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3.4 Anàlisi  d’expressió de gens apoptòtics (V) 
 
Casas S, Ollila J, Aventin A, Vihinen M, Sierra J, Knuutila S. Changes in 
apoptosis-related pathways in acute myeloid leukemia. Cancer Genet and 
Cytogenet 2003;acceptat, pendent de publicació. 
 

3.4.1 cADN array 

Es va analitzar l’expressió de 205 gens relacionats amb el cicle cel.lular 

i l’apoptosi en cèl.lules mononucleades de 10 mostres de MO de pacients de 

LMA mitjançant cADN array. La mostra de referència provenia de cèl.lules 

mononucleades aïllades de 5 mostres de MO d’individus sans.  

En relació a la mostra de referència, l’anàlisi va identificar 34 gens amb 

expressió anòmala, dels quals 22 eren sotaexpressats i 12 sobreexpressats 

(Taula 3 i Fig. 2). El perfil d’expressió gènica es representa a la figura 1, on 

gens i pacients s’han agrupat segons semblança d’expressió mitjançant una 

anàlisis no dirigida, jeràrquica i aglomerativa. Pel què als 9 gens 

housekeeping inclosos a l’array, la seva expressió va ser semblant entre 

mostres amb una variància del 0,09.  

El resultats indicaven alteracions en diverses vies de senyalització 

cel.lular relacionades amb l’apoptosi. Entre aquestes destacar, canvis en 

l’expressió de gens relacionats amb la via de senyalització de TNF, ja que 

ADAM17 i RIPK1 estaven sobreexpresats, i TNFSF5, TNFA, NSMAF i LTB 

eren sotaexpressats (Fig. 3). Així mateix, es van observar alterats nivells 

d’expressió de diversos gens de la via de senyalització de IGF, com 

sobreexpressió de IGF10 i sotaexpressió de IGF1R, IGF2, IGFBP3 i 

IGFBP5 (Fig. 4). Alhora, els gens relacionats amb la via de senyalització de 

GSH, GPX1, GSR, GSTM1, GSTP1 i MGST1, es van detectar tots 

sotaexpressats (Fig.5). A més, en relació a la reacció de les caspases, es va 

identificar sobreexpressió de CASP8, i desregulació de l’expressió de varis 

gens codificants per proteïnes de tipus BCL2 com, sobreexpressió de BAG-1 

i BCL2A1, i sotaexpressió de NIP3 i DAD1 (Fig. 6). També es van observar 
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nivells anòmals d’expressió en gens de resposta a lesions en l’ADN, com 

sotaexpressió dels supressors de tumors P53 i CSE1L, i sobreexpressió de 

GADD45A (Fig. 7A). Tanmateix es van detectar alteracions en l’expressió 

de diversos gens relacionats amb el cicle cel.lular (Fig. 7B). S’observava 

sobreexpressió de RBBP4, alteració en el punt de control de cicle cel.lular 

G1/M per sobreexpressió de CDC37 i sotaexpressió de CDKN2A, així com 

en G2/M per sobreexpressió de NEDD5. Finalment, es va detectar 

sotaexpressió del gen codificant per la proteïna de senyalització MAPK7, 

mentre que els factors de transcripció JUN i E2F5 estaven sobreexpressats i 

NF-ATC1 sotaexpressat.  

3.4.2 Validació dels resultats  

Per tal de validar els resultats obtinguts per cADN array i per augmentar 

l’anàlisi d’expressió en una sèrie més extensa de pacients, es va quantificar 

l’expressió de 4 gens relacionats amb l’apoptosi (MCL1, MYC, BAX i 

DAPK1) emprant QRT-PCR a temps real. La mitja dels valors d’expressió 

relativa en relació a la mostra de referència dels 15 pacients de LMA 

analitzats, en escala log2, eren 6,4 ± 7,7 per MCL1, 3,8 ± 5,2 per MYC, 3 ± 

3,4 per BAX i 5,5 ± 7,3 per DAPK1. Aquests valors es correlacionaven 

significativament amb els obtinguts mitjançant cADN array (Fig. 8).  
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Abstract   

Expression analysis of apoptotic genes was performed for 15 patients 

with acute myeloid leukemia (AML) at the time of diagnosis to identify 

genes and signaling pathways involved in the regulation of cell survival and 

apoptosis during leukemogenesis. cDNA array analysis revealed 34 genes 

whose expression was significantly different as compared to the reference. 

Tumor suppressor genes P53 and CDKN2A were down-regulated, whereas 

proto-oncogenes JUN and GRB10 were up-regulated. Furthermore, several 

cellular signaling pathways acting either in cell cycle egulation or in 

apoptosis were altered. Deregulation was found in pathways which 

contribute to genomic stability (by down-regulation of either P53 or CSE1L, 

and by up-regulation of GADD45) and regulate cell cycle progression (by 

down-regulation of CDKN2A and up-regulation of RBBP4, CDC37 and 

NEDD5). Alterations at the transcriptional level were identified, namely up-

regulation of JUN and E2F5. Abnormalities were observed in the regulation 

of the caspases through up-regulation of CASP8 and by altered expression of 

BCL2-related pathway. Extrinsic apoptotic signals mediated by IGFs were 

deregulated, whereas the glutathione detoxification pathway was down-

regulated. These findings provide novel insight into the regulation of balance 

between apoptosis and cell proliferation signals, and suggest that these genes 

and pathways may have an important role in the pathogenesis of AML. 
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1. Introduction  

Acute myeloid leukemia (AML) is a hematologic disease with 

heterogeneous clinical and biological features. The genesis of AML is 

induced by alteration of the normal structure and role of genes that control 

both proliferation and differentiation and prevent the normal apoptosis of 

hematopoietic precursor cells. The multipotential leukemic stem cell pool 

could therefore differentiate into committed progenitor cells, which retain 

the capability of maturing into a lineage spectrum of different morphological 

AML subtypes [1]. AML is characterized by the presence of specific 

balanced chromosome abnormalities which lead to specific gene fusions. 

The novel hybrid protein directly interferes with the control of myeloid 

differentiation and regulation of cell survival and apoptosis [2, 3].  

An alteration due to a defect in the normal regulation of either 

apoptosis or cell proliferation signaling induces the cell population to 

survive and accumulate, promoting further genetic aberrations and 

tumorigenesis. The importance of apoptosis in the pathogenesis of AML has 

been well established. Several fusion proteins interact with mediators of 

apoptosis, sending anti-apoptotic signals, such as PML/RARα or 

CBFβ/SMMHC through the P53 pathway, or AML1/ETO through the 

BCL2-related pathway [4-6]. Furthermore, it has been suggested that MLL 

fusion proteins could modify the GADD34 function and inhibit apoptosis [7, 

8]. Recently, higher levels of BCL2A1 were found to be associated with 

normal karyotype in AML patients [9]. However, neither the specific 

disrupted genes nor the altered pathway of apoptosis have been well 

described. Conventional anti-cancer drugs in AML are designed to promote 

apoptosis in target cells, but a leukemic cell population with defects in 

normal apoptosis signaling could be refractory to conventional treatment 

[10, 11]. Studies concerning apoptosis regulation in AML are therefore 

needed to identify therapeutic targets that can defeat the resistance to 

apoptosis of leukemic cells. 
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Cellular mechanisms and proteins have been described to function at 

different points in the programmed cell death process illustrating the 

complexity of apoptosis regulation. When many genes are analyzed in a 

single experiment, microarray technology could assist the detection of genes 

or gene patterns related to alterations of cellular signaling pathways [12]. 

The aim of our study was to identify new apoptosis-related genes and to 

analyze abnormally regulated cell death pathway in AML using the 

microarray approach.  

 

2. Materials and methods 

2.1. Samples 

Bone marrow aspirates were obtained from 15 de novo AML patients 

at the time of diagnosis and from five healthy donors. AML were typed 

according to the FAB classification using conventional morphological 

analysis, immunophenotype and cytogenetic analysis. Biological and clinical 

data of the 15 patients are shown in Table 1. 

 

2.2. RNA isolation  

Total RNA was extracted from bone marrow samples using the 

Trizol® Reagent (Gibco BRL, Grand Island, NY, USA) after mononuclear 

cell isolation using Lymphoprep™ (Progen Biotechnik GmbH, Heidelberg, 

Germany). DNase treatment of total RNA was performed according to the 

Atlas cDNA Expression Array’s User Manual (Clontech Laboratories Inc., 

Palo Alto, CA, USA). The quality and integrity of the RNA were checked on 

1 % agarose gel after electrophoresis.  

 

2.3. Reference 

An RNA pool consisting of 1 µg of total RNA from each of the five 

healthy donors was used as a reference. 

 

2.4. cDNA array hybridization 
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Apoptosis gene expression study was performed in ten AML samples 

(patients 1-10) using the AtlasTM Human Apoptosis Array (Clontech 

Laboratories Inc.). Each filter contains duplicate spots of cDNA fragments 

of 217 genes, which include nine human housekeeping gene cDNAs used as 

positive controls and for data normalization, three non-human genes used as 

a negative controls, and 205 genes with functions related to cell death and 

cell cycle. The list of genes is available online: http://www.clontech.com. 

Three µg of total RNA from each AML patient and from the reference were 

converted into cDNA and labeled with 33PdATP using the Clontech cDNA 

Array Labeling Kit. Following hybridization, the filters were washed and 

exposed to imaging plates (BAS-MP 204OS; Fuji, Kanagawa, Japan). After 

2-4 days, the plates were scanned with phosphorimager (Bio-Imaging 

Analyzer, BAS-2500; Fuji) to obtain high resolution images of 16 bits in tiff 

format. 

 

2.5. cDNA array data analysis 

The intensities of spots were determined by using the Atlas Image 

Analysis Software 2.0 (Clontech Laboratories Inc.). Local background was 

subtracted at each point. To minimize the possible effect of differences in the 

amounts of RNA and efficiencies in the hybridizations, intensity values were 

normalized so that the mean intensities between samples were the same. To 

obtain the ratio value of expression, normalized intensity values of spots of 

each patient were compared to the respective reference values. Ratios were 

log2 transformed and a total of 34 genes, in which the expression ratio 

altered significantly (range from –1.32 to 1.32) in at least three patients, 

were chosen for further analysis. Hierarchical clustering was applied to both 

axes with the Cluster Program (Michael Eisen, http://rana.lbl.gov/) using 

uncentered correlation as a similarity metric. Results were visualized with 

the TreeView Program (Michael Eisen, http://rana.lbl.gov/). 
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2.6. Real-time quantitative reverse transcription polymerase chain reaction 

(QRT-PCR)  

Quantitative gene expression analysis of four apoptosis-related genes 

and beta-actin (ACTB) housekeeping gene was performed on 15 AML 

samples and the reference (Table 2). QRT-PCR was carried out using 

LightCycler FastStart DNA Master SYBR Green I and LightCycler 

Instrument (Roche Diagnostics, Mannheim, Germany). Each reaction 

mixture included 1-2 mM of MgCl2, 0.3-1 µM of each forward and reverse 

primer, 1 µl of LightCycler-FastStart DNA Master SYBR Green I mix (Taq 

DNA polymerase, dNTP, MgCl2 and SYBR Green I dye) and 1 µl of diluted 

cDNA template, in a volume of 10 µl. Four dilutions of beta-globulin gene 

(DNA Control kit; Roche Diagnostics), rising from 0.015 to 15 ng/µl, were 

used to acquire the standard curve in each assay. The amplification cycle 

conditions were optimized according to the specific target requirements 

following the manufacturer’s instructions. In every assay, runs were 

independently duplicated and a negative control was included. The 

amplification of PCR products was verified using the melting curve analysis 

option. Data analysis was performed using the LightCycler Software Version 

3.5 (Roche Diagnostics). 

Average values of run1 and run2 were calculated for ACTB and for all 

four apoptosis-related genes. Average value of each gene was then 

normalized based on the average value of ACTB in every patient and 

reference. Relative gene expression ratio in every patient was calculated by 

dividing the normalized gene value by the normalized median value of the 

same gene from the reference. 

 

3. Results 

3.1. Differentially expressed apoptosis-related genes 

To identify genes and pathways that induce or repress apoptosis in 

AML, we used a cDNA array which contained 205 genes associated with 

regulation of cell death and cell cycle. The analysis showed 34 genes 
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differently expressed as compared to the reference gene expression, in at 

least three patients. Of these, 22 were down-regulated and 12 were up-

regulated. The gene expression profile for all the patients is shown in Figure 

1, in which hierarchical clustering analysis was used to group the genes on 

the basis of the similarity in their expression. 

The affected genes, listed in Table 3, included BCL2 family proteins 

(BAG-1, NIP3 and BCL2A1); caspase 8; growth factors, cytokines and 

chemokines (TNFSF5, LTB, TNFA and IGF2), and their receptors 

(IGF1R); receptor associated proteins (NSMAF, GRB10 and RIPK); 

xenobiotic transporters (GPX1, GSTP1, GSR, GSTM1 and MGST); 

extracellular transporter (IGFBP3 and IGFBP5); nuclear transport factor 

(CSE1L); kinase network members (MAPK7); transcription modulators 

(P53, JUN, NF-ATC1 and E2F5); CDK regulators (CDC37, NEDD5 and 

CDKN2A); stress response proteins (POR); metalloproteinase (ADAM17); 

DNA synthesis, recombination and repair protein (GADD45); chromatin 

protein (RBBP4); and other apoptosis-associated proteins (CLU and 

DAD1). Figure 2 shows an overview of the ratios obtained from the 34 

differently expressed genes in AML patients compared to the reference. 

Furthermore, expression of the nine human housekeeping genes on the 

cDNA array was similar among samples, with a variance of 0.09.  

 

3.2.  Altered apoptotic signaling pathways 

Genes involved in common apoptotic pathways were found to be 

abnormally expressed in our study. The TNF signaling pathway was 

deregulated in our AML samples, reflected by up-regulation of ADAM17 and 

RIPK1, and by down-regulation of TNFSF5, TNFA, NSMAF and LTB (Fig. 

3). Moreover, several genes of the IGF signaling pathway were altered in our 

patients, including up-regulation of IGF10 and down-regulation of IGF1R, 

IGF2, IGFBP3 and IGFBP5 (Fig. 4). The glutathione detoxification pathway 

was abnormally expressed in our samples with down-regulation of GPX1, 

GSR, GSTM1, GSTP1 and MGST1 (Fig. 5). Furthermore, the caspase 



 

143 

cascade was altered by up-regulation of CASP8, which is one of its main 

effectors, and by abnormal expression of the BCL2-related pathway, 

including up-regulation of BAG-1 and BCL2A1, and down-regulation of 

NIP3 and DAD1 (Fig. 6). The DNA damage signaling pathway was 

abnormally expressed as tumor suppressor genes P53 and CSE1L were both 

down-regulated, whereas GADD45A was up-regulated (Fig. 7A). Altered 

pathways known to be associated with cell cycle progression were detected 

in AML samples (Fig. 7B). RBBP4 was up-regulated and the G1/S check 

point was altered by up-regulation of CDC37 and down-regulation of 

CDKN2A, and the G2/M check point showed up-regulation of NEDD5. In 

addition, the signaling molecule MAPK7 was down-regulated, whereas the 

transcription factors JUN and E2F5 were up-regulated at the transcriptional 

level, and NF-ATC1 was down-regulated. 

 

3.3. cDNA array versus real-time QRT-PCR 

To confirm the data obtained by cDNA array technique and to extend 

the analysis to a larger set of AML samples, we assessed the expression of 

four normally regulated apoptosis-related genes by real-time QRT-PCR. The 

selected genes were myeloid cell leukemia sequence 1 (MCL1), MYC proto-

oncogene (MYC), BCL-associated X protein (BAX) and death-associated 

protein kinase 1 (DAPK1). Means of the relative expression values obtained 

by QRT-PCR in the 15 AML patients as compared to the reference, 

expressed in log2, were 6.4 ± 7.7 for MCL1, 3.8 ± 5.2 for MYC, 3 ± 3.4 for 

BAX and 5.5 ± 7.3 for DAPK1. Furthermore, the relative expression ratios 

from cDNA array and QRT-PCR experiments were compared. Because the 

ratios were relative, they were not comparable as absolute values. In Figure 

8, ratios are depicted in a graph that shows array ratios on the X-axis and 

QRT-PCR on the Y-axis. The expression values of the genes are closely 

correlated if spots in the figure are either in the top right corner or in the left 

bottom corner. The correlation of ratios for MCL1, DAPK1 and BAX was 

high, and in case of MYC, the correlation was good in six out of ten patients. 
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Therefore, the expression values of these four apoptosis-related genes in the 

ten AML patients were significantly correlated.  

 

4. Discussion 

4.1. Differentially expressed genes related to lineage specificity of 

hematopoietic cells 

Mononuclear cells isolated from bone marrow samples of AML 

patients were analyzed and their gene expression was compared with that of 

the reference. As no mononuclear cell enrichment was performed during 

sample preparation, we ensured that gene expression changes between AML 

samples and reference were not related to differences in lineage specificity 

or maturation stage of hematopoietic cells by excluding the pseudo-

differentially expressed genes for further discussion. Among the 34 

differentially expressed genes, NF-ATC1, known to be expressed in 

lymphocytes [13], was down-regulated in our samples. Although the TNF 

signaling pathway also induces apoptosis in other cell types [14], the 

differentially expressed genes of this signaling pathway were excluded as 

they are mainly produced by activated macrophages and T cells through 

immune responses. At the ligand level, TNFA, LTB and TNFSF5 were down-

regulated, whereas ADAM17 was up-regulated [15]. At the cytosolic level, 

the adapter protein of cell surface death-receptor NSMAF was down-

regulated, whereas the signaling molecule RIPK1 was up-regulated [16-19] 

(Fig. 3).  

 

4.2. Differentially expressed apoptosis-related genes in AML  

To identify new apoptosis-related genes in AML, we performed gene 

expression analysis using a cDNA array, which contained 205 genes related 

to cell death and cell cycle. After excluding the pseudo-differentially 

expressed genes, analysis of our array data identified a group of 27 genes 

whose expression was significantly different, suggesting that they may have 

an important impact in the regulation of apoptosis and, consequently, in the 
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pathogenesis of AML. Among these, such tumor suppressors as P53 and 

CDKN2A were substantially down-regulated, whereas proto-oncogenes, e.g., 

JUN and GRB10, were up-regulated.  

 

4.3. Altered apoptotic signaling pathways in AML 

Cells mediate apoptosis through multiple independent pathways 

initiated either by intrinsic or extrinsic pathways [20]. The intrinsic pathways 

are activated from within the cell itself and involve the release of 

cytochrome c from mitochondria, which is needed for the activation of 

caspases. The extrinsic cell death pathways are induced by ligand mediated 

activation of cell surface receptors [14]. These death receptors belong mainly 

to the TNF receptor gene superfamily, whose cytosolic signaling pathway 

induces apoptosis, either dependently or independently of caspase activation. 

To identify abnormal apoptosis pathways in AML, we grouped the 27 

differentially expressed genes according to their cellular pathway. 

Several differentially expressed genes of the extrinsic signaling 

pathways were identified in our AML patients. The insulin-like growth 

factor system regulates proliferation and differentiation of hematopoietic 

cells [21-23] (Fig. 4). Our results showed alteration of this potent mitogenic 

and cell death protection signaling pathway by detecting down-regulation of 

both ligand IGF2 and receptor IGF1R. The implication of IGF2 in the 

development of AML requires further investigation as loss of its imprinting 

has also been reported [24], whereas reduced expression of IGF1R has been 

observed in childhood acute leukemia [25]. As discussed above, GRB10, 

which is related to cell proliferation and apoptosis [26], was up-regulated in 

our AML samples. The association of GRB10 with hematologic 

malignancies was evidenced when it was defined as a new binding partner 

for the oncogenic fusion protein BCR/ABL [27]. Furthermore, we detected 

down-regulation of both IGFBP3 and IGFBP5. In addition to its central role 

in IGF regulation, IGFBP3 promotes antiproliferative effects through P53 as 

well as through BAX independently of P53 [28], whereas IGFBP5 enhances 
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cell survival [29]. Despite its unknown implication in AML, IGFBP5 has 

been observed to be up-regulated, whereas lower expression of IGFBP3 has 

been associated with continuous remission in acute lymphoblastic leukemia 

patients [30, 31]. 

Array data identified down-regulation of the glutathione detoxification 

pathway by showing lower expression levels of GPX1, GSR, GSTM1, 

GSTP1 and MGST1 (Fig. 5). All the enzymes mentioned above are 

detoxicants of xenobiotics to reduce cellular stress, which is detrimental to 

cellular health. Down-regulation of the glutathione pathway has been 

detected by microarray analysis in lymphoma cell lines sensitive to apoptosis 

[32], whereas up-regulation in breast cancer has recently been found to be 

associated with different clinical features [33]. Thus, our results reveal that 

understated apoptosis in AML involves reduction of intracellular glutathione 

levels by inhibition of glutathione detoxification pathway. Alterations in this 

pathway have been associated with risk of adult acute leukemia and they 

have been suggested to confer susceptibility to t-AML after cytotoxic 

chemotherapy [34, 35].  

The study of the equilibrium between pro-apoptotic and anti-apoptotic 

signals in the mitochondria has been a challenge to cancer research. Indeed, 

patient prognosis and treatment implications have been found in AML [36, 

37]. Although the small number of samples did not allow us to perform 

correlation analysis, our results showed opposite cell death signals at the 

level of mitochondria (Fig. 6). In the present study, we detected altered 

caspase cascade by up-regulation of CASP8, which is one of the most 

important inductors and the endpoint of several cell surface death-receptor 

cytosolic signals. Some of the BCL2 family members, which are upstream 

regulators of caspase activation [38], were differentially expressed in our 

patients. We found up-regulation of anti-apoptotic genes, such as BCL2A1 

[39] and BAG-1 [40], and down-regulation of the pro-apoptotic NIP3 [41]. 

Furthermore, we observed down-regulation of the anti-apoptotic DAD1 [42], 
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whose abnormal expression in AML has previously been detected by 

microarray [43].  

In our data the participation of endoplasmic reticulum during 

apoptosis in AML is shown by down-regulation of POR, whose expression 

is generally deficient in tumor cells and related to treatment implications 

[44-46]. 

Our results suggest an alteration of the pathway which contributes to 

the maintenance of genomic stability by down-regulation of P53 and CSE1L, 

and by up-regulation of GADD45 (Fig. 7A). The critical role of P53 is 

evidenced by the fact that its function is suppressed in the majority of tumors 

[47]. Transcription factor P53 keeps the cell from progressing through the 

cell cycle until DNA damage is repaired [48]. Deletion of chromosome 17p 

arm and mutations in P53 are relatively uncommon abnormalities in AML 

karyotypes, especially compared to their frequency in solid tumors [49, 50]. 

However, we found down-regulation of P53 in all the patients studied, which 

agrees with previous P53 expression observations [51]. Moreover, for the 

first time in AML, we detected down-regulation of CSE1L in all the patients. 

CSE1L is a nuclear transport factor which is related to the mitotic spindle 

check point, and it exports proteins, such as P53 and RB1 [52]. In addition, 

up-regulation of GADD45, a component of the P53 pathway, has been 

observed to act as a link between cell cycle check point and DNA repair 

[53]. However, it also mediates apoptosis by activation of MAPK14/JNK 

pathway in response to stress [54]. To date, the involvement of GADD45 in 

AML was only observed in cell lines [55-57]. These findings indicate that 

up-regulation of GADD45 in leukemic cells could send either DNA repair or 

cell death signals as a mechanism to overcome the deficiencies in the 

maintenance of genomic stability produced by down-regulation of P53 and 

CSE1L. 

P53 and RB1 are two of the principal pathways controlling cell 

proliferation, and CDKN2A is involved in both of them encoding P16 

(INK4A), a regulator of RB1 phosphorylation mediated by CDK4 and 
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CDK6, and P14 (ARF), a modulator of P53 degradation mediated by MDM2 

[58] (Fig. 7B). CDKN2A was down-regulated in our samples. A defect in 

CDKN2A can interfere with cell cycle control and contribute to 

carcinogenesis [59]. CDC37, a CDK stability protein which plays a positive 

role in cell cycle progression, was up-regulated. Moreover, our samples 

revealed up-regulation of RBBP4, whose binding with RB1 regulates its 

growth suppression function. Additionally, NEDD5 (the human homolog of 

yeast CDC10) whose expression is cell cycle-dependent with increased 

levels found at G2/M phase, was up-regulated [60]. Loss of either CDKN2A 

or P53, and overexpression of CDKs have similar effects on cell cycle 

progression as they contribute to activate CDKs, which will be able to 

phosphorylate RB1 and allow transcription of cell cycle progression genes. It 

should be noted that the alterations in P53 will effect both G1/S and G2/M 

check points, while CDKN2A abnormalities only act in G1/S. All told, these 

specific alterations on cell cycle regulation may represent common pathways 

to leukemogenesis in AML.  

The endpoint of many cellular signaling pathways is direct activation 

of gene transcription. The MAP kinase transduction cascade is activated by 

multiple external cell stimuli that transduce the signal to the transcription 

factors, regulating either proliferation or survival [61]. The down-

regulation of MAPK7 in our AML samples therefore reflects partial 

blockage of MAPK signaling cascade on leukemic cells, which could 

influence therapeutic targeting strategies in AML [62]. Furthermore, we 

found abnormal regulation at the transcriptional level in AML, detecting 

up-regulation of JUN and E2F5. JUN directly induces apoptosis 

downstream of the TNF pathway [14], while E2F5 is related with cell cycle 

progression and transformation, acting downstream of TGF pathway [63].  

Finally, it should be emphasized that CLU [64] was down-regulated in 

all the AML samples. The up-regulation of CLU in apoptotic tissue and 

during cellular senescence is believed to be related to ageing and tumor 

suppression [65, 66]. In addition, CLU expression has recently been 
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associated with class prediction in AML by microarray analysis [67]. 

Therefore, our results confirm the possibility that down-regulation of CLU 

during hematopoiesis may contribute to leukemogenesis by resistance to 

apoptosis. 

In conclusion, our study provided an overview of deregulated 

apoptotic genes in AML patients that allows to detect several altered cell 

death pathways. To summarize, an alteration was found in pathways which 

contribute to genomic stability and are related to the regulation of cell cycle 

progression. This may enhance the promotion of deregulated cell 

proliferation and accumulation of genomic abnormalities that are likely to 

lead to leukemogenesis. Furthermore, both intrinsic and extrinsic apoptosis 

pathways, such as the caspase cascade and IGF signaling pathway, were 

altered. AML patients with defects in normal apoptosis signaling could be 

refractory to conventional anti-cancer drugs, which are designed to promote 

apoptosis in target cells. Our study of apoptosis regulation in AML presents 

therefore new evidence of altered apoptosis pathways. These abnormalities 

detected at the time of diagnosis may explain cases of resistance to AML 

treatment and can further serve to identify therapeutic targets, which can 

defeat insensibility to apoptosis of leukemic cells. Valuable knowledge on 

how these pathways are modified by treatment will be obtained in extended 

studies that will compare the apoptotic changes at diagnosis and after 

therapy. Furthermore, the present results provide novel molecular insight 

into the regulation of cell death that may contribute to our understanding of 

the role of apoptosis in the pathogenesis of AML. 
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Figure legends 

 

Figure 1.  Expression analysis of apoptosis-related genes of ten AML 

patients. Hierarchical clustering analysis was performed for all the patients 

on the basis of 34 differentially expressed genes. Patient numbers are listed 

above, with gene names on the right. Red color indicates up-regulated genes 

and green down-regulated genes. The intensity of the color correlates with 

the degree of expression, ranging from –1.32 to 1.32 in log2. Branch nodes 

connect closely related samples, branch’s length correlates with the degree 

of relationship. 

 

Figure 2.  Overview of 34 differentially expressed apoptosis-related genes in 

at least three of the AML patients compared to the reference. Bars illustrate 

the mean ± sd of log2 transformed gene expression ratios. Left to right: 

highest under-expressed to over-expressed genes. Asterix marks 

differentially expressed genes that may result from lineage specificity and/or 

maturation stage of the hemopoetic cell samples. 

 

Figure 3.  TNF signaling pathway. Disintegrin and metalloproteinase 

domain 17 (ADAM17) cleaves tumor necrosis factor-a (TNFA) precursor to 

its mature form. Ligand (TNFA/LTB) trimerizes receptor (TNFR/LTBR) 

after binding. TNFR-associated death domain (TRADD) then binds to the 

receptor, allowing the recruiting of several signaling molecules to the death 

domain (DD). TNFR-associated factor-2 (TRAF2) and receptor interacting 

protein (RIPK1) mediate signaling pathways to activate NF-kB and JUN, 

whereas FAS-associated via death domain (FADD) stimulates apoptosis 

through caspase 8 (CASP8). RIPK1 interacts with CRADD and leads to the 

activation of CASP2. The signal transduction pathway of CD40 has not been 

fully described. Upstream events include RAS activation, followed by MAP 

kinase cascade and activation of transcription factors. Neutral 

sphingomyelinase activation-associated factor (NSMAF) regulates TNF and 
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CD40 signals through activation of  SM-ceramide pathway [15, 18, 19, 68]. 

The differentially expressed apoptosis-related genes found in our AML 

samples are shaded.  

 

Figure 4.  IGF signaling pathway. Insulin like growth factors (IGFs) and 

their receptor (IGF1R) provide a proliferative signal and block apoptosis. 

After ligand interaction, Src homology 2 domain containing (SHC), son of 

sevenless homolog 1 (SOS-1) and growth factor receptor-bound protein 2 

(GRB2) are associated with IGF1R to activate RAS and the MAP kinase 

cascade (RAF, MEK, ERK). The endpoint is the activation of transcription 

factors, such as ELK-1, to transcript proliferation and cell survival genes. 

Insulin receptor substrate-1 (IRS-1) contributes to mitogenic signaling by 

interaction with the BCL2 family proteins. Growth factor receptor-bound 

protein 10, partner of the oncogenic fusion protein BCR/ABL, interacts with 

IGFR1 and inhibits/enhances IGF1 mediated cell proliferation. In addition, 

GRB10 shows anti-apoptotic function interacting with BCL2. Insulin-like 

growth factor binding proteins (IGFBPs) transport and stabilize IGFs in the 

circulation. IGFBP3 inhibits the access of IGF to IGF1R. IGFBP3 and 

IGFBP5 are also located in the nucleus transported by b-importin (KPNB), 

inducing apoptosis or cell survival, respectively [21, 26, 28]. The 

differentially expressed apoptosis-related genes found in our AML samples 

are  shaded.  

 

Figure 5.  Glutathione detoxification pathway. Reactive oxygen species 

(ROS) are detrimental to cellular health. Antioxidant response elements 

(AREs) regulate the expression of genes which protect cells from oxidative 

stress. Glutathione peroxidase 1 (GPX1) and glutathione S-transferases 

(GSTs) catalyze the conjugation of glutathione (GSH) with xenobiotics. 

Glutathione reductase (GSR) keeps GSH in its reduced form by generating 

NADP+ (Biocarta, http://www.biocarta.com) [32]. The differentially 

expressed apoptosis-related genes found in our AML samples are  shaded.  
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Figure 6.  Caspase cascade and BCL2 related signaling pathway. Ligand 

engaging on cell surface receptors activates caspase-8 (CASP8). CASP8 

translocates BH3 interacting domain death agonist (BID) to the 

mitochondria. Cytochrome c (CYTc) then leaves from mitochondria and 

activates both apoptotic protease activating factor 1 (APAF1) and the 

effector caspases. Death stimuli from the mitochondria translocate BCL2 

associated X protein (BAX) to the external membrane as a homodimer. After 

external stimuli, murine thymoma viral oncogene homolog (AKT) keeps 

BCL2 antagonist of cell death (BAD) in the cytosol and stimulates myeloid 

cell leukemia-1 (MCL1). Cooperative dimerization between antagonist and 

agonist proteins results in different apoptotic function. Homodimers of both 

BCL2 and BCL2-like 1 (BCL2L1) generate strong anti-apoptotic signals by 

inhibition of BAX function and CYTc relase. Heterodimers of both of them 

with BAD enhance pro-apoptotic BAD function. BCL2-associated 

athanogene (BAG-1) increases the anti-apoptotic function of BCL2, while 

BCL2/adenovirus E1B 19kDa interacting protein 3 (NIP3) inhibits it. 

Defender against cell death 1 (DAD1) needs MCL1 interaction to induce 

pro-apoptotic signal. Several BCL2 family proteins, such as BCL2, BAX 

and BCL2-related protein A1 (BCL2A1) could regulate the P53 pathway 

[39-41]. The differentially expressed apoptosis-related genes found in our 

AML samples are shaded.  

 

Figure 7.  A: P53 signaling pathway. The ataxia telangiectasia-mutated gene 

(ATM) is activated by DNA damage to induce P53 pathway. P53 pathway 

stimulates DNA repair and blocks progression through the cell cycle, by 

transcription of growth arrest and damage-inducible protein (GADD45) and 

cyclin-dependent kinase inhibitor 1 A (CDKN1A). If DNA damage can not 

be repaired, P53 sends apoptotic signal by transcription activation of BAX 

and transcription inhibition of BCL2. GADD45 is also an apoptotic inducer 

in response to stress through the MAPK14/JNK pathway. B: Cell cycle 
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regulation In the regulation of cell cycle, cyclins drive the stages in 

combination with cyclin-dependent kinases (CDKs), and dissociation of the 

retinoblastoma (RB)-repressor complex permits transcription. CDKs are 

inhibited by CDK inhibitors (CDKNs) and activated by cell division cycle 

proteins (CDCs). RB is regulated by several RB binding proteins (RBBPs) 

during cell cycle. Neutral precursor cell expressed developmentally 

downregulated 5 (NEDD5), the human homolog of yeast CDC10, acts at 

G2/M check point. CSE1L acts as a nuclear transport factor which exports 

important proteins to the nucleus, such as P53 and RB1 [48, 52-54, 57, 60]. 

The differentially expressed apoptosis-related genes found in our AML 

samples are  shaded.  

 

Figure 8.  Validation of gene expression data. Depicted are the comparisons 

of gene expression values from QRT-PCR and cDNA array studies. Log2 

gene expression ratios from microarray study are on the X-axis and QRT-

PCR ratios are on the Y-axis. Dots represent gene expression ratio values 

obtained by QRT-PCR and microarray. The most highly correlated gene 

expression ratios are on the top right corner or bottom left corner. 



 

Table 1.   Biological and clinical data of 15 AML patients 

 Sex Age Date of 
diagnosis FAB Karyotype Immunophenotype WBC 

(x109/l) 
1 F 51 12/06/01 M4 46,XX,t(3;12)(q21;q24),t(8;21)(q22;q22)/46,XX CD13+,CD33+,CD34+,CD56+,CD64-, 

CD14-,CD7-,CD19-,CD2-,CD117+ 
18 

2 F 57 13/07/01 M5b 46,XX CD13+,CD33+,CD34+,CD56-,CD64+, 
CD14-,CD7-,CD19+,CD2-,CD117+ 

31.2 

3 F 26 20/08/01 M2 48,XX,t(8;21)(q22;q22),del(11)(q21q23),+15,+21c CD13+,CD33+,CD34+,CD56-,CD64-,CD14-
,CD7-,CD19-,CD2-,CD117+ 

94 

4 M 1 07/08/01 M5 46,XY,del(10)(p12p15)/46,XY CD13-,CD33+,CD34-,CD56+,CD64+,CD14-
,CD7-,CD19-,CD2-,CD117+ 

- 

5 M 53 22/08/01 M5 45,XY,t(5;19)(q11;p12),der(7)t(7;?)(p15;?), 
der(12)t(12;18)(p?;q?),del(16)(q13),−17, 
der(18)t(17;18)(q21;q?),dup(22)(q?) 

CD13+,CD33+,CD34+,CD56-,CD64+, 
CD14+,CD7-,CD19+,CD2-,CD117+ 

61 

6 F 40 9/10/01 M2 46,XX CD13-,CD33+,CD34+,CD56+,CD64-, 
CD14-,CD7+,CD19-,CD2-,CD117+ 

12 

7 F 36 17/10/01 M1 47,XX,+4 CD13+,CD33+,CD34-,CD56-,CD64-, 
CD14-,CD7-,CD19-,CD2-,CD117+ 

28.6 

8 F 59 22/10/01 M2 ND CD13+,CD33+,CD34+,CD56-,CD64-, 
CD14-,CD7-,CD19-,CD2-,CD117+ 

1.26 

9 M 38 4/11/01 M1 47,XXYc CD13+,CD33+,CD34+,CD56-,CD64+, 
CD14-,CD7+,CD19+,CD2+,CD117+ 

5 

10 M 35 2/11/01 M5 45,XY,-7 CD13+,CD33+,CD34+,CD56-,CD64-, 
CD14-,CD7-,CD19-,CD2-,CD117+ 

73 

11 M 34 9/05/01 M4 46,XY CD13+,CD33+,CD34+,CD56-,CD64-, 
CD14-,CD7-,CD19-,CD2-,CD117+ 

1.6 

12 M 58 29/06/01 M5b 46,XY CD13+,CD33+,CD34-,CD56-,CD64-, 
CD14-,CD7-,CD19-,CD2-,CD117+ 

14.6 

13 F 60 9/08/01 M5b ND CD13+,CD33+,CD34+,CD56+,CD64+, 
CD14+,CD7+,CD19-,CD2-,CD117+ 

26 
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14 F 58 4/09/01 M5b 46,XX CD13+,CD33+,CD34+,CD56+,CD64+, 
CD14+,CD7-,CD19+,CD2-,CD117+ 

37.8 

15 F 46 1/11/01 M2 46,XX,inv(11)(p15q23) CD13+,CD33+,CD34+,CD56-,CD64-, 
CD14-,CD7-,CD19-,CD2-,CD117+ 

110 

M, male; F, female; WBC, white blood cell count; ND, not done 
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Table 2.   Primers used for real-time quantitative reverse transcription polymerase chain reaction 
 
 
 
 
 
 

Gene  Sequence 5' - 3' Length (bp) CG (%) Tm (ºC) Product size (bp) 
MYC F GGCAAAAGGTCAGAGTCTGG 20 55 63.7 209 

  GTGCATTTTCGGTTGTTGC 
 19 47.4 64.1  

DAPK1 F CAGTGTTGTTGCTCTAGGAAG 21 47.6 57.2 196 

 R GGGACTGCCACAAATGATGAG 
 21 52.4 58.2  

BAX F TGCTTCAGGGTTTCATCCAG 20 50 56.9 169 

 R GGCGGCAATCATCCTCTG 
 18 61.1 57.3  

MCL1 F GATGATCCATGTTTTCAGCGAC 22 45.5 56.4 205 

 R CTCCACAAACCCATCCCAG 
 19 57.9 57.7  

ACTB F AGCCTCGCCTTTGCCGA 17 64.7 68.5 174 
 R CTGGTGCCTGGGGCG 15 80 64.1  
F, forward; R, reverse; bp, base pair; Tm, melting temperature 
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Table 3.   General information about the 34 differently expressed apoptosis-related 
genes in our AML samples 

 Array 
location 

Gene 
symbol 

Gene name Gene Bank # Chromosome 
location 

1 11J CASP8 Caspase 8 U60520/U58143/ 
X98172 

2q33-q34 

2 11B BAG-1 BCL2-binding athanogene 1 S83171/Z35491 9p12 

3 12H RIPK1 Receptor-interacting serine/threonine kinase 1 U25994/U50062 6p24.3 

4 8J GRB10 Growth factor receptor-bound protein 10 U69276 7p12.p11.2 

5 16C IGF1R Insuline-like growth factor I receptor X04434/M24599 15q25-q26 

6 6L MAPK7 Mitogen-activated protein kinase 7 U25278 17p11.2 

7 16B IGF2 Insuline-like growth factor II M29645 11p15.5 

8 22E NIP3 BCL2/adenovirus E1B 19-kDa-interacting protein 3 U15174 8p21 

9 9F P53 P53 cellular tumor antigen M14694/M92424 17p13.1 

10 12O TNFA Tumor necrosis factor alpha X01394 6p21.3 

11 20B NF-ATC1 Cytoplasmatic nuclear factor of activated T-cells 1 U08015 18q23 

12 10K BCL2A1 BCL2-related protein A1 U29680/Y09397 15q24.3 

13 7L RBBP4 Retinoblastoma-binding protein 4 X74262 1p34.3 

14 6F CDC37 Cell division cycle 37 U6131 19p13.2 

15 8M JUN JUN proto-oncogene J04111 1p32-p31 

16 14D ADAM17 A disintegrin and metalloproteinase domain 17 U69611 2p25 

17 5O NEDD5 Neutral precursor cell expressed developmentally 
downregulated 5 

D63878 2q37 

18 22C GADD45A Growth arrest and damage-inducible protein M60974 1p31.2-p31.1 

19 8E E2F5 E2F transcription factor 5 U15642 8q22-q21.13 

20 16G IGFBP3 Insulin-like growth factor-binding protein 3 M31159/M35878 7p13-p12 

21 21E GPX1 Glutathione peroxidase 1 Y00483/M21304 3p21.3 

22 21C GSTP1 Glutathione S-transferase pi X08058/M24485 11q13 

23 20C DAD1 Defender against cell death 1 protein D15057 14q11-q12 

24 14C LTB Lymphotoxin-beta L11015 6p21.3 

25 20D CLU Clusterin M74816 8p21-p12 

26 19B CSE1L Chromosome segregation 1-like U33286 20q13 

27 23B NSMAF Neutral sphingomyelinase activation-associated 
factor 

X96586 8q12-q13 

28 20F GSR Glutathione reductase X15722 8p21.1 

29 17B IGFBP5 Insulin-like growth factor-binding protein 5 M65062 2q33-q36 

30 21G POR Cytochrome p450 reductase S90469 7q11.2 

31 21B GSTM1 Glutathione S-transferase m1 X68676/S01719 1p13.3 

32 22F TNFSF5 Tumor necrosis factor superfamily member 5 L07414 Xq26 

33 20G MGST1 Microsomal glutathione S-transferase 1 J03746 12p12.3-p12.1 
34 5H CDKN2A Cyclin-dependent kinase inhibitor 2A L27211 9p21 
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3.5  Anàlisis d’expressió dels gens HOXA9, DEK, CBL i CSF1R (VI) 
 
Casas S, Nagy B, Elonen E, Aventín A, Larramendy ML, Sierra J, Ruutu T, 
Knuutila  S. Aberrant expression of HOXA9, DEK, CBL and CSF1R in acute 
myeloid leukemia. Leukemia and Lymphoma 2003;acceptat, pendent de 
publicació. 

3.5.1 Quantificació de l'expressió relativa dels gens 

Mitjançant QRT-PCR a temps real, la quantificació dels nivells 

d'expressió dels gens DEK, CBL, CSF1R i HOXA9 en les mostres de MO de 

pacients de LMA comparada amb la de les mostres de referència, va 

permetre les següents observacions (Taula 4): 

Dels 41 pacients analitzats, HOXA9 estava sobreexpressat en 32 casos 

(78 %), sotaexpressat en 6 casos (14,6 %) i presentava nivells normals del 

transcrit en els 3 casos restants (7,3 %). La mitjana dels valors d’expressió 

relativa comparada amb les mostres de referència va ser 3000 ± 11595. Pel 

què fa a DEK, es va detectar sobreexpressió del gen en la majoria de pacients 

estudiats (97,6 %). En aquest cas, la mitjana dels valors d'expressió relativa 

comparat amb les mostres normals va ser 1415 ± 3094. En l’anàlisi 

quantitativa d'expressió de CSF1R es va observar sobreexpressió del gen en 

7 pacients (17,1 %), sotaexpressió en 17 casos (41, 5 %) i una expressió 

normal en els 17 pacients restants (41,5 %). La mitjana dels valors 

d'expressió relativa en relació a les mostres control va ser de 7,5 ± 28,3. Per 

últim, es va detectar sobreexpressió de CBL en 8 casos (19,5 %), 

sotaexpressió en 8 casos (19,5 %), i una expressió normal en els 25 pacients 

restants (61 %). La mitjana dels valors d'expressió relativa del gen CBL en 

relació a les mostres de referència va ser 3,9 ± 131.   

3.5.2 Anàlisi d’associació entre expressió gènica i paràmetres d’interès 

Els resultats d'expressió dels gens DEK, CBL, CSF1R i HOXA9 es van 

comparar amb certs factors clínics i biològics d’interès en relació a la LMA 

(Taula 5). 
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Els pacients amb t(8;21)(q22;q22) al cariotip presentaven una menor 

expressió de HOXA9 (p=0,004). Així mateix, es va observar una associació 

significativa entre mostres CD34- i s’obreexpressió de DEK (p=0,01) i 

HOXA9 (p=0,005). No obstant, no es va detectar associació significativa per 

l’expressió immunològica dels marcadors CD56 i CD64. Al considerar la 

classificació FAB, es va identificar sotaexpressió de CSF1R (p=0,034) i de 

HOXA9 (p=0,045) associat a LMA de subtipus M2, així com sobreexpressió 

de CBL (p=0,012) i CSF1R (p=0,021) en M5. No es va detectar cap més 

associació significativa amb els altres factors analitzats, excepte la 

sotaexpressió de CBL en pacients majors de 60 anys (p=0,034).  

  




