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Techniques devoted to deform 3D models are an important research field in Computer Graphics.
They can be used in different stages: the modelling phase, the animation process and also during
some special simulations. Additionally, some applications may require the manipulation of 3D
models under certain restrictions to preserve the volume of the modified object. Hence, the present
PhD Dissertation explores new algorithms to perform flexible, robust and efficient 3D deformations.
Apart from this, it also researches on a new methodology to restrict these deformations so that the
volume of the manipulated model remains constant.

Some of the most used methods to achieve smooth deformations are those included in the Cage-
Based Deformation paradigm. Cage-based deformations enclose the model to be deformed in a
coarse polyhedron, the cage. Then, they usually rely on Generalised Barycentric Coordinates to
relate the model with the vertices, and other geometric elements, of this cage, which are the control
points or the deformation handles. Finally, every time that one of these handles is dragged, the
model is deformed accordingly. Although this paradigm is simple, elegant and performs efficient
deformations, some cage-free space deformation techniques have recently appeared. They increase
the flexibility of the deformation handles, which do not need to be connected, and define powerful
tools that make the deformation process more versatile and intuitive. In this context, the Disser-
tation introduces new Generalised Barycentric Coordinate systems specially designed to be used in
a cage-free environment. Any user who wants to use the presented schemes only needs to locate a
set of control points in the vicinity of the model that he or she wants to deform. These handles can
be placed wherever he or she considers mode suitable and the only requirement is that the model
has to be enclosed in their convex hull.

Up to now, there are few techniques to produce volume-preserving space deformations. However, in
recent years there has been a growing interest in performing constrained deformations due to their
more realistic and physically plausible results. Our contribution to this research line consists in a
deformation framework that preserves the volume of the 3D models by means of its gradient and
a control surface to restrict the movement of the handles. Moreover, the proposed methodology is
not restricted to the cage-based schemes, but it can also be used in a cage-free environment.

Finally, our research can be specially useful for spatial deformations of biological and medical
models. This kind of models represent real organs and tissues, which are often soft and lack
an internal rigid structure. In addition, they are elastic and incompressible. Any application
designed to deal with this group of models and to train or assist doctors must be flexible, robust,
efficient and user-friendly. The combination of the proposed cage-free systems with the presented
volume-preserving deformation framework satisfies all these conditions. Hence, our contributions
can become powerful tools to produce medical-oriented deformations.






Les deformacions de models 3D s’utilitzen en diverses etapes de la generacié de continguts digitals:
durant la fase de modelatge, durant el procés d’animacié i en alguns tipus de simulacions. A més
a més, hi ha aplicacions que necessiten que la manipulacié dels models 3D es faci tenint en compte
certes restriccions que permeten la conservacié del volum de I'objecte modificat. Tot plegat fa
que les tecniques de deformacié 3D siguin un camp d’estudi molt important dins del moén dels
Grafics. Per aquesta rad, aquesta Tesi Doctoral estudia nous algorismes que permetin realitzar
deformacions 3D de manera flexible, robusta i eficient i que, a més a més, permetin conservar el
volum dels objectes modificats.

Un dels paradigmes més utilitzats per tal de realitzar deformacions suaus és el conegut amb el nom
de Deformacions Basades en un Poliedre Englobant. Aquesta familia de métodes embolcalla el
model que es vol deformar, normalment representat com una malla de triangles, dins d’un poliedre
simple, amb poques cares. Un cop fet aixo, estableix un sistema de Coordenades Baricéntriques
Generalitzades per tal de definir els vertexs del model a partir dels vertexs del poliedre englobant,
els quals s’anomenen punts de control o controls de la deformacio. D’aquesta manera, cada cop
que s’arrossega o es modifica un d’aquests punts de control, el model que es troba dins del poliedre
englobant es deforma segons el sistema de coordenades que s’ha definit. Tot i que aquest paradigma
és simple, elegant i eficient, des de fa ja uns anys han comencat a apareixer noves tecniques que
no necessiten el poliedre englobant per tal de realitzar la deformacié. El seu principal objectiu és
augmentar la flexibilitat dels controls de la deformacié i definir eines que facin que el procés de
deformacio6 sigui més versatil i intuitiu. Tenint en compte aquest factor, aquesta Tesi també estudia
sistemes de Coordenades Baricéntriques Generalitzades dissenyats per realitzar deformacions sense
la necessitat de definir el poliedre englobant. D’aquesta manera, qualsevol usuari que vulgui utilitzar
els metodes que es presenten en aquesta Dissertaciéo només s’ha d’encarregar de definir un conjunt
de punts de control al voltant del model que vol deformar, podent-los posar alli on consideri més
oporti segons la deformacié que vulgui obtenir. L’inic requeriment necessari és que el model ha
de quedar dins de I’envolupant convexa d’aquests punts de control.

Actualment existeixen pocs metodes que realitzin deformacions 3D amb preservacié del volum.
No obstant aixo, d’un temps enca ha augmentat l'interes per realitzar deformacions subjectes a
certes restriccions que fan que el resultat sigui més realista i fisicament versemblant. La contribucid
d’aquesta Tesi dins d’aquesta linia de recerca consisteix en un sistema de deformacié que preserva
el volum dels objectes 3D gracies a comput del seu gradient i a una superficie de control que
restringeix el moviment dels punts de control. Aquest meétode es pot aplicar tant als sistemes de
deformacié que necessiten un poliedre englobant com als que no el necessiten.

Finalment, i ja per acabar, la recerca realitzada pot ser especialment util per tal de realitzar
deformacions de models medics i biologics. Aquests tipus de models poden representar organs i
teixits reals, els quals, normalment, sén tous, mancats d’una estructura rigida interna, elastics
i incompressibles. Qualsevol aplicacié dissenyada per treballar amb aquest tipus de models i per
entrenar i donar assisténcia a usuaris medics hauria de ser flexible, robusta, eficient i facil d’utilitzar.



La combinacié dels metodes de deformacié proposats conjuntament amb el sistema de preservacié
de volum satisfa totes aquestes condicions. Per aquesta rad es creu que les contribucions realitzades
poden esdevenir eines importants per produir deformacions mediques.
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Chapter

Introduction

“If I were again beginning my studies, 1
would follow the advice of Plato and start
with mathematics.”

Galileo Galilei

Chapter 1 Contents

1.1 Motivation and Objectives 3
1.2 Contributions 4
1.3 Thesis Outline 5

Computer Graphics algorithms are present in our daily lives in many different, and even unnoticed,
ways. They are a key element in the entertainment industry (Figure 1.1) and play an important
role in multiple engineering fields (Figure 1.2). However, they are also used to preserve our cultural
heritage (Figure 1.3) as well as a visual tool to support learning. In this sense, computer graphics
can be used in medicine to visualise medical explorations of patients (Figure 1.4) or to train
surgeons.

Figure 1.1: Scene from the movie Exodus: Gods and Kings (2014). The episode when the sea splits
into two parts was digitally simulated.
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The wide presence of computer graphics in our lives involves an incredible amount of versatile and
powerful tools to produce, modify and show all this graphical information. From basic libraries for
working with the GPU, such as OpenGL or CUDA, to complex frameworks and engines that produce
graphical products. Some examples can be Photoshop, Blender, Unreal Engine or RenderMan.
Facing the huge demand of graphical elements also involves multiple areas of knowledge. There
are, therefore, specialists in geometry processing, in rendering, in animations and deformations, in
illumination, in modeling, in fluids, etc.

Figure 1.2: External and internal view of the hull of a ship. This sequence of images has been
obtained from the Project [VNB10].

Out of the great potential and the multiple disciplines in the computer graphics field, we are
particularly interested in those methodologies devoted to the modification and deformation of the
3D models. These techniques can be used to model a digital object, to animate it or to simulate some
special behaviour, e.g. the heartbeat on a 3D heart model. More precisely, we are concerned with
the application of such deformations over medical models, so that we can simulate the behaviour
of real organs and tissues subjected to medical manipulation. These simulations can help doctors
and medical specialists to understand the symptoms of their patients. Moreover, they also can be
used to train these doctors before they have to deal with real situations.

Figure 1.3: Virtual reconstruction of the Portic de Santa Maria de Ripoll, from [CCD*11].

Real organs and tissues are often soft and lack an internal rigid structure. They are elastic, so they
can recover their original shape easily after being pressed or stretched, if not affected or altered by
a disease that makes them stiff and inflexible. Due to their nature, this kind of biological objects
are highly suitable to be simulated through 3D model spatial deformations. For this reason, we
have looked further into these manipulations, especially the cage-based paradigm and the associated
Generalised Barycentric Coordinates (GBC). Apart from that, biological healthy organs and tissues
are incompressible. This fact means that any non-invasive medical simulated handling over a 3D
representation of a real body must keep its volume constant.
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Figure 1.4: Exploration of a human trunk 3D model. Obtained from the PhD Thesis of
Monclis [Mon14].

Accordingly, the present PhD Dissertation is centered in two main topics. On the one hand, it
is focused on the study and the definition of new GBC systems to achieve a better reproduction
of the movements and responses of the medical models. These GBC systems can be used in a
cage-based paradigm but also in a cage-free spatial deformation environment, which is meant to be
more flexible and easy to use from the point of view of the user, who could be a doctor, an artist,
a technician, etc. The cage-free paradigm is less artificial, according to medical doctors who have
participated in the present project. On the other hand, this thesis is also devoted to the study of
a method to produce volume-preserving spatial deformations.

In the following sections we briefly describe the work done in the present Thesis. Section 1.1
states our motivations and the goals of our research project. Then, Section 1.2 summarises our
contributions and, finally, Section 1.3 details the structure of the Dissertation.

Motivation and Objectives

According to the lines above, we want to design a new Generalised Barycentric Coordinate system
oriented to the spatial deformation of biological and medical models. Furthermore, we also want to
couple it to a volume-preserving algorithm that ensures the incompressibility of the models. Hence,
our goal is to construct a deformation framework that meets the good properties and features below:

e Locality: spatial deformations often suffer from global effects, that is, the alteration that
the user, e.g. an artist, induces over a certain region of the model also affects further areas.
In contrast, our aspiration is to restrict, as much as possible, the modification to the regions
close to the driving control points.

e Cage-free approach: new cage-free techniques have recently appeared to produce spatial
deformation in an easier and more comfortable way. This scheme gives more freedom to the
user, in so far as his or her deformation paths do not have to depend on the underlying
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structure of a cage any longer. In addition, the doctors asked also believe this paradigm to
be more intuitive.

e Robustness: the system must give the same response under the same input information.
Hence, the mathematical computation must be robust and stable.

e Real-time: the complete system is required to give real-time response during the interaction
with the user. Therefore, our algorithms must be efficient.

e Plausibility: we want the obtained results, e.i. the resultant deformation, to be physically
plausible and aesthetically pleasant. We are not looking for physically-based, correct and real
output but for credible results to simulate deformations of elastic and incompressible bodies.

Contributions

As previously stated, this Thesis focuses its research on two main objectives: the definition of new
Generalised Barycentric Coordinate systems that can be used in a cage-free spatial deformation
environment to deform medical models and the search for a volume-preserving spatial deformation
algorithm. Our contributions, therefore, can also be divided into these two areas.

Generalised Barycentric Coordinates and Cage-Free Approaches

This topic, which is studied in depth in Chapters 3 and 4, has led us to define and carefully examine
some new Generalised Barycentric Coordinate (GBC) systems. All these new GBC systems are
intended to be used in a cage-free spatial deformation environment, therefore, multiple approaches
for this paradigm have been presented, analysed and discussed extensively. However, only those
that allow us to build a deformation framework that meets the properties listed before have been
collected in two different contributions

Cage-Free Spatial Deformations

M.Angels Cerver6, Alvar Vinacua and Pere Brunet.

VISIGRAPP - International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications, 20183, Barcelona, Spain.

GRAPP/IVAPP, pages 111-11/4

Publisher SciTePress

3D Model Deformations With Arbitrary Control Points
M.Angels Cerverd, Alvar Vinacua and Pere Brunet.
Submitted

Volume-Preserving Spatial Deformations

This subject, detailed in Chapter 5, has resulted in the definition of a flexible method to produce
volume-preserving spatial deformations. Its application is suitable for almost all the Generalised
Barycentric Coordinate existing schemes, as well as for all the new ones proposed in this Disserta-
tion. The obtained results were published in
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Volume-Preserving Deformation Using Generalised Barycentric Coordinates
M.Angels Cerverd, Alvar Vinacua and Pere Brunet.
XX Congreso Espanol de Informdtica Grdfica, 2010, Valencia, Spain, CEIG, pages 57-66

Thesis Outline

The present PhD Thesis is structured in five chapters, apart from the current opening one.

e Chapter 2: Background on Deformations via Control Points, reviews the existing

literature regarding 3D model deformations. We expose three basic paradigms to model and
animate 3D objects that, nowadays, are widely used. They are the Skeleton-Based Deforma-
tion Techniques, the Surface Deformation Techniques and the Space Deformation Techniques.
Although we present and discuss some of the main works in each paradigm, the primary fo-
cus of this chapter lies on the space deformation methods. We contextualise the cage-based
paradigm and describe some of the currently most important systems of Generalised Barycen-
tric Coordinates. Furthermore, we also consider some works in the field of Volume-Preserving
Deformations.

Chapter 3: Attempts at Constructing Cage-Free Approaches, goes through the
methods we have investigated within the field of the cage-free deformations paradigm. In
this chapter, we compile most of our attempts at constructing an appropriate system of
Generalised Barycentric Coordinates to deform a 3D model by means of a set of handles
located in its vicinity. We also analyse and discuss the mathematical reasoning behind each
approach and give the strengths and weaknesses of each method, depending on the obtained
results. Part of this chapter composes the publication [CVB13].

Chapter 4: Point-Based Celestial Coordinates, details our main contribution. The
C-Celestial Coordinates, the T-Celestial Coordinates and the S-Celestial Coordinates are
three Generalised Barycentric Coordinate systems suitable to deform 3D models and medical
models, in particular, via a set of control points placed around them. In this chapter, we
mathematically derive these three systems and discuss the achieved results. These Generalised
Barycentric Coordinate systems allows us to develop a deformation framework that fulfils the
good properties and features listed previously. This part of our research has been submitted
as a paper which is now under review.

Chapter 5: Volume-Preserving Deformations, exposes our proposal to perform volume-
preserving spatial deformations. We present all the mathematical reasoning to constrain the
spatial deformations, so they can keep the volume of the modified model constant. This led us
to define a flexible volume-preserving algorithm, which can be applied together with almost
any of the existing Generalised Barycentric Coordinate systems, besides those presented in
this Dissertation. This work has been collected in the publication [CVB10].

Finally, Chapter 6: Conclusions, closes this Dissertation with a general review of the work
done during this PhD Thesis and highlights the achieved goals. We also propose some future
work to extend the presented research.

Additionally, there are two Appendices devoted to detail the long mathematical derivations related
to Chapters 3, 4 and 5, respectively.






Chapter

Background on Deformations via Control Points

“We keep moving forward, opening new
doors and doing new things, because we’re
curious and curiosity keeps leading us down
new paths.”

Walt Disney

Chapter 2 Contents

2.1 Skeleton-Based Deformation Techniques 8
2.2 Surface Deformation Techniques 10
2.3 Space Deformation Techniques 13
2.4 Volume-Preserving Deformations 19

The deformation of digital models is an important topic within the Computer Graphics field. All
the works in this area share the same goal, that is, to manipulate a 3D model, or a 2D shape, and
deform its volume and surface until a desired pose or target is reached. These modifications are
usually achieved through the use of control points or handles.

We can classify the existing methods into three big families: the Skeleton-Based Deformation
Techniques, the Surface Deformation Techniques and the Space Deformation Techniques. The
skeleton-based deformation techniques use bones as handles. A bone is an edge connecting two
joints or vertices (Figure 2.1(b)) and it is related to the vertices of its corresponding model through
a set of weights. These weights are, normally, user-defined and they determine how the model
will be modified every time that the user moves a bone, i.e., how much the bone transformation
affects each original vertex from the model. The surface deformation techniques use the own
vertices of the 3D model, or 2D shape, as the handles of the deformation (Figure 2.3(b)). They use
displacement functions to guide the transformation when one of the vertices is dragged. Finally,
the space deformation techniques, which are our main focus of interest, use a set of control points
that, usually, define a cage (Figure 2.6). A cage is a coarse polyhedron, or polygon in the 2D case,
that encloses the model to deform. Then, the control points are related to the vertices of the model
through a set of weights or coordinates. These coordinates specify the deformation induced to the
model every time that a control point is displaced.

7
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Additionally, some applications may also need to perform deformations under certain constraints.
For example, they may need to apply external forces, to restrict the movements of the deformed
object, to preserve some geometric properties, etc. In the case of the present Dissertation, we are
interested in the study of those deformations that preserve the volume of the modified object.

The following sections present the main bibliography related to the deformation of 3D models.
Sections from 2.1 to 2.3 describe the major results about skeleton-based deformations, surface
deformations and space deformations, respectively. Finally, Section 2.4 is devoted to analysing the
research in the volume-preserving deformations domain.

Skeleton-Based Deformation Techniques

The skin-skeleton paradigm is widely used in animation, especially, in the film and gaming in-
dustries. This paradigm animates an articulated object and its popularity relies on its easy and
intuitive manipulation. According to the authors in [WSLGO07], any animation process should meet
three basic properties:

1. the deformation induced over the shape, or skin, must preserve local details existing in the
original shape (e.g. wrinkles);

2. the deformation must be realistic, that is, it must reproduce the characteristic movements of
the represented object (e.g. the contraction and relaxation of a muscle);

3. the deformation must be continuous and smooth, so the animation of the shape reproduces
visually plausible and pleasant movements.

We can distinguish two different types of skeleton [Blu67, BL99, DQ04]: the geometric skeleton
(Figure 2.1(a)) and the inverse-kinematic skeleton (Figure 2.1(b)). In the 3D case, the geometric
skeleton, also known as medial surface or medial axis, is a 2D surface completely surrounded by
the corresponding 3D object. Every point on it is a center of a sphere fully inscribed within the
model and touching it at two or more distinct points. In contrast, the inverse-kinematic skeleton
is composed of rigid segments, the bones, connected by joints.

There are several works focused on obtaining the skeleton of a given model in an automatic way,
a process known as skeletonization. For example, [Blu67] and [BL99] directly compute the medial
axis of the object; [LV99] extracts the skeleton by means of level set functions; [ZT99] uses a
voxelization; [KT03] and [LKAO06] firstly compute a shape or mesh decomposition and, then, get
the skeleton that connects the neighbouring components and [WML103] computes the skeleton
with the aid of a simulation of repulsive forces.

Once the skeleton is obtained, it can be used to deform or animate its associated model. The most
used technique of this family of deformation algorithms is the Skeletal Subspace Deformation (SSD).
The SSD method normally uses the inverse-kinematic skeleton to perform the deformations. It links
each of the vertices, or points, p of the skin surface to the skeletal joints through a set of weights,
which, usually, are defined and tweaked by the user, e.g. an animator or artist. When the skeleton
is manually modified to a pose, the points p are deformed by means of a linear combination using
these weights. Although SSD can achieve realistic deformations, as muscle bulging, by manually
adjusting the weights until the resulting deformation is satisfactory, the constant adaptation of
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(a) Geometric Skeleton (b) Inverse-Kinematic Skeleton

Figure 2.1: Examples, from [BP07], of a geometric skeleton in (a) and an inverse-kinematic skeleton
in (b).

the weights makes the method tedious and even frustrating. In addition, the linear nature of
the blending of the points p causes the unpleasant effect of collapsing joints, also known as the
candy-wrapper artifact (see Figure 2.2). A complete overview of the SSD algorithm can be found
in [MTLTS8S], where the authors use it to animate hands. Other works like [BL99] and [YBS07] use
the combination of both defined types of skeletons to animate characters. Specifically, [YBS07] uses
the SSD technique to deform the geometric skeleton by means of the inverse-kinematic skeleton.
Then, the deformation of the geometric skeleton is transferred to the skin surface, the 3D object,
using discrete differential coordinates.

Figure 2.2: Example of the candy-wrap artifact. This figure belongs to [LCF00].

New research in this deformation paradigm has focused on overcoming the drawbacks of the SSD
[YBS03, YHMO06, KCvOO08, JS11]. In particular, they try to avoid the laborious task of manually
adjusting the weights that link the skeleton with the model. For example, [YBS03] combines a
geometric skeleton with Free-Form Deformation (FFD)! techniques to achieve the desired results.
Firstly, the method deforms the skeleton using one of the existing FFD methods. Then, the 3D
model is fitted to the modified skeleton through a set of displacements. These displacements
have been previously computed from the rest pose of the model and its skeleton. On the other
hand, in [YHMO6], the authors link an inverse-kinematic skeleton directly to the simplexes of
the 3D model, instead of its vertices. Every time that the skeleton is deformed, they find the
transformation relating the initial and final position of each bone and apply it to the corresponding

LA more detailed information about Free-Form Deformation techniques can be found at Section 2.3.
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simplexes. Then, they proceed to an optimisation step to stitch these simplexes together while
respecting the transformation as much as possible.

A step forward from the SSD is achieved by the Pose-Space Deformation (PSD) techniques. PSD
combines the SSD with a set of displacements supplied by examples. These examples can be
defined by an animator who designs a few key poses and manually deforms the skin until the
correct shape is obtained. However, they also can be obtained by a 3D acquisition step followed
by the corresponding rigging process to relate the real movement with the underlying skeleton.
Research on PSD techniques can be found in [LCF00,SRC01, RLN06, WSLG07, BLB108].

Finally, other authors [BP07, HRET08,JZvdP108,0ZS08,BTST12] have also approached the prob-
lem from another point of view and they have focused their research on finding ways to reuse a
given inverse-kinematics skeleton with an associated set of motions and poses. Their main goal is
to automatically adapt a generic skeleton to a character and link it to the model surface.

Surface Deformation Techniques

The surface deformation paradigm typically treats a 3D model as a two-dimensional surface S,
which describes the boundary of the object and is usually represented as a triangular mesh or a
point cloud. The technique permits the user, e.g. an artist, to directly edit this surface by means
of its own vertices. That is, the handles or control points of the deformation are the vertices, or
points, of the model?, as shown in Figure 2.3. When the user picks and drags one of the vertices of
the model, the whole surface is modified according to a displacement function. This displacement
function defines how much a point, or vertex, on the surface is transformed depending on the
new location of the last moved handle. The induced deformation is continuous, smooth and local.
Moreover, many of the techniques in this paradigm also seek shape and detail preservation with
respect to the original surface of the model. The local maintenance of these properties produces
aesthetically pleasing and even physically plausible deformations.

The bibliography in the surface deformation research field proposes different approaches to build
displacement functions. One of them is by means of differential coordinates, which define any point,
or vertex, p of the surface S with respect to its neighbours. They can be seen as a measure of how
different a property in p is with respect to the same property in its neighbouring points. Thus,
when a user moves a handle, all the points on S adjust their new locations in such a way that
they keep their new differential coordinates as similar as possible to the initial ones. Differential
coordinates can be computed in several ways, such as the use of the Laplacian operator shown
in [SCOLT04,LSCO™04,NSACO05,Sor06, ZHM11] or the gradient in [YZX104, ZRKS05].

Particularly, the authors in [SCOL'04] deform the surface of an object, transfer and mix geometric
details between two different surfaces and even transplant a part of a surface onto another one
through the use of Laplacian coordinates. The Laplacian coordinates represent the difference be-
tween the position of a given point p and the average position of its neighbours. They are computed
with the Laplacian operator of the triangular mesh that defines the surface. The authors also apply
an appropriate transformation to the vertices in order to make the Laplacian invariant to locally
linearised rigid transformations and scaling. Then, whenever the user moves a handle, they solve
an error minimisation problem between the original Laplacian coordinates and the current ones by

2Most recent techniques also permit other kind of handles as curves, which can be extracted from the surface or
painted on it.
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(a) (b)

Figure 2.3: Example of handles used in a surface deformation process, from [SA07]. (a) shows
the original model of a cactus, whose surface is represented as a triangular mesh. (b) presents an
example of deformation of the cactus. While the red handles are constrained to keep in place, the
yellow one at the top is translated to yield the deformation.

means of least squares method. This minimisation process leads to the new positions of the vertices
of the model.

The pipeline in [YZX104] is very similar to that in [SCOL"04]. However, in this case the authors
use the Poisson equation and the gradient field of a parameterised mesh instead of the Laplacian
operator. They can also deform a single surface or merge a partial surface onto another.

Another way to build displacement functions is through an optimisation problem over a defined
energy [KCVS98, BK03, BK04, BPGKO06]. Usually, the studied energy function corresponds to an
elastic energy that quantifies the stretching and the bending capabilities of the surface. Some
research works within this context, e.g. [KCVS98] and [BKO3], propose a multiresolution editing
paradigm which consists in decomposing the original 3D model into two parts: a low resolution
surface and a set of displacements that store the geometric detail of the initial model. Specifically
in [BKO03], the authors simplify the input surface S, which is represented by a triangular mesh,
to a coarse surface S, and store the details using displacement volumes. A displacement volume
is a prism that relates each triangle 7" = {v;,v;,v;} of the original surface S with the points
{pi,Pj,Pr} on the coarse surface S. such that (v; — p;) is normal to S.. Then, they deform S,
by means of the constrained energy minimisation, as in [KCVS98]. Once the coarse surface S,
is deformed, the details are restored iteratively, moving the original points v; to a new position
v, that preserves the volume of the stored prisms. Other examples of the multiresolution editing
paradigm can be found at [KBS00], [BSPGO06] and [MBKO07]. Figure 2.4 shows an example of this
scheme.

Furthermore, PriMo [BPGKO6] also uses an elastic energy to deform the surface of the model.
However, this technique does not modify this surface directly but, instead, deforms a set of rigid
prisms that wrap it. Assuming the surface is represented as a triangular mesh, the prisms enclosing
it are obtained by an extrusion along its vertex normals, which results in a prism per mesh face.
Then, they are coupled through an elastic energy function. Hence, when the user moves or orientates
a subset of prisms, the system solves the optimisation problem that keeps them rigid and minimises
the energy. They are kept rigid to prevent their geometry from degeneration and ensure numerical
robustness of the method. Finally, the new surface is derived from the resulting prisms by a process
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Figure 2.4: Multiresolution editing pipeline extracted from [MBKO7].

that updates the positions of its vertices with the average transformation of its incident prisms.

Beyond the presented methods, there also exist different schemes, comprised in the surface de-
formation paradigm, that belong to the as-rigid-as-possible (ARAP) techniques [ACOLO00,IMHO05,
SA07,SDC09,ZHM11,PLHY13,LG14]. As-rigid-as-possible methods are also based on the minimi-
sation of an elastic energy, which tries to keep the rigidity of the local transformations during the
deformation process. This rigidity makes it possible to preserve the surface details.

The ARAP method presented in [SA07] divides the surface of the model, represented as a triangular
mesh, into overlapping cells. A cell consists of all the triangles incident to a particular vertex of
the mesh, that is, a cell is equivalent to the first ring of that vertex. According to this, the authors
consider a transformation to be rigid if, given an original cell C; and its corresponding deformed cell
C!, there exists a rotation matrix R; that transforms C; to C/. Thus, the deformation framework
consists in finding optimal rotation matrices R; such that they minimise the error between the
original and the transformed cells C; and C/, for all the cells that cover the surface of the model.

All the methods presented until now belong to the group of discrete deformations, a term introduced
by Martinez-Esturo et al. in [MERT12]. Discrete deformations only compute the final position of
the vertices and do not consider the deformation path leading from the initial state to the final
one. In contrast, continuous deformations integrate vertex positions along smooth vector fields.
Although most of the bibliography concerning surface deformation methods describes techniques
that belong to the discrete deformations paradigm, there exist some research works that also
expose how to compute vector fields regarding some constraints, e.g., volume and shape preserving,
and how to use them in continuous deformation processes. Some examples are [vFTS06, vETS07,
KMPO07,MERT12].

Finally, shape and surface analysis can also be used in other applications beyond deformations.
For example, creation of texture atlases [ZSGS04], mesh segmentation [LZ07,dGGV08], shape
correspondence [JZ07], mesh compression [VMHB14] and sketch based model edition [NSACOO5,
NISAQ7]. Moreover, surface deformation techniques are also used as powerful tools in other research
works [BWKS11,BBB*14]. In [BWKS11] a structure-aware shape deformation is presented. This
technique allows for detection of regular patterns in the initial model and preserve them during
the deformation process, minimising the distortion. Once the patterns are identified, the method
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computes an elastic deformation based on [SCOL™04] and [SA07]. On the other hand, the authors
in [BBB'14] present a technique for adding fine-scale details and expressiveness to low-resolution
facial models. Firstly, they capture a representative performance of an individual. Then, they
extract an expressiveness model that encodes the subtle spatial deformation details that occur
during that capture process. Finally, these deformations are transferred to low-resolution models
by means of a matching process and a surface reconstruction step based on [BSPGO06].

Although the results obtained through surface deformation techniques are intuitive and high quality,
they have a major drawback: their high computational cost. This disadvantage can make them
useless for real-time environments, where interactivity is a key requirement.

Space Deformation Techniques

The space deformation paradigm, unlike surface deformations that directly manipulate the embed-
ded object, operates on the ambient space enclosed by some control structure. Commonly, this
control structure takes the form of either a lattice or a coarse polyhedron, or polygon in 2D, which
resembles the shape of the wrapped model and is called cage. The vertices of the lattice or the cage
are the handles, or control points, used to deform the enclosed space. Figure 2.5 shows an example
of a lattice while Figure 2.6 shows an example of a cage.

This deformation scheme was first introduced by Sederberg and Parry [SP86] as the Free-Form
Deformation (FFD) paradigm. The FFD method was designed to sculpt and model solid objects
defined by an analytic surface. However, it can also deal with polygonal models. It encloses the
object into a lattice, as shown in Figure 2.5, and relates it with respect to the control structure
through a local system of coordinates. Hence, when the user moves any of the vertices v; of the
lattice, which are the control points, any point p inside it, particularly those on the surface of the
object, is modified according to the trivariate tensor product Bernstein polynomial.
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Figure 2.5: Example of a Free-Form Deformation lattice surrounding an object. Its vertices are the
handles used to drive the deformation.

This seminal work was extended by Coquillart [Coq90], MacCrackent et al. [MJ96] and Kobayashi
et al. [KOO03] who, gradually, make the underlying lattice structure more flexible until achieving a
triangular mesh with arbitrary topology in [KO03|. However, the FFD method and its rigid control
structures make the deformations not as flexible as desired. Thus, the research in this field focused
on the study of more general control structures that fit the wrapped model better and with more
degrees of freedom to perform the deformations in an easier and more intuitive way.

From this search for new methods arises the cage-based deformation methods which, as stated
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above, surround the model into a coarse polyhedron called cage. Figure 2.6 shows an example of a
cage used to animate the model of the Armadillo.

(a) (b)

Figure 2.6: Example of a cage, whose vertices are the handles, used in a space deformation process,
from [JSWO05]. (a) shows the original model of the Armadillo, enclosed inside the cage, which is
represented as a triangular mesh. (b) presents an example of deformation of the Armadillo.

Cage-based deformation techniques construct space deformations by means of Generalised Bary-
centric Coordinates (GBC). Barycentric coordinates are a very useful mathematical tool and allow
us to interpolate continuous data over a space domain from discrete or continuous values defined
on the boundary? of this domain. Thus, assuming that the model is represented by a triangular
mesh for the sake of simplicity, its vertices p are defined as a convex combination of the vertices
v; of the cage through the use of GBC

p= Zviaz’(P), (2.1)

where «;(p) is the GBC of p with respect to the i-th control point v;. Usually, these coordinates
are required to fulfil a set of basic properties:

e Reproduction of the identity: the point p is defined through the linear combination shown in
Equation (2.1).

e Reproduction of the unity: the coordinates a;(p) must sum 1, that is >, a;(p) = 1.
e Positivity: the coordinates a;(p) must be positive, so a;(p) > 0 Vo, (p).

e Continuity and smoothness: the functions to compute the coordinates «;(p) must be contin-
uous and smooth. We require, at least, C' continuity.

e Locality: the influence of the control points over the points inside the cage must be local.
That is, the control points should have a larger impact on the points near them than on those
that are located farther away.

Moreover, in contrast to the surface deformation paradigm, the GBC only need to be computed
once, so the cage-based deformation pipeline consists of two steps, as shown in Figure 2.7:

3In the deformations context, this boundary is exactly the surface of the cage.
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1. Deformation set-up: the coordinates are computed and stored for their further use. This step
is also known as the binding process because it establishes the relation between the model
and its cage.

2. Deformation process: every time that the user drags a control point and modifies the cage,
the mesh inside it is recomputed using the new location of the cage vertices and the GBC
previously computed.

. Y4 Modified cage
NY P — GBC +

— GBC
Deformation Deformation

set-up process

Figure 2.7: Pipeline of a cage-base deformation process.

This pipeline makes the method highly efficient and, therefore, cage-based deformations can achieve
real-time performance.

Due to their importance in the space deformations field, there is an extensive bibliography proposing
different GBC schemes. The classical Barycentric Coordinates were first introduced in 1827 by
Mobius [M&27]. They define a point p inside a simplex* with respect to its vertices. However,
the restriction over the polytope structure has led to numerous extensions of this scheme in the
case of more general cages. Wachspress [Wac75], Meyer et al. [MBLDO02], Ju et al. [JSWDO05]
and Floater et al. [FHKO06] defined GBC systems that work over convex polygons and polyhedra.
Moreover, [WSHDO07,SJW07,MS10] allow cages with curved boundaries and [MS10] also allows non-
closed and self-intersecting polytopes. However, it was not until the definition of the Mean Value
Coordinates (MVC) that a solution to compute coordinates over concave polytopes was given.
Floater et al. [Flo03, HF06] first defined the MVC in the 2D case and, then, two contemporary
works, Floater et al. [FKRO05] and Ju et al. [JSWO05], generalise them to 3D polyhedra domains.
Both works derive the MVC by the observation that the integral of all unit normals i around a

sphere S is zero
/ﬁ:ﬁ
S

and compute this integral with the help of the classical barycentric coordinates adapted to spherical
triangles. The resulting coordinates are well-defined, that is, they meet all the GBC properties
listed before, and are positive in the interior of the polytope, if it is convex, or in its kernel®, if it is
concave. They are C*°-continuous inside and outside the polytope, or its kernel, and C°-continuous
on its boundary. This characteristic can produce sharp features when the MVC are used in cage-
based deformations, as shown in Figure 2.8(a). To alleviate this situation, Langer et al. [LBS06]
developed the Spherical Mean Value Coordinates (SMVC) as an extension of the MVC that permits

4A triangle in 2D and a tetrahedron in 3D.
5 Assuming the facets of a polytope as opaque walls, the kernel is the volume inside it from which all its vertices
can be viewed directly.
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non-triangulated polyhedra. That is, the SMVC can be computed over a polyhedron whose faces
are arbitrary planar polygons, so they are not restricted to triangular faces (see Figure 2.8(b)).

(a) MVC deformation

(b) SMVC deformation

Figure 2.8: Example of a MVC deformation in (a) and a SMVC deformation in (b) taken from
[LBS06]. Notice the artifacts introduced by the triangulation of the cage in the MVC case and how
they disappear with the help of a more flexible cage and the SMVC.

As previously stated, the MVC are only positive in the interior of convex polytopes and inside the
kernel of concave ones. In addition, their computation depends on the euclidean distance between
the point p and the handle v;, which ignores the visibility that the points inside the polytope have
over the control points. These two features cause undesired slimming and a global effect when the
MVC are used to deform a 3D model enclosed in a strongly concave cage. Figure 2.10(b) shows
how the ring finger tightens when only the section of the cage around the middle and index fingers
is modified.

In order to solve this problem, two new systems of coordinates have been developed: the Harmonic
Coordinates (HC) [JMD™07] and the Positive Mean Value Coordinates (PMVC) [LKCOLO07]. The
HC are the unique solution to the Laplace equation with Dirichlet boundary conditions. This
solution is a harmonic function, hence, the name of these coordinates. They are non-negative,
more local than the MVC, C*-continuous inside the cage and C°-continuous on its boundary.
However, they do not posses an analytic expression, so they are typically approximated using a
discretisation of the interior of the cage. In contrast, the PMVC reach the non-negativity property
based on the same principles as the MVC. Nevertheless, in order to fulfil this requirement they
must relax the constraints of smoothness and continuity through the supporting planes of the cage.
Figure 2.9(b) shows the singularities that the PMVC present near the concavities of the cage.

Figure 2.10 shows an example of a deformation of the middle and index fingers of a 3D hand. This
deformation is driven by the MVC, the PMVC and the HC respectively. Notice how the process
that uses the MVC causes unintuitive effects over the ring finger. In contrast to this, the PMVC
and the HC do not modify the ring finger, so the resulting deformation is more local, intuitive and
aesthetically pleasant.

The coordinate systems presented above express the point p inside a cage as an affine combination
of this cage vertices v;, as shown in Equation (2.1). This means that the cage produces affine
transformations, which may include shear, anisotropic scale and self-intersections. In this context,
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(a) MVC (b) PMVC

Figure 2.9: Comparison, from [LKCOLO7], of the smoothness and continuity of the MVC and the
PMVC. Notice the singularity of the PMVC in the vicinity of the concavity of the cage.

(a) Rest pose (b) MVC deformation (¢) PMVC deformation (d) HC deformation

Figure 2.10: Example of a deformation process over a 3D hand. It compares the obtained results
depending on the system of GBC used: the MVC in (b), the PMVC in (c) and the HC in (d). This
sequence has been obtained from [LKCOLOT].

intuitive control over local rotations and shears and, moreover, achieving shape and detail preser-
vation of the deformed 3D models are unfeasible. Hence, in order to increase the control over the
modification process and to perform shape-preserving space deformations, Langer et al. [LS08] and
Lipman et al. [LLCOO08,LL10] developed the Higher Order Barycentric Coordinates and the Green
Coordinates, respectively. On one hand, Higher Order Barycentric Coordinates try to increment
the control over the deformation handles by taking into account the derivatives of the coordinate
functions, so they produce an Hermite interpolation at the control points. Particularly, the authors
in [LS08] formulate the Higher Order Mean Value Coordinates, although their technique can be
applied to other systems of coordinates like the HC. On the other hand, the Green Coordinates
(GC) are devoted to achieving shape-preserving space deformations. They take into account the
orientation of the faces of the cage, together with the position of its vertices, so they express the
point p as the linear combination

p=> viai(p)+ Y 1i;s;8(p),
( J
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where 1; are the normals of the faces of the cage, s; are scaling factors to keep scale invariance
and «a;(p) and SB;(p) are the GC of the point p. The GC do not interpolate the boundary of
the cage. However, this is a necessary deal so they can produce conformal mappings in 2D and
quasi-conformal mappings in 3D, which leads to shape-preserving deformations. Figure 2.11 shows
a comparison between the GC, the HC and the MVC. Notice how the GC produce smoother and
more pleasant deformations than the previous systems.

GC HC MVC

Figure 2.11: Comparison of the same deformation driven by the GC, the HC and the MVC,
extracted from [LLCOOS].

Later, Weber et al. [WBCGO09] demonstrate that the GC belong to the Complex Barycentric Co-
ordinates (CBC). The CBC are a family of coordinates whose members are characterised by the
fact that they are barycentric coordinate systems with complex numbers.

More recently, the research in the deformations field and, particularly, in the space deformations
field, has focused on making the handles of the process more flexible: developing cage-free meth-
ods [LLD"10], combining multiple kinds of handles [JBPS11] and localising the deformation [GG-
PCP13,ZDL"14].

In their work, Li et al. [LLD*10] use the GC to deform a 3D model, which is represented as a
triangular mesh. They replace the supporting cage by an umbrella shaped cell. This umbrella is
completely transparent to the user and is automatically constructed and updated when he or she
directly drags a vertex of the model. This method simulates the surface deformation paradigm in
terms of flexibility of the handles. It also performs local shape-preserving deformations in real-time,
due to the use of the GC.

In [JBPS11], the authors propose the Bounded Biharmonic Weights, that allow multiple deforma-
tion handles. The user can operate with cages, skeletons and isolated control points on the surface
of the model to accomplish the desired deformation. Their method reaches its goals through a
space discretisation, which results in a tetrahedralisation of the deformation domain that includes
the model and all the handles, and the minimisation of a Laplacian energy.

Finally, Garcia et al. [GGPCP13] present a multi-cage system to restrict the deformations in more
localised regions. Their technique also increases the continuity of the coordinates across the faces
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of the connected cages by computing a blending function. Furthermore, they also allow the com-
bination of different GBC to make the deformation even more flexible. In a similar way, Zhang
et al. [ZDL114] also localise the effect of the deformation. However, instead of connecting cages
as in [GGPCP13], they have a single cage and, for each point p of the model, they compute its
coordinates with respect to a small set of control points. That is, the points of the model are not
affected by all the handles but only by a small set of them.

Volume-Preserving Deformations

In the previous sections we have seen that detail and shape-preserving deformations are an outstand-
ing research topic. However, these are not the only attributes that are intended to be preserved.
In recent years there has been a growing interest in performing deformations that conserve other
kinds of properties of the models, e.g. their volume. Constrained manipulations of the objects
contribute to producing more realistic and physically plausible deformations.

Zhou et al. [ZHST05] extend the surface deformation techniques in [SCOLT04] and [YZX104] to
a volumetric approach. Given a particular model represented as a triangular mesh, they construct
a volumetric graph. First, they build an interior layer by offsetting each vertex of the input mesh
in the opposite direction to its normal. Then, they fill this layer with a lattice and connect all the
vertices, as shown in Figure 2.12. Once the graph is obtained, the technique encodes the volumetric
details as the difference between each of its points and the average of their neighbours. Every time
that the user drags a deformation handle, the system solves the new positions of the vertices of the
model by means of a least-squares minimisation. This process preserves surface details and avoids
unnatural volume changes.

Figure 2.12: Construction of the volumetric graph, from [ZHS*05].

The methodology in [vFTS06], which has already been introduced in Section 2.2, produces surface
deformations via a divergence-free vector field. Thus, the deformation preserves the volume of the
modified model. Moreover, the technique in [BK03], also presented in Section 2.2, avoids extreme
changes in the volume of the manipulated model due to the use of displacement volumes in its
multiresolution paradigm.

Lipman et al. [LCOGLOT] preserve the volume through the scale of the transformations, according
to local curvature information. Figure 2.13 shows the same deformation before and after the volume
correction.
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Figure 2.13: Example of a deformation of the Armadillo model without volume correction (left)
and with volume correction (right). This image has been extracted from [LCOGLO7].

Additionally, there are some space deformation techniques that also preserve the volume of the
modified object. Aubert et al. [AB97] present a volume-preserving FFD technique based on the
DOGME [BB91] model. DOGME deforms an object placing some handles on the desired locations
and guaranteeing some constraints through an optimisation parameter. The volume is preserved
with an iterative algorithm that keeps it constant while minimising the norm of this parameter.
In [HML99], Hirota et al. propose an extended FFD method that uses an elastic spring energy
connecting the handles of the lattice. When the user moves one of these handles, the lattice is
updated according to the constrained minimisation of the associated energy, subject to null volume
deviation. Once the lattice is updated, the deformation is transferred to the object surface as
done in the classical FFD technique, that is, by means of the trivariate tensor product Bernstein
polynomial. Other FFD techniques that preserve the volume are [RSB95] and [WM14].

Huang et al. [HSLT06] present a technique that mixes a nonlinear energy minimisation with a
cage-based deformation. The authors propose building a coarse control mesh, i.e. a cage, around
the original mesh of the model and deform it according to the energy minimisation. This energy
encodes the linear and nonlinear constraints over the deformation, particularly, it permits the exact
volume preservation of the modified object. Once the cage is deformed, it transfers the changes
onto the original mesh via a mean value interpolation.

In [ACWKO06], Angelidis et al. define volume-preserving deformations by means of swirling-
sweepers. A sweeper [AWCO04] is a space deformation technique that simulates clay modeling.
When the user moves a modeling tool across a desired path, the model is deformed along this path,
according to the shape of the used tool. Then, a swirl-sweeper is a sweeper restricted to a point
tool which can be rotated an angle 6 around an axis r and twists space locally, without compression
or dilation of the deformed model.

Finally, there is also an increasing interest in producing volume-preserving skinning to achieve more
realistic animations. The authors in [vFTS08] apply a volume correction step after each skinned
deformation. This correction consists in moving the vertices of the deformed model, represented
as a mesh, along an automatically constructed displacement field. In addition, they also allow the
user to interactively control the volume correction, so some custom effects can be obtained, e.g.,
muscle bulging. Other works in this area are [AS07] and [RHCO09].
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In recent years, new deformation algorithms for 3D models have appeared with the goal of mak-
ing the process more intuitive. These new methods are focused on increasing the flexibility and
simplifying the deformation handles, so they can perform volume deformations without the need
of a complex structure, e.g. a cage. They only need the definition of a set of control points in the
vicinity of the model, which we assume represented as a polygonal mesh. Then, a set of weights
can be computed for every vertex of the model. These weights, also called coordinates, define the
vertices of the model as a linear interpolation of the control points, making it possible to deform
the model through the direct manipulation of these handles.

In [JBPS11], the Bounded Biharmonic Weights (BBW) permit the users to mix isolated control
points, skeletons and partial cages. On the other hand, the technique in [LLD'10] only works
with isolated control points over the surface of the model. To reach the desired deformation, this
method automatically builds an open, umbrella-shaped cage around the activated control point,
the one that is being manipulated by the user. The final deformation is, therefore, driven by this
open cage, in a completely transparent way for the user.

Within this context, this chapter describes different attempts to construct cage-free deformation
approaches. All of them try to define a system of coordinates with respect to the control points
that satisfies some basic properties:

e Reproduction of the identity: given a set of control points V = {vy,...,v,} and a point p

21
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inside their convex hull, p can be defined through the linear combination
n
P = Zaivi, (31)
i=1

where A = {ay,...,a,} are the coordinates of p with respect to the control points.

e Reproduction of the unity: the weights «;, computed for any point p inside the convex hull
of the control points, must sum 1

Zai =1, Vp. (3.2)

e Positivity: the weights «;, computed for any point p inside the convex hull of the control
points, must be positive
o > O, Vozi. (33)

e Continuity and smoothness: the functions to compute the weights «; must be continuous and
smooth. We require, at least, a C'' continuity.

e Locality: the influence of the control points over the points inside their convex hull must be
local. That is, the control points should have a larger impact on the points near p than on
those that are located farther away.

Notice that the reproduction of the identity, the reproduction of the unity and the positivity
properties ensure that Equation (3.1) is, in fact, a convex combination.

Firstly, we tried to develop a system of coordinates from the well-known Mean Value Coordinates
[FKRO05] (MVC). We substituted the fixed, user-defined cage that supports the MVC computation
for a given point p of the model, by an automatically computed connection between the control
points. This imposed connectivity depended on the point of view of p so it was not constant for all
the points of the model. The MVC, like most of the cage-based coordinate systems [LBS06,JMD ™07,
LLCOO08], strongly depends on the connection between the control points so that two different
connections result in two completely different sets of coordinates. Accordingly, the flexibility on
the connectivity provided by our methods induced discontinuities in the functions of the coordinates
when the computation of these coordinates were based on the MVC equations.

Trying to improve the Mean Value based methods, our next attempts did not compute a different
connectivity per point of the model. They worked over a single, constant and layered connectivity
that tried to take into account all the possible connections between the control points. However,
these approaches resulted in rude coordinates that did not have the required level of smoothness
to perform intuitive and visually pleasant deformations.

Finally, we decided to work without any kind of supporting connectivity between the control points.
We, therefore, addressed the problem directly in the n-dimensional space, where n is the total
number of existing control points.

To sum up, our approaches can be classified into three different groups: the methods based on
the Mean Value Coordinates [FKRO05], the layered methods and the n-dimensional methods. In
the following sections we describe all the studied methodologies and discuss their advantages and
disadvantages. Finally, a summary of our results and conclusions can be found in Section 3.4.
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Mean Value Coordinates Based Methods

Mean Value Coordinates (MVC) were presented by Floater et al. [FKRO05] in 2005 as a generali-
sation of the Classical Barycentric Coordinates to express a point inside a polyhedron as a convex
combination of its vertices V = {vi,...,v,}. This polyhedron, which we will call cage from now
on, has triangular facets and the coordinates are well-defined and positive in the interior of it, if
it is convex, or in its kernel, if it is concave. Assuming the faces of the polyhedron, edges of a 2D
polygon, as opaque walls, the kernel is the volume inside the polyhedron from which all its vertices
can be viewed directly. Figure 3.1 shows the example of the kernel of a 2D polygon.

Figure 3.1: Kernel of a polygon.

In this section, we study a set of methodologies that, while using the same principles as the MVC
to compute the coordinates, try to free this computation from a fixed and static cage. First of all,
let us explain the MVC in depth.

The basic idea to derive the MVC is the observation that the integral of all unit normals ii around
a sphere S' is zero
/ﬁ:ﬁ (3.4)
S

Given a point p inside the cage, its triangular boundary 7T is projected on the unit sphere centered
on p, Sp. We can see this projection as a partition of the sphere with spherical tetrahedra. Each
spherical tetrahedron is composed of a projected triangle T = [Vi, ¥, V] of the cage with the point
p, as shown in Figure 3.2. Thus, the integral in Equation (3.4) can be written as

/Spﬁ:Z/T(Vdp):ﬁ, (3.5)

TeT

where v is a point on the spherical triangle 7 and d = ||(v — p)||.

Let us define the vectors = (v;p), q; = (VZP), d; = % and q = (v’zl;p), where d; =
|(vi—p)ll, dj = ||(vj — p)|| and di, = ||(vi, — p)||. Then, g is expressed as the convex combination

d = Bid; + B;4; + Brdx, where the values (8;, 3, Bx) are the spherical barycentric coordinates of g
with respect to g;, g; and q. Hence,

UOl(d”La qja Ei.)

B' _ M e M and — s 5 S
vol(di, dj, q)

2 = — Br =
vol(Gi, dj,4k) 7 wol(di, dj, Gk)
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are ratios of the volumes of the tetrahedra, which are computed like vol(q;, 4, dx) = @"@éxa’“)‘ ’
Redefining Equation (3.5)
vV—p _ ~ ~
Z/A( ) > | Bidi + B;d; + Brd
7 d T
TeT TeT
= Z <Qi/Aﬁi + q; /Aﬂj + (ik/A/Bk> (3.6)
TeT T T T
= Y B.5G + B, 76 + By 7k
TeT

Figure 3.2: Partition of the unit sphere S, centered on p as the result of the projection of the
boundary of the cage on it. (a) shows a model of a line enclosed in a cage of nine control points.
(b) and (c) display two different projections of the deformation handles and the cage over the
spheres Sp, and Sp,. The points p; and p2 are those in orange.

Figure 3.3 shows the nomenclature we use to derive the MVC. The vector 15 is the sum of the
normals in the spherical face of the tetrahedron, that is s = ff g. Vectors n;;, nij;, and nj; are
the normals of the planar faces Fi; = [V, p,V;], Fji = [V, p, Vi] and Fj; = [V, P, V4], respectively,

xXd; = d; Xdk Gk X0

q; _ j = _
==t N = 72— and fg; = 73t
Ma:xa; 1’ 7% = Tla; <G ki = Tgexdill

SO ﬁij =

Vi

Figure 3.3: Nomenclature in a particular spherical tetrahedron T.

As stated before, it is a well-known fact that the normal integration over the surface of any closed
body, and over a sphere particularly, is 0. That means iz = a;;0;; + a0k + ap;0g;, where a;;, ;g
and ay; are the areas of the faces Fj;, I, and Fy;, respectively. The projection sphere is unitary,

meaning its radius is equal to 1, so, the area a;; is computed as a;; = %, where «;; is the angle
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between q; and g (the same for the areas aj; and a;). Finally, the normal iz can be expressed

as ~
_7@]—' _]k—» Vei
7 My kT Ty

Then, the spherical barycentric coordinates of nig are

n

B . — vol (fi7,d;,qx) _ s (65 Xdk) Yigfij- ngk+7]k+71mnm 1,
7J,T vOl(d’l,ﬂ],q’k) d’b (61] Xq’é) 2q" an
B P UOl(ﬁA,aiqu) _ ﬁA(quC_l‘k) _ 'yijnij-nkl—i-%knjk nki+'7ki (3 7)
4T vol(d;,4;,qx) q;-(dixqg) 2q;-rig; )
B~ = vol(fip,G,G;)  _ |Hp(dixdy) | vigtyenge B +yesngs i
kT 7 wol(Gg.did;) | de(dixd;) | 2q Ty ’

As the volume is always positive, it does not matter the order in which the vectors nz, g;, q; and
qy are chosen.

Next, Equation (3.6) is grouped by control points instead of triangles
n
Z Bi7Gi + B, 745 + By 7k = Z Z B, 74i = 0,
TeT =1 T>v;
and the expression of §; is also substituted
n
Zzﬁi,fql ZZ@T , sz Vi — P)-
i=1 Tov; i=1 T3v; di

The final Mean Value Coordinates A = {a1,...,a,} are

Wi

Z?:l w;’

which satisfy the convex combination p = Z?:l ;V;.

(3.8)

o =

The MVC as explained can be used to perform space deformations. They are noted by their
simplicity and efficiency as they are computed using a closed and simple formula. However, the
MVC are a system of coordinates thought to be used in cage-based deformations and, as any
cage-based system, they inherit their main disadvantages:

1. The user needs to specify the connectivity of the cage manually.

2. Two cages with exactly the same control points but distinct connectivity result in completely
different sets of coordinates, although the difference between connectivities may be just a
single edge.

Our goal is to derive a system of coordinates that takes advantage of the MVC benefits while trying
to solve the problems defined by the cage-based systems. For this reason, our first attempts are
completely based on the MVC coordinates and only try to define an automatic connectivity between
the user-defined control points to support the computation of these coordinates. In addition, we
want this connectivity to be computed from the point of view of p, the point of the model to which
the coordinates are computed. This ensures that p always lies inside the convex hull, or the kernel,
of the automatically computed polyhedron. With these premises, we achieve an important benefit:
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the user is freed from defining a cage and he or she only needs to locate a set of control points
around the model®.

The following sections are devoted to present the development of these approaches and to discuss
their advantages and disadvantages.

Delaunay Triangulation Approach

The first idea we studied was to perform a Delaunay Triangulation. Given the point p of the model
and the control points V = {vi,...,v,}, the Delaunay Triangulation Approach (DTA) firstly
projects the control points over the unit sphere Sy centered on p. Then, a Delaunay Triangulation
is performed, so we get a triangular mesh projected on the surface of Sp. The reader can imagine
it as the star constellations on the celestial dome viewed from p.

This Delaunay Triangulation is the supporting structure to compute the DTA coordinates, which
are completely based on the premises and development of the MVC as explained in the introduction
of this section.

The DTA coordinates inherit the simplicity of the MVC. Moreover, the DTA does not need the
control points to be located in a convex hull, so the user has complete freedom to locate the
handles wherever he or she considers more suitable. However, the DTA triangulates these control
points depending on their projection over the sphere of a particular point p. This means that the
triangulation is not constant for all the points of the model: two neighbouring points p; and po
can produce two different Delaunay Triangulations because of the flips on certain edges, as shown
in Figure 3.4.

Figure 3.4: Example of flips appearing on adjacent Delaunay Triangulations. This example shows
the projection of the control points over a sphere and their Delaunay Triangulation for different
points of the model. The model is composed of a line of points and the reader can observe the
evolution of the Delaunay Triangulation and how edges flip when we travel through the points of
the model.

Previously, we have explained that the MVC computation totally depends on the triangulation
defined over the control points. As the DTA coordinates are completely based on the MVC, they
also inherit this dependency. This means that the functions of the coordinates show discontinuities
whenever a flip occurs between adjacent triangulations?. Note that this situation can be com-
pared with the technique presented in [LKCOLO7]. Positive Mean Value Coordinates also present

discontinuities in the vicinity of the concave parts of the cages.

!Notice that the region the user wants to deform must be enclosed inside the convex hull of the control points.
2 Adjacent triangulations are those that correspond to two different model points p; and p2 that are very close
in the euclidean space.
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The discontinuities on our functions also arise during the deformation process, resulting in artifacts
and rough or unpleasant deformations of the models. Figure 3.5 shows that the DTA coordinates
are not suitable to use in spatial deformation techniques.

(a) (b) ()

Figure 3.5: Example of a deformation of the Armadillo model by means of the DTA coordinates.
In the initial situation, the Armadillo is enclosed in a cubic convex hull with three control points
inside it, as shown in (a). Then, (b) shows the heat map that corresponds to the red deformation
handle. The area in red is the most influenced by the control point. In contrast, the area in
blue remains almost constant when this control point is dragged. Finally, (¢) shows a deformation
caused by the translation of the selected handle.

When facing this problem, we needed to think of some solution to correct the discontinuities caused
by the flips on the triangulations. The idea we considered was to apply a blending function over
the coordinate functions. This blending function would be applied whenever we dealt with different
adjacent triangulations in order to smooth the resulting coordinates.

Bézier Blending

Given two adjacent triangles 71 and T, we can detect when a flip is about to take place analysing
the angles v and ¢ corresponding to the nonadjacent vertices between them (see Figure 3.6). While
v+6 < 180°, the triangulation is balanced and the created triangles T} = [a, b, c] and T3 = [a, b, d]
keep constant. However, once the sum v 4+ § = 180° is reached, the flip takes place and the two
triangles become 77" = [a,c,d] and T3 = [b, c,d].

We want to relax the discontinuities caused by flips by applying a blending function whenever a
particular triangulation approaches a flip, that is, when v + § = 180° — e. The constant ¢ allows
us to control the area of the model whose points will have coordinates affected by the blending
function. The bigger the value of ¢ is, the bigger the impact of the blending function over the
coordinates will be.

Then, given a point p, we test if any pair of adjacent triangles T7 and T of the induced Delaunay
Triangulation is near a flip. If so, we compute two sets of DTA coordinates A’ = {a/, ..., a4} and
A" ={d],...,af}. We use the triangles T} and T to compute the coordinates A’ and the triangles
Ty and T4 to compute A”. Finally, the final set of coordinates A = {a1,...,as} results from an
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Figure 3.6: Two adjacent triangles and their angles.

interpolation between A’ and A”

A=1—-pA +uA”.

We studied the use of a cubic Bézier curve B to compute the blending weight u. The control points
for B are Py = (—¢,1), P =(1—¢,1), P, = (e —1,) and P35 = (¢,0), so p is given by

p=—e1-2)3+301-e1—x)%x+3(—1)(1—x)z*+ ex.

Figure 3.7 shows the cubic Bézier used.

Figure 3.7: Bézier curve used to blend two consecutive Delaunay Triangulations with flips between
their triangles.

Although the blending function allows us to reduce and smooth the effect of flips between adjacent
Delaunay Triangulations, the deformations performed by means of these DTA coordinates are still
rough and present sharp features. The coordinate functions are completely continuous. However,
the blending area emerges during the deformation process and results in unpleasant distortions.
Thus, neither are the blended DTA coordinates suitable enough for use in spatial deformation
techniques.
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Voronoi Regions Triangulation Approach

Seeing that a simple blending was not sufficient to hide the discontinuities of the DTA and to get
a set of DTA coordinates to perform pleasant and intuitive deformations, we had to address the
problem caused by the flips at its root. In other words, we needed to find another way to connect
the control points that was free from flips and discontinuities between adjacent connections.

Each Delaunay Triangulation has associated the dual graph of the Voronoi Diagram. Unlike Delau-
nay Triangulations, which evolve discontinuously due to the flips, the associated Voronoi Diagrams
are continuous. For this reason, we considered improving the DTA coordinates using the Voronoi
Diagram to create the supporting triangulation for the coordinates computation, as shown in Fig-
ure 3.8. We called this experiment the Voronoi Regions Triangulation Approach (VRTA).

. o
e
o _
. Vi
A -
uy Vi
v o e
Vi
(a) Delaunay Triangulation (b) Voronoi Region Triangulation

Figure 3.8: Comparison between a Delaunay Triangulation and a Voronoi Region Triangulation.

The VRTA coordinates are based on the same principles as the DTA coordinates:

1. the main goal is to automatically compute a connectivity between the user-defined control
points,

2. we want this connectivity to be defined from the point of view of the studied point p of the
model and

3. the final computation of the VRTA coordinates is completely based on the MVC.

The only difference between the two methodologies lies in the triangulation used as the support
structure for the computation of the coordinates. Given a point p of the model, the VRTA projects
the control points over the unit sphere Sp and compute their Voronoi Diagram. An easy way to
do this is firstly to compute the Delaunay Triangulation of the projected control points. Then, the
Voronoi vertices are computed as the circumcenters of the Delaunay triangles and projected over
the sphere. The Voronoi vertex U; corresponds to the Delaunay triangle whose vertices are the
control points v;, v; and V. Finally, the Voronoi vertices are connected to define the boundaries
of the Voronoi regions and these are triangulated as shown in Figure 3.8(b).

Once the underlying structure is obtained, the process computes an intermediate set of coordinates
Qv ={wv1,..., Wy, Wy, ..., wyp} following the MVC development. Observe that the cardinality
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of Qy is |Qy| = n + [, where n is the number of control points and [ is the number of Voronoi
vertices, all of them projected over the sphere Sp, so

Control Points Voronoi Vertices

— ——

n l

E Wy, Vi + E Wyt = 0.
i=1 =1

The Voronoi vertices do not exist from the point of view of the user. That means that the weights
applied to them must be transferred to the control points somehow, so that the points of the model
are completely and solely defined by these control points. For this reason, we studied two different
ways to do this transference, both of them based on defining the Voronoi vertices with respect to
the control points by means of a system of coordinates:

e Spherical Barycentric Coordinates Transference: computes the Spherical Barycentric Coor-
dinates (SBC) of the Voronoi vertices with respect to the control points that compose the
corresponding Delaunay triangles.

e Natural Neighbour Coordinates Transference: computes the Natural Neighbour Coordinates
(NNC) of the Voronoi vertices with respect to its neighbouring control points.

We explain each transference method below.

Spherical Barycentric Coordinates Transference

Given the Voronoi vertex Uy, that corresponds to the Delaunay triangle T = [Vi, ¥V, Vi), we de-
fine 1 with respect to v;, v; and v by means of the Spherical Barycentric Coordinates (SBC)
(Bi, By, Br): Ui = BiVi+ BV + B V. The same weights (8, 85, Bx) used to reproduce uy can also
be used to interpolate values from u; to v;, V; and Vi. Therefore, the transference of the inter-
mediate coordinate wy, s, corresponding to the Voronoi vertex Uy, is done interpolating its value in
the control points, through the SBC (;, 35, Bx). Then, the coordinate w; for the control point v; is

w; = Wy,; + E Biwv,i’-

ViBf

The transference of the weights from the Voronoi vertices to the control points results in the
set of coordinates = {wi,...,w,}. This set Q is the base to finally compute the coordinates
A={ay,...,a,} as in Equation (3.8).

Although the SBC of the Voronoi vertices are well-defined, a problem came up in our approach.
The SBC computation relies on the Delaunay Triangulation of the control points. This fact makes
that the discontinuities caused by flips arise again in the VRTA coordinates functions. These results
made us conclude that the SBC are not suitable to transfer the weights from the Voronoi vertices to
the control points. We needed to define a new method to do the transference that did not depend
on the underlying Delaunay Triangulation.

Natural Neighbour Coordinates Transference

The Natural Neighbour Coordinates (NNC) [BCO1] allow the definition of point p with respect
to its neighbouring points in the 2D plane. This is done from the differences in the areas of the
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Voronoi regions when the Voronoi Diagrams are computed considering, or not, p. So NNC do not
take into account any connectivity between the study points. For this reason, we contemplated
performing the transference of the weights from the Voronoi vertices to the control points by means
of their NNC.

Given a Voronoi vertex Uy, firstly, we need to project the control points and the Voronoi vertex
from the unit sphere Sy, to a plane P, because, as mentioned above, the NNC are defined in the 2D
plane. We chose P as the plane that contains u; and which normal is ip = Uy — p. Notice that
P is tangent to the sphere Sp through u;. Then, the control points are projected onto P through
a polar projection, where the pole U/ is the opposite point to Uy on Sp. We call v; the projected
control points on P. See Figure 3.9 for an example of the polar projection.

Figure 3.9: The control points are polar-projected into the plane P, tangent to the unit sphere Sp
through u;/, to compute the NNC of the Voronoi vertex u;.

Once the control points lie on P, we compute the set B = {3;, ..., 3.}, which are the NNC of Uy
over P, as in [BCO1]. Finally, the set B of planar NNC is unprojected back to the sphere S, using
the projection formulation development. So, we define

Vi v+ Y v — V4|
(2 (2 HG’L —UH 1 (21N
the projected control point on P. Then, we substitute & = —u;, so
_ ~ Vi + U _ A
Vi=Vi+t == |IVi— Vi
' R Ivi il
R\ 2T 71
and call §; = i 5°

On the other hand, we know

n n
u; = ZBNZ = Zﬁﬁi, (3.10)
=1 =1
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where §3; are the NNC over the plane P and 3; are the NNC over the unit sphere Sp. By applying
Equation (3.9) to Equation (3.10), we get the following mathematical development

Uy = > Bi(Vi(l+8)+1s0)

i=1
— Z Bivi(1+ &) +dy Z Bjd;
i=1 j=1

S Bivi(1+6;)

1- Z?:l Bjéj
— Zn:v.—ﬁ_i(l + )
— 1= B
In conclusion, the NNC of u; over the unit sphere Sy, are the set of coordinates B = {f;,..., 5},
where _
B = Bi(1 + )
1= 3771 556,

We use this set B of NNC to transfer the weights from the Voronoi vertices to the control points

w; = wy,; + g ﬂiwv,i%

VZ'ET\

so we get the set of coordinates Q = {ws, ..., w,} and compute the final coordinates A = {aq, ..., an}
as in Equation (3.8).

The VRTA coordinates with NNC transference solve the discontinuities induced by the flips on
the Delaunay Triangulations. However, this transference is a cumbersome solution to our problem:
the NNC can not be directly computed over the sphere and, furthermore, we need to compute
the Voronoi Diagram for each Voronoi vertex u;, which is an expensive process. In addition, we
discovered a new kind of discontinuity that had gone unnoticed until then. These discontinuities,
that we called swords, emerge when the point p of the model is collinear with two or more control
points, as shown in Figure 3.10.
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Figure 3.10: The point p is collinear with two control points. This situation causes a sword

discontinuity in the VRTA coordinates.

When swords appear, the Voronoi Diagrams on the sphere do not evolve continuously between the
model point p and its closest neighbours. In this situation, the collinear control points collapse in
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the same projection over the unit sphere of p. When their projections are again separated for a
neighbouring model point p’, these control points swap part of their Voronoi regions in a rough
way. Figure 3.11 presents a sequence that shows the situation before, during and after the sword
appearance. This discontinuity has a direct impact over the VRTA and produces discontinuous
coordinate functions that are not suitable for the deformation processes, as shown in Figure 3.12.
Figure 3.13 shows a deformation process where the discontinuities on the VRTA coordinates arise.
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Figure 3.11: Example of a Voronoi Diagram sequence that shows the sword discontinuity. Note
that the Voronoi regions and vertices, in blue, also collapse when the control points, in green, merge
and the sword appears in (c). This sequence corresponds to the example presented in Figure 3.12.
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Figure 3.12: Figure (a) shows the VRTA coordinates with NNC transference functions correspond-
ing to the initial configuration of a parabola surrounded by fourteen control points. The left and
the right images in (b) show this initial configuration and a simple deformation produced by the
translation of the control points in red, respectively. The parabola has been enclosed in a wide
convex hull of control points to increase the visual effect of the discontinuities produced by the
internal deformation handles. Moreover, the deformation image has been zoomed in for a better
observation of the breakages.

We devised a solution that consisted in changing the classic Voronoi Diagram for the Laguerre
Voronoi Diagram [Sug02], a weighted Voronoi Diagram over the sphere. The control points were
weighted depending on their distance to the model point p, so the closest control points had a
bigger weight in the resulting Voronoi Diagram and the swords problem was solved. Finally, we
also used the NNC transference to compute the final coordinates on the control points.
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()

Figure 3.13: Example of a deformation process and the corresponding heat maps using the VRTA
coordinates with NNC transference. On the one hand, (a) shows the initial configuration of the
Bunny surrounded by twelve control points. On the other hand, (b) shows the final result of the
deformation. Finally, (c) presents the sequence of the process. The images on the top illustrate the
heat maps for the control points in red: areas in red are the most influenced by the handles and
areas in blue remain almost constant when they are dragged. The images on the bottom show the
modification caused on the Bunny.

Although combining the weighted Voronoi Diagram with the NNC transference technique gave
correct, continuous and smooth results, we were not sufficiently satisfied due to the amount of
Voronoi Diagrams this solution required. The technique was not efficient enough and the obtained
results could not justify the usage of the new coordinates compared to the classic NNC of p with
respect of the control points in the 3D space, which are more local and more efficient than our
proposal.
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Incremental Approach

The discontinuity problems in the VRTA coordinates can arise when there exists one or more
control points that do not lie on their own convex hull, that is, there exist internal control points.
However, VRTA behaves correctly when we only take into account the control points on the convex
hull. In order to take advantage of this fact, we studied the Incremental Approach (IA). Given
a point p of the model, the IA firstly computes its coordinates with respect to the control points
on the convex hull. Then, it adds the rest of the handles one by one. Each time a new handle is
added, this approach computes a new set of coordinates for p in an incremental way.

The coordinates of p with respect to the control points on the convex hull can be computed using
any existing coordinates scheme, like the MVC, but also with the VRTA coordinates as explained in
Section 3.1.2. So, in the first stage, we need to identify the control points in the set V = {vy,...,v,}
that form the convex hull. In terms of simplicity, we suppose that the first [ control points are
these on the convex hull while the rest m = n — [ are internal to it. Then, we compute an initial
set of coordinates ® = {¢!,..., ¢!} such that

l
=1

where q; are the convex hull control points projected over the unit sphere S, centered on p. Then,
we add the remaining internal m points one by one. In order to compute the set of coordinates ®°
corresponding to the t-th control point addition, we firstly suppose ¢! = 1, so

t—1

S ot-Gi+d-G=0
=1

and consequently
t—1
d=—> ¢ (3.11)
i=1

On the other hand, we also want to define the coordinates ®' with respect to the previous set of
coordinates ®'~! as a translation of these second ones

pt=o¢"1 4 -d+k, (3.12)

where d is a unit vector and k > 1 is a constant value. Notice that, as far as g; and d are unit
vectors their dot product takes values in the range [—1.0,1.0]. Then, G; - d + k is in the range
[k —1.0,k+1.0], so the new coordinates ¢! are supposed to be positive, since qﬁ_l are positive. Let
us now develop Equations (3.11) and (3.12)

t—1
- o t =
—qr = Zsz(h
i=1
t—1

= ) (@' +Gi-d+k) -G (3.13)
=1

= Q-d+f
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The matrix () and the vector f are

n—1 n—1 n—1
Zizl QixQix Zizl QixQiy Zizl iz iz
n—1 n—1 n—1

Q = Zi:ll Qix iy Zizll QiyQiy Zizll QiyQiz
Yorty Gializ Dopey Qiyliz iy %izGiz

n—1
f = k) §.
i=1
Finally, we find the vector d by solving the Equation System (3.13)
d=-Q ' (g +f).

After all the control points have been added, the set of coordinates ®™ is obtained and we can
compute the final coordinates as

n

n
4 Vi— P
O:E ¢?i=E o
— " lvi—pll

i=1

SO

n

7
lvi—pll

oy = 7(25” .
n i

2j=1 T,

The resulting TA coordinates are well-defined when there are few interior control points, as shown
in Figure 3.14. However, as we add more and more control points, the coordinates become negative
as shown in Figure 3.15. This Figure shows an example using a model of a line of points surrounded
with twenty-six control points. Notice that the plot of the functions of the coordinates presents
negative values.

o L e L]

Figure 3.14: Example of the TA coordinates for the classical model of a line surrounded by ten
control points, on the left, and eleven control points, on the right.



3.1. Mean Value Coordinates Based Methods 37

|

(a) (b)

Figure 3.15: Example of the TA coordinates for the classical model of a line surrounded by twenty-
six control points. Notice that the plot of the coordinates in (a) presents negative values. This
situation causes unintuitive deformations: while the user drags some control points in a specific
direction, some parts of the model are deformed in the opposite way, as observed in the upper part
of (b). The lower image in (b) illustrates the initial configuration of the model and the deformation
handles.

The negativity is due to our assumption that the vector d is a unit vector, which led us to establish
the constant value k = 1 in our experiments. However, we do not know the value of d in advance,
but it is computed through the Equation System (3.13). This means that we can not make any
statement over the norm of d because it is known after its computation. So the operation ¢ - d+k
in Equation (3.12), for k£ = 1, does not ensure the positivity of the incremental sets of coordinates
®!. A possible solution for this problem could be not to fix the value of k, but use the norm of the
vector d instead. That is, k = ||d||.

Finally, this situation led us to further investigate how to compute a system of coordinates that
fulfilled all of our requirements.

Conclusions

In this section we have studied some cage-free methods based on the MVC [FKR05]. We have
described different techniques to automatically compute a supporting connectivity between the
control points. However, as far as we define the connectivity of the control points from the point
of view of the points of the model, the supporting structure is not constant through the model.
This drawback, together with the high dependence of the MVC regarding the polyhedron formed
by the control points, produces important discontinuities in the functions of the coordinates. These
discontinuities render the techniques useless for deformation purposes.

On the other hand, the Laguerre Voronoi Diagram with NNC transference gives us good results.
Nonetheless, its complexity makes us reject the method and we prefer a direct computation of the
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NNC of the model with respect to the control points.

Finally, we have also studied an Incremental Approach to the problem. Nevertheless, further
investigation on Equation (3.12) is required to guarantee the positiveness of the final coordinates.

Considering these results, we conclude that we need to study how to automatically compute the
connectivity between the control points in a way that remains constant all over the model. This
new direction leads us to the next section, where we analyse the idea of the layers to create a static
and immutable structure between the control points.

Layered Based Methods

In Section 3.1, we have seen that there is not an efficient and elegant way to automatically compute
a connectivity between the control points that depends on how these are seen from the point of
view of p, a point of the model. Some of the studied techniques do not make it possible to obtain a
continuous set of coordinates inside the convex hull of the control points due to the changes of the
supporting structure from point to point of the model. The other techniques, although resulting in
a good set of coordinates, are not efficient enough and do not present any benefit compared to the
existing schemes. Thus, we focused on changing our strategy in order to get a set of coordinates
which satisfied all the properties of a well-defined system of coordinates, that is, a coordinate system
that met all the properties exposed in the introduction of this chapter.

In this section, we study two new methodologies that build a layered structure to connect the
control points. Given a subset V' C V of the control points V, we define a layer as the partition
of the convex hull of V' into convex polyhedra. We can traverse all the polyhedra of a layer by
crossing through their shared faces, as shown in Figure 3.16. Therefore, the supporting structure
to compute the coodinates is composed of a set of polyhedra. This means that we require the
coordinates to interpolate the faces of these polyhedra in order to reach the desired continuity
property for our system.

Figure 3.16: Example of a layer composed by three polyhedra: A, B and C. The arrow shows how
these polyhedra can be traversed across their shared faces.

This layered structure is used for all the points of the model, so we work with the same supporting
structure for all of them. With this fact, we try to avoid any discontinuity in the coordinate
functions due to changes in the underlying connectivity from point to point of the model. In
addition, the computation of a set of layers takes into account the control points located inside their
own convex hull, in contrast to the triangulation done in the MVC based methods of Section 3.1.
In this way, the layers structure the whole volume of this convex hull and not only its surface.
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The following sections present two different methodologies to define a layered structure. They also
explain how we compute the final coordinate system over the automatically created structure.

Numerical Integration Approach

An easy way to get a partition of the convex hull of the control points is to compute a tetrahedral-
isation. For this reason, the first idea we wanted to analyse was the behaviour of the MVC over

the tetrahedralisation of the control points.

The process starts computing the Delaunay Tetrahedralisation of the handles, which is the sup-
porting structure for the coordinates and is unique for all the points of the model. Then, given a
particular point p of it, the method follows the same ideas and principles of the MVC [FKRO05].

When the control points and their tetrahedralisation are projected over the unit sphere S centered
on p, some tetrahedra may overlap with each other, as shown in Figure 3.17. This means that
the MVC as proposed in [FKRO05] can not be directly applied to our approach. Faced with this
situation, we decided to perform a numerical integration to approximate the value of the MVC over
our tetrahedralisation. We called this solution the Numerical Integration Approach (NIA).
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Figure 3.17: Tetrahedralisation of the control points projected over the unit sphere Sp. (a) shows
the initial configuration. Then, for a particular model point p, (b) and (c) highlight the spherical
triangles T7 = (Va, Vs, v4) and Ty = (V1, Vo, V3). Finally, (d) emphasises the overlaped area in red.

The method pre-computes a set of sampling points p. These points lie over the unit sphere Sp,
which is centered on the origin of the euclidean 3D space. They are computed as the barycenters
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of the faces of a subdivided icosahedron projected over Sp. The finer the subdivision is, the better
the sphere will be sampled as more points would have been computed. Figure 3.18 shows the initial
icosahedron, a 2-level subdivision of it and the sample points as the barycenters of the subdivided

triangles.
,‘-‘" / \
(a) Spherical icosahedron. (b) A 2-level subdivision of (c) Sample points as the

the spherical icosahedron. barycenters of the subdi-
vided spherical triangles.

Figure 3.18: Example of a 2-level subdivided icosahedron and the sample points that represent the
unit sphere surface.

The technique uses these sampling points to numerically integrate the coordinates over the unit
spheres of the model points. They simply need to be translated from the origin sphere Sp to the
particular point p sphere Sp.

On the other hand, each sampling point p represents a piece of the unit sphere surface. To be
precise, each sample p corresponds to the area of the spherical triangle with which it is associated.
This means that any value computed at p must be weighted by this area, which is

ap = (Yo + M+ Yo — )17,
where 7,4, 75 and 7, are the dihedral angles (see Figure 3.19) and r is the radius of the sphere, in
our case, 7 = 1.

a

Figure 3.19: Dihedral angles of a spherical triangle.

Then, and going back to the particular case of the model point p, the unit sphere Sy is covered
with the projected tetrahedralisation of the control points and sampled with the points p. Let us
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call T = {ﬁ, .. ,f m} the set of triangles of the tetrahedralisation projected over Sp. In order
to compute the coordinates of p with respect to the control points, the NIA method uses the
sampling pomts as the integration points. This means that, for every pomt P the technlque finds
the triangles T C T of the tetrahedralisation that contain P = {Tl eT: jS Tl} Then, for
each triangle Tl = [Vi1, V1, Vil € 7;,, it computes the Spherlcal Barycentric Coordinates (SBC)

of p with respect to the vertices of ﬁ, and weights them with the area a, represented by p. The
convex combination defining p is

p=a, Z (BiaVig + BjiVia + BriVi,) wi,
T,€T,
where (81, 81, Br,1) are the SBC of p and

vol (Gu, GjJ, ka, p)2
queﬁ UOZ(GZ}Q’ Gj,qv Gk,qa p)2

w; =

weights the influence of each triangle QA} in the definition of p in a proportional way to the volume
of the tetrahedron built by joining 7; with the point p. If we do not weight the SBC somehow, we
are not able to reproduce p, but |T,|p.

Given a control point v;, the w; coordinate for it is

Wi = Z wi B,

TeT
Vi3Tl

SO

Finally, the approach normalises 2 = {w;,...,wy,} to get the final coordinates A = {cy,...,an}
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ay =

This methodology gives us a set of continuous and positive NIA coordinates inside the convex hull
of the control points. Figure 3.21 shows a deformation example using the NIA coordinates. It also
presents the heat map of these coordinates over the model.

Nevertheless, although NIA coordinates are functional and can be used in real applications, they
present some disadvantages:

e They are computed through a discretisation of the sphere surface and a numerical integration.
In other words, they do not have a closed formula. This means that they are not as efficient
as other existing schemes.

e The functions of the coordinates present multiple local maxima. This situation implies that
the deformation process is not as intuitive for the user as desired. Figure 3.20 shows the plot
of the coordinates for a simple line model. Notice how the multiple local maxima affect the
deformation of the line when a single control point is moved.
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e The NIA coordinates inherit the C°-continuity that the MVC present when the model point
p lies on a triangle. This means that NIA coordinates are C9-continuous across the faces of
the tetrahedra. Therefore, the deformations around the regions where the model crosses a
triangle produce sharp features and unpleasant results. This situation is shown in Figure 3.21.

S e
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(a) (b)

Figure 3.20: Figure (a) shows the NIA coordinate functions corresponding to the initial configu-
ration of a line surrounded by ten control points. The bottom image in (b) presents the initial
configuration while the top image shows a simple deformation produced by the translation of the
handle in red. The red circles highlight some local maxima.

(a) (b)

Figure 3.21: In (a), we show the tetrahedralisation that supports the computation of the NTA
coordinates. Notice that some of the triangular faces intersect the Bunny model. This fact causes
CP-continuity of the coordinate functions and a shear effect during the deformation process. This
problem is illustrated in (b). First, it shows the heat map that corresponds to the control point near
the nose of the Bunny: the red area is the most influenced by the handle and area in blue remains
almost constant when it is dragged. Then, the next two images present two different views of the
deformation. We can observe that the left side of the face of the Bunny is completely stretched.

For these reasons, we were not completely satisfied with the obtained results. With the Numerical
Integration Approach, we had reached the desired continuity property for the coordinates. However,
continuous coordinate functions are not enough to ensure intuitive and pleasant deformations. We
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needed further research in order to describe smoother systems of coordinates, more suitable for
application in a deformation framework.

Catalog Approach

The NIA coordinates are not efficient or intuitive or smooth. However, their constant supporting
structure over the control points gives them the important property of continuity. From this point,
the Catalog Approach (CA) studies how to improve this structure in order to compute a set of
well-defined coordinates that produces intuitive and smooth deformations efficiently.

The connectivity of the control points proposed by the CA consists in a set of layers, which we
named Catalog of Layers, hence the name of the method. The first layer is always the convex hull
of the deformation handles and it is intended to provide the required smoothness to the coordinate
functions. The remaining layers are built by means of convex partitions of the initial convex hull,
that is, each additional layer is a partition of the convex hull of the deformation handles. They can
be defined in different ways, depending on two attributes:

e the kind of polyhedra used to achieve the required partitions;

e the number of interior control points taken into account in each layer.

Once the structure is defined, the coordinates for a given model point p result from the weighting
of the coordinates of p with respect to the different layers.

The following sections are devoted to detailing the different methodologies to build the Catalog of
Layers and the computation of the final CA coordinates. Furthermore, part of this work has been
collected in [CVB13].

The Construction of the Catalog of Layers

In the previous section we have exposed that the CA builds a fixed set of layers to support the
computation of the coordinates. We have settled that the first layer is the convex hull while the
remaining ones are defined depending on the polyhedra used to construct the partitions and on the
number of interior control points in each layer. Below, we study the different structures that we
can achieve by the combination of these two attributes.

Control Points per Layer. Every time that we add a new layer to the catalog, the method firstly
computes the convex hull of the control points. Then, it adds the remaining interior handles one
by one. We distinguish between the layers that contain only a single interior control point and the
layers that contain all the interior control points.

Independent Partitions. The Catalog of Layers is composed of m + 1 layers, where m is the number
of interior control points. The first layer corresponds to the convex hull of the handles and each of
the remaining ones is a convex partition of this convex driven by the corresponding interior handle.
The first column in Figure 3.22 shows two examples of a catalog of independent partitions.

Nested Partitions. The Catalog of Layers is composed of two layers: the initial one, that represents
the convex hull of the control points, and a second layer which is a partition of the convex hull
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taking into account all the interior control points. Hence, in order to build the second layer, the
interior handles are added one by one, in the same order in which the user had defined them?®. Every
time a control point is added, the algorithm looks for the already existing convex that contains
the new handle inside it. Once this convex is found, it is substituted by a convex partition that
includes the new control point. The second column in Figure 3.22 shows two nested partitions.

Polyhedra Used in the Partitions. Once the next convex to be partitioned is located, it is split
into a set of polyhedra. We distinguish the partitions depending on the kind of polyhedra used to
split the old convexes: tetrahedra or arbitrary convex polyhedra.

Partitions of Tetrahedra. This is the simplest case and it consists in splitting the old convex into
tetrahedra. FEach tetrahedron is computed by joining the last inserted handle with each of the
triangular faces of the initial convex, as shown in the first row in Figure 3.22.

Partitions of Arbitrary Convex Polyhedra. The method firstly splits the old convex into tetrahedra.
Then, it traverses these tetrahedra and joins those adjacent polyhedra so that the new polyhedron
remains convex, as shown in the second row in Figure 3.22.

° °
Initial situation ° ®
[ ] [ ]
‘ Independent partitions Nested partitions
| ] .
Tetrahedra y T + %
[
KZ.
i I:I [
Arbitrary N N E
polyhedra ¢

Figure 3.22: Example of all the possible combinations to build the Catalog of Layers. The top part
of the image shows the initial configuration of the deformation handles. The table below presents
the layers that comprise the Catalog, depending on the relation between the partitions and the
polyhedra used in them.

Computation of the Coordinates

Once the structure between the control points has been established, the CA computes the coordi-
nates to relate a given model point p with the deformation handles. In this case, the system has
to deal with multiple convexes which are arranged in several partitions of the convex hull of the
control points, that is, in several layers. Each of these convexes contains a portion of the model to
be deformed and each partition, or layer, of the structure contains the whole model inside it. This
means that the coordinate system used must ensure the continuity between all the convexes in the

3The method assumes that the user defines the deformation handles from more general to more local impact on
the later deformation.
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same partition. This requirement implies that the computation of the coordinates on the faces of
the convexes has to depend only on the control points defining these faces. In other words, the
coordinates on a face must coincide for the left and right convexes of this face.

The method computes the coordinates of a model point p in three steps. First, it computes the set
Cp, the Convezes of p
Cp = {C] p € Cj/\Cj S [:j,j € {l,l}},

where [ is the number of layers of the catalog. That is, for each layer £; of the structure, the
technique finds the convex C; that contains p. If p lies on a face, it chooses one of the convexes
that share this boundary. The second step consists in computing the set of coordinates of p with
respect to each convex C; € Cp. Therefore,

o = (aj,l(p)a ) aj,n(p))a

where n is the number of control points, are the coordinates of p with respect to the layer £;. If a
handle v; does not belong to Cj its corresponding coordinate «;;(p) is set to 0. Finally, the final
set of coordinates is computed as a convex combination of the individual sets for each C; € Cp.
That is,

!
ai(p) = Y wjaji(p)
j=1

l
ax(p) = Y wjaj2(p)
j=1

‘ l
an(P) = Y wjajn(P),
=1

where Zézl wj =1and w; = ﬁ =1

The coordinates in the second step are computed using one of the well-known existing systems
of Generalised Barycentric Coordinates. The only requirement is that the selected system must
coincide on the boundaries of the convexes in order to guarantee the continuity of the coordinates
through them. Two examples of coordinate systems that fit our purpose are the Mean Value
Coordinates and the Harmonic Coordinates. On the contrary, the Green Coordinates are not a
good choice in this case since they do not match on the boundaries.

From the algorithm detailed above, we can see that the CA coordinates need to process the model
multiple times. More precisely, it has to be processed [ times, where [ is the number of layers in
the Catalog®. This point could be seen as a drawback because it causes the computation of the CA
coordinates to be slower than in the case of the classical cage-based methods.

Another disadvantage of the CA coordinates is the C%-continuity that they can present when the
model intersects any face of the polyhedra of the layers, as can be noticed in Figures 3.23 and 3.24.
This low level of continuity depends on the existing system of coordinates used to compute the CA
coordinates on each layer. The examples in Figures 3.23 and 3.24 use the Mean Value Coordinates,
which are C%-continuous on the boundaries.

4Each layer contains the entire model, as stated before.
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(a) Layers of independent (b) Layers of indepen- (c) Layers of nested parti- (d) Layers of nested parti-
partitions of tetrahedra. dent partitions of arbi- tions of tetrahedra. tions of arbitrary polyhe-
trary polyhedra. dra.

Figure 3.23: Examples of the CA coordinates computed over the different supporting layers de-
scribed in this section. The coordinates have been computed by means of the Mean Value Co-
ordinates, which makes the C%-continuity of the functions arise. The top image shows the initial
configuration of the control points around the model of the line.

Figure 3.24: Example of the heat map of the CA coordinates for two different control points in
the vicinity of the Monkey model. In this case, the coordinates have been computed by means of
the Mean Value Coordinates. The area in red is the most influenced by the corresponding handle.
In contrast, the area in blue remains constant when the control point is dragged. The complete
Catalog, which consists of nested partitions of tetrahedra, is also shown. Notice the rough transition
of the heat map from green to blue when the model crosses an interior face of the polyhedra of the
Catalog. This situation is clearer in the image on the right.

Finally, Figures 3.25 and 3.26 show two different examples of deformations that use the CA coor-
dinates. The Catalog that supports these deformations consists of nested partitions of tetrahedra
and the final CA coordinates are computed by means of the Mean Value Coordinates.
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(a) (b)

Figure 3.25: Example of a deformation of the Armadillo model by means of the CA coordinates.
(a) shows the initial configuration of the Armadillo model surrounded by ten control points: eight
handles located in the vertices of a wrapping cube and the remaining two located near the hand
and the elbow of the Armadillo. The Catalog of Layers is built with nested partitions of tetrahedra.
(b) shows the heat map and the result of displacing the control point close to the elbow. Notice
that the control point located near the hand allows us to keep it in a more constant position while
the control point in the elbow is displaced. The red area of the heat map is the most influenced by
the control point, whereas the area in blue remains constant when the handle is dragged.

(a) (b)

Figure 3.26: Example of a deformation of the Bunny model by means of the CA coordinates. (a)
shows the initial configuration of the Bunny model surrounded by nine control points: eight handles
located in the vertices of a wrapping cube and the remaining one located between the ears of the
Bunny. The Catalog of Layers is built with nested partitions of tetrahedra. (b) shows the heat map
and the result of displacing the control point close to the ears. The displacement of this handle
produces an elongation of the head of the Bunny while the ears are shortened. The red area of the
heat map is the most influenced by the control point, whereas the area in blue remains constant
when the handle is dragged.

Conclusions

In this section we have studied some layered based methods which automatically perform a partition
of the convex hull of the control points. This partition defines the supporting connectivity between
the control points required to compute the coordinates. In addition, all the methods presented use
the same supporting structure for all the points of the model, so the computed coordinates meet
the continuity property which lack most of the techniques presented in Section 3.1.
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However, the described layered based methods are not smooth or local enough, i.e. they present
multiple local maxima and C%-continuous functions. These disadvantages make them unintuitive
for the user when he or she tries to apply them in a deformation process. Moreover, the performed
deformations can present sharp features which lead to unpleasant results.

Faced with this fact, we conclude that we need to study how to increase the smoothness of the
coordinate functions keeping in mind the continutity property. We also want a more local effect of
the deformation. These new goals lead us to the next section, where we work on the n-Dimensional
Space directly, being n the number of control points.

n-Dimensional Space Based Methods

In previous Sections 3.1 and 3.2 we have examined the cage-free problem in the three-Dimensional
Space. However, all the presented approaches have important disadvantages in terms of continuity,
smoothness, locality or efficiency. All these drawbacks are mostly caused by the automatically
computed connectivity of the control points, used as the supporting structure to obtain a system of
coordinates based on the well-known MVC. For this reason, we considered exploring new schemes
to compute the coordinates that do not depend on the underlying connectivity of the handles.

In this section, we consider the problem from the n-Dimensional point of view, where n is the
number of user-defined control points. In addition, we do not define any structure of these handles,
but we try to directly solve systems of equations defined over them. Let us state our problem
mathematically in the n-Dimensional space before we can proceed to define the studied approaches
in detail.

We assume that the model to be deformed is completely contained in the convex hull of the control
points V. Then, given a model point p and the n control points V = {vi,...,v,}, we want to
compute a set of coordinates A = {ay,...,a,} such that

n
P= Z Q; V. (314)
=1

This equation can be developed as follows

n

0= Zal(vi -Pp)

= Z @;d;d; (3.15)

where q; is the projection of the control point v; over the unit sphere Sy centered on p, f; = a;d;
and d; = [|(v; — p)||. At this point, the three-dimensional System (3.15) can be expanded in the
following three n-dimensional equations

n n n
0= Zﬁi%, 0= Zﬁiqz'y, 0= Z/Bi%‘z-
i=1 i=1 i—1
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Now, we define three n-dimensional vectors

X = ((hz an), y= (qu qny), z = ((hz qnz). (3.16)
Therefore, our goal is to find a vector B = (,6’1 e ﬂn) such that
B-x=0, B-y=0, B-z=0. (3.17)

In other words, we want to compute a vector 3 perpendicular to the vectors x, y and z. This vector
B lies in the n-dimensional lineal subspace V+ C R”, where V= is defined as

Vi={y:y-x=0A~-y=0Av-z=0}, (3.18)

the subspace orthogonal to the control points. In addition, we require all the components of the
vector B to be positive in order to get a well-defined system of coordinates. Then, we define
R C R™ as the n-dimensional subset where all the components are positive and at least one of
them is greater than 0

RY ={v:%>0VinTj:v; >0, i,j€[l,n]}
or
R = {y:% > 0Vi € [1,n]}\ {0}, (3:.19)

If we put all the definitions together, we can affirm that the problem of computing the set of
coordinates A is equivalent to find a vector B € V+ N R?. Therefore, we need to prove that
VLiNRL £ 0.

Proof that V+ N R’ # (. Given a particular point p of the model, we know that it is located inside
the convex hull of the control points. The definition of the convex hull of a finite set of points
states that any point inside it can be expressed as a convex combination of the vertices that define
this convex hull. Thus, the interior of the convex hull of the control points int(ch(}V)) can be
represented as

int(ch(V)) = {p p = Zaivi, a; > 0Va; A Zai = 1} .

i=1 i=1
Now, we apply a translation over Equation (3.14) such that the new location of the point p is the

origin 0 of the euclidean space

n

p—PZZOéi(Vi—P)

i=1

0= Z a;(vi — p). (3.20)
i=1

We know that (v; — p) = d;q;, so we can substitute this expression into Equation (3.20)

n

=1

We name (; = «a;d;, so

n
0=">"Bid
=1
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Notice that the development above is exactly the same that we have done to get the System (3.15).
Finally, we know that «; > 0 and d; > 0, by definition. Hence, 3; > 0.

At this stage, we have demonstrated that 33 = (81, ..., ) such that 8 € R} and it is perpendic-
ular to the vectors x, y and z. Therefore, we can state that

i
B8 e V-nNRY,

and, consequently,
1
VENRY #0,
as we wanted to demonstrate. O
The following sections present different experiments to compute valid and correct vectors 3. These

vectors 3 are the base to get a well-defined system of coordinates that relates the model points
with the handles of the deformation.

Lagrange Minimisation Approach

The very first idea we had confronting the problem in the n-dimensional space was to define an
optimisation over the coordinates vector 8. In other words, we defined some constraints that the
coordinate functions had to meet. Thereby, we defined a target vector U = (uq,...,u,) € R.
Then, the coordinates B = (f31, ..., ,) must be computed to satisfy the Equations in (3.17) while
they were kept as close as possible to that target vector U.

The new technique, whose system was thought as a constrained optimisation problem, uses the
Lagrange Minimisation methodology to find the coordinates (3;. Equation (3.21) expresses the
described optimisation for this Lagrange Minimisation Approach (LMA).
n
Minimise £B) = (B — u;)?

=1

subject to B-x =0 (3.21)
By=0
B-z=0.

Let us denote the constrained functions as

9(B)=8"x, 92(8) =By, 33(B) =08z

Then, in order to use the Lagrange Minimisation method, the system defines three Lagrange mul-
tipliers (A1, A2, A3) and the Lagrangian

L=f(B) =X 91(8) = A2+ 92(8) — Az - g3(B)-
Finally, the coordinates (3; are obtained by the resolution of the System (3.22).

;Sﬁl; = 0 Viell,n]
91(B)= 0 (3.22)
92(8)= 0
93(8)= 0
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Below, we expand the expression 65 = 0 and solve the System (3.22) analytically to find the LMA
coordinates. Then,

oL
B —w) — o L -
552 (/81 uz) )\17(1 )\25’1 )\35'& 07
% A + Aot + Agzi + 2
BZ' _ 14 + 2,%;‘ 3% + uz' (323)
Now, we can substitute the Expression (3.23) for f; into ¢1(3), g2(3) and g3(3)
Zﬁz u; ZZ MG + Aoy + Azzi + 2u;) - =0
=1
Zﬁz u; = Z A% + Aoyi + A3z +2u;) -y = 0 (3.24)
=1
Zﬂz ui = Z M + Ao + Aazi + 2u5) - 7 = 0.
i=1
If we rewrite System (3.24) on
gi(B) =My (w-w)+ A (6-m)+X Y (u-z)+2) (u
i=1 i=1 i=1 i=1
G2B) =MD (a-w)+ > (5w +rs > () + QZ(W i) =0
i=1 i=1 i=1 ‘
93(6)=>\1Z(?cz'-zz')+>\22(y¢'zz')+>\3zzz z +2Zuz ) =0,
i=1 i=1
we can express it as the matrix system
Do) D@ m) i (- ) At 2z (i %)
2%21(7@ 4i) Z;’lzl(yi ") Z;’lzl(yi %) ) A2 = =2 E;’L:1(“i * i)
Y% a) i (wi-aw) Do (s @) A3 >ica (Ui z)
~———
Q . A = b.

Finally, we can solve A = Q! - b and, consequently, the coordinates 3; are also known when the A
values are substituted into Equation (3.23). The final coordinates are computed as

n n
0= Z/quz = ZBZW:
i=1 i=1

SO

[l
Vi—P
o; = " /Bj .
25=1Tv, 5
The LMA coordinates can be solved for different values of the target vector U = (uy, ..., u,) and

we used three different vectors in our experiments:

o u;=1,Vie[l,n],
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1

* Ui = [y and

oy =1-— #ﬂ‘p), where maxg;s:(V, p) is the distance between p and the farthest control
point to it.

Although the LMA solution results in a smooth and continuous set of coordinates, the positivity
of these is not ensured. Figure 3.27 shows three plots corresponding to our three target vectors U.
All these plots are based on the same simple example, a line of points surrounded by nine control
points. Notice that some of the coordinates present negative values in their functions.

@ o e @

200 400 60 s00 1000 o 20 400 600 0  1looo 0 200

P P P
_ _ 1 1 Vi
() U=(1,...,1) (b)Uﬁ(\lw—p\l""’an—p\l) (C)U:(l—#ﬂkmw..,l—
lvn—pl| )
maxdist(V;P)

Figure 3.27: Plots of the LMA coordinates that show the effect of different target vectors U over
the coordinates. Observe that (b) presents some negative coordinate values.

Therefore, a second solution consisted in adding the positivity constraints to the optimisation
system. Following what we thought the most intuitive and straightforward solution, we defined the
new optimisation problem as

Minimi _ s — 2
inimise  f(8) ;w u;)
subject to B-x=0

(3.25)
By=0
B-z=0
pi =20 Vi € [1,n].

Then, the new Lagrangian introduces the Kuhn-Tucker conditions

L=f(B)—A-91(B)—A2-92(8) — A3-93(8) + - 3,

where f(8), g1(8), g2(8) and g3(3) are the functions described above and g = (p1, .. ., 1) are the
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Kuhn-Tucker constants. Then, the coordinates §5; are determined through the system
(0L
55
91(8) =
92(B) =

0 Viell,n

<

Bi 1€ [1,71]
,uzﬂi = Vi € [1,71]
L Wi = Vi € [1,n].

©Q
w
Yo
@
N~—
AV
o oo o o o

As done before, we also expand the expression 3%— = 0 to analitycally isolate j3;

_ A&t Aoy + Aszi — i+ 2u

Bi 5 (3.26)
and replace it into g1(3), g2(3), g3(8) and the p;B; = 0 conditions
g1(B) = Bi-ui =Y (M + dogi + Aoz — i+ 2u) - x5 = 0
i=1 i=1
92(B) = Bi-ui =Y _(Ma + dogi + A3z — i +2u;) -y = 0 (3.27)
i=1 i=1 )

n n
g3(B) = Zﬁi CU; = Z(Al?&' + Aoy + A3z — pi +2u;) -z = 0
i=1 i=1
pi(A1x + Ay + Az — i +2u;) = 0 Vie([l,n]
The p;8; = 0 conditions are satisfied iff y; = 0 or p; = A\a + A2y + A3z + 2u;. Notice that the
solution p; = A4+ A2y + A3z +2u; involves 3; = 0 (by replacing the value u; into Equation (3.26)).
Then, we can reduce the System (3.27) to a new system of three equations and three unknowns

n

91(B) = Z()\m + Aoy + A3z — pi + 2u;) - 5 = 0

=1

92(8) =Y (M + Aot + Aszi — i + 2ui) - 35 = 0 (3.28)
=1

g3(B) = Z()\N(z‘ + Xy + A3z — pi + 2u;) - 7 = 0,
=1

that satisfies the inequality conditions of the optimisation system depending on the two possible
values of the Kuhn-Tucker constants p;. As far as there are n constants p;, there are 2™ possible
results for the System (3.28) that need to be analysed in order to get a good solution. In what
follows, we proceed to describe three different tests we tried to compute a well-defined set of
coordinates out of the 2" feasible possibilities.

Local Test

The Local Test studies the 2" feasible results for the System (3.28) at each point p of the model,
at first. Then, the solution that satisfies all the conditions in the optimisation System (3.25) and
has the minimum number of §; = 0 is chosen for that particular point p.
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The main problem of this methodology is its own locality. It tests the solutions at each point p
locally and it does not have a global view of the behaviour of these solutions all over the model.
Hence, discontinuities arise on the functions of the coordinates when, for two close points p; and
P2, the chosen combination for the u; values changes. See Figure 3.28, which shows discontinuous
coordinates for the basic example of the line of points surrounded by nine control points.

e @

L ..

F + + + +
0 200 400 600 800 1,000

Figure 3.28: The Local Test methodology produces discontinuities in the coordinates. In this
example, we have used the target vector U = (m, ce W{{)”)

On the other hand, this methodology is a kind of brute force solution because it needs to do a lot
of tests. Therefore, a lot of time is spent to compute the final set of coordinates.

Global Test

It was reasonable to think that, if the problem of the above methodology was caused by the
locality of the tests, a global analysis of the optimisation problem should give better results. For
this reason, the Global Test computes the 2™ feasible solutions for System (3.28) for all the points
p of the model. Then, it chooses the combination of the pu; values that satisfies all the conditions of
the optimisation System (3.25) for all the points at the same time and has the minimum number of
B; = 0. However, this methodology also has a disadvantage: if the selected combination generates
any (8; = 0, the weight ; and its corresponding final coordinate «; are equal to 0 for the entire
model. This means that the control point v; will not affect the model and no modification of its
location will be translated into a deformation of the object. In addition, the Global Test is as
inefficient as the Local Test since it also computes all the 2™ feasible possibilities at each model
point p.

Iterative Test

The two methodologies above are not valid to get a well-defined set of coordinates due to the
discontinuities or the null values of the §; weights. Thus, we studied a further method to choose
the right combination of the u; values which performed multiple tests iteratively.
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First, the Iterative Test solves the Lagrange Minimisation assuming all p; = 0. This could be
considered an optimal solution if no 8; < 0 were generated. Notice also that the solution where all
w; = 0 is equivalent to solve the optimisation system in (3.21). Then, if there exists any f; < 0,
the corresponding p; value is replaced by p; = Ax + A2y + A3z + 2u; and the method solves the
system again in a new iteration. It repeats this process until all the values [3; are zero or positive.

This solution gives a continuous set of coordinates. However, when one or more weights 3; are 0, the
continuity is only C°. Figure 3.29 shows this problem while Figure 3.30 presents some deformations
of the Armadillo model with unpleasant shapes caused by the CY-continuity regions.

@ o e @

L ..

Figure 3.29: The Iterative Test methodology causes C?-continuity in the areas where any of the
weights 3; are 0. The red circles highlight this singularity in two different points. This example
uses the target vector U = (

- )
el Tvapl)"

Figure 3.30: Deformation and heat map produced by the Iterative Test methodology.

None of the three analysed tests give good enough results. However, the Iterative Test led us to
think of yet another, easy and iterative method. We called it the Iterative Lagrange Minimisation

Approach, as explained below.
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Iterative Lagrange Minimisation Approach
The Iterative Lagrange Minimisation Approach (ILMA) solves the optimisation system

n

Min}amise f(B) = Z(ﬁz — u;)?

i=1
subject to B-x =0 (3.29)
B-y=0
5 = 07

which does not take into account the constraints over the positivity of the 3; weights. Once the
System (3.29) is solved for all the points p of the model, the ILMA looks for the absolute minimum
of the weights ;. That is, the minimum value §; among all the model points 3 coordinates. We
call this value Bin. Then, if B, is negative, the method updates the target vector U such that

Ui = u; + Bmin Vi € [1,7)]

and solves the Lagrange Minimisation again, using the updated vector U. This process is repeated
until all the coordinates 3; are positive or zero. Figure 3.31 shows the plot of the coordinates for the
classic line model surrounded by nine control points. Notice how the negative coordinates shown
in Figure 3.27(b) have now disappeared due to the consecutive minimisation iterations.

« @

(a) (b)

Figure 3.31: Figure (a) shows the ILMA coordinate functions corresponding to the initial con-
figuration of a line surrounded by nine control points. The bottom image in (b) presents the
initial configuration while the top image shows a simple deformation produced by the transla-
tion of the handle in red. The coordinates have been computed by means of the targed vector
U=(

1 1 )
lvi—pll” """ [[va—pl/

Unfortunately, the convergence of the iterative method used to compute the ILMA coordinates
is not always guaranteed. Consequently, the ILMA is not suitable enough and, thus, we kept
researching new techniques to build a well-defined system of coordinates.
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Wire Approach

Once the experiments with the Lagrange Minimisation Approaches were finished, we proceeded
with our next attempt to compute a well-defined system of coordinates. The main idea behind this
new method was to build a wire-like structure over the linear subspace V- and to intersect it with
the R’ region, so we called it the Wire Approach (WA).

In order to build the wire structure, the method selects a set of points P = {p € R"} and projects
them over V. Then, the WA connects the projected points pE V1 and intersects the newly
created segments with the R"} region. This intersection defines the portion of the wire structure
laying on R’} . Hence, we can compute its centroid to get the final coordinates.

There are different ways to choose the points p € P and to connect them. In the following para-
graphs we analyse the different options used in our experiments and discuss the derived coordinates
for each of them.

Set of points P

We defined the set of points P in three different ways: P1, P2 and P3. The set Py includes n points,
each of them containing a single one in their components while the rest are zero. That is

Pi=Api:pi=1Ap;=0,Vj#i}, [Pi|=n

The set Ps is very similar to P;. It also includes n points, but this time these points contain a
single zero in their components while the rest are one. That is

Po=Api:pi=0Ap;j=1Vj#i}, [P|=n.

Finally, the set P3 includes 2n points, combining points in R’} and points in R”. Tt is composed
by the same points defining P; and also by their opposite. That is

P3 = A{pispo+i: (pii = 1A pij = 0) A (putii = —1 A patij =0), Vj #i}, [Ps]=2n.

Regardless of the definition of the set P as P1, Py or Ps3, the projection of its points p over V+ is
always performed by means of the projection matrix P 1 defined in Annex A.

Connection of the points

Once the set P was established, we also analysed two basic ways to connect its points. Firstly, we
defined a closed cycle passing through all the points p € P. If P is defined as P; or Ps, then, the
cyclic polyline C; is equivalent to the sorted list

Cl = [pl;PZu o aPmPl]-
On the other hand, if P is defined as Ps, then, the cyclic polyline Cy is the sorted list

C2 == [PlaPn+17P27Pn+2a « ooy Pis Pntiy - - - aPnaP2naP1]-

As a second choice, we defined a complete graph to connect the points p € P. In other words, the
connectivity Cs consists of connecting each point p to all the others. Figure 3.32 shows an example
of C1, Co and C3 in the 2D space.

Finally, polylines C;, Co and C3 are projected to V.
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(a) Cyclic connectivity Cq (b) Cyclic connectivity Co (c) Complete graph Cs

Figure 3.32: Examples of the connectivity between the points p € P. (a) shows an example of C}
connectivity, (b) presents an example of Cy cycle and, finally, (c) illustrates an example of C3 graph.

Centroid

The WA method computes the centroid of the intersected portion of the wire structure. Thus,
for every wire segment [; laying in R’} with length ¢;, it computes its middle point ¢;. Then, and
assuming that there are m segments over R}, the centroid 3 of the wire is

Zgil gili

m .

B =

Once B is computed, the technique obtains the final coordinates as

n n
0= Z/quz = Zﬂzma
i=1 i=1

SO
Bi
lvi—pll

BV
J=1[[v;—pl

Figure 3.33 shows the intersection between the wire structure and the R’} region for two close
points p1 and ps.

oy =

Although the computation of the centroid explained above results in a set of well-defined coordi-
nates, the intersection of the wire structure with the Rl region does not always exist. That is,
there are wire structures that do not intersect R’y. Consequently, there are parts of the model, or
even the entire model, that can not be defined with respect to the control points. These parts can
never be deformed, so the WA coordinates are not suitable to perform 3D deformations.

The existence of null intersections between the wire structure and the R} is caused by the fact that
the probability that this wire, with only n or 2n vertices, is projected on the Rl region rapidly
decreases as n, the number of control points, increases. Note that R™ has 2" regions and we are
only interested in one of them. The studied set of points P does not sample sufficiently well the
R™ space, so the WA is not always able to find the R’} region. For this reason, we were forced to
continue researching new methodologies to obtain a well-defined system of coordinates.
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Figure 3.33: Example of the intersection between two wire structures and the R’} region. The red
segments take part in the computation of the centroid while the dashed segments are ignored.

Determinants Approach

In our next attempt, we studied all the possible configurations of four control points that formed a
non-degenerated tetrahedron. Notice that we could choose the four control points of a configuration
in ﬁi@! different ways, where n is the number of handles. However, given a particular model
point p, we computed its coordinates by taking into account only those tetrahedra containing it.
The resulting coordinates were a combination of the Barycentric Coordinates of p with respect to
each of the considered tetrahedra.

In order to discern which tetrahedra collaborated in the computation of the coordinates of p, we
analysed the determinants of the control points of each of them, choosing three at a time. Those
determinants would also be used to compute intermediate Spherical Barycentric Coordinates (SBC)
of p, so we called the new technique the Determinants Approach (DA). Following these lines we
explain in detail how DA exactly works.

Given a point p of the model, the main goal of the DA is to find the m tetrahedra containing it
and to build a set By = {B',...,8™} such that B, cVin R" . That is

VB eB, : Bx=0 A B-y=0 A B .z=0 A B R

Each 87 vector will contain the SBC of p with respect to the j-th considered tetrahedron.

First, the method defines the matrix M as

X Qlz P2z --- Gna
M=\y|l=|ay @ - any
z qiz 42z --- (Qnz
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where each column ¢; corresponds to the projected control point Vv; on the unit sphere Sy of p.
Remember from Section 3.1 that
__Vvi—Pp

[vi — pl|

—

di=Vi—p

Then, given a particular tetrahedron {v;,v;, vk, v}, the method discards or includes it into the
set of tetrahedra affecting p depending on the four determinats defined by its vertices, chosen in
threes. The technique uses the indices {i, j, k, [} of the control points of the tetrahedron, which we
will call configuration from now on, to set up the list L = [¢;, ¢}, g, ¢, ¢, ¢;] with the corresponding
columns of M. It also computes four 3 x 3 matrices taking 3 consecutive columns in L

M = (ci cj ck), My = (cj Ck cl), M3 = (ck q cz-), My = (cl Ci cj).

Finally, iff the configuration {i,7j, k,l} satisfies that the determinants of M;, My, M3z and My
alternate their signs, that is

M >0AMz>0and My <O0OAMy; <0

or
M <O0AMz<0and My >0A My >0,

the tetrahedron {v;,v;, vg,v;} is used to compute the coordinates of p. It is also necessary the
point p to lie inside the tetrahedron defined by the control points {v;, v;, vi, v }.

If the tetrahedron {v;, vj, vy, v;} is correctly chosen, then, its corresponding vector B is

8l A 8 8l
B =10,...,0,det(M3),0,...,0,—det(Ms3),0,...,0,det(My),0,...,0,—det(M;),0,...,0

assuming M; < 0A M3 < 0 and My > 0 A My > 0 without loss of generality. Notice that
Wm, where vol({d;, d;,qk, d;}) is the volume of the tetrahedron {V;,v;, vy, V;}, corre-
sponds to the SBC of p with respect to this tetrahedron {V;, v;, Vi, V;}.

Assuming that the cqnﬁguration {z’,‘j, k,l} is correct for the particular model point p, we prove
that 87 -x =0and B’ -y =0 and B’ - z = 0 below.

Proof of Bj-x =0 and 3 -y =0 and B’ - z = 0. First of all, let us refresh the nomenclature we
need to develop this proof. The column vector ¢; corresponds to the control point g;

T Qix
G =9q = |4y ]|,

as well as the component 7 of the vectors x, y and z

4 = (Giz» Giy» Giz) = (%, ¥is 2i)- (3.30)
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Now, we expand the determinants of the matrices My, Ms, M3 and My related to the list L:

) Qiz  Gjx Gkx
Bl = —det(Mi)=—lci ¢ c|=—|ay Gy dry
Qiz 4jz Gkz

= —QiaQjykz — 9z kyQiz — QkaQiyQiz + UexQiyQiz T GaQiyQkz + GixQkydjz
Qjxz Qkx iz

Bl = det(My)=lc; & a|l=|aGy Gy ay
95z dkz qiz
= QjaqkyQlz T QkxQyjz T U2iykz — Uxky9z — Wea @iy Az — Uz Qly k=
. Gkx iz Gix
Bl = —det(Mz)=—|ex a cl=—|my @y diy
dkz iz Qiz
= —Gkxy9iz — Qiz9iy9kz — iz dky9lz + Qixqlydkz + Qi qkydiz + QkxQiyqlz
. qiz iz 45z
Bl = det(My) =l ¢ ¢l =|ay Gy @Gy
qiz qiz 45z

= Qz%iy9jz T Gz QiyQiz + G2y iz — Gz Qiy Az — GaQyiz — UxDjyTiz-

Then, we expand the scalar products

Bx = Blu+Blx+Bw+Blua

= det(Ma)x — det(Ms)x; + det(My)x, — det(Mq)x
By = Bly+Bly+Blu+Blu

= det(MQ)yi — det(Mg)yj + det(M4)yk — det(Ml)yl
Bz = Blz+plz+pla+Ba

= det(M2)z — det(M3)z; + det(My)z, — det(Mq)z.

And,

QizqQjzkyqiz + Qixdj29kxqly + QizQjyQkzqle — Qiz9j29ky9le — QizQjydkz9lz — Gizqjzqk=qly
Qiyqjzdkyqlz + Qiyqjzqkxqly + QiyQjyQdkz9iz — 9iy9jz9ky e — QiyQjydkzlz — Giy9jz9k=9ly
Qiz9j2xq9kyql~ + 9iz9529kxqly + Qi295y k29 — 9i29529kyQx — 9izQjyQkaQlz — Qizqjxk=qly

QizqQjzqk=qly + Qizqj29kyix + QiyQjzQkzqlz — Qiz9jz9kxqly — QiyQjzqkzqle — Giaqjzqkyqlz
Qizqjydkzqly + Giz95y9ky iz + QiyQjyQkaqlz — 9iz9jyQkaqly — QiyQjydkzqle — Gizqjy9kydiz
Qix9jz9k=qly + 4i29j29ky iz + Qiyqj29kx9lz — 9i29j29kx9ly — Qiy49jz9k29le — Giadj29kyqiz

Qiy4jz9kaqix + QixQjydkzqlz + Qiz9jx9kaqly — QiyQjeQkaqlz — Qizqjz9kzqly — GizqjydkxQix
Qiyqj29ky iz + Qizqjydkyqlz + Qiz95x9kyQly — QiyQjzqkyqlz — Qiz9j29ky9ly — 9izqjyky iz
Qiyq529k241x + Qix9jydk=91= + Qizqjx9k2qly — Qiy9jzdkz912 — Giadj29k29ly — 9i2qjy9kzqlx

QizqjyqraQix + Qiy9jzdkz9ix + Qizqjz9ky Qe — QixQjyQkz9le — Giz9j29kyQle — Giy9jz9kxix
Giz495yqkxqly + Qiyqjzdkzqly + Qizqjz9kyQly — iz Qjydkz9ly — Qizq9j29kyqly — Giy9j=z9kxqly
i2qjyqkxql2 + Qiyqjz9kzqiz + Qizq529kyqlz — QizQjydkzq1z — Giz9529ky 1z — Qiyqjzqkzqlz

det(Mo) - G =
- det(Mg) . (_i;r =
det(My) - Gy =

—det(My) - G =

/N ~—/ N -~/ N -~/
N~ N~ " ~—__—
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Therefore,
Bx = QizQzQky iz + GiaQizThaQly + GaQiyQk=QUz — a2y Qe — GaQiyQkaQlz — GaQizQkzqy T
+QizQ5z k= ly T Gi29529ky Az + QiyQizQkzQlz — Giz9529k2Qly — QiyQizQkzQle — GizQia Ty iz +
iy 2Qk2Qiz + Gz QiyQkaQiz + Q2952 kxly — GiyQizQkaQlz — Qiz952kaly — Giz95yTkzQiz +
+9i295yQk2 Yz + GiyQja k= + G952y Az — GizQiyQkzz — GizQia Ty Qe — Qiy9jzTkziz
= 0
By = QiyQiaQky iz + QiyQizQkaly + QiyQiyTkzdie — Qiy9jzQky Qe — QiyQiyTkalz — QiyQjzQkzy +
FQizQiyQk=Qy + 28y Ay T Qiy9ydkzqlz — Gz9ykzqly — iy QiyQk=qz — Gzdiydky iz +
TQiy Q2 qky iz + iaQiyTkyQiz + GizQiaQkyQly — iy QizThyQlz — QizdjzQky Ay — 295y ey Tz +
4295y QhaQly + GiyQizQkzy T izdi=kyQly — GaQyQkzly — 9iz9529kyQly — QiyzTkzqly
=0
Bz = QizQaQyQlz T 29202y + G285y ke — §i2952ky Uz — GzQ5yTeaQz — GizQiaQk=y +

+Qixq520kQy + 4i2952ky iz + Qiy9i2Qk2qlz — §i29529k2ly — Qiy9i29k=z — Gizj2qky =z +
+Q7ijqu1czqm + Qixqjyqkzqiz + Qiz95x9k2ly — Qiy9jzdkz91z — 9ixq529k249ly — 9izq9jy9kz4ix +
+QiZijQka:QIz + Qiyqjxqkzqiz + Qixq9j29kyQlz — QizQjydkz91z — 9i295x9kydlz — Qiy9j29kxqlz

= 0.

O]

Once the DA methodology has obtained the By, set, it needs to compute the final set of coordinates
A ={a,...,0p} that reproduces the point p. First, the DA normalises the vectors 3’ € By, so

, gj
) = —.
=47

Then, it weighs them by means of the cardinality of the set Bp. That is

P

BJ €Bp

Now, we get the set of coordinates 2 = {w1,...,w,} such that
n
Z w;iq; = 0.
i=1
Finally, the DA normalises the €2 set
Vi—Pp
0= sz% = szziv
— " |lvi—pl

wi
Ivi—pll

7=1 TV, =Pl

SO

Q; =

Although this weighting technique results in a positive set of coordinates, the weight |B—1p‘ € Qis dis-
crete and does not provide the required continuity for the functions of the coordinates. Figure 3.34
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shows a plot of the coordinates for the classical model of the line surrounded by nine control points.
The discontinuities shown in the functions of the coordinates are caused when neighbouring points
P1, P2 and ps of the model have a different number of configurations in their corresponding sets
By, , Bp, and Bp,. This situation causes that the influence of the control points changes drastically
between them due to the discrete nature of the weight ﬁ.

Figure 3.34: Discontinuities arise on the DA coordinate functions.

Figure 3.35 presents a typical situation where a discontinuity occurs. While in p; the weight is
ﬁ = %, in po is lB—iZ‘ = % and in pg3 is @ = % This fact takes place because the DA does not
perform a partition of the convex hull of the control points. Instead, the tetrahedra can overlap
with each other. This means that asymmetries can appear between both sides of some of the faces
shared among several tetrahedra, where we describe an asymmetry as the situation where a face

does not have the same number of tetrahedra on its left side as on its right side.

Vie @&

Figure 3.35: Example of a transition that causes a discontinuity in the functions of the coordinates.
Notice that all the possible triangles are not disjointed. This means that the edge Vav3 has one
left triangle and two right triangles. Such asymmetry causes discontinuous coordinates.

These discontinuities make the method unsuitable to be applied in deformation processes. So, we
finally rejected the DA to move forward, looking for new ways to compute coordinate systems.
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Gradient Method Approach

During the last experiments we have presented, especially the Lagrange Minimisation Approach
(LMA) and the Wire Approach (WA), we experienced that reaching the V+ N R’' subspace was
not an easy task. However, an alternative method was to take an initial point in V1 and make it
evolve inside the same subspace V' until it reached the region R . In this way, the modified point
could be used as the coordinates of a particular model point p with respect to the control points.

The Gradient Method Approach (GMA) maximises a positive attracting function. It starts pro-
jecting a random point p € R"} to the linear subspace V+. We call the projected point as p and it is
computed by means of the projection matrix Py 1 (refer to Annex A). Then, the GMA iteratively
translates p over V- using the gradient method, as its own name suggests, to bring it to V- N R%.

The gradient method consists of, given a point g, translating it through the direction of its maximum
change, that is, the gradient g. Hence, the GMA moves the point p through its gradient over V-1,
which we call g1 .

In order to compute g1, we use the function minC(p) (“minimum coordinate”), which returns
the value of the lowest coordinate in p and, also, the index, or indices, of such coordinate. Then,
and assuming that minC(p) function returns the index i as the one with the minimum coordinate
value in p, the GMA defines an appropiate gradient g as the vector

g = 1.0

g;i = 0.0 Vj#i.
However, the gradient g lies in R”, so it needs to be projected to V- before it can be applied:
gy =g Pyi. Now, GMA can translate p by means of gy 1

Pr=p+01 8y,

where d; is the distance that p can be moved until the lowest coordinate ties with the next coordi-
nate, or coordinates. When this occurs, GMA checks that minC(p') > minC(p), that is, the lowest
coordinate after the first iteration of the gradient method is higher than the lowest coordinate of
the original point p. If that happens, the translation can be applied. If not, the GMA seeks another
coordinate to tie with.

Once the first tie is reached, we get the point p', which has two or more coordinates with the same
lowest value. Let us imagine that minC(p') returns the indices (7, j, k) as the lowest coordinates in
p'. Now, GMA moves to the next iteration of the method and computes the gradient g§ € R" as

g, = 1.0
g9; = 1.0
g. = 1.0
g = 0.0 VI#i,j k.

This time, g€ must be projected over V”Lk, where V”L,C is the subspace of V- where the coordinates

corresponding to the indices ¢, j and k are equal. Now, the projection matrix has changed and our

method needs to expand the original matrix Pj-1 in order to define PV_L_k. It first adds the new
ij
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conditions to the matrix V' (see Annex A)

v = ( 1 yoos 0y, —=1,...,0) =i=3j
¢ J
v; = (0,..., 1',...,0,...,—1) = j=k,
J k
X
Y
so Vijx = | z |. Then, the new system of equations is

Vij
yjk

(P = P) = pxX + Pyy + P22 + oy ij + Doy Vjk- (3.31)

Notice that v;; - p = ;1 - p = 0, so we can also multiply Equations (3.31) by the vectors x, y, z, v;
and vj;, to find the matrix M;;;, similarly as in Annex A, Section A.2. Once M,j;, is computed, the
- . : . T -1
new projection matrix Pvijl_k is defined as PVi L= I— V;.jk . Mijk; - Viji- Now, GMA can translate
the point, so
. . LUl

?Z:?Z 1+5i‘gVI ,
where the label ¢ indicates the current iteration and VIL is the current subspace in V. The gradient
method ends when the function minC(z') does not increase anymore.

(a) (b)

Figure 3.36: Figure (a) shows the GMA coordinate functions corresponding to the initial configu-
ration of a line surrounded by fifteen control points. The bottom image in (b) presents the initial
configuration while the top image shows a simple deformation produced by the translation of the
handle in red. The red circles highlight an area where the problems caused by the low order of
continuity of the coordinates arise.

The GMA coordinates are well-defined, positive and functional. However, they present an im-
portant drawback: every time that two or more coordinates tie, the smoothness of the functions
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of the coordinates decreases, so the GMA coordinates are C%-continuous only, as we can see in
Figure 3.36. This low order of continuity results in rough deformations that produce visual ar-
tifacts and unpleasant shapes on the deformed models, as shown in Figure 3.37. Consequently,
we also discarded the GMA method because it was not appropriate enough to be applied to any
deformation framework.

Figure 3.37: Example of a deformation and the corresponding heat map using the GMA coordinates.
(a) shows the initial configuration of the Armadillo model surrounded by ten control points. (b)
presents the heat map that corresponds to the handles in red. Finally, (c¢) and (d) illustrate two
deformations that arise the problems caused by the low order of continuity of the GMA coordinates.

Conclusions

In this section we have studied several methods that try to build a well-defined system of coordinates
in the n-Dimensional Space. They do not need any kind of connectivity or structure defined over
the control points, but only their location in the 3D space around the model to be deformed.

The presented approaches represent the control points in n-Dimensional Space. Evenmore, we have
bounded the region of the nD space in which the coordinates that fulfil all our requirements lie.
This region is VN R .

We have described four methods that do not always achieve good results. On the one hand, the
Lagrange Minimisation Approach (LMA) and the Wire Approach (WA) show us that reaching the
VL NR7Y is not a simple task. On the other hand, the Determinants Approach (DA) and the
Gradient Method Approach (GMA) present either discontinuities or low order of continuity that
make them useless for deformation processes.

As far as the obtained results do not achieve the required objectives, we need to look for new
methods that solve the drawbacks of the analysed approaches.

Summary

Our main goal is to go beyond the limitations of most of the existing cage-based deformation
schemes. We want to increase their flexibility and to simplify their handles to make the deformation
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processes more intuitive and easy to drive. In this way, this chapter has been presented as a
compilation of experiments and attempts to compute a well-defined system of coordinates. Most
of the presented approaches are not suitable to be applied in real deformation frameworks due to
their inefficiency and negativity and continuity problems. However, they show how the problem of
defining a set of coordinates can be dealt with different and interesting points of view. In addition,
this chapter is also a good reference to understand how our ideas and hypothesis have evolved
during the research process.

Firstly, we present the Mean Value Coordinates Based Methods, which include the Delaunay Tri-
angulation Approach (DTA), the Voronoi Regions Triangulation Approach (VRTA) and the In-
cremental Approach (IA). In the DTA and the VRTA we work with Delaunay Triangulations and
Voronoi Diagrams to dynamically and automatically compute the connectivity between the control
points. Nevertheless, these methods do not provide the continuity requirement over the coordinates
due to the strong dependency of the MVC on the supporting structure defined over the control
points, that is, their connectivity (see Figure 3.5). Although we can avoid this drawback by com-
bining the use of the Laguerre Voronoi Diagram over the sphere and the computation of the Natural
Neighbour Coordinates (NNC) on the plane, the resulting technique is not efficient enough. On
the other hand, the IA makes distinction between exterior and interior control points. Firstly,
it computes a Delaunay Triangulation of the convex hull of the exterior control points. Then, it
adds the rest of the interior control points one by one and updates the coordinates. Although the
resulting coordinates are continuous and smooth, the IA method presents negative values as the
number of control points increases (see Figure 3.15).

After these first experiments, we realise that the discontinuities on the coordinate functions are
caused by the dynamic changes on the connectivity of the control points. So, we decide to establish
an automatic and static connectivity. This connectivity of the control points is the supporting
structure over which we compute the coordinates for all the points of the 3D model. We base
this static connectivity on the computation of tetrahedra. However, all the obtained results, both
numerical and analytical, present a low order of continuity. This means that the deformations
driven by these kind of coordinates show artifacts and sharp features on the deformed models (see
Figures 3.21 and 3.23). Consequently, we also discard these techniques.

Finally, we want to study the problem directly from the n-Dimensional Space, where n is the number
of control points. We avoid any connectivity between the control points to increase the smoothness
of our coordinates. In this context, we study four different techniques, the Lagrange Minimisation
Approach (LMA), the Wire Approach (WA), the Determinants Approach (DA) and the Gradient
Method Approach (GMA). Although none of them give satisfactory results (see Figures 3.27, 3.34
and 3.36), they open a new perspective to approach the problem of building a well-defined system of
coordinates. It is this new perspective what we will exploit in Chapter 4 to develop the C-Celestial
Coordinates (CCC), the T-Celestial Coordinates (TCC) and the S-Celestial Coordinates (SCC).
The n-Dimensional based approaches studied in the present chapter lack the continuity and the
smoothness required for the deformation processes. In contrast, the CCC and, especially, the TCC
and the SCC are well-defined systems of coordinates, continuous and smooth that can be perfectly
applied in any deformation application. As we will see in Chapter 4, the deformations driven by
the TCC and the SCC produce good and visually pleasant results over the deformed models and
are intuitive and easy to use.
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In the previous chapter, we presented different approaches to the cage-free deformation problem
which can be classified into three different groups: the Mean Value Coordinates Based Methods,
the Layered Based Methods and the n-Dimensional Space Based Methods. However, none of them
meets our expectations, i.e. they do not fulfil neither the basic properties listed in the introduction
of Chapter 3 nor the good features enunciated in Section 1.1. The described Mean Value Based
Methods suffer from discontinuous and negative coordinate functions or from complex and inefficient
computations, despite the correctness of the final set of coordinates. The Layered Based Methods
result in rough coordinates that do not have the required level of smoothness and locality. Finally,
the studied n-Dimensional Space Based Methods also present discontinuous, negative and sharp
coordinates. Moreover, they are not always successful in finding a set of coordinates for every point
p of the model.

Since the results presented so far were not as promising as desired, we still wanted to find a well-
defined system of coordinates which could be used in real deformation frameworks. We, therefore,
continued our research until we could, finally, define some successful techniques. Accordingly, this
chapter is devoted to detail, analyse and discuss the new proposed coordinate systems.

Firstly, we define a new family of coordinates in Section 4.1, the Celestial Coordinates Family,
which comprises some of the existing schemes and the methods presented in the previous chapter.

69
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Then, we develop three new systems of coordinates: the C-Celestial Coordinates in Section 4.2,
the T-Celestial Coordinates in Section 4.3 and the S-Celestial Coordinates in Section 4.4. They
are new cage-free approaches that belong to the n-Dimensional Space Based Methods as well as
to the Celestial Coordinates family. Section 4.5 studies a method to increase the locality of the
coordinates. This technique is an attempt to localise the deformation by grouping subsets of
control points. Hence, we want to combine the new systems of coordinates together with the
localising methodology to obtain a well-defined cage-free deformation approach that satisfies all
the basic properties': reproduction of the identity, reproduction of the unity, positivity, continuity,
smoothness and locality. Moreover, it should be robust, flexible, easy to use and have interactive
response. Section 4.6 discusses the properties of the three new systems of coordinates and compares
the proposed deformation techniques to some existing methodologies. Finally, Section 4.7 presents
the conclusions of the chapter.

Part of the research in this chapter has been compiled into a paper which is now under review.

Celestial Coordinates Family

In this section, we introduce the Celestial Coordinates, a family that groups some Generalised
Barycentric Coordinate (GBC) schemes. The systems that belong to this family are characterised
by two main features. The first feature is that they are positive GBC, that is, the coordinates are
positive inside the deformation domain. We define the deformation domain as the volume inside
which the deformation takes place. In the classical cage-based paradigm, this domain is bounded
by the faces of the cage. In contrast, in a cage-free environment, the domain is defined by the
convex hull of the control points. The second feature refers to the projection of the control points
over a unit sphere during their computation process. We call this the celestial sphere, hence the
name of the coordinate family.

Given a set of control points V = {vy,...,v,} and a point p inside the deformation domain, any
system of Celestial Coordinates computes the coordinates A = {aq,...,a,} of p with respect to
the control points v; by means of the resolution of the well-known linear combination

n
p=>Y ap)vi
=1

Based on the same principles as the Mean Value Coordinates [FKR05] and adding the requirement
of positiveness, these schemes first project the handles v; onto Sp, the unit sphere, or celestial
sphere, centered on p, and solve the simplified linear combination

n
d Bidi=0 Vip>0, (4.1)
i=1
where g; = %, for d; = ||(vi — p)||. Therefore, the final coordinates «; are obtained as
wi(p)
ai(P) = = (4.2)
’ 27:1 w;(p)

where w;(p) = %

7

!Refer to the introduction of Chapter 3 for a detailed description of each property.
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The main difference between the Celestial Coordinate systems and the Mean Value Coordinates
(MVC) is that the schemes included in the Celestial Coordinates family ensure the positivity of the
f; coordinates inside all the convex hull of the control points. Hence, a; € V- NR”, as they are
defined in Equations (3.18) and (3.19). Instead, the MVC are only positive if p is located inside the
kernel of the user-defined cage. Thus, they behave as Celestial Coordinates if, and only if, the cage
is convex. A similar situation takes place with the Spherical Barycentric Coordinates [LBS06]. On
the contrary, the Positive Mean Value Coordinates [LKCOLOQ7] are a good example of a member
of the Celestial Coordinates family since they are always positive, even inside star-shaped cages.

The reader must have observed that not all the schemes presented in Chapter 3 succeed in their
goal to become a well-defined positive GBC system, hence they do not belong to the family of
Celestial Coordinates. Despite this fact, we are particularly interested in those techniques defined
in Section 3.3 as the n-Dimensional Space Based Methods, where n is the number of user-defined
deformation handles. Their main feature is that they depend neither on a user-defined nor an
automatically computed connectivity between the control points, but they only take into account
the position of these handles. Therefore, we classify all the positive n-Dimensional Space Based
GBC systems into a subfamily called the Point-Based Celestial Coordinates. That is, the Point-
Based Celestial Coordinates collect all the schemes in the Celestial Coordinates family that do not
need any kind of connectivity between the control points to compute a set of coordinates.

The n-dimensional methodologies presented in the previous chapter, which are the Lagrange Min-
imisation Approach, the Wire Approach, the Determinants Approach and the Gradient Method
Approach, experience the important disadvantages of negativity and discontinuity. We needed to
address the problem from a new angle. We wanted to find an easier and more appropriate way to
compute a vector 8 € V1L n R’ and, therefore, obtain a correct Point-Based Celestial Coordinate
system to relate the points p of the model with respect to the deformation handles. Accordingly,
the following sections present three new schemes that belong to this subgroup of the Celestial
Coordinates family. They are the C-Celestial Coordinates, the T-Celestial Coordinates and the
S-Celestial Coordinates and, unlike the methods in Section 3.3, they are well-defined.

C-Celestial Coordinates

An obvious and intuitive choice to compute a valid vector 3 that satisfies Equation (4.1), while
lying in the subspace V- NR”, is to find the centroid of the intersection V-+ N R NS, where § is
the n-dimensional unit hypersphere or hypercube centered at the origin 0 € R™.

Although the idea is quite simple, the analytic computation of the centroid is not an easy and
evident task. Therefore, we propose to compute this centroid by means of the Monte-Carlo method.
Firstly, we randomly sample the unit hypersphere or hypercube S. Then, the sampled points are
projected into V1 by means of the projection matrix P,,1 described in Annex A. Only those
projected samples lying in R"}, that is, with all their coordinates positive, are considered to compute
the final centroid.
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Discussion

The C-Celestial Coordinates are positive and well-behaved. However, the required number of
Monte-Carlo samples increases overwhelmingly as the n-dimensional space also grows. That is, the
larger the number n of control points is, the more samples the C-Celestial Coordinates method has
to take into account to finally compute a well-defined set of coordinates for the model point p, as
shown in Figure 4.1. This disadvantage results in unaffordable computational costs, making this
technique useless for practical applications (see Figure 4.18 in Section 4.6.1).

«
°
@
& =

(a) 10° samples (b) 25 - 107 samples (c) 10° samples

Figure 4.1: The C-Celestial Coordinate functions corresponding to the initial configuration of a
line surrounded by fifteen control points, shown at the top. (a), (b) and (c) show a sequence of the
coordinates which have been obtained with different number of Monte-Calro samples. Notice how
the coordinate functions are softened when the number of samples increases.

T-Celestial Coordinates

As stated in the previous section, the C-Celestial Coordinates suffer from inefficient computation
cost. Therefore, we researched into faster and more direct ways to compute a valid vector 3.

Given a particular point p of the model, the idea behind the T-Celestial Coordinates was to work
with the span of the vectors x,y, z € R™, which have been presented in Equation (3.16). Any v in
the span of these three vectors depends on three unknowns ¥ = (¢, v,,.), such that

v = Q[))cx, + "byﬂ + ’(;bzz-

Hence, the vector B and the final set of coordinates for p also depend on the triplet (i, 1, ;).

The proposed method consists in, first of all, applying a transformation function T'(¢y,,,%.) to
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v, which lends the name to the present coordinates. Such transformation sends » to R’}

T: R — R?

v = w?c?ﬁ + wyy +v.z2 — T(Q/)x, ¢y> %) (4‘3)

Then, we get o/ = T(1)y,1y,1) lying in R}, so we must still ensure that it also lies in Vet In
other words, we need to solve the system of equations

T(wxa ww wz) A= 0
T(T/J,(, %, wz) Y= 0 (4.4)
T(wxv wyu wz) cZ = 07

for the unknowns (1y,1,,%.), which is equivalent to the previous System (3.17). Once the Sys-
tem (4.4) is solved, the vector 3, over the unit sphere Sp centered on p, is

/6 = T(¢xa ¢ya ¢Z)7

for the particular triplet (1,1, 1.) that satisfies it. The final set of coordinates «;(p) are computed
as done in [FKRO05] and shown in Equation (4.2).

In the described procedure there are two main points that need our attention. The first one is the
definition of the transformation function 7'(1y,,,%). The second one, the methodology to solve
the System (4.4). The next two sections are, therefore, devoted to analysing both points and detail
the solution that we propose.

The Transformation Function T'(¢,, vy, ;)

As exposed previously and illustrated in Expression (4.3), we wanted to define a transformation
function T'(¢y, vy, 1)) such that it sends the vector

v = ¢7(7C+Q;Z)yy+¢zz

to R} C R™. Hence, for any vectors x, y and z and for any triplet ¥ = (1y,,,%.), the transfor-
mation T'(¢y, ¥y, 1).) must ensure that her image belongs to R}.

There are many functions whose images live in R’}. For example,

filz) = €
fo(x) = a” where v € N A v = 2k.

In particular, we defined our transformation using the exponential function f;. Thus, we propose
(g g ) = (Ve timsven | apavtimven)
This expression can be simplified into

T(r s e) = (P00 e¥ ) (4.5)
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where ¥ = (Y, v,,%.) and q; = (%, 4, z) from Equality (3.30). Additionally, a particular user
may also want to establish specific weights for each of the deformation handles, so their influence
regions can be adapted. In order to add this new property, we modified the original transformation
function in Equation (4.5) to take into account an initial fixed user-defined point s € R’} U {0}.
Hence, the final transformation function is the following

n

T(%% wy’ wz> = Z s+ ew.di- (4.6)

i=1

Solving for T'(¢,, vy, 1)

In the section above, we have defined the transformation T'(¢, ¥y, ;) to send v = ¢ x + Y,y + 1.z
to R’t. Now, it is time to solve the System (4.4) when T'(1,, 1, ;) is the one from Equation (4.6).
However, we must first prove that this system always has a solution. The replacement of Equa-
tion (4.6) into System (4.4) leads to the new arranged system

n
> et =r, (4.7)
=1

where r = — > | 5;q;. Hence, we have to demonstrate that Vr € R3, 3¢ = (¢, v, 1,) such that
the System (4.7) is solved.

Proof. Let us define the function g(¢) = Y i, e¥diq; from R3 to R®. We need to demonstrate
that it is surjective.
We first compute the partial derivatives of g(v) as follows

g9(h) < &= I9(¥) < . dg(1p)
D :Zqizelbq i 9y, :Z@h’yewqqi’ 0 :Z

1=1 =1

Then, the corresponding jacobian matrix J(1)) is the one shown below
Y, N e Yg,a, X e Y,

JW) = | Y e¥ Y0, i Ya,q, Xl e¥%giq, | (4.8)
S e¥hig; g;, Sr L e¥dig q; S e¥dig g,

which is a real symmetric matrix. Hence, it has a full set of orthonormal eigenvectors with real
and positive eigenvalues. Notice that if V is a unit eigenvector with its corresponding eigenvalue A,

then
A=vJ(p)v'

= (XL e T -q e, XL e E-d e, X (T -d])e) v

n
=3 (.G )(G V) (4.9)
=1

n
- S aT
=1
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Now consider a function G such that

G: S — R
g — maxz(gc_jz)

On the one hand, q; represent the control points projected over the unitary sphere of p, Sp. They
are distributed around the origin, therefore G(g) > 0, Vg € Sp. On the other hand, the sphere Sp
is compact, so there exists an € > 0 such that G(g) > € > 0, Vg € Sp. Hence,

Vg € Sp, 3q; such that g - q; > e.

If we use this expression in Equation (4.9), then

n
A= I > 3 et > el 5 g,
=1

Thus, ||J()V"| > ¢ > 0 for any p € R3 and for any eigenvector ¥ € Sp. This shows that
the range of the function g(+)) is an open non-empty subset of R? which has no boundary, hence,
is all R3. Therefore, g(v) is surjective, which means that Vr € R3 3¢ = (¢, ¥y, 1) such that

Yoy e¥dig; = r, as we want to demonstrate. O

Now, we know that the System (4.7) always has a solution, so we can proceed to solve it. However,
the transformation function in Equation (4.6) converts the System (4.7) into a nonlinear nonconvex
one. Consequently, we can not compute an analytic solution for it, so it has to be solved by means
of a numerical method.

The Newton Method [Hil56] iteratively approximates the solution of nonlinear systems of equations
and we propose its use to solve the System (4.7). Each iteration & of this method consists in solving
the following matrix system

T

k=t = (T,

where 9*~! is the solution of the previous itgration, J is the jacobian matrix of the system, shown
—1 =
in Expression (4.8), and f(¢"~1) = 37 ¥ dig; — r is the system itself.

In order to take advantage of the Newton Method, we first need to define two important points: the
first guess or approximation of the solution 1° and the ending condition that ensures a sufficiently
accurate final value. On the one hand, in the case that concerns us, this technique reaches a precise
enough solution when >, e¥dig, —r < ¢, for a given small € value. Ergo, the ending condition
is exactly > 7" e¥dig; —r < ¢, for a proposed value € = 107%. On the other hand, we suggest a
more elaborate procedure to accelerate the Newton Method by means of an initial guess. The main
idea is to look for an initial model point pg, also called seed point, in which the Newton Method
converges quickly into a correct set of coordinates. Once the seed point pg has its own coordinates
defined, the final solution for the triplet ¥, = (v, %,,.) is spread among its neighbours, so they
can use it as their initial guess to compute their own coordinates. Notice that, in this context, we
establish that two points p; and p; are neighbours if the distance between them is smaller than a
certain fixed value .

The key point is to define the first estimation for the Newton Method in pg. We know that the
first two terms of the Taylor series for the exponential function e* are e ~ 1+ . Therefore, we use
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this estimation to approximate the exponential term of the transformation function T'(vy, )y, ¥;)

as follows
n

T(wxa¢yawz) = 251' +e¢(_il = 251' +1 +¢ : C_il

i=1 i=1
This simplification allows us to linearise the System (4.7) into )" (1 + 4 - §;)q; = r, which can
be written in matrix form as

Z?ﬂ(%’z Qi) Z?:1(q% 'Qiy) Z;L:l(qiz “qi,) (o Z:’L:l i, (si + 1)
Z?Zl(qix : qzy) Z?ZI(Qiy ’ qu) Z?:l(qiy : qlz) ' ¢y = - Z?:l qu (si + 1)
Yo (@i i) oGy - gi) D (g - i) Ys Do i (si+ 1)
——
Q : P = b.

The resulting triplet 1 = (1,1, 1.) will be used as the initial guess P° to start the iterative
Newton Method. If the method does not converge quickly for the first selected point pg, we can
randomly choose another seed point and start the process again.

Every time the method achieves a good set of coordinates for a given model point p;, those neigh-
bours of p; which do not yet have their coordinates computed are sorted from the nearest to the
farthest to p; and queued?, as shown in Figure 4.2. We can observe that, the first time, p; is exactly
the seed point pg, hence, all its neighbours are sorted and queued. Then, each time that a point
p; is stacked out, the Newton Method is initialised with the triplet @ = (1, %,,v.) of its closest
neighbour among those that already have a good set of coordinates computed, as exemplified in
Figure 4.3. If this initialisation is not good enough for the method to converge quickly, the process
is restarted using the triplet of the second closest neighbour, and so on.

A=A{ay,...,an}

queue
3 queue
- Pi | Pi, | Pi,
neighbours ‘ :
e Pis P |
Pi,

Figure 4.2: The model point p; and its neighbours are displayed on the left part of the image.
This point is the latest with a good set of coordinates computed. Additionally, its neighbours are
divided into two groups: those with computed coordinates, in orange, and those which do not yet
have coordinates, in green. The latter are queued taking into account their euclidean distance to
p;, from the closest to the farthest, as shown on the right.

We can use two different metrics to select the closest point to p;. The first one is the euclidean
distance, so the closest neighbour p to p; is the one that minimises the distance dp = ||p — p;]|-
The second one is the jacobian distance, that defines the closest neighbour p to p; as the one that
minimises the distance dj = pjT - J(p) " - J(p) - Pj, where J(1pp) is the jacobian matrix at the

ZNote that if any of these neighbours is already in the queue, it is not added again.
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queue
i ' stack out '
P P; @ : P; Pk
point
o Pj,
Pjs
Pj,

‘ Newton Method

wpu = (wm %, wz)

Figure 4.3: The left part of the image shows the model point p; and its neighbours. This point p; is
located in the first position of the queue, as exposed on the right, so it is the next one for which the
coordinates are to be computed. In addition, its neighbours are divided into two groups: those with
computed coordinates, in orange, and those which do not yet have coordinates, in green. Therefore,
the Newton Method is initialized with the triplet ¥ = (¢, %,, %) of its closest neighbour between
those in orange.

model point p; by means of the triplet 1 = (1x,, 1), which has been obtained during the
process to compute the coordinates of p. In the next section, the analysis of the Tables 4.5 and
4.6 shows that the jacobian distance gives better results and, therefore, is the most appropriate to
compute the closest point to p;.

Discussion

The T-Celestial Coordinates succeed in being a well-defined system of Point-Based Celestial Co-
ordinates. They are positive, continuous and smooth, as can be seen in Figure 4.4. Furthermore,
their computation is efficient despite the use of a numerical method to solve them.

This efficiency depends partly on the metric used to select the neighbour to initialise the Newton
Method of a given model point p. As presented in Section 4.3.2, we can use the euclidean distance
and the jacobian distance. We, therefore, studied which of the two techniques was the most
appropriate to be used during the computation of the T-Celestial Coordinates. The Newton Method
together with the euclidean distance can only converge correctly and quickly with the first checked
neighbour for about 50% of the points of the model, as shown in Figure 4.5. In contrast, the
jacobian distance allows this methodology to converge for the first tested neighbour in 100% of the
model points in our experiments. Additionally, once the most suitable neighbour has been detected,
Figure 4.6 contrasts the number of iterations that the Newton Method carries out until it converges
in a good set of coordinates. Although the jacobian distance needs a little more iterations, this
disadvantage is largely compensated by the fact that this metric always converges for the first
checked neighbour. Therefore, data presented in both figures reveal that the jacobian distance is
the most convenient metric for speeding up the Newton Method.

Unfortunately, the T-Celestial Coordinates present two major drawbacks. The first one is their
global effect, i.e. any deformation handle has an impact over all the points enclosed in their
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(a) (b)

Figure 4.4: The T-Celestial Coordinate functions corresponding to the initial configuration of a
line surrounded by fifteen control points are shown in (a). Additionally, the bottom and the top
images in (b) show this initial configuration and a simple deformation produced by the translation
of the control point in red, respectively.
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Figure 4.5: Number of neighbours that the Newton Method needs to check before it converges on
a good set of T-Celestial Coordinates. In this case, the neighbours have been sorted by means of
the euclidean distance. Notice that only the 50% of the points of the model can be solved with the
help of the first tested euclidean neighbour. In contrast, the 100% of the points of the model can
be solved with the first checked jacobian neighbour.



4.4. S-Celestial Coordinates 79

0 N D | Euclidean distance
\' . .
- b D Il Jacobian distance
= —
3 4 >
f > > &
4 A o
o) %" R
o) 2
g
—
)
o
8 3.5 +
S) e
e o)
56 R
—
2 %
or— 0 (o
(. %° Q
S) — %
5 s
0o
g &
j] P
’

Figure 4.6: Average number of iterations per model point that the Newton Method needs to
converge on a good set of T-Celestial Coordinates. The first bar of each group shows the number
of iterations when the method is initialised with the help of an euclidean neighbour. The second
bar refers to the number of iterations when the method uses a jacobian neighbour.

convex hull, as shown in Figure 4.7. Moreover, this system of coordinates does not have topology
awareness of the geometry of the model, hence the deformations are not shape-aware. The second
disadvantage is that they are not rotational-invariant.

S-Celestial Coordinates

In the previous section, we have presented the derivation of the T-Celestial Coordinates and also
their main disadvantages; one being the fact that they are not rotational-invariant. Hence, in
an effort to design a Point-Based Celestial Coordinate system that met the rotational-invariant
property, we developed the S-Celestial Coordinates.

Given a model point p and a user-defined constant A > 1, the method defines the function

1 ~ o
fle) = T ;Mi - (4.10)
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Figure 4.7: Example of two deformation processes driven by the T-Celestial Coordinates. (a)
shows the initial configuration of the Armadillo and the Digestive system models surrounded by
deformation handles. Both models are enclosed in a cube-shaped convex hull, however, it can not
be seen due to the zoom of the images. (b) presents the heatmap corresponding to the control
points in red. The global effect of the coordinates can especially be seen in the Digestive system.
Observe that, although the red control points wrap the stomach, almost all the bowels are also
affected by them. Finally, (c) shows the result of the deformation driven by the red handles in (b).

This function is the center of mass £ = f(c) of the segments defined by the intersection of the rays
emanating from the point p, that have the direction of the projected control points ¢;, with the
sphere Sc. This sphere is centered at ¢ and its radius is = A+||(c—p)||, hence, it completely wraps
the unit sphere Sp centered at p, as shown in Figure 4.8. We name p;q; the intersection points
between the rays and the sphere S.. Then, the center of the mass is evaluated on the mid-points
£iq;, whose associated mass is equal to the length p; of the corresponding segment.

The technique, therefore, consists in looking for a correct point ¢ such that the center of the mass
£ of the intersected segments coincides with the model point p. That is

1 n
(=t 3 wd=o,
22?:1#]'; o

where p; > 0 and p;q; € Sc. Once this goal is met, the §; coordinates are those shown below

5 — 10
= .
227:1/1’]
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Lastly, the final coordinates «; are computed as done in [FKRO05] and shown in Equation (4.2).

Figure 4.8: The unit sphere Sp and the projected control points q; are shown on the left part of the
image. In contrast, the right side shows a random wrapping sphere S, the intersected segments
and their center of mass £. We want to find that sphere S¢ such that £ equals p.

Following these lines, we detail the mathematical expression of the intersection points pu;q; in
Section 4.4.1. Then, we demonstrate the existence of the proposed S-Celestial Coordinates in
Section 4.4.2 and describe the methodology to numerically compute them in Section 4.4.3. Finally,
Section 4.4.4 analyses the results obtained.

The Ray-Sphere Intersection

This section is devoted to deriving the mathematical expression to compute the intersection points
between the rays that emanate from the point p and have the direction of the projected control
points g; and the sphere Sc. Without losing generality and for the sake of simplicity, let us assume
that the point p is located at the origin of the euclidean space, that is p = (0,0, 0).

On the one hand, we name r; the ray that corresponds to the projected control point ¢;. It can be
defined as

= tq;, t>0. (4.11)

On the other hand, the sphere S centered at point ¢ and with radius r = A+ ||(c — p)|| = A+ [|c]|
is described as follows

Sci(@—c)* +(y—cy)?+(z—c)? =77 (4.12)

Additionally, we know that the ray r; intersects the sphere S when t = ;. Therefore, we substitute
the value u; into Equation (4.11) and this equation into the Expression (4.12) to finally compute
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the intersection
(7‘@' — 0)2 = 7“2

3 (4.13)
(iGi — €)* = (A + [|e])*.
Now, we can expand Equation (4.13)

pEd; = 2uidi - € + ¢ = X + 2| + [le|)?
pElGill = 20mGi - ¢ + flef? = X+ 2A el + c]|?
p; = 2iGi - € — X* = 2[[c[| = 0

and isolate p;

24 - ¢+ /(2G; - ©)? + 4(\2 + 2)[|c])
2 (4.14)
i =q;-c++/(Gi- )2+ X2+ 2)\||c|

fri =

Notice that 1/(q; - €)2 + A2 + 2)||c|| > §; - ¢, hence we always take the positive value of the square
root to ensure the positivity of u;, which is required by the definition of the rays in Equation (4.11).

Once we have obtained the expression for the weights p;, we can substitute it in the original
Function (4.10). Thus,

Sy (et V(@ +)\2+2)\HcH>
fle) = y . (4.15)
Qijlqj-c—i-\/qj-c + A% 4+ 2)\[c]|

Existence of the S-Celestial Coordinates

In this section we want to demonstrate the existence of the S-Celestial Coordinates. In other words,
we want to prove that, for any model point p, there exists a point ¢ such that

fle) = 22] " Zm

i=1
Thus, we can compute a correct set of S-Celestial Coordinates for p.

Consider the function
g(c) = ¢ - f(c). (4.16)
The idea is to look for a convex and compact domain B such that, if we limit the function g(c) to
it, its images also belong to the same domain
g: B —
c — g(c).

Once we have established B, we can apply the Brouwer Fixed Point Theorem [Broll], which states
that there exists a point ¢’ € B such that g(c’) = ¢. Therefore, f(c') =c¢’ — g(c’) = 0.

Still assuming p is at the origin and for any given point c, let us define the vector € = Hz_p such

—pl
that ¢ =€ and v = ||c — p||.
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Lemma 1. We define the ball B = {x : d(x, ) < VJQF—)‘} centered on § and with radius % Then,
f(c) € BL.

Proof. We know that the points j;q; € Se. Then, £q; € S!, where S! is the boundary of the
ball Bi. We only need to notice that f(c) is a convex combination of the points 4:q; (see Equa-
tion (4.10)). This means that f(c) is in the convex hull of these points, ch({5q;}). Additionally,
the points %(]’Z are on the sphere S}, so their convex hull is inscribed in the ball B.. Consequently,

fe)ecn ({5 }) e B,

which is what we set out to demonstrate. O

Lemma 2. Let B2 = {x : d(x,c) < v} be the ball centered on c and with radius . Then, the
intersection between the balls BL and B2 is not empty. That is, BN B2 # ().

Proof. Notice that |lc — §|| = 3, which means that c lies inside B} and § lies inside B2. Therefore,
Bl N B2 # () as we wanted to demostrate. O]

Next, we develop three Propositions to demonstrate that the compact domain B exists. Hence, we
can assert that the S-Celestial Coordinates are correct.

Proposition 1. For any vector &, there exists a value 4 such that, for any v > 7, f(c) € BL N B2.

Proof. For the sake of simplicity, let us fix the vector € = (1,0,0). Observe that the system is
rotational-invariant and, therefore, any arbitrary vector € can be rotated such that

R -& =&=(1,0,0).

The rotation matrix R’ can also be applied to the vectors q; and the demonstration remains valid.

We know that ¢ = 7€, so ¢ = (7,0,0). The balls B, and B2 are those defined in Lemmas 1 and 2,
respectively. Then, S! and S? are the spheres that correspond to these balls. Finally, a represents
an intersection point between these spheres. This geometry is represented in Figure 4.9.

From Lemma 1, we know that f(c) € Bl always, so we only need to demonstrate that, for a larger
enough value v, f(c) € B2. However, we go a little further and we prove that [f(c)], > a;. In
other words, we demonstrate that f(c) lies on the right of the plane defined by the intersection of
both spheres. This plane is represented by the blue line in Figure 4.9.

First, we study the intersection points a and present the equation which defines them and, par-
ticularly, their components a,. On the one hand, we know that a belongs to the sphere S}, the
boundary of the ball B, hence

2 2
(3= ("5
2 2
2
SN L 22 (1t (4.17)
(“x 2) +“y+az_< 2 )
29\ + A2
a% — ayy — AT =0



84 Chapter 4. Point-Based Celestial Coordinates

\\/szﬁl’zx

H3d3 :

p2G2’,

Figure 4.9: Representation of the geometry that involves the unit sphere Sy, centered at the model
point p, and the balls B! and B2.

On the other hand, it also belongs to the sphere S2, the boundary of B2

(a—c)? =~
(az —7)* + a2 + a2 =~ (4.18)
a? —2a,v7=0.

Now, we can equate Equations (4.17) and (4.18) and isolate the component a,

9 29A+ A%

a —axv—T—az—Qamfy
29 + A2
axfy—T:()
29 + A2
Uy = ———
4y
)\+)\2
ay = —.
T2 4y

Notice that the component % is constant while the component % becomes smaller as vy grows.

Therefore, we can conclude that the component a, decreases and tends to % whenever ~ increases.
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Now, we study the behaviour of the function f(c). A basic assumption of the present technique is
that the model point p lies inside the convex hull of the control points. Consequently, it also lies in
the convex hull of their projections g over its unit sphere Sp. This means that in any hemisphere
there is a point. See the example in Figure 4.9.

Based on this fact and on Equations (4.10) and (4.15), we want to analyse the evolution of the
component x of the function f(c) depending on the value . Thus, let us assume that the first ¢
control points are those on the negative hemisphere while the last m = n — £ lie on the positive
hemisphere. Then, we can split Equation (4.10) as follows

v4 — n 2=
> i1 i G n Dbt '“jqj‘

fle)=f(v) = (4.19)
23 k1 Mk 2> k-1 Mk
Hence, the component [f(c)],, is
(o), = 7], = iyt Bicen vt
’ ¢ 2 22:1 HE 2 22:1 73
¢ .
The minimum of the sum szif}li“?q“” is bound by the value —%. Therefore,
k=1 Mk
A ZnZK 1 /‘qu]:c
[f(c)], > —= + S (4.20)

2 2 22:1 Hk

From Equation (4.14) we know that y; = g;c++/(q;c)2 + A2 + 2)||c||. Hence, we can substitute the
point ¢ = (7, 0,0), so the new expression for the weights p1; is ;i = vqi, ++/(7¢i, )2 + A2 + 2\y > 0.
We replace it into Equation (4.20), so

2
Fel s X4 2=t (7% +v/(g.)? + X+ 2M) 4.
C)l,>—= .
’ 2 23 h 1V, +  (Var,)? + A+ 20y

) (qu + ('7sz)2+)‘2+2>\’7)2‘]]'90
2370y Yk (Vg ) 2N 20y
see that the numerator is squared, which means that it grows faster than the denominator when
also grows. This allows us to assert that the component [f(c)], = [f(7)], increases without bound

as the value ~ increases.

Since ¢;, € (0, 1], the sum is always positive. Additionally, we can

Finally, we have demonstrated that the component a, decreases and tends to % whenever ~ in-

creases. We have also demonstrated that the component [f(c)], increases without bound as the
value v also increases. That means that, at a certain value 7, the component [f(c)], overtakes
the component a,, which implies that the function f(c) lies inside the ball B2 when v is big
enough. Therefore, we can assert that there exists a bounding value 4 such that, Vy > 7, then,

f(c) € BLN B2, as we wanted to demonstrate. O]

Proposition 2. For any vector €, there exists a value ¥ = maxg?(€) such that, ¥y > 7, then
g:0Bp5 — Bps. The ball By 5 is defined as Bp 5 = {x: d(x,p) < 7}.

Proof. From Proposition 1, we know that for any vector € there exists a bounding value % such
that Vy > 7, then, f(c) € BLNB2. Now, let us name 7 = maxg ¥(€), the maximum bounding value
74 among all the vectors €. Since, ¥ > 7 for any 4 and &, by Proposition 1, f(c) € BL N B2, where
the balls B. and B2 are defined from the value 7.
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From Equation (4.16), the function g(c) = ¢ — f(c). Hence, its magnitude is ||g(c)|| = |[c — f(c)]l.
Observe that f(c) € BL N B2 which means that, particularly, f(c) € B2. By definition, Vf(c) € B2,
lc— f(c)|| <4, hence ||g(c)|| <7, which proves that g(c) € Bp 5, as we wanted to demonstrate. [

Proposition 3. Let ¥ = maxg, - [|g(c)| and B, < {x : d(x,p) = fzy} Then 5 ensures that
) =

g:B,s—=B Therefore, there exists a solution f(c for lc —p|| <7.

Py’

Proof. We must deal with two different situations. On the one hand, ¢ € Bpﬁ — By, 5 whose proper
behaviour has been demonstrated in Proposition 2. On the other, ¢ € By 5.

Notice that we define 7 as the maximum magnitude that the function g(c) can reach for any point
c € By 5. Hence, the ball B = also includes g(c) when ¢ € By 5. Consequently, 7 is the minimum
radius that ensures

P

9:Bps = Bps

and, therefore, there exists a solution f(c) = 0 for ||c — p|| = 7 as we wanted to demonstrate.

In addition, we can easily compute the lower bound for 4. Figure 4.10 illustrates a situation where

f(c) ¢ BLN B2. In the worst case, f(c) € OB lies in the opposite direction to c. Then, the
2(y—€)+A
2

. . = = A
maximum value for ||g(c)|| is , so we can define 5 > (7 + §).

Figure 4.10: Conflict situation that can occur for a point ¢ € By 5

To sum up, we have demonstrated that there exists a value 7 that ensures g : B b5 B 5. Hence,
we define the compact domain B for the function g(c) as B = B, = and declare that the S-Celestial
Coordinates can be correctly computed for any model point p.

Qm
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Solving for f(c)

In Section 4.4.1, we have presented the complete formula to compute the intersection points p;q;
and, hence, the function f(c). Section 4.4.2 proves that there is always a solution for it. Therefore,
we can now present the methodology to solve this function

n — — 2 —
2oic (qi e+ /(i) + A2+ 2)\”CH) di
fle)= T —— =0, (4.21)
23 1d;¢c+ V(@) - €)2 + A2+ 2)[c]]

as exposed in Section 4.4.1.

Notice that Function (4.21) can be simplified into the following one

fle) = 3" (- e+ /(@ e + 22 1 2Ae) i = 0, (4.22)

i=1

which is a nonlinear system of equations. As a consequence, we also propose using the Newton
Method [Hil56] to solve it, as done to compute the solution for the System (4.7) in the case of the T-
Celestial Coordinates, see Section 4.3.2. In the particular situation of the S-Celestial Coordinates,
each iteration k of the Newton Method consists in solving the matrix system below

e = et = (J(fe D)) - pe,

where cF~1 is the solution of the previous iteration and .J is the jacobian matrix of the System (4.22).

This jacobian matrix is

ZZ:I t%cqzx ZZ:l tzyqzw ZZ:l thq%c
J(f(c)) =2 Z%:l ti, i, Z%zl t, qi, er'lzl t.qi, | (4-23)
>ic tis i Die1 by i >ie1 ti-Gis

where

_ — c-Gigi, + {5
b, = (- di+ V(@ -0 + X2+ 2] <q + Iel )

V(di-©)? + A2+ 2Mc]
. Cy
€ diGi, + o
V(@i )2+ A2+ 20 c]
~P czA
€ didi- e ‘
V(i )2+ A%+ 20 c]

tiy

(4.24)

(c-di+ V(@ e + N+ 2A[el]) ( , +

4, = (C -q; + \/((iz . C)2 + 24 2)\HCH) (qiz +

Just as we have exposed in the case of the T-Celestial Coordinates, we also need to select a first
approximation of the solution ¢” and to define an ending condition that ensures a sufficiently
accurate result. On the one hand, we consider a precise enough solution when the function f(c),
as defined in Expression (4.21), reaches f(c) < ¢, for a proposed value ¢ = 107%. On the other
hand, we suggest a similar procedure as that used for the T-Celestial Coordinates to accelerate the
Newton Method by an initial guess. First, we take an initial model point pg, the seed point, and
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compute its set of S-Celestial Coordinates. Once the seed point pg has its own coordinates defined,
the final solution for cp, = (cz, ¢y, ¢.) is spread among its neighbours®, so they can use it as their
initial guess to compute their own coordinates.

We define the initial approximation c¢? for the Newton Method in pg as the inverted center of
mass ¢ = —£ of the intersected segments 1;G; with a sphere centered on p with a radius r = \.
Concerning the method to spread the final solution c, among the neighbours of a certain model
point p, we use the same algorithm presented in the case of the T-Celestial Coordinates to sort
and queue these neighbouring points. However, in the case of the S-Celestial Coordinates we only

use the euclidean distance dp = ||p — pj|| to compute the closest neighbour to a given point p.

Discussion

The S-Celestial Coordinates, as the T-Celestial Coordinates in Section 4.3, are a well-defined system
of Point-Based Celestial Coordinates. They are efficient, positive, continuous and smooth, as shown
in Figure 4.11. Moreover, if we compare Figure 4.4 with Figure 4.11 we can also observe that both
systems of coordinates are extremely similar. However, the S-Celestial Coordinates, in contrast
with the T-Celestial Coordinates approach, are rotational-invariant.

(a) (b)

Figure 4.11: The S-Celestial Coordinate functions corresponding to the initial configuration of a
line surrounded by fifteen control points are shown in (a). Additionally, the bottom and the top
images in (b) show this initial configuration and a simple deformation produced by the translation
of the control point in red, respectively.

Regarding the efficiency of their computation, we have compared the computational cost of com-
puting the T-Celestial Coordinates and the S-Celestial Coordinates. As shown in Figure 4.12, the
S-Celestial Coordinates are much more efficient than the T-Celestial Coordinates?.

3As in the case of the T-Celestial Coordinates, two points p; and p; are neighbours if the distance between them
is smaller than a certain fixed value 4.
4These tests have been executed in a PC with an Intel Core i7 CPU at 3.3 GHz, a NVIDIA GeForce GTX 470,



4.4. S-Celestial Coordinates 89

N
>
>
30 | ] Hm : ;
T-Celestial Coordinates
D [l S-Celestial Coordinates
s
NS @
2 .
3 20 |
5
e o
I v
=
2,
%
O 10 |
&
o° o
> %QN A
% N %
Y qu q:b 9 q,fb
i Bs B ;
| .
0 T T T 7z
(4
K N\\qu\ 6&0%0 0&3 \f‘)\ 043 (bq) )&4 ) & q»\) & \/‘D
2,7 >, - Sy Sy & &é‘ N @,j& . &
A & A D > N2 SN N Vb
v o o 9 @) QA @) Q
& & P o0 2.9 N ©
N N G N A N\ N
Q Q >

Figure 4.12: Comparison between the time, in seconds, used to compute the T-Celestial Coordinates
and the S-Celestial Coordinates. This plot shows that the S-Celestial Coordinates are more efficient
than the T-Celestial Coordinates. Additionally, below the name of each model are the number of
points of that model and the number of control points of the configuration, in parenthesis.

Nonetheless, the S-Celestial Coordinates have the same global effect as the T-Celestial Coordinates,
as shown in Figure 4.13. This drawback is particularly evident in the top image of Figure 4.13(b),
where the control points around the ears of the Bunny also influence the chest and the back.

Finally, Figure 4.14 presents a comparison between those deformations that can be achieved by
means of the T-Celestial Coordinates and those obtained with the help of the S-Celestial Coor-
dinates. It shows four pairs of examples and each pair performs exactly the same deformation
for both schemes of coordinates. We can observe that both approaches produce similar results.
However, the deformations driven by the S-Celestial Coordinates are slightly smoother, as can be
clearly noticed in the foot of the Armadillo model.

To conclude, the S-Celestial Coordinates scheme is efficient, rotational-invariant and also inter-
polates the control points, which make it appropriate and well-behaved for most applications.
Table 4.1 in Section 4.6.1 compares the C-Celestial Coordinates, the T-Celestial Coordinates and
the S-Celestial Coordinates according to these three properties.

6 GB of RAM and running Debian 8.0.
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Figure 4.13: Example of two deformation processes driven by the S-Celestial Coordinates. (a)
shows the initial configuration of the Bunny and the Heart models surrounded by deformation
handles. Both models are enclosed in a cube-shaped convex hull, however, it can not be seen due
to the zoom of the images. (b) presents the heatmap corresponding to the control points in red.
The global effect of the coordinates can especially be seen in the Bunny. Observe that, although
the red control points wrap the ears, the chest and the back are also affected by them. Finally, (c)
shows the result of the deformation driven by the red handles in (b).

Localised Celestial Coordinates

The Celestial Coordinate schemes presented in this chapter suffer from the global effect of their
coordinates. They are also unaware of the topology of the model enclosed in the convex hull
of the control points. However, some applications may need more localised deformations than
those achieved with the help of the C-Celestial Coordinates, the T-Celestial Coordinates and the
S-Celestial Coordinates. Therefore, we sought a method to isolate the effect of the coordinates
presented in the previous sections.

Our idea was to restrict the influence of the deformation handles by means of user-defined regions.
These regions would provide user-intended shape-awareness and they could be adjacent or even
overlap each other. Thus, we needed to guarantee that the coordinates remained continuous across
their boundaries, so no artifacts appeared on the deformed 3D models.

In order to meet this challenge, we analysed a similar methodology to that presented by Garcia et
al. [GGPCP13|. *Cages were proposed as a multi-cage system. They use a blending function to
increase the smoothness of the coordinates when crossing from one cage to an adjacent one. This
blending takes into account not only the adjacent cages, but also their union.

Similarly, our approach blends local coordinates, those computed inside an independent region,
with global coordinates, computed inside the union of independent regions. Notice that we replace
the term cage by the idea of region. Hence, we first need to describe how to define a region.
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(a) Initial configuration ) TCC examples ) SCC examples

Figure 4.14: Example of four deformation processes to compare the T-Celestial Coordinates with
the S-Celestial Coordinates. (a) shows the initial configuration of the models and their correspond-
ing control points. Then, (b) presents the deformations driven by the T-Celestial Coordinates.
Finally, (c) displays the deformations caused by the S-Celestial Coordinates. The control points
in each example have been located exactly in the same position in the two deformation schemes.
Notice that, although the paired deformations are very similar to each other, the S-Celestial Coor-
dinates produce slightly smoother deformations than the T-Celestial Coordinates approach. This
situation can be clearly observed on the foot of the Armadillo and the ears of the Bunny.

Groups and Regions

As stated before, our method uses some user-defined groups of control points to help to localise the
Celestial Coordinates. First, the user classifies the handles V = {vi,...,v,} into different groups



92 Chapter 4. Point-Based Celestial Coordinates

G; C V, in such a way that U;G; = V. Then, the method automatically computes a region R;
for each group G; as its convex hull, so R; = ch(G;). However, these regions do not need to be
a partition of the convex hull of the handles ch(V), but their volumes can intersect. Finally, the
Celestial Coordinates are defined in all the space comprised inside the convex hull of a given set
of control points. Therefore, each group G; of handles affects all the model points p inside its
corresponding region R;. Figure 4.15 shows two examples of control points distributed into groups
and their corresponding regions.
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Figure 4.15: In (a) and (b) two different distribution of the control points in Groups and Regions
are shown. On the other hand, (c¢) and (d) show the Swapping Zones, in red, and the Super-Regions,
in yellow, associated to those distributions.

Once the concept region has been exposed, we have to ensure that crossing from one region to an
adjacent one produces neither discontinuities on the coordinates nor visually unpleasant features
on the deformed model. To this aim, we describe some more structures, which will help us in our
purpose: the adjacent regions, the swapping zones and the super-regions.

Adjacent Regions. Two regions R; and R; are adjacent if, and only if, their intersection is not
empty. That is
RiﬂRj#® for i # j.

Swapping Zones. Given a region R;, its swapping zones set S; is composed of all the connected
components that result from the intersections between R; and the adjacent regions. That is

Si ={U;(Ri N R;)}.

As shown in Figures 4.15(a) and 4.15(c), the region R; has a single swapping zone S; = {S}},
which involves the regions Rj, Re and R3. That is, S; = (R1 N Ry) U (R1 N R3). Additionally,
Figures 4.15(b) and 4.15(d) show the region R; with three swapping zones S; = {S}, S?, 53}, where
Sll = R1 N Ry, S% = R1 N R3 and S%=R1QR4.
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Notice that the intersections can result in swapping zones with positive volume, e.g. 511 in Fig-
ure 4.15(c), or can make them degenerate into faces, e.g. S} in Figure 4.15(d).

Super-Regions. Any super-region Rg. is defined with respect to the region R; and its swapping

zone Sf. It is computed as the convex hull that results from the union of the groups G related to
the regions R;, which, in turn, are involved in the swapping zone Sf . Therefore, the set R;, that
consists of all the super-regions corresponding to the region R;, has the same cardinality as the set
S; of swapping zones. That is, there exists one super-region for every swapping zone.

Figures 4.15(a) and 4.15(c) show a single super-region R = {RS%} for R;. It is the convex hull of
the groups G1, G2 and G3, which correspond to the regions R;, Ro and R3 involved in the swapping
zone Si. In contrast, Figures 4.15(b) and 4.15(d) show three super-regions R = {RS%,RS%, Rsf’}v
where Rg1 = ch(G1 U Ga), Rg2 = ch(G1 U G3) and Rgs = ch(G1 U Gy).

Once the notions of group, region, swapping zone and super-region have been presented, we expose
the procedure to ensure local, continuous and smooth Celestial Coordinates across these regions.
We propose using a blending function in the vicinity of the swapping zones. Therefore, given
two different regions R; and R, the corresponding swapping zone Sf = R; N R; and the related
super-region RslgC = ch(G; U G;), the system fixes an offset distance h; around the boundary of

Sf. Then, for a particular model point p that belongs to the region R; and also lies inside the
volume in between the swapping zone Sf border and the perimeter defined by the distance h;, we
compute its coordinates as a blending between the coordinates with respect to the region R; and
the coordinates with respect to the super-region Rsf' Accordingly, if we define d = dist(p, S¥) as

the distance from the point p to the swapping zone Sf, the blending weights p; are computed by
means of a cubic Bézier curve, so

pi = 1 if p inside S¥
{ pi = (1 — %)3 +3 (1 - ,%)2 (h%) else.
Then, the blending function over the coordinates is the following
B = pi:@RSf + (1 — pi)Bg,,

where 3 Ry are the coordinates of p with respect to the super-region Rgr and Bp, are the coordi-

nates of p with respect to the region R;.

In addition, the fixed distance h; plays an important role in the behaviour of the blending function,
representing the balance between the smoothness and the locality of the coordinates. Hence, higher
values of h; mean smoother and more global coordinates, since the super-region Rgr has a higher
impact over the final set of coordinates. On the contrary, lower values of h; result in more local
coordinates. However, the changes on these coordinates when the point p approaches the swapping
zone Sfc are more abrupt, although continuous. Apart from this, we define an upper bound for the
value h;. For each swapping zone S,f“ € §;, we first compute the minimum distance dj between its
boundary and the deformation handles that belong to the group G; and are not part of Sf . Then,
the upper bound of h; is the minimum distance dj found. That is

dy = mindist(v;, SF) Vv, €GiAv; & SFand VSF € S;
h; < min{dk}.

Figure 4.16 illustrates the behaviour of the localised Celestial Coordinates through the different
regions defined by the user.
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hy  d = dist(p, S})

pr=p2=1

ﬂRS% B ﬁRS% P2 P2ﬁRS% + (1 = p2)Bkg,
1
p2=0 ha  d = dist(p,S3)
Br,
(d)

Figure 4.16: In (a) the initial distribution of the control points in two Groups and their associated
Regions are shown, R; on the upper part and Rz on the lower part. In (b) and (c) the shared
Swapping Zone and its Super-Region are highlighted. Finally, (d) represents a model point p that
moves across the Regions. In each stage the blending factor p and the corresponding coordinates
B are shown, so that p; is the blending factor with respect R; and po is the blending factor
corresponding to Ry. Moreover, B, represents the Celestial Coordinates with respect to Ry, while
Bg, and B Ry =0 Ry are the Celestial Coordinates corresponding to Ry and to the Super-Region

Rg1, which is the same as Rg;.

Discussion

The localisation of the Celestial Coordinates allows us to focus the deformation process in a user-
intended manner. The user can easily classify the control points into groups to get the best
distribution to fit the desired deformation. Then, the system automatically computes the regions
and their swapping-zones to ensure that the Celestial Coordinates remain continuous inside all the
deformation domain, that is, inside the convex hull of the control points. Figure 4.17 shows how the
influence area of a particular control point changes depending on whether the handles are classified
into multiple groups or not.

Although we present the localisation strategy to work together with the C-Celestial Coordinates,
the T-Celestial Coordinates and the S-Celestial Coordinates, it can also be applied together with
the coordinate systems previously described in Chapter 3.
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Figure 4.17: Two different distributions of the control points into Groups around the Armadillo
and their corresponding heat maps. (a) and (c) show the corresponding Regions, each region in a
different color. (b) and (d) show the heat map for the same control point in red. While the control
point in (b) influences a large portion of the model, the same handle in (d) has a smaller and more
localised impact area due to the effect of the multiple Regions.

Analysis and Comparison

This section is divided into two parts. First, Section 4.6.1 analyses and discusses the three Point-
Based Celestial Coordinates presented in this chapter. Then, Section 4.6.2 compares our proposed
Celestial Coordinate systems with some of the existing schemes.
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Analysis of the Point-Based Celestial Coordinates

The three Point-Based Celestial Coordinate systems presented in the previous sections are well-
defined, i.e. they fulfil all the properties of a Generalised Barycentric Coordinate system. Addi-
tionally, we want to emphasise some important features that they also show:

e Positivity: the Point-Based Celestial Coordinates and, particularly, the C-Celestial Coordi-
nates, the T-Celestial Coordinates and the S-Celestial Coordinates are always positive inside
the convex hull of the control points. This convex hull is the domain of the deformation.

e Continuity and moothness: the Point-Based Celestial Coordinates presented in this chap-
ter are continuous and smooth.

e Point-based user-intended awareness: the Point-Based Celestial Coordinates allow the
user to locate the control points wherever he or she considers more appropriate to achieve
the desired deformation. The only requirement is that the model to be deformed must lie
inside the convex hull of the deformation handles. Apart from that, the user can distribute
the handles in the vicinity of those parts of the model on which he or she wants to focus.

e Non-locality: the C-Celestial Coordinates, the T-Celestial Coordinates and the S-Celestial
Coordinates suffer from global impact. The modification of any control point leads to a
deformation that affects all the points inside the convex hull of these handles. Obviously, the
deformation has a bigger impact on the vicinity of the translated control point. However, it
can affect distant regions and show non monotonic influence in some cases (see Figure 4.11).
These kind of modifications do not take into account the topology of the wrapped model, so
the deformation is not shape-aware.

In addition, the defined systems differ from each other in three main features, summarized in Ta-
ble 4.1. On the one hand, the C-Celestial Coordinates have the main disadvantage of their inefficient
computation (see Figure 4.18), whereas the T-Celestial Coordinates are not rotational-invariant.
Therefore, the more appropriate and well-behaved Point-Based Celestial Coordinate system is the
S-Celestial Coordinate scheme, which is efficient, rotational-invariant and also interpolates the
control points.

[ CCC [ TCC [ SCC |

Rotational-invarian v X v
Interpolate control points v 4 v
Efficient X v v

Table 4.1: Comparison of the attributes that distinguish the three presented Point-Based Celestial
Coordinates: the C-Celestial Coordinates (CCC), the T-Celestial Coordinates (TCC) and the S-
Celestial Coordinates (SCC).

Figure 4.18 shows the computational cost to compute the C-Celestial Coordinates, the T-Celestial
Coordinates and the S-Celestial Coordinates for the classic example of a line surrounded by fifteen
control points. The model of the line consists of one thousand points and the experiments have
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been exercuted in a PC with an Intel Core i7 CPU at 3.3 GHz, a NVIDIA GeForce GTX 470, 6
GB of RAM and running Debian 8.0.
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Figure 4.18: Comparison between the time, in seconds, used to compute the C-Celestial Coordi-
nates (CCC), the T-Celestial Coordinates (TCC) and the S-Celestial Coordinates (SCC) for the
configuration that consists in a line of one thousand points surrounded by fifteen control points,
as shown in Figures 4.1, 4.4(b) and 4.11(b). This plot shows that the S-Celestial Coordinates are
the most efficient of the Point-Based Celestial Coordinates presented in this chapter. Moreover,
the cost of the C-Celestial Coordinates have been obtained for the example shown in Figure 4.1(a),
which uses 10°> Monte-Carlo samples.

Figure 4.19, as previously Figure 4.14, shows some examples of deformation processes that use the
Point-Based Celestial Coordinates. The flexibility of the deformation handles combined with the
efficiency of the Space Deformation paradigm make the Point-Based Celestial Coordinates very
suitable to be applied in a medical context. In medical applications, doctors want interactive
response to their interaction and also appreciate the freedom to locate the deformation handles
wherever they consider more suitable, so they can experiment or simulate soft organs and tissue
deformations. Accordingly, Figures 4.20, 4.21 and 4.22 show the effect of the Celestial Coordinates
on some soft organs.
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(a) Initial configuration (b) TCC examples (c) SCC examples

Figure 4.19: Examples of deformations with the T-Celestial Coordinates and the S-Celestial Coor-
dinates. In (a) the initial situation and the control point distribution around the models are shown.
The top images of (b) and (c) show the Armadillo model in a walking pose while the bottom images
show the Bunny with folded ears.

o ¢ ] ° L] -]

(d) (e) ()

Figure 4.20: Example of the deformation of the Liver model by means of the S-Celestial Coordi-
nates. In (a), the initial situation with the control points around the model is shown. Images from
(b) to (e) show a deformation sequence with the active handles in red and the corresponding heat
maps. Finally, (f) shows the final result of the deformation.
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Figure 4.21: Example of a heartbeat deformation sequence by means of the S-Celestial Coordinates.

Figure 4.22: Example of a deformation sequence of the stomach movement by means of the S-
Celestial Coordinates.

Comparison with some Existing Schemes

This section enumerates the similarities and the differences between the presented Point-Based
Celestial Coordinates and some of the existing techniques. In particular, we compare the C-
Celestial Coordinates (CCC), the T-Celestial Coordinates (TCC) and the S-Celestial Coordinates
(SCC) with the Mean Value Coordinates [FKR05, JSW05] (MVC) and the Bounded Biharmonic
Weights [JBPS11] (BBW).

All the aforementioned coordinate systems meet the basic properties of reproduction of the identity,
reproduction of the unity, interpolation of the control points and positivity, although the MVC are
only positive inside the kernel of the user-defined cage. They are also continuous and smooth inside
the domain of the deformation.

Our Point-Based Celestial Coordinates are cage-free methodologies while the MVC are used in a
cage-based paradigm. This allows these two systems of coordinates to have an easy formulation
and their computation is efficient, except for the CCC, which have a high computational cost.
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On the contrary, the BBW have the advantatge of combining multiple types of handles, so they
can use skeletons, cages and isolated points. This feature makes this methodology more flexible.
However, it increases both the complexity and the cost of the computation of the weights, as shown
in Figure 4.23. Moreover, the BBW need to discretise the deformation domain together with the
model and, therefore, the weights depend on how this discretisation is done.
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Figure 4.23: Comparison between the time, in seconds, used to compute the Bounded Biharmonic
Weights and the S-Celestial Coordinates. This plot shows that the S-Celestial Coordinates are
more efficient than the Bounded Biharmonic Weights. Additionally, below the name of each model
are the number of points of that model and the number of control points of both configurations, in
parenthesis. The examples are those provided by the libigl library [JPT15] and the tests have been
executed in a PC with an Intel Core i7 CPU at 3.3 GHz, a NVIDIA GeForce GTX 470, 6 GB of
RAM and running Debian 8.0.

Cage-based methods suffer from non-locality of the deformation, a drawback that also concerns
our coordinate systems. Nonetheless, this disadvantatge is minimized when we combine these
methodologies with other techniques that localise the deformation, such as those presented in
[GGPCP13] and in Section 4.5. Related to the non-locality feature, our Point-Based Celestial
Coordinates can present non monotonic influence. In contrast, the BBW have been experimentally
proven local andm monotonic.

Although the CCC, the TCC and the SCC allow the user to locate the control points wherever he
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or she considers more appropriate to achieve the desired deformation, they can distort the local
details of the deformed model. A similar situation also occurs with the MVC. The BBW tend
to preserve these details better due to the customised energy minimisation performed to compute
their weights.

Table 4.2 summarises all the exposed features for the MVC, the BBW and the presented Point-
Based Celestial Coordinates.

MVC BBW Poglécj (]jSase‘d CG’BII‘ZSgal (‘joorglélcajtes
Well-defined v v v v v
Continuous and smooth v 4 v v v
Multiple handles X v X X X
Cage-free X v v v v
Efficient v X X v v
Simple 4 X v v v
Do not need discretisation v X v v v
Local v v v v v
Detail-preserving X v X X X

Table 4.2: Comparison of the attributes of the Mean Value Coordinates (MVC), the Bounded
Biharmonic Coordinates (BBW), the C-Celestial Coordinates (CCC), the T-Celestial Coordinates
(TCC) and the S-Celestial Coordinates (SCC). The green check marks denote that the methodology
meets the corresponding feature while the red crosses imply the contrary. The orange check marks
mean that the technique mostly fulfils the characteristic.

Figure 4.24 shows two deformations of the Armadillo model: the first one is driven by the S-Celestial
Coordinates and the second one has been performed by means of the Bounded Biharmonic Weights.
The BBW deformation uses fifteen control points that shape a skeleton and four isolated handles
located in the tail and the ears of the model. Our deformation uses thirty control points. The
first eight are used to create a large convex hull that encloses the Armadillo. Then, the nineteen
control points used in the BBW example are also added to our deformation. Finally, we have
added three additional control points at the nose and at the end of the feet of the model. Notice
that the S-Celestial Coordinates can achieve a similar deformation to that shown in the Bounded
Biharmonic Weights example, especially at the legs, the ears and the mouth of the model. However,
the arms cannot be emulated. This situation is caused by the different kind of handles used in
each deformation. The BBW deforms the arms by means of an skeleton while our method deforms
them by the use of isolated control points inside a convex hull. This difference causes that our
methods cannot completely mimic large bones tranformations. Instead, the presented systems of
coordinates produce flexible and plausible deformations of soft models, that is, models that do not
possess an inner skeleton, as shown in Figures 4.20, 4.21 and 4.22

To summarise the comparison, we can state that the presented Point-Based Celestial Coordinates
show an important improvement over the classic cage-based systems such as the Mean Value Co-
ordinates. They make the deformation process much more flexible due to their cage-free paradigm.
Additionally, they are also more intuitive than the Mean Value Coordinates because their coordi-
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(a) Initial Armadillo (b) SCC (c) BBW

Figure 4.24: Comparison between the deformation obtained by means of the Bounded Biharmonic
Weights (BBW) in (c) and the S-Celestial Coordinates (SCC) in (b). Both images use the same
control points, those shown in (b). However, we need to enclose the Armadillo into a large con-
vex hull to correctly compute the S-Celestial Coordinates. Additionally, we have also added two
additional control points at the end of the feet to achieve a similar deformation of the legs to that
shown by the BBW and one more control point at the nose of the model to open his mouth in a
similar way to the BBW example. Although the ears have been enlarged correctly, the arms do
not pose like in the BBW case. The image in (c) has been obtained from [JBPS11].

nate functions are always positive, so the deformations do not present unexpected artifacts.

Although our Point-Based Celestial Coordinates can not combine multiple kinds of handles as
the Bounded Biharmonic Weights do, they are much more simple and efficient owing to their
specialisation in only one kind of deformation controls, the isolated control points. They can carry
out similar deformations to those achieved by the Bounded Biharmonic Weights with just a few
more handles. In addition, we have shown that they are a good tool to perform flexible, efficient,
pleasant and plausible deformations of soft organs, tissues and medical models.

Summary

This chapter presents the Celestial Coordinates, a family of positive Generalised Barycentric Co-
ordinate systems that compute the coordinates of a point p with respect to the control points v;
by means of the projection of these handles over the celestial sphere of p. We focus our attention
specifically on the Point-Based Celestial Coordinates, a subfamily of Celestial Coordinates that ag-
gregates those schemes that do not need any kind of connectivity between the deformation handles.
This group includes all the approaches presented in Section 3.3, which, unfortunately, do not meet
our expectations. However, it also collects the three new Celestial Coordinate schemes described
in the present chapter. They are the C-Celestial Coordinates, the T-Celestial Coordinates and the
S-Celestial Coordinates.

The three Point-Based Celestial Coordinate systems presented in the previous sections are well-
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defined, positive, continuous and smooth, as shown in Figures 4.1, 4.4 and 4.11. However, they
are non-local and the modification of a handle has impact on its vicinity but also on further
parts of the model. This situation can be appreciated in the heatmaps of the Digestive system,
Figure 4.7(b), and the Bunny, Figure 4.13(b). In order to alleviate the global effect of the Point-
Based Celestial Coordinates, we have also described a method to localise the deformation process.
This method consists in classifying the control points into different Groups to offer user-intended
shape-awareness. Only those parts of the model lying inside the convex hull, or the Region, of a
particular Group will be deformed by the handles belonging to it. The method also ensures that
the coordinates remain continuous across these Regions. Figure 4.17 shows a comparison between
the heat map that corresponds to the particular control point in red when there exists a single
Group or, on the contrary, multiple Groups.

The presented Point-Based Celestial Coordinates show an important improvement over the classic
cage-based. They make the deformation process much more flexible due to their cage-free paradigm.
Additionally, they are also intuitive because their coordinate functions are always positive, so
the deformations do not present unexpected artifacts. Although they can not completely mimic
the large bones transformations performed by the Bounded Biharmonic Weights, the Point-Based
Celestial Coordinates are much more simple and efficient. Moreover, they are very suitable to be
applied in a medical context, where doctors want interactive response to their interaction and also
appreciate the freedom to locate the deformation handles wherever they consider more suitable, so
they can experiment or simulate soft organs and tissue deformations. Accordingly, Figures 4.20,
4.21 and 4.22 show the effect of the Celestial Coordinates on some soft organs.
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Volume-Preserving Deformations

“To those who ask what the infinitely small
quantity in mathematics is, we answer that
it 1s actually zero. Hence, there are not so
many mysteries hidden in this concept as
they are usually believed to be.”

Leonhard Euler
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Some applications require deforming 3D models under certain restrictions to preserve some of their
geometric properties. In particular, those deformations that preserve the volume of the modified
object are very important in animation, where artists want to create physically plausible motions
and need to simulate muscles that keep their volume constant, or in medicine, where training
applications involve the analysis of soft but incompressible organs and tissues.

As previously observed in Chapter 2, space deformation paradigm has received considerable atten-
tion in recent years. Particularly, cage-based methods are efficient and widely used to perform 3D
model deformations. Hence, an important amount of Generalised Barycentric Coordinates (GBC)
have appeared in order to manipulate the models enclosed in a coarse polyhedron. However, there
are few GBC systems that are actually designed to produce volume-preserving deformations.

In consequence, we wanted to study how to keep the volume of an object undergoing a cage-based
deformation constant. Therefore, we needed to analyse the behaviour of the volume of the model
during its manipulation process and, moreover, mathematically relate it with the displacement of
the deformation handles.

This chapter presents the mathematical generalisation of the volume preservation in the case of cage-
based deformations. Furthermore, as we will see later, the described technique is not constrained
to the existence of a cage, but it is also extensible to any deformation system that relies on a

105
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set of handles surrounding the model. Section 5.1 develops the mathematical concepts of volume
preservation and Section 5.2 provides a tool to compute the stress that the deformation induces
over the model. Finally, Section 5.3 summarises the contents of the chapter.

The research exposed has been compiled in [CVB10] and successfully used in [CHHH15].

Gradient-Based Volume-Preserving Deformations

Given a particular model, whose surface is represented as a triangular mesh, enclosed in a cage,
we are interested in mathematically finding the connection between the displacement of the cage
vertices, the handles V = {vy,...,v,}, and the deviation of its volume. Therefore, every time the
user picks a control point, we want to establish a path or a surface such that the movement of the
handle over it does not cause any perturbation of the volume of the deformed model.

The gradient of a function points in the direction of its greatest increment. Accordingly, the
gradient of the volume expresses its greatest perturbation direction. Thus, a handle moving along
the gradient will dramatically change the volume of the object while deforming it. Our idea, then,
is to restrict the movement of the control points to those surfaces perpendicular to this gradient.

The following sections give mathematical expressions to compute the volume of a given object and,
then, derive the formula of its gradient. We also study the behaviour of the gradient during the
deformation process.

Mesh Volume and Gauss Theorem

The Gauss Theorem [Apo69], or the Divergence Theorem, states that the volume integral of the
divergence of a vector field inside a closed region is equivalent to the surface integral of the same
vector field over the boundary of this region. That is

///VVFdV://SF-ﬁdS, (5.1)

where F is the vector field computed on the points of the surface S and n are the outward unit
normals at these points.

In the case we are interested in, we chose the vector field F(p) = p, for any 3D point p = (z,y, 2).
Then, as it can be noticed in the mathematical development below, when F is substituted in
Equation (5.1), it results in computing the volume of the integration region multiplied by three

///VVFdV = ///V(ivgyé)-(x,y,z) v
-

Therefore, the volume V of a given model can be computed as

V:;///VVFdV:;//SF-ﬁdS. (5.2)



5.1. Gradient-Based Volume-Preserving Deformations 107

However, our models are not defined by an analytical surface, but their boundary is discretised
by means of a triangular mesh. For this reason, we needed to numerically integrate F over the
mesh. We propose using Gauss Numerical Integration, or the Gaussian Quadrature, [Abr74] to
face this process. This method offers numerical stability and absence of truncation errors for
polynomial functions and consists in evaluating the function in some precomputed integration
points. Therefore, the surface integration in Equation (5.2) is discretised as

1 1 m l
V=3//5F'nd52321[ajnj-<kz_l¢kpk)], (5.3)

j=

where m is the number of triangles of the mesh, a; is the area of the triangle j, ni; is the outward
unit normal of the same triangle, [ are the number of gaussian integration points, py is the k-th
integration point over the triangle and ¢y is its corresponding gaussian weight. The points py are
defined as

Pk = M Pj1 + Mo Pja + NMis Pz (5.4)

where p;,, pj, and pj, are the vertices of the triangle j and (g, , k,, Mk, ) are the gaussian bary-
centric coordinates of the integration points, defined in [Cow73] and [Dun85]. In addition, it is a
well known fact that the magnitude of the outward normal N of a triangle is equivalent to its area
multiplied by two, that is, N = 2a. Therefore, Equation (5.3) can be simplified as

il ()]

Jj=1

Finally, the vertices p of the triangular mesh are related to the vertices v; of the cage through a
Generalised Barycentric Coordinate system

p=Y viai(p),
i=1
where n are the number of handles. Hence, the final formula for the volume is shown below
r 1
V= N; - <Z d’k}’k)]
k=1

r I
= N - (Z Gk (Mmpjy + 12Pj; + 773Pj3))] (5.5)

k=1

<
I
—
T

| = | =
INERNNGE
l

<
Il
—
r

=1 =1 =1

<
I
—_

| =

= N; - ( Pk [771 > viai(pj) +m2 Y vici(pg,) + 13 sz’az’(Pjg)] >] :
I k=1

Mathematical Expression for the Gradient of the Volume

In the section above, we have brought out the analytical expression to compute the volume of a 3D
model, whose surface is represented as a triangular mesh. Now, we want to study how this volume
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oscillates when a particular handle v; of the cage is displaced a vector Sl Thus, the increase, or
decrease, of the volume is defined as

AV =6 (VV)y,,

where (VV)y, denotes the gradient of the volume with respect to v; and V is defined by the
Equation (5.5). Accordingly, the expression of the gradient of the volume is

ov. oV oV
(VV)v: <8le Ovly v, )
hence,
m m l
1
=3 (VN;) (Z ¢kpk> +) N (Z (Vpk)w)] ; (5.6)
J:1 j=1 k=1

N ON; ON; ON; Opr  Op O .
where (VNj)y, = (8%; , avi; ) 6Ui1> and (Vpg)v, = (85;; , 851-]; , Bli-i ). For a complete mathematical

development of the gradient, please refer to Annex B.

Behaviour of the Gradient of the Volume

Once the formula for the gradient of the volume has been exposed, we study how this gradient
behaves when a control point is picked and dragged, that is, during the deformation process. To
meet this goal, we, once again, assume that the picked handle is v; and that it is translated a vector
gi, without loss of generality. In order to analyse the impact of the displacement of v; by d; on the
gradient, we split its definition into two components

(vv)vz' = (Vv)vm- + (VV)V

where (VV)y, , clusters together the terms that contain v; and (VV)y, . the remaining ones. Then,
Equation (5.6) can also be expressed as

i1

1 “ i
(VV)v = ¢ > (YN, - (Z Prpr, z) +3 (VN (Z ¢kpm>
Jj=1 j=1
m [ l m l
+ Z (Vﬁj)vi; : (Z ¢kpk,i) + Z (VNj)v,; - (Z (ZSkPk,Z) +
=1t k=1 j=1 k=1
m [ l m l
+ Z NJ'J' ’ (Z ¢k(vpk)v”> +Z Nj,i : <Z QZ)k(ka)v“) +
J=11 k=1 j=1 k=1
m l m l
+> 0 INy; ( ¢k(VPk)vH> + )N ( ¢k(vl’k)vi,i>]
j=1 k=1 j=1 k=1

=1
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Then, if we expand the expression for (VV)y, ;, as done in Annex B, Section B.2, we find that

m l m l
(vv)vi,i = é Z (vﬁj)vi,i ' (Z (bkpk) + Z (VNJ)VZ'; : (Z ¢kPk,i> +
j=1 k=1 j=1 L k=1 5.7)
m '_) l ( '
+> NG (Z (;5kVpk> = 0.
j=1 L k=1

Two important facts arise from Equation (5.7). The first one states that the gradient of the volume
does not depend on the modified control point v;, but it only depends on the handles that stay in
their positions while the vertex v; is dragged. Hence, (VV)y, = (VV)y, .. According to this, the

second one asserts that this gradient is constant regardless of the translation SZ applied to v;
(VV)V; = (VV)v.s

where we used the notation (VV)VQ to refer to the gradient of the volume with respect to the

displaced control point v/ = (v; + 8;).

Our aim is to move the control point v; in such a way that the volume of the deformed model
remains constant. That is

AV =6;- (VV)y, = 0. (5.8)

Ergo, only those displacement vectors 8; orthogonal to (VV)y, will satisfy Equation (5.8). Since
the gradient (VV)y, is constant given a particular configuration of the cage, the surface over which
the control point v; can be dragged without changing the volume of the model is a plane that
contains it and whose normal is the gradient (VV)y, itself. Figure 5.1 shows an example of the
control plane that ensures the volume preservation when the handle v; is moved within it.

Control plane

Figure 5.1: Control plane passing through the handle v; and with normal (VV')y,. Any movement
of the control point v; over this plane preserves the volume of the deformed model.
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Results and Discussion

We have presented the mathematical reasoning behind our proposal to produce volume-preserving
cage-based deformations. Next, we give the algorithm to put the control of the volume into action
and specify some details of its implementation. Finally, we discuss the achieved results.

According to Section 2.3, the cage-based deformation procedure is divided up into two stages: the
deformation set-up and the deformation process. Hence, in order to extend the basic deformation
with the volume-preserving capability, we needed to slightly modify its classic pipeline. The new
routine is the following:

e Deformation set-up: this step remains exactly the same as in the classic pipeline. It consists
in computing and storing the Generalised Barycentric Coordinates (GBC).

e Deformation process: every time that the user picks a handle v;, the mesh inside the cage is
deformed in a two-pass algorithm. First, we compute the gradient of the volume (VV')y, with
respect to v;. Then, the displacements of the control point v; are restricted to the control
plane whose normal is (VV)y,. Thus, when the user drags the handle on it, the mesh is
modified according to the new position of v; and its corresponding GBC «;, while its interior
volume remains constant.

In order to test the proposed volume-preserving algorithm, we developed a deformation framework
that traces the described procedure. Our implementation uses four gaussian integration points
to compute the gradient of the volume (refer to Section 5.1), which, according to [Dun85], are
obtained with the help of the weights and the barycentric coordinates shown in Table 5.1. Then,
the integration point py is computed as in Equation (5.4).

Gaussian Weight | Gaussian Barycentric Coordinates
¢k Tkey Mk Nk
-0.5625 0.3 0.3 0.3
0.6 0.2 0.2
0.52083 0.2 0.6 0.2
0.2 0.2 0.6

Table 5.1: The weights and barycentric coordinates to compute a Gaussian Quadrature over a
triangle by means of four integration points. These values are defined in [Dun85].

Although our framework uses the Mean Value Coordinates (MVC) [FKRO05], extensively detailed in
Section 3.1, to illustrate the deformation examples, our volume-preserving cage-based deformation
proposal works with all the GBC systems presented in Section 2.3. Moreover, it can also be
applied to the cage-free schemes presented in Chapters 3 and 4. The only exception are the Green
Coordinates (GC) [LLCOO08,LL10]. As exposed previously, this GBC system does not only depend
on the position of the handles, but also on the normals of the faces of the cage, so it defines the
point p as the linear combination

p= Zviai(p) + Z 1i;s;3;(p).
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For this reason, we should adapt the formulas of the volume and its gradient and derive this linear
combination if we were interested in performing volume-preserving cage-based deformations with
the GC. However, the mathematical reasoning behind our strategy remains the same, so we can
affirm that our volume-preserving scheme also works together with the GC.

Table 5.2 shows the time cost of the computation of the volume and its gradient. It demonstrates
that the gradient can be obtained interactively, thus, volume-preserving deformations can be per-
formed in real-time. Notice also that the gradient is completely local to each point p of the model.
Therefore, its computation is extremely parallelisable. Particularly, the times presented in Table 5.2
correspond to a GPU implementation executed in a PC with an Intel Core i7 CPU at 3.3 GHz, a
NVIDIA GeForce GTX 470, 6 GB of RAM and running Debian 8.0. Additionally, the deformation
framework has been implemented in C++.

] Vertices \ Triangles H Volume cost \ Gradient cost ‘

Teapot 530 1024 10.744 0.193
Monkey 2868 968 10.887 1.854
Bunny 35947 69451 14.826 3.470
Digestive system 47192 89164 14.259 6.929
Heart 70302 133169 17.375 7.990
Armadillo 172974 345944 29.174 8.823

Table 5.2: Computation time of the volume and its gradient, in ms.

Figure 5.2 shows extreme deformations of different models. Notice how their interior volumes
remain constant despite the strong modification of their surfaces.

Comparison with some Existing Schemes

This section presents a brief comparison between the proposed volume-preserving deformation
method and the literature exposed in Section 2.4.

Most of the works devoted to study the volume-preserving deformations belong to the surface
deformation paradigm [ZHS™05, vETS06, BK03, LCOGLOT7] or to the skeleton-based deformation
paradigm [vFTS08, AS07, RHC09] and they can not be directly applied to the space deformation
methods. Instead of this, our technique has been specifically designed to achieve volume-preserving
space deformations. Additionally, the techniques presented in [ZHS™05] and [BK03] only perform
a local preservation of the volume to avoid unnatural changes in this property while our approach
exactly preserves the volume of the deformed model. Furthermore, [LCOGLO7] and [vFTS08]
achieve the volume-preserving feature by means of a correction of the initial deformation defined
by the user and our method directly constrains the deformation to meet the required volume
preservation.

Research in [AB97], [HML99], [RSB95] and [WM14| preserve the volume in the Free-Form De-
formation (FFD) paradigm. Specifically, [AB97] and [HML99] achieve this goal by means of an
optimization problem. Although this works are space deformation techniques, they rely on the
underlying lattice of the FFD method, which does not match the cage-based control structure as
our approach does.
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Figure 5.2: Examples of extreme volume-preserving deformations. (a) shows the initial state of the
models, which includes the initial configuration of the cage and the initial value of the volume. (b)
and (c) show two different snapshots of the deformations.

Finally, the methodology presented by Huang et al. [HSLT06] preserves the volume of a cage-based
deformation in a two-step algorithm. First, it modifies the cage so the volume of it is preserved
by means of an energy minimisation. Then, the modification of the control structure is transferred
to the model by means of a mean value interpolation. Instead, our approach preserves the volume
directly by means of the gradient of this attribute. The computation of this gradient is very efficient
and, in most cases, it can be obtained through a closed formula. Apart from this, the proposed
method is more flexible and can be applied together with any kind of Generalised Barycentric
Coordinate system. Therefore, it is not solely attached to the cage-based deformation paradigm
but it also works with cage-free methods and, particularly, it can be adapted to the Point-Based
Celestial Coordinates presented in Chapter 4.
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Local Deformation Stress

It is possible that any deformation process and, particularly, those that try to preserve the volume
of the modified object, causes some distortion and detail loss over the modified model, as we can
see in Figure 5.2. However, this problem is not induced by the volume control mechanism, but
it is intrinsic to the nature of the Generalised Barycentric Coordinate (GBC) system used in the
deformation.

In this context, we studied the distortion that the deformation produces around a point p; located
inside the volume of the model. We defined an arbitrarily small sphere centered on p; and computed
a vector T = (ps — p;) for each point ps on its surface, as shown in Figure 5.3.

Ps 8

it
-

deformation ,
p’L _— pl

Figure 5.3: Example of the distortion that the deformation process can cause around an interior
point p; of the modified model.

Any cage-based deformation process modifies the points p of the model with the well-known linear
combination

p=>Y viap).
i
Then, the vector T is transformed according to a matrix M
¥=M:7,

whose columns correspond to the partial, or directional, derivatives of the GBC functions with
respect to p. That is

Ty [aai(p)7 Oai(p) doi(p) | v.

P Opa 8py Op.
The Singular-Value Decomposition of M returns three matrices M = USV . U and V are two
orthogonal matrices that produce rigid transformations, that is, they cause the same rotation on
any vector  and, therefore, do not introduce any local distortion around p;. In contrast, S is
a diagonal matrix that consists of the singular values of M, S = diag(si, s2,s3). It induces an
anisotropic scale around p; and causes a shear effect. Hence, we define the stretch, or rotational
stress, o at p; as the maximum rotation introduced by S

e (7571
g = mélx arccos | ~—s———=5 .
F [[F][ - IS -
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Results and Discussion

As we did to check our volume-preserving proposal, we also developed a test framework to em-
pirically study the effect of the singular values over the cage-based deformations. However, the
mathematical tool introduced above does not only work with cage-based deformations, but it can
also be used in any deformation performed by means of differentiable Generalised Barycentric Co-
ordinates (GBC). As in the case of the gradient of the volume, the stretch can be computed for
any methodology that defines a point p as the linear combination

pP= ZW%‘(P)-

Consequently, we can analyse the stretch produced by the GBC presented in Chapters 2, 3 and 4.
If the chosen GBC system has a closed formula, e.g. the Mean Value Coordinates (MVC) [FKRO5]
or the Green Coordinates! (GC) [LLCOO08, LL10], we can get an analytical expression for the
matrix M. However, for those GBC systems that do not possess a closed expression, e.g. the
Harmonic Coordinates (HC) [JMD™"07], the T-Celestial Coordinates or the S-Celestial Coordinates
in Chapter 4, we can also compute M by means of the finite difference method [New87]. In
particular, we present the complete derivation of the MVC in Annex B, Section B.3.

Our experiment consisted in simulating numerous triplets of singular values (s1, so, s3), such that
81 > S9 > s3. We observed that the rotational stress ¢ induced by the deformation depends on
the maximum and minimum values between these singular values, that is, s; and s3. Figure 5.4
shows a plot that relates the triplet (si, s2,s3) with the maximum distortion angle, i.e. the stretch
o. Additionally, Figure 5.5 relates the rotational stress o directly with the extreme singular values

Angle depenent dels wvalors singulars {sl, s2, s3)

angle

Figure 5.4: Rotational stress o with respect to the singular values triplet (sy, s2, s3).
s1 and s3 and, moreover, shows that the maximum angle function can be approximated with a
polynomial of degree six with an absolute error of 0.44°.

Finally, the stretch measure as presented in this chapter can be used to define an algorithm to
perform volume-preserving deformations driven by the modification of multiple handles at the

'The Green Coordinates require extra work to derive them, due to the extension of the basic linear combination
with the normals of the faces of the cage.
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Figure 5.5: Approximation of the rotational stress o by means of a polynomial of degree six.

same time. A preliminary idea would be to let the user move a set of control points simultaneously,
without any control surface to restrict the movements. Then, the algorithm could compute how
to move some of the free remaining handles in order to preserve the volume while minimizing the
rotational stress produced at certain witness points p;, which would be located inside the volume
of the object.

Summary

The constrained space deformation of 3D models is an interesting and challenging research field. In
this regard, this chapter contemplates the extension of the cage-based deformations with volume-
preserving capabilities.

Firstly, we introduce a technique to preserve the volume of 3D models by means of its gradient.
We use this gradient as the mathematical mechanism to define a control surface to restrict the
movements of the handles. Hence, when a user picks a control point, the proposed algorithm
automatically computes the gradient of the volume of the model and projects the displacements
made by the user over this control surface, whose normal is the gradient itself. In addition, we
demonstrate that neither the gradient nor the control surface depend on the picked control point,
but only on the configuration of the handles that remain unchanged. This leads us to affirm that
the control surface is defined as a plane passing through the currently selected control point and
with the gradient of the volume as its normal, as shown in Figure 5.1. This plane remains constant
until a different control point is picked and dragged, so it only needs to be computed once each time
the user selects a handle. The methodology is completely interactive, as can be seen in Table 5.2.

Although we use the Mean Value Coordinates (MVC) [FKRO05] to exemplify the process, our
proposal is not restricted to these Generalised Barycentric Coordinates (GBC), not even to the
cage-based scheme. On the contrary, our method can be used together with any of the GBC
systems described in Chapters 2, 3 and 4.

Finally, we define a measure to evaluate the local stretch, or rotational stress, caused by the
deformation. We study the matrix composed of the directional derivatives of the GBC scheme of
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the deformation process and empirically demonstrate that the stretch depends on the maximum
and minimum singular values. We also approximate the stretch function with a polynomial of
degree six, as shown in Figure 5.5.

As in the previous case, the rotational stress measure is illustrated with the MVC. However, we
can use it to analyse any deformation driven by a differentiable GBC system.
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Conclusions

“One never notices what has been done; one
can only see what remains to be done.”

Marie Curie
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The motivation behind the present PhD Dissertation is based on the purpose of developing a
deformation framework that can help medical experts and related users to explore the digital
representations of soft, although incompressible, organs and biological tissues. We, therefore, sought
to perform intuitive, easy, flexible and interactive 3D model deformations. Additionally, we also
wanted to execute these deformations in a volume-preserving manner.

Spatial deformations based on the cage-free paradigm provide some interesting attributes:

e Easy set up of the handles: the cage-free paradigm relies only on the location of the control
points of the deformation. Thus, the user has to concentrate exclusively on distributing the
handles around the model to be deformed. This user does not have to design any structure to
connect the control points, so they can be placed wherever he or she considers more suitable
to accomplish the desired deformation. The only requirement is that the region of interest
must lie inside the convex hull of these control points, which is the domain of the deformation.
That is, the model, or the part of the model, that the user wants to deform must be enclosed
inside the convex hull of the deformation handles.

e User-intent awareness: this feature derives from the previous one. It refers to the fact
that the user identifies important characteristics of the model during the set up of the handles
and, therefore, he or she locates them accordingly.

e Efficiency: the pipeline of the cage-free paradigm, the same as the cage-base paradigm,
consists of two steps. The first one, the set up, computes and stores the coordinates that

117



118 Chapter 6. Conclusions

relate the points of the model with the deformation handles. The second one, the deformation,
recomputes the new location of the model points every time that a control point is dragged.
This recomputation is usually done with the help of a simple and elegant linear combination of
the control points by means of the previously obtained coordinates. Hence, the deformation
consists of simple, easy and fast mathematical operations, which leads to an efficient and
extremely parallelisable process. Any interaction of the user gets an immediate response
from the system.

These features are consistent with what we were looking for in our deformation framework. For
this reason, we chose to focus our efforts on studing how to produce cage-free deformations that
can be applied in a medical context. Hence, this Thesis presents a compilation of different deforma-
tion techniques that consist in the description of new Generalised Barycentric Coordinate systems
specifically conceived to work in this structure-free environment. Furthermore, this Dissertation
also specifies a methodology to constrain any kind of spatial deformation so that the volume of the
modified model remains constant.

Cage-Free Approaches

Chapter 3 describes a collection of methodologies to define new coordinate systems which, to our
disappointment, do not completely meet our expectations. They fail by being discontinuous, rough
or inefficient which, in turn, involves physically unplausible, visually unpleasant and incorrect
deformations. The research invested in the development of these unsuccessful attempts made us
realise the complexity of the underlying mathematical machinery. The discovery of new and valid
coordinate systems, therefore, is not an easy task. The approaches exposed in Chapter 3 are divided
into three groups: the Mean Value Coordiantes Based Methods, the Layered Based Methods and
the n-Dimensional Space Based Methods.

The Mean Value Coordinates Based Methods define different systems of coordinates that try to take
advantage of the Mean Value Coordinates [FKR05] (MVC) benefits while substituting the fixed,
user-defined cage by an automatically computed connection between the control points. On the one
hand, this imposed connectivity depends on the point of view of every particular model point p,
so it is not constant for all the points of the model. On the other hand, the MVC strongly depend
on the connection between the deformation handles, so that two different connections result in two
completely different sets of coordinates. Hence, the main problem of the Mean Value Coordinates
Based Methods, although not the only one, is the discontinuities in their coordinate functions.

The Layered Based Methods substitute the classic cage by a layered structure that is used for all
the points of the model. Therefore, the supporting structure remains static and immutable and
the coordinates are continuous. However, the described Layered Based Methods are not smooth
or local enough. These problems make them unintuitive and, moreover, the achieved deformations
can present sharp features and unpleasant results.

Finally, the n-Dimensional Space Based Methods consider the problem from the n-dimensional
point of view, where n is the number of user-defined control points, and they do not define any
supporting structure. Instead, they directly solve systems of equations defined over the handles.
However, the described methods do not always achieve good results, but they are affected by
discontinuities, sharp coodinate functions and negative values.

Although none of the cage-free approaches presented in Chapter 3 give satisfactory results, the
n-Dimensional Space Based Methods open a new perspective of treating the problem of building
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a well-defined system of coordinates. Chapter 4 exploits this new point of view to develop three
new systems of coordinates that belong to the Celestial Coordinates family and, more precisely, to
the Point-Based Celestial Coordinates subfamily. The Celestial Coordinates family comprises the
positive Generalised Barycentric Coordinate systems that compute the coordinates of a particular
model point p with respect to the control points by means of the projection of these handles over
the celestial sphere of p. In particular, the Point-Based Celestial Coordinates only aggregate those
schemes in the Celestial Coordinates family that do not need any kind of connectivity between the
deformation handles.

The new proposed systems in Chapter 4 are the C-Celestial Coordinates, the T-Celestial Coordinates
and the S-Celestial Coordinates. All of them are well-defined systems of coordinates, positive,
continuous and smooth. However, they suffer from global impact, i.e. the modification of any
control point leads to a deformation that affects all the points inside the convex hull of these
handles. For this reason, we briefly present a technique to localise the deformation process. This
method consists in classifying the control points into different groups to offer user-intended shape-
awareness. In this way, only those parts of the model lying inside the convex hull of a particular
group will be deformed by the handles belonging to it.

Volume-Preserving Deformations

In the medical context, training applications involve the analysis of soft but incompressible organs
and tissues. Therefore, the deformations must be constrained so that the volume of the modified
3D model remains constant. Chapter 5 is devoted to analysing the behaviour of the volume of the
model during its manipulation process and to mathematically relating it with the displacement of
the deformation handles.

We propose an algorithm to produce volume-preserving spatial deformations by means of the gra-
dient of the volume. Every time a control point is selected, the method defines a control surface,
whose normal is the gradient itself. The displacements of the handle are restricted to this control
surface and, therefore, the volume of the model remains unchanged. Although the technique is
exemplified with a cage-based deformation framework that uses the Mean Value Coordinates, it
also works with all the Generalised Barycentric Coordinate systems presented in Section 2.3 and
Chapters 3 and 4. The only exception are the Green Coordinates [LLCOO08,LL10], whose gradient
of the volume would need to be adapted to take into account their special linear combination.

Goals Achieved

If we compare the achieved results with the expected goals detailed in Section 1.1, we can conclude:

e Locality: unfortunately, all the coordinate systems and approaches presented in Chapters 3
and 4 inherit the global impact of the spatial deformations. That is, the alteration that the
user induces over a certain region of the model also affects further areas inside the deformation
domain. However, the additional localisation technique proposed in Section 4.5 can be a
promising way to solve this problem.

e Cage-free approach: all the coordinate systems presented in this PhD Dissertation and,
in particular, the C-Celestial Coordinates, the T-Celestial Coordinates and the S-Celestial
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Coordinates have been specifically designed to work in a cage-free environment.

e Robustness: the Celestial Coordinates family presented in Chapter 4 give coherent and
stable results under the same initial conditions, that is, the same model with the same control
points surrounding it. Additionally, the technique proposed in Chapter 4 to localise the
deformation and the volume-preserving method in Chapter 5 are deterministic algorithms.
Therefore, given the same input, a particular model with a particular configuration of the
handles, these methodologies will return the same output.

e Real-time: all the functional algorithms proposed in this Dissertation are efficient and
ensure real-time response. The first one, the cage-free paradigm based on the proposed
Celestial Coordinates, performs real-time spatial deformations. Moreover, the computation
of the coordinates takes place during the set-up phase and does not have repercussion over
the response of the deformation process. The second one, the localisation strategy, does
not increment neither the complexity nor the mathematical operations of the deformation
process. It does not, therefore, have any impact on the efficiency of the system. Finally,
the volume-preserving technique computes the gradient of the volume every time a different
control point is selected to be dragged. However, this operation is completely interactive and,
therefore, does not decrease the response of the system.

e Plausibility: the combination of the Celestial Coordinates with the localisation procedure
and the volume-preserving technique results in a deformation framework that ensures intu-
itive, plausible and pleasant transformations of elastic and incompressible bodies.

We can conclude, then, that the techniques presented in Chapters 4 and 5 fulfil the initial require-
ments of this research in an acceptable way. They include new deformation algorithms that ensure
plausible and pleasant transformations of elastic and incompressible bodies.

Future Work

During our research, we have ventured into the cage-free spatial deformation domain, which had
been opened by important works such as [LLD*10] and [JBPS11]. From now on, we want to step
forward and improve the presented techniques, especially those detailed in Chapter 4, in five main
directions. The first one refers to the local effect of the Celestial Coordinates. The second one aims
to study the flexibility in adding and removing control points and its impact on the interactivity of
the system. The third issue focuses on the study of the dimension-independence of the presented
coordinate systems. The fourth extension would adjust the volume-preserving framework described
in Chapter 5 to the Celestial Coordinates in Chapter 4. Finally, the fifth point concerns the study
of the interaction between the user and the proposed deformation system. These five points are
presented briefly below.

Increase the Local Effect

As stated before, the coordinate systems and approaches presented in Chapters 3 and 4 inherit the
global impact of the spatial deformations. In Section 4.5 we have proposed a localisation technique
as a promising scheme to improve this problem. We want to enhance this strategy on two main
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fronts. First, we want to smooth the coordinates in the Swapping Zones. Second, we would like to
polish the interactivity of the system to make it easier to define the Regions.

Addition and Removal of Control Points

The classic process of spatial deformations and, in particular, the cage-based deformations defines
a static cage around the model to be deformed. The coordinates to relate the points of the model
with respect to the control points of the cage are then computed during a preprocess step. Finally,
the user deforms the model when he or she drags the control points to a new position. This scheme,
however, does not consider the modification of the initial cage. That means, if the user wants to
add or remove any control point in the middle of the deformation process, the new coordinates
need to be computed from scratch. Hence, the users normally adjust the cage during the rest-pose,
that is, before the coordinates are obtained.

The approaches presented in this Dissertation suffer from the same disadvantage. However, the
T-Celestial Coordinates and the S-Celestial Coordinates are computed iteratively by means of the
Newton Method. Moreover, their computation is very efficient. We want to take advantatge of
these two factors and analyse the costs of modifying the configuration of the handles during the
deformation process. That is, we want to study if we can add or remove control points efficiently
at any time during the deformation step. Our hypothesis is that, if every time that a control point
is removed or added we initialise the Newton Method with the current coordinates, the iterative
process that computes the new set of weights will converge quickly. Thus, the computation of the
new coordiantes will be very fast and completely transparent to the user.

Dimension-Independence

The derivations of the T-Celestial Coordinates and the S-Celestial Coordinates do not depend on
the 3D space. We think that they can be extended easily to any arbitrary dimension and, therefore,
we want to study their dimension-independence.

Volume-Preserving Deformations and Celestial Coordinates

At this point, we simply want to integrate the T-Celestial Coordinates and the S-Celestial Coor-
dinates into the scheme to perform volume-preserving space deformations in Chapter 5. We also
want to adjust the computation of the local deformation stress to the newly proposed systems.

Interaction

Finally, we plan to study different methodologies to enrich the interaction between the users and
our deformation framework. Our goal is to develop a user-friendly, intuitive, easy and convenient
deformation system that can be used by users of any level of expertise in animation and deformation
processes. We first want to simplify the creation of the regions used to localise the coordinates, as
stated before. Then, we want to study a method to select a bunch of handles easily and modify
their location together. This modification can be done by dragging the points or by rotating them
around an axis defined by the user. Finally, we want to provide a procedure to configure the handles
easily around the model to be deformed. The same technique can be used later to add and remove
control points during the deformation step.






Appendix

Projection over the n-Dimensional Lineal Subspace V-

This Appendix is an extension to support the Chapters 3 and 4. It describes the mathematical
development to compute the matrix Py 1, which is used to project a given point p € R" to the
n-dimensional lineal subspace V1.

Nomenclature Aspects

Before we can proceed to mathematically develop the projection matrix, let us review the nomen-
clature related to V- that has been introduced in Section 3.3.

Given the control points ¢; projected over the unit sphere Sy, we want to find a vector 3 such that

0=> Bigi,, 0= Bizi,, 0= Big.. (A1)
i=1 i=1 i=1
Equation (3.16) defines the vectors x, y and z as follows

x=(q. - @), v=(01, - @), z2=(q. - @n.)-

Therefore, we can state that the vector 8 = (ﬁl 6n) has to be perpendicular to x, y and z
in order to solve the System (A.1), as shown in Equation (3.17).

Apart from this, the lineal subspace V+ C R” is defined in Equation (3.18) as the subspace
orthogonal to the control points

Vi={y:y-x=0A~-y=0Av-z=0}. (A.2)
Hence, B € V*.

Finally, we name p the projection of the point p € R" over V* sop € V4t and p-x = p-y = p-z = 0.

Projection Matrix P .

Given a point p € R”, we want to compute its projection p over the lineal subspace V*, p € V-t
In other words, we want to find a matrix Py 1 such that

pZPPVl
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Notice that the vector (p — p) € R™ can be expressed as a convex combination of the vectors x, y
and z

(p—p) = pxx + pyy + pzz. (A.3)
X
Let us define the matrix V' = | y | and the vector p = (py, py, pz), s0
z
(p—p)=p V. (A.4)

By Definition (A.2) it is known that p- V' = 0. We, therefore, multiply Equation (A.3) by x, y
and z respectively

x-(p—p X (prd + pyy + p22)
y-(p—p) = y-(pxx+pyy+p:z)
z-(p—p) = z-(pxx+ pyy+ pzz).
Consequently,
= X- (P:ﬁ( + PyY + Pzz)
= y-(pxx+ pyy+ pz2)
z-p = z-(pxx+ pyy+pz2).

This three equations can be rewritten in matrix notation

XX Xy x-2 Px X P
Xy yy y-z py| = |yr
X'z y-z z-z Pz z-p
———
M pT — V'PT
and
pl =M1 V.pl=p. (M- V)" (A.5)

Then, we replace Equation (A.5) into Equation (A.4) to get
p = p—p- M-V V
_ (I—VT-(M’l)T~V)
= 5 (I—VT-(MT)_I-V).
The matrix M is symmetric, so M| = M and
p=p (1-VT-MV).
Therefore, the projection matrix Py 1 is

Ppo=1-V' .M.V



Appendix

Volume-Preserving Mathematical Development

This Appendix is devoted to present the complete development and derivation of the mathematical
equations involved in the volume-preserving deformations. Thus, it can be seen as an extension to
support the proposals detailed in Chapter 5.

Derivation of the Gradient of the Volume

According to Section 5.1.1 and Equation (5.5), the mathematical expression to compute the volume
of a 3D model represented as a triangular mesh is

5D ()

J=1

where m is the number of triangles of the mesh, 1<Tj is the outward normal of the j-th triangle, [ is
the number of gaussian integration points, py is the k-th integration point over the triangle and ¢y
is its corresponding gaussian weight. Then, the gradient of the volume with respect to a particular
handle v, corresponds to the partial derivatives

ov. oV 8V>

) 9
Ovg,  Ovg, Ovg,

)= (

This expands in the following three equations

(S ()] S (S
9. - G : ¢kpk) + N; - < bk
Ovg, 6 ; _aqu ; | Jz; I ; vy,
(] (San)] £ (o)
9 & : Orpr || + N; - bk
8’qu 6 ; _aUQy ; i ]2 i 1 (%qy |
m [ o 1 h m [ l -
= @ a3 rpr || + N, - P~
(9qu 6 JEZ:I _8qu (; )_ ; i J (kZI aqu>-

Or, more compactly

m l
(VV)y, = é > [(vﬂqu : (Z qz»kpk)
k=1
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Therefore, we are interested in completely developing the gradients of the normals, (Vﬁj)vq, and
the gaussian integration points, (Vpy)v,, that is, the partial derivatives

(VNj)y, = <8 j ON; 0 j) and (VPk)Vq—<8pk Op apk).

a vy, Ovg,” Dvg, vy, Dvg,” O,

These mathematical derivations are exposed in the following sections.

Derivation of the Gradient (VNJ‘)V(,

First of all, we need to define the outward normal N j with respect to the vertices (pj,, Pj, Pj;) of
the j-th triangular face of the 3D model. We assume that the vertices are listed in counterclockwise
order, hence, the normal N7 is

N; = (Pj, — Pj1) X (Pjs — Pj1)
i J k (B.1)
= |(Pjoe — Pjrs)  Piay = Pjry)  (Pjo. — Pir.)| -
(pJBE _pjlz) (p.73y _pjly) (p]3z _pjlz)

Additionally, we know that the vertices p of the model are defined through a Generalized Bary-
centric Coordinate (GBC) system, within the context of space deformations. Thus, they can be
expressed as the linear combination

p= Zviai(p), (B.2)

where v; are the control points of the deformation. Then, we can replace Equation (B.2) into
Equation (B.1), so the complete expression for the normal Nj is

i ; K
Nj = D2 vi(qiy — i) Dovi, (i —aiy) Do vi(quy — i)l

>
D i Vig (g — o) Y00, (g —aiy) D205, (g — iy)

where we substitute the GBC notation (o;(pj,), ai(Pj.), @i(Pj;)) for (o, iy, oy ), for the sake of
simplicity. Finally, the components of the normal vector N; are

Njo= D wiy (i, — i) Y vi (i — i) = > v (i — i) Y vi (i, — i)
Ny = D oo, — i) > v (ong — i) = > vig (0, — i) > vie (g — o) (B.3)
7

K3 (2 (]
Nio= Y vig (e, — i) Y oiy (g — i) = Y oiy (i, — i) Y wi (g — ).

At this point, we have a mathematical equation that relates the normal 1<Tj with the deforma-
ON; ON; ON; ) Then, the

Ovgy ' Ovgy > Ovg,

tion handles v;, so we are able to expand the gradient (Vﬁj)vq = (
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components of this gradient are the following

ON;  (ON;, ON;, ON;
av‘]w a 81}‘]90 ’ a/Uq:c ’ 8”%
= <0’ (aQB - O‘lh) Z Vi, (aiz - ail) - (QQQ - O‘th) Z Vi, (ai3 - ai1)7
(Ctgy — tgy) D i (g — tiy) = (Qtgg — gy) > v, (i, — %))
ON; (AN, ONj;, ONj,
Ovg,  \ Ouvg, " vy, Ovg,
= <(QQQ - alh) Z Vi, (ais - ail) - (QQS - O‘fh) Z Vi, (aiQ - ail)v 0,
(afIS - O‘m) Z Vi (aiz - O‘h) - (O‘t]2 - a!h) Z Vi (041'3 - ail))
ON; _ (ON;, ONj, ONj,
a'qu B aUQZ 7 aqu ’ a'qu

= ((aqs —aq,) Z Uiy, (aiiy — ) — (g, — agy) Z vi, (vig — iy ),

(2 7

(QQQ - aq1) Z Vig (aig — i) — (a% - O‘fh) Z Vi, (Qiy — 4y, 0) :

% %

Derivation of the Gradient (Vp),,

According to Section 5.1.1 and Equation (5.4), the gaussian integration points py over a triangle j
are defined as

Pk = Mk Pjy + My Pin + N3 Piiss

where (pj,, Pj,, Pj;) are the vertices of this triangle. Once again, we can define the vertices p of
the model with the well-known linear combination

p= Zviaz’(P)-

Hence, the gaussian integration points can be expressed with respect to the deformation control
points v; as

Pr = Mk, Z ViQtiy + Ny Z Viltiy + Niy Z Vil (B.4)

where we substitute the GBC notation (a;(pj,), i(Pj,), @i(pjs)) for (v, ai,, aiy), as done in the

Ok Opk Opk
Ovgy ' Ovgy > Ovg,

previous section. Then, components of the gradient (Vpi)y, = ) with regard to a
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particular handle v, are the following

Opk <3sz Op, 3Pk:z>

OUQI B aUCIz ’ aqu ’ OUQZ
= (mﬁ Olgy + Mky gy + Nk Qg 0, 0)
Opr. <3sz Opk, Opr, >

= 9 9
Ovg, Ovg,  Ovg, Ovg,

(B.5)

= (Oa Mky Ogy =+ My Qo + Miez g3, 0)

Opk Opr, Opk, Opr.
vy, Ovg,” Ovg,’ g,

= (Oa 0, My Qg + Ny gy + 77k30‘Q3) .

Study of the Gradient of the Volume

According to Section 5.1.3, we want to study how the gradient of the volume behaves when a
particular control point v, is picked and dragged an arbitrary vector d,. For this reason, we split
its definition into two components

(VV)Vq = (VV)Vq,q + (VV)Vqﬁ,

where (VV)y, . clusters together the terms that contain v, and (VV)y, . the remaining ones. We
know that (VV')y, . remains constant during the translation of v, i.e. it depends exclusively on the
unmoving control points. Thus, we only need to analyse the behaviour of the (VV')y, , component,
whose simplification process is shown below

1 m . l m . l
(VV)ve, = 6 > [(VNj)vq,q : <Z ¢kpk,q> + [(VND))v,, - (Z Prpr, ) +
=1 k=1 =1 k=1
m l
+ Z (VNj)vo - < bk Pk, ) +
=1 k=1
m l m l
+(>2 [Nj,q‘ <Z ¢k(vpk)qu> +> |Njg <Z ¢k(vpk)qu> +
= k=1 = k=1
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Then,
1 m l l
(vv)vq a = 6 Z Vq q (Z ¢kpk,q + Z (bkpk,q)
Jj=1 k=1 k=1
m !
+ Z ( ¢kpk,q> +
Jj=1 =1
m l
Jj=1 =1 k=1
m l
+ [NM' ( ¢k(Vpk)vw)]
j=1 k=1

Notice that (Vpg)v,, = 0, as it can be derived from the set of Equations (B.5). As a con-

sequence, (Vpk)vq = (Vpk)vq’q. Additionally, (22:1 ¢kPk,q+Z§g:1 ¢kpk,q) = 22:1 gf)kpk and

(ZL 196(Vk)vg, + Zi 1 qﬁk(Vpk)vm) = 22:1 ®r(Vpr)v,- Hence, the mathematical expression
for the component (VV)

qu

m T l
(vv)vq,q = é Z (VN Va,q <Z ¢kpk) +
=1L k=
m [ l
> (Vﬁj)vq,q'< ¢kpk,q> + (B.6)
j=11 k=1

The following sections study the different terms that compose the formula for (VV)

Va,q°

Study of the Gradient (VNJ‘)V(,J,

—

In order to simplify the study, we analyse the coordinates of (VIN;)y, , separately. Thus, we first

9.9

examine its component x, that is, the partial derivative (g::’) , which groups the terms that
©/q

contain the control point v,.

The terms of the component = of the gradient (Vﬁj)v , that contain the handle v, are the following

ON;
(3@ J) = (0, (ags — g )vg, (g — agy) — (Qgy — gy Vg, (Qgy — gy ),
4w
q

(g, — aQI)UQy(a(B —ag) — (g — aql)vqy(aqz - O‘q1)) .
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Consequently, the partial derivative (g}:j ) = 0 is null. The same result is obtained for the
©/q

components y and z, so we can affirm

ON;\ _ [(ON; ) _ (9ON; =0 and (Vﬁj)qu:ﬁ"
81)% q 8'qu q 8qu q |

This fact leads to the cancellation of the term 7" | [(Vﬁj)vw . (Zizl Qbkpk)] from Equation (B.6)

m

s (o)

Jj=1

—

Study of the Expression (VN;)y, . - pig

According to Equation (B.4), the point py 4, which only clusters the terms in p;, that contain vy, is

Pkq = Vq(mtl Qgy + Mgy Qgy + nk3a%)'

In order to make the final evaluation of Equation (B.6) easier, we simplify the expressions (gzj ) B

Ovgy Ovg,

(aNj ) ~and (aNj > , that group the terms that do not include the handle v,. Hence,
q a
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—

Then, the components x, y and z of the expression (VNj)y, . - pr 4 are

ON; ONj,
*Pkq = o Ugy (nk1aq1 T Ny Qlgy + 77k304q:>,)+
_ qx _
q q

0vg,

ON;,
+ P} Vq. (nk1 Qg+ Ny Cgy + My at]s)
Vg 7

ON; ONj,
“Pkq = v Ve (77k1aq1 + Mk gy + Nk O‘qs)""
_ q ) -

Y

ON;,
+ ) Vg, (nk1 Olgy + Miy Qlgy + Nk at]s)
’qu 7

ON; ONj,
*Pkg = v Vqa (nkl Ogy + Miy Qlgy T Nk O‘Q3>+
_ q _
q q

z

ON;,
+ P} Vgy (nkl gy + My Oy + nk3a%)'
Vg, 7

Study of the Expression NJ'-,(] - (Vpr)v,

Similarly to previous sections, we study the coordinates of the expression ﬁj,q (Vpr)v, separately.

Then, according to the set of Equations (B.3), the coordinate x of the normal Nj’q, which groups
the terms where the handle v, appears, can be reorganized as

—

Nj,q = Vqy (O‘% - ath) Z Vi, (O‘is - O‘il) — Ugy (O‘Q3 - aQI) Z vi (0, — ail) +
i#q i#q

+ | Vg (a% - aql) Z Uiy (cviy — i) — Vg, (atn - a(h) Z Uiy (aig - i)
i#q i#q

Observe that ijvq can also be expressed as

. ON; ON;,
Nj..q = —vg, ( quy) — Vg ( OU: )

Hence, when we multiply ﬁqu - (Vpr)v,, the obtained result is

ON;,

O0vg,

ijvq : (vpk)vq = - ( ) 'qu (nklaql + Nko Qg -+ 77k304q3)_

ON;.
- ( ! > Vg, (Mky Qgy + My Qg + Nz Q) -

dvg,
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If we apply the same mathematical derivation over the coordinates y and z, we find

X ON;.
Nj,.q° (Vr)v, ( 5 : ) Vg, (Mhey Qqy Moy Qg+ My Qg3 ) —
'qu =

ON;.
- ( : > Vq. (77k1 Qg + My Qgy + 77k3aq3)

= ON;.
Nj..q - (Voe)v, = = ( a0,
q

z

) Vg (nk1 Qgy + Mgy Cgy T+ 77k3aq3)_

ON;
- ( P L ) Vgqy (MK Olgy + Mky Oy + 77k3alJ3)~
U‘Iz _

Final Result for the Expression (VV)VM

Finally, we can put together all the derivations exposed above and determine the influence of the
component (VV')y, . over the general gradient (VV')y . Then, from Equation (B.6), we know that

(VV) +

NE

Vaq — 6

I
(VNj)v,, - <Z <Z5kpk>

k=1

l
N \’T (Z d)kpk,q)

o (e

First, Section B.2.1 has led us to the cancellation of the term 377", [(Vﬁj)vw . <Z§€:1 ¢kpk>}-
Then, Section B.2.2 allows us to arrange the expression >, [(Vlﬁj)vm . (E%Zl d);gpk,q)] as

.
Il
—

Ms

.
Il
—

Ms

J

i ON;, ON;, ON;, ONj, N, ON;,
+ , + , +
= 8vqy . vy, . Ovg, . O0vg, . 0vg, . Bvqy .

l
: (Vq Z o (nk1 Ogy + Ny Cgy + nk3afI3))]

k=1
(B.7)
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Finally, Section B.2.3 redefines expression 7" [ﬁq,q . (ka:l ¢kVpk>} as

m l
Sl (o)
j=1 k=1

i ON;, ON;, ON;, ON;, ON;. ON;,
- + , + , +
= (%qy . Ovg, . O0vg, . Ovg, . O0vg, . (%qy .

l
) (Vf] Z o (77k1 Qgy + Mky Qgy + My aQs))]

k=1

(B.8)
Notice that Equations (B.7) and (B.8) cancel each other, so > 7", [(Vﬁj)\,m . (ZLZI ¢kpk,q>] =

Py [ﬁq,q . <Z§€:1 qﬁkVpk)}. Then, we can conclude that the component (VV)

is, (VV)y, . = 0. Hence, the gradient (VV)y, does not depend on (VV)y, ., but it only depends
on (VV)y, .. This means that the gradient of the volume is determined by the control points that
remain static and it is not affected by the modification of the handle v,. Consequently, the gradient
is kept constant since the user picks the vertex v, until he/she releases it to select a different handle.

vq.q 18 null, that

Va,q

Derivation of the Mean Value Coordinates

According to Floater et al. [FKR05] and Equations (3.7) and (3.8) from Section 3.1, Chapter 3,
the Mean Value Coordinate (MVC) of the point p with respect to a control point v; is defined by
the equations below

, _ w;(P)
al(p) - Z?:l wj (p)
wi(p) 1 3 Yk + Vijhij - Bjk + Vkilg; - Bk
3 - .
di 1= 2q; -

The following sections present the partial derivatives of «;(p) with respect to p. They can be used
in Section 5.2 to evaluate the stretch induced to any model subjected to a cage-based deformation
driven by the MVC.

Derivation of the Expressions (V7;;)p, (V7yir)p and (Vii)p

In this section, we compute the gradient (V+;;)p as an example. The other two gradients can be
easily obtained with the same mathematical reasoning. Moreover, (Vv;;)p and (Vyi;)p can be
directly derived from the definition of (V~;;)p by replacing the sub-indices (4, j) by (j, k) and (k, 1),
respectively.
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First of all, we present the complete expression for the angle 7;; as defined in Section 3.1

;j = arccos (vi — p) ' (vj _ p)
" (n(w ~pllitv; - p>||)
~ recos ( (vi, = Pa) (Wi, — Pr) + (3, = Py) (0, = Py) + (vi. — ) (v, —p2) >
Vi = e+ (s, = 2P (i = 22/ (0j, = pa)? + (05, = py)? + (0. — p2)?

= arccos(U)

(Vig —=Pa) (Vjy —Pa)+(viy, —Py) (Vi —Py)+(vi, —P2) (vj, —p2)
V Wig =p2)?+ iy, —py) 2+ (Vi —p2)2\/ (Vg =P )2 +(vjy —py) 2+ (05, —p=)?
ing development.

and rename U = to simplify the follow-

Then, the gradient (V~;5)p is

Ovij Ovig 0vij )
V i J J J )
( 7 ]) ( 810:(: 3py apz

where

ou ou ou
i it G o i
Yij — _ Opa and Vij — _ Dy and Vij — _ Op=

Opq Vv1—-U2 8py V1—-U2 Op. \/1—1/[2‘

ou ou

Finally, the partial derivatives Db’ Tpy and 37“ are shown next

ou (i =g+ 20) [Vl + (St Ipvs ) + Yt bVl ) Vs - pY;
o <||pv@-||||pvj||>2
o o (viy, —p vj
o (i, =+ 20) 0%l 0951+ (st vl + BT 10wl ) B -
[IpV: | lpv; |l
op, (Ip¥il[Tpv,1)?
ou (v = v+ 2 ovillpvsl + (S Ipvsl + Gt Iovill) oY Py
op- (Ip¥illp¥,1)?

Derivation of the Expressions (V(n;; - 1j;))p and (V(ny, - 1j;))p

Similarly to the previous section, we compute the gradient (V(i;; - ni;;))p as an example. The
remaining one can be computed by the same procedure.

The normals 1i;;, nij;, and 1y, are unitary and are defined by the point p and the control points v;,
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v; and vi. Thus, we first develop the formula for ni;; as an exemplification

Nij = (vi = p) x (v; = p)
i j k
Viy =Pz Viy =Py Vi, — Dz
Vjo — Pz Vj, — Py Vj. — Pz
= ((Uiy — py)(vj, —pz) — (v, _pz)(vjy _py)a (vi, —pz)(’ij — pz) — (vi, — pa)(vj. — P2),
(vi, = Pa)(v), = Py) = (vi,, = Py) (Vs — Pa))

Zi

ij
NGl

Ilij =

(B.9)
Then the scalar product 1n;; - 1ij;, corresponds to the following expression

ﬁzy : Njk = [(Uiy _py)(”jz _pz) - (Uiz _pz v]y )]
(v, = py) (k. = p2) = (vj. — p2)(vk, —py)] +
+ [ (vi, _pz)(vjz pz) — (Vi, — p2)(vj. — p2)]-

— (Ve = pa) vk, —p2)] +
pa)]

x — iy, = py)(vj, —
(sz — Dz) Uk, — (ij )(ka - pm)]
iy - i, = Ny - Ny
[N [N

Finally, the gradient (V(ii;; - 1ij))p is

L _ (0w - mijy) O(d; - 1) O(d; - 1)
(V(nzj n]k)) _< apx 5 8py 5 6;0,2 ’
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where

o(m,; - )

Appendix B. Volume-Preserving Mathematical Development
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Derivation of the Expression (V(q; - 0jx))p

The normal 1), is deduced from Equation (B.9) while the unit vector q; is defined as

Qi = ((’U’Lw - pz): (Uiy - py)7 (viz - pz))
-~ Qo
1Qil

Therefore, the scalar product q; - 1ij; is as follows

Qi Wjky + Qiy ik, + Qi Mjk,
G5

q; - Ny =

Then, the gradient (V(q; - 1ij;))p, is expressed as

0(q; - nij) O(d; - ) 5(51i'ﬁjk))
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where the partial derivatives are
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Final Derivation of the Mean Value Coordinates

In the sections above, we have presented the derivation of the individual terms of the equation
that defines the Mean Value Coordinates. Now, we put them all together into the final result.
However, we first define the variables ' and D to rename the numerator and the denominator of
the expression for w;(p), that is

YVik+vij Bij Tk + ki g Ak
wi(p) = Lrovi | sqery N
i d; D’
S0,
(VA - D+ N - (VD)

The gradient of the numerator A/ with respect to p is defined as follows
(VN)p = > ([(Ve)p + (Vyi)piiss - ik + vi (Vi - fijk)p) +
T>vi
+ (Vi) phki - g + i (Vg - 0j)p)] 26 - ) —
— [y + ijHag - g+ Yeatigs - 1] 20V - j)p) / (26 - je)?
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Besides this, we also know that d; = ||Q;]|, so the gradient of the denominator is
0Q; 0Q; 0Q; Qi, @i, Qi

(VD)p = (Vdi)p = ( ) ) = = = .
Ps Py P: 1Qill 1Qill 11Qull

Finally, the derivation of the Mean Value Coordinate «;(p) is
(Vwi(p))p 2y wi(p) — wi(p) 25—y (Vw;(p))p
5 :

(Zrrwi(e))

(Vai(p))p =
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