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Sebastián, Marichu y Clotilde.

Mi tieta Ofelia, una de las personas más agradecidas y cariñosas. Un placer visitarte y pasar un rato

contigo cada fin de semana. A Lela, la mejor abuela y la más testaruda. Much́ısimas gracias por ser tan
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Chapter 1

Introduction

Development of communication technologies has quickly advanced over the last two decades. One of the

most important changes has been the spreading of wireless communications systems and their introduction

on our day-to-day routine.

The scope of this thesis is to assess the behaviour of wireless systems in closed environments, particularly

in train tunnels. The opportunity arises during the construction of a new Metro line in Barcelona: Ĺınia

9 (L9). Ifercat - Infraestructures Ferroviàries de Catalunya - is the entity leading the development of L9.

The Signal Theory and Communications Department (TSC) of the Technical University of Catalonia (UPC)

collaborates with Ifercat on the assessment of advanced communications systems for L9. This line is one of

the longest ever built, connecting 5 urban nucleus along 48Km with 52 stations, and it offers interconnection

between Barcelona airport El Prat, high-speed trains between Spain and France at La Sagrera Station,

Barcelona exposition centre Barcelona Fira and Barcelona maritime Port among other services of interest.

Emphasis is put on using the latest technologies in all aspects of its development in order to obtain a

premium quality transportation system with the following points:

1. Safety of train service users is the first priority.

2. The service must be on-time and fast.

3. It must be able to respond to user’s demands.

To this end, several aspects of its operative characteristics are defined:

1. The operative control has to be centralised.

2. Processes and systems must be automatised.

3. Execution and exploitation costs must be minimised.

It has been proven that, in railway environments, most of the accidents are attributed to human mistakes.

As a consequence L9 proposes a driver-less exploitation model: management of the transport system is

automatic, with no personnel on board but transport users. The control of trains is executed from a Central

1
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Control Point (PCC) who monitors the management of the whole L9. Hence, it is necessary to precisely

know the real-time position and state of all trains circulating through L9 tunnels, as well as awareness of

any event occurring at any point of the exploitation that may have an impact on the transport service.

Because of the driver-less model, it is of paramount importance offering to the passengers the possibility of

communicating with L9 authorities in emergency situations. It is equally important for the authorities to

be able to gather information on the real state of the situation and to respond quickly if necessary. Several

communications systems are thus used to meet these demands:

1. Two TETRA communications systems, one for L9 personnel and the other for emergency authorities

such as Police and Fire Services.

2. The Automatic Train Control system (ATC), used for train control.

3. An on board surveillance video system, to provide the PCC visual real-time information of the facts

taking place on the train carriages.

On top of the previous systems, the GSM and UMTS systems are also deployed. The International

Telecommunications Union regulates TETRA services to be working at two bands: 380-400MHz and 410-

430MHz. The GSM and UMTS systems use the well-known bands of GSM900 - 890-915MHz, 935-960MHz

-, GSM1800 - 1.710-1.785GHz, 1.805-1.880GHz - and UMTS - 1.900-1.980 GHz and 2.110-2.170 GHz -. The

ATC is a proprietary solution, working on a Wi-Fi system at the ISM band of 2.45GHz. The video surveillance

system is chosen to operate at the ISM band of 5.8GHz because of its larger bandwidth. Summarising, Table

1.1 lists the services and frequency bands used in L9 facilities.

System Description Frequency band

TETRA Rescat Used by Emergency services 380-400MHz

TETRA L9 Used by L9 personnel 410-430 MHz

GSM and UMTS Users mobile devices 900MHz and 1800MHz

ATC Train control 2.45GHz

Video On board surveillance 5.8GHz

Table 1.1: Communications systems operating at L9.

The variety of systems originates a complex scenario from an ElectroMagnetic (EM) point of view.

However, the solutions chosen to implement such systems are matured standards that should be able to

work without interfering with each other. The most demanding system for operating reasons is the video

surveillance system. It was chosen to operate at the 5.8GHz ISM band due to its larger bandwidth and less

popularity among users. The idea is to be able to transmit 6 cameras simultaneously, placed at different

points of the train carriages. The requirement in terms of bandwidth is set to 20MHz.

A possible solution would be the installation of radiating cable along the 48Km of tunnels and the rest

of L9 facilities. This option was discarded by economical reasons: it would be very expensive not only

completing the installation on the whole L9, but also the maintenance would be high due to the harsh

conditions - humidity, rodents - present in tunnels.
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A wireless system solves the issues presented by the radiating cable solution while providing a much more

flexible option. A system of antennas conveniently deployed will be able to cover the whole L9 service at a

much reasonable cost. Diversity techniques and Multiple Input Multiple Output antenna systems have been

developed for the last few years in an attempt of increasing bandwidth between transmitting and receiving

antennas. Even if space in tunnels is limited, the wavelength at such frequencies - on the order of a few

centimetres - allows the introduction of MIMO systems in such scenarios to study their performance.

Although work has been done in the 5.8GHz band at indoor environments, tunnels present some partic-

ularities that have to be taken into consideration: propagation takes place predominantly in one direction,

train circulation must be taken into account, bended tunnels reduce the Line of Sight distance, L9 tunnels

have two separate cavities. The scope of this thesis is, thus, the study of the 5.8GHz ISM band and to

assess the performance of MIMO systems in such scenarios. In order to do so the document is structured as

follows: Chapter 2 introduces the concept of spectral propagation and gives a few tips on previous work with

this technique. Chapter 3 particularises the theory detailed in the previous chapter and explains how it is

used to implement an EM simulator. This tool allows predict EM propagation throughout the tunnel, and

the validity of its results is discussed in Chapter 4. The following two chapters are devoted to the parabolic

method, used to overcome some issues that could not be solved with spectral techniques: Chapter 5 describes

the fundamentals of the parabolic equation while Chapter 6 addresses the results obtained with this tool.

Finally, Chapter 7 shows the results of the measurement campaigns carried over during the development of

this thesis at several Barcelona Metro facilities and the comparison with simulation predictions. The last

chapter is devoted to the conclusions of the thesis.
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Chapter 2

Fundamentals of Spectral Propagation

2.1 Electromagnetic Theory

2.1.1 Maxwell’s Equations and Wave Equations

Maxwell’s equations [1],[2] rule the relation between electric and magnetic fields according to the observable

physical laws. Here are briefly introduced to put in context the EM propagation phenomena and the laws

that govern it. On its differential representation they are specially suited for the study and characterisation

of electromagnetic (EM) fields and/or sources placed in bounded media. The differential form of Maxwell’s

equations is expressed as:

∇× E = −M − jωB (2.1)

∇×H = J + jωD (2.2)

∇ ·D = ρ (2.3)

∇ ·B = τ (2.4)

where:

E,H: electric and magnetic field intensities,

D,B: electric and magnetic flux densities,

J,M : electric and magnetic current densities,

ρ, τ : electric and magnetic charge densities.

A time-harmonic dependance with the corresponding instantaneous values of the form ejωt is assumed for

all the variables involved.

The previous equations, however, can be further simplified by stating the relation between flux and

intensity variables as:

D = εE (2.5)

B = µH (2.6)

5
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where ε and µ account for the electric permittivity and magnetic permeability. In a lineal, homogeneous

and isotropic medium these parameters are scalars whose value is constant. Maxwell’s equations can therefore

be written as:

∇× E = −M − jωµH (2.7)

∇×H = J + jωεE (2.8)

∇ · E =
ρ

ε
(2.9)

∇ ·H =
τ

µ
(2.10)

in a homogeneous non-dispersive medium. It is difficult, though, dealing with the previous expressions

in order to find solutions to boundary value problems, as both curl equations are coupled partial differential

equations of first order, involving two variables each. The wave equation represents a starting point better

suited to work with such problems. By taking the curl on both sides of the first two Maxwell’s equations:

∇×∇× E = −∇×M − jωµ∇×H (2.11)

∇×∇×H = ∇× J + jωε∇× E (2.12)

and using the vector identity

∇×∇×A = ∇(∇ ·A)−∇2A (2.13)

Eqs.2.7 and 2.8 can be rewritten as

∇(∇ · E)−∇2E = −∇×M − jωµ∇×H (2.14)

∇(∇ ·H)−∇2H = ∇× J + jωε∇× E (2.15)

Substituting the third and fourth Maxwell equations and regrouping terms a preliminar form for the

wave equations is derived:

∇2E = ∇×M + jωµ∇×H +∇
(ρ
ε

)
(2.16)

∇2H = −∇× J − jωε∇× E +∇
(
τ

µ

)
(2.17)

Finally, considering a source-free region and recalling the first and second Maxwell equations again,

expressions for the wave equations arise:

∇2E = −ω2µεE (2.18)

∇2H = −ω2µεH (2.19)

2.1.2 Equivalence Theorem

The Equivalence Theorem is widely used in problems involving aperture antennas: fields radiated by the

antenna can be computed from the knowledge of field distribution at the antenna aperture. Radiation in
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Figure 2.1: Enclosed volume containing electric and magnetic sources.

tunnels presents some similarities: it consists of an unknown field distribution radiated by sources in a closed

bounded domain, so this tool can be used to help predicting field distribution in tunnels.

Suppose that a set of electric and magnetic sources J and M are enclosed inside a certain volume V and

that S is the volume’s limiting surface as that of Fig.2.1. Let n̂ be the outward normal vector to S and E

and H the fields radiated by the sources.

The equivalence principle states that the same radiated fields can be obtained from the tangential surface

currents on S, Js and Ms, computed as:

Js = n̂×H (2.20)

Ms = −n̂× E (2.21)

The surface currents satisfy the Boundary Conditions (BC) over the volume surface S and cancel the

fields on the inner part of the volume V . If the tunnel cavity is chosen as the closed surface, knowledge of

the radiating sources plus the tangential field over the tunnel boundary determines uniquely the radiated

fields in the source-free region outside the surface. Initially, fields at the source plane are unknown, only the

source currents will be specified by the transmitter. The use of the Equivalence Theorem allows to obtain

the initial field distribution necessary for the spectral technique to start the propagation.

2.1.3 Image Theory

Source radiation can be substantially modified in the presence of bodies. It is not unusual in tunnels placing

transmitting antennas close to the boundary walls, as the centre of the tunnel is usually preserved for train

circulation. Even though tunnel walls are made of concrete, complex structures such as Barcelona L9 Metro

require for the walls to be steel reinforced and/or to be build with large concrete blocks with a dense coarse

metallic grid at their inner part. Train carriages themselves may have attached a transmitter close to their

metallic surface to send onboard information to network control points. When placing a source - electric or

magnetic - near a conductor, the outcome can be greatly enhanced or diminished. Fig.2.2 shows the relation

existing between the source and its image.

The presence of a conductor in the vicinity of the source, whether it is a Perfect Electric Conductor (PEC)

or Perfect Magnetic Conductor (PMC), is equivalent to place an imaginary source at a mirrored position

once the conductor has been removed. The image has the same intensity and its sign is set according to the

figure. Hence, the radiation of the source can either be cancelled or doubled. It seems therefore relevant to

be very conscious of metallic bodies in enclosed areas with such less empty spaces, as tunnels with trains
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Figure 2.2: Images of electric and magnetic fonts.

or other metallic obstacles. The existence of such bodies can greatly modify the radiation pattern of the

transmitting antennas and consequently the field distribution along the tunnel.

2.2 Fundamental Theory on Spectral Propagation

2.2.1 Introduction to Spectral Propagation

Spectral theory is based on the fact that a given field can be decomposed as the addition of multiple plane

waves propagating in every direction of the space. The theory was originally developed by Bojarski [3],[4]

in the early 70’s, although applications did not arise until the following decade. By sampling a known field

distribution on a given surface and applying the Fourier Transform (FT), the Angular Plane Wave Spectrum

(APWS) is obtained. APWS contains the amplitude and phase information of each plane wave composing

the sampled field. Propagation in the spectral domain between two parallel planes separated a distance

∆z is easily achieved by multiplying the APWS by a phasor depending on ∆z. Spectral methods take

their advantage mainly from Fourier Transform symmetry properties and efficiency of current Fast Fourier

Transform (FFT) and Inverse Fast Fourier Transform (IFFT) algorithms.

2.2.2 The Angular Plane Wave Spectrum

In communications, the Fourier Transform establishes a duality between time and frequency. The temporal

characteristics of a signal are innerly-related to its time-frequency spectrum. Similarly, when dealing with

spatial signal distributions, the application of the FT leads to the obtention of the angular information of

such signals. That is the reason why it is called Angular Plane Wave Spectrum.

Signal domain Transformed domain

t f

x, y, z kx, ky, kz

Table 2.1: Equivalence of variables between domains.

Imagine a set of electric (J) and magnetic (M) sources in a certain region, and that the medium this



2.3. PREVIOUS WORK WITH SPECTRAL TECHNIQUES 9

sources are placed at is free space. The following magnitudes can thus be computed:

BJ(kx, ky) =(BJx, BJy, BJz) = FT {J(x, y, z)} (2.22)

BM (kx, ky) =(BMx, BMy, BMz) = FT {M(x, y, z)} (2.23)

Using the previous expressions, electric AE and magnetic AH APWS are obtained as [5]:

AE =η0X1
BJ(kx, ky)−X

2
BM (kx, ky) (2.24)

AH =
1
η0
X

1
BM (kx, ky)−X

2
BJ(kx, ky) (2.25)

where η0 is the free space intrinsic impedance and X
1

and X
2

are known as the spectral tensors that

can be expressed as:

X
1

=
−k0

2kz


1− k2

x

k2
0
−kxky

k2
0

−kxkz
k2

0

−kxky
k2

0
1− k2

y

k2
0
−kykz

k2
0

−kxkz
k2

0
−kykz

k2
0

1− k2
z

k2
0

 (2.26)

X
2

=
−k0

2kz


0 −kzk0

−kyk0

−kzk0
0 −kxk0

−kyk0
−kxk0

0

 (2.27)

Spectral tensors X
1

and X
2

account for possible interactions between the different components of the

current densities in the spectral domain. Once the APWS has been found, deriving the respective field

distributions is straightforward by means of the Inverse Fourier Transform (IFT):

E(x, y, z) = IFT {AE(kx, ky)} (2.28)

H(x, y, z) = IFT {AH(kx, ky)} (2.29)

Hence, as it has been shown, radiated fields can be found from the source current distributions using

the spectral tensors. This is not, however, the only way to do so: from the integral formulation of Maxwell

equations, fields can be found by the convolution between Green’s Function (GF) G and source currents:

E = G ∗ J (2.30)

This operation can be much more efficiently computed in the spectral domain as the algebraic multipli-

cation between respective FT’s:

AE = FT {G} ·BJ (2.31)

while E(x, y, z) can be recovered using Eq.2.28.

2.3 Previous Work with Spectral Techniques

2.3.1 The Spectral Iterative Technique (SIT)

This algorithm was initially developed in [6] for 2D planar surfaces and later extended for the 3D case. The

algorithm finds the currents over PEC or dielectric lossy scatterers and iterates the process until the solution

converges. The scheme of the two-dimensional procedure follows:
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1. The scatterer is sampled in parallel planes along the z-axis as in Fig.2.3, and the initial value for its

surface current distribution J (0) along the planes is guessed.

2. The scattered field can be found following the steps defined in Section 2.2.2:

B
(0)
J (kx, z) =FFT

{
J (0)(x, z)

}
(2.32)

AE(kx, z) =FFT {G(kx)} ·B(0)
J (kx, z) = (2.33)

G̃(kx) ·B(0)
J (kx, z) (2.34)

3. Field in the spatial domain is obtained via IFFT. Afterwards it is forced to satisfy the BC and medium

constitutive relationships:

E(x, z) =IFFT{AE(kx, z)} (2.35)

EBC(x, z) =MBC {E(x, z)} (2.36)

with MBC {·} an operator defined as a function of the appropriate BC.

4. An updated value of the current surface distribution, J (1), is found following the next steps:

AE(kx, z) =FFT{EBC(x, z)} (2.37)

B
(1)
J (kx, z) =G̃(kx)−1 ·AE(kx, z) (2.38)

J (1)(x, z) =IFFT
{
B

(1)
J (kx, z)

}
(2.39)

Convergence of the solution is checked at this point and further iterations are performed if needed. The

main drawbacks of the algorithm are:

• The initial values chosen for J (0) determine whether convergence may be reached.

• Computational burden, as two FFT-IFFT transforms must be computed for each iteration. The

algorithm is based on the surface currents and uses the FFT-IFFT conversion once to relate currents

J with scattered fields E. A second FFT-IFFT conversion is performed to update the currents on the

scatterer surface.

-

6

-

Einc, Hinc

'
&

$
%

x

z
z0 z1 z2 . . . zn . . . zN

∆z

Figure 2.3: The SIT problem scheme.
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2.3.2 The Spectral Incremental Propagation (SIP)

This procedure is described in [7] and [8], and it is similar to the previous one with the advantage of

dealing directly with scattered fields instead of current distributions, so the computational cost is reduced

significantly. The scheme of the three-dimensional version is:

1. The incident field E(x, y, z = z0) is specified and the scatterer is sampled in parallel planes.

2. The APWS at z = z0 is found:

AE(kx, ky, z = z0) = FFT {E(x, y, z = z0)} (2.40)

3. Propagation to the next plane z = z1 is computed multiplying the APWS with a phasor:

AE(kx, ky, z = z1) = AE(kx, ky, z = z0)ejkz∆z (2.41)

where ∆z = z1 − z0 and kz =
√
k2 − k2

x − k2
y.

4. Field distribution E(x, y, z = z1) is obtained from AE(kx, ky, z = z1) via IFFT. Finally, the corre-

sponding BC are forced in the spatial domain:

E(x, y, z = z1) =IFFT {AE(kx, ky, z = z1)} (2.42)

EBC(x, y, z = z1) =MBC {E(x, y, z = z1)} (2.43)

The previous steps are repeated until the final plane z = zN is reached. This method uses the equivalence

theorem at each transversal plane, computing the equivalent currents at zn and determining the radiated

fields by these currents at z = zn+1. When applying the BC, fields are truncated, i.e. forced to 0, inside

PEC bodies. The truncation function is equivalent to convolute the APWS with a GF whose wavenumber

k is complex and so it is guaranteed that fields will not propagate through metallic surfaces as attenuation

will be high.

SIP presents several advantages respect to SIT:

• Only one FFT-IFFT conversion per step is needed, as SIP works with fields instead of currents.

• Convergence problems in SIT are avoided, as there is no need of guessing the initial current over the

scatterer.

• Just a single pass through all the planes must be done. As results presented in [8] show, this method

provides accurate near zone predictions for scattered fields. An end-to-beginning propagation may be

needed if the backward-scattered radiation is worth of being considered.

However, SIP still presents some issues that must be addressed:

• The algorithm deals only with PEC scatterers, so dielectric structures cannot be included for analysis.
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• Propagation of truncated fields is equivalent to propagate the surface magnetic currents, but also the

field radiated by non-existent interior currents. The error introduced by this factor can be minimised

by using small propagation steps ∆z. To correctly propagate the truncated field, the scattered field

should be computed from the convolution of the incident field with a GF that takes into account the

presence of the conductor. The inaccuracies are due the use of the GF in free space.

• Computational cost increases if ∆z is small, as uniform sections cannot be analysed in a single step.

• Interaction between scatterers contained in the same plane does not occur, as the effect of the respective

equivalent currents takes place when propagation to the next plane has been computed. Several

forward-backward iterations may be needed to take into account this higher-order interactions.

2.3.3 The Spectral Iterative Algorithm (SIA)

Some drawbacks of the SIP algorithm were solved in the version that Broquetas [9], Lozano [10] and Rius

[11],[12] implemented at UPC, although the core of the algorithm was essentially the same as in SIP. To

summarize the main differences:

• Fields are not truncated inside PEC bodies, the field is forced to 0 only in the conductor’s surface.

Currents on its inside are set according to image theory. The equivalence between the original and the

new problem is ensured by the Huygens principle.

• As a consequence, the algorithm is allowed to use large ∆z steps, taking advantage of the transversal

cross-section homogeneity and reducing the computational cost. Hence, this parameter depends only

on the structure’s complexity and not on its electrical dimensions.

• On the other hand, the use of image theory limits the structures to be analyzed to PEC or PMC

surfaces. Therefore this version of SIA is not suited to model EM propagation in tunnels.



Chapter 3

Spectral Propagation in Bounded

Media

The scope of this thesis is EM characterisation in tunnel environments. Thus, BC cannot be applied by

means of image theory, as tunnel walls are not metallic conductors but rather dielectric materials, and their

dielectric properties have a notorious impact on propagation. This leads to the use of small incremental

steps and to increase the complexity of simulations in order to avoid large inaccuracies on the predicted field

distribution. Hence complexity does not solely depend on the structure under analysis anymore, but also on

the electrical dimensions of the simulated scenario.

The algorithm described in this section is based on the fundamental spectral theory described in Section

2.2 and particularised for tunnels, overcoming some limitations of the stressed techniques.

3.1 Spectral Propagation

Spectral propagation is an iterative process that finds the solution of a given EM problem as the wavefront

radiated by a source or an illuminating field advances through a defined scenario. The scenario, for instance

that of Fig.2.3, is sampled in parallel planes that are orthogonal to the direction of propagation. An initial

current or field distribution is specified and, from there, field distribution throughout the tunnel can be

predicted. Fig.3.1 offers an example of propagation with a given field distribution at z = 0 and the predicted

field at z = 20m. See how the radiated field expands spherically from the punctual source, unbounded

through space.

The basic mechanism of propagation is detailed as follows:

• Field distribution in the spatial domain, E(x, y, z = z0), is defined at z = z0.

• The corresponding APWS in the spectral domain, A
E

(kx, ky, z = z0), is found by means of the FFT.

• The APWS at z = z1, A(k+1)

E
, is computed with a simple multiplication between A(x, y, z = z0) and

phasor e−jkz(z1−z0).

13
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Figure 3.1: Reference coordinate axis in the spatial domain.

• Field distribution in the spatial domain at z = z1, E(x, y, z = z1), is obtained via IFFT from

A
E

(kx, ky, z = z1).

• BC are enforced over E(x, y, z = z1) along the boundary.

This process is iterated as the wavefront progresses and reaches the end of the tunnel. The propagation

scheme is summarised in Fig.3.1.

�
�

�
�Field distribution z = n: E(x, y, z = n)

?�
�

�
�APWS at z = n: A

E
(kx, ky, z = n) = FFT

{
E(x, y, z = n)

}
?�

�
�
�Propagation to z = n+ 1: A

E
(kx, ky, z = n+ 1) = A

E
(kx, ky, z = n)e−jkz∆z

?�
�

�
�Field distribution at z = n+ 1: E(x, y, z = n+ 1) = IFFT

{
A
E

(kx, ky, z = n+ 1)
}

?�
�

�
�BC at z = n+ 1: E

BC
(x, y, z = n+ 1) = MBC

{
E(x, y, z = n+ 1)

}
?

-n = n+ 1

Figure 3.2: Spectral Propagation Iterative Scheme.

MBC {·} is an operator that applies the BC on E depending on the tunnel geometry and electrical

properties.
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3.1.1 Spatial Domain

The coordinate axis must be first oriented in the spatial domain. The z-axis is chosen as the longitudinal

axis, while the x- and y-axis define the transversal plane with x corresponding to the horizontal direction

and y to the vertical one, as in Fig.3.1. Because simulations are run with finite precision, domains must be

discretised. Axis discretisation is reflected in the following expressions:

x =l∆x (3.1)

y =m∆y (3.2)

z =n∆z (3.3)

with ∆x, ∆y and ∆z the distance between consecutive points along the respective axis and indices l, m

and n being natural numbers:

l = 1, 2, · · · , i, · · · , L

m = 1, 2, · · · , j, · · · ,M

n = 1, 2, · · · , k, · · · , N

The working frequency determines how the geometric space is sampled and the number of points L, M

and N needed for simulations. Nyquist criteria must be fulfilled to ensure that no information is lost during

FFT-IFFT conversions. Let Fs the sampling frequency and λs the corresponding wavelength. Nyquist

condition can be stated as:

(∆x,∆y) ≤ λs/2 (3.4)

Sampling distances ∆x and ∆y are defined as a function of λs. Once this parameters have been set

and the tunnel cross-section dimensions are known, the number of points L and M can be found. Due

to the geometrical characteristics of tunnels, the algorithm works with transversal square matrices and, to

optimise the performance of FFT methods the number of points is chosen to be equal to a power of 2. Thus

L = M = 2p.

If resolution in the transversal dimensions x and y is bounded by the Nyquist criteria to avoid aliasing,

resolution in the longitudinal direction is limited by the inaccuracies due to the use of the free space GF:

the larger the ∆z step, the more the fields will spread outside of the tunnel cavity, causing larger losses of

the energy contained inside and less contributions caused by reflections. To assess the importance of this

parameter see Fig.3.3, where a circular tunnel has been simulated for different values of ∆z. As it can be

seen, traces differ significantly not just on the periodicity of fadings, but also on the overall behaviour. Table

3.1 shows the attenuation in the 100m-500m range for each case. Again, differences are remarkable, thus

making the election of this parameter crucial to obtain accurate predictions of the field strength along the

tunnel.

3.1.2 Spectral domain

The spatial domain gives information on the field distribution over the whole tunnel geometry, whereas the

spectral domain provides information on how plane waves composing the progressing wavefront propagate.
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Figure 3.3: Simulation comparison for different ∆z values.

∆z Att (dB/100m)

λs/2 3.60

λs 2.07

2λs 2.02

4λs 1.99

8λs 0.53

Table 3.1: Attenuation for the different ∆z cases in Fig.3.3.

The variables used in this domain are kx, ky and kz. The former two are related to the spatial domain as

follows:

kx =
[−π

∆x
,
π

∆x

]
; (3.5)

ky =
[−π

∆y
,
π

∆y

]
; (3.6)

In a discrete spatial domain with L and M points in the x and y axis respectively, resolution in the

spectral domain is:

∆kx =
2π
L∆x

(3.7)

∆ky =
2π

M∆y
(3.8)

∆kx and ∆ky represent the angular distance allowing to discriminate between two plane waves propa-

gating in different directions. The third variable, kz, is related to the former two by:

kz =
√
k2

0 − k2
x − k2

y (3.9)

with k0 the free-space wavenumber. Typically, kz is of the form presented in Fig.3.4, where its Real (<)

and Imaginary (=) parts are shown. The points in the bell-shaped central part belong to the < domain
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and correspond to plane wave components that propagate all over the free space without being attenuated.

This region of the spectrum is called Visible. On the other hand, points outside the bell belong to the =
domain, whose components suffer of severe attenuation and thus do not contribute to propagation in the long

term. That is why it is called the Evanescent part of the spectrum. The angular range comprised beneath

Visible borders corresponds to plane waves propagating within an angular range up to 90◦ respect to z-axis,

i.e.: only components propagating in forward direction are being considered with the spectral technique. In

certain situations backscattering - see Section 3.2.4 - must be taken into account and a backward pass must

be added to the simulation process. In a more rigorous way, Visible and Evanescent regions are defined in

Eqs.3.10 and 3.11 as a function of kx and ky:

k2
x + k2

y ≤ k2
0 , kz ∈ <, V isible (3.10)

k2
x + k2

y > k2
0 , kz ∈ =, Evanescent (3.11)

From the previous expressions, the Visible region is a circumference of radius k0 centred in the middle

of the spectrum, while the area outside of the circumference belongs to the Evanescent.

(a) Visible (<(kz)) part of the spectrum (b) Imaginary (=(kz)) part of the spectrum

Figure 3.4: kz Real and Imaginary parts.

The APWS provides the phase and magnitude values for all the plane waves that propagate along the

tunnel. The FT of a plane wave is a Delta function whose position in the spectrum is set according to its

propagation direction. Consider an angle of propagation θi being measured from the z-axis as in Fig.3.5:

a plane wave with θ1 = 0◦ would be placed at the centre of the spectrum, whereas another with θ2 = 90◦

would be placed over the border between the Visible and Evanescent regions. The relation between the

propagation angle and the corresponding displacement from the centre of the spectrum is shown in Section

3.2.3.

3.1.3 Green’s Function

Spectral techniques take advantage of working between two domains: spatial and angular. As it has been

seen, propagation starts once the initial field distribution is found. Two methods have been outlined in
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Figure 3.5: Plane waves propagating in the tunnel.

(a) Co-polar component. Magnitude (b) Cross-polar component. Magnitude

Figure 3.6: APWS obtained via spectral tensors.

Section 2.2.2 to do so: application of spectral tensors of Eqs.2.26 and 2.27 on source currents or by means of

the Green’s Function (GF). Theoretically, both methods yield the same results but, when tried to derive the

initial APWS via X
1

and X
2

some problems arise: strong peaks appear along the border between Visible

and Evanescent regions. These peaks have to be filtered in order to obtain reasonable field distributions.

The origin of the peaks is associated to the singularities of the quotient −k0/2kz in Eqs3.10,3.11. On top of

that, the width and position of the peaks vary depending on the simulation parameters. The anomalies are

shown in Fig.3.6, where the APWS is shown with its co-polar and cross-polar components. There are small

peaks with high values that distort fields when the IFFT is applied. Obtaining the APWS via the GF fixes

the mentioned disadvantages while providing valid results in a more natural way, so this option is chosen to

be implemented in the simulator.

The spectral technique presented here assumes that propagation takes place in free space even when

propagation in bounded environments is being considered. When small incremental steps ∆z are used, the

inaccuracies are reduced and the previous assumption holds.

In electromagnetics, the solution to Helmholtz’s equation [1] when a point source is driven as the system

excitation is called Green’s Function. It is therefore equivalent to the impulse response of circuit analysis

theory. For a source placed at the origin in free space, the solution has the following analytical expression

in spherical coordinates:

G(r) =
e±jkr

4πr
(3.12)

that corresponds to a spherical wavefront propagating in every direction of space. Suppose that an
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(a) Co-polar component. Magnitude (b) Cross-polar component. Magnitude

Figure 3.7: Field distribution at the source plane obtained via spectral tensors.

elemental dipole of length Ldip << λ is placed at the origin. Radiation in the far field region of the antenna

can be obtained according to [13]:

Eθ(θ, φ, r) =E0 cos(θ) sin(φ)
e−jkr

r
(3.13)

Eφ(θ, φ, r) =E0 cos(φ)
e−jkr

r
(3.14)

Variable φ is azimuth in the XY -plane, θ is elevation from the z-axis and r is the distance between field

points and the origin. Field components Eθ and Eφ are converted to cartesian coordinates, resulting in

transversal field components Ex and Ey at z = zd:

Ex(x, y, z = zd) = cos(θ) cos(φ)Eθ − sin(φ)Eφ (3.15)

Ey(x, y, z = zd) = cos(θ) sin(φ)Eθ − cos(φ)Eφ (3.16)

Afterwards, the FT of the cartesian components is computed and backpropagation to the source plane

is performed in a single step. Field distribution at z = 0 is recovered with the IFFT:

AE(kx, ky, z = zd) = FFT {E(x, y, z = zd)} (3.17)

AE(kx, ky, z = 0) = AE(kx, ky, z = zd)e+jk0zd (3.18)

E(x, y, z = 0) = IFFT {AE(kx, ky, z = 0)} (3.19)

What has been obtained is the system GF: using the radiated far-field analytical expressions for an

elemental dipole, the excitation at the source plane has been found. The impulse response is convoluted

with the initial current distribution in the spectral domain (Eq.2.31). To obtain the field distribution at

z = 0 Eq.2.28 is used. As has been said in Section 2.2.2, this process must only be used for the first iteration,

as for subsequent transversal planes the simulator does not deal with currents but with field distributions

instead. At that point, conversions between spatial and spectral domain is done with FFT and IFFT.

It is worth analysing the results obtained with both the spectral tensors and the GF. First of all compare

the APWS obtained via the GF in Fig.3.8 and that of Fig.3.6, obtained via spectral tensors. See how the
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modulus amplitude is much more reasonable for the former. This is also reflected for the co-polar and cross-

polar components of the field distributions when comparing Figs.3.7 and 3.9. Although both cases offer

similar results in terms of radiation pattern - the point source radiating a 2D-sinc function for the co-polar

component and a 4-lobe diagonal pattern for the cross-polar component - the amplitude levels are certainly

better for the GF case, so this one is chosen as the method used to obtain the field distribution at the source

plane.

(a) Co-polar Component. Magnitude (b) Cross-polar Component. Magnitude

Figure 3.8: APWS obtained with the simulator’s Green Function.

(a) Co-polar Component. Magnitude (b) Cross-polar Component. Magnitude

Figure 3.9: Field distribution at the source plane obtained with the simulator’s Green Function.

3.2 Propagation in Tunnel Environments

Tunnels are complex cylindrical structures used to ease or shorten the transport between emplacements.

Radiowave tunnel propagation has long been discussed for several years. It is generally admitted that the

structure acts as a waveguide, with the signal strength decreasing as a function of distance while fields are
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confined on its inside. Boundary conditions, as detailed Section 3.3, have a definitive impact on propagation,

but there are several other elements that can have an impact too. This section is devoted to the description

of such elements as well as giving an overview of the field distribution in tunnels.

3.2.1 Tunnel Cross-Section

The cylindrical profile is the first thing to look at when working with tunnels. The geometry of the tunnel

determines the characteristics of propagation. The impact of the cross-section can be observed in Fig.3.10,

where a straight 500m-long tunnel has been simulated with two different tunnel profiles: circular and rect-

angular. Note how the attenuation differs as a function of the profile. On subsequent chapters, though, a

couple of techniques will be outlined describing the use of equivalent rectangular instead of more complex

profiles. The reason after those equivalences is that the rectangular profile eases the EM analysis of prop-

agation because modal expressions of the propagating modes in rectangular tunnels are way simpler than

for other cross-sections. In this particular case, theoretical attenuations corresponding to the circular and

rectangular simulated tunnels - the former with 2m radius, the latter with 4m x 3m side sizes, thus similar

cross-sectional areas - are −50.8dB/100m [14] and −58.4dB/100m [15]. The attenuations provided by the

spectral technique are −24.6dB/100m and −30.1dB/100m respectively. Though predicted values obtained

do not match with theoretical results - the reason after these differences is due to application of boundary

conditions, as it will be discussed later - it can be seen how the behaviour is correctly predicted by the

simulator: larger attenuation corresponds to the rectangular case.
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Figure 3.10: Propagation comparison with different tunnel cross-section.

The case attaining this thesis presents some particularities, as the tunnel of Metro Ĺınia 9 (L9) in

Barcelona has the split-circular shape of Fig.3.11. Trains circulate in opposite directions on the lower and
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upper halves of the tunnel. There are notorious differences between them: an arched profile for the upper

half and a quasi-rectangular for the lower one.

Figure 3.11: L9 Tunnel cross-section.

One of the featured characteristics of L9 is the use of wireless technologies for train control and commu-

nications systems. Trains are controlled automatically while circulating in opposite directions in the upper

and lower halves. Hence, two simultaneous radio links are needed. Imagine the tunnel at, for instance, 10

meters before a station: the upper train accelerating to go to the next station with the other one slowing

down while arriving to the station. Interference between both systems is dangerous and unacceptable. For

this purpose, the deployment of a cell network is needed. In tunnels with a singular cavity, only two fre-

quencies are needed, as adjacent cells use alternate carriers. In L9 tunnels, though, frequency planning may

become more complex: each train will obey different orders and send its own information. As a consequence,

they must use different carriers to avoid interfere with each other. Depending on the isolation degree pro-

vided by the intermediate platform, the frequency planning may need more carriers for the system to work

interference-free. Because there is interest on studying how much the coupling between both parts is and

how wireless systems work on the opposite cavities, the tunnel geometry was considered as a whole.

3.2.2 Variations in the Tunnel Cross-section

The performance of railway transport systems needs of several elements that may modify the tunnel profile

for considerable stretches. Circumstances leading to these changes are: presence of trains, stations and other

exploitation-related rooms - emergency corridors, communications and power supply areas - and tunnel

ramps. The latter case is special relevance for the radio network planning, as the presence of the ramp

increase the coupling between the upper and lower halves.

Two examples are presented next to illustrate how variations in the tunnel profile have an effect on
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(a) Empty tunnel (b) Blocked tunnel

Figure 3.12: Simulated L9 cross-sections.

Figure 3.13: Half-blocked tunnel. In blue, the horizontal cut corresponding to Fig.3.14.

propagation. The first consists of the L9 tunnel, horizontally split in two halves as in Fig.3.12a, is used in

this example for the first 20m, followed by 20m of the partially blocked section of Fig.3.12b and finally a

20m stretch with the initial cross-section. The antenna is placed close to the lateral wall in the upper half of

the tunnel. See Fig.3.13 for clearer details of the situation. The horizontal cut of the distribution inside the

straight tunnel is depicted in Fig.3.14. The shadowed area corresponds to the concrete structure. See how

fields are reflected at the tunnel walls and diffracted at the corners, while the blocking structure is followed

with a shadow area and a noticeable signal drop-off. The latter effect is specially relevant in curved tunnels

where, on top of the reduced Line of Sight (LoS) range, partially blocked sections will produce a drastic

increase on losses.

Results are coherent respect to what is expected: ripple due to reflections, diffracted paths, fadings and

shadowing areas. The spectral simulator is able to model correctly sharp changes in the tunnel.

For the second example, a ramp is chosen: in this case the cross-section will be modified gradually. The

scenario is that of Fig.3.15 with the transmitting antenna placed in the upper half and the receiver in the

lower half.



24 CHAPTER 3. SPECTRAL PROPAGATION IN BOUNDED MEDIA

Figure 3.14: Partially blocked tunnel. Horizontal cut path losses.

Figure 3.15: Tunnel with ramp. In blue, the vertical cut corresponding to Fig.3.16.

The ramp begins around 5m and ends at 26m. Afterwards the cross-section of Fig.3.12a is restored. The

vertical cut of Fig.3.16 shows the field distribution. It is interesting to note that the platform splitting the

tunnel does not provide complete isolation between the upper and lower halves. The signal level in the lower

cavity is very low for the first 5m, although there is small coupling. Once the ramp begins, though, see how

fields in the lower half fade when fail to penetrate the ramp structure. Values used in this case were the

same both for tunnels walls and platform: εr = 5 and σ = 0.02[S/m]. Empty space in the lower half starts

to open, fields spread throughout due to the overture in the platform. Fig.3.17 shows the axial path losses

for transmitter - in the upper half - and receiver - in the lower half - for two cases: with and without ramp.

Note that when the ramp is present, from the 15m mark to almost the tunnel end the difference between

upper and lower cavities is less than 10dB. Path loss curves in the upper half are almost identical for both

cases, with and without ramp, while in the lower half curves differ 20dB approximately.

Hence, it can be concluded that the ramp is an element to be strongly considered for wireless network

deployment in tunnels, as distance between isofrequency cells should be increased to avoid interference
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Figure 3.16: Tunnel with ramp. Vertical cut path losses.
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Figure 3.17: Tunnel with and without ramp. Axial received power.
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between upper and lower nearby cells, forcing to expand the number of carrier frequencies needed.

3.2.3 Bended Tunnels

Bended tunnels prompt a change in the dynamics of propagation. In straight tunnels, waves propagating

close to the tunnel axial direction dominate at long distances, whereas curves suppose an enrichment of the

multipath characteristics and reduce the operating range of wireless systems due to a decrease of the Line of

Sight (LoS) distance between transmitter and receiver. In such situations attenuation increases respect to

straight tunnels, as waves suffer stronger attenuation due to reflections occurred at the tunnel boundaries

when the curve begins. There are two approaches when modelling curved tunnels:

• Stick to the propagation axis z while modifying the tunnel cross-section as the wavefront advances

(Fig.3.18).

• Reorientate progressively the coordinate axis in such a way that the z-axis coincides with the tunnel

longitudinal axis after the curve, keeping the tunnel cross-section intact (Fig.3.19).
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Figure 3.18: Curve discretisation shifting the cross section.

The first option implies changes in the cross section: as the wavefront progresses through the curve,

the boundaries of the cross-section must be just shifted towards the side in small steps. This approach is

discarded for two reasons: the first one is that it is not suited for large curvature radius because the number

of points of the transversal matrices would be prohibitive as the cross-section is shifted towards the bounds

of the matrices. The second reason is that tunnel paths not always zigzag, but just change the direction in

which trains circulate, as in Fig.3.19. In this case there would be no advantage in using spectral propagation

as done in this thesis: the z-axis would not longer be the longitudinal axis and fields in the transversal plane

would not be known.

In the second approach, curves imply a change in the direction for which the progression of the wavefront

must be computed. Waves whose angle of propagation is equal to the angle of rotation θi have then to be

placed at the centre of the spectrum, that corresponds to the z direction or θi = 0◦. Basically, the spectrum

must be shifted towards the appropriate direction. As a consequence the Visible will be partially shifted

towards the Evanescent : the larger the θi angle, the larger the shifting and the losses. For a rotation such
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Figure 3.19: Curve discretisation with axis rotation.

as the one illustrated in Fig.3.19, axis in the spectral domain would be modified as:

k′x =k0 sin θ cosφ|θ=θi,φ=0 = k0 sin θi (3.20)

k′y =k0 sin θ sinφ|θ=θi,φ=0 = 0 (3.21)

This means that the y-axis would remain the same while the x-axis would be modified due to a spectrum

displacement of the kx-axis of v samples, N being given by:

v =
k′x

∆kx
=
k0 sin θi

2π
L∆x

=
L∆x
λ

sin θi (3.22)

Isolating θi from the previous expression, the angle of propagation for a determined position in the

spectrum can be known:

θi = arcsin
(

vλ

L∆x

)
(3.23)

The drawback of this approach is that rotation of the axis - Fig.3.19 - leads to a loss of the energy

contained in the Visible part of the spectrum. This effect can be minimised by applying several small

rotations instead of trying to model the curve with a large single rotation. Suppose a 20m-long curved

tunnel stretch. The curve is right-bended, and three cases are going to be analysed:

1. Case A: a single 15◦ rotation of the axis at the 10m mark.

2. Case B: a single 3◦ rotation of the axis at the 10m mark.

3. Case C: five consecutive 3◦ axis rotations to complete a 15◦ right rotation, starting at the 5m mark.

The electric field distribution at the 10m mark for cases A and B is presented at Fig.3.21. The transmitter

is a point source slightly shifted to the left of the tunnel in order to increase the LOS distance. Figs.3.22a and

3.22b show the APWS modulus before and after rotation to illustrate how the spectral content is displaced

away from the centre of the spectrum while preserving exactly the same spectral content. Fig. 3.23 shows

the phase of the field distribution for the 15◦ and 3◦ rotations. The field modulus remains identical to that

of Fig.3.21a.

On the other hand, comparing the phase of Fig.3.21b - previous rotation - with those in Fig.3.23, field dis-

tribution’s phase suffers a significant change when the 15◦ rotation is applied in a single step -see Fig.3.23(a)

- whereas a 3◦ rotation leads to smoother variations (Fig.3.23(b)). The difference can be explained as follows:
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Figure 3.20: Curve segmentation for the three examples of tunnel curve

(a) Modulus of the field distribution (b) Phase of the field distribution

Figure 3.21: Field distribution previous rotation.

the centre of the spectrum and nearby components are related to slow-variating fields that propagate along

the z-axis, while the border of the Visible represent the components that bounce back-and-forth between

the tunnel walls and thus suffer faster variations. The larger the applied rotation, the farthest the central

spectral components will be shifted from the spectrum centre and the fastest the variations in the phase will

be. This is the reason why the phase of the 15◦ rotated field presents such rapid alternances respect to the

3◦ rotated field, while the latter has a similar variation pattern as that of Fig.3.21b.

Finally the propagation curves for cases A,B and C are displayed in Fig.3.24. The largest path loss

drop-off corresponds to case A - the 15◦ rotation - as expected. On the other hand, path loss curve in case

B - a single 3◦ rotation - presents more similarities to case C - five successive 3◦ rotations. Note the different

behaviour between cases A and C, where the curve has been modelled differently. Summarising, in case A a

significant part of the spectral content has been placed in the Evanescent region, thus reducing the amount

of contributing terms to the propagation and originating a significant drop-off in the signal strength, while

in case C the wavefront has been guided through the tunnel more successfully.

These results are consistent with the modal analysis made by Mahmoud [15] and Dudley et al. [16]: the

smaller the tunnel curvature radius, the larger the losses affecting propagation. Measurements carried over



3.2. PROPAGATION IN TUNNEL ENVIRONMENTS 29

(a) |APWS| for θ = 0◦ (b) |APWS| for θ = 15◦

Figure 3.22: APWS modulus before and after rotation. Case A.

(a) case A: 15◦ rotation
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Figure 3.23: Phase of the field distribution after rotation.

by Choi [17], as well as ray-tracing based studies conducted by Wang and Yang [18] confirms this point: Choi

[17] found a larger path loss exponent factor for its regression curve model when the radius of curvature was

r = 245m than for the r = 500m case, whereas Wang and Yang [18] showed that the level of received power

along a curved tunnel decreased as the radius of curvature increased for r = ∞, 150, 300m. In our case,

instead of curvature radius, the used parameters for tunnel bending are the axis rotation angle, number

of sections and length of this sections. The results of Fig.3.24 are encouraging: larger rotation angles -

associated to small curvature radius - leads to larger losses/higher attenuation.

Another aspect of propagation in curved tunnels that has been contrasted with the spectral technique

is the so called whispering gallery effect discussed by Wait [19]: Wait states that the energy of the modes

propagating along a curved tunnel tends to be distributed mainly on the outer curve walls. This point was

verified by Didascalou et al. [20] in their ray-tracing based simulations. The spectral technique is also used

in this case: a 200m long curve is simulated, its curvature radius being r = 201.4m. An elemental dipole is
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Figure 3.24: Axial path loss comparison for differently bended tunnels.

selected as a source centred in the tunnel because of its omnidirectional radiation pattern.

The effect can be appreciated in Fig.3.25, where the horizontal cut of the path loss distribution has

been depicted: fields are more intense on the outer side of the curve whereas field strength is weaker on

the inner side. To provide a more rigorous appreciation on this effect the tunnel is split in two halves: left,

corresponding to the inner part of the curve, and right, corresponding to the outer one. The mean of the

absolute field value for each part is computed longitudinally and the results are presented in Fig.3.26. See

how the path losses are higher for the inner half along the curve but for the last few meters, were fields have

almost extinguished. Differences between both halves would be more significant for wider tunnels and/or

curves with smaller curvature radius.

3.2.4 Backscattering

There are certain situations in which changes in the tunnel cross-section implies the backscattering to be

considered. As it has been noted in Section 3.2.3, the algorithm here described, due to limitations of spectral

theory, can only propagate waves within an angular range of ±90◦ respect to the z-axis, thus they can be

considered to belong to a wavefront propagating in a forward direction (+z). For the backscattered waves

to be taken into account, fields on blocking surfaces - such as the train front end - must be stored as the

iterative process advances. Depending on the body electrical properties, the incident field suffers from total

reflection - for PEC surfaces - or partial reflection - for any other material -, with a certain amount of the

incident wave energy being transmitted through the wall.

When the wavefront reaches the tunnel end, the algorithm repeats the whole process in a backward

direction, inverting the direction of propagation, beginning at the tunnel end back to the source plane (−z).
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Figure 3.25: Curve simulated with the spectral technique. Horizontal cut.

Fields stored during the first pass are propagated and added to the forward field distribution. This process

can be iterated until convergence is reached in case a complex scenario demands so, thus ensuring a correct

modelling of its EM behaviour, although generally a single forward+backward pass is enough. As an example

consider a 20m-long rectangular tunnel and two cases:

1. A partially blocked section with a 10m-long metallic carriage placed at the 4m mark on the tunnel left

half, analysed only with a forward pass.

2. The same as above with backscattering - forward+backward - being taken into account.

The transmitter height is 2m in the middle right half of the tunnel, while the receiver is placed slightly

above the train roof, on the inner side of the tunnel. The transversal simulation scheme can be observed

in Fig.3.27, while in Figs.3.28a and 3.28b the horizontal and vertical path loss cuts at the receiver position

are presented. The cuts show the field distribution only inside the tunnel. Note that the carriage structure

cannot be appreciated in the horizontal cut as the receiver is placed a few centimetres over its roof, although

the horizontal field distribution suggests the presence of an obstacle by diffraction at the train edges.

The main lobe is directed along the propagation axis, the wavefront is diffracted at the carriage’s edges

and fields are funnelled towards the empty regions of the tunnel. A shadow area appears just after the

back end of the train, similarly to the results presented in Section 3.2.2. When the backscattering is added,

results are those of Figs.3.29. Because there is just one obstacle, no other fields were stored in the forward

pass and the shadow area is unmodified. Differences are noticeable between the source plane and the train

front end. A comparison between both vertical cuts helps to assess the importance of the backscattering:

instead of the smooth distribution corresponding to the first case, one can expect an EM behaviour similar

to the second one in a more realistic scenario, where the signal may suffer of deep fading depending on the

receiver’s position.
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Figure 3.26: Mean axial path loss values for the inner and outer halves of the tunnel.

3.3 Boundary Conditions in Spectral Propagation

3.3.1 Scalar Approach

It has previously been seen that this version of spectral propagation is based on the use of the free space

GF when computing the field distribution between consecutive longitudinal points. The use of such GF,

however, is incorrect as long as propagation in bounded regions is studied: fields at the boundary and outside

the tunnel cavity must be appropriately modified. A first approach is adjusting the propagation constant at

the points where fields propagate in a different medium. At those points, fields should extinguish faster. The

scalar profile of this Boundary Condition (BC) lies on the fact that orientation of fields is not considered, so

Figure 3.27: Transversal cross-section for the backscattering example.
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(a) Horizontal cut

(b) Vertical cut

Figure 3.28: Path loss distribution without backscattering.

no discrimination is done: whether the field impinges parallel or orthogonally to the medium interface, the

field amplitude must be reduced.

Given the dielectric constant εr and conductivity σ of the medium bounding the tunnel, the widely known

expressions for the complex dielectric constant εrc, loss tangent tan δ and attenuation α can be used:

εrc =ε′ − jε′′ = εr − j
σ

ωε0
(3.24)

tan δ =
= (εrc)
< (εrc)

=
ε′′

ε′
(3.25)

α =ω

√
1
2

µε′√
1 + tan2 δ − 1

(3.26)

with ω being the angular frequency. This approach induces discontinuities in the field distribution at

the boundaries, not complying Maxwell’s equations, because the field solution is not continuous. In the

long term, however, the enforced solution converges quite smoothly at the boundaries except for curves or

changes in the cross-section.

This approach relies on the knowledge of the exact values of the tunnel wall parameters, which may vary

as a function of humidity for instance. Fig.3.30 offers a comparison between the longitudinal path losses of

the same scenario with several values for the dielectric constant and conductivity. A free space behaviour is

expected for path losses in the area near the transmitter, as the wavefront initially expands in an unbounded

medium. When reaching the tunnel walls, reflections occur and part of the energy is redirected towards

the tunnel inside inducing interferences on the field distribution. At that point, the free space assumption
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(a) Horizontal cut

(b) Vertical cut

Figure 3.29: Path loss distribution with backscattering.

is no longer valid and the tunnel becomes a multipath environment. See an example of such in the first

20-30 meters of Fig.3.30: curves clearly follow the behaviour of the free-space path loss, but are altered

by successive peaks and valleys. In this figure the same rectangular tunnel has been simulated varying the

values of the material properties. Differences are small for the different εr proposed values while the impact

of σ is significant. As Glaser and Emslie found in their works [21],[22], the contribution of the conductivity

to the propagation loss was small. In this case it can be seen how the increase on the σ value leads to weaker

bouncing but not to significant larger losses. Here, the real part of the dielectric constant dominates the

attenuation, while the imaginary part - governed by the conductivity - has much less influence on it. As a

conclusion, it can be said that the impact of tunnel electrical parameters variability is small in narrowband

analysis carried out throughout this work.

The first results obtained with the scalar approach showed that losses inside the tunnel were not properly

predicted. Zhang [23] proposed a model to calculate losses corresponding to a rectangular tunnel as a function

of frequency, electrical properties of the walls, tunnel dimensions and antenna coupling. A first solution was

adding this losses to the iterative propagation. Results improved significantly and made sense but, in our

case, a different approach was taken. The idea is to apply different attenuation values as a function of

the number of reflections that a given spectral component suffers every incremental step ∆z. Hence, this

attenuation mask must be applied in the spectral domain.

Equivalent tunnels have been used in similar contexts [23],[16],[24] to study EM propagation before. Here
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Figure 3.30: Path loss comparison for different tunnel materials.

an equivalent circular tunnel with cross-sectional area equal to the tunnel being analyzed is first computed

and its radius req derived. As it can be deduced from Fig.3.31, the distance between consecutive reflections

Li for a given plane wave i is:

Li =
2req

tan θi
(3.27)

The number of reflections suffered by that same plane wave every incremental step ∆z is:

ni = n(kx, ky) =
∆z
Li

(3.28)

Because ∆z is defined as a fraction of wavelength ni � 1. The attenuation ρ suffered by a plane wave

impinging at the tunnel walls is distributed along the 1
ni

propagation steps that same plane wave needs to

reach the next reflection point. The attenuation mask can thus be expressed as:

Γ(kx, ky) = ρni = ρ
∆z
Li = ρ

tan θi
2req

∆z (3.29)

with ρ the value of the reflection coefficient. This value can be empirically measured and its electrical

properties derived as detailed by Roqueta in [25]. In a simplified approach, ρ is assumed constant for all

incidence angles. Fig.3.32a shows a 3D view of the attenuation mask and Fig.3.32b a cut at ky = 0, centred

around the visible region, for different ρ values.

As it can be seen, the smaller the value of ρ, the more selective the mask is. This can be interpreted

considering that low values of the reflection coefficient imply larger amount of energy transmitted through

the medium interface, where the attenuation constant is higher. Waves propagating with large θi angles are

more attenuated inside the tunnel than those who propagate parallel to the tunnel axis because of reflections.

This behaviour agrees with the fact that, at large distances, main contributions to tunnel propagation come

from the direct components.
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Figure 3.31: Example of the paths followed by two plane waves propagating with different angles.

(a) 3D view of the attenuation mask
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Figure 3.32: Attenuation mask Γ in the spectral domain.

In Fig. 3.33 the same tunnel has been simulated for three different ρ values. The aforementioned

behaviour can be appreciated: the larger the ρ the more the fields are confined inside the tunnel and larger

the signal level far from the transmitter. This allows for the simulator to be adjusted to experimental data

in real scenarios.

3.3.2 Vector Approach

This approach was developed to undertake a more complete analysis of EM propagation. It is well-known the

different behaviour of fields as a function of polarisation. Another reason that led to the implementation of

a fully-polarised simulator was the need to examine the advantages of diversity and Multiple Input Multiple

Output (MIMO) schemes. This techniques permit increasing the signal bandwidth.

The vectorial case implies computing the field distribution for both transversal components of the field,

Ex and Ey, that are directed along the x and y axis. The number of performed operations doubles that of



3.3. BOUNDARY CONDITIONS IN SPECTRAL PROPAGATION 37

0 50 100 150 200 250 300
−180

−160

−140

−120

−100

−80

−60

−40

Distance (m)

P
at

h 
Lo

ss
 (

dB
)

 

 
ρ = 0.4
ρ = 0.7
ρ = 0.9

Figure 3.33: Path Loss as a function of the reflection coefficient ρ.

the scalar approach at each longitudinal step. The main difference, though, is the application of Boundary

Conditions (BC), that becomes way more complex to implement due to the cross-polarisation effects between

Ex and Ey field components. In a polarised scenario with medium interface, reflected and transmitted fields

depend on incidence angle - which is a function of the wave propagation angle θ, the surface normal vector

direction n̂ - and wave polarisation. In the scalar approach, fields transmitted to the second medium were

just attenuated according to the second medium propagation constant. In the vectorial approach, however,

a more sophisticated course must be adopted.
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Figure 3.34: Angular description in vectorial approach.

A logical solution would be applying the parallel Γ‖ and perpendicular Γ⊥ reflection coefficients along

the boundary but, although the APWS provides angular information on the progressing wavefront, it does

not facilitate the angle of incidence locally, which is needed to compute Γ‖ and Γ⊥. Plane waves do not
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impinge at a single point, but rather at every point belonging to the boundary. A set of waves with different

propagation angles impinge at each one of these points. Application of Γ‖ and Γ⊥ for each plane wave

composing the wavefront is not possible at every boundary point. A different solution is chosen and the

following assumption is made: the angle of incidence ψ is set to ψ = π/2. It is widely accepted that the

leading components in tunnel propagation are those whose propagation angles θ are small - so θ ≈ 0 -

because they do not suffer attenuation due to reflections at the tunnel walls. Because of the relation between

incidence and propagation angles - ψ + θ = π/2 for tunnels with smooth walls as Fig.3.34 shows - the value

of ψ at large distances is found to be the abovementioned ψ = π/2. It can be argued that this does not

hold in multipath environments, where several reflections occur due to the different paths existing between

two points - each associated with a θ angle - causing fadings and other phenomena. Hence, inaccuracies are

to be expected in the region close to the transmitter, where strong multipath happens. Nevertheless, this

assumption should be valid to determine whether the spectral technique is able to accurately predict path

losses in the far field region. The parabolic approach described in Chapter 5 is based in a similar assumption.

To see how this approach worked suppose a tunnel whose cross-section is constant along the propagation

axis, so the normal surface vectors are found along the interface. The wavefront passes down the tunnel

and fields are decomposed into E‖ and E⊥ components from the known Ex and Ey distributions. The

corresponding Γ‖ and Γ⊥ reflection coefficients are applied and finally the change of base is undone to

retrieve the Ex and Ey values at the boundary. Thus, starting with the widely known expressions for

reflection coefficients Γ‖ and Γ⊥ [2]:

Γ‖ =
−n2

2 cosψ + n1

√
n2

2 − n2
1 sin2 ψ

n2
2 cosψ + n1

√
n2

2 − n2
1 sin2 ψ

(3.30)

Γ⊥ =
n1 cosψ −

√
n2

2 − n2
1 sin2 ψ

n1 cosψ +
√
n2

2 − n2
1 sin2 ψ

(3.31)

If the ψ = 0 value is substituted, the previous equations can be rewritten as:

Γ‖
∣∣
ψ=0

=1 (3.32)

Γ⊥
∣∣
ψ=0

=− 1 (3.33)

where the angular dependency has been eliminated, nor does the wall material have an impact over the

propagation outcome due to the grazing incidence of waves. A straight rectangular tunnel was simulated - its

width doubling its height - with a source polarised horizontally (Hpol) or vertically (Vpol). The attenuation

corresponding to the dominant mode for both polarisations was first found by Emslie et al. [22], but more

recently Mahmoud [15] offered a simplified expression. These values are compared to those obtained from

simulations at large distances from the source, where almost all contributions from higher order modes

vanish. The numerical values are presented in Table 3.2, while Fig.3.35 shows the different behaviour for

both polarisation cases.

Simulations results agree quite well with theoretical values in the horizontal case. The worst case dif-

ference is around 1dB/100m for the vertical polarisation, which is something to be taken into account.
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Hpol[dB/100m] Vpol[dB/100m]

Modal Theory 1.5974 7.7472

Simulations 1.53 8.7037

Table 3.2: Attenuation values for rectangular tunnel.
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Figure 3.35: Rectangular tunnel simulated with different source polarisation.

However, considering that real cases will be limited to distances up to 1km, and that attenuation masks

can be adjusted to better fit experimental results, this difference will be expected to diminish. Therefore,

the case can be made that this technique is suited to model EM propagation in tunnels. This chapter has

been devoted to give a qualitative insight on the different situations that can be presented in such scenario.

Several examples have been used to illustrate the cases, although results have been discussed mainly from

a conceptual point of view. Next chapter is focused on the comparison between experimental data and

simulation results for validation purposes.
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Chapter 4

Simulation Results and Validation:

Spectral Approach

The previous chapter was devoted to give a general overview on the possibilities of spectral propagation.

Several aspects of this technique were discussed using examples but no results in real tunnel environments

were provided yet. The aim of this chapter is, thus, offering a clear understanding of the spectral-based

simulator performance and its limitations. For this purpose, several published results have been used as a

reference.

One of the most spread techniques for EM prediction in tunnels is the ray optical approach, that has

been used with good results lately [26],[27],[18], [20],[28],[29], although it was already being used in the mid-

70’s [30],[22]. The advantage of ray-tracing methods is their straightforward implementation and that they

provide results, particularly in some cases [20], with excellent accuracy. They are specially suited for complex

scenarios because scatterers and variations in the tunnel cross-section can be modelled with a high degree

of precision. Results for the multipath region close to the transmitter are usually in very good agreement

with experimental data.

However, taking into account such details is not an easy task and is subject to modelling errors, causing

inaccuracies. For this reason it is of major interest contrasting results in the far-field region of the antenna,

where only main contributions remain in the propagation terms and the impact of boundary surface irregu-

larities is negligible. From a geometrical optics point of view, only rays propagating parallel to the tunnel axis

survive in this region, as they have not suffered attenuation due to reflections at the tunnel walls. The same

can be said when working with plane waves instead. Modal theory, first developed in [31],[32],[33],[22],[34]

is a better choice to model EM issues at this stage of the propagation. There have recently been more

contributions dealing with this approach in rectangular, arched and circular tunnels [15],[24],[35],[14].

Simulations with the spectral technique were conducted trying to reproduce with the maximum fidelity

the scenarios depicted in the different publications. The references in this section were chosen so that all the

needed parameters were specified.

41



42 CHAPTER 4. SIMULATION RESULTS AND VALIDATION: SPECTRAL APPROACH

4.1 Rectangular Tunnels

A set of measurements were carried out in the Berlin subway by Didascalou et al. [20] at both GSM bands

- f1 = 945MHz and f2 = 1853MHz - in a straight rectangular tunnel, and their results were compared

with ray-tracing based simulations [36]. The set of measurement parameters are displayed in Table 4.1. The

scalar spectral approach was here used first to see how the simulator behave.

Frequency f1 = 945MHz f2 = 1853MHz

Tunnel dimensions

Width W = 3.8m

Height H = 4.3m

Length L = 110m

Electrical parameters
Dielectric constant εr = 5

Conductivity σ = 0.0053S/m σ = 0.0103S/m

Transmitter(Tx)

Polarisation Vertical

Horizontal position xTx1 = 0.88m left xTx2 = 0.04m right

Vertical position yTx1 = 2.82m yTx2 = 2.2m

Receiver(Rx)

Antenna λ/4 monopoles

Polarisation Vertical

Horizontal position aligned with Tx

Vertical position yRx = 1.47m

Table 4.1: Measurement parameters in Berlin subway by Didascalou [20].

Didascalou presented the curves of Fig.4.1a, while results from spectral simulations are displayed in

Fig.4.1b,c,d. Vertical axis correspond to path losses that, in simulations, have been adjusted to match free

space losses at f1 = 945MHz close to the transmitter. This criteria will be used from now on using the

corresponding frequency when displaying path loss values. Didascalou uses another criteria to adjust the

vertical axis, that is the reason why their range of values along this dimension differ. Notwithstanding, the

vertical span is the same.

The comparison with the scalar BC approach of Fig.4.1b shows that the spectral technique, after an

initial larger fall-off close to the transmitter, obtains a similar behaviour from that point on, and that is

closer to measurements than to ray-tracing simulations. If vector BC Figs.4.1c,4.1d are applied, results

change substantially. Two uniform meshes with ∆ = λ/4 and ∆ = λ/10 are used. For the former, the

simulator output does not resemble the reference path loss. There are more similarities when the latter mesh

- Fig.4.1c - is used, and convergence is practically reached when trying with finer meshes, so ∆ = λ/10 is

set in order to avoid excessive simulation time and memory resources.

Note how multipath is more significant for the vectorial approach than for the scalar approach. There

are many reflections in small enclosed areas close to the source, so a lot of interferences between the different

propagation paths occur. From a modal point of view, high order modes have still not been severely

attenuated, so there are many of them interacting with each other and causing fast fading. Comparing
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Figs.4.1a and c, measurements have smaller losses in the 30m − 80m interval. Remember that spectral

simulations are run with the propagation angle theta = 0◦, as seen in Section 3.3.2, even if tunnel walls are

not smooth. The immediate consequence of having a certain roughness at tunnel wall surface is that the

incidence angle ψ varies locally. This is equivalent to allow the propagation angle to take different values

depending on the surface impinging point. If a small random propagation angle is chosen, which physically

has some sense, the behaviour improves. Results for this variation, with θ = [0◦ − 25◦], are shown in Fig.4.1d,

where losses in the central interval have decreased respect to the θ = 0◦ case.

Even if simulation predictions disagree locally at certain points, mainly on the apparition and position

of certain peaks and valleys, path loss have similar levels along the tunnel. Comparing measurements in

Fig.4.1a and simulations in Fig.4.1d, the first 40m are quite alike. From that point on, spectral simulations

keep a closer behaviour to ray-tracing simulations in terms of bouncing and positions of peaks and valleys.

(a) Measurement results taken from [20], Fig.4a.
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(b) Simulation results. Scalar approach.
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(c) Simulation results. Vector approach. ∆ = λ/10, θ =

0◦.
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(d) Simulation results. Vector approach. ∆ = λ/10, θ =

(0◦ − 25◦).

Figure 4.1: Path loss comparison at f1 = 945MHz in Berlin subway.

As for the f2 = 1853MHz experiment, larger losses were obtained as expected. Measurements can

be found in Fig.4.2a and scalar simulations in Fig.4.2b. Even if fall-off close to transmitter is larger in

simulations and position of significant fadings is not equal, both have similarities. When the vector BC are
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applied, multipath is quite stronger. Figs.4.2c and 4.2d show the predictions for ∆ = λ/10 with θ = 0◦ and

θ = [0◦ − 25◦] respectively. As before, finer meshes did not modify substantially the results so the ∆ = λ/10

value is selected again. In this case, though, it is clear that the scalar approach offers better matching with

measurements, and that the vector approach fails notoriously.

(a) Measurement results taken from [20], Fig.4b.
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(b) Simulation results. Scalar approach.
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(c) Simulation results. Vector approach. ∆ = λ/10, θ =

0◦.
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(d) Simulation results. Vector approach. ∆ = λ/10, θ =

(0◦ − 25◦).

Figure 4.2: Simulations at f2 = 1853MHz in Berlin subway. Vector approach.

The underlying reason may be that Didascalou measurements were taken every 18cm [20], that corre-

sponds approximately to a full wavelength for f2. Simulations of Figs.4.1,4.2 used a longitudinal step ten

and twenty times smaller. If the longitudinal sampling is set to ∆z = λ the results improve significantly, as

shown in Figs.4.3,4.4. The original data is plotted again to ease the comparison.

To conclude this first set of experiments, it seems that the spectral technique is a good fit to predict path

losses in rectangular tunnels at short distances from the source. Although simulations and measurements do

not match exactly, the reason can be attributed in both cases to imprecisions in the scenario modelling and

to the inexact nature of the chosen propagation technique. Hereafter, the results from spectral propagation

are obtained using the vector BC approach.

Other measurements conducted by Lienard [16] are also used as a reference to complete the study of
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(a) Measurement results taken from [20], Fig.4a
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(b) Simulation results. Vector approach. ∆x = ∆y =

λ/10, ∆z = λ, θ = (0◦ − 25◦).

Figure 4.3: Simulation at f1 = 945MHz in Berlin subway. Vector approach, non-uniform mesh.

(a) Measurement results taken from [20], Fig.4b

0 20 40 60 80 100
−90

−80

−70

−60

−50

−40

−30

Distance [m]

P
at

h 
Lo

ss
 [d

B
]

 

 

(b) Simulation results. Vector approach. ∆x = ∆y =

λ/10, ∆z = λ, θ = (0◦ − 25◦).

Figure 4.4: Simulation at f2 = 1853MHz in Berlin subway. Vector approach, non-uniform mesh.

propagation in rectangular tunnels. In this case the focus lies at large distances from the transmitter, in

the order of a few kilometres. Even though the tunnel cross-section is semi-arched, in [37] Sun and Cheng

describe a procedure allowing the use of an equivalent rectangular tunnel when studying the propagation

characteristics in arched tunnels. This procedure is adopted by Lienard to develop a modal analysis with

excellent results. Experiments were carried out in a straight 2500m-long tunnel at f1 = 450MHz and

f2 = 900MHz. The length of the stretch allows a modal analysis of the propagation because at such

long distances only the lower modes, that are the less attenuated, survive and contribute to propagation,

thus permitting a better comprehension of the EM phenomena in the tunnel. The parameters to setup the

simulations - taken from [16] - are summarised in Table 4.2.

The experimental data from Lienard is showed in Fig.4.5a, while results from spectral simulations are

presented in Fig.4.5b. In her paper, Lienard identifies the measured pattern at both frequencies with the

interference between the first two vertically-polarised hybrid modes, HEy11 and HEy21. When comparing
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Frequency f1 = 450MHz f2 = 900MHz

Tunnel dimensions

Width W = 7.8m

Height H = 5.3m

Length L = 2500m

Electrical parameters
Dielectric constant εr = 5

Conductivity σ = 0.01S/m

Transmitter(Tx) Polarisation Vertical (V V )

and Horizontal position x0 = 1.95m

Receiver(Rx) Vertical position y0 = 2m

Table 4.2: Measurement parameters in Massif Central tunnel by Lienard [16].

(a) Measurement results taken from [16], Fig.18.
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(b) Simulation results.

Figure 4.5: Polarimetric results at 450MHz and 900MHz.

measurements with simulations, very good agreement is reached at f2 = 900MHz while, even though the

path loss pattern is similar to the measured one, differences at f1 = 450MHz are notable - around 10dB/km

- in terms of slope. Table 4.3 gathers the attenuation and pseudo-periodicities values for both measurements

and simulations.

All in all, the reasons after the incorrect behaviour of the propagation predictions are due to different

reasons. For the first analysed set of measurements, where the focus was on the short-range propagation, it

is clear that environment error modelling plays an important role in the results inaccuracy. However, this

is not the case for the long-range region of the second measurement set. As the scheme of Fig.3.1 shows,

BC are applied after field components in the current transversal plane have been found from the APWS via

IFFT. At that point the field distribution is continuous all over the spatial domain. By computing the field

values along the boundaries and modifying those points, discontinuities are created and field distributions

do not fulfil Maxwell’s equations but, because dominant mode distributions usually have small values at the

boundaries in the tunnel inner region, such an impact on the propagation conditions was not expected.
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Frequency Case Attenuation [dB/Km] Pseudo-periodicity [m]

450MHz
Measurements 33.0 240

Simulations 24.1 241

900MHz
Measurements 8.5 486

Simulations 8.7 485

Table 4.3: Parameter comparison between measurements and simulations. Rectangular tunnel.

4.2 Circular Tunnels

Perfect circular geometry is a special case of tunnel cross-section that can hardly be found in real scenarios.

To the author knowledge, there are no measurements in large circular cavities, but recent works by Holloway

[38] and Dudley [35],[39],[14] offer a detailed modal analysis based on exact analytical solutions of fields

inside lossy circular waveguides.. This geometry is also ideal to study cross-polarisation effects induced

at the tunnel walls surface. This aspect could hardly be given any consideration for the rectangular case

because field components were oriented in the same directions as the tunnel walls. Hence, cross-polarisation

was negligible. The circular case will also provide a better insight on the behaviour of the upper half of

Barcelona L9 tunnels, whose arched profile is shown in Fig.3.11.
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Figure 4.6: Circular tunnel and source positions.

The theoretical experiments developed by Dudley in [35] and [14] referred to the modal theory of propa-

gation inside a straight circular tunnel. The work presented here is focused on the latter [14] - where a linear

source is used as the tunnel excitation - rather than the former [35] - where a loop source is used - by two

reasons: the first is that the linear source excites a richer set of modes than the ring source. Second, and

related with the previous one: the ring source only excites circularly symmetric modes that are only excited

by tangential currents. Because the simulator uses a cartesian grid, is hard to excite these modes because

of the discrete nature of the problem, even if fine meshes are employed. The work developed by Dudley

comprises the dominating modes, their attenuation and the cross-polarisation for several cases. Simulation

parameters are displayed in Table 4.4.

The first experiment puts the elemental source at the tunnel centre, which corresponds to position
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Frequency f = 1GHz

Tunnel dimensions
Radius a = 2m

Length L = 1200m

Electrical parameters
Dielectric constant εr = 12

Conductivity σ = 0.02S/m

Transmitter(Tx)

Antenna Elemental source

Polarisation Horizontal

Position A B C D

Radial b = 1.8m b = 1.8m b = 0m b = 1.8m

Angular φ = 0◦ φ = π/2◦ φ = 0◦ φ = π/4◦

Table 4.4: Simulation parameters taken from [14].

C in Fig.4.6. Only hybrid modes are allowed to propagate under these conditions. Fig.4.7 shows fields

behaviour predicted by theory and simulations, while Table 4.5 gathers the attenuation of the dominant

mode. Decreasing rates differ in 1dB/100m approximately - the same error order of the rectangular tunnel

at f1 = 450MHz in the previous section - and the interference pattern lasts longer and is stronger in

simulations. Faster fading predicted by theory is associated to high order modes and seems to not be present

in simulations. Other than that, results agree quite well. For instance: if fast variations were filtered in the

theoretical case and a bimodal interference pattern is considered, pseudo-periodicity is very much alike in

both approaches. This can be easily appreciated for the ρ = 0.5m traces in the 200m−400m tunnel interval.

On top of that, the simulator keeps the track of the theoretical behaviour in more aspects. First, the closer

to the centre, the stronger the field strength is and the earlier the single-mode pattern arises. Also, the offset

in dB between ρ = 0.5m and ρ = 1.8m receiver positions is very similar in both cases.

(a) Theoretical results taken from [14], Fig.8. a = 2m.
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(b) Simulation results.

Figure 4.7: Comparison at position C for f = 1GHz.

Analysis of the transversal field distribution confirms that the dominating mode is the expected HE11 -

as Fig.4.8 shows - so this indicates that propagation constants are not accurately predicted by the spectral
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Theory [dB/100m] Simulations [dB/100m]

2.78 1.72

Table 4.5: Attenuation comparison at f = 1GHz. Source at C position.

technique: attenuation constant for HE11 mode does not match with theory, while the phase constant, that

is related to the small difference in the pseudo-periodicity values commented previously, diverges in a much

less significant manner. The fact that the interference pattern lasts longer in simulations is also related with

that: it means that the difference between the attenuation rates of the two lower order modes - HE11 and

HE21 - is smaller than it should be, so the HE21 does not extinguish as fast as it should.

(a) HE11mode. X component. (b) HE11mode. Y component.

Figure 4.8: Transversal field distribution. Source at C position.

Two more interesting experiments by Dudley consist on placing the source at positions A or B of Fig.4.6

for b = 1.8m. Case A does not allow for TE modes to propagate while the same happens in case B with TM

modes. Hybrid HE and EH modes are allowed in both cases. Because no TE modes propagate in case A, a

straight decreasing behaviour is expected to arise towards the end of the considered tunnel length, the slope

corresponding to the HE11 attenuation value of 2.78dB/100m. Theory and simulations can be compared in

Fig.4.9.

The single-mode behaviour does not arise at the distance predicted by Dudley. However, if further dis-

tance is simulated with the spectral technique, this is reached around 1500m from the transmitter. Inspection

of the transversal fields and attenuation leads to the same distribution obtained in case C, as expected. The

fall-off is again 1.71dB/100m and field components are those of Fig.4.8. Nevertheless, similarities between

theory and simulations in Fig.4.9 for the first 600m are remarkable.

Case B offers a more interesting study: there is an interference pattern because of the presence of TE01

and HE11 modes, whose attenuation values - 1.1dB/100m and 2.78dB/100m respectively - are close. In

this case the slope should finally relax to that of TE01 mode of 1.1dB/100m but, because of the presence

of the HE11 mode, Dudley says that the single mode behaviour arises later than for case A, around 2000m.

In simulations, the HE11 mode extinguishes at the 3000m mark approximately. Results are presented in

Fig.4.10.
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(a) Theoretical results taken from [14], Fig.11.
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(b) Simulation results.

Figure 4.9: Comparison at position A.

(a) Theoretical results taken from [14], Fig.12.
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(b) Simulation results.

Figure 4.10: Comparison at position B.

In this case, the small ripple due to high order modes is missing, while the bimodal interference pattern is

much stronger in simulations: note that it is rather weak in Dudley’s predictions, but it exists. The bouncing

pattern is due to the presence of both TE01 and HE11 modes - revealed by the study of the transversal fields

- but, if the tunnel is simulated at further distances, the TE01 prevails, the attenuation being 1.49dB/100m

and its distribution that of Fig.4.11.

The closeness between TE01 and HE11 modal attenuations - summarised in Table 4.6 - makes the

bimodal pattern last longer in simulations. However, despite the difference between predicted and simulated

attenuation values, the phase constant is quite close. Note that higher-order modes have not been excited.

In light of the results at f = 1GHz, it can be concluded that the spectral simulator does not make a

good job of computing the propagation constants correctly: neither attenuation nor phase constants take

correct values.

The last case being considered from Dudley experiments is oriented to the cross-polarisation study. To
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(a) TE01mode. X component. (b) TE01mode. Y component.

Figure 4.11: Transversal field distribution at L = 3000m. Source at B position.

Case Attenuation [dB/100m] Pseudo-periodicity [m]

A
Theory 2.774 -

Simulations 1.710 -

B
Theory 1.098 30

Simulations 1.492 111

Table 4.6: Parameter comparison between measurements and simulations. Circular tunnel.

do so, the source is placed at position D in Fig.4.6. At that point the resulting fields are a combination of

those attained in cases A and B but, while for those cases the cross-polar fields should theoretically vanish

- in simulations, the difference between co-polar and cross-polar components for cases A and B was larger

40dB -, that does not hold in this case. Results are displayed in Fig.4.12. Again, high order modes are

missing, but the theoretical pseudo-periodicity due to the lower order modes matches pretty well with the

theoretical expected values. Closeness between co-polar and cross-polar components reflect the impact of

cross-polarisation effect.

The same comments made for the rectangular case can be made about the performance of the simulator

in the circular tunnel. On top of that, here the comparison is being made with exact analytical solutions,

which should be even more difficult to reproduce with an approximated method like the one being used. The

difference between theoretical and simulated propagation constants is not that large except for case B, where

phase constants are quite apart. On the other hand, the simulator makes correct predictions qualitatively

speaking, and the transversal field distributions match with those determined by Dudley [16] and Holloway

[38].

4.3 Arched Tunnels

Performance of the spectral technique in rectangular and circular tunnels has been assessed so far. The

former proved to be very valuable from a modal point of view, as approximate closed expressions are available

regarding to mode computation and allowed to understand the propagation phenomena happening in the
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(a) Theoretical results taken from [14], Fig.16.
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(b) Simulation results.

Figure 4.12: Comparison at position D. f = 1GHz. Cross-polars reduced 20dB.

tunnel. On the other hand it offered very little insight on cross-polarisation. The latter presents some issues in

regard to practical applications in real tunnel scenarios but helped to ensure the presence of cross-polarisation

in the spectral technique when proper conditions are present. The arched tunnel is a particularisation of

the circular case with the advantage that there is much more information available ranging from theoretical

studies [24],[15] to extensive measurements in tunnels with such geometry [18]. A typical arched tunnel

cross-section is shown in Fig.4.13.
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Figure 4.13: Semi-arched tunnel.

Proceeding in the same fashion as for the rectangular tunnel, short distance behaviour will be analysed

first. To this end, the Xin-hai tunnel, measured by Wang and Yang [18] is used. The parameters of the

measurement campaign are specified in Table 4.7. They developed a ray-tracing method, as Didascalou et

al. did [40], to also run simulations.

They use two simultaneous horizontally-polarised transmitters placed at the tunnel ceiling, the signal

strength being measured with the receiver both at vertical and horizontal polarisations. Results can be

compared in Figs.4.14 and 4.15, with Rx polarisation horizontal and vertical respectively. Better agreement
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Frequency f = 943.4MHz

Tunnel dimensions

Radii a = 5m

Height H = 6.22m

Length L = 450m

Transmitter(Tx)

Polarisation Horizontal

Position Tx1
Horizontal xTx1 = 2m

Vertical yTx1 = 5.22m

Position Tx2
Horizontal xTx2 = −2m

Vertical yTx2 = 5.22m

Receiver(Rx)

Polarisation Horizontal and Vertical

Position
Horizontal xRx = 2m

Vertical yRx = 1.8m

Table 4.7: Simulation parameters for the arched tunnel taken from [18].

is reached for the former, where the pattern and overall attenuation are quite similar between measurements

and spectral simulations. For the latter, there are more similarities with the ray-tracing simulations than

with measurements. The measured fall-off for the first 70m is larger than predicted, while at larger distances

the closeness between ray-tracing and spectral simulations is noticeable. In general, though, the path loss

dynamic range are on the same order for both HH and HV polarisations.

(a) Measurements taken from [18], Fig.7.
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(b) Simulation results.

Figure 4.14: Results comparison at Xinhai tunnel. Horizontal Rx polarisation.

As for the long-term behaviour of the simulator in arched tunnels, the Lienard experiments [16] of Section

4.1 are recalled. On top of that, the more complete analysis undertaken by Molina-Garćıa-Pardo [24] in the

same environment will also be used. Measurements for the latter were performed in the same tunnel at more

frequency bands and antenna positions, allowing a better assessment of the spectral technique performance

in such tunnels. The extended information is gathered in Table 4.8, while the rest of the parameters are

those of Table 4.2.
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(a) Measurements taken from [18], Fig.8.
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(b) Simulation results.

Figure 4.15: Results comparison at Xinhai tunnel. Vertical Rx polarisation.

Frequencies f1 = 450MHz f2 = 510MHz f3 = 900MHz f4 = 2GHz f5 = 5GHz

Transmitter

Position C NC VNC CTW

xTx 0m 2m 3.1m 2.5m

yTx 2m 2m 2m 4.3m

Table 4.8: Measurement parameters by Molina-Garćıa-Pardo [24].

Note that the experiment at f1, f2, position NC, corresponds to the Lienard measurements of Section

4.1. This time no equivalent tunnel cross-section is used, but the real arched one instead. A similar pattern

to that of Fig.4.5 is obtained, the results being presented in Table 4.9 for measurements, simulations with the

equivalent rectangular cross section and simulations with the arched cross-section. The attenuation decreases

when the arched tunnel is simulated, but phase constants have close values. For the arched cross section,

inaccuracy on the attenuation is higher than 1dB/km, that is the bound for which the spectral simulator

has heretofore been able to make predictions.

Frequency Case Attenuation [dB/Km] Pseudo-periodicity [m]

450MHz

Measurements 33.0 240

Rectangular Sim. 24.1 241

Arched Sim. 16 240

900MHz

Measurements 8.5 486

Rectangular Sim. 8.7 485

Arched Sim. 5.7 486

Table 4.9: Parameter comparison. Arched tunnel. Position NC, Polarisation V V .

Moreover, Molina [24] completed the analysis at positions C, NC of Fig.4.13 at f1, f2, f3 for two

polarisations: HH, where Tx and Rx are horizontally polarised, and V V , where both are vertically polarised.

Table 4.10 compares the measured values for attenuation and pseudo-periodicity with the simulator results
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providing better insight. The V V polarisation offers more accurate results for the phase constant than the

HH polarisation and it is just the opposite for the attenuation constant: even though attenuation values

are generally larger for HH cases and smaller for V V cases, phase constant in the latter case are retrieved

with higher accuracy than for the HH case. Also, the trend commented in previous sections holds: the

attenuation constant usually has more error than the phase constant, as the simulated pseudo-periodicity

matches pretty well with measured values.

Frequency Position Polarisation Case Attenuation [dB/Km] Pseudo-periodicity [m]

450MHz C V V
Measurements 29.2 86

Simulations 20.3 88

510MHz C

HH
Measurements 11 156

Simulations 15.4 117

V V
Measurements 23 106

Simulations 16.4 106

900MHz

C

HH
Measurements 3.53 253

Simulations 6 200

V V
Measurements 7.5 190

Simulations 6.8 189

NC HH
Measurements 4 505

Simulations 5.7 526

Table 4.10: Parameter comparison. Arched tunnel.

A more practical case in tunnels occurs when the source is displaced towards the lateral wall. The f2

results at position V NC of Fig.4.13 are plotted in Fig.4.16. Larger attenuation is obtained for the V V

polarisation rather than for the HH, and values do not differ much in both cases respect to measurements.

But the pseudo-periodicity for the HH case is not correctly predicted.

(a) Measurements taken from [24], Fig.4.
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Figure 4.16: Results comparison at f2 = 510MHz. V NC position. HH polarisation reduced 60dB.
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Similar to the Dudley experiment to study cross-polarisation, the source at f2, f4 and f5 frequencies

is placed at the CTW position in order to maximise the impact of this effect in propagation. Fig.4.17

depicts the propagation at f2, where it can be observed how the difference between co-polar and cross-polar

components is larger in simulations than in measurements.

(a) Measurements taken from [24], Fig.5.
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(b) Simulation results.

Figure 4.17: Results comparison at f2 = 510MHz. CTW position. V V and V H polarisations reduced

60dB.

(a) Measurements taken from [24], Fig.6.
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(b) Simulation results.

Figure 4.18: Results comparison at f4 = 2GHz and f5 = 5GHz. CTW position.

Adding a random angle of incidence because of the wall roughness proximity did not introduce much

changes at 510MHz, but it did at f4 and f5 in Fig.4.18, reducing the difference between co-polar and cross-

polar components. This is probably because wall roughness, modelled by means of the randomness introduced

on the incidence angle, has larger impact on short wavelengths. The overall attenuation is correctly predicted

but patterns differ quite between them.

Summarising, results for the V NC and CTW positions suggest that the behaviour of the simulator

gets worse as the source gets closer to the tunnel bounds. The reason seems to be the application of BC,
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because it generates discontinuities at the boundary that lead to the incorrect calculation of the appropriate

propagation constants by the spectral technique. An exception has been proven to be the Xin-hai experiment

by Wang and Yang [18], analyzed at the beginning of this section, where the two transmitters were placed

close to the tunnel ceiling: simulation results resembled quite to measurements, although it must be noted

that the obtained path loss was at the receiver position, situated in the inner part of the cavity.

4.4 Bended Tunnels

Another scenario of interest are curved paths, where most of the train underground activities take place. It

has been shown in Section 3.2.3 that the curve modelling has a definitive impact on the simulator output.

This section addresses the need to determine the range of parameters in which the spectral technique is able

to successfully predict the EM behaviour in such scenarios.

Modal analysis on curved tunnels has been developed since the mid 70’s [41], and more recently Mahmoud

[15] completed the analysis in curved rectangular tunnels. There is a large number of publications containing

measurements in curved tunnels [42],[43],[36],[44],[45]. Unfortunately, many of them do not give details on

the course the tunnel follows, thus making it difficult to compare with the spectral technique. Simulations

performed by Wang and Yang [18] with their ray-tracing software will be used as a reference.

Frequency f = 1GHz

Tunnel dimensions

Width w = 8m

Height H = 6m

Radii r =∞, 150, 300m

Curve length L = 400m

Total length L = 100, 150m

Transmitter(Tx)

Polarisation Vertical

Position
Horizontal xTx = 0m

Vertical yTx = 3m

Receiver(Rx)

Polarisation Vertical

Position
Horizontal xRx = 0m

Vertical yRx = 1.5m

Table 4.11: Simulation parameters for the curved tunnel taken from [18]

They studied the impact the curvature radius and length of the curved section have on propagation.

The parameters they chose are collected in Table 4.11, while the results are presented in Figs.4.19 and 4.20.

The former compares a straight 100m-long section, followed by a curved 200m-long stretch and another

100m-long section for three different cases: a r = ∞ tunnel radius, a r = 150m radius and a r = 300m

radius. Note the good agreement between ray-tracing and spectral simulations for the three analyzed cases

except for higher peaks in the straight tunnel. As expected, smaller radius of curvature lead to larger losses.
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(a) Results taken from [18],Figure 15.
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(b) Simulation results.

Figure 4.19: Results comparison for different curvature radii.

(a) Results taken from [18],Figure 16.
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(b) Simulation results.

Figure 4.20: Results comparison for different curvature length.

The second scenario focuses on the relation between path losses and length of a curved stretch in the

middle of the simulated path. Again, and for a tunnel radius of r = 150m, three tunnels are analyzed: a

straight tunnel Larc = 0m, a 100m-straight plus 200m-curved plus 100m-straight tunnel - Larc = 200m -

and finally a 150m-straight plus 100m-curved plus 150m-straight tunnel Larc = 100m. See how the longer

the curve, the larger the losses. Again, simulations using both techniques are close and both attenuation

and pattern are quite alike.

4.5 Computational Issues in Spectral Propagation

The spectral technique computational efficiency is based on the implemented FFT algorithm. The chosen

algorithm used in this case is based on the Cooley-Tuckey version, whose operational order is O (M log2(M))

for 1D-FFT and O
(
M2 log2(M)

)
for 2D-FFT [46], M being the FFT number of points for a square M ×M

matrix. Square matrices are used within the examples illustrated throughout the thesis because of tunnels
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cross-section geometry and better FFT performance. Because of the several scenarios chosen to illustrate

the performance of the spectral technique, the parameters varied between the following values:

• Frequency: f = 400MHz − 6GHz

• Sampling distance: ∆ = λ/4− λ/20

• Number of points: M = 128− 1024

Within the ranges of operation mentioned above, the totality of the tunnels presented throughout this

document can be analysed. In general, sampling frequency is set equal to the working frequency. Hence,

lower frequencies allow to work with less points because their wavelengths are larger: less points are needed

to span the whole spatial domain. Also, small irregularities on the tunnel cross-section - originated during

the quantisation process - do not affect the outgoing prediction at these frequencies, so coarser meshes - such

as ∆ = λ/4 for instance - can be used. This is the case of frequencies up to 900MHz, allowing the use of

M = 128, 256 points, that are executed at a very high rate by general-use computer processors.

On the other hand, higher frequencies - whose wavelength is on the same order as the tunnel roughness,

a few centimeters - require more points and finer meshes, such as ∆ = λ/10, λ/20.When the ∆ = λ/4 is used

at these frequencies, the mesh is useful to obtain a preliminary qualitative idea of the simulated environment.

Then, in these cases the number of points are usually in the M = 512, 1024 range, whose execution time

slowed considerably respect to the M = 128, 256 cases.

The spectral algorithm described in Section 3 iterates N times - the tunnel length, in points - the following

instructions:

1. Two 2-D FFT to convert the spatial field distributions into the Angular Plane Wave Spectrums

(APWS), one per field component.

2. Two point-per-point multiplications between the field components and the propagation phasor.

3. Two 2-D IFFT to retrieve the spatial field distributions from APWS.

4. Two point-per-point multiplications between the field components and the attenuation mask.

Steps 1 and 3 complexity is O
(
M2 log2(M)

)
, while steps 2 and 4 have O

(
M2
)

order. Thus, for sufficiently

large M values the algorithm asymptotical would be:

Sorder = O(M2 log2M) (4.1)

It must be noted, though, that the number of times the loop iterates the process longitudinally, N ,

has not been included on the previous expression because it varies greatly depending on the analysis being

carried over: near source studies, up to a few hundred meters, will typically command a number of iterations

N of some hundred times at small frequencies or a few thousand times at large frequencies. Meanwhile, long

range analysis will account for intensive computational work. See in Fig.4.21 how the number of operations

needed to perform propagation drastically increases for values higher than M = 512, and how for values

such as M = 128, 256, 512 the computational burden is less than or in the order of 106 operations.
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Figure 4.21: Simulations complexity as a function of the transversal dimensions. Spectral case

The required memory space is the second issue discussed in this section. It is well-known that fast

access memory modules avoid time-costly disk access, so it is critical to limit this parameter to a reasonable

value. The algorithm needs four M ×M arrays containing the field distributions in the spatial domain and

the APWS, two per polarisation, and two more highly-compressible arrays of the same dimensions for the

propagation phasor and the attenuation mask, whose majority of points are zero, so they can be ignored.

On top of that, output arrays containing axial evolution - 1×N - can be neglected but horizontal cuts along

the tunnel - M ×N - must be added to the amount of memory required. A typical case consists on storing

the vertical and horizontal cuts at a significant point in the tunnel for both polarisations. This case would

lead to a total memory requirement of:

(
4M2 + 2× 2×MN

)
bytes (4.2)

Supposing a longitudinal length in points of N = 5000, which would correspond to a 375m-long stretch

for a sampling frequency Fs = 1GHz and step ∆z = λ/4, Fig.4.22 shows the required memory for the range

of M values used throughout the thesis. Two traces are plotted, the first - d = 1 - being that corresponding

to the case where all data points are stored. See how for values larger than of M = 512 the free memory space

needed is more than 10GB approximately. This amount proves to be excessively large for a common-use

PC, so a decimating factor d = 8 on the output array can be applied to reduce number of stored data points,

thus decreasing the needed amount of memory, as showed in the second trace.

Anyway, the d = 8 decimating factor permits a more than qualitative look at field distribution. At large

frequencies and for sampling distances in the order of ∆ = λ/4, λ/10 the distance between observable points

may be on the order of a dozen centimetres, more than enough for the purpose of application in the current

EM study in tunnels.
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Figure 4.22: Memory requirements as a function of the transversal dimensions. Spectral case.

After running several simulations it has been found that both M and N are equally time-limiting: the

former because of the FFT size implying larger CPU effort, and the latter because large values finally lead

to time consuming disk access operations.

4.6 Conclusions on Spectral Propagation

The scope of this chapter was showing the behaviour of the implemented spectral technique and its limitations

have also been exposed. Predictions are good in many cases, while there are some of them where they differ

notably from the chosen references.

The main problems have been identified in arched tunnel profiles and highlighted when the source is

placed close to the tunnel boundaries, due to the importance that boundary conditions take under those

circumstances. The implementation of the vector BC described in Section 3.3 works properly in rectangular

tunnel cross-sections and also when the source is placed in the inner part of the tunnel. However, the

previously mentioned issues are still there and must be resolved. After seeing the results, it is clear that the

optical approach taken for the BC implementation is not 100% suited for the spectral techniques. Several

alternatives were used, none of them providing significant improvements, so it was decided sticking with the

current version while addressing its limitations with a new technique where the application of BC was easier.

Another reason for this path was the computational burden implied by the full-tunnel analysis. If propa-

gation at high frequencies want to be studied, simulation time must be reduced somehow. Some simulations

presented in this chapter took almost a full day of intensive computation and there are alternatives that can

reduce this span while also providing accurate predictions.

The parabolic technique for EM propagation was chosen because it solved the mentioned issues, the
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following chapters devoted to its description, implementation and results.



Chapter 5

Parabolic Equation Approach for

Propagation in Tunnels

As it has been mentioned in the previous chapter, spectral techniques have shortcomings. After devoting

much time to solving the challenges presented it was noticed the advantages that partial differential equations

and parabolic techniques offered. They are employed to model several areas of knowledge such as economics,

chemistry, biology and physics, representing a powerful and flexible tool when the appropriate conditions

are given.

Parabolic Equation (PE) was first used to provide better understanding of the heat equation and physical

processes because of its correct modelling of three-dimensional problems with slow variations in one dimension

([47],[48]). Radiowave propagation in enclosed areas such as tunnels is then well-suited to be modelled

with PE because the wavefront propagates predominantly along the tunnel longitudinal axis. Assuming a

homogeneous cross-section in the far-field region of the transmitting antenna, field variations are smooth

enough to allow the use of this method, as Popov [49],[50],[51] has shown in recent years.

The first section presents the Thomas algorithm. The importance of this tool, very useful when dealing

with tri-diagonal systems, will be highlighted in subsequent sections. The second section derives the Parabolic

Equation (PE) from Helmholtz’ wave equation and the third one is devoted to the Alternating Direction

Implicit (ADI) technique, an efficient method to solve the vector PE (VPE). The last section in this chapter

deals with boundary conditions application and results validation.

5.1 The Thomas Algorithm

The Thomas algorithm is a powerful tool used to solve tri-diagonal systems in a simple an efficient manner.

A tri-diagonal system can be, for instance, a system of partial differential equations where central differences

scheme is used to calculate the partial derivatives:

∂2ul
∂x2

=
ui−1 − 2ui + ui+1

∆x2
(5.1)

63
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See how the value at point l = i is related to its neighbours, specifically in this case the previous and

subsequent points. In this case, a smooth tendency is hinted as the values at the three points are interrelated,

and so are the values for the rest of points i = 1...L. These points could represent the discretisation of a

certain field distribution that, from Maxwell equations, must be continuous even on surface discontinuities.

The algorithm presented in this section was developed in the mid-20th century and is a Gaussian-based

elimination procedure without pivoting. The algorithm is briefly introduced here, although better insight

can be found in [47], [48] as well as in other numerical analysis books.

Consider first a system of equations such as:

aiwi−1 + biwi + ciwi+1 = di (5.2)

with i = 1, 2, ...,K. In matrix form it can be arranged as:

A · w = d (5.3)

Vector w has K unknowns. It represents a row or column of a field matrix. Hence, the first and last

elements, w1 and wK , can be determined applying the boundary conditions. Matrix A has tri-diagonal form:

1 0
a1 b1 c1

a2 b2 c2
. . . . . . . . .

ai bi ci
. . . . . . . . .
aK−1 bK−1cK−1

0 1

l
l

l
l
l

l
l
l

l
l

0

l
l
l

l
l
l

l
l
l

0

Hence, wi is computed off its neighbour values wi−1 and wi+1. A solution of the form:

wi = pi+1wi+1 + qi+1 (5.4)

is chosen in order to proceed as in Gaussian elimination. Substituting Eq.5.4 in Eq.5.2, the number of

unknowns is reduced so that:

wi = pi+1wi+1 + qi+1 (5.5)

with:

pi+1 =
−ci

aipi + bi
(5.6)

qi+1 =
di − aiqi
aipi + bi

(5.7)

By application of boundary conditions, w1 = β1 and wK = βK are found together with the rest of pi

and qi values with Eqs.(5.6) and (5.7). The algorithm requires that | pi |≤ 1 for all i values to be well-

conditioned. Otherwise increased error would propagate throughout Eq.(5.6). From here, unknowns wi are

found by backsubstitution using Eq.(5.5).
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5.2 The Parabolic Equation

Consider an oversized rectangular waveguide, sampled with a grid with axis on the x and y directions. Let

∆x and ∆y be the sampling distance over both axis and ∆z the propagation step in the longitudinal axis.

The solution of the parabolic equation over this grid will account for propagation on rectangular tunnels

but, as [24] has shown, propagation in arched tunnels can be successfully studied by means of an equivalent

rectangular tunnel.

It starts with the Helmholtz equation applied to the electric scalar potential F :(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

0

)
F (x, y, z) = 0 (5.8)

A solution of the form:

F (x, y, z) = U(x, y, z)e−jk0z (5.9)

is chosen with U representing the plane wave solution along the axial directions and e−jk0z a common

fast-varying phase term along the z-axis. Substitute Eq.5.9 into Eq.(5.8) and what follows is:

∂2

∂x2

{
Ue−jk0z

}
+

∂2

∂y2

{
Ue−jk0z

}
+

∂2

∂z2

{
Ue−jk0z

}
+ k2

0Ue
−jk0z = 0 (5.10)

If the chain rule is applied on the z partial derivative, then the previous expression becomes:

∂2U

∂x2
e−jk0z +

∂2U

∂y2
e−jk0z+

∂

∂z

{
∂U

∂z
e−jk0z + U

∂

∂z

{
e−jk0z

}}
+

k2
0Ue

−jk0z = 0 (5.11)

Applying the chain rule again:

∂2U

∂x2
e−jk0z +

∂2U

∂y2
e−jk0z+

∂2U

∂z2
e−jk0z + 2

∂U

∂z

∂

∂z

{
e−jk0z

}
+

U
∂2

∂z2

{
e−jk0z

}
+ k2

0Ue
−jk0z = 0 (5.12)

The nth-order derivatives of the phase term are:

∂n

∂zn
{
e−jk0z

}
= (−jk0)ne−jk0z (5.13)

If the previous expression is substituted in Eq.(5.12):

∂2U

∂x2
e−jk0z +

∂2U

∂y2
e−jk0z+

∂2U

∂z2
e−jk0z − 2jk0

∂U

∂z
e−jk0z+

(jk0)2Ue−jk0z + k2
0Ue

−jk0z = 0 (5.14)
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The last two terms cancel in the expression above. Grouping the z-derivative on one side of the equality

and ignoring the phase term:

2jk0
∂U

∂z
− ∂2U

∂z2
=
∂2U

∂x2
+
∂2U

∂y2
(5.15)

Here, the parabolic approximation must be stated. Let θ be the angle of propagation relative to the

z-axis. If fields are to vary smoothly as the wavefront progresses through the waveguide, plane waves must

propagate with small θ angles. Then, the following holds:∣∣∣∣∂2U

∂z2

∣∣∣∣� k0

∣∣∣∣∂U∂z
∣∣∣∣ (5.16)

The second term on the left side of Eq.(5.15) can thus be neglected and the SPE is obtained:

∂U

∂z
=

1
2jk0

(
∂2U

∂x2
+
∂2U

∂y2

)
(5.17)

Popov in [49],[50],[51] derives the full vectorial parabolic equation for arbitrary cross-sections and curved

paths following a similar analysis as the one performed in this section.

5.3 The Alternating Direction Implicit Method

The Alternate Direction Implicit method solves the parabolic equation found in Eq.(5.17) in two steps at

reasonable computational cost. A complex two-dimensional problem is reduced to several one-dimensional

problems as the method iteratively finds the propagated field line per line. In the first step the outcome is

determined by variations in one of the two transversal directions, whereas the second step uses the remaining

direction.

Consider a rectangle of dimensions (A,B). A rectangular grid is overimposed as in the following picture:

-

6

x

y

11
L∆xl∆x

M∆y

m∆y t

with:

A = L∆x (5.18)

B = M∆y (5.19)
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and:

l = 1, 2, ...,M (5.20)

m = 1, 2, ..., L (5.21)

Suppose now that U is a matrix corresponding to one of the transversal field components Ex or Ey.

Eq.(5.17) can be rewritten as follows:
∂U

∂z
= A1U +A2U (5.22)

where A1 and A2 are two linear operators defined as:

A1 =
1

2jk0

∂2

∂x2
(5.23)

A2 =
1

2jk0

∂2

∂y2
(5.24)

The differential scheme is taken around the centre point between two consecutive propagation steps so

that:

z = (n+ 1/2)∆z (5.25)

The Taylor series expansion of Eq.(5.22) is:

Un+1 − Un
∆z

=
1
2
(
A1U

n+1 +A1U
n
)

+

1
2
(
A2U

n+1 +A2U
n
)

+O(∆z2) (5.26)

where O(·) is the error related to higher order terms of the Taylor series not taken into account. Re-

grouping terms the previous expressions can be rewritten as:(
I − ∆z

2
A1 −

∆z
2
A2

)
Un+1 =(

I +
∆z
2
A1 +

∆z
2
A2

)
Un +O(∆z3) (5.27)

with I the identity matrix. This is the Crank-Nicolson scheme for the parabolic equation. Although the

solution for Un+1 can be obtained at this point, inverting the matrix may prove to be too hard computa-

tionally when using large meshes. ADI overcomes this problem by decomposing the matrix line per line in

two steps. To do so, the term ∆z2A1A2u
n+1/4 is added on both sides and the expression is factored:(

I − ∆z
2
A1

)(
I − ∆z

2
A2

)
Un+1 =(

I +
∆z
2
A1

)(
I +

∆z
2
A2

)
Un+

∆z2A1A2

4
(
Un+1 − Un

)
+O(∆z3) (5.28)

The last term order is ∆z3, so it can be included in the error term:(
I − ∆z

2
A1

)(
I − ∆z

2
A2

)
Un+1 =(

I +
∆z
2
A1

)(
I +

∆z
2
A2

)
Un +O(∆z3) (5.29)
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A new error term is introduced when the equation is discretized. Let A1h and A2h be the second-order

approximations of A1 and A1 respectively. Both error terms can be included in a new variable V so that:(
I − ∆z

2
A1h

)(
I − ∆z

2
A2h

)
V n+1 =

(
I +

∆z
2
A1h

)(
I +

∆z
2
A2h

)
V n (5.30)

that is the final expression of the ADI method. Peaceman and Rachford (P-R) rewrote it in a two-step

formula that computed the field in the next propagating plane Un+1 from the known values in the V n plane

by means of an intermediate virtual plane Ṽ
n+1/2

:(
I − ∆z

2
A1h

)
Ṽ
n+ 1

2 =
(
I +

∆z
2
A2h

)
V n (5.31)

(
I − ∆z

2
A2h

)
V n+1 =

(
I +

∆z
2
A1h

)
Ṽ
n+ 1

2 (5.32)

The discretized second-order differential operators A1h and A2h defined in Eqs.(5.23,5.24) can be com-

puted by means of a central differences scheme such as:

A1hum,l =
1

2jko
∂2u

∂x2
=

1
2jko

um+1,l − 2um,l + um−1,l

∆x2
(5.33)

A2hum,l =
1

2jko
∂2u

∂y2
=

1
2jko

um,l+1 − 2um,l + um,l−1

∆y2
(5.34)

From the previous expressions, differentiation at a certain point um,l solely depends on the neighbour

elements of the same row or column. Hence, Eqs.(5.31,5.32) become 2 tri-diagonal systems that can be

solved by means of the Thomas algorithm.

To ensure convergence of the ADI method, values for the different ∆x, ∆y and ∆z must fulfil conditions

imposed by the PE-ADI scheme [52],[47]. These parameters determine the error that is introduced by the

method through the calculations via finite differences scheme. Zelley [53] showed, while implementing his

method, that with a ratio of ∆x,∆y
∆z = 1

8 the error introduced is much smaller than 1dB, while Martelly [54]

obtained a 5% error for a ratio of ∆x,∆y
∆z = 1

20 . Compared to Nyquist criteria to which the spectral technique

is subdued, it immediately follows that simulation time will decrease significantly.

ADI solves the fields at the next longitudinal point in two steps. A loop along the z-axis is used to find the

fields by means of the Peaceman-Rachford scheme at every iteration. In the first P-R step (see Eq.(5.31)),

the field vn is decomposed column per column and the virtual intermediate plane ṽn+1/2 is found. The

column element values are solved with the Thomas algorithm. The second P-R step (see Eq.(5.32)) follows

the same procedure to obtain vn+1 from ṽn+1/2, but this time the decomposition is performed row-wise.

The propagation logic for the Peaceman-Rachford scheme is summarized in Figs.5.1,5.3. As it has can

be seen, BC are specified in a different manners. It is important to note them as implementation differs for

each case (see Section5.4). The different pi, qi and wi mentioned below correspond to the notation employed

in Section 5.1. There are three different cases:

1. case BC1: boundary conditions applied through p2 and q2 to find the first element of the row or column

being considered:

• 1st step, left boundary ṽn+1/2
m,1
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Figure 5.1: The two-step Peaceman-Rachford decomposition

• 2nd step, floor boundary vn+1
1,l

2. case BC2: boundary conditions applied to the last element of the row or column being considered:

• 1st step, right boundary ṽn+1/2
m,L

• 2nd step, ceil boundary vn+1
M,l

3. case BC3: boundary conditions applied at the end of the 2nd step for all possible m values:

• 2nd step, left boundary vn+1
m,1

• 2nd step, right boundary vn+1
m,L

5.4 Boundary Conditions for PE

The sections that follow describe the expressions encountered for the different pi, qi and wi of the Thomas

algorithm of Section 5.1. The latter represent field points of a determined row or column of the field matrix,

while the formers are constants related with neighbour field point values and boundary conditions that allow

retrieving the field at each propagation step.
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Figure 5.2: Peaceman-Rachford Propagation Scheme.

5.4.1 Dirichlet Boundary Conditions

This boundary condition specifies the value γ that the field must take on the boundary surface. In PEC

surfaces, it is used when the boundary surface and the polarisation of the impinging field are parallel. It can

be written as:

U |DirBC = γ (5.35)

Let w be a field row or column of U being solved with the Thomas algorithm. For the BC1 case

appropriate p2 and q2 values must be set. Over PEC surfaces, fields must cancel over the boundary. Thus:

w1 = 0 (5.36)

On the other hand, solution has the form stated in Eq.(5.5) so that:

w1 = p2w2 + q2 (5.37)

A pair of values that fulfill the previous equations are:

p2 = 0 (5.38)

q2 = 0 (5.39)

For cases BC2 and BC3 the value must be just set to 0. For instance, when dealing with the right wall

on the second Peaceman-Rachford step:

vn+1
m,L = 0 (5.40)
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5.4.2 Neumann Boundary Conditions

In this case the boundary condition determines the value that the derivative of the field needs to take to

become a valid solution. In PEC surfaces, it is used when the boundary surface and the polarisation of the

impinging field are orthogonal. It can be written as:

∂U

∂n

∣∣∣∣Neum
BC

= γ (5.41)

For points belonging to the boundaries, the centred differentiation scheme cannot be applied and forward

differences must be used instead. Thus, when dealing with such points as, for instance, the left boundary:

∂

∂x
{um,1} =

um,2 − um,1
∆x

(5.42)

Now consider the BC1 case and PEC surfaces. Then:

∂

∂x
{w1} =

w2 − w1

∆x
= 0 (5.43)

So:

w1 = w2 (5.44)

Again, from Eq.(5.5) it holds that:

w1 = p2w2 + q2 (5.45)

So, for Neumann boundary conditions, p2 and q2 must be set equal to:

p2 = 1 (5.46)

q2 = 0 (5.47)

Proceeding in a similar manner for case BC2:

∂

∂x
{wK} =

wK − wK−1

∆x
= 0 (5.48)

And:

wK = wK−1 (5.49)

From Eq.(5.5):

wK−1 = pKwK + qK (5.50)

So, for case BC2, the values that the last two elements must take are:

wK = wK−1 =
qK

1− pK
(5.51)

For case BC3, as in Eqs.5.44 and 5.49 for the left and right boundaries respectively, the values must be

equal to the neighbour values in the horizontal direction for all m values:

vn+1
m,1 = vn+1

m,2 (5.52)

vn+1
m,L = vn+1

m,L−1 (5.53)
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5.4.3 Leontovich Boundary Conditions

Also known as the impedance boundary condition, it applies to non-PEC surfaces. It enforces a field solution

that depends on the first-derivative of the field itself over the boundary, as well as the frequency, the boundary

surface impedance and the angle of incidence. Let U be an array corresponding to x and y field components

on the boundary such that U = [Ux, Uy]T . Then:

U

∣∣∣∣Leon
BC

=
i

k0
T0 G0 T0

∂U

∂n

∣∣∣∣
BC

(5.54)

with:

T
0

=

nx ny

ny −nx

 (5.55)

G
0

=

1/Z 0

0 Z

 (5.56)

∂Ui
∂n

=nx
∂Ui
∂x

+ ny
∂Ui
∂y

(5.57)

Here nx and ny are the outward normal components on the boundary domain, and Z the medium surface

impedance. Neglecting cross-polarisation effects - i.e., ignoring the rectangle corners - and developing the

Leontovich boundary condition, a close expression is found for both Ux and Uy components:

Ux

∣∣∣∣Leon
left

=
i

k0

[
n2
x

Z
+ n2

yZ

] [
nx
∂Ux
∂x

+ ny
∂Ux
∂y

]
(5.58)

Uy

∣∣∣∣Leon
left

=
i

k0

[
n2
xZ +

n2
y

Z

] [
nx
∂Uy
∂x

+ ny
∂Uy
∂y

]
(5.59)

On the left boundary nx = −1 and ny = 0. Then, for case BC1:

Ux

∣∣∣∣Leon
left

=
−i
k0

1
Z

∂Ux
∂x

(5.60)

Uy

∣∣∣∣Leon
left

=
−i
k0
Z
∂Uy
∂x

(5.61)

Suppose w is a row of Ux being solved with Thomas. Applying forward differences to 5.60:

w1 =
−i
k0

1
Z

w2 − w1

∆x
= γxleft [w2 − w1] (5.62)

where:

γxleft = −i/k0Z∆x (5.63)

Isolating w1:

w1 =
γxleft

1 + γxleft
w2 (5.64)

And from Eq.(5.5):

w1 = p2w2 + q2 (5.65)

Finally:

p2 =
γxleft

1 + γxleft
(5.66)
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q2 = 0 (5.67)

For a y-polarised field, the solution is the same but replacing γxleft with:

γyleft = −iZ/k0∆x (5.68)

instead. When applying the boundary conditions on the floor for the 2nd Peaceman-Rachford step,

nx = 0 and ny = −1 and the Leontovich BC become:

Ux

∣∣∣∣Leon
floor

=
−i
k0
Z
∂Ux
∂y

(5.69)

Uy

∣∣∣∣Leon
floor

=
−i
k0

1
Z

∂Uy
∂y

(5.70)

Solution for p2 and q2 are those of Eqs.(5.66,5.67) but with the following γ values instead:

γxfloor =
−iZ
k0∆y

(5.71)

γyfloor =
−i

k0Z∆y
(5.72)

BC2 case applies for two different boundary domains: the right wall in the first Peaceman-Rachford step

and the ceil in the second. As for the right wall, nx = 1 and ny = 0 so the solution must fulfill:

Ux

∣∣∣∣Leon
right

=
i

k0

1
Z

∂Ux
∂x

(5.73)

Uy

∣∣∣∣Leon
right

=
i

k0
Z
∂Uy
∂x

(5.74)

Proceeding in a similar manner as for BC2 case in the Neumann case the solution has the following form:

wK =
γxright

γxright(1− pK)− 1
qK (5.75)

wK−1 =
γxright − 1

γxright(1− pK)− 1
qK (5.76)

with:

γxright =
i

k0Z∆y
(5.77)

γyright =
iZ

k0∆y
(5.78)

For the upper boundary nx = 0 and ny = 1 and the boundary conditions become:

Ux

∣∣∣∣Leon
ceil

=
i

k0
Z
∂Ux
∂y

(5.79)

Uy

∣∣∣∣Leon
ceil

=
i

k0

1
Z

∂Uy
∂y

(5.80)

The solution takes the form of Eqs.(5.75,5.76) but with the following γ values:

γxceil =
iZ

k0∆y
(5.81)

γyceil =
i

k0Z∆y
(5.82)
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For caseBC3, expressions for the boundary conditions have already been found in Eqs.(5.60,5.61,5.73,5.74)

for the left and right walls respectively, as also have been the corresponding γ in Eqs.(5.63,5.68,5.77,5.78).

Again, the values must be set for the whole range of m values. This time the solution takes the form:

vn+1
m,1 =

γ

1 + γ
vn+1
m,2 (5.83)

vn+1
m,L =

γ

1 + γ
vn+1
m,L−1 (5.84)

with vn+1 being Ux or Uy according to the polarization, and γ takes the appropriate values depending

on the boundary domain and the polarization.



Chapter 6

Simulation Results and Validation:

Parabolic Approach

Once the base upon this part of the simulator is based has been explained, the issues addressing the proper

behaviour of the simulator in real scenarios must still be resolved and that is the main purpose of this

chapter.

First of all it is worth comparing the simulator results with published theoretical waveguide models for

tunnels. As it has been previously mentioned, the validity of the parabolic approach is comprised for small

propagation angular ranges, so field configurations that are supposed to be stables throughout the tunnel

are a perfect fit to assess the simulator performance.

Afterwards comparisons with published measurement data will be shown and some of the algorithm

limitations will be exposed. Real scenarios imply several assumptions to be made and restrictions to be

imposed in order to be able to use the ADI technique for EM prediction in tunnels.

In the next chapter simulations will be displayed with the results of a measurement campaign carried

out by our group at L9 of Barcelona Metro, showing the degree of accuracy that can be expected from the

developed work.

6.1 Validation of PE in Theoretical Scenarios

6.1.1 Dirichlet Waveguide

One of the examples presented in [54] are used to validate the developed ADI method with Dirichlet boundary

conditions over the whole boundary domain. Suppose a PEC square waveguide with the following parameters:

1. Frequency f = 3GHz

2. Waveguide dimensions: 40λ× 40λ, 100m long

3. Source field: centred unit strength gaussian, σ = 3.5λ

75
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4. Sampling parameters: ∆x = ∆y = 0.4λ, ∆z = 5λ

Fig.6.1 shows the field at the starting transversal plane and the resulting solution 100m beyond. As the

zero is forced at over boundary, see how the maximums of the solution are distributed symmetrically in

the middle of the waveguide, with the only nulls being placed at the borders. A correct result for the here

implemented method is obtained when compared against the analytical solution.

(a) Analytical solution taken from [54],Figure 4(a). (b) Simulation results.

Figure 6.1: Dirichlet BC test.

6.1.2 Neumann Waveguide

The same example as in the Section 5.4.1 is run with Neumann boundary conditions over the whole boundary.

Fig.6.2 shows the field at 100m from the source plane. See now that zeros along the boundary appear

naturally at some points, but because the Neumann BC forces zero on the first derivative, some points still

have some significant value at the borders. Again, see how the simulator correctly finds the solution when

compared against the analytical case, with the symmetrically distributed field around the guide centre.

(a) Analytical solution taken from [54],Figure 4(c). (b) Simulation results.

Figure 6.2: Neumann BC test.



6.1. VALIDATION OF PE IN THEORETICAL SCENARIOS 77

6.1.3 Leontovich Hybrid Waveguide

To validate the correct application of the Leontovich boundary conditions an example presented in [31] and

[54] is used. Suppose a rectangular guide such as that of the Fig.6.1.3, with 3 PEC walls and an impedance

wall at x = 4.

-

6

x(m)

y(m)

4

4

Z

On the wall placed at x = 0 the boundary conditions are:

∂Ex
∂x

= 0 (6.1)

Ey = 0 (6.2)

whereas for walls at y = 0 and y = 4 are:

Ex = 0 (6.3)

∂Ey
∂y

= 0 (6.4)

Over the impedance wall placed x = 4 Leontovich boundary conditions must be applied. Cross-

polarisation effects are neglected but, the guide being imperfect, small coupling between E-waves and H-waves

occurs at the impedance wall. This means that, as waves pass down the guide, pure E-modes and H-modes

are not stable and the field distribution changes throughout. Only a precise combination of both modes -

(ExH)m,n and (EHx)m,n - propagates without substantial changes on its shape. Details about this modes

are offered in [31].

Consider first that the y-component of (ExH)1,1 mode, shown in Figure 6.3a, propagates with the

following parameters:

1. Frequency f = 1GHz

2. Wall impedance Z = 0.3(1 + i)

3. Sampling ∆x = ∆y = 0.27λ , ∆z = 11λ

4. Waveguide length z = 5km

As it can be seen in Figure 6.3b, the field has passed down the guide preserving the field distribution with

a notable resemblance to the theoretical solution. Field amplitude at z = 1km agrees with results presented

in [54].
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(a) Analytical solution at z=1km (b) Simulation results at z=1km

Figure 6.3: ExH11 case

(a) Analytical solution at z=5km (b) Simulations result at z=5km

Figure 6.4: EHx11 case

The same example is repeated for the (EHx)1,1 x-component with wall impedance of Z = 0.01(1+ i) and

waveguide length of z = 1km. This case gives more insight than the previous one as the field distribution

has a maximum on the impedance boundary. In Figures 6.4a and 6.4b the initial and final transversal field

configurations are shown. Again, the field pattern is preserved along the guide and close to the analytical

solution, and the difference between theoretical and simulated modal attenuation factor is 2.64dB/km.

A last remark must be done regarding the use of Leontovich BC. In a general case, modal field distributions

are composed of a determined combination of sine and cosine functions. Depending on the mode, and talking

in absolute value terms, a maximum or a zero will be placed at the boundary. In the former, and from the

properties of sinusoidal functions, maximums have zero slope so the application of Leontovich BC will tend

to impose a null along the boundary. The other case, where a zero is placed at the boundary, yields the same

results. So, with a few exceptions such as the example in Fig.6.4, Leontovich BC forces field distributions

to be confined inside the cavity, with nulls at the bounds and maximums distributed around the centre of

the cavity.
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Figure 6.5: A rectangular dielectric waveguide

6.2 Theoretical Validation of ADI Simulations

6.2.1 Hybrid Modes in Rectangular Dielectric Waveguides

Several studies [31],[22],[34] have discussed that an exact analytical solution for hybrid modes in a rectan-

gular dielectric hollow such as that of Fig.6.5 cannot be found. Approximate solutions have been found

corresponding to the modes propagating inside the guide, although in the cited references different axial

references were used. To ease the interpretation of the EM guiding phenomena and avoid confusion, the

used expressions to find the field distributions for the horizontally - or x-polarised - modes (HExmn) and

vertically - y-polarised - modes (HEymn) are listed below. Using the traditional transverse wavenumbers

kx =
mπ

a
ky =

nπ

b
(6.5)

the approximate expressions for the modes can be summarised as follows:

1. Horizontally polarised hybrid modes: HExmn

Ez '0 (6.6)

Hz '0 (6.7)

Ex =E0 sin (kxx+ ϕx) cos (kyy + ϕy) e−jkzz (6.8)

Hx =0 (6.9)

Ey =0 (6.10)

Hy =H0 sin (kxx+ ϕx) cos (kyy + ϕy) e−jkzz (6.11)

with phase constants ϕx and ϕy depending on the mode number as follows:

ϕx =
{
π/2, if m odd

0, if m even
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(a) The HEx
11 x-component (b) The HEx

35 x-component

Figure 6.6: The x-field components of two hybrid modes.

ϕy =
{
π/2, if n even

0, if n odd

2. Vertically polarised hybrid modes: HEymn

Ez '0 (6.12)

Hz '0 (6.13)

Ex =0 (6.14)

Hx =H0 cos (kxx+ ϕx) sin (kyy + ϕy) e−jkzz (6.15)

Ey =E0 cos (kxx+ ϕx) sin (kyy + ϕy) e−jkzz (6.16)

Hy =0 (6.17)

(6.18)

with phase constants ϕx and ϕy depending on the mode number as follows:

ϕx =
{

0, if m odd

π/2, if m even

ϕy =
{

0, if n even

π/2, if n odd

As an example, the field distribution of the transversal x-components - note that the longitudinal and

y-transversal are zero - for the HEx11 and HEx35 are presented in Fig.6.6. The tunnel dimensions are a = 4m

and b = 3m.

The theoretical expressions for attenuation of the modes are given in the previous references. To assess

the validity of the simulator, modes HEym1 for m = 1, ..., 9 were propagated for a distance up to z = 500m

with the implemented ADI algorithm. Correct results were obtained - see Table 6.1 - as modes preserved

the same configuration throughout the tunnel and the attenuation was similar to the expected theoretical

values.
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Mode αtheoretical [dB/km] αsimulation [dB/km]

HEy11 0.0726 0.0704

HEy12 0.2561 0.2352

HEy13 0.5622 0.5422

HEy14 0.9907 0.9788

HEy15 1.5416 1.5427

HEy16 2.2150 2.2226

HEy17 3.0107 3.0178

HEy18 3.9289 3.9362

HEy19 4.9695 4.9865

Table 6.1: Attenuation comparison for HEymodes

6.2.2 Propagation in Rectangular Tunnels

After obtaining good simulation results with theoretical cases, the next step is observing its performance in

a more realistic scenario. To this end, the published measurement results presented in [16] and [24] are used

as a reference again. The simulation parameters are the same as in Section 4.1. This time, however, results

are greatly improved as shown in Fig.6.7 and Table 6.2. The deviation both for the attenuation constant

(a) Measurement results taken from [16],Figure 18.
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(b) Simulation results.

Figure 6.7: Parabolic simulation results at 450MHz and 900MHz.

and the phase constant has decreased notably, as the good behaviour presented demonstrate. To obtain the

initial fields for the PE technique, a spectral simulation is run with the equivalent rectangular tunnel cross

section for the first few meters, until a certain point is reached and the propagation is switched to the PE.

Details about how the switching point is chosen are presented on the following section

Therefore the modal expressions found in the previous section can be used to here to give some insight

on the effects occurring inside the tunnel.



82 CHAPTER 6. SIMULATION RESULTS AND VALIDATION: PARABOLIC APPROACH

Case Attenuation [dB/Km] Pseudo-periodicity [m]

Measurements 450MHz 33 240

Simulations 450MHz 33.3 248

Measurements 900MHz 8.5 486

Simulations 900MHz 9.6 500

Table 6.2: Parameter comparison between measurements and simulations

6.3 Computational Issues for ADI-PE

On top of the advantages that represent higher accuracy and easier application of boundary conditions with

the parabolic technique respect to the spectral method, there is also the benefit of allowing longer tunnel

studies that would otherwise become too costly. The simple implementation chosen for ADI - even if faster

procedures have been described and successfully tested in [55],[56] for instance - greatly enhanced the time

needed for EM prediction.

First, recall that transversal matrices used during ADI simulations only account for points belonging

to the inner part of the tunnel. So, if the spectral simulator works with M × L matrices, where usually

L = M , ADI works with non-squared matrices such that (MADI , LADI) < (M,L). Commonly, matrix

dimensions reduced to 50% of the original matrix size, so to ease the analysis consider ADI square matrices

of MADI ×MADI .

The procedure described in Section 5.3 has an operational order of O
(
M2
ADI

)
, which is smaller than that

found for the spectral technique even if the same matrix dimensions - MADI = M - are considered for both

methods. Fig. 6.8 highlights this feature, considering MADI = 0.7M . See how the number of operations

decreases by almost 40%. This notable reduction is very positive, and it must also be noted that time spent

to jump from one technique to the other is negligible.

On the other hand, memory resources are also less demanding due to the aforementioned transversal

matrices size reduction, but also because of the nature of ADI techniques. Because they are applied to model

slowly varying processes along one dimension, the total number of sampling points along that dimension can

be reduced. For instance: for fields sampled every λ/4 along the transversal dimensions, the longitudinal

sampling can be made every ∆zADI = λ, 5λ when spectral simulations sampled the longitudinal axis every

∆zspectral = λ/4, λ. ADI only uses two MADI × LADI matrices - one for each transversal field component -

and two MADI ×NADI arrays for longitudinal field storage, so the total required memory space is:(
2M2

ADI + 2× 2×MADINADI
)
bytes (6.19)

Fig. 6.9 shows the difference between the required memory resources of spectral and ADI techniques,

considering ∆zADI = 5∆zspectral. Memory requirements are down to very reasonable 10MB when all data

are stored, or to 5MB when data are decimated, when large simulations are run. Adding to that fact, the

time saved by avoiding hard disk access while working with fast-access memory may be the top reason to

root for a mixed spectral-ADI approach. That was one of the hardest points with full-spectral simulations:

1000m-long simulations at large frequencies, as those presented in Section 6.2.2, were difficult to perform
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Figure 6.8: Simulations complexity as a function of the transversal dimensions. ADI case.

without ADI approach. Also, computer requirements are less demanding, allowing for common use PC or

laptops to run simulations without much troubling.
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Figure 6.9: Memory requirements as a function of the transversal dimensions. ADI case.



Chapter 7

Propagation in Tunnels: A Combined

Spectral-PE Approach

The previous chapters have been devoted to the performance analysis of two different approaches used for

modelling EM propagation in tunnels: the spectral method and the parabolic equation. So far, it has been

shown that both techniques are able to provide meaningful results in certain situations and that their strong

points lie in complementary areas.

Thus, the combination of both techniques to cover the full range of distances along the tunnel comes

naturally. This chapter will introduce the criterion used to combine both techniques and results will imme-

diately follow, comparing the approach predictions and the measured path losses of a set of measurement

campaigns carried out at Metro L9 in Barcelona, Spain.

For all the examples presented in this chapter, path loss results both from measurements and simulations

will be normalised to the free space fall-off in the meters close to the source.

7.1 The Hybrid Spectral-PE Approach

After working intensively with spectral techniques, it was clear that some adjustments had to be made in

order to reduce the simulation time required for tunnel simulations at 5.8GHz when long distances were

analysed. Somehow also, problems with the application of BC had to be overcome to provide accurate

results at long distances.

On the other hand, contributions from Popov [50] and Martelly [54, 57] proved the usefulness of parabolic

equation techniques for EM predictions in tunnels, although it was singled out that the close-to-transmitter

region had to be obtained by other means, as the conditions imposed for the parabolic regimen were not

fulfilled at such short distances.

Hence, it is only a matter of meeting an optimal combination between the techniques detailed in the

previous sections to overcome their respective shortcomings. In fact, [50] uses a geometrical optics method

for the first few meters, although it does not offer details on the criterion followed to switch between

85
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techniques. Here, the main point is finding the appropriate switching point that maximises the trade-off

between time, resources and accuracy.

7.1.1 Algorithms Advantages and Limitations

Spectral methods are specially suited in complex scenarios such as tunnels because the whole geometry of

the cavity is analysed integrally. However, there are disadvantages too. The following list summarises both

positive and negative aspects of spectral methods:

• Advantages

1. Integral treatment of the cavity and the surrounding area.

2. Two-domain information of the EM phenomena occurring in the tunnel.

3. Able to model properly the near-to-the source fields behaviour.

4. Obstacles or cross-section changes easy modelling.

• Disadvantages

1. Difficult application of polarimetric BC.

2. Inaccurate long-distance path loss prediction.

3. Intensive computational load at high frequencies.

As for PE methods:

• Advantages

1. Integral treatment of the cavity.

2. Accurate long-distances modelling.

3. Easy application of polarimetric BC.

4. Low computational load.

• Disadvantages

1. Initial field plane definition must be obtain using external methods.

2. Initial fields must be slow-varying in one direction.

3. Obstacles or cross-section changes are hard to model.

From the description made above it seems clear that both techniques are a good fit to be paired together:

both deal with the whole tunnel cavity and while the former properly models the transmitter short range,

the latter is more adept to be used far from it. The fact that irregularities at the tunnel walls have large

impact near the transmitter and are much less significant in the far region is also a good match. For last,

after detailed analysis of the near-field region of the transmitting antenna is performed with the spectral

technique, computational effort is eased by means of the PE in the long distance. Table 7.1 summarizes the

most important advantages and shortcomings of each technique.
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Spectral Parabolic

Distance range near to the source far from the source

Boundary condition difficult to apply Leontovich approach

Initial field set-up from antenna currents need for external set-up

Tunnel modelling adaptable to obstacles constant cross-section

Computational load high low

Table 7.1: Spectral and Parabolic techniques comparison

7.1.2 The Angular Criterion

This section describes the criterion employed to determine when to switch from spectral propagation to PE

propagation.

As it has been documented in [47] and [48], the condition for the parabolic regimen accurate modelling

requires the propagation to rely heavily in the components comprised between ±15◦. In Section 3.2.3, the

number of points from the spectrum centre had been related to the propagation angle θi (Eq.3.22):

v =
L∆x
λ

sin θi (7.1)

where L is the total number of points along the x-axis and ∆x the sampling distance. From here, it is

straightforward to find the maximum displacement that a component can have in the APWS in order to

belong to the parabolic regimen. If the angle θi is bounded to θmax ≤ ±15◦:

vmax =
L∆x
λ

sin θmax '
L∆x
4λ

(7.2)

The same can be said along the y-directions and, considering identical sampling conditions in both direc-

tions, it results in a circular pattern around the centre of the spectrum. The procedure consists in computing

the amount of energy accumulated inside the margin by a vmax-radius circumference around the centre of

the spectrum respect to the total amount of energy contained across the whole spectrum. Afterwards, this

magnitude is compared with a certain threshold γ. Denoting SPE as the spectrum components propagating

with angles θmax ≤ ±15◦, it would look as follows:

ζPE =
∑

l∈SPE

∑
m∈SPE

[
|APWSx (xl, xm) |2 + |APWSy (xl, xm) |2

]
(7.3)

ζtotal =
∑
∀l

∑
∀m

[
|APWSx (xl, xl) |2 + |APWSy (xl, xm) |2

]
(7.4)

Note that the quantities written above are not energy, because they are the square modulus of the spectral

components, but the ratio between them is an equivalent magnitude as both are expressed in the spatial

frequency domain. Thus, γ being the threshold, the condition that must be checked while the wavefront

progresses in the spectral method is:
ζPE
ζtotal

?
≥ γ (7.5)

When the condition is fulfilled, the propagation method is switched from spectral to PE. Note that, from

this point on, as mentioned in the advantages and disadvantages in the previous sections, fields outside of the
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cavity are not further propagated, thus reducing the arrays size and memory requirements. The information

loss - corresponding to scattered fields in the external vicinity of the boundary - is not important at this

stage because main contributions are already propagating along the tunnel longitudinal axis. Otherwise the

criterion would not be fulfilled.

It still remains to be seen which value is a good fit for the threshold. For this point, an experimental

study rather than a theoretical approach has been undertaken.

7.1.3 Spectral-PE Simulations Results

Curves of Fig.6.7 in Section 6.2.2 have been obtained applying the procedure detailed above: the first tunnel

stretch is simulated with the spectral method periodically checking if the threshold is reached and, once it

does, the rest of the tunnel is run with the PE method. The threshold in that case has been set at 95%.

After running many simulations, the evolution of the quotient in Eq.7.5 is always similar to that of

Fig.7.1. In this case, a large rectangular tunnel is simulated with the transmitted shifted 1m from the centre

of the tunnel, and transversal fields are stored every 10m.
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Figure 7.1: Energy inside the ±15◦ range versus distance.

Some tests were made varying the transmitter position or its radiation pattern, but the shape of the

curve remained relatively constant for all analysed scenarios, the only point changing being the quickness

- or distance - with which the energy is gathered inside the ±15◦ range with high values. After that, it

is interesting to see when does the combination between spectral and PE methods converge. To address

this issue several simulations are run varying the switching point. The same rectangular tunnel as above is

simulated for a total of 600m and four different split points: 10m, 30m, 50m and 70m. Results for the first

100m are presented in Fig.7.2, with blue lines being the spectral simulations and red lines PE simulations.
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(a) Switching point: 10m.
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(b) Switching point: 30m.
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(c) Switching point: 50m.
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(d) Switching point: 70m.

Figure 7.2: Combination between spectral and PE simulations at different points.

See how PE simulations follows quite accurately the pattern predicted by spectral simulations for all

cases up to the 100m mark. It also shows that both techniques are compatible to work together mainly

because, just as geometrical optics techniques also do, they deal with the wavefront as a decomposition of

rays or plane waves equivalently.

Taking a look at the first 100m in Fig.7.2, it would seem logical start using the PE technique as soon as

possible in order to enhance the management of computational time and resources, but if the full distance

span of 600m is analysed, simulation shows that, the combination being made at 10m, the trace is very noisy,

in the sense that many deep, fast oscillations are present along the path loss curve, making the analysis

harder. As the combination is retarded the traces become clearer. An example of such is represented in

Fig.7.3, where combinations at 10m and at 70m are compared.

Hence, recalling the results shown in Fig.7.1 and seeing the small differences obtained between setting

the switching point at 30m or later, it seems that, percentage-wise, around 80% of energy contained inside

the PE margin is a good enough threshold to start working with the PE technique at L9 tunnels.
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0 100 200 300 400 500 600

−110

−100

−90

−80

−70

−60

Distance [m]

P
at

h 
Lo

ss
 [d

B
]

 

 

(b) Switching point: 70m.

Figure 7.3: Full view of spectral-PE simulations.

7.2 Barcelona Metro L9 Measurement Campaigns

Some details have already been mentioned about Metro L9 service. It accounts for one of the most chal-

lenging projects on urban development nowadays, and its impact on the transport service of the Barcelona

metropolitan area cannot be ignored.

The tool developed during this thesis aims to be useful for the radiocommunication planning of the dif-

ferent services of L9. Due to the high-standard requirements of the service and the Automatic Train Control

system, a safe, reliable and efficient planning is of paramount importance. During the thesis development,

several measurement campaigns were carried out that greatly helped to add new elements to the simulator

and contrast the obtained results.

Most of the information described in subsequent sections has already been published in [58],[59] and [60]

referring to the environment and measurement setup description. Here, a brief introduction of the measured

tunnels is given to provide some consistent background to the results presented in this section.

7.2.1 Metro L9 Environment Description

As it has been shown in Section 3.2.1, L9 tunnel has a horizontally-split circular shape with diameter

comprised between 9m and 12m, depending on the tunnel stretch. The walls are made of steel-fiber reinforced

concrete and are quite smooth except for the different cables, pipes and boxes that account for power and

communications supply. This objects have a regular longitudinal pattern and, in the boxes case, are placed

periodically along the tunnel. This usually is corresponded with non-random scattering, favouring certain

directions of propagation instead. The fact that, prior to the measurement campaigns, no random scattering

was expected, did not have much significance for the spectral simulations, as it has been shown that this

aspect can be easily taken into account, but it could have had for the PE case because of the considerable

size of this objects, even if under the ±15◦ range main contributions propagate almost parallel to the tunnel

longitudinal axis.

Some significant data related with L9 tunnels is summarised in the following points:
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• Tunnel diameter: 9m− 12m.

• Upper cavity dimensions: 9.94m radius x 4.77m high.

• Lower cavity dimensions: 9.54m wide x 4.65m high.

• Wall dielectric constant: εr = 12

• Wall conductivity: σ = 0.01S/m

• Tunnel curvature radius (when appropriate): 240m

• Transmitting and receiving antennas: Patch antennas placed 2m above ground and shifted between

1m− 3m from the tunnel axis, depending on the measurement set.

Although the spectral simulator is prepared to deal with the whole L9 cross-section geometry, no mea-

surements could be taken that allowed to observe the EM behaviour of one cavity while transmitting from

the other one. Thus, to ease the analysis, only half section was simulated - whether it was upper or lower

- each time. This also facilitated the integration of PE simulations, keeping the number of points relatively

manageable and not having to introduce new boundary conditions in the middle of the cavity corresponding

to the intermediate platform.

(a) L9 upper cavity. (b) L9 lower cavity.

Figure 7.4: L9 tunnel environment.

Some pictures of the tunnels are shown in Fig.7.4, where two semi-curved paths are shown to illustrate

both the straight and curved paths. The presence of the mentioned items next to the walls can be appreciated

in the pictures, as well as the large tunnel curvature radius at the end of the depicted tunnel stretch. See

the arched ceiling - almost a complete semi-circular profile - in the upper cavity and the horizontal ceiling

with partially-curved lateral walls in the lower cavity. It can be seen that the upper cavity area - 38.8m2 -

is a bit smaller than that of lower cavity - 44.36m2.

As the PE technique has only been implemented to deal with rectangular cross-sections, it is necessary to

find an equivalent rectangular cross-section for both upper and lower cavities. Unfortunately, the technique
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employed in [16] and [24] of measuring the fundamental mode attenuation at the working frequency cannot

be employed here because the tunnel did not offer a straight, long enough stretch to measure it and adapt

the equivalent rectangular tunnel dimensions to match that attenuation. As [37] proved, arched tunnels

can be analysed using rectangular sections with the same cross-sectional area as the original one. Fig.7.5

presents the real and the simulated tunnels for both cavities. The dimensions of the equivalent rectangular

cross-sections are summarised in Table 7.2, as well as the employed terminology for antenna polarisation

during the measurement campaigns.
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(a) L9 upper tunnel cross-section and its rectangular

equivalent.
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(b) L9 lower tunnel cross-section and its rectangular equiv-

alent.

Figure 7.5: L9 simulated cross-sections.

Tunnel a[m] b [m]

Upper Straight Tunnel (UST) 9.94 3.91

Lower Straight Tunnel (LST) 9.54 4.36

Lower Curved Tunnel (LCT) 9.54 4.36

Horizontal polarisation Hpol, parallel to ground

Vertical polarisation Vpol, orthogonal to ground

Table 7.2: Equivalent tunnel dimensions and terminology

7.2.2 Validation of Spectral-PE Simulations in Real Scenarios

Once the environment in which the measurements took place has been presented, results are shown in this

section. Assessment of measured and simulated path losses is given, focusing on the comparison between

experimental and simulated curves.

Even if a total of three long campaigns have been carried out, only three specific scenarios are going to

be analysed. There is a variety of reasons for this. First, because L9 was being constructed or being finished

at the moment the measurements took place, not all the desired scenarios could be measured under proper

conditions, or measured at all. Secondly comes the limitations of the developed algorithms: only the spectral

technique can deal with the different options L9 tunnels present, as the PE technique here implemented is

limited to straight tunnels with homogeneous cross-section.
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Ideally, the interest should be focused on long straight or curved stretches because of the impact the

different objects along the tunnel boundaries have on the short range. As a consequence, the three analysed

situations are an upper straight tunnel stretch, a lower straight tunnel stretch and a lower curved tunnel

stretch, the latter being simulated fully with the spectral method. The upper curved tunnel stretch could

not be measured, so there is no reference to compare against and this case is omitted from these results.
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LST Hpol measurements
LST Hpol simulations

Figure 7.6: L9 comparison. LST H polarisation.

Figs.7.6 and 7.7 compare the results of measurements and simulations for the Lower Straight Tunnel

(LST), the former with H polarisation and the latter with V polarisation. Simulations were run using

the equivalent-area rectangular tunnel of Fig.7.5b. The switching distance between spectral and parabolic

techniques was r = 60m, where more than a 87% of the energy was contained inside the ±15◦ angular

propagation range. Once the free space behaviour disappears, losses are small, as the corresponding the

fundamental mode theoretical attenuations in the equivalent rectangular LST tunnel for H and V polarisation

show: αH = 0.01dB/100m and αV = 0.05dB/100m. In this case the difference is not much noticeable but

this is due low attenuations corresponding to such high - 5.8GHz - frequencies. The measured scenario does

not allow to identify the lower order modes as in the experiment from Molina-Garćıa-Pardo et al. [24], which

would be very interesting, because the distance between transmitter and receiver required to extinguish

higher order modes at this frequency range exceeds by large the available straight tunnel stretches at L9.

Measurements and simulations in Fig.7.6 for horizontally polarised case have similar trends and match

pretty well for the whole analysed stretch, although several local differences can be appreciated. Nevertheless,

this was expected in light of results presented in Chapters 4 and 6. Similar comments apply for the vertically

polarised case of Fig.7.7: there is a first region where both measurements and simulations fall-off is that

of free space, with a noticeable decay up to 100m from the source. From that point on, decay occurs at a

much slower pace. The modal richness is still present, while fast-fading vanishes as expected as the distance
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LST Vpol measurements
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Figure 7.7: L9 comparison. LST V polarisation.

between transmitter and receiver increases. Some peaks and valleys are unmatched between measurements

and simulations though, but the overall attenuation is well predicted.

Figs.7.8 and 7.9 show a similar study at the Upper Straight Tunnel half (UST) for both polarisations.

Larger differences in the path loss shape are expected in this case because of the difference between the

semi-arched real tunnel cross-section and the equivalent-area rectangular profile used in simulations. Also,

the fundamental mode theoretical attenuations for the UST tunnel are small and do not differ much: αH =

0.01dB/100m and αV = 0.07dB/100mIn spite of it, the simulator is able to make correct predictions for the

horizontal polarisation, but the behaviour is quite worse for the vertical case. Fast fading lasts longer than in

the LST tunnel, due to the arched ceiling forcing larger number of reflections. The Hpol case follows a similar

trend to that of LST until the 350m mark: a free space fall-off first, a slow decay afterwards. Afterwards

though, a significant drop occurs that that the simulator successfully predicts. For the Vpol case, the drop

occurs later, at 400m approximately, but this time the difference between measurements and predictions is

significant in the last stretch. As in the LST scenario, partially success is achieved even if peaks and valleys

are mismatched at certain points of the tunnel.

Trying to add some numerical consistency to the previous comments for both tunnels and polarisations, an

analysis frequently used in mobile communications environments is carried out [61]. This analysis substitutes

the comparison against modal attenuation used throughout the thesis because of the high frequency and

relatively short distances used during measurements. Root mean square values (RMS) for measurements and

simulations of Figs.7.6,7.7,7.8,7.9 are obtained filtering both curves with a moving average window of length

40λ. Once the difference in absolute value between both RMS curves is computed, mean µ and standard

deviation σ are found to numerically characterise the simulator’s performance. Results are presented in

Table 7.3.
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Figure 7.8: L9 comparison. UST H polarisation.

Tunnel LST UST

Polarisation Hpol Vpol Hpol Vpol

µ [dB] 5.92 5.52 6.06 7.83

σ [dB] 7.55 7.25 7.66 10.78

Table 7.3: Numerical comparison between measurements and simulations for straight L9 tunnels. Window

length: 40λ.

As it can be seen, simulator predictions have an average difference of 6dB respect to measurements during

the 600m-long analysed stretches; standard deviation also have large values. The obtained accuracy is worse

than that presented by Didascalou et al. [20]. There are several reasons to that: the frequency of analysis

has a much smaller wavelength, which leads to larger presence of fast-fading throughout the tunnel that

can be hardly predicted even if the tunnel is modelled accurately. Related with the previous one, smaller

attenuation accounts for higher number of modes involved throughout the measured propagation path. See

the difference between path loss curves of Figs. 4.3a and 4.4a and those presented in this section, how

the bouncing is smoother and clearer in the former ones even though the distance span is different, larger

for the current figures. At 5.8GHz, the higher peaks and deeper valleys predicted by the simulator may

be interpreted as an indicator that some higher order modes are missing, thus allowing the possibility of

purer constructive and destructive interferences as the large bouncing dynamic range of the previous figure

suggests. The difference at these mismatched peaks and valleys largely contribute to increase the values

of standard deviation presented in Table 7.3. Another source of error is that it was difficult to model the

irregular wall obstacles because tunnel works were not finished and sizes of the different boxes attached to the

tunnel boundaries and obstacles - such as metallic scaffoldings, railway end structures - were considerable.
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Figure 7.9: L9 comparison. UST V polarisation.

If the window size is increased to a metric span comparable to the one used in Didascalou analysis [20]

- between 12 and 20m, depending on the frequency - accuracy improves. In this case a window of 300λ or

15m at f = 5.8GHz is employed and used henceforth. Results are those of Table 7.4, which show a much

better accuracy except for the UST Vpol case, that is still quite biased. The other cases, however, offer

results that are more in line with the degree of precision presented in Chapters 4 and 6. This window size

also fits better with the parabolic approach, that relies on the fact that the physically modelled process must

be slow-variating along one of the dimensions, which corresponds to the longitudinal axis in this analysis.

Partially filtering fast variations helps improving the accuracy provided by this technique. In fact, if Martelly

results [54],[57] are analysed, few fast-fading references are used to be compared against and even in those

cases the predictions provided by their ADI approach are slow-varying along the longitudinal direction.

Tunnel LST UST

Polarisation Hpol Vpol Hpol Vpol

µ [dB] 3.58 4.16 3.58 6.19

σ [dB] 4.6 5.00 4.17 8.24

Table 7.4: Numerical comparison between measurements and simulations for straight L9 tunnels. Window

length: 300λ.

Another interesting and measured scenario consisted of a short curved path of 160m-long on the Lower

Curved Tunnel (LCT). A longer tunnel stretch would have been of major interest because of the border

between Line of Sight (LoS) and nLoS situations, but those measurements could not be carried out. For the

scenario, it was a right-hand bend with curvature radius equal to 280m. The rails were placed on the left
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half of the tunnel, just after an underground station. Both transmitting and receiving antennas were placed

over the rails, maximising the LoS distance and emulating the most likely deployment scenario for a real

case. Larger losses are expected due to the curved path and the higher number of reflections occurring at the

tunnel walls. Measurements were taken at both H and V polarisations and compared to simulations. Recall

that, because no bended tunnels can be analysed using ADI simulator, results below have been obtained

only with the spectral technique. Because the length of the curved stretch was not very long, it did not

imply any computational issue. The tunnel is modelled as 10 sections of 16m, with rotations of 3◦ between

sections.
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Figure 7.10: L9 comparison. LST curved H polarisation.

Figs. 7.10 and 7.11 show the comparison. It jumps out in both cases that bouncing is much stronger

in simulations than in measurements. Despite this fact, path loss trend is predicted successfully by the

simulator for both polarisations, and the speed of fast fading oscillations are quite alike also. Because length

is shorter for the curved stretch, the above mentioned mismatched peaks and valleys are less probable to

appear.

This time the vertical polarisation offers a more accurate prediction than the horizontal polarisation, as

values in Table 7.5 show. It is also worth notice the degree of accuracy obtained in the curved scenario

respect to those of Table 7.3, which can be directly related to the length of the analysed stretch: because

the simulator successfully predicts the initial free space behaviour the precision is enhanced notably. As it

has been mentioned throughout the thesis, the spectral technique successfully predicts radiated fields near

the source and in this case a higher percentage of the tunnel stretch is predicted with this technique.

Results presented in Tables 7.3,7.4,7.5 indicate that adequate success is attained by the simulator pre-

dicting the propagation behaviour of EM waves through L9 tunnels. Though not at the level of accuracy

shown by the ray-tracing tool developed by Didascalou [20], the EM simulator here described offers excellent
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Figure 7.11: L9 comparison. LST curved V polarisation.

Tunnel LST

Polarisation Hpol Vpol

µ [dB] 4.46 3.81

σ [dB] 5.83 4.82

Table 7.5: Numerical comparison between measurements and simulations for curved L9 tunnels. Window

length: 300λ

results in some cases and reasonable ones in others.

Adopting the role of a radio planning engineer, the focus should shift towards the amplitude and frequency

of deep fadings. To this end, some statistics are retrieved from the previous figures. This new analysis tries

to objectively measure the mean attenuation values and fading characteristics for the different measured and

simulated paths.

A first-order linear regression is computed for the transmitting antenna far-field radiation region, where

the free-space behaviour disappears and the guided propagation prevails. This will account for the mean

path attenuation and the results are summarised in Table 7.6. The regression starts at z = 60m from the

transmitter, just where spectral and parabolic techniques are switched. It can be seen how mean attenuation

in the straight tunnel is correctly predicted except for the UST, Vpol case - see Fig.7.9- where measurements

and simulations less resemble. The values are larger than the theoretical attenuation of the fundamental

mode - as computed at the beginning of this Section - because higher order modes have not extinguished

due to the low attenuations at such high frequencies.

Notice from Table 7.6 the attenuation increase for the LCT tunnel. Differences between measurements and

simulations can be explained by analysed stretch shortness and limitations of the implemented simulator, as
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the parabolic technique cannot be used in this case. Again, mean simulated attenuation is close to measured

one.

Tunnel Polarisation αmeas [dB/100m] αsim [dB/100m]

LST
Hpol -1.53 -1.40

Vpol -1.19 -0.86

UST
Hpol -2.99 -2.65

Vpol -4.55 -2.39

LCT
Hpol -17.65 -16.73

Vpol -13.25 -15.27

Table 7.6: Mean attenuation comparison between measurements and simulations.

The interest now lies on fading characterisation, both amplitude and frequency or repeatability. These two

parameters are widespread for indoor and urban radiowave propagation modelling in mobile communications,

allowing to guarantee a certain Quality of Service (QoS) for end users.

Addressing the fading amplitude - or strength - issue is done by computing path loss excess as the

difference between measured or simulated losses and the previously obtained longitudinal mean attenuation

value at each longitudinal point. Figs.7.12,7.13,7.14 show the path loss excess for the different scenarios,

while Table 7.7 summarises standard deviation values for each case.
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LST Hpol measurements
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(a) LST, Hpol
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LST Vpol measurements
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(b) LST, Vpol

Figure 7.12: Path loss excess. LST paths.

Simulations offer higher standard deviation values for all cases, specially in LCT scenarios. Taking a look

at straight tunnel cases, it can be seen that, in measurements, standard deviation are similar around 5.3dB,

whereas in simulations the values oscillate around 6.2dB, less than 1dB difference. The same cannot be said

for LCT, where measurements show a decrease on standard deviation amplitude. This is due to an increase

of the attenuation associated to plane waves impinging at tunnel curved walls. On the other hand, LCT

simulations numerically predict an increase on standard deviation values but a closer look at LCT Hpol,

Vpol cases reveals that the numerical increase is due to a few very narrow, very deep fadings that occur
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(a) UST, Hpol
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(b) UST, Vpol

Figure 7.13: Path loss escess. UST paths.
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(a) LCT, Hpol
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LCT Vpol measurements
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(b) LCT, Vpol

Figure 7.14: Path loss excess. LCT paths.

throughout the curved path. Such narrow deep fadings can be attributed to numerical singularities produced

by wavefront phase changes induced during axis rotation -as described in Section 3.2.3 - and, if dismissed,

simulation’s standard deviation are down to a value approximately 1dB higher than measurements, just as

in the straight tunnel case.

It is also interesting finding out about fading pseudo-periodicity or frequency of appearance, that will be

here called spatial frequency. To do so, the normalised power spectrum of the path loss excess is computed.

A quick inspection of the measured and simulated path losses evinces that deep fading spatial pseudo-

periodicities are in the range of 10m to 100m, which are associated to spatial frequencies up to 0.1[1/m].

Figs.7.15,7.16,7.17 show the spatial frequency analysis for the different cases. Starting with the straight

tunnel scenarios see how similarities between measurements and simulations are notable except for the UST,

Vpol case. Note that for Hpol, both in LST and UST tunnels, spectral components are spread for spatial

frequency values up to 0.1[1/m], whereas in Vpol cases the components are gathered in the 0 − 0.05[1/m]
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Tunnel Polarisation χmeas [dB] χsim [dB]

LST
Hpol 5.43 6.06

Vpol 5.19 6.45

UST
Hpol 5.22 6.05

Vpol 6.78 8.18

LCT
Hpol 4.83 7.83

Vpol 4.40 6.81

Table 7.7: Standard deviation comparison between measurements and simulations.

range, meaning that there is higher fading occurrence in vertical polarisation. Meanwhile, it seems that Hpol

cases have a richer variety of contributing spectral components.

LCT cases fading analysis shows up deeper, faster and narrower fadings, associated with higher frequency

phenomena. Though the length of the tunnel stretch is shorter, more plane wave interactions are expected

due to the curved path, leading to the mentioned fading characteristics. If results of Fig.7.17 are observed,

higher frequency components - note also that the frequency range has been enlarged - are present in the

power spectrum. Figs.7.14 show that there is also the presence of pseudo-periodicities 1m to 10m, associated

to these components. The width of the frequency peak components has also increased, which accounts for

the narrowness of the spatial fading detected in the LCT cases.

The conclusions of the fading analysis are that simulations predict stronger fadings, which could be

overcome by adding some sort of random effect [57] throughout the boundary conditions. This would

probably increase the richness of propagation directions and would reduce the fading strength by increasing

the number of contributions and decreasing the presence of shadow areas. While it is true that measured

and simulated pseudo-periodicities do not match exactly, they are very similar and of the same order, and

it also must be taken into account that it is impossible to model all the objects present at the tunnel walls.

It is quite possible, though, that including the rough wall modelling developed by Martelly [57] recently

would improve the accuracy of simulations herein presented, as it is here recalled that the implemented

ADI-parabolic technique is limited to smooth walls.

7.2.3 MIMO results

The use of multiple antennas to exploit the advantages of multipath environments has been well documented.

The theoretical properties and limits of Multiple Input, Multiple Output (MIMO) communications systems

were first studied by [62] and [63]. This research topic has been subject of study for the last ten years due to

the widespread use of personal communications systems. MIMO systems take advantage of he environment

by exploiting the diversity that can be applied to a system not only in terms of number of elements, but also

in frequency, coding, radiation pattern or polarisation. In here, only the former and the latter are going to

be analysed.

A few authors have been interested in the application of MIMO systems in tunnels [64],[65][66],[59],[67]

as a method of enhancing the throughput of communications systems operating in such enclosed areas. This
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(a) LST, Hpol
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LST Vpol measurements
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(b) LST, Vpol

Figure 7.15: Fading frequency of appearance for LST paths.
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UST Hpol measurements
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(a) UST, Hpol
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UST Vpol measurements
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(b) UST, Vpol

Figure 7.16: Fading frequency of appearance for UST paths.

section is not intended to provide a better knowledge of the underlying concepts of MIMO techniques, but

rather present the tools required to assess the performance of the implemented EM simulators when dealing

with such systems. Theoretical concepts will be briefly introduced and later simulations will be compared

against measurements carried out in L9 Barcelona Metro.

The scheme presented in Fig.7.18 shows the different theoretical direct paths that exist in a system with

Ntx = 2 number of transmitters and Nrx = 2 number of receivers. Path p11 corresponds to the signal

radiated through transmitting antenna 1 and captured by receiving antenna 1, while path p12 corresponds

to the signal radiated through transmitting antenna 1 and captured by receiving antenna 2. Paths p21 and

p22 follow the same logic for transmitting antenna 2.

The channel matrix H is then constructed as follows:

H =

p11 p12

p21 p22

 (7.6)
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(a) LCT, Hpol
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LCT Vpol simulations

(b) LCT, Vpol

Figure 7.17: Fading frequency of appearance for LCT paths.

�@

�@

Tx1

Tx2
�@

�@

Rx1

Rx2

-HHHHHHHHHHHHHHHj-��
��

��
��

��
��

��
�*

p11

p12

p21

p22

Figure 7.18: Scheme for a 2× 2 MIMO communications system.

where the different pij are the values in phase and magnitude of the corresponding paths. In our case,

pij are obtained from the EM simulator prediction as the wavefront progresses through the tunnel, so H

matrix becomes an array of 2 × 2 ×N , N being the total number of points along the longitudinal axis. In

order to allow the MIMO channel information arise, attenuation must be taken out of the equation, so the

channel matrix is normalised locally at each longitudinal step. Normalisation is computed as [68]:

H0 = H

√
Nrx
‖H‖F

(7.7)

where the Frobenius norm has been used in the denominator. Once this is done, MIMO processing can

be applied to retrieve the characteristics of the multipath environment. The most widespread parameter

to measure MIMO systems is the capacity, defined by Shannon [69]. An updated formula for the capacity

adapted to MIMO scenarios is [70]:

C = log2det

(
I +

SNRrx
Nrx

H
0
HH

0

)
(7.8)

This formula, computed for every longitudinal point, offers an idea of how the throughput evolves as

the receiver moves away from the transmitter, as we shall see later. The throughput for a Single Input,

Single Output (SISO) system - i.e.: a 1× 1 transmitting/receiving system - is C = 3.46 [bps/Hz], while the

theoretical limit for a 2×2 MIMO system is C = 5.17 [bps/Hz], a 50% increase respect to a SISO radio link.
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The upper bound is reached when favorable conditions are present, such as multipath richness and totally

uncorrelated transmitting antennas.

Another useful way of looking into the capacity is obtaining its Empirical Cumulative Distribution Func-

tion (ECDF) along the longitudinal path, which computes the probability of reaching a throughput higher

than a certain value that, in this case, is comprised between the SISO and 2× 2 MIMO bounds.

The performance of MIMO systems is a function of the environment and the distance and correlation

between antenna elements in the transmitting and receiving arrays. In this case, distance between array

elements is set to d0 = 6λ, and correlation between transmitting antennas is 0. The latter is due to the fact

that a first simulation is run with transmitting antenna 1 weighted with a power equal 1 and transmitting

antenna 2 weighted with a power equal 0. Paths p11 and p12 are stored in this first simulation. A second

simulation is run with the values reversed, completing the prediction of paths p21 and p22. This way, a

MIMO EM simulation takes a time that doubles that of a simple EM prediction.

The analysed cases correspond to those measured during L9 campaigns, excluding the curved path. That

leaves a total of 6 analysed cases, including upper (UST) and lower (LST) straight tunnels with three different

antenna configurations:

1. HH polarisation: transmitting antennas Tx1 and Tx2 are set with horizontal polarisation. Identical

configuration for receiving antennas Rx1 and Rx2.

2. VV polarisation: transmitting antennas Tx1 and Tx2 are set with vertical polarisation. Identical

configuration for receiving antennas Rx1 and Rx2.

3. VH polarisation: Tx1 is set with horizontal polarisation, Tx2 is set with vertical polarisation. Identical

configuration for receiving antennas Rx1 and Rx2.

The analysed cases were simulated as in the L9 propagation analysis, with the respective upper and lower

equivalent rectangular tunnels. Results in terms of capacity and ECDF are presented in Figs.7.19,7.20,7.21

for the UST tunnel and Figs.7.22,7.23,7.24 for the LST tunnel. Recall that a moving average filter is used

to filter fast fading oscillations in order to be able to retrieve meaningful information, the window length

being 300λ as in the propagation study of the previous Subsection.

First comparing the behaviour exhibited by the upper and lower tunnel cavities, it jumps out that the

former seems to lead to higher and narrower capacity peaks than the latter, whose behaviour is slightly

different, with capacity being more steadily, lower and broader peaks. This behaviour is also obtained in

simulations for the different presented cases.

It can be noted that the minimum capacity bounds are lower for the UST tunnel than for the LST tunnels:

while minimums are comprised between 3.5− 3.6bps for the former, these values are mildly increased to the

3.6− 3.8bps range for the latter, and this is successfully modelled by the simulator too.

Comparing measurements and simulations, more similarities between MIMO results can be found for the

LST tunnel than for the UST as expected. The tunnel cross-section similarity in the first case is the reason

to such results. Though the adoption of the Chen approach [28] for the arched tunnel allows to analyse the

curved profile while obtaining good results, the difference between the interaction if impinging plane waves
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at parallel and orthogonal boundaries or at curved boundaries is a limit that cannot be overcome, at least

to a certain degree.

On the other hand it can be observed that predicted capacity is higher than the one extracted from

measurements. This is a direct consequence of the higher standard deviation values for path loss excess

shown throughout this chapter. Higher values lead to increased capacity.

Finally, notice that the VHpol case provides better throughput in the LST tunnel. This is due to the fact

that the arched ceiling of the UST tunnel leads to larger cross-polarisation effects. Hence signals from Tx1

and Tx2 become less uncorrelated and capacity drops. Meanwhile, parallel or orthogonal surfaces avoid such

a rich cross-polarisation behaviour, signals remaining higly uncorrelated. The simulator has more success

with the lower cavity, and predicts the increase in capacity respect to the copolarised HHpol and VVpol

cases.

Alonso [71] showed that differences in MIMO performance is highly dependant on local scattering. Hence,

without a highly accurate scenario modelling it is very hard to reproduce measurement results consistently. It

is to be expected that the development of the ADI simulator for curved boundaries will lessen the differences

between measurements and simulations. As results in Table 4.9, the spectral technique does not better EM

predictions for curved boundaries than it does for rectangular boundaries, and just looking at the accuracy

improvement provided by ADI in Table 6.2 suggests that predictions will be much better.

Having analyzed the simulator’s performance and the EM behaviour at L9 tunnels, the impact of the 2x2

MIMO scheme on the capacity is not amazing overall. In the majority of cases the threshold of 4bps is not

reached for the 50% of the analyzed stretch, exception being the LST-VHpol case. True is that transmitting

antennas were placed close to the tunnel centre, while in the study developed by Alonso [71] it was concluded

that an optimal position for transmitting antennas would be centred and close to the tunnel ceiling.
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Figure 7.19: MIMO measurements and simulations comparison. UST, HH polarisation.
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Figure 7.20: MIMO measurements and simulations comparison. UST, VV polarisation.
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Figure 7.21: MIMO measurements and simulations comparison. UST, VH polarisation.



7.2. BARCELONA METRO L9 MEASUREMENT CAMPAIGNS 109

0 100 200 300 400 500
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

Distance to the Source [m]

C
ap

ac
ity

 [b
ps

]

 

 
LST HHpol measurements
LST HHpol simulations

(a) Capacity

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum Observable Capacity

P
ro

b(
C

>
X

)

 

 
LST HHpol measurements
LST HHpol simulations

(b) ECDF

Figure 7.22: MIMO measurements and simulations comparison. LST, HH polarisation.
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Figure 7.23: MIMO measurements and simulations comparison. LST, VV polarisation.
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Figure 7.24: MIMO measurements and simulations comparison. LST, VH polarisation.
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Chapter 8

Conclusions

Since I started this thesis, four years ago, I have seen how common people technology needs have grown at a

rate that was hard to figure out then. Even myself, who only used to check the email once or twice per day

and use the cellphone only for classic - voice call and text message for instance - communication purposes,

routinely use the mentioned communications services as well as look for the hottest video and audio hits,

or the latest posts in widespread social networking services and blogs during our spare time. Given that

wireless technologies have given us all these possibilities, the society has embraced them and expects them

to be available anytime, anywhere. Personal opinions are now tweeted while waiting for the next train.

On the other hand, during the same time span, we have assisted to several accidents involving railway

transport services. Railways have historically been a hostile environment that has offered significant re-

sistance to the introduction of the latest technology trends. And it is understandable, as a service whose

first and foremost principle has always been security and regularity. As a consequence, only heavily-tested

technologies have been employed in railway communications, which has resulted in an increasing communi-

cations gap for transport service users. It was not long ago that we could not be reached if someone called

while going from one place to another through the metro. Today, this is considered unacceptable. And even

if mobile communications services have slowly been introduced at these environments, the quality of such

services at certain spots is clearly insufficient.

As the entity responsible for key transport infrastructures in Catalunya, Ifercat, aware of the fact that

the majority of railway accidents are attributed to human mistakes, faced up the challenge of introducing

wireless technologies at the backbone of L9 control systems. The design of this metro line is based on the

Automatic Train Control system employing wireless technologies. At the same time, even if no personnel

is on board, surveillance and user security relies on a wideband video transmitting system. This thesis was

engineered by Ifercat in collaboration with the Signal Theory and Communications department of UPC to

assess the viability of such services, which this thesis has been devoted to.

Even if time frames of L9 services and this research project have not always matched, contributions of

the thesis can have a significant impact on the assessment of today and tomorrow communications services

deployment in railway scenarios, and that has been one of the guiding forces through the last four years.

113
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The physical layer of the problem has occupied the core of the time spent during the research. L9 poses

a complex structure to be analysed, and for this reason the spectral technique was first chosen: it allows an

integral treatment of the studied scenario. A simulator based on this method has been implemented and

tested, although there are some aspects that can be improved.

The most delicate point of this part of the thesis has been the application of boundary conditions, that

have a significant impact on the simulator predictions. As it has been shown throughout the thesis, use of the

well-known reflection coefficients for parallel and perpendicular polarisations has not yielded accurate enough

results. At the beginning, a scalar version of the spectral simulator was developed and compared to published

results with success. That version applied the boundary conditions roughly, as only the change of media was

taken into account, neglecting the impact of the incidence angle and field orientation. Once the polarimetric

simulator was under way, the problem of discriminating between horizontal and parallel polarisation arose.

It is not just a matter of propagating each polarisation with the corresponding attenuation, but also of

taking into account the cross-polarisation effects that occur at the tunnel boundaries as a consequence of

the incidence of several plane waves at curved surfaces. It was clear then that the scalar approach no

longer worked, so it was natural to add the reflection coefficients to complete the physical modelling of the

problem. Mixed results are obtained: when compared to modal theory published results, it is clear that the

accuracy provided by this implementation is lower than the accuracy provided by other techniques, such

as those employing ray-tracing. On the other hand, when compared to published measurements, it can be

argued that the spectral simulator allows to understand what is happening inside the tunnel with reasonable

precision.

The reason that lies after the inaccurate predictions of the spectral technique is the fact that polarimetric

boundary conditions are applied in ray-tracing-like approach. While equivalent, rays, as defined in geomet-

rical optics, and plane waves differ in one aspect that is critical when facing the application of boundary

conditions: rays have a clearly defined path, composed by an origin point and an end point, that allows

to easily obtain the incidence angle at a certain point of the boundary surface. It is then straightforward

computing the reflected ray as a function of the physical properties of the boundary, including some random

roughness that may modify the reflected ray angle of propagation. However, spectral techniques deal with

plane waves, that are composed by a set of points in space propagating with the same phase. Hence, it is

not possible to assign a unique impinging point of the surface where the plane wave reaches the boundary.

It jumps out then that, the way the spectral simulator is implemented, as described in Chapter 3, we are

introducing an error in the application of the boundary conditions, as only a fraction of the plane wave

is being modified accordingly. Conversely: each point in the spatial domain is composed by a weighted

sum of plane waves propagating in every directions of space, so changing the value of the field points at

the boundary also modifies inadequately the characteristics of many plane waves points that may not be

impinging tangentially or orthogonally at the boundary.

Since the Nyquist requirements were fulfilled, usually working with discrete meshes of λ/4 or finer, the

other source of error is tunnel modelling. It is relatively easy to obtain and introduce a geometrical description

of a tunnel cross-section as well as its transversal dimensions. The path followed by measurements, though,
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is harder to model. But what probably are the major points are the electrical properties of the tunnel walls

and their roughness, because of the difficulties their measurement presents. Wall electrical properties are

modified by humidity at the moment the measurements are taken. After several campaigns at L2 and L9

tunnels of Barcelona Metro, one realises that even when no river is close, water filters through the tunnel

structural joints in significant amounts. This was demonstrated during simulations, were different complex

permittivities were applied in order to tune the predictions to the measurement results.

Once it was clear that boundary conditions were a limiting factor, the following step was trying to solve

the problem. Leontovich boundary conditions seemed to be suited for their application in the spectral

problem, but early results were not encouraging. They did not improve the accuracy, nor did they provide

better physical explanations to the problems that curved surfaces presented when working with the spectral

technique. Nevertheless, they opened the door to work with the parabolic equation and, more precisely, the

Alternating Direction Implicit (ADI) method. As described in Chapters 5 and 6, a simulator based on this

approach has also been implemented successfully, as it has been proven when compared against canonical

and measured published results.

The combination of both techniques, spectral and parabolic, comes naturally due to the own character-

istics of each method and, as it has been shown, they complement each other well. Precision, in terms of

attenuation, is improved respect to the mono-spectral prediction results, as is the simulation time. The use

of the parabolic-based simulator has helped to overcome the annoyance of having to wait for several hours for

the results of spectral predictions. The time reduction reaches frames of three to four hours for a complete

600m tunnel analysis at 5.8GHz. Once that the fundamental limits of parabolic convergence are fulfilled,

sources of error are limited to initial field and tunnel modelling.

ADI initial field carries the errors introduced by the incorrect application of boundary conditions in the

stretch analysed with the spectral technique. For that reason, the length of this stretch is minimised. The

trade-off is the loss of flexibility, as PE-ADI can model only straight, rectangular, smooth tunnels. As is

been shown in Chapter 7, the amount of noise introduced on the path loss curve if an early switch between

techniques is performed could mask the tunnel behaviour, but the outcome resembled anyway, so the trade-

off is solved by ensuring that most of the energy propagating through the tunnel is contained inside the

parabolic margin. The implementation chosen for ADI method ensures less than a 1% error for propagation

contained inside that margin, which exceedingly satisfies the needs of radio network planning. But a reason

of the success attained by the ADI method predictions, even if the initial field presents some errors, is the

fact that tunnels behave as oversized lossy waveguides. Repeated application of boundary conditions forces

the inner fields to converge to the correct solution, although more distance may be necessary to reach it as

shown in Chapter 6.

Path loss curves measured at L9 have been predicted successfully with the simulator, although the reached

accuracy is lower than that obtained by ray-tracing programs such as [20] and, in some cases, by other ADI

implementations [54]. This can be attributed to tunnel modelling, as several issues have been highlighted

by the comparison with L9 measurements. Sun approach [37], used throughout this work, is limited to the

attenuation value of the dominating modes, as MIMO curve predictions for the upper straight tunnel do
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not resemble much with measurements. The fact that nor arched cross-sections, nor curved paths have been

possible to simulate with the current version of the algorithm have limited the success of the predictions

provided. Nevertheless, results for the quasi-rectangular lower straight tunnel show that there is plenty of

good results and promise on the use of the mixed spectral-parabolic approach. The combined simulator has

been tested at several bands and compared against published data with good results, and experimentally

has verified with some accuracy limitations the experimental campaign developed at L9 tunnels.

For the EM simulator to improve, it is essential to solve the polarimetric boundary condition application

issue. Although several solutions have been tried, none of them yielded better results than the one that was

chosen for the final implementation of the simulator. Different approximations to the incidence angle were

used while dealing with the geometrical optics approach but, although the system showed sensibility to the

value of the incidence angle, results were not good enough. Also, polarimetric masks - whose value changed

depending on the polarisation and angle respect to the axis - did not sustain good results consistently.

Perhaps a fast and efficient computation of local incidence angle, taking advantage of the Fourier transforms

performed to advance through the tunnel in combination with wavelets, could work reasonably well in optical

terms. But given that the geometrical optics approach seems to not work well with wavefronts, maybe some

kind of modified Leontovich boundary conditions could work, as they seemed not to perform very well close

to the source where the incidence is not grazing. Nevermind, it is, in my opinion, the most urgent issue to

solve, and the one that may boost a vast improvement on the prediction accuracy provided by this simulator.

Another pending issue is the possibility of including arbitrary tunnel cross-sections, curved paths and

wall roughness [50],[57] into the parabolic simulator. As currently designed, the fact that only straight

rectangular tunnels can be analysed with the parabolic technique is a weakness that can be overcome in a

reasonable period and improve the accuracy of this method that, as the MIMO analysis has shown, still has

its flaws. Solving this issue would provide us with two tools flexible enough to face complex scenarios that

could be compared against each other to gauge the predictions. That does not exclude the possibility of

combining them, depending on the presence of obstacles inside the tunnel to put an example.

As already mentioned before, the excessively large execution time issue when long tunnels were simulated

with the spectral technique at large frequencies was solved by the use of the mixed approach. But there is

still more progress to be done in this area. For instance, some tests were made with the spectral propagation

loop written with a C function using a FFT implementation that differs to the one employed in Matlab. The

speed was notably higher and time frames were reduced down to 50%. On the other hand, the chosen ADI

implementation is based on simple programming using loops, not taking advantage of Matlab strengths. The

reason is that it allowed for a better comprehension and eased the translation from the physical phenomena

described by equations to pure linear code. But the literature has offered some matrix implementations

[53],[55] that seem to better match with Matlab strengths.

Finally, a few words on the use of MIMO communications systems in tunnel environments. As it has been

shown, this kind of systems enhance the throughput between a static base station and a mobile receiver.

The frequency at which this study has been performed, 5.8GHz, is large enough to allow the use of several

array elements, as the wavelength is on the order of 5cm. Though there is not a lot of available space in the
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tunnel, nor in the train, horizontal linear arrays with 4 or more elements seem to be feasible. After all, we

are talking of a 1m wide antenna for a 4-element, 6λ-spaced array, and the train has 3m wide approximately.

the use of high directivity antennas should offer some advantages as well. Overall, the increase in terms of

capacity has not been very impressive but, as Alonso [71] concludes in its L9 study, a different transmitting

array location would provide significant improvements, and it could lead to an excellent performance of the

video surveillance system and to the introduction of the latest mobile communications services inside tunnels

as well.

Longer measurement campaigns should be carried out to confirm the statements above. As Dudley [16]

and Molina-Garćıa-Pardo [66] have shown in their studies, the source placement plays a pivotal role on the

propagation outcome. So far, campaigns at L9 tunnels have taken place with the transmitter and receiver

placed close to the tunnel centre. It would be really interesting the results of measurements with transmitting

antennas placed in a more practical location, close to the tunnel walls and ceiling and receiving antennas

mounted on top of a train carriage, or at least at the same height. Due to the small time frame available,

several repetitions of the same path could hardly be performed. Taking into account the frequency and

the distance range at which measurements were made, it would help enormously to a more complete EM

characterisation of the environment. Wideband analysis was deemed unnecessary, at least up to date, as the

angle of arrival was difficult to measure and is logically expected to be narrowed to the longitudinal tunnel

axis at large distances from the source, due to attenuation suffered by other components at the tunnel walls.

In the same line of thought, delay spread must not be very large.

The foregoing notwithstanding, L9 Metro service is, at the time this lines are being written, successfully

working at some stretches. For most of the time, the difficulties found during the development of the

thesis prevented their direct application on the radio planning for the already open stretches, although these

stretches were used to tune the simulator behaviour thanks to the measurement campaigns that were carried

out. There is, however, a part of the path that has not been finished yet, so there is still the opportunity of

using this thesis as a helping tool on the wireless radio planning for the remainder of the tunnel stretches.
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