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Abstract
Lexical-semantic relationships, for instance hyperonymy, meronymy and
cohyponymy, between words are key information for many Natural Lan-
guage Processing tasks, which require this knowledge in the form of lexical
resources. The aim of this thesis is to automate the development of these
resources, addressing the acquisition of relation instances: given a target
semantic relation and a corpus of texts in a language, the system outputs
word pairs holding the target relation. State of the art systems rely on
word pair representations based on patterns of contexts where two related
words co-occur to detect their lexical semantic relation. This approach is
hindered by data sparsity because to observe in a corpus related words co-
occurring is a pre-condition to detect their lexical semantic relation. Even
when mining very large corpora, not every related word pair co-occurs or
not frequently enough. Therefore, our main goal was to investigate novel
representations to predict relations between words, even when these are
never found in the same sentence in a given corpus. Our intuition was that
these representations should contain information about patterns of context
combined with information about the meaning of words involved in the
relation. These two sources of information have to be the basis of a gener-
alization strategy to be able to provide information even for words that do
not co-occur. We provide two novel representations that proved to over-
come the data sparsity issue as demonstrated by a gain of more than 20
points in recall.
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Resum
Les relacions lexicosemàntiques entre paraules, com per exemple la hi-
peronímia, la meronímia i la cohiponímia, són una informació clau per a
moltes tasques del Processament del Llenguatge Natural, que requereixen
d’aquest coneixement en forma de recursos lingüístics. L’objectiu d’aques-
ta tesi és l’automatització del desenvolupament d’aquests recursos, tractant
l’adquisició d’instàncies d’aquestes relacions: donada una relació semàn-
tica particular i un corpus de textos en una llengua, el sistema produeix
parells de paraules que mantenen aquesta relació semàntica. Els sistemes
actuals utilitzen representacions basades en patrons dels contextos en que
les dues paraules relacionades coocorren per detectar la relació lexicose-
màntica que s’hi estableix. Aquest enfocament s’enfronta a problemes de
falta de dades, ja que una precondició per detectar la relació entre elles és
trobar coocurrències d’aquestes paraules en el corpus. Fins i tot en el cas
de treballar amb corpus de grans dimensions, hi haurà parells de paraules
relacionades que no coocorreran, o no amb la freqüéncia necessària. Per
tant, el nostre objectiu principal ha estat proposar noves representacions
per predir relacions entre paraules, fins i tot quan aquestes no apareixen
a la mateixa frase en un corpus en particular. La intuïció era que aques-
tes representacions noves havien de contenir informació sobre patrons de
context, però combinada amb informació sobre el significat de les paraules
implicades en la relació. Aquestes dues fonts d’informació havien de ser
la base d’una estratègia de generalització que oferís informació fins i tot
quan les dues paraules no coocorrien. Així, proposem dues representaci-
ons noves que han mostrat resoldre el problema de la manca de dades, com
demostra el fet que aconsegueixen augmentar la cobertura en més de 20
punts.
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Resumen
Las relaciones léxico-semánticas entre palabras, por ejemplo hiperonimia,
meronimia y cohiponimia, son una información clave para muchas tareas
del Procesamiento del Lenguaje Natural, que requieren de este conoci-
miento en forma de recursos lingüísticos. El objetivo de esta tesis es la
automatización del desarrollo de estos recursos, tratando la adquisición de
instancias de estas relaciones: dada una relación semántica particular y un
corpus de textos en una lengua, el sistema produce pares de palabras que
mantienen esa relación semántica. Los sistemas actuales utilizan represen-
taciones basadas en patrones de los contextos donde co-ocurren las dos pa-
labras relacionadas para detectar la relación léxico-semántica entre ellas.
Este enfoque se enfronta a problemas de falta de datos ya que una pre-
condición para detectar la relación entre ellas es encontrar co-ocurrencias
de esas palabras en el corpus. Incluso en el caso de trabajar con corpus
de grandes dimensiones, habrá pares de palabras relacionadas que no co-
ocurrirán o no con la frecuencia necesaria. Por tanto, nuestro principal ob-
jetivo ha sido proponer nuevas representaciones para predecir relaciones
entre palabras, incluso cuando éstas no aparecen en la misma frase en un
corpus en particular. La intuición era que estas representaciones nuevas de-
bían contener información sobre patrones de contexto pero combinada con
información sobre el significado de las palabras implicadas en la relación.
Estas dos fuentes de información tenían que ser la base de una estrategia
de generalización que ofreciera información incluso cuando las dos pa-
labras no co-ocurrían. Así, proponemos dos representaciones nuevas que
han mostrado resolver el problema de la falta de datos, como demuestra el
hecho de que consiguen aumentar la cobertura en más de 20 puntos.
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Chapter 1

INTRODUCTION

We are experiencing a phenomenon of digitalised information explosion
yielding huge amounts of data, which contain meaningful information ex-
pressed in human language. To exploit this information, systems must un-
derstand the human language. The task of human language understanding
(NLU) is part of the Natural Language Processing (NLP) domain and with
the Natural Language Generation (NLG) is the final aim of NLP.

The research in the NLP domain is taking small steps closer to NLU by
creating task dedicated systems such as: information extraction [Agichtein
and Gravano, 2000], information retrieval [Voorhees, 1998], word sense
disambiguation [Leacock and Chodorow, 1998, Banerjee and Pedersen,
2002, McCarthy and Carroll, 2003], text classification [Scott and Matwin,
1998], semantic role labeling [Gildea and Jurafsky, 2002], semantic simi-
larity [Lin, 1998a], automatic summarisation [Salton et al., 1997], among
many others.

Many systems in NLP require human knowledge in form of lexical
resources. These resources were created in form of taxomonies, such
as WordNet [Miller, 1995] and its siblings EuroWordNet [Vossen et al.,
1997], BalkaNet [Stamou et al., 2002] or CoreNet [Choi and Bae, 2004],
EDR [Yokoi, 1995] and ontologies such as Cyc [Lenat et al., 1985], SIM-
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PLE [Lenci et al., 2000], SUMO [Pease et al., 2002], ConceptNet [Liu
and Singh, 2004], and contain semantic information and world knowledge
information describing facts in the world.

WordNet is probably the most wide-spread used lexical resource in
NLP. This project was developed at Princeton University and was moti-
vated by the theories of the human semantic memory: humans organise
their knowledge of concepts in an economic and hierarchical model. Psy-
chological experiments showed that the retrieval time requested to access
conceptual knowledge seems to be directly related with the distance in the
hierarchy between the concepts. For instance, speakers are able to quickly
verify canary - sings because to sing is recorded in memory as a direct
property of a canary, but the time is larger to detect canary - flies because
to fly is an inherited property from bird, a canary is a type of bird, and
the subject has to go up in the hierarchy to the concept bird to retrieve this
information. The response time was even larger to detect canary has skin,
because the speaker has to go up in the hierarchy to the ancestor animal.
Motivated by these observations, WordNet developers aimed to model all
the concepts in a semantic memory modelled as a network created based
on two key concepts: the relations of synonymy and hypernymy between
concepts.

In WordNet, each word meaning is divided in senses, wordN
pos refer-

ring to the Nth sense of the word word with the part-of-speech pos. Word
senses that refer to the same concept are grouped in synsets, therefore a
synset is a group of synonym items. Because of the polysemy of words, a
word can have more than one sense. For instance, the Table 1.1 shows the
synsets creating the senses of the word dog: { dog1

n, domestic dog1
n, Canis

familiaris1
n} is the synset representing the first sense of dog, referring at a

member of the genus Canis (probably descended from the common wolf)
that has been domesticated by man since prehistoric times; occurs in many
breeds. Each synset represents a concept of the language and therefore,
each synset is a node of a network representing the semantic memory.

The network structure is based on the relation of hypernymy, connect-
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ing more specific concepts, hyponyms, to more general concepts, hyper-
nyms. For instance, the synset domestic_animal1

n is a hypernym of the
synset dog1

n. The relation is bidirectional, with dog1
n being the hyponym of

domestic_animal1
n. Additionally, concepts are also related through the re-

lation of meronymy, or part-whole, linking a whole synset to its parts. For
instance, the dog1

n (whole) has a relation of meronymy with flag7
n, a conspic-

uously marked or shaped tail, (part). The opposite relation is holonymy.
Other relations in WordNet, but with fewer instances, are antonymy linking
adjectives, toponymy linking verbs, morpho-semantic links linking words
sharing a stem with the same meaning and semantic roles.

SENSE SYNSET GLOSS

dog1n dog1n, domesticdog1n,
Canisfamiliaris1n

(a member of the genus Canis (prob-
ably descended from the common
wolf) that has been domesticated by
man since prehistoric times; occurs
in many breeds)

dog2n frump1n, dog2n (a dull unattractive unpleasant girl or
woman)

dog3n dog3n (informal term for a man)
dog4n cad1n, bounder1n, blackguard1n,

dog4n, hound2n, heel3n
(someone who is morally reprehen-
sible)

dog5n frank2n, frankfurter1n, hotdog3n,
hotdog3n, dog52 , wiener2n,
wienerwurst1n, weenie1n

a smooth-textured sausage of
minced beef or pork usually
smoked; often served on a bread roll

dog6n pawl1n, detent1n, click3n, dog6n (a hinged catch that fits into a notch
of a ratchet to move a wheel forward
or prevent it from moving backward)

dog7n andiron1
n, firedog1n, dog7n, dog −

iron1
n

(metal supports for logs in a fire-
place)

Table 1.1: WordNet information for dogn in WordNet 3.1

Resources like WordNet typically contain words of the general domain.
The systems that rely on WordNet information, and address NLP tasks in
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specific domains, need WordNet-like resource covering the target domain
to achieve good results. Moreover, WordNet is language dependent and
it has to be translated for each target language a system wants to cover.
English WordNet development (currently with about 117,000 synsets) took
almost 30 years and it still misses a huge amount of concepts and relation
links. Therefore, the manual development of lexical-semantic resources
for each language (note that Spanish WordNet only contains about 59,000
synsets) is very costly and very time-consuming [Agirre et al., 2012].

The aim of this thesis is to help the automatic development of these
lexical resources, addressing the acquisition of relation instances: given
a semantic relation, and a corpus of texts in a language, the system out-
puts word pairs holding the target relation. Automation of language re-
source production will contribute to solve the language and domain cover-
age problem that current systems face in real world applications.

1.1 Automatic Acquisition of Lexical-Semantic
Relations

Over the years, many lexical resources were developed containing different
semantic relation types, depending on the final target of the resource. For
instance WordNet contains relations that describe concepts, like a dog is
an animal, while Freebase [Bollacker et al., 2008], BabelNet [Navigli and
Ponzetto, 2010] or Yago [Suchanek et al., 2008] contain relations created
by experiences in the human life, such as Eliade was born in Bucharest
or Eliade has occupation author. We classify the semantic relations hold-
ing between a word pair in two main classes depending on the type of
terms linked: (1) relations that correspond to aspects of the meaning of
lexical items, which represent the cognitive organisation of the human lan-
guage, such as the WordNet relations; and (2) relations that represent world
knowledge, created by external factors other than a human language, for
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instance the relations acquired from Wikipedia, to populate Freebase, Ba-
belNet or Yago.

This present work focuses on the automatic acquisition of relations of
the former type, relations that emerge from the semantic properties of the
lexical items, and which are usually named lexical-semantic relations
[Cruse, 1986]. The relations that belong to the lexical-semantic relation
class are: synonyms, such as animal and animate being, hypernyms, such
as dog and animal, meronyms such as dog and tail, co-hyponymy, such as
dog and cat, selectional preferences such as dog and bark or dog and furry,
among others (see Section 2.2).

The automatic acquisition of lexical-semantic relations, and consequently
the automation of the development of lexical resources, is possible thanks
to the availability of large amounts of digitalised texts. However, to use all
these texts, the information contained in human language has to be repre-
sented in a computer understanding format. The meaning of words is rep-
resented thanks to the formulation of the distributional hypothesis [Harris,
1954]: the main tool to represent the meaning of a word is the set of words
that may co-occur with it in the same context (see Section 2.1). The repre-
sentation of the semantic relations between words has been influenced by
Hearst’s pioneering work [Hearst, 1992]. [Hearst, 1992] proposed an ap-
proach based on manually developed patterns of contexts that are indicative
of semantic relations among word pairs, for instance is a for hypernymy
cases, such as cat is an animal. Therefore, the distributional hypothesis
derived in the latent relational hypothesis: the information provided by
the contexts where two words co-occur assesses their relation. These two
hypothesis are fundamental for our acquisition task, because they are the
main pillars for semantic processing, allowing the representation of word
meaning and of lexical-semantic relations (see Section 2.3).

Hearst’s approach has an important drawback: patterns have to be de-
veloped for each relation and translated for each language. This approach
can be extended, for instance in Section 5.1, we describe an automatic
methodology based on a set of example instances for each target relation,
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which are used to mine reliable contexts indicative of that relation. These
contexts are transformed into patterns by generalising over particular lex-
ical items, and are then used to discover new word pair instances in the
text corpus. This method also has an important drawback, though. Word
pairs that do not occur both in the same sentence, are not considered as
candidates of holding a semantic relation, because the patterns only cap-
ture co-occurring word pairs. Therefore, the acquisition capacity is upper-
bound limited to the number of those actually co-occurring in the corpus.
That is, word pairs that are instances of a lexical-semantic relation, but are
not observed in the same sentence in the input corpus will never be ac-
quired. Therefore, the main issue of these systems is that a word pair has
to co-occur a sufficient amount of times to provide enough information for
successful classification. Mainstream pattern-based systems are unable to
associate any feature to word pairs that do not co-occur and, consequently,
to classify them. To solve that limitation has been the central motivation of
this work.

To enlarge the possibility of finding more co-occurring word pairs, ini-
tial approaches enlarge the size of the input corpus. However, more cor-
pus is not always available (see Section 2.4) and, moreover, in any corpus
of any size, there would be more words which might be semantically re-
lated, but that still do not co-occur and that will never be properly captured.
The key point of our work is to what extent other information coming
from word occurrences in the corpus could be used to breakthrough the
co-occurrence limitation.

To solve the problem, our proposal relies on the assumption that lexical-
semantic relations are strongly related with other distributional properties
of the words holding the relation:

Because meaningful sentences are composed of meaningful words, any sys-
tem that hopes to process natural languages as people do must have infor-
mation about words and their meanings. The semantic relations into which
a word enters determine the definition of that word [Cruse, 1986].

These two information types have already been combined in an attempt
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to gain recall, but they were taken as two different, unrelated data, gener-
ating two different scores: the lexical similarity score between words and
relational similarity score between word pairs, that are combined in a fi-
nal score [Snow et al., 2004, Turney, 2008a, Ó Séaghdha and Copestake,
2009]. The results obtained by this approach did not prove any significant
improvement in accuracy (see Section 3).

In this thesis we present novel approaches following the intuition that,
indeed, the context where word pairs co-occur is highly important and
gives the most valuable information to determine the semantic relation
type. But to overcome the upper-bound limitation, word pair represen-
tations have to include also information about the semantic properties of
their members, such as their distributional properties. The novelty of our
approach is that these two sources of information are related and they have
to be combined through a generalisation technique over the information in
corpus. In this way, more information is squeezed from corpus, and con-
sequently the dimensions of the input corpus are no longer a crucial issue.

We approach the task of lexical-semantic instances acquisition as a
multi-classification task. A classifier is trained with labelled word pairs,
representing positive and negative instances for a set of target relations,
to learn how to determine the lexical-semantic relation holding between a
novel word pair, if any.

1.2 Objectives
This thesis addresses the acquisition of lexical-semantic relation instances
and our main goal is to overcome data sparsity, which hinders acquisition
approaches based on the latent relational hypothesis and patterns of con-
texts. The objectives of the thesis are the following:

• To show the limits of systems that use only patterns of contexts,
which represent the main motivation of this thesis;

7



• To find novel techniques that combine the information about the
word co-occurrences with word distributional information in a way
that they complete each other for reducing the lack of information;

• To create general systems based on this novel approach that are able
to address various types of lexical-semantic relations;

• To determine the properties of the contexts that are meaningful for
the acquisition of lexical-semantic relations;

1.3 Thesis Layout
The rest of the thesis is organised in the following chapters:

Chapter 2: Theoretical framework explains the relations that are tar-
geted in this work, describes the general approach to convert the cor-
pus in information useful for the acquisition task, and the problem
that hinders this approach.

The automatisation of the acquisition of these types of relations is
possible thanks to the large amounts of corpus available. In Sec-
tion Distributional Hypothesis we introduce two hypotheses that
motivate the acquisition based on contextual information, in form of
distributional properties and patterns of contexts. Section Lexical-
Semantic Relations introduces the subset of semantic relations we
focused on, and how they differ from other semantic relations. In
the Section Contextual Information Acquisition, we explain how
this information is extracted from corpus and represented in vecto-
rial spaces that model word meaning and lexical-semantic relations
holding between words. Due to the data sparsity problem, the cor-
pus lacks of sufficient patterns of context information, fact that mo-
tivates the present work, explained in Section The Data Sparsity
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Problem. Section Graph Theory lists the most important notions
about graphs that will be used in the following chapters.

Chapter 3: Related Work revises the major techniques developed for
the acquisition of instances of the most important lexical-semantic
relations. Section Multi-relation Acquisition focuses on general
techniques developed for the acquisition of semantic relations, with-
out targeting any specific relation. Section Graph-based Represen-
tations, introduces the approaches that used notions of graph the-
ory for the same task, and Section Predictive Vector Space Mod-
els discuss the advancements in the Predictive Vector Space Models
(VSM). Graph theory and Predictive VSM are key representations
for the novel approaches that will be latter described.

Chapter 4: Approach and evaluation sets up the scenery for the ex-
periments describer in the following chapters: acquisition is addressed
with a supervised classification approach, and it is tested over two
corpora and two datasets.

Chapter 5: A Pattern-based Model aims at highlighting the problems
of systems that only use patterns of context, and a possible follow-
up based on a part-of-speech-based generalisation technique. The re-
sults are limited due to the necessity of seeing two words co-occurring
in the same sentence for being able to represent them.

Chapter 6: Overcoming Data Sparsity introduces two novel systems
for the automatic acquisition of lexical-semantic relations, which are
based on techniques of generalisation of the information in corpus.
Section Graph-based Representation Model proposes a general-
isation of the corpus information in a graph-representation of the
corpus, in this way, patterns of contexts that are detected as informa-
tive for a target relation are combined with information coming from

9



a network of words encoding word distributional properties. Sec-
tion Word Embeddings Representation Model uses the vectorial
representations created with word embeddings, which combines dis-
tributional information with information about semantically related
words.

Chapter 7: Conclusions draws the main conclusions of this thesis and
outlines future research lines to follow.
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Chapter 2

THEORETICAL
FRAMEWORK

2.1 Distributional Hypothesis
The theoretical framework of this thesis is based on the Distributional Hy-
pothesis introduced by Harris (1954):

Words that occur in the same contexts tend to have the same meaning.

This assumption was further popularised by Firth:

You shall know a word by the company it keeps! [Firth, 1957]

Therefore, the words with which a particular word occurs together in a
corpus of texts, i.e. co-occurs, represents its meaning:

The meaning of a lexical unit reveals itself through its contextual relations,
without commitment to what the meaning “really is” [Cruse, 1986].

We refer to the distributional properties or distributional information
of a word, the lexical items that co-occur with it. These co-occurring lexi-
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Syntagmatic relations

Paradigmatic relations
I bought red apples.

The boy eats green vegetables.
Mom made tasteful cakes .

Table 2.1: The lexical relation representation.

cal items joint together represent the meaning of the target word. To com-
pare the meanings of two words in the computational linguistic (CL), one
has to compare their distributional properties.

Harris hypothesis is influenced by Saussure’s structuralism theory. Fer-
dinand Saussure (1857-1913), considered the father of modern linguistics,
focuses in his work on the structure of the language (la langue). His
posthumously published collection of lecture notes Cours de linguistique
générale, presents the language as a system of signs, ultimately lexical
units. In the system, each sign has a value (valeur), roughly correspond-
ing to the meaning of the lexical unit, and that can be described by its
relations (intuitively meaningful differences) with the other signs of the
system. These relations between signs can be studied along two different
perspectives or “axes”: paradigmatic and syntagmatic relations (vertical
and horizontal axis respectively, see Table 2.1).

The paradigmatic relation is based on the substitution operation: it re-
lates units that occur in the same context but not at the same time. Each
item in a paradigmatic relation is significantly different and the use of one
item, rather than another, shapes the preferred meaning of a text. Paradig-
matically related words create sets that can be analysed in terms of a defin-
ing category, also referred as topical domain, like humans or vegetables,
and may be further structured; for instance the class of vegetables contains
greens, root vegetables and other similar lexical items; additionally root
vegetables contains carrots and potatoes. A hierarchical structure can be
derived from each set and it is the backbone of taxonomies, such as Word-
Net [Miller, 1995].
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Paradigmatic relations, for the most part, reflect the way infinitely and con-
tinuously varied experienced reality is apprehended and controlled through
being categorized, subcategorized or graded along specific dimensions of
variation [Cruse, 1986].

The syntagmatic relation is a relation based on linear sequences of lexical
items in sentences, and relate units that occur together in the same context
and at the same time. The final meaning of a text is given by the combi-
nation of the meaning of each lexical unit. These relations can be said to
describe the semantic space of a lexical unit and together with taxonomic
relations mentioned earlier serve to create ontologies, such as ConceptNet
[Liu and Singh, 2004].

Syntagmatic aspects of lexical meaning [...] serve discourse cohesion adding
necessary information redundancy to the message, at the same time con-
trolling the semantic contribution of individual utterance elements through
disambiguation [Cruse, 1986].

While syntagmatic relations, being in praesentia relations, may be di-
rectly observed in a corpus of text, the paradigmatic relations, in absentia
relations, usually are not directly observed in corpus, except when they
occur in very specific linguistic patterns describing the semantic relation,
such as “a carrot is a vegetable” or “vegetables such as potatoes and
tomatoes”.

The structuralist theory presents the language as a system of signs con-
nected by syntagmatic and paradigmatic semantic relations in which they
enter. Therefore, the meaning or the semantic space of each sign is de-
scribed by these relations. The present work focuses on lexical items as
signs, more specifically words, and the syntagmatic and paradigmatic rela-
tions are divided in the lexical-semantic relations (see Section 2.2).

Following the distributional hypothesis, two lexical units that are found
in similar contexts are considered lexically similar1, and members of the

1 also named attributional similarity in [Turney, 2006b]
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same paradigmatic class. However, lexically similar words hold different
types of relations between them. For instance, dog and pet, are lexically
similar and both are instances of the same semantic class, but their relation
is different of the relation between dog and cat or between traffic and street,
which are also lexically similar words.

[Turney, 2006b] introduces the second type of similarity in language:
two pairs of lexical items holding the same semantic relation are called re-
lationally similar. For instance the relation between (dog, pet) is similar
to the one holding for (apple, fruit) and (bottle, container) because dog is
a pet, apple is a fruit and bottle is a container, therefore, all pairs are in-
stances of the relation of hypernymy-hyponymy. To detect similar related
word pairs, [Turney, 2008a] extends the distributional hypothesis for de-
tecting the relational similarity between word pairs and creates the Latent
Relation Hypothesis:

Latent Relation Hypothesis: Pairs of words that co-occur in similar pat-
terns tend to have similar semantic relations.

In summary, the distributional hypothesis is used to represent the mean-
ing of a target word, while latent relation hypothesis is used to represent
the semantic relation holding between two words. Both approaches rely on
information extracted from context: the distributional hypothesis uses the
words co-occurring with a target word, and, the latent relational hypothesis
uses patterns of contexts where words co-occur. Therefore, in this work,
we mean distributional properties or distributional information of a word
when we refer to the other words co-occurring in the same context with
it, and patterns of context of co-occurrence when we refer to the context
where a word pair co-occurs.

2.2 Lexical-Semantic Relations
In the present work, we address the classification of lexical-semantic re-
lations, relation that emerge from the meaning of the words involved in
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the relation and stand between common names. Such relations are: hy-
pernymy and hypernymy, co-hyponymy, meronymy or those derived from
selectional preferences.

We will not deal with relations between named-entities, for instance
(Mircea Eliade, Bucharest), as a result of factual statement such as Mircea
Eliade was born in Bucharest. These types of relations have different lexi-
cal and contextual properties, and usually are detected only by the observa-
tions in corpus. For instance, the same pair of words can instantiate more
than one semantic relation, like the pair (Obama, USA) which holds the
relations BornIn and PresidentOf [Hoffmann et al., 2011, Surdeanu et al.,
2012], and tend to be explicitly expressed in language data in sentences
like Mircea Eliade was born in Bucharest, in which the explicit context X
was born in Y expresses the relation BornIn. This is generally not the case
for lexical relations, as these relations tend not to be explicitly expressed in
language data, but they are inferred from the set of contexts in which their
instances co-occur. For example, [Girju et al., 2003] extracted patterns of
contexts where meronyms tend to co-occur: 92.15% of these patterns were
general patterns with an implicit meaning, such as the door of the house
where the house is the part and the house is the whole. These patterns
often match contexts expressing more than one relation type, making the
acquisition of lexical relation instances more complicated.

In the next lines we introduce the most common lexical-semantic re-
lations addressed in the NLP area, and we classify them as the Saussure’s
relations, paradigmatic and syntagmatic. In this work, we focus on the rela-
tions contained by the BLESS dataset [Baroni and Lenci, 2011] described
in Section 4.2.2: hypernymy, co-hyponymy, meronyms and relations de-
fined by the selectional preferences of the words. For the sake of complete-
ness we also describe the relations of synonymy and antonymy, although
this work does not address these relations. Synonyms and antonyms are
relations having the highest lexical similarity and usually are addressed
comparing their distributional similarity.
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2.2.1 Paradigmatic Relations
Paradigmatic related words, are words that tend to occur in the same con-
text, therefore, they have similar semantic properties that make them simi-
lar in meaning.

Synonyms & Antonyms Two words that have an identical or similar
meaning, such as (car, automobile) and (couch, sofa), are named synonyms.
Formally, this relation is defined: two words that can be replaced one for
the other in a sentence without changing the true value of the sentence hold
a relation of synonymy.

While synonyms are words with the same meaning, antonyms are words
that have opposite meanings, such as (long,short) and (friend,enemy). More
formally, two words that share all the aspects of their meaning but one,
which puts them at opposite ends of some scale. For instance, the words
friend and enemy share a significant part of their meaning, but one prop-
erty puts them on opposite ends of the scale relationship between known
persons: one person can be either your friend or your enemy, but not both
at the same time.

Because, synonyms and antonyms differ just by one semantic property
it is very difficult to automatically distinguish these kind of relations using
patterns of contexts, as they tend to occur at the same contexts, but usually
in the same time.

Hyponymy One word is the hyponym of a second word if the former
word is more specific, denoting a subclass of the latter one, such as (apple,
fruit) or (dog, animal) The opposite relation is hypernymy: fruit is the
hypernym of apple. The superordinate is named the hypernym, and the
subclass the hyponym. Hypernymy relation has some important properties:

Inclusion The class denoted by the hypernyms includes the class de-
noted by the hyponyms. For instance the class of animals includes

16



the class of dogs.
Entailment Given a word pair (A,B) instance of the hypernymy rela-

tion, A is the hyponym of B, and B is the hypernym of A. Moreover,
A entails being a B and A inherits all the semantic properties B.

Transitivity If A is a hyponym of B and B is a hyponym of C, then A
is a hyponym of C.

The relation of hyponymy is a general relation that can be applied over
almost every concept in language.

Co-hyponymy Two words have a relation of co-hyponymy when they
have the same hypernym, but they do not have a relation of hyponymy, hy-
peronymy or synonymy. For instance, apple and pear, both are hyponyms
of fruit. Moreover, for a set of words to be co-hyponyms, they have to be
part of the same semantic class and to have a relation of incompatibility.
For instance, if a fruit is an apple, it cannot be also a pear or any other fruit.
Differently, queen and mother are both hyponyms of woman but they are
not co-hyponyms because they do not “respect” the incompatibility rule: a
queen can be a mother, and they do not belong to the same lexical class,
queen belongs to the aristocracy lexical class, while mother belongs to the
relatives lexical class.

Meronymy Two words have a relation of meronymy, or part-whole rela-
tion, if one is part of the other. For instance, wheel is part of a car, where
wheel is a meronym of car. The inverse relation is named holonymy, in
this case, car is the holonym of wheel.

In linguistics, the meronymy relation is seen as a collection of rela-
tions. [Winston et al., 1987] determines six types of meronymy relations:
(1) Component - Integral Object, such as (car, wheel); (2) Member - Col-
lection, such as (tree, forest); (3) Portion - Mass, such as (slice, pie);
(4) Material - Object, such as (alcohol, wine); (5) Feature - Activity, such
as (chewing, eating); (6) Place - Area, such as (oasis, desert).
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Here we do not distinct between different types of meronyms, although
conceptually they define different relations, in context they occur in similar
patterns [Ittoo and Bouma, 2010].

2.2.2 Syntagmatic Relation

The distributional hypothesis is based on the syntagmatic relations holding
between words. The context within the words occur, i.e. the words with
which it combines to create the meaning of the text, describe their semantic
properties.

Selectional prefernces Syntagmatic relations are linear relationships hold-
ing between words. They indicate compatible combinations between words
in contexts and create co-occurrence restrictions within syntax. Unlike the
paradigmatic relationships, the syntagmatic relationships of a word are not
only about meaning, but they are also about the lexical company that the
word keeps.

[Cruse, 1986] describes the syntagmatic relations in terms of selector
and selectee: in a syntactic construction such as head-modifier or head-
complement construction, the members of the construction can be a selec-
tor or a selectee, and the selector proposes one or more semantic traits of
the selectee. For instance, in the construction drink X, the verb to drink,
the selector, co-occurs only with nouns having the semantic property of
liquids, which are the selectees. In the construction X water, the selector,
water demands a verb that can be done to the concept of water which is a
liquid, such as to drink or to pour, but cannot be to build. Likewise, in the
construction pregnant X, the word pregnant co-occurs with lexical units
bearing the semantic trait female.

The acquisition of syntagmatic relations was addressed in the NLP
area through the selectional preferences task: the inclination of a selector
(also named predicate) to select possible and plausible filler selectees (also
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named arguments) for particular roles, such as the subject and the objects
of a verb or the nouns and adjectives that may modify a target noun. By
definition, when the selectional preference task means the selection of the
predicate given the argument. The inverse task, the selection of the argu-
ment based on a given predicate, is named inverse selectional preference.
The syntagmatic relations are classified according to the syntactic class of
the selector in classes such as verb-argument preferences or noun-modifier
preferences.

2.3 Contextual Information Acquisition
The assumption of the present work is that the acquisition of lexical rela-
tion instances rely on the acquisition and on the representation of informa-
tion about the contexts where the words co-occur, and also on the meaning
of the words. The former information is provided by patterns of contexts
were words co-occur, and the latter is provided by the distributional prop-
erties of the words. This section aims at introducing the reader to the main
techniques employed to acquire the desired information from an input cor-
pus, and next to illustrate the meaning of words or the relation holding
between word pairs.

2.3.1 Context
For the NLP systems, a corpus in a human language is a sequence of words
without having an associated meaning. The meaning is induced from the
corpus, on the basis of the distributional hypothesis, which states that word
meaning is represented by the context of the word. In order to acquire
the necessary contextual information from corpus, first we have to define
which words in sentences have their meaning connected.

In literature there are two ways to consider the context of a word: as
a bag-of-words or based on dependency relations holding between words,
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and the choice of one over the other influences the representation of lexical
items.

In the bag-of-words model, the context is seen as a linear sequence of
words, where the meaning of a word is represented by the words that are
close to it in all the contexts where it occurs. Therefore, the distributional
properties of a word are created with the set of words occurring in a win-
dow of (-m,n), -m being the number of words before and n the number of
words after the targeted word. In this model, the information about the con-
texts of co-occurrences of a word pair (w1,w2) are extracted using surface
lexical patterns:

[0 to n1 words] x [0 to n2 words] y [0 to n3 words]

and the occurrences of the target word pair are delexicalized, i.e. substi-
tuted by a place-holder.

The dependency-based model is based on the dependency structure of
each sentence. The distributional information is created only with the
words entering into a dependency relation with the target word. The infor-
mation about word co-occurrences is extracted based on the dependency
paths connecting two words in the the dependency tree outputted by a de-
pendency parser:

x d1−−→ w1
d2−−→ . . . wn

dn−−→ y

The differences between these two models are presented with the fol-
lowing example. Given the sentence:

(S2.1) Apple1 juice2 and3 apple4 cider5 are6 both7 fruit8 beverages9 made10

from11 apples12.

For the bag-of-words model, the co-occurrences relations are directly
extracted from the sentence. For the dependency-based model, instead, the
sentence is parsed, the resulted dependency relations are shown in Table
2.2. Only these relations are considered word co-occurrences.
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Figure 2.1: Parsing tree

Dependency relations
nn(juice2, apple1)
nsubj(beverages9, juice2)
cc(juice2, and3)
compound(cider5, apple4)
conj_and(juice2, cider5)
nsubj(beverages9, cider5)
cop(beverages9, are6)
det(beverages9, both7)
compound(beverages9, fruit8)
root(ROOT, beverages9)
nsubj(beverages9, made10)
case(apples12, from11)
nmod_from(made10, apples12)

Table 2.2: Dependency relations acquired with the Stanford Parser in the
collapsed format from the sentence S2.1.

The Table 2.3 presents the co-occurrences in which apple occurs ob-
tained with the bag-of-words model within a window (-3,+3) and Table 2.4
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the co-occurrences obtained with the dependency-based model. The first
column indicates co-occurrences and the second column indicates the num-
ber of instances of the head word pair in the context. For instance (apple,
juice) is seen two times in the bag-of-words approach in the given win-
dow (-3,3): (apple1, juice2) and (juice2, apple4), the numbers indicate the
position of the words in contexts, the word position in the pair is not con-
sidered; in the dependency-based model, the same pair is seen only once
in the dependency relation nn(juice,apple). For this example, we have also
lemmatised the words.

Co-occurrences #
(apple,juice) 2
(apple,cider) 1
(apple,and) 2
(apple,apple) 1
(apple,be) 1
(apple,both) 1
(apple,beverage) 1
(apple,make) 1
(apple,from) 1

Table 2.3: Co-occurrences of apple acquired with the bag-of-words ap-
proach from the sentence S2.1.

Co-occurrences Dep. rels #
(apple, juice) nn(juice,apple) 1
(apple, cider) nn(cider,apple) 1
(apple, made ) prepfrom(made, apple) 1

Table 2.4: Co-occurrences of apple acquired with the dependency-based
approach from the sentence S2.1.

Differences also appear in the patterns of context. For instance, the pat-
tern of context containing apple and juice in the two models are presented
in Table 2.5 and Table 2.6:
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Context Pattern of context #
apple juice X Y 1
juice and apple X and Y 1

Table 2.5: Patterns of contexts holding the pair (apple, juice) acquired with
the surface lexical pattern X [0 to 3 words] Y from the sentence S2.1.

Context Pattern of context #
apple nn←−− juice X nn←−− Y 1
apple cc←→ cider nn←−− juice X cc←→ cider nn←−− Y 1
apple cc←−− made nn←−−
beverage nsubj−−−→ juice

X cc←−− made nn←−− beverage nsubj−−−→
Y

1

Table 2.6: Patterns of contexts holding the pair (apple, juice) acquired with
the dependency based model with paths up to 3 edges from the sentence
S2.1.

In this section we introduced the definition of a context and the method
leveraged to acquire distributional information for words and patterns of
contexts for word pairs. For a system to be able to use this information, it
has to be represented in a way that reflects the meaning of a word and the
lexical-semantic relation of a word pair, respectively.

2.3.2 Representations
The most common approach to represent the meaning of lexical items is
based on the vectorial metaphor [Sahlgren, 2006], by which each lexical
unit is represented as a point in a vectorial space. The vectors are posi-
tioned according to their semantic similarity, close vectors are expected to
be semantic similar lexical units while distant vectors are lexical units that
do not share semantic properties.

The geometric metaphor of meaning: Meanings are locations in a se-
mantic space, and semantic similarity is proximity between the locations.
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[Sahlgren, 2006].

This language model is called Vector Space Model (VSM) and is applied
to represent the meaning of words, when encodes the distributional prop-
erties of words, and the lexical-semantic relations, when encodes patterns
of context.

There are two mainstream approaches to transform the contextual in-
formation extracted from the input corpus into a vectorial space: the Tra-
ditional VSM, where the vectors are created directly by counting the co-
occurrences observed in corpus as independent observations, and the Pre-
dictive VSM, where the co-occurrences observed in corpus are used as de-
pendent observations to create vectorial representations to predict the co-
occurring contexts for the target lexical unit. Both approaches are based
on the word co-occurrences in context.

A large amount of work was dedicated to the representations of lexical
units in a Traditional VSM. The creation of a Traditional VSM is directly
motivated by the distributional hypothesis as it was defined by Firth and
are created in the NLP field.

The Predictive VSM, named like this by [Baroni et al., 2014], contains
vectorial representations computed using a neural network, also called neu-
ral network models or word embeddings. These representations have been
relatively recently introduced in the NLP community, achieving state-of-
the-art results for many tasks [Baroni et al., 2014], and were created by
researchers in the machine learning field.

The method implemented in this work addresses the acquisition of lex-
ical relations based on latent relational hypothesis and on distributional
hypothesis, and therefore searches for reliable representation of two types
of lexical items: words and word pairs. In the remaining of this section, we
introduce the information encoded in the vectorial representation of each
lexical items in each vectorial space, as well as the technique used to detect
similarity between the lexical items.
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Traditional Vector Space Models

The Traditional VSM represents each lexical item into a vectorial space
where the dimensions of the vectors are context features ci and the infor-
mation encoded in the vectors, xi, weights the importance of each context
ci for the lexical_unit.

lexical_unit = (x1, x2, . . . , xn)

↑ ↑ ↑
c1 c2 . . . cn

Because of the zipfian distribution of words in any corpus, many possi-
ble co-occurrences are not observed [Bel, 2010] and consequently many
vectorial representations in a Traditional VSM are very sparse.

To overcome this issue, the initial vector space may be reduced by ap-
plying a dimensionality narrowing technique such as Singular Value De-
composition [Golub and Kahan, 1965] or Random Indexing [Sahlgren,
2006].

Next, we introduce how the representations of various word pairs are
created.

Word Representation The word representation starts from word co-occurrences
in corpus. As previously explained, different types of contexts create dif-
ferent representations. [Lund and Burgess, 1996, Rapp, 2003, Sahlgren,
2006, Bullinaria and Levy, 2007] use co-occurrences within a certain dis-
tance from the target word, [Grefenstette, 1994, Lin, 1998a, Almuhareb
and Poesio, 2004, Turney, 2006b, Padó and Lapata, 2007, Erk and Padó,
2008, Rothenhäusler and Schütze, 2009, Baroni et al., 2010] create vec-
torial representations based on dependency relations. [Baroni and Lenci,
2010] overpass the two-dimension representation and use higher tensors to
represent tuples word-link-word. However, all these representations hav-
ing high dimensions with sparse information, demand significant process-
ing time and huge physical resources. Therefore, [Biemann and Riedl,
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2013b] optimised the process using the Hadoop distributional system and
proposed a novel representation based on lists of features created by the
holing operation.

juiceN appleN pearN eatV tartN ciderN makeV jamN

appleN 37 29 54 43 17 11 10 1
orangeN 278 43 4 12 0 0 5 1
quinceN 0 1 0 0 1 0 0 1
wallN 0 0 0 3 1 0 131 0

Table 2.7: Co-occurrence counts of the words apple and quince, as nouns,
within a set of manually defined context words extracted from BNC with
the dependency-based approach.

Once the context is defined, these systems follow a similar methodol-
ogy to transform co-occurrences in vectorial representations. Given a list
of co-occurrences, these co-occurrences create a word-context matrix [Tur-
ney et al., 2010] counting how many times a word co-occurred within each
particular context. Table 2.7 represents the co-occurrences counts of four
headwords appleN, orangeN, quinceN and wallN in the BNC [bnc, ] corpus
with a set of vocabulary words, manually chosen as context for the sake of
this example. The matrix rows represent the target words whose meaning
is aimed to be represented as a vector; the columns represent vocabulary
words and are used to represent the meaning in shape of dimensions of the
vector.

Relying on the distributional hypothesis statement, these vectorial rep-
resentations depict the distributional characteristics of each target word.
The more similar two vectorial representations are, the higher their seman-
tic similarities will be.

Formally, the semantic similarity of two words x1 and x2 is estimated by
similarity scores of their vectorial representations vx1 and vx2 respectively:

simsem = score(vx1, vx2)
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[Curran, 2003, Weeds, 2003, Budanitsky and Hirst, 2006] give an extensive
overview of existing vectorial similarity scores and their applications in
various NLP tasks. However, this representation is hindered by the lack of
information in corpus (see Section 2.4), not all the similar word pairs co-
occur within the same context. For instance, AppleN, orangeN and quinceN

are all fruits, and are expected to have similar word representations. In
Table 2.7, one can observe that appleN and orangeN tend to share many co-
occurring words, although with slightly different frequencies. Moreover,
these representations are very different of the representation of a non-fruit
noun, such as wallN.

Instead, quinceN, has a very different representation of appleN, orangeN:
they share few contexts with very low frequencies. This is due to the fact
that appleN and orangeN occur more frequently in corpus, 1901 times and
945 times, respectively, while quince occurs only 17 times. To reduce the
impact of the differences in co-occurrence frequencies, the word repre-
sentations are created using a weighting scheme based on statistical mea-
sures that balance the co-occurrence frequency with the frequency of oc-
currences of each word. [Curran and Moens, 2002, Evert, 2005] carried
out a broader survey of weighting measures in the context of Traditional
VSM.

Word Pair Representation There are two mainstream research lines
that addressed the word pair representation in Traditional VSM. The first
approach is a compositional one: given the words x and y, they are repre-
sented in a Traditional VSM, creating v(x) and v(y). The representation of
the word pair (x,y) is created applying vector operations to v(x) and v(y):

v((x, y)) = v(x)⊕ v(y)

Various vector operations were tested like addition, multiplication or tensor-
product [Clark and Pulman, 2007, Widdows, 2008, Mitchell and Lapata,
2010, Guevara, 2010, Baroni and Zamparelli, 2010, Grefenstette and Sadrzadeh,
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2011]. The results obtained differ across NLP tasks, raising many doubts
about a general approach to represent the meaning of a word pair through
vector composition in the Traditional VSM.

The second approach treats each word pair as a unit, and constructs
its representation relying on the Latent Relation Hypothesis, as we will do
in this work: the contexts where two words co-occur reflect properties of
the lexical relation holding between them. To create word pair represen-
tations, the dimensions of the vectors are created with the contexts where
the members of the pair occur together. As already stated, the contexts of
co-occurrence are expressed through patterns of contexts, and depending
on how the context is interpreted, as a bag-of-words or as a dependency-
model, the patterns are acquired in form of surface patterns, or in form of
dependency patterns.

The word-context matrix created for the word representations is modi-
fied into the pair-pattern matrix [Turney et al., 2010]: each row represents
a word pair (x,y) and each column represents a pattern of context p, where x
and y occur together. Each cell of the matrix contains weights that show the
information provided by each pattern for the target lexical relation created
based on the frequency of occurrence of the word pair within the pattern.
[Turney, 2012] names this approach a holistic approach because word pairs
are opaque wholes as their members do not have separate representations.

Two word pairs that hold similar lexical relations should have similar
representations:

simrel = score(v(wp1), v(wp2))

Predictive Vector Space Models

The Predictive VSM [Bengio et al., 2003b, Bengio et al., 2003a] is the new
generation of word vectorial representations. Different of the Traditional
VSM, which shows within the vector components the importance of the
context ci observed in corpus for the target word w, the components of the
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Predictive VSM is set to maximise the probability that a target word tends
to appear within the context ci. This way, semantically similar words have
similar vectors.

A Predictive VSM is created using a neural network, which takes as
inputs word co-occurrences and outputs vectorial representations of words
in a continuous space, named also word embeddings. An important char-
acteristic of these vectors is that their dimensions have no linguistic signif-
icance. Instead, they find patterns in the word co-occurrences, that are fold
together in the vectorial representation.

In this work, we use an off-the-shelf system called word2vec2 [Mikolov
et al., 2013a] to create the word embeddings. The rest of the section is ded-
icated to explain how these representations interpret the contextual input to
create representations of lexical items, without entering deeply into details
in the mechanism used by the neural networks for learning the vectorial
representations, which is behind the scope of this work.

Word Representation The word2vec system contains two architec-
tures that differ in the way they interpret the input co-occurrences: the
Continuous Bag-Of-Words model (CBOW) and the Skip Gram model.
Both models are inspired by the Feedforward Neural Net Language Mod-
els, simplified to minimise the computational complexity, for training them
on larger amounts of data. The CBOW model uses a log-linear classifier
that, given a symmetric window, containing N words from the past and N
words from the future, learns the classification of the word in the middle
based on the sum of the representations of the other words in the window.
The Skip-gram model has a different approach over the co-occurrences
of words. Instead of learning the current word based on its context, this
model uses each current word as input to a log-liner classifier, to predict
words within a window of words.

Both models are very computational intensive, because they need to

2https://code.google.com/p/word2vec/
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calculate the conditional probability of all words given a history. To re-
duce this computational cost, two statistical techniques are leveraged: the
hierarchical softmax classifier and the negative sampling technique. The
hierarchical softmax is a normalisation technique, which instead of calcu-
lating the probabilities for each node, it first creates a Huffman tree based
on word frequencies. The final probability of a target words is estimated by
mutiplying all the probabilities from the root to its position in the tree3. The
negative sampling technique uses co-occurrences extracted from a corrupt
corpus as negative examples when the neural network is trained to predict
the vectorial representations. Another approach to reduce the computa-
tional time is reducing the number of occurrences of high-frequent words,
which occurring very frequently in context and co-occurring with almost
any word do not bring distinctive information about the meaning of a tar-
get word. To do so, a subsampling technique is used: the word occurrences
in the training data are discarded with a probability that is proportional to
their frequency.

The best results obtained in finding general semantic similar word pairs
were obtained with the Skip-gram model, with negative sampling and the
subsampling technique of frequent words, as explained in Section 3.3, and
these are the parameters used in this work.

Word Pair Representation

The most remarkable property of the Predictive VSM, and the rea-
son why they attracted a huge interest, is that: analogies between words
seem to be encoded in the difference vectors between words. For instance
v(cars) − v(car) ≈ v(apples) − v(apple), and v(king) − v(man) ≈
v(queen) − v(women). This observations show that they are able to pre-
serve syntactic and semantic information: word pairs holding the same

3https://yinwenpeng.wordpress.com/2013/09/26/hierarchical-softmax-in-neural-
network-language-model/
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relations tend to be related by the same constant. Therefore, differently
of the Traditional VSM, where two different spaces have to be created for
the representation of words and word pairs, in the Predictive VSM the rep-
resentation of the semantic relation of a word pair is done based on the
vectorial representations of its members [Mikolov et al., 2013c]. Given
two words x and y, with their embeddings v(x) and v(y), the syntactic or
semantic relation between them is reflected by their vector offset:

v((x, y)) = v(x)− v(y)

The intuition behind this observation is that although the dimensions of
the vectors cannot be interpreted, the offset represents the changes in the
dimensions of the vectors that are necessary to transform one word into
another.

To similar offsets correspond similar relations [Zhila et al., 2013], there-
fore, the relational similarity between two word pairs wp1=(x1,y1) and
wp2=(x2,y2) is estimated calculating the vectorial distance between theirs
offsets.

simrel = score(v(wp1), (wp2)) = score(v(x1)− v(y1), v(x2)− v(y2))

2.4 The Data Sparsity Problem

Most of the research tackling the acquisition of lexical-semantic relations
instances was done in the Traditional VSM using the holistic approach
[Turney et al., 2005, Turney, 2006a, Turney, 2006b, Turney, 2008a, Turney,
2008b, Turney et al., 2010, Turney, 2012].

In Traditional VSM, the acquisition of lexical-semantic relations is
done by calculating the vectorial similarity between word pair represen-
tations created using patterns of contexts. This approach achieves good
precision, but it has an important drawback reflected in system’s recall:
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two words have to co-occur in an input corpus for assigning them a vecto-
rial representations, and therefore, for detecting their relation. In any cor-
pus of any size there will always be many semantically related word pairs
that do not co-occur and consequently cannot be identified as instances
of any semantic relation. Although the Web could provide additional in-
formation about the co-occurring contexts of a word pair, this approach
can be applied only for the general domain, while for specific domains
additional information may not be available. Consequently, the results ob-
tained in the Traditional VSM, relying only on the word pair contexts of
co-occurrences, are upper-bound limited by the amount of word pairs that
co-occur in corpus.

Lexical-semantic relations holding between lexical items are an intrin-
sic part of the meaning of the words holding the relation.

It is assumed that the semantic properties of a lexical item are fully reflected
in appropriate aspects of the relations it contracts with actual and potential
contexts (Cruse, 1986).

There is a strong connection between the lexical-semantic relation holding
between a word pair and the semantic properties of its members, which are
reflected in their contexts of co-occurrences, as stated by the distributional
hypothesis in Section 2.1. We assume that in any corpus there is more
valuable information, besides the contexts where two words co-occur, that
can be used for identifying the lexical-semantic relation holding between
two words. For instance, [Turney, 2006b] showed that including in the
representation of a word pair also the information acquired with pairs cre-
ated with the synonyms of the members improves the results, especially in
recall.

In the previous section, we presented two vectorial spaces, Traditional
VSM created directly from empirical evidences, and Predictive VSM, which
are trained to predict the observed co-occurrences, for representing lexical
units as vectors. Each vectorial space has its own way to represent words
and word pairs. While the Traditional VSM is hindered by the lack of in-

32



formation, the initial experiments in the Predictive VSM although showing
state-of-the-art results, the results obtained are far from the results obtained
by human [Levy and Goldberg, 2014b]. This work searches for novel word
pair representations for the automatic acquisition of lexical-semantic rela-
tions that fulfil our expectations: to combine information about the con-
texts where two words co-occur with the distributional information of each
member in generalisation of the information in corpus. We propose a novel
representation in the Traditional VSM based on a graph-based representa-
tion of the corpus and a novel system using a machine learning to discover
information encoded in the Predictive VSM representations.

2.5 Graph Theory
To create a novel word pair representation in Traditional VSM, we use a
graph-based corpus representation to generalise the information from the
input corpus (see Section 6.1). Here, we introduce the basic notions from
the graph theory that will be useful later in the acquisition of lexical infor-
mation.

The graph theory is the study of graphs: a graph is a mathematical
structure that represents a set of objects and their relation through a set
of vertices and edges. Formally, a graph G, is a tuple (V,E), where
V = {v1, . . . , vn} is a set of unordered elements, named vertices, and
E = {(vi, vj)} is a set of edges, unordered pairs of elements from V × V .

In the context of language processing, vertices denote language units,
whereas edges represent relations between them. We present now the main
concepts related to graphs.

Vertices and Edges All the graph properties refer to the vertices, also
named nodes, and the edges of the graph which are basic units in any graph
structure. Given an edge e = (vi, vj) ∈ E, it is said that e connects vi and
vj , and consequently that vi and vj are endpoints of e and vi and vj are
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two adjacent vertices. Equivalently, two edges that share the same vertices
e1 = (vi, vj) and e2 = (vi, vk) are said to be adjacent edges. However, a
vertex may exist in a graph and not belong to an edge, named isolated or
singleton.

Dimension of the graph The dimension of the graph is expressed through
the order of the graph which is the number of vertices, n=|V |, and through
the size of the graph which is the number of edges, m=|E|. Therefore a
graph G(n,m) denotes a graph G of order n and size m.

Graph Types Depending on the type of edges contained, the graphs are
of various types. An undirected graph refers to its edges as unordered pairs
of vertices, (vi, vj) and (vj, vi) represent the same edge. A directed graph
has associated to the each edge a direction, (vi, vj) and (vj, vi) are two
different edges. In this type of graph, the edges are named arcs, directed
edges or arrows.

A graph, having more than one edge connecting the same tuple of ver-
tices is named multigraph. A direct graph having multiple arcs connecting
the same ordered pair of vertices is named directed multigraph.

Neighbourhoods A neighbourhood of a vertex v ∈ V is the set of ver-
tices that are adjacent to v in G: neigh(v) = {vi|(v, vi) ∈ E}.

Degrees The degree of a vertex v, d(v), is the number of edges having
v as an endpoint, which is the same as the number of neighbours of v:
d(v) = |neighbours(v)|. A singleton vertex has the degree 0.

In a direct graph the degree is split in the in-degree, din(v), which is the
number of edges ending at v, and out-degree, dout(v), which is the number
of edges starting at v.
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Subgraph A subgraph G′ of a graph G is a graph induced by a set of
vertices V ′ ⊂ V that contains all edges of G that connect any two nodes
vi, vj ∈ V ′.

Path or Walk A path, also named an open walk, in the graph G is a
finite or infinite sequence of edges (v1, v2), (v2, v3), . . . , (vk−1, vk) which
connect the sequence of vertices v1, v2, . . . , vk−1, vk. In a directed graph,
the sequence of arcs are directed in the same direction. If for every pair of
vertices vi, vj ∈ V exists a path from vi to vj , the graph is connected. A
maximal connected subgraph of G is called a component of G.

Random Walk A random walk is a mathematical formalization of a path
that consists of a succession of random steps. A random walk on a graph
G is a path along its edges and the probability of walking along an edge is
proportional to its weight. Given a random walker, the next step the walker
does dependends only on the vertex where it is positioned at a certain time
step and the probabilities of the weights of the edges are invariant of the
specific time step.

Clustering A cluster of a graph G is a set of disjoint sets of vertices
{C1, C2, ...Cn}where Ci ⊂ V and for all i, j ∈ {1 . . . n}, i 6= i : Ci∩Cj =
∅ and

⋃
{1..n}Ci = V . Each vertices subset Ci is called part or cluster.

Connected component A connected component in a graph G is the max-
imal subgraph in which any two vertices are connected to each other by a
path.

Strongly connected component A strongly connected component in a
graph G is the maximal subgraph in which any vertex is reachable from
every other vertex.
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Weights A graph G is edge-weighted if each edge (vi, vj) has a weight w
associated. Therefore, a function fe : E → R+ exists that weights a given
edge: fe((i, j)) = w(vi,vj). A graph G is vertex-wieghted if each vertex v
has a weight w associated. Therefore, a function fv : V → R+ exists that
weights a given vertex: fv(v) = wv. Unweighted graphs, also known as
simple graphs, are a special case of weighted graphs with all vertex and
edge weights set to 1.

Types A graph G is edge-typed if each edge (vi, vj) has a type te as-
signed. Therefore, given a set Se of edge types there exist a function
te : E → S that labels the given edge: fe((i, j)) = s, where se ∈ S.
A graph G is vertex-typed if each vertex v has an type tv assigned. There-
fore, given a set Sv of vertex types a function tv : E → S exists that labels
the given vertex: tv(v) = sv, where sv ∈ S.

The entirety of vertex type assignments induces a partition of G: V =⋃
V1..n, for all i, j ∈ {1, . . . n}, i 6= j : Vi ∩ Vj = ∅ and for all vi ∈ Vk and

vj ∈ Vk, tv(vi) = tv(vj).

Adjacent matrix The adjacency matrix of a graph G is a matrix A asso-
ciated with G where aij = 1 if an edge exists between vertices vi and vj ,
aij = 0 otherwise. For edge-weighted graphs, aij = w(i, j).

36



Chapter 3

RELATED WORK

This chapter presents the state-of-the-art in the acquisition of lexical-semantic
relation instances. Previous works differ in the information used for the
acquisition: patterns of contexts, distributional information of grammati-
cal constructions, and in the approaches employed for detecting novel in-
stances: bootstrapping or supervised classification of vectorial representa-
tions. However, their results, especially the recall, show that all are hin-
dered by the data sparsity.

We assume the common shortcoming of these systems is the usage of
information only directly observed in the corpus and their incapacity to
generalise because of the chosen representations. Therefore, novel repre-
sentation approaches of the information are presented in the final sections
of this chapter: one based on a graph, as way to join the observed infor-
mation towards a generalisation step, and another one based on Predictive
VSM, the novel representation of words created with neural networks.
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3.1 Lexical-semantic relation acquisition
The acquisition of lexical-semantic relations started with the seminal work
of [Hearst, 1992] that introduced the patterns of contexts as information
for the detection of the relation instances.

Hearst’s work showed that word pairs having a relation of hyponymy
may be identified in a corpus of text using a collection of manually de-
fined lexico-syntactic patterns of contexts, presented in Table 3.1. Besides
creating patterns that reflect the relation of hypernymy, Hearst defined a
desiderata for creating reliable contextual patterns:

(i) They occur frequently and in many text genres.

(ii) They (almost) always indicate the relation of interest.

(iii) They can be identified with little or no pre-encoded knowledge.

(A) HYPERNYMS
(H1) NPH such as {NPh,}* {and|or} NPh
(H2) such NPH as {NPh,}* {and|or} NPh
(H3) NPh {,NPh}* {,} or other NPH
(H4) NPh {,NPh}* {,} and other NPH
(H5) NPH including {NPh,}* NPh {and|or} NPh
(H6) NPH especially {NPh,}* {and|or} NPh

Table 3.1: Manually-developed lexico-syntactic patterns, where NPH is a
noun phrase representing the hypernym and NPh the hyponym

The intuition passed on by this work is that the information used and
the approach employed in an acquisition system depend on the properties
of the relation targeted. In the following lines, we present the acquisition of
lexical-semantic relations focusing on the types of relations addressed. We
introduce approaches addressing the acquisition of the same relations as
we do in this thesis: hypernymy, co-hyponymy, meronymy and selectional
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preferences of nouns. Because we focus on creating a general system for
the acquisition of lexical-semantic relations, we also present approaches
that were tailored for the acquisition of various lexical relations [Pantel
and Pennacchiotti, 2006, Turney, 2008b].

3.1.1 Hypernyms Acquisition
The hypernymy acquisition started with Hearst’s work. The Hearst pat-
terns were an interesting approach for the acquisition of hypernyms but
they were hindered by their scarce occurrence in text, which considerably
limited the number of instances that could be detected. Moreover, due to
the ambiguity and underspecification of the local context, some patterns
did not fulfil the second point of the desiderata, and therefore the system
was not accurate enough. For instance, the verb to include indicates the
membership in lexical classes as well as the membership of groups such in
entire families including young children.

The following works focused on improving Hearst’s approach. A strat-
egy to give a boost to the recall, thus, to find more hypernyms other than
those co-occurring in Hearst patterns, was to leverage co-hyponyms of the
more specific term of the relation (hyponyms): knowing that hi is the hy-
ponym of H , and hi and hj are co-hyponym, it is inferred that H is also
the hypernym of hj . This approach was used in [Caraballo, 1999, Pantel
and Ravichandran, 2004]. They found clusters of similar words hi, using
similarity in their distributional properties, and Hearst patterns were used
to find the common hypernym of the words from each cluster. [Cederberg
and Widdows, 2003] initially extracted hypernyms (H, h) using Hearst pat-
terns. Then, used coordinations in texts to find similar hi with h, and finally
inferred that H was hypernym of all the hi.To reduce the errors caused by
ambiguity or over-generalisation, the authors used the distributional simi-
larity of words between H and each hi, to filter out pairs whose members
had a low similarity score. [Ritter et al., 2009] introduced machine learn-
ing techniques to learn general properties of the context of co-occurrence
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of a hyponym h with a hypernym H , and after, to discover co-hyponyms
hi for each hyponym h.

The aforementioned approaches relied on a small set of manually de-
fined lexical patterns enhanced with distributional properties of words.
These approaches were still hindered by the sparsity of the data in corpus
and raised questions about their scalability for larger corpora [Pantel et al.,
2004]. Therefore, the following work presented approaches that used the
distant supervision approach to acquire a larger amount of surface patterns
of context where hypernyms co-occur. [Pantel et al., 2004] proposed a gen-
eralization strategy based on part-of-speech information to combine them
into more general patterns. Next, the general patterns were used to search
in corpus novel instances in a bootstrapping approach. [Snow et al., 2004]
extracted large amount of weak hypernym patterns of co-occurrence con-
texts created with dependency relations, and used their frequency in corpus
to filter out unreliable patterns. Next, the patterns were used as features to
create a traditional vector space that modeled the lexical relation holding
between a pair of words as described in Section 2.3.2. Finally, a machine
learning system was trained to weight the importance of each feature to
detect hypernyms. This work reported 80% precision at 10% recall and 25
% precision at 30 % recall.

Other works used heuristic approaches for the acquisition of hyper-
nyms based on these instances. [Yang and Callan, 2009] created a word
pair representation using heterogenous features that described the patterns
of contexts and the distributional properties of words. They achieved 79
points in recall over 50 WordNet datasets harvested from 12 topical do-
mains. This recall was achieved with Wikipedia corpus and complemented
with a dedicated corpus extracted from Google. [Hovy et al., 2009] also
used the Web and a bootstrapping approach to extract hypernyms with
doubly-anchored patterns in the backward direction [* such as class_member1

and class_member2]. [Navigli and Velardi, 2010] took advantage of the
rigid structure of the definitional sentences and proposed a systems for
the extraction of hypernyms and word-class lattices. [Boella and Di Caro,
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2013] improved upon this work by learning syntactic properties of the hy-
pernym and the hyponym and using a machine learning approach to weight
the feature importance.

[Weeds et al., 2004, Zhitomirsky-Geffet and Dagan, 2005, Zhitomirsky-
Geffet and Dagan, 2009, Lenci and Benotto, 2012] addressed the hyper-
nymy acquisition under the assumption of the Distributional Inclusion Hy-
pothesis: the more specific term appears in a subset of the distributional
contexts in which the more general term appears. The approach is simi-
lar to the acquisition of co-hyponyms for which the similarity in the dis-
tributional properties is calculated. Being the hypernymy an asymmetric
relation, the distributional approaches focused on discovering an inclusion
score. Due to the data sparsity, the Distributional Inclusion Hypothesis did
not stand for an offline corpus, forcing the authors to rely on an additional
corpus acquired from the Web to prove the hypothesis.

A very recent approach used Predictive VSM to acquire hypernyms[Fu
et al., 2014]. He showed that the relation of hypernymy is more com-
plex than the semantic relations on which word embeddings have initially
been tested, and the hypernymy relation cannot be represented based on the
vector offset. Instead they learned linear projections that mapped the more
specific term to a cluster of hypernym instances. For a Chinese corpus, the
best results achieved 80 points in precision as well as recall, representing
the best system in the hypernymy detection.

3.1.2 Co-hyponyms Acquisition
Co-hyponyms acquisition was initially addressed as a semantic lexicon ac-
quisition task: the aim was to create a dictionary of words belonging to a
given semantic class. For instance, given the topical domain of fruits, the
objective was to extract from a corpus items belonging to this domain, like
apple or oranges. However, the specificity of the items was not verified
and even more specific instances of the domain, such as pink lady apple,
were accepted. Therefore, this task extracted any term that belonged to the
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target semantic class, and this could include: co-hyponyms, hypernyms,
hyponyms, synonyms or antonyms. Initial works relied on the assumption
that words from the same semantic class tended to co-occur in grammatical
constructions, and used bootstrapping approaches for identifying candidate
word pairs [Riloff and Shepherd, 1997, Roark and Charniak, 1998, Phillips
and Riloff, 2002]. This approach had very low coverage because only a
few words co-occured in such constructions. To improve it, [Riloff and
Jones, 1999] introduced the mutual bootstrapping technique. The initial
set of grammatical constructions was replaced by a system that automati-
cally identified the lexical patterns that produced candidate words. Mutual
bootstrapping assumed that all the words extracted with each pattern be-
longed to the target semantic class, which was often untrue and incorrect
terms were allowed in the lexicon, provoking a semantic drift. Therefore,
next systems focused on filtering techniques for patterns and instances.
[Curran et al., 2007] proposed to acquire only words that occured in only
one semantic class. [Thelen and Riloff, 2002] evaluated the relatedness of
each extraction pattern and of each candidate word against the target se-
mantic class before being accepted as a positive instance of the class. [Igo
and Riloff, 2009] used the Web to check for more reliable co-occurrences.

The bootstrapping technique was very sensitive to semantic drift. There-
fore, other approaches used a graph representation of acquired candidate
word pairs with a few patterns of contexts. The graph was created with
each candidate word as a node and two nodes were connected if they were
co-occurring in corpus. Regions of graphs that were more connected inter-
nally than with the other nodes in the graph represented a lexical class. A
better explanation about the techniques used to analyse the graph structure
will be detailed in the following Section 3.2 dedicated to the graph-based
approaches in the acquisition task. Here we focus on the type of patterns
used in the acquisition. The first approach using this methodology was
[Widdows and Dorow, 2002, Dorow et al., 2004], used only the pattern
[X and/or Y ] to acquire possible co-hyponyms that were next represented
in the graph. Using only one pattern to find possible candidates, resulted
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in a very low coverage of the corpus. Therefore, [Davidov and Rappoport,
2006] assumed that co-hyponyms tended to co-occur in symmetric pat-
terns created with high frequency words and content words. Therefore,
this work created a heuristic approach to automatically acquire symmetric
patterns. [Kozareva et al., 2008] expanded the Hearst patterns and created
double anchored hyponym pattern: [classname such as ‘seed’ and *]. These
patterns were used in a bootstrapping process to extract from the Web a set
of words that were possible instances of the semantic class classname.

Co-hyponyms were acquired also with distributional approaches based
only on distributional properties. Distributional approaches were of two
types, supervised, addressing this task as a classification problem: given
a set of example instances for each lexical class, candidate instances were
acquired based on the similarity of their distributional properties with the
given examples. These approaches differed in the information encoded in
the vectorial representation and the similarity scheme used [Hindle, 1990,
Lin, 1998b, Kilgarriff and Yallop, 2000, Weeds and Weir, 2003, Curran,
2003, Gorman and Curran, 2006, Turney et al., 2010]

To avoid the need of annotated examples unsupervised approaches were
introduced based on clustering techniques over the word representation.
[Pantel and Lin, 2002, Lin and Pantel, 2002] created Clustering by Com-
mittees (CBC), which grouped similar words in committees, and each com-
mittee was considered a different lexical class. [Baroni et al., 2010] clus-
tered the words based on the most prototypical properties of the word and
[Baroni and Lenci, 2010] used the vectorial representation provided by
the Distributional Memory to cluster the words. [Fountain and Lapata,
2012] used hierarchical clusters of words to deal with the granularity of
the clusters. Similarities in the vectorial space model were used to create
a semantic network, or a graph of words, reflecting the similarity scores
between words. This network is partitioned in an initial set of word clus-
ters and the Hierarchical Random Graph algorithm [Clauset et al., 2008]
was leveraged to create hierarchical clusters, clusters that could be seen as
a taxonomy without labels for the non-leaf nodes. The unsupervised ap-
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proaches presented an important shortfall, the clusters provided were not
labeled with the name of the represented lexical class.

Distributional approaches were able to acquire co-hyponyms that did
not co-occur in corpus. Unfortunately, they extracted words holding differ-
ent lexico-syntactic relations or topical relations. For this reason, the most
meaningful approach to label lexical-semantic instances were approaches
based on patterns of contexts [Weeds et al., 2014].

3.1.3 Meronyms Acquisition

While the acquisition of co-hyponyms and hypernyms may be addressed
using both patterns of contexts and distributional properties of the mem-
bers, the acquisition of meronyms was done only based on contextual pat-
terns. [Berland and Charniak, 1999, Poesio et al., 2002], in parallel, fol-

(B) MERONYMS
(M1) NN[S]w ’s NN[S]p
(M2) NN[S]p of {the|a} [JJ|NN]* NNw
(M3) NNp in {the|a} [JJ|NN]* NNw
(M4) NN[S]p of NN[S]w
(M5) NN[S]p in NN[S]w

(M6) NNw consists of NNp
(M7) NNw is made of NNp
(M8) NNp member of NNw

Table 3.2: Manually-developed lexico-syntactic patterns: NNp is a noun
representing the part and NNw the whole.

lowed Hearst’s desiderata and developed a set of five patterns, M1-M5 in
Table 3.2 for the acquisition of meronyms. However these patterns showed
to be very ambiguous, and therefore, [Berland and Charniak, 1999] used
only the first two patterns to acquire candidate meronyms which were fil-
tered out based on a reliability scheme.
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[Girju et al., 2003] ran a broader analysis of the co-occurring contexts
of meronym instances, and split the patterns in two classes: explicit pat-
terns, M6-M8 in Table 3.2, and implicit patterns, all the others. While
explicit patterns were accurate but occured very few times in corpus, the
majority of the meronyms co-occured within implicit patterns, which were
very ambiguous patterns. [Girju et al., 2003, Girju et al., 2006] disam-
biguated the patterns using the semantic class of the words as provided
by WordNet and a supervised classifier learned the semantic features of
the constituents for each pattern. They reported 80.95% precision and
75.91% recall, paid with a considerable amount of manual work to label
each word with its semantic class. This work showed the challenge of
direct acquisition of meronyms from patterns of contexts. Therefore, sys-
tems addressing the meronymy acquisition needed additional information
to achieve satisfactory results. Therefore, domain dedicated systems were
developed based on heuristic techniques. For instance, [Van Hage et al.,
2006] aimed at finding wholes for a set of target parts. They searched
the Web for words that represented the whole for each part word, and
to avoid the topic drift and assure reasonable precision, this work used
a dictionary of domain vocabulary from which the whole had to be chosen.
[Ling et al., 2013] approach used a distant supervision approach combined
with the multi-instance learning approach [Bunescu and Mooney, 2007]
for the meronymy acquisition in the biology domain. They reported 78.6%
precision and 79.1% recall, and an improvement of almost 10 point in F-
measure compared with the approach of [Mintz et al., 2009], due to the
multi-instance learning. However, they used a different supervised classi-
fier than [Mintz et al., 2009] which also could influence the final results.

[Ittoo and Bouma, 2010] tested if the problematic of the meronymy
relation came from the various sub-relations that created the meronymy re-
lation as explained in Section 2.2. However, even when addressing each
sub-relation the precision improved only 2% [Ittoo and Bouma, 2010]
and it was observed that the instances acquired were spread over various
meronym sub-types.
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This section tried to highlight the challenge of the systems addressing
the meronymy acquisition.

3.1.4 Selectional Preferences
The selectional preferences task means finding valid arguments for a predi-
cate in a target role. The most straightforward approach is to extract from a
corpus the words co-occurring with the predicate in that target role. In any
corpus there will be predicate-argument that will not co-occur and con-
sequently, this approach results in a very scarce list of words, especially
for very infrequent predicates. For instance, in the BNC corpus, the verb
eat occurs with cabbage but it does not occur with radish, cauliflower or
beet, which are also vegetables and valid predicates of the verb. Therefore,
automatic systems are necessary to generalise beyond seen co-occurrence
frequencies and to infer a semantically coherent set of candidates that can
fill a given argument position.

The selectional preference task consists of two steps, the extraction of
the seen co-occurrences of a predicate and its arguments and the general-
isation of the arguments in a class representing valid fillers of the predi-
cate. For instance, seeing in the corpus that the verb to eat co-occurs with
tomato and potato, the model should be able to detect that all vegetables
are valid fillers of the predicate eat. While the extraction step is done based
on the dependency relations connecting a predicate with its arguments, the
generalisation task is the key issue that splits the approach in two classes:
approaches that are based on hand-crafted resources and approaches that
rely only on the distributional properties of words in corpus.

Approaches that use manually created resources, such as WordNet,
group the observed arguments in clusters of similar words, and then search
in the given resource for the best generalisation of each cluster. The hyper-
nym found represents a descriptor of the the valid fillers of that predicate.
Systems leveraging this technique differ in the methodology used to clus-
ter the words and to find the WordNet descriptor: the Kullback-Leibler
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divergence [Resnik, 1996], the minimum description length [Li and Abe,
1998], the chi-square test [Clark and Weir, 2001], and the Latent Dirichlet
Allocation probabilistic model [Ó Séaghdha and Korhonen, 2012].

Distributional approaches acknowledged the shortcomings of relying
on manually-built resources and focused on purely distributional methods
to learn the generalisation of arguments from corpus observations alone.
Novel arguments for a given predicate and argument position, were dis-
covered based on their distributional similarity in corpus with the seen ar-
guments. [Rooth et al., 1999] created clusters of similar agruments seen
in corpus with the expectation-maximization algorithm. Each cluster was
used to find novel fillers. [Erk, 2007, Padó et al., 2007, Erk et al., 2010]
used vectorial similarity scores between the vectorial representations words,
observed arguments and possible fillers, created with their co-occurring
predicates in corpus. [Bergsma et al., 2008] automatically acquired pos-
itive and negative instances and trained a discriminative model for learn-
ing selectional preferences from unlabeled text. In this work, the vecto-
rial representation used went beyond the co-occurrences in text, and was
created with co-occurring verbs, string shallow features and clusters cre-
ated with CBC algorithm [Pantel and Lin, 2002]. [Van de Cruys, 2010]
presented a multi-way selectional preference induction, for more than one
argument role, based on tensor factorization. The co-occurrences of sub-
jects, verbs, and objects were represented as a tensor of dimension three,
and a latent factorisation model was applied to generalise over unseen ar-
guments. [Thater et al., 2010] modeled the predicate argument relations
as a combination of first-order and second-order dependency vectors and
used vectorial similarity scores to find similar predicates. Therefore, the
selectional preference task was reduced at finding classes of similar words.

A very recent approach applied a Predictive VSM for the selectional
preferences in [Van de Cruys, 2014]. They represented the predicate-
argument tuple as the concatenation of the vectorial representations of the
predicate and of the argument, and a feed forward neural network was
trained to recognise valid predicate-arguments tuples. Despite the impres-
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sive results in other tasks, this approach based on Predictive VSM achieved
a lower accuracy than [Erk et al., 2010] to find objects for target verbs.

3.1.5 Multi-relation Acquisition
The previous section presented systems developed for acquiring just one
target lexical relation. The systems relied on the patterns of context of co-
occurrences of words and, some of them, on properties of the instances
of the target relation, reflected in their distributional properties. However,
developing an acquisition system for each semantic relation is a laborious
work, thus, other works created general approaches based on patterns of
contexts for the classification of multiple relations simultaneously.

For each target relation, the mainstream research line leverages a set of
word pairs, instances of this relation. These word pairs are used to auto-
matically acquire contexts where they co-occur and to transform them into
patterns of contexts. These patterns are used in two different approaches:
in a bootstrapping approach or in a classification approach.

Illustrating the former line of work, [Pantel and Pennacchiotti, 2006]
created the Espresso system, using a bootstrapping approach to the ac-
quisition of any lexical relation. To find a balance between accuracy and
coverage across different relation types, Espresso used a small set of high
precise patterns combined with a set of generic patters, having a lower
precision. They leveraged on Web queries to detect reliable instances for
the target relation. The system was tested across various semantic rela-
tions, between them meronyms and hypernyms. Interestingly enough was
their observation that the meronymy acquisition improved when generic
patterns were used, instead, the hypernymy acquisition was hindered by
this type of patterns, showing the different lexical properties of the two
relations.

A classification approach was the Latent Relation Analysis (LRA) sys-
tem [Turney et al., 2005, Turney, 2006b]. It focused on creating word
pair vectorial representations producing the signature of their semantic re-
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lation. Therefore, word pairs instances of the same relation should have
similar representations. They proposed a representation as described in
Section 2.3.2. The components of the vectors were patterns of contexts of
co-occurrences, that were filled in with the observed co-occurrences. The
resulted vectors were very sparse, therefore, they used the Singular Value
Decomposition to smooth the vectors, and lists of synonyms to improve
the coverage of the system. Although this approach achieved state-of-the-
art results for the analogy solving problem [SAT, ], it was very inefficient,
requiring nine days to run. In the same research line there were the works
of [Nakov and Hearst, 2008] and [Bollegala et al., 2009]. Both works used
text snippets returned by a web search engine as contexts of co-occurrence
for a target word pair. The former approach improved the accuracy of the
system, calculating the relational similarity between word pairs. The latter
approach aimed at reducing the data sparsity of the vectors by grouping
the patterns of contexts in clusters of similar patterns. Next, the obtained
clusters were used to create the vectorial representation of word pairs.

The approaches presented before, are based only on patterns of con-
texts and are able to represent only word pairs that co-occur in corpus,
treating them as a unit. For this reason, they are named holistic or non-
compositional approaches. Their main drawback is that they cannot scale
up for novel word pairs that are not observed in corpus at the moment of
training [Turney, 2013].

Two mainstream research lines can be used to overcome this limitation
of pattern-based approaches: combining information about the patterns of
contexts of co-occurrences of two words, with the distributional informa-
tion of each word, and compositional approaches, based on the vectorial
representations of the members of the pair.

The former approach assumed that the members of the instances of
a semantic relation were pairwise semantic similar. This way, the systems
take into consideration, besides the relational similarity, the lexical similar-
ity between pairwise words. Such systems were [Turney, 2006b, Turney,
2008a], which proposed to estimate the lexical relation holding between
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two words as a linear combination of the lexical similarity of the pairwise
members. However, their findings showed that the relational similarity
could not be reduced just to a linear combination of the lexical similar-
ity. [Herdaǧdelen and Baroni, 2009] concatenated information about the
contexts in which the two words occur independently, and the contexts in
which they co-occur represented as a bag-of-words, therefore, eliminating
the structure of the context. The results showed that this representation was
not very reliable, achieving low results on the analogy task but competitive
results on the selectional preference task. [Ó Séaghdha and Copestake,
2009] created a word pair representation that combined lexical and rela-
tional similarity between two word pairs using a kernel-based framework
for comparing sets of contexts using a feature embedding function associ-
ated with a string kernel. [Guevara, 2010, Baroni and Zamparelli, 2010]
generated a few holistic vectors to see word pairs and then a supervised
regression model was trained to predict a representation for a novel word
pair whose members were observed independently in the corpus.

The compositional approach aimed at finding a representation for the
semantic relation holding between a word pair, by combining the vectorial
representations of its members [Mitchell and Lapata, 2008, Mitchell and
Lapata, 2010, Clark and Pulman, 2007, Erk et al., 2010]. In the lexical
acquisition task, [Turney, 2012] proposed a compositional approach based
on the domain similarity and the functional similarity of the members. The
domain similarity was calculated in a domain space created with the nouns
that occur near a target noun. The function similarity was calculated based
on a function space created with the verbs occurring near the target noun.
The final combination of these two similarities reflected the semantic re-
latedness between two words. On a very similar approach, [Turney, 2013]
trained a supervised system to learn the feature importance for semantic
relatedness. The results obtained in the task of solving analogies and in
the task of noun-noun modifiers showed that the compositional approach
achieves lower results than the non-compositional approach.

Research in the Traditional VSM cannot find a suitable representation
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of the relation holding between the word pairs: the holistic approach is hin-
dered by the lack of information in corpus, and previous work could not
find a way to compose the vectorial representations of words to represent
their semantic relations. Predictive VSM stands out showing that for some
general relations [Jurgens et al., 2012], the semantic relation of a pair of
words is reflected in the vector offset and the similarity of the semantic
relations is identified using the cosine similarity. [Necsulescu et al., 2015]
applied the same approach to the acquisition of lexical-semantic relation
instances and the results showed that methods based on compositional ap-
proaches over predictive representations did not work for this type of rela-
tions. [Levy et al., 2015b, Necsulescu et al., 2015] replaced the vectorial
similarity with a supervised approach that was trained to learn distinctive
features of the word pair representation that indicated the lexical-semantic
relations, [Necsulescu et al., 2015] obtaining very good results. However,
doubts were raised by [Levy et al., 2015b], which stated that the good
results achieved by the supervised classifiers were due to the lexical mem-
orization: “the phenomenon in which the classifier learns that a specific
word in a specific slot is a strong indicator of the label”.

3.2 Graph-based Representations
Graph-based representations have been largely used to model the infor-
mation in various NLP tasks: lexical acquisition [Widdows and Dorow,
2002], word sense disambiguation [Navigli and Velardi, 2005, Hughes and
Ramage, 2007, Navigli and Lapata, 2010], language representation such as
in WordNet, Roget’s Thesaurus, or ontology representation [Steyvers and
Tenenbaum, 2005], text comparison [Mihalcea and Tarau, 2004, Tsang and
Stevenson, 2010], among many others. graph-based approaches model re-
lations between words in the structure of a graph, to create a generalization
of the corpus for a target task.

Here, we analyse works that used the graphs as a reliable representation

51



for the lexical information acquisition task, and as a possible representation
of the structure of the corpus.

In the task of acquiring classes of similar words, the edges connect
word pairs that possibly belong to the same class of words, and clustering
algorithms are used to detect groups of similar words. Therefore, these ap-
proaches differ in the information joined in the graph and on the algorithm
that analyses its structure. [Widdows and Dorow, 2002] created a graph
representation based on all the nouns co-occurring in conjunctions in a
given corpus. Words from the same class are detected using Markov Clus-
tering Algorithm. [Davidov and Rappoport, 2006] used symetric patterns
to acquire a larger amount of co-occurring words (see Section 3.1.2) and
words from the strongly connected components were detected as words
from the same lexical-class. On the same graph [Schwartz et al., 2014]
used an iterative variant of k-Nearest Neighbour clustering algorithm to
propagate the semantic class of words to its neighbours. [Biemann, 2006]
created a graph reflecting the number of co-occurring words shared by two
words. The edges were weighted with the number of common neighbours
and the Chinese Whispering algorithm was run to detect classes words.
[Schütze and Walsh, 2008] created a graph-theoretic model of the acquisi-
tion of lexical syntactic representations. The corpus was represented as a
complete bipartite multi-graph, and the edges were weighted to show the
probability that a word wi was the left neighbour of wj . A random walk
was run over the graph to compute the probability of any two words to be
in a syntagmatic and paradigmatic relation. [Biemann and Riedl, 2013a]
used graph structures to represent the co-occurrence information extracted
by the holing operation [Biemann and Riedl, 2013b] and heuristic tech-
niques to detect the most accurate similar words based on the contexts.

For taxonomy acquisition the edges in graphs link possible candidates
for the relation of hypernymy and the final objective is to transform the
graph into a tree representing a taxonomy. [Kozareva et al., 2008] used
the double anchored hyponym patterns to create hypernym pattern linkage
graph. The graph was directed and each arc (n1,n2) ∈ E signified that the
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node n1 was used in a pattern to discover the node n2. The out-degree of
the nodes was used to identify instances of the same semantic class and
the principle of the longest path in the graph was used to discover valid
hyponyms-hypernyms pairs [Kozareva and Hovy, 2010]. [Navigli et al.,
2011] used a graph to represent all the word pairs acquired as possible hy-
pernyms and used a heuristic technique to eliminate unreliable edges. The
edges were weighted to leverage larger paths, and the graph was pruned
into an acyclic graph, representing a taxonomy.

Graph models were also used as a representation technique to model the
interaction of words in corpus based on their dependency relations. Such
a graph is the dependency graph generated by a dependency parser like
Stanford Parser [De Marneffe et al., 2006]. A dependency graph represents
the dependency structure of each sentence: the vertices are tokens and the
edges represent dependency relations. To find semantic relations between
target words, [Nastase and Szpakowicz, 2006] matched word subgraphs
representing their dependency relations. Other works aggregated the graph
dependency of each sentence in a single corpus representation. For in-
stance, [Szpektor et al., 2004, Tanev and Magnini, 2008] represented the
isomorphic structures from different sentence graphs using only one edge
in the corpus graph. In the [Minkov and Cohen, 2008, Minkov and Cohen,
2012] graph-based corpus representation, the node set was created with all
the word tokens and their type from corpus, and the edges represented the
syntactic relations between them or mention edges, which connected each
token to its type. The edges and the vertices were weighted based on path-
constrained graph walk optimized for the target task. [Navigli and Velardi,
2010] created word lattices to identify definitional sentences and to extract
hypernyms of target terms. A word lattice is a direct acyclic graph, with
a single starting point, that are used to represent any finite set of strings.
Given a set of definitional sentences, each sentence is generalized based on
part-of-speech information and they are combined into an untyped and un-
weighted word-class lattice. The previous presented graphs were designed
for the acquisition of paradigmatic related words. Differently, [Toutanova
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et al., 2004] crated a graph model to estimate word dependency proba-
bilities between two words. This task was considerably hindered by the
data sparsity, therefore, various edge types were combined: syntactic de-
pendencies, morphological links, edges between words that appeared as
synonyms in WordNet and statistical edges. A random walk model was
learned, whose stationary distribution represented the co-occurring proba-
bility of two words.

As observed, the graph represents an important technique to display
information about the context which helps detecting semantic relations.

3.3 Predictive Vector Space Models
As already introduced in Section 2.3.2, the Predictive VSM are vectorial
representations of words created with a neural network architecture. In
the last years many types of Predictive VSM were created [Bengio et al.,
2003a, Collobert et al., 2011, Huang et al., 2012, Mikolov et al., 2013a]
achieving interesting results. In the present work, we use the vectorial rep-
resentations created with the off-the-shelf system named word2vec [Mikolov
et al., 2013a, Mikolov et al., 2013b, Mikolov et al., 2013c], which achieved
high interest when it was shown that various syntactic and semantic reg-
ularities holding between words are captured in their vector offset. For
instance, they captured masculine-feminine pairs, like (man,woman) and
(king,queen), language-spoken-in, like (Spain,spanish) and (France,french),
verb-past-tense like (go,went) and (do,did). In what follows, we used in-
terchangeably predictive vectorial representations and word embeddings to
refer to the vectorial representations of words in the Predictive VSM.

Word embeddings were used to solve the analogy task, “a is to b as c
is to __”, by searching the most suitable word w, which vectorial represen-
tation optimise the equation:

w∗ = argmaxw(cos(w, v(b)− v(a) + v(c))) (3.1)
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where v(a), v(b) and v(c) are the embeddings of a, b, and c. In other words,
this equation finds the word w which is the most similar with b and c, and
the most dissimilar to a. Word embeddings were also used to measures
word pair similarity within a particular semantic relation (i.e., which pairs
are most prototypical of a semantic relation) in the SemEval 2012 Task 2:
Measuring Relation Similarity [Jurgens et al., 2012]. The relation holding
between a word pair (w1, w2) is represented as a directional offset vector:
v((w1, w2)) = v(w2) − v(w1). The relation similarity problem is reduced
to calculating similarities between offset vectors [Zhila et al., 2013]:

sim((w1, w2)), v((w3, w4)) = cos(v((w1, w2)), v((w3, w4))) (3.2)

The Equation 3.1 was shown to be more suitable to discover syntac-
tic related words, while the Equation 3.2 achieved the best results for la-
belling semantic relations instances, putting less emphasis on the similarity
between the members of the pair. Moreover, [Levy and Goldberg, 2014b]
stated that the analogy of syntactic related words is better reflected using
vector multiplication rather than vector addition.

Regarding the construction of Predictive VSM, as explained in Section
2.3.2, there are two architectures included in the word2vec system: the
CBOW and the Skip-gram model. [Mikolov et al., 2013a] stated that both
models achieve similar results for detecting syntactic relations, while the
Skip-gram model preformed better for detecting the semantic relations.
However, the CBOW model was faster on training, and therefore it was
more suitable for large datasets. To improve the word representations and
to speed-up the training time, [Mikolov et al., 2013b] combined the Skip-
gram model with negative sampling technique.

In the Traditional VSM, vectorial representations created with depen-
dency relations were more reliable, especially for smaller corpora. Thus,
[Levy and Goldberg, 2014a] created a dependency based word embeddings
based on the original Skip-gram model. When compared with the original
model, the dependency based model yielded more functional similarities of
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a co-hyponym nature, while the original model found broad topical similar-
ities. However, on relation similarity task the dependency based approach
performed worse than the original system based on bag-of-words.

Word embeddings were embraced by many researchers as a possible
solution for tasks where the Traditional VSM reach their limits. [Baroni
et al., 2014] conducted a set of experiments to test in which tasks the em-
beddings outperform the traditional representations. Surprisingly, the re-
sults confirmed that predictive models were the most suitable representa-
tions for all the tasks.

However, due to the compression of the corpus observations in a pre-
dictive space, these novel and efficient representations had a considerable
drawback: their results cannot be linguistically explained. As a conse-
quence, an important research work focused on replicating their results us-
ing traditional models, because their dimensions can be interpreted. [Levy
and Goldberg, 2014b] showed that comparable results with those obtained
by the Skip-gram model enhanced with the negative sampling, were achieved
with a traditional model created with a Positive PMI, and [Levy and Gold-
berg, 2014c] discovered that the same embeddings are a factorization of a
word-context PPMI matrix. Therefore “this result implies that the neural
embedding process is not discovering novel patterns, but rather is doing
a remarkable job at preserving the patterns inherent in the word context
co-occurrence matrix” [Levy and Goldberg, 2014b].

[Pennington et al., 2014] created a novel embedding structures, named
GloVe, aiming at improving the local-contextual information leveraged in
the Skip-gram model, by combining it with the global information ac-
quired by matrix factorization methods. The authors stated that GloVe
outperforms word2vec on word analogy, word similarity and named-
entity recognition. These results are inconsistent with the findings from
[Levy et al., 2015a], which compared four different word representations
and analysis the importance of their parameters: two predictive models,
word2vec and GloVe, and two traditional models, one based on the PPMI
matrix and the other on the SVD factorization of the said matrix. The re-
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sults are of high importance in the actual battle between embedding rep-
resentations and traditional models. Skip-gram model emerged over the
other systems achieving higher or comparable results, a significant reduc-
tion in training time and disk space, and scalability for very large corpora.
Despite all the skepticism emerged around them, it seems that these rep-
resentations filled in a gap in the NLP research, the representation of very
general syntactic and semantic relations.

The Predictive VSM provides reliable representations that somehow
combine information about lexical and relational information, which makes
them viable representations for the acquisition of lexical-semantic relations
instances.

3.4 Conclusions
Methods to acquire lexical-semantic relations rely on the patterns of con-
texts of co-occurrences and/or distributional hypothesis. [Turney, 2012]
stated that composition over the individual representations of words is not
able to represent the semantic relation holding between them. Therefore,
compositional approaches in the Traditional VSM are out of the scope of
this work. Here we address the holistic approaches that rely on patterns of
contexts, also named pattern-based approaches. To show the achievements
of this type of approaches, we create a system that uses only patterns of
contexts presented in Chapter 5. The straightforward combination with in-
formation about the lexical similarity between the pairwise members was
shown not to increase the similarity score between similar word pairs [Tur-
ney et al., 2010].

Therefore, we search for strategies that combine distributional infor-
mation of words with pattern-based systems for the recall improvement.
The assumption behind this work is that patterns of contexts and distribu-
tional information of words must be embedded indistinctly in the struc-
ture of the word pair representations. Therefore, it focuses on a novel
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technique that combines pattern based approaches with distributional in-
formation, for generalising over attested pairs and investigates Predictive
VSM as possible efficient representations for acquiring lexical-semantic
relations instances.
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Chapter 4

APPROACH AND
EVALUATION

The objective of this work is to find a novel vectorial representation based
on a generalisation of the corpus for detecting lexical related pairs of words
even when these pairs do not co-occur in the same sentence in corpus. The
present chapter presents the leveraged approach, and sets up the context
for the future experiments aimed to test the capabilities of the proposed
systems: the corpus, the dataset and the evaluation methodology.

4.1 Approach

The acquisition of lexical-semantic relation instances is the task of finding
the lexical relation holding between the members of a target word pair. For-
mally, the task addressed is defined: given a set of target semantic relations
R = {r1, . . . , rn}, and a set of word pairs W = {(x, y)1, . . . , (x, y)n}, the
task consists in labelling each word pair (x, y)i with the relation rj ∈ R
holding between its members and outputting a set of tuples ((x, y)i, rj).

This work focuses on finding a general system for the acquisition of
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lexical-semantic relation instances. As presented in Section 3.1.5 the main-
stream approach is to use the contexts where word pairs co-occur as main
source of information to detect the semantic relation holding between their
members. The results of this kind of systems are very limited, as it will be
shown in the next chapter where we created a system based only on pat-
terns of co-occurrences. This system proposes to generalise the patterns
of context using part-of-speech tags, this way similar patterns but slightly
differently lexicalized are represented as one feature. The results show that
using only contexts where words co-occur, the recall achieved is very low.

Our intuition is that for deciding the semantic relation holding between
words two sources of information are necessary, information about co-
occurrences of a word pair as well as information about the distributional
properties of each member of the pair. These two types of information
should be combined so both information complement each other, being
able to overcome the lack on information which hinders the pattern-based
systems. This information should be generalised in order to infer informa-
tion about words that do not co-occur in corpus. Therefore, the system re-
call is not upper-bound limited by the number of word pairs co-occurring,
but by the number of word pairs having both members occurring in cor-
pus. This work focuses at proposing novel representations, as explained in
Chapter 6.

All the systems tested in the next two chapters use a supervised tech-
nique to discover the importance of the proposed feature for each target
relation. Given a set of lexical-semantic relations R and a set of tuples
E = ((x, y)i, ri) of example instances for ri, to set the importance of each
dimension of the space for each target relation ri ∈ R, a machine learning
system, a support vector machine (SVM) multi-class classifier with a radial
basis function kernel [Platt, 1999] with the SMO algorithm [Platt, 1999]
from WEKA [Hall et al., 2009], is trained. The SVM system is run using
all the default parameters but the complexity constant C, which was set to
C = 20. Then, given a new unlabeled pair (x; y)u, the classifier decides if
the relation r is held between x and y. The trained SVM classifier gener-
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ates a distribution over relation labels and then the highest weighted label
is selected as the relation holding between the members of the word pair.

4.2 Data Sets and Evaluation Methodology

The following corpora, datasets and evaluation strategy are chosen to show
the capabilities of the systems to deal with corpora of different size and
with datasets having different granularity.

4.2.1 Corpora

As explained in the previous chapters, the results of the pattern-based sys-
tems depend on the number of the co-occurring word pairs in the input
corpus. Many pattern-based systems increase the size of the input cor-
pus in an attempt to overcome the lack of the information in corpus and to
achieve a better recall. To test the impact of the corpus size over the results,
this work uses two corpora of different sizes: the British National Corpus
(BNC), a 100 million-word corpus, and a Wikipedia dump created from 5
million pages and containing 1.5 billion words. Figure 4.1 shows that both
corpora have a power law distribution, which hinders the classification of
information based on patterns of contexts. The size difference allows us
to measure the potential impact of increased word co-occurrence on recall.
Both corpora were initially parsed with the Stanford dependency parser in
the collapsed dependency format [De Marneffe et al., 2006]. Besides the
dependency relations provided by the parser, a dependency relation vbV
was added connecting the subject with the direct object of the verb V in a
given sentence.
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Figure 4.1: The plot of the words frequencies in BNC and Wikipedia; the
words are previously lemmatised and desambiaguated by their PoS tag.

4.2.2 Data sets

The present work addresses the acquisition of lexical-semantic relations
out-of-context. We chose two datasets for testing the ability of the novel
systems to classify these types of relations: BLESS dataset [Baroni and
Lenci, 2011] and K&H dataset [Kozareva and Hovy, 2010]. These datasets
were chosen because their instances group different topical domain, allow-
ing to test the importance of this type of information in the acquisition of
lexical-semantic relation instances.

The BLESS dataset [Baroni and Lenci, 2011] spans 17 topical domains
and includes five relation types: three paradigmatic relations: hypernymy,
co-hyponymy and meronymy, attributes of concepts, and two syntagmatic
relations: a relation holding between nouns and adjectives, and a relation
holding between nouns and verbs showing the actions performed by/to
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concepts. In total, the BLESS dataset contains 14400 positive instances
and an equal number of negative instances. The distribution across rela-
tions and across topical domain is presented in Table 4.1. This dataset
allows to test the capabilities of the systems for lexical-semantic relation
types other than the usual taxonomic relations and also to measure the gen-
eralisability of each system across various relations.

Domain #Attr #Co-hypo #Act #Hyper #Mero
Amphibian reptile 73 32 83 36 52

Appliance 171 134 224 86 182
Bird 119 229 236 97 167

Building 186 103 276 72 304
Clothing 265 351 265 137 172

Container 111 67 131 43 121
Fruit 196 231 118 50 76

Furniture 105 81 207 45 112
Ground mammal 315 533 400 176 321

Insect 53 120 102 45 49
Musical instrument 93 174 155 44 96

Tool 213 397 306 107 124
Tree 71 75 63 28 119

Vegetable 126 284 174 76 56
Vehicle 316 371 594 123 648

Water animal 134 154 150 76 115
Weapon 184 229 340 96 229

Table 4.1: Distribution of BLESS instances across topical domains and
across lexical relations.

WordNet is a state-of-the-art lexical resource and many works in the ac-
quisition of lexical resources are carried out to automatize its development.
To show the capabilities of our systems to acquire WordNet relations, we
test the systems with the K&H dataset. [Kozareva and Hovy, 2010] col-
lected a dataset of hyponym-hypernym instances from WordNet [Miller,
1995] spanning three topical domains: animals, plants and vehicles. How-
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ever, the objective of this work is to detect other lexical-semantic relations
than the relation of hypernymy. Therefore, this dataset is enhanced with
instances of two more relation types: co-hyponymy and meronymy. Co-
hyponyms are extracted directly from the K&H dataset: two words are
co-hyponyms if they have the same direct ancestor1. To avoid including
generic nouns, such as “migrator” in the “animal” domain, only leaf nodes
are considered. The meronym instances are extracted directly from Word-
Net. The final dataset excludes multi-word expressions, which were not
easily handled by any of the tested systems. The total number of instances
considered in our experiments is presented in Table 4.2.

Domain #Co-hypo #Hyper #Mero
Animals 8038 (92.4%) 3039 (97.2%) 386 (89.1%)

Plants 18972 (95.5%) 1185 (97.4%) 330 (82.4%)
Vehicles 530 (82.6%) 189 (97.9%) 455 (100%)

Table 4.2: Distribution of K&H dataset, with the % of instances which
occur in the corpora.

4.2.3 Evaluation
We use two setups for evaluating the novel systems proposed in this thesis:

in-domain setup – only instances from one domain are used for train-
ing and testing in a 10-fold cross-validation technique. This setup
allows to test the capabilities of the system to automatically classify
word pairs as instances of a target relation.

out-of-domain setup – one domain is left out from the training set and
used for testing. This setup allows us to see the importance of the
topical domain information in the classification.

1y is a direct ancestor of x if there is no other word z which is hypernym of x and
hyponym of y.
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The system performances are compared based on the scores obtained
for precision (P), recall (R) and F1-measure (F). Precision is defined as
the percentage of correct relation classifications of those made by a sys-
tem; recall is defined as the percentage of relation instances in the dataset
correctly classified by a system. The F1 measure is the harmonic mean of
precision and recall.
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Chapter 5

A PATTERN-BASED MODEL

Approaches based on patterns of contexts in Traditional VSM represent the
semantic relation holding between a word pair based on its members co-
occurrences in context. Due to the ubiquitous phenomenon of data sparsity
in corpus, they are characterised by low recall scores. The work presented
in this chapter aims at showing the limitations of these type of systems.

Two pattern-based systems were considered as reference works for the
acquisition of semantic relations instances: [Snow et al., 2004] introduc-
ing the dependency-based patterns for the hypernymy acquisition, and the
work of [Turney, 2006b, Turney, 2008b] introducing generalised patterns
of contexts created with wildcards and contextual words in an uniform ap-
proach for the acquisition of various lexical-semantic relations. This sec-
tion introduces Pattern-based Classification ModEl (PaCE), a system that
combines the works of [Snow et al., 2004] and [Turney, 2006b, Turney,
2008b] in an attempt to acquire more information from corpus for improv-
ing the recall scores of pattern-based classification systems.
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5.1 Pattern-based Representation Model
The present section introduces PaCE, a system that combines patterns of
context created with dependency relations, with a generalisation technique
based on part-of-speech information. [Snow et al., 2004, Mintz et al.,
2009, Wu and Weld, 2010] also used dependency-based patterns of con-
texts, but they leveraged only the shortest dependency paths connecting
the two target words. The shortest paths might be more precise but the set
of paths discarded could provide valuable information for the increase of
the recall. One of the strategies tested here for increasing the recall is to
leverage all the dependency paths up to a maximum number of edges in-
stead of only the shortest ones to create patterns of contexts. Additionally,
to find similarities between slightly varying contexts of co-occurrence, and
consequently increase the coverage of the automatically acquired patterns,
a generalisation strategy based on part-of-speech information is also tested
for creating more general patterns.

PaCE is based on the distant supervision approach: starting from a set
of example word pairs, instances of a set of target relations, meaningful
patterns of contexts are automatically acquired. To create a vectorial rep-
resentation for given word pairs, the patterns are weighted according to
the importance of each pattern for the detection of each target relation.
The weights are learned using the SVM system introduced in the previ-
ous chapter, and the set of example instancesE. Finally, new word pairs
are classified based on their co-occurrences with the previously acquired
contexts.

Pattern Acquisition PaCE uses patterns of context defined on depen-
dency relations between words as collected from corpus data. As in the
distant supervision approach, it is assumed that all the contexts in which
the members of any word pair (x,y) co-occur are likely to provide informa-
tion regarding the relation held between them. Therefore, for each pair of
words (x,y)i that appears in the initial set of examples E, all sentences con-
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taining x and y are extracted. These sentences are then individually used
to collect patterns of contexts as follows: all the dependency paths be-
tween x and y up to lP edges and containing only nouns, adjectives, verbs
and adverbs are harvested from the dependency graph of each sentence;
neighbouring "window" nodes that are not included in the path, but are
connected to one of the members of the word pair, are added to the path;
each dependency path is transformed into a pattern of context by unlexi-
calizing x and y, i.e. x and y are replaced with a slot which can be filled in
by any word within the same part-of-speech.

handleV	
  

studentN	
   learnV	
  

screwdriverN	
  

hammerN	
  
toolN	
  

otherJ	
  

obj	
  

obj	
   obj	
  

conj	
  

subj	
   comp	
  

mod	
  

subj	
  

vbhandle	
  

vbhandle	
  

vbhandle	
  

Figure 5.1: Dependency graph of the sentence "The students learned how
to handle screwdrivers, hammers and other tools.". As mentioned, only
words from the main part-of-speech are considered.

Pattern Generalisation For finding similarities between patterns of con-
texts slightly differently lexicalized, each pattern is generalised using part-
of-speech information: 2(n-2) patterns are generated, n being the number of
words on the initial dependency path, by iteratively replacing each word in
the pattern with its part-of-speech. Window nodes are not submitted to this
generalisation procedure.

The patterns generalisation process is exemplified with the following
sentence “The students learned how to handle screwdrivers, hammers and
other tools”. From its the dependency graph shown in Figure 5.1, the path
between tool and hammer generates the patterns shown in Table 5.1. The
dependency relations inserted between the subject and the object of a verb
in a sentence are represented using dashed red lines.
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screwdriver conj−−−→ XN
obj←−− handleV

obj−−→ YN
mod←−−− otherJ

screwdriver conj−−−→ XN
obj←−− V obj−−→ YN

mod←−−− otherJ
screwdriver conj−−−→ XN

obj←−− handleV
obj−−→ YN

screwdriver conj−−−→ XN
obj←−− V obj−−→ YN

XN
obj←−− handleV

obj−−→ YN
mod←−−− otherJ

XN
obj←−− V obj−−→ YN

mod←−−− otherJ
XN

obj←−− handleV
obj−−→ YN

XN
obj←−− V obj−−→ YN

Table 5.1: Examples of dependency patterns generated from the de-
pendency path screwdriver conj−−−→ hammerN

obj←−− handleV
obj−−→

toolN
mod←−−− otherJ

Feature Selection Table 5.2 shows the total number of patterns acquired
from each corpus. As observed, the number of patterns vary across do-
mains and increase with the size of the corpus. Therefore, only the most
meaningful patterns must be acquired in PP to create the vectorial space.
To select the most meaningful patterns, they are ranked based on the amount
of information provided for the relations from R, and the top tP number of
patterns are included in the final set of patterns PP. To avoid overfitting,
the patterns that do not co-occur with at least two positive instances are
eliminated.

In order to rank the patterns according to their importance for each rela-
tionr, two scores are tested: the number of unique word pairs co-occurring
in the pattern in the corpus ufr score, and the tf-idf score. In the former
scoring scheme the most meaningful patterns are those that co-occur more
often with example instances from E. The latter score scheme is calculated
for each pattern regarding each lexical-semantic relation. Only the highest
tf-idf score obtained is associated to each pattern.

tfidf(pi) = maxj(
log(uniq(pi, rj) + 1) ∗ |R|

|Rp|
)

where pi is a pattern of context, uniq(pi, rj) is the number of unique in-
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BNC WIKI

lE = 2 lE = 3 lE = 2 lE = 3
AMPH_REPT 71 199 5261 9534
APPLIANCE 733 1425 16726 24663

BIRD 246 668 36179 485189
BUILDING 1686 3141 53320 79253
CLOTHING 2266 4255 23718 37918

CONTAINER 728 943 4591 4923
FRUIT 756 1682 18223 46234

FURNITURE 1144 2179 4875 6987
GR_MAM 1934 5073 76152 235300

INSECT 178 329 6374 16612
MUS_INSTR 343 652 54197 126520

TOOL 405 662 4269 5510
TREE 145 247 8398 14195
VEG 1159 2561 18282 44503

VEHICLE 2477 4168 77722 93377
WATER_ANIM 213 454 4885 8977

WEAPON 507 977 32165 42505

Table 5.2: The number of dependency patterns used in PaCE for lP = 2
and lP = 3 for each corpora.

stances of the relation rj occurring in the pattern pi and |Rp| is the number
of relations rj whose example instances are seen occurring in the pattern
pi.

Finally, the set PP forms a vectorial space, with each pattern corre-
sponding to a separate dimension.

Word Pair Representation To classify a word pair (x,y) as an instance
of a lexical-semantic relation, the word pair is first represented as a vector
of features. Each pattern previously acquired represents a dimension and
the total set of patterns creates a vector space. The semantic relation hold-
ing between each word pair is represented by a vector encoding on each
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position i the logarithm of the frequency of co-occurrence in corpus of x
and y in the ith pattern considered.

As mentioned earlier, our approach relies on the assumption that any
sentence in which a pair of words co-occurs is likely to provide informa-
tion regarding the lexical-semantic relation holding between them. Natu-
rally, this does not necessarily hold for all the patterns of context acquired,
as some of the features may not express any semantic relation of interest.
For instance, the sentence I can feel my fingers and close my hand. con-
tains the relation instance ((hand,finger),meronymy) but the context does
not provide any information regarding the relation holding between hand
and finger. The machine learning algorithm is able to discover which fea-
tures are noisy, i.e. not informative for the task at hand, and associates
corresponding weights for minimising errors in classification results.

5.1.1 Parameter Selection

The results of the PaCE system, like other pattern-based systems, depend
on a series of parameters, whose value affects the word pair representation:
the length of the dependency paths, lE, the number of patterns used to cre-
ate the vectorial space, tP, and the selection scheme of the most meaningful
patterns, tfidf or ufr. To show the effect of each parameter over the classi-
fication results we test the following values: lP = 2 and lP=3, and tP=5000,
tP=8000 and tP=10 000.

Table 5.3 shows the results of the PaCE system with different parameter
values. Over BNC, only the importance of lP is tested because as it is
showed in the Table 5.2, the number of acquired paths from almost all the
topical domains does not overpass 5000 patterns. Over Wikipedia, all the
parameters are tested.

Although we expected lP = 3 to obtain significantly better results in
recall compared with lP=2, the results show that there is no statistical sig-
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BNC Wikipedia
fr tfidf

5000 5000 8000 10000 5000 8000 10000

lE=2
P 78.1 74.6 72.9 71.7 73.7 72.4 71.9
R 50.5 68.1 67.4 66.2 66.4 65.7 65.6
F 61.4 71.2 70 68.8 69.9 68.9 68.6

lE=3
P 77.1 72.8 71.1 70.1 70.7 70.4 70.4
R 51.1 67.5 67 66.5 63.6 63.3 63.3
F 61.4 70.1 69 68.2 67 66.7 66.7

Table 5.3: Results of the PaCE system when initialised with different val-
ues for its three parameters: lE , tP and the selection scheme, ufr or tfidf .

nificant difference1 between these two results. Therefore, the most mean-
ingful paths connecting the members of lexical-semantic instances have
two edges or less. We suppose these findings are due to the optimisations
applied over the results of the parser: the propagation of the information
on the members of a conjunction, and the introduction of the edges vbV

that connect the subject with the object of the verb V. This way, words
that may be semantically related are directly connected. Comparing the
results obtained for various values for tP, it can be observed a decrease in
the results with the increase of the number of features. Patterns that oc-
cur less frequently are not representative for any of the target relations.
The same outcome is observed when comparing the ranking schemes. The
most effective scheme, which highlights the most reliable patterns for the
lexical-semantic acquisition, is ufr, showing that the most reliable patterns
tend to co-occur with many instances.

1 Statistical significance was calculated using Student’s t-test with a 95-percent confi-
dence interval.
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5.1.2 Dependency Information and PoS-Generalization
PaCE was created to show the precision and recall of the pattern-based
approaches for the acquisition task. Two strategies that may potentially
improve the recall of patterns systems are encapsulated in PaCE: the use
of all the dependency paths between two words up to lP edges instead of
only the shortest ones; and the incorporation of a generalisation strategy
of the features used in classification based on part-of-speech information.
To provide more place for generalisation of the patterns, in this experiment
we use lP = 3, despite it achieves slightly lower results over PaCE, tP =
5000 and ufr as the selection scheme. To shed light on the impact of these
strategies combined in the PaCE classification system, it is compared with
five other systems described below.

PairClass We reimplemented the PairClass algorithm [Turney, 2008b],
which provides a state-of-the-art pattern-based approach for classifying the
relationship between word pairs and has performed well for many relation
types. Using a set of seed pairs (x, y) for each relation, PairClass acquires
a set of lexical patterns using the template:

[0 to 1 words] x [0 to 3 words] y [0 to 1 words]

From the initial set of lexical patterns extracted from a corpus, additional
patterns are generated by basically generalising each word to its part-of-
speech. For N seed pairs, the most frequent kN patterns are retained.
We follow [Turney, 2008b] and set k=20. The patterns retained are then
used as features to train an SVM classifier over the set of possible relation
types. Finally, we underline that in the original experiments, PairClass was
trained using a corpus of 5 × 1010 words, which is three orders of magni-
tude larger than the BNC corpus used in our experiments.

ShortestPaths The ShortestPaths system is a similar system to the one
developed by [Snow et al., 2004]. This approach uses the shortest paths
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connecting two target words in the dependency graph of a sentence as fea-
tures for the classification of word pairs. As for the PaCE system, for each
target word in the path, a neighbouring window node can be added to the
dependency path. For a correct comparison, the ShortestPaths system uses
the same classifier as the PaCE system.

ShortestPathsGEN For highlighting the importance of the PoS-generalization
strategy, we created a variant of the ShortestPaths system that uses the same
generalisation strategy, but relies on the features as the ShortestPaths sys-
tem.

PaCELEX For evaluating the specific contribution of considering all the
dependency paths between two words instead of using only the shortest
ones, we create a variant of the PaCE system, PaCELEX, that uses as fea-
tures only lexicalized dependency paths up to lE edges.

Patterns For completeness, we also constructed a composite system us-
ing Hearst patterns [Hearst, 1992] for detecting hypernyms and co-hyponyms,
and Bearland patterns [Berland and Charniak, 1999] for detecting meronyms.
Classification is performed by measuring the frequency in corpus data of
each relation pattern and then selecting the relation whose patterns occur
more frequently. This system classifies only hypernyms, co-hyponyms and
meronyms because no standard manually-designed patterns exist in the lit-
erature for the two remaining lexical-semantic relations considered in our
experiments.

For a better understanding of the information used by each systems, an
outline of the compared systems is shown in Table 5.4.
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Dependency Info. Generalisation Tech.
PairClass X

ShortestPaths Shorthest
ShortestPathsGEN Shortest X

PaCELEX All
PaCE All X

Table 5.4: The outline of the information contained in all the systems com-
pared in this section that use automatically acquired patterns of contexts:
the type of dependency information used, only the shortest paths or all the
paths, and if it uses a generalization technique to find similar patterns.

Evaluation

The overall performance of each system assessed for each relation included
in the BLESS dataset is shown in Table 5.5 and Table 5.6. All the systems
relying on dependency information achieve better results than the Pair-
Class system, which does not use this type of information. This compar-
ison shows the impact this type of information has both on precision and
recall across all the relations tested. The 8.1 point increase in precision
over BNC and 19 points over Wikipedia achieved by the ShortestPaths
mirrors the greater reliability of patterns based on dependency information
when compared against surface patterns. Additionally, the ShortestPaths
scores 12 and 14 points higher in recall, respectively, a difference that is
attributable to the fact that these patterns go beyond the three word win-
dow used by PairClass, and therefore provide a larger amount of the data
available in corpus to the classification system.

Comparing the PaCELEX system that uses all the dependency paths up
to three edges with the ShortestPaths system that uses only the shortest
paths no statistically significant differences are observed in the results over
both corpora. Therefore, even when only the shortest dependency paths
are considered, the most important patterns of co-occurrence are already
gathered.
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ATTR COORD ACT HYPO MERO ALL

PATTERNS
P 98.9 58.1 70.2 83.8
R 31.8 10.8 18.9 23.3
F 48.1 18.2 29.7 36.5

PAIRCLASS
P 80.8 76.3 73.5 25.4 67.4 66.8
R 36.8 29.8 46.4 21.9 33.5 35.6
F 50.6 42.9 56.9 23.5 44.7 46.4

SHORTESTPATHS
P 83.9 78 78.7 88 75 78.9
R 47.5 45.5 64.7 13.2 43.7 47.6
F 60.6 57.4 71 22.9 55.3 59.4

SHORTESTPATHSGEN
P 82.1 78.4 79.1 85.9 73 78.4
R 50.3 47.5 65 13.7 46.2 49.3
F 62.4 59.2 71.3 23.6 56.6 60.5

PACELEX
P 84.3 80.5 78.3 88.4 74.8 79.4
R 46.9 46.9 64.6 14.2 44 48
F 60.3 59.3 70.8 24.5 55.4 59.8

PACE
P 79.2 82 78.2 73 69.3 77.1
R 55.5 47.4 65.3 17 48.3 51.1
F 65.3 60.1 71.2 27.5 56.9 61.4

UL-RECALL R 74 64.7 83 60 73.9 72.8

Table 5.5: The results obtained by the systems considered, across all rela-
tion types on BNC. The last line presents the upper-limit for recall (UL-
Recall) (see Section 7).

Comparing ShortestPathsGEN with the ShortestPaths system, the im-
portance of this generalisation strategy is highlighted: over BNC the recall
results improve by 1.7 points, while over Wikipedia, no improvements are
observed.

PaCE system mades apparent the impact of using all dependency paths
up to three edges in combination with the PoS-generalisation strategy in the
recall scores. Over BNC, PaCE achieves 3.5 points increase in recall, al-
though the features used are apparently less reliable as the precision drops
2.3 points. Over Wikipedia, both the precision and the recall decrease with
1.6 points and 1.2 points, respectively.
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ATTR COORD ACT HYPO MERO ALL

PATTERNS
P 98.4 76.4 57.5 81.1
R 58 34.4 27.5 42.5
F 73 47.4 37.2 55.8

PAIRCLASS
P 82.3 80.9 70.5 21.4 65 60.9
R 45.4 57.1 63.4 50.1 48.5 54.1
F 58.5 66.9 66.8 29.9 55.6 57.3

SHORTESTPATHS
P 78.1 82 77.7 89.3 79.8 79.9
R 71 74.5 72.8 42.4 63.1 68.1
F 74.4 78.1 75.1 57.5 70.5 73.5

SHORTESTPATHSGEN
P 79.4 84.1 76.8 89.6 81.1 80.7
R 70.9 75.9 73.5 42.7 63.3 68.6
F 74.9 79.8 75.1 57.9 71.1 74.2

PACELEX
P 78.8 86.4 77.7 91.5 80.2 81.3
R 68.5 75.4 73.7 43.2 64.1 68.4
F 73.3 80.5 75.6 58.7 71.2 74.3

PACE
P 78.5 82.2 77.4 86.9 79 79.7
R 66.9 76.1 72.4 37.8 63.2 67.2
F 72.3 79 74.8 52.7 70.2 72.9

UL-RECALL R 84.4 85.9 92.9 79.1 90.8 87.8

Table 5.6: The results obtained by the systems considered, across all rela-
tion types using Wikipedia corpus. The last line presents the upper-limit
for recall (UL-Recall) (see Section 7).

This experiment concludes that when the corpus is smaller and cannot
provide a sufficient amount of information, like BNC, the two techniques
combined, the PoS-based generalisation technique with the usage of all the
dependency paths, are useful. Instead, over Wikipedia, a corpus 15 times
larger, no system stands out by its results indicating that when combined
these two techniques, they result in a less accurate system.

These experiments show the motivations of this work: using only pat-
terns of context of co-occurrences the results are limited in recall. Adding
more patterns from corpus or generalising them using part-of-speech the
lack of information is not overcome, and therefore, for these techniques

78



the only way to increase the results is by providing more corpus.

5.2 Error Analysis
A major point of discussion raised by the experiments conducted in this
section is the main limitation of pattern-based systems: word pairs are
classified based on evidence based on their co-occurrence in the same sen-
tence. This way, the number of word pairs occurring in the same sentence
in the input corpus constitutes the real upper-limit in recall (UL-Recall) of
these approaches (see the last line in Table 5.5 and Table 5.6) in terms of
recall. In our experiments, only 72.8% of the relation instances included
in BLESS co-occur at least once in the same sentence in the BNC corpus
and 87.8% in the Wikipedia. Being so, all the remaining candidate pairs
cannot be classified due to a total lack of information regarding their se-
mantic relations. Moreover, this is not a corpus-specific limitation, since
due to the zipfian distribution of words, in any corpus of any size there will
always be word pairs that will not co-occur in corpus to provide enough
information to classifiers or to any automatic system pattern-based. For
instance, 35% of the word pairs that are misclassified by PaCE using BNC
corpus co-occur less than 5 times in the same sentence.

This problem has been addressed in the literature by combining ap-
proaches based on patterns extracted from co-occurrence contexts with se-
mantic similarity between words [Turney, 2006b, Herdaǧdelen and Baroni,
2009]. The results obtained in solving analogies from the SAT test2 show
that the best performances were achieved by systems highly dependent
on a very large corpus of ~50Gb [Turney, 2006b, Turney, 2013, Turney,
2006a, Turney, 2008b].

In order to scale down the dimensions of the input corpus, new tech-
niques are necessary to go beyond the aforementioned upper-limit imposed

2http://aclweb.org/aclwiki/index.php?title=SAT_Analogy_ Ques-
tions_(State_of_the_art)
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by the amount of co-occurrences in the same sentence observed in a given
corpus, and to acquire more information to identify the relation holding
between pairs of words that co-occur very infrequently or not at all in the
same sentence in a given corpus, although they are related.

In order to get some insight on possible strategies for tackling this limi-
tation of pattern-based classification systems for relation instances, an em-
pirical error analysis of PaCE results over BNC was run, in which it is
observed that 13% of the dataset does not co-occur in the same sentence.
Yet, the members of these word pairs share a significant number of co-
occurring words in the same type of dependency relation. In Figure 5.2
we present instances of co-hyponymy, hypernymy and attribute relations
from our dataset that do not co-occur in the corpus, although they are
densely linked by shared distributional properties, that we will call “bridg-
ing words”.

BeetN and cucumberN are two co-hyponyms, both hyponyms of veg-
etable, which do not co-occur in the same sentence in our corpus. However,
both occur in a relation of coordination with other hyponyms of vegetable
such as potatoN, carrotN, lettuceN and peaN. Additionally, both target nouns
occur as the direct object of the verb growV, while only beetN occurs as di-
rect object of the verb sproutV. However, saladN, onionN and raddishN do
occur as a direct object of the verb sproutV and they occur in coordination
with cucumberN.

Regarding the relation of hypernymy, cowN and herbivoreN are an ex-
ample of a word pair from the domain of ground mammals which instan-
tiate this relation but does not co-occur in the same sentence in BNC,
although both nouns occur in conjunction with other herbivores such as
antelopeN, goatN, sheepN, donkeyN, horseN and cattleN. This set of words
co-occurs with herbivoreN in the pattern herbivore such as X or herbivore
is a X. Also, both cow and herbivore occur with phrases like group of X,
number of X, population of X and herd of X, as well as objects of the verb
grazeV.

Finally, in our dataset, fancyJ is an attribute of gloveN but these words
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do not co-occur in the same sentence in BNC. In our corpus, however,
fancyJ is the modifier of bootN, coatN, dressN, hatN, jacketN and tieN, among
many others, which are words that co-occur in conjunction with the word
gloveN. Additionally, all of these words are objects of the verb to wearV

and they occur in the phrase dressed in X, just like gloveN does. Although
fancyJ and gloveN do not co-occur, fancyJ co-occurs with colorfulJ, which
is an adjectival modifier of jacketN and dressN, two words that occur in a
coordination relation with gloveN.

Therefore, for detecting new relation instances, valuable information
can be extracted from parallel sentences separately containing occurrences
of each individual member of a candidate pair and where the members of
the pair share other co-occurring words. The vectorial representation of
each word in Traditional VSM captures this information but it is unclear
how to use it to assess whether a given lexical-semantic relation holds or
not for a candidate word pair. And yet, as made apparent by the examples
above, dependency relations between individual target words and shared
third party co-occurring words can be indeed a valuable indication of the
relation holding between a word pair.

5.3 Conclusions
The present chapter shows the limits of pattern-based systems in the clas-
sification of instances of lexical-semantic relations. Moreover, it addressed
the impact of using different information, in particular all the dependency
paths, instead of only the shortest one, in combination with a generalisation
strategy using part-of-speech information in the classification of instances
of lexical-semantic relations.

The isolated use of all the dependency paths up to three edges has not
resulted in any statistically significant improvement, when compared with
using only the shortest paths.

On a smaller corpus, like BNC, PoS-generalized patterns of co-occurrence
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allow for correctly classifying more candidate word pairs and when com-
bining these two strategies the recall further increases, but the precision
slightly drops. On Wikipedia, the ShortestPath system obtained the best
results, with a recall of almost 70%. Therefore, this strategy was found not
useful for improving the acquisition recall. From this results, it is proved
that the most important variable that affects recall in this approach is the
corpus size.

However, note that comparing the best recall achieved over BNC, 51.1%,
with the best recall achieved over Wikipedia, 68.6%, one observes that the
17.5 point increase in recall is obtained using a corpus 15 times larger.

The results obtained from the error analysis made apparent the need of
overcoming the lack of enough patterns of contexts to fill in the vector that
is handled by the classifier. As explained in Section 2.4, the sparse data
problem is an important challenge for vector-based word representations.
Our proposal is to gather information about the members of the word pair,
in particular distributional information represented in terms of dependency
relations. In this way, shared co-occurring contexts can be the basis of
a generalisation technique that bridges information coming from different
sentences, for improving the classification recall. This motivates the main
goal of this thesis, to find novel word pair representations that embed in-
formation about word co-occurrences with the distributional information
of words.
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Figure 5.2: Local networks of two elements unrelated in corpus83





Chapter 6

OVERCOMING DATA
SPARSITY

While the limitations of traditional pattern-based systems were presented
in the previous chapter, this chapter introduces two new approaches for
representing word pairs in order to accurately classify them as instances of
lexical-semantic relations – even when the pair members do not co-occur.
Our assumption is that the novel representation has to combine distribu-
tional information of words as well as information about the contexts of
co-occurrences of word pairs.

The first approach creates a word pair representation based on a gener-
alisation of the corpus information into a graph representation. It acts as a
network of information where the words are connected in various dimen-
sions, also interconnected, contrary to the dimensions of the Traditional
VSM that act as independent features. The graph encodes the distribu-
tional behaviour of each word in the pair and consequently, patterns of
co-occurrence expressing each target relation are extracted from it as rela-
tional information.

The second approach uses vectorial representations in Predictive VSM.
These representations have been shown to preserve linear regularities among
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words and pairs of words, therefore, encoding lexical and relational sim-
ilarities [Baroni et al., 2014]. Here, we test if their compositionality can
represent also lexical-sematic relations instances.

6.1 Graph-based Representation Model
The present section introduces a novel word pair representation model
based on patterns of contexts, and on a graph-based representation of the
corpus. A word pair is represented as a vector of features set up with
the most meaningful patterns of context and filled in with information ex-
tracted from the graph representation of the dependency parsed corpus. We
refer to systems trained with these graph-based representations as Graph-
based Classification systEm (GraCE).

The novelty of this system stands in the generalisation obtained with
the graph-based corpus representation. Each word in a dependency-parsed
corpus is represented by a node in a graph. Arcs connect two nodes when
their corresponding words are connected in a dependency relation in a sen-
tence in corpus; arcs are labeled with the name of the dependency relation.
Its main advantage is that all the dependency relations of a target word,
extracted from different sentences, are incident arcs to its corresponding
node in the graph. Thus, words that never co-occur in the same context in
corpus, are linked in the graph through bridging words: words that appear
in a dependency relation with each member of the pair but in different sen-
tences. With this representation we address the data sparsity issue, aiming
to overcome the reported major bottleneck of previous approaches: limited
recall because information can only be gathered from co-occurrences in
the same sentence of two related words.

The creation of the word pair representations contains two stages: (1) the
representation of the input corpus as a graph, and (2) the extraction of
meaningful patterns of co-occurrence for each semantic relation from the
same corpus starting from the initial set of examples. The graph-based
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representation and the set of acquired patterns are used to create vectorial
representations of target word pairs.

Next, it is presented an example of how the graph representation of the
corpus addresses the lack of information in corpus and it formally intro-
duces each step of the GraCE algorithm.

Example To illustrate the benefit of acquiring information about a word
pair from the graph instead of using co-occurrence information, let us con-
sider that, given the sentences (S6.1) and (S6.2) below, we want to classify
the pair (chisel, tool) as an instance of the relation of hypernymy.

(S6.1) The students learned how to handle screwdrivers, hammers and other
tools.

(S6.2) The carpenter handles the new chisel.

S6.1 S6.2
det(students-2, The-1) det(carpenter-2, The-1)
nsubj(learned-3, students-2) nsubj(handles-3, carpenter-2)
root(ROOT-0, learned-3) root(ROOT-0, handles-3)
advmod(handle-6, how-4) det(chisel-6, the-4)
mark(handle-6, to-5) amod(chisel-6, new-5)
ccomp(learned-3, handle-6) dobj(handles-3, chisel-6)
dobj(handle-6, screwdrivers-7)
dobj(handle-6, hammers-9)
conj_and(screwdrivers-7, hammers-9)
cc(screwdrivers-7, and-10)
amod(tools-12, other-11)
dobj(handle-6, tools-12)
conj_and(screwdrivers-7, tools-12)

Table 6.1: The dependency relations returned by the Stanford parser in the
collapsed format.
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Figure 6.1: Dependency multigraph built from a two sentence corpus using
GraCE. See text for details.

The word pair (chisel, tool) has a relation of hypernymy but its mem-
bers do not co-occur in the same sentence. However, both words occur as
objects of the verb to handle in different sentences, just like other hyper-
nym word pairs such as (hammer, tool) and (screwdriver, tool) which do
co-occur in the same sentence and are connected by the dependency pat-
terns: XN

obj←−− handleV
obj−−→ YN and XN

conj←−→ YN
1 in the graph. This

shows that handle is one of the contexts shared between these semantically
related words that provide information regarding a possible semantic relat-
edness between them. Leveraging only the information provided by each
sentence, as existing pattern-based approaches do, no evidence is acquired
regarding the semantic relation holding between chisel and tool. GraCE
combines the dependency relations seen in each sentence, listed in Table
6.1, in the graph shown in Figure 6.1. In this graph, chisel and tool are
connected by a path passing through the bridging word handle:

chiselN
obj←−− handleV

obj−−→ toolN

This path shows that both chisel and tool could co-occur in a sentence as
objects of the verb to handle, although they do not in the example two-

1The conjunction is marked with a bidirectional arrow because it is a bidirectional
relation; in the graph, for each relation of conjunction conj(w1, w2), we add two arcs
(w1, conj, w2) and (w2, conj, w1)
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sentence corpus.

Figure 6.2: GraCE architecture.

In the following paragraphs we describe the algorithm for representing
the relation holding between a word pair, using the graph based represen-
tation. As it can be observed in Figure 6.2, the corpus is used as input of
two stages: to create a graph representing the connectivity of words based
on their dependency relations, and to extract dependency-based patterns
of contexts describing target lexical-semantic relations as meaningful fea-
tures. The extraction of the patterns is split in two parts: the acquisition of
the patterns and the selection of the most meaningful patterns. Finally, to
create the word pair representations, information from the graph is com-
bined with the final set of patterns.

Corpus representation The goal of the first step is to generate a directed
graph connecting semantically associated words using observed depen-
dency relations. Because two words may hold more than one dependency
relation, two nodes may be linked by more than one arc. Formally, the
corpus is represented as a graph G = (V,E), where V is a set of PoS-
tagged lemmas in a corpus and E is the set of dependency relations con-
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necting two lemmas from V in the corpus. From each parsed sentence of
the corpus, a set of dependency relations linking the words in it is pro-
duced: D = {d1 . . . , d|D|}, where d = (wi, dep, wj) and wi, wj and dep
denote PoS-tagged lemmas and a dependency relation, respectively. The
graph G is created using all the dependency relations from D as arcs and
their relation names al labels.

The output of this step is a labeled directed multigraph, where two
words are connected by the set of arcs containing all the dependency rela-
tions holding between them in the corpus. See Figure 6.1 for an example
of the graph.

Pattern Acquisition The goal of the second step is to collect features
associated with each relation r from the parsed input corpus. The same
approach is followed as in the acquisitions of patterns for PaCE, with the
difference that these patterns are created only from the dependency paths
that connect x and y in the dependency graph of each sentence. A depen-
dency path is transformed in a pattern by delexicalising x and y. The PaCE
system follows a pattern generalisation step based on PoS tags. Contrarily,
the GraCE system uses only lexicalized patterns because the generalisation
of the information is embedded in the structure of the corpus graph-based
representation.

Given the example instances for the relation of hypernymy as in the
previous example, i.e. the word pairs (hammer, tool) or (screwdriver, tool)
from the sentence (S6.1), the system acquires the dependency patterns:

XN
obj←−− handleV

obj−−→ YN

XN
conj←−→ YN

as indicative dependency patterns for the relation of hypernymy.

Feature Selection Table 6.2 shows the total number of patterns acquired
from each corpus. As in the PaCE system, for the word pair vectorial

90



BNC WIKI

lE = 2 lE = 3 lE = 2 lE = 3
AMPH_REPT 349 805 7824 51463
APPLIANCE 1605 4327 39089 299399

BIRD 661 1669 8693 61381
BUILDING 5419 14837 77402 561877
CLOTHING 2278 6457 26551 186772

CONTAINER 1683 3858 18083 104018
FRUIT 635 1820 8116 65802

FURNITURE 2053 5384 12729 79356
GR_MAM 3137 8532 42980 307647

INSECT 455 1185 6011 39355
MUS_INSTR 707 1944 29526 227418

TOOL 847 2137 12339 73682
TREE 421 1047 6617 50358
VEG 831 2763 9288 77872

VEHICLE 4120 10413 116444 777800
WATER_ANIM 606 1714 7646 51248

WEAPON 1128 2891 51821 339683

Table 6.2: The number of dependency patterns acquired for GraCE2 and
GraCE3 for each corpora.

representation, only the top tG most meaningful patterns are considered in
the final set of patterns PG to form a vectorial space. The features are
selected based on the number of occurrences with unique word pairs, ufr
score, or the their tfidf scores associated, as they were presented in Section
5.1.

Word pair representations Using the graph modelG and the set of con-
textual patterns automatically acquired PG, each word pair (x,y) is repre-
sented as a binary distribution over each pattern from PG. Rather than
using the raw input corpus to identify contexts of occurrence for the word
pair (x,y) as PaCE does, GraCE uses the paths connecting x and y in G.
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These paths are then matched against the feature patterns from PG, and
the word pair (x,y) is represented as a binary vector encoding non-zero val-
ues for all the features connecting its members in G, and zero otherwise.
Binary weights are used because the feature values are derived from ob-
serving paths in the graph, which is a generalization of the corpus. The
graph contains combinations of multiple dependency relations, extracted
from various sentences, therefore, paths not observed in the corpus can be
found in the graph.

XN
obj←−− handleV

obj−−→ YN XN
conj←−−→ YN

(screwdriver, tool) 1 1
(hammer, tool) 1 1

(chisel, tool) 1 0

Table 6.3: Vectorial representations created with GraCE for (screwdriver,
tool), (hammer, tool) and (chisel, tool) using the example corpus and the
observed dependency patterns in the corpus.

6.1.1 Parameter Selection
In the previous lines we described the way GraCE creates the word pair
representations. Next, we present a set of experiments used to set up the
parameters for GraCE.

GraCE, as PaCE, contains a set of parameters that influence the patterns
acquired in thePG, to create the final word pair representations. Pattern se-
lection parameters refer to the maximal length of the dependency patterns,
lG, the maximal number of the patterns used tG, and the selection scheme
ufr or tfidf. lG was tested for the values lG = 2 and lG = 3, larger path con-
necting to many words in the graph, and tG was tested for the values tG =
5000, tG = 8000 and tG = 10000.

To test the effect of these parameters, we trained and tested GraCE in
the in-domain setup using each combination of their values and the results
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BNC Wikipedia
ufr tfidf

5000 5000 8000 10000 5000 8000 10000

lE=2
P 74 1 81 3 63 7 58 4 74 1 65 3 61
R 80 81 1 73 69 7 80 75 3 72 7
F 76 9 81 2 68 63 5 76 9 70 66 4

lE=3
P 87.5 84 5 82 3 79 75 1 63 57 7
R 85 82 3 81 2 80 4 80 6 73 3 69 7
F 86.3 83 4 81 7 79 7 77 7 67 7 63 1

Table 6.4: Aggregated results obtained with the in-domain setup for the
GraCE system using different parameters.

are shown in Table 6.4.
On BNC, using only dependency patterns created with dependency re-

lations up to two arcs, the system achieves only 74.1 points in precision,
80 in recall and 76.9 in F-measure. It is when the paths created with three
dependency relations are used, that the results improve with 13.4 points in
precision, 5 in recall and 9.5 in F-measure. Therefore, although many word
pairs are connected in graph at distance two, this dependency path length
does not provide sufficient distinctive information. When larger paths are
used, novel information is provided to the classifier, information that in-
creases the precision of the system.

Contrarily, on Wikipedia, a 15 times larger corpus, using only patterns
of length two, the classifier is able to make quite accurate classifications
and the system is already able to achieve 81.3 points precision, 81.1 points
recall and 81.2 in F-measure. However, using patterns up to three arcs, the
results increase with 3.2 points in precision, 1.2 points in recall and 2.2 in
F-score.

On Wikipedia, we also tested also a feature selection scheme for find-
ing the most reliable features for the word pair representation. Note that
the features are dependency patterns extracted from the dependency paths
connecting instances of target relations in corpus. In GraCE the informa-
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tion provided by the dependency pattern is amplified by the generalisation
process from the graph representation. When the information of the pattern
is not precise enough for the target relation, it can generate a lot of erro-
neous information in the word pair representation. For this reason it is very
important to use informative patterns for the semantic relation holding be-
tween the two words in the pair. However, an equilibrium has to be found
between the number of patterns, too few patterns connect less word pairs
decreasing the recall of the system, but too many patterns could decrease
the precision of the system.

Comparing the results obtained with the ufr selection scheme and the
results obtained with tfidf , the best results are obtained when the rele-
vance of a word pair is given by the number of unique co-occurring word
pairs. Therefore the patterns that are the most representative for a semantic
relation tend to co-occur with more instances of the relation.

Taking a look at the results obtained when the number of features used
to create the word pair representations tG vary, the best results are obtained
with tG=5000. This shows that using more features, less precise informa-
tion is provided to the classifier and it is harder to make a decision due to
the graph based corpus generalisation.

Therefore, the most effective parameters for the system are obtained
using the lG=3, tG=5000 and the number of unique word pairs occurring
with a pattern used as selection scheme, on both corpora used. This setup
is used for the rest of experiments.

6.1.2 Graph-based Corpus Generalisation

After the parameters are set up for GraCE, we present an experiment that
shows the effect of the graph-based generalisation of the corpus over the
classification results.

To shed light over the generalisation process, we compare the results
of GraCE with a Baseline system:
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BASELINE The purported benefit of the GraCE model is that the graph
enables identifying syntactic features between pair members that are never
observed in the corpus, which increases the number of instances that can
be classified without sacrificing accuracy. Therefore, to quantify the ef-
fect of the graph, we include a baseline system, denoted BL, that uses an
identical setup to GraCE but where the feature vector for a word pair is
created only from the dependency path features that were observed in the
corpus (as opposed to the graph). Unlike the GraCE model which has bi-
nary weighting (due to the graph properties), the baseline model’s feature
values correspond to the frequencies with which patterns occur; following
common practice, the values are log-normalized. Following the previous
example, BL system lacks of enough information to represent the (chisel,
tool) word pair, because chisel and tool are not seen in the same sentence
in corpus, and consequently this word pair cannot be classified.

Evaluation

The improvement due to the generalisation of the corpus in a graph repre-
sentation is reflected in Table 6.5 and Table 6.6, for the in-domain setup.

The main issue of systems that only use the information directly ob-
servable in corpus, like BL, is that a word pair has to co-occur in the same
sentence a sufficient amount of times to provide enough distributional in-
formation for classification. In BNC, 27.2 % of the BLESS instances never
co-occur, while in Wikipedia, a corpus 15 times larger than BNC, this num-
ber amounts to 12.2 %. Mainstream pattern-based systems are unable to
associate any features to word pairs that do not co-occur and, consequently,
to classify them. Therefore, the real upper-bound limit of this type of sys-
tems is the amount of word pairs co-occurring in the corpus, presented in
the UL-Recall BL line in each results table. The recall achieved by GraCE
overcomes this limitation of pattern-based systems: 23.6% and 4.8% of
the correctly classified word pairs are never seen in the same sentence in
BNC and in Wikipedia, respectively. The actual upper-limits of the GraCE
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ATTR COORD ACT HYPO MERO ALL

BL
P 83.7 82.1 79 86.9 71.2 79.1
R 51.2 48.5 66.2 18.3 47.7 50.8
F 63.5 61 72 30.3 57.2 61.8

GRACE
P 86.7 93 84 93.3 86.6 88
R 85.3 89.7 88.6 72.8 81.6 85.4
F 86 91.3 86.3 81.8 84 86.6

UL-RECALL - BL R 74 64.7 83 60 73.9 72.8
UL-RECALL - GRACE R 99.9 98.2 99.9 99.6 99.3 99.3

Table 6.5: The results obtained by the BL and GraCE, across all relation
types using BNC. The last lines presents the upper-limit for the BL system
recall (UL-recall BL) and the upper-limit for the GraCE system recall (UL-
recall GraCE).

ATTR COORD ACT HYPO MERO ALL

BASELINE
P 79 86.9 77.5 92.5 80.8 81.6
R 68.4 75.5 73.7 43.4 65.1 68.6
F 73.3 80.8 75.6 59.1 72.1 74.5

GRACE
P 83.8 97.4 84.4 70 80.4 84.5
R 72.8 82.7 85.9 84.4 84.8 82.3
F 77.9 89.5 85.1 76.5 82.5 83.4

UL-RECALL BL R 84.4 85.9 92.9 79.1 90.8 87.8
UL-RECALL GRACE R 100 98.8 100 100 99.3 99.7

Table 6.6: The results obtained by BL and GraCE across all relation types
using Wikipedia corpus. The last lines presents the upper-limit for the BL
system recall (UL-recall BL) and the upper-limit for the GraCE system
recall (UL-recall GraCE).

system represent the number of word pairs that have both members occur-
ring in corpus, presented in the UL-Recall GraCE. This capability makes
GraCE improve the BL performance by 8.9 points in precision and 34.6
points in recall on BNC and 2.9 points in precision and 13.7 in recall on
Wikipedia. Given that the BL system is built identically to GraCE but
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without using a graph, these results demonstrate the performance bene-
fit of joining the distributional information of a corpus into a graph-based
corpus representation.

6.2 Word Embeddings Representation Model
The present section introduces word pair representations based on Predic-
tive VSM, also known as word embeddings, which encode information
about the similarity between words as well as information about the se-
mantic relations holding between word pairs (see Section 2.3.2). In this
vectorial space, the word pair representations are created starting from the
vectorial representation of the word pair members. Each word in corpus
is represented as a vector, named word embeddings. We use the original
Skip-gram model, improved with techniques of negative sampling and sub-
sampling of frequent words, which achieved the best results for detecting
semantically similar words [Mikolov et al., 2013a, Mikolov et al., 2013b].
This model uses co-occurrences of words in contexts created with their
position in a window context. However, the dependency relations between
words could create more suitable representations for our task. Therefore, to
test the usefulness of the dependency relations between words for the rep-
resentation of the lexical-semantic relation instances in Predictive VSM, a
second set of vectorial representations is created using a dependency-based
Skip-gram model [Levy and Goldberg, 2014a]. Both systems filtered out
all the words occurring only once in corpus, used a window of 5, and neg-
ative sampling with k = 5, to create the vectors and 200-dimensional vec-
tors are learned for each word.

Once the word embeddings are created, word pairs are represented ap-
plying vectorial operations over the word representations. Two represen-
tations are tested: the vector offset and the vector concatenation, both de-
scribed more formally below.

Previous works collected vectorial similarities between word pair rep-
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resentations to find instances of the same semantic relation. This way, the
information encoded in all the vectorial dimensions is equally important
for the classification. The novelty of our proposal stands in the usage of
a supervised SVM classifier, as in PaCE and GraCE, to discover patterns
of features in the word pair representation for labelling a word pair as an
instance of a target relation. We refer to these systems Word Embedding
Classification systEm (WECE). Below we introduce each variation of the
WECE system.

WECEoffset [Mikolov et al., 2013c] shows that the vectorial represen-
tation of words provided by word embeddings captures syntactic and se-
mantic regularities and that each relationship is characterized by a relation
specific vector offset. Word pairs with similar offsets can be interpreted as
word pairs with the same semantic relation. Therefore, given a target word
pair (x,y), the vectorial representation is calculated from the difference be-
tween its vectors:

v((x, y)) = v(x)− v(y)

Note that this operation depends on the order of the arguments, and is
therefore potentially able to capture asymmetric relationships.

By subtracting the vectorial representations of the members, this repre-
sentation relies only on a vectorial representation of the relation and elim-
inates the individual information of each member of the pair.

WECEconcat This representation concatenates the embeddings of each
member of a pair to create the vectorial representation of the pair. For-
mally, given a word pair (x, y), whose member vectorial representations
are v(x) = (x1, x2, . . . , xn), and v(y) = (y1, y2, . . . , yn) respectively, the
vectorial representation of (x, y) is defined as the concatenation of v(x)
and v(y):

v((x, y)) = (x1, x2, . . . , xn, y1, y2, . . . , yn)
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Consequently, the length of v((x, y)) is 2n, where n is the dimension of
the embedding space.

The concatenation of the vectorial representations of words tests if the
information encoded directly in the embeddings reflects the semantic rela-
tion of the word pair. This way, the classification system does not leverage
only the information about the relation holding between the two words,
but it may handle also possible similarities in their distributional represen-
tations.

The WECEoffset systems that use the word embeddings created with the
original system is referred to as WECEbow

offset, and when the dependency
based embeddings are used ,WECEdep

offset. Similarly, we defined WECEbow
concat

and WECEdep
concat.

6.2.1 Automatic Feature Similarities Detection

Word embeddings have been used in the Directional Similarity Model
(DS)[Zhila et al., 2013] to measure relational similarity in the Sem-Eval
2012 - Task 2 [Jurgens et al., 2012]. This task can easily be extended to a
classification setting: given a target word pair (x, y), the similarity is com-
puted between (x, y) and prototypical instances (x, y)i of a target relation
r to decide if (x, y) is also an instance of r.

DS relies on the assumption that word pairs having the same seman-
tic relations have similar offset vectors. Therefore, to approximate how
much a word pair is representative as an instance of a semantic relation,
they calculate the cosine similarity between the target word pair and the
vectorial representations of the prototypical word pairs. Thus, DS system
represents a minimally-supervised system whose features are produced in
an unsupervised way, through the embedding process, and are therefore
not necessarily tuned for the acquisition of lexical-semantic instances. The
WECE systems are intended to identify potential benefits when adding fea-
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ture selection by means of the SVM2. Therefore, to show the contribution
of the machine learning system, WECE systems are compared with our
implementation of the DS systems.

DS systems As for the WECE systems, the DS systems use two types of
embeddings: the word embeddings produced using the original Skip-gram
model which was originally used in [Zhila et al., 2013] and the embed-
dings using the method of [Levy and Goldberg, 2014a], which include
dependency parsing information. We refer to these systems as DSZhila and
DSLevy, respectively. To create the vectorial representations of a word pair,
DS systems use the offset vectors.

To calculate the similarity of (x, y) with the set of instances (x, y)i of
the relation ri, each system computes the average of the similarity of (x, y)
with each (x, y)i:

avg(cos((x, y), (x, y)i))

The word pair is classified as an instance of the relation with the highest
associated score.

DSc systems DSc differs from the DS system only in the way the sim-
ilarity is computed: DSc

Zhila and DSc
Levy calculate first the centroid of the

example instances as vectorial representation of the relation instances; the
final similarity score is the similarity of (x, y) with the centroid of the class:

cos((x, y), centroid((x, y)i))

2A similar system was created in the same time in another work [Levy et al., 2015b],
but without any connection to our work. However, [Levy et al., 2015b] tests a supervised
system only for the detection of the hypernyms.
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BNC Wikipedia
P R F P R F

DSZHILA 62.1 47.4 53.7 61.9 49.1 54.8
DSC

ZHILA 66.4 63.6 65 66.6 64.1 65.3
DSLEVY 53 49.2 51 61.3 54.5 57.7
DSC

LEVY 55.3 58 56.6 68.5 64.9 66.6
WECEBOW

OFFSET 90 90.9 90.4 91.9 93.8 92.8
WECEBOW

CONCAT 89.9 91 90.4 90.1 91.8 90.9
WECEDEP

OFFSET 85.3 86.5 85.9 88 91.9 89.9
WECEDEP

CONCAT 85.9 87 86.5 88.6 92.2 90.3
UL-RECALL 99.3 99.7

Table 6.7: Aggregated results obtained for the in-domain setup with the
BLESS dataset.

Evaluation

Table 6.7 shows the results of the systems based on the predictive vectorial
representations. Taking a look at DS systems, we observe that the best
results are achieved by comparing the target word pair representation with
the centroid vector of the class, while the corpus information used to train
the vectors is not distinctive. However, the general results are quite low,
achieving less than 70 points precision and recall. Instead, WECE systems
achieve good results, having a recall of 88.85 points in average showing
an improvement of 34.3 points in average over the DS systems which used
the same embeddings. This difference highlights the importance of the
SVM classifier for learning which dimensions of the embeddings reflect
the lexical relation.

Nevertheless, these results go against the statements of [Levy et al.,
2015b] that good results obtained by the supervised systems applied over
the word embeddings are due to the lexical memorization. We will discuss
this issue in Section 6.3.2, dedicated to analyse the results across all the
relations.

Comparing all the WECE systems between them, we observe that the
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best results over BNC are achieved by the WECEbow systems that are
trained using the bag-of-words model. WECEdep which uses only co-
occurrences created from dependency relations achieves lower results in
both precision and recall. On Wikipedia, the best results are obtained with
WECEbow

offset, while WECEdep achieves lower results in precision.
Comparing the results obtained by WECEconcat, which concatenates

the vectorial representations, and therefore leverages information from the
vectorial representation of the words, and the results obtained by WECEoffset,
which uses the vector offset as representation of the relation holding be-
tween two words, we observe that they achieve very similar results. The
embeddings are created to assign similar representation to similar words,
therefore, the results show that information about the lexical similarity be-
tween pairwise words is not useful for the acquisition of lexical semantic
relations.

6.3 Experiments
The objective of this work is to find word pair representations that are able
to model even the semantic relation holding between word pairs that do
not co-occur in text. In the previous sections two new systems were in-
troduced: GraCE and WECE, both using vectors encoding distributional
information of words and information about the context where a word pair
co-occurs. GraCE proposes a graph-based representation of the corpus to
encode these information types, while WECE combines them in a vectorial
representation created with a neural network. Both use a machine learning
classifier to tune the importance of each dimension of the vectors for the
target lexical-semantic relation. Experiments presented in the last section
were carried out to show the effects of the different representations over the
BLESS dataset. Here we report on a series of experiments that: (1) con-
firm the results on a novel dataset, the K&H dataset which was created
from WordNet, a standard lexical resource; (2) show the capabilities of the
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systems to address the classification for very different types of relations,
three paradigmatic relations and two syntagmatic relations; (3) show the
dependence on the domain information.

6.3.1 Systems Comparison

While in the first experiments we showed the importance of the graph rep-
resentation for GraCE and the importance of the vector representation for
the machine learning system for WECE separately, here we compare all
the systems in an in-domain setup using the K&H dataset. The results are
presented in Table 6.8.

BNC Wikipedia
P R F P R F

PAIRCLASS 76.9 4.6 8.7 77.0 11.7 20.4
BL 82.6 7.7 14.2 89.4 16.2 27.5
GRACE 90.7 43.8 59.0 94.0 75.5 83.7
DSC

ZHILA 37,1 19,8 25,8 36,1 29,2 32,3
DSC

LEVY 34,8 22,6 27,4 31,6 26,3 28,7
WECEBOW

OFFSET 96.0 59.1 73.1 96.8 87.7 92.0
WECEBOW

CONCAT 97.4 60.0 74.2 97.6 89.3 93.2
WECEDEP

OFFSET 87.9 63.1 73.5 95.4 86.1 90.5
WECEDEP

CONCAT 93.1 64.7 76.4 96.7 88.4 92.4
UL-RECALL 81.4 99.6

Table 6.8: Aggregated results obtained for the in-domain setup with the
K&H dataset.

The results confirm that using a larger corpus improves recall. All the
methods created in line of the Traditional VSM, PairClass and BL achieved
a significantly larger recall on Wikipedia than on BNC. However, the recall
is very limited for both corpora. If in BNC only 19.4% of the K&H in-
stances co-occur, and although in Wikipedia the number of co-occurrences
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raises to 30.7%, BL only correctly classifies 7.7 % of the pairs on BNC
and 16.2 % on Wikipedia.

GraCE, DCc and WECE systems have the real-upper limit in the num-
ber of pairs containing words that occur in corpus, shown in the last line of
the Table 6.8.

GraCE, using the graph generalisation, overcomes the actual limitation
of pattern-based systems: 40% and 78.7% of the K&H instances that never
co-occur in BNC and in Wikipedia, respectively, are correctly classified
by GraCE. This ability causes GraCE to improve the BL performance by
8.1 points in precision and 36.1 points in recall on BNC and 4.6 points in
precision and 59.3 in recall on Wikipedia.

However, analysing the false negatives of the GraCE classifier, we ob-
served that even relying on a graph-based corpus representation to extract
the distributional information of a word pair, many errors are still caused
by the sparsity of their vectorial representation. For the word pairs that
do not co-occur in the same sentence, the GraCE vector representations of
correctly-classified pairs have a median of eight non-zero features, indi-
cating that the graph was beneficial for still providing evidence of a rela-
tionship; in contrast, incorrectly-classified pairs had a median of only three
non-zero features, suggesting that even using all the dependency properties
of words from the corpus for finding “bridging words”, data sparsity is still
the major origin of classification errors.

By combining all the distributional information into a denser vector,
WECE systems are able to improve GraCE’s results by an average of 2.9
points in precision and 17.9 points in recall.

The importance of the SVM classifier, for learning which features of
the embeddings reflect the lexical relation, is once more highlighted by
WECE results with an increase by 62 points in precision and 46 in recall
over DSc.

Between the WECE systems, the WECEdep
concat achieves the best results

over BNC, while WECEbow
concat over Wikipedia. Over this dataset, informa-

tion about the lexical similarity of pairwise words included in the WECEconcat

104



was meaningful for the classifier. However, over the BLESS, this informa-
tion did not show to be useful, therefore further investigations are necessary
to determine when this type of information is useful.

6.3.2 Results per Relation Type

Figure 6.3: F1 distribution scores across domains obtained with BLESS
dataset for each proposed system and relation type over BNC corpus.

In this work we are interested in creating a general approach for the
classification of any lexical-semantic relation instance. In this experiment,
we analyse the results obtained per relation in the previous experiments
using BLESS dataset and K&H dataset.

Because BLESS contains 17 datasets, and we aim to show the differ-
ences in results across relations and their variation across domains, we
show the box and whisker plot of the results obtained in the in-domain
setup over the BNC Figure 6.3, and over the Wikipedia corpus in Figure
6.4.

The results confirm that the proposed systems achieve satisfactory re-
sults across all the relations, the median of the results being around 90
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Figure 6.4: F1 distribution scores across domains obtained with BLESS
dataset for each proposed system and relation type over Wikipedia corpus.

points in F1. The most accurate system is WECEbow, which supports the
assertion by [Levy and Goldberg, 2014a] that bag-of-word embeddings
should offer superior performance over dependency-based embeddings on
tasks involving semantic relations. The difference is more significant for
BNC showing that this representations are more suitable for a smaller cor-
pus. Carrying out an error analysis, the lowest results of the WECE sys-
tems are obtained in the domains with the fewest training instances, mak-
ing apparent that word embedding systems are dependent on the number
of training instances. For these domains, GraCE achieves better results.

Between all the results, the hypernymy relation achieves the results
with the largest variation across domains , showing the complexity of the
hypernymy relation.

The plots shown in Figure 6.3 and Figure 6.4 allow us to analyse also
the lexical memorisation issue [Levy et al., 2015b]: when a supervised
classifier is trained with various instances that contain the same word in
a slot, any words occurring with that word will be labeled as an instance
of the same relation r. We trained a multiclassifier over six classes of the
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BLESS dataset and our classifier achieves good results in precision and
recall over all the relations as one can observe from the results plots. Our
classifier manages to associate the correct different relations for instances
that share the same word on the same slot. For instance, the word beet
occurs with: 11 attributes, 18 co-hyponyms, 14 actions, 5 hypernyms, 5
meronyms and 38 unrelated words being adjectives, nouns and verbs. The
classifier is able to assign the correct label to each word pair but one at-
tribute, one hypernym, two meronyms and one unrelated word that was
classified as action.

Figure 6.5: F1 distribution scores across domains obtained with K&H
dataset for each proposed system and relation type over BNC corpus.

The results obtained with the K&H dataset are shown in Figure 6.5
for BNC and Figure 6.6 for Wikipedia. When we compare the two fig-
ures, we observe that using Wikipedia, the results improve considerably
over all the relations. However, even if a corpus as large as Wikipedia is
not available, using only the information over BNC, the WECE systems
achieve satisfactory results, around 80 F1-points. Comparing the results
across relations, we observe that the results for the relations of hypernymy
and co-hyponymy are higher then the results for meronymy. On one hand,
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Figure 6.6: F1 distribution scores across domains obtained with K&H
dataset for each proposed system and relation type over Wikipedia corpus.

one could think that a reason for this results could be the number of the
available training instances. As shown in Table 4.2, the amount of training
instances for meronyms acquired from WordNet is lower when compared
with the instances provided for hypernymy and co-hyponymy. Indeed, the
results for the relation of the meronymy over the animals and plants topical
domain are lower, they containing fewer meronyms. However, in the vehi-
cles topical domain, the K&N dataset provides only 189 hypernym pairs.
Instead, the results of the systems for this domain and this relation are not
affected by the number of training instances.

On the other hand, the amount of meronyms from K&H is larger than
the meronyms provided by BLESS for each domain, which makes us think
that a problem is also the polisemy of the words. For instance, WordNet
provides as meronym for dog1

n the synset flag7
n, which is not the most com-

mon sense for the word flag. Differently, because BLESS was manually
developed, the meronyms provided by BLESS are words acquired from
Wikipedia entries, providing words having their main sense the meronym
sense.
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From all the previous experiments, we conclude that GraCE achieves
good results for BLESS datasets, over both corpora. However, this ap-
proach is considerable hindered by the words polisemy in the K&H dataset,
where it needs an input corpus as Wikipedia to achieve satisfactory results.
Instead, the reliability of the representations provided by the embeddings
is shown, WECE system achieving the best results across each relation.
Between the lexical relations tested over the BLESS dataset hypernymy
achieves lower results, while in the K&H dataset the meronymy acquisi-
tion is considerably hindered by the words polysemy.

6.3.3 Domain-aware Training Instances
In all the previous experiments, the proposed systems were compared to
test the importance of the novel representations that use a generalisation
technique over the corpus information for creating representation word
pairs that do not co-occur. However, the experiments were run only over
one domain, therefore, the system takes advantage of the topical domain
information. This topical domain information is observed in the patterns
of context used, they keep specific information of the domain and bene-
fit word pairs from that domain. For instance, the domain of vegetables,
contains the patterns x obj_inv←−−−− eatV

obj−−→ y, which describes things that
can be eaten. However, lexical-semantic relations are general relations that
may be observed in all the topical domains. Therefore, one more exper-
iment was carried out where the systems had to classify word pairs from
a different domain than the domains of the training set. The objective is
to assess the importance of the domain-aware training instances for the
classification.

To test the importance of the domain-aware training instances we used
the BLESS dataset, as it covers a larger number of domains, 17 when com-
pared with the only 3 domains of the K&H dataset. The average results
of the systems obtained for the in-domain setup across the BLESS dataset,
presented in Section 6.1 and Section 6.2, are compared with the average

109



BNC Wikipedia
P R F P R F

PAIRCLASS 78.9 43.2 55.8 81.2 40 53.6
BL 79.1 43.8 56.4 76.6 68.6 72.4
GRACE 71.7 40 51.4 77.8 38.8 51.8
DSC

ZHILA 47.6 55.3 51.2 50.1 54.3 52.1
DSC

LEVY 47.6 55.3 51.2 53.9 57.4 55.6
WECEBOW

OFFSET 68.0 66.9 67.5 71.3 69.7 70.5
WECEBOW

CONCAT 83.8 57.0 67.8 84.6 56.5 67.7
WECEDEP

OFFSET 68.7 62.3 65.4 74.6 71.2 72.9
WECEDEP

CONCAT 78.2 63.8 70.3 83.2 62.5 71.4

Table 6.9: Aggregated results obtained when the systems are tested out-of-
domain with the BLESS dataset.

results obtained when the systems are trained out-of-domain. For the out-
of-domain setup, one domain is left out from the training set and used for
testing. The experiment was repeated for each domain and the average
results are presented in Table 6.9.

When no examples from a domain are provided, a general significant
decrease in performance is observed as presented in Figure 6.7 and Fig-
ure 6.8. As expected, GraCE is highly dependent of the lexical informa-
tion showed by the 35.2 points decease in F1 over BNC and 31.6 over
Wikipedia. However, even WECE systems are considerably hindered by
this information: they decrease with 20.55 points F1 in average over BNC
and 22.35 over Wikipedia.

The obtained results show that when the instances to be classified are
less homogeneous, i.e. when the instances belong to different domains,
none of the systems can achieve the level of performance reported for the
in-domain setup. These were the expected results for the GraCE system
due to the lexical features that it uses and which are domain dependent.
However, the WECE systems are also affected by this lack of domain-
aware training instances. In particular, WECEconcat results decrease be-
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Figure 6.7: F1 distribution scores across domains for each proposed system
and relation type obtained with the BLESS dataset in the out-of-domain
setup over BNC corpus.

Figure 6.8: F1 distribution scores across domains for each proposed system
and relation type obtained with the BLESS dataset in the out-of-domain
setup over Wikipedia corpus.

cause similar embeddings are associated with similar words. When two
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words belong to two different topical domains, their embeddings are less
similar and, therefore, the SVM system has difficulties to learn distinctive
features for each lexical-semantic relation. WECEoffset, using the vector
offset, eliminates the lexical information from the representation. As a
consequence, this system achieves the best results to acquire information
from different domains than the ones with which it was trained, especially
for the acquisition of co-hyponyms. The analysis per relations shows that
the most affected relation is the relation hypernymy and the less hindered
relations are the syntagmatic relations when acquired with the WECE sys-
tems.
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Chapter 7

CONCLUSIONS

To achieve human-like results many NLP systems must integrate human
knowledge. This knowledge is encoded in lexical resources like taxonomies
and ontologies, and consequently, there is a huge interest in the NLP do-
main to create lexical resources, for various languages and domains. The
manual development of such resources involves a large amount of work,
therefore, the automatisation of their acquisition becomes a real necessity.

This thesis addressed the automatic acquisition of lexical-semantic re-
lations, starting from the latent-relational hypothesis: the contexts where
two related words co-occur provide information about their semantic re-
lation, as explained in Section 2.1. Systems that rely only in patterns of
context are very precise, but they are upper-bound limited for recall: only
semantically related word pairs that do co-occur in a particular input cor-
pus can be acquired. But these are only a subset of all the semantically
related word pairs, as our experiments with PaCE confirmed in Section
5.1. To be able to acquire more instances, the mainstream solution was
provide more input corpus. However, large corpora are not always avail-
able for all the languages or all the domains. Therefore, the main goal of
the research presented in this thesis was to search for word pair represen-
tations for the acquisition of lexical-semantic relation instances that were
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able to correctly represent even word pairs that do not co-occur.
Lexical-semantic relations are relations that emerge from the mean-

ing of words, which is represented in terms of word distributional proper-
ties. To overcome the lack of information behind the recall problem of the
pattern-based systems, we proposed novel representations that embed also
information extracted from the distributional properties of words. More-
over, we focused on keeping similar precision scores as the previous sys-
tems that used only information about the co-occurrences of words. Our
intuition was based on the fact that word pairs representation has to be
created based on a generalisation of the corpus information, to provide
also useful information about word pairs that do not co-occur. This gen-
eralization have to combine in an indistinctive form information about the
contexts where the words co-occur with distributional properties of words,
this way the two sources of information are capable to complete each other.

We implemented these intuitions in two systems GraCE and WECE.
GraCE’s novelty is the gathering of word distributional information from
the proposed graph representation of input corpus created out of depen-
dency relations. GraCE uses patterns of context as pattern-based system
do, but it combines them with the information extracted from the graph,
representing the distributional properties of words. The hypothesis behind
GraCE was that there is a straight-forward correlation between word dis-
tributional properties, encoding contexts where each member of the word
pair occurs, and the lexical-semantic relation holding between them.

The advantage of using a network of nodes connected by their depen-
dency relations is that all the words are connected directly or indirectly by
“bridging words”. Therefore, words are not treated as independent fea-
tures, like in the most common vectorial representations in the Traditional
VSM and, the graph created with word distributional properties produces
a generalisation over the information of actual co-occurrences in a cor-
pus. As described in Section 6.1, the information extracted from the graph
showed to be reliable and to keep the precision equals to the precision of
other pattern-based systems as our PaCE, but considerably increasing the
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recall, because many word pairs that do not co-occur in corpus are correctly
classified by GraCE. Thus, our hypothesis was validated.

As for WECE, it uses a novel word representation: word embeddings [Mikolov
et al., 2013a]. They can be considered a more developed and more com-
plicated representation of the intuition behind the network of words used
in GraCE. Created by a neural network, word embeddings are a distributed
vectorial representation in the sense that there is not a direct correspon-
dence with distributional properties observed in a corpus. The informa-
tion brought in the network by the co-occurrences of two words is spread
through (almost) the entire network during the training time. The distribu-
tional information and the contexts where two words co-occur are encoded
by the neural network in the vectorial word representations, which repre-
sent an (almost) perfect generalisation of the corpus information. This hy-
pothesis is confirmed by the results shown in Section 6.2: WECE achieves
considerably better results than GraCE, due to the density of the represen-
tation.

Although word embeddings have become popular only very recently
(in fact at the final stage of this thesis) they have achieved impressive re-
sults in several tasks [Baroni et al., 2014]. The initial works that used word
embeddings for the detection of the relations holding between words, in
form of syntactic and semantic relations, have assumed that each relation
is represented through a vector offset. Our assumption was that one lexical-
semantic relation could not be properly represented by the same offset be-
cause these relations are more complex than the syntactic and semantic
relations initially tested [Zhila et al., 2013, Levy and Goldberg, 2014b].
Moreover, the same initial approaches compared the vector offset of two
word pairs to check if they have the same semantic relations. Therefore, the
semantic similarity between two word pairs is based only on the similarity
in the vectorial changes that have to be made to transform one member of
the pair into the other, and ignoring any lexical similarity between word
pair members.

Therefore, we tested two hypothesis using WECE systems. The first
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hypothesis was that lexical-semantic relations are not encoded in the offset
but in the information that is encoded in each component of the embed-
ding, and the linear combination of these components reflects the target
relation. We used a machine learning system to discover a linear combi-
nation of the dimensions that reflect each target lexical-semantic relation.
Indeed, the hypothesis was confirmed, as detailed in Section 6.2, WECE
achieved considerable better results than DS, which uses only a simple vec-
torial similarity score between vector offsets. The second hypothesis was
that in order to discover lexical-semantic relation instances, the representa-
tions should also include information about the lexical similarity between
words. Word pair representations which use a vector offset to represent the
target pair, miss the information about each member of the pair. There-
fore, to test if the lexical similarity between pairwise words is important
for the automatic acquisition of lexical semantic relation instances, we cre-
ate WECEconcat, which represents a word pair by concatenating member’s
embeddings, thus, allowing the supervised system to learn features directly
form the word embeddings. WECEconcat and WECEoffset achieved very sim-
ilar results, showing that the lexical similarity between words is not very
important for the acquisition of these relations. Slightly better results are
achieved by WECEoffset when the systems have to discover instances from
different domains than the training used in the training step.

This thesis was focused on creating a general system for the automatic
acquisition of different lexical-semantic relations, each of them with dif-
ferent distributional properties. In Section 6.3.2 we confirmed that similar
results were achieved across all the addressed relations. While GraCE has
a larger deviation in results and for some domains it achieves lower results,
WECE achieves pretty good results across all the relations. The most com-
plicated relation is the relation of hypernymy, for which all the systems
achieved lower results. With these results we also showed that systems
combining word embeddings and supervised systems do not suffer of “lex-
ical memorization” as [Levy et al., 2015b] stated.

In addition to the empirical validation of our initial intuitions and hy-
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pothesis, which aimed to find the most suitable representation for the lexical-
semantic relations holding between word pairs, our intuition was that the
results achieved were influenced by the availability of the information about
topical domain. Lexical-semantic relations are general relations, emerg-
ing from the meaning of words, which is related by the context where the
words co-occur, context that may contain domain information. Indeed, the
results from Section 6.3.3 showed that when domain information is not
available an important decrease of the results is observed. Therefore, when
a system is trained, it has to take into account domain information through
the training word pairs. However, WECEoffset systems are the less hindered
systems in this setup.

7.1 Main contributions
Our research contributes in different ways to the state-of-the-art in the ac-
quisition of lexical-semantic relation instances. In particular, our research
focuses on the construction of new methods to improve the recall of the
acquisition from a given corpus, and to avoid the necessity of traditional
pattern-based systems to enlarge the input corpus for acquiring more infor-
mation, as presented in the Section 5.2

The most meaningful contributions are outlined below:

• We showed that patterns of context information have to be com-
bined with distributional information of words to improve the recall
of pattern-based systems;

• We proposed two word pair representations which significantly im-
prove state-of-the-art system recall by correctly classifying word pairs
which do not co-occur in the same sentence;

• Although the representation of words as a graph is not new, we are
the only ones, to our knowledge, representing the entire corpus in a
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graph of words and making it the core of a general method for the
acquisition of lexical-semantic relations; thus, we demonstrated that
the information supplied, based on dependency relations, success-
fully allows the classification of semantically related words;

• We showed that Predictive VSM, i.e. word embeddings, are a more
reliable representation for modelling the lexical-semantic relations
of words; however, lexical relations are not encoded by the same
offset vectors but, they are encoded by the information contained in
the components of the vectors, and a supervised system has to be
trained to weight the importance of each component;

• After the evidence that systems based only on patterns of context are
very precise but they achieve a very low recall, we tried to improve
the most general approaches that use dependency based lexicalized
patterns; the mainstream approach uses only the shortest paths; we
proposed a generalisation using PoS information and the usage of all
the dependency patterns that do not co-occur a sufficient amount of
times, but the results did not improve;

• We showed that systems achieve comparable results across five dif-
ferent relations, therefore each system created is a generic system for
the detection of lexical-semantic relations;

• We tested each system in two setups: in-domain and out-of-domain,
hence, showing the importance of the domain information for the
acquisition of these types of relations;

All the systems used in this thesis, except word2vec system, were
created by us during the thesis. We will provide to the community in a
GitHub repository the following systems and resources:

• A system that takes as input a parsed text and provides a graph-based
representation of the corpus;
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• A system that acquires patterns of contexts from a given corpus and
a dataset;

• The GraCE implementation;

• The PaCE implementation;

• All the WECE systems used in this thesis;

• Our implementation of PairClass;

• The graph-based representation of the BNC corpus and of the Wikipedia
corpus;

• The vectorial representation of the BNC corpus and of the Wikipedia
corpus as they were outputted by word2vec;

• The K&H dataset enhanced with co-hyponyms and meronyms.

Parts of this thesis have appeared previously in the following peer-
reviewed publications:

• Necşulescu, Silvia; Mendes, Sara; Jurgens, David; Bel, Núria; Nav-
igli, Roberto (2015). “Reading Between the Lines: Overcoming
Data Sparsity for Accurate Classification of Lexical Relationships”.
In Palmer, Martha (ed.) Proceedings of the Fourth Joint Confer-
ence on Lexical and Computational Semantics (SEM 2015). Denver,
Colorado: Association for Computational Linguistics. p. 182–192.
ISBN 978-1-941643-39-6

• Necşulescu, Silvia; Mendes, Sara; Bel, Núria (2014). “Combining
Dependency Information and Generalization in a Pattern-based Ap-
proach to the Classification of Lexical-Semantic Relation Instances”.
In Calzolari, Nicoletta (Conference Chair), Choukri, Khalid; De-
clerck, Thierry (et al.) (eds.) Proceedings of the Ninth International
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Conference on Language Resources and Evaluation (LREC 2014):
May 26-31, 2014 Reykjavik, Iceland. [s.l.]: ELRA. p. 4308-4315.
ISBN 978-2-9517408-8-4

• Mendes, Sara; Necşulescu, Silvia; Bel, Núria (2012). “Synonym ex-
traction using a language graph model”. In Barbu Mititelu, Verginica;
Popescu, Octavian; Pekar, Viktor (ed.) Semantic Relations-II. En-
hancing Resources and Applications (LREC 2012). Istanbul: 2012.
p. 1-9

7.2 Future Directions

In the future, we plan to improve GraCE by analysing the importance of
the edges for the acquisition process. For instance, calculating a statistical
significance score, like log-likelihood ratio, and eliminating edges whose
significance does not overcome a threshold. The intuition behind this pro-
cess is that word pairs may be connected through paths containing depen-
dency relations from different sentences, and some dependency relations
are not reliable enough to enter in the distributional properties of a target
word. At this moment we rely only on the SVM system to detect unreli-
able patterns. Moreover, we plan to apply a dimension reduction technique
over the GraCE representations for finding similarities between patterns of
contexts that are used as features.

The WECE system could be improved by providing the word embed-
dings to a Convolutional Neural-Network (CNN), which uses activation
functions to detect meaningful features, instead of using an SVM system.
CNN achieved very good results in image processing, and recently started
to be used in NLP and achieved state-of-the-art results for many tasks.

This work may be also developed towards a complete system that is
able to create a list of lexical-semantic relations from a given corpus. In
the present work we detect the lexical-semantic relation holding between
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target word pairs. To create a complete system of acquisition of lexical-
semantic word pairs, we want to develop also a technique which detects
possible semantically related word pairs. This system could be created us-
ing the same graph-based representation of the corpus, and using the the
Personalised Page Rank algorithm [Haveliwala, 2002], starting from a set
of words from a target domain to detect words that are related with that do-
main, or starting from only one word to detect only words that enter in the
semantic space of that word. Moreover, we could analyse the applicability
of the GraCE and WECE systems to other relations than lexical-semantics.
Although, our intuition is that GraCE is not very well fitted for this task, as
it relies on the distributional properties of words, instead we expect a sys-
tem based on word embeddings to achieve good results for the detection of
almost any semantic relation, when enough training is available.
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