hand, the Frequentist point
of view interprets probabilities as the frequencies of each event in the limit
of a infinite sized sample. For this reason, the parameter φ is considered to
have a fixed value and it is not treated as a random variable, in contrast to
Bayesian approach. This difference in interpretation leads to very distinct
estimation methods, which are introduced in the following sections.

3.2.1 Bayesian estimation
Due to the Bayesian interpretation of probabilities every unknown quantity
can be characterised by a probability distribution. Hence, the parameter φ
itself is treated as a random variable and a priori PDF p(φ) is assigned to
it, representing the initial lack of knowledge of the experimentalist about its
value. Therefore, the estimator must be optimised for all possible values of
the parameter, taking into account which of these are more probable.

When some data x is obtained, the information we have about the pa-
rameter φ in general increases. Therefore, the a priori PDF is updated to a
posteriori PDF following the Bayes rule (2.3), which now take the form

p(φ |x) = p(x |φ) p(φ)
p(x) (3.1)

where p(x) =
∫
dφ p(x |φ) p(φ) is the marginal probability of obtaining the

data x. Since in most cases the gathered data can be separated in condition-
ally independent parts, i.e. x = (x1, x2) with p(x1, x2|φ) = p(x1|φ) p(x2|φ),
this last expression can be rewritten as

p(φ |x2, x1) = p(x2|φ) p(φ|x1)∫
dφ p(x2|φ) p(φ|x1) (3.2)

Therefore, Eq.(3.2) can be interpreted as a progressive updating of the PDF
for the parameter: initially we have p(φ); we get the first data x1 and update
the parameter PDF to p(φ|x1), which at the same time will be used a prior
distribution when more data x2 is obtained.

Both the prior and the gathered information about the value of φ are then
codified in the posterior PDF p(φ |x). Therefore, from the Bayesian point of
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view, it suffices to give this a posteriori distribution because it contains all
the information collected so far. However, sometimes one may be asked to
give a single value for the parameter and thus to define an estimator φ̂ν(x).
The election of such function should be made by means of a cost function
C
(
φ̂(x), φ

)
that assigns a value to each estimate to represent its quality.

The estimators can be qualified using as figure of merit the averaged cost
Cν(φ̂), i.e., the average of the cost function over the possible values of the
parameter and the possible realisation x:

Cν(φ̂) =
∫
dφ p(φ)

∫
dxν C

(
φ̂(x), φ

)
p(x |φ) . (3.3)

The optimal estimator would be the one with the minimum Cν . In some texts,
a utility function is defined instead of a cost function, the only difference is
that it must be maximised instead of minimised.

The most used figure of merit to quantify the accuracy of an estimate is
the squared error with respect the true value of the parameter, i.e., σφ̂ν(x) =
(φ̂ν(x) − φ)2. In this case, the estimator will be the one that minimise the
Averaged Mean Square Error

MSE(φ̂ν) =
∫
dφ

∫
dxν

(
φ̂ν(x)− φ

)2
p(x, φ) , (3.4)

where the average runs over all possible values of φ and x weighted with the
joint probability p(x, φ) = p(φ |x)p(x), thus

MSE(φ̂ν) =
∫
dxν p(x)

∫
dφ

(
φ̂ν(x)− φ

)2
p(φ|x) . (3.5)

The minimal MSE will be attained by the estimator that minimise the second
integral for all x. Therefore, by taking the derivative with respect to φ̂(x)
one can show that the optimal estimator is equal to the expected value of φ
computed with respect to the conditional PDF p(φ |x), i.e.,

φ̂MMSE(x) = 〈φ〉p(φ |x) =
∫
dφ p(φ |x) φ (3.6)

which is called the Minimum Mean Squarred Error (MMSE) estimator.
In some cases the MSE is not a good choice as figure of merit. This is so

because the integral in Eq. (3.3) might not respect the possible symmetries of
the parameter. It is the case for example of angular parameters with circular
symmetry φ = φ+2πk with k ∈ Z, which is the case treated in this thesis. In
order to correctly account for this symmetry, the cost function should satisfy:

• symmetric C(φ̂, φ) = C(φ, φ̂);
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• periodic C(φ̂, φ) = C(φ̂+ 2πk, φ) with k ∈ Z;

• group invariant C(φ̂, φ) = C(φ̂+ θ, φ+ θ);

• and it has to reach its minimum value at φ̂ = φ and raise monotonically
in |φ− φ̂| to its maximum value at φ̂ = φ± π.

A general function that fulfils the above conditions can be written as a series
of cosines of the difference angle θ = φ̂−φ, i.e. C(θ) = ∑∞

k=0 βk cos(k θ) with
βk ≥ 0. In terms of a utility function instead of a cost function, one has only
to invert the positions of the extremal points in the last of the conditions.
In what follows I use the utility function f(θ) = 1

2 [1 + cos(θ)] which takes
values in the range [0, 1].

The main criticism about Bayesian estimation methods is related to the
prior distribution about the parameter. It is true that some choices of prior
distributions can have a big impact in the estimated value, especially with
small samples. But this is not wrong by itself if this prior distribution rep-
resents reliably a true information about the parameter. In fact, one of the
most used prior distribution is a uniform one, i.e., the distribution that ex-
press no preferences about any value.

As an example [Kay, 1993] consider a sample {x1, . . . , xν} with each xi
distributed following a normal distribution p(xi|µ) = N (µ, σ) from which we
want to estimate its mean µ. Our previous knowledge is that its value is
around some µ0, and for this reason we assign it a prior normal distribution
p(µ) = N (µ0, σµ). The variance σµ represents the uncertainty we have about
the true value of µ, i.e., the larger σµ the less informative is the prior PDF.
The posterior PDF will be proportional to the probability of the sample
conditioned by the value of µ times the prior assigned to this parameter, i.e.

p(µ|x) ∝ p(x|µ) p(µ) ∝ exp
[
−(µ− µ0)2

2σ2
µ

−
ν∑
k=1

(xk − µ)2

2σ2

]
, , (3.7)

up to a normalisation factor that does not depend on µ. By applying some
algebra, it is straightforward to write the posterior PDF also as a normal
distribution with mean

µ|x = α 〈x〉+ (1−α)µ0 with α = σµ
σµ + σ/ν

and 〈x〉 = 1
ν

ν∑
k=1

xk (3.8)

and variance

σ2
µ|x =

(
1
σ2
µ

+ ν

σ2

)−1

=
σ2 σ2

µ

σ2 + ν σ2
µ

. (3.9)
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Notice that the mean of this posterior distribution, which coincides with the
MMSE estimator, is a convex combination (since 0 ≤ α ≤ 1) of the a priori
mean µ0 and the sample mean 〈x〉, with weights α that depend on the sample
size ν. For small samples (σ2/ν � σ2

µ) the weight α ≈ 0, hence the posterior
PDF is almost equal to the prior distribution, i.e. µ|x ≈ µ0 and σ2

µ|x ≈ σ2
µ. In

this case the form of the prior information is very relevant in the estimation.
On the contrary, for large samples (σ2/ν � σ2

µ), the estimated value tend
to the mean of the sample 〈x〉, which will coincide with µ as ensured by the
law of large numbers. The information codified in the prior PDF plays less
and less important role. Summarising, notice that the coefficient α indicates
the relative confidence we have between the initial knowledge (σµ) and that
acquired experimentally (σ/ν).

As a final remark, note that any prior information increase the accuracy
of the estimation. This can be seen by computing explicitly Eq. (3.5) for this
concrete example. Since the MMSE estimator is the mean of the posterior
distribution [see Eq. (3.6)], the second integral in Eq. (3.5) coincides by
definition with the posterior variance and the integral with respect to xν can
be done straightforwardly because the variance in Eq. (3.9) does not depend
on x. The MSE is equal in this case to the variance in Eq. (3.9), which can
be written as

MSE(φ̂MMSE
ν ) = σ2

ν

(
σ2
µ

σ2
µ + σ2/ν

)
≤ σ2

ν
, (3.10)

where the equality hold only for the complete uninformative prior with σµ →
∞. Therefore, any prior information increases the accuracy of the MMSE
estimator.

3.2.2 Frequentist estimation
In contrast to the Bayesian point of view, the Frequentist approach assumes
that the parameter is deterministic, i.e. it has a fixed value φ. However
the estimator must be treated as a random variable since it is a function of
the random realisations x. Hence, the statistical properties of the estimator,
such as mean or variance, can still be defined, i.e.

〈φ̂ν〉φ =
∫
φ̂ν(x) p(x;φ) dνx , (3.11)

Var(φ̂ν)φ =
∫ (

φ̂ν(x)− 〈φ̂〉φ
)2
p(x;φ) dνx , (3.12)

where the semicolon in the argument of the PDF indicates that the quantities
at the right are parameters and not variables. The first requirement that this
approach demands to the estimator is to be consistent, i.e., the probability
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distribution of the estimated value has to become infinitely peaked around
the true value φ as the sample size ν grows. To put it mathematically,

lim
ν→∞
〈φ̂ν〉φ = φ (3.13)

lim
ν→∞

Var(φ̂ν)φ = 0. (3.14)

This requirement emphasises two important aspects of the Frequentist ap-
proach: the fixed-value character of the parameter and the definition of prob-
ability as frequencies of infinitely sized samples.

The performance of an estimator is evaluated by means of the MSE

MSE(φ̂ν)
∣∣∣
φ

=
∫
dνx

(
φ̂ν(x)− φ

)2
p(x;φ) (3.15)

which is to be minimised to find the optimal estimator. In general, the
optimal estimator could be different depending on the value of φ. Such local
optimal estimators require the estimated parameter to be known before the
estimation procedure itself. This fact seems to imply that they are useless for
practical purposes. However, since any other estimator will perform worse
than them, they can be used to derive a lower bound on the estimation
accuracy. Moreover, in some cases, it can be found a global optimal estimator,
that is an estimator that performs optimally for any value of φ.

One of the most important results of the Frequentist estimation theory is
the Cramér-Rao lower bound (CRLB). This bound refers to unbiased estima-
tors, i.e. estimators that yield on average to the true value of the parameter,

〈φ̂〉φ = φ ∀φ. (3.16)

For these, the MSE in Eq.(3.15) and the variance in Eq.(3.9) are equivalent.
In fact, defining the bias of an estimator as b(φ̂) = 〈φ̂〉φ − φ, the variance
and the MSE are related by

MSE(φ̂) = Var(φ̂) + b2(φ̂). (3.17)

Then, for unbiased estimators minimising its variance and its MSE are equiv-
alent. In general, the Frequentist approach only deals with unbiased estima-
tors. However, it may exists a biased estimator with better accuracy than
unbiased ones, or even be the only one that minimise the MSE. But, as an
estimator is required to be consistent, in the assymptotic limit of large sam-
ple size, which is the regime that the Frequentist approach is designed for,
the estimator must be also unbiased.

Going back to the CRLB, it can be easily derived from the unbiased
condition in Eq. (3.16)[Kay, 1993]. Some regularity conditions are also asked
to the PDF:
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• for all values of x with non-zero probability, ∂ log p(x;φ)
∂φ

must exist and
be finite;

• the operations of integration with respect to x and differentiation with
respect to φ must be interchangeable.

These conditions are in general fulfiled, except for those PDF that have a
support (the set of values of x with non-zero probability) whose limits depend
on the parameter φ. With these conditions at hand, the Eq. (3.16) can be
differentiated with respect to φ to give

1 = ∂

∂φ
〈φ̂〉 =

∫
φ̂(x) ∂p(x;φ)

∂φ
dνx =

=
∫
φ̂(x) ∂ log p(x;φ)

∂φ
p(x;φ) dνx (3.18)

where log refers to the natural logarithm. In the same way, by using the
normalisation of the PDF one can see that∫

φ
∂ log p(x;φ)

∂φ
p(x;φ) dνx = 0 (3.19)

Then, by substracting (3.18) and (3.19), one gets∫ (
φ̂(x)− φ

) ∂ log p(x;φ)
∂φ

p(x;φ) dνx = 1 (3.20)

and using the Cauchy-Schwarz inequality(∫
w(x) g(x)h(x) dx

)2
≤
∫
w(x) g2(x) dx

∫
w(x)h2(x) dx (3.21)

with w(x) ≥ 0. The equality holds if and only if g(x) = C h(x), with C an
arbitrary constant independent of x. Doing the associations w(x) = p(x;φ),
g(x) =

(
φ̂(x)− φ

)
and h(x) = ∂ log p(x;φ)

∂φ
in Eq. (3.20) one gets

∫ (
φ̂(x)− φ

)2
p(x;φ) dνx

∫ (
∂ log p(x;φ)

∂φ

)2

p(x;φ) dνx ≥ 1 (3.22)

⇒ Var(φ̂)
∣∣∣
φ
≥

∫ (
∂ log p(x;φ)

∂φ

)2

p(x;φ) dνx
−1

(3.23)

which is the so-called Cramer-Rao lower bound. The term in square brackets
can be easily shown to be equal to the Fisher information

Iν(φ) = −
〈
∂2 log p(x;φ)

∂φ2

〉
(3.24)
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where the subscript ν reminds that the Fisher information is computed over
the distribution p(x;φ) of a sample of size ν. Thus, the Cramer-Rao lower
bound can be written compactly as

Var(φ̂)
∣∣∣
φ
≥ Iν(φ)−1 (3.25)

Hence, the greater the Fisher information the better the parameter can be
estimated, and thus Iν(φ) can be understood as the sensitivity of the PDF on
the parameter or the distinguishability of the parameter. Mathematically, the
Fisher information is additive for independent realisations, i.e., if x consists
in independent and identically distributed (iid) realisations, then Iν(φ) =
ν I(φ), with I(φ) the Fisher information of a single realisation. Therefore,
the CRLB tells us that for iid samples the optimal variance can scale with
the size ν at least as 1/ν, i.e.

Var(φ̂)
∣∣∣
φ
≥ 1
ν I(φ) . (3.26)

An estimator that saturates the CRLB is said to be an efficient estimator,
but one has to keep in mind that there not always exists such estimator.
However, from the saturability of the Cauchy-Schwarz inequality, a condition
for the existence of an efficient estimator can be formulated

∂ log p(x;φ)
∂φ

= 1
C(φ)

(
φ̂(x)− φ

)
(3.27)

where the possible dependence of the constant C on φ and the dependence
of the estimator on the sample x has been written explicitly. By taken the
derivative with respect to the parameter φ and averaging with respect to x,
C(φ) reads

C(φ) = −
〈
∂2 log p(x;φ)

∂φ2

〉−1

= I(φ)−1, (3.28)

where the unbiased and regularity conditions has been used. With this, it
can be stated that if the PDF fulfils the condition

∂ log p(x;φ)
∂φ

= I(φ) (g(x)− φ) (3.29)

for some function g(x) with only dependence on the sample x, then there
exists an unbiased estimator that saturates the CRLB and it is equal to g(x).
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3.3 Quantum state discrimination

Before entering in the main topic of this thesis, the quantum parameter
estimation, I discuss the quantum state discrimination (QSD) problem. I
use it to introduce quantum optimisation problems and to show how the
choice of different figures of merit lead to very different solution for the same
initial situation.

As stated in the previous chapter, two non-orthogonal quantum states can
not be distinguished perfectly. However, one can ask for the measurement
that optimally discriminate between them. But what does "optimally" means
in this context? Let me look at the following hypothetical situation: consider
a chamber where is stored a a treasure. Inside the chamber there is also a
big deadly explosive with a countdown timer. An adventurer is inside the
chamber. He look at the bomb and discover two wires: one is yellow with red
stripes and the other is blue with also red stripes. He is sure that cutting the
one that connects directly with the explosive he can deactivate the bomb,
and luckily he is prudent and always carries a wire cutter. He has to find
out which is the cable to cut, so he keep searching on the bomb. He find a
very little gap through which he can see the explosive and just a little piece
of the wire. In fact, he sees no stripes in the wire and only one color. If that
color is blue or yellow, the adventurer has certainty about which wire to cut,
but if it is red it gives no information. Let me now consider two different
situations: the door is closed or it is opened. Clearly, the adventurer has two
goals: save his life and get the treasure, and this yield to different strategies
depending on the door. If the door is closed he is forced to cut one of the
wires, so if he see the wire piece red the only remaining option is to choose
randomly one of the wires and cut it in the last second. But if the door is
opened, another option arise: to choose no wire and run away. In this sense
we have added to the decision a third outcome. In this case the measurement
performed by the adventurer is classical and hence it can not be tuned in
any way. Nevertheless, quantum mechanics allows for a bigger variety of
measurements, and a change in the figure of merit (like the one presented
above) leads two different optimal measurement, as we are going to see for
quantum state discrimination.

Formally, the quantum state discrimination problems are defined like this:
we are given a quantum system with the only information that it is in one
state chosen from a set {ρk}nk=1 with some prior probability ηk ≥ 0, with∑
k ηk = 1. Our aim is to design a measurement to figure out in which of

these possible states, or hypotheses, the system is. As in the fictional ex-
ample above, different figures of merit yield different optimal measurement.
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This is the case of two paradigmatic scenarios for QSD: the Minimum-Error
(ME) and the Unambiguous (UA) cases. In the former, the measurement
has to necessarily deliver a guess. In this scenario the probability of getting
the correct answer has to be maximised, or what is the same, to minimise
the probability of obtaining an erroneous outcome. On the contrary, in the
UA discrimination scenario it is not allowed to give an erroneous answer,
but the measurement can yield to an inconclusive outcome, i.e. an outcome
with any hypothesis assigned and meaning "I don’t know". Since ME and
UA are extreme situations (fixing the inconclusive outcome probability or
the erroneous outcome probability to its extremal minimum value 0, respec-
tively), the quantum state discrimination allows for a generalisation, where
some weaker bounding constraints are imposed to the probabilities.

Now I am to describe firstly the two extreme cases of ME and UA quan-
tum state discrimination. Then I introduce the intermediate situation in
which some error-margins are imposed and present an unpublished explicit
computation for the case of a set of symmetric states.

3.3.1 Minimum-error quantum state discrimination
In the minimum-error (ME) scenario the measurement assigns to each out-
come one of the possible hypothesis. For this reason, the number of possible
outcomes is the same as the number of hypotheses. This does not mean
that there is not any hypothesis with a null probability of obtaining it. The
measurement will be represented by a POVM P with n elements, i.e. a set
of n positive semi-denifite operators {Πk}, each one associated with an out-
come ωk. The guessing rule is the trivial one that maps each outcome ωk to
the hypothesis ρk with the same label. From the Born rule, the probability
of obtaining the outcome ωj when the system is initially in the state ρk is
p(ωj|ρk) = tr (Πj ρk). With this, the success probability psucc of getting a
correct answer and the error probability perr of getting an erroneous one can
be written as

psucc =
n∑
k=1

ηk p(ωk|ρk) =
n∑
k=1

ηk tr (Πk ρk) (3.30)

perr =
n∑
k=1

∑
j 6=k

ηj p(ωk|ρj) =
n∑
k=1

∑
j 6=k

ηj tr (Πk ρj) (3.31)

Obviously psucc + perr = 1, what can be easily check using the normalisa-
tion constraint for the density matrices, the resolution of the identity of the
POVM and the fact that ∑k ηk = 1. Thus, the ME discrimination problems
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can be expressed as the following semidefinite programming:

minimise ∑n
k=1

∑
j 6=k ηj tr (Πk ρj)

subject to Πk ≥ 0 ∀k∑
k Πk = 11

(3.32)

In general, this is not an easy problem to solve analytically, and it is very
useful to use any existing symmetry in the hypothesis ensemble {ρk, ηk} to
simplify the problem.

As an example consider a simple case with only two hypothesis {ρ1, ρ2}
with prior probabilities {η1, η2}, which can be solved easily. In this simple
case the probability of error can be written as

perr = η1tr [Π2ρ1] + η2tr [Π1ρ2] =
= η1tr [ρ1] + tr [Π1(η2ρ2 − η1ρ1)] =
≡ η1 + tr [Π1Γ] (3.33)

where the identity resolution Π1 + Π2 = 11 has been used. The operator
Γ = η2ρ2 − η1ρ1 is the so-called Helstrom matrix [Helstrom, 1976]. In order
to find an explicit form for the POVM elements, notice first that Γ can have
positive, negative and null eigenvalues. Let Γ = ∑

k γk |ψk〉〈ψk| be the spectral
decomposition of the Helstrom matrix. It can be split as a difference between
two positive matrices in the following way

Γ =
∑

k: γk>0
|γk| |ψk〉〈ψk| −

∑
k: γk<0

|γk| |ψk〉〈ψk| ≡ Γ+ − Γ− (3.34)

Plugging this into Eq. (3.33) yields

perr = η1 + tr [Π1Γ+]− tr [Π1Γ−] (3.35)

Since Π1 as well as Γ± are positive semi-definite, the two last terms fulfil
tr [Π1Γ±] ≥ 0. It follows that the optimal POVM P∗ = {Π∗1,Π∗2}, that is
the one that minimise perr, must be the one that maximise tr [Π1Γ−] and for
which tr [Π∗1Γ+] = 0 holds. It follows that the POVM element Π1 has to be
the projector over the subspace spanned by the eigenvectors with negative
eigenvalues, i.e.

Π∗1 =
∑

k: γk<0
|ψk〉〈ψk| (3.36)

In an equivalent way one can see that the other element Π2 has to be
the projector over the positive eigenspace. In order to fulfil the identity
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resolution, it remains to add the projector over the null eigenspace, but it has
no effect in the probability of error. Hence it can be distributed indifferently
between the two POVM elements. With this, the probability of error can be
written in terms of the eigenvalues as

perr = η1 −
∑

k:γk<0
|γk| =

1
2

(
1−

∑
k

|γk|
)

(3.37)

where it have been used that tr Γ = η2 − η1 = ∑
k|γk≥0 γk + ∑

k|γk<0 γk and
η1 + η2 = 1. A compact way of writing this error probability is

perr = 1
2 (1− ||η2ρ2 − η1ρ1||1) (3.38)

where we have used the trace norm operation defined as ||Γ||1 = tr |Γ| =∑
k |γk|.
For the case of pure-state hypothesis, that is ρk = |ψk〉〈ψk|, the probability

of error can be written as

perr = 1
2

(
1−

√
1− 4η1η2|〈ψ1|ψ2〉|2

)
(3.39)

Notice that if the state are orthogonal, i.e. 〈ψ1|ψ2〉 = 0, the probability
of error vanish, meaning that the state are completely distinguishable. In
the other extreme, if the two hypothesis are the same, i.e. 〈ψ1|ψ2〉 = 1, the
optimal POVM is the one that always outcome the most probable hypothesis,
and hence the probability of error is equal to the prior probability of the less
likely hypothesis.

As a second example, let me consider the case of N symmetric pure states
with equal prior probabilities ηk = 1/N . In this case, the set of hypothesis
{ρk}Nk=1 is described as

ρk = |ψk〉〈ψk| = Uk |Ψ〉〈Ψ| (U †)k (3.40)

where |Ψ〉 is a fiducial state and U is a unitary operation for which UN = 11
holds. In general, a multi-hypotheses problem like that is hard to solve.
However, in this case the strong symmetry of the hypothesis allows to find
an analytical solution for the optimal POVM {Ek} [Ban et al., 1997]:

Ek = Ω−1/2 |ψk〉〈ψk| Ω−1/2 (3.41)

Ω =
n∑
k=1

ρk (3.42)

which discriminate the states defined in Eq (3.40) with a probability of error
given by

perr = 1− | 〈Ψ| ρ−1/2 |Ψ〉 |2 (3.43)
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It is worth noting that, since the hermitian operator ρ commutes by con-
struction with the unitary U , the POVM elements have the same symmetry
property than the hypothesis states, i.e.

Ek = Uk
(
ρ−1/2 |Ψ〉〈Ψ| ρ−1/2

)
(U †)k (3.44)

This POVM is the so-called square-root measurement. It is a paradigmatic
example of how the symmetries of the problem can allow to find a solu-
tion. Moreover, it is a general feature of problems that any symmetry of
the hypothesis translates to a similar symmetry on the POVM elements.
For instance, this will be the case in Bayesian estimation protocols (see Sec-
tion 3.4.1) in which the circular symmetry of the parameter allows to define
the covariant POVMs, which is a relevant result of this approach.

3.3.2 Unambiguous state discrimination
In the minimum-error scenario of state discrimination there is no absolutely
certain outcome. This is so because whatever state is the system prepared
in, there is always some probability, although small, for any of the possible
measurement outcomes. As in the example of the introduction of the section,
it may be some situation in which the only way to gain certainty in our
outcomes is to allow the possibility of sometimes abstain of giving an answer.
In 1987 Ivanovic [1987] presented an scheme in which this is the case. He
propose a sequence of measurements over different copies of the state in a way
that some sequence of outcomes is only possible for one of the hypothesis,
but at the expense that some other possible outcome sequences that give no
conclusive information about the system state. Following this scheme one
ends up with a protocol that unambiguously discriminate between them. A
year later Dieks [1988] unified the sequential protocol in a single POVM, that
was proved to be optimal in Peres [1988]. This results was then generalised in
Jaeger and Shimony [1995] for arbitrary prior probabilities of the hypothesis.

As stated in the last paragraph, the aim of unambiguous state discrim-
ination (USD) is to find a measurement with a null probability of wrong
answers, i.e. p(ωj|ρk) ∝ δj,k. Let Πk (with k = 1, 2, . . . , n) be a POVM ele-
ment associated with the hypothesis state ρk with the same label. Applying
the Born rule, the above condition translates to

tr (Πk ρj) = 0 ∀k 6= j (3.45)

This expression constraints the measurement, but also the hypothesis ensem-
ble has to satisfy some conditions. Let me analyse the implications of USD
condition in Eq (3.45). The POVM must fulfil that its element associated
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with an hypothesis must be orthogonal to the support of the density ma-
trices of all the other hypotheses. This immediately discard the possibility
of full-rank hypotheses for which no such operators exists. Furthermore, for
pure states, this turn on to the condition that the hypotheses should form a
linearly independent set, and hence, in particular, the number of hypotheses
can not be greater than its dimension.

Let me focus now in the case of two qubits {ρ1, ρ2} with prior probabilities
{η1, η2 = 1 − η1}. In this case, if the states are mixed, the POVM elements
have to be the null operator in order to fulfil the condition. Therefore, for
mixed qubits states there is no POVM that unambiguously discriminates
between them. For pure states ρk = |ψk〉〈ψk| it can be explicitly solved. The
condition in Eq. (3.45) implies that the POVM elements have to take the
form

Π1 = µ1

∣∣∣ψ⊥2 〉〈ψ⊥2 ∣∣∣
Π2 = µ2

∣∣∣ψ⊥1 〉〈ψ⊥1 ∣∣∣ (3.46)

where
∣∣∣ψ⊥k 〉 is the vector orthogonal to |ψk〉 and µ1 and µ2 are constants.

Therefore, if Π1 clicks we tell that the system is in the state |ψ1〉 for exclusion.
This two detection operators do not sum up to the identity, except for the
orthogonal case ξ = |〈ψ1|ψ2〉| = 0. For his reason, one must allow a third
POVM element Π0 = 11 − Π1 − Π2, which corresponds to an inconclusive
result that gives no information about the state to be discriminated. In
other words, there will be an abstention probability

Q = η1 tr (Π0 ρ1) + η2 tr (Π0 ρ2) =
= 1− (1− ξ2)(η1 µ1 + η2 µ2) (3.47)

that the experimentalist fails to give a conclusive answer. From this point, it
only remains to find the constants µ1 and µ2 that minimize such abstention
probability Q while keeping the POVM elements positive. The positivity
condition for the detection operators can be written as µk ≥ 0, and for the
abstention operator

1− µ1 − µ2 +(1− ξ2) µ1 µ2 ≥ 0 (3.48)

These conditions together with Eq. (3.47) defines an optimisation problem
and, since the objective function is linear, the solution has to be on the
boundary; in fact, it has to lay in the boundary defined by Eq. (3.48). By
putting it (as an equality) in Eq. (3.47) and minimising one gets

µ1 = 1
1− ξ2

(
1−

√
1− η1

η1
ξ

)
(3.49)
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A similar expression can be found for µ2 by changing µ1 ↔ µ2. In order to
keep them positive, not all values for the prior probability η1 = 1 − η2 = η
are possible. Only in the range

1
1 + ξ2 ≥ η ≥ ξ2

1 + ξ2 (3.50)

the solution in Eq. (3.49) is valid. Below this bound, the solution is µ1 = 0
and µ2 = 1, that means that the POVM effectively has only two elements.
Therefore the measurement outputs only the hypothesis 2 with absolute cer-
tainty or an inconclusive answer. Above the bound the situation is the other
way, i.e. the measurement only outputs the hypothesis 1 or abstains. Sum-
marising, the inconclusive-output probability is

Q =


η + (1− η)ξ2 if η ≤ ξ2

1+ξ2

2
√
η(1− η) ξ if ξ2

1+ξ2 ≤ η ≤ 1
1+ξ2

1− (1− ξ2) η if η ≥ 1
1+ξ2

(3.51)

and the probability of give a correct answer is psucc = 1−Q.
Further we have seen that the condition (Eq. (3.45)) limits the possible

sets for which USD protocol can be performed. In 2008 Croke et al. [2008]
proposed a relaxation of this condition: instead of imposing the condition
of no erroneous outcomes, the protocol must maximise the confidence the
experimentalist have in the obtained outcome. They define such confidence as
the posterior probability of the true state being the hypothesis ρj conditioned
to being obtaining the outcome with the same label j, i.e.

Cj = p(ρj|ωj) = ηj p(ωj|ρj)
p(ωj)

(3.52)

Notice that for the cases in which USD is possible, the maximum confidence
for all the hypothesis will turn to be 1, meaning that the experimentalist is
absolutely confident that the obtained outcome coincides with the true state
of the system.

3.3.3 Quantum state discrimination with error margin
In state discrimination protocols there are three possible events (or measure-
ment outcomes) that are to give a correct or erroneous answer or decline to
giving any at all. This is summarised by the relation between the probabili-
ties of such events psucc + perr + Q = 1. In both above presented protocols,
minimum-error and unambiguous state discrimination, one of these proba-
bilities is set to zero, Q = 0 and perr = 0 respectively. In this sense, one
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might call these protocols to be extremal. However, notice that by allowing
some inconclusive outcome in ME protocol the confidence in the conclusive
ones will increase. Likewise, in the USD including the possibility of some
erroneous outcomes leads to an enhancement in terms of success probability.
Therefore, a general scheme can be defined by fixing either Q (discrimination
with abstention) or perr (discrimination with error margin) and maximising
the probability of obtaining a correct outcome.

This general scheme was firstly introduced in ?. In their work, the authors
work out the case of discriminating two pure hypothesis. They find a lower
bound for the probability of error given a fixed abstention rate Q. The
author also analysed the results considering that the POVM acts with two
steps: a first one that probabilistically transforms the input states into a more
distinguishable pair or give an inconclusive outcome, and as a second step a
projective measurement that corresponds to the minimum error protocol.

A different approach for analysing error-margin discrimination was intro-
duced in the works Hayashi et al. [2008] and Sugimoto et al. [2009]. There
the authors impose the probability of error to be less than an error margin,
i.e. perr ≤ m, and then minimise the abstention probability. They named it
the weak error-margin condition, in contrast to the strong error-margin con-
dition, that they also introduce. The latter impose an upper bound to the
probabilities of correct detection for each hypothesis, i.e. p(ρj|ωk 6=j) ≤ m.
However, in Sugimoto et al. [2009] they show that the two conditions are
equivalent, that is, the strong condition leads to the same result (equal psucc
and equal POVM) than the weak one but with a tighter error margin.

There are different variations and approaches to the error-margins quan-
tum state discrimination. For example, in Sentís et al. [2013a] the authors
present a theoretical machine that discriminates between two unknown quan-
tum states subject to a given error margin. Instead of having classical in-
formation a priori, the machine have access to program systems that are
prepared in the possible hypothesis states that the target system could be.
In this work the problem is tackled with the weak and the strong conditions,
and they also find a relation between them.

Discrimination of symmetric quantum states with a fixed rate of inconclusive
outcomes

In 2012, Bagan et al. introduced a method [Bagan et al., 2012] to transform
a general discrimination problem into the standard minimum-error scheme.
Now I am to show as an example the case of N symmetric pure hypothe-
sis following their discrimination with a fixed rate of inconclusive outcomes
(FRIO) scheme.
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Consider that an experimentalist received a system without knowing in
which state it is. However, he has the promise that it is in one state within
the set {ρn ∈ Hd}Nn=1 with equal prior probability ηn = 1/N . The hypothesis
ρj are symmetric in the sense that fulfils the relation ρn = Un−m ρm U

−(n−m),
where U is a unitary operation that can be written as

U =
d∑

k=1
ei 2π k/N |uk〉〈uk| (3.53)

which fulfils that UN = 11. The states {|uk〉} form the (orthonormal) eigen-
basis of U . In this basis, the symmetric pure hypothesis can be written
as

ρn = |ψn〉〈ψn| with |ψn〉 =
d∑

k=1
ck ei 2π k n/N |uk〉 (3.54)

where by normalisation ∑d
k=1 |ck|2 = 1. Note that, without lost of generality,

I can take d ≤ N . Our aim is to find a POVM P = {Πn}Nn=0, where the
elements Πn with n ≥ 1 identify the hypothesis with the same label and Π0
represents the inconclusive outcome.

First of all, I show that the symmetry between the hypotheses allows me
to take the POVM with a similar symmetry. Given a POVM P̃ = {Π̃n}Nn=0,
one can construct another POVM P = {Πm}Nm=0 such that

Πm = Um ΩU−m with Ω = 1
N

N∑
n=1

U−nΠ̃nU
n ; (3.55)

Π0 = 1
N

N∑
n=1

UnΠ̃0U
−n . (3.56)

It is easy to check that the set of operators defined in Eqs. (3.55) and (3.56)
form indeed a POVM: the positivity of Πm comes directly from the positivity
of Π̃m and the unitarity of U . Only remains to check that they sum up to
the identity:

N∑
m=0

Πm = Π0 +
N∑
m=1

Um Ω U−m =

= Π0 + 1
N

N∑
m,n=1

Um−nΠ̃nU
−m+n =

= 1
N

N∑
l=1

U lΠ̃0U
−l + 1

N

N∑
l,n=1

U lΠ̃nU
−l =

= 1
N

N∑
l=1

U l

(
N∑
n=0

Π̃n

)
U−l = 11 (3.57)
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where between the second and the third line I used that UN = 11 and therefore
l = m − n take, modulo N , all the integer values between 1 and N . In the
last equality I also used the fact that P̃ is a POVM ensures the resolution of
the identity. Now consider the success probabilities psucc and p̃succ obtained
by the POVM’s P and P̃ respectively.

psucc = 1
N

N∑
m=1

tr (Πm ρm) =

= 1
N

N∑
n,m=1

1
N

tr
(
Um−n Π̃n U

−m+n ρm
)

=

= 1
N

N∑
m=1

1
N

N∑
n=1

tr
(
Π̃n ρn

)
=

= 1
N

N∑
m=1

p̃succ = p̃succ (3.58)

In the same way one can see that the two POVM’s produce also the same ab-
stention probability Q. Therefore, given a general POVM one can construct
another one with the symmetries Πm = Um−n Πn U

−m+n for n,m = 1, . . . , N
and Π0 = U Π0 U

† that performs equally in discriminating the equiprobable
hypothesis given by Eq. (3.54), i.e. the POVM can be choosen directly with
this symmetry. Doing it, the set of variables reduces to the operators Ω and
Π0 and the probabilities are simplified to

psucc = tr (Ω ρN) (3.59)
Q = tr (Π0 ρN) (3.60)

With this at hand, one can see that the confidence of the outcomes, described
in Eq. (3.52) of the previous section, takes a very simple expression

Cn = ηn tr (Πn ρn)∑N
m=1 ηm tr (Πn ρm)

= psucc
psucc + perr

= psucc
1−Q (3.61)

Furthermore, since from the symmetry we have [Π0, U ] = 0, in the eigenbasis
of U the abstention operator has a diagonal form Π0 = diag(f1, f2, . . . , fd),
where hermiticity and POVM positivity imply that 0 ≤ fk ≤ 1 has to hold
for all k = 1, . . . , N .

Now, let me consider the abstention rate to have a fixed value Q, so
the problem reduces to find the maximum possible value for the success
probability given it. From the resolution of the identity of the POVM one
have

N∑
n=1

Un ΩU−n = 11− Π0 ≡ Π̄0 (3.62)
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Multiplying from both sides by Π̄−
1
2

0 yields

N∑
n=1

Un Π̄−
1
2

0 Ω Π̄−
1
2

0 U−n =
N∑
n=1

Un Ω̃U−n = 11 (3.63)

where we have implicitly defined Ω̃ = Π̄−
1
2

0 Ω Π̄−
1
2

0 . Notice that Π̄−
1
2

0 only exist
if all fk 6= 1. We will see later that the optimal solution fulfils fk < 1, except
for the non-practical case Q = 1 in which the only POVM element that
remain is Π0 = 11. With this definition the success probability in Eq. (3.59)
can be transformed in the following way

psucc = tr
(

Π̄
1
2
0 Ω̃ Π̄

1
2
0 ρN

)
= tr

(
Π̄0 ρN

)
tr
(
Ω̃ ρ̃N

)
=

= (1−Q) tr
(
Ω̃ ρ̃N

)
(3.64)

where I have defined

ρ̃N = Π̄
1
2
0 ρN Π̄

1
2
0

tr
(
Π̄0 ρN

) =
d∑

k,j=1

√
1− fk
1−Q ck

√
1− fj
1−Q c∗j |uk〉〈uj| =

=
d∑

k,j=1
c̃k c̃

∗
j |uk〉〈uj| with c̃k ≡

√
1− fk
1−Q ck (3.65)

By explicitly writing the abstention probability in terms of the state ampli-
tudes ck and the parameters fk, i.e.

1−Q = tr
(
Π̄0 ρN

)
=

d∑
k=1
|ck|2(1− fk), (3.66)

it is easy to check that the transformed states are normalised. The success
probability in Eq. (3.64), except for the factor 1 − Q, defines a minimum-
error discrimination problem with the hypothesis being the pure states in
Eq. (3.65). It can be interpreted as if the system go first through a prob-
abilistic channel (with a Kraus operator Π̄1/2

0 ) that transforms the input
state ρn → ρ̃n with some probability 1 − Q and then the measurement
{Un Ω̃U−n}Nn=1 is performed. If the channel fails to transform the state the
experimentalist does not perform the measurement and take as output an
"I-don’t-know" answer. Since, as we will see, the optimal Ω̃ does not depend
in fk, it can be optimised separately from Π0. So, I will find first the optimal
measurement to be applied over the transformed states ρ̃n, and then I will
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find the channel that generate an ensemble of these states that maximise the
performance of such measurement.

Let me write Ω̃ in the eigenbasis of the unitary operator as

Ω̃ =
d∑

j,k=1
ωjk |uj〉〈uk| . (3.67)

Then, using the relation

N∑
n=1

ei
2π n
N

(j−k) = Nδjk, (3.68)

the resolution of the identity in Eq. (3.63) implies that ωjj = 1/N . Further-
more, the positivity of Ω̃ yield the constraint |ωjk| ≤

√
ωjj ωkk = 1/N . It can

be used to find an upper bound to the success probability in discriminating
the transformed states, i.e.

psucc = (1−Q)
d∑

j,k=1
ωjk c̃

∗
j c̃k

= (1−Q)
 d∑
j=1

1
N
|c̃j|2 +

d∑
j,k=1|j 6=k

ωjk c̃
∗
j c̃k


≤ (1−Q)

 d∑
j=1

1
N
|c̃k|2 +

d∑
j,k=1|j 6=k

|ωjk| |c̃j| |c̃k|


≤ (1−Q)

 d∑
j=1

1
N
|c̃j|2 +

d∑
j,k=1|j 6=k

1
N
|c̃j| |c̃k|


= 1−Q

N

 d∑
j=1
|c̃j|

2

= 1
N

 d∑
j=1

√
1− fj |cj|

2

(3.69)

The bound is saturated for |ωjk| = 1/N and when all the complex phases
of the state amplitudes c̃k are compensated by the phases of the operator Ω̃,
i.e.

ωjk = 1
N

cj c
∗
k

|cj| |ck|
(3.70)

From now on, I will consider, without lost of generality, either the state
amplitudes cj and the coefficients of Ω̃ to be real and positive. In other
words, the second fraction in Eq. (3.70) will be equal to one, and therefore
ωj,k = 1/N for j, k = 1, 2, . . . , d. Moreover, since the phases play no role in
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the success probability, I group together all the coefficients with the same
modulus and reorder the indices in decreasing order, i.e.

c1 > c2 > · · · > cM (3.71)

and let nj be the multiplicity of the original coefficients with modulus cj.
Note that ∑M

j=1 nj = d and the state normalisation is now imposed by∑M
j=1 nj c

2
j = 1. To simplify further the notation let me define ξj =

√
1− fj.

With all this, the remaining problem can be expressed as

Maximise psucc = 1
N

 d∑
j=1

nj cj ξj

2

(3.72)

subject to 1−Q =
d∑
j=1

nj c
2
j ξ

2
j (3.73)

0 ≤ ξj ≤ 1 ∀j (3.74)

The solution must fulfil the Karush-Kuhn-Tucker (KKT) conditions [Boyd
and Vandenberghe, 2004]. In addition to the primal feasibility conditions in
Eqs. (3.73) and (3.74), it has also to satisfy for all values j = 1; . . . , d the
stationarity condition

∂

∂ξj

d∑
k=1

nk ξk ck −
λ

2
∂

∂ξj

(
d∑

k=1
nk ξ

2
k c

2
k − 1 +Q

)
− ∂

∂ξj

d∑
k=1

µk (ξk − 1) = 0

(3.75)

where λ and µk are the KKT multipliers. Moreover, the dual feasibility
condition µj ≥ 0 and the complementary slackness condition µj (ξj − 1) = 0
must also hold for all j.

Solving the stationary condition yields

ξj = cj − µj
λ c2

j

(3.76)

To determine the values of the multipliers µj one should focus on the slack-
ness condition. It implies that either ξj takes the boundary value 1 or its
corresponding multiplier µj vanish. Taking into account the dual feasibility
condition, one can ensure that if some ξk is in the boundary, all the other
with an smaller corresponding cj will also be in the boundary. Therefore, I
can define a threshold m to express the solution for ξj as

ξj =
{ 1

λ cj
if j ≤ m

1 if j > m
(3.77)
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The threshold m will depend on the concrete value of the abstention rate Q.
To see it let first determine the value of λ. Plugging Eq. (3.77) into Eq. (3.73)
one gets

1−Q = 1
λ2

m∑
j=1

nj +
M∑

j=m+1
nj c

2
j

⇒ λ2 = dm

1−Q−∑M
j=m+1 nj c

2
j

(3.78)

with dm ≡
∑m
j=1 nj. Plugging it into Eq. (3.77) we get the final solution for

ξj, i.e.

ξj =

 1
cj

√
1−Q−

∑M

k=m+1 nk c
2
k

dm
if j ≤ m

1 if j > m
(3.79)

In order to find a relation between the threshold m and the rate of abstention
Q recall that this solution has to fulfil the constraint in Eq. (3.74), i.e.

1
cj

√√√√1−Q−∑M
k=m+1 nk c

2
k

dm
≤ 1 ∀j ≤ m (3.80)

⇒ Q ≥ 1− dm c2
m −

M∑
k=m+1

nk c
2
k ≡ Qm (3.81)

where I have used the fact that the most restrictive inequality is the one in-
volving the smallest coefficient cm. Therefore, the threshold m is determined
by the condition Qm+1 > Q ≥ Qm, with QM+1 = 1. One should ask if the
factor inside the square root in the solution (3.79) is positive in order to keep
ξj real, i.e.

1−Q−
d∑

k=m+1
nk c

2
k > 1−Qm+1 −

d∑
k=m+1

nk c
2
k = (3.82)

= dm+1 c
2
m+1 − nm+1 c

2
m+1 = (3.83)

= dm c
2
m+1 > 0 (3.84)

Let me remark that this expression is also valid for m = M by taking cM+1 =
0. With this, an expression can be obtained for the success probability by
plugging the solution (3.79) into Eq. (3.72), i.e.

psucc(Q) = 1
N


√√√√√dm

1−Q−
M∑

k=m+1
nk c2

k

+
M∑

k=m+1
nk ck


2

(3.85)
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for Qm+1 ≥ Q ≥ Qm. Moreover, considering the interpretation of the pro-
tocol as a probabilistic channel followed by a measurement, we can analyse
this result in terms of the transformed states ρ̃n defined in Eq. (3.65). Using
the Eq. (3.79), one can see that the coefficients c̃k are transformed by the
channel into

c̃k = ξk
1−Q =


√

1
dm

√
1−

∑M

j=m+1 nj c
2
j

1−Q if j ≤ m
ck

1−Q if j > m
(3.86)

Note that the largest coefficients (j ≤ m) are modified to have the same
value, independently of which they have initially. The other subset (j > m)
is only modified to keep the state normalised. In the case Q > QM =
1 − d c2

M , all the coefficients take the value cj = d−1/2, which correspond to
the optimal states in a minimum-error discrimination with symmetric states,
as it can be check with the Eq. (3.43). The probability of success in this
case is psucc = (d/N)(1 − Q). Note that if d = N , the corresponding error
probability perr = 1 − psucc − Q = 0, as one can deduce from the fact that
with this relation the states are linearly independent and hence unambiguous
discrimination can be performed between them. Furthermore, in this range
of Q the confidence in Eq. (3.61) is independent of Q, i.e.

Cn = psucc
1−Q = d

N
(3.87)

Therefore, to increase the abstention rate beyond QM does not produces an
enhancement in the confidence of the obtained outcomes.

One may wonder how to determine the abstention rate (or the error mar-
gin) that he must impose in a given quantum state discrimination problem.
In the recent paper Combes and Ferrie [2015] the authors uses the Bayesian
formalism of cost function to analyse in this way the case of two pure hy-
pothesis. To do so, they define cost functions that assign different costs to
success, erroneous and inconclusive outcomes, and they find the POVM that
minimised it. They recover the results of the previous works on this topic
but in terms of these costs. In particular, they find as extremal cases the
minimum-error and unambiguous discrimination solutions presented above,
but with the exception that in the case of equal cost for abstention and suc-
cess the USD is not the only protocol that minimise this cost function, the
always-abstain protocol provides the same averaged cost. This formalism
can be applied in all state discrimination problems, the only need is a func-
tion perr(Q) for the minimum error probability given an abstention rate (or
vice-versa) to plug in the averaged cost function and find the optimal triplet
{psucc, perr, Q} that minimise it.
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3.4 Quantum estimation

The aim of quantum metrology is to estimate the value of a (or a set of)
unknown parameter φ ∈ Φ codified on N quantum systems independently
[?].

Figure 3.1. Pictorial representation of a probabilistic metrology protocol with n qubits.
The probe state ρN , which needs not necessarily be a product of identical
copies, undergoes an evolution U⊗Nφ controlled by the unknown parameter φ.
Experimental noise N decoheres the system before a collective measurement
on all qubits is performed. The measurement apparatus either returns an
ultra-precise estimate φ̂ of the parameter or shows a failure signal. In the
event of a failure, some information could be in principle scavenged (see last
section in Results).

I call ρN the global input state and H⊗N the Hilbert space of the N
systems. The parameter φ is imprinted in each system independently. I
will restrict the discussion to those cases in which it is codified by a unitary
transformation U(φ). During this process the systems might suffer the effect
of some noise, represented by a quantum channel N , that might act in a
correlated or uncorrelated way among the N systems. The state in which
the experimentalist has access is ρNφ = N

[
U(φ)⊗N ρN (U(φ)†)⊗N

]
. Then he

will apply a metrology protocol defined by a pair (M,G), where M is a
measurement whose outcomes are associated to a value of the parameter by
a guessing rule, or estimator, G. The measurement is described by a POVM,
i.e. a set of positive semi-defined operators {Πx} that fulfils

∑
x Πx = 11, as

presented in Chapter 2. The outcomes x ∈ X of this measurement can be
treated as as a random variable that follows a probability distribution given
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by pM(x |φ) = tr (Πx ρ
N
φ )1. Here I write the sub-index M to remark ex-

plicitly the dependence on the chosen POVM of the probability distribution.
The measurement can be repeated ν times (over different ensemble, since
the information about the parameter is destroyed after each measurement)
to get a sample x ∈ Xν . Then the estimator G : Xν → Φ̂ is a function that
associates a guessed value φ̂x ∈ Φ̂ for the parameter to the gathered sample
x. The performance of the protocol is then evaluated by a figure of merit
that compares the true value of the parameter with the estimated one.

An important remark should be done here: if the sample is required to
be independently distributed it is the parameter ν which indicates its size,
the number of systems N has nothing to do with it. This is so because
the probability distribution pM(x |φ) is in general not factorisable on each
subsystem, being this way only if the measurement is local in the subsystems
and the system is in a product state ρN = ⊗N

n=1 ρn. But if it is so, the problem
can be redefined in order to get an independently distributed sample of size ν
and system size N . Hence, it what follows only the parameter ν will indicate
the size of a independently distributed sample x. The importance of this
distinction becomes apparent in the scaling about these two parameter. Since
the estimator G is purely classical, independent repetitions of the experiment
leads to an improvement of the MSE of at most 1/ν. On the contrary,
the scaling on the number of subsystem can beat the Standard Quantum
Limit (SQL) of 1/N by using quantum tricks such as entanglement or state
squeezing to get the so-called Heisenberg Scaling (HS) of 1/N2 [Giovannetti
et al., 2006]. The name of this quantum improvement on the precision comes
from the Heisenberg uncertainty relation, which is the principle that dictates
the best scaling achievable by quantum protocols.

In conclusion, the quantum parameter estimation splits into a quantum
and a classical parts. In the former the optimisation consist in finding the
measurement that leads to a probability distribution p(x|φ) from which we
can extract useful information about the parameter. Moreover, in some cases
the input state can be not fixed and therefore one has to find also the one
in which φ optimally extracted. Then, the classical part consists in finding
the optimal estimator to extract the information from the PDF given in the
quantum part. This second part is fully classical and the results presented
in the section 3.2 apply.

1The POVM is assumed to be a collective measurement. With this assumption all possible
scenarios are included, e.g. local measurement in which each subsystem is measured
separately (Πx =

⊗N
n=1 Π(n)

x ), or adaptive strategies in which the measurement on a
subset of systems depends on the outcome of some other subset.
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3.4.1 Bayesian approach
The classical subjective approach to parameter estimation can be gener-
alised to its quantum version. In this case, the measurement must also
be designed taking into account the prior knowledge about the parameter
codified via a prior PDF p(φ). This is so because the classical Bayesian
techniques presented in Section 3.2.1 will be applied over the posterior PDF
p(φ|x) ∝ pM(x|φ) p(φ). Nevertheless, the updating process that charac-
terises the Bayesian protocols affect the successive measurements of the ν
repetitions. Hence, in general the different sample points xk will not be in-
dependent and the Eq. (3.2) will not apply. However, since the independent
character of the sample is not required in this approach, one can consider a
single-shot measurement that encompass all the repetitions by considering a
global POVM that act over all the νN particles2.

In contrast with the classical case presented in Section 3.2.1 where the
performance of the protocol is evaluated with cost functions, I will use instead
utility functions f(φ̂, φ). As stated in the this two formalisms are completely
equivalent, with the only difference being the direction of optimisation of the
figure of merit. Then, the quantity to be maximised is f(φ̂, φ) averaged over
all the possible values of φ and φ̂, i.e.

F =
∑
x

∫
dφ f(φ̂x, φ) tr

(
Πx ρ

N
φ

)
p(φ) (3.88)

where the estimator is implicitly added in the guessed value φ̂x associated
with each POVM outcome x.

One of the most used figure of merit is the quantum state fidelity, i.e. a
measure of closeness of two quantum states ρ1 and ρ2 defined as

f(ρ1, ρ2) =
[
tr
(√√

ρ1 ρ2
√
ρ1

)]2
(3.89)

which can take values in the interval [0, 1]. It fulfils the conditions for the
case of circular parameter introduced in Section 3.2.1: symmetric, group
invariant, periodic and it has the required monotonicity. For the case of
classical distributions, i.e. [ρ1, ρ2] = 0 it reduces to the classical fidelity
f(ρ1, ρ2) = ∑

k
√
pk qk, where pk and qk are the eigenvalues of ρ1 and ρ2

respectively. Moreover, for pure states ρk = |ψk〉〈ψk| the fidelity coincides
with the overlap between them, i.e. f(ρ1, ρ2) = |〈ψ1|ψ2〉|2.

2The experimental limitations on the measured system size can be imposed as separability
constraints over the POVM elements.
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One of the main advantages of the single-shot formalism that Bayesian
approach allows is the possibility of using the symmetries in the optimisa-
tion. For instance, if we deal with a circular parameter that is codified via
a unitary transformation and we have no prior information, that is our prior
PDF is uniform (i.e. p(φ) = 1/2π), we can always chose a covariant mea-
surement. Such measurement are a generalisation of the POVM presented
in Eq. (3.55) for the symmetric states discrimination. Firstly notice that the
circular symmetry of the parameter φ, and therefore the group invariance of
f(φ̂, φ), allows to rewrite the Eq. (3.88) as

F =
∑
x

∫
dφ f(φ̂x + θ, φ+ θ) tr

(
Uθ Πx U

†
θ ρ

N
φ+θ

) 1
2π (3.90)

for any real value θ. Such independence in the introduced parameter θ ensures
that averaging on it does not modify the total value of F , i.e.

F =
∫ dθ

2π
∑
x

∫ dφ

2π f(φ̂x + θ, φ+ θ) tr
(
Uθ Πx U

†
θ ρ

N
φ+θ

)
(3.91)

Again, the cyclical symmetry allows me to make the change of variable φ→
φ− θ which yields

F =
∑
x

∫ dθ

2π

∫ dφ

2π f(φ̂x + θ, φ) tr
(
Uθ+φ̂x U

†
φ̂x

Πx Uφ̂x U
†
θ+φ̂x

ρNφ
)

(3.92)

where I have used the relation of the cyclical unitary transformation Ug Uh =
Ug+h. Now, by absorbing in each term of the sum the guessed value φ̂x in
the auxiliary variable θ, i.e. making the change of variable θ → φ̂ = θ+ φ̂x I
get the final expression

F =
∫ dφ̂

2π

∫ dφ

2π f(φ̂, φ) tr
(
Uφ̂

[∑
x

U †
φ̂x

Πx Uφ̂x

]
U †
φ̂
ρNφ

)
=

=
∫ dφ̂

2π

∫ dφ

2π f(φ̂, φ) tr
(
Uφ̂ ΩU †

φ̂
ρNφ
)

(3.93)

I have implicitly defined the seed operator Ω ≡ ∑
x U
†
φ̂x

Πx Uφ̂x , which is
by construction positive. It can be used to define a covariant POVM with
infinite number of elements Π̃φ̂ = Uφ̂ ΩU †

φ̂
. This elements are labelled directly

by the estimated value φ̂, so the estimator has been absorbed in the POVM
itself. Furthermore, using the cyclic property of the trace and the group
invariance of the fidelity, one of the integral can be made straightforwardly
yielding to the simplified expression

F =
∫ dφ

2π f(0, φ) tr
(
Ω ρNφ

)
(3.94)
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As an example consider the case in which we want to estimate a phase φ
from a system composite of N indistinguishable two-dimensional subsystems.
The global state is the invariant under permutations of the subsystems and
hence it can be express in a block-diagonal form (see Section 2.2.4). For sake
of simplicity, let me consider first that the state has only the projection on
a single subspace, say the symmetric subspace j = N/2. The extension to
the more general full-projection states is straightforward. With a suitable
choice of axis the unitary operator that encodes the phase can be express as
a diagonal matrix Uφ = ∑N/2

m=−N/2 eimφ |m〉〈m|, i.e.

ρNφ =
N/2∑

m,m′=−N/2
ρm,m′ ei(m−m

′)φ |m〉〈m′| (3.95)

where I have simplified the notation being |m〉 ≡ |j = N/2,m〉. With this
encoding the fidelity between two single-copy states is

f(φ̂, φ) = 1
2

(
1 + cos(φ̂− φ)

)
. (3.96)

Let me write the seed operator as Ω = ∑
m,m′ ωm,m′ |m〉〈m′|. The iden-

tity resolution implies that the diagonal element must be ωm,m = 1, and
positivity constraint the off-diagonal element with the condition ωm,m′ ≤√
ωm,m ωm′,m′ = 1. Plugging all this into the Eq. (3.94)

F = 1
2

1 +
N/2∑

m,m′=−N/2
ωm,m′ρm′,m

∫ dφ

2π ei(m−m′)φ cosφ
 =

= 1
2

1 +
N/2−1∑
m=−N/2

ωm,m+1ρm+1,m

 =

≤ 1
2

1 +
N/2−1∑
m=−N/2

ρm+1,m

 ≡ F ? (3.97)

where I used the Kronecker delta definition δm,m′ =
∫ dφ

2π ei(m−m′)φ. The
inequality can be saturated by choosing the seed operator to be Ω = |Ψ〉〈Ψ|
with |Ψ〉 = (N+1)−1/2∑

m |m〉. For the case of state with projection on all the
subspaces, the optimal fidelity is the average of the optimal F ? in Eq. (3.97)
over all the subspaces weighted with the probability and the multiplicity of
each one, and the optimal seed operator is the direct sum of projectors like
the one described above.

Let me now consider the case of a pure state for which ρm,m′ = cmc
∗
m′ ,

with ∑m |cm|2 = 1. One might wonder which is the state that maximises F ?.
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By optimising the Eq. (3.94) subject to the normalisation constraint one find
that the optimal state to encode a phase is (see Berry2000 and Chapter 4)

|ψ〉 =
∑
m

√
1

N + 2 cos
(
m+ 1
N + 2π

)
|m〉 (3.98)

That is, an state with a wide support and with the maximum centred. This
do not coincide with the optimal state found with the Frequentist approach,
as we will see in the next section.

3.4.2 Frequentist approach
As in the classical case, the quantum Frequentist approach to parameter
estimation treat the unknown parameter as a fixed value. In this sense, if
the input state and the measurement are specified, the CRLB can be applied
over the resulting probability distribution p(x;φ) = tr (Πx ρ

N
φ ). However,

a more general bound can be derived in which the measurement must not
be fixed: the Quantum Cramér-Rao (QCR) lower bound [Helstrom, 1976;
Holevo, 1982]. First I define the quantum Fisher information

IQ(ρNφ ) = tr
(
ρNφ L

[
ρNφ
]2)

(3.99)

where the hermitian operator L [ρ] is the symmetric logarithmic derivative
(SLD) defined implicitly with the relation ∂ρφ

∂φ
= 1

2 (ρφ L [ρφ] + L [ρφ] ρφ).
Like in the classical case (Sec. 3.2.2), the quantum Fisher information can
be understood as the sensitivity on the parameter of the state ρNφ . In this
sense, for any probability distribution p(x;φ) that can be get by measuring
the state, the quantum Fisher information IQ

(
ρNφ
)
≥ I [p(x;φ)]. Therefore,

the MSE of a quantum estimation protocol can be lower-bounded with a
quantum version of Eq. (3.26), i.e.

Varν
[
ρNφ
]
≥ 1
ν IQ

[
ρNφ
] (3.100)

The subscript ν refers to the number of independent repetitions required
in the Frequentist approach. In the work Braunstein and Caves [1994] the
authors show that a projective measurement in the eigenbasis of the SLD
operator L[ρNφ ] produces a PDF that its classical information attains the
IQ
[
ρNφ
]
. Note that, since the SLD operator depends on the true value of the

parameter, the optimal POVM obtained depends also on it. This is consistent
with the locality of the Frequentist approach. In this sense, the QCR bound
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will be ensured to be attainable in the same situations as the classical Cràmer-
Rao bound: not only in the local scheme but also in the limit of infinitely
many independent repetitions ν →∞. Moreover, as such conditions implies
a high previous information and an infinite number of resources, this bound
is said to be the ultimate bound of quantum parameter information.

For the phase estimation pure case discussed in the Bayesian approach
section, the Frequentist approach leads to a very different result. Instead of
a state with a sinusoidal profile in Eq. (3.98), the optimal state for encoding
a phase within this approach has only support on the extremes, i.e.

|ψ〉 = 1√
2

(|m = −N/2〉+ |m = N/2〉) (3.101)

It is the so-called NOON -state3. The reason because the two approaches
gives such different optimal states is that they refer to different situations:
the Bayesian approach consider a global estimation with no independent
repetitions, whereas the Frequentist approach requires a very large previous
information and an infinite amount of resources.

3.5 Probabilistic quantum parameter estimation
The aim of this Section is to introduce some generalities about the probabilis-
tic estimation protocols that will be presented in the subsequent chapters.
In them a new ingredient is added: the possibility that the experimentalist
is allowed to decide whether to provide a guess or abstain to doing so, or in
other words, some of the outcomes are associated to a "decline output" in
pursuance of an enhancement in performance of the protocol. Of course, this
decision cannot be based on the actual state of the system (which is unknown
by definition) but rather on the result of a measurement. This relaxation of
the original setting is very useful because it enables the experimentalist to
post-select her measurement outcomes in order to provide a more accurate
guess. That is, the possibility of abstaining enables her to discard instances
where the measurement outcome turns out not to be informative enough. I
will find that abstention can provide an important advantage, specially in
noisy scenarios. Post-selection is a widely used tool in quantum informa-
tion, particularly in experimental scenarios, where one has special demands
or constrains. A form of abstention has been already explored in state dis-
crimination, as presented in Section 3.3.3.
3The name NOON-state comes from the expression that this state takes in a basis labelled
by the occupation number of each mode |0〉 and |1〉. In this basis the state in Eq. (3.101)
is |ψ〉 = 1√

2 (|N, 0〉+ |0, N〉)
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In this work I will use the term probabilistic strategy to refer to a process
that probabilistically ends in two possible cases: performs the expected task
(e.g. outputs an estimate, prepares an state...) or decline. The task itself can
be stochastic, but here the word "probabilistic" refers to the fact that it is not
sure to obtain an outcome. Hence, it is characterized by giving the figure of
merit that describes how well you perform the task (when it is performed) and
supplement it, of course, with the deliver/decline probability. It is important
to remark that this figure of merit takes only into account a single-shoot of
the measurement, since no average over different repetitions is performed.
Therefore, this scheme can be only be tackle with a Bayesian approach, in
which no independent repetitions of the measurement are required.

To incorporate this abstention possibility, the formalism introduced at
the beginning of Section3.4 has to be slightly modified: the guessing rule G
will apply now only on a subset D ⊆ X of outcomes of the measurementM
and the outcomes outside this subset will produce a "decline" output. As in
the case of probabilistic state discrimination, the measurement is represented
by a POVM with a set of operators Πx each one associated with a conclusive
outcome x ∈ D, plus another operator Π0 that encompasses the remaining
outcomes that yield inconclusive answers. It is useful also in this setting
to split the protocol into a two-step process: a first step consisting in a
probabilistic filter that modifies the state of the system and a second one that
corresponds to the measurement itself. To do so, I define the operators Π̄x =
Π̄−1/2

0 ΠxΠ̄−1/2
0 with Π̄0 = 11 − Π0 ≥ 0. These new operator are positive and

sum up to the identity by construction. Therefore they form a new POVM
that have no abstention element. The probability of getting an outcome χ
can be rewritten in terms of this new POVM as

p(x | φ) = tr (Πxρφ) = tr (Π̄xρ̄φ) tr (Π̄0ρφ) with ρ̄φ ≡
Π̄1/2

0 ρφΠ̄1/2
0

tr (Π̄0ρφ)
.

(3.102)
The operators Π̄1/2

0 can be viewed as the Krauss operator that characterizing
a probabilistic filter that transforms the state of the system into ρ̄φ before
the measurement is performed on it. Hence, the second term in the last
expression corresponds to the probability that the probabilistic filter success
in transforming it, i.e. p(succ|φ) = tr (Π̄0ρφ). Then, the averaged probability
that the filter performs successfully is

psucc =
∑
x∈D

∫ dφ

2π tr (Πxρφ) =
∫ dφ

2π tr (Π̄0ρφ), (3.103)

and its counterpart, the probability of abstention

Q = 1− psucc =
∫ dφ

2π tr (Π0 ρφ). (3.104)
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With all this, we can define a version of Eq. (3.88) for probabilistic parameter
estimation protocols

F =
∑
x∈D

∫ dφ

2π
tr (Πx ρ

N
φ )

psucc
f(φ̂x, φ) p(φ). (3.105)

The terms tr (Πxρφ)/psucc are the probabilities of getting the outcome x with
the conditions that the actual state is ρφ and we get not an inconclusive
outcome, and using the Eq. (3.103) one can check that they sum up to unity.
This new notation allows us to use the results for the deterministic protocols
of estimation and it will only remain to optimize over the probabilistic filter,
or what is the same, to find the optimal ρ̄0. Moreover, the covariant POVM
presented in Section 3.4.1 has its version for probabilistic settings. From
Eq. (3.104) one can use the circular symmetry of the parameter to show that
the abstention element of the POVM can be choosen group-invariant, i.e.

Q =
∫ dφ

2π tr (Π0 Uθ ρφ−θ U
†
θ ) =

=
∫ dφ

2π

∫ dθ

2π tr (U †θ Π0 Uθ ρφ−θ) =

=
∫ dφ

2π tr
[(∫ dθ

2πU
†
θ Π0 Uθ

)
ρφ

]
=

≡
∫ dφ

2π tr
[
Π̃0 ρφ

]
(3.106)

where by definition
[
Π̃0, Uφ

]
= 0. Now, following similar steps as in the de-

terministic case, it is easy to check that the set comprised of the continuous-
labelled operators Π̃φ̂ = Uφ̂ ΩU †

φ̂
with Ω ≡ ∑x∈D U

†
φ̂x

Πx Uφ̂x , plus the invari-
ant operator Π̃0 form a POVM that produces the same fidelity of Eq. (3.105).
Again, the use of this symmetric POVM simplifies the expressions for the fi-
delity, and in this case also for the abstention probability to

F =
∫ dφ

2π f(0, φ)
tr
(
Ω ρNφ

)
1−Q (3.107)

Q = tr
(
Π̃0 ρ

N
φ=0

)
(3.108)

For examples in the use of this formalism see the next chapters, where differ-
ent cases will be treated in detail, with different initial states and different
parameter encodings.





CHAPTER 4

Probabilistic estimation of pure states

In this chapter we address the problem of quantum parameter estimation
with pure states of N qubits (or Rydberg atomic states of total angular
momentum N/2). More precisely, we deal with an infinite covariant family
of such states, parametrised by some continuous variables, and we aim to
estimate the values of these variables for a given sample state by performing
suitable measurements on it. Specifically we study the problems of phase and
spatial directions estimation, which are assumed to be encoded in a given N -
spin state. We also study the reference frame case, i.e, the estimation of
three mutually orthogonal directions. The later will be referred to as frame
estimation for brevity.

In this Chapter we present a general technique to obtain the asymptotic
form of pure state parameter estimation problems, with or without absten-
tion, that is interesting on its own. The main idea is that the components
of the encoding state can be viewed as a discretization of some continuous
function ϕ(t) on the unit interval [0, 1], and likewise, the problem of maxi-
mizing the fidelity over those components can be viewed as a discretization
of a constrained variational problem. The solution gives the asymptotic ex-
pression of the accuracy. This solution can be worked out analytically for
many physically relevant settings.

For finite N , we have also formulated the optimisation problem as a
semidefinite programming problem (SDP), which allows us to obtain numer-
ical results in a very efficient way.
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4.1 Definition of the problems
For phase estimation the covariant family we are referring to is the set of
states of the form {|Ψ(θ)〉 = U(θ)|Ψ0〉}θ∈[0,2π), where U(θ) stands for the
unitary transformation U(θ)|j〉 = eiθj|j〉, |Ψ0〉 is a fiducial state, which in
the eigenbasis of U(θ) can be written as |Ψ0〉 = ∑n

j=0 cj|j〉 ∈ (C2)⊗n, and the
number of qubits is N = n. The components cj are given arbitrary coeffi-
cients, subject to the normalization condition ∑n

j=0 |cj|2 = 1. For direction
estimation I consider instead {|Ψ(n)〉 = Un|Ψ0〉}n∈S2 , where Un stands for
the unitary representation of the rotation that takes z (the unit vector in
the z-axis; likewise, x and y stand for the other two unit vectors) into n. The
fiducial state is now given by |Ψ0〉 = ∑n

j=0 cj|j, 0〉, which may be thought of
as pointing along the z-axis (in the sense that it is invariant under rotations
about that axis), N = 2n, and we use the standard notation |j,m〉 for the
total angular momentum eigenstates. Therefore, we will use the represen-
tation presented in Section 2.2.4. The choice m = 0 is both for simplicity
and also because the optimal state for direction encoding is known to have
null total magnetic number [Bagan et al., 2000], however the method can be
extended to any m. More general states, i.e., those that are not eigenstates
of Jz, do not fit into this pure state framework, since for the sake of direction
estimation the subset {e−iγJz |Ψ0〉}γ∈[0,2π) that encodes z is equivalent to the
mixed state ρ0 =

∫ 2π
0 (dγ/2π)e−iγJz |Ψ0〉〈Ψ0|eiγJz , and this case will be treated

in the following Chapter.
For frame estimation, the relevant family of states is

{|Ψ(g)〉 = U(g)|Ψ0〉}g∈S3 , (4.1)
where g stands for the three Euler angles: g = (α, β, γ). They specify the ro-
tation that takes the axes x, y and z into those of the Cartesian frame we wish
to estimate, with unit vectors (n1,n2,n3). It can be shown that optimal-
ity requires a fiducial state of the form ∑n

j=0 cj (∑j
m=−j |j,m, αm〉)/

√
2j + 1,

where N = 2n and the third quantum number in the ket, αm, labels the
degeneracy of the representation of angular momentum j (See Section 2.2.4).
Except for the representation of highest angular momentum, j = n, for
each j < n we have (maximally) entangled the magnetic number m with
the degeneracy number αm. This entanglement with ‘ancillary’ degrees of
freedom that are invariant under the action of the group is responsible for
an important enhancement in the estimation precision. We note in passing
that this degeneracy is known to be useless for single direction estimation,
and thus we dropped the corresponding label there. Indeed, following the
symmetry argument used at the end of the previous paragraph, any entangle-
ment between magnetic number and degeneracy labels would in effect turn
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into an incoherent sum on subspaces of different m values, which is clearly
suboptimal.

From a formal point of view, it will be seen that the optimization of the
frame estimation protocol for this family of states is equivalent to that of
phases for large N . Thus, we find it more interesting to ignore the degener-
acy of the representations and consider instead the family generated by the
fiducial state |Ψ0〉 = ∑n

j=0 cj|j, j〉. States of this form could be produced if,
e.g., a hydrogen atom in a Rydberg state of total angular momentum up to
n is used instead of N spins Peres and Scudo [2001]. In this scenario, the op-
timal encoding state for a Cartesian frame is known to belong to this family,
but it does not lead to a Heisenberg scaling precision. Also in this case, the
method we will introduce can be applied to more general pure states.

For all these estimation problems, a finite acceptance rate Q̄ = 1 − Q
suffices to lower the coefficient of the leading order in the asymptotic ex-
pansion of the average error in inverse powers of N . If an exponentially
vanishing acceptance rate is affordable, the leading order in this expansion
becomes 1/N2, thus attaining the Heisenberg limit, except for frame estima-
tion with Rydberg states. It will be shown that the effect of abstention can
be understood in terms of a probabilistic map from the original family to
a better one (closer to optimal), {Ψ̃(θ)}θ∈[0,2π) (or {Ψ̃(n)}n∈S2 , etc.), which
fails with probability Q.

4.2 General framework
The problems of phase, direction and frame estimation described above can
be treated in a unified framework by writing U(θ) = U(g), |Ψ(θ)〉 = |Ψ(g)〉,
where g ∈ S1; and Un = U(g), |Ψ(n)〉 = |Ψ(g)〉, where g ∈ S2. Since the
magnetic number is fixed to zero (j) for direction (frame) estimation, we
also drop this quantum number and write |j, 0〉 ≡ |j〉 (|j, j〉 ≡ |j〉). Then,
for the three problems we have a family of states {|Ψ(g)〉 = U(g)|Ψ0〉}g∈Sd ,
where d = 1, 2, 3 for phase, direction, and frame estimation, respectively.
As already mentioned above, in direction (frame) estimation the fiducial
state |Ψ0〉 can be thought of as encoding the unit vector z [the cartesian frame
(x,y, z)]. Similarly, in phase estimation, |Ψ0〉 can be interpreted as encoding
the reference unit vector x (to which we assign a zero phase), and U(g)
as a rotation of (Euler) angle α = θ around the z-axis 1. Hence, in this
unified framework, we can define a cost function in terms of the (quadratic)
error per axis is: i.e. e1(g, gχ) = |n− nχ|2 for phase and direction estimation,
1Note that from this point of view the the label j = 0, . . . , n would correspond to the
magnetic quantum number taking values m = −n/2, . . . , n/2.
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and the total error e3(g, gχ) = ∑3
a=1 |na − naχ|2 for frame estimation. In

these expressions, the subscript χ specifies that the estimate is based on
the outcome χ of a generalized measurement that will be introduced below.
These errors are related to the ‘relative rotation’ U †(gχ)U(g) = U(g−1

χ g)
through

e1(g, gχ) = 2− 2〈1, 0|U(g−1
χ g)|1, 0〉, (4.2)

e3(g, gχ) = 6− 2
1∑

m=−1
〈1,m|U(g−1

χ g)|1,m〉, (4.3)

where we recognize the sum in (4.3) as the character of U(g−1
χ g) in the j = 1

representation. Note that 0 ≤ e1(g, gχ) ≤ 4, and 0 ≤ e3(g, gχ) ≤ 8 (we
can at most get two axes completely wrong since we assume right-handed
Cartesian frames). As a figure of merit, the fidelity f(g, gχ) = (1+n·nχ)/2 =
1 − e1(g, gχ)/4 is most commonly used in phase and direction estimation.
One has 0 ≤ f(g, gχ) ≤ 1, where 1 corresponds to perfect estimation. For
frame estimation one can also define a fidelity with the same range of values
as f(g, gχ) = 1 − e3(g, gχ)/8. These fidelities are also trivial functions of
the relative rotation U(g−1

χ g) in the j = 1 representation through Eqs. (4.2)
and (4.3).

The generalized measurements we are interested in are characterized
mathematically by a positive operator valued measure (POVM) Π = {Πχ}χ∈C∪
{Π0}, where Π0 and each Πχ are non-negative operators that add up to the
identity, i.e., Π0 + ∑

χ∈C Πχ = 11, C is the set of conclusive outcomes (from
which an estimate is proposed) and Π0 outputs ‘abstention’. The probability
of such abstention taking place is

Q =
∫
Sd
ddg 〈Ψ(g)|Π0|Ψ(g)〉, (4.4)

and Q̄ = 1 − Q is the acceptance probability. In this notation, the average
fidelity in Eq. (3.105) is rewritten as

F (Q) = 1
Q̄

∑
χ

∫
Sd
ddg f(g, gχ) 〈Ψ(g)|Πχ|Ψ(g)〉. (4.5)

Recall that the first factor Q̄−1 ensures the normalisation of the weights in the
average. In Eqs. (4.4) and (4.5), ddg stands for the (normalized) ‘volume’
elements dg = dα/(2π) (for d = 1), d2g = sin β dα dβ/(4π), and d3g =
sin β dα dβ dγ/(8π2). They are invariant measures on Sd, i.e., dd(gg′) = ddg.

At this point, we summon the interpretation of the role of abstention in
this optimization problem that we presented in the Section 3.5: each initial
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state |Ψ(g)〉 is transformed into a new |Ψ̃(g)〉 that encodes the unknown pa-
rameter(s) g in a more efficient way. In this way, estimation with abstention
can be reduced to a standard estimation problem (without abstention) by
simply introducing the new POVM Π̃, with elements given by

Π̃χ ≡ (11− Π0)−1/2 Πχ (11− Π0)−1/2 , (4.6)

and the new family of (normalized) states|Ψ̃(g)〉 ≡ (11− Π0)1/2

Q̄1/2
|Ψ(g)〉


g∈Sd

. (4.7)

as it has been introduced in the paragraph above Eq. (3.102). With these
two definitions we can write the fidelity as

F (Π0) =
∑
χ

∫
Sd
ddg f(g, gχ) 〈Ψ̃(g)|Π̃χ|Ψ̃(g)〉, (4.8)

where it is emphasized that this expression depends on the choice of Π0.
The map improves the estimation precision by effectively increasing the

distinguishability between the signal states, therefore it can only be imple-
mented in a probabilistic fashion (it succeeds with probability Q̄). This
stochastic map is fully specified by the optimal choice of Π0:

F (Q) = max
Π0 :Eq. (4.4)

F (Π0). (4.9)

Although this may seem a difficult optimization problem, the covariance
of the family of states produces a huge simplification, as explained in Sec-
tion 3.5. That is to say, already from Eqs. (4.4) and (4.5) one can eas-
ily see that the optimal POVM can be chosen to be covariant under the
set of unitaries {U(g)}g∈Sd . In particular this means that Π0 can be taken
invariant under the corresponding unitary group. For d = 1 this is just
the group U(1). For d = 2 (d = 3) the integral over the 2-sphere (3-
sphere) can be turned into (is) a SU(2) group integral. Thus, Shur’s lemma
can be applied to all the cases, which results in Π0 being proportional
to the identity on each irreducible block: Π0 = ∑

j fj|j〉〈j| (phase esti-
mation), Π0 = ∑

j fj
∑
m |j,m〉〈j,m| ≡

∑
j fj11j (direction and frame estima-

tion). Hence, the maximization in Eq. (4.9) is over {fj : 0 ≤ fj ≤ 1}nj=0.
Note that the transformed set of states {|Ψ̃(g)〉}g∈Sd is also a covariant family,
just as the original one. The corresponding reference state is

|Ψ̃0〉 =
n∑
j=0

cj
√
f̄j√
Q̄
|j〉 =

n∑
j=0

ξj|j〉 ≡ |ξ〉 , (4.10)
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where f̄j ≡ 1− fj. From Eq. (4.4), and using Shur’s lemma, we find

Q =
n∑
j=0
|cj|2fj = 1−

n∑
j=0
|cj|2f̄j. (4.11)

Thus, |Ψ̃0〉 = |ξ〉 is a normalized state, as it should, i.e., ∑j |ξj|2 = 1. Since
the transformed states are still covariant, we can choose the POVM Π̃ to be
the well known continuous and covariant POVM for each of the problems
at hand [Holevo, 1982; Bagan et al., 2000]: {Π̃g = U(g)|Φd〉〈Φd|U †(g)}g∈Sd ,
where the unnormalized state |Φd〉 is given by

|Φ1〉 =
n∑
j=0
|j〉; |Φ2,3〉 =

n∑
j=0

√
2j + 1|j〉. (4.12)

Note that g plays the role of χ, i.e., g specifies the different outcomes of
the measurement. Hereafter, it is assumed that the states have non-negative
coefficients cj ≥ 0 (and hence ξj ≥ 0). This is a valid assumption since any
phases present in the coefficients cj (or ξj) can be absorbed by the above
POVM’s. This result makes the calculation of the fidelity F (Π0) straightfor-
ward:

F (Π0) = 1
2 + 1

2 〈ξ|M |ξ〉 , (4.13)

where in the canonical basis, {|j〉}nj=0, M is a real matrix of tridiagonal form

M =



hd0 ad1

ad1
. . . . . .

0
. . . hdn−2 adn−1

adn−1 hdn−1 adn0
adn hdn


, (4.14)

with

a1
j = 1

2; a2
j = j√

4j2 − 1
, a3

j = 1
2

√
2j + 1
2j + 3 ,

h1
j = h2

j = 0, h3
j = − 1

2(j + 1) , (4.15)

where we recall that the superscripts 1, 2 and 3 refer to phase, direction and
frame estimation, respectively.

At this point one can easily check the statement in the introduction that
frame estimation with the family generated by the fiducial state

|Ψ0〉 =
n∑
j=0

cj (
j∑

m=−j
|j,m, αm〉)/

√
2j + 1 (4.16)
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is formally equivalent to phase estimation for large n. For this family, the
diagonal entries of the matrix M are zero with the exception of h0 = −1/2
and hn = −1/(2n + 2), whereas the off-diagonal ones are aj = 1/2, for 0 ≤
j ≤ n − 1 and an = 1/(2

√
2n+ 1). Thus, except for four entries, M is the

same for phase and frame estimation. For very large n, this finite differences
have no effect at leading order and the asymptotic result obtained for phases
also hold for frames when the degeneracy of the representations is used in
the encoding.

Here, we have given the explicit form of M for the particular fiducial
states under study . However, it is worth noting that for general states the
matrix M will always have a tridiagonal structure and hence the methods that
we use readily apply. As shown in Bagan et al. [2000, 2001], this structure is
a generic feature that stems from the fact that the fidelity f(g, gχ) is a linear
function of 〈1,m|U(g−1

χ g)|1,m′〉 (j = 1 representation). Its appearance in
the integrant of (4.8) enforces selection rules that prevent the presence of
other off-diagonal elements in M.

The maximization over {fj} of (4.13) can be turned into a maximization
over the transformed states |ξ〉, namely:

∆ ≡ max
|ξ〉
〈ξ|M |ξ〉 , (4.17)

subject to the constraints

〈ξ|ξ〉 =
n∑
j=0

ξ2
j = 1, (4.18)

ξj =

√√√√ f̄j

Q̄
cj ≤

cj√
Q̄
≡ λcj, λ ≥ 1. (4.19)

Then, the maximum fidelity for a given rate of abstention Q is F (Q) =
(1 + ∆)/2.

For large enough abstention rates (i.e. large enough values of λ) the
constraint (4.19) has no effect (provided all components cj are different from
zero) and ∆ becomes the maximum eigenvalue of the matrix M. In this case,
F (Q→ 1) = F ∗ is the maximum fidelity that can be achieved by optimizing
the components of the fiducial state; these are given by the corresponding
eigenvector |ξ∗〉 of M. The resulting fiducial state thus generates the optimal
signal states |Ψ(g)〉. From (4.19) it is straightforward to obtain the critical
acceptance rate

Q̄∗ = min
j

c2
j

ξ∗j
2 . (4.20)
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That is, for abstention rates such that Q ≥ Q∗ = 1− Q̄∗ the fidelity attains
its absolute maximum value F ∗ (and higher rates cannot improve the estima-
tion quality). In the other extreme, when no abstention is allowed (Q = 0),
the solution is determined by the constraints ξj = cj (no maximization is
possible), and ∆ = 〈c|M|c〉.

For intermediate values of Q ∈ (0, Q∗) the problem becomes more tricky.
For moderate values of n one can use standard non-linear optimization pack-
ages to solve the above constrained convex optimization problem, Eqs. (4.17)–
(4.19). This can also be easily cast as a semidefinite programming (SDP)
problem. The SDP approach is efficient and, furthermore, provides rigorous
bounds on the precision of the solution. One simply linearizes these equa-
tions by introducing a SDP (positive operator) variable B to play the role of
|ξ〉〈ξ|. The SDP form of Eqs. (4.17) and (4.19) is then

∆ ≡ max
B

tr (MB) , (4.21)

subject to the constraints

tr B = 1, B ≥ 0,

Bjj ≤
|cj|2

Q̄
≡ λ2|cj|2, λ ≥ 1. (4.22)

One can easily prove that the optimal B for this problem must necessarily
have rank one: since all the entries of M are non-negative, tr(MB) increases
with increasing values of the off-diagonal entries Bi,i+1. Their maximum
value consistent with positivity is given by rank one matrices. Therefore,
the optimal B is of the form |ξ〉〈ξ| and the SDP solution provides in turn a
solution of Eqs. (4.17)–(4.19).

However, the main focus of this Chapter is on the regime of asymptotically
large n and, in particular, on presenting an approach that enables obtaining
analytical expressions in this regime, thus complementing the SDP analysis.
we will first introduce and discuss in some detail the approach for phase
estimation. The generalization to direction and frame estimation will be
discussed afterwards.

4.3 Asymptotic regime: phase estimation
Here we consider the problem of phase estimation, for which 〈ξ|M |ξ〉 can be
cast as

〈ξ|M |ξ〉 =
n−1∑
j=0

ξjξj+1. (4.23)
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This expression can be easily rewritten as

〈ξ|M |ξ〉 = 1− 1
2

n−1∑
j=0

(ξj+1 − ξj)2 + ξ2
0 + ξ2

n

, (4.24)

where the first term (unity) results from using the normalization condi-
tion (4.18). Instead of maximizing this expression, we will equivalently mini-
mize S ≡ 1−〈ξ|M |ξ〉. A slight difficulty arises here because of the inequality
constraints in (4.19). To deal with them we need to use the so called Karush-
Kuhn-Tucker (KKT) conditions (see e.g., Boyd and Vandenberghe [2004] and
Section 3.3.3), which are a generalization of the Lagrange method. We first
have to introduce a multiplier for each constraint: b2/2; sj, j = 0, . . . , n;
much in the same way as the Lagrange method requires. Hence, we will find
the local minima of

S = 1
2

n−1∑
j=0

(ξj+1 − ξj)2 + ξ2
0 + ξ2

n


− b2

2

 n∑
j=0

ξ2
j − 1

+
n∑
j=0

sj (ξj − λcj) . (4.25)

Besides the constraints specified in (4.19), which are referred to as primal
feasibility conditions, we also need to impose the so called dual feasibility
conditions,

sj ≥ 0, j = 0, 1, . . . , n, (4.26)
and, finally,

sj (ξj − λcj) = 0, j = 0, 1, . . . , n, (4.27)
known as complementary slackness conditions.

Rather than attempting to solve this system of conditions for arbitrary
n, which appears to be a difficult task, we will take n to be asymptotically
large and reframe the minimization above as a variational problem for a
continuous function ϕ(t) in the unit interval [0, 1]. To do so, we proceed as
follows: we first note that as n goes to infinity j/n approaches a continuous
real variable t. So, we define

0 ≤ t ≡ j

n
≤ 1, j = 0, 1, . . . n, (4.28)

and assume {ξj} and {cj} are a discretization of some continuous functions,
ϕ(t) and ψ(t) respectively, so that

ξj = ϕ(t)√
n
, cj = ψ(t)√

n
(4.29)
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[note in passing that ϕ(t) ≥ 0 and ψ(t) ≥ 0 ]. The normalization condition
for {ξj} and {cj} holds if we impose∫ 1

0
dt ϕ2(t) = 1,

∫ 1

0
dt ψ2(t) = 1. (4.30)

From (4.29), we have ξj+1 − ξj ' n−3/2[dϕ(t)/dt], and Eq. (4.25) can be
viewed as a discretized version of the functional S[ϕ], defined by

S[ϕ] = ϕ2(0) + ϕ2(1)
2n

+ 1
n2

∫ 1

0
dt

1
2

(
dϕ

dt

)2

− ω2

2
(
ϕ2−1

)
+σ(ϕ− λψ)

, (4.31)

where ω is a positive constant (the properly scaled Lagrange multiplier: ω =
nb) and σ(t) is a function that interpolates the set of multipliers {sj}, i.e.,

sj = n−5/2σ(t). (4.32)

With this, Eq. (4.26) becomes σ(t) ≥ 0. Similarly, the primal feasibility
conditions in (4.19) and the slackness condition (4.27) become

ϕ(t)− λψ(t) ≤ 0, (4.33)
σ(t)[ϕ(t)− λψ(t)] = 0. (4.34)

Note that by imposing the boundary conditions ϕ(0) = 0 and ϕ(1) = 0, the
functional S[ϕ] becomes O(n−2).

More interestingly, the minimization of S[ϕ] defines a mechanical prob-
lem, of which the second line in Eq. (4.31) is the ‘action’ and the correspond-
ing integrant the ‘Lagrangian’:

L = 1
2

(
dϕ

dt

)2

− ω2

2 ϕ2 + σϕ. (4.35)

It describes a driven harmonic oscillator with angular frequency ω, whose
‘equation of motion’ is

d2ϕ

dt2
+ ω2ϕ = σ. (4.36)

To solve this problem, we first note that the slackness conditions imply
that either ϕ(t) = λψ(t), in which case t is in the so called coincidence set
C , or σ(t) = 0. In the second case, t ∈ C c (C c stands for the complement
of C ), the primal feasibility condition is ϕ(t) < λψ(t), and Eq. (4.36) becomes
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homogeneous (the equation of motion of a free harmonic oscillator). It has
the familiar solution

ϕ(t) = A sinωt+B cosωt, (4.37)

where A, B and ω are constants to be determined. In the coincidence set C , σ
is determined by (4.36), where we make the substitution ϕ(t) = λψ(t) (recall
that ψ is a given function, as the components cj are themselves given). If we
restrict ourselves to fiducial states |Ψ0〉 whose components cj are such that
ψ(t), defined through Eq. (4.29), is continuous in the whole unit interval, one
can show that the solution ϕ(t) and its first derivative must be also continuous
there [except in points of C where ψ(t) itself is not differentiable]. Most of
the physically relevant cases are of this type; some of them are considered
in the examples below. By taking into account the boundary conditions, as
well as the continuity of ϕ(t) and its derivative in the boundaries of C , one
can determine the arbitrary constants that arise in solving the equation of
motion.

Before presenting examples of this approach, we note that the minimum
value of S can be expressed in terms of the Lagrange multiplier (function) ω
(σ), and the given function ψ, as

Smin = 1
n2

(
ω2

2 −
λ

2

∫ 1

0
dt σψ

)
. (4.38)

To prove this, we just have to integrate by parts (4.31) and use the equation
of motion (4.36) and the boundary conditions ϕ(0) = ϕ(1) = 0. Note that
the integral is effectively over the coincidence set C , where the expression for
σ(t) is given by: σ = λ(d2ψ/dt2 + ω2ψ), as discussed above.

4.3.1 Large abstention (λ� 1)
For values of the abstention rate very close to one (large λ), and provided
cj > 0 for all j, the quantities λcj are also very large and C = ∅. In this case
σ ≡ 0 in [0, 1], Eq. (4.36) becomes homogeneous and we are dealing with a
regular Sturm-Liouville eigenvalue problem. The solution is

ϕ(t) = A sinωt; ω = πm, m = 1, 2, . . . , (4.39)

where the boundary conditions ϕ(0) = ϕ(1) = 0 have been taken into account
to discard the independent cosωt solution. Since we must have ϕ(t) ≥ 0 in
the whole unit interval, we find that m = 1 (which gives the minimum
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eigenvalue of d2/dt2 for the given boundary conditions). The constant A is
fixed by normalization and takes the value A =

√
2, thus

ϕ(t) =
√

2 sin πt, (4.40)

namely ξj '
√

2/n sin(πj/n). The minimum value of S is

S∗ = π2

2n2 . (4.41)

This leads to an asymptotic maximum fidelity of

F ∗ = 1− π2

4N2 , (4.42)

which coincides with the known fidelity results for optimal phase encod-
ing Bagan et al. [2005]; Fiurášek [2006].

4.3.2 |Ψ0〉 proportional to the POVM seed state |Φ1〉
The example we consider here is very simple from a computational point of
view and yet illustrates that even a tiny rate of abstention can drastically
improve the asymptotic fidelity F of parameter estimation. More precisely,
we will show that any finite amount of abstention enables changing the shot
noise limit scaling N−1 of 1 − F for large N into the Heisenberg limit scal-
ing: N−2. The elements of the family are equal superposition of all ‘Fock’
states |j〉, i.e. cj = 1/

√
n+ 1. Despite of having such a large support, in

the standard approach, Q = 0 (λ = 1), the phase estimation fidelity these
states provide does not exceed the shot noise limit: 1 − F = 1/(2N + 2).
This can be exactly computed for any N with ease from (4.23). Of course it
also agrees with the analytic asymptotic results: using Eq. (4.29) we obtain
ϕ(t) = ψ(t) = 1, for t ∈ [0, 1], and the 1/n (= 1/N) boundary term in the
action (4.38) is dominant.

Let us now address the more interesting case of Q > 0 (λ > 1). Here
we can freely impose ϕ(0) = ϕ(1) = 0 and get rid of the shot-noise type
term 1/n. In a sufficiently small neighbourhood of t = 0, i.e., for 0 ≤ t < α,
where α is likewise small, we have ϕ(t) − λ < 0, and the complementary
slackness condition (4.34) implies σ(t) = 0 there. If α is the maximum value
of t less that 1/2 for which this condition holds, it must be a boundary point
of the coincidence set C . Then, for t ≥ α the solution is given by the rescaled
input state ϕ(t) = λψ(t) = λ. Thus,

ϕ(t) =

 A sinωt, 0 ≤ t < α;
λ, α < t ≤ 1/2,

(4.43)
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where the constants α, ω and A are to be determined. Continuity of ϕ(t)
and its derivative at t = α yields

A sinωα = λ, Aω cosωα = 0. (4.44)

We are left with the following possibilities for ω and A:

ωα=(2m+1)π2 , A=(−1)mλ; m = 0, 1, 2, . . . . (4.45)

The positivity condition ϕ(t) ≥ 0 requiresm = 0, and normalization, Eq. (4.30),

α = 1− 1
λ2 = Q. (4.46)

Note that since α ≤ 1/2 we have Q∗ = 1/2. Combining these results we
obtain

ω = π

2Q. (4.47)

Extending the solution to the entire unit interval by applying the obvious
symmetry of the problem, namely ϕ(t) = ϕ(1 − t), one has for 0 < Q ≤ Q∗

(1 < λ ≤
√

2)

ϕ(t)=



Q̄−
1
2 sin πt

2Q, 0 ≤ t < Q;

Q̄−
1
2 , Q ≤ t ≤ Q̄;

Q̄−
1
2 sin π(1−t)

2Q , Q̄ < t ≤ 1.

(4.48)

Note that C = [Q, Q̄] and σ(t) = ω2λ for t ∈ C [σ(t) = 0 for t ∈ C c].
Therefore, Eq. (4.38) gives

Smin = π2

8QQ̄n2
, 0 < Q ≤ Q∗, (4.49)

from which
F = 1− π2

16QQ̄N2
, 0 < Q ≤ Q∗ = 1/2. (4.50)

For 1/2 < Q ≤ 1 the solution is (4.40) and the fidelity in (4.42). Note that
even the slightest abstention rate unlocks the encoding power of the phase
states and drastically changes the estimation precision from the original N−1

to N−2.
The above results are illustrated in Fig. 4.1, where we represent the opti-

mal solution for a 17% abstention rate. Notice how the slackness conditions
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Figure 4.1. Profile of the components ξj of the transformed fiducial state |Ψ̃0〉 in the
asymptotic limit. The solid line is the limiting function ϕ(t) for Q = 0.17 (λ =
1.1). The points represent the actual components, as obtained by numerical
optimization for n = 30 (empty circles) and n = 220 (filled circles). The
dotted line is the solution for unrestricted abstention, Eq. (4.40), whereas the
dashed horizontal line represents the components ψ(t) = 1 =

√
ncj of the

initial fiducial state |Ψ0〉 scaled by λ.

apply in the different regions: the straight part of ϕ (corresponding to t ∈ C )
is just λψ = λ, while the sinusoidal curves in the extremes (corresponding
to the unconstrained region C c) smoothly match the straight line at the
boundary. The agreement between the numerical points and the analytic
continuum limit is also quite evident.

4.3.3 Multiple copies on the equator
Let us now focus on phase estimation with a signal of the form

|Ψ(g)〉 =
(
|0〉+ eiθ |1〉√

2

)⊗n
, (4.51)

that is, with N = n copies of states lying on the equator of the Bloch sphere.
For these the coefficients cj read

cj = 2−n2
√√√√(n

j

)
. (4.52)

The maximum fidelity that can be attained with this signal without absten-
tion is well known to be 1 − F = 1/(4N) = 1/(4n) for large n Bagan et al.
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[2005]; Fiurášek [2006]. To compute the effect of abstention we proceed along
the lines of the previous section. In the asymptotic limit Eq. (4.29) leads to

ψ(t) =
[

n

2πt(1− t)

]1/4

exp
{
−n2 [log 2−H(t)]

}
, (4.53)

where H(t) = −t log t−(1− t) log(1− t) is the Shannon entropy, and we have
used Stirling’s approximation. Note that log 2−H(t) is the (binary) relative
entropy H(t‖1/2) between a Bernoulli distribution with success probability
p = t and the flat one (p = 1/2). As in the previous case, the problem
is invariant under t→ 1− t, which suggest using the variable τ = t− 1/2,
τ ∈ [−1/2, 1/2], instead of t. Hence, the solution must be an even function of
τ . In the region |τ | . n−1/2 [i.e., around the peak of the distribution (4.53)],
we can use the Gaussian approximation

ψ(τ) ≈
(2n
π

)1/4
e−nτ2

, (4.54)

where we slightly abuse notation here and in the rest of the section and use
ψ(τ) to denote ψ(t(τ)). At the tails (|τ | > n−1/2), ψ(τ) falls off with an
exponential rate given by H(1/2 + τ ‖1/2).

Since the solution of the minimization must be an even function of τ , it
must have the form

ϕ(τ) =

 A cosωτ, 0 ≤ |τ | ≤ α,

λψ(τ), α < |τ | ≤ 1/2,
(4.55)

The continuity of both ϕ(τ) and ϕ′(τ) at the boundary of C , i.e., at the point
τ = α read:

A cos(Ω) = λψ(α), (4.56)
−ΩA sin(Ω) = αλψ′(α), (4.57)

where we have defined Ω ≡ ωα. Combining these equations we obtain

Ω tan Ω = −αψ
′(α)
ψ(α) , (4.58)

A2 = λ2
{
ψ2(α) + α2

Ω2 [ψ′(α)]2
}
. (4.59)

The normalization condition (4.30) turns out to be

A2α(2Ω + sin 2Ω)
2Ω + 2λ2

∫ 1/2

α
ψ2(τ) dτ = 1. (4.60)
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Eqs. (4.56) through (4.60) cannot be solved analytically, but we can find
asymptotic solutions by focusing on some specific regimes. The first we
will consider arises when the boundary points ±α scale as n−1/2, so that C
stretches to the region around the peak of ψ(τ). In this case, ϕ(τ) = λψ(τ)
gives the dominant contribution to Smin and, as one intuitively expects,
Smin ∼ n−1. The two pieces of ϕ in Eq. (4.55) can be matched for arbi-
trary values of λ and the abstention rate can be finite (is not required to
scale with n). The second regime arises when α is fixed. In this situation, for
sufficiently large n, the coincidence set C lies on the tails of ψ(τ). Match-
ing the two pieces of ϕ requires that λ scales exponentially with n, which
means that the acceptance rate Q̄ must vanish also exponentially. In return,
the piece of ϕ in the first line of Eq. (4.55) has a wide (non vanishing) do-
main, [−α, α], and Smin ∼ n−2 (1−F ∼ N−2), thus attaining the Heisenberg
limit. Let us now consider the two regimes in more detail.

1/n regime

we write α = a/
√
n, where a is fixed. Using the Gaussian approximation in

Eq. (4.54), Eqs. (4.58) through (4.60) become

a2 = Ω tan Ω
2 , (4.61)

A2 =
(2n
π

)1/2 λ2e−2a2(4a4 + Ω2)
Ω2 , (4.62)

1 = A2a(2Ω + sin 2Ω)
2
√
nΩ +λ2

[
1−Erf(

√
2 a)

]
, (4.63)

where Erf(x) is the error function. Eq. (4.63) is correct up to exponentially
vanishing contributions, which can be neglected here. In deriving this equa-
tion we also used that Erf(

√
n/2) → 1 for large n. Substituting Eq. (4.62)

in Eq. (4.63) we obtain

1
λ2 =Erfc(

√
2a)+ a(4a4+Ω2)(2Ω+sin 2Ω)√

2πΩ3
e−2a2

, (4.64)

where Erfc is the complementary error function, defined as Erfc(x) = 1 −
Erf(x). Finally, with the help of the Gaussian approximation (4.54), we
compute the minimum action from Eq. (4.38) and obtain

Smin = ω2

2n2 −
λ2

2n2

(ω2−n)Erfc(
√

2a)+ 4na√
2π

e−2a2

. (4.65)
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Eqs. (4.61) and (4.64), along with ω = Ω
√
n/a and Q = 1 − 1/λ2, enable

writing all variables in terms of the single parameter Ω. By further substi-
tuting in Eq. (4.65) we obtain the curve (Q,Smin) in parametric form:

Q = Erf
(√

Ω tan Ω
)
−
(
Ω sec2 Ω + tan Ω

)√tan Ω
πΩ e−Ω tan Ω, (4.66)

Smin = 1
2n

1 + tan2 Ω− Ω (2Ω− tan Ω) sec2 Ω
2 Ω2 sec2 Ω +

√
πΩ tan Ω Erfc

(√
Ω tan Ω

)
eΩ tan Ω

−1

.

(4.67)

Note that, as announced above, 1− F goes as 1/N .
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Figure 4.2. Plot of nSmin = 2N(1−F ) vsQ (solid line) for an asymptotically large number,
N = n, of parallel spins on the equator of the Bloch sphere. The dots have
been obtained by numerical optimization with n = 100.

In Fig. 4.2 we plot nSmin = 2N(1−F ) as a function of Q, using Eqs. (4.66)
and (4.67). The plot shows a strong dependence on Q. Hence, e.g., allowing
about 90% of abstention, has the same effect as doubling the number of copies
in the standard approach (without abstention). Note also that for Q →
0 we recover the well known result 2N(1− F ) = 1/2. The profile of the
transformed fiducial state |Ψ̃0〉 is shown in Fig. 4.3, where ϕ(τ) and λψ(τ)
are plotted as a function of t = j/n for two different values of n (recall that
τ = t− 1/2).

1/n2 regime

Here we assume that α is fixed (does not scale with n). As n goes to infinity,
the boundaries of the coincidence set, τ = ±α, lie on the tails of ψ(τ),
where the Gaussian approximation is not valid, and Eq. (4.53) must be used
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Figure 4.3. Profile of the transformed fiducial state |Ψ̃0〉 for Q = 0.56 (λ = 1.5). The
thin (thick) lines correspond to n = 20 (n = 80). The circles are obtained by
numerical optimization. The dashed lines represent the constraint λψ(t−1/2),
where ψ(τ) is given in Eq, (4.54).

instead. Eqs. (4.58) and (4.59) now become

Ω tan Ω = nα arctanh 2α− 2α2

1− 4α2 , (4.68)

A2 = n5/2

√
2
π

α2λ2arctanh22α
Ω2
√

1−4α2

× exp{−n[log 2−H(α+ 1
2)]} . (4.69)

The first equation can be solved for Ω as an asymptotic series in powers of
1/n:

Ω = π

2 +O(n−1), (4.70)

which implies ω ' π/(2α). To evaluate the integral in Eq. (4.60), we expand
the exponent −n[log 2−H(1/2 + τ)] around τ = α, so that

∫ 1
2

α
ψ2(τ)dτ ≈ ψ2(α)

∫ 1
2

α
e−2n(τ−α) arctanh 2αdτ

≈ 1√
2πn

exp{−n[log 2−H(α+ 1
2)]}√

1−4α2 arctanh 2α
. (4.71)

we note that, although this contribution falls off exponentially exactly as A2,
it can be neglected in evaluating Eq. (4.60) since its prefactor is O(n−1/2),
as compared to that of A2, which is O(n5/2). Taking this into account and
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substituting Ω ≈ π/2 and Eq. (4.69) into Eq. (4.60), we have

A = 1√
α
, (4.72)

Q̄ = 1
λ2 ≈

(2n
π

)5/2 α3 arctanh22α√
1− 4α2

× exp{−n[log 2−H(α+ 1
2)]} , (4.73)

and the critical acceptance rate is Q̄∗ = 2−n (corresponding to α→ 1/2).
The minimum action can be computed form Eq. (4.38) using the same

approximation as in Eq. (4.71). we obtain

n2Smin = π2

8α2 (4.74)

− n
3
2

√
2π

λ2arctanh2α√
1− 4α2

exp{−n[log 2−H(α+ 1
2)]}.

Note that the exponential factor in the second line of this equation is can-
celled by λ2, given in Eq. (4.73), and only the product of the pre-factors,
of order n−1, remains. Thus the second line can be safely neglected in the
asymptotic limit and we have

F = 1− π2

16N2α2 +O(N−3), 0 < α ≤ 1/2, (4.75)

with an abstention rate given by Eq. (4.73). The maximum fidelity is attained
by the largest value of α = 1/2, for which F = F ∗ as it should be. In
summary, high abstention rate (exponentially small acceptance rate) enables
a drastic change in the scaling with the number of copies of the estimation
precision. With such rates, one can attain 1 − F ∼ 1/N2, i.e., achieve the
Heisenberg limit.

4.4 Direction estimation
Proceeding along the same lines as in Sec. 4.3, we can write 〈ξ|M|ξ〉 [recall
Eq. (4.13)] as

〈ξ|M|ξ〉 =
n∑
j=1

2j√
4j2 − 1

ξjξj−1, (4.76)
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and S = 1− 〈ξ|M|ξ〉 becomes now

S= 1
2

 n∑
j=1

j

 ξj√
j+ 1

2

− ξj−1√
j− 1

2

2

+ (n+ 1) ξ2
n

n+ 1
2

 , (4.77)

where we have used the normalisation constraint in Eq. (4.18). Introducing
Lagrange multipliers according to KKT, and assuming N = 2n asymptoti-
cally large, we obtain the equivalent variational problem of minimizing the
action

S= ϕ2(1)
2n (4.78)

+ 1
n2

∫ 1

0
dt

t2
[
d

dt

(
ϕ√
t

)]2

−ω
2

2
(
ϕ2−1

)
+σ(ϕ−λψ)

,
where the primal feasibility condition (4.33) and the slackness condition (4.34)
still apply. For λ = 1 no transformation of the state is possible, therefore the
first, order n−1, term in (4.78) is fixed by the boundary value of the initial
state ψ(1). For λ > 1 we can impose ϕ(1) = 0, hence opening the door to
order n−2 scaling (i.e., to attaining the Heisenberg limit).

The evolution equation corresponding to the second line in Eq. (4.78) is
more conveniently expressed in terms of ϕ̃(t) = ϕ(t)/

√
t. It reads

t2
d2ϕ̃

dt2
+ t

dϕ̃

dt
+ ω2t2 ϕ̃ = t3/2 σ. (4.79)

The minimum value of the action can be written as in Eq. (4.38), where we
recall that σ(t) can be only different from zero in the coincidence set C . Now,
σ(t) is given by Eq. (4.79) with ϕ̃(t) = λψ(t)/

√
t.

4.4.1 Large abstention (λ� 1)
For abstention rates close to unity, and provided cj > 0 for all j, one has
C = ∅, so σ(t) ≡ 0. Eq. (4.79) becomes homogeneous and its solution is

ϕ(t) = A
√
t J0(ωt) +B

√
t Y0(ωt), (4.80)

where J0 and Y0 are Bessel functions of first and second kind respectively, and
A, B and ω are constants fixed by requiring ϕ(1) = 0 (otherwise S is order
1/n) and the convergence of the integral in Eq. (4.78). The latter implies
B = 0. The former condition and the positivity of ϕ(t) fixes ω to be the first
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zero of J0, which we call γ1. Hence, ω = γ1 ≈ 2.405. Imposing normalization
we finally fix A, and the solution is

ϕ(t) =
√

2t
J1(γ1)J0(γ1t). (4.81)

Using Eq. (4.38), we obtain S∗ = γ2
1/2n2, and the maximum fidelity is

F ∗ = 1− γ2
1

N2 , (4.82)

in agreement with Bagan et al. [2000]. The abstention rate required to achieve
the Heisenberg limit strongly depends on the initial family of states, as will
be shown in the following two examples.

4.4.2 |Ψ0〉 proportional to the POVM seed state |Φ2〉
In analogy with Sec. 4.3.2, in this example we choose the fiducial state |Ψ0〉
to be proportional to the POVM seed |Φ2〉 in Eq. (4.12). This leads to ψ(t) =√

2t, and the solution has the form

ϕ(t)=

λ
√

2t, 0 ≤ t ≤ α,

A
√
t J0(ω t)+B

√
t Y0(ω t), α < t ≤ 1.

(4.83)

Then, σ(t) = λω2√2t, if t ∈ C = [0, α] (and it vanishes otherwise). Substi-
tuting in Eq. (4.38), the minimum action can be written as

Smin = ω2

2n2 (1− α2λ2). (4.84)

Continuity of ϕ(t) and its first derivative at t = α, imply

A = −παλω√
2
Y1(ωα), B = παλω√

2
J1(ωα), (4.85)

and the boundary condition ϕ(1) = 0 requires,

J1(ωα)Y0(ω)− Y1(ωα)J0(ω) = 0. (4.86)

we will not attempt to find the exact analytical solution of this transcendental
equation, but rather, consider two particular regions of α (the boundary of
the coincidence set C ) where approximate solutions can be easily derived.
They are given by α & 0 and α . 1. That will suffice to capture the main
features of Smin (see Figure 4.4). Note that small α corresponds to large λ,
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since the coincidence set C = [0, α] is a small region and thus ϕ(t) cannot
differ much from the unconstrained solution that leads to F ∗. On the other
hand, α . 1 must correspond to small abstention.

If α & 0, we substitute the ansatz ω = γ1 +aα+ bα2 + . . . in (4.86). After
some algebra, we obtain

ω = γ1

[
1 + α2

2J2
1 (γ1) +O(α4 logα)

]
, (4.87)

where we have made use of the relation

J1(z)Y0(z)− Y1(z)J0(z) = 2
πz
, for all z; (4.88)

in particular, Y0(γ1) = 2J−1
1 (γ1)/(πγ1).

If α . 1, Eq. (4.86) can only hold for very large ω and αω ≈ ω, as is
apparent from Eq. (4.88), and we can replace the Bessel functions for their
well known asymptotic approximations

Jk(z) ≈
√

2
πz

cos
(
z − kπ

2 −
π

4

)
,

Yk(z) ≈
√

2
πz

sin
(
z − kπ

2 −
π

4

)
. (4.89)

With this, Eq. (4.86) becomes

2 cosω(1− α)
πω
√
α

= 0, (4.90)

from which
ω = π

2(1− α) . (4.91)

we next impose the normalisation condition to find the relationship between
λ and α. For α & 0, we find

λ2 = 1
J2

1 (γ1) +O(α2 logα). (4.92)

Taking the limit α → 0 we find the critical value of λ: λ∗ = 1/J1(γ1); and
the critical rate of abstention:

Q∗ = 1− J2
1 (γ1) ≈ 0.73. (4.93)
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Substituting Eq. (4.87) and (4.92) in Eq. (4.84) we readily see that the various
contributions to order α2 cancel, and

Smin = 1
n2

[
γ2

1
2 +O(α4 logα)

]
. (4.94)

One can check that, as expected, Smin (and thus the fidelity) is flat in the
region α & 0 (Q . Q∗); i.e., Smin is a smooth function of Q at Q = Q∗.
Indeed, Eq. (4.92) implies α2 = o(λ∗2 − λ2) = o(Q∗ −Q), and

n2Smin = γ2
1/2 + o[(Q∗−Q)2log(Q∗−Q)] (4.95)

The correction can be computed explicitly with some effort. we find that
Smin increases up to 3.5% for Q ≈ 0.6, at which point the approximation
breaks down.

For α . 1, we find
λ2 ≈ 1

α
. (4.96)

Combining all these results, we find

n2Smin ≈


π2

8Q, Q & 0

γ2
1

2 , Q . Q∗,

(4.97)

where we insist that this expression is a very good approximation down to
relatively small values of Q, as can be seen in Fig.4.4. In this figure we
plot Eq. (4.97) for each regime (lines), along with some numerical results
(points). The plot shows a very good agreement for most of the values of the
abstention rate Q. One can see that the flat region extends to values of Q
fairly smaller than Q∗. Note again, that any nonzero amount of abstention
enables the estimation accuracy to change behaviour from 1/N to 1/N2, thus
attaining the Heisenberg limit.

4.4.3 Antiparallel spins
As for the case of phase estimation, here we focus on signals consisting in
product states of N = 2n spins. The simplest possibility is, of course, iden-
tical copies. However, this case is of no relevance to direction estimation
with abstention, since the seed state |Ψ0〉 has only a single component in
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Figure 4.4. Plot of n2Smin[= (1/2)N2(1−F )] versus Q. The solid lines are the analytical
expressions in (4.97), whereas the circles are numerical results. In order to
approach the asymptotic limit, higher values of n are needed for smaller Q.
Accordingly, two different values of n have been used; n = 50 (filled circles)
and n = 120 (empty circles).

the symmetric subspace of j = n, i.e., cj = 0, if 0 ≤ j < n, and absten-
tion can only change the components by a multiplicative factor, as shown in
Eq. (4.10). Thus ξj = 0, if 0 ≤ j < n and ξn = cn. Instead, we consider a
seed state consisting of 2n antiparallel spins; n of them pointing along the
positive z-axis and the other n pointing along the opposite direction,

|Ψ0〉 =

∣∣∣∣∣∣
n︷ ︸︸ ︷

↑↑ . . . ↑
n︷ ︸︸ ︷

↓↓ . . . ↓
〉

=
n∑
j=0

cj |j, 0〉 . (4.98)

Such state has zero magnetic number, m = 0 and non-vanishing components
cj given by

cj = 〈n2 , n2 ; n2 ,−n
2 |j, 0〉 = n!

√
2j + 1

(n− j)!(n+ j + 1)! , (4.99)

where 〈j,m; j′,m′|J,M〉 are the standard Clebsch-Gordan coefficients. The
‘continuous version’ of these components is given by (t = j/n)

ψ(t)=
√

2nt
(1+t)

√
1−t2

exp
{
−n
[
log2−H

(1−t
2

)]}
, (4.100)

which has a peak at t = 0. The solution to the minimisation problem in
Eq. (4.78) has the form

ϕ(t) =

 A
√
t J0(ωt), 0 ≤ t ≤ α;

λψ(t), α < t ≤ 1.
(4.101)
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Following the same lines as in Sec. 4.3.3, we consider two scalings of the
boundary point t = α: one where it goes to zero as 1/

√
n, and a second

one, where α is fixed. These will lead to two regimes, where 1− F vanishes
respectively as N−1 and N−2.

1/n regime

In this regime we set α = a/
√
n. As in the phase case, we can use the

‘Gaussian approximation’ for (4.100):

ψ(t) =
√

2n t e−n t2/2. (4.102)

Note that
∫ 1

0 ψ
2(t) dt = 1, up to contributions that vanish exponentially with

n. The following expressions follow from the conditions of continuity of the
solution and its derivative as well as normalisation:

a2 = Ω J1(Ω)
J0(Ω) , (4.103)

A =
√

2nλ e−a2/2

J0(Ω) , (4.104)

Q̄ = 1
λ2 =

(
1 + a2 + a6

Ω2

)
e−a2

, (4.105)

where we have defined Ω ≡ ωα = ωa/
√
n. The minimum action Smin is given

by

Smin = Ω2

2n
1− a2 + a4 + Ω2

a6 + (1 + a2)Ω2 , (4.106)

where we have neglected exponentially vanishing terms. This expression,
together with Eqs. (4.103) and (4.105) defines the curve (Q,Smin) in terms of
the free parameter Ω ∈ [0, γ1). The corresponding plot is shown in Fig. 4.5.
We see that for moderate values of the abstention rate one can substantially
improve the estimation precision. E.g., a rate of abstention of 95% has
the same effect as doubling the number of spins in the standard approach
(without abstention). Note, however, that with finite acceptance rate we
cannot beat the shot noise limit.



88 Probabilistic estimation of pure states

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0.2 0.4 0.6 0.8 1.0

0.2

0.3

0.4

0.5

N
(1

−
F
)

Q

x

Figure 4.5. Plot of nSmin[= N(1 − F )] vs. Q (solid line) for a signal state consisting of
an asymptotically large number, N = 2n, of antiparallel spins with null total
magnetic number. The dots have been obtained by numerical optimization
with n = 100.

1/n2 regime

Here we take α to be fixed. From Eq. (4.101), continuity of ϕ(t) and ϕ′(t)
at t = α yield

A
√
αJ0(Ω) = λ ψ(α), (4.107)

A

2
√
α

[J0(Ω)− 2ΩJ1(Ω)] = λ ψ′(α), (4.108)

where, as before, Ω = αω. It follows that

J0(Ω)−2ΩJ1(Ω)
2αJ0(Ω) = ψ′(α)

ψ(α) =−n arctanhα+O(n0), (4.109)

where Eq. (4.100) has been used. This equation can be solved for Ω as a
series in inverse powers of n, obtaining

Ω = γ1 +O(n−1), (4.110)

where we recall that γ1 stands for the first zero of the function J0(z). Sub-
stituting this result into Eq. (4.108) we obtain

A =
√

2n 3
2αλ arctanhα

(1− α) 1
4 (1 + α) 3

4γ1J1(γ1)
(4.111)

× exp
{
−n

[
log 2−H

(1− α
2

)]}
. (4.112)
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Neglecting the contribution from the coincidence set, by the same arguments
as in the paragraph after Eq. (4.71), the normalization condition is

A =
√

2
αJ1(γ1) . (4.113)

Combining the last two equations, we find

Q̄ = 1
λ2 ∼ n3 exp

{
−2n

[
log 2−H

(1− α
2

)]}
. (4.114)

As for phase estimation, the acceptance rate Q̄ falls off exponentially. The
minimum action Smin can be computed from Eq. (4.38) along the same lines
as in the analogous phase estimation example. This leads to

F = 1− γ2
1

N2α2 . (4.115)

As in Sec. 4.3.3, abstention enables exceeding the shot noise limit. Note that
for α = 1, we have F = F ∗, Eq. (4.82), as expected.

4.5 Frame estimation
As anticipated in the introduction, if the encoding system consists of N
qubits one can make use of the multiplicities of the different irreducible
representations (i.e. the degeneracy of the j quantum number, also pre-
sented in Section 2.2.4) to provide a very efficient encoding of the orientation
of a Cartesian frame, or equivalently, of the rotation group parameters g.
States of the form |Ψ0〉 = ∑n

j=0 cj (∑j
m=−j |j,m, αm〉)/

√
2j + 1 exploit op-

timally these ancillary degrees of freedom and lead to a matrix M that is
(almost) equal to that corresponding to phase estimation. Hence, most of
the expressions and conclusions derived in Section 4.3 also hold in this case,
but one must recall that N = 2n for frames (whereas N = n for phases),
i.e. one must perform the change N → N/2 in the formulae of that section
to obtain the corresponding formulae for frames. In particular, Eq. (4.42)
becomes F ∗ = 1 − π2/N2 for frame estimation, in agreement with Bagan
et al. [2004]; Eq. (4.75) becomes F = 1− π2/(4N2α2) + . . . , and so on. Note
in particular that direction estimation does not provide an optimal strategy
for frame estimation, namely, the optimal frame fidelity cannot be attained
by splitting the N qubits in three groups, encoding each orthogonal direction
in one of them, and performing three independent direction estimations.

In my final example we move away from the N -qubit encoding towards
a scenario where the degeneracy of the angular momentum representations
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cannot be used to improve the frame estimation accuracy, as is the case of,
e.g., an atom in a Rydberg state. In this scenario, we have

〈ξ|M|ξ〉 = 1− 1
2

n∑
j=1

(
1

j+1 + 1
j+ 1

2

)
ξ2
j−ξ2

0−
ξ2
n

2 (4.116)

− 1
2

n−1∑
j=0

(
j+ 1

2

) ξj+1√
j+1+ 1

2

− ξj√
j+ 1

2

2

.

In the asymptotic limit, the continuous version of this expression is cast as
〈ξ|M|ξ〉 = 1− S, with the action

S = 1
n2

∫ 1

0
dt

 t2
[
d

dt

(
ϕ√
t

)]2

+ 2nϕ
2

2t −
ω2

2
(
ϕ2 − 1

)
+ σ(ϕ− λψ)

}
, (4.117)

which includes the constraints (4.18) and (4.19) and the corresponding La-
grange multipliers ω and σ, and where we have set ϕ(0) = ϕ(1) = 0. This
action and that for direction estimation, Eq. (4.78), look much the same but
for the term proportional to n. This apparently minor difference leads how-
ever to very different asymptotic behaviors. The equation of motion that
follows from (4.117) turns out to be

d2

dt2
ϕ+

(
ω2 − 2n

t
+ 1

4t2
)
ϕ = σ. (4.118)

Since n is assumed to be asymptotically large, the term proportional to
n in (4.117) forces ϕ(t) to peak at t ≈ 1 in order to minimize the action.
Therefore, the last term in (4.118) can be safely neglected. The minimum
value of S can be written in terms of the Lagrange multipliers and ψ(t) as in
Eq. (4.38), with σ = λ[ψ′′ + (ω2ψ − 2n/t)ψ] for t ∈ C , and σ = 0 otherwise.

4.5.1 Large abstention
Once again, for abstention rates close to one, and provided cj 6= 0 for all j,
Eq. (4.118) becomes homogeneous, i.e., σ = 0, and, along with the boundary
conditions ϕ(0) = ϕ(1) = 0, defines an eigenvalue problem. Its solution
can be given in terms of Whittaker functions, but unfortunately is rather
involved. It proved much simpler to formulate and solve a less demanding
eigenvalue problem with the same large n asymptotic behavior, as we explain
next.
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Since ϕ(t) is peaked at t ≈ 1, we can Taylor expand the term 2n/t in
Eq. (4.118) around this point. The leading and sub-leading contributions
to Smin come from the first two terms in this expansion. That is, from the
linear approximation: 2n/t ≈ 2n+ 2n(1− t). Within this approximation the
equation of motion becomes

d2

dt2
ϕ+ 2ntϕ+ (ω2 − 4n)ϕ = 0, ϕ(1) = 0, (4.119)

and we relax the boundary condition ϕ(0) = 0 by requiring only ϕ(t) to
vanish as t → −∞. This may seem unnatural at first, but it will become
immediately apparent that the solution to this well-posed Sturm-Liouville
eigenvalue problem vanishes exponentially with n if t ≤ 0 (in particular
ϕ(0) → 0 exponentially as n → ∞), which is enough to ensure that the
resulting asymptotic expansion of Smin in inverse powers of n will be correct.
Such solution is:

ϕ(t) = C Ai
[

4n− ω2 − 2nt
(2n)2/3

]
, (4.120)

where Ai is the Airy function and the constant C is fixed by normalization.
Imposing the second boundary condition, ϕ(1) = 0, we have (for the smallest
eigenvalue) ω2 = 2n− γ1 (2n)2/3, where in this section γ1 stands for the first
zero of Ai(x), whose value is γ1 ≈ −2.33811. Using (4.38), we obtain the
minimum action

S∗ = 1
n
− γ1

21/3n4/3 +O(n−5/2), (4.121)

from which (recall that here N = 2n)

F ∗ = 1− 1
N

+ γ1

N4/3 +O(N−5/3). (4.122)

For the average of the error e3 with which we estimate the three axes of the
Cartesian frame, we obtain 〈e3〉 = 8/N−8γ1/N

4/3 +O(N−5/3). These results
are in complete agreement with those in Bagan et al. [2001].

The asymptotic series we have obtained turns out to be in powers of
N−1/3. To obtain accurate values of F ∗ for moderately large N , the next term
in (4.122), of order N−5/3, might be important. Using the presented approach
the calculation of this term is straightforward. One simply needs to include
in (4.119) the next term in the Taylor expansion of 2n/t, i.e., 2n(1− t)2, and
use perturbation theory to obtain the correction δω2 = 2n

∫ 1
−∞(1− t)2ϕ2(t) dt.

The corresponding correction to S∗ can then be computed via Eq. (4.38). The
result is δS∗ = 27/3γ2

1/(15n5/3). From this, the correction to the fidelity turns
out to be δF ∗ = 8γ2

1/(15N5/3).
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4.5.2 Limited Abstention
As in the previous examples, if the rate of abstention is fixed to a value
strictly less than one the resulting precision very much depends on the given
signal state, namely, on the shape of cj (or ψ). In order to give a concrete
expression for the fidelity, here we will assume that, maybe because of some
energy limitations, the probability amplitudes cj of exciting a state (e.g., of
a Rydberg atom) with angular momentum j is a decreasing function. Let
us further assume as a first approximation, and also for simplicity, that this
decrease is linear: cj ∝ n − j, which implies ψ(t) =

√
3(1 − t). This simple

example will allow us to illustrate the most characteristic features of frame
estimation enhanced by abstention.

If no abstention is allowed (standard estimation), one can show that the
averaged error [i.e., 8(1− F )] vanishes as (1/N) logN as N increases, much
slower than using the optimal signal states. we will show that even a tiny
amount of abstention is enough to turn this scaling into 1/N . Moreover, the
coefficient in this scaling law can be reduced down to almost the minimum
value in (4.122) with a finite amount of abstention.

For 0 < Q < 1 (λ > 1) and large n, the very same argument used for large
abstention shows that ϕ(t) will be peaked away from t = 0, at some value
close to the boundary of the coincidence set. we can thus Taylor expand
the term 2n/t in (4.118) around t = α to sub-leading order. The differential
equation becomes

d2

dt2
ϕ+ 2n

α2 t ϕ+
(
ω2 − 4n

α

)
ϕ = σ, (4.123)

whose solution in C c (where σ = 0) is

ϕ(t) = C Ai
[

4αn− α2ω2 − 2nt
(2αn)2/3

]
. (4.124)

Here, we have used the weaker boundary condition limt→−∞ ϕ(t) = 0, and
C is determined in terms of the remaining free parameters α and ω by im-
posing continuity at the boundary of the coincidence set: ϕ(α) = λψ(α).
This combined with continuity of the first derivative implies ϕ(α)/ϕ′(α) =
ψ(α)/ψ′(α), thus

α2/3Ai
[
α(2n−αω2)

(2αn)2/3

]
(2n)1/3Ai′

[
α(2n−αω2)

(2αn)2/3

] = 1− α. (4.125)

By inspection, we see that in order for this expression to make sense for
asymptotically large n, the Lagrange multiplier ω must be of the form

ω2 = 2n
α
− (2αn)2/3 γ

′
1
α2 + ε(n)n1/3 ≡ ω2

0 +O(n1/3), (4.126)
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with ε(n) = o(n0) and γ′1 being the first zero of the Ai′ function (γ′1 ≈
−1.0188). To compute ε(n), we assume it has an asymptotic series ex-
pansion in inverse powers of n1/3 and plug it into (4.125). we then obtain
the coefficients of the resulting series recursively. At leading order we have
ε(n) = −(2α)1/3/[α(1 − α)γ′1]. There is however an additional order n1/3

contribution to ω2 coming from the next (quadratic) order in the Taylor ex-
pansion of 2n/t in (4.118). It can be computed using perturbation theory.
Namely, as δω2 = (2n/α3)

∫ α
−∞ dt (α− t)2ϕ2 [in this expression ϕ is assumed

to be normalized to one in (−∞, α)]. Combining the two order n1/3 contri-
butions one has

ω2=ω2
0 + (8γ′13−3)−4α(2γ′13+3)

15α2(1− α)γ′1
(2αn)1/3+O(n0), (4.127)

where ω2
0 is defined in (4.126). This equation gives ω2 as an explicit function

of α.
The rate of abstention (equivalently, λ) can also be expressed as a function

of α by imposing normalization to the solution of (4.123) in the whole interval
(−∞, 1], i.e.,

∫ 1
−∞ dt ϕ

2(t) = 1. One has

Q̄ = 1
λ2 =(1− α)3

−3α(1−α)2
[(

1−αω
2

2n

)
− α

2n(1−α)2

]
. (4.128)

Using (4.38) once again, we obtain

Smin = −3λ2

n

(
logα + 2− 2α− 1− α2

2

)

+ ω2

2n2

[
1− λ2(1− α)3

]
. (4.129)

Eqs. (4.128) and (4.129), define the curve (Q,Smin) in terms of α, which we
view as a free parameter that takes values in the range 0 < α < 1. This curve,
which is accurate up to order n−4/3, is plotted in Fig. 4.6 (dashed line) for n =
20. In the same figure, we also plot the asymptotic (leading) contribution
alone (solid line) and some numerical optimization results for n = 20 (empty
blue circles) and n = 90 (filled red circles). we see that n = 20 is still not
quite in the asymptotic regime, and that the sub-leading corrections play a
significant role, improving the agreement to almost perfect for central values
of Q.

At leading order, Smin can be easily written as an explicitly function of Q,
since only the leading term in (4.128) contributes and we have α = 1− Q̄1/3.
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Figure 4.6. Plot of nSmin[= N(1−F )] vs. Q. The solid black line is the leading asymptotic
expression in Eq. (4.130). The dashed line is the curve (Q,nSmin) given by
Eqs. (4.128) and (4.129) for n = 20. The blue empty (red filled) circles are
numerical results for n = 20 (n = 90). The empty diamond is also a numerical
result for Q = 1 and n = 1000.

Substituting this in the first line of (4.129), we obtain

Smin = − 3
2nQ̄

[
2 log(1− Q̄1/3) + 2Q̄1/3+ Q̄2/3

]
. (4.130)

Interestingly, the corrections to this result can be shown to be of order n−5/3,
whereas the implicit form given by (4.128) and (4.129) has non-zero contri-
butions of order n−4/3. In the limit Q → 1, Eq. (4.130) yields the leading
order in (4.121), but the slope of Smin(Q) becomes vertical at Q = 1 (see solid
line in Fig. 4.6). At this point our asymptotic approximation breaks down
—as can be seen by noticing that the higher order terms, e.g., Eq. (4.127),
diverge as some negative power of 1 − α ≈ Q̄1/3— and the numerical re-
sults approach the leading asymptotic curve very slowly. This is apparent
from Fig. 4.6, where an extra point (empty diamond), corresponding to a
numerical result for n = 1000, has been added to further emphasize this
behavior.

At the other end, for Q→ 0, Eq. (4.130) diverges. That should not come
as a surprise, since, as mentioned above, for zero abstention the error scales
as (1/n) log n. This also explains why the agreement with the numerical
results (circles) in Fig. 4.6 worsens as Q becomes very small.
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4.6 Conclusions
We have studied the effect of abstention, or post-selection, in parameter
estimation with pure states. We have seen that the use of probabilistic
protocols can enhance the precision of the estimation, even turning the SQL
to the Heisenberg limit in the scaling of the system size. The problem can
be rephrased as a two step process in which a probabilistic filter transforms
the state into a new one that yields a higher estimation fidelity. However,
if the initial state is already optimal, the abstention protocol has no effect
and no enhancement is possible. In this sense, probabilistic protocols with
pure states helps the experimentalist if she has some limitations in the initial
preparation of the system.

In the following two chapters we will address the estimation protocols in
the presence of noise in the system or in the measurements. We focus on
direction and phase estimation. In the latter we will see that the filter has a
more effective action than compensate the initial limitations and can reduce
the effect of such noise.





CHAPTER 5

Probabilistic direction estimation of mixed states

We have seen that probabilistic strategies for parameter estimation with-
out noise can compensate the limitations of the experimentalist on the state
preparation step. In this Chapter we analyse probabilistic protocols of direc-
tion estimation in the presence of noise. In particular we study the exemplary
case of multiple copies of a mixed state. In this case the global state sys-
tem can be expressed in a block-diagonal form by writing it in an angular
momentum-like basis, as presented in Section 2.2.4. This decomposition is
one of the cornerstones to finding the optimal probabilistic measurement.

The Chapter is organised as follows. In the next section we consider esti-
mation without abstention. More precisely, we obtain the protocol that gives
the best estimate of the state of a qubit based upon non-ideal measurements
on N independent and identically prepared systems. In Section 5.2, estima-
tion with abstention is introduced, and the optimal protocol for a fixed value
of the abstention rate Q is obtained. We study the asymptotic regime of
large N and derive the corresponding maximum fidelity and probability of
abstention. As an example, we also consider an scenario where abstention
gives a drastic improvement. This is the case when noise increases with N in
such a way that the fidelity of the estimation approaches a finite value less
than one as N becomes large.
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5.1 No abstention
Let us consider N copies of a completely unknown pure qubit state |n〉
(throughout the paper n will denote a unit Bloch vector) that we wish to
estimate by performing a realistic, and therefore noisy, quantum measure-
ment. We model it as an ideal measurement preceded by the single-qubit
depolarizing channel acting on every copy:

E(ρ) = (1− η)ρ+ η

3(σxρσx + σyρσy + σzρσz), (5.1)

where with probability 1−η no error occurs, while with probability η the state
is affected by either a bit-flip, a phase-flip, or both. This error probability
η is assumed to be known by the experimentalist, therefore, for the purpose
of analyzing the effects of noise in the estimation process, we will transfer
its effect to the input states and optimize the estimation protocol over ideal
measurements. Hence, we will consider input states of the form

ρ(n) = r |n〉〈n|+ (1− r)112 = 11 + rn · σ
2 , (5.2)

with r = 1− (4/3)η. In words, we will assume that the input states either do
not change with probability r or they become completely randomized with
probability 1 − r = (4/3)η. The original problem is thus equivalent to the
estimation of a pure state |n〉 (or of a uniformly distributed Boch vector n)
based upon the outcomes of an appropriate ideal measurement on N copies
of the mixed state ρ(n) in Eq. (5.2), i.e., on the state ρ(n)⊗N = τ(n).

For each measurement outcome χ an estimate |nχ〉 is provided according
to some guessing rule χ → |nχ〉. We choose to quantify the quality of the
estimate by means of the squared overlap

f(n,nχ) = | 〈n|nχ〉|2, (5.3)

also known as the fidelity. The overall quality of the estimation protocol is
then given by the average fidelity

F =
∑
χ

∫
dnf(n,nχ) p(χ|n), (5.4)

where dn = sin θdθ dφ/(4π) is the uniform probability distribution on the
two-sphere and p(χ|n) is the conditional probability of obtaining the out-
come χ if the input state is τ(n). This probability is given by the Born rule
p(χ|n) = tr [Πχτ(n)], where Πχ ≥ 0 are the elements of a POVM charac-
terising the measurement. Recall that they satisfy the completeness relation
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∑
χ Πχ = 11, where 11 denotes the identity operator in the space spanned by

the input states {τ(n)}. The index χ may be discrete, continuous or both.
For pure states, r = 1, the maximum fidelity is well-known Massar and

Popescu [1995]:
F = N + 1

N + 2 = 1− 1
N

+ O(N−2). (5.5)

It is also known that the (continuous) covariant POVM

Π(s) = (2J + 1)U(s) |J J〉〈J J |U †(s) (5.6)

(with the obvious guessing rule Π(s) → |s〉) is optimal. In (5.6), we use
the standard notation, where {|jm〉}jm=−j is the eigenbasis of the total an-
gular momentum operators J2 and Jz. We denote by U(s) = [u(s)]⊗N ,
u(s) ∈ SU(2), (the unitary representation of) the rotation that maps the unit
(Bloch) vector ẑ into s [thus u(s)| 12 1

2〉 = |s〉], and we have also introduced
the definition J ≡ N/2. Note that the POVM {Π(s)} acts on the symmetric
subspace of largest total angular momentum J , of dimention 2J+1 = N +1.
In terms of J , (5.5) can also be written as

F = 1
2

(
1 + J

J + 1

)
≡ 1

2 (1 + ∆J) . (5.7)

Mixed states span a much larger Hilbert space and the computation be-
comes more involved. It greatly simplifies in the total angular momentum
basis, where the input state τ(n) is block-diagonal, as it is shown in (2.2.4).
The general expression 2.19 for the global state can be recast as

τ(n) =
J∑

j=jmin

nj∑
α=1

pjατjα(n), (5.8)

where τjα(n) is the normalized mixed state

τjα(n) = 1
Zj

j∑
m=−j

Rm U(n) |jm;α〉 〈jm;α|U †(n), (5.9)

with the definitions:

Zj =
j∑

m=−j
Rm = Rj+1 −R−j

R− 1 , R = 1 + r

1− r > 1. (5.10)

Recall that the additional index α, where α = 1, 2, . . . , nj, labels the various
occurrences of the irreducible representation of total angular momentum j.
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The multiplicity nj in (2.15) can be rewritten as

nj =
(

2J
J − j

)
−
(

2J
J − j − 1

)

=
(

2J
J − j

)
2j + 1

J + j + 1 . (5.11)

In the sum (5.8)), j runs from jmin = 0 (jmin = 1/2) for N even (odd)
to the maximum total angular momentum J , in contrast to the pure state
case where only the maximum value J appears. The numbers pjα > 0 are
the probabilities that the state τ(n) has quantum numbers j and α, i.e.,
pjα = tr [11jατ(n)], where 11jα = ∑j

m=−j |jm;α〉〈jm;α| is the projector onto
the corresponding eigenspace. The projector onto the whole subspace of total
angular momentum j is then

11j =
nj⊕
α=1

11jα. (5.12)

Since the input state is permutation invariant (under the interchange of the
individual qubits) representations with the same j are just mere repetitions
of the same representation, they contribute a multiplicative factor of nj to
the fidelity through the marginal probability pj = ∑

α pjα, which reads

pj =
(

1− r2

4

)J
njZj =

=
(

1− r2

4

)J ( 2J
J − j

)
2j + 1

J + j + 1
Rj+1 −R−j

R− 1 . (5.13)

One can easily check that ∑j pj = 1, as it should be.
Because of the block diagonal form of the input states, an obvious optimal

measurement consists of a direct sum of covariant POVMs,

Π(s) =
J⊕

j=jmin

nj⊕
α=1

Πjα(s), (5.14)

where each of them is a straightforward generalization of Eq.(5.6):

Πjα(s) = (2j + 1)U(s) |j j;α〉〈j j;α|U †(s). (5.15)

One can easily check that the completeness condition
∫
dsΠ(s) = 11 holds.

The total fidelity then is

F = 1
2

1 +
J∑

j=jmin

pj∆j

 , (5.16)
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where Holevo [1982]

∆j = 〈Jz〉j
j + 1 = tr [Jz τj(ẑ)]

j + 1 , (5.17)

with τj(ẑ) being any one of the normalized states defined in Eq. (5.9), (say,
the one with α = 1). A straightforward calculation gives

〈Jz〉j = 1
Zj

j∑
m=−j

mRm = j − 1
R− 1 + 2j + 1

R2j+1 − 1 . (5.18)

Notice that for pure states, one has R → ∞, and in turn 〈Jz〉J → J , in
agreement with Eq. (5.7).

As will be shown in the next section, for asymptotically large N the
probability pj peaks at a value of j ' rJ , which gives the dominant and
subdominant contributions to the sum in (5.16). Up to order 1/N , and dis-
carding exponentially vanishing contributions [e.g., ∼ R−rJ ], the asymptotic
fidelity turns out to be

F = 1− 1
Nr

r + 1
2r + · · · . (5.19)

This result is interesting on its own and, to the best of our knowledge, has
not been presented before. Note that for pure states (r = 1) Eq. (5.19) agrees
with the asymptotic expression of the fidelity in Eq. (5.5).

5.2 Abstention
In this section we focus on estimation protocols where the experimentalist is
allowed not to produce an answer, or abstain, if the outcome of the measure-
ment she performed cannot provide a good enough estimate of the unknown
state. Obviously, F cannot decrease by excluding these abstentions from
the average. In noisy scenarios, such as that considered here, F actually
increases, as will be shown below. Our aim is to quantify this gain and
find the optimal protocol. In our approach, the probability of abstention,
Q, is kept fixed, rather than unrestricted, since usually in practical situa-
tions one cannot afford discarding an unlimited amount of resources/state
preparations.

5.2.1 General framework
We denote by Π0 the abstention operator, which in addition to the opera-
tors {Πχ} form the POVM representing the measurement. Thus, the com-
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pleteness relation reads ∑
χ

Πχ + Π0 = 11. (5.20)

The probability of abstention (abstention rate) and that of producing an
estimate (acceptance rate) are then given respectively by

Q =
∫
dn tr [Π0τ(n)] and Q̄ = 1−Q, (5.21)

and the mean fidelity defined in (5.4) becomes now

F (Q) = 1
Q̄

∑
χ

∫
dn f(n,nχ)tr [Πχτ(n)] , (5.22)

where notice that the sum does not include the Π0 operator and Q̄ takes into
account the abstentions excluded from the average.

We next note that for any unitary transformation U of the type defined
after Eq. (5.6), the operators {UΠχU

†, UΠ0U
†} give the same value of Q

and F (Q) as the original set {Πχ,Π0}, provided we change the guessing rule
as nχ → RUnχ, where RU is the SO(3) rotation whose unitary representation
is U . Therefore, one can easily prove that Π0 (the set {Πχ}) can always be
chosen to be SU(2) invariant (covariant) by simply averaging over U . In
other words, with no loss of generality the POVM elements that provide a
guess |s〉 can be chosen as

Π̃(s) = U(s) ΠU †(s), (5.23)

where Π ≥ 0 is the so called seed of the POVM (in particular, note that Π̃(ẑ) =
Π). The abstention operator then reads

Π0 = 11−
∫
ds Π̃(s), (5.24)

which is manifestly rotationally invariant (as claimed above). It is thus pro-
portional to the identity on each invariant subspace

Π0 =
J⊕

j=jmin

nj⊕
α=1

ajα11jα =
J⊕

j=jmin

aj11j, (5.25)

where aj are coefficients that satisfy the condition 0 ≤ aj ≤ 1 and 11j is
defined in Eq. (5.12). Here we have used the permutation invariance of the
input state to fix, without loss of generality, ajα = aj for all α). We can also
choose Π̃(s) to have the block-diagonal form of the input state τ(n), namely,

Π̃(s) =
J⊕

j=jmin

nj⊕
α=1

Π̃jα(s). (5.26)
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For given {aj}, the optimality of Πjα(s), defined in Eq. (5.15), clearly ensures
that

Π̃jα(s) = (1− aj)Πjα(s), (5.27)
are also optimal for estimation with abstention. Recalling that the label α
is unsubstantial, aside from the multiplicative factor nj, we have from (5.21)
that the abstention probability is simply

Q =
J∑

j=jmin

pjaj, (5.28)

where pj is given in Eq. (5.13). The coefficients aj can be understood as
the probabilities of abstention conditioned to the input state having total
angular momentum j, i.e., aj = p(abstention|j). Similarly, for a given j,
the probability of producing an estimate, or accepting, is āj = 1 − aj =
p(acceptance|j).

From Eq. (5.22) we obtain

F (Q) = 1
2

1 +
J∑

j=jmin

pj∆̃j

 , (5.29)

where
∆̃j = 1− aj

1−Q∆j = āj

Q̄
∆j, (5.30)

and the quantity ∆j is given in Eqs. (5.17) and (5.18). Thus, we are only
left with the free parameters aj, which have to be optimized in order to
maximize F (Q), subject to the constraints 0 ≤ aj ≤ 1 and (5.28). Somehow
expected, one can show that ∆j is a monotonically increasing function of j,
i.e., ∆j−1 < ∆j, therefore the largest contribution to the fidelity is given by
∆J . This corresponds to āJ = 1 and āj = 0, j < J . Hence, for unrestricted
probability of abstention, the optimal protocol discards any contribution with
j < J . This protocol, however, would provide an estimate with a probability
that decreases exponentially with N , for r < 1, as pJ ' (1/r)[(1 + r)/2]N+1.
Notice that in a noiseless scenario, r = 1, there is only the contribution j = J ,
which is already the optimal one and therefore abstention is of no use in such
case.

Clearly, for finite Q there can be contributions from other total angular
momentum eigenspaces (j < J) compatible with Eq. (5.28). Recalling the
monotonicity of ∆j, and by convexity, it is obvious from Eqs. (5.29) and (5.30)
that there must exist an angular momentum threshold j∗ such that āj = 0
(āj = 1), if j < j∗ (j > j∗). The value j∗ is determined through Eq. (5.28)
to be

j∗ = max
{
j such that Q−∑j−1

j′=jmin
pj′ ≥ 0

}
. (5.31)
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Figure 5.1. Fidelity gain ∆F/F (0) = [F (Q) − F (0)]/F (0) as a function of Q for N = 6
(solid line) and N = 8 (dashed line) and purities of r = 0.3 in (a) and r = 0.7
in (b).

Thus, we have

aj =


1, j < j∗;
p−1
j

(
Q−∑j∗−1

j′=jmin
pj′
)
, j = j∗;

0, j > j∗.

(5.32)

In a more physical language, the optimal strategy consists actually of two
successive measurements. The experimentalist first measures the total angu-
lar momentum j of the input state τ(n) and decides to abstain (provide a
guess) if j < j∗ (j > j∗). If j = j∗, she simply decides randomly, by tossing
a Bernoulli coin with probability aj∗ of coming up heads, and if heads (tails)
show up, abstain (provide a guess). In order to provide the actual guess, if
she decides to do so, she performs the optimal POVM measurement {Π(s)}
[or just {⊕α Πjα(s)}] in Eq. (5.14) on the state ⊕α τjα(n) that resulted from
the first measurement.

5.2.2 Small number of copies
In Fig. 5.1 we plot the fidelity gain due to abstention [F (Q)−F (0)]/F (0) =
∆F/F (0) vs. Q for N = 6, N = 8, and purities of r = 0.3 and r = 0.7. The
structure of Eq. (5.32) is apparent from these plots: at Q = 0 (aj = 0 for all
j) there is, naturally, no gain; kinks sequentially appear at the precise values
of Q where a new coefficient aj in (5.32) becomes positive (and j∗ increases
by one); the curves are convex between successive kinks, where the one aj
that has become positive, aj∗ , keeps increasing. This pattern repeats until
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the abstention rate Q reaches a critical value Qcrit at which j∗ = J ,

Qcrit = 1− pJ = 1− 1
r

(1 + r

2

)2J+1
+ 1
r

(1− r
2

)2J+1
(5.33)

[see Eq. (5.13)]. Increasing Q further will not provide any additional gain,
as the flat plateaus of Fig. 5.1 illustrate. This is so, since one can view
the optimal abstention protocol as a filtering process where the low angular
momentum components of the input state are filtered out. Hence, keeping
the maximum value of j = J is the optimal filtering beyond which no further
improvement is possible. Fig. 5.1(a) shows that in noisy scenearios, e.g.
r = 0.3, abstention can increase the fidelity quite notably, up to 15%. For
higher purities the gain is more moderate, as shown in Fig. 5.1(b). The
enhancement in this case is about 4-5% but with an abstention rate slightly
above 50%. Further results are shown in Fig. 5.2, where we plot the fidelity
gain as a function of the number of copies N for abstention rates larger than
Qcrit, and for various values of the purity r. All the curves have a maximum
at a value of N that varies with the purity. The lower the purity, the higher
the value of N at which the maximum occurs (e.g., for r = 0.3 the maximum
gain occurs at N = 12; for r = 0.1 the maximum is off scale at the right of
the figure).
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Figure 5.2. Fidelity gain as a function of N for various values of r, indicated in the legend,
and for Q ≥ Qcrit.

As we have seen, the possibility of abstaining enables us to reach values of
the fidelity that otherwise we could only attain with lower levels of noise. To
quantify this effective reduction of noise, let us define an effective purity reff
by the implicit equation F (reff , N, 0) = F (r,N,Q). That is, for an estimation
setting, given by r, N ,and Q, reff is the purity of the input states that would
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provide the same fidelity if the standard strategy without abstention (Q = 0)
were used instead. Since r is related to the probability of error η in our model
of noisy measurements in (5.1), an increase of the effective purity corresponds
to an effective reduction of the amount of noise in the measurement through
the relation ηeff = (3/4)(1 − reff). Figure 5.3 shows a plot of the effective
purity reff as a function of Q for various values of r and N . As can be
seen, reff increases faster at low values of N , but it saturates earlier (lower
Qcrit), reaching a lower value. For low N and for a wide range of purities,
0.1 . r . 0.9, we observe a constant effective increase of the purity, reff ≈
r+0.2, for reasonable values of the abstention rate Q. As N increases one has
to go to higher values of the abstention rate, Q ∼ Qcrit, to have a significant
gain. Hence, a moderate abstention rate is most effective in noisy scenarios
when a small, but fair, number of copies is available.

Finally, let us point out that the protocol we have presented requires a
projection on the total angular momentum eigenspaces. This is a non-local
measurement that nonetheless can be implemented efficiently Bacon et al.
[2006]. In a more extreme scenario where there are no restriction on the
abstention rate, one can attain the maximum fidelity with an even simpler
strategy: perform a local Stern-Gerlach measurement on every qubit (say, of
the z-component of the spin) and abstain unless all outcomes agree. This
strategy renders an abstention probability of Q = 1 − [(1 + r)/2]N , which
might be comparable to Qcrit in Eq. (5.33).

5.2.3 Asymptotic regime
We next compute the analytical expressions of the fidelity in the large N
limit. Here it is useful to define the variable x as

x = j

J
, 0 ≤ x ≤ 1, (5.34)

which becomes continuous in the limit N → ∞ (J → ∞). In this case, we
can replace pj by the continuous probability distribution in [0, 1] defined by

p(x) = Jpj=xJ , (5.35)

so that
∫ 1

0 dx p(x) = 1 as N goes to infinity. Eq. (5.29) can then be approxi-
mated by its continuous version, which reads

F = 1
2

[
1 +

∫ 1

0
dx p(x)∆̃(x)

]
, (5.36)

where
∆̃(x) = ∆̃j=xJ , (5.37)
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Figure 5.3. Effective purity reff as a function of the abstention rate Q for N = 5 (dotted),
10 (dashed), and 30 (solid), and for purities of r = 0.01, 0.1, 0.3, 0.5, 0.7,
and 0.9, which can be read off from the values of reff at Q = 0.

where recall that ∆̃j is given in Eqs. (5.30). From Eq. (5.32) we see that
asymptotically āj becomes the step function θ(x−x∗), where x∗ = j∗/J , and
we have used the standard definition

θ(x) =
{

1, x ≥ 0;
0, x < 0. (5.38)

With this, Eq. (5.30) becomes

∆̃(x) = θ(x− x∗)
Q̄

∆(x), (5.39)

and, in turn,

F = 1
2

[
1 + 1

Q̄

∫ 1

x∗
dx p(x)∆(x)

]
. (5.40)

It also follows from (5.28) that

Q̄ =
∫ 1

0
dx p(x)θ(x− x∗) =

∫ 1

x∗
dx p(x). (5.41)
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Figure 5.4. Plots of ∆(x) (blue line with solid circles) and p(x) (red line with empty
circles) for N = 100 and r = 0.5. The circles represent the quantities ∆j and
Jpj as a function of x = j/J . The shaded area indicates the acceptance region
for an abstention rate Q ∼ 93%.

At this point, we need to find a good approximation to p(x) that would
enable us to obtain the explicit form for the asymptotic fidelity. From
Eq. (5.13), and using the Stirling formula, we obtain

p(x) '
√
N

2π
1√

1− x2

x(1 + r)
r(1 + x) e−NH( 1+x

2 ‖
1+r

2 ), (5.42)

where H(s ‖ t) is the (binary) relative entropy

H(s ‖ t) = s log s
t

+ (1− s) log 1− s
1− t , (5.43)

and the approximation is valid for both x and r in the open unit inter-
val (0, 1). The appearance of a relative entropy in Eq.(5.42) can be un-
derstood as follows. Our N -copy input state (diagonal in the canonical Jn
basis) can be thought of as a classical coin tossing distribution of N identical
coins with a bias of (1 + r)/2. From the theory of types Cover and Thomas
[2006] it is well known that the probability to get k heads is given by the
Kulback-Leibler distance (or relative entropy) between the empirical distri-
bution {f = k/N, 1− f} and the distribution {(1 + r)/2, (1− r)/2}. That is,
p(k) ∼ exp{−NH[f ‖ (1+r)/2]} to first order in the exponent. The number
of heads k is in one-to-one correspondence with the magnetic quantum num-
ber, m = k−J , and the conditioned probability p(j|m) is strongly peaked at
m = j, as one can easily check. It follows that the probability that the input
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state has total angular momentum j, given by p(j) = ∑
m p(j|m)p(m), will be

asymptotically determined by the probability distribution p(m), which has a
convenient expression in terms of the typical and the empirical distribution
of up/down outcomes.

From Eq. (5.42) it follows that p(x) is peaked at the value x = r, i.e.
at j = rJ , as shown in Fig. 5.4 and stated without a proof in Sec. 5.1.
Actually, around the peak, x ∼ r, the exponent becomes quadratic and p(x)
approaches the Gaussian distribution

p(x) '
√

N

2π(1− r2)e−N
(x−r)2

2(1−r2) , (5.44)

as also follows from the central limit theorem, whereas it falls off exponen-
tially elsewhere.

It is now apparent that, asymptotically, abstention has negligible impact
if components with j below rJ are filtered out (x∗ < r), since the main
contribution to the fidelity, which comes from the peak around x ' r, is not
excluded from the integral in Eq. (5.40) (only the left exponentially decaying
tail is). For the same reason [see Eq. (5.41)], Q̄ ' 1 (the abstention rate Q
is exponentially small), and Eq. (5.40) yields

F = 1− 1
2N

r + 1
r2 + . . . for x∗ < r, (5.45)

which is the same expression as the asymptotic fidelity of the protocol without
abstention, Eq. (5.19).

It is then clear that, in order to have a discernible improvement in the
fidelity, the abstention threshold x∗ must lie to the right of the peak of the
probability distribution. The fidelity in (5.40) then can be written as

F ' 1
2

[
1 + p(x∗)

Q̄
∆(x∗)

]
' 1

2 [1 + ∆(x∗) ] , x∗ > r, (5.46)

where we have used that for x ≥ x∗ > r and for large enough N , p(x) falls
off exponentially and the integral can be approximated by the value of the
integrand at its lower limit. By the very same argument Eq. (5.41) gives

Q̄ ' p(x∗), (5.47)

which has also been used in (5.46). Using now (5.42) we obtain that in the
asymptotic limit of many copies, the rate at which our protocol provides a
guess is

Q̄ ∼ exp
[
−NH

(
1+x∗

2 ‖ 1+r
2

)]
. (5.48)
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Recalling Eqs. (5.17) and (5.18) we obtain the optimal fidelity:

F = 1− 1
2Nx∗

r + 1
r

+ · · · , for r ≤ x∗ ≤ 1, (5.49)

for a value of Q given by (5.48). For x∗ = r the results (5.19) and (5.45) are
recovered, whereas for x∗ → 1 (Q ≥ Qcrit) the maximum average fidelity is
attained

Fmax = 1− 1
2N

r + 1
r

+ · · · . (5.50)

The advantage provided by our estimation with abstention protocol can
be quantified by the effective number of copies that the standard proto-
col without abstention would require to achieve the same fidelity: Neff =
(x∗/r)N , where x∗ ∈ [r, 1) is determined by the abstention rateQ through (5.48).
For high noise levels (low purity, r � 1) our protocol provides an important
saving of resources/copies, as Neff/N = 1/r � 1, whereas for nearly ideal
detectors the saving in this asymptotic regime is more modest.

Alternatively, the advantage discussed above can also be quantified by the
effective measurement-noise reduction, or equivalently, the effective purity reff
(See Sec. 5.2.2). Using (5.49) one can easily find a simple expression for
the effective purity in the asymptotic limit and for large abstention rate:
reff = (r +

√
4r + 5r2)/[2(1 + r)]. In the limit of very low noise levels the

errors probability η [recall Eq. (5.1)] is effectively reduced by a factor of three,
i.e., ηeff = η/3, while in the opposite limit of very noisy measurements one
finds reff =

√
r.

5.2.4 Other regimes
In the previous section we have seen how a gain in fidelity can be obtained
provided the ‘acceptance’ rate Q̄ falls off exponentially as N becomes very
large. Here we give an example where this gain takes place even at finite Q̄.

At fixed noise level (purity r), the fidelity is an increasing function of N .
However, one could imagine an experimental setup where the noise (purity)
also increases (decreases) with N . If this is so, the asymptotic fidelity could
be strictly less than one, or in other words, perfect estimation could be
unattainable even with unbounded resources. This is the case in our example,
were we assume that r = a/

√
N , a being a positive constant. Notice that

the threshold x∗ must also scale as 1/
√
N in order to have a reasonably low

abstention rate. Therefore, it is convenient to use a new variable ξ =
√
Nx =√

N j/J = 2j/
√
N instead. Then, the probability distribution in this new

variable is
p(ξ) =

√
N

2 pj=ξ
√
N/2, with r = a√

N
. (5.51)
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Recalling Eq. (5.13) and using Stirling formula this equation gives

p(ξ) = e−
(
ξ−a√

2

)2

− e−
(
ξ+a√

2

)2

√
2πa

ξ (5.52)

to leading order in inverse powers of N . The subleading terms are of order
N−1/2 and will be neglected here. For a given threshold value ξ∗ = 2j∗/

√
N

the abstention rate is

Q =
∫ ξ∗

0
p(ξ) dξ = 1

2
(
erf ξ∗+ + erf ξ∗−

)
− e−ξ∗−2 − e−ξ∗+2

√
2πa

, (5.53)

where ξ∗± = (ξ∗ ± a)/
√

2 and erf x is the error function.
From Eqs. (5.17) and (5.18) we have in this same regime and at leading

order
∆(ξ) = ∆j=ξ

√
N/2 = 1− 2

1− e2aξ −
1
aξ
. (5.54)

With the above, the fidelity (5.29), [or rather, the counterpart of (5.36)] is

F = 1
2

[
1 +

∫ ∞
0

dξ p(ξ)∆̃(ξ)
]

= 1
2

[
1 + 1

Q̄

∫ ∞
ξ∗

dξ p(ξ)∆(ξ)
]
, (5.55)

where the last integral can be computed to be

∆∗ ≡
∫ ∞
ξ∗

∆(ξ)p(ξ) dξ = (5.56)

= 1− a2

2a2

(
erf ξ∗− − erf ξ∗+

)
+ e−ξ∗−2 + e−ξ∗+2

√
2πa

.

We can finally write the fidelity as

F = 1
2

(
1 + ∆∗

1−Q

)
+ O(N−1/2). (5.57)

As shown in (5.53) and (5.56), both Q and ∆∗ are functions of the filtering
threshold ξ∗, which is just a properly scaled version of the original thresh-
old j∗. Finding the maximum fidelity for a given rate of abstention Q requires
inverting Eq. (5.53) to obtain ξ∗(Q), but this cannot be done analytically and
one has to resort to numerical methods.

In Fig. 5.5 we plot F as a function of Q for a = 1. The increase of the
fidelity in the asymptotic regime of large N is clearly seen: e.g., an abstention
rate of a 50% yields a rise of about 10%, and it goes up to about 30% for
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Figure 5.5. Plot of the fidelity as a function of Q for r = a/
√
N , with the choice a = 1.0,

N = 106 (red circles). The solid line (in blue) is the leading term in Eq. (5.57)
plotted as a function of Q [a parametric plot of the pairs (Q,F ), as given by
Eqs. (5.53) and (5.57)]

higher (but still reasonable) values of Q. The figure also shows the agreement
between the approximate form of the fidelity given by Eqs. (5.53) to (5.57)
and the numerical evaluation of its exact expression in (5.29).

It should be noted that in the regime described here a rise of the input
size N fails to replicate the fidelity improvement that results from increasing
the rate of abstention (no Neff can be defined in this regime), thus abstention
appears to be the only means by which one can improve estimation.

5.3 Conclusions
In this Chapter we have considered the probabilistic direction estimation with
mixed states. We have seen that the optimal probabilistic protocol consist
in measuring first the total angular momentum of the state followed by a
covariant POVM. The first measurement projects the state of the system over
a subspace and gives a label that heralds the precision of the proper direction
estimation. By post-selecting over the outcomes of the former measurement,
abstention counterbalances the adverse effect of errors in a noisy process of
measurement.

We have shown that in general abstention is most useful for inputs of
few copies and for error rates of the order of a few percent. We have given
analytical asymptotic expressions of the fidelity valid in the limit of large
number of copies. In this limit, abstention can have the effect of increasing
the number of copies by a constant fraction: Neff/N = x∗/r (x∗ > r), with
an acceptance rate Q̄ given by the relative entropy: −(1/N) log Q̄ = H[(1 +
x∗)/2 ‖ (1 + r)/2]. For low levels of noise this amounts to reducing the error
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probability η by a factor of up to three. We have also considered a scenario
where the noise (per qubit) increases with the number of copies in such a
way that perfect estimation is unattainable (limN→∞ F < 1). In this case one
can obtain a significant enhancement of the asymptotic fidelity (few percent)
even for finite abstention probabilities Q < 1. Moreover, in such scenario
abstention appears to be the only way to improve estimation.

The case of direction estimation with mixed states has an important
difference with respect the other cases discussed in this thesis: if the experi-
mentalist is forced to give an answer, the probabilistic strategy presented in
this Chapter turn out to be exactly the same as the deterministic one. How-
ever, although the averaged fidelity does not differ from the one obtained by
the deterministic strategy, by measuring first the total angular momentum
the experimentalist gets a label for each sample element that indicates the
accuracy of this precise estimate.





CHAPTER 6

Probabilistic phase estimation of mixed states

In the previous two chapters we have seen two different facets of the proba-
bilistic filter. In the absence of noise it can be regarded as a filter that tunes
the state to a more parameter sensitive one. In this sense, probabilistic
metrology will not provide an enhanced accuracy if the experimentalist has
no limitations to prepare any state. Of course, in many instances the state
is just given and it is worth considering a probabilistic approach. In the case
of direction estimation in the presence of noise, we have seen that the filter
has a different action. While the former exploits the quantum correlations of
the system by modifying the profile of the state, here the protocol uses the
classical correlations via a total angular momentum filter.

In this Chapter we deal with the paradigmatic case of phase estimation
with mixed states. Interestingly, the optimal protocol includes a combination
of the two types of the filter’s actions just mentioned, and yields a precision
beyond the ultimate deterministic bounds. That is, there is no prepara-
tion/probe/sginal state that under the effect of local noise gives the same
accuracy as the the one that a probabilistic protocol can provide.

6.1 Optimal probabilistic measurement for n-qubits
As stated in the introduction, here we are devoted to find the optimal proba-
bilisitic protocol for estimating the parameter θ that determines the unitary
evolution, Uθ := u⊗nθ , of a probe system of n qubits in the presence of local
decoherence, where uθ = exp(iθ |1〉〈1|). In particular, the initial n-partite
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pure state |ψ〉〈ψ| = ψ (this shorthand notation will be used throughout this
Chapter) is prepared and is let evolve. The state is affected by uncorrelated
dephasing noise, which can be modeled by independent phase-flip errors oc-
curring with probability pf = (1 − r)/2 for each qubit. Its action on the
n-qubits is described by a map D that commutes with the Hamiltonian, so
that it could as well be understood as acting before or during the phase
imprinting process.

Next, the experimentalist performs a suitable measurement on ρθ =
D(UθψU †θ ) and, based on its outcome, decides whether to abstain or to pro-
duce an estimate θ̂ for the unknown parameter θ. Recall that this decision
must be based solely on the outcome of the measurement as, naturally, the
actual value of θ is unknown to the experimentalist. Our aim is to find
the optimal protocol, e.g., the measurement that gives the most accurate
estimates for a given probe state and for a given maximum probability of
abstention.

As we have done in the other cases treated in this Thesis, we quantify
the precision of the estimated phase θ̂ by the fidelity

f(θ, θ̂) = [1 + cos(θ − θ̂)]/2, (6.1)

but in this Chapter to assess the performance of the protocol we use the
worst-case fidelity over the possible values of the unknown parameter.

F = inf
θ∈(−π,π]

∫
dθ̂ p(θ̂|θ, succ)f(θ, θ̂), (6.2)

where p(θ̂|θ, succ) is the probability of estimating θ̂ after a successful event
when the true value is θ. The fidelity F and the probability of success S
will fully characterize our probabilistic metrology strategies. However, for
covariant families of states, such as our noisy probes {ρθ}θ∈(−π,π], the worst-
case fidelity is entirely equivalent to the average fidelity (see Appendix A.6).
To facilitate comparison with previous point-wise results, we present ours in
terms of a scaled ‘infidelity’, σ2 := 4(1− F ), which approximates the mean-
square error when the distribution p(θ̂|θ, succ) becomes peaked around the
true value θ Berry et al. [2012].

Because of the symmetry of the problem, there is no loss of generality in
choosing the covariant measurement defined by {Mθ̂ = Uθ̂ΩU

†
θ̂
/(2π)}θ̂∈(−π,π],

where Ω is the so-called seed of the measurement. In addition, we have the
invariant measurement operator Π = 11−

∫ 2π
0 dθ̂/(2π)Uθ̂ΩU †

θ̂
≤ 11 that corre-

sponds to the abstention event. With this, finding the optimal estimation
scheme reduces to finding the operator Ω that maximizes the fidelity

F (S) = 1
S

max
Ω

∫ dθ̂

2πf(0, θ̂) tr
(
Uθ̂ΩU

†
θ̂
ρ
)

(6.3)
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for a fixed success probability

S =
∫ dθ̂

2π tr
(
Uθ̂ΩU

†
θ̂
ρ
)

(6.4)

In deriving Eq. (6.3) we have used covariance to get rid of the infimum
in (6.2), thereby formally fixing the value of θ to zero, and have defined
ρ = D(ψ) accordingly.

6.2 Symmetric probes
We now focus on probe states consisting n-qubits that are initially prepared in
a permutation invariant state. This family includes most of the states consid-
ered in the literature, our case-study of multiple copies of equatorial-states,
and also, as we will show below, the optimal probe-state for probabilistic
metrology. The input state is given by,

|ψ〉 =
J∑

m=−J
cm |J,m〉 , (6.5)

where J = n/2 is the maximum total spin angular momentum (hereafter
spin for short) of n qubits and the set of states {|J,m〉}Jm=−J spans the
fully-symmetric subspace. Given the permutation invariance of the noisy
channel, the state ρ = D(ψ) inherits the symmetry of the probe, and can
be conveniently written in a block diagonal form in the total spin bases (see
Section 2.2.4 and Appendix A.3),

ρ =
∑
j

pjρ
j ⊗ 11j

νj
, (6.6)

where the state ρj has unit trace, pj is the probability of ρ having spin j,
and 11j stands for the identity in the νj-dimensional multiplicity space of
the irreducible representation of spin j. The sum over j in (6.6) runs from
jmin = 0 (jmin = 1/2) for n even (odd) to the maximum spin J . Similarly, the
measurement operators, can be taken to have the same symmetry and thus
be of the form Ω = ∑

j |χj〉〈χj| ⊗ 11j, where |χj〉 = ∑
m f

j
m |j,m〉, 0 ≤ f jm ≤ 1.

The maximum fidelity F (S) for a fixed probability of success S can hence
be expressed in terms of the fidelity Fj(sj) in each irreducible block and its
corresponding success probability sj,

F (S) = max
sj

∑
j

pjsj
S
Fj(sj), S =

∑
j

pjsj (6.7)
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where

Fj(sj) = 1
2

(
1+ 1

sj
max

0≤fjm≤1

∑
m

f jmρ
j
m,m+1f

j
m+1

)
,

subject to sj =
∑
m

(f jm)2ρjm,m. (6.8)

This formulation of the problem allows for the natural (and widely used in
this Thesis) interpretation of the probabilistic protocol as a two step process:
i) a stochastic filtering channel

F (ρ) = Φ ρΦ, Φ =
∑
j,m

(f jm)2 |j,m〉〈j,m| ⊗ 11j, (6.9)

that coherently transforms each basis vector as |j,m〉 → f jm |j,m〉, so that it
modulates the input to a state with enhanced phase-sensitivity, followed by
ii) a canonical covariant measurement with seed Ω̃ = ∑

j

∑
m,m′ |j,m〉〈j,m′| ⊗ 11j

performed on the transformed state from which the value of the unknown
phase is estimated.

By defining the vector ξj with components given by ξjm = f jm(ρjm,m/sj)1/2

and introducing the tridiagonal symmetric matrix Hj, with entries

Hj
m,m′ = 2δm,m′ − ajmδm,m′−1 − ajm′δm−1,m′ ,

ajm =
ρjm,m+1√

ρjm,mρ
j
m+1,m+1

, (6.10)

we can easily recast the former optimization problem as,

Fj(sj) = 1− 1
4σ

2
j , σ2

j := min
|ξj〉

〈
ξj
∣∣∣Hj

∣∣∣ξj〉 , (6.11)

subject to 〈ξj|ξj〉=1 and 0≤ξjm≤(ρjm,m/sj)1/2, (6.12)

Note that ajm, and in turnHj, depend on the strength of the noise but take the
same values for all symmetric probe states, for we have that ρjm,m′ ∝ cmcm′ .
For deterministic strategies (S = 1, i.e., sj = 1 for all j) no minimization is
required and one only needs to evaluate the expectation values of Hj for the
‘state’ ξjm = (ρjm,m)1/2. For large enough abstention, the problem becomes
an unconstrained minimization, so σ2

j is the minimal eigenvalue of Hj, and
|ξj〉 its corresponding eigenstate. From (6.12) we find that the corresponding
filtering operation only succeeds with a probability (6.12)

S∗ =
∑
j

pjs
∗
j , s∗j = min

m

ρjm,m

ξjm
2 . (6.13)
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We will refer to S∗ as the critical success probability, since the fidelity will not
improve by decreasing the success probability below this value, F (S) = F (S∗)
for S ≤ S∗.

6.3 Asymptotic scaling: particle in a potential box
In order to compute the scaling of the precision as the number of resources
becomes very large we need to solve the above optimization problem in the
asymptotic limit of n → ∞. We start be analysing the fidelity Fj(sj)
for blocks of large j. For each such block we define the ratios x = m/j,
m = −j,−j + 1, . . . , j, that approach a continuous variable as j → ∞ (See
Appendix A.7 for details). In this limit, {

√
jξjm} approaches a real function

of x,
√
jξjm → ϕ(x), and the expectation value (6.11) becomes,

σ2
j = 1

j2 min
|ϕ〉

∫ 1

−1
dx


[
dϕ(x)
dx

]2

+ V j(x)ϕ(x)2

 ,
: = 1

j2 min
|ϕ〉
〈ϕ|Hj |ϕ〉 , (6.14)

where we have dropped some boundary terms that are irrelevant for this
discussion, Hj := −d2/dx2 + V j(x) plays the role of a ‘Hamiltonian’, with a
‘potential’

V j(x) = 2j2(1− ajm) = j
1− r2

2r
√

1− (1− r2)x2
. (6.15)

Furthermore, in Eq. (6.14) the function ϕ(x) must be also differentiable and
must satisfy the conditions

〈ϕ|ϕ〉 =
∫ 1

−1
dx [ϕ(x)]2 = 1, ϕ(x) ≤ ϕ̃(x)

√
sj
, (6.16)

where for a given large j we define ϕ̃(x) through√
jρjmm → ϕ̃(x), x = m

j
. (6.17)

It is now apparent from Eqs. (6.14) through (6.17) that our optimization
problem is formally equivalent to that of finding the ground state wave-
function of a quantum particle in a box (−1 ≤ x ≤ 1) for a potential V j(x)
and subject to boundary conditions which are fixed by the probe state, the
strength of the noise, and the success probability.
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6.4 Multiple-copies
Although our methods apply to general symmetric probes, for the sake of
concreteness we study in full detail the paradigmatic case of a probe consist-
ing of n identical copies of equatorial qubits:

|ψcop〉 = 1√
2n

(|0〉+ |1〉)⊗n. (6.18)

Decoherence turns this symmetric pure state to a full rank state with a
probability of having spin j given by

pj '
e−J

(j/J−r)2

1−r2√
πJ(1− r2)

, (6.19)

which is valid around its peak at the typical value j0 = rJ . For each irre-
ducible block and before filtering we have a signal

√
jρjmm → ϕ̃(x) '

(
jr

π

) 1
4

e−
rj
2 x

2 (6.20)

that peaks at x = 0 with variance 〈x2〉 = (2rj)−1.
For deterministic protocols (S = 1) the constraints completely fix the

solution, ϕ(x) = ϕ̃(x), and the precision is obtained by computing the ‘mean
energy’ σ2

j = 〈Hj〉ϕ̃/j2, Eq. (6.14). For large j it is meaningful to use the
harmonic approximation V j(x) ' V j

0 + ω2
jx

2, where V j
0 = j(1 − r2)/(2r)

and ω2
j = j(1 − r2)2/(4r). The leading contribution to σ2

j comes from the
‘kinetic’ energy [i.e., the first term in (6.14)]: 〈p2〉ϕ̃ = (1/4)〈x2〉−1 = jr/2,
whereas the harmonic term gives a sub-leading contribution. One easily ob-
tains σ2

j = (2jr)−1. The leading contribution to the precision of the determin-
istic protocol is given by σ2

j at the typical spin j0: σ2
det = (2Jr2)−1 = (nr2)−1,

in agreement with the previous known (point-wise) bounds (see Methods).
For unlimited abstention in a block of given spin j (sj very small) the min-

imization in (6.14) is effectively unconstrained and the solution (the filtered
state) is given by the ground state ϕg(x) of the potential V j(x). Within
the harmonic approximation, we notice that the effective frequency of the
oscillator grows as

√
j, and the corresponding gaussian ground state is con-

fined around x = 0 with variance 〈x2〉 = (r/j)1/2(1− r2)−1. In this situation
both the kinetic and harmonic contributions to the ‘energy’ are sub-leading
—and so are the higher order corrections to V j(x). Thus, the precision σ2

j

for a spin j is ultimately limited by the constant term V j
0 of the potential.
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Up to sub-leading order one obtains σ2
j = (1− r2)(2jr)−1[1 + (r/j)1/2]. The

filtering of ϕ̃(x) to produce the gaussian ground state ϕg(x) succeeds with
probability s∗j ∼ e−2j log(1+r). Note that in the absence of noise (r = 0) the po-
tential V j(x) vanishes and the ground state is solely confined by the bounding
box −1 ≤ x ≤ 1. Then, ϕg(x) = cos(πx/2), which results in a Heisenberg
limited precision (the ultimate pure-state bound) σ2 = π2/n2 Summy and
Pegg [1990].

If the optimal filtering is performed on typical blocks, j ≈ j0, one obtains
σ2 = (1 − r2)/(nr2), which coincides with the ultimate deterministic bound
found in Demkowicz-Dobrzański et al. [2012]; Knysh et al. [2014]. This shows
that a probabilistic protocol performed on the uncorrelated multi-copy probe
state |ψcop〉 can attain the precision bound of a deterministic protocol that
requires a highly entangled probe. This bound is attained for a critical success
probability S∗ ' s∗j0 ∼ e−nr log(1+r).

More interestingly, we can push the limit further by post-selecting on the
block with highest spin (by choosing f jm ∝ δj,J) to obtain

σ2
ult := σ2

j≈J = 1− r2

nr

1 +
√

2r
n

 , (6.21)

with a critical probability given by S∗ = pJs
∗
J ∼ e−n log 2, independently of

the noise strength.
Having understood the two extreme cases, i.e., the deterministic (S = 1)

and unlimited-abstention protocols, we can quantify now the asymptotic scal-
ing for an arbitrary success probability σ2(S). The so-called complementary
slackness condition Boyd and Vandenberghe [2004], which follows from the
Karush-Kuhn-Tucker constrains [second inequality in (6.16)] guarantees that,
for a given value of sj, the solution ϕ(x) to (6.14) either saturates the above
inequality —in a region called coincidence set— or it must take the value of
an eigenfunction of the Hamiltonian Hj defined after Eq. (6.14). The con-
tinuity of ϕ(x) and its derivative provide some matching conditions at the
border of the coincidence set and a unique solution can be easily found.

As shown in Figure 6.2, in the case of multiple copies the tails of ϕ(x)
coincide with the gaussian profile in (6.20) scaled by the factor s−1/2

j for
|x| > xc (in the coincidence set), while the filter takes an active part in
reshaping the peak into the optimal profile (for |x| < xc). Clearly, the
wider the filtered region, the higher the precision and the abstention rate.
A simple expression for the leading order can be obtained if we notice that
with a finite abstention probability one can change the variance of the wave
function in (6.20) but not its 1/j scaling. Hence, as for the deterministic
case, only the kinetic energy and the constant term V j

0 of the potential play
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ϕ(x) V (x)

x = 2m/(n r)

−xc xc

Figure 6.1. Computing the action of the probabilistic filter and its precision is formally
equivalent to computing the the ground state and energy of a particle in a one-
dimensional potential box. The state ϕ̃(x) (empty circles) before the proba-
bilistic filter and the state ϕ(x) (solid circles) after the filter are represented
together with the potential V (x) (diamonds) corresponding to j = nr/2, see
(6.15), for success probability S = 0.75, noise strength r = 0.8 and n = 80
probe copies. The unfiltered state (empty circles) has been rescaled so that it
coincides with the filtered state in the region |x| ≥ xc = 9/32. The effective
potential depends on the noise strength, as illustrated by the two additional
dashed curves: for r = 0.2 (above) and r = 0.6 (below). Numerical (symbols)
and analytical results (lines) are in full agreement.

a significant role. The solution can then be easily written in terms of the
pure-state solution (See Chapter 4), which corresponds to a zero potential
inside the box −1 ≤ x ≤ 1:

σ2 ' σ2
j0 = 1− r2

nr2 + rσ2
pure(S) ≈ 1− (r2/2)S̄

nr2 , (6.22)

where S̄ := 1 − S is the probability of abstention, σ2
pure is the precision for

pure states (r = 1) and for an effective number of qubits neff = 2j0. The
pre-factor r takes into account the scaling of the variance of the state (6.20)
as compared to the pure-state case. The first equality of (6.22) uses the
fact that for finite S, only abstention on blocks about the typical spin j0 is
affordable. This also fixes the value of S to be approximately sj0 . The simple
expression given in the last term in (6.22) is not an exact bound, but does
provide a good approximation for moderate values of S̄ (see Figure 6.2). We
notice that for low levels of noise (r ≈ 1) one can have a considerable gain
in precision already for finite abstention.
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n σ2

S̄

Figure 6.2. Numerical results for the rescaled precision nσ2 for a noise strength of r = 0.8
as a function of the abstention probability S̄ = 1 − S for various numbers of
copies n = {6, 10, 20} (diamonds, circles and squares). The critical success
probability is clearly identified for the first (n = 6) curves at S̄∗ = 0.46. The
solid line is the approximated analytical result (6.22).

6.5 Finite number of copies
Up to this point, we have given analytical results for asymptotically large n,
the number of resources. In order to get exact values for finite n we need
to resort on numerical analysis. The main observation here is that our opti-
mization problem can be cast as a semidefinite program:

σ2 = min
Λ : C

trHΛ (6.23)

subject to a set of linear conditions on the matrix Λ:

C := {Λ ≥ 0, tr Λ = 1, Λj
mm ≤ pjρ

j
m,m/S}, (6.24)

where Λ, as well asH, have the block diagonal form: Λ = ⊕Λj andH = ⊕Hj.
Semidefinite programming problems, such as this, can be solved efficiently
and with arbitrary precision Boyd and Vandenberghe [2004].

Figure 6.2 shows representative results for moderate (experimentally rel-
evant) number n of qubits for the precision as a function of the abstention
probability and noise strength r = 0.8. We observe that for small values of n
the precision decreases quite rapidly until the critical S∗ after which the pre-
cision cannot be improved. For larger n the initial gain is less dramatic, but
the critical point (or plateau) is reached for higher abstention probabilities,
hence allowing to reach lower precision rates. We see that for moderately
large n, abstention can easily provide 60% improvement of the precision.
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Figure 6.3 shows the scaling of the precision with the amount of resources
(n) for low levels of noise r = 95% and for different values of the abstention
probability S̄. For low n all curves exhibit a similar (SQL n−1 scaling). Very
soon the curve corresponding to unlimited abstention shows a big drop with
a quantum-enhanced transient scaling: n−(α+1), where α > 0 depends on the
noise strength. This curve saturates for very large n ∼ 500 to the ultimate
asymptotic limit (6.21), which is has again SQL scaling. The curves for
finite S follow closely the optimal scaling up to the point where they meet
the asymptotic curve (6.22). The larger the abstention probability, the later
this transition happens. In addition, in the figure the ultimate scaling for
r = 99% is shown to illustrate that for weaker noise levels the transient is
more abrupt (larger α).

σ2

n

Figure 6.3. Ultimate precision scalings (for n→∞) are of fundamental interest, however
from practical perspective understanding the transient behaviour equally im-
portant. The plot shows the precision σ2 for different abstention probabilities
S̄ = {0, 0.5, 0.9} (from top to bottom) for r = 0.95. The fourth line (blue)
shows the exact ultimate limit (S̄ arbitrarily small). The dashed lines show
the corresponding asymptotic limits given in Eqs. (6.22) and (6.21). In ad-
dition, for weaker noise strength r = 0.99 we show lines corresponding to the
ultimate precision (in yellow).

6.6 Ultimate bound for metrology
So far we have studied the best precision bounds that can be attained for
a fixed input state. A very relevant question of fundamental and practical
interest is whether this bounds can be overcome by an appropriate choice of
such state. We answer this question in the negative: the precision bound in
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Eq. (6.21) is indeed the ultimate bound for metrology in the presence of local
decoherence and can only be attained by a probabilistic strategy.

To this aim, we first notice that for any probe state and any measurement
that attain a fidelity F with success probability S, we can find a new probe
lying in the fully symmetric subspace (j = J) and a permutation invariant
measurement that attain the very same fidelity with the very same success
probability. This shows that the formulation that we have introduced, which
deals with such probes, is actually completely general.

We now recall that the Hamiltonian Hj is independent of the choice of
probe state and that such choice determines only the shape of the state ϕ̃(x)
before filtering, and the probability pj of belonging to the subspace of spin j.
Since the bound (6.21) is attained by the ground-state ϕg(x) of the potential
V J(x), the choice of probe cannot further improve the precision, but only
change the success probability. In particular one might increase S by choosing
a probe state that gives rise to a profile ϕ̃(x) = ϕg(x) for j = J , without
any filtering within the block. In this case the critical success probability
becomes S∗ = pJ = e−n[log 2−log(1+r)] (see Appendix A.5), which is larger than
that attained by |ψcop〉.

At the other extreme, for deterministic strategies, the calculation of
σ2

opt(1) can be easily carried out performing first the sum over j and then
optimizing over the (n+ 1)-dimensional probe state. In the continuum limit
(for large n) such calculation can again be cast as a variational problem for-
mally equivalent to that of finding the ground-state of particle in a box with
the harmonic potential V (y) = nr−2(1− r2)(1 + y2), −1 ≤ y = m/J ≤ 1.
The corresponding ground state wave function and its energy provide the
optimal probe state and precision respectively:

ψop(y) =
[
n(1− r2)

(2πr)2

] 1
8

e−
√
n(1−r2)

4r y2 (6.25)

and
σ2

op(1) = 1− r2

nr2 + 2
√

1− r2

n3/2r
. (6.26)

These results agree with their pointwise counterparts in Demkowicz-Dobrzański
et al. [2012]; Knysh et al. [2014]. Quite surprisingly the presence of noise
brings the pointwise and global approaches in agreement, as to both the at-
tainable precision and the optimal probe state are concerned. This is in stark
contrast with the noise-less case where the probe ψ(y) = cos(yπ/2) is opti-
mal for the global approach and gives σ2

opt = π2/n2, while the NOON-type
state |ψ〉 = 2−1/2(|J, J〉 + |J,−J〉) provides the optimal point-wise precision
σ2

opt = 1/n2.
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It remains an open question to find the optimal probe state given a finite
values of S̄. As argued above, a finite S will only be able to moderately
reshape the profile without significantly changing the scaling of its width.
Therefore we expect the optimal state to be fairly independent of the precise
(finite) value of S, and hence very close to that obtained for the deterministic
case (S = 1). Numerical evidence (optimizing simultaneously over probes
and measurements) suggests that this is indeed the case provided S is not
too small. With this we are lead to conjecture that the optimal probe state
is given by

copt
m ∝ cos

(
mπ

n+ 2

)
e−
√

1−r2
r2n3 m

2
(6.27)

independently of S (finite), which agrees with (6.25) for asymptotically large
n. Note that the cosine prefactor guarantees that the solution converges to
the optimal one for r → 1 and it keeps the state confined in the box for all
values of n and r. Such states continue to have a dominant typical value of
j = j0 and in those blocks both the kinetic and harmonic contributions to
the energy are of sub-leading order. Hence, for probes of the form (6.27) the
enhancement due to abstention is very limited, up until very high abstention
probabilities where one can afford to post-select high spin states to reach the
ultimate limit (6.21).

6.7 Scavenging information from discarded events
The aim of probabilistic metrology is twofold. First, it should estimate an
unknown phase θ encoded in a quantum state with a precision that exceeds
the bounds of the deterministic protocols. Second, it should assess the risk
of failing to provide an estimate at all (e.g., it should provide the probability
of success/abstention). Probabilistic metrology protocols are hence charac-
terized by a precision versus probability of success trade-off curve F (S) or,
likewise σ2(S). As such, no attention is payed to the information on θ that
might be available after an unfavorable outcome. Here, we wish to point out
that one can attain σ2

opt(S) and still be able to recover, or scavenge, a fairly
good estimate from the discarded outcomes (see Fig. 6.4).

The optimal scavenging protocol can be easily characterized in terms of
the stochastic map F in (6.9), which describes the state transformation after
a favorable event, and that associated to the unfavorable events:

F̄ (ρθ) = Φ̄ρθΦ̄, Φ̄ =
∑
j,m

(f̄ jm)2 |j,m〉〈j,m| ⊗ 11j, (6.28)

where the weights f̄ jm are defined through the equation (f̄ jm)2 = 1 − (f jm)2.
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The addition of the two stochastic channels, F̄ + F , is trace-preserving,
i.e., it describes a deterministic operation, with no post-selection. The final
measurement is given by the seed Ω̃ defined after (6.9) for both favorable and
unfavorable events. Thus, we can easily compute the precision σ̄2(S) for the
the latter, as well as the precision σ2

all(S) when all outcomes are considered.
Clearly, we must have that σ2

all(S) ≥ σ2
det Combes et al. [2014], as σ2

det refers
to the optimal deterministic protocol.

σ2

S̄

Figure 6.4. Precision σ2 vs probability of abstention S̄ := 1−S from numerical optimiza-
tion for n = 50 and r = 0.8. The green solid (red dash-dotted) correspond to
σ2

opt (σ̄2), where only the favorable (unfavorable) events are taken into account.
The dashed curve σ2

all, where an estimate is provided on all outcomes, favor-
able or unfavorable. For low success probability (S̄ close to unity), both σ̄2,
and σ2

all, approach the precision of the deterministic protocol σ2
det (dotted line).

As shown in Figure 6.4 a protocol that is optimized with some probabil-
ity of abstention S̄, performs slightly worse when forced to provide always a
conclusive outcome. In particular we notice that if such protocol is designed
to work at the ultimate limit regime, with precision σ2

ult, which requires a
very large abstention probability (S → 0) Combes et al. [2014], its perfor-
mance coincides that of the optimal deterministic protocol. Actually, this
observation follows (see Appendix A.9) from Winter’s gentle measurement
lemma (Lemma 9 in Winter [1999]), that states that a measurement with
a highly unlikely outcome causes only a little disturbance to the measured
quantum state. This is in contrast to the claims in Combes et al. [2014],
where a random estimate is assigned to the discarded events.
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6.8 Conclusions
We have given the ultimate limits in precision reachable by any (deterministic
or stochastic) quantum metrology protocol in a realistic scenario with local
decoherence for phase estimation. We have derived the optimal bounds that
can be reached when a certain rate of abstention is allowed and hence pro-
vided a full assessment of the risks and benefits of the probabilistic strategy.
This is summarised by the trade-off curve between the estimation precision
and the success probability. We have elucidated the role of abstention as a
filtering process selecting the total angular momentum followed by a modu-
lating filter. It is important to remark that while the deterministic ultimate
bound is ensured to be attained by the averaged estimate over a large num-
ber of repetitions of the measurement, the bound presented here is obtained
without certainty. In fact, the probability of obtaining a favourable event can
be vanishingly small. However, in this case the estimation accuracy about
the parameter provided by the unfavourable events is essentially that of the
deterministic protocol. Hence, when all events are taken into consideration
the average precision of our protocol does not differ from the optimal deter-
ministic one, but one has the possibility to obtain a much better precision
estimate with some events.



CHAPTER 7

Equivalence between probabilistic estimation and super
replication

The advantages of probabilistic filters are not limited to metrology. Instead,
they affect a variety of tasks, including cloning [Duan and Guo, 1998; Fi-
urášek, 2004; Chiribella et al., 2013] and amplification [Ralph et al., 2009;
Chiribella and Xie, 2013; Pandey et al., 2013; Xiang et al., 2010; Ferreyrol
et al., 2010; Usuga et al., 2010; Zavatta et al., 2011; Kocsis et al., 2012].
Very recently, it has been shown that for quantum clocks the use of a filter
can lead to the phenomenon of super-replication [Chiribella et al., 2013], al-
lowing to convert n � 1 synchronized clocks into m � n2 replicas, whose
joint state appears to be exponentially close to the ideal target of m per-
fect copies. Achieving such a replication rate with high fidelity is impossible
without filtering, because a deterministic machine that produces more than
O(n) nearly perfect replicas would lead straight into a violation of the SQL.

Considering the striking difference in performance, it is natural to ask
whether deterministic and probabilistic cloning machines differ in other, more
fundamental features. The most fundamental feature of all is arguably the
asymptotic equivalence with state estimation [Bruss et al., 1997; Bae and
Acín, 2006; Chiribella and D’Ariano, 2006; Chiribella, 2011], i. e. the fact
that, in the macroscopic limit m→∞, the optimal performance of quantum
cloning can be achieved by measuring the input copies and preparing the
clones in a state that depends on the measurement outcome. The no-cloning
theorem itself [Wootters and Zurek, 1982] can be considered as a particular
instance of this equivalence: two states that can be cloned perfectly by a de-
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terministic machine can also be cloned perfectly in the macroscopic limit and
therefore they can be distinguished perfectly by a deterministic estimation
strategy, which means that they must be orthogonal to one another. For de-
terministic machines, the cloning-estimation equivalence has been proved in
full generality when the performance of cloning is assessed on small groups of
k � m clones [Chiribella and D’Ariano, 2006; Chiribella, 2011] and has been
recently conjectured to hold even when them clones are examined collectively
[Yang and Chiribella, 2013; Chiribella and Yang, 2014]. However, nothing
is known in the presence of postselection, where the tradeoff between per-
formance and probability of success adds a new twist to the problem. Here,
proving the equivalence requires showing that for every probabilistic cloning
machine there is a PM protocol that, in the macroscopic limit, achieves the
same fidelity with the same probability. But is the enhanced precision of PM
sufficient to keep up with the highly-increased performance of probabilistic
cloning machines?

We answer the question in the affirmative, showing that postselection
does not challenge the fundamental equivalence between cloning and esti-
mation. We first work out explicitly the example of quantum clocks, where
the performance enhancements are the most prominent. We consider clock
states |ψt〉 = e−itH |ψ0〉 generated from an arbitrary inicial state |ψ0〉 by time
evolution with an arbitrary Hamiltonian H acting on a d-dimensional Hilbert
space H, and we exhibit PM protocols that achieve the asymptotic perfor-
mance of the optimal cloning machine for every desired value of the success
probability. In this comparison, we use the most restrictive criterion, namely
the global fidelity between the clones and m perfectly synchronized replicas
of the original clock. We evaluate the fidelity explicitly and discover that its
value depends critically on the number of rationally independent eigenvalues
of the Hamiltonian. The result is derived using new techniques, based on the
Smith normal form [Marcus and Minc, 1964], which we expect to be useful
for other problems in quantum metrology and optimal quantum information
processing. Furthermore, we analyze the scenario where the performances of
cloning are judged from groups of k � m clones, establishing the equivalence
between probabilistic cloning and estimation for arbitrary sets of input states
and for arbitrary values of the success probability. This result extends the va-
lidity of the equivalence to all points of the optimal performance-probability
tradeoff curve.



7.1. Quantum clocks 131

7.1 Quantum clocks
The state of a clock at time t = 0 can be written as |ψ0〉 = ∑d−1

j=0
√
pj|j〉,

where H|j〉 = ej|j〉 and pj is the probability that a measurement of energy
gives outcome ej. For n identically synchronized clocks, we denote the state
at time t as |Ψn

t 〉 := |ψt〉⊗n. Without loss of generality, we assume that all
probabilities {pj}d−1

j=0 are non-zero, that the eigenvalues {ej}d−1
j=0 are distinct,

and that e0 = 0. With these assumptions the values of the total energy can
be labeled by the column vectors n = (n1, . . . , nd−1)t, satisfying nj ≥ 0 for
every j and ∑d−1

j=1 nj ≤ n. Denoting by e the row vector e = (e1, . . . , ed−1)
we express the corresponding energy as En := ∑d−1

j=1 ejnj := e n. The set of
the distinct such energies, i.e., the spectrum of the total Hamiltonian, will be
denoted by Spn. We define Pn as the lattice of all vectors n, and PE

n as the
set of the vectors that give the same energy E, i.e., PE

n := {n∈Pn :En =E},
so that |PE

n | is the degeneracy of E. Then, the state of the n clocks can be
written as

|Ψn
t 〉=

∑
E∈Spn

e−iEt√pE,n|E, n〉, pE,n :=
∑

n∈PE
n

pn,n,

|E, n〉 := 1
√
pE,n

∑
n∈PE

n

√
pn,n|n, n〉, (7.1)

where the coefficients pn,n follow the multinomial distribution

pn,n := n!
d−1∏
j=0

p
nj
j /nj!. (7.2)

7.2 Optimal cloning
The aim of cloning is to produce m approximate copies of n (m > n) un-
known synchronized clocks. This process if represented mathematically by a
completely positive trace non-increasing map Cn,m that maps states on H⊗n
to states on H⊗m. The quantum operation Cn,m can always be viewed as
a probabilistic filter Π followed by a trace preserving map Dn,m [Chiribella
et al., 2013]. Thus, the cloning process outputs a state

ρtout := P−1
succ Dn,m(Π1/2 |Ψn

t 〉〈Ψn
t |Π1/2) (7.3)

with success probability Psucc := tr [Cn,m(|Ψn
t 〉〈Ψn

t |)] = ‖Π1/2 |Ψn
t 〉 ‖2. The

performance is quantified by the worst-case fidelity

FCL = inf
t∈R
〈Ψm

t | ρtout |Ψm
t 〉 . (7.4)
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The symmetry of the problem enables us to choose a filter of the form

Π =
∑
E

πE|E, n〉〈E, n| (7.5)

without loss of generality. The maximum fidelity achievable with a given
filter can be upper bounded as (see Appendix B)

FΠ
CL ≤ max

E∈Spm
{pE,m}

 ∑
E∈Spn

√
pE,n

πE
Psucc

2

. (7.6)

7.3 Cloning by means of probabilistic metrology
Let us now move to the PM scenario. Here, we simulate cloning by first
obtaining an estimate of the time t, denoted by t̂. To this end, a measurement
is performed on |Ψn

t 〉. If a low quality estimate is output, we allow the process
to terminate and report fail. In case of success, the estimate is then used to
prepare a guess state |Ψ̂m

t̂
〉 = ∑

E∈Spm e
−iEt̂

√
p̂E,m|E,m〉 that in average over

the estimates t̂ resembles m ideal clones. The corresponding fidelity is

FPM = inf
t∈R

∫
dt̂ p(t̂|t, succ)

∣∣∣〈Ψ̂m
t̂ |Ψ

m
t 〉
∣∣∣2 , (7.7)

where p(t̂|t, succ) is the probability of obtaining t̂ when the true value is t
conditional to successfully passing the PM stage of the process. As in the
case of Cn,m above, the PM measurement can be split into a probabilistic
filter Π = ∑

E∈Spn πE|E, n〉〈E, n|, which succeeds with probability Psucc =
〈Ψn

t |Π|Ψn
t 〉 independent of t, followed by a deterministic measurement, as we

have seen in the previous chapters. For given p̂E,m and πE, the supremum of
the conditional fidelity over all measurements is (see Appendix B)

FΠ
PM =

∑
E

 ∑
E∈Spn

′
√
pE,n pE+E,m p̂E+E,m

πE
Psucc

2

, (7.8)

where the outer sum runs over the set of energy differences, {E = Em −
En | Em ∈ Spm, En ∈ Spn}, and the prime (′) means that the sum is
restricted to those E ∈ Spn such that E + E ∈ Spm. Since this protocol
can be seen as a particular instance of cloning, and therefore FΠ

PM ≤ FΠ
CL,

it will be enough to show that the fidelity in Eq. (7.8) achieves the upper
bound (7.6) in the limit of large m. For the sake of illustration, we will focus
first on the simpler case of Hamiltonian with commensurable eigenvalues and
then we will treat the general case.
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7.4 Commensurable energies
In this case all the energies can be written as ej = kj ε, where ε is a fixed unit
of energy and k1, k2, . . . , kd−1 are integers. Then, the energies of m clocks are
given by the linear combination of integers: Em/ε = ∑

j kjmj. It follows from
the generalised Bezout’s identity [Jones and Jones, 1998] that if the variables
mj take all integer values, the set of numbers given by such linear combination
has a minimal spacing k∗ = gcd{kj} and, furthermore, the set coincides with
the multiples of k∗, i.e., they form an infinite regular array. Note, however,
that the integers mj are constrained to be positive and must add up to less
thanm. This turns the infinite array into a finite one and may introduce some
defects within a finite distance from its end points (see Appendix B). Note
also that the degeneracy of the points in the array, namely, the degeneracy
of the spectrum of m clocks scales as |PE

m| ∼ md−2, since one condition
(Em = E) is imposed on the d− 1 variables mj.

Let us now assume that m is asymptotically large. In this limit, the
multinomial distribution pm,m approaches the multivariate normal distribu-
tion N (mp,Σ), where p := (p1, . . . pd−1)t and the covariance matrix Σ has
entries Σjj = mpj(1− pj), Σjl = −mpjpl, j 6= l. Then, pm,m is concentrated
in an ellipsoidal region centered at mp of (linear) size O(

√
m), much smaller

than that of Pm, which is O(m). When computing pE,m, as in Eq. (7.1), we
may thus allow the variables mj to take all integer values (incurring an error
that vanishes exponentially with m). Hence, as discussed above, the typical
energy E varies in constant unit steps of ∆E∗ = εk∗. Since the degeneracy
of the spectrum scales as md−2, the sum over m ∈PE

m that defines pE,m can
be approximated by the integral of N (mp,Σ) over a (d − 2)-dimensional
domain. As a result, pE,m is approximated by the discrete Gaussian distri-
bution

pE,m ≈ ∆E∗ e−
(E−m〈H〉)2

2mVar(H)√
2πmVar(H)

, ∆E∗ = ε gcd{kj}, (7.9)

where Var(H) = 〈H2〉 − 〈H〉2 is the variance of H.
Thanks to Eq. (7.9) we are now in position to show that FΠ

PM approaches
FΠ

CL in the macroscopic limit. Indeed, since for m � n the probability
pE,m is almost constant over every interval of size O(n), we can pull out a
factor maxE∈Spm{pE,m} from both sums in Eq. (7.8) introducing an error that
vanishes exponentially in the asymptotic limit. Moreover, we can choose a
guess state with p̂E,m given by a discrete Gaussian with a width that scales
as
√
m1−η, 0 < η < 1. This state, which may not be optimal, suffices to

saturate the asymptotic expression for the fidelity, as it would any other
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state for which p̂E,m is peaked and has similar width. Since the width is
much larger than O(n), we have p̂E+E,m ≈ p̂E,m for every E ∈ Spn and we
can pull out the term p̂E,m from the sum over Spn. Now, since the width is
smaller than

√
m, we have ∑E pE,m ≈ 1. Hence, our choice of guess state

attains the upper bound in Eq. (7.6) and we have

FΠ
PM≈FΠ

CL≈
∆E∗√

2πmVar(H)

 ∑
E∈Spn

√
pE,n

πE
Psucc

2

. (7.10)

This proof is made rigorous in Appendix B.

(a)

Em ∈ Spm

pE,m

(b)

pm̃,m

m̃1

m̃2

Figure 7.1. Probability mass functions pE,m (a) and pm̃,m
(b) for m = 30 quantum clocks

with energies e = (0,−1, 1 + π) and initial state given by p = ( 1
3 ,

1
3 ,

1
3 )t. In

(b), m̃1 = m3, m̃2 = m3 − m2, which corresponds to the choice of energy
units ε = (π, 1). Note that pE,m in (a) resembles neither a Gaussian (only its
outline does) nor any continuous function. Instead, it is the projection of the
bell-shaped distribution of points in (b), which approach a smooth surface,
onto the gray plane.

7.5 General Hamiltonians
The reader should not be misled by the simplicity of Eq. (7.9), which su-
perficially may seem an application of the Central Limit Theorem (CLT).
The CLT gives an approximation of the cumulative distribution of pE,m, not
of the probability mass function itself. In fact, those who believe that pE,m
should converge to a Gaussian are in for a surprise in the case where the
eigenvalues of H are not commensurable [see Fig. 7.1(a)]. In the general
case, the energies {ej} can be expressed as integer linear combinations of a
minimal number r of rationally independent units of energy {εl}rl=1. Ratio-
nal independence means that, for every set of integer coefficients {cl}, the
relation ∑

l clεl = 0 implies cl = 0 for every l. In terms of the units {εl},
we expand each energy as ej = ∑

l εlklj where {klj} are integer coefficients,
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uniquely defined thanks to the rational independence of the units. Using
the decomposition, we express the energy of m clocks as Em = ε m̃ where
ε = (ε1, . . . , εr), and m̃ = (m̃1, . . . , m̃r)t is the column vector with com-
ponents m̃l = ∑

j kljmj, or, more compactly, m̃ = K m, where K is the
r × (d− 1) matrix with entries {klj}.

The matrix K maps the lattice Pm ⊂ Zd−1 into a new lattice P̃m ⊂ Zr
which, as illustrated in Fig. 1(b), conform a confined region of a Bravais
lattice (again, near the boundaries some defects might appear). Due to the
rational independence of the units, the points m̃ have the special feature
that they are in one-to-one correspondence with the energies in Spm. Hence,
instead of the ill-behaved probability distribution pE,m we can consider the
much more manageable one pm̃,m := ∑

m:Km=m̃ pm,m. Indeed, as mentioned
above, for m large pm,m is a multivariate normal distribution of mean m0 =
mp and covariance matrix Σ and thus so is its marginal pm̃,m, with mean
m̃0 = Km0 and covariance matrix Σ̃ = KΣKt (see Appendix B):

pm̃,m≈∆V ∗
exp

−(m̃− m̃0)tΣ̃−1(m̃− m̃0)
2


(2π)r/2

√
det Σ̃

, (7.11)

where ∆V ∗ is the volume of a minimal cell of the Bravais lattice P̃m. Using
the Smith normal form of K, a higher dimensional analog of Bezout’s identity,
one can show that ∆V ∗ = gcd{[K]r}, where {[K]r} is the set of all minors
of K of order r (see Appendix B). Eq. (7.11) has two major consequences:
First, the probability mass function pE,m does not converge to a Gaussian,
as one would naively expect from a misapplication of the CLT. Instead, it
converges to the non-continuous function pm̃(E),m, where m̃(E) is the value of
m̃ such that E = Em̃. Second, all the steps of the proof for commensurable
energies can now be reproduced by replacing the energy E ∈ Spn with the
corresponding vector ñ(E). In this way we obtain FΠ

PM ≈ FΠ
CL ≈ FΠ, with

FΠ := ∆V ∗√
(2π)r det Σ̃

 ∑
ñ∈P̃n

√
pñ,n

πñ
Psucc


2

. (7.12)

Note that, since det Σ̃ scales as mr, the fidelity scales as m−r/2. Hence,
the asymptotic behaviour depends dramatically on the number of rationally
independent units. Quite remarkably, this means that the fidelity is not
continuos in the Hamiltonian: Although one can approximate arbitrarily well
the Hamiltonian H with another Hamiltonian H ′ that has commensurable
energies, the corresponding fidelities are not going to be close. The origin of
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the discontinuity is that the value of the fidelity depends on the closure of
the set of clock states, due to the infimum in Eq. (7.7). When the energy
eigenvalues are commensurable, the time evolution is periodic and the orbit
{|Ψn

t 〉, t ∈ R} is a close one-dimensional curve. But when the energies are
combinations of r rationally independent units, the orbit is dense in an r-
dimensional submanifold of the manifold of pure states. This phenomenon
is the quantum analog of a classic feature of integrable Hamiltonian systems
[Katok and Hasselblatt, 1996], where rationally independent frequencies lead
to ergodic time evolutions in phase space. Here the fidelity is discontinuous
because it depends on the long-time behaviour of the time evolution, during
which the quantum clock can probe a higher dimensional manifold.

Having proven the asymptotic equivalence between probabilistic metrol-
ogy and cloning of quantum clocks, we now give closed expressions for opti-
mal fidelity, maximized over all possible filters. We focus on the case with
large enough n to take the continuum limit of pñ,n, but under the condition
n�

√
m in order to use the derived assymptotic expression in Eq. (7.6). We

will consider two relevant regimes: First, we allow arbitrarily low probability
of success, showing that the ultimate fidelity is (see Appendix B)1

F =
[
(2π)r det Σ̃

]−1/2
|P̃n|∆V ∗, (7.13)

where |P̃n| is the number of sites in the lattice P̃n. Since |P̃n| scales as nr,
the fidelity scales as F ∼ (n/

√
m)r. Second, we consider the case where the

probability of success is high, i.e. Psucc = 1 − η for some small η. Here the
optimal fidelity acquires the particularly simple form

F =
(

4 n
m

)r/2
[1 + η(1− 2−r/2)] +O(η2) . (7.14)

Quite surprisingly, F does not depend on the coefficients {pj} of the input
state, but only on the number of rationally independent units r.

7.6 The fidelity of a subset of clones
We conclude by discussing the equivalence between probabilistic metrology
and cloning for arbitrary sets of states. Here we assess the performance
of cloning by looking at a random subset of k � m clones, evaluating the
global fidelity between the state of the k clones and the state of k ideal
1This expression is also correct for small n. For large n, we can replace |P̃n|∆V ∗ by Vn,
the volume of the minimal polytope that contains the lattice P̃n.
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copies. Clearly, since the k clones are picked at random, one can assume
that the optimal cloner Cn,m is invariant under permutation of the m output
systems. Using a de Finetti-type argument (see Appendix B), we then prove
a very general result: for every quantum operation Cm with permutation-
ally invariant output there exists a PM protocol, described by a quantum
operation C̃m, such that i) Cm and C̃m have the same success probabil-
ity and ii) the error probability in distinguishing between Cm and C̃m by
inputting a state ρ and measuring k output systems is lower bounded by
perr ≤ 1

2 + (kd2)/[2mPsucc(ρ)], where Psucc(ρ) is the probability that the op-
eration Cm takes place on input ρ. This result can be applied directly to
probabilistic cloning: in this case, it implies that the k-copy fidelity of an
arbitrary n-to-m cloner on a generic input state |ψx〉⊗n can be achieved by
PM, up to an error of size k/[mPsucc(|ψx〉〈ψx|⊗n)] (see Appendix B). Hence,
the error vanishes as k/m for every process with success probability larger
than a given finite value for every possible input. This result extends the
equivalence between cloning and estimation to every point of the tradeoff
curve between fidelity and success probability. Furthermore, one can even
remove the requirement that success probability is larger than a finite value:
no matter how small is the probability of a cloning process, asymptotically
the process must be equivalent to a PM protocol.

7.7 Conclusions
In conclusion, we proved that probabilistic protocols empowered by posts-
election do not challenge the fundamental equivalence between cloning and
estimation. We worked out explicitly the case of quantum clocks, where
the performance enhancements for both tasks are most dramatic, and devel-
oped a technique to evaluate the optimal asymptotic fidelity. We found out
that the asymptotic fidelity depends critically on the number of rationally
independent units generating the spectrum of the Hamiltonian, due to an
effect that is analog to ergodicity of classical dynamical systems. Finally,
we discussed the case of arbitrary families of states, establishing an equiva-
lence between probabilistic metrology and cloning when the performance is
quantified by the fidelity of k � m randomly chosen clones.





Conclusions and outlook

In this thesis we have set up a general framework for probabilistic quantum
metrology tasks. Up until now, the performance of measurement schemes
has been mostly quantified using the mean square error (MSE): that is the
squared error (φ− φ̂)2 averaged over all possible values of the unknown pa-
rameter and outcomes. The paradigmatic shot-noise or Heisenberg scaling
refers to the behaviour of the MSE for an asymptotically large number of re-
source systems. A particular instance of metrology experiment with a fixed
amount of resources produces necessarily a single outcome. The experiment
should provide an estimated value of the unknown parameter but we judge
equally important to provide a precision measure that quantifies the confi-
dence that we should place to our estimate. To quantify the precision of
a single outcome we use the square error averaged over the possible values
of the unknown parameter and show that with a proper choice of measure-
ment this can be much lower than the established (deterministic) bounds on
the mean square error. Such ultra-precise outcomes can only occur at the
expense of producing other outcomes with a below-average precision. The
simple observation that some outcomes can beat the established metrology
limits is the cornerstone of this thesis. We have have found that the precision
of a single outcome defeats the deterministic bound but it is still limited at a
fundamental level thereby establishing the ultimate precision bound for any
conceivable experiment. In order to characterize and optimize measurement
schemes whose outcomes have uneven precision, we have optimized the av-
erage precision of a set of outcomes that occur with a given probability, i.e.
we have found the optimal probabilistic protocol that provides the optimal
trade-off curve between success probability and precision.

The starting point to analyse the probabilistic protocols is to note that
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they can be regarded as two consecutive steps: firstly, the system of inter-
est goes through a stochastic channel that modifies its state, and then a
deterministic measurement is performed. In order to produce a precision
enhancement, some of the outcomes of the channel effectively transforms the
system state into a more parameter-sensitive one. In this sense, the incon-
clusive outcome is associated to those outcomes of the channel that worsen
the states in terms of estimation sensitivity. This treatment is not only use-
ful for the interpretation of the problem but also helps to circumvent some
technical difficulties of it as the previous results in deterministic metrology
can be applied directly into the measurement design leaving only the channel
to be optimised.

In order to define a precision measure for every measurement outcome
we have chosen to follow a Bayesian approach to metrology. In fact, the
perhaps more ubiquitous Frequentist approach, which is readily analysed
by means of the quantum Cramér-Rao bound, is not suitable for this end.
Solving estimation problems within the Bayesian approach is in general hard.
However, in this thesis we have focussed on a set of very relevant metrology
problems that enjoy a symmetry that significantly simplifies the problem and
allows to apply powerful techniques in representation theory. In particular,
the optimal measurement can be seen to be invariant under this symmetry,
i.e. is fully characterized by a few invariant parameters. In addition the
symmetry of the initial probe state will also be inherited by the POVM and
will further reduce the number of invariants.

The cases of direction and reference frame estimation enjoy a fairly large
symmetry (Chapter 4). The only invariant in these case is the total angular
momentum j, and hence the optimal filter is fully characterized by N/2 + 1
(for N even) invariant parameters fj (all other degrees of freedom do not
effect the direction encoding). This immediately shows, that if the probes
state lies in the fully symmetric subspace (maximal j = N/2), as in the case
of N parallel pure spins, the action of the filter reduces to a single multiply-
ing factor that obviously cannot produce and enhancement in the precision.
Hence, probabilistic metrology can improve the deterministic bound if the
probe state has support in several invariant subspaces. This happens for
example when the direction is encoded in pairs of antiparallel spins, which
involves the superposition of terms with different j. The filter then acts on
these coherences, effectively modulating the amplitudes to give a state that
encodes better the direction. If the filter fails than the opposite effect hap-
pens: the probe state is mapped into a state with worst performance. This
typically results in an average precision (over all outcomes) strictly worse
then the optimal deterministic one.

The case of noisy parallel spins studied in Chapter 5, also has support on
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various j, but it does not show any coherences between different j’s (it is block
diagonal in j). In that case the filter acts as a Quantum Non-Demolition
(QND) measurement that essentially post-selects blocks of high angular mo-
mentum, which encode better the direction than lower-lying blocks. Here
we note that the action of the filter does not alter state at all, and hence
the average precision (over all outcomes) attains the deterministic bound.
Although this measurement does not change the average precision if all the
outcomes are considered, it gives crucial information that provides a more
accurate assessment of the precision of the obtained outcome because in-
formation on the unknown parameter can be more reliably read from high
angular momentum subspaces. In other words, if an experimentalist per-
forms a metrology experiment providing an estimate of the direction n̂ and
the QND measurement returns a high value of j, it would be very inaccurate
(and unfair) to put error bars to his estimate based on average precision
instead of that corresponding to the outcome that has actually occurred.

For the case of phase estimation, which occupies a great part of this thesis,
the symmetry group is smaller and there are N + 1 (for N even) invariant
subspaces labelled by the magnetic quantum number m. Furthermore, for
permutationally invariant probe state, these subspaces can further be broken
down into smaller blocks of fixed angular momentum j. Hence, the action
of the probabilistic channel can be understood in two steps: 1) A quantum
non-demolishing (QND) measurement of the total angular momentum j; 2) A
modulating filter that reshapes the coherences (ρjm,m′) in each representation.
As in the discussion above, the role of the QND measurement is to extract
information in a non-invasive way that enables an accurate assessment of the
error; while the role of the modulating filter is to disturb the state (in an
irreversible fashion) in order to enhance the read-out of the encoded state.

We have developed a theory to study the optimal strategies in the asymp-
totic regime of a large number of qubits N . In this regime evaluating the
precision provided by a state amounts to the 1-D quantum mechanical prob-
lem of computing the energy of a particle in a box, where the wavefunction
is fixed by the state of the N qubits. The presence of noise adds a poten-
tial well to the picture whose shape depends on the amount of noise. Then
the optimal filter is given by the linear modulation map that reshapes the
initial wavefunction to one that minimizes the energy. This formalism has
allowed us to compute analytically the trade-off curve between the obtained
precision in terms of the success probability of the filter, together with the
corresponding optimal POVM. This method is very useful also in deriving
results for the deterministic scenario, which typically require quite involved
calculations. In addition, in the presence of noise, the fact that the mean
energy of the wave-function is always lowerbounded by the minimum of the
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potential immediately bounds the precision to be shot-noise limited.
In general the stronger the effect of the filter the smaller is the probability

of applying it successfully. For this reason, except in some pathological cases
(like the phase-state in 4.3.2), in order to produce ultra-sensitive post-filter
states requires maps that succeed with a quite small probability. That is
ultra-precise outcomes occur occasionally. Nevertheless it is important to
emphasize that, if such an event does not take place the system will remain
essentially the same as before. That is, one can apply our probabilistic
protocols with just a little deviation from the deterministic bounds, but
with the addition that there are some lucky heralded ultra-precise estimates.
In this sense, seeking ultra-sensitive measurements is a low-risk endeavour.
In between, the trade-of curve gives us a smooth transition between the
occasional ultra-sensitive scheme and the deterministic scheme with average
precision.

Finally let us note although the asymptotic limit is very useful to char-
acterize the performance of different protocols and provides the ultimate
bounds in precision, it can conceal the true effectiveness of the probabilistic
protocols in realistic scenarios (with finite N). With finite-sized samples the
stochastic channel can have a wider effect. To address this of situation we
have managed to cast the problem as semidefinite programming formulation,
which for all practical proposes amounts to solving the problem exactly (for
values of N ∼ 100). As in the deterministic case, we have observed that
there exist a transient for small number of qubits where the noise effects
are set back, and one recovers the pure-state behaviour. This includes the
probabilistic drastic improvement of precision from shot-noise to Heisenberg
scaling for this moderate values of N , which is lost after a critical sample
size is reached and the improvement is only reflected in a pre-factor, not in
the scaling. Finding this critical value is a timely question, that needs to be
addressed in future work, both in deterministic case and as a function of the
success probability.

Although we have developed a fairly complete framework for probabilistic
protocols, there are yet generalisations worth studying. The most obvious
one is to consider different kinds of noise. Recently Knysh et al [Knysh
et al., 2014] have used the Cramer-Rao bound to derive optimal determin-
istic bounds on precision in a variety of settings, including and extending
our noise sources. Surprisingly, their methods lead also to the same 1-D
quantum mechanical analogy, with the same potential. This coincidence is
reinforced by the conjecture that in shot-noise limited scenarios the Bayesian
and Frequentist bounds for the average precision agree, which has been re-
cently proven [Jarzyna and Demkowicz-Dobrzański, 2015]. Hence, chances
are that the their results on more general noise sources can be translated to
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our setting again with the same effective potential. There may be some kinds
of noise for which the probabilistic protocols can counterbalance its blurring
effects with even more efficiency.

An avenue worth exploring would be extend the study of probabilistic
schemes in the estimation of parameters that do not have a strong symme-
try, as for example a loss rate in a communication channel. Furthermore, in
this thesis we have restricted our analysis to systems with finite dimension,
however, the framework presented here can be also applied to continuous
variables systems like quantum states of light. Another very relevant ques-
tion is to optimise probabilistic strategies restricted to a given constrained
experimental toolbox ( e.g. LOCC, gaussian operations and photon detec-
tion...). It would also be interesting to extend this study to different figures
of merit, e.g. a utility function that counts only those outcomes that fall
into some confidence interval an discard the rest. However, I expect that
the results found with it will not differ a lot from the ones presented in this
thesis.

To complete the analysis of probabilistic quantum parameter estimation,
we have proved that probabilistic protocols empowered by postselection do
not put at risk the fundamental equivalence between cloning and estimation.
Particularly, we have compared the performance of our probabilistic estima-
tion protocol with that of super-replication protocol presented in Chiribella
et al. [2013] for the case of quantum clocks, where the performance enhance-
ments for both tasks are most dramatic. We have developed a technique
to evaluate the optimal asymptotic fidelity, even for Hamiltonians with ra-
tionally independent energies. We found out that the asymptotic fidelity
depends critically on the number of such rationally independent units, due
to an effect that is analogue to ergodicity of classical dynamical systems.
Moreover, one can observe that the rationally dependent energies act as if
they were independent below some number of initial copies. Again it is im-
portant to study the onset of the asymptotic regime. For finite number of
copies N the system behaves as if all energies where incommensurate. As N
increases he commensurability of different energies reveals itself and the fi-
delity goes through different scaling regimes, until a final critical point where
all incommensurability is exposed and the scaling exponent remains constant.
It would be interesting to relate the location of the critical points to existing
mathematical notions for the degree of incommensurability.

All in all, this work opens the field of metrology to the use of stochastic
maps and single-shot inference. These have been used with a wide-spread
acceptance in many quantum information processing protocols, and we be-
lieve that it deserves attention in the field of quantum metrology, specially
in a moment where the promises of quantum enhanced metrology have been
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challenged.



APPENDIX A

Technical details of Chapter 6

A.1 Notation
Throughout these Appendices we use the following notation. The n-qubit
computational basis is denoted by {|b〉}2n−1

b=0 , where b = b1b2 · · · bn is a binary
sequence, i.e., bi = 0, 1 for i = 1, 2, . . . , n. We denote by |b| the sum of the n
digits of b, i.e., |b| := ∑n

j=1 bj. The digit-wise sum of b and b′ modulo 2 will
be simply denoted by b+b′, hence |b+b′| can be understood as the Hamming
distance between b and b′, both viewed as binary vectors.

The permutations of n objects, i.e., the elements of the symmetric group
Sn, are denoted by π. We define the action of a permutation π over a binary
list b as π(b) := bπ(1)bπ(2) · · · bπ(n). This induces a unitary representation of
the symmetric group on the Hilbert space H⊗n of the n qubits through the
definition Uπ|b〉 := |π(b)〉. The (fully) symmetric subspace of H⊗n, which we
denote by H⊗n+ , plays an important role below. An orthornormal basis can
be labelled β = |b|, where β = 0, 1, . . . , n:

|β〉 =
(
n
β

)−1/2 ∑
b∈Bβ
|b〉 with β = 0, 1, . . . n (A.1)

where Bβ = {b : |b| = β}. It is well-known that the symmetric subspace H⊗n+
carries the irreducible representation of spin j = J := n/2 of SU(2). In this
language, the magnetic number m is related to β by m = n/2 − β (here
we are mapping βi → mi = (−1)βi/2 for qubit i). In other words, we map
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|β〉 → |n/2, n/2− β〉, where we stick to the standard notation |j,m〉 for the
spin angular momentum eigenstates.

We will be concerned with evolution under unitary transformations Uθ :=
u⊗nθ , where uθ = exp(iθ|1〉〈1|), θ ∈ (−π, π]. The operator N such that Uθ =
eiθN will be referred to as number operator for obvious reasons: N |b〉 = |b||b〉.
The effect of noise is taken care of by a CP map D , so the actual evolution
of an initial n-qubit state ψ := |ψ〉〈ψ| is ψ → D(UθψU †θ ) = ρθ.

With this notation the fidelity and success probability in Eqs. (6.3) and (6.4)
can be written as

F (S) = 1
2

1 + 1
S

max
Ω

∑
b,b′

Ωb,b′ρb′,bδ|b′|,|b|+1

 , (A.2)

S =
∑
b,b′

Ωb,b′ρb′,bδ|b′|,|b|, (A.3)

where the Kronecker delta tensors result from the integration of θ̂.

A.2 Local dephasing: Hadamard channel
The uncorrelated dephasing noise can be modelled by phase-flip errors that
occur with probability pf . i.e., at the single qubit level, the effect of the
noise is % → (1 − pf )% + pf σz% σz, where σz is the standard Pauli matrix
σz = diag(1,−1). For states of n qubits, this, so called dephasing chan-
nel D , is most easily characterized through its action on the operator ba-
sis {|b〉〈b′|}2n−1

b,b′=1 as
D(|b〉〈b′|) = r|b+b

′||b〉〈b′|, (A.4)
where the parameter r is related to the error probability pf through r =
1 − 2pf . The effect of D on a general n-qubit state % = ∑

b,b′ %b,b′|b〉〈b′| can
then be written as the Hadamard (or entrywise) product

D(%) =
∑
b,b′

r|b+b
′|%b,b′ |b〉〈b′| := D ◦ %, (A.5)

where D := ∑
b,b′ r

|b+b′||b〉〈b′| and hereafter we understand that the sums over
sequences run over all possible values of b (and b′) unless otherwise specified.
Note that Hadamard product is basis-dependent.

A.3 Symmetric probes
If the probe state is fully symmetric, i.e., |ψ〉 ∈ H⊗n+ , it can be written as
|ψ〉 = ∑

β ψβ|β〉, where |β〉 is defined in (A.1) and the components are related
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to those in (6.5) by cm = ψJ−m and can be taken to be positive with no loss
of generality (any phase can be absorbed in the measurement operators).
Then, ρ = D(ψ) = D ◦ ψ in (A.2) and (A.3) becomes

ρ =
∑
β,β′

ψβ′ψβ(
n
β

)1/2(n
β′

)1/2

∑
b∈Bβ

∑
b′∈Bβ′

r|b+b
′||b′〉〈b|. (A.6)

Since ρ is permutation invariant, Ω can be chosen to be so and we can easily
write (A.2) and (A.3) in the spin basis. We just need the non-zero Clebsch-
Gordan matrix elements 〈j,m′|b′〉〈b|j,m〉, where implicitly m = J − β, m′ =
J − β′. If we introduce the shorthand notation Djm′,m := 〈j,m′|D|j,m〉, then
using ?, we have

Djm′,m =
∑
b∈Bβ

∑
b′∈Bβ′

r|b+b
′|〈j,m′|b′〉〈b|j,m〉

= (1− r2)J−jrm−m′
∑
k

[∆(j)
k ]m′m r2k, (A.7)

where [
∆(j)
k

]m′
m

:=

√
(j−m)!(j+m)!(j−m′)!(j+m′)!

(j−m−k)!(j+m′−k)!(m−m′+k)!k! , (A.8)

and the sums run over all integer values for which the factorials make sense.
Recalling (6.6), a simple expression, involving just a sum over k in (A.8), for
ρjm,m′ = p−1

j tr(|j,m〉〈j,m′| ⊗ 11j ρ) follows by combining the above results. In
short,

ρjm′,m = 1
pj

cm′cm(
n

J−m′
)1/2( n

J−m

)1/2D
j
m′,m, (A.9)

where
pj = νj

∑
m

c2
m(
n

J−m

)Djm,m, (A.10)

and the multiplicity is given by,

νj =
(

n

J − j

)
2j + 1

J + j + 1 (A.11)

and ajm in (6.10) becomes

ajm =
Djm,m+1√

Djm,mDjm+1,m+1

. (A.12)
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A.4 Relevant expressions for the multi-copy state
If the input state is of the form given in Eq. (6.18), the expressions (A.9)
and (A.10) become

ρjm′,m =
Djm′,m∑
mDjm,m

and pj = νj 2−n
∑
m

Djm,m , (A.13)

where ∑
m

Djm,m = (1− r2)J−j (1 + r)2j+1 − (1− r)2j+1

2 r (A.14)

The probability to find the state in the fully symmetric subspace (j = J) is
important when assessing the success probability of the the ultimate bounds.
Since the multiplicity for the maximum spin J is equal to one, it can be
readily seen that pJ scales as

pJ ∼ e−n[log 2−log(1+r)] , (A.15)

The critical probability s∗j within a block can also be computed in the
asymptotic limit j � 1 from Eq. (6.13)

s∗j =
ρjj,j

(ξjj )2
∼ e−2j log 1+r (A.16)

where ξjm is the gaussian ground state, with (ξjj )2 ∼ exp(−(1 − r2)
√
j/4r).

For m = m′ = j equation (A.7) gives Dj
j,j = (1− r2)J−j which together with

(A.13) and (A.14) gives ρjj,j ∼ exp[2j log(r+1)]. This scaling dominates over
that of ξjm , and hence determines the scaling of s∗j . From here we obtain
critical value for the overall success probability S∗ = pJ s

∗
J ∼ e−n log 2.

A.5 Ultimate bound without in-block filtering
In Section 6.6 section we discuss the possibility to prepare a probe state
such that after the action of noise becomes an optimal state within the fully
symmetric subspace j = J . Here we give what its critical success probability,
which only entails computing pJ .

For this purpose we first recall that the optimal filtered state ξjm, defined
before Eq. (6.10), has to fulfil

ξjm = f jmcm

√√√√√ νjDjm,m
sjpj

(
n

J−m

) . (A.17)
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The probability of falling in the block of maximum spin J for a given filtered
state ξj can be easily derived from (A.17) recalling that the probe state ψ
is normalized, and thus ∑m c

2
m = 1. Solving (A.17) for c2

m/pJ and summing
over m we obtain

1
pJ

= sJ
J∑

m=−J

(
n

J−m

)
DJm,m

(
ξJm
fJm

)2

. (A.18)

Now, for our strategy all j but the maximum one, j = J , are filtered out,
and no further filtering is required within the block J , i.e. we have fJm = 1,
for all 2J + 1 values of m. Then sJ = 1 and

pJ =


J∑

m=−J

(
n

J−m

)
DJm,m

(
ξJm
)2

−1

. (A.19)

In the asymptotic limit the probability pJ can be estimated by noticing that
the optimal distribution (ξjm)2 is much wider than

(
n

J−m

)
/DJm,m and can be

replaced by (ξJ0 )2. Around m = 0, we can use the asymptotic formulas

Djm,m ∼ (1− r2)J−j (1 + r)2j+1

2
√
πrj

e−rm2/j, (A.20)

(
n

J −m

)
∼ 2n√

πJ
e−m2/J . (A.21)

They can be derived using the Stirling approximation and saddle point
techniques. Eq. (A.20) also requires the Euler-Maclaurin approximation to
turn the sum over k in (A.7) into an integral that can be evaluated using
again the saddle point approximation. Retaining only exponential terms,
S∗ = pJ ∼ (1 + r)n/2n = e−n[log 2−log(1+r)].

A.6 Performance metrics: Equivalence of worst-case and
average fidelity, and point-wise vs. global approach

Here we give a simple proof that for the estimation problem at hand, the
worst-case fidelity in Eq. (6.2) and the average fidelity

Fav :=
∫ dθ

2π

∫
dθ̂ p(θ̂|θ, succ)f(θ, θ̂) (A.22)

(the integration limits −π, π are understood) take the same value, and so do
the corresponding success probabilities. We recall that f(θ, θ̂) = [1 + cos(θ−
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θ̂)]/2 and p(θ̂|θ, succ) = tr ρθMθ̂, and note that we have assumed a flat prior
probability for ρθ = UθρU

†
θ . Obviously, F ≤ Fav. We just need to show that

the opposite inequality also hold.
It is known that in order to maximize Fav one can choose a covariant

measurement, so thatMθ̂ = Uθ̂ΩU
†
θ̂
for a given seed Ω. Because of covariance,

we note that for any phase θ′ we have tr ρθMθ̂ = tr ρθ′Mθ̂+∆θ, where ∆θ =
θ′ − θ, thus p(θ̂|θ, succ) = p(θ̂ + ∆θ|θ′, succ). Likewise, we have f(θ, θ̂) =
f(θ′, θ̂ + ∆θ). By shifting variables θ̂ + ∆θ → θ̂ in Eq. (A.22), the integrant
becomes independent of the variable θ, which can be trivially integrated to
give

Fav =
∫
dθ̂ p(θ̂|θ′, succ)f(θ′, θ̂) (A.23)

for any θ′. It follows that

Fav = inf
θ∈(−π,π]

∫
dθ̂ p(θ̂|θ, succ)f(θ, θ̂) ≤ F, (A.24)

where the last inequality states that the measurement that maximizes Fav
need not maximize the worst-case fidelity F . We conclude that F = Fav.

Proceeding along the same lines, we note that

Sav =
∫ dθ

2π

∫
dθ̂ p(θ̂|θ, succ) =

∫
dθ̂ p(θ̂|θ′, succ) (A.25)

for any θ′. Hence Sav = S.
We point out here that most of the cited work dealing with quantum

metrology, rather than the minimax approach used here, follows a pointwise
approach that is aimed at improving the phase sensitivity around a rough
estimate of θ. This very powerful and general approach is based on the quan-
tum Cramer-Rao bound [Braunstein and Caves, 1994], and one can often
argue that the so-obtained sensitivity can be attained by a suitable two-step
adaptive protocol. However, the working hypotheses and the Cramer-Rao
bound entail some subtleties that are often ignored, which can lead to erro-
neous conclusions [Berry et al., 2012; Giovannetti and Maccone, 2012], wrong
bounds, or misleading accounting of resources, even in the asymptotic regime
of many such resources (see for instance Hayashi [2011]). In the particular
case of probabilistic metrology the direct application of the pointwise ap-
proach can lead to unphysical results, as pointed out in Chiribella et al.
[2013]. Here, we follow a global approach [Holevo, 1982; Aspachs et al., 2009;
Kołodyński and Demkowicz-Dobrzański, 2010] where no a priori knowledge
about the phase is assumed, so instead the phase θ takes random equidis-
tributed values in the interval (−π, π]. Within this approach the allocation of
resources is straight-forward and the results are valid both for asymptotically
large and finite amount of resources.
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A.7 The continuum limit: Particle in a potential box
Proceeding as in Chapter 4, one can easily derive from Eqs. (6.8), (6.10)
and (6.11) the following equation:

〈ξj|Hj|ξj〉 =
j−1∑
m=−j

{
(ξm+1−ξm)2+ V j

m

j2 ξ
2
m

}
+ a−jξ

2
−j+ ajξ

2
j , (A.26)

where V j
m = 2j2(1 − am) and we have dropped the superscript j in ξjm to

simplify the expression. In the asymptotic limit, as j becomes very large,
m/j = x approaches a continuum variable that takes values in the inter-
val [−1, 1]. Accordingly, the values {

√
jξm} approach a real function that we

denote by ϕ(x). With this, the former equation becomes

〈ξj|Hj|ξj〉 = 1
j2

∫ 1

−1
dx


[
dϕ(x)
dx

]2

+ V j(x)ϕ(x)2

 ,
: = 1

j2 〈ϕ|H
j |ϕ〉 , (A.27)

where
V j(x) = 2j2(1− ajxj), Hj := −d2/dx2 + V j(x), (A.28)

and we have dropped the boundary term [ϕ2(−1)+ϕ2(−1)]/j that stems from
the second line in (A.26). Minimization of 〈ξj|Hj|ξj〉 require the vanishing
of this term, and Eq. (6.14) readily follows. The formula

V j(x) = j
1− r2

2r
√

1− (1− r2)x2
(A.29)

[also in Eq. (6.15)] follows from the asymptotic expression of ajm, defined
in (6.10). Our starting point is Eq. (A.12) and (A.7). The sum over k in the
latter can be evaluated using the Euler-Maclaurin formula and the saddle
point approximation.

A.8 Symmetric probe is optimal and no benefit in probe-
ancilla entanglement

We next show that permutation invariance enables us to choose with no loss
of generality the probe state |ψ〉 from the symmetric subspace H⊗n+ and the
seed Ω to be fully symmetric.
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We first write Eqs. (A.2) and (A.3) in a more compact form. We define
∆ as the non-trivial term of the fidelity through the relation F (S) = (1 +
S−1 maxψ,Ω ∆)/2, where the maximization is performed also over the probe
states since here we are concerned with the ultimate precision bound. We
also introduce a slight modification of D that includes the Kronecker delta
tensor: Dl := ∑

b,b′ r
|b+b′|δ|b′|,|b|+l|b〉〈b′|, l = 0, 1. Then,

∆ = tr [(ψ ◦ Ω)D1] , S = tr [(ψ ◦ Ω)D0] , (A.30)

where we have used that tr[A(B ◦ C)] = tr[(C ◦ A)B] if B = Bt. The result
we wish to show follows from the invariance of the noise under permutations
of the n qubits, namely, from UπDlU †π = Dl, for any π ∈ Sn, which implies
that the very same value of ∆ and S attained by some given measurement
seed Ω and some initial state ψ, i.e., attained by ψ ◦Ω, can also be attained
by Uπ(ψ ◦ Ω)U †π, and likewise by the average (n!)−1∑

π∈Sn Uπ(ψ ◦ Ω)U †π.
The proof starts with yet a few more definitions: given a fully general

probe state |ψ〉, we define the n+1 normalized states |φβ〉 = ∑
b∈Bβ(ψb/ψβ)|b〉,

β = 0, 1, . . . , n where ψ2
β = ∑

b∈Bβ |ψb|
2, and write |ψ〉 = ∑n

β=0 ψβ|φβ〉. Addi-
tionally, we define

|φ〉 =
n∑
β=0

(
n

β

)1/2

|φβ〉, φ = |φ〉〈φ|. (A.31)

We obviously have φ ◦ Ω ≥ 0, as the Hadamard product of two positive
operators is also a positive operator, and (n!)−1∑

π∈Sn Uπ (φ ◦ Ω)U †π ≥ 0, as
this expression is a convex combination of positive operators. Similarly, the
seed condition 11− Ω ≥ 0 implies (n!)−1∑

π∈Sn Uπ [φ ◦ (11− Ω)]U †π ≥ 0. But

1
n!
∑
π∈Sn

Uπ(φ ◦ 11)U †π=
n∑
β=0

(
n
β

)
n!

∑
π∈Sn

UπφβU
†
π

 ◦ 11, (A.32)

since the diagonal entries of φ and φβ transform among themselves under
permutations. The right hand side can be written as

n∑
β=0

∑
b∈Bβ

(
n
β

)
n!

∑
π∈Sn

|ψπ−1(b)|2

ψ2
β

|b〉〈b|=
n∑
β=0

∑
b∈Bβ
|b〉〈b| = 11, (A.33)

where we have used that, for any b ∈ Bβ, the set {π−1(b)}π∈Sn contains
exactly β!(n − β)! times each one of the elements of Bβ. It follows from
Eqs. (A.32) and (A.33) that Ωsym := (n!)−1∑

π∈Sn Uπ (φ ◦ Ω)U †π satisfies 0 ≤
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Ωsym ≤ 11 and is invariant under permutations of the n qubits. It is, therefore,
a legitimate fully symmetric measurement seed. Moreover,

1
n!
∑
π∈Sn

Uπ(ψ◦Ω)U †π=
∑
β,β′

ψβψβ′(
n
β

)1/2(n
β′

)1/2 11βΩsym11β′ , (A.34)

where 11β is the projector into the subspace with |b| = β, namely 11β :=∑
b∈Bβ |b〉〈b|. Thus, recalling the definition of |β〉 in Eq. (A.1), the righthand

side of (A.34) can be readily written as∑
β,β′

ψβψβ′ |β〉〈β′|

 ◦ Ωsym = ψsym ◦ Ωsym, (A.35)

where |ψsym〉 := ∑n
β=0 ψβ|β〉 ∈ H⊗n+ . It follows from these results and Eq. (A.30)

that the very same fidelity and success probability attained by any pair
(|ψ〉,Ω) of probe state and measurement seed is also attained by the state
|ψsym〉 ∈ H⊗n+ and the fully symmetric seed Ωsym. This completes the proof.

Now that we have learned that no boost in performance can be achieved
by considering probe states more general than those in the symmetric sub-
space H⊗n+ (in the subspace of maximum spin j = J), we may wonder if
entangling the probe with some ancillary system could enhance the pre-
cision. Here we show that this possibility can be immediately ruled out,
thus extending the generality of our result. For this purpose we take the
general probe-ancilla state |ΨPA〉 = ∑

b ψb |b〉 |χb〉, where |χb〉 are normal-
ized states (not necessarily orthogonal) of the ancillary system. The ac-
tion of the phase evolution and noise on the probe leads to a state of the
form ρPA(θ) = ∑

b,b′ r
|b+b′| eiθ(|b|−|b′|) ψbψb′ |b〉〈b′| ⊗ |χb〉〈χb′ |. This state could

as well be prepared without the need of an ancillary system by taking instead
an initial probe state |ψ〉 = ∑

b ψb |b〉 and performing the trace-preserving
completely positive map defined by |b〉 → |b〉 |χb〉 before implementing the
measurement. This map can, of course, be interpreted as part of the mea-
surement. It would correspond to a particular Neumark dilation of some
measurement performed on the probe system alone, and hence it is included
in our analysis.

A.9 Scavenging at the ultimate precision limit
The gentle measurement lemma Winter [1999] states that if measurement
outcome occurs with a very high probability, e.g., an unfavorable event in
some probabilistic protocol, which happens with probability S̄ = tr[F̄ (ρθ)] =
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1− ε, then, in that event, the measurement causes very little disturbance to
the state namely ‖ ρθ − ρ̄θ ‖1≤

√
2ε, where ρ̄ = F̄ (ρθ)/S̄.

Indeed, from (6.3), we find that the fidelity of the scavenged events, F̄ (S),
rapidly approaches that of the optimal deterministic machine F (S = 0):

F (0)−F̄ (S)= max
0≤Ω≤11

trWρθ −max
0≤Ω̄≤11

tr W̄ρ̄θ

≤ min
0≤Ω≤11

tr[W (ρθ−ρ̄θ)] ≤‖ρθ−ρ̄θ ‖1≤
√

2S, (A.36)

where W (likewise W̄ ) is shorthand for the matrix with entries Wb,b′ =
Ωb,b′δ|b|,|b′|+1.

We recall that, as F (S) approaches the ultimate bound Fult = 1 − (1 −
r2)/(4nr), the success probability S decreases exponentially. Eq. (A.36) thus
shows that such likely failure is not ruinous since in that event one can still re-
cover the deterministic bound, i.e., one has F̄ = F (0) = 1− (1− r2)/(4nr2).



APPENDIX B

Technical details of Chapter 7

B.1 Cloning fidelity and its upper bound
In this section we derive the upper bound in Eq. (7.6)

FΠ
CL ≤ max

E∈Spm
{pE,m}

 ∑
E∈Spn

√
pE,n

πE
Psucc

2

. (B.1)

to the probabilistic cloning fidelity. For the sake of self-completeness, we
also derive the fidelity itself. We start from the definition of the worst-case
cloning fidelity in Eq. (7.4):

F = inf
t∈R

〈Ψm
t |Cn,m (|Ψn

t 〉〈Ψn
t |) |Ψm

t 〉
Psucc

(B.2)

where in full generality the quantum operation Cn,m has been decomposed as
a probabilistic filter followed by a deterministic (trace preserving) map, i.e.,
as Cn,m = Dn,m ◦ Π [Chiribella et al., 2013], and the probability of success
is Psucc = 〈Ψn

t |Π|Ψn
t 〉. The covariance of quantum clocks enables us to drop

the infimum in the last equation and consider without loss of generality only
invariant filters of the form Π = ∑

E∈SpnπE|E, n〉〈E, n|, as well as covariant
maps, which satisfy

Dn,m(Un
t · U

n†
t ) = Um

t Dn,m( · )Um†
t , (B.3)
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where Un
t = ∑

E∈Spne
−iEt|E, n〉〈E, n| is the time evolution operator. Using

the Choi-Jamiolkowski isomorphism, Eq. (B.3) is equivalent to

D = Um
t ⊗ Un ∗

t D (Um
t ⊗ Un ∗

t )† , (B.4)

which in turn implies the direct sum decomposition D=∑E DE , where
DE:=

∑
E,E′∈Spn

′
dEE,E′ |E + E ,m〉〈E ′ + E ,m| ⊗ |E, n〉〈E ′, n| (B.5)

and the ‘primed’ sum include only those terms for which E+E , E ′+E ∈ Spm.
Taking the above into account, the probabilistic cloning fidelity can be cast
as

F = 1
Psucc

∑
E

∑
E,E′∈Spn

′
dEE,E′

× √
πEpE,npE+E,m

√
πE′pE′,npE′+E,m . (B.6)

An upper bound to the fidelity (B.6) can be obtained by pulling the
maximum value of pE,m out of the sums. Recalling the positivity of the Choi-
Jamiolkowski operator, D ≥ 0, one has DE ≥ 0 and |dEE,E′|2 ≤ dEE,Ed

E
E′,E′ .

Thus,

F ≤ max
E∈Spm

{pE,m}

×
∑

E,E′∈Spn

∑
E

′

√√√√πEdEE,EpE,n
Psucc

√√√√πE′dEE′,E′pE′,n
Psucc

, (B.7)

where we have interchanged the order of summation. We can now use the
Schwarz inequality to write

∑
E

′
√
dEE,E

√
dEE′,E′ ≤

(∑
E

′
dEE,E

)(∑
E

′
dEE′,E′

)
. (B.8)

The first (second) sum on the right hand side of the last equation can be
extended to values of E for which E + E ∈ Spm (E ′ + E ∈ Spm), as dEE,E ≥ 0
(dEE′,E′ ≥ 0). Then, each of these sums is unity since Dn,m is trace preserving.
Substituting in (B.7), we obtain the bound in Eq. (B.1).

B.2 Fidelity of probabilistic metrology
In this section we derive the expression for the PM fidelity in Eq. (B.9):

F =
∑
E

 ∑
E∈Spn

′
√
pE,n pE+E,m p̂E+E,m

πE
Psucc

2

. (B.9)



B.2. Fidelity of probabilistic metrology 157

Since later we will show that asymptotically the r.h.s. of Eq. (B.9)
achieves the optimal cloning fidelity, here it is enough to show that the r.h.s.
of Eq. (B.9) can be achieved by some suitable measurement.

For every σ > 0, consider the operators Φn
t̂,σ

= |Φn
t̂,σ
〉〈Φn

t̂,σ
|, where

|Φn
t̂,σ〉 :=

√
pσ(t̂ )

∑
E∈Spn

e−iEt̂|E, n〉 , (B.10)

and pσ(t) is a suitable probability distribution. The latter is chosen as fol-
lows: For commensurable energies, when the evolution is periodic, pσ(t) is
the uniform distribution pσ(t) = 1/T over the period T [pσ(t) = 0 for t < 0
and T < t]. For incommensurable energies, pσ(t) is the Gaussian distri-
bution pσ(t) = (2πσ2)−1/2 exp{−t2/(2σ2)}. Now, for commensurable ener-
gies, the operators {Φn

t̂,σ
}t̂∈R define a quantum measurement: indeed, it is

immediate to check the normalization condition
∫

dt̂Φn
t̂,σ

= 11n, where 11n
denotes the identity on the subspace containing the state of the n input
copies. For incommensurable energies, the operators {Φn

t̂,σ
}t̂∈R form an “ap-

proximate measurement", satisfying the approximate normalization condition∫
dt̂Φn

t̂,σ
= 11n + O(e−σ2). Note that in the limit σ → ∞ the approximate

measurement becomes arbitrarily close to a legitimate measurement, as the
normalization defect disappears in such limit.

Let us denote by Fσ the value obtained by inserting the approximate
measurement {Φn

t̂,σ
}t̂∈R in

F = inf
t∈R

∫
dt̂ p(t̂|t)

∣∣∣〈Ψ̂m
t̂ |Ψ

m
t 〉
∣∣∣2 . (B.11)

Since our set of approximate measurements becomes closer and closer to the
set of allowed measurements as σ → ∞, the limit value F∗ := limσ→∞ Fσ is
an achievable value of the fidelity. We now show that F∗ is equal to the r.h.s.
of Eq. (B.9): recalling the expansion of |Ψn

t 〉 in Eq. (7.1) and the definition
of |Ψ̂n

t̂
〉 in the first paragraph of Section 7.2, we obtain

Fσ = inf
t

∫
dt̂ pσ(t̂ )

∣∣∣∣∣∑
E

e−iE(t−t̂)fE

∣∣∣∣∣
2

, (B.12)

with

fE :=
∑

E∈Spn

√
πEpE,npE+E,mp̂E+E,m

Psucc
. (B.13)
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Integrating over t̂ we then obtain

F∗ = lim
σ→∞

inf
t

∑
E,E ′

e−
σ2(E−E′)2

2 e−it(E−E ′) fEfE ′

=
∑
E
f 2
E ,

which coincides with the r.h.s. of Eq. (B.9).

B.3 Geometry of the problem and Smith variables

B.3.1 Rationally independent energy units and lattices
We recall that as a set of points the partitions {(n0,n)}, where n ∈ Pn, is
a regular lattice on the simplex ∆d−1

n = {(x0, . . . , xd−1) ∈ Rd : xj ≥ 0, j =
0, . . . , d− 1 and ∑d−1

j=0 xj = n}, of edge length n. Each site of this lattice is of
the form (n−∑d−1

j=1 nj,n). The vectors (1 column integer matrices) n ∈Pn

form themselves also a regular lattice, defined by the inequalities 0 ≤ nj ≤
n−∑j−1

l=1 nl, j = 1, . . . , d− 1, inside the corner of a (d− 1)-dimensional cube
of side length n: ∆d−1

c,n = {(x1, . . . , xd−1) ∈ Rd−1 : 0 ≤ xj ≤ n−∑j−1
l=1 xl, j =

1, . . . , d− 1}. Note that if n ≤ m, one has the inclusion Pn ⊂Pm.
Recall also that the spectrum of H⊗n, is given by Spn = {E | ∃ = n ∈

Pn : e n = E}. All vectors n that give rise to a particular value E of the
energy, i.e., those in the set PE

n = {n ∈ Pn : En = E}, necessary lie in
the affine hyperplane obtained by translating the hyperplane orthogonal to
e. Since Pn is a regular lattice, it is not clear a priori how many of its
sites fall on the hyperplane defined by e; the actual degeneracy of E strongly
depends on the commensurability of the energies {ej} in the spectrum of
H. To identify all distinct values of En ∈ Spn we use the fact that the
energies of the Hamiltonian H can always be written as a linear combination
with integer coefficients of a minimal set of rationally independent ‘energy
units’ {εl}rl=1, r ≤ d− 1, namely

ej =
∑
l

kljεl klj ∈ Z . (B.14)

By minimal we mean that no subset of {εl}rl=1 is sufficient to write every
energy in the spectrum of H as in Eq. (B.14). Note that the rational in-
dependence of εl implies that klj is fixed once the choice of energy units is
made. With this, the energies of Spn can be written as En = ∑r

l=1 εlñl,
where ñl = ∑d−1

j=1 kljnj. It is then useful to introduce the vector notation
ñ = K n, where K is the r × (d − 1) matrix whose integer entries are klj,
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and En = ε ñ, where ε = (ε1, . . . , εr). Because of the rational independency
of the energy units, we conclude that there is a bijection between the distinct
energies in Spn and the points in the set P̃n = {ñ = K n : n ∈Pn}.

We view each column Kj = (k1j, . . . , krj)t ∈ Zr of K as a set of vectors
that span the (infinite) Bravais lattice

P̃∞ =
{
ñ = ∑d

j=1 nj Kj, nj ∈ Z
}
. (B.15)

We have the obvious inclusion P̃n ⊂ P̃∞. For finite n, P̃n departs from
the Bravais lattice P̃∞ in two ways: i) the lattice P̃n, defined by the linear
transformation K acting on Pn, inherits its boundaries and hence lies inside
the convex r-dimensional polytope ∆̃r

n := K∆d−1
c,n ; ii) near the boundaries of

∆̃r
n, some points of P̃∞ are missing in P̃n (since none of the corresponding

inverse images satisfy the constrains that define Pn, given in the first para-
graph of this section), so we typically have P̃n  P̃∞∩∆̃r

n. These boundary
related issues have a minor effect in our analysis for asymptotically large n,
as we argue below.

B.3.2 Smith vectors/variables. Volume of primitive cell
For r < d − 1, the vectors Kj are not linearly independent and, therefore,
they cannot be a minimal set of primitive vectors of the lattice P̃∞. On the
other hand, having a minimal set of primitive vectors is necessary in order to
compute the volume ∆V ∗ of the unit cell [see, e.g., Eqs. (7.11) and (7.12)].
To this purpose, we use the Smith normal form of K [Marcus and Minc,
1964]:

K = TAPS, (B.16)
where T ∈ Zr×r and S ∈ Z(d−1)×(d−1) are unimodular matrices, i.e. invertible
matrices over the integers with det T = det S = ±1; A ∈ Zr×r is a diagonal
matrix with entries

(A)ll = gcd{[K]l}
gcd{[K]l−1}

, (B.17)

where gcd stands for greatest common divisor and {[K]l} is the set of all
minors of K of order l; P is the r × (d− 1) matrix with entries

(P)ll = 1, 1 ≤ l ≤ r, (B.18)

and zero otherwise. Using (B.16) we can define the lattice P̃n in terms of
the new vectors/variables

s = (s1, . . . , sr)t := PSn, (B.19)
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which we coin Smith vectors/variables. Given a matrix K the Smith form
guarantees that the choice of Smiths variables is unique, up to linear com-
binations within the degenerate subspaces of A (if any). Note that since
the matrix S (and analogously T) is unimodular, the gcd of each of its rows
and columns is unity. Indeed, for the first column (similarly for the other
columns/rows) one has S1 = gcd{(S)j,1} a1, for some a1 ∈ Zd−1. Then,
1 = det S = gcd{(S)j,1} det S̄, where S̄ is obtained by substituting a1 for
the first column of S. Since det S̄ ∈ Z, necessarily det S̄ = gcd{(S)j,1} = 1.
Being the case that the gcd of each row of S is unity, Bezout lemma ensures
that each component of s, sl, will take all integer values. That is, in stark
contrast to the variables ñi, the Smith variables sl take values independently
of each other, with unit spacing between consecutive values. This means that
the Bravais lattice P̃∞ is defined in terms of the Smith variables as

P̃∞ =
{
ñ = ∑r

l=1 sl vl, sl ∈ Z
}
, (B.20)

where {vl}rl=1 are a set of (linear independent) primitive vectors of the lattice
defined by each of the r columns of TA. It follows that the volume of the
unit cell can be computed as

∆V ∗= | det(v1,v2, . . . ,vr)| = det A = gcd{[K]r}, (B.21)

where we have used Eq. (B.17).

B.3.3 Parametrizing the energy in terms of the Smith variables

Both the vectors ñ and the Smith vectors s are in one-to-one correspondence
with the distinct energies in Spn, and thus they are interchangeable in all
our arguments. As a matter of fact, they would coincide had we chosen the
energy units as

εS := εT A (B.22)

(the script S stands for Smith), so that the total energy becomes Es = εS s.
Note that, if ε is minimal, then also εS must be minimal, since the two
vectors are related by an invertible matrix with integer entries.

Despite the one-to-one correspondence, the Smith variables s are more
convenient than the variables ñ. Indeed, they define a cubic lattice with unit
spacing, which facilitates, e.g., taking the continuum limit. Note that one



B.3. Geometry of the problem and Smith variables 161

has

det Σ̃ =det(KΣKt)
=det

[
(T A P S) Σ (T A P S)t

]
=det2A det ΣS ΣS := P S Σ(P S)t

≡(∆V ∗)2detΣS,

which implies the relation

∆V ∗
(
det Σ̃

)− 1
2 =

(
det ΣS

)− 1
2 . (B.23)

Using this fact, the volume of the unit cell in Eqs. (7.11) and (7.12) in main
text can absorbed into the matrix ΣS, which is the covariance matrix of the
probability distribution of Smith variables ps,n.

B.3.4 Equivalence of different choices of energy units
The choice of rationally independent energy units that define K is not unique.
Here we show that such ambiguity has no physical implications. Our strategy
is to show that different choices of energy units lead to Smith variables that
are related by unimodular matrices.

Let ε and ε′ be two minimal sets of rationally independent energy units
spanning the spectrum of H. In the following we will use the same notation
of the previous section, attaching primes to all the matrices and quantities
defined in terms of ε′. Note that, by minimality, there must be an invertible
transformation R such that ε = ε′R. Comparing the two relations En =
ε′K′ n and En = εK n = ε′R K n and using the rational independence of
the units ε′ we obtain the relation

K′ n = R K n
= R T A P S n
= R T A s
= M s, M := R T A , (B.24)

the second and third equalities coming from the Smith form in Eq. (B.16) and
the definition of the Smith vectors in Eq. (B.19), respectively. Now, recall
that K′ is a matrix of integers, and, therefore K′ n is a vector of integers for
every n ∈ Zd−1. Since the Smith variables sl are independent and take all
possible integer values, by choosing s = (1, 0, . . . , 0)t, the relation K′ n = M s
implies that the first column of M must have integer entries. By the same
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argument, all columns of M must have integer entries, i.e. M is an integer
matrix. Note that M is invertible (since it is defined as the product of three
invertible matrices), although its inverse needs not be a matrix with integer
entries.

Let us write M in the Smith form M = U B V, where U and V are
unimodular and B is an invertible diagonal matrix. Inserting this expression
in Eq. (B.24), we obtain

K′ n = U B V s
= U B V P S n ,

having used Eq. (B.19). Since the relation holds for arbitrary integer vectors,
we obtained K′ = UBVPS. Note that, by definition of the matrix P in Eq.
(B.18), we have

V P = P W , (B.25)

where W is the (d− 1)× (d− 1) matrix defined as, e.g., W = V ⊕ 11d−1−r.
Hence, we have K′ = UBPWS. Now, comparing this equation with the
Smith form K′ = T′A′P′S′ we obtain T′ = U, A′ = B, P′ = P and
S′ = W S. In conclusion, the Smith variables defined by K′ are related to
the Smith variables defined by K through the relation

s′ ≡ P′ S′ n
= P W S n
= V P S n
≡ V s ,

having used Eq. (B.25) in the third equality. Clearly, the covariance matrix
of s′ is given by ΣS′ = VΣSVt, where ΣS is the covariance matrix of s, and,
thanks to the unimodularity of V, we have det ΣS′ = det ΣS. Using Eq.
(B.23) we conclude that

∆V ∗(det Σ̃)−1/2 = (det ΣS)−1/2

= (det ΣS′)−1/2

= ∆V ∗′(det Σ̃′)−1/2 .

This proves that physically relevant quantities, such as the most probable
energy in Eq. (7.11) or the fidelity in Eq. (7.12), do not depend on the choice
of energy units used to represent the spectrum of H.
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B.3.5 Boundary defects

Ideally, one would like to have P̃n = P̃∞ ∩ ∆̃r
n, however, near the boundary

of the polytope ∆̃r
n some sides are missing, giving rise to loss of regularity, as

already mentioned. We argue here that the thickness of the defective region
does not scale with n. This ensures that in the asymptotic limit of large
n, e.g., the sums over P̃∞ can always be safely approximated by integrals
over ∆̃r

n, even when the probability distribution pn,n is flat, as required to
obtain Eq. (7.13). The thickness of the defective region depends solely on the
intrinsic properties of the Hamiltonian H, including the number of rationally
independent energy units, through the matrix K .

To simplify the argument let us assume that P̃∞ is a cubic lattice with
unit spacing. It has been shown above that this assumption does not entail
any loss of generality, as it just requires choosing energy units as in (B.22).
Let Kl = (kl 1, . . . , kl d−1) stand for the row l of the matrix K. Then, for each
l = 1, . . . , r,

ñl = Kl · x, x ∈ Rd−1, (B.26)

where ñl is the l-th component of ñ ∈ P̃∞ ∩ ∆̃r
n, defines a discrete family

of hyperplanes that are orthogonal to Kl. The kernel of K ∈ Zr×(d−1) can
always be spanned by a set {uk}d−r−1

k=1 of independent vectors of Zd−1 that
are orthogonal to {Kl}rl=1. Upper bounds, b, to the minimum length of these
(integer) vectors (high-dimensional extensions of the so-called Siegel’s bound)
can be found in Bombieri and Vaaler [1983]; Borosh [1976] and depends
entirely on the matrix K (b is thus independent of n). We note that {uk}d−r−1

k=1
define a lattice within ker K and any (d − r − 1)-dimensional ball or radius
b (or larger) contains at least one site of it.

A site ñ ∈ P̃∞ ∩ ∆̃r
n belongs to P̃n iff there is at least one site n ∈Pn

that satisfies (B.26) for all l. The Smith normal form and Bezout lemma
(see previous subsection) ensure that there are infinitely many vectors n in
P∞ satisfying (B.26) for a given ñ (but they are not necessarily in P̃n).
The difference between any two such vectors, n − n′ belongs to ker K, i.e.,
satisfies n − n′ = ∑d−r−1

k=1 ηkuk, ηk ∈ Z. Therefore, if a given ñ is such that
the intersection of the polytope ∆̃r

n with the hyperplanes defined by (B.26)
contains a ball of radius b, it is ensured that ñ ∈ P̃n. This is so because at
least one site in n0 +ker K, where n0 ∈P∞ is a solution (any of the infinitely
many solutions) of (B.26), will be contained in this ball, as argued above.
Since ∆d−1

c,n is convex, by increasing n (the length of its edge) the volume of
its intersection with the hyperplanes (B.26), which is also a convex polytope,
grows as nd−r−1 and it will eventually contain a ball of radius b. Only sides
whose distance to the boundary is kept fixed and is small enough can escape
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from this fate and may thus not be in P̃n. This concludes our proof.
By the same argument, since the volume of the intersection of ∆d−1

c,m with
the hyperplanes (B.26) grows withm (but at a fixed distance from the bound-
ary), the number of balls or radius b it will eventually contain grows asmd−r−1

and so does the number of point in ker K, i.e., the numbers of points in Pm

associated to a given m̃, as required to obtain, e.g., Eq. (7.11).
As a final remark, we note also that the pattern of defects near the bound-

ary of ∆̃r
n is exactly the same for every n, provided that n is sufficiently large.

The reason is that all the lattices Pn are similar (i.e., have the same shape
but different size). Hence, the regions of them that are at a fixed distance
from the boundary are identical and, as argued above, these regions deter-
mine the pattern of defects of P̃n.

B.4 Equivalence between PM and macroscopic cloning
In this section we show that the PM fidelity attains the upper bound (B.1) to
the cloning fidelity, and thus prove the equivalence between PM and macro-
scopic cloning of quantum clocks. The proof uses the one-to-one correspon-
dence between Spm and P̃m, as well as the fact that the probability distri-
bution pm̃,m approaches a multivariate Gaussian distribution as m goes to
infinity. The former, enables us to write Eq. (B.9) as

FΠ
PM =

∑
µ̃

 ∑
ñ∈P̃n

′
ξñ

√
p̂ñ+µ̃,m pñ+µ̃,m


2

, (B.27)

where ξñ :=
√
pñ,nπñ/Psucc and the outer sum runs over P̃n,m := {µ̃ =

m̃− ñ | ñ ∈ P̃n, m̃ ∈ P̃m}. To keep our notation as uncluttered as possible
we suppress the tildes throughout the rest of this section. We further assume
that the multivariate normal distribution pm,m peaks at m = 0, and so does
pn,n, but we make no other assumption on the form of pn,n (it could, e.g.,
be flat, in which case any point in Pn could be chosen to be 0). This may
require shifting the vectors in Pm by a fixed m0 ∈ Pm (similarly, by a
fixed n0 ∈ Pn for those in Pn). The primed summation is restricted to
vectors n such that µ+n∈Pm.

For any ρ > ν > 0, where ν = max{|n| : n ∈ Pn}, define the set
Rρ = {µ : ∀n∈Pn, µ+ n∈Pm and |µ+ n|≤ρ}. Then

FΠ
PM >

∑
µ∈Rρ

(∑
n
ξn

√
p̂n+µ,mpn+µ,m

)2

. (B.28)



B.4. Equivalence between PM and macroscopic cloning 165

Note that we can drop the prime in the last sum over n. We have

FΠ
PM > p0,m e

− ρ2

2mσ2
1
∑
µ∈Rρ

(∑
n
ξn

√
p̂n+µ,m

)2

, (B.29)

where mσ2
1 is the smallest eigenvalue of the covariance matrix of pm,m. Here,

we explicitly display the m dependence of the covariance matrix eigenvalues;
thus σ2

1 does not scale with m. Let us choose the ‘guessed’ distribution as

p̂m,m = p̂0,m e−ζ
|m|2
2m ;

∑
m∈Pm

p̂m,m = 1. (B.30)

Then,

p̂n+µ,m = p̂0,m e−ζ
|n+µ|2

2m ≥ p̂0,m e−ζ
(|n|+|µ|)2

2m

= e−ζ
|n|2+2|n||µ|

2m p̂µ,m ≥ e−ζ
3|n|2+2|n|ρ

2m p̂µ,m, (B.31)

where we have used that |µ| ≤ |n|+ ρ if µ ∈ Rρ. Thus, the following bound
holds

FΠ
PM > p0,m e

− ρ2

2mσ2
1
−ζ 3ν2+2νρ

2m

(∑
n
ξn

)2 ∑
µ∈Rρ

p̂µ,m. (B.32)

We now need to lower bound the last sum. For this, we write∑
µ∈Rρ

p̂µ,m = 1−
∑

µ∈Rρ∩Pm

p̂µ,m. (B.33)

For µ ∈ Rρ ∩Pm one has ρ < |n +µ| ≤ ν + |µ|, then, recalling that ρ > ν,

∑
µ∈Rρ

p̂µ,m > 1−
∑

µ∈Rρ∩Pm

p̂0,m e−ζ
(ρ−ν)2

2m

> 1− |Pm| p̂0,m e−ζ
(ρ−ν)2

2m . (B.34)

Note that |Pm| ≤ (m + d − 1)!/[m!(d − 1)!] ∼ md−1, for large m. With all
the above,

FΠ
PM >

(
max

m
pm,m

)
e
− ρ2

2mσ2
1
−ζ 3ν2+2νρ

2m

×
[
1− Cmd−1e−ζ

(ρ−ν)2
2m

] (∑
n
ξn

)2

(B.35)
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for some positive constant C. Therefore, if ρ = m
1−ε

2 , and ζ = mδ, with
(1 + ε)/2 > δ > ε > 0, then ρ2/m = m−ε, ζ/m = m−1+δ, ζρ/m = m−

1+ε
2 +δ

and ζρ2/m = mδ−ε. Thus, for large m we have

FΠ
PM >

(
max

m
pm,m

)(∑
n
ξn

)2

. (B.36)

This result holds provided pm,m is a multivariate normal distribution picked
at some m0 ∈ Pm. The actual distribution is multinomial on the points of
Pm. However, as m becomes asymptotically large, the induced distribution
pm,m becomes arbitrarily close to the multivariate normal assumed in the
proof above. Recalling that the right hand side of (B.36) is also an upper
bound to FΠ

CL and, thus to FΠ
PM, we finally conclude that (we restore the

suppressed tildes)

FΠ
PM = FΠ

CL =
(

max
m̃∈P̃m

pm̃,m

) ∑
ñ∈P̃n

ξñ


2

(B.37)

for asymptotically large m and fixed n. This leads to Eq. (7.12), of which
Eq. (7.10) is a particular case for r = 1.

B.5 Fidelity calculations
In this section we give some details of the calculation leading to Eqs. (7.13)
and (7.14). As already mentioned, Smith vectors s ∈ Zr [recall Eq. (B.19)]
are most suited to this purpose because they form a cubic lattice of unit
step size, i.e., their minimal cell has volume ∆V ∗ = 1. In this sense, they
are just a particular instance of vectors m̃ ∈ P̃m. Hence, to avoid further
proliferation of notation, we will use here the generic symbols Σ̃ and P̃m to
refer to the covariance matrix of the multivariate Gaussian distribution ps,m
and the lattice of the Smith vectors s respectively. Since Σ̃ scales with m,
we write Σ̃ = mΣ̃1, where Σ̃1 is independent of m. Then, the expression for
the asymptotic fidelity in (7.12) becomes

FΠ = 1√
(2πm)r det Σ̃1

 ∑
s∈P̃n

√
ps,n

πs

Psucc


2

. (B.38)

The last sum can be evaluated in the asymptotic limit of large n (recall
however that we assume n � m), as we show below. In this case, also ps,n
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approaches a multivariate normal distribution, as that in Eq. (7.11), and the
sum over P̃n can be approximated by an integral over the polytope ∆̃r

n.
As a warmup act, we first compute the fidelity FΠ for the deterministic

protocol, i.e., when Psucc = 1. Since no filtering is applied, we have πs = 1
for all s ∈ P̃n. The sum in (B.38) simplifies to∫

∆̃r
n

ds√ps,n '
∫
Rr
ds√ps,n = 2r/2

[
(2πn)r det Σ̃1

]1/4
, (B.39)

as 2−r/2(2π)−r/4(det Σ̃)−1/4×√ps,n is also a properly normalized multivariate
normal distribution with covariance matrix 2Σ̃. Substituting in Eq. (B.38)
we obtain

F =
(

4 n
m

)r/2
. (B.40)

This expression agrees with Eq. (7.14) in the deterministic limit, when η → 0.
In the probabilistic case, Psucc < 1, we need to optimize the filter parame-

ters {πs}. To simplify the notation, let us use the definition of the normalized
state |ξ〉, with components ξs :=

√
ps,n πs/Psucc. Then, the maximum fidelity,

F = maxΠ F
Π, is obtained when the sum in (B.38) takes its maximum value:

max
∑

s
ξs , (B.41)

subject to
∑

s
ξ2

s = 1 (B.42)

and ξs ≤
√
ps,n

Psucc
, s ∈ P̃n, (B.43)

where (B.42) is the normalization constraint, and (B.43) comes from the pos-
itivity and trace preserving requirements on the stochastic filter. To solve
(B.41), (B.42) and (B.43), we use Lagrange multipliers and the Karush-
Kuhn-Tucker conditions. The problem reduces to solving the stationary con-
ditions

∂

∂ξs

(∑
s′
ξs′

)
= ∂

∂ξs

 1
2ζ

(∑
s′
ξ2

s′ − 1
)

+
∑
s′
σs′

(
ξs′ −

√
ps′,n

Psucc

), (B.44)

where the sums extend to s ∈ P̃n, and 1/(2ζ) and {σs}s∈P̃n
are multipliers.

Conditions (B.42) and (B.43) are called primal feasibility conditions. In
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addition, one has to impose that σs ≥ 0, known as dual feasibility condition,
and

σs

(
ξs −

√
ps,n

Psucc

)
= 0, (B.45)

known as complementary slackness condition, both for all s ∈ P̃n. The
latter, implies that at any site of P̃n, either σs = 0 or ξs =

√
ps,n/Psucc, in

which case we say that s belongs to the coincidence set C , i.e., C := {s ∈
P̃n : ξ2

s = ps,n/Psucc}. If s 6∈ C , Eq. (B.44) readily gives the constant solution
ξs = ζ.

If Psucc < mins∈P̃n
ps,n, then ps,n/Psucc > 1 ≥ ξ2

s , thus C = ∅. In this
case, normalization implies ζ = |P̃n|−1/2, where |P̃n| is the number of sites
in P̃n. Substituting in (B.38), we have

F = |P̃n|√
(2πm)r det Σ̃1

. (B.46)

Recalling Eq. (B.23) and mΣ̃1 = Σ̃, this equation becomes Eq. (7.13), which
holds for any choice of vectors ñ. Notice that both, Eqs. (B.46) and (7.13),
also hold for small n. For large n, |P̃n|∆V ∗ (recall ∆V ∗ = 1 for Smith
vectors) approaches Vn, the volume of the polytope ∆̃r

n, as the irregularities
or defects of the lattice P̃n can only arise within a finite distance from its
boundary (see previous sections). Closed formulas for |P̃n| or Vn depend
on the Hamiltonian H and do not seem to generalize easily. In the main
text, only the obvious scalings |P̃n| ∼ Vn ∼ nr are used to show that F ∼
(n/
√
m)r.

For Psucc > mins∈P̃n
ps,n the problem becomes more involved, as the con-

straint (B.43) is now non-trivial and C 6= ∅. Since ps,n/Psucc is bell-shaped,
the complement of the coincidence set is the ‘ellipsoid’ C α := {s ∈ P̃n :
(s − s0)tΣ̃−1(s − s0) ≤ α2, for some α (Fig. B.1 shows a two-dimensional
version of it), and we have the solution

ξs =


√
pα,n/Psucc if s ∈ C α√
ps,n/Psucc if s 6∈ C α ,

(B.47)

where we have defined
pα,n := e−α2/2√

(2π)r det Σ̃
, (B.48)

and we note that the parameter α that gives the size of the ‘ellipsoid’ C α

is determined by normalization: 1 = ∑
s ξ

2
s '

∫
drs ξ2

s . Note also that the



B.5. Fidelity calculations 169

s1

s2

q
ps,n/Psuccz

⇠s

C

Figure B.1. Plot of ξs,n (z axis) for large n (the truncated bell-shaped surface). The figure
also shows the complement of the coincidence set and

√
ps,n/Psucc for Psucc >

mins∈P̃n
ps,n.

solution ξs is a ‘truncated’ multivariate normal distribution, as shown in
Fig. B.1. The above integral thus splits into two straightforward ones over
the two regions in (B.47), and we obtain the relation:

Psucc = 1
Γ( r2)

(
Γ( r2 ,

α2

2 ) + αre−α2/2

2r/2−1r

)
, (B.49)

where Γ(a, x) is the upper incomplete Gamma function. Proceeding along
the same line, one can compute ∑s ξs to obtain

F = 1
Γ( r2 +1)

(
n

2m

)r/2[2r−1rΓ( r2 ,
α2

4 )+αre−α2/4
]2

2r/2−1rΓ( r2 ,
α2

2 )+αre−α2/2
. (B.50)

Eqs. (B.49) and (B.50) give the solution to our optimization problem in
parametric form, in terms of α. Finding the fidelity F as a explicit function
of Psucc would require inverting the relation (B.49), which cannot be done
analytically for an arbitrary success probability. We can however obtain
an analytic expression of F for a success probability close to one, i.e., for
Psucc = 1− η, η � 1, by simply expanding the right hand side of Eq. (B.49)
to leading order in α. Such expansion reads:

η = 1− Psucc = α2+r

21+r/2 Γ(2 + r/2) +O(αr+3). (B.51)

Solving for α and substituting in the expansion (at leading order in α) of the
right hand side of Eq. (B.50) one obtains

F =
(

4 n
m

)r/2 [
1 + (1− 2−r/2) η

]
+O(η2). (B.52)
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Eqs. (B.49) through (B.52) hold provided Psucc does not exponentially vanish
with n. If it does, as in (7.13), where we assumed that Psucc < mins∈P̃n

ps,n,
we obtain the better scaling F ∼ (n/

√
m)r. The reason for this different

scaling is that a multivariate normal distribution only approximates ps,n ac-
curately around its peak, whereas it falls off exponentially with n at the tails
(where mins∈P̃n

ps,n lies).

B.6 PM approximation of probabilistic processes with per-
mutationally invariant output

Here we prove that for every quantum operation Cm, with input in Hin
and permutationally invariant output in H ⊗m there exists a PM protocol,
described by a quantum operation C̃m, such that i) Cm and C̃m have the same
success probability and ii) the error probability in distinguishing between
Cm and C̃m by inputting a state ρ and measuring k output systems is lower
bounded by perr ≤ 1

2 + (kd2)/[2mPsucc(ρ)], where Psucc(ρ) is the probability
that the operation Cm takes place on input ρ.

The proof follows the same lines of the proofs of theorems 4 and 5 in Ref.
?. Let Cm be a quantum operation transforming states on Hin into sates on
H⊗m. First, we suppose that the output states of Cm have support contained
in the symmetric subspace of H⊗m. In this case, it is useful to consider the
universal measure-and-prepare channelM defined by

M (ρ) =
∫

dψ d+
m tr [ψ⊗mρ] ψ⊗m

where dψ is the invariant measure over the pure states, d+
m =

(
m+d−1
d−1

)
is

the dimension of the symmetric subspace. Note that the map M is trace-
preserving for all states with support in the symmetric subspace. Moreover,
M provides a good approximation of the partial trace ?:

‖trm−k − trm−k ◦M ‖� ≤
2kd
m

, (B.53)

where ‖L ‖� denotes the diamond norm of a linear, Hermitian-preserving
map L , defined as

‖L ‖� := sup
r∈N

sup
|Ψ〉 ∈ Hin ⊗ Cr
‖|Ψ〉‖ = 1

tr |(L ⊗Ir)(|Ψ〉〈Ψ|)| ,
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Ir denoting the identity map for an r-dimensional quantum system. Using
Eq. (B.53), it is immediate to construct the desired PM protocol. The pro-
tocol consists in performing the quantum operation Cm and subsequently ap-
plying the measure-and-prepare channel M . Mathematically, it is described
by the quantum operation C̃m = M ◦ Cm. Since M is trace-preserving (in
the symmetric subspace), one has

tr[C̃m(ρ)] = tr[Cm(ρ)]

for every input state ρ, that is, C̃m and Cm have the same success probability.
Moreover, one has the bound∥∥∥trm−k ◦ Cm − trm−k ◦ C̃m

∥∥∥
�

≤ ‖ (trm−k − trm−k ◦M ) Cm‖�
≤ ‖trm−k − trm−k ◦M ‖�‖Cm‖�

≤ 2kd
m

, (B.54)

having used the fact that ‖Cm‖� ≤ 1 by definition. In words, the k-copy
restrictions of C̃m and Cm are close to each other provided that k � m.

Now, suppose that the output of Cm has support outside the symmetric
subspace. In this case, the invariance under permutations implies that Cm

has a Stinespring dilation of the form

Cm = trHE ◦Km K (ρ) := KmρK
†
m,

where HE = H⊗m and Km is an operator with range contained in the sym-
metric subspace of H⊗m ⊗HE ' (H⊗H)⊗m (for a proof see e.g. ?). Hence,
we can take the measure-and-prepare quantum operation K̃m := ME ◦Km,
where ME is the universal measure-and-prepare channel on H⊗m⊗HE, and
we can define C̃m := trHE ◦ K̃m. By definition, the success probability of C̃m

is equal to the success probability of Cm. Moreover, one has the relation∥∥∥trm−k ◦ Cm − trm−k ◦ C̃m

∥∥∥
�

=
∥∥∥trm−k ◦ trHE ◦

(
Km − K̃m

)∥∥∥
�

=
∥∥∥trHkE ◦ (trm−k ⊗ trHm−kE

)
◦
(
Km − K̃m

)∥∥∥
�

where trHkE denotes the partial trace over k ancillary Hilbert spaces. Hence,
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one gets the bound
∥∥∥trm−k ◦ Cm − trm−k ◦ C̃m

∥∥∥
�

≤
∥∥∥trHkE∥∥∥� ∥∥∥(trm−k ⊗ trHm−kE

) (
Km − K̃m

)∥∥∥
�

≤ 2d2k

m
, (B.55)

having used Eq. (B.54) with C̃m, Cm, and d replaced by K̃m, Km, and d2,
respectively.

Finally, the error probability in distinguishing between C̃m and Cm by
inputting a state ρ and measuring k output system is equal to the error
probability in distinguishing between the two states

ρ̃m,k = trM−k[C̃m(ρ)]
tr [C̃m(ρ)]

and ρm,k = trM−k[Cm(ρ)]
tr [Cm(ρ)] ,

respectively. Assuming equal prior probabilities for the two quantum opera-
tions, Helstrom theorem gives the bound perr = 1

2

[
1 + 1

2‖ρ̃m,k − ρm,k‖1
]
and

therefore we have

perr ≤
1
2

1 + ‖trm−k ◦ (C̃m − Cm)‖�
2Psucc(ρ)


≤ 1

2

[
1 + kd2

mPsucc(ρ)

]
,

where Psucc(ρ) := tr [Cm(ρ)] ≡ tr [C̃m] . �

B.7 Approximation of the optimal k-copy cloning fidelity

Suppose that we are given n copies of the state |ψx〉 ∈ H, x ∈ X and that we
want to produce m approximate copies, whose quality is assessed by checking
a random group of k output systems. Let Cn,m be the quantum operation
describing the cloning process. Since the k systems are chosen at random,
we can restrict our attention to quantum operations that are invariant under
permutation of the output spaces. Conditional on the occurrence of the
quantum operation Cn,m and on preparation of the input |ψx〉, the k-copy
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cloning fidelity is given by

Fk,x[Cn,m] = Ok,x[Cn,m]
Px[Cn,m] (B.56)

Ok,x[Cn,m] := 〈ϕx|⊗k trm−k[Cn,m

(
ϕ⊗nx

)
] |ϕx〉⊗k

Px[Cn,m] := tr [Cn,m

(
ϕ⊗nx

)
] ,

where ψx denotes the rank-one projector ψx := |ψx〉〈ψx|. Now, constructing
the quantum operation C̃n,m as in theorem 1 and using Eq. (B.55) we have

∣∣∣Ok,x[Cn,m]−O[C̃n,m]
∣∣∣ ≤ 2kd2

m

Px[Cn,m] = Px[C̃n,m] ≡ Psucc
(
ψ⊗nx

)
,

and, therefore,
∣∣∣Fk,x[Cn,m]− Fk,x[C̃n,m]

∣∣∣ ≤ 2kd2

mPsucc (ψ⊗nx ) ∀x ∈ X .

In conclusion, as long as the probability of success Psucc(ψ⊗nx ) is lower bounded
by a finite value independent of m, the k-copy fidelities of the cloning pro-
cesses Cn,m and C̃n,m. Since the bound holds for arbitrary quantum opera-
tions, in particular it holds for the quantum operation describing the optimal
cloner with given probability of success.

It is immediate to extend the derivation to the Bayesian scenario where
the input state |ψx〉⊗n is given with probability px and one considers the
average fidelity and average success probability. Indeed, the average k-copy
fidelity is given by

Fk[Cn,m] = Ok[Cn,m]
P [Cn,m]

Ok[Cn,m] :=
∑
x

pxOk,x[Cn,m]

P [Cn,m] :=
∑
x

px Px[Cn,m]

and one has the bound

Fk[Cn,m] ≤ 2kd2

mPsucc
,

Psucc being the average success probability. Again, for every fixed value of
the success probability, the fidelity of the optimal cloner is achieved by a PM
protocol.
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B.8 Lower bound on the average probability of success
We now show that for every fixed n, the probability of success of the optimal
cloner is lower bounded by a finite value. Precisely, we prove the following

Lemma 1. The quantum operation C ∗n,m corresponding to the n-to-m cloner
that maximizes the fidelity in Eq. (B.56) can be chosen without loss of gen-
erality to have success probability P ∗succ equal to 1/‖τ−1‖∞, where τ is the
average input state τ := ∑

x pxϕ
⊗n
x and ‖τ−1‖∞ is the maximum eigenvalue

of τ−1.

Proof. For a generic quantum operation Cn,m, the k-copy fidelity can be
expressed in terms of its Choi operator Cn,m as

Fk[Cn,m] = tr [ΩCn,m]
tr [(I⊗m ⊗ τ̄)Cn,m]

Ω := 1(
m
k

) ∑
S

∑
x

px
(
ψ⊗kx

)
S
⊗ ψ̄⊗nx ,

where the outer summation runs over all k-element subsets S of the output
Hilbert spaces,

(
ψ⊗kx

)
S
denotes the operator ψ⊗kx acting on the Hilbert spaces

in the set S, and τ̄ (ψ̄x) is the complex conjugate of τ (ψx). Following the
arguments of Fiurášek [2004]; Chiribella and Xie [2013], one can easily show
that the maximum fidelity over all quantum operations is given by

F ∗k =
∥∥∥(I⊗m ⊗ τ̄− 1

2
)

Ω
(
I⊗m ⊗ τ̄−

1
2
)∥∥∥
∞
.

The maximum is achieved by choosing a Choi operator C∗n,m of the form

C∗n,m = γ
(
I⊗m ⊗ τ̄−

1
2
)
|Ψ〉 〈Ψ|

(
I⊗m ⊗ τ̄−

1
2
)

where γ ≥ 0 is a proportionality constant and |Ψ〉 is the eigenvector of(
I⊗m ⊗ τ̄− 1

2
)

Ω
(
I⊗m ⊗ τ̄− 1

2
)
with maximum eigenvalue. With this choice,

the success probability P [C ∗n,m] is given by

P [C ∗n,m] = tr [C∗n,m
(
I⊗m ⊗ τ̄

)
]

= γ .

We now show that γ can be always chosen to be larger than 1/‖τ−1‖∞.
To this purpose, note that the only constraint on γ is that the quantum
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operation C ∗n,m must be trace non-increasing. Now, for a generic state ρ one
has

tr [C ∗n,m(ρ)] = γ tr [C∗n,m
(
I⊗M ⊗ ρ̄

)
]

= γ 〈Ψ|
(
I⊗M ⊗ τ̄−

1
2 ρ̄τ̄−

1
2
)
|Ψ〉

≤ γ ‖τ̄−
1
2 ρ̄τ̄−

1
2‖∞

≤ γ ‖τ−1‖∞‖ρ‖∞
≤ γ ‖τ−1‖∞.

Hence, the choice γ = 1/‖τ−1‖∞ leads to a legitimate (trace non-increasing)
quantum operation. �
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