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Abstract 

 
Glucocorticoids are commonly used as an adjuvant treatment for side-effects and have anti-

proliferative activity in several tumours. Inspite of this fact, there has been reported a proliferative 

effect in several studies, that some of them involving the spread of cancer. These paradoxes are 

common in cancer research. Usually the same genes seem to be promoter and inhibitor of cancer.  

We shall attempt to reconcile these incongruities from the transcriptomic and tissue-physiology 

perspectives with our procedures and findings.  

 

An accurate phenotype analysis of expression data can help to solve multiple paradoxes derived 

from tumour-progression models. We have developed several strategies, tools and databases to 

facilitate the study of interdependences among the phenotypes hidden inside expression data. These 

phenotypes can be identified by the sample clusters obtained by common clustering methods (HC, 

SOTA, SOM, PAM), but clustering methods do not provide information about their 

interdependence. We study these interdependences by the detection of non-linear expression-

relationships where each fluctuation in the relationship implies a phenotype change and each 

relationship typology implies specific phenotype interdependence. In this way different strategies 

and tools have been developed to study phenotypic changes and the paradoxes subjected to them. 

 

Using the tools developed we have studied the non-linear expression relationships related to 

glucocorticoid activity. The result is that we have found the possible reason for opposite effects of 

some stressor agents like dexamethasone on tumour progression as it has been confirmed by 

literature. This hidden reason has resulted in being linked with the type of tumour progression of the 

tissues. In the first type of tumour progression found, new cells can be stressed during proliferation 

and stressor agents increase tumour proliferation. In the second type, cell stress and tumour 

proliferation are antagonists so, therefore, stressor agents stop tumour proliferation in order to stress 

the cells. 



  



 

Resum 

 

Els glucocorticoides s'utilitzen comunament com a tractament adjuvant per tractar efectes 

secundaris i tenen una activitat antiproliferativa en diversos tumors però, d'altra banda, el seu efecte 

proliferatiu s’ha documentat en diversos estudis i en alguns d'ells implica la propagació del càncer. 

Aquestes paradoxes són comuns en l’investigació del càncer. Molt sobint, els mateixos gens 

semblen ser a l’hora promotors i inhibidors del càncer. Amb el present treball pretenem conciliar 

aquestes incongruències des de la perspectiva de la genética i de la fisiologia del teixit amb els 

nostres procediments i troballes. 

 

Un anàlisi precís dels fenotips presents a les dades d'expressió gènica pot ajudar a resoldre múltiples 

paradoxes derivades dels models de progressió de tumors. En aquest sentit hem desenvolupat 

diverses estratègies, eines i bases de dades, per facilitar l'estudi de les interdependències entre els 

fenotips ocults dins de les dades d'expressió. Aquests fenotips poden ser identificats pels grups de 

mostres obtinguts mitjançant mètodes comuns d'agrupament (HC, SOTA, SOM, PAM), però els 

mètodes d'agrupament no proporcionen informació sobre la seva interdependència. Nosaltres 

estudiem aquestes interdependències per la detecció de relacions d'expressió no lineals, on cada 

fluctuació en la relació implica un canvi fenotípic i cada tipolologia de la relació diferent implica 

una interdependència fenotípica específica. D'aquesta manera, s'han desenvolupat diferents 

estratègies i eines per estudiar els canvis fenotípics i les paradoxes sotmeses a ells. 

 

Utilitzant les eines desenvolupades s'han estudiat les relacions d'expressió no lineals relacionades 

amb l'activitat dels glucocorticoides. Estudiant-les, hem trobat la possible raó dels efectes oposats 

d'alguns agents estressants com la dexametasona sobre la progressió tumoral, com ha estat 

confirmat per la literatura. Aquesta raó oculta ha resultat estar vinculada amb el tipus de progressió 

del tumor en cada teixit. En el primer tipus de progressió tumoral trobat, les noves cèl·lules poden 

ser estressades durant la proliferació i els agents estressants augmenten la proliferació tumoral. En 

el segon tipus, l'estrès cel·lular i la proliferació del tumor són antagonistes així, per tant, els agents 

estressants aturen la proliferació tumoral amb la finalitat d’estressar les cèl·lules. 



  



 

Resumen 

 
Los glucocorticoides se utilizan comúnmente como tratamiento adyuvante para tratar efectos 

secundarios y tienen una actividad antiproliferativa en varios tumores, pero, por otra parte, su efecto 

proliferativo se ha documentado en varios estudios que en algunos de ellos implica la propagación 

del cáncer. Estas paradojas son comunes en la investigación del cáncer. A menudo los mismos genes 

parecen ser promotores e inhibidores del cáncer. En el presente trabajo vamos a tratar de conciliar 

estas incongruencias desde la perspectiva genética y de la fisiologicaa del tejido con nuestros 

procedimientos y hallazgos. 

 

Un análisis preciso de los fenotipos presentes en los datos de expresión génica puede ayudar a 

resolver múltiples paradojas derivadas de los modelos de progresión de tumores. Con ese fin hemos 

desarrollado diversas estrategias, herramientas y bases de datos para facilitar el estudio de las 

interdependencias entre los fenotipos ocultos dentro de los datos de expresión. Estos fenotipos 

pueden ser identificados por los grupos de muestras obtenidos mediante métodos comunes de 

agrupación (HC, SO, SOM, PAM), pero los métodos de agrupación no proporcionan información 

sobre su interdependencia. Estudiamos estas interdependencias mediante la detección de relaciones 

de expresión no lineales, dónde cada fluctuación en la relación implica un cambio fenotípico y cada 

tipología de la relación implica una interdependencia fenotípica específica. De este modo, se han 

desarrollado diferentes estrategias y herramientas para estudiar los cambios fenotípicos y las 

paradojas sometidas a ellos. 

 

Utilizando las herramientas desarrolladas se han estudiado las relaciones de expresión no lineales 

relacionadas con la actividad de los glucocorticoides. Estudiándolas, hemos encontrado la posible 

razón de los efectos opuestos de algunos agentes estresantes como la dexametasona sobre la 

progresión tumoral, como ha sido confirmado por la literatura. Esta razón oculta resultó estar 

vinculada con el tipo de progresión del tumor de los diferentes tejidos. En el primer tipo de 

progresión tumoral encontrado, las nuevas células pueden ser estresadas durante la proliferación y 

los agentes estresantes aumentan la proliferación tumoral. En el segundo tipo, el estrés celular y la 

proliferación del tumor son antagonistas así, por tanto, los agentes estresantes detienen la 

proliferación tumoral con el fin de estresar las células. 
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The limited capacity of the human mind to consider, at a time, several interacting factors and the 

complexity of the living things, makes it difficult to understand the biological processes in all their 

depth. Today we are already well aware that understanding the function of a gene involves knowing 

the complex environment in which this gene is expressed. But, this great complexity of the 

biological systems, often impedes to answer to specific biological questions from experiments, 

because not having the appropriate tools, even if these answers are present in the analyzed data. 

Therefore, the first step is to have the right tools to analyse the data generated. Using current 

techniques for obtaining massive data on gene expression we can obtain an overall behaviour of the 

cell in our data. But we also need the right high-throughput tools that allow us to perform a holistic 

analysis of these data. These tools should allow us to obtain both a global and local view of the 

behaviours of the genes expressed in the cell by an automatic and unsupervised method to identify 

the patterns and relationships among genes. This powerful relational map among genes can guide 

the study of this complexity, while remaining independent of a researcher's cognitive bias. In such 

way, it is more difficult for the researcher to force a relationship that really does not exist in the 

data, or ignore a strong relationship that he/she would prefer not to be present. On the other hand, 

even a perfect clustering method is meaningless if it not allows us to infer biological significance to 

every cluster. Therefore it is necessary to have tools that allow us to cross information stored in 

different databases with relevant biological information to enrich our data and provide us biological 

sense. There is also the need to facilitate understanding of the information by the user displaying the 

information properly. The tools described in this manuscript have been designed to give answers to 

specific biological questions, and they are not sophisticated approaches designed merely using 

theoretical principles far from the needs of researchers. We have therefore chosen to present our 

approach in an illustrative form with a particular problem difficult to address, in order to emphasize 

not only the theoretical aspect of the work but also how to use these methodologies in a pragmatic 

way. The question addressed is the glucocorticoids administration in cancer patients and it is 

currently considered as paradoxical in the literature. The scientific community have not yet found 

the reason for the dual behaviour observed, but this is an ideal question to study with our tools, 

taking advantage from the holistic view that our approach provides. Sometimes paradoxes arise 

from failing to see the problem in its entirety. These tools have been developed with the ability to 

create a global representation of reality that is necessary to answer these type of elusive questions. 

Throughout the manuscript, we are going to show the methods we have developed to get the 

biological meaning from clouds of points in a multidimensional universe. We are going to show 

how we have analyzed the data to extract patterns and how these have been crossed with biological 

databases. We must also admit that even though we have been assisted by the tools developed, it has 

not been easy to find the answer to the question addressed, because we were studying the cell, and 

the hidden reason of this dual behaviour was not in this holon of study. The response has emerged in 

a higher order of complexity different from that initially studied; the tissue. Thus, to find answers, 

and test the correct operability of the tools, we also had to consult numerous scientific literature. 

Nevertheless, without the distilled information provided by our tools, it would have been seriously 

difficult, not to say impossible, in answering this question. 

 
 
 
 



24 

 

1.1. The glucocorticoid paradox 
 

Paradoxes are common in cancer research. Often, the same gene is reported as a marker of tumour 

progression as well as a marker of tumour suppression. The research topic of the pr0esent work is 

the convenience of glucocorticoids administration in cancer therapy, and this topic remains as an 

open question precisely due to these paradoxes. Stressor agents like dexamethasone have shown 

positive and negative effects on tumour treatment. On the one hand, glucocorticoids are commonly 

used as adjuvant treatment for side-effects [Philips RS. et al 2010] and have anti-proliferative 

activity in several tumours [Philips RS. et al 2010; Lu YS. et al 2006; Meijer E. and Sonneveld P. 

2009; Chen YX. et al 2006] while, on the other hand, the proliferative effect of synthetic steroids 

with predominantly glucocorticoid activity has been reported in several studies [Herr I. and 

Pfitzenmaier J. 2006], some of them involving the spread of cancer [Mattern J. et al 2007]. 

 

We have reconciled these apparent incongruities with our findings, facilitated by the development 

of specific bioinformatics tools. In our current work we present both the procedure and the practice 

trying to solve these paradoxes.  

 

It is commonly accepted that the immunosuppressive activity of glucocorticoids and other stressors 

can increase cancer incidence [Reiche EM. et al 2005], but their causal relationship seems to be 

more complex than this. We have found that the pro- and anti-tumoural effects of stressor agents 

like glucocorticoids depend on the tumour-proliferation type of the tissue. In the first type of tumour 

proliferation we have found, the new cells can be immediately stressed after proliferation without 

stopping tumour proliferation. In these tissues, stressor agents would increase tumour proliferation 

progressively. In the second type of tumour proliferation we have found, cell stress (and function) is 

incompatible with tumour proliferation, then, during tumourigenesis the new cells remain 

unstressed and undifferentiated. In these tissues, stressor agents would stop tumour proliferation to 

then stress the cells. 

 

As a key outcome of the present work, we will show how we deal with this dual behaviour of 

glucocorticoids, and how we try to solve this paradox. 

 

 

1.2. What is the hidden reason for this dual behaviour of 
glucocorticoids?  

 

As detailed further on, the underlying principle seems to be that tumours remain part of the 

properties of the healthy tissue. These conserved proprieties would be clearer in primary tumours 

and diluted in metastases. For example, as melanomas retain in many cases, the ability to produce 

melanin, or parathyroid tumours retain their ability to produce calcitonin, even if it is away from its 

original location in the neck. These conservative proprieties involve not only functional proprieties 

but also structural ones. Even in a much altered way, the crypts structure is conserved in colon 

cancers. It implies that the relationship between cell stress and cell proliferation is also conserved in 

these tumours. 
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Hence, the dual tumour proliferation seems to be closely related to the physiology of the original 

tissue. In the tissues where the proliferation and function are performed in different areas (like colon 

or thyroid), the new cells are immediately incorporated from the proliferation areas to the functional 

ones, where they can be stressed (SDPT). On these tissues the stressor agents increase tumour 

proliferation progressively. In the tissues that can't be functional during tissue remodelling (TDPT), 

the new cells remains non-functional until the remodelling of the tissue is finished, the whole area is 

checked, and can be stressed again (like glia or bone). On these last tissues, stressor agents stop the 

tumour proliferation to stress the cells. 

 

Thus, the reason for the existence of two types of tumour proliferation seems to be that the type of 

proliferation pattern is an important property of the healthy tissues that tend to remain, at least in 

part, when these tissues become tumourous. 

 

These findings have direct medical implications, because they entail that treatments can induce 

counterproductive effects if they are not applied properly. Concretely, stressors like dexamethasone 

should be applied only when tumours appear in the tissues that cannot be stressed during tumour 

proliferation. Furthermore, the possibility that secondary tumours with stressed proliferation can get 

worse should be considered, and the probability of it spreading to tissues of this type should be 

taken into account too. 

 

 

1.3. To search for the hidden reason for glucocorticoids' dual 
behaviour we need tools to study dual behaviours in cancer 
findings 

 

The bioinformatics tools developed by us help to solve the cited paradoxes by means of the analysis 

of expression matrices with large sample series. These expression matrices contain the expression 

level of thousands of genes under hundreds of experimental conditions and can be obtained using 

Microarray technology or next-generation sequencing (NGS) among others [Barrett T. Et al 2013]. 

The developed tools are very versatile and lead to crossing the expression data with GO, PubMed, 

and other Biomedical DB. Using these tools, we have studied the multiple behaviours of some 

genes related to the glucocorticoid signal in tumours. And we have found the hidden reason for this 

glucocorticoids’ opposite-effect on tumour progression. We clearly contrast our findings with the 

current bibliography. 

 

This correct identification and characterisation of the mentioned two types of tumour proliferation 

can facilitate the adjusting of cancer treatments correctly to prevent future malignancy, recurrences 

and metastasis. Actually, agents like those cited are administered indiscriminately as adjuvant to 

treat the undesirable side-effects of chemotherapy, radiotherapy, surgery or cancer itself. 

 

To achieve our objectives, we first need to identify the phenotypes hidden in the expression data, 

second, we need to identify the phenotypic changes, and third, to study the paradoxes linked to 

these phenotypic changes. 
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1.4.  Studying phenotypes from expression data using sample 
clustering 

 

One of the most habitual expression-data analyses is clustering, both gene clustering and sample 

clustering. A habitual use of gene clustering is the study of coexpressed genes that, in consequence, 

can take part in the same cellular process [ Eisen MB. et al 1998]. On the other hand, sample 

clustering is usually used in large-sample-series analysis to detect samples that could represent the 

same phenotype. [ Van Laere S. et al 2007; Bertucci F. et al 2005; Hongjuan Z. et al 2009; Liu Y. et 

al 2014; Lehmann BD. et al 2011; Bullinger L. et al 2004; Hwang T. et al 2012; Verhaak RG. et al 

2010; Koestler DC. et al 2010; Braun R. et al 2011; Müller FJ. et al 2008; Diana L. et al 2012; 

Danza K. et al 2014; Tanic M. et al 2013; Miller DJ. et al 2008; Golub TR. et al 1999;  Liang Y.et al 

2006] 

 

In the second case, the phenotypes represented by the different sample clusters affect the expression 

of the matrix genes differently enough to be detected by clustering methods. Thus, a large enough 

number of genes vary their expression between two sample clusters to a sufficient extent so that 

clustering methods detect these two sample clusters. For this reason, different sample clusters from 

the expression matrix separate phenotypes, determined by the expression level of the genes. Note 

however, that it is not easy to determine whether clusters are meaningful, reflecting true structure in 

the data or random aggregation [Valentini G. 2006]. 

 

Overall, we can consider that the samples of a sample cluster can represent the same phenotype in 

the analysed expression data because the genes are similarly expressed in all of the samples grouped 

in the cluster. As the genes are similarly expressed, the phenotype of the cluster's samples could be 

the same. It is true that this must always be regarded with caution, mainly for two reasons: (i) Not 

all of the genes are considered in the expression matrix. The more genes contained by the 

expression matrix, the more probability that the phenotype would be the same for the samples of a 

same sample cluster. (ii) Different experimental conditions can produce different final phenotypes 

although the genes would be equally expressed in these experiments. Despite these limitations, 

sample-cluster analysis is usually used for studying common genic responses to different sample 

conditions [Qiu Q. et al 2013]. For example, to test if two different experimental conditions give 

rise to the same phenotype [Golub TR. et al 1999] or to search for new applications of old 

treatments [Chen R. et al 2008] .  

 

Another habitual analysis of the expression data is the search for genes differentially expressed 

among sample clusters (over-expressed in one sample cluster but under-expressed in other). Among 

other uses, the genes differentially expressed shared between different microarrays can be used to 

compare phenotypes and sample clusters between different microarrays [Qiu Q. et al 2013; Chen R. 

et al 2008; Yu Y. et al 2009; Vázquez M. et al 2010; Feng C. et al 2009; Huerta M. et al 2014; Lamb 

J. et al 2006; Lamb J. et al 2007]. Expression matrices like microarray data favour this kind of 

investigations since they allow for a holistic vision of the different phenotypes providing the gene 

expression of each one. In the research published in Science [Lamb J. et al 2006] and Nature [Lamb 

J. et al 2007], public microarray data from very diverse experiments are used by Cmap tool to 

search for possible therapies for new drugs. Cmap and others [Chen R. et al 2008; Huerta M. et al 
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2014] study the effect of drugs using genes differentially expressed in public microarrays to 

establish a correspondence between the effect of the drug and the microarray experiments. 

However, these experiments do not test the drug of study. The relation between the effect of the 

drug and the data from microarrays is established because the target genes of the drug are affected 

in the microarray experiments and if the affected genes are the same and in the same way, it is 

considered that we are dealing with the same phenotype. 

 

In the cases mentioned (Cmap and others), the genes differently expressed are compared because of 

the difficulty to analyse together the data coming from different microarrays using clustering 

methods (obtaining the sample clusters that would represent the same phenotype in the different 

microarrays)[Warnat P. et al 2005; Larsson et al 2006; Andreopolus et al 2009; Taminau J. et al 

2014]. However, the purpose of this differently-expressed-genes comparison remains the same as 

sample clustering; to study if different experimental conditions give rise to the same phenotype. 

 

The GEO gene-expression-matrices database allows one to study both sample clusters based on 

experimental criteria and sample clusters from statistical origin [Barrett T. et al 2013]. These sample 

clusters based on experimental criteria are guided by the interest of the researchers that have 

performed the experiment. Comparing both types of sample clusters (statistical and researchers' 

criteria) is also very useful for the researchers. It allows for checking if similar experimental 

conditions, which should trigger the same phenotypes in the cell, maintain a similarity at the 

expression level. Or it allows for checking the opposite, despite being sample conditions considered 

similar by the researchers, their gene expression is different therefore, the phenotypes would also be 

different [ Bullinger L. et al 2004; Diana L. et al 2012]. 

 

In the figures below (Figures 1.a, 1.b, 1.c, 1.d) the sample clusters resulting from the same 

expression data but after applying different clustering methods can be observed. The figures show 

how the samples in the border between neighbour clusters are located in one or another sample 

cluster by the different clustering methods (the samples of each cluster are coloured differently). 

 

The figures show the samples of the expression data used along the next sections after applying 

Principal components to the data (the point cloud are the matrix samples, x and y axes are the two 

Principal components). In Figure 1.a, the sample clusters obtained by repeated bisection are shown 

with the sample clusters coloured as they will appear in the next sections. The green and blue 

sample clusters, the yellow and red sample clusters, and the pink sample cluster are shown in this 

figure. In Figure 1.b the sample clusters obtained after applying the SOM clustering method are 

coloured [Yin L. et al 2006]. In Figure 1.c the sample clusters obtained after applying the SOTA 

clustering method are coloured [Yin L. et al 2006]. In Figure 1.d the sample clusters obtained after 

applying the PAM clustering method are shown [Yin L. et al 2006]. As it can be observed, the 

different methods find similar sample clusters. In the figures, the samples on the border between 

sample clusters can be clearly seen, and how the different clustering methods place these samples in 

one cluster or another. 
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1.a)               1.b) 

 

 

1.c)        1.d)    

 
Figure 1. Sample clusters obtained by different methods comparison. In the figures there can be seen how the 

samples in the frontier between sample clusters can determine the differences among the sample clusters 

obtained by different clustering methods from the same expression data. The samples are shown after applying 

Principal Components to the expression data (x and y axes are the two principal components and the data cloud 

the matrix samples). 

 

 

If the phenotypes hidden in the expression data are clearly differentiated at expression level, the 

different clustering methods will obtain the same sample clusters. When the phenotypes are less 

detectable at the expression level, the disparity among the results provided by the different 

clustering methods, increases. 

 

We largely use these sample clusters in our analysis, to try to to identify the different phenotypes, 

the different phenotypic changes, and finally the role of glucocorticoids in the transition between 

phenotypes. 
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1.5. Studying phenotypic changes from expression data 
 
It is not easy to define what a phenotype is, but it is even more difficult to define the processes that 

carry out one phenotype instead of another. Since our approach expects to be standard, one 

definition of phenotype as generalist as possible, could be: A phenotype is the result from the 

expression of an organism's genes as well as the influence of environmental factors and the 

interactions between both. 

 

In our work, we refer to “phenotype” as the cell state resulting from the experiments performed. As 

we have previously commented, when clustering methods methods form the sample clustering, they 

detect the experimental conditions that have had a similar effect on gene expression, so these 

different experimental conditions could have the same cell state or phenotype as a result. 

 

Let's now see a specific example about the phenotypic changes that can be detected by the tools 

developed by us. In the case of plants, such as blackberry, where phenotypic plasticity phenomena 

are most studied, they exhibit some homology with the kind of phenotypic changes that our tools 

are able to detect. Sometimes it is not easy to find a marker that allows us to establish the change in 

phenotype. For example, although it is easy to find flowering marker genes, it is not easy to separate 

two distinct phenotypes such as the winter phenotype, whose function is to resist the inclement 

weather, and the spring phenotype, in which the plant is more active and focuses on growing and 

storing energy. But even if we don't have clear markers between the winter and spring phenotypes, 

we can use microarray time-series data, where it becomes clear that the transit between winter and 

spring affects a large number of genes, whose expressions will increase or decrease compared with 

the period previous to the winter solstice [Mazzitelli L. et al 2007]. Thus, this phenotypic change is 

seen in the change in slope, which can be more or less sharp, in a large number of genes at the 

same time. 

 

 

 

 

 
 

Figure 2. Changes in gene expression around dormancy break. Red = up-regulated, green = down-regulated. Blue 

arrow denotes winter period, yellow denotes spring. The phenotypic change is seen in the change in slope 

[Mazzitelli L. et al 2007]. 
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In this example we observe how a phenotypic change occurs.  

 

In addition:  

 

1. The phenotypic change is not due to a trigger gene. 

2. The phenotypic change is detected thanks to the use of time series.  

 

With the methodology we have developed, we can detect phenotypic changes without using trigger 

genes, or time series. Note that most of the expression matrices don´t use time series. Since we don't 

need time series, we can detect multiple phenotypic changes occurring in the expression data. But 

then, how do we detect the cited “change in the slope”? 

 

The first point of the previous ones implies the need of tools that may consider phenotypic changes 

in subtle expression-level variations but with a huge number of genes involved. The second point 

implies that, whereas using time series the samples are sorted, making it easier to detect the moment 

when the phenotypic change occurs (Figure 2), by using non-time series we need to sort the samples 

by a hidden variable to detect the point when the phenotypic change occurs. We tackled both 

problems with the approach presented, sorting the samples by the expression dependences between 

gene pairs, and considering a multitude of gene pairs. The phenotype change is then found by the 

change in the slope of the expression dependencies. 

 

As we mentioned, it is not easy to provide a precise definition of phenotype [Crusio WE. 2002], and 

even less so, a definition of the elements in which a phenotype can be decomposed, and it is not our 

intention with the present work to open a debate on this subject [Mahner M. et al 1997]. 

Furthermore, the expression matrices that can be analysed have an absolutely diverse origin. 

Depending on the expression data analysed, we could be talking about transversal and concurrent 

effects of different drugs, common or altered features between cancer phases, or the distinctive 

processes between the winter and summer-like phenotypes in plants, and so on. There are as many 

examples, as there are gene-expression matrices for the researchers to analyse. In conclusion, who 

decides if two sample clusters actually represent different phenotypes, is the researcher who 

analyses the gene-expression data. She/he must be the one who defines what he/she understands as 

different phenotypes and justifies why. 

 

 

1.6. Using non-linear expression relationships to study phenotypes 
and phenotypic changes 

 

Although the approach presented is valid to analyse time series, its true potential is analysing data 

that don't come from time series. As time series are ordered temporally, they already show us the 

point in time where the phenotypic change occurs. Thus, their study by means of non-linear 

expression relationships is not needed. As will be explained in the next sections, the tools presented 

have certain limitations with regard to the input data, but these limitations have nothing to do 

neither with the kind of experiments performed nor with the data origin. 
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We have published several works that highlight the relevance of the analysis of non-linear 

expression relationships from expression data [Cedano J. et al 2008; Cedano J. et al 2007; Huerta 

M. et al 2014; Huerta M. et al 2014; Huerta M. et al 2009; Huerta M. Et al 2008]. The different 

tools we use for analysing the expression data here are also explained in these papers. In the last 

cited work [Huerta M. et al 2008] the difference between considering non-linear expression 

relationships with respect to considering only the linear expression relationships can be seen very 

clearly. 

 

As is shown in the mentioned paper [Huerta M. et al 2008], non-linear expression relationships 

allow for detecting new hubs in gene networks because they allow researchers to relate genes by 

complex expression relationships and to discover new relationships that otherwise would not be 

possible to detect. Other research teams have demonstrated the importance of non-linear expression 

relationships for the study of gene regulation [Guo X. et al 2014]. It is extremely important to detect 

non-linear dependences in gene regulatory networks inference because non-linear regulatory 

relationships are common in biology [Brunel H. et al 2010]. Furthermore, as we have shown in 

these works, non-linear expression relationships can be used as a starting-point to characterize 

complex regulations between genes in other analyses besides Gene Regulatory Networks [Huerta 

M. et al 2014; Huerta M. et al 2014]. Non-linear expression relationships can also be used for 

sample clustering. So far, this sample clustering has had two different approaches. A non-linear 

interpretation of dimensionality reduction [Cannistraci CV. et al 2010], and a clustering of the 

samples corresponding to each phenotype from the phenotypic changes described by non-linear 

expression relationships [Cedano J. et al 2008], as we stated in our work. The key point of that 

approach is the study of the phenotypes involved in the phenotypic change. In other words, the 

phenotype previous to phenotypic change and the following phenotype after the change. In the 

present work, the study of the transition between phenotypes is used to solve paradoxes such as the 

contradictory effect of glucocorticoids in tumour progression depending on the tissue affected by 

the tumour. This study has been also been published by us in another paper [Huerta M. et al 2014]. 

 

Our methodologies are based upon the following five properties of non-linear expression 

relationships: First, each fluctuation in a correlated expression relationship implies a phenotypic 

change. Second, multiple non-linear expression relationships are involved in the same phenotypic 

change. Third, if two genes maintain an expression relationship with a certain type of curve, the 

genes coexpressed with these two genes maintain expression relationships of the same type of curve 

between them. Fourth, if there exist an expression dependence between two sets of coexpressed 

genes, this expression dependence must be non-linear. Fifth, the curve type of the non-linear 

expression relationships will describe the role of the genes in the phenotypic change. The first point 

allows us to detect the phenotypic changes from the non-linear expression relationships that are 

highly correlated. The second point allows us to group the non-linearly highly-correlated expression 

relationships by the phenotypic change they describe. The third point allows us to expand the 

analysis from these non-linearly highly-correlated genes to the genes coexpressed with them. The 

fourth point allows us to study the activation/deactivation relationships among sets of coexpressed 

genes. The fifth point allows us to know the activation/deactivation relationship between the 

phenotypes involved in the phenotypic change based on the morphology of the curve. 
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The study of phenotypic changes is mainly possible thanks to the first property previously cited:  

“Each fluctuation in a correlated expression relationship implies a phenotype change”, so the 

samples at either side of the fluctuation point will represent different phenotypes. The fifth point, 

the analysis of the curve type, helps us to find dual behaviours and paradoxes in expression 

relationships. 

 

It is important to note that the presented approach based on non-linear expression relationships does 

not open a new, totally unknown line of research. The procedure followed to study the double effect 

of glucocorticoids is not really so different from the methods usually used in expression-data 

analysis: 

 

The methods we use for clustering the samples and detect the different tumour phenotypes are the 

clustering methods most commonly used in the calculation of sample clusters [Giancarlo R. and 

Utro F. 2011]. The same goes for the integrity methods to find which clustering method and k 

parameter provide the best sample clusters for each expression matrix [Giancarlo R. and Utro F. 

2011]. 

 

The correlation degree between gene expressions is commonly used in the analysis of coexpressed 

genes to consider that this coexpression has a biological meaning [Eisen MB. et al 1998]. This 

biological significance increases when the number of samples of the expression matrix increases, 

and it increases even more if the samples cover a range of phenotypes as wide as possible. Also, it is 

of common use to look for those genes with a differentiated expression between the different 

sample clusters to study both phenotypes and phenotypic changes. Based on this differentiated 

expression, it is considered that these genes mark the presence of the phenotype corresponding to 

the sample cluster with their expression [Huerta M. et al 2014]. 

 

In our case we take it a step further, and we require not only a difference of expression between the 

phenotypes represented by each sample cluster, but that this expression variation implies a non-

linear expression relationship with another gene. More concretely, a non-linear expression 

relationship resulting from the switch from one phenotype to another one (that is, the step from one 

sample cluster to another one). Besides this, we combine this requirement with the previous one of 

high correlation in order to consider the expression relationships as valid, that is, to consider it has a 

biological meaning and it is not a product of chance. The next step is to study whether these genes 

are related to glucocorticoids, to see whether this behaviour related to glucocorticoids takes us from 

one phenotype to another, and the implications that this fact could have. However the approach 

presented has several bottlenecks that must be solved.  

 

Interoperability is one of the major problems in this kind of analyses that cross information from 

different sources and databases. As data is collected from heterogeneous resources in our analysis, 

the types of data would be different and it would be practically impossible to standardize them. 

Analyses need to be interoperable so that data could be analyzed and summarized correctly 

[Mohammadi A. et al 2011]. 
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Another problem of this kind of analysis is that they need in order to be successful, a specialist who 

can make objective conclusions from the outputs that are created. In other words, our procedure is 

from being automatic. 

 

Quality of data is the most important challenge faced in case of data mining. This is why the main 

handicap we have is the fact of using microarray data. When the analysis of gene expression is 

reduced to a general statistic, and the error in the measurement of gene expression can be balanced 

out (since we study only the general behaviour of genes), the fact of working with microarray data 

does not present a big problem. The problem gets worsens when we wish to analyse the 

behaviour of concrete genes. Although the filtration of genes and expression data can be 

statistically correct, as explained before, the fact of focusing on a few genes is still a problem if the 

expression levels are obtained using microarray technology or similar high-throughput procedures 

[Abdullah-Sayani A. et al 2006]. 

 

This is a problem shared by the multiple studies about gene expression that use microarrays or 

similar technologies to obtain the samples. Nevertheless, this problem is not exclusive of these 

technologies, and it also affects the credibility of works based on experiments that don’t measure 

expression data [Swamidass SJ. 2011; Norton SM. et al 2001].  

 

In the case of our study about the glucocorticoid paradox, however, the expression data used are 

especially robust. We use the expression data of Scherf U. et al. about tumour cells [Scherf U. et al 

2000].  In the study of Scherf U., the data obtained by microarray technology are crossed with 

experimentally determined mortality indices. In this way, the expression level of a gene for a certain 

drug comes from the average of the samples of different tissues that have had the same mortality 

index under that drug. Then, genes that do not show a correlation between the mortality index and 

their expression level for each drug are discarded. This provides us with a dramatically larger 

reliability, plus a wider range of well characterised phenotypes (in which the different drugs 

produce a high mortality). This fact is truly appreciated, since these data about gene expression, so 

well elaborated, allow us to make analyses like the one described in the present work with 

reliability. 

 

An especially remarkable point of the procedure followed, to obtain the gene-expression matrix, is 

that the resultant matrix does not only allow us to obtain the cellular behaviour, but also the tissue 

behaviour. In this way, we can use these data to study the effect of glucocorticoids on different 

tumour tissues. 

 

It is true that a large part of the results is obtained thanks to the methodology applied to analyse the 

expression data. This methodology allows us to study the dual behaviours and phenotypic 

transitions that otherwise would be impossible to study, or at least much more difficult. But it is also 

true that the results obtained are largely due to using an appropriate expression array, which really 

differentiates the phenotypes, without largely repeated samples, and with extreme phenotypes and 

transition phenotypes between them. Without well characterised phenotypes, it is impossible to 

study the phenotypic changes and even less to extend the analysis using data mining and data 

crossing. 
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This is why high-quality public databases in the field of gene expression are so important. They are 

not only necessary advances in technology so biotechnologists can perform their experiments. Nor 

are they only necessary good, powerful tools for data analysis and data crossing like the ones 

presented in this work. We also need powerful public databases, with reliable data, that are useful 

not only to cross information, but also to analyse them in depth. In the case of gene expression this 

lack appears in all its splendour. The lack of reliable data is partly due to the nature of the 

technology to obtain gene expression in a massive way, but mainly because of the structure and 

definition of the gene-expression databases. Databases like NCBI's GEO content data from 

hundreds of thousands of microarrays, but the problem for the database, and its users, is that these 

data were developed to satisfy particular needs of the studies that certain researchers wished to 

publish. Not to satisfy the posterior use of that information in the database. For this reason, there are 

very rare and specific data sets in NCBI's GEO, rarely generalist and even more rarely, redundant, 

since no one will create a microarray about a previously published experiment. This redundancy is 

necessary to get reliable data, as well as the different phenotypes would be described with the only 

objective being that they appear well described, and not because they are linked to the publication 

of a concrete and specific experiment. As with the human genome and the genomes of different 

organisms, molecular-biology researchers also need standardised available information with respect 

to gene expression. 

 

To some extent, the data generated by the work of Scherf et al. do accomplish these requirements 

and then allow the researchers to use them in order to study the expression of genes in different 

phenotypes of tumour development. There is a need to make a bigger scientific effort in this 

direction. But while waiting for the international community to come to an agreement, we must 

develop strategies and tools that lead us to extract as much useful information as possible from the 

large amounts of data generated. 
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2. Objectives  
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General Objectives 
 

Gaining insight into the global behaviour of the eukaryote cell taking advantage of high-troughput 

technologies, concretely transcriptomics. Use this holistic perspective of the cell behaviour to solve 

different paradoxes in cancer findings and other pathologies. 

 

Specific Objectives 
 

1. Develop methodologies necessary to achieve the objectives of this work. 

2. Analyse the complex expression dependencies between genes, sets of coexpressed genes, 

and networks of them in relation to cell processes. 

3. Decomposition of sample clusters in the combination of multiple cell processes that leads to 

each phenotype. Compare phenotypes by the cell processes that they have in common. 

4. Compare the phenotypes and phenotypic changes described by expression datasets available 

in biomedical databases. Search for phenotypes and phenotypic changes similar to the ones 

studied in our expression data.    

5. Analyse the transitions between the phenotypes. Detect extreme and transition phenotypes 

and classify the complex transitions between them by their biological meaning. 

6. Gain insight into the glucocorticoid paradox in cancer treatment using the above analysis of 

expression data.   
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3.  The Methods and tools developed and the data 

analysed 
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3.1. The expression data analysed 
 

 

The appropriate data to be analysed by our methods and tools must come from large sample series 

(expression matrices with a high number of sample conditions). This large sample series will not 

consist of repetitions of the same sample condition. On the contrary, it must include the highest 

number of different sample conditions. A sample series with few experiments or with repetitions of 

the same experiment, will not allow the detection of coexpressed genes, and even less the detection 

of complex expression relationships. Finally, if the phenotypes are not well described by the 

experiments, it will be extremely difficult to study the phenotypic changes, but it will be even more 

difficult to solve the paradoxes with respect to these phenotypic changes. It should be noted that de-

noise, normalization, and similar procedures should be considered before using our tools. 

 

The expression data analysed in the next sections correspond to the AT_matrix. This expression 

matrix is the correlation between survival (A_matrix) and expression (T_matrix) data. The 

A_matrix contains the growth inhibitory activities of 118 compounds tested on 60 tumour cell lines. 

This compound set includes most of the drugs that are currently in clinical use for cancer treatment. 

The microarray data (T_matrix) reflect the level of expression of 1376 genes, plus 40 individually 

assessed targets (proteins), and 40 other targets in the previous 60 tumour cell lines. The AT_matrix 

links both matrices using the 60 tumour cell lines as a sample space to generate a correlation matrix 

of 1416 rows (genes and targets) by 118 columns (substances) [Scherf U. et al 2000]. 

 

AT_matrix, unlike most of the expression matrices, shows the expression levels necessary for drug 

action, not the resulting levels of drug action. These expression data were chosen because they 

cover the phenotypic changes shared by many different tumoural human tissues. The drugs used 

have a range of action wide enough to expose the main pathways involved in the maintenance of 

cellular homeostasis, cell-division regulation, tissue-remodelling type or any other important 

cellular feature. This makes it possible to reveal the different phenotypes that we could find in 

tumour cells of different tissues. These 118 drugs are a subset of drugs coming from a previous, 

more extensive study that included 1400 different substances. This subset of drugs has been chosen 

because they have a strong effect on some phenotypes but have only a slight effect on others [Scherf 

U. et al 2000]. Each drug selected has the desired effect on tumour cell-lines with certain levels of 

expression for a certain gene set, while for those tumour cell-lines in which the level of expression 

of this gene set is the opposite, the drug loses its effect. Thus, the data give us the opportunity to 

link the phenotypes where the drug acts with gene expression levels. Genes are filtered using the 

same criteria: only those genes showing expression variations between the phenotypes where a drug 

set acts, with respect to the phenotypes where the drug set does not act, are considered. The initial 

9703 gene spots are reduced to a subset of 1376 genes in the final matrix. 

 

These analysed data (AT_matrix) are highly pre-processed. For details about the source of the data, 

normalization procedures, housekeeping-genes and other non-significant-genes filtration see 

[Scherf U. et al 2000]. The final data (AT matrix) ready to be analysed by our system has been 

added as supplementary material in the web, including the accession number of the microarray 

genes. The accession numbers of all the genes of the raw data (T_Matrix) are also accessible at the 
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Gene Expression Omnibus (GEO) repository. These original data can be displayed in the GEO 

DataSet browser using the GDS ID of the microarray (GDS1761): 

http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1761  

 

Note that dexamethasone or any other glucocorticoid drug has not been used in the microarray 

experiments. The glucocorticoid activity is obtained by analysing the role of the genes linked to the 

glucocorticoid activity in the phenotypic changes described by the expression data.  

 

In the Figure 3 the correlation can be seen between the gene expression level (y axis) and the cell 

death after applying the drug (x axis). The sample space is all of the 60 tumour cell lines. Each 

tumour sample has got a gene level of expression before applying the drug and a cell death index 

after applying the drug. AT_matrix reflects for each drug (column) and each gene (row), the level of 

expression of the gene in which the drug acts. 

 

 

 

 

 
Figure 3. Relationship between ASNS gene expression and the action of L-asparaginase drug on the different 

tumour cell lines (the sample space) [Scherf U. et al 2000]. This relationship shows an inverse dependence 

between ASNS gene expression and the phenotypes chemosensitives to the drug. 

 

 

http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1761
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As can be observed, the data analysed are not like usual microarray data. Our objective in studying 

these unusual data is to study the phenotypes in common among different types of tissue. The final 

data (AT_matrix) show the effect of drugs on phenotypes, ignoring whether phenotypes belong to 

one or another tumour tissue (in T_matrix, two samples of the same tissue can represent two 

different phenotypes, and two samples of different tissues can represent the same phenotype). This 

implies looking for the correlation between gene-expression levels and the effect of the drug, where 

the samples of the different tissues become the data cloud with its corresponding level of expression 

and drug effectiveness. Thus, in the final matrix (AT_matrix) we have the phenotypes in which the 

different drugs act. These phenotypes where the drug acts have occurred only in certain tumour 

tissues. 

 

The main attribute of these data is precisely that they give us the opportunity to compare the 

phenotypes of different tumour tissues. The value of AT_matrix samples shows that for a certain 

level of expression of the genes in certain tumour tissues, the drug is having the desired effect, 

while for tissues in which the level of expression of the genes is different, the drug loses its effect, 

showing a linear correlation between level of expression and drug effect. For this reason, different 

sample clusters from AT_matrix separate not only phenotypes, determined by the gene-expression 

levels, but also tissues in which these phenotypes appear. 

 

Time is not a crucial factor in order to obtain our expression data because our microarray does not 

study the phenotype after the administration of drugs. The drugs are used in our expression 

experiments to obtain the phenotype where the drug acts (in contrast to those in which the drug does 

not act).  

 

Of course, it is important to study the effect of the glucocorticoids doses as well as the effect of 

time, but those would be different studies from the current one. However, these new studies should 

consider the two types of tumour proliferation detected in our study, since they would affect their 

results. One of the most interesting aspects of bioinformatics studies like the present one, is that 

they allow the researcher to obtain models from re-used data thus, minimizing the number of 

experiments to be performed. 
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3.2. Non-lineal expression relationships vs lineal expression 
relationships 

 

 

Current biological research, specially transcriptomics, generates large amounts of data, which 

researchers need to analyse in order to understand the cell as a whole. The power of DNA 

microarray technology, among others, lies in its ability to provide data of a high number of gene 

expressions throughout different sample conditions. The objective of the present method is to 

analyse, relate, and show these expression data in a way that will permit researchers to reach a 

holistic view of the cell. Expression-matrices analysis challenges the traditional hypothesis-driven 

method of investigation and shifts the emphasis towards a hypothesis-generation paradigm. For 

achieving this new paradigm, the analysis procedure must be able to allow the researcher to have 

both a global vision of cell genetic networks and to focus on more specific aspects of subsets of 

genes. A global scenery alone does not permit the analysis of the expression connections among n 

non-directly correlated genes, nor the genes which relate them. To facilitate the examination of 

these local behaviours of interest for the researcher without losing the holistic perspective 

constitutes the main objective of this approach. 

 

In this way, we move away from the genetic and regulatory networks towards the hypothesis-

generation paradigm. Our methodology does not try to build regulatory pathways, but rather to gain 

insight into the relationships among genes. In the zoom-in operation, the system provides a set of 

biologically relevant genes for every query-set introduced by the researcher, then, presents the 

detailed expression dependence among all of them in an easy, visual way. 

 

Current approaches for finding regulatory networks from the gene-expression data could be grouped 

into six categories according to their formalisms: (i) approaches based on linear models 

D’Haeseleer P. et al 2000) (ii)  approaches based on the description of the regulatory effects using 

sets of logical rules [Heidtke KR. and Schulze-Kremer S 1998; Thieffry D. and Thomas R. 1998]; 

(iii) approaches based on a set of deterministic differential equations characterising the regulation 

patterns of the network [Mestl T. et al 1995; Goryanin I. et al 1999; Becskei A. and Serrano L. 

2000; Vohradsky J. 2001; Wessels LF. et al 2001; Vu TT. and Vohradsky J. 2002]; (iv) fully kinetic 

models which also include stochastic components at the molecular level [McAdams HH. and Arkin 

A. 1997; Wong P. et al 1997; Arkin A. et al 1998; Kastner J. et al 2002; Rosenfeld N. et al 2002; 

Swain PS. et al 2002), (v) probabilistic networks [Guet CC. et al 2002; Mao L. and Resat H. 2004], 

and (vi) neural networks [Weaver DC. et al 1999]. The combination of some of these approaches, as 

well as the inclusion of certain aspects of stochasticity, has also been utilized [Davidson EH. et al 

2002]. The main problems of these approaches are related to the determinism of the boolean 

networks, which, though they facilitate visualisation, at the same time they hinder the complexity of 

the system. This reductionism could produce an incorrect model (especially when the data input 

does not contain all of the genes of the cell), but above all, in all of these approaches, it is 

impossible to disclose, recover and analyse the sub-layer information not depicted by the model. 

There are also some continuous models, which try to overcome the linearity limitations of the 

boolean and probabilistic network approaches, but they have serious visualisation interface 

problems. Our focussing approach, in addition to working on non-linear relationships among gene 
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expressions, facilitates an easy and strongly focussed visual interpretation. Finally, it is robust 

towards background noise and depicts all possible information of interest for the researcher at each 

moment (despite the problems previously commented on regulatory and genetic networks).      

 

Our method starts by creating a minimum spanning-tree by linking the genes according to its best 

correlation, linear or non-linear. Then, for each zoom-in operation from a set of query genes 

provided by the researcher, and using the previously generated tree, the selection process 

automatically selects a desirable set of high-correlated genes which connect the query genes among 

them. This selection procedure is extremely sensitive to the provided set of query genes. For 

example, a large number of query genes or a smaller expression correlation among the query genes 

will yield a larger number of selected genes. Conversely, a smaller number of query genes or a 

greater correlation among their expression will yield a smaller number of selected genes. In this 

way, adding or subtracting a query gene can dramatically modify the number, and the genes that 

will be provided. The objective of this selection process is to provide the expression-behaviour 

pattern of the final set, including the query genes and the selected ones supplied by the system, as a 

way of understanding the initial query-genes behaviour. 

 

The Bayesian, boolean and continuous models mentioned above usually work with temporal-series 

data. This kind of data is useful for modelling systems such as the cell cycle in order to detect 

regulatory genes or analyse the dynamics of the genetic networks. However, the temporal series can 

only study synchronic cellular events. This kind of data is not useful to provide a realistic behaviour 

of the genes. Our method does not require data such as temporal-series. The expression behaviour 

of the set of genes is obtained from all of the cellular conditions considered in the expression matrix 

where these conditions can be achieved as a response to a different stimulus (i.e., chemotherapy, 

temperature, radiation, starvation, etc). These different conditions constitute the sample space. From 

this sample space, the system obtains discretised states represented by coordinated-expression levels 

on local tendencies. The sum of these local tendencies constitutes the intra-set behaviour pattern of 

the analysed genes in expression terms, being particular to each different set. 

 

The mathematics behind this system makes use of the Principal Curves of Oriented-Points 

calculation (PCOP) [Delicado P. 2001; Delicado P. and Huerta M. 2003], both in the construction of 

the gene tree (obtaining the pairwise correlations) used for the selection algorithm, and in the 

analysis of the intra-set expression behaviour of the resulting set of genes (obtaining the inner 

pattern of the expression behaviour of the set). The Principal Curves are a non-linear and non-

hypothesis-driven analysis technique. The PCOP method uses a hidden variable as a dependent 

variable for ordering the sample data. In this way, for example, we do not need the time variable of 

temporal-series data yet.  
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3.2.1.  The steps followed by our procedure  
 

1. Pre-process: 

1.a. Obtaining the correlation degree between each pair of genes using the PCOP 

calculation. 

1.b. Building the minimum-spanning tree among the expression-matrix genes using the 

previously calculated pair wise-correlations. 

2. Zoom-in operation: 

2.a.  Automatic selection of the genes that connect the query genes through the minimum-

spanning tree calculated in the pre-process. Query genes are provided by the researcher in 

each new query. 

2.b. Obtaining the intra-set behaviour pattern of the gene set generated by the selection 

algorithm (using the PCOP calculation). This inner pattern relates the expression 

fluctuations of the selected genes plus the query ones (among all of them). 

 

These steps involve capabilities such as: Gaining insight into relationships (known or hidden) 

among different pathways, analysing how the genes could be affected when a query gene is in a 

particular level of expression, or modelling and simulating the whole cell physiology (systems and 

integrative biology), among others. 

 
 

3.2.2. The Principal Curves of Oriented-Points (PCOP) calculation 

 

Principal curves have been devised to extract non-linear patterns from data in an automated, 

accurate, and reproducible way.  It is a powerful method to extract behaviour patterns from different 

entities in multivariate-data analysis. The Principal Curves method describes the relationships 

among independent variables by a continuous curve passing through a discrete cloud of points such 

as, individual experimental measurements from DNA microarrays, or expression matrices from any 

other origin. PCOP calculation reduces the noise from signal processing, which is a major drawback 

in array technology, thus preserving the information. Principal components and principal curves do 

not use dependent variables, a difference with respect to other regression and estimation models. If 

the sampling space is ellipsoidal, the linear relations among the independent variables would suffice 

to describe the behaviour of these variables.  In other cases, we need to use principal curves because 

the existent relationship is more complex. 

 

The first approach to the Principal Curves [Hastie T. and StuetzleW.  1989] defines them as smooth 

curves passing through the middle of a multi-dimensional data set. The problem with this first 

calculation of the Principal Curves is that if the distribution is not isotropic, it is difficult or 

impossible to find the principal curve. There are many approaches to implement Principal Curves 

[Kegl B. et al 2000; Chang K. and Ghosh J. 2001; Sandilya S. and Kulkarni SR. 2002]. Sandilya 

and Kulkarni being the first who realized a comparative analysis of Principal-Curves methods, 

including the PCOP. In addition, other approaches based on neural networks have followed the 

same objective as Principal-Curves methods [Mulier F. and Cherkassky V. 1995]. Indeed, there are 

some approaches that fused the two previous ones [Dong D. and McAvoy TJ. 1996]. 
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Figure 4. A theoretical example of PCOP analysis.  The local areas are limited by bandwidth 'h' in two sides of the 

local area and adjusted to the shape of the data-point cloud in its other two sides. Using the samples clustered in 

this local area (black spots in the figure), and calculating the principal component for the local area. x will be 

validated, or not, as a new Principal Oriented Point(POP), and b as a tangent vector of the Principal Curve of 

Oriented Points(PCOP) if variance is minimum  [Delicado P. and Huerta M. 2003]. 

 

 

In the present methodology, the PCOP as defined by [Delicado P. 2001] have been used. He defines 

PCOP on the generalisation, at the local level, of the next principal-component property: for a 

normal multivariable distribution X, if X is projected over a hyper plane, the total variance of the 

projection is minimized when the hyper plane is orthogonal to the first principal component. In this 

way, the Principal Component is found for each local area, and the principal-component vector will 

be the tangent vectors of the Principal Curve. Each Principal Component at local level conforms a 

Principal Oriented Point (POP), and the curve which visits all of the POP, conforms the Principal 

Curve of Oriented Points (PCOP). In a previous work [Delicado P. and Huerta M. 2003], it was 

described how to accurately define these local areas in the global space and the samples belonging 

to each one (Figure 4). One of the main advantages of PCOP over other Principal-Curves methods 

is its generalisation of the principal-components variance. As a result, the PCOP method provides a 

very good measure of the data dispersion around the curve [Sandilya S. and Kulkarni SR. 2002]. 

PCOP method also has the capability of defining higher-order curves. Both are very significant for 

our methodology. 

 

Now we shall describe how to apply the PCOP analysis to the expression data. For all of the 

following examples, the previously described experimental data from the National Cancer Institute 

(NCI, USA) (Scherf U. et al 2000) will be used. As an example of PCOP application to this kind of 

data, we show the Principal-Curve calculation for describing the expression relationship between 

two of the expression-matrix genes: DNA topoisomerase II beta and 6-phosphofructo-2-

kinase/fructose-2,6-bisphosphatase (PFKFB). Each gene is an independent variable in a multi-

dimensional space. DNA topoisomerase II beta is involved in processes such as chromosome 
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condensation, chromatic separation, and the relief of torsional stress that occurs during DNA 

transcription and replication. PFKFB is a key activator of glycolysis. Cancer cells maintain a high 

glycolytic rate. Figure 5 shows the PCOP obtained. The Principal Curve shows a non-linear 

relationship between the expressions of the two genes. The density and variance of the cloud of 

points along the Principal Curve can be also observed in this figure. In [Delicado P. and Huerta M. 

2003] the recursive algorithm to calculate the PCOP for a multi-dimensional space is described, and 

the program is available on the web. 

 

 

 

5.a) 

 
 

5.b) 

 
 

Figure 5. (5.a) Principal Curve of Oriented Points (PCOP) of DNA topoisomerase II beta (abscissas in figure 5.a) 

and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) (ordinates in figure 5.a) calculated from the 

gene-expression data. The expression patterns are extracted from the expression at_matrix reported by [Scherf U. 

et al 2000]. (5.b) The three frames show, respectively: the density (top), span (middle) and residual variance 

(bottom) around the curve. 
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The correlation degree of this relationship will be provided by the values of the Generalized Total 

Variance (GTV) and the Residual Variance (RV). After calculating the PCOP between all pairs of 

genes, the values of Residual Variance and Generalized Total Variance provided by the PCOP 

calculations are the parameters used to filter out the insignificant relations between genes. The 

Variance explained by the curve permits one to know if the Principal Curve is able to follow the 

sample-cloud tendency, and goes up when the sample cloud has a regular behaviour being well 

identified by the Principal Curve. Residual Variance (RV) describes the degree of dispersion of the 

sample cloud around the Principal Curve; in other words, the residual variance is the variance not 

explained by the Principal Curve. The Generalized Total Variance (GTV) is the sum of these two 

dispersion parameters, the variance explained by the curve, plus the variance not explained by the 

curve. The uncorrelation factor ( f ) is RV divided by GTV  [Delicado P. 2001]. The lower the value 

of f , the higher the correlation degree between gene expressions. The f value is used to know how 

many, not exclusively linearly, sampled gene-expressions are related. 

 
 

3.2.3. The minimum-spanning tree 
 

A minimum-spanning tree is a tree built from a set of points which verify the following property: 

the sum of all edge-weights will be equal to, or lower than the sum of edge-weights of any other 

tree from the same input data. Based on the PCOP calculation between all the matrix genes, a 

minimum-spanning tree is built among all the matrix genes where the tree edges represent 

expression relationships between pairs of genes with its corresponding f value. The edges of the 

minimum-spanning tree maintain a decreasing-order based on the f value of each expression 

relationships. 

The expression relationships of the tree edges can be of three basic types: 

 

 Positively coexpressed genes. 

 Negatively coexpressed genes. 

 Non-linearly correlated genes. 

 

A relationship of Type 1 or 2 involves genes with a linear expression relationship. A relationship of 

Type 3 corresponds to correlated relationships like that of Types 1 and 2, but in this case non-linear. 

  

In Figure 6 a gene graph obtained using R
2
 (6.a) can be compared with a graph using the f value 

provided by PCOP calculation (6.b). We use the subset of matrix genes shown in Table I to build the 

gene network. In this subset we have mixed different genes of the at_matrix [Scherf U. et al 2000], 

where some of these genes take part in the regulation and control of the G1 phase of the cell cycle, 

and some not. 
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Entrez Gene 

CDK7, cyclin-dependent kinase 7 

CDK6, cyclin-dependent kinase 6 

CCND1, cyclin D1 

CCND2, cyclin D2 

CCNE1, cyclin E1 

TGFBR2, transforming growth factor, beta receptor II (70/80kDa) 

TXNDC5, thioredoxin domain containing 5 (EndoPDI) 

CPVL, carboxypeptidase, vitellogenic-like 

CDKN2A, cyclin-dependent kinase inhibitor 2A (melanoma, p16) 

CDKN1A, cyclin-dependent kinase inhibitor 1A (p21, Cip1) 

GADD45A, growth arrest and DNA-damage-inducible, alpha 

ERCC5, excision repair cross-complementing 5 

CDC34, cell division cycle 34 

TP53, tumour protein p53 (Li-Fraumeni syndrome) 

MDM2, transformed 3T3 cell double minute 2, p53 binding protein 

(mouse) 

TNK2, tyrosine kinase, non-receptor, 2 (ACK) 

 

 

Table I. The genes from at_matrix analysed in the examples of this section. They have been selected from a matrix 

of 1416 genes followed in a microarray study on  the action of 118 anti-tumour substances (Scherf U. et al 2000). 

This microarray data is the sample input set used in the examples reported in the text. 

 

 

 

In the two graphs, the gene location in the 2D plane depends on its correlation with the rest of the 

genes using a force-direct layout algorithm with three parameters: attraction, repulsion and gravity 

(aiSee-Graph-Layout Software). 

 

In both graphs the best correlations are the same (the linear expression relationships), but some 

genes, likeTP53, vary when non-linear expression relationships are considered. Considering non-

linear expression relationships, four genes are linked to the minimum-spanning tree through the 

TP53 gene (Figure 6.b); however, considering only linear correlations, TP53 would have only a 

marginal role, being linked to the minimum-spanning tree by the worst correlation of the tree 

(Figure 6). The reason is that TP53 links genes of the G1 phase and some genes of error treatment 

by means of non-linear relationships. It can be observed meticulously in the detailed expression 

analysis. 
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6.a)               6.b) 

 
 

Figure 6. Cluster hierarchy and minimum-spanning tree (mst) for the genes of Table I using a R2 (Pearson product-

moment correlation squared) at left side and the f value (PCPOP) at right side. The edges of the mst maintain a 

decreasing-order relationship based on the f value or R
2
 Pearson value of each one. Their corresponding f value 

can be observed in the ruler of Figure 7. In the b) graph, the relationships labelled as 0 and 3 represent the 

minimum intra-cluster pair, the relationship labelled as 13 represents the minimum inter-cluster pair. The nodes are 

located in the 2D plane using a force-direct layout algorithm. The expression-dependence degree is proportional 

to the grey scale of the edges.  

 

 

3.2.4. The gene-selection algorithm 
 

Using only a graph or network it is difficult to notice the specific behaviour among the network 

genes. To examine this behaviour in detail, the zoom-in operation is necessary. In the zoom-in 

operation, the researcher begins introducing the genes of interest. Assuming that the query genes 

introduced by the researcher have a certain level of correlation as a set (correlation level which the 

researcher does not wish to lose), the first step of the zoom-in operation is to select the maximum 

number of genes which connect the genes of the query set, but conserving the correlation level of 

the query set in the new query-plus-selected-genes set. Notice that each gene is a variable in a 

multi-dimensional space when we calculate the PCOP of the gene set and its corresponding f value. 

 

 

3.2.4.1. Hierarchical clustering 
 

We will use hierarchical clustering to expound the benefits of our selection algorithm. In 

hierarchical clustering, the genes are grouped by a likelihood function applied to their expression 

patterns. To build a hierarchical cluster, in each step, individual genes or a set of genes are added to 
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a gene or gene cluster previously added, following the best correlation. As a result, a dendrogram is 

obtained [Alon U. et al 1999; Eisen MB. et al 1999]. The hierarchical clustering built from the 

genes of Table I using the f value and single linkage [Hartigan JA. 1981] is shown in Figure 7. Note 

that in this way we are not grouping the genes by similarity in expression, but rather by their f 

value. Therefore, clusters will contain genes whose relationships show a low f value, even if these 

relationships are of different types (linear o non-linear). Using single linkage, we can guarantee that 

genes which belong to different clusters are actually independent. 

 

 

 

 
Figure 7. Hierarchical clustering for the genes of Table I using the f value (PCOP) and single linkage. Under the 

names of each gene added to the tree appears the other gene of the relationship used to link the new gene to the 

tree (single linkage). Their relative position based on the f value is shown in the ruler at the left. 

 

 

 

3.2.4.2. Gene selection following the minimum-spanning tree 

 
We have described the properties of hierarchical clustering, but for selecting genes we only need the 

minimum-spanning tree implicit in it.  

 

For the selection algorithm, we select the genes (nodes) of the minimum-spanning tree which 

connect the query genes conforming the minimum-spanning path between them. 

When building a hierarchical clustering using a single linkage, we obtain a minimum-spanning tree 

where each edge of the tree represents the relationship used to add each new gene or gene cluster to 

the tree [Gower JC. and Ross GJ. 1969]. In this way, we can apply these clusters, their hierarchy 

and the properties of the hierarchical clustering to their corresponding minimum-spanning tree. 

Figure 6.b shows the minimum-spanning tree corresponding to the hierarchical clustering of Figure 

7. 
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Due to these findings, we can formulate the following definitions with respect to the selection 

algorithm: 

A set of genes of the tree linked by their best correlation will be considered as a cluster. These links 

between genes will be named intra-cluster relationships and link each gene with its most correlated 

gene. 

 

A pair of genes whose intra-cluster relationship of each gene links the other gene of the pair, will be 

termed a minimum intra-cluster pair (the most correlated gene of each gene is the other gene of the 

pair). Each cluster will present one and only one minimum intra-cluster pair. There is a path 

between each gene of the cluster, and its minimum intra-cluster pair, following the intra-cluster 

relationships which link the members of the cluster. This implies that the minimum intra-cluster pair 

will be accessible from each gene of the cluster following the best correlation of each gene along 

the way. Note that from each gene, one, and only one intra-cluster relationship leaves, but some 

intra-cluster relationships can reach it. In Figure 6 two clusters and their respective minimum intra-

cluster pair can be observed (represented in Graph b by the relationships with ranks 0 and 3). 

 

In hierarchical clustering, each cluster is linked to the cluster-tree by means of the best relationship 

between one of its genes and the rest of the genes external to the cluster. This best external 

relationship of the cluster will be named its inter-cluster relationship. From each cluster one and 

only one inter-cluster relationship may leave, but some inter-cluster relationships can reach it.  

 

A pair of clusters whose inter-cluster relationship links the other member of the pair will be termed  

a minimum inter-cluster pair. In Figure 6 the minimum inter-cluster pair formed by the two clusters 

in the picture can be observed (linked in Graph b by the inter-cluster relationship with rank 13). 

 Now, to select the genes, we only need to follow the best correlations among genes and clusters 

(intra-cluster and inter-cluster relationship) towards the minimum inter-cluster and intra-cluster 

pairs from the query genes until arriving to the meeting point. In this way, we shall follow the 

minimum-spanning path selecting the genes (nodes) which connect the query genes. 

 

Focussing on the algorithm description, beginning from the query genes, it will take the best intra-

cluster relationship in each step. If the different pathways do not cross because the query genes do 

not belong to the same cluster, the algorithm will search for the meeting cluster following the inter-

cluster relationships, taking the best inter-cluster relationship in each step too. For each cluster 

visited, the algorithm will repeat the process to select the genes visited to cross the cluster. The 

algorithm will perform in the same way to deal with clusters of clusters. In this way, the algorithm 

will only need the best correlation of each gene and each cluster (intra-cluster and inter-cluster 

relationships) to establish the gene selection for all possible sets of query genes.  

 

Now, there are two hot-points to mention about the minimum-spanning tree properties: 

The intra-cluster relationship that leaves a gene always represents a better correlation than the intra-

cluster relationships that reaches the gene. The inter-cluster relationship that leaves a cluster always 

represents a better correlation than the inter-cluster relationships that reaches the cluster. Therefore, 

the pathway to cross the cluster to link two inter-cluster relationships (which always crosses the 

minimum intra-cluster pair) usually represents a better correlation in the cluster that reaches the 

inter-cluster relationship than in the cluster from which it leaves. And the path between the 
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minimum intra-cluster pair and the gene from which the inter-cluster relationship leaves, usually 

represents a better correlation than the paths between the genes that reach an inter-cluster 

relationship and the minimum intra-cluster pair. 

 

These two properties permit scientists to reach the selection objectives initially expected. First, the 

set of selected genes will tend to maximize the correlation among themselves and the query genes 

rather than another possible set of selected genes with the same number of genes. Second, the 

system will tend to select the maximum number of genes to connect the different query genes 

without losing the initial correlation degree existing among the query genes.  

 

Let us consider two practical examples to illustrate the zoom-in operation and its gene-selection 

process. The hierarchical clustering and minimum-spanning tree needed for the examples-selection 

process are depicted in Figures 7 and 6.b. The first objective is to study what type of connection 

exist between the level of expression of genes cyclin E1 (CNNE1) and TP53. In the second 

example, the interest is to analyse what relation exists between cell-cycle regulators CDK6 and 

cyclin E1 (CNNE1) with TNK2 (which is involved in the tyrosine-phosphorylation signal-

transduction pathway). In the first example, with the objectives being cyclin E1 and TP53, the gene-

selection algorithm returns the thioredoxin-related protein endothelial protein disulphide isomerase 

gene, TXNDC5 (see Figure 6.b), but for the second example, none are selected. The next step is to 

calculate the intra-set behaviour pattern of the new gene set generated.  

 

It's important to remark that the results of the selection algorithm are not the same, if one considers 

only the linear expression relationships with respect to also consider non-linear expression ones. If 

we try to obtain the selected genes from the query genes CDKN2A (P16) and CDKN1A (P21), 

basing ourselves only on linear correlations (Figure 6.a), no genes are selected. But if we consider 

the non-linear correlations (Figure 6.b), TP53 and GADD45A are selected, reflecting that TP53 is a 

pivotal element to determine the function of this sub-set of genes. For instance, the p53/p21 

pathway is responsible for glycolated Collagen II-induced apoptosis, and p53/p21 coordinated 

activation with CDKN2A (P16) induces cell senescence [Chen J. et al 2006].  

 
 

3.2.5. Obtaining the intra-set behaviour pattern of the generated gene subset 
 

Once the genes are selected, the following step is to search the dependence among the expression 

levels of all of them, plus the query genes. To represent this intra-set behaviour, we shall use the 

parametric representation of the PCOP calculated for the expression of all of these genes. 

 

Let n be the number of the selected genes, plus the query ones. The description of the relative 

behaviour of each one of these genes with respect to the others, are the n equations of the 

parametric representation of the PCOP calculated for these n genes. The curve parameter is defined 

by the POPs found (Figure 8). The POP with a 0 value in this range represents the POP in the 

relationship where there are approximately the same number of samples on its left and right sides. 
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Figure 8. Expression relationship among the selected genes TXNDC5 (top panel), TP53 (middle panel) and cyclin E1 

(CNNE1) (bottom panel). The panels show the gene-expression levels for the discretised states (POPs) of the 

relationship (PCOP). Abscissas correspond to the expression levels of each gene and ordinates the discretised 

states (POPs). The POP with a 0 value in ordinates points out the point of the PCOP with a greater sample 

density. 

 

 

Taking up the first example, we need to obtain the inner pattern of the expression dependence 

among the objective genes cyclin E1 (CNNE1) and TP53, and the selected gene TXNDC5. We 

chose p53 because: (i) its relationship with other proteins is well described in the literature, (ii) its 

expression relationships with other gene expressions are complex and non linear, (iii) it is 

directly related to the development of tumours and its expression is altered in a high number of 

tumours. This last point is relevant from a technical standpoint, as it would be useful to test if the 

data processing is resistant to this kind of alterations. Figure 8 shows the behaviour among the three 

genes. Let us contrast these results with the current knowledge of cell-cycle events. Cyclin E1 is a 

regulatory subunit of the cdc2-related protein kinase CDK2, which is activated shortly before S-

phase entry. Lower levels of cyclin E1 imply lower cell-division rates, whereas higher levels of 

cyclin E1 precede higher rates of cell division [Hinchcliffe EH. et al 1999].  High levels of TP53 

induce either apoptosis (in the presence of appropriate mutations) or, alternatively, switch on the 

mechanisms of DNA repair. At low levels of TP53, less apoptosis is produced and mutations can 

accumulate more easily. It is known that rapidly dividing cells show a higher mutation rate, whereas 

slowly dividing cells show lower rates [Bielas JH. and Heddle JA. 2003]. It has been reported that 

constitutive cyclin E1 over-expression, in both immortalized rat embryo fibroblasts and human 

breast epithelial cells, results in chromosomal instability [Spruck CH. et al 1999; Tissier F. et al 

2004]. A slight overproduction (just 5% more is enough) of cyclin E1 has been associated with the 

malignant phenotype and is strongly correlated with tumour size [Tissier F. et al 2004].  Other 
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authors have also reported the association of the above genes with  cell division and apoptosis 

[Knoblach B. et al 2003; Sullivan DC. et al 2003]. In the light of the foregoing, we can find 

interesting new observations about the genes in relation to tumour evolution: Cyclin E1 (CNNE1) 

up-regulation leads to higher rates of cell division [Hinchcliffe EH. et al 1999]. Basal expression 

levels of cyclin E1 are related to over-expression of P53. When the expression level of cyclin E1 is 

very high, the cell loses the protective effect of TP53 (the TP53 level drops dramatically) and 

mutations can appear. At this moment, apoptosis is not only avoided by TP53 clearance, but also by 

the protective effect of thioredoxin on the protein-folding pathways, especially in the hypoxia 

conditions usually found in tumours (TXNDC5 is over-expressed). Therefore, we can follow the 

progression of a tumour, finding the same results as those reported experimentally by other authors 

[Knoblach B. et al 2003; Sullivan DC. et al 2003], but working at high-throughput.  For example, 

we can easily explain several well-known facts jointly, such as: (i) low/medium rates of cell 

division imply low mutation levels, (ii) high rates of cell division imply the existence of more 

mutations without apoptosis and (iii) how cyclin E1 and TP53 expression levels are related to the 

acceleration / restraint of the G1 cell-cycle phase. Note that the selection of TXNDC5 by our 

method neither represents the belonging to the same activation pathway of TP53 and cyclin E1 nor 

to the interaction of these proteins. The basic reason for its selection is the adaptive response of the 

cell (TXNDC5) in order to survive in a low oxygen environment due to the cell growing at a high-

division rate (cyclin E1). For this reason, our methodology is not directly comparable with the 

current methodologies which do not intend to represent these holistic and non-lineal gene 

relationships.  

 

In the second example, we study the CDK6, cyclin E1 and TNK2 genes. Figure 9 shows the 

corresponding intra-set behaviour in expression terms. CDK6 and cyclin E1 genes show mutual-

exclusion expression with respect to the TNK2 gene. When TNK2 is expressed above the control 

level, CDK6 and cyclin E1 levels are fixed around their minimum expression. When CDK6 and 

cyclin E1 are over-expressed, TNK2 is at its minimum level. The 0 value in the curve parameter 

(abscissa axes in Figure 9) is positioned when all of the genes are in basal expression.  The location 

of this 0 value shows us that cyclin E1 and CDK6 over-expression is more usual than TNK2 over-

expression for the analyzed data. Note that the intra-set behaviour pattern obtained depends directly 

on the concrete genes that are being compared. If the worst correlated genes are removed from the 

set, the pattern approximation of the new set will upgrade. 
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Figure 9. Expression relationship (PCOP) of the selected genes: cyclin E1 (CNNE1) (top panel), TNK2 (middle 

panel) and CDK6 (bottom panel). The panels show the gene-expression levels for the discretized states(POPs of 

the PCOP). Abscissas correspond to the expression levels of each gene and ordinates to the discretised 

states(POPs).  

 
 

In the light of the foregoing, we can conclude: 

 

Our methodology takes into account the great complexity of the biological systems but, at the same 

time, can adjust the operational scope dynamically without modifying the working data. In this 

manner, for each concrete study, the zoom-in operation automatically ignores the genes which can 

only generate distortion in the analysis of the relevant ones. 

 

The non-predetermined interpretation of information is present throughout the whole procedure. 

PCOP method uses a hidden variable, which can be temporal or not, to sort the expression data.  

 

The kind of information obtained by our methodology. The mRNA turnover in the cell is controlled 

by hundreds of different transcription factors (in their different activation states), by chromatin 

methylation changes, by histone modification (acetylation, phosphorylation, methylation, and 

recruitment of histone-binding protein) or by modulating mRNA half-life. That complex regulation, 

especially of the key genes, plus the noise mainly affecting the low-expressed genes [Tu Y. et al 

2002], like transcription factors, severely complicate the reconstruction of the activation pathways. 

That gives meaning to our approach beyond the activation pathways or GO functional annotation. 

For instance, if we try to see the connection between the two genes seen previously, cyclin E1 and 

TP53, using the GO tool [Ashburner M. et al 2000] their functions/biological processes are only 

indirectly related. In the activation or metabolic pathways, the dependence of their respective 
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expression levels is not shown and they do not appear related to the TXNDC5 gene, and as has been 

shown previously, it plays an important role in understanding the relations between cyclin E1 and 

TP53 genes. 

 

All the findings presented in this section have been included in the works [Delicado P. and Huerta 

M. 2003; Huerta M. et al 2008].  
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3.3. Clustering the samples along the PCOP 
 

 

The suitable data for our type of analysis can be provided by: (i) temporal series, useful to study 

synchronous cellular events, and (ii) serial analysis of gene-expression samples under different 

conditions (i.e., chemotherapy, temperature, radiation, starvation, etc.) which are more useful for 

studying asynchronous events. 

 

The progressive increase of sample-series [Hall PA. et al 2005] motivates a more thorough analysis 

of expression relationships and gene dependencies throughout these large series, trying to rescue 

global gene behaviours and phenotypes. The GEO database [Barret T. et al 2003] facilitates the 

study of the microarray experiments grouped into predefined subsets, introduced by the microarray 

authors, and the search for differentially expressed genes. Nevertheless, if the researcher wants to 

understand the microarray-experiments effect on expression relationships and elucidate cell states 

and phenotypes, he/she needs a more versatile approach. 

 

 

3.3.1. Defining sample classes 

 

The sample-classes definition can be made in three different ways using our system: 

 

 Clustering the samples from a part of a gene-expression range. 

 Clustering the samples from a part of a gene-expression relationship. 

 Clustering the experiments based on previous knowledge.  

 

Sample clusters based on previous knowledge comes from a) medical/biological origin, provided 

for example, by the microarray developers, or b) obtained by statistical method such as k-nearest 

neighbour [Ripley B. 1999], Self-organizing Maps [Kohonen T. 1999], Principal Components, 

Biclustering [Wu CJ. and  Kasif S. 2005], Locally Linear Embedding [Chao S. and Lihui C. 2005] 

and so on. 

 

 

3.3.2. Clustering the sample from a non-linear expression relationship 

 

Using the clustering the samples along the PCOP tool, the user can select the different discretised 

states (the POPs) obtained in the PCOP calculation. With this action, the samples belonging to the 

local area of the selected POPs are clustered. In this way, the user can separate the sample data for 

their belonging to the different local behaviours of the expression relationship. So, this new 

clustering approach permits us to differentiate the samples belonging to a continuous dataset on the 

basis of a non explicit reason (or hidden-variable role) that guides the local tendencies. Identifying 

the samples that contribute to each local tendency, we can arrive at the understanding of the 

surrounding reason or hidden variables effect. 
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The advantage of defining the sample clusters from an expression relationship instead of an 

expression range, is that we are selecting the samples by the tendency maintained by the 

relationship among two or more genes. As a result, our clustering from an expression relationship 

more accurately defines the boundaries of the phenotype we wish to associate with the sample class 

[Cedano J. et al 2008]. In contrast to using a statistical method that clusters the sample conditions 

using all of the matrix genes (or some of them in Biclustering [Tanay A. et al 2002]), clustering 

from an expression relationship, only the marker genes of the processes in which the researcher is 

interested are used (the clustering will be based on the tendency of the expression relationship in 

which the researcher is interested).   

 
 

3.3.3. Colouring the sample clusters on a gene-expression relationship 

 

The graphical interface facilitates the visualisation of the defined sample classes on gene 

relationships by colouring the samples (as is shown in Figure 10) with the intention of studying 

their effect on expression-relationships. The study of this effect is especially relevant in non-linear 

expression relationships in order to understand the biological sense of the slope changes, possibly 

due to a phenotypic change.  
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10.a) 

 
 

 

 

10.b) 
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10.c) 

 
 

 

Figure 10. Sample class definition using the web interface. Example 1: In the SGC(GUCY1B3) and Q6(QSN6) 

expression relationship (10.a; f=0.08), the samples of the two extremes of the SGC / Q6 inner pattern are 

clustered into two classes by clicking on the POPs. Next, these sample classes are coloured in the GATA3 and 

AML1(RUNX1) expression relationship (10.b; f=0.10). Example 2: In the GATA3 and AML1(RUNX1) comparison 

window (10.b), the samples with GATA3 over-expressed are clustered with the range-selection facility and 

coloured in the SGC and Q6 expression relationship (10.a). Example 3: In the GATA3, AML1(RUNX1), SGC and Q6 

relationship (10.c; f=0.28), the plot of the projection over the SGC and Q6 plane is shown. The coloured classes 

shown have been obtained using a clustering method. Each sample class represents a different phenotype 

involving most of the genes of the expression data. The phenotypes identified by sample clusters coincide with the 

two proliferation phenotypes described in the previous examples, the differentiated and the undifferentiated 

proliferation phenotypes. 

 

 

3.3.4. Gene search based on the arrangement of the sample classes along the 

gene-expression ranges 
 

In the ‘sample-class-distribution’ search, the genes can be searched by some of the defined classes 

being up-regulated or down-regulated with respect to the basal value, or by being disjointed, over-

expressed or under-expressed, with respect to some of the other classes. All possible combinations 

of the requirements are allowed where different combinations will supply different gene-sets.  
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3.3.5. Basic analysis procedure 

 

The analysis begins in the researcher’s genes of interest, usually marker genes of a specific disease, 

cell state or function. Once the pattern analysis of the query genes has been performed, the 

graphical interface will show their expression-relationship, the inner pattern (PCOP) and their 

fluctuations.  

 

To find the expression dependence of these initial sets of correlated genes with other genes either 

linearly or non-linearly correlated with the first ones, the user should proceed as follows: first, 

he/she must cluster the samples belonging to the different local behaviours of the query-genes 

expression relationship (by clicking on the POPs along the relationship’s inner-pattern in the plot 

interface); second, applying the ‘classes-distribution’ search tool for a certain distribution of the 

samples clusters, the genes that follow the required distribution in their expression are obtained. 

Finally, the researcher can now perform the pattern analysis of the genes provided by the search and 

observe, in the graphical interface, the effect of each sample-class on the expression relationship 

(with the samples of each one of the classes coloured, as in Figure 10). This procedure will show 

the non-continuous expression dependence among the genes provided by the search and the initial 

gene-set in the manner specified in the search. If the sample-classes distribution required in the 

search is changed, the genes provided and their non-continuous dependence, with respect to the 

initial ones, will vary too. 

 

 

3.3.6. Contextualisation consulting GEO database 

 

In order to get complementary information from other public expression data, the GEO database 

could be consulted. These queries attempt to know if the genes supplied by the ‘sample-class-

distribution’ search tool (genes that follow the user-defined sample-class distribution in their 

expression) are differentially expression genes in the GEO datasets.  To achieve this information, 

the web application queries the microarray GEO Profiles [Barret T. et al 2003]. The GEO datasets 

where the query gene displays significant expression differences among the GEO predefined sample 

classes are obtained. In this way, the queried gene can be considered, for example, as a marker of 

osmotic stress in a microarray to analyse cellular stress response, or as a marker of metastasis in a 

microarray to analyse disease states of cancer, etc. Then, these query-gene properties can be also 

assigned to the user's sample clusters. 

 

 

3.3.7. Sample-classes definition use cases 

 

Let us describe some real use cases and the relevance of the new knowledge supplied. The three 

ways to define the sample classes and a basic analysis procedure have been used.  
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3.3.7.1.  Case 1: Defining the sample classes from a non-linear expression 

relationship 
 

We wish to relate the Soluble Guanylate Cyclase Beta1 3 (SGC) and Quiescin Q6 (Q6) genes (our 

genes of interest). The SGC is under-expressed in cellular stress [Roelofs J. and Van Haastert PJ. 

2002], whereas Q6 is over-expressed in the last phases of tissue remodelling [Thorpe C. et al 2002]. 

Additionally, we would like to relate this pair of genes to GATA-binding protein 3 (GATA3) and 

acute myeloid leukaemia 1 (AML1, RUNX1). GATA3 is involved in growth control and the 

maintenance of the differentiated state in epithelial cells [Usary J. et al 2004]. The impairment of 

the AML1 function deregulates the pathways leading to cellular proliferation and differentiation 

[Michaud J. et al 2003].  The two gene pairs show an expression correlation (uncorrelation factors 

of: SGC vs Q6 = 0.08; GATA3 vs AML1 = 0.1). Their inner pattern can be visualised in the 

graphical interface, as is shown in Figure 10. The problem is that these two pairs of genes are 

neither linearly nor non-linearly correlated among all of them (uncorrelation factor of SGC vs Q6 vs 

GATA3 vs AML1 = 0.28). But perhaps they are maintaining a non-continuous expression 

dependence, and we cannot discern it with the analysis for continuous data-clouds. We can try to 

find this non-continuous relationship using the sample classes’ definition from one expression 

relationship and colouring the sample clusters in the other expression relationship. 

 

To perform this, two clusters are built from the SGC and Q6 expression relationship by selecting the 

POPs located at the two extremes of its inner-pattern, one with the cellular-stress samples, and the 

other with the tissue-remodelling samples (Figure 10, SGC and Q6 relationship).  

 

Now, the defined classes are applied to the GATA3 and AML1 relationship (painting the samples of 

the two clusters with red and blue colours respectively in Figure 11). As can be observed in Figure 

11, almost all of the samples corresponding to cellular stress (red) appear with an under-expression 

of GATA3 and AML1, indicating that both genes are not over-expressed in cellular stress. However, 

the tissue-remodelling-class samples (blue) appear along the GATA3 and AML1 relationship as 

being over and under-expressed, and indicate that some of these tissue-remodelling conditions are 

affected by the GATA3 and AML1 differentiation ways, while some others are not. This points out 

that the over-expression of GATA3 and AML1 implies an over-expression of SGC and Q6, but not 

the opposite. Note that this “uni-directional” relationship is impossible to detect by pattern-analysis 

methods. 
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Figure 11. Example 1: Effect of the two sample classes obtained from both extremes of Q6 and SGC expression 

relationship, on GATA3 and AML1 expression relationship. In the picture, the GATA3(x axis) and AML1(y axis) 

expression relationship is shown, where the data-cloud shows the expression-matrix experiments and the PCOP, 

connecting the POPs, describes the inner pattern of the expression relationship. The samples under-expressed in 

the Q6 and SGC relationship are coloured in red in the GATA3 and AML1 expression relationship, and the samples 

over-expressed in the Q6 and SGC relationship are coloured in blue. This points out that the under-expression of 

Q6 and SGC  implies an under-expression of GATA3 and AML1, but that an over-expression of Q6 and SGC does 

not always imply an over-expression of  GATA3 and AML1. In this way, cell stress would imply the GATA3 and 

AML1 differentiation, but tissue remodelling would imply GATA3 and AML1 differentiation only in some conditions 

but not in others. The data set is the at_matrix of [Scherf U. et al 2000]. 

 

 

3.3.7.2. Case 2: Defining the sample classes by means of selecting gene-

expression ranges 

 

As seen above, there are some experiments involved in tissue remodelling, but not in the GATA3 

differentiation processes. It would be interesting to study them. For this purpose, those samples 

where GATA3 is over-expressed were clustered (using the graphical interface) to define a new 

sample class (Figure 10, GATA3 and AML1 relationship).  

 

This class of samples is coloured in the SGC and Q6 relationship, as shown in Figure 12. As we can 

see, the differentiation induced by GATA3 is independent of the tissue-remodelling level achieved 

by the SGC and Q6 relationship.  
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Figure 12. Example 2: Effect of the over-expressed samples from GATA3 and AML1 expression relationship on 

SGC and Q6 expression dependence. The figure shows the SGC(x axis) and Q6(y axis) relationship, where the 

data-cloud shows the matrix experiments. The data set is the at_matrix of [Scherf U. et al 2000]. The PCOP, 

connecting the POPs, describes the inner pattern of the expression relationship. The samples of the class 

representing the over-expression of GATA3 and AML1 are coloured. In this way, the four gene expressions are 

related, SGC and Q6 linearly, and GATA3 and AML1 maintaining a complex non-continuous relationship with the 

other two. In this way, we can observe the tissue-remodelling conditions with GATA3 and AML1 differentiation. 

Looking at Figure 10.c it can be seen how these tissue remodelling with GATA3 and AML1 differentiation samples 

coincide with one of the four sample clusters obtained by means of sample clustering (the green sample cluster). 

This fact points out that these samples represent a phenotype that affect most of the expression-matrix genes and 

that we have two tissue-remodelling phenotypes, one with GATA3 and AML1 differentiation and another without 

this. As it will be seen in the next sections the differentiated proliferation will be also stressed, and the 

undifferentiated proliferation will be unstressed. 

 

 

3.3.7.3. Case 3: Defining the sample classes by means of classifying the 

experiments using previous knowledge 
 

Previous knowledge can arise basically from two different origins: a biological/clinical origin or a 

statistical one.  In our case the microarray experiments are grouped by Principal Components. Other 

methods like bi-clustering [Getz G. and Domany E. 2003; Tanay A. et al 2002] or Locally Linear 

Embedding [Roweis ST. and Saul LK. 2000; Roweis ST. and Saul LK. 2000] can be used with 

better accuracy to define the sample classes. In defining the classes by means of the matrix-

experiments similarity or correlation, the genes are similarly expressed under the sample conditions 
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of a class but differently expressed with respect to the others. Thus, we can establish the hypothesis 

that each sample class represents a different phenotype.  

   

The effect of the defined sample classes on the expression relationship among genes of interest can 

now be observed. Colouring these sample classes on the expression relationship among the previous 

four genes (Figure 10, GATA3, RUNX, SGC and Q6 relationship), and remembering the 

observations of the above examples, we can observe four different phenotypes: cell-stress 

phenotypes (yellow and red) and tissue remodelling phenotypes (green and blue), the last tissue-

remodelling phenotypes being divided into the phenotype implicating GATA3 and AML1 

differentiation (green), and the phenotype not implicating this differentiation (blue).  

 
 

3.3.7.4. Marker-gene search based on the arrangement of the sample classes 

along their expression range 
 

With the sample classes obtained in the last example (Figure 10, GATA3, RUNX, SGC and Q6 

relationship) and using the ‘sample-class-distribution’ gene-search tool, it is interesting to search the 

genes which mark the ‘transition’ from the tissue remodelling without GATA3 differentiation 

phenotype (blue), to the tissue remodelling with GATA3 and AML1 differentiation phenotype 

(green). For this purpose, a ‘class-distribution’ gene search like the next one can be performed: the 

blue and green classes over-expressed with respect to the basal value; the rest of the classes under-

expressed with respect to the basal value; and the green-class samples more over-expressed than the 

blue-class samples. 

 

Furthermore, from the supplied genes, we can identify marker genes of specific cell processes or 

pathologies by means of the queries made against the GEO Profiles. Thus, the analysis can be 

focused on the relevant genes for the user's biomedical interest. 

 

In the light of the foregoing, we can conclude: 

 

The presented tools strength resides in: (i) the flexibility of the sample classes’ definition, due to the 

non-linear pattern analysis of gene expressions and the sample clustering along the inner pattern, 

combined with (ii) the high-throughput approach of microarray technology, which, by means of the 

‘class-distribution’ gene search and the gene-correlation table, leads the researcher to expand his/her 

analysis. As a result, our application can help to relate gene expressions when their relationships are 

non-continuous and cannot be found using linear or non-linear analytical methods. 

 

The flexibility of the tool leads to the combination of the three ways to define and redefine the 

sample classes. For example, using the “sample class definition from a non-linear expression 

relationship” procedure, the sample classes can be clustered from two different gene sets apparently 

uncorrelated between them. Therefore, the user could search the genes that are partially related to 

both sets of genes in a specific manner, for instance, being correlated with one gene set in the under-

expression, but with the other set in the over-expression. Or redefine the sample classes defined 

initially using previous knowledge by their effect on gene-expression relationships (performing sub-
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classes from the original ones to study sub-processes in which the genes of interest are involved). In 

the cases of study previously analysed, a gene set linked with stress/proliferation and another gene-

set linked with undifferentiation/differentiation have been related finding several sub-phenotypes. 

These sub-phenotypes will be key in the final analysis of the presented work. 

 

All the findings presented in this section have been included in the works [Cedano J. et al 2007; 

Cedano J. et al 2008]  
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3.4. PCOPGene-Net : The interactive gene network. 
 

 

There are several relevant web applications for microarray analysis, i.e., GEO [Barret T. et al 2005], 

BIOREL [Antonov AV. et al 2006], ArrayExpress [Parkinson H. et al 2005], MicroGen [Burgarella 

S. et al 2005] and GEPAS [Tarraga J. et al 2008]. Currently, most tools try to extract biological 

information from such high-throughput expression data combining information from coexpressed 

genes [Frickey T. and Weiller G. 2007] as well as additional annotations extracted from Gene 

Ontology (ADGO) [Nam D. et al 2006], phylogenetic information (CLANS)[Frickey T. and Lupas 

A. 2004] or pathway data (MAPMAN) [Thimm O. et al 2004].  

 

The large number of microarray genes involves genes belonging to very different processes and 

functions, thus leading to a holistic perspective. Our strategy to achieve this holistic perspective is 

to facilitate a progressive analysis leading the researcher from known marker genes, and 

progressively widen his/her scope analysis towards the holistic perspective. This progressive 

analysis is based on the navigation through the expression data based on: researcher interests, the 

linear, non-linear and non-continuous relationships among gene expressions, and the links among 

genes supplied by external biomedical databases. 
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3.4.1. The detailed view of the gene-expression relationship 

 

In the same interface where the PCOP is shown (see detailed view, Figures 13 and 14), the samples 

can be clustered to define the sample classes clicking on the POPs. Previously-defined sample 

classes can be coloured simultaneously in the same interface to study their influence on gene-

expression relationships and their fluctuations (Figure 14). 

 

 

 

 

 

 
 
Figure 13. The Detailed View (parametric plot) of a expression relationship. In the display shows the dependence 

relationship among the selected genes. The ordinate axis indicates the expression level while the abscissa 

indicates the parameter of the function that describes the relationship. The lines represent the expression level of 

the compared genes for each point of the relationship. Selecting any point of the relationship (the POPs), the 

samples belonging to this relationship stretch are clustered to define the sample classes. In the display, it is shown 

that ENO2 has an under-expression phase and an over-expression phase, with respect to the rest of the analysed 

genes. 
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Figure 14. The Detailed View (geometric plot) of a expression relationship. The expressions of two genes are being 

compared in the display. Each axis represents the expression level of each gene, the data cloud represents the 

values of the expression-matrix experiments [Scherf U. et al 2000] for the compared genes, and the line 

represents the dependence between the gene expressions. The samples belonging to different sample classes 

previously defined are painted with different colours. 

 
 

3.4.2. The gene network, gene clusters, minimum-spanning tree, and graph layout 

 

The global-network view provides: The graph of continuous relationships (for all of the gene-

expression range) among gene expressions and filtered by correlation, the minimum-spanning tree 

that links all matrix genes, the gene clusters with the nodes coloured by the average correlation 

degree among the cluster genes, the genes most correlated with a selected gene, and the correlation 

degree of the most correlated genes of a selected gene with the rest of the genes. 

 

The Java JUNG libraries for analysis and visualization of network data by web [O'Madadhain J. et 

al 2005] have been used to mount the interactive graph of the global vision interface (Figure 15). 

On the graph layout, the genes are placed in the 2D space based on the correlation degree of each 

gene with its neighbours, grouping the genes in clusters and facilitating the showing of the 

minimum-spanning path among any set of any expression-matrix genes selected by the researcher. 

As it was previously described, the minimum-spanning path is necessary for the gene-selection 

process of the zoom-in operation. 



74 

 

 
 
Figure 15. The Global-Network View. Interactive gene network showing the expression-matrix-genes 

interdependence in expression terms. All of the operations of the PCOPGene-Net are launched from this interface. 

 

 

 

3.4.3. Tool in use 

 
The web application is composed of two main graphical interfaces: The global network view 

(Figure 15), and the detailed view of the expression relationship (Figures 13 and 14). The final web 

application provides four basic operations: 

 

1. The gene-network view gives a global vision of the interdependence among the gene expressions 

of the analysed matrix. 

2. At a given moment, the researcher wants to focus his/her research on a concrete process, or on 

apparently unconnected processes, to know what genes are involved and to study their expressions 

dependence in detail. This task is provided by the zoom-in operation. 

3. However, a lot of genes are not continuously correlated for all of their expression ranges. To 

analyse these kinds of non-continuous relationships, the non-continuous analysis is provided. 

4. There are many more links among genes besides the expression relationships. Remote biomedical 

data-bases will be consulted to search these gene links not based on gene expression. 

 

The four operations are illustrated in Figure 16. 
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Figure 16. Basic-analysis procedure using the PCOPGene tools: Zoom-out operation, Zoom-in operation and the 

non-continuous analysis of gene expressions. 

 

 

3.4.4. Biomedical-database remote access 

 
The purpose of accessing remote biomedical databases is to supply complementary information 

beyond expression relationships. The expression analysis provides marker genes in expression 

terms. However, the researcher cannot know much more about these genes at first. By accessing the 

remote databases, the researcher can contextualise their results with new biological and medical 

information; for instance, observing their location in KEGG maps [Wixon J. and Kell D. 2000], 

their proteins' interaction [Alfarano C. et al 2005; Mishra GR. et al 2006; Breitkreutz BJ. et al 

2008], PubMed [Motschall E. and Falck-Ytter Y. 2005] papers that talk about their connection, etc. 

 

Furthermore, there are gene relationships that cannot be found in expression terms. Nevertheless, 

these relationships can be found accessing the remote biomedical databases (for instance, 

interaction at the protein level, activation by means of phosphorylation, proteolytic inactivation, 

etc.). In this way, the researcher can extend his/her analysis to new genes related with the current 

genes of interest, but not exclusively in expression terms. This gene search can also be oriented to 

search the genes linked to a biomedical-database topic of interest ( for instance, a pubmed topic like 

glucocorticoid provides all the matrix genes that appear in papers related with glucocorticoids). This 

new gene search can be combined with the correlation analysis limiting the search to the genes of a 

gene-cluster or the most correlated genes of a query gene. 

 

  

3.4.5. Assigning attributes to the sample classes 
 

Our main objective in the use of the presented tools is the holistic study of cell behaviour taking 

advantage of the high-throughput potential of expression matrices with large sample series. The 

sample class’s definition and the attributes assignment to sample classes are the key points to 
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achieve this. In this way, the phenotypes could be characterised, trying to associate them with a 

concrete class or subclass. 

 

The attributes should give biological meaning to the sample classes, helping to identify and describe 

the cell state in its widest definition, which each class represents. The assignment of attributes 

comes from the four operations previously described. From the non-continuous analysis comes the 

definition of sample classes. From the zoom-in operation and non-continuous analysis comes the 

identification of marker genes of each sample class, and from the access to remote databases comes 

the attributes assigned to each class on the basis of the marker genes of each one. The procedure 

works as follows. 

 
 

3.4.6. Obtaining marker genes from continuous analysis 

 

The dependence relationship among gene expressions can be observed in continuous analysis 

(Figures 13 and 14). Each fluctuation of this dependence can be selected as a new sample class. 

Then, the compared genes become marker genes of the new sample class, giving new attributes to 

it. Note that the compared genes can be marker genes of apparently unconnected processes. This 

fact helps to describe the phenotype associated to the sample classes from a holistic point of view. 

 

 

3.4.7. Obtaining marker genes from non-continuous analysis 

 

The genes supplied by the search will be the marker genes for the sample classes used as search 

parameters. These marker genes will give new attributes to the sample classes. 

 
 

3.4.8. Defining sample subclasses and obtaining more marker genes 

 

When a subclass is defined from a sample class selecting only a part of the class samples, the 

subclass has the attributes of the original sample class plus the new and differentiated attributes. It 

is performed when a previously defined sample class is observed in a new expression relationship 

and the researcher wishes to define a new sample class from this relationship, while considering its 

intersection with the original sample classes (Figure 14). Thus, the genes compared in the new 

expression relationship will be marker genes of the new sample subclass but not of the original one. 

 

 

3.4.9.  Obtaining attributes by accessing remote databases 

 

The attributes can come from two kinds of databases: Those about gene-expression and those not 

about gene-expression. 

 



77 

 

When searching a class marker gene in the GEO microarray datasets [Barrett T. et al 2005], the 

researcher obtains the microarrays for which this gene is also a marker gene. The attributes of these 

microarray sample series will be new attributes of the sample class. 

 

Searching a class gene-marker in biomedical databases [Barrett T. et al 2005; Wixon J. and Kell D. 

2000; Alfarano C. et al 2005; Mishra GR. et al 2006; Breitkreutz BJ. et al 2008; Motschall E. and 

Falck-Ytter Y. 2005; The Gene Ontology project 2008; Hamosh A. et al 2005; Wheeler DL. et al 

2008; Wheeler DL. 2007], the researcher will obtain attributes that will give biological and medical 

significance to sample classes and help describe their phenotype. Notice that in this way the 

information will not be supplied for each marker gene separately but rather for all of the marker 

genes as a whole, defining the cell state of the sample class. 

 

All of the operations are highly flexible and complementary using the results of one as an input of 

the next one, thus making the progressive analysis possible. The purpose of this is to obtain the 

sample classes and attributes that characterise these classes, and in a roundabout way, characterise 

the phenotype that these sample classes represent. 

 

All the findings presented in this section have been included in the work [Huerta M. et al 2009]. 
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3.5. The biological significance of the different expression-
relationship curve types 

 

 

Once the PCOP is calculated for the expression relationships between all the gene pairs, the non-

linear expression relationships are detected and classified by curve type. The non-linearity and the 

type of curve of the relationship is calculated from the relative position of the POPs. Specifically 

the POPs that constitute the curvature points of the PCOP. Our system filters the expression 

relationships of each typology by its correlation degree. There are two correlation thresholds to 

filter the expression relationships, one which is more restrictive (demanding higher correlation) and 

the other one less restrictive. Working with the less restrictive threshold, the variations of the basic 

typologies are considered as the same typology (because being less correlated they have a higher 

variance). The correlation threshold is sensitive to the number of expression-matrix genes. A big 

number of genes imply a more restrictive threshold. The main reason is: The more genes implicated 

in the analysis, the more expression relationships with high correlation can be detected. 

 

Next, the basic types of non-linear expression dependences are explained and their biological 

significance is illustrated with real examples. Each one of the shown topologies has the positive and 

negative variation. In most of the cases, both are explained. There are other typologies of non-linear 

expression relationships but basically they are variations of the already shown typologies.  

 

y = e
x 

typology 

 

This is the expression-relationship typology followed by enhancer and trigger genes. One of the 

genes must be over-expressed to make it possible for the other gene to over-express. 

 

y = e
-x

 typology 

 

The negative version of the logarithmic curve type implies an expression relationship which 

correlates two mutual excluding genes. One of the genes must be under-expressed to make it 

possible for the other gene to over-express.  
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Figure 17. FERMT2(x axis) and DUSP6(y axis) expression relationship of the type y = e
-x

. The different sample 

conditions of the expression matrix (the sample series) constitute the data cloud. The FERMT2 expression is linked 

to tumour proliferation, whereas DUSP6 stops tumour proliferation. 

 
 

The DUSP6 and FERMT2 genes maintain this type of relationship between their expressions 

(Figure 17). The FERMT2 expression is linked to tumour proliferation, whereas DUSP6 stops the 

tumour proliferation. Thus, this non-linear relationship divides the sample space in two phenotypes, 

the cell-stress phenotype (which stops the tumour proliferation) and the tumour proliferation 

phenotype (which stops the cell-stress). 

 

The HLA genes (HLA-A, HLA-B, HLA-H, plus RAB14) constitute a cluster of coexpressed genes. 

Furthermore, the genes of this cluster maintain expression relationships of type y = e
x
 and y = e

-x
 

with other gene clusters. Thus, the HLA cluster maintains a non-linear expression dependence of 

activation or deactivation with respect to other clusters of coexpressed genes. The HLA genes mark 

the cell making the proliferation possible, the inflammation of the tissue and the activation of the 

immune system. Then, the HLA-genes activity facilitates the expression of the genes involved in 

inflammatory processes ( gene clusters linked by a y = e
x
 relationship with the HLA cluster) and 

prevents the expression of genes involved in antagonistic processes (gene clusters linked by a y = e
-

x
 relationship with respect the HLA cluster).  

 

For example, the HLA-B and ZYX genes maintain a relationship of type y = e
x
 between their 

expressions. The HLA genes are indicative of cell maturation marking the cells to be recognised by 

the immune system. ZYX participates in the tissue restructuring facilitating the cell adhesion during 

the tumour proliferation. Then, looking at their relationship in the figure 18, we can observe that it 

is necessary that the HLA genes mark the cell before the proliferation. As a result, these cell marks 

make the tumour destruction by the immune system difficult. Once the cell is marked and the 

proliferation starts, the ZYX expression level defines the level of cell adhesion and tissue 

restructuring of the tumour. 
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Figure 18. HLA-B(x axis) and ZYX(y axis) expression relationship of the type y = e
x
. The different sample conditions 

of the expression matrix (the sample series) constitute the data cloud. HLA-B marks the cells to be recognised by 

the immune system. The ZYX participates in the tissue restructuring facilitating the cell adhesion. 

 
 

y = -x
2 

typology 

 

When this kind of expression relationship is maintained between two genes, the first gene over-

expression involves a unique phenotype but its under-expression involves two different phenotypes, 

one for the second gene under-expressed and the other for the second gene over-expressed. This 

kind of relationship can be observed, for instance, when the expression of a gene is regulated by 

two hetero co-activators, and these co-activators are inversely coexpressed (the absence of any co-

activator implies the under-expression of the gene). This type of expression relationship is useful to 

study contradictions in expression behaviour. 

 

CCNE1 and TP53 maintain this kind of relationship in their expressions. The CCNE1 expression 

implies a high proliferation and TP53 expression implies a high control of mutations. As we have 

seen before and in the figure 19, at low levels of CCNE1 there are low levels of TP53, because a 

low proliferation does not need a high error control. When the CCNE1-expression increases, the 

mutations control needs to be increased too, but when the proliferation grows too much, like in 

tumour proliferation, the TP53-expression decreases again and mutation control falls. 

 

 



82 

 

 
 

Figure 19. TP53(x axis) and CCNE1(y axis) expression relationship of the type y = -x
2
. The different sample 

conditions of the microarray (the sample series) constitute the data cloud. The CCNE1 expression implies a high 

proliferation and TP53 expression implies a high control of mutations. 

 

MAKP1/DUSP1 and FKBP5 maintain this y=- x
2 

typology in their expression relationship too 

(Figure 20). MAKP1/DUSP1 inhibit S10, facilitating the metilation and inhibiting "the exploration" 

(a high control of gene expression). FKBP5 has a key role in the histone liberation. The histone 

liberation is connected to function loss and "exploratory phases" of the tumourgenesis (gene 

expression out of control). Looking at the relationship between the two genes, we can see that at 

low levels of DUSP1, there are medium levels of FKBP5, being the exploratory phase low too. At 

high levels of DUSP1, the expression levels of FKBP5 are very low too, being the exploratory 

phase totally inhibited. Therefore, exploratory phase is really done then when FKBP5 raise its 

maximum expression, being DUSP1 at basal values at this point. 

 

 

 
Figure 20. DUSP1(x axis) and FKBP5(y axis) expression relationship of the type y = -x

2
. The different sample 

conditions of the expression matrix (the sample series) constitute the data cloud. MAKP1/DUSP1 facilitates the 

metilation. FKBP5 facilitates the histone liberation. 
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Figure 21. EGFR(x axis) and FKBP5(y axis) expression relationship. It shows a y = -x

2
 curve type. The different 

sample conditions of the expression matrix (the sample series) constitute the data cloud. EGFR is linked to tumour 

proliferation. FKBP5 is linked to tumour "exploratory phases". 

 

EGFR maintains with FKBP5 (Figure 21) the same curve type in their relationship than with 

MAKP1/DUSP1. As EGFR is linked with tumour proliferation, this relationship can help us to 

understand the two FKBP5 under-expressed phenotypes. Looking at the EGFR and FKBP5 

relationship, we can distinguish two phenotypes for low levels of FKBP5: One with high 

proliferation and other with low proliferation. It implies that there is no gene exploration in the 

proliferation phenotype and there is exploration only in part of the cell-stress phenotype, possibly in 

the more acute stress phases because FKBP5 over-expression is a marker of high cell-stress level.  

 

These contradictions are present in the bibliography of FKBP5, for this reason, the detection of this 

curve type is so interesting when trying to understand these paradoxes. This curve type allows us to 

differentiate different phenotypes were the gene is equally expressed. FKBP5 is expressed during 

the tumour-growth phases in cancers like colon cancer, but under-expressed during the tumour 

growth of other cancers like colorectal cancer. Thus, if colorectal cancers achieve the "exploratory 

phase" during a growth phase, it stops the proliferation. But if colon cancers achieve the exploratory 

phase, it promotes the proliferation, maybe no immediately but near in the future. As shown later, 

the possible reason of this dual behaviour is that colon cancer combines the cell stress and its 

"exploratory phase" with the tumour proliferation, in the same tissue, whereas colorectal cancers 

need to separate these two phases because the rectus is a structurally more complex tissue. As we 

will see later, there are two clearly differentiated tumour-proliferation phenotypes. 

  

y= x
2 

typology 

 

In the inverse version of the previous typology, it shows the two phenotypes in the first gene over-

expression instead of its under-expression. Now the gene could be regulated by two hetero co-

inhibitors (instead of two co-activators), which are inversely coexpressed. This type of expression 

relationship is also useful to clarify contradictions in expression behaviour. 
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y = x
3 

typology 

 

This is the typology of the expression-relationship between two genes basically coexpressed but 

with a non-linear coexpression. The fluctuations in the expression dependence indicate the pass 

from one phenotype to another. It can be more clearly observed when sample clusters obtained by 

means of clustering methods are coloured over the relationships (this procedure will be described in 

detail in the next sections). This curve type could also imply a switch expression dependence, but in 

contrast to the y = e
x
 relationship, now the gene starts its over-expression when the other gene 

achieves a certain level of expression but not its over-expression. The figure 13 illustrates this type 

of relationship between the gene ENO2 and the genes MAP1B, GJB1, ikBe, and RAB31. As was 

commented before, the fluctuation points out the phenotype change. 

 

y
2 

+ x
2 
=1 typology 

 

In this case, the expression relationship covers the four combinations of the expression increase and 

decrease of both genes. This typology implies a double relationship, usually of type y = x
2 

and y = -

x
2 

or y = e
x
 and y = e

-x
. Detecting this curve type we can study these dual behaviours of the gene 

relationships (and solve paradoxes if this duality is unknown). 

 

CITED2 and NEDD4L maintain this kind of relationship between their expressions (Figure 22). 

CITED2 expression indicates a proliferation increase. NEDD4L is related with ion-channels 

inhibition turning the cell refractory to activity signals. Accordingly, this relationship implies: First 

a phenotype with low proliferation and ion channels active and second, two different ways for 

proliferation increase: One with active ion channels (and y = -x
2 

typology) and the other with 

inhibited ion channels (and y = x
2 

typology). 

 
 

 

 
Figure 22. CITED2(x axis) and NEDD4L(y axis) expression relationship. It shows a y

2
 + x

2
 =1 curve type.  The 

different sample conditions of the expression matrix (the sample series) constitute the data cloud. The CITED2 

expression indicates a proliferation increase. NEDD4L is related with turning the cell refractory to activity signals. 
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As we can see, this expression-dependence type helps us to well discriminate phenotypes because 

the relationship covers all expression combinations between the two genes. In practice, each 

relationship of this typology has its own interpretation.  

 

All the findings presented in this section have been included in the work [Huerta M. et al 2014]. 

 

There are other kinds of expression-relationship typologies detectable by the system, but they are in 

most cases variations of the mentioned ones. The web-tool to study the curve types is available at: 

http://platypus.uab.es/GCinC. The aforementioned expression data are available for the shared user. 

You can create your own user and make the shared-user data available for your user. All the 

previously-analysed expression relationships are available in our server for the Shared User in the 

directory of the at_matrix expression matrix named "Examples of different non-linear expression-

relationship typologies". 

 

 

  

http://platypus.uab.es/GCinC
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3.6. Non-linear expression relationships between sets of coexpressed 
genes 

 

 

Organisms have evolved to vary internal and external cell environments by carefully controlling the 

abundance and activity of these proteins to suit their conditions. To simplify this task, genes whose 

products function together are often under common regulatory control. This regulatory control is 

such that these genes are co-ordinately expressed under the appropriate conditions. The 

experimental observation that a set of genes is coexpressed frequently implies that the genes share a 

biological function and are under common regulatory control [Eisen MB. et al 1998]. These 

regulators that govern the expression of sets of coexpressed genes that carry out the appropriate cell 

functions are also regulated and synchronized among them. Nevertheless, the regulation and 

synchronization among the regulatory mechanisms is much more complex. The regulatory 

mechanisms are not directly regulated by the other regulatory mechanisms, but by the coexpressed 

genes product of their activation cascade. In this way, a regulatory mechanism indirectly regulates a 

different regulatory mechanism by means its activation cascade. These coexpressed genes switch 

from the inhibition to the allowance of the regulatory mechanism depending on whether they reach 

or lose certain expression levels. Furthermore, these regulatory mechanisms are multiregulated. The 

final activation or deactivation of a regulatory process will depend on internal and external factors 

to the cell, not only on the expression level of a set of coexpressed genes. For this reason, to study 

the synchronization and regulation among the regulatory mechanisms based on gene expression is 

really difficult. Furthermore, many proteins have multiple roles in the cell, and act with distinct sets 

of cooperating proteins to fulfil each role. The genes that synthesise these proteins are therefore 

coexpressed with different sets of genes, each one governed by a distinct regulatory mechanism. 

The experimental conditions will determine the regulatory mechanism activated in each condition, 

and thus, the set of coexpressed genes that will be activated. An increased number of different 

experimental conditions for the same genes will provide: less genes in each set of coexpressed 

genes, more different sets, and higher alternation of the activation and deactivation of the 

coexpressed-genes. But irrespective of the conditions, how can we study the effect of their 

activation and deactivation on the rest of the sets of coexpressed genes? 

 

Microarray technology, as well as the new techniques of Next Generation Sequencing (NGS), 

allows us to obtain large size gene-expression matrices [Barret T. et al 2013]. A usual analysis of 

these data is the use of clustering methods to obtain the sets of coexpressed genes. It is of vital 

importance to detect these clusters of coexpressed genes, among other reasons because as 

mentioned before, these clusters of coexpressed genes carry out the different cellular functions 

[Eisen MB. et al 1998]. 

 

There are powerful coexpression-analysis tools for this purpose [Van Dam S. et al 2012; Stuart JM. 

et al 2003]. As expression arrays allow simultaneous analyses of thousands of genes, we can study 

genes responsible for very diverse cellular functions. Therefore, it makes it easier for the researcher 

to understand the cellular phenotype in the performed experiments from a holistic point of view. 

That is, involving the largest number of cellular processes possible. Without this holistic point of 
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view, it is very difficult to deal with the multiple functions, phenotypes or states of the living 

beings, in which a large amount of genes are collaborating. This holistic point of view can be useful 

to characterize phenotypes previously unknown, for instance, the description of the “fish fever” in 

zebrafish [Boltana S. et al 2013]. Nevertheless, even though clustering methods allow us to obtain 

coexpressed genes and thus differentiate diverse cellular processes, clustering methods explain very 

little of the expression relationships between the different sets of coexpressed genes. As a 

consequence, the researcher is constrained to study each one of the coexpressed-gene sets 

individually, losing much of the potential that technologies for obtaining gene-expression matrices 

offer.  

 

Current statistical technologies allow us to study inclusion relationships between clusters of 

coexpressed genes. That is, to study which clusters of coexpressed genes would be more correlated 

and which others would be more uncorrelated [Thalamuthu A. et al 2016]. But they do not go much 

beyond that. The main obstacle to the tools that attempt to study the regulation of coexpressed 

genes is that the low number of copies of the regulatory genes impedes the correct capture of their 

expression by technologies obtaining gene expression. Furthermore, the coexpression of genes is 

strongly linked to the chromatin structure, especially in multicellular organisms. This chromatin 

structure depends on a complex network of cellular signalling and post-transcriptional 

modifications of proteins (phosphorylation, acetylation, ubiquitination,...). So, even having detected 

the regulatory genes, we would have an incomplete puzzle. All of this makes it enormously difficult 

for the tools to be able to obtain information about the regulation among the sets of coexpressed 

genes and the processes they carry out. So, without these regulatory elements, how can we describe 

a regulatory network among the processes performed by the sets of coexpressed genes? Well then, it 

could be based on the dependences between the gene expressions product of this complex 

regulation. Furthermore, these final genes present expression ranges wide enough so that the 

fluctuations of their expression dependences can be analysed. 

 

With the developed tools, we expect to detect the complex expression dependences between the 

different sets of coexpressed genes, synthesise them and make them easier for the researcher to 

interpret. With this purpose we will provide the researcher with networks that show the expression 

dependences between all the coexpressed-gene sets of the network. In this way, the researcher will 

be able to study the alternation or synchronism among all these sets of coexpressed genes. 

Our methodology is based upon the following three principles: First, the interdependence between 

sets of coexpressed genes cannot be described by linear expression relationships. Second, if two 

genes maintain an expression relationship with a certain type of curve, the genes coexpressed with 

these two genes maintain expression relationships of the same type between them. Third, the curve 

type of the inter-group expression relationships will describe the dependence of activation and 

deactivation between these sets of coexpressed genes. Thus, the strategy proposed here is focused 

on the detection of non-linear expression relationships between sets of coexpressed genes. 

 

Activation and deactivation dependences between sets of coexpressed genes can be very complex. 

Some of the most common ones are: those in which a set of coexpressed genes acts as a trigger of 

another set of coexpressed genes; the case of antagonist processes, where the coexpressed-gene set 

that carries out each process needs to be totally deactivated so the other set can express; or  sets of 

coexpressed genes that activate or deactivate another set of coexpressed genes when losing their 
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basal values of expression. In any case, the system does not anticipate any type of expression 

relationship. Since the system is able to recognize curves of very different shapes, it can process 

unknown activation and deactivation relationships as reliably as when processing the best known 

relationships. 

 

The ultimate goal of our approach is that researchers are able to know the networks of processes 

hidden in their experimental data, as well as the activation and deactivation relationships between 

all of these processes. Furthermore, if the researcher is particularly interested in specific genes, the 

system will allow him/her to study the way the expression of a gene activates and deactivates 

different processes. 

 

 

3.6.1. Genes coexpressed with a pair of genes with a non linear expression 

relationship between them 

 

All the non-linear expression relationships are detected from the expression array. These non-linear 

expression relationships are classified by the type of curve. The curvature points of the PCOP are 

used to identify and classify the non-linear expression relationships. Curvature points are those 

POPs in the PCOP in which a change in slope occurs. The detection of curvature points in 

expression relationships identifies the non-linear expression relationships. The type of curve is 

described by the function of the curve: y = e
x
, y = -e

x
, y = -e

-x
, y = x

2
, y = -x

2
, y = x

3
, 1 = x

2
+y

2
,... 

The genes coexpressed with each gene are also detected (none curvature points are detected in the 

PCOP of two coexpressed genes). This will allow us to study the non-linear expression relationships 

between a gene of interest and different sets of coexpressed genes. 

 

The correlation degree provided by the PCOP calculation is what guarantees us that the linear 

expression relationships (coexpressed genes) as well as the non-linear expression relationships 

(inter-group expression relationships) are not a product of chance and have a biological meaning. 

For this reason, we require a high correlation degree for the linear expression relationships as well 

as for the non-linear expression relationships. We are also restrictive in the classification of the 

expression relationships as linear expression relationships, and the consequent consideration of two 

genes as coexpressed genes. Even a small curvature in the relationship of two coexpressed genes 

can cause a diversity in the typology of the expression relationships of these two genes with the 

genes of another set of coexpressed genes. More concretely, being A and B two coexpressed genes 

whose expression relationship has a small curvature, and being C a set of coexpressed genes that 

maintain non-linear expression relationships with A and B. The expression relationships of gene A 

with set C may describe a different typology with respect to the expression relationships of gene B 

with set C. 

 

 

3.6.2. Cliques of non-linear expression relationships between genes 

 

A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset 

are connected by an edge. If we consider a graph of all the non-linear expression relationships with 
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a high correlation, we obtain its cliques. The genes of a clique must be at least three and they must 

maintain non-linear expression relationships between all the genes of the clique. These cliques will 

not yet relate sets of coexpressed genes, but rather, genes individually. Nevertheless, as the cliques 

are relating several genes in a network of non-linear expression relationships, the cliques will be the 

seed to relate the sets of coexpressed genes between all of them.  

 

 

3.6.3. Pairs of isomorphic and linear Cliques of non linear expression relationships 

 

Once the cliques are detected, they are grouped in clique pairs by relating genes that belong to the 

same set of coexpressed genes. 

 

The cliques that will form each clique pair will meet two conditions:  

 

 Each one of the genes of a clique will be coexpressed with a different gene of the other 

clique, forming pairs of coexpressed genes.  

 The type of curve that relates each two pairs of coexpressed genes will be the same in both 

cliques of the clique pair. 

 

This provides us with pairs of cliques. Each gene of a clique will be coexpressed with a different 

gene of the other clique forming pairs of coexpressed genes. Then, the two expression relationships 

that relate the two coexpressed genes with different pairs of coexpressed genes will maintain the 

same type of curve for the two genes of the pair. 

 

 

3.6.4. Cliques of isomorphic and linear cliques of non-linear expression 

relationships between genes 

 

Previously, we obtained the non-linear expression relationships between pairs of coexpressed genes. 

Now, we obtain sets of coexpressed genes that maintain non-linear expression relationships between 

all of the sets by means of grouping these pairs of coexpressed genes non-linearly related, into sets.  

If we consider a graph where: the vertices are the cliques of non-linear relationships between genes, 

and the edges link linear isomorphic cliques, now we will calculate the cliques of this new graph 

obtaining the cliques of cliques. Thereby we obtain the skeleton of the sets of coexpressed genes 

and the non-linear expression relationships between these skeletons. The different networks among 

sets of coexpressed genes are constituted from these relationships between the skeletons of the sets 

of coexpressed genes. 

 

The genes of the skeleton of a set of coexpressed genes are those genes of the set that maintain a 

highly-correlated non-linear expression relationship with the skeleton of the other sets of the 

network. The genes of the set of coexpressed genes that are not part of the skeleton will be 

coexpressed with the genes of the skeleton. These genes coexpressed with the skeleton will 

maintain the same type of non-linear expression relationship with the other sets of coexpressed 
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genes as the genes of the skeleton. In this way, the genes of the gene set are coexpressed among 

them and their expression relationships with the genes of another gene set maintain the same curve 

type. Deformations of the y=x relationship between the genes of the gene set will produce a 

distortion of the expected curve between gene sets. A higher variance in the coexpression with 

respect to the skeleton genes will also imply a higher variability in the expected type of curve. 

 

The higher the number of genes of the skeleton, the more representative the process carried out by 

the coexpressed-gene set. Thanks to the second condition of the linear-isomorphic-cliques definition 

we can make sure that the relationships between the genes of the skeleton of different sets of 

coexpressed genes maintain the same type of curve for all the genes of the skeleton. As 

aforementioned, it can be extended to all the genes of the gene set.  

 

The correlation degree needed to consider an expression relationship coexpressed enough will 

depend on the number of genes of the expression array.  It is useful for small expression matrices, 

because non-linear expression relationships between sets of coexpressed genes can be detected, 

although these expression relationships have high entropy. The aim is to always detect enough non-

linear expression relationships to be able to find the skeletons that relate the sets of coexpressed 

genes. 

 

The threshold to consider an expression relationship as linear or non-linear will also depend on the 

number of genes, (this threshold) being more restrictive for the linear relationships in matrices with 

less genes. Thus, large sets of coexpressed genes with very sharp curves between them will be 

formed for large expression matrices, whereas smaller sets of coexpressed genes, as well as more 

subtle non-linear expression relationships between the sets, will be considered for small matrices. 

 

The expression relationships have been filtered by the uncorrelation factor provided by the PCOP 

calculation to be considered correlated enough [Delicado P. and Huerta M. 2003]. The threshold 

formula is:  

 

     
    

         
  

         

     
 
  

 

 

The threshold formula for the curvature to consider whether the relationships are linear or non-

linear is:  

 

     

    
      

    
     

           
  

 

However, a formula that depends only on the number of genes is not enough to guarantee the 

quality of the analysis extracted from the data. Because the data come from very different 

experiments of different nature. The diverse nature of the experiments is a qualitative variable that 

cannot be quantified with a formula. For this reason the correlation threshold calculation uses an on-

line correction: From the expression relationships already analysed and the number of relationships 
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pending to be analysed, the system makes an estimation of the number of relationships that would 

finally pass the threshold. From this estimation, the system automatically modifies the threshold.  

 

A higher number of genes in the expression array increase the number of coexpressed genes and 

non-linear expression relationships, which facilitates finding skeletons. But in any case, the number 

of expression relationships with high correlation, as well as the number of linear expression 

relationships with respect to the non-linear ones, will always depend on the nature of the 

experiments of the sample series. 

 

 

3.6.5. Tool’s output interfaces 

 

The system allows us to study sets of coexpressed genes that maintain non-linear expression 

relationships among them, as well as to study the non-linear expression relationships that a concrete 

gene of interest maintains with different sets of coexpressed genes. There are 4573 non-linear 

expression relationships that have been found, plus 20269 pairs of coexpressed genes (all highly 

correlated) from the expression matrix of 1416 genes used in the examples (at_matrix). 

 

 

3.6.5.1. Studying the complex expression relationships between a target gene 

and sets of coexpressed genes 
 

The study of the expression relationships between sets of coexpressed genes can start from the 

researcher’s gene of interest. All the non-linear expression relationships that a gene of interest 

maintains with different sets of coexpressed genes will be shown. These relationships will be shown 

classified by curve type, because each curve type implies a different activation/deactivation 

relationship. Only the non-linear expression relationships that maintain a sufficient correlation 

degree will be shown. 

 

We will study the activation and deactivation relationship between our gene of interest and different 

sets of coexpressed genes starting from these high-correlated non-linear expression relationships. 

Two lists of coexpressed genes will be shown in a new view for each highly-correlated non-linear 

expression relationship of the gene of interest (Figure 23) when clicking on them. The first list will 

show the genes coexpressed with the gene of interest. The second one will show the genes 

coexpressed with the gene that maintains the highly-correlated expression relationship with the gene 

of interest. In this way, the user can study the expression relationships between the two sets of 

coexpressed genes. The first list of coexpressed genes is ordered by their correlation degree with the 

gene of interest, the second list is ordered by their correlation degree with respect to the gene non-

linearly related to the gene of interest. The user can select genes from both lists of coexpressed 

genes to study their expression relationship in detail using the expression-relationship detailed view 

[Cedano J. et al 2008; Huerta M. et al 2009] (Figure 24). 
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An icon shows the type of non-linear relationship between the two main genes and, by extension, 

between the two sets of coexpressed genes. The curve type is very important, since it determines the 

role of the genes in each expression dependence.  

 

 

 
 

Figure 23. Non-linear Expression relationships between coexpressed gene sets. This view shows at the top, a non-

linear expression relationship where a researcher’s gene of interest participates. The gene of interest is displayed 

on the top of the view on the left side. The column on the left side displays the genes coexpressed with the gene of 

interest, while the column on the right displays a set of coexpressed genes that maintain a non-linear expression 

relationship with the gene of interest.  The coexpressed genes are ordered by their correlation degree with their 

respective gene at the top (the f value obtained by the PCOP calculation). The icon shows the curve type of the 

non-linear expression relationship. Each curve type implies different expression dependence: mutual exclusion, 

trigger, double trigger... All the expression relationships relating genes from the two sets of coexpressed genes 

should be of the type shown by the icon. By selecting genes from the two sets, their expression relationship can be 

studied in detail in a new interface (Figure 24).  

 

 

3.6.5.2. The curve type indicates the type of activation and deactivation 

relationship between sets of coexpressed genes  
 

The system obtains the inner pattern of the expression relationship for any type of curve and 

classifies it. The only requirement is that the data cloud must be continuous. Remembering the 

meaning of each curve type, y= e
x
 relationship will provide a switch activation relationship between 

a set of coexpressed genes and the other set. In other words, the first set of coexpressed genes must 

over-express, so that the second set starts to express. A  y= e
-x

  relationship indicates a mutual-

exclusion dependence. That is, one of the two sets of genes must be deactivated so that the other set 

of coexpressed genes expresses. Note that these types of relationships are different from the positive 

and inverse coexpression relationships. This difference is precisely what allows us to detect 

different sets of coexpressed genes as well as the complex expression dependences between them.  
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A y=x
2
 relationship, would indicate a deactivation of the second set of coexpressed genes by the 

over-expression as well as the under-expression of the first set. A  y=-x
2
 relationship would indicate 

an activation of the second set of genes, for the over-expression as well as the under-expression of 

the first set. Whereas in the relationships of type |e
x
|, the over-expression of the set of coexpressed 

genes affects the other set. In the relationships of type |x
2
|, the over-expression as well as the under-

expression of the genes has an inhibitory or activatory effect on the other set of coexpressed genes.  

 

Other relationships, such as those of type y = x
3
 or 1=x

2
+y

2
, will indicate other complex expression 

dependences between different sets of coexpressed genes.  

 

As pointed out in the introduction, one of the principles of our analysis is: The type of curve 

between two genes is also maintained between the genes coexpressed with each gene of the pair.  

Let’s see an example: HLA genes are indicative of cell maturation marking the cell so it is 

recognised by the immune system [Parkes M. et al 2013]. HLA genes mark the cell making possible 

the inflammation of the tissue and the activation of the immune system. GRAMD1A is a not well 

known membrane receptor that inhibits programmed cell death and it is linked to disease resistance 

[Parkes M. et al 2013]. HLA-F and GRAMD1A maintain a non-linear expression relationship of 

type y=e
x
 (Figure 24.a). This points out that, possibly, the function associated with GRAMD1A can 

only be performed once the cell is marked by HLA genes.  HLA-F and HLA-A are coexpressed 

genes (Figure 24.b), and GRAMD1A is coexpressed with NREP (Figure 24.c). Thus, HLA-A and 

NREP will also maintain a non-linear expression relationship of type y=e
x
 (Figure 24.d). C5orf13 

(NREP) expression is linked to hypertrophic scar [Tan J. et al 2010]. This points out that 

hypertrophic scar, and the function associated with NREP, can only be performed once the cell is 

marked by HLA genes [McCarty SM. et al 2010]. Even though the relationship of these genes with 

hypertrophic scar was already known [Tan J. et al 2010; McCarty SM. et al 2010], there was no 

knowledge about how it was regulated.  
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24.a)               24.b) 

 

 

24.c)               24.d) 

 

 

 

Figure 24. Two sets of coexpressed genes will maintain non-linear relationships of the same type between the two 

sets. Four expression relationships are shown. The sample conditions of the expression matrix (the sample series) 

constitute the data cloud. The PCOP describes the expression-relationship inner pattern. The second and third 

plots (b,c) show coexpressed genes. HLA-A and HLA-F are coexpressed genes (b), and GRAMD1A and 

NREP(C5orf13) are also coexpressed genes(c). The first and last plots (a,d) show non-linear expression 

relationships of y=e
x
 type, a switch-activation relationship. Since HLA-F and GRAMD1A maintain a non-linear 

expression relationship of type y=e
x 

(a), and HLA-F is coexpressed with HLA-A (b), and GRAMD1A is coexpressed 

with NREP (c), therefore HLA-A and NREP (C5orf13) maintain a non-linear expression relationship of the same 

type (d). HLA-A and GRAMD1A would also maintain a non-linear relationship of type y=e
x
, and HLA-F and NREP 

would maintain a non-linear relationship of the same type. This is the key-point of our approach: all the non-linear 

expression relationships that relate genes from two sets of coexpressed genes will maintain the same type of 

curve. 
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Hypertrophic scarring (HS) is a result of increased fibrogenesis, which is thought to be caused by an 

exaggerated inflammatory response [Lawrence JW. et al 2012; Van Loey NE. and Van Son MJ. 

2003; Liu S. et al 2014].There is a clear association between specific HLA alleles and cutaneous 

fibrosis. Specific examples of cutaneous fibrosis include hypertrophic scars (HS) among others 

[McCarty SM. et al 2010]. 

 

The relation of HLA and hypertrophic scar is already documented, but using our tool, we found that 

this relation is mediated by NREP, because HLA genes must be over-expressed to activate NREP (a 

gene directly linked to HS [Tan J. et al 2010]). 

 

In this way, it is valuable that even though the technologies to obtain gene-expression arrays do not 

capture regulatory genes because of the low variability in their gene expression, these technologies 

do allow studying the regulation between processes through the genes that perform these processes 

(coexpressed genes that result from the activation cascade started by regulatory genes). This is 

because these final genes do maintain wide enough expression ranges, which allows our high-

throughput tools to analyse the expression dependence between the sets of coexpressed genes. 

 
 

 

3.6.5.3. Studying the complex expression relationships between sets of 

coexpressed genes 
 

The different networks of non-linear expression relationships between sets of coexpressed genes are 

classified by the number of sets related and the curve types of the relationships between the sets. 

The number of sets related and the curve types between the sets will define the network type. Once 

a network type is selected in the main view, the networks that maintain this pattern in their inter-sets 

expression relationships are displayed. 

 

In the view that shows the networks of a network type (Figure 25), the genes that belong to the 

skeleton of each set of coexpressed genes are displayed in a different column. That is, each column 

displays the genes of the skeleton of a coexpressed-gene set related by the network. By selecting 

genes from the different skeletons, the expression relationships among them can be studied in detail 

(Figure 24). Starting from the genes of the skeleton, the expression relationships between the rest of 

coexpressed genes of the different sets can also be studied. By selecting one gene from two different 

skeletons (columns), the genes coexpressed with each one of the two genes will be shown (in the 

way shown in Figure 23). The genes of the two sets should maintain the same type of non-linear 

expression relationship between them. These listed genes can also be selected to study their non-

linear expression relationships in detail (Figure 24). 
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Figure 25. This view shows networks of concrete types of non-linear expression relationships between sets of 

coexpressed genes. The icons at the top show the curve-type pattern of the networks listed. The networks will 

always form a complete graph. The pink line separates the networks found for the curve-type pattern. The columns 

contain the genes of the skeleton of each set of coexpressed genes. The genes of the different skeletons can be 

selected to study their expression relationship in detail [Cedano J. et al 2008; Huerta M. et al 2009] (Figure 24). 

The genes of the different skeletons can be selected to study the expression relationships between the rest of 

coexpressed genes of the two sets, opening the view of Figure 23 for the two skeleton genes. 

 

 

In this way, it can be studied whether the genes coexpressed with the skeleton maintain the type of 

curve, or whether it is distorted or lost. In the new window, the genes coexpressed with the gene of 

each skeleton appear ordered by their correlation degree with the gene of the skeleton. The higher 

correlation between a coexpressed gene and the gene of its skeleton, the lower variations of the 

curve types between this gene and the genes of the other set with respect to the curve type between 

the genes of both skeletons. 

 

In Figure 24 we can see the key-point of our approach: all the non-linear expression relationships 

that relate genes from two different sets of coexpressed genes will describe the same type of curve. 

Since each gene set carries out a different cellular process, using our tool we can describe the 

relationships between these independent cellular processes. 

 

In summary, to respond to diverse and frequently changing conditions, cells must precisely mediate 

the synthesis and function of the proteins in the cell. This is controlled in part by the overall 

genomic expression program that results from the combined action of different regulatory factors, 

each of which responds to specific extra- and intra-cellular signals. These regulators govern the 

expression of sets of coexpressed genes that perform the appropriate cell functions. The variations 

in the expression of these coexpressed genes can be captured by high-throughput technologies to 

obtain gene-expression arrays. In this way, the researcher is able to know which processes are 

carried out in the conditions he/she wishes to study, by knowing the different genes coexpressed in 
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them. But, what if the researcher wishes to know which relations have those different processes 

between them? How do we know how these processes are activating or deactivating and activating 

again among them? If the researcher suspects that certain target genes can be a therapeutic target, 

how can he/she know the effect of their expression on the rest of the processes, which this target 

gene does not belong, since it expresses with a different set of coexpressed genes? To know this 

could have several implications, from discovering unknown side effects to finding new ways to 

manipulate the expression of this gene. 

 

As we present in the introduction, the expression dependences between sets of coexpressed genes, 

as well as the expression dependences between the processes which these sets of coexpressed genes 

carry out, would never be linear. This is why new tools like the presented one are necessary. 

 

The methodologies and tools presented in this section have been included in the work [Huerta et al 

2014]. 

 

Availability: expression relationships between coexpressed gene sets web-tool: 

http://platypus.uab.es/nlnet 

  

http://platypus.uab.es/nlnet
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3.7. Deconstructing sample clusters in multiple concurrent 
phenotypic changes 

 

 

Large sample series allow us to study expression relationships to detect fluctuations in these 

relationships and allow us to cluster samples based on the tendency of gene-expression 

dependences, as is shown in previous sections and papers [Cedano J. et al 2007]. These changes in 

expression dependences are especially relevant because they are associated with a modification of 

the phenotype of the cells studied [Huerta M. et al 2014]. Then, using the appropriate tools, it is 

possible to integrate the expression matrices (gene-expression levels under specific conditions) into 

the context of biological knowledge. 

  

When a phenotypic change is due to a change or suppression of a single gene, as it is common in 

monogenic diseases, the level of expression of this single gene could be enough to establish the 

healthy or pathological phenotype of the tissue. But the world of the monogenic characters and 

diseases is a very narrow and relatively well-known field of study. What is much more difficult is to 

infer the pool of genes involved in the maintenance of a multi-genetic disease, in its variations, and 

in the different disease progressions. Normally, these different phenotypes are a product of a 

combination of cell processes carried out by different sets of genes. These cell processes are 

transverse cell processes, because the same process occurs in different and even antagonistic 

conditions and can be combined with each other. Besides, these multiple transverse cell processes 

take place in a concurrent way, overlapping under certain conditions but not under others.  

 

Let us consider two cellular processes, such as cell differentiation and tumour proliferation (Figure 

26). As they are transverse cell processes, then we can find up to four different combinations with 

the presence or absence of each process (they can appear concurrently, only one appears, or none). 

These different combinations will determine the final phenotype of the cell. For instance, we are 

going to observe tumour proliferation in differentiated cells, but also tumour proliferation in 

undifferentiated cells, thus, tumour proliferation and cell differentiation are transverse cell 

processes. Our system helps to detect all of the combinations of transverse cell processes from the 

expression data, plus the genes most involved in the appearance and disappearance of each 

transverse cell process. The study of these concurrent transverse cell processes has direct medical 

applications. For instance, besides using retrovirals to treat viral infections in fish, it is possible to 

promote temperature-dependent processes that induce a fever phenotype that increases fish survival 

under viral challenge [Boltana S. et al 2013]. The next step would be to study the underlying 

mechanisms that cause this, to understand how the phenotypic changes work and to be able to 

control them. But how can we understand the underlying mechanisms of these phenotypic changes? 

To achieve this purpose, it is not enough to detect when a phenotypic change is linked to a strong 

variation in gene-expression levels, but also when the variations are subtle. For instance, a change 

in the diet of bees induces modifications in the methylation pattern of genes that leads to a 

metabolic acceleration and increased growth. These phenotypic changes are the product of 

relatively subtle variations in terms of expression levels but extended to a large number of genes 

[Barchuk AR. et al 2007; Kucharski R. et al 2008]. 

 



100 

 

To mention one example, the presented decomposition of sample clusters in a combination of 

transverse phenotypes has a direct application in the study of the effect of the drugs. Unlike 

principal component or clustering methods, the concise analysis of our tools allows researchers to 

separate genes by their link with the different effects of the drugs, where each effect would 

correspond to a different transverse phenotype. Then, the effects of the drugs are transverse to 

different treatments, and in each treatment different effects appear concurrently. Clustering methods 

group the treatments with the same effects and thus treatments that produce a similar final 

phenotype [Ling Y. and Kelemen A. 2006]. Two treatments could be linked to the same transverse 

phenotype (effect) in one transverse phenotypic change (passing from one effect to another) but to a 

different transverse phenotype in another transverse phenotypic change (because these treatments 

share some effects but not others). Thus, not only can the shared effects of the drugs be studied, but 

also the effects that are different for similar drugs. 

 

 

  
 

 

Figure 26. Cell processes are transverse between themselves whether they are concurrent sometimes yes and 

sometimes not. Two transverse cell processes and four transverse phenotypes are shown in the figure: 

differentiated cells, undifferentiated cells, and tumour proliferation or no tumour proliferation. The two phenotypes 

from the fírst transverse cell process are transverse to the two phenotypes from the second transverse cell 

process. In other words, the two first phenotypes are transverse to the two last phenotypes. However, neither the 

two first phenotypes nor the two last phenotypes are transverse between themselves and a phenotypic change is 

needed to pass from one phenotype to the other. The combination of the cited transverse phenotypes occurring 

concurrently in the cell, results in four different final phenotypes of the cell. Note that all of the combinations 

between transverse phenotypes are not always possible as in this case. 
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When analysing expression data with large sample series using sample clustering, usually the 

researcher wishes to extract the maximum information about the sample clusters obtained [Ling Y. 

and Kelemen A. 2006]. Furthermore, this further information will depend on the researcher’s 

interests and the data analysed in each case. Clustering methods obtain sample clusters using 

statistics, but these methods do not say anything about the phenotypes these sample clusters could 

represent. There are several methods to obtain further information about the researcher’s sample 

clusters. One powerful method is to use tools to compare these sample clusters with the sample 

clusters from other microarrays [Huerta M. et al 2014] as will be seen in next sections. 

Nevertheless, the most common method is to directly study the differentially-expressed genes 

between sample clusters [Huerta M. et al 2009] as has been seen in previous sections. In this 

method, from the genes that over-express in one sample cluster but not in another, the researcher 

tries to know what phenotype represents each sample cluster. Nonetheless, there can be hundreds of 

genes differentially expressed between one sample cluster and another one. Moreover, even though 

the genes coexpress for these sample clusters, they can actually be part of independent cellular 

processes that take place concurrently for those sample clusters. The most common procedure of 

attempting to distinguish among those independent, although concurrent, cellular processes that 

occur in each sample cluster, consists of performing a combination of sample and gene clustering. 

The results can be seen in a Heatmap. The Heatmap displays the genes that, in addition to 

expressing differently in each sample cluster, they are coexpressed for all of the matrix samples. 

These different sets of coexpressed genes would carry out different processes that occur 

concurrently for a given sample cluster but not for another. This fact differentiates one sample 

cluster from another. In this way, the analysis is much easier. We just need to study these cellular 

processes because the combination of the mentioned processes occurring concurrently in each 

sample cluster is what will define the hypothetical phenotype of the sample cluster. Now, instead of 

an arbitrary list of hundreds of genes differentially expressed, we have several sets of coexpressed 

genes that carry out independent and transverse cellular processes [Eisen MB. et al 1998]. The set 

of coexpressed genes of some of these processes are also differentially expressed. Nevertheless, the 

use of Heatmaps and hierarchical clusterings of samples and genes is not always intuitive. This way 

of studying the phenotypes of the sample clusters has two main limitations: First, it provides a static 

view, and second, and more important, we need great differences in the expression levels of a set of 

coexpressed genes between one cluster and another in order to distinguish the sample clusters where 

this process is occurring and the sample clusters where it is not. This problem is especially serious 

because most of the coexpressed genes maintain continuous expression relationships, that is, not 

discontinuous. The problem is even worse if large sample series are used. The continuity in the 

expression relationships between coexpressed genes can be better appreciated as the size of the 

sample series increases, because the transition or intermediate phenotypes are also considered, not 

only the extreme phenotypes.  

 

A complementary approach to the differentially-expressed-genes analysis queries GO database to 

classify the differentially-expressed genes trying to find genes involved in the same transverse 

process based on the literature [Cedano J. et al 2007; Boltana S. et al 2013; Mohammadi A. et al 

2011]. The main problem of this approach is that it can only work with the genes described in GO, 

ignoring the rest of differentially-expressed genes. And the second one, is that these tools really do 

not detect the transverse processes occurring in the expression data, because they work with the 
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categories previously defined in GO. All of this, in addition to the aforementioned problems of the 

differentially-expressed-gene search.  

 

It is not easy to identify when a change in the cellular state has occurred only by observing 

discontinuities in the level of expression of the genes, and is even worse if the change is subtle. 

Many times, agglomerative or partitive clustering methods cannot differentiate the phenotypes 

because the changes of phenotype do not create the necessary discontinuity in the sample 

distribution to be easily detected, especially when it affects only a subset of genes [Thalamuthu A. 

et al 2006]. To address this problem, we choose to detect the phenotypic changes using the changes 

in slope of the expression relationships.  

 

Our methodology is based upon the following four properties of the non-linear expression 

relationships: First, each fluctuation in a correlated expression relationship implies a phenotypic 

change. Second, multiple non-linear expression relationships are involved in the same phenotypic 

change. Third, if two genes maintain an expression relationship with a certain type of curve, the 

genes coexpressed with these two genes maintain expression relationships of the same type of curve 

between them. Fourth, the curve type of the non-linear expression relationships will describe the 

role of the genes in the phenotypic change. The first point allows us to detect the phenotypic 

changes from the non-linear expression relationships that are highly correlated. The second point 

allows us to group the non-linear high-correlated expression relationships by the phenotypic change 

they describe. The third point allows us to expand the analysis from these non-linearly highly-

correlated genes to the genes coexpressed with them. The fourth point allows us to know the 

activation/deactivation relationship between the phenotypes of the phenotypic change based on the 

morphology of the curve. 

 

As was seen in previous sections, non-linear expression dependences can be used for sample 

clustering. This sample clustering has had two different approaches, a non-linear interpretation of 

dimensionality reduction [Cannistraci CV. et al 2010] and a clustering of the samples corresponding 

to each phenotype from the phenotypic changes described by the non-linear expression relationship 

[Cedano J. et al 2008]. This second approach is possible thanks to the first property previously 

cited:  “Each fluctuation in a correlated expression relationship implies a phenotype change”, so the 

samples at either side of the fluctuation point will represent different phenotypes. Nevertheless, the 

second property is what makes this approach especially relevant: “Multiple non-linear expression 

relationships are involved in the same phenotypic change”. However, as the previous section 

reflects, until now this approach has been limited to single relationships between pairs of genes. The 

next step will be then, to exploit this second principle to obtain the multiple phenotypic changes that 

occur concurrently in the expression data and to study how their transverse phenotypes combine to 

result in the final phenotypes. This is so because this strategy will allow us to show the sample 

clusters as the intersection of multiple phenotypic changes that occur concurrently in the cell. 

 

Identifying the phenotypes based on the changes in slope of the expression relationships allows us 

to detect both abrupt changes in expression levels plus more subtle phenotypic changes. In turn, the 

system detects those phenotypic changes that are repeated in a large number of gene-expression 

relationships as well as those that only occur in certain pairs of genes. As was mentioned before, 
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one of the limitations of the clustering methods is that some changes do not affect all genes of the 

matrix, but rather a subset of them. In these situations, common clustering methods struggle to 

detect sample clusters [Thalamuthu A. et al 2006], and clustering methods specialized in clustering 

samples when only a subset of genes is involved in the changes [Csardi G. et al 2010] still need 

much more discontinuity in the sample distribution to detect the phenotypic changes. 

 

In this way, the transverse phenotypes of the concurrent phenotypic changes obtained could be 

considered as quite basic states or transverse to the main cellular states depending on whether those 

phenotypic changes are recurrent in multiple pair-of-genes relationships (basic states) or if they only 

occur in a few pairs of genes (transverse to the main cellular states). Using our system, it is possible 

to detect the multiple combinations of these transverse phenotypes and establish a hierarchy among 

the concurrent phenotypic changes. This hierarchy would highlight the ones that affect the cell to a 

greater extent and the ones that affect the cell to a lesser extent. Besides this, the genes involved in 

each phenotypic change and the role they play in the transition will be obtained. 

 

As we stated in a previous section, an especially relevant point in the study of non-linear expression 

relationships is that the type of curve of the relationship determines the role of each gene in the 

expression relationship [Huerta M. et al 2014]. That is, their activation/deactivation role. This fact 

can be used to study the phenotypes of the phenotypic change, in other words, the phenotype 

previous and next to each phenotypic change. The aim of studying the "gene role in phenotypic 

changes" here is exactly the same as in differentially-expressed-genes analysis: the activation or 

deactivation of the phenotype. However, what the curve type describes to us is complexes activation 

relationships (between the genes that take part in the phenotypic change). For this reason, our 

application provides the non-linear expression relationships that participate in each concurrent 

phenotypic change classified by curve type. The researcher will obtain the biological meaning of 

each concurrent phenotypic change from the gene Paris involved in the phenotypic change and the 

type of curve of their expression relationships. 

 

Below, the new approach and method are detailed. After that, the web application that follows this 

new approach, as well as a comparison with the results obtained by classical methods for sample 

clustering can be observed. In these examples, one can observe how a sample cluster obtained by 

classical methods is decomposed. 

 

As the presented methodology intends to be a standard method valid for expression data from any 

origin, the terminology used in the following sections to describe the analysis pipeline attempts to 

be as generic as possible, to also be valid for expression data from any origin. 

 

 

3.7.1. Automatic detection of sudden changes in expression relationships 

 
The curvature points of each expression relationship are obtained from the POPs that describe the 

inner pattern of the relationship (the PCOP). Curvature points are those POPs of the PCOP in which 

a change in slope occurs. The curvature point will be the POP among a set of nearby POPs that 



104 

 

maximizes the change in slope, with respect to the previous and the next curvature point [Huerta M. 

et al 2014]. 

 

As seen in previous sections, the samples belonging to each POP local area can be selected [Cedano 

J. et al 2007; Cedano J. et al 2008] and, in this way, the samples belonging to each tendency 

between two curvature points are clustered. These sample subspaces will represent the phenotypes 

involved in the phenotypic change linked to the sudden change that the expression relationship 

describes. 

 

Only the highly-correlated expression relationships are considered in the analysis [Huerta M. et al 

2014]. The correlation degree provided by PCOP calculation is what guarantees us that the non-

linear expression relationships are not a product of chance and have a biological meaning. The 

correlation degree will also affect the criterion to consider an expression relationship as linear or 

non-linear: Expression relationships that are less correlated will need more curvature to be 

considered as non-linear [Huerta M. et al 2014]. 

 

In this way, all the highly-correlated non-linear expression relationships are detected from the 

expression data. Furthermore, the sample subspaces between two consecutive curvature points are 

obtained for each non-linear expression relationship detected. In the next step, these sample 

subspaces will be compared in order to detect the expression relationships involved in the same 

phenotypic change. 

 

 

3.7.2. Automatic detection of phenotypic changes  
 

The sample subspaces obtained from each expression relationship are compared with the subspaces 

obtained from the rest. Then, the gene relationships that divide the sample space in the same sample 

subspaces are clustered together, because these expression relationships describe the same 

phenotypic change. This is the key point of our approach. The samples belonging to each phenotype 

of a phenotypic change are averaged from all of the non-linear expression relationships involved in 

the same phenotypic change. Note also that the gene relationships of the same group will perform 

the same phenotypic changes but each gene will play a different role in the phenotypic change. As 

we stated in a previous section, the type of curve of the non-linear expression relationships will 

describe the role of each gene in the phenotypic change [Huerta M. et al 2014]. 

 

As was mentioned earlier, curvature points are those points in the expression relationship in which a 

change in slope occurs. Depending on the number of pairs of genes that share the same sample 

subspaces on both sides of the curvature point, the phenotypes of the phenotypic change, that is, 

both subspaces, can be considered as quite basic states (a high number of gene pairs) or transverse 

to main cellular states (a small number of gene pairs). These transverse phenotypes take place in a 

concurrent way, overlapping under certain conditions but not under others. In other words, these 

transverse phenotypes will take place concurrently with different phenotypes of the main 

phenotypic change. 
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One of the most delicate points of the procedure followed is determining the phenotype to which the 

samples in the limit of the phenotypic change (the samples close to the curvature point) belong. The 

information provided by one expression relationship is not enough to decide whether these 

bordering samples belong to one phenotype or another. This point is solved only when all of the 

expression relationships that represent the same phenotypic change are considered. The samples 

will be assigned to the phenotype in which they appear more often considering all expression 

relationships of a certain phenotypic change. 

 

Obtaining the transverse phenotypes from all of the expression relationships for a certain 

phenotypic change provides us the accumulated error (as can be seen in Figure 27). This 

accumulated error explains the number of samples that has been assigned to a transverse phenotype 

incorrectly for each expression relationship of a phenotypic change, divided by the total of 

relationships of the phenotypic change. The smaller the accumulated error is, the more clearly 

differentiated the phenotypes described in the phenotypic change are. On the contrary, a bigger error 

will indicate a bigger number of samples in the border area between the two phenotypes. The bigger 

the number of expression relationships involved in the phenotypic change, the more reliable the 

assignment of samples to each transverse phenotype. 

 

 

3.7.3. The showing of the intersections between transverse phenotypes 
 

Once the transverse phenotypes of each concurrent phenotypic change are obtained, the intersection 

between the phenotypes of the different phenotypic changes will be displayed via web-browser. The 

phenotypic changes detected are concurrent for all of the samples of the expression matrix. The 

intersection between the phenotypes of the different phenotypic changes results in the final 

phenotypes that can be recognized by clustering methods. Depending on whether a sample 

describes the previous or subsequent phenotype of each concurrent phenotypic change will 

condition the final phenotype to which this sample belongs. It is the combination of transverse 

phenotypes occurring in a sample for all the phenotypic changes detected that will determine the 

final phenotype of the sample. 

 

The web interface allows ordering the experimental conditions so that the intersection between the 

transverse phenotypes can be studied (Figure 27). By grouping the samples by the phenotypes of a 

transverse phenotypic change, the intersection of these phenotypes with the rest of concurrent 

phenotypic changes will be shown. The priority given to the different phenotypic changes will 

establish the final order of the sample conditions. In this way, when prioritizing the phenotypic 

changes of interest for the researcher from all of those detected, their intersection with the rest of 

the concurrent phenotypic changes will be shown. By default, the highest priority will be assigned 

to the phenotypic changes that involve the highest number of genes in the transition, for being 

considered as the main phenotypic changes of the cell, and the least priority will be assigned to 

those that just affect a small number of genes, for considering that they represent the most specific 

processes and are transverse to the first ones. In this way, the hierarchy of phenotypic changes that 

take place concurrently in the analysed expression data is shown (Figure 27). 
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3.7.4. Crossing the sample clusters obtained by common clustering methods with 

the transverse-phenotypes intersection 
 

SOM, SOTA, PAM and Repeated Bisection clustering methods [Yin L. et al 2006] have been used 

in the examples shown in the next section. PC and MDS dimensionality reduction methods have 

also been used, which improves the results of the clustering. Silhouette and Dunn integrity methods 

have been used to find the k parameter value that provides the best clustering for each combination 

of clustering and dimensionality reduction methods. Those cited are the most used procedures in 

gene-expression sample clustering [Yin L. et al 2006]. The results of these clustering methods (plus 

dimensionality reduction and integrity) are automatically calculated in our server for the user’s 

expression data. In this way, the researcher can study the correspondence between the sample 

clusters obtained and the multiple concurrent phenotypic changes. 

 

 

3.7.5. Tool’s output interfaces 
 

 

3.7.5.1. The phenotypic-changes hierarchy view 
 

The web application provides two types of lists: the list of transverse and concurrent phenotypic 

changes found for the analysed expression data and the list of the main gene relationships involved 

in each transverse and concurrent phenotypic change. In the list of phenotypic changes (Figure 27), 

the sample sub-spaces of the transverse phenotypes involved in each phenotypic change are shown. 

The concurrent phenotypic changes are the rows, the samples are the columns, and the samples of 

each transverse phenotype are coloured differently. As a same sample (column) belongs to a 

different transverse phenotype in each phenotypic change (row), the transverse-phenotype 

intersections are shown as a hierarchy of sample subspaces (where the subspaces are progressively 

subdivided by the phenotype intersections). The samples belonging to each phenotype intersection 

represent a new sample subspace that involves the simultaneity of both phenotypes. 
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Figure 27. The transverse-phenotypic-changes list view shows the transverse phenotypic changes detected by our 

system. The rows correspond to each concurrent phenotypic change detected by our system, and the columns 

correspond to each sample. All cells of the same column represent the same sample, and these cells are coloured 

based on the phenotype the sample belongs to in each transverse phenotypic change. Then, looking at the column 

of the sample, the phenotype which this sample belongs to in each one of the detected transverse phenotypic 

changes, can be seen. All of these transverse phenotypic changes take place concurrently for that sample; 

therefore, the columns will show us the intersection of transverse phenotypes for these samples. The phenotypic 

changes are sorted by the number of expression relationships involved in each phenotypic change. The two first 

rows describe the main transverse phenotypic changes. 35 non-linear expression relationships are detected for 

carrying out the first phenotypic change, and 13 for carrying out the second one in the list. There exists a 

phenotype intersection between the second phenotype of the first phenotypic change and the first phenotype of 

the second phenotypic change. Those samples in the intersection of phenotypes will inherit the characteristics of 

both phenotypes. The priority column shows the criterion followed to sort the concurrent phenotypic changes to 

study their phenotypes intersection (see phenotype-intersection section for more details). The error column shows 

the mismatch among the non-linear expression relationships that describe the same phenotypic change to 

constitute its sample subspaces. The last concurrent and transverse phenotypic change in the list describes a 

transition among three phenotypes. 

 

 

The main transverse phenotypic changes are those that involve the highest number of genes in the 

phenotype transition, whereas the transverse phenotypic changes involving a small number of genes 

are those that least affect the cell. In the hierarchy of phenotypic changes, the phenotypic changes 

involving the highest number of non-linear expression relationships are shown first (Figure 27). In 

this way, the intersection of these main phenotypic changes with the rest of the transverse 

phenotypic changes is shown. Nevertheless, if the researcher is interested in studying the 

intersection of a phenotypic change of interest with the rest, he/she can increase the priority of this 

one. Note that, as every concurrent phenotypic change occurs in the totality of the samples, for each 

sample we can study the intersection between phenotypes from any pair of phenotypic changes 

detected. Likewise, in each sample (column) the totality of concurrent phenotypic changes occur. In 

order to avoid any confusion, it is important to clarify that our analysis-pipeline term “concurrent 

phenotypic changes”, does not mean phenotypic changes occurring simultaneously, but rather either 

the previous or the next phenotype of a phenotypic change occurs simultaneously with the previous 

or the next phenotype of any other phenotypic change. The samples are grouped in the table by the 

intersection of phenotypes between the phenotypic changes detected. The samples are grouped by 

the phenotype to which each sample belongs in the first transverse-phenotypic-change (1st row by 

default). Then, the samples from a same transverse phenotype are sub-divided by belonging to a 

different phenotype in the next phenotypic change with less priority, and so on. This continues until 

all of the samples are ordered. This arrangement of the columns facilitates observing the transverse-
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phenotype intersections, and the transverse-phenotypes intersection is what will define the cell state 

of the sample. 

 

The search for transverse and concurrent phenotypic changes can be parameterized by the 

correlation degree and curvature degree required for the expression relationships involved in the 

transition. A sharper curvature will imply a more clear transition between phenotypes. 

 

 

3.7.5.2. The gene-relationships list view 
 

In the gene-relationships list view, the gene relationships involved in each transverse and concurrent 

phenotypic change are shown (Figure 28). Only the expression relationships with a sufficient 

correlation will be listed. The expression relationships listed are classified by type of curve, and a 

curve-type icon points out the type of the expression relationship. Different curve types imply a 

different role of the genes in the phenotypic changes, for example, a y=e
x
 expression relationship 

represents a switch gene that activates the other gene (resulting in a new phenotype due to the gene 

activation) [Huerta M. et al 2014]. More information about the role of the genes in each type of 

curve can be obtained from the previous sections. The detailed view of each gene-expression 

relationship [Cedano J. et al 2008] can be launched from the list of gene relationships. In this 

detailed view, the expression dependence between the genes can be seen in a 2D plot (one 

dimension per gene). In this view, the samples belonging to the phenotypes involved in each 

phenotype transition are coloured differently. Thus, the link between the expression-relationship 

suddenly changes and the transition between phenotypes can be observed (Figure 29). Remember 

that multiple non-linear expression relationships are involved in the same phenotypic change, 

contributing to the phenotypic transition in different ways. The relative location of the samples, 

further from or closer to the curvature point in the 2D plot, shows us whether the sample clearly 

represents the phenotype or if it is a transition state between two phenotypes. In addition to showing 

the phenotypes involved in the phenotypic change, this 2D plot shows the sample clusters obtained 

by common clustering methods [Yin L. et al 2006] (Figure 29). This allows the researcher to study 

the correspondence between sample clusters and phenotypic changes. 

 

The correspondence between the sample clusters obtained by means each clustering plus 

dimensionality-reduction methods and its best k value, with respect to the intersection of transverse 

phenotypes obtained by our application has been studied for the expression data used as example 

(at_matrix). This correspondence is shown in the tables below. The table rows represent the 

clustering methods, and the columns represent the phenotype intersections. Each cell of the table 

shows the percentage of sample matching between the sample clusters and each phenotype 

intersection. The “Coincidence” column of these tables shows the percentage of correspondence 

between each clustering method and the phenotype intersections. This correspondence between 

clustering methods and phenotype intersections is calculated from the samples in common between 

each cluster from the clustering method and the phenotype intersection that best matches with this 

sample cluster. 
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As can be seen in Table II, our system can recognize the sample clusters obtained by common 

clustering methods (which affect all of the matrix genes)[Yin L. et al 2006]. But, at the same time, it 

detects the more subtle (and transverse) phenotypic changes that only affect a subset of genes, and 

that are not detectable by common clustering methods. As stated earlier, the sample clusters 

obtained by common clustering methods precisely represent several intersections of these multiple 

transverse phenotypes detected. In this way our procedure is able to decompose these sample 

clusters in a phenotypes intersection. Note that only the intersections shown in the hierarchy of 

transverse phenotypes (Figure 27) are detectable in the expression matrix studied (some transverse-

phenotype intersections not occur in the expression data). 

 

 
 

Figure 28. The gene relationships involved in each concurrent phenotypic change are shown in the gene-

relationships list view. The expression relationships listed are ordered by correlation degree. They are also 

classified by curve type. An icon at the right of the expression relationship describes its typology. The detailed view 

of each gene-expression relationship (Figures. 29-30) can be launched by clicking on this icon. A button at the 

bottom of the list allows one to switch from the classical-clustering-methods sample clusters to the phenotypic-

change transverse phenotypes in order to be shown in the detailed view (Figures. 29-30). The other button at the 

bottom opens a menu to choose the clustering method the researcher wishes to use to cluster the samples. This 

allows the researcher to relate these sample clusters with the transverse phenotypic change. 
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Method K Ph. Intersection (1,1) Ph. Intersection (1,2) Ph. Intersection (2,2) Coincidence 

Mds Som 4 165,38%  2100%  37,89% 43,03% 130,77%  365,79%  43,03% 13,85%  326,32% 493,94% 79,66% 

Som 4 1100% 264%  33,13% 410%  232%  465% 24% 396,87% 425% 79,66% 

Mds Pam 4 13,03%  295,65% 383,33% 

49,09% 

112,12% 24,35% 316,67% 459,09% 184,85% 431,82% 77,12% 

Pam 4 1100% 24,88% 3100% 4 9,75% 221,95% 460,98% 273,17% 427,27% 77,12% 

Mds Sota 5 195,45% 2100% 538,89% 472,73% 555,56% 14,55% 3100% 424,24% 55,56% 84,75% 

Sota 5 188,46% 2100% 535,71% 17,69% 470,59% 557,14% 13,86% 3100% 429,41% 57,14% 83,90% 

Pc Sota 4 157,58% 295,83% 121,21% 24,27% 474,29% 121,21% 3100% 425,71% 79,66% 

Pc Pam 5 195% 2100% 523,33% 15% 471,87% 533,33%  3100% 428,13% 543,33% 77,12% 

Pc Som 4 195,24% 293,75% 42,78% 524% 14,76% 26,25% 472,22% 524% 3100% 425% 552% 79,66% 

Pam 9 220% 4100% 5100% 850% 17,69% 389,47% 738,46% 850% 192,31% 280% 310,53% 6100% 

761,54% 

86,24%  

Pc Som  9 142,86% 385,71% 4100% 

521,43% 

142,86% 314,28% 578,57% 670% 

810% 

114,28% 2100% 630% 7100% 

890% 

81,82%  

Som  9 116,67%  2100%  310% 4100% 

857,14% 

116,67% 360% 554,55% 673,91% 

842,86% 

166,67% 330% 545,45% 626,09% 

7100%  

80,36%  

Mds Pam  7 125% 25,26% 4100% 5100% 

718,18% 

158,33%  384,21% 750% 116,67% 294,74% 315,79% 6100% 

731,82% 

83,05% 

Mds Sota  7 127,27% 495,45% 5100% 

757,14% 

163,64%  372,73% 742,86% 19,09% 2100% 327,27% 44,55% 

6100%  

85,59% 

 

Table II. Correspondence between the sample clusters obtained by clustering methods commonly used in 

expression analysis and the transverse phenotypic changes found by our system. The rows represent the common 

clustering methods. The columns represent the transverse-phenotype intersection between the two first 

phenotypic changes shown in Figure 27. These transverse phenotypic changes describe the two main phenotypic 

changes inside the expression data (35 and 13 non-linear expression relationships are detected for the first and 

second transitions respectively). The first column represents the samples that belong to the intersection between 

the first phenotypes of each one of the two transverse phenotypic changes, the third column represents the 

samples belonging to the intersection between the second phenotypes of the two transverse phenotypic changes, 

and the second column represents the samples belonging to the intersection between the second phenotype of the 

first phenotypic change and the first phenotype of the second phenotypic change. The intersection between these 

transverse phenotypes can be seen in Figure 27. The cells show the correspondence between the clusters obtained 

by common clustering methods (rows) and the phenotype intersections (columns). It can be seen that there exists a 

correspondence between these sample clusters and the intersection of the transverse phenotypes found. The 

”Coincidence” column shows the coincidence between the sample clusters from clustering methods and the 

phenotypes intersection. The matching between the sample clusters obtained by SOTA K=5 and by SOM k=4 is 

82%, which is less than the matching between SOTA K=5 and the phenotype intersections (see "coincidence” 

column). Silhouette and Dunn Integrity methods were used to choose the best k for each clustering method. In this 

way, our application recognizes the sample clusters obtained by common clustering methods but, furthermore, it 

decomposes these clusters into a hierarchy of phenotypic changes that shows the intersection of transverse 

phenotypes that constitutes the sample clusters. 

 

 

In Figure 29 and Table II, the correspondence between the transverse-phenotypes intersection and 

the sample clusters obtained by common clustering methods [Yin L. et al 2006] can be observed. 

The correspondence between the sample clusters obtained by means of SOTA K=5 and SOM k=4 is 

82%, similar to the correspondence (72%-86%) between the sample clusters obtained by means 

these clustering methods and the intersection of transverse phenotypes (for more details, see the 

“Coincidence” column of Table II). As can be seen by examining Table II and the plots of Figure 29 

in depth, the sample clusters can be described as the intersection of transverse phenotypic changes.  
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29.a) 

 
 

 

29.b) 
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29.c) 

 
 

 

29.d) 
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Figure 29. The detailed view of two expression relationships involved in the phenotypic changes analysed in Table 

II. DKK3 and DNER genes in (a) and (b), and CALD1 and CTGF genes in (c) and (d).  The axes represent the 

expression level of the genes, and the point cloud represents the samples. The curve crossing the data cloud is the 

PCOP that describes the inner pattern of the expression relationship. The samples are coloured based on the 

cluster or transverse phenotype they belong to. The DKK3 and DNER expression relationship performs the first 

transverse phenotypic change listed in the phenotypic-change hierarchy shown in Figure 27. The CALD1 and 

CTGF expression relationship carries out the second transverse phenotypic change in the hierarchy. In (a), the two 

phenotypes obtained from the first phenotypic change listed in Figure 27 are shown. In (c), the two phenotypes 

obtained from the second phenotypic change listed in Figure 27 are shown. These transverse phenotypic changes 

describe the two main phenotypic changes detected, which are the ones used in Table II. In (b) and (d), the sample 

clusters obtained by Repeated-Bisection clustering are shown. Looking at the relationship between DKK3 and 

DNER genes ((a) and (b)), yellow and red clusters from Repeated-Bisection, in (b), correspond to the first 

phenotype of the phenotypic change, in (a), and blue, green and pink clusters from Repeated-Bisection, in (b), 

correspond to the second phenotype in (a). Looking at the relationship between CALD1 and CTGF genes ((c) and 

(d)), yellow, red, green and pink clusters from Repeated-Bisection, in (d), correspond to the first phenotype of the 

phenotypic change, in (c), and blue clusters from Repeated-Bisection, in (d), correspond to its second phenotype, in 

(c). In this way, it can be observed how sample clusters (pink and green clusters) are the product of the intersection 

of transverse phenotypes. 

 

Looking at Figures 29.a, 29.b, 29.c and 29.d, it can be observed how the concurrent phenotypic 

changes are transverse among them and how the intersection between transverse phenotypes 

constitutes new sample clusters (i.e. green and pink clusters in Figures 29.b and 29.d). These green 

and pink clusters (obtained by common clustering methods) overlap with two transverse 

phenotypes, one from each phenotypic change. This indicates that the green and pink clusters 

inherit the characteristics from both transverse phenotypes (each one from a different phenotypic 

change). However, these transverse phenotypes involve more sample clusters and these sample 

clusters are different from one phenotype and another (red and yellow clusters and blue clusters 

respectively). This indicates that the final phenotypes of the pink and green clusters will share some 

characteristics with the red and yellow clusters, and some others with the blue clusters. In other 

words, the two transverse phenotypes to which the pink and green clusters belong, will define the 

characteristics they share and the characteristics they do not share with the rest of the clusters (the 

pink and green clusters will share the characteristics of one transverse phenotype with the blue 

clusters, and the characteristics of the other transverse phenotype with the red and yellow clusters). 

The researcher finds out the characteristics of the phenotypes by studying the expression 

relationships (genes and curve type) linked to each transverse phenotypic change. 
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30.a) 

  

30.b) 

  
 

Figure 30. The detailed view of the expression relationship involved in the phenotypic changes analysed in Table III.  

The expression relationship is involved in three phenotypic changes. In Figure 30.a the four transverse phenotypes 

obtained are shown. In Figure 30.b, the sample clusters obtained by Repeated-Bisection clustering method are 

shown. The figures show the correspondence between the clusters obtained by the clustering method and the 

three phenotypic changes described by the curve. 
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Note that the system can detect very subtle changes in expression relationships, indicating a 

phenotypic change (as in Figure 29). Note also that each transverse phenotypic change is obtained 

from several non-linear expression relationships. As more non-linear expression relationships are 

involved in the same phenotypic change, the more accurate is the assignation of samples to each 

phenotype and the more "global" are the transverse phenotypes. This also implies a bigger 

correspondence between the sample clusters obtained by common clustering methods, the 

transverse phenotypes, and their intersections. Now, looking at Figure 30, a gene pair involved in 

three phenotypic transitions allows us to accurately study the transitions between several sample 

clusters. As can be seen in Table III, there is also a correspondence between the sample clusters 

obtained by common clustering methods [Yin L. et al 2006] and the four transverse phenotypes 

found in this expression relationship.  

 

In this figure, it can be observed how the expression relationship guides the transition from some 

clusters to others. 

 

The most common methods in gene-expression sample clustering have been used in the previous 

examples. Nevertheless, there exist more specific clustering methods [Andreopoulos B. et al 2009] 

that have not been compared in the examples. The results of our tool have not been compared either 

with the clusters from clustering methods that only work with part of the samples, like Bi-clustering 

[Csardi G. et al 2010], since, in our approach, all of the concurrent and transverse phenotypic 

changes consider the complete sample series. Neither have we analysed here the results of 

decomposing sample clusters from a non-statistical origin based on previous criteria, like the 

samples origin or experimental criteria used in the GEO database [Barret T. et al 2013].  However, 

regardless of the clustering method used, if they obtain the same or similar sample clusters, the 

results of their decomposition would be identical. If the final phenotypes of the expression data are 

clearly differentiated, the different clustering methods will obtain the same sample clusters, so the 

results, when crossing them with our tool, would be the same. When the phenotypes are less 

detectable, the disparity among the results provided by the different clustering methods and the 

probability of non-correspondence increases.  

 

If a high number of concurrent phenotypic changes are considered in the deconstruction of the 

sample clusters, not only will the number of samples in the intersection between the transverse 

phenotypes be reduced, but also their coincidence with the sample clusters obtained by clustering 

methods. This is because of the limitations of clustering methods [Thalamuthu A. et al 2006] and 

also because of the accumulated error when assigning the samples to each transverse phenotype. 

This limits us when we try to infinitely decompose the sample clusters obtained by clustering 

methods, and the phenotypes they could represent, in a combination of multiple concurrent 

phenotypic changes. 
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Method K Phenotype 1 Phenotype 2 Phenotype 3 Phenotype 4 Coincidence 

Mds Som 4 342,11%  46,06% 115,38% 331,58% 

49,09%  

176,92% 29,58%  

323,68% 481,82%   

17,69% 290,48%   

32,63%  43,03%   

69,49% 

Som 4 33,13% 442,5%    216% 39,38% 

430%   

19,52% 276%  

384,38%  425% 

190,48%  28% 

33,13% 42,5% 

69,49% 

Mds Pam 4 440,91% 13,03% 322,22% 

431,82% 

190,91%  217,39% 

372,22%   425% 

16,06% 282,61%  

35,56% 42,27% 

67,8% 

Pam 4 443,9% 125% 22,44% 

434,15% 

162,5% 290,24%  

312,5%  

112,5% 27,32% 

390%   

70,34% 

Mds Sota 5 33,23% 445,45% 

511,11% 

228,57% 39,68% 

433,33% 55,56% 

19,09% 264,29% 

383,87%  421,21% 

577,78% 

190,91% 27,14% 

33,23% 55,56% 

71,19% 

Sota 5 447,06% 514,29% 228,57% 310% 

432,35% 57,14% 

119,23% 264,29% 

386,67%  420,59% 

578,57% 

180,77% 27,14% 

33,33% 

70,34% 

Pc Sota 4 24,17% 33,85% 

445,71% 

220,83% 31,54% 

431,43% 

154,55% 250% 

376,92% 422,86% 

145,45% 225% 

37,69% 

55,93% 

Pc Pam 5 26,25% 35 % 450% 15% 225% 315%  

431,25% 53%  

120% 256,25% 

375% 418,75% 

580%  

175% 212,5% 35% 

516,67% 

66,95% 

Pc Som 4 26,25% 35% 

444,44% 

14,76% 218,75% 

315%  433,33% 

123,81% 262,5% 

375% 422,22% 

580% 

171,43% 212,5%  

35% 520% 

64,41% 

Pam 9 373,68% 69,09% 

77,69% 820% 

315,79% 526,67% 

618,18% 761,54% 

820% 

192,31% 2100% 

310,53% 45,56% 

560% 663,64% 

730,77% 850% 

17,69% 494,44% 

513,33% 69,09% 

810% 

75,23% 

Pc Som  9 521,43% 665% 

78,33% 810% 

423,08% 542,86% 

625% 78,33% 

830% 

185,71% 292,31% 

314,29% 461,54% 

535,71%  610% 

775%  860% 

114,29% 27,69% 

385,71% 415,38% 

78,33%  

70,91% 

Som  9 572,33%  634,78%  

828,57%  

425% 527,27% 

639,13% 710% 

814,29% 

1100% 25,88% 

380% 458,33% 

626,09%  785% 

857,14% 

294,12% 320% 

416,67%  75% 

73,32%  

Mds Pam  7 368,42% 68,33% 

718,18% 

315,79% 530,77% 

625% 740,91% 

191,67%  2100% 

315,79% 414,29% 

553,85%  658,33% 

736,36% 

18,33% 485,71% 

515,38% 68,33% 

74,55% 

71,19% 

Mds Sota  7 345,45%  68,33% 

728,57% 

333,33% 528,579% 

625% 714,29% 

190,91%  2100% 

321,21% 49,09% 

564,29%  658,33% 

757,14% 

19,09% 490,91% 

57,14% 68,33%  

71,19% 

 

 

Table III. Correspondence between the sample clusters obtained by common clustering methods and the 

transverse phenotypes found by our system from expression relationships that involve three phenotypic changes.  

As in Table II, the results show a correspondence between the sample clusters obtained by the clustering methods 

and the four transverse phenotypes identified by our system. Looking at the expression relationship detailed view 

shown in Figure 30, we can study the transition between one cluster and another one and the expression level of 

the genes responsible for the transitions. 
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Independent cell processes can participate together in the same concurrent phenotypic change. For 

this reason, not all the cellular processes that participate in a phenotype are identified by our system 

as an independent cell process. These processes take place together for the analysed sample series, 

and the genes that carry these processes out appear coexpressed. This is because the concurrent 

phenotypic changes detected will depend on the experiments done, even though the analysed genes 

would be the same. This would mean that, for the same genes, a sample series could obtain more 

concurrent phenotypic changes than another one, together with a bigger amount of sample clusters. 

All concurrent processes that do not cause a different phenotype for the analysed data will be 

grouped in the same phenotypic change. Only the concurrent cell processes that differentiate one 

final phenotype from another one will be considered separately.  In other words, these independent 

cellular processes must be transverse among them for the analysed expression data. It should be 

remembered that the final phenotypes are the result of different combinations of concurrent 

transverse cell processes, where different combinations of these transverse cell processes result in 

the different final phenotypes. The system specifically aims to detect these combinations, and for 

this purpose it groups together all of the concurrent cell processes that, although independent, 

appear coexpressed in the analysed expression data. 

 

For each transverse and concurrent phenotypic change are provided the genes most involved, but 

these genes could be involved in the cause or in the effect of the phenotypic change. In fact, the 

second one is more usual. Even though the technologies to obtain gene-expression arrays do not 

capture the regulatory genes that cause the phenotypic changes because of the low variability in 

their gene expression, these technologies do allow for studying the genes that result from the 

activation cascade started by these regulatory genes [Wu B. 2007]. Our analysis is possible because 

these final genes do maintain wide-enough expression ranges, which allows high-throughput tools 

to analyse their complex expression dependences. 

 

By means of PCOP calculation, we can detect phenotypic changes without using time series that 

sort the data temporally. In contrast, we have a static vision of the phenotypic changes. We do not 

know which of the two phenotypes, one at one side and the other at the other side of the phenotypic 

change, occurs first or later in time. Nevertheless, this static vision is enough for the analysis we 

intend to do, since we are just interested in knowing which one of the two phenotypes involved in 

each phenotypic change occurs in each sample cluster. 

 

The use of non-linear expression relationships in sample clustering opens up an enormous potential 

beyond the study of gene regulation [Guo X. et al 2014; Cannistraci CV. et al 2010]. Common 

clustering methods [Yin L. et al 2006; Andreopoulos B. et al 2009] can detect the main phenotypes 

well enough, phenotypes that affect most of the genes of the expression matrix, but these methods 

are not so precise in the detection of secondary phenotypes, which only affect the expression of part 

of the genes, and much less in the detection of the transversality of these secondary phenotypes with 

the main ones. Local clustering methods also have this flaw. Our procedure allows one to study the 

following: the combination of phenotypic changes that result in each final phenotype; which 

phenotypic changes are common in different final phenotypes; and which phenotypic changes turn 

them into different final phenotypes. It also allows for studying the specific role of the genes in the 

final phenotypes for participating in one phenotypic change or another.  
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Considering all the expression relationships of a certain phenotypic change and assigning the 

samples to the phenotype in which they appear most often, we solve the problems explained 

previously, according to which a discontinuity in the sample space is needed to detect sample 

clusters and differentially expressed genes; but to achieve this, we need multiple non-linear 

expression relationships for a same phenotypic change to assign the samples to their phenotype 

accurately, especially with the samples on the border between phenotypes. 

 

We move away from the approach followed by differentially-expressed-genes analysis, Heatmaps 

and double clustering of samples and genes, due to the limitation of these methods, because of the 

need of discontinuity in the expression data is over-come. 

 

Our approach provides a new kind of information in the representation of the hierarchy of 

concurrent and transverse phenotypes. Unlike the dendrogram representation of hierarchical 

clustering, our representation shows the intersection between the transverse phenotypes. It not only 

shows clusters that are the product of the union of sample clusters, but also clusters that are product 

of the intersection of two or more sample clusters(our transverse phenotypes). This intersection 

between transverse phenotypes, because the phenotypes take place concurrently in the same 

samples, represents the final phenotype of these samples. 

 

Our approach also denotes the difference, with respect to the methods that query the GO database to 

classify the differentially-expressed genes for involvement in the same processes [Boltana S. et al 

2013; Mohammadi A. et al 2011]. Our approach does not start from previous premises; it is purely 

statistical, detecting the transverse processes that occur in our experiments from the data, and whose 

different combinations make it possible for us to obtain different sample clusters from our 

expression data. 

 

The main obstacle in the search for multiple concurrent phenotypic changes is mainly due to the 

data source: non-linear expression relationships need to be detected for a number of gene-pairs big 

enough to be useful. Large enough sample series and wide enough gene-expression ranges facilitate 

the detection of non-linear expression relationships. If one wishes to perform a brief study of an 

expression matrix with large sample series, it is better to use only common clustering methods and 

Heatmaps, from the methods mentioned in this paper to more advanced clustering methods with 

more precision obtaining sample clusters [Andreopoulos B. et al 2009], but if you need a more 

accurate analysis, to study the differences among the sample clusters obtained by these clustering 

methods, and to understand the cellular processes behind each one, the tools developed here allow 

for the obtainment of very relevant information for the researcher that can enrich the classical 

analyses. 

 

As previously stated, it is very important to study the underlying mechanisms that carry out the 

different phenotypes that can be detected by clustering methods. The difference among these final 

phenotypes is rarely caused by a change in a single gene. Indeed, the different final phenotypes will 

be the product of a combination of cell processes carried out by different sets of genes. They are 

transverse cell processes that overlap (are concurrent) in certain phenotypes but not in others. This 

is why new tools like the one presented here are necessary. 
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All the findings presented in this section have been included in the work [Huerta M. et al 2015]. 

 

Availability: sample-cluster-deconstruction web-tool: http://ibb.uab.es/phscl  
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3.8. Crossing Clusters: Studying the relationships among the sample 
clusters obtained by clustering methods from expression data 

 

 
Microarray analysis, RSeq analysis, etc allow the study of large sample series, which allows one to 

describe multiple phenotypes. Clustering methods are used to describe these multiple phenotypes by 

grouping the sample conditions that cause a similar effect on the genes. But conventional 

expression analysis does not go much further in the study of the phenotypes detectable in 

expression experiments. For instance, they do not analyse the relationships between the sample 

clusters in-depth, or how the transitions between the phenotypes that these clusters represent could 

happen. 

 

Clustering methods, like hierarchical clustering, establish inclusion relationships between clusters; 

nevertheless, they are not able to detect any other relationship. With the approach presented next, 

we intend to help researchers to study the transition between the phenotypes, as well as to discover 

other types of more complex relationships between them. 

 

To study these interdependencies between phenotypes, we can rely again on the study of gene-

expression relationships. As aforementioned, differentially expressed genes show us how we can 

change from a sample cluster to a new one depending on expression variations of individual genes. 

Non-linear expression relationships show us how we can change from a sample cluster to a new 

sample cluster or to a different one depending on expression variations of combinations of gene 

pairs, instead of individual genes. Now, what we intend with this tool is to show all of those 

transitions between sample clusters described by non-linear expression relationships ordered and 

categorised, in order to study these transitions and understand their biological meaning.  

 

Our methodology is based on the fact that each fluctuation in a correlated expression relationship 

implies a phenotypic change [Huerta M. et al 2014]. Thus, the proposed strategy here is focused on 

the detection of non-linear expression relationships, their crossing with the sample clusters obtained 

by clustering methods, and to classify the different arrangements of sample clusters along the 

phenotypic changes. 

 

The analysis of differentially expressed genes allows us to study the biological meaning of the 

different sample clusters from the genes that over-express and under-express in each sample cluster 

[Huerta M. et al 2014]. Studying the step from under-expression to over-expression of these genes 

allows us to study the transition between phenotypes. Nevertheless, this is limited to an 

activation/deactivation transition. Furthermore, we need these genes to be known enough in the 

literature to obtain biological meaning about the sample clusters. With our approach, complex 

dependences between sample clusters are detected. Besides, biological meaning of the phenotypes 

can be obtained although the genes are unknown by the literature. This is because, as 

aforementioned, the curve type of the non-linear expression relationship already describes the 

dependence among phenotypes. For instance, a y= e
x
 relationship will provide a switching 

dependency, that is, a certain phenotype must occur so that the other phenotype can occur. A y=e
-x

 

relationship describes a mutual exclusion relationship, that is, for one phenotype to occur the other 
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one must not occur. y=x
2 

or 1= x
2 

+ y
2 

relationships indicate two different ways of the same cell 

process or feedback effects [Huerta M. et al 2014].  

 

In addition, clustering methods need to deal with intermediate phenotypes due to the increasing 

number of samples in sample series. Our analysis also interrelates these transition phenotypes. 

Sample clusters closer to the inflection point of the curve will represent the intermediate phenotypes 

between the more extreme phenotypes (represented by the sample clusters far away from the 

inflection point).  

 
 

3.8.1. Detection of curvature points and non-linear expression relationships 

 
Curvature points are those POPs in the PCOP in which a change in slope occurs. The detection of 

curvature points identifies the non-linear expression relationships [Huerta M. et al 2014]. All the 

non-linear expression relationships inside the expression data are detected. 

 
 

3.8.2. Arrangement of sample clusters along the PCOP 

 
The samples of each cluster are bound to their closer POP. This binding of the samples to the POPs 

provides a map of the cluster arrangement along the expression relationship. 

 
 

3.8.3. Classification of the non-linear expression relationships that cross each 

sample-cluster arrangement 

 
As aforementioned, if two different clusters are located one on either side of the curvature point, it 

is considered that this expression relationship describes the phenotypic change between those two 

sample clusters. So, we group the expression relationships by whether they place the same clusters 

at each side of the phenotypic change, and also by the order of these clusters at each side of the 

phenotypic change (which allows us to detect transition phenotypes). Different groups of expression 

relationships show dependence between different sample clusters, and those grouping a larger 

number of relationships would describe the main and more global phenotypic changes (which affect 

the expression of a larger number of the expression-matrix genes).  

 
 

3.8.4. Calculation of the sample-cluster arrangement by different clustering 

methods 

 
For each uploaded expression matrix, the server calculates the most common clustering plus 

dimension-reduction analyses applied to expression matrices: HC, SOTA, SOM and PAM, 

combined with PC and MDS. The parameters are adjusted using the most common integrity 

analysis: Silhouette and Dunn. For the sample clusters obtained by means of each clustering method 
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and its best parameter value, the non-linear expression relationships that cross these sample-clusters 

are grouped based on the phenotype changes among the sample clusters. 

 
 

3.8.5. Tool’s output interfaces 

 
 
3.8.5.1. List of sample-cluster arrangements view  
 
This allows one to compare the results obtained by different clustering methods and their respective 

k values. The list is represented as a table where each row displays the sample clusters resulting 

from applying a clustering plus dimension-reduction method and a k value. The columns represent 

the matrix samples. In each cell of the table, the samples that belong to each different cluster are 

coloured with a different colour. In this way the sample clusters obtained by means of each 

clustering method and k value can be identified and compared with the results from the rest of 

methods and k values (Figure 31). 

 

A different table will be displayed for each clustering plus dimension-reduction method. For each 

table, the difference between one row and another one is the k value used in the same clustering 

method. In this way the sample clusters resulting from the use of different k values in the same 

clustering method can be compared among them. An extra table with one row per method shows the 

clustering results from each methodology and its k value with best integrity. In this way the best 

results from each clustering method can be compared among them. 

 

 

 
 

Figure 31. List of sample-cluster arrangements view. In the display it can be seen the best results obtained from the 

different clustering methods applied to the expression data (at_matrix). Integrity methods are used to evaluate the 

sample clusters and choose the best k value for each clustering method. The columns represent the matrix samples 

and the rows the clustering methods (one method per row). The colour of the samples represents the cluster they 

belong after applying each clustering method. 
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3.8.5.2. List of non-linear expression relationships crossing the sample clusters 

view 
 
Once the clustering method whose result we wish to study is chosen, the non-linear expression 

relationships are listed, grouped and classified into three categories: First, by whether these 

expression relationships place the same sample clusters at one side and the other of the curvature 

point; second, by whether the sample clusters maintain the same order along the expression 

relationship; and third, by their cluster intersection degree (the last two categories lead to study 

transition phenotypes). 

 

For each expression relationship, a graph shows the curvature point and the cluster arrangement 

along the expression relationship (Figure 32). This allows one to immediately observe how the 

clusters are distributed at either side of the curvature point and the degree of belonging to each 

phenotype. An icon shows the curve type. As aforementioned, this describes the type of relationship 

between the sample clusters [Huerta M. et al 2014]. 

 
 
 

 
 

 
Figure 32. List of expression relationships crossing the sample clusters view. For a given sample-clusters 

arrangement, non-linear expression relationships that separate the sample clusters are listed and grouped into 

three categories: First, those that separate the same sample clusters at one and the other side of the curvature 

point (yellow), second, if the sample clusters at the same side of the curvature point maintain the same order 

(orange) and third, if they also maintain the same degree of cluster intersection (red). The last two categories are 

used to study the transition phenotypes. The graph on the right shows the location of the curvature point and the 

arrangement of the sample clusters along the expression relationship. This allows one to observe how the clusters 

are distributed at one and the other side of the phenotypic change and the degree of belonging to each 

phenotype. An icon shows the type of non-linear expression relationship, which allows researchers to know the 

type of dependence between the sample clusters. 
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By clicking on the curve icon, the 2D interface shows the gene expression relationship in detail (one 

dimension per gene), with the distribution of the samples of each cluster along the relationship. 

 
This tool can be a good complement for expression-matrix analysis, especially if the researcher 

wishes to go beyond the study of differentially expressed genes. Now she/he can study complex 

transitions among sample clusters plus the transition sample clusters. 

 

All the findings presented in this section have been included in the work [Huerta M. et al 2015]. 

 

Availability: Crossing-clusters tool: http://wallace.uab.es/crscl 

 
  

http://wallace.uab.es/crscl


126 

 

  



127 

 

3.9. MGDB: comparing differentially expressed genes from different 
microarrays to compare phenotypes and sample clusters from 
different microarrays 

 

 

Since 2002, the Nature journals, among others, have announced that authors were thereafter 

required to deposit microarray data in public repositories like GEO [Barrett T. et al 2011] or 

ArrayExpress [Parkinson H. et al 2007] so that anyone could freely access and critically evaluate 

the data discussed in manuscripts [Nature 2002].  But how could all of these data help your 

particular research? How could all of this information enrich your expression data analysis and the 

phenotypes you have found in your data? 

 

To date, GEO archives approximately 20,000 studies comprising 500,000 samples, 33 billion 

individual measurements, for over 1,300 organisms, submitted by 8,000 laboratories from around 

the world, and supporting data for over 10,000 published manuscripts [Barrett T. et al 2011]. 

 

Samples within GEO datasets are further grouped and classified into subsets according to the 

experimental variables under examination in each study, for instance tissue or strain. So, any gene 

of the microarray will be a marker gene of the microarray if its expression displays a significant 

effect in relation to subsets, that is, if the expression values pass a threshold of statistical difference 

between any experimental-variable subset and another [Barrett T. et al 2011]. 

 

The experimental variables of GEO datasets are based on the sample origin, such as species, 

specimen, strain, individual, tissue, development stage, cell type, cell line, etc. on individual 

features like age or gender, on pharmacological experimentation such as agent, dose, protocol, etc. 

on the disease genesis such as genotype/variation, disease state, infection, shock, stress, etc. or on 

other experimental conditions like temperature or time. 

 

How can we establish a correspondence between these sample subsets perfectly classified by 

experimental variable and the sample clusters obtained by statistical methods from our expression 

data under study? We can do this by verifying that differentially expressed genes are the same in 

both microarrays, similar to cMAP procedure [Lamb J. et al 2006], because this can imply that the 

subsets of both expression matrices describe the same phenotypes. 

 

So, although the experimental-variable subsets of GEO microarrays are defined by microarray 

developers, and the experimental variables are subjected to the hypothesis that the researchers 

wanted to investigate, these microarray data can be reused for investigations around the world even 

when the hypotheses of these investigations are completely different from the microarray original 

hypotheses. 
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Our tool for crossing marker genes can be used for different purposes: 

 

 To study the role of marker genes of the user's microarray in other microarrays. 

 To assign biological meaning to the sample clusters of the user's microarray. This can 

include: 

o To compare the user’s experiments with experiments for the same pathology but in 

different tissues, in different species, or directly different pathologies. 

o To search for drugs whose effect causes the transition between the phenotypes 

studied in the user’s microarray. 

o To study the phenotype of different subsets of individuals under investigation. 

o To search undesirable side-effects of a treatment studied in the user’s microarray. 

 

The marker-gene database tool is composed by the elements set out below. 

 

 

3.9.1. Database of Microarray marker genes  

 

The samples of GEO microarray datasets are classified by experimental variable, such as treatment, 

protocol, disease state, patients condition, tissue, etc. So, our database of microarray marker genes 

contains the genes with statistically significant differences in their expression between any 

experimental variable subset and another for each GEO microarray. The aim of the marker-genes 

database is to use the marker genes (differentially-expressed genes) of each microarray to search for 

matching microarrays with respect to the user’s microarray. The system obtains these marker genes 

directly from GEO. The database of marker genes is updated monthly with the marker genes of the 

new datasets from GEO. 

 

 

3.9.2. Marker-gene search in the user's expression matrix  

 

The definition of sample clusters and the marker-gene search in the user's microarray is completely 

versatile. Our system provides the sample clusters calculated by common clustering methods (HC, 

SOM, SOTA, etc.) or allows the researcher to define the sample clusters based on his/her 

hypothesis. The marker genes can be searched for by having some of the clusters being up-regulated 

or down-regulated with respect to the basal value, or by being over-expressed or under-expressed 

with respect to other clusters. All possible combinations are allowed and different combinations will 

supply different sets of marker genes for the user's expression matrix [Huerta M. et al 2009]. This 

procedure permits the researcher to delimit the search of matching microarrays to a specific 

phenotypic change. 
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3.9.3. Crossing the user's microarray marker genes with the database of 

microarray marker genes 

 

By comparing the marker genes of the user's sample clusters with the marker genes of the database, 

the system returns all microarrays with common marker genes with respect to the specific search for 

the user's microarray. Then, the correspondence between the sample clusters of the user's expression 

matrix and the sample subsets of the matching-microarrays can be elucidated using the graphical 

interface (Figure 33). A correspondence can be established between two sample clusters from 

different microarrays if the common marker genes over-expressed in the sample cluster from one 

microarray are over-expressed in the sample cluster from the other microarray. 

 

 

3.9.4. Tool’s output interfaces 

 

When our application crosses the marker genes of the user's microarray sample clusters with the 

database of microarray marker genes, two types of lists are provided. 

 

 

3.9.4.1. List-of-microarrays view 

 

The list of matching microarrays is ordered by the number of marker genes in common between the 

user's microarray specific search and the matching microarrays. The list of microarrays can be 

filtered by the experimental variable, like “agent”, “dose”, or “time”, in order to delimit the 

matching microarrays listed to a concrete scope, or by keywords like “breast cancer”. The common 

marker genes between the user's expression matrix and each matching microarray can be analyzed 

in the list-of-marker-genes view. 

 

 

3.9.4.2. List-of-marker-genes view 
 

The common marker genes between the two microarrays are listed. The sample clusters 

arrangement along the gene expression is shown for each marker gene and both expression 

matrices. In this way, the researcher can quickly establish a correspondence between the sample 

clusters of his/her own microarray and the subsets of the public microarray. The more matching 

microarrays found, the more attributes that can be assigned to the user's microarray sample clusters. 

Note that the user's sample clusters could have been calculated by statistical methods and thus, their 

biological significance is unknown. 
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Figure. 33. The list of marker genes view. The common differentially-expressed genes between a matching 

microarray from GEO database and the user's expression data are listed (each row is a different marker gene). 

The arrangement of the sample clusters along the gene expression is shown for each gene and the sample clusters 

of the two microarrays (in two bar charts per row). Comparing the two bar charts of each marker gene the 

researcher can establish the correspondences between the sample clusters of his/her expression matrix and the 

subsets of the GEO microarray (the sample clusters on the same side in the two bar charts should represent the 

same phenotype). The right side of the bar charts represents the gene over-expression with respect to their left 

side. Dist value shows the difference in expression among the user's microarray sample clusters specified in the 

marker-gene search. The common gene markers are sorted by this Dist value. 

 

 

As a result, the user can enrich his/her expression data analysis, improve his/her future experimental 

design and check the hypotheses generated from the data in the ways cited previously and detailed 

below. 

 

This work has been published in [Huerta M. et al 2014]. 

 

Availability: Marker-gene database tool: http://ibb.uab.es/MGDB 

 

http://ibb.uab.es/MGDB
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3.9.5. Marker-genes database use cases 

 

Samples within GEO datasets are grouped and classified into subsets according to the experimental 

variables under examination in each study, for instance ‘tissue’ or ‘strain’. How could we establish a 

correspondence between these sample subsets previously classified by the experimental variables 

with respect to the sample clusters obtained by statistical methods from the expression matrix we 

are studying? The user's matrix genes will be marker genes of a public microarray if their 

expressions display a significant effect in relation to the public microarray subsets. Thus, by 

verifying that marker genes are the same in both expression matrices we could establish a 

correspondence between them, because both microarrays could describe the same phenotypic 

changes performed by the same marker genes. 

  

So, GEO and other expression-data repositories could be reused for subsequent investigations 

around the world even when their hypotheses under investigation are absolutely different from the 

originals. It is the aim of our Database of Microarray Marker Genes. 

  

Let’s see different research strategies or use cases to take advantage of the MGDB. The use cases 

are ordered from more generic to more specific. 

 

1. To corroborate or to question the hypothesis pointed out by user’s microarray experiments. 

2. To study the role of marker genes in the user’s expression data in other microarrays. 

3. To assign biological meaning to the sample clusters obtained by statistical methods from the 

user’s microarray data.  

4. To identify or define the phenotype of different subsets of individuals under investigation. 

5. To compare the user’s results with other assays in the same species.  

6. To compare the user’s results with human assays.  

7. To broaden the analysis of the user’s results with experiments in other species.  

8. To broaden the analysis of the user’s experiments with other pathologies.  

9. To extrapolate prognosis information from other analogue studies.  

10. To compare the user’s experiments with experiments in the same pathology, but in  different 

tissues.      

11. To search for drugs whose effect cause the transition between the phenotypes studied in the 

user’s expression data.  

12. To discover undesirable side-effects of a treatment studied in the user’s expression data. 

 

 

3.9.5.1. To corroborate or to question the hypothesis pointed out by user’s  

microarray experiments 
 

In that example, we wish to corroborate if our microarray for studying cancer really differs between 

cell stress and tumour proliferation. Our microarray under study contains the expression data 

provided by the National Cancer Institute (USA) [Scherf U. et al 2000] aforementioned (section 

2.1). 
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Our system incorporates the calculation of the most common global-clustering methods to cluster 

the microarray samples. These sample clusters represent the phenotypes that imply a higher number 

of coexpressed genes. We have used the Repeated-Bisection analysis to cluster the matrix samples. 

  

In our expression-data analysis we suspect that we have identified the phenotypes linked to two sets 

of sample clusters, one set (red and yellow clusters) corresponding to stressed phenotype and the 

other one (green and blue clusters) corresponding to proliferative phenotype. We have identified the 

sample clusters corresponding to the stressed phenotype because we recognize genes linked to 

stress that are over-expressed on these clusters, and we have identified the sample clusters 

corresponding to the proliferative phenotype because we know genes linked to tumour proliferation 

that are over-expressed on these clusters. 

 

Now, we wish to corroborate our hypothesis comparing our data with several microarrays about 

stress and cell-proliferation using MGDB queries. 

 

To perform this task, first we make a search of the genes differentially expressed between the 

sample clusters corresponding to the stressed phenotype and those corresponding to the proliferative 

phenotype. These differentially-expressed genes will be the marker genes of our study for the 

current microarray. 

 

 

 
 
Figure 34. Marker-gene search from the user's expression matrix. We want to identify those genes that 

differentially expressed the samples that correspond to the stressed phenotypes from those samples 

corresponding to a proliferative phenotype. In the menu of the search for marker genes, we require a different 

expression between red and yellow clusters versus blue and green clusters. These are the marker genes provided 

by our web-application. 
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Figure 35. Marker genes obtained as a result of the previous search from our expression data about cancer. The 

total number of marker genes found for this concrete search is 181. The full list is available in the supplementary 

material. 

 

 

Now, we will search for matching microarrays querying the Marker-Genes Database. These 

matching microarrays will be GEO DataSets that have marker genes in common with our 

microarray query. So, if the marker genes of the matching microarrays are the same as in our 

microarray query, the phenotypic changes studied in these microarrays could be also the same than 

those described by our expression data and may help to confirm our hypothesis. 

  

The more GEO GDSs confirm our hypothesis, the better our hunch will be corroborated. Let’s see 

several examples of microarrays that confirm our hypothesis. 

 

The matching GDS2307 about “Oxidatively modified LDL effect on retinal pigment epithelial cell 

line” identifies our stress clusters (red and yellow clusters) with the cell-stress phenotype described 

by these experiments, concretely with oxidative stress. 

 

To perform the correspondence between the sample clusters from both expression matrices, the user 

only should see the sample clusters over-expressed in his/her expression matrix and the sample 

subsets over-expressed in the matching microarray (at the right side of the bar charts), because these 

sample clusters, although from different datasets, will represent the same phenotypes (Figure 33).  
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Likewise, for the sample clusters under-expressed (at the left side of the bar charts), the user can 

establish a correspondence between the sample clusters of his/her expression matrix and the sample 

subsets of the matching microarray. The green triangle in the bar charts points out the basal value. 

This separates the sample clusters over-expressed from the under-expressed ones. The length of 

each bar points out the range in expression terms of the sample cluster represented by this bar. The 

circle on the bars points out the point with higher cluster’s samples density. The correspondence 

between a sample cluster from the user’s expression matrix and a sample subset from the matching 

microarray may be carried out comparing their bars, or the high-density mark of each bar. 

 

In the analyses performed next, the sample clusters are identified by the colour of the bars, both in 

the user’s expression matrix (right column) and in the matching microarray (left column). 
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Figure 36. GDS2307 about “Oxidatively modified LDL effect on retinal pigment epithelial cell line” is a matching 

microarray provided by our previous search. It identifies our stress clusters (red and yellow clusters) with the cell-

stress phenotype described by their subsets, concretely with oxidative stress. The total number of common marker 

genes found for this matching GDS is 51. The full list can be compared in the supplementary material. 
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The matching GDS2307 about “Oxidatively modified LDL effect on retinal pigment epithelial cell 

line” identifies our stress clusters (red and yellow clusters in the second column) with the cell-stress 

phenotype, concretely with oxidative stress (yellow cluster in the first column). In GDS2307 lilac 

cluster is untreated, red cluster is LDL treatment and yellow cluster is ok-LDL treatment (Figure 

36). 

 

GDS2307 is part of a study that concluded that the oxidized low density lipoprotein induces 

transcriptional alterations in genes related to lipid metabolism, oxidative stress and apoptosis. These 

data support the hypothesis that proteins oxidation could be a trigger for initiating early events in 

degenerative diseases. 

 

The matching GDS2090 about “Sphinosine 1-phosphate effect on glioblastoma cells” identifies our 

proliferation clusters (green and blue clusters) with a tumour-proliferation phenotype, even with 

invasion. 

 

GDS2090 and the associated study allow us to connect the green and blue sample clusters with 

aggressive tumours, whose growth is modulated by SP1, which could trigger the tumour expansion 

by inducing the expression of metalloproteases (Figure 37). 
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Figure 37. The matching GDS2090 about “Sphinosine 1-phosphate effect on glioblastoma cells” identify our 

proliferation clusters (green and blue clusters in the second column) with the tumour-proliferation phenotype, even 

with invasion (red cluster in the first column). In GDS2090 lilac subset is under the influence of epidermal growth 

factor (EGF), an important growth factor, and red subset is under S1P administration. The total number of common 

marker genes found for this matching GDS is 20. The full list can be compared in the supplementary material. 
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3.9.5.2. To study the role of marker genes in the user’s expression data in other 

microarrays 
 

From the above comparison between expression matrices we can observe the common marker 

genes between both microarrays and identify the role of the marker genes: they can be marker genes 

of cell stress or marker genes of tumour proliferation. 

  

We are especially interested in one of the marker genes provided by the search in our expression 

matrix under study: Collagen IV, because it is known to be a gene linked to tumour proliferation, 

since it is necessary to rebuild the collagen bridges in the process of tissue remodelling. 

 

We searched for COL4A1 in the matching microarrays and we found it in some of the matching 

GDSs that better discriminate among their sample subsets. 
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Figure 38. We wish to study the role of Collagen IV in matching GDSs because its link to tumour proliferation is 

well known. Collagen IV gene is a common marker gene in the comparison of some of the matching GDSs that 

better discriminate their sample subsets. The title of each GDS is shown on the right of the GDSID. The title of 

each sample subset is shown under the bar chart of each matching GDS. 
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One way to reach a profound understanding of the function of a gene in our phenotype under study 

is to exam those GDSs that match our microarray sample clusters and at the same time have this 

marker gene in common. These could supply important details on how this gene is implicated in 

cellular/tissular functions. As we examine more matching GDSs, we get to know more about our 

gene of interest. 

  

The GDSs listed in the Figure 38 describe phenotypic changes involving tissue remodelling, and the 

Collagen IV gene appears to be involved in these phenotypic changes.  

 

 

 

3.9.5.3. To assign biological meaning to the sample clusters obtained by 

statistical methods from the user’s expression data 
 

Looking at the previous comparison with the GDS2090 about “Sphinosine 1-phosphate effect on 

glioblastoma cells” of the case 1, we could assign attributes to the proliferative sample clusters 

(green and blue clusters) of our microarray like: invasion, migration, cell survival... (Figure 37) On 

the other hand, looking at the comparison with the GDS2307 about “Oxidatively modified LDL 

effect on retinal pigment epithelial cell line” of the case 1, we could assign attributes to the stress 

sample clusters (red and yellow clusters) of our microarray like: oxidative stress, apoptosis or future 

inflammation (Figure 36). 

  

As we examine more matching GDSs we can assign more attributes to our clusters.  

 

For instance, if we examine the comparison with the GDS2471 about “Serum amyloid A effect on 

endothelial cells: time course” we can assign new attributes to the proliferation sample clusters like 

matrix degradation (Figure 39). 
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Figure 39. In the comparison with GDS2471 about “Serum amyloid A effect on endothelial cells: time course” we 

could assign new attributes to the proliferation clusters (green and blue clusters in the second column) like matrix 

degradation (red cluster in the first column). In GDS2471 lilac cluster is untreated and red cluster is treated with 

Serum amyloid A. The total number of common marker genes found for this matching GDS is 26. The full list can be 

compared in the supplementary material. 
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3.9.5.4. To identify or define the phenotype of different subsets of individuals 

under investigation 

 
The process is exactly the same as the one followed in previous cases, and only the user’s 

expression data to be analyzed is different. In the case that the samples of the user's expression data 

were patients, clustering would detect patients sharing the same phenotype. So, if we look for the 

marker genes which separate these patient groups and seek the GEO GDSs with the same marker 

genes, we could establish the correspondence between the subsets of the matching GDS and our 

patient groups. Then, we could assign the phenotypes of these subsets to the patient groups (as a 

starting hypothesis for further investigations).  

 

 

The more matching GDSs assigning the same or similar phenotypes to the patient groups, the 

greater is the actual correspondence between patient groups and the phenotypes we try to relate. 

 

 

3.9.5.5. To compare the user’s results with other assays in the same species 

 
Our expression data and the matching GDSs compared in cases 1 and 3 are all human experiments. 

We could restrict the search for matching GDSs to a concrete taxonomy.  

 

 

3.9.5.6. To compare the user’s results with human assays 

 
The matching GDSs analyzed in cases 1 and 3 are all human experiments. But the purpose of this 

strategy is to search, for example, whether the results of our experiments in mice could be 

extrapolated to humans or if otherwise, the phenotypes pointed out by the same marker genes 

appear to be completely different in humans. This strategy can include physiological differences, for 

example, if want we want to discover if there is a difference between the phenotypes mediated by 

genes that control the circadian rhythm in humans with respect to our experiments with mice (a 

nocturnal animal). 

 

 

3.9.5.7. To broaden the analysis of the user’s results with experiments in other 

species 
 

The purpose of this case of study is the opposite of the previous one. We want to know whether the 

phenotypic changes studied in the user’s expression data (human) are also repeated in other species 

experiments. 

  

This strategy is very interesting to detect different metabolic pathways that carry out the phenotypic 

change we are studying in our expression data.  We achieve this goal by comparing our microarray 
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with animal-testing GDSs that study the effect of gene knockdown and similar procedures. If the 

phenotype resulting from the knockdown is the same as the phenotype observed in our expression 

data, then the metabolic pathway could be involved in our phenotypic change under study. This is 

especially useful if we are searching for a way to reverse the phenotypic change. 

 

Focusing on our study about stress and tumour proliferation, we could examine the comparison of 

our microarray with GDS483 about "DACH1-responsive genes" in mus musculus. GDS483 forces 

an over-expression of DACH1 gene induced by ponasterone A. This comparison identifies the 

phenotype with higher DACH1 activity with our proliferative phenotype (green and blue clusters). 

This could indicate a possible metabolic pathway for our tumour-proliferation phenotype, especially 

if we consider that DACH1 is an important regulatory gene in development and was found to inhibit 

(TGF-beta)-induced apoptosis (Figure 40). 



144 

 

 
 

Figure 40. GDS483 forces an over-expression of DACH1 gene induced by ponasterone A. This comparison 

identifies the phenotype with higher DACH1 activity (red cluster in the first column) with our proliferative 

phenotype (green and blue clusters in the second column). This could indicate a possible metabolic way for our 

tumour-proliferative phenotype. In GDS483 lilac cluster is 0 hours, red cluster is 18 hours and yellow cluster is 36 

hours. The total number of common marker genes found for this matching GDS is 15. The full list can be compared 

in the supplementary material. 
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Another type of experiment that could be carried out only on animals, but not on humans, is the 

response to virus or other lethal experimental conditions. In the comparison with GDS3434 entitled 

“Macaca mulatta model of Helicobacter pylori infection: time course” we can observe a 

correspondence between the response to H. pylori infection and our proliferative phenotype (green 

and blue clusters). However we could observe that the macaques with a PAI isogenic knockout 

attenuate the H. Pilory host response, indicating that the antimicrobial response could be mediated 

in a cag-pathogenicity island-dependent manner. This shows a possible way to develop our tumour-

proliferation phenotype, at least in gastric mucosa (Figure 41). 

 

 

 

 

 
Figure 41. In the comparison with GDS3434 entitled “Macaca mulatta model of Helicobacter pylori infection: time 

course” we could observe a correspondence between the response to H. pylori infection (red cluster in the first 

column) and our proliferative phenotype (green and blue clusters in the second column). The cag-PAI isogenic 

knockout revert the H. pylori infection phenotype (lilac subset in the first column). In GDS3434 lilac cluster is H. 

pylori - PAI isogenic mutant from 1 to 13 weeks, the red cluster is H. pylori infection from 1 to 13 weeks, the yellow 

cluster is the mock-infected control group and the green subset is the pre-inoculation control group. 

 

 

3.9.5.8. To broaden the analysis of the user’s experiments with other pathologies 

 
The matching GDS2471 compared in case 3 (Figure 39) is part of a coronary artery disease 

experiment. This matching GDS allows us to compare the phenotypes of different pathologies (its 

coronary-artery disease and our cancer). 

  

This pathology is not as usual as cancer but could be a clue for searching common treatments, for 

instance, by their effect on the cell-matrix degradation. 

  

This strategy is very useful because in some cases, apparently very different pathologies share 

similar phenotypes, and this strategy could reveal the opportunity of applying a specific pathology 

treatment in other different pathologies.  
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3.9.5.9. To extrapolate prognosis information from other analogue studies 

 
This strategy is focused on the comparison between the phenotypes studied in the user’s expression 

data with matching GDSs linked to prognosis. 

  

This is the most fruitless search of matching microarrays, because the researcher's searches for 

his/her phenotypes matching different phases of a disease or time series on a GEO GDS can hardly 

be expected to produce results, but it is also one of the most useful, if you are fortunate, and find 

this type of matching. If you find it, you not only can assign a stage of a disease to your phenotype, 

but you can also predict what will happen in the future (the incoming phenotype). 

 

Comparison with microarray time series and forecasting could also serve for studying the order in 

which the phenotypic changes studied in your expression data occur. That is, the previous 

phenotype and the subsequently phenotype, plus the intermediate phenotypic stages. 

  

In the example of case 1, GDS2090 about “Sphinosine 1-phosphate effect on glioblastoma cells” is 

contrasted with the stress and proliferative sample clusters of our expression data (Figure 37). In 

this GDS there are no future worst stages (like in our data), but the matching microarray could 

provide us information about the progression of the proliferative phenotype studied in our 

expression data, including invasion of surrounding tissues.  

 

 

3.9.5.10. To compare the user’s experiments with experiments in the same 

pathology, but in different tissues 

 
We examine the comparison of our expression data with GDS3060 about “Endometriosis: 

endometrial endothelial cells” (Figure 42) and with GDS2090 about “Sphinosine 1-phosphate effect 

on glioblastoma cells” (Figure 37) which shows us that cancer behaviour maintains common 

features along different tissues. Because our proliferative sample clusters correspond, at least in 

part, with the proliferative phenotypes of GDS3060 (endometriosis) and GDS2090 ( glioblastoma). 

Note that the common marker genes point out the part of the phenotypes in common. 

 

This strategy is interesting in pathologies like cancer where the pathology behaviour can be the 

same or can be different depending on the tissue affected.  
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Figure 42. The comparison of our expression data with GDS3060 about “Endometriosis: endometrial endothelial 

cells” or with GDS2090 about “Sphinosine 1-phosphate effect on glioblastoma cells” (Figure 37 of case 1) shows us 

that cancer general behaviour remains common among different tissues. In both GDSs the proliferative 

phenotypes from two different tissues, correspond with our proliferative phenotype (green and blue clusters). In 

GDS3060 (shown in the figure) lilac cluster is the control group and red cluster is endometriosis group. The total 

number of common marker genes found for this matching GDS is 18. The full list can be compared in the 

supplementary material. 
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3.9.5.11. To search for drugs whose effect cause the transition between the 

phenotypes studied in the user’s expression data 
 

In our study, we are interested in finding drugs that revert the proliferative phenotype of cancer 

towards the stress phenotype. 

 

Filtering the matching gds by agent subset type, we found GDS1256 entitled “IFN-gamma 

inflammatory effect on bronchial epithelial cells modulated by dexamethasone: time course” 

(Figure 43). In this microarray study, whereas the IFN-gamma would cause a phenotype similar to 

our proliferative phenotype, dexamethasone would partially reverse this process. In the comparison 

with our expression data, the red subset (IFN-gamma) in GDS1256 would correspond with our 

proliferative phenotype (Green and blue clusters) and the application of dexamethasone after IFN-

gamma (green subset) could correspond with our stress phenotype (yellow and red clusters) or a 

similar phenotype (because dexamethasone plus IFN-gamma produce different effects on gene 

expression than dexamethasone alone). In either case, this comparison aims to investigate 

dexamethasone as a possible drug to force the phenotypic change we desire. 

 

In the next sections we will disclose very interesting findings about the effect of dexamethasone on 

cancer by means of an in-depth analysis (also using bioinformatics tools). 

  



149 

 

 
 

Figure 43. Comparison with GDS1256: in the comparison of both microarrays the red subset(IFN-gamma) in 

GDS1256 would correspond with our proliferative phenotype (Green and blue clusters in the second column) and 

the application of dexamethasone after IFN-gamma (green subset in the first column) could correspond with our 

stress phenotype (yellow and red clusters in the second column). This comparison aims to investigate 

dexamethasone as a possible drug to force the phenotypic change we desire. In GDS1256 lilac subset is control 

group, yellow subset is dexamethasone, red subset is IFN-gamma and green subset is IFN-gamma plus 

dexamethasone.  

 

 

3.9.5.12. To discover undesirable side-effects of a treatment studied in the user’s 

microarray 

 
The expression data used to illustrate the different cases of use are data about treatments in cancer. 

However, it is not the type of expression data for which this strategy nº 12 is specifically addressed. 

This strategy is especially useful when we have control versus a treatment, or control versus 

different doses of a treatment. In such cases, if our subsets of treated samples match with a 

pathologic phenotype in a GEO GDS, while our subsets of control or applying a lower dose match 

with an absence of pathology phenotype, we can then suspect possible secondary effects of our 

treatment. 

 

Focusing on the expression data we are analyzing, we have previously seen in the last case of use 

that dexamethasone could interrupt the tumour proliferation to stress the tissue. Now we are 

interested in knowing if the post-drug administration phenotype could imply undesirable side 

effects. 
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Studying the matching GDSs with this purpose, we found the GDS2307 about”Oxidatively 

modified LDL effect on retinal pigment epithelial cell line” previously seen (Figure 36), and we 

realised that dexamethasone, when changes the cell from the proliferative phenotype to the stress 

phenotype, according to the GDS2307 comparison, could also imply some side-effects like: 

oxidative stress, apoptosis, future inflammations, future degenerative diseases, etc., as described by 

the GDS2307 study. 

  

Now the researcher must consider if these side effects could be serious enough to study them in 

depth.  

 

 

3.9.6. Comparison of online tools to search microarrays of interest from marker 

genes 

 

Several on-line tools that can be used to search for matching microarrays have been compared with 

our marker-genes database. To perform this comparison we once again apply the at_matrix used in 

the previous use cases. But now, we would like to find those microarrays which distinguish the two 

sample clusters that represent the tumoural proliferation in our expression data: blue clusters with 

respect to green clusters. The first step is to search for the marker genes which distinguish both 

phenotypes. We will use these marker genes in the different tools for searching for matching 

microarrays and compare the results. 

 

Symbols of the marker genes have been inserted in each one of the online tools and then 

microarrays with the same marker genes have been obtained. i.e., these genes will be both marker 

genes of the phenotypes studied in our expression data and the phenotypes studied in the matching 

microarrays. 

 

The analyzed online tools are: Marker Genes Database (MGDB), MicroArray Rank Query (MarQ) 

[Vazquez M. et al 2010], GEOGLE [Yu Y. et al 2009], Gene Change Browser (Genechaser) [Chen 

R. et al 2008], EXALT [Qiu Q. et al 2013] and Gene Expression data Mining Toward Relevant 

Network Discovery (GEM-TREND) [Feng C. et al 2009]. 

 

 

3.9.6.1. Interface analysis: operability, usability and functionality 
 

After comparing the different tools, the most appropriate ones for our study are determined: 

MGDB, MarQ and GEOGLE. MGDB turns out to be the most functional tool for our type of 

analysis and also the one with better usability and operability. 

Amongst the different online tools, MGDB is the only one that allows one to search for marker 

genes by expression difference between sample clusters from the user’s expression data. MGDB 

online tool provides then, a visual comparison between these sample clusters and the subsets of the 

microarrays with marker genes in common. Thus, it allows making a correspondence between the 

sample clusters of both microarrays for all the common marker genes. In addition to this, it allows 
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the search for microarrays with common marker genes for multiple species simultaneously. 

Furthermore, MGDB interface is very easy to use and the seek time for matching-microarray search 

is short. It also allows one to easily visualise the description of the microarrays with common 

marker genes. 

 

MarQ does not allow making a visual comparison between the sample clusters of the microarrays 

with common marker genes. On the other hand, its interface is very easy to use and the seek time 

for matching microarray search is not too long. However, it seems to be difficult to visualize the 

descriptions of the obtained matching microarrays. 

 

MarQ online tool has provided the largest number of microarrays with common marker genes (713 

microarrays). The criteria used by MarQ to consider which marker genes discriminate between 

subsets in each GEO microarray are possibly more permissive than those used by MGDB (340 

microarrays found) and GEOGLE (350 microarrays found).  

 

GEOGLE online tool allowed to find a number of matching microarrays similar to MGDB, 

although a 59,43% (208 microarrays) of the matching microarrays found are not the same in both 

tools. Most of the matching microarrays found by GEOGLE have been also detected by MarQ, 

those also detected by MGDB are not so many (320 microarrays of MarQ in common with 

GEOGLE and 257 microarrays in common with MGDB). As well as MarQ, GEOGLE does not 

allow to make a visual comparison between the sample clusters of the microarrays with common 

marker genes. However, it does allow correctly visualizing the descriptions of the microarrays with 

marker genes in common. The seek time for matching-microarray search is not too long. 

Nevertheless the GEOGLE on-line tool demands the user to start a short session which is somewhat 

uncomfortable. 

 

 

The less appropriate tools for our type of analysis are Genechaser, EXALT and GEM-TREND.  

 

Genechaser is not functional to search for matching microarrays to study our phenotypes of interest. 

Genechaser requires microarrays to content all the marker genes in common to be considered 

matching microarrays. So, if just one of the marker genes in the user's expression data is not also a 

marker gene in the GDS, this GDS is considered as not valid. Genechaser is useful for making a 

matching-microarray search with only one marker gene or a few marker genes, where this marker 

gene is the focus of the investigation. Instead, it is not recommendable to compare different 

microarrays and their respective phenotypes. 

 

EXALT and GEM-TREND have been excluded because they are not enough operational tools that 

are operational enough for our type of study. EXALT has problems connecting with its server and 

does not allow to make a search for microarrays with common marker genes. GEM-TREND has a 

difficult data-entry system for users. This system demands to insert the symbols of the marker genes 

in a document. If the text is not recognised by the tool, the search for matching microarrays is not 

done. 
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3.9.6.2.  Statistical analysis of the results provided by different tools 
 

The search for marker genes using MGDB allowed finding 56 marker genes. Some of these genes 

have been excluded (SID W 487351, SID 29828, SID W 346334, ESTs, SID W 115769, ESTsSID 

116296, ESTsSID 361648, Glutathione S-Tranferase p-log Correlation factor, Thioredoxin 

Reductase mRNA-log Correlation factor and Raf-1-log) for incompatibility in the search for 

matching microarrays using the other tools, remaining 46 marker genes. Most of the 46 remaining 

marker genes are marker genes for the blue sample-clusters proliferation. 

 

Marker genes marking the blue type proliferation:   

 
STX3, NEDD4L, C5orf32, CD9, SLC25A24, TSPAN6, CDH17, PTK2, NDRG2, ARHGEF12, 

SH3D19, TMBIM1, LGALS3, FCHO2, CTDSPL, GALNT3, DECR1, ERMP1, SLC25A13, 

CTTN, LOC151162, TSC22D1, LTBR, DDAH1, KLF3, PERP, MFAP4, GULP1, EPS8, LGMN, 

NRBP2, SYK, FAM3C, DDEF2, RHOBTB3, AZGP1 e ITGA6. 

 

Marker genes marking the green type proliferation: 

DCTN4, AIF1, FADS2, NAP1L1, IRX3,TDG, SLC15A4, RUNX1 y CENPF. 

 

Regarding the analysed species in the comparison of online tools, the fact that MGDB includes 

microarrays of other species and MarQ and GEOGLE do not, is not apparently relevant for the 

coincidence in the results of the different tools. MGDB provides 5 matching microarrays of non 

human species (GDS3267 Canis lupus familiaris, GDS2991 y GDS3623 Danio rerio y GDS1299 

and GDS35 Saccharomyces cerevisiae) while the other 335 microarrays belong to Homo sapiens. 

The microarrays compared with MarQ as well as those compared with GEOGLE belong to Homo 

sapiens. (These tests have been performed before introducing the homologene option for the 

comparison among microarrays of different species in MGDB).  

 

 

 

Genes which expressions separate green and blue type proliferation used 

in MarQ and GEOGLE:  46 

              

STX3 NEDD4L C5orf32 CD9 SLC25A24 TSPAN6 CDH17 

PTK2 NDRG2 ARHGEF12 SH3D19 TMBIM1 LGALS3 FCHO2 

CTDSPL GALNT3 DECR1 ERMP1 SLC25A13 CTTN LOC151162 

TSC22D1 LTBR DDAH1 KLF3 PERP MFAP4 GULP1 

EPS8 LGMN NRBP2 SYK FAM3C DDEF2 RHOBTB3 

AZGP1 ITGA6 DCTN4 AIF1 FADS2 NAP1L1 IRX3 

TDG SLC15A4 RUNX1 CENPF       

 
Table IV. Marker genes used in the search for matching microarrays in MarQ and GEOGLE. 
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Online tools 

    Coincidences 

 nº GDS GDS MGDB GDS MarQ GDS Geogle 

MGDB 340 _ 257 142 

MarQ 713 257 _ 320 

Geogle 350 142 320 _ 

 

Table V. Number of matching microarrays (with common marker genes) in common between the different online 

tools. 

 

From the matching microarrays detected by MGDB (340 microarrays), a 41,76% (142 microarrays) 

have been detected by GEOGLE and a 75,59% (257 microarrays) have been detected by MarQ. 
 

Coincidences of MGDB with respect to:  

 

MarQ-MGDB 75,59% 

GEOGLE-MGDB 41,76% 

 

Table VI. Percentage of matching microarrays (with common marker genes) found by MGDB and the rest of tools. 

 

From the microarrays detected by MarQ (713 microarrays), a 36,04% (257 microarrays) have been 

also detected by MGDB and a 44,88% (320 microarrays) have been also detected by GEOGLE. 

 

 

Coincidence of MarQ with respect to:  

  

MGDB-MarQ 36,04% 

GEOGLE-MarQ 44,88% 

 

Table VII. Percentage of matching microarrays (with common marker genes) found by MarQ coincident with the 

rest of tools. 

 

Finally, from the microarrays detected by GEOGLE (350 microarrays), a 40,57% (142 microarrays) 

have been detected by MGDB and a 91,43% (320 microarrays) have been detected by MarQ. 

 

 

Coincidence of Geogle with respect to:  

  

MGDB-GEOGLE 40,57% 

MarQ-GEOGLE 91,43% 

 

Table VIII. Percentage of matching microarrays (with common marker genes) found by GEOGLE coincident with 

the rest of tools. 
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A total of 142 matching microarrays have been detected in common by all the tools. 
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3.10. Studying the transition between phenotypes using non-linear 
expression relationships to solve paradoxes in cancer marker genes 

 
 

A phenotype is a consequence of the interaction among genetic and environmental factors. There 

are several thousands of disorders caused by single genes, in these cases the variation in certain 

traits or cellular functions can be controlled by single-expression variations. But this is not the 

general rule. Usually, traits or cellular functions are controlled by multiple genes, and a combination 

of multiple traits or cellular functions lead to the final phenotype. As aforementioned, only by using 

specific tools to study the dependence among phenotypes is it possible to deal with this complexity. 

This is the case of our study about the dual effect of glucocorticoids. The dramatic increase of 

expression sample series motivates a more subtle analysis of gene dependences throughout these 

large series in order to infer phenotypes from gene behaviour. There are several analytical methods 

that perform a global clustering of the microarray samples, such as Self-Organizing Maps [Kohonen 

T. and Somervuo P. 2002], or which perform local clusterings by considering only a subset of 

coexpressed genes, such as Biclustering [Wu CJ. and Kasif S. 2002], and so on. All of them build 

sample clusters based on gene-expression levels. The methodology developed improves these 

clustering methods because it enriches the final study of the generated sample clusters and also 

directs this study to the researcher’s objectives.  
 

Initially, our system detects different phenotypic changes involving a limited number of relevant 

genes which are greatly affected by these phenotypic changes. This detection is not based upon the 

study of gene-expression levels; instead, it is based upon: (i) the full expression-dependence among 

genes, and (ii) expression-dependence fluctuations. Finally, the phenotypic changes found by our 

system are linked with the sample clusters obtained by the different classical clustering methods. 

This fact will facilitate the subsequent study of complex phenotype interdependences. 

 

Our methodology to detect phenotypic changes is based upon the following two principles: First, 

since the different phenotypes are performed by different sets of coexpressed genes not linearly 

correlated among each other, the interdependence among these phenotypes cannot be described by a 

linear-expression relationship. Second, each fluctuation in a correlated expression relationship 

implies a phenotype change. Whereas the classical global and local clustering methods are focused 

on the detection of coexpressed genes, the proposed strategy is focused on the detection of non-

linear expression relationships between sets of coexpressed genes, because these relationships 

describe the interdependence among the phenotypes. 

 

Accordingly, we have incorporated a tool for the detection and classification of non-linear 

expression relationships in our web-application server for micorarray analysis [Cedano J. et al 2008; 

Huerta M. et al 2009; Cedano J. et al 2007], and on the other hand, we have incorporated the most 

common clustering methods applied to sample series [Yin L. et al 2006]. The clustering output data 

are represented together with the detected non-linear expression relationships with the aim to link 

both (Figure 45 of the next section). Furthermore, the system allows for crossing the results with 

GO, KEGG, PubMed, and other biomedical DB, to direct the final study to genes related to the 

researcher’s objectives [Huerta M. et al 2009]. As a result, an accurate dissection of phenotype 
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interdependences can be performed, and this dissection can be linked to biomedical information and 

current bibliography to focus the data analysis on the researcher’s area of interest. The conclusions 

that can be extracted from each work will depend in a great extent on the gene-expression matrix 

used as a base for these analyses and on how well this matrix represents the phenotypes that the 

researchers wish to study. 

 

 

3.10.1. Procedure that can be followed to solve different paradoxes 

 

The procedure followed to achieve our goals is: (i) to describe the different phenotypes, (ii) to study 

the glucocorticoid effect in each phenotype and the phenotype transitions promoted by 

glucocorticoid activity and, finally (iii) to discover if the difference in the effect of glucocorticoids 

in different tumour tissues lies in the phenotype that appears in each tumour tissue. As we finally 

confirm after our investigations. To achieve this, the expression-matrix genes related to 

glucocorticoids are identified. The links between glucocorticoid activity and the expression levels 

of these genes, and their variation, are obtained by the tools used for crossing databases. Then, the 

effect of applying glucocorticoids to each phenotype is studied from the non-linear expression 

relationships between the genes related to glucocorticoids, observing the variations in expression 

after the glucocorticoids supply pointed out by the literature. The details of the followed 

methodology are explained below.  

 

 

3.10.1.1. Classifying the expression-relationships by typology 
 

The curvature points of each expression-relationship are obtained from the POPs that describe the 

relationship’s inner pattern. In this manner, the expression-relationships are classified by typology 

based on these curvature points. This classification is a key point of the phenotype-interdependence 

analysis, given that each expression-relationship typology represents a concrete interdependence 

among phenotypes. Note that, in this way, for each non-regulatory gene we know its role in all 

phenotypic changes it is involved in.  

 

For our study of the contradictory effect of glucocorticoid administration in cancer, we search for 

complex expression relationships that can help to understand this dual behaviour. If there would be 

no paradox, the relationship between the drug administration (or another source of interest) and the 

tumoural proliferation would be linear, as well as the expression relationship between the marker 

genes of drug activity and the marker genes of tumoural proliferation. But in the case of the 

administration of glucocorticoids, the relationship between the drug administration and the tumoural 

proliferation is non-linear, so the expression relationship between these genes should be non-linear 

too. This is why detecting these non-linear expression relationships helps us to solve the paradoxes. 

 

As aforementioned, curve types like y
2
+x

2
=1 or y=x

2
 could detect dual behaviours of genes, 

because the over-expression/under-expression of a gene could imply a different phenotype 

depending on the other gene's expression level. Therefore, these will be the expression-relationships 

in which we will focus our research. 
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A variation in the expression dependence implies a phenotypic change. However, from an 

expression relationship between a pair of genes we do not know if its phenotypic changes affect the 

expression of the rest of the matrix genes. To discover it, we can relate this expression dependence 

with the sample clusters, which describe the global phenotypes of the expression matrix. 

 

 

3.10.1.2. Applying sample clusters to non-linear expression relationships 
 

For each uploaded expression matrix, the server calculates the most common clustering analysis 

applied to expression data: HC, SOTA, SOM, PAM, combined with the most common dimension-

reduction analysis: PC and multidimensional scaling. The clustering parameters are adjusted by 

evaluating the results by means of the most common integrity analysis: Silhouette and Dunn. The 

sample clusters are calculated for all matrix genes and represent the different phenotypes of the 

expression matrix. 

 

The graphic interface (the aforementioned expression-relationship detailed view) facilitates the 

analysis of the distribution of the sample clusters throughout the expression relationships [Cedano J. 

et al 2007]. Thus, we can study the links between the global phenotypes and the phenotypic changes 

described by the non-linear expression relationships (as is shown in the figures below). What brings 

significance to the current study of non-linear expression relationships is the fact that non-linear 

expression relationships distribute the clusters along their phenotypic changes (at both sides of the 

inflection point) if these phenotypic changes are global phenotypic changes. This fact helps us to 

relate the matrix phenotypes among them (and to study the global phenotypic changes).  

 

For our study of the contradictory effect of glucocorticoids administration in cancer, we apply the 

Repeated-Bisection method to cluster the samples. 

 

 

3.10.1.3. On-line tools 
 

Once the expression-matrix high-throughput analyses are performed, the on-line tools lead the 

researchers to focus their study in their topics of interest [CedanoJ. et al 2008; Huerta M. et al 

2009]. To facilitate this, the system allows crossing the results of the highthrougput analysis with 

GO, KEGG, PubMed, and other Biomedical databases [CedanoJ. et al 2008; Huerta M. et al 2009].  

  

In the current research, this facility is used to focus our study on genes related to the glucocorticoid 

signal in tumours and on tissue physiology (healthy and tumoural). Furthermore, this tool facility 

helps to contrast our findings with the current bibliography. 

 

Once the expression relationships that involve genes related with the drug activity are provided, we 

can study the phenotypic changes resulting from the drug administration based on the effect of the 

drug on the expression level of these genes related with the drug. Note that these expression 

variations must be previously known, since they should be provided by the literature. The gene-
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expression variations provided by the literature point out the direction of the phenotypic changes 

described by the expression relationship. Note that both starting phenotypes and resulting 

phenotypes after applying the drug must be well described in the expression data and must be 

detectable by clustering methods. 

 

 

3.10.2. How our procedure to solve paradoxes works 

 

This is a bioinformatics study, and glucocorticoids have not been directly applied in the microarray 

experiments analyzed (the at_matrix). The expression data used in the analysis has been used 

because it describes phenotypic changes in common among multiple tumour tissues, and thus, it can 

help us to describe the role of the genes implicated in the glucocorticoid response in these 

phenotypic changes. 

 

By means of this bioinformatics procedure we detect complex expression dependences that describe 

the different behaviours of the genes related to glucocorticoid response. Finally we have found that 

this different behaviour seems to be linked to the original healthy tissue of tumours and thus we 

solve the following question: why can glucocorticoids perform a different role in each of the two 

kinds of tumour tissues found? Because the genes implicated in glucocorticoid response have 

different levels of expression in the tumour tissues that can be stressed (SDTP) with respect to the 

tumour tissues that cannot be stressed (TDPT). 

 

In more detail, the bioinformatics procedure followed by us is as follows (Figure 44). 

 

The aim of our study is to describe the different tumour phenotypes, in which glucocorticoids could 

be applied, and thus discover if the difference in the effect of glucocorticoids depends on the 

phenotype of the different tumour tissues where the glucocorticoids are applied (as we finally 

confirm after our researches). The drugs used in our microarray experiments have a range of action 

wide enough to reveal the different phenotypes that are present in tumour cells of different tissues. 

Note that AT_matrix shows the expression levels necessary for drug action, not the resulting 

levels of drug action (this has been emphasised in the analyzed-expression-data section). These 118 

drugs are a subset of drugs coming from a previous, more extensive study that includes 1400 

different anti-tumoral substances. The final subset of drugs has been chosen because they seem to 

be a good representation of the other drugs with similar effects or because their way of action is 

well known. All of these details are widely explained in the paper of Scherf et al [Scherf U. et al 

2000]. 

 

The matrix genes related to glucocorticoids are identified to study the effect of glucocorticoids on 

the different starting phenotypes. Chemotherapeutic agents act on one or several therapeutic targets 

in the cell. In the case of glucocorticoids, their action is mediated by specific receptors, therefore, 

the cell-process activation or inhibition by glucocorticoids can only take place if these targets are 

expressed in the cell. In our study we have verified that some sample clusters that describe the 

different tumour phenotypes do not only express mature glucocorticoid receptors, but also express 

marker genes of concrete glucocorticoid activity.  
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Figure 44. Analysis pipeline to study paradoxes and contradictory behaviours of drugs.  Two types of analyses are 

shown in the figure, one type by calculations on the expression matrix and another one by crossing previous results 

with remote databases. First, we need a gene-expression matrix with a wide range of sample conditions and well 

differentiated phenotypes. Otherwise, it will not be possible to study the transition from one phenotype to another. 

On the other hand, if the expression values are not robust enough the results will not be valid. The first step of the 

analysis clusters the samples, where each cluster will represent a different phenotype because they affect 

differently the expression of the matrix genes. In our case these clusters will detect different tumoural phenotypes.  

Simultaneously, the non-linear expression relationships with high correlation will be detected and classified by 

curve type.  Curve types like y
2
+x

2
=1 or y=x

2
 will detect dual behaviours of genes. Next, the expression relationships 

related with the paradox of study are detected by consulting remote databases, in our case those in which genes 

related to glucocorticoid activity participate. Then, these non-linear expression relationships are crossed with the 

sample clusters, so that we can observe how the variations in expression lead from one phenotype to another one. 

When an expression relationship shows a dual behaviour, the activation of a gene will point to one phenotype or to 

another one depending whether the other gene activates or deactivates. Since all the expression relationships we 

study are between genes related to glucocorticoids, studying the effect of the drug on the expression of these 

genes (whether it increases or decreases their expression) we are able to know how the drug forces the transition 

from one phenotype to another. We get the effect of the drug on the expression of each gene from the genes’ 

state of art. Finally we access to the remote biomedical databases to contextualize the phenotypic changes found 

and finally find the hidden reason of our paradox. This procedure is useful if the paradox cause is two starting 

phenotypes (as in our case) or two final phenotypes after applying the drug. Note that both starting phenotypes 

and resulting phenotypes after applying the drug must be well described by the expression data and must be 

detectable by clustering methods. 
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The links between glucocorticoid activity and the variations of gene-expression levels are obtained 

by using the tools for crossing our results with biomedical databases. The effect of applying 

glucocorticoids to each tumoural phenotype has been studied from the phenotypes of the expression 

data, identified by the sample clusters, and the interdependencies between these phenotypes, 

described by the nonlinear-expression relationships of genes related to glucocorticoids. Once we 

know the link between glucocorticoids and the variations of gene-expression levels, we can follow 

the expression-relationship inner pattern to observe the transition from one sample cluster to 

another sample cluster. Meaning, from the starting phenotype to the phenotype after applying 

glucocorticoids. In our case of study we have two starting phenotypes; the two different tumour 

proliferation phenotypes. 

 

 

3.10.3. Why our procedure to study phenotypic changes in cancer works well? 

 

To study the phenotypic changes, we do not use all the expression relationships. Rather, we use only 

non-linear expression relationships. The biological significance of the non-linear patterns of non-

lineal expression relationships is supported by the correlation degree obtained in the calculation of 

the PCOP, and by the correspondence between the global sample clusters and the slope changes of 

the curves (pointing out that these slope changes describe global phenotypic changes). The drugs of 

the expression matrix have been classified using global clustering criteria, considering the entire 

dataset. In the representation of the expression relationship between a pair of genes (local 

representation), the points belonging to each subpopulation of treatments found by clustering 

methods (global representation) are distributed along the curve in a consistent manner. For example, 

the same cluster of treatments will be neither distributed at the two ends of the curve nor cleaved 

along the curve. As a result, if the nonlinear-expression relationships describe the transitions among 

the different phenotypes found by clustering methods (sample clusters), these non-linear expression 

relationships are not a product of random chance. On the contrary, this fact implies a biological 

significance, because these relationships are product of phenotypic changes that imply a variation in 

the expression dependence. Note that each phenotype of these phenotypic changes is identified by a 

different sample cluster and that the sample clusters identify the phenotypes that affect the 

expression of most of the matrix genes. Therefore, both the analyzed data and the results obtained 

are robust and consistent. 

 

This is an interesting way to make the complex world of gene expression understandable and to 

study the interdependence among sample clusters and phenotypes. Our tool allows researchers to 

have a very detailed view of how genes behave at the expression level and simultaneously, links the 

variations in the expression dependences with the sample-clustering analysis of the data (previously 

performed), and also with the literature. In this way, we can focus our analysis in concrete subjects 

and study the phenotypes resulting after a concrete variation of gene expression. The latter is 

particularly relevant if the phenotypes resulting after a gene-expression variation could be 

antagonist, from which the paradox stems. 
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3.10.4.  How do non-linear expression relationships help us to solve paradoxes or 

to reconcile previous studies with contradictory but correct results?  

 

The expression relationships between gene pairs work in 2 dimensions, one for each gene. One of 

the dimensions should represent the effect we wish to study (in our case, a marker gene of the 

presence or absence of tumoural proliferation). The other dimension should be a gene related to the 

paradox (for example, a target gene or membrane receptor of the drug). If we consider that the over-

expression and the under-expression of these two genes provide us 4 combinations of their 

expressions (g1 down + g2 down, g1 up + g2 up, g1 up + g2 down, g1 down + g2 up), a linear 

expression relationship would cover 2 expression combinations for these two genes, while a non-

linear expression relationship would cover 3 or 4 combinations depending on the typology of the 

curve. Each combination would represent a different phenotype, a phenotype that would involve 

these two genes, unless it would match with a sample cluster obtained by clustering methods, in this 

case, the phenotypes would imply most of the genes of the expression matrix. Given that each 

fluctuation of the curve would indicate a phenotypic change, the non-linear expression relationship 

would indicate how the transition from one phenotype to another one would be. If we study the 

effect of a concrete drug like glucocorticoids, the effect of this drug on the gene expression will 

indicate the direction that follows the expression relationship to pass from one phenotype to the 

other one (note that one of the genes is related with the drug of study and the other with the 

paradox). This makes the work much easier for researchers and makes possible the present study.  

 

There are obviously more genes affected by the application of glucocorticoids beyond the genes 

directly involved in the glucocorticoid response. When a phenotypic change occurs due to the 

administration of glucocorticoids, the effect over gene expressions and the number of genes affected 

is big enough to be detected by clustering methods (this effect is large enough to group the samples 

of the resulting phenotype in a different cluster than the starting one). The glucocorticoid target 

genes contribution is pointing out that this phenotypic change occurs after the administration of 

glucocorticoids. Since the level of expression of these genes before and after the application of 

glucocorticoids correspond with the phenotype of different sample clusters. The rest of the matrix 

genes whose expression also vary from one sample cluster to another one, will also be affected 

indirectly by the effect of glucocorticoids, and will also be involved in the phenotypic change 

represented by the cited sample clusters. 

 

In other words, a sufficiently large number of genes vary their expression between two sample 

clusters to a sufficient extent so that clustering methods detect these two sample clusters. How do 

we know that the effect of glucocorticoids will lead us from the phenotype that represents one 

sample cluster to the phenotype that represents the other sample cluster? Because using our tool we 

see that genes involved in the glucocorticoid response have relatively the same level of expression 

in one sample cluster as before glucocorticoid administration, and they have relatively the same 

level of expression in the other sample cluster as after glucocorticoid administration (the effect of 

glucocorticoids in these genes must be well known). From this fact we deduce that the effect of 

glucocorticoids could lead us from the phenotype represented by one sample cluster to the 

phenotype represented by the other sample cluster. As will be seen in the next section, analysing the 

complex expression relationships we see that the starting phenotype could correspond with a 
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tumoural proliferation with stress or to a tumoural proliferation without stress. Depending on the 

phenotype present in the tumour initially, the consequences of applying glucocorticoids will be 

different. 

 

Remember that Dexamethasone has not been used as a primary drug treatment in the expression 

data. As shown before, the microarray data have been used to obtain the common phenotypes in 

several cancer types. This is a very complex task, and the described procedure has made it possible. 

Once the different phenotypes in common among several tumour tissues have been detected using 

the expression-analysis tools, the description of these phenotypes has been performed crossing these 

results with the biomedical databases.  

 

Expression matrices can describe phenotypes involving very different aspects of the cell, because 

the expression of thousands of genes, which cover almost all cellular functions, can be observed for 

a same sample condition. Furthermore, the expression of these genes can be observed for a number 

of sample conditions large enough to describe a large number of phenotypes, which help us study 

the progress of pathologies and the eukaryotic cell performance. 

 

Nowadays there is a lot of expression data describing a multitude of different sample conditions. It 

is necessary to study all of these data and to extract the maximum amount of knowledge from all 

this public information about gene expression. Nevertheless, powerful bioinformatics tools able to 

extract information and search for patterns are necessary to perform this task. 

 

We are not the first researchers to re-use expression data for purposes different from the ones the 

microarray experiments were designed for. Expression matrices favour this kind of investigations 

since they allow a holistic vision of the different phenotypes providing the gene expression of each 

one. In the research published in Science [Lamb J. et al 2006] and Nature [Lamb J. et al 2007], 

public microarray data from very diverse experiments are used to search for possible therapies for 

new drugs also based on the gene expressions affected by the drug. In this research published in 

Nature and Science [Lamb J. et al 2006], they search for those microarrays that study similar 

phenotypic changes as the ones caused by the drug (comparing the genes affected in both cases). In 

our case, what we do is analyse an expression matrix with large sample series that properly describe 

the phenotypes we wish to study, in order to search for how the drug can cause the different 

phenotypic changes (studying the influence of genes affected by the drug). In this way, we can 

envisage whether the possible contradictions observed in cancer research, or others, can be solved 

by studying these phenotypic changes in depth. If so, the problem could be that we are considering 

several phenotypes that are actually different as the same phenotype (and so we can have different 

responses to the same drugs). 

 

Based on this hypothesis and using the developed tools, we have worked until we have clearly 

described those different phenotypes as well as the multiple behaviours of genes linked to 

glucocorticoid response. 

 

Note that the procedure of the aforementioned tools [Lamb J. et al 2007] is not useful for our study. 

As well as we do, Cmap, our GMDB, and others study the effect of drugs using marker genes like 

us. These drugs’ marker genes may vary their expression in public microarrays to establish a 
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correspondence between the effect of the drug and the microarray experiments (although those 

experiments do not test the drug of study). This relation between the effect of the drug and the 

microarray experiments is established because the target genes of the drug are affected in the 

phenotypes described by the microarray experiments, and if the affected genes are the same and are 

affected in the same way, it is considered that we are dealing with the same phenotype. However, 

their approach cannot be used for our study because these bioinformatics methods are more oriented 

to observe side effects and possible new applications of the studied drug than to solve paradoxes or 

to design new models like us. That is, the first ones would be exploratory methods, whereas the 

second approach would need bibliographic confirmation so that the conclusions are consistent with 

the previous studies (and finally solve their paradoxes). 

 

All the procedures presented in this section have been included in the work [Huerta M. et al 2014]. 

 

Availability:  tools and supplementary data: http://platypus.uab.es/GCinC 

  

http://platypus.uab.es/GCinC
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4. Solving marker-gene paradoxes in Cancer 

progression. The glucocorticoids case: Results 
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We have performed the analysis of expression data corresponding to the genes from 60 different 

tumoural cell-lines in response to 118 drugs [Scherf U. et al 2000]. The final data analysed are a 

robust gene-expression matrix (described in the section 2.1). Our objective in analysing these data is 

to study the phenotypes in common among different types of tissue. These data show the 

phenotypes where each drug acts, ignoring whether these phenotypes belong to one tissue or to 

another (two samples of the same tissue can be in two different phenotypes, and different tissue 

samples can be in the same phenotype). For this purpose, the correlation between the level of 

expression of the genes and the drug’s effect has been initially sought, gathering samples from all 

tumourous tissues. The samples of different tumour cell-lines become the data-cloud, with their 

corresponding level of expression and drug effectiveness. From these data we obtain the 

phenotypes, defined by the expression of the genes, in which the drugs act. Thus, in the final matrix 

we see that each drug will act in a concrete phenotype, which is common among different types of 

tissue (see the expression-matrix section for more details).  

 

Why does the expression matrix used (at_matrix), excells in describing the tumour 

phenotypes? These are the more relevant key points: 

 

1. Those genes whose expression is relevant only in a small subtype of cells will not be included in 

the final matrix, since only the genes with expression levels highly correlated with the drug’s effect 

will be selected regardless of the cell subtype. Then, we are only going to see those genes that 

would be expressed in representative cells with common features of many cell subtypes. Using this 

correlation, the samples of the final matrix represent the phenotypes in which the drug has its best 

performance. 

 

2. If the absence or presence of a gene does not affect the rate of survival or death of cell subtypes, 

this gene is not selected. This implies that the subset of selected genes and finally included in 

at_matrix is directly or indirectly implicated in relevant cellular functions. The oncological 

substances used in T_matrix block the main paths essential for cell survival, such as protein 

synthesis, DNA synthesis, DNA repair, synthesis of microtubules, etc.  

 

3. Only the genes with a differentiated expression between the cell subtypes where the drug acts 

with respect to the cell subtypes where the drug does not act, are included in the final matrix. This 

fact assures us that the final matrix genes can discriminate among different tumour phenotypes with 

their expressions. Note that another drug should act in the phenotype where the first one does not 

act. In this way the different tumour phenotypes are present in the final matrix. 

 

4. Another interesting advantage of using the correlation between gene expression and survival rate, 

instead of using the rough-expression data, is that we can work with cell types that express genes in 

quite different ranges of expression. That is, this kind of data could lead us to compare different cell 

types even when some of them do not share the same range of expression.  

 

5. Another interesting point is linked to laboratory conditions. Usually, cells present serious 

alterations in the levels of expression of some of their genes. This is usually a big problem, but as 

the data we use come from the correlation between the gene expressions of all cell lines with 



168 

 

respect to the survival for each substance, the problem is reduced (as it can be seen in Point 4.). The 

fact that some of these cell lines had some of their genes altered would not make it difficult to 

extract a general behaviour, because the rest of the considered cell lines are numerous enough to 

generate a strong correlation, if the gene is relevant enough to reach the phenotype where the drug 

has its best performance. 

 

The procedure followed trying to solve the paradoxes about the double effect of glucocorticoids in 

cancer progression is shown in the Figure 44 in the previous section. This includes sample 

clustering, detection of non-linear expression relationships, classification by type of curve, access to 

remote databases, and the analysis of dual behaviours. Throughout this section we will outline the 

results we obtain from the different phases of the pipeline. 

 

 

4.1. Expression-relationship typology reveals the role of the genes in 
phenotypic changes 

 

Whereas an expression-relationship fluctuation points to a phenotype change, the relationship 

typology indicates the kind of interdependence among the phenotypes. As aforementioned, our tools 

classify gene relationships by typology, because each different typology indicates a different kind of 

interdependence. So, these tools have been used to study the role of some genes related to the 

glucocorticoid signal in tumours, as this glucocorticoid signal does not always promote the same 

phenotypic changes. 

  

In this process, for the 1416 genes of the final matrix, 11244 significant non-linear expression 

relationships classified into 11 different typologies have been detected. From them, 122 genes and 

415 non-linear expression relationships were related to glucocorticoid activity. Below, some of the 

main relationship typologies are described together with the expression relationships that can help 

us to describe our findings. 

 

y = e
-x 

typology: This curve type describes two mutually excluding genes. One of the two genes 

must be under-expressed to make the other gene‘s over-expression possible.  

 

The DUSP6 and FERMT2 genes maintain this type of relationship between their expressions 

(Figure 45). FERMT2 is linked to tumour proliferation [Gozgit JM. et al 2006], whereas DUSP6 

has a tumour-suppressive function [Furukawa T. et al 2003; Okudela K. et al 2009]. Thus, this 

‘mutually excluding’ relationship divides the sample-space into two phenotypes: the cell-stress 

phenotype (which stops tumour proliferation to perform the cell function) and the tumour 

proliferation phenotype (which stops cell functionality). 
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Figure 45. FERMT2(x axis) and DUSP6(y axis) expression-relationship. The different sample conditions of the 

expression matrix [Scherf U. et al 2000] constitute the data cloud. FERMT2 expression is linked to tumour 

proliferation, whereas DUSP6 stops tumour proliferation. Their non-linear expression-relationship divides the 

sample space into two phenotypes, the cell-stress phenotype (which stops tumour proliferation) and the tumour 

proliferation phenotype (which stops cell stress). The samples of each of the clusters obtained by the Repeated-

Biclustering method are coloured differently. Cell stress phenotype corresponds to red and yellow clusters. 

Tumour-proliferation phenotype corresponds to blue and green clusters.  

 

 

y= -x
2
 typology: When this kind of expression-relationship is observed between two genes, the 

over-expression of the first gene involves only one phenotype, but this first gene under-expression 

involves two different phenotypes: in one phenotype the second gene is under-expressed, and in the 

other phenotype this second gene is over-expressed. This type of expression relationship is useful to 

study contradictions in expression behaviour. FKBP5, a key gene for our research, and EGFR 

maintain this typology in their expression relationship (Figure 46). EGFR is linked to tumour 

proliferation [Watanabe K. et al 1996], while FKBP5 is linked to chronic cell-stress [Billing AM. et 

al 2007]. FKBP5 expression is induced by the activation of steroid receptors, but it is involved in a 

negative-feedback, generating a high reduction of the glucocorticoid-receptor sensitivity when 

FKBP5 is over-expressed [Binder EB. 2009]. When looking at the relationship between the two 

genes (Figure 46), it can be seen that in the non-proliferative phenotype there are different levels of 
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cell stress marked by FKBP5 expression. In the chronic cell-stress phenotype, at maximum FKBP5-

expression levels, the glucocorticoid-receptor sensitivity is fully inhibited.  

 

y
2
 + x

2
 =1 typology: This typology usually implies a dual relationship, normally of type y=ln(x) and 

y=e
x
, or y=ln(-x) and y=e

-x
, or y= x

2
 and y= -x

2
. Searching for this type of expression relationship is 

very useful to solve paradoxes. NEDD4L, another key gene for our research topic, and CITED2 

maintain this type of relationship in their expressions (Figure 47). CITED2 expression indicates an 

increase of the cell-growth rate [Tien ES. et al 2004], whereas NEDD4L is related to ion-channels 

inhibition by means of ubiquitination [Araki N. et al 2009] turning the cell refractory to activation 

signals. Therefore, this relationship implies, first, a phenotype with low proliferation and active ion 

channels, and second, two different ways for proliferation increase: one with active ion channels 

(and y= x
2
 typology) and the other one with inhibited ion channels (and y= -x

2
 typology).  

 

 

 

 

Figure 46. EGFR (x axis) and FKBP5 (y axis) expression-relationship. EGFR enhances tumour proliferation 

[Watanabe K. et al 1996]. FKBP5 stabilises the glucocorticoid signal response at its maximum levels [Binder EB. 

2009].  The EGFR and FKBP5 expression-relationship shows us that the yellow samples represent the highly 

stressed phenotype within the cell-stress phenotype. 
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Figure 47. CITED2 (x axis) and NEDD4L (y axis) expression-relationship. CITED2 expression indicates a 

proliferation increase. NEDD4L is linked to ion-channel inhibition. Their relationship implies: first, a non-

proliferative phenotype and, second, two different ways of tumour proliferation: one with active ion channels (y= 

x
2
) and the other with ion channels being inhibited (y= -x

2
).  The samples of each of the clusters obtained by 

Repeated-Bisection are coloured differently in the display. The clusters are distributed in the following way: two in 

the non-proliferative phenotype (red and yellow), three in proliferation with ion channels being inhibited (pink and 

blue), and two in proliferation with active ion channels (green).  

 

 

4.2. Revealing the phenotype of the sample clusters from the 
phenotypic changes described by expression relationships 

 

The system takes the clusters obtained with global methods like SOM, HC or SOTA. The 

phenotypes represented by these sample clusters affect the gene expression of the matrix genes 

differently enough to be detected by clustering methods.  The system also facilitates the analysis of 

the distribution of these clusters throughout the non-linear expression relationships (Figure 45).  
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This leads researchers to analyse the links between these clusters that affect all matrix genes and the 

phenotypic changes described by the expression relationships between a gene pair. As 

aforementioned, if the sample clusters are distributed along the curve in a consistent manner, these 

non-linear-expression relationships are not a product of random chance and describe a phenotypic 

change that affects most of the genes of the expression matrix. In these expression relationships, the 

change of phenotype implies a variation in the expression dependence. As each one of these 

phenotypes is described by different sample clusters, the expression relationships can be used to 

study the interdependence among these clusters. The sample clusters used for our analysis were 

obtained by using the Repeated-Bisection method. The results are as follows: 

 

The FERMT2 and DUSP6 relationship (Figure 45) separates the sample-space into two phenotypes: 

the samples of cell-stress and non-proliferation (yellow and red clusters) and the samples of tumour 

proliferation (pink, blue and green clusters). 

 

The EGFR and FKBP5 expression-relationship (Figure 46) shows that the yellow samples 

correspond with the chronic cell-stress phenotype. 

 

The CITED2 and NEDD4L expression-relationship (Figure 47) helps us to differentiate between 

two proliferative phenotypes (green clusters vs blue clusters):  first, separating the cell-stress 

phenotypes, with low proliferation and active ion channels (yellow and red clusters), and second, 

separating and differentiating the two different ways for proliferation increase: one with inhibited 

ion channels (pink and blue clusters) and the other one with active ion channels (green clusters).  

 

Note that each sample cluster clearly represents a distinct phenotype; since each sample represents a 

different drug that acts in a concrete phenotype but not in others (see the expression-matrix section 

for more details).  

 

From the analysed microarray which contains 1416 genes, 11244 significant nonlinear-expression 

relationships have been detected and classified in 11 different typologies. From them, the non-linear 

expression relationships of 122 genes were related to glucocorticoid activity. Non-linear gene-

expression relationships can help us to describe the interdependence between phenotypes, so we 

select the non-linear gene-expression relationships performed by the genes linked to 

glucocorticoids, and in this way, we can study if the glucocorticoid activity can promote the change 

from one phenotype to another. In summary, from the results provided by the system (11244) we 

select the expression relationships that can better describe the phenotypes and phenotypic changes 

guided by glucocorticoid activity (122). The selection of these genes has been done using the 

bioinformatics tools previously described. These genes have been provided by crossing the genes of 

the expression matrix with the PubMed database and the query terms. The final genes have been 

chosen from the non-linear expression relationships of glucocorticoid-linked genes with known 

activity in tumoural tissues for their idoneity to explain the results of the analysis performed. These 

genes can be used to compare the phenotype of tumour tissues by their different levels of 

expression, but furthermore, since these genes are linked to glucocorticoid activity, they can also 

relate the tumour phenotypes with glucocorticoid activity. For instance, if glucocorticoid 

administration changes their levels of expression in a well known way (info provided by the 
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database crossing), these genes can help us to understand the phenotypic changes due to the 

glucocorticoid administration observing the change of phenotype when their expression levels vary. 

 

Note that dual behaviours are searched by means of non-linear expression relationships study (in 

our case the expression relationships of glucocorticoids-linked genes) but the phenotypes (in our 

case the two ways of tumour proliferation) are obtained by sample clustering and considering all 

the genes of the expression matrix. Thus, the phenotypes found (in our case the two ways of 

tumour proliferation) imply almost all of the genes of the expression matrix. In other words, there 

exists enough difference in expression terms between the stressed tumour tissues (SDPT) and 

the non-stressed tumour tissues (TDPT) and for a number of genes big enough to be detected 

by clustering methods. 

 

The non-linear expression relationships of glucocorticoid target genes with known activity in 

tumoural tissues detected by our system have been added to the supplementary material available in 

the web. The typology of each expression relationship has been also added to the supplementary 

material because the typology of the expression relationship reveals the gene role in the phenotypic 

changes. The bibliography that describes the link between the expression-relationship genes and the 

glucocorticoid activity has been also added to the supplementary material. With this supplementary 

data anyone can study the role of these genes with glucocorticoid activity in the two kinds of 

tumour proliferation described by the expression data analyzed.  

 

Not all of the non-linear expression relationships involving glucocorticoid-related genes provide 

new insights, because not all the genes of the gene pairs are known well enough, and because some 

of them provide us the same or similar information. Obviously, there are other expression 

relationships, not included in this section that provide relevant information about the two tumour-

proliferation phenotypes found, as the ones seen in previous sections. 

 

 

4.3. The glucocorticoids' effect on different tumour tissues 
 

The two different ways of tumour proliferation (pink plus blue clusters vs green clusters) seem to be 

the key point of the different effects of glucocorticoids administration in cancer patients. As shown 

below, NEDD4L plays a crucial role both in differentiating the tumour progression of both 

proliferation ways, as in this glucocorticoid effect. Using our online tool to cross the expression 

analysis with remote biological databases [Huerta M. et al 2009], these two tumoural growth ways 

have been related to the physiology of healthy tissues, and we have found that structural properties 

of the healthy tissue determine whether the tumour proliferates in one way or another. As we see 

next, the underlying reason for this phenomenon seems to be that some structural proprieties in 

healthy tissues are conserved even when the tissues become tumourous, conditioning the way 

tumours proliferate. 

 

NEDD4L plays a crucial role in phenotypic changes by marking membrane proteins for 

proteasomal and endosomal degradation. In this way, NEDD4L promotes ion-channel inhibition 

through Fe65 ubiquitination. Fe65 ubiquitination starts the degradation of ion channels like, for 
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example, ENaC (Epithelial Na
+
 Channel) [Araki N. et al 2009] or CACNB1 (voltage-dependent 

calcium channel) [Persaud A. et al 2009]. As a result, one of the two tumour-proliferation types 

(pink and blue clusters) prevents the cell from entering into stress during tumour growth by means 

of NEDD4L expression, which turns the cell refractory to ion-channel signals. This NEDD4L 

activity grows when the level of proliferation is not yet too high (pink and light blue clusters) and 

falls when the proliferation is already uncontrolled. The glucocorticoids activate the ion channels 

again, partly by means of the glucocorticoid inhibition of NEDD4L [Snyder PM. et al 2004], and 

lead the cells to the cell-stress phenotype (red and yellow clusters). It happens in tumour tissues like 

ovarian cancer cells [Chen YX. et al 2006], osteosarcoma [Yamamoto T. et al 2002], or 

glioblastoma [Kaup B. et al 2001], stopping the tumour proliferation of these tissues (TDPT). 

During this tumour-proliferation type, a strong signal like glucocorticoids is needed to switch from 

the proliferative phenotype to the cell-stress phenotype again. During the other tumour-proliferation 

type (green clusters), the ion channels are not altered by NEDD4L. This fact facilitates the normal 

switch between proliferation and cell stress during this kind of tumour growth. This combination of 

cell stress and proliferation is common in tissues like colon, endometrium [Gargett CE. et al 2008], 

prostate or mammary gland [Phesse TJ. and Clarke AR. 2009]. We found using our tools and the 

bibligraphy, that the physiology of these tissues facilitates the cell stress and proliferation 

combination: in all of them the proliferation and function are performed in different areas of the 

tissue and the new cells are immediately incorporated from the proliferation areas to the functional 

areas(SDPT). In colon tissue, for example (Figure 48), the proliferation is performed in the crypts 

and the colon function (and cell stress) in the villus. In mouse colon normal tissue, the stress signals 

increase the proliferation rate of the crypts [Clarke RM. 1975], even inducing hyperplasia 

(cells/crypt rate) [Newmark HL. et al 1991]. An excessive physiologic stimulation by 

dihydrotestosterone may induce nodular prostatic hyperplasia and by estrogen it may induce 

endometrium hyperplasia [Jasonni VM. et al 2005],  by thyroid-stimulating hormone it may induce 

the development of nodular goiters in the thyroid [Kumar V. et al 2009], and even a progesterone 

proliferative signal is required in breast cancer for a robust tumourgenesis induction by carcinogen 

or in mice Brca1-mediated mammary gland tumour models [Poole AJ. et al 2006]. In colon, 

aberrant crypt foci, adenoma and adenocarcinoma induction by carcinogenic agents are positively 

correlated with gastrin levels, a local stimulation signal of the colon promoted by the nervous 

system [Singh P. et al 2000]. Tumour-cell proliferation is retarded with an adrenalectomy, and this 

adrenalectomy retardation is reversed by the administration of hydrocortisone or synthetic steroids 

with a predominantly glucocorticoid activity [Tutton PJ. and Barkla DH. 1981]. In differentiated 

mammary glands, the mammary-specific stressor agent prolactin stress the cells and induces tumour 

growth. Cortisol achieve the same results, but to a lesser extent [Wennbo H. and Törnell J. 2000]. 

All of this show us that the effectiveness of stressor agents like glucocorticoids to stress these kind 

of tissues (stressed tumour tissues (SDPT)) and promote the proliferation has multiple regulations 

and intermediaries, which are different for each tissue, and that the relation between cell stress and 

induced proliferation is at least stress-level dependent. When high levels of cell stress are achieved, 

the glucocorticoid signal reception is finally disabled by FKBP5 in the way cited early [Binder EB. 

2009]. And it is in this glucocorticoid-receptor absence when the worst survival is manifested in 

cancers like colon [Theocharis S. et al 2003] or non-small cell lung cancer, as well squamous cell 

carcinoma as alveolar adenocarcinoma [Lu YS. et al 2006]. 
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Figure 48. The two proliferation ways found appears linked to the physiology of the tissues.  The physiology of 

tissues like colon or endometrium makes possible the cell stress and proliferation combination because the 

proliferation and function are performed in different areas of the tissue (SDPT) and the new cells are immediately 

incorporated from the proliferation areas to the functional areas. In colon tissue, for example, the proliferation is 

performed in the crypts and the colon function (and cell stress) in the villus. 

 

 

FKBP5 is a marker gene for chronic cell stress (Figure 46). However, FKBP5 has an opposite 

behaviour depending on tumour tissues: FKBP5 is expressed during tumour growth in colon cancer, 

whereas FKBP5 expression stops tumour growth of other cancers such as colorectal [Mukaide H. et 

al 2008]. In the same way, the glucocorticoid signal, which expresses FKBP5 [Billing AM. et al 

2007], has the same, opposite effect: It induces the proliferation of (SPDT) tissues like colon 

[Tutton PJ. and Barkla DH. 1981], pancreas [Zhang C. et al 2006], hormone-sensitive prostate [Herr 

I. and Pfitzenmaier J. 2006], or at a lesser extent, squamous-Cell-lung Carcinoma [Herr I. et al 

2003] and mammary gland [Sui M. et al 2006], but stops the proliferation of (TPDT) tissues like 

ovarian cancer cells [Chen YX. et al 2006], osteosarcoma [Yamamoto T. et al 2002], 

medulloblastoma [Heine VM. et al 2010] or glioblastoma [Kaup B. et al 2001]. The origin of these 

opposite behaviours seems to be the two kinds of tumour proliferation described before: Tissues like 

colon combine chronic cell stress with tumour proliferation (SDPT), whereas cancers like 

glioblastoma separate these two phases and, therefore, they cannot be stressed during tumour 

proliferation (TDPT). In this way, for glioblastoma, if the cells change their growth phenotype (blue 

cluster) to cell stress (red or yellow clusters), tumour proliferation stops. And for colon cancer, if the 

cells switch their phenotype (from green or red clusters) to a highly stressed phenotype (yellow 

cluster), the tumour becomes progressively more malignant (as described above). These tumoural 

features have direct medical implications, because they entail that treatments can induce 

counterproductive effects if they are not applied properly. Concretely, stressors like dexamethasone 

should be applied only when tumours appear in (TDPT) tissues that cannot be stressed during 

tumour proliferation (like glioblastomas), but even in this case it can become a problem: Although 

glioblastoma-type proliferation could be reduced, stressing agents could induce tumour proliferation 
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in other tissues with the colon-type proliferation (SDPT). This fact may be responsible for some 

metastasis increase after glucocorticoid supplementation during cancer therapy [Mattern J. et al 

2007; Sherlock P. and Hartmann WH. 1962]. With an opposite treatment, applying beta-blockers 

that inhibit the systemic adrenalin-stress signal, the spread of cancer is reduced [Powe D. 2010; 

Sloan EK. et al 2010]. Metastasis spread is a serious issue and its underlying mechanisms must be 

studied in-depth. 

 

All the findings presented in this section have been included in the work [Huerta M. et al 2014]. 

 

Availability:  Supplementary data are available at: http://platypus.uab.es/GCinC 

  

http://platypus.uab.es/GCinC
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5. Solving marker-gene paradoxes in Cancer 

progression. The glucocorticoids case: Dicussion 
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We can solve paradoxes or apparently incongruent experimental results by the acute dissection of 

the interdependencies among the phenotypes described by global sample clusters (obtained by 

SOTA, SOM, PAM, etc.). In the present study, NEDD4L and the other genes helped us to identify 

and characterize the two types of tumour proliferation. This correct identification and 

characterization of the two types of tumour proliferation may help to adjust the treatments correctly 

in cancer and other pathologies. It could also help in understanding and preventing future 

malignancy, recurrence and metastasis. Controlled randomized trials evaluating the impact of 

stressor agents on growth and metastasis in stressed (SDPT) and non-stressed (TDPT) tumour 

tissues need to be performed. Patient survival needs to be evaluated also. Currently, agents like 

those cited in this work are administered as adjuvant to treat undesirable side effects of 

radiotherapy, surgery or cancer itself [Philips RS. et al 2010]. 

 

New items around the glucocorticoid-administration paradox are constantly supplied to the medical 

discussion. This relationship between tumour growth and systemic hormones related with stress and 

produced in the adrenal glands is not restricted to glucocorticoids, a similar behaviour have been 

observed also in the case of the catecholamines. For instance, there is an interesting talk of the 7th 

European Breast Cancer Conference (2010) entitled: “Applying beta-blockers that inhibit the 

systemic adrenalin-stress signal, the spread of cancer is reduced” [Powe D. 2010; Sloan EK. et al 

2010], in which the relation between hypertensive stressor blockage and the reduction of metastasis 

incidence in oncologic patients is described. Furthermore, not only do glucocorticoids seem to have 

this dual behaviour depending on the original healthy tissue. Other drugs that stress tissues, like 

chemotherapy, appear to have a different behaviour depending on the original tissue (SDPT or 

TDPT). In a work about therapeutic effects of chemotherapy it can be observed that its therapeutic 

effects could depend on whether the tumours can be stressed or cannot be stressed [Morgan G. et al 

2004]. 

 

 
 

Table IX. [Morgan G. et al 2004]. 
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As it can be observed in the Table IX, in (SDPT) tissues where stress and proliferation occur in 

different areas (stomach, colon, pancreas, melanoma, prostate, bladder) the survival after 

chemotherapy does not increase, whereas in (TDPT) tissues in which proliferation stops when stress 

occurs (Oesophagus, Rectum, Cervix, Ovary, Testis, Lymphoma, Hodgkin), chemotherapy gets an 

increase of survival. 

 

Without a doubt this is an issue that needs to be studied in depth, and future researches may start to 

consider it. We can finally reconcile these apparent incongruities with our findings; however, there 

are still many remaining questions to answer. 

 

One of the great strengths of our analysis is that we find two major types of tumour proliferation, 

one (SDPT) in which the cell is actively dividing but which the main part of the tissue structural 

properties are preserved, the cells are differentiated (Figures 11-12) and very stressed (Figure 47), 

and another (TDPT) in which cell division is accompanied by a full tissue remodelling, inactivating 

the cells, and maintaining the cells unstressed until the tissue remodelling ends. Furthermore, these 

two types of tumoural cell divisions seem to be dependent on the structure of the original healthy 

tissue. 

 

At this point new questions come up. For instance, why is this different tumour proliferation 

dependent on the structure of the tissue? 

 

One of the possible reasons of this dependence can be that tissular function in one type of tissue is 

more dependent on the tissue structure than in the other type. The organogenesis of the lung 

(bronchi, bronchioles and alveoli) can serve to illustrate the idea. Proper lung function requires that 

the air comes from outside the body to the alveolar, so each and every one of the bronchi and 

bronchioles have to be interconnected in a dense network of pipes carefully subdivided to ensure 

that the subsequent bronchioles reach the correct air flow. All of this complies with the physical 

laws of gas dynamics, even responding effectively to multiple levels of demand for ventilation. To 

accomplish this, tissular function bronchioles are highly dependent on tissue structure and in lesser 

extent on cell function. Thickness, diameter and flexibility of the cartilage generated by the 

bronchial cell must change as branches into the lung toward the alveolar to properly fulfil the 

function of the tissue. However, the alveoli located at the end of this complex structure do not need 

to be sized depending on their relative position within the bronchial tree, as this is always the final 

element in this complex structure. In the case of alveolar cells of type I, their main function is to 

spread gases through it, between outside and inside the body, a function that is highly dependent on 

the cell and to a lesser extent on the tissue structure. 

 

This fact would have practical implications in tissues growth. During bronchi remodelling, the 

tissue cannot develop its cellular function, thereby it keeps in isolation from the external stimuli, 

which did not happen in low-complexity tumours (SDPT). As a result, whereas one type of tissue 

(SDPT) can be highly active during tissue remodelling (low complexity tissues of Figure 49), the 

other type (TDPT) cannot develop its cellular function until the tissue remodelling ends so it keeps 

in isolation from the external stimuli during remodelling (high-complexity structure linked to tissue 

function). As we show in our work, this fact is directly related to the observed differences in the 

response to glucocorticoids. 
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Figure 49. Location of stem cells in low-complexity tissues (SDPT) which main function is more dependent on cell 

than on tissue structure. Prostate gland. The putative prostatic stem cells are located in the basal cells 

surrounding the columnar secretory cells of the distal prostatic duct. Hair-follicle. Skin stem cells are located under 

the sebaceous gland in a region known as the bulge. During rest periods, stem cells of the bulge region form the 

base of the hair-follicle. During the start of each new growth cycle stem cells located at the base of the bulge 

become active to form the highly proliferative new hair germ. The interfollicular epidermis is a stratified epithelium, 

containing unipotent progenitor cells and transit-amplifying cells located in the basal layer. Basal cells 

differentiate upward to form the spinous, granular, and stratum corneum layers of the epidermis. Mammary gland. 

The mammary gland consists of a branching network of ducts, terminating in alveolar buds. Mammary stem cells 

are thought to be located in the basal, myoepithelial layer, which tightly surrounds the ductal epithelial layer. The 

secretory alveolar cells are also surrounded by a looser association of myoepithelial cells. Intestinal crypt. The 

crypt stem cell had previously been located to position 4–6, just above the base of the crypt. Recent data now 

suggests the putative stem cells of the intestine (red) are narrow cells located between Paneth cells near the base 

of the crypt. Cells leaving the proliferation zone migrate upward towards the villus tip and differentiate into one of 

three cell types, enteroendocrine cells, goblet cells, and enterocytes, to form the villus. A fourth cell type, the 

Paneth cells, migrate downward to the crypt base. Lungs. The putative lung stem cells are located at the junction 

between the branching, bronchial region and the alveolar sac, and express markers from ATII cells and Clara cell. 

[Phese TJ. and Clarke AR. 2009]. 
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According to our findings, the tissue information is quite relevant in relation to cancer prognosis 

and the effect of dexamethasone on it. As it is shown in our work, the two types of tumoural cell 

division found by our analysis seem to be dependent on the structure of the original healthy tissue 

(Figure 50). Therefore, another question to solve is: To what extent does this dependence exist? 

Does it exist also in metastasis? 

 

We have already explained that in some tissues the proliferation and function are performed in 

different areas of the tissue and that the new cells are immediately incorporated from the 

proliferation areas to the functional ones (SDPT). In colon tissue for example, the proliferation is 

performed in the crypts and the colon function (or cell stress) in the villus [Phese T.J. and Clarke 

AR. 2009]. 

 

 

 

 

 

 
 

 

Figure 50. Architecture and signalling in the small intestinal mucosa. Terminally differentiated intestinal epithelial 

cells (red) are found in the villi; only Paneth cells are located in the crypt base. Green indicates location of putative 

intestinal stem cells (dark green) and the transit-amplifying cells. Crypt base columnar cells (CBCs) selectively 

express the Wnt target gene Lgr5/GPR49. Gradients of pathways (or components) that induce stemness or 

proliferation are indicated in green. Triggers of differentiation are shown in red. [Brabletz S. et al 2009]. 
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Figure 51. From osteolytic to osteoblastic tumour progression. [Keller E.T. and Brown J. 2004]. 

 

 

 

But the dependence on the tissue structure seems to go even further beyond this. 

 

In the evolution of tumours in tissues with a function highly dependent on structure (TDPT), such 

as bone, it is common to observe two phases: first an osteoclastic phase followed by an osteoblastic 

one. In the first phase tissue resorption occurs with an abundance of osteoclasts. The second one is 

characterized by the proliferation of osteoblasts increasing the bone mass largely (Figure 51). 

 

This trend is so strong in this type of tissue, that even metastasis bone tumours coming from 

prostate primary tumours have these two phases (Figure 52). In this case, it has been pointed out 

that the bone microenvironment plays a role in the establishment and progression of prostate-cancer 

bone metastasis [Keller E.T. and Brown J. 2004]. Notice that these are not similar tumours, but that 

the primary tumour comes from a tissue with stress and proliferation separated areas (SDPT) and 

the secondary tumour develops in a tissue that must alternate stress and proliferation (TDPT).   
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Figure 52. Model for how prostate cancer induces bone remodelling. The prostate cancer cells initially (i) induce 

osteoclastogenesis and resorption of mature Iamellar bone. As the bone matrix is destroyed, it releases growth 

factors (ii) that induce prostate cancer cell’s growth factors growth and alter their phenotype. The changing bone 

microenvironment, enhances the prostat cancer cells’ production of osteoblastic factors (iii) resulting in production 

of woven bone. BMP, bone morphogenetic protein; CaP, prostate cancer cell; ET-1, endothelin-1; IL-6, interleukin-6; 

RANKL, receptor activator of NFκB ligand; TGF- β, transforming growth factor β. [Keller E.T. and Brown J. 2004]. 

 

 

 

We have seen already that stressing the tissues can stop tumour proliferation in high-complexity 

tissues with a functional structure (TDPT). But a simple question emerges:  Can we relaxing the 

tissue stop tumour proliferation in tissues with a function limited to the cell activity (SDPT)? 

 

The work of [Bonnet S. et al 2007; Michelakis E.D. et al 2007] shows us that it is also possible. In 

this work, researchers reactive the mitochondrial normal function, avoiding glycolysis (aerobic 

glycolysis), reactivating the K voltage-dependent channels, hyperpolarizing the cell and 

conceivably carrying the cell out of the stress phenotype (Figure 53). This action stops tumour 

proliferation in cancers like non-small cell lung cancer[Bonnet S. et al 2007], colon [Bonnet S. et al 

2007], mammary gland [Fantin V.R. et al 2006], endometrial gland [Wong J.Y. et al 2008] and 

hormone-sensitive prostate [Cao W. et al 2008]. 

 

The k voltage channels change the cell-membrane potential repolarising the cell getting it out of the 

stress phenotype. This action places the cell in a recovery post-stress phenotype, and kills most of 

the cells in the aforementioned tumours. 
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Figure 53. A Reversible Metabolic-Electrical Remodelling in Cancer Contributes to Resistance to Apoptosis and 

Reveals Several Potential Therapeutic Targets. In cancer, mitochondrial glucose oxidation is inhibited and energy 

production relies on the cytoplasmic glycolysis. This “inactivity” of the mitochondria likely induces a state of 

apoptosis resistance. Activation of PDH by DCA increases glucose oxidation by promoting the influx of acetyl-CoA 

into the mitochondria and the Krebs cycle, thus increasing NADH delivery to complex I of the electron transport 

chain, increasing the production of superoxide, which in the presence of MnSOD is dismutated to the more stable 

H2O2. Sustained increase in ROS generation can damage the redox-sensitive complex I, inhibiting H
+
 efflux and 

allowing the efflux of cytochrome c. Both cytochrome c and H2O2 open the redox-sensitive K
+
 channel Kv1.5 in the 

plasma membrane and hyperpolarize the cell, inhibiting a voltage-dependent  Ca
2+

 entry. The decreased [Ca
2+

]i 

suppresses a tonic activation of NFAT, resulting in its removal from the nucleus, thus increasing Kv1.5 expression. 

The increased efflux of K
+ 

from the cell hyperpolarises the cell membrane [Bonnet S. et al 2007]. 

 

This unstressed phenotype is also induced by the activation of PPARγ [Panigrahy D. et al 2005] 

stopping tumours of tissues with a non-functional structure (SDPT) like colon [Sarraf P. et al 1998], 

mammary gland [Apostoli A.J. et al 2014], prostate [Grommes C. et al 2004], or endometrial 

cancers [Nickkho-Amiry M. et al 2012]. PPARγ is activated by the lipid oxidation to prevent it. 

Cellular oxidative stress results in the conversion of LDL to oxLDL, and PPARγ can modulate the 

effects of oxLDL signalling (Figure 54). As well as glucocorticoids, PPARγ has been reported to act 

both as a promoter and suppressor of neoplasia, but in this case of the opposite cancers. The PPARγ 

activation could revert the stress phenotype stopping the tumours in stressed tumour tissues (SDPT) 

[Panigrahy D. et al 2005], whereas PPARγ expression in ovarian carcinomas (TDPT) is increased 

when compared with benign ovarian tumours [Nickkho-Amiry M. et al 2012]. 
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Figure 54. Crosstalk of PPARγ with NRF2, Wnt/β-catenin, and FOXO signaling pathways in oxidative stress 

response. In oxidative stress conditions the nuclear receptor PPARγ directly regulates a vast array of genes 

involved in the response to oxidative stress and exerts anti-inflammatory effects transrepressing NF-κB. PPARγ 

suppress phosphatidylinositol 3-kinase (PI3K)/Akt/Rac1 signaling axis via activation of PTEN resulting in 

decreased reactive oxygen species (ROS). ROS and other reactive species activate NRF2 and PPARγ that are 

linked by a positive feedback loop that sustains their expression. Through a negative feedback PPARγ inhibits 

Wnt/β-catenin and induces cell block. [Polvani S. et al 2012]. In tumours and other pathologies the equilibrium 

between PPARγ and Wnt/β-catenin is broken [Lecarpentier Y et al 2014]. 

 

An increasing of mitochondrial membrane potential is linked to a progressive stimulation of 

mitochondrial respiration and results in the cell stress of stressed tumour tissues (SDPT) [Fantin V. 

Et al 2006]. The stressed cells of stressed tumour tissues (SDPT) lose their normal mitochondrial 

function and change the way to obtain energy from mitochondrial respiration to the aerobic 

glycolisis, stressing more the cells stuck in a downward spiral [Fantin V. Et al 2006]. The difference 

between the ways to obtain energy of the two types of tumour proliferation can lie on the energy 

needs of each type of tumour proliferation. The stressed tumour tissues (SDPT) have an 

asynchronous demand of energy, dependent on the stress demand [Patra K.C. and Hay N. 2014], 

whereas non-stressed tumour tissues (TDPT) have a synchronous demand of energy, dependent on 

the tissue-remodelling timings. In this way, the priority for the stressed tumours (SDPT) seems to be 

to get energy rapidly, and for the non-stressed tumour tissues (TDPT) to obtain energy efficiently. 



187 

 

The different criterion to obtain energy of the two types of tumour proliferation found is also 

reflected in the expression data of study of the current work. PDP1 (pyruvate dehyrogenase 

phosphatase catalytic subunit 1) reverse the effects of pyruvate dehydrogenase kinases as previously 

seen with DCA (Figure 53). In our expression data, PDP1 appears over-expressed in the non-

stressed tumour proliferation (blue sample clusters), maximising the mitochondria efficiency. PDP1 

appears under-expressed in the chronic stress phenotype, pointing out a mitochondria deregulation.  

 

This criterion to obtain energy seems to be also reflected in the number of mitochondria, which is 

larger in stressed tumour tissues (SDPT) than in non-stressed tumours (TDPT) [Langmesser S. and 

Albrecht U. 2006; Cuezva J.M. et al 2009].  After the quiescence, the number of mitochondria 

grows to satisfy the energy demands [Wagatsuma A. and Sakuma K. 2013]. PPARγ control 

mitochondrial biogenesis [Simmons G.E. et al 2015]. The action of PPARγ stopping the tumour 

proliferation of tissues like lung  lies, at least in part, in increasing the number of mitochondria[Kim 

J. et al 2015], which recovers the mitochondrial respiration and finish the aerobic glycolosis, getting 

the cell out from the stress phenotype [Miglio G. et al 2009]. Again, as with DAC, after PPARγ 

activation, the cell go out from the stress phenotype by means of potassium channels like calcium-

operated IK(ca) and BK(ca) potassium channels[LoVerme J1. et al 2006]. The different criterion 

followed by the two types of tumour proliferation to obtain energy determines the different 

membrane polarity of the two types of tumour proliferation.  

 

Thus far, we know why the two types of tissues (SDPT and TDPT) have a different tumour 

proliferation, we also know that stressor agents stop tumour proliferation in tissues with a highly 

functional structure (TDPT), and relaxing agents stop tumour proliferation in tissues with a function 

limited to cell function (SDPT). We know that the two tumour proliferation ways follow a different 

criterion to obtain energy. Nevertheless, we don’t know how these two types of tumour 

proliferation ways are carried out.  

 

This could be linked to the aforementioned membrane potential and cell polarisation of stressed and 

unstressed cells. Whereas in the tumour proliferation of tissues with highly-functional structures 

(TDPT), the cell is hyperpolarised, a characteristic treat of non-stressed tissues (TDPT), in the 

tumour proliferation of tissues based on cell function (SDPT), the cell is depolarised, a 

characteristic treat of stressed tissues (SDPT) [Pokorný J. et al 2014]. 

 

The membrane potential of the cell membrane and the mitochondrial inner membrane are closely 

linked. Because both are sustained on the difference of potential at both sides of the membrane. 

Thus, a mitochondrial membrane depolarisation implies a cell membrane hyperpolarisation, and 

vice versa. 

 

Again we can observe a difference between the two types of tumours found. The stressed tumours 

like non-small cell lung cancer or mammary-gland cancer have a hyperpolarised mitochondria and a 

depolarised cell membrane [Bonnet S. et al 2007] and the unstressed tumours have a depolarised 

mitochondria and a hyperpolarised cell membrane [Pokorný J. et al 2014]. As can be seen in the 

Table X. Remember that stressed tumours come from tissues which tissue function is mainly based 

on cell function and have proliferation areas and function areas (SDPT), and unstressed tumours 

come from tissues with a tissue function highly linked to the tissue structure (TDPT). 
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Table X. Mitochondrial inner membrane apparent potential of healthy and cancer cells. [Pokorný J et al 2014]. 

 

 

The transitions between the depolarisation and hyperpolarisation of the cells in healthy tissues are 

governed by circadian rhythms and activity, which alters these circadian rhythms prolonging the 

activity phase. The circadian rhythms guide the cyclic transitions between a stress phase and a post-

stress tissue recovery phase. As a result of the changes in membrane potentials in tumour cells, 

these circadian rhythms are altered in tumour tissues [Lecarpentier Y. et al 2014]. In stressed tumour 

tissues (SDPT) the circadian stress phenotype is prolonged and in non-stressed tissues (TDPT), the 

circadian post-stress recovery phenotype is prolonged. In a similar way, a tumour in a peripheral 

organ alters the circadian rhythms of the organism [Savvidis C. and Koutsilieris M. 2006]. The 

stressed tumours prolong the activity phase of the organism, and the non-stressed tumours prolong 

the post-stress recovery phase of the organism. This affects, for example, the organism hormone 

production, retarding the cortisol production in early stress phenotype, or the melatonin production 

of the post-stress recovery phenotype [Savvidis C. and Koutsilieris M. 2006].  

 

This fact also has medical implications, since hormones like melatonin or cortisol affect tumour 

development (with a different effect on stressed tumours (SDPT) and on non-stressed tumours 

(TDPT)). For instance, women with endometrial cancer (a stressed tumour) have lower melatonin 

levels [Viswanathan A. and Schernhammer E. 2008]. Releasing cortisol earlier in the day and 

melatonin at the beginning of the night, organism tries to synchronise the circadian clock of the 

different organs. In fact, when we administrate glucocorticoids to treat non-stressed tumour tissues 

(TDPT), we are acting in the same way than the suprachiasmatic nuclei (SNC) trying to adjust a 

disrupted circadian rhythm in a peripheral tissue (Figure 55.b). The hormone oxytocin launch the 

transition from the body’s stress phase to the post-stress recovery phase [ Viero C. et al 2010; 

Lawson E.A. et al 2013]. Serotonin peaks follow oxytocin peak, and then serotonin is transformed 

into melatonin. Oxytocin also acts in peripheral tissues by means very different ways. It stops the 

tumour proliferation in stressed tumours (SDPT) like prostate [Whittington K. et al 2004].  And it 

allows the tissue remodelling in tissues that cannot combine proliferation and stress (TDPT) like 

bone. Oxytocin knockout mice have severe osteoporosis, and administration of oxytocin improves 

bone microarchitecture in these mice [Lawson E.A. et al 2013]. The oxytocin signal can be 

synchronous or asynchronous. 
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Figure 55. (55.a) The molecular clock. Transcription of the core clock genes Bmal1 and Clock results in their 

heterodimerization in the cytoplasm and the translocation to the nucleus. These helix-loop-helix transcription 

factors bind to canonical E-Box sequences of clock-controlled genes (CCGs), driving circadian processes and their 

own expression. In addition, the expression of negative (PER and CRY) as well as positive (ROR) regulators of this 

cycle is induced. The PER/CRY complex represses the binding of BMAL1–CLOCK to target genes, whereas ROR 

induces Bmal1 expression. After a period of time, the PER/CRY complex is degraded and BMAL1–CLOCK 

activates another transcription cycle. A second autoregulatory feedback loop is induced by transcription of REV-

ERBs. The REV-ERBα–REV-ERBβ complex represses Bmal1 transcription and competes with ROR for binding of 

ROREs. This pathway stabilizes the clock, and it can also directly drive circadian rhythms. The molecular clock does 

not only depend on transcriptional feedback but is also regulated by rhythms in the post-translational 

modifications of proteins, such as oxidation cycles of peroxiredoxins (PRXox(idized)/PRXred(uced)), as well as 

NADPH and NADH. NADPH and NADH can directly modulate the binding of the BMAL1/CLOCK complex to DNA. 

(55.b) Entrainment and synchronisation. Circadian rhythms are entrained by external cues, of which light is a major 

contributor. Light is processed via the retina, leading to synchronization of rhythms in hypothalamic 

suprachiasmatic nuclei (SCN), which comprise the master clock of the organism. From here, humoral and neural 

output systems modulate clocks in peripheral tissues via the hypothalamic-pituitary-adrenal (HPA) axis, setting a 

common circadian phase. Release of adrenocorticotropic hormone (ACTH) from the pituitary gland cooperates 

with the sympathetic nervous system (SNS) to regulate rhythmic release of hormones (glucocorticoids, epinephrine 

and norepinephrine) from the adrenal glands. In addition, the SNS directly innervates tissues, and can modulate 

circadian rhythms locally via the cyclical release of norepinephrine from nerve varicosities [Scheiermann C. et al 

2013]. 
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The master regulator site of body circadian rhythms is the suprachiasmatic nucleus (SCN) inside the 

hypothalamus in which core clock genes are rhythmically expressed. In addition to this central 

clock, each organ has its own biological clock system, termed peripheral clock. The SCN and most 

peripheral tissues such as heart, blood vessels, skeletal muscles, kidneys, liver, and fat, govern 

numerous functions that are synchronized with the sleep-awake cycle. Peripheral clocks have their 

own regulatory mechanisms, which are specific to each peripheral organ by regulating the 

expression of clock-controlled genes. Both, central and peripheral clocks, are governed and 

modulated by the demands of activity through the changes in cell-membrane polarity [Colwell C.S. 

2011]. These activity demands stress the cells and depolarise the cell membrane. The circadian 

switch of the central clock, between the stress phase and the post-stress recovery phase, can be 

induced by heat, as in our experiment on zebrafish. Zebrafishes can induce themselves a phenotypic 

change from stress phenotype to a post-stress recovery phenotype after a virus infection. They force 

this transition to the post-stress recovery phenotype swimming towards hotter waters, increasing 

their survival rates as a result [Boltana S. et al 2013]. Fever is a common response in mammals to 

induce the post-stress recovery phenotype (from a stress phenotype previously induced by a virus 

infection, among others). This recovery phenotype activates the immune system.  

 

BMAL1 is the clock gene that initiates the gene activation downstream of the circadian activity 

phase. CRY1 retards the transition to the resting phase under demands of acute activity. PER2 tries 

to support the demands of acute activity and prepares the circadian resting phase to be proportional 

to the previous demand of activity. Bmal1 levels are high at the beginning of a subjective day and 

low at the beginning of a subjective night [Fu L. and Lee C.C. 2003]. Transcript levels of both, Pers 

and Crys, are anti-phase to Bmal1 expression [Colwell C.S. 2011]. 

 

CRY depolarises the membrane through redox-based regulation of a K+ channel conductance, 

stressing the cell in drosophila. This CRY membrane depolarisation by potassium channel 

modulation depends on flavin-specific redox reactions [Fogle K.J. et al 2011]. BK channel 

expression is regulated by PER2. Per2 mutants have shorter [Meredith A.L. et al 2006], hampering 

the transition to the recovery phase. 

 

The affectation of the circadian rhythms by the two types of tumour proliferation found is also 

reflected in our expression data of study. In our expression data, CRY1 appears over-expressed in 

the stress phenotypes (red and yellow sample clusters) and in the stressed tumour proliferation 

phenotype (green clusters), expanding the circadian stress phase. CRY1 appears under-expressed in 

the non-stressed tumour proliferation, anticipating the circadian recovery phase in these tumours.  

 

Circadian rhythms operate far-from- equilibrium and generate order spontaneously by exchanging 

energy with their external environment. PPARγ presents circadian properties which coordinate the 

interplay between metabolism and circadian rhythms. PPARγ is a peripheral regulator of rhythms 

like cardiovascular [Lecarpentier Y. et al 2014]. Deletion of PPARγ in mouse suppresses or 

diminishes the resting phase expanding the activity phase. Nocturnin binds to PPARγ and stimulates 

its transcriptional activity whereas its deletion suppresses PPARγ oscillations [Lecarpentier Y. et al 

2014]. 
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The relaxing action of PPARγ is not limited to the peripheral organs. Activation of central PPARγ 

reduces sympathetic excitation distressing the organism. PPARγ and sympathetic nerve activity 

(SNA) antagonistically regulate energy metabolism with the former promoting anabolism and the 

later favouring catabolism [Lecarpentier Y. et al 2014]. Global deletion of PPARγ in mice abolished 

or dampened circadian rhythms at both behavioural and cellular levels [Chen L. et al 2014]. 

 

Two major systems interfere with circadian genes: the canonical Wnt pathway, and the PPAR 

system. As shown in Figure 54 both are antagonists. PPARγ is linked to take the cell out of stress 

and Wnt pathway is linked to stressed-tumour proliferation. Activation of the Wnt/β-catenin 

signaling pathway decreases PPARγ activity in colon cancer cells and a loss-of-function mutations 

in PPARγ is associated with human colon cancer [Lecarpentier Y. et al 2014]. There is an opposite 

between activation of the Wnt pathway and PPARγ, and the gene finally activated will decide the 

future of the cell. Activation of the Wnt system with inactivation of PPARγ favours diabetes, 

hypertension, cancers in (SDPT) tissues that develop stressed tumours, and neurodegenerative 

diseases [Lecarpentier Y et al 2014]. All of these pathologies are linked to cell stress. The reverse is 

observed in osteoporosis, Alzheimer disease, bipolar disorder, schizophrenia, and myocardial 

ischemia [Lecarpentier Y et al 2014]. All of them are linked to a progressive loss in number of cells 

possibly due to inactivity.  

 

As aforementioned, colon cancer is linked to a circadian rhythm dysregulation. Concretely, 

extending the circadian active phase. Down-regulation of PER2 increases β-catenin protein levels 

and leads to cell proliferation in colon cancer cell lines and colonic polyp formation. PER2 gene 

activation suppresses tumourigenesis in colon by down-regulation of β-catenin. Increased β-catenin 

affects the circadian clock and enhances PER2 protein degradation in colon cancer [Lecarpentier Y 

et al 2014]. PPARγ can revert this dysregulation of the circadian rhythm, promote the change of 

circadian phase, and lead the cell from the stress phenotype to the post-stress recovery phenotype. 

PER proteins are considered to be inhibitors of cell cycle progression and β-catenin activation. 

BMAL1 on the other hand, activates cell proliferation, β-catenin pathway, and is strongly associated 

with colon cancer initiation and poor clinical outcome [Karantanos T. et al 2014]. PER2 has been 

reported to be a tumours suppressor gene whose expression inhibits the formation of a variety of 

tumours, including breast, prostate, lung, and lymphoma [Hill S.M. et al 2015]. 

 

Melatonin impedes the stress phenotype repressing the transcriptional activity of RORα1, a member 

of the NR/steroid hormone receptor superfamily, and a transcriptional inducer of the core clock 

gene BMAL1 (Figure 55.a). In breast cancer and human breast epithelial cells, melatonin 

administration significantly repressed RORα1 transactivation by inhibiting its induction of BMAL1 

gene expression [Hill S.M. et al 2015]. Melatonin can restore the levels of Per and Cry, and 

lowering the levels of Bmal1, reducing the prostate cancer growth [Jung-Hynes B. et al 2010]. 

 

Actually the pathological disruption of the circadian rhythms is closely related with the circadian 

control of the healthy tissues. Sometimes, this circadian disruption is non pathological and entirely 

functional, but if the control fails can quickly become pathological. This close connection between 

the functional and pathological switches, between the stress phase and the recovery phase, can be 

clearly seen in the circadian alterations of mammary-gland cycles and endometrial cycles. 
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Mammary glands proliferate as required during pregnancy, and undergo apoptosis or reversible 

transdifferentiation during involution once lactation is complete. During pregnancy a non-stressed 

proliferation of undifferentiated mammary glands is performed [Brisken C. 2002; Owens T.W. et al 

2014]. When the lactation phase starts, mammary glands become stressed, until lactation ends 

(Figure 56). As aforementioned, the tissue function of mammary glands is limited to their cell 

function (SDPT), which allows combining proliferation areas and functional areas (Figure 49). 

Thus, this tissue could develop stressed tumours, and the proliferation in the lactation phase 

becomes tumoural. Remember that the stressed proliferation of mammary glands can be induced by 

their specific stressor prolactin [Wennbo H. and Tömell J. 2000].  

 

During pregnancy and lactation, the PPARγ mRNAs decreased [Gimble J.M. et al 1998]. After 

lactation is complete, the PPARγ rises up, and the mammary gland undergoes remodelling to a 

prepregnant-like resting structure wherein these milk-producing cells are cleared by apoptosis. 

PPARγ seems to be involved in this phenotype transition [Apostoli A.J. et al 2014]. Low levels of 

PPARγ at the end of lactation is related with a higher risk of breast tumorigenesis [Apostoli A.J. et 

al 2014] possibly because makes it difficult to leave the cell stress phase. PPARγ mRNA was not 

detected in several induced mammary tumours [Gimble J.M. et al 1998] and among cells expressing 

PPARγ, activation of PPARγ-dependent signalling suppresses mammary tumour growth [Apostoli 

A.J. et al 2014]. 

 

 
 

Figure 56. Role of cortisol in mammary gland development. The role of cortisol is shown for the different post-

embryonic developmental stages of the mammary gland. Other hormones involved in the different developmental 

stages are also listed. Estrogen and progesterone promote ductal system proliferation during puberty. However, 

the DNA binding function of the glucocorticoid receptor also appears to be required. During pregnancy, cortisol 

contributes to lobuloalveolar development of the mammary gland, in conjunction with estrogen and progesterone. 

Prolactin and cortisol prepare the mammary cells for lactation and stimulate milk protein production following 

parturition. In addition, cortisol contributes stressing the cells to the maintenance of lactation by suppressing 

involution. ER, endoplasmic reticulum [Antonova L. et al 2011]. 



193 

 

Suppression of mammary clock gene expression rhythms represents a physiological adaptation to 

suckling cues. Tissue-specific changes in molecular clocks occurred from late pregnant and early 

lactation mice. Attenuated rhythms appeared to be a physiological adaptation of mammary to 

lactation. Induction of differentiation of mammary epithelial cell line HC11 with dexamethasone, 

insulin, and prolactin resulted in similar changes, and prolactin induced phase shifts in HC11 Arntl 

expression rhythm [Casey T.M. et al 2014]. Changes in core molecular clock genes occurred across 

multiple tissues during the transition from pregnancy to lactation because these circadian alterations 

affect the entire organism. The metabolic output of the SCN during lactation may be increased and 

affect peripheral clock function.  Changes in SCN PER2 levels coincided with an increase in plasma 

corticosterone rhythm amplitude from late pregnancy to lactation day 3, with basal corticosterone 

levels of lactating dams significantly greater than pregnant dams [Casey T.M. et al 2014]. This fact 

implies a stressed phenotype in mammary glands during lactation, a stressed phenotype that is 

reverted when lactation is finished by the expected PPARγ activation. Mammary clock underwent 

prominent changes during the transition from pregnancy to lactation, with the ratio of CLOCK to 

PER2 4-fold higher in lactating versus pregnant glands in the moment of transition. Next it is 

stabilised and PER2 expression during lactation becomes lower than in pregnancy. [Casey T.M. et al  

2014]. 

 

Normal breast exhibits rhythmic properties linked to the hormonal environment of the gland in 

animals and humans. Breast cancer in humans is characterized by a modification of these circadian 

patterns [Coudert B. Et al 2002]. Induced mammary gland cancer in rodents lost PER expression. 

BMAL1 repression and restored PER expression previously lost have been linked to revert the 

previously induced mammary-gland cancer in rodents [Fang M. et al 2015]. This action is mediated 

via SIRT1 and also has been observed in prostate tumourigenesis, especially during early stages 

[Fang M. et al 2015]. Increased β-catenin and cell proliferation in murine breast cancer cells results 

from down regulation of PER1 and PER2 [Wood P.A. et al 2009]. Furthermore, constant exposure 

to light (Figure 55.b) showed significantly increased growth of induced mammary adenocarcinomas 

in female rats when they were compared to the light-dark groups [Kochan D.Z. and Kovalchuk O. 

2015]. In summary, the mammary gland tumour (alveolar) seems to be linked to an elongation of 

the circadian stress phase. 

 

The circadian alterations in endometrial-gland cycle seem to be similar than the ones seen in 

mammary-gland cycle (Figure 56). Their connection with tumourgenesis seems to be also similar. 

In humans, the differentiation of the endometrial glands starts to take place at the beginning of the 

luteal phase of the menstrual cycle [Maruyama T. and Yoshimura Y. 2008], previous to enter in the 

stressed phenotype from the undifferentiated proliferative phase. The circadian activity phase 

stresses the endometrium and is governed by progesterone signal (Figure 57). When the tissue 

backs to the post-stress circadian recovery phase, the mense happens.  Endometrial carcinoma is 

believed to develop as a result of persistent unopposed progesterone stimulation on the 

endometrium resulting in increased risk of malignant transformation [Nickkho-Amiry M. et al 

2012]. PPARγ activation reduces proliferation of endometrial cells and PPARγ may be reduced in 

endometrial cancers [Nickkho-Amiry M. et al 2012], reducing the capacity of the cells to leave the 

stress phenotype. The endometrial cancer could stop the stressed tumour proliferation leaving the 

stress phenotype [Wong J.Y. et al 2008]. PPARγ activation reduces proliferation of endometrial cells 

via regulation of PTEN (Figure 54). When the endometrium tumour ends, the endometrium 
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degrades and peels with the menstruation (a menstruation with big clots).  Notice that estrogens and 

FSH are acting as growth factors, and LH and progesterone (and prolactin) as stressors (Figure 56 

and 57).  

 

 

 

 

 
 

Figure 57. The human female menstrual cycle is divided into several phases, which vary in length among women and 

among cycles, and have an ovarian and endometrial cycles totally synchronized. The menstrual cycle begins the day 

that menstrual bleeding starts. A decrease in the levels of estrogen and progesterone makes the endometrium 

unstressed, and triggers the top layers of the thickened endometrium to break down and be shed, resulting in 

bleeding. Concomitant with this, levels of FSH increase very slightly, stimulating the development of several 

oocyte-containing follicles. FSH levels subsequently decrease and only one or two follicles continue to develop. The 

developing follicles release estrogen, and this initiates thickening of the endometrium in a non-estressed 

proliferative phase of the endometrium. The ovulatory phase begins when levels of LH and FSH increase 

dramatically; levels of estrogen also peak at this time, and levels of progesterone begin to increase. The high levels 

of LH stimulate ovulation. The final phase of the menstrual cycle is the luteal phase. During this phase, levels of LH 

and FSH decrease and the ruptured follicle forms the corpus luteum, which produces large amounts of 

progesterone. In the secretory phase of the endometrium, this is stressed by the higher levels of progesterone and 

is receptive to implantation of an embryo if fertilization has occurred. In the absence of fertilization, the corpus 

luteum degenerates and the loss of progesterone production stress out the endometrial glands and initiates a new 

menstrual cycle [Aitken R.J. et al 2008]. 
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In the same way that the pass from the stress phenotype to the post-stress recovery phenotype is 

linked to a circadian switch and clock-genes expression variations, the pass from post-stress 

recovery phenotype to the stress phenotype is linked to a circadian switch and clock-genes 

expression variations. This fact affects the tumour proliferation of non-stressed tumour tissues 

(TDPT). When the non-stressed tumour stops, the cells are differentiated (remember that the cells of 

the non-stressed tumour proliferation are undifferentiated) and become functional again. The cell 

membrane is depolarised and the sodium channels are involved in this membrane depolarisation. 

The NEDD4L transition from its over-expression to its under-expression takes part in this sodium-

channel increased activity [Araki N. et al 2009]. The depolarisation of the cell and the normal 

activity of the tissue restablishes the normal circadian rhythms normalizing the BMAL1 expression. 

This BMAL1 expression is restablished by the acute membrane depolarisations and 

hyperpolarisations of normal activity [Nitabach M.N. et al 2002]. As well as by means of direct 

gene action or other cycles like NADPH and NADH, or cAMP-cGMP cycles, characteristic of the 

activity phase (Figure 55). When the non-stressed proliferation stops, the mitochondria biogenesis is 

promoted being ready to be stressed [Wagatsuma A. and Sakuma K. 2013]. 

 

The non-stressed tumour proliferation of tissues that cannot combine stress and proliferation 

(TDPT) can be stopped acting directly on the clock gene expression. BMAL1 is a clear target, since 

it controls the start of the circadian active phase and gene downstream. BMAL1 may be 

epigenetically silenced in ovarian cancer and induced over-expression of BMAL1 inhibited cell 

growth in ovarian cancer cells. This over-expression of BMAL1 restored the rhythmic activity of c-

MYC in ovarian cancer cells [Yeh C.M. et al 2014]. If it is manipulated the expression of a non-

voltage sensitive K+ channel assess the impact of chronically hyperpolarizing. This chronically 

hyperpolarizing blocked the rhythm in expression of the PER [Nitabach M.N. et al 2002] disrupting 

the circadian rhythm. 

 

The sodium influx after the pass from the post-stress recovery phenotype to the stress phenotype 

depolarises the cell [Colwell C.S. 2011]. When the stress demands are being satisfied, the cell 

depolarisation increases, and the potassium/sodium exchange starts. The membrane polarity does 

not change with this action, but the cell is ready to open the potassium channels and hyperpolarize 

the cell, leaving the stressed phenotype if necessary. The inhibition of potassium channels and Na+/ 

K+ -ATPase results in cell depolarisation, opening of voltage-gated Ca2+ channels, and increase of 

intracellular Ca2+ concentration [Boulkroun S. et al 2015]. The Na+–K+–2Cl
−
 cotransporter NKCC1 

raises intracellular Cl
−
 levels and thus contributes to a more depolarised ECl

−
 [Colwell C.S. 2011]. 

In the mammalian SCN, the BKs are also circadian regulated, with peak activity at night. There is 

also a diurnal rhythm in Na+/K+-ATPase activity, which is higher during the day. Ca2+ levels peak 

occurs during the day. cAMP levels peak occurs also during the day and precede the peak in the 

activity rhythm. Reduced cAMP levels greatly reduce PER2 expression [Colwell C.S. 2011], 

possibly because a reduced post-stress recovery phase is necessary due to a previous reduced stress 

phase. Notice that the activity demands are who governs the circadian-clock entrainment and the 

post-stress recovery phase seems to be a response to the stress phase [Scheiermann C. et al 2013]. 

 

Deletion of BK channels has little systematic effect on gene expression. Furthermore, no broad 

transcriptional differences were revealed between light-dark versus constant darkness conditions 

[Meredith A.L. et al 2006]. This fact points out that the circadian phenotypic changes could be very 
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dramatic or unappreciable, possibly depending on the previous phenotype from which the tissue 

comes.  

 

Bone is a tissue with a function highly dependent on tissue structure (TDPT) and develops non-

stressed tumours. Circadian rhythms are prevalent in bone metabolism, and control the osteoclastic-

osteoblastic switch. Output signals from the suprachiasmatic nucleus (SCN) are transmitted from 

the master circadian rhythm to peripheral osteoblasts through β-adrenergic and glucocorticoid 

signalling and mediate circadian timing to peripheral osteoclasts [Fujihara Y. et al 2014]. Osteoclast 

numbers and bone resorption are rapidly increased by glucocorticoids, extending the stress phase, 

together with osteoblast inactivation and decreased bone formation [Frenkel B. et al 2015]. That is, 

retarding the post-stress recovery phase. In bone tumours, the osteoblastic phase is largely 

increased, but preceded by an increased osteoclastic phase. Glucocorticoids can stop the 

osteoblastic phase stressing the tissue, even in tumour proliferation [Yamamoto T. et al 2002]. Cry2 

and Per2 affect distinct pathways in the regulation of bone volume with Cry2 influencing mostly the 

osteoclastic cellular component of bone and Per2 acting on osteoblast parameters. Per2
Brdm1

 animals 

display increased bone formation and Cry2
−/−

 mice decreased bone resorption [Maronde E. et al 

2010].  

 

Here we have then, another open question; the response to the acute activity demands could be 

mediated by cGMP in the cAMP-cGMP cycle providing a proportional response to the acute 

activity demands. The response to the daily activity demands could be mediated by PER and the 

clock genes, that can provide a proportional response to the daily activity demands. The 

mechanisms that guide the circadian alterations of the endometrial and mammary gland cycles are 

well known. But, if there exist, how and who mediates when the post-stress recovery phase turns 

pathological like in non-stressed tumours? Going back to the case of Bone tumours, is the 

osteoblastic phase dependent on the osteclastic phase in duration or intensity? Is the pathological 

post-stress recovery phase dependent on the previous stress phase? If the answer is yes, how is this 

response mediated?. 

 

In bone, the proportional post-stress recovery phase to the previous stress phase is controlled by the 

microenvironment. The osteoblast activity is proportional to the previous osteoclast activity level in 

healthy tissues. This “memory” could be mediated by osteoclast-derived factors that can act on cells 

that would transmit further signals to osteoblasts, or by physical changes recognized by osteoblasts, 

among others [Sims N.A. and Martin T.J. 2015]. Cervix tumours are also non-stressed tumours and 

seem to be preceded in many cases by the infection with certain papillomavirus (HPV) [Foppoli C. 

et al 2015]. The majority of HPV infections are subclinical, and the development of a tumour may 

be subjected to the stress level achieved in the infection phase [Foppoli C. et al 2015]. In this way, 

the stress level would determine if a tumour does develop in the post-stress recovery phase. 

 

The same peripheral organs have tissues of the two types described here (SDPT and TDPT), and 

sometimes it is no easy to recognise each one, event less in advanced cancers. As the tissues with 

the tissue function based on tissue structure (TDPT) are structurally more complex and imply an 

important evolutionary step with respect to the tissues with a tissue function mainly sustained on 

cell function (SDPT), a tissue classification based on embryonic origin can help us. A possible 

tissue classification would be as shown in the table XI. 
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ENDODERM MESODERM ECTODERM 

Parenchymal Mesenchymal 

Fharynx Dermis (chorion) Conjunctive tissue Flat epithelium 

Hypophysis Mammary gland Bones Bronchia epithelium  

Parotid Pericardium Lymphatic ganglia Larynx epithelium  

Sublingual gland Pleura Blood vessels Coronary epithelium  

Palate Peritoneum Lymphatic vessels Uterus 

Tonsils   Muscles Lower part of the stomach and duodenal bulb 

Thyroid   Ovaries Bile duct epithelium  

Parathyroid   Testicles Intra-pancreatic ducts 

Eustachian tubes   Endocardium Rectum epithelium  

Middle ear     Ureter epithelium  

Lacrimal glands     Urethra 

Oral submucosa     Skin (epidermis) 

Alveoli     Hair 

Lower third of the esophagus     Retina 

Upper portion of the stomach     Cornea 

Duodenum , except bulb     Crystalline 

Liver     Breast ducts 

Pancreas     Nervous system 

Small intestine     Nasal and buccal mucosa 

Large intestine     Upper esophagus 

Endometrium     Tear ducts 

Prostate     Buccal salivary ducts 

Fallopian tubes     Vitreous bodies 

Bladder submucosa     

 Kidney collecting tubules     

 SDPT TDPT 

 

Table XI. Tissues classified by embryonic origin. The tissues in green have proliferative areas and functional areas, 

or are developing very simple tasks, thus, they can develop stressed proliferative tumours (SDPT). The function of 

the tissues in blue is linked to their structure or complex relation among their cells, so their proliferation cannot be 

stressed (TDPT). 

 

In summary, the two types of tumour proliferation found,  and the two tissue types that they are 

linked to, could be described as: 

 

SDPT : Spatial Dependent Proliferation Tissues. The tissue has proliferation areas and function 

areas. This fact allows the tissue to separate stress and proliferation in space and not in time. Tissue 

function is mainly sustained on cell function. The cells are differentiated and stressed during the 

tumour proliferation. The tumour cells are depolarised. The tumour proliferation develops during 

the circadian stress.  Relaxing agents can stop the tumour proliferation. The embryonic origin of the 

tissue is endoderm or parenchymal mesoderm. 

 

TDPT : Time Dependent Proliferation Tissues. Tissue function is highly linked to the tissue 

structure. This fact forces the tissue to separate stress and proliferation in time. The cells are 

undifferentiated and cannot be stressed during tumour proliferation. The tumour cells are 
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hyperpolarised. The tumour proliferation develops during the circadian post-stress recovery. 

Stressor agents can stop the tumour proliferation. The embryonic origin of the tissue is ectoderm or 

mesenchymal mesoderm. 

 

Understanding all these complex links between tumour prognosis and the original tissues 

physiology is the current target of our study. The problem is addressed from a genetic perspective, 

trying to understand how to control this. In the workflow of Figure 44 it can be observed statistical 

procedures that have been applied in the analysis, how the results of these procedures are crossed to 

facilitate new analyses, as well as different points in which a crossing with external databases is 

needed. 

 

Even though there is an important amount of manual work analysing and contrasting the results, 

these would be impossible to obtain without the multiple analysis tools of the pipeline. It should be 

remembered that this analysis approach is addressed to important issues, very well documented but 

with an unsolved paradox. Like in the case of glucocorticoids use in cancer. The most important of 

methodologies and tools are the results that they are able to provide, as this is the ultimate goal of 

any methodology. Currently, agents like those cited in this work are administered as adjuvant to 

treat undesirable side-effects of radiotherapy, surgery or cancer itself. But there are still many 

remaining questions to answer. 

 

All the supplementary material is available at: http://platypus.uab.es/GCinC  

 

In the supplementary material there are more analyses trying to describe the two ways for tumour 

proliferation found, with more genes of our expression data of study being involved in it. We 

encourage visiting them.  

http://platypus.uab.es/GCinC
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1. 

Gene networks based on non-linear expression relationships identify new hubs of genes with 

respect to consider only linear expression relationships. Furthermore, the researcher interests are 

present in all the operations of our tools: the genes linking the query ones in expression terms are 

supplied, the sample clusters are successively redefined in subclasses. The access to remote 

databases enables expanding the analysis beyond the expression relationships. Thus, the user can 

enrich his/her expression data and sample clusters, improve his/her future experimental design and 

check the hypotheses generated from the data. All the above, together with the analysis of the 

expression-dependence fluctuations form a new approach which helps to:  

 

 Identify and analyse the biological role of unknown members of a genetic pathway.  

 Gain insight into the relationships (known or hidden) among different pathways. 

 Analyse how the genes could be affected when a query gene is in a particular level of 

expression. 

 Helps gene/protein function-prediction.  

 Identifies and clarifies the modulation of putative drug-target genes/proteins in relation with 

the molecular basis and action on a disease phenotype.  

 Helps to model whole cell physiology (systems and integrative biology). 

 

2.  

This approach not only permits the analysis of the complex expression relationships between single 

genes, but also between sets of coexpressed genes. As aforementioned, we obtain networks of sets 

of coexpressed genes where each set performs a different cell function. In these networks, all the 

sets of coexpressed genes maintain a non-linear expression relationship with each and every one of 

the other sets of the network. That is, anytime one knows how to move from one process to another, 

passing by any other intermediate process. As a result, multiple networks are provided by a dynamic 

system that allows detecting sets of coexpressed genes related between them by complex activation 

dependences. 

 

3.  

In addition, clustering the samples based on non-linear expression relationships can help us to 

automatically discover the concurrent phenotypic changes hidden in expression data. Our procedure 

shows the intersections among transverse phenotypes involving concrete sets of genes, and the web 

tools allow us to compare these transverse-phenotype intersections with the sample clusters 

obtained by clustering methods. In this way, it is possible to study the similarities and differences 

among the sample clusters obtained by common clustering methods and explain the cellular 

processes behind each sample cluster obtained. 

 

4.  

All of this agrees with the principal objective of our research: "Reusing expression data for studying 

the cell behaviour and phenotypic changes from a holistic point of view". This holistic point of view 

can cover fields like: cellular stress, cell proliferation, tissue remodelling, mitochondrial activity, 

oxygen and ROS/NOS levels, cell differentiation and un-differentiation, membrane polarity, 
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intracellular and extracellular pH levels, circadian rhythms, the inference of sympathetic and 

parasympathetic nervous-system, metastasis, or interaction with virus and bacteria. 

 

5. 

Finally we show how we can solve paradoxes or apparently incongruent experimental results by the 

acute dissection of the interdependencies among the phenotypes described by sample clusters using 

our tools. Specifically, this capability has allowed the study of the contradictory effects of 

glucocorticoids in cancer progression. The correct identification and characterization of the two 

types of tumour proliferation may help to adjust the treatments correctly in cancer and other 

pathologies. It could also help in understanding and preventing future malignancy, recurrence and 

metastasis. As aforementioned, controlled randomized trials evaluating the impact of these stressor 

agents on growth and metastasis in stressed (SDPT) and non-stressed (TDPT) tumour tissues need 

to be performed including patient-survival evaluation. Remember that agents like those cited in the 

work are usually administered as adjuvant to treat undesirable side effects of cancer therapy. But 

beyond the glucocorticoid paradox, future researches in cancer, among others, should start to 

consider the two types of tumour proliferation found. 
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