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Resum

El problema d’alineaci6 de seqiiéncies, ha estat durant anys un repte important
per a la computacié en la bioinformatica. La capacitat d’alinear i comparar
les seqiiéncies biologiques entre elles, s’ha convertit en una eina molt poderosa
per als biolegs per tal d’ajudar en la seva recerca. L’alineacié de seqiiéncies no
és només, la clau per esgarrapar la superficie del que sabem sobre el genoma
huma, també és la clau per ajudar a la comprensié del mateix.

Per arribar a ser una eina d’éxit, l'alineacié de seqiiéncies ha de ser un
procés senzill i rapid, sent la seva complexitat de calcul i els requisits de
memoria els principals factors que limiten la quantitat de seqiiéncies que poden
ser processades. Avui en dia, els bidolegs estan alineant milers de seqiiéncies.
Un dels reptes de calcul en I'alineacié de seqiiéncies és alinear tantes seqiién-
cies com sigui possible amb el minim de temps. A més, ha d’estar garantida
la millor qualitat d’alineaci6.

A partir dels antics sistemes de comput en série, ja passats de moda, avui
dia els sistemes multi-core s6n part del nou entorn utilitzat per augmentar el
rendiment dels sistemes informatics moderns. Es un repte utilitzar de manera
eficient aquests recursos, de manera que aquestos puguin ser aprofitats i ges-
tionats correctament. Es important determinar la quantitat eficac de recursos
de calcul i de memoria necessaria per resoldre el problema, per tal d’evitar el
malbaratament innecessari d’aquests recursos, reduint aixi els costos inneces-
saris.

En aquesta tesi, ens centrem en I'explotacié eficient dels sistemes multi-



core per a l'execucié de les miiltiples aplicacions de problemes d’alineament
miultiple de seqiiéncies (MSA). En el camp de la biologia, el MSA es un procés
de alta demanda de recursos de comput, el qual, consisteix en dur a terme
I’alineacié d’un conjunt de seqiiéncies d’entrada mitjancant la recerca de difer-
ents similituds entre aquestes. L’objectiu és alinear tantes seqliéncies com sigui
possible en una quantitat acceptable de temps i amb un nivell de qualitat que fa
que I'alineaci6 sigui biologicament significativa. S’han estudiat diferents imple-
mentacions d’alineament de seqiiéncies, aquestes es comparen i es presenten en
aquesta investigacio. Hem contribuit en la millora dels primers passos del prob-
lema alineaci6 de seqiiéncies miltiples de diverses maneres. Amb 'objectiu de
reduir el temps de calcul i I'is de memoria, adaptem ’alineador T-Coffee per
treballar en paral-lel amb us de fils lleugers en lloc de processos fork. Meés
endavant en aquest treball, hem desenvolupat un métode de alineaci6é de par-
ells paral-lel, amb una assignaci6 eficient de seqiiéncies a nodes. Finalment es
presenta un métode per determinar la quantitat minima de recursos del sis-
tema, necessaris per resoldre un problema d’una mida determinada, per tal de

configurar el sistema perqué pugui ser utilitzat de manera eficient.



Resumen

El problema de la alineaciéon de secuencias, ha sido durante anos un reto im-
portante de computo en el campo de la bioinformatica. La capacidad de alin-
ear y comparar las secuencias biolégicas entre ellas, se ha convertido en una
herramienta muy poderosa para los bidlogos con el fin de ayudar en su in-
vestigacion. La alineacion de secuencias, no es so6lo la clave para aranar en
la superficie de lo que sabemos sobre el genoma humano, también es la clave
para ayudar en la comprension del mismo.

Para llegar a ser una herramienta de éxito, la alineacion de secuencias
tiene que ser un proceso sencillo y rapido, siendo su complejidad de calculo y
los requisitos de memoria los principales factores que limitan la cantidad de
secuencias que pueden ser procesadas. Hoy en dia, los bidlogos estan alineando
miles de secuencias. Uno de los retos de calculo en la alineaciéon de secuencias
es alinear tantas secuencias como sea posible con la menor cantidad de tiempo.
Ademas, debe estar garantizada la mejor calidad de alineacion.

A partir de los antiguos sistemas de computo en série, ya pasados de moda,
hoy en dia los sistemas multi-core son parte del nuevo entorno utilizado para
aumentar el rendimiento de los sistemas informéticos modernos. Es un reto
utilizar de manera eficiente estos recursos, de manera que estos puedan ser
aprovechados y gestionados correctamente. Es importante determinar la can-
tidad adecuada de recursos de calculo y de memoria necesarios para resolver
el problema, con el fin de evitar el desperdicio innecesario de estos recursos,

reduciendo asi costes innecesarios.
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En esta tesis, nos centramos en la explotacién eficiente de los sistemas
multi-core para la ejecucion de las multiples aplicaciones de problemas de alin-
eamiento de secuencias (MSA). En el campo de la biologia, el MSA como un
proceso de computacion exigente, consiste en llevar a cabo la alineacién de un
conjunto de secuencias de entrada mediante la bisqueda de diferentes coinci-
diencias entre estas. El objetivo es alinear tantas secuencias como sea posible
en una cantidad aceptable de tiempo y con un nivel de calidad que hace que
la alineacion sea biol6gicamente significativa. Se estudiaron diferentes imple-
mentaciones de alineamiento de secuencias que se comparan y se presentan
en esta investigacion. Hemos contribuido en la mejora de los primeros pasos
del problema de alineacién de secuencias multiples de varias maneras. Con
el objetivo de reducir el tiempo de calculo y el uso de memoria, adaptamos
el alineador T-Coffee para trabajar en paralelo con el uso de hilos ligeros en
lugar de procesos fork. Mas adelante en este trabajo, hemos desarrollado un
método de alineamiento de pares en paralelo, con una asignacion eficiente de
secuencias a nodos. Finalmente se presenta un método para determinar la
cantidad minima de recursos del sistema necesarios para resolver un problema
de un tamano determinado, con el fin de configurar el sistema para que pueda

ser utilizado de manera eficiente.



Abstract

The sequence alignment problem, has been during years an important comput-
ing challenge for the bioinformatics field. The capability to align and compare
biological sequences between them, has become an extremely powerful tool for
biologists in order to aid in their research. Sequence alignment is not only, the
key to scratch the surface of what we know about the human genoma, it is
also the key to aid in the comprehension of it.

In order to become a successful tool, alignment of sequences needs to be
a simple and fast process, being its computation complexity and memory re-
quirements the main factors that limit the amount of sequences that can be
processed. Nowadays, biologists are aligning thousands of sequences. One
of the computation challenges in sequence alignment is to align as many se-
quences as possible with the smallest amount of time. In addition, it should
be warranted the best alignment quality.

From the past old-fashioned serial systems, nowadays, multi-core systems
are part of the new environment used to increase the performance of modern
computer systems. It is a challenge to use them efficiently, in a way that no
more resources that the needed are being used. It is important to determine
the efficient amount of computation and memory resources required to solve
the problem, in order to avoid the unnecessary waste of them, thus reducing
the required costs.

On this thesis, we focus on the efficient exploitation of multi-core systems
for the execution of the Multiple Sequence Alignment (MSA) problem applica-
tions. On the biology field, the MSA as a high computing demanding process,

consists on performing the alignment of a set of input sequences by searching
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the different matches between them. The goal is to align as many sequences
as possible in an acceptable amount of time and with a level of quality that
makes the alignment biologically meaningful. Different sequence alignment
implementations were studied, compared and are presented in this research.
We contributed in the improvement of the firsts steps of the multiple sequence
alignment problem in several ways. With the goal of reducing computation
time and memory usage, we adapted the T-Coffee aligner to work in parallel
with threads rather than processes. Later in this work, we develop a parallel
pair-wise method, with an efficient mapping of sequences to nodes. Finally
we present a method to determine the minimal amount of system resources
required to solve a problem of a determined size, in order to configure the

system so it can be efficiently used.
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CHAPTER 1

Introduction

This introductory chapter starts describing the thesis overall research objec-
tives for the work done during these years. Furthermore, it briefly describes
preliminary concepts about bioinformatics and genetics, and finally it fully
explains to the reader concepts about the sequence alignment and the multi-
ple sequence alignment process. The thesis outline based on the work done is

presented at the end of the chapter.

1.1 Overview

Traditionally, the increase of performance in computer systems has been based
on the increment of the processor clock frequency. This has a technological
limit, being that increasing the frequency causes an increment of the energy
cost and the dissipated heat by the system [MMO8|. Nowadays, multi-core
systems are being proposed as the new environment in order to increase the
performance of modern computer systems [D05]. Traditional systems, were

composed by only one central processing unit. In multi-core environments



2 Introduction

there are at least two or more processing units, or cores, in the central pro-
cessing unit. On such systems, the number of integrated cores on the same
chip is increasing for newer chips. Figure 1.1 displays the layout of a modern

multi-core processor.

.Memory Controller
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Figure 1.1: Intel Xeon six-core processor. Adapted from [PM10].

Now, we have availability of systems with a significant number of cores
per node. Not only the CPU is capable of processing data, as most systems
have availability of a GPU graphical processor unit, which may be used in
combination with the CPU. Consequently this exposes an interesting challenge
as the architecture of the GPU is different to the CPU, and this requires also
two different algorithm implementations, one for the CPU and the other for
the GPU. The current challenge is to use multi-core systems and GPU in an
efficient way during the execution of applications. One should optimistically
determine the amount of work to send to each processor unit, in order to
achieve the least computing time possible to solve a problem.

There is a wide range of scientific problems that can benefit from an efficient
exploitation of parallel systems, and specifically of multi-core systems. One
of the scientific fields with large scale problems to be solved, is computational

biology. In the biotechnology field, the deployment of the Multiple Sequence
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Alignment (MSA) problem [EBO06|, which is a high performance computing
demanding process, is one of the new challenges to address on the new parallel
systems. In this work, we specifically focus on the exploitation of multi-core

systems for solving the biological problem of Multiple Sequence Alignment.

MSA is one of the most used techniques in the study of biological sequences
of genomes. The main goal is to find coincidences between different sequences.
This allows biologists to study the differences between genomes and study the
evolution of species. The current MSA implementations are a few, and not
all of them are completely written to fully use efficiently the current multi-
core architectures, as a consequence some of them don’t scale so well. The

most common MSA implementations found in literature are T-Coffee [NHHO0],
MUSCLE [Edg04], MAFFT [KT08| and ClustalW [LBB*07].

One MSA implementation currently used by the bioinformatics community,
and one which will be deeply used in our research, is T-Coffee [NHH00]. T-
Coffee, that is a sequential sequence aligner, has been designed to work on
standalone systems with one processor. Although the latest implementation
creates as many sequential processes as processor cores are found in the system,
it is not the most efficient. Parallel-T-Coffee [ZYRAO0T7| and Clus-T-Coffee
|Y09] are two parallel implementations based on T-Coffee, that can be deployed
over a cluster, thus improving its overall efficiency. The goal of this work
is to analyse the behaviour of these different implementations on different
systems, in such a way that, the memory and processing time parameters
are being monitored with a set of instrumentation tools. In addition, these

implementations will be compared with other ones found in literature.

The obtained results of this study, are determinant in the process of re-
searching ways to improve current T-Coffee implementations in order to achieve
better computing times, while maintaining the quality of the generated align-
ments. In order to achieve our goal, we have performed an study of some
parallel implementations of T-Coffee in a set of different system configurations
with different input data. Then, the results are studied in order to determine
the benefits and drawbacks of each implementation. Based on these conclu-
sions we propose different solutions. We are proposing two solutions based

on T-Coffee that would increase the average efficiency of the MSA problem.
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These solutions will be presented on the following chapters, accompanied with
their experimental tests and compared with the other implemented solutions.

Finally, from the obtained experimental data, we are capable to study and
extract an empirical prediction model, this model implemented on a sequence
aligner, allows the possibility to dynamically configure the systems resources
according to the specified problem size, in order to avoid the waste of unnec-
essary resources. This model aids in the predictions of the required memory
and the best amount of processing resources to be implemented to achieve a

results in the most efficient computing time.

1.2 High performance computing

High performance computing (HPC) is a terminology used to describe a set of
complex programming techniques and hardware solutions used and involved in
the resolution of complex problems, such as, for example, the MSA problem.

The HPC term includes any kind of supercomputers or parallel systems
that can be used to implement and solve such kind of problems. This kind of
systems have an important amount of computational and memory resources,
compared to any personal general-purpose computer. While in personal com-
puters the computing capacity is measured in (MIPS) million instructions per
second, in powerful systems it is measured with (MFLOPS) million floating
point operations per second.

First supercomputers were introduced in the 1960s, at Control Data Cor-
poration (CDC), by Seymour Cray [CLHH09|. While these first systems had
only a few processors, nowadays systems are composed of thousands of them,
being nowadays the China’s Tianhe-2 supercomputer the most fastest in the
world at 33.86 petaFLOPS [topl5].

Traditional systems were based on a single CPU, which frequency had been
increased over the years until it reached the maximal technological level. The
paradigm behind HPC systems is the use of parallel computing, bypassing the
frequency limitation and dividing the processing power between different pro-
cessor units. This solution has now been introduced into traditional systems

creating nowadays more powerful parallel machines with multi-core processors.
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Consequently, this forced programmers to change the way to design and im-
plement software for this kind of machines, although this was already being
done by the HPC community since the first parallel machines.

Bioinformatics researchers are nowadays more careful considering these
kind of systems as a base for their implementations, in order to improve the
current limits of traditional and simpler computational systems.

In the following section, different categories of HPC will be described ac-

cording to the different features that can be considered.

1.2.1 Flynn’s taxonomy classification

Flynn [Fly72] classified applications depending of the usage of single or multiple
sets of parallel instructions executed concurrently and whether these instruc-

tions were working over a single or multiple set of data.

e SISD: Single Instruction Single Data. A single processor (one exe-
cution thread) works over a single set of data. Also known as a sequential

processing.

e SIMD: Single Instruction Multiple Data. A set of processing units
will execute the same instructions over different sets of data. This ex-
ploits the data parallelism paradigm. As an example, most processors
have a set of SIMD multimedia instructions, thus signal processing ben-
efits most of this kind of parallelism. A graphical processor unit (GPU),

is another example of an architecture that uses this paradigm.

e MISD: Multiple Instruction Single Data. Different set of instruc-
tions will operate in parallel over the same set of data. This architecture
is rarely used, normally this could be used for fault tolerance were all
threads must agree on the results. As an example, this is used by flight

control computers like the one in a Space Shuttle.

e MIMD: Multiple Instruction Multiple Data. Different sets of in-
structions will operate in parallel over different sets of data. This is the
most common parallelism paradigm used, and is implemented by nowa-

days multi-core processors and co-processors. Other systems under this
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category are the clusters, where we run multiple tasks (processes) on

different nodes processing different data at the same time.

A complex HPC system will be formed by series of multi-core processors
and co-processors (MIMD) and may integrate one or more GPUs (SIMD,).
Thus, both technologies will be available exposing a challenge in order to

implement software that use both of them efficiently.

1.2.2 Application Granularity

Parallel applications can be modelled as dependency graphs where nodes in-
dicate the tasks with their computation time and edges indicate dependencies
and communication costs [YA99]. Depending on the amount of dependencies
between each task, we can measure the type of granularity as fine-grained or

coarse-grained.

e Fine-grained: Applications have many smaller tasks with many de-
pendencies between them. Thus, these applications will suffer of bigger

communication overheads.

e Coarse-grained: Tasks are bigger, in means of computation time and
code involved, thus they may have less dependencies and less communi-

cation overhead.

Applications with fine-grained granularity are more capable of obtaining
higher speed-up that coarse-grained ones. However, communications overhead
can affect negatively this performance. Thus, the suitable granularity has to
be found.

1.2.3 Memory model

Systems may be classified between two paradigms: Shared memory and dis-

tributed memory.
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e Shared Memory: Shared memory systems will expose the whole of
the system memory to all processor units, and it will be available imme-
diately. This memory sits close to the processor. However, it presents

scalability issues, as the number of processors increases.

e Distributed Memory: The whole memory is distributed along the
processors of the system. Each processor unit sits close its own private
memory, but has no access to memory of other processors. This architec-
ture is stronger against race conditions and scales well. As a disadvantage

whom may have to replicate the same data if applicable on all processors.

e Distributed Shared Memory: Based on the distributed memory model
architecture, it tries to emulate with hardware or software mechanisms
to present a fully shared memory model. These mechanisms consists on
abstracting and hiding the communications layer from the programmer,
thus it will exactly be formed by different processors units with its own
isolated memory next to them, but with transparent mechanisms to offer
a global view of all the system memory. While it may work as a Shared
Memory systems, accessing memory from other units will incur in huge

penalizations in terms of computation time.

1.2.4 Distributed computing systems

Depending of the previously seen classifications, and depending of the kind of
implemented hardware, the network topology and the kind of tasks to run on
the system, we have the following distributed systems: Cluster, Multi-Cluster,
Grid, P2P and Cloud. These systems can also be classified as homogeneous
and heterogeneous, being the first one formed by nodes, all of them of the same
type, with the same resources (memory, processor, disk...), and the second one

with nodes with different hardware specifications.
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Figure 1.2: Cluster architecture.

e Cluster: The cluster model, displayed on Figure 1.2, is the traditional
distributed computing model based on a determined amount of compute
nodes. Depending of the hardware of the nodes, we can have an homoge-
neous or heterogeneous cluster. All nodes are connected between them,
through a private switch, and a front-end node. The front-end node is
responsible of running all required services for the cluster, as for example
the queue services. Bandwidth between nodes tends to be high and there

can be dedicated network interfaces for data exchange.

e Multi-Cluster: A multi-cluster, seen on Figure 1.3 is formed by two
or more clusters that are linked together by a dedicated known com-
munications link. When a cluster most of times tends to be in general
homogeneous, the multi-cluster model breaks this rule as it may expose

computers from different clusters with different computing resources.

e Grid: As displayed on Figure 1.4, the grid explores the Multi-Cluster
solution by interconnecting different clusters over the Internet. In this
case, connection between clusters is more prone to failures, and is slower

than in a multi-cluster.

e P2P Computing: P2P systems, as seen on Figure 1.5, are composed by
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Figure 1.3: Multi-Cluster architecture.

different kind of nodes, interconnected between them over internet, there
is no central node on this kind of networks. This exposes also a different
paradigm to work, as nodes may process a unit of work, and send back

its results to a master node (the one which initiated the request).

e Cloud Computing: Cloud computing, see Figure 1.6, is a new paradigm,
where usually providers are providing the solicited platform as a service
(PAAS). This model can be viewed as an extension to Grid, with higher

level abstraction of the system.



10

Introduction

Figure 1.4: Grid architecture

pm —
[ —

Figure 1.6: Cloud architecture.
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Figure 1.5: P2P computing architecture.

1.2.5 Software

Different kinds of software technologies are available in order to use the afore-
mentioned hardware. Most algorithms are implemented with C or C++,
mainly because contrary to other languages, they are the ones that can deliver
the best efficiency and optimizations on the final binary versions. Implemen-
tations on other languages are also available, but they may have important
penalty issues over the computation time, making them worse in efficiency
than C/C++ ones.

e System fork: This technique is used in order to distribute the workload
into different system processes. Communication may be performed by
sockets, shared memory regions, system pipes or temporary files. It is

discouraged its usage, as has some penalty issues on efficiency.

e Threading: Similar to system fork, but quite different, it consists on
executing a function or set of functions in parallel, known as running a
thread. Threads are less resource intensive than launching a new process.

Using a threading library such as pthreads, allows us to fully parallelize
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the code, benefiting with fully shared memory regions. It is more efficient
to system forking, but bad handling of the shared memory regions may

incur in synchronization issues.

e OpenMP: It is a set of extensions over the C language, that add a set of
fully parallel instructions, these instructions allow to write fully parallel
SIMD or MIMD code, that will expand over all available cores on the

node, the combination of processors and co-processors installed on it.

e CUDA and OpenCL: These languages are specific to write fully SIMD
code to run specifically over a set of one or more GPUs. We can send and

receive data over the system bus, by using a set of instructions exposed
by its C APL

e SIMD Multimedia: Some implementations directly go to assembler
mode in order to fully optimize the code by using the multimedia SIMD
instructions, although it is not necessary as SIMD C libraries are avail-

able, abstracting the lower level layer, to fully support these extensions.

e MPI and PVM: These libraries expose a set of functions to communi-
cate different parallel processes running over different nodes. They offer
all required synchronization and communication services in order to fully

write a parallel program for a distributed memory system.

1.3 Bioinformatics

The term bioinformatics as a science field, is used to englobe all techniques and
methods related to applying software based solutions to understand, process
and display any kind of biological data. This combines the fields of biology,
mathematics, statistics, engineering and computer science. As seen on the
previous section 1.2, we are going to apply the usage of HPC systems to the
bioinformatics field. In the following subsections, a summary of elementary
concepts will be presented in order to understand the basics of sequence align-

ment.
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1.3.1 Preliminary concepts

In bioinformatics, a sequence is a character string that codifies the different
elements of a biological structure such as nucleic acids (DNA, RNA) or a
protein.

A nucleic acid is one of the most important biological molecules in life
[SZ05]. The function of this structure is to store information. This information
contains vital instructions to build other vital components such as proteins.
These sequences are formed by a chain of nucleic bases, each nucleic base
has a different chemical structure. There are two kinds of nucleic acids: The
deoxyribonucleic acid (DNA) who is responsible of the long-term storage of the
information, and the ribonucleic acid (RNA) who is responsible in the catalysis
of reactions and the synthesis of structures. The differences between DNA and
RNA are:

e DNA is structured by two paired chains in a double helix, while RNA is

only one single chain.

e The chemical structure is different, DNA contains deoxyribose H — (C' =
O) — (CH,) — (CHOH )3 — H while RNA contains ribose C5H10s.

e A DNA sequence may be formed by four different bases (Table 1.1):
Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), while on
a RNA sequence the Thymine base is not present, and instead there

is another one called Uracil (U). These bases are paired Adenine with
Thymine/Uracil, and Cytosine with Guanine A-T /U, C-G.

Table 1.1: ADN/RNA structural bases

A | Adenine | G Guanine
C | Cytosine | T | Thymine (ADN)
U | Uracil (ARN)

Proteins are vital compounds that have an important biological function

in the cell. Proteins are formed by a set of different amino acids. Amino acids
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Table 1.2: Amino acids

A Alanine B | Aspartic acid or Asparagine
C Cysteine D Aspartic acid

E | Glutamic acid | F Phenylalanine

G Glycine H Histidine

I Isoleucine K Lysine

L Leucine M Methionine

N | Asparagine O Pyrrolysine

P Proline Q Glutamine

R Arginine S Serine

T Threonine U Selenocysteine

Vv Valine W Tryptophan

Y Tyrosine Z | Glutamic acid or Glutamine

are critical and basic molecular structures to life, so a protein is formed by
a chain of different amino acids. In the nature there are a total of twenty-
two amino acids, which only twenty of these are encoded in the genetic code.
Other mechanisms are used to incorporate the remaining two into proteins. In
addition, there are a few more amino acids not found in proteins, but that are
part of other biological processes. Table 1.2 shows the standard codification
used to identify each amino acid.

The ADN contains the information of how to build the different proteins.
The bases are grouped in triplets called codons, each codon represents a differ-
ent amino acid. For example the codon formed by the bases CAG codifies the
amino acid Glutamine. A group of different codons, forms a protein sequence.
Finally, a group of codons who is the responsible of the codification of a protein

is known as a gene (Figure 1.7).

cccfacclaTclfrac]e
v v v v
R T MY

Figure 1.7: Codification of an amino acid sequence from a DNA sequence.
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1.3.2 Sequence alignment

The sequence alignment problem, consists on finding which patterns have in
common two given sequences. The goal is to obtain two sequences, where
the different matching patterns are paired. For example, given the following

sequences:
Seql: CGCACGATGTACG
Seq2: CGGAGATATTACG
The resulting aligned sequences will be:

Seql: CGCACGATGT-ACG
Seq2: CGGA-GATATTACG

The character ’-’ is used to represent a gap, an space in a sequence where the
other sequence has a base not present in the origin sequence, thus this base
cannot be matched. A character of a sequence is known as a residue.

While aligning sequences, there are three situations that can occur:

e Insertion: A residue not present in the origin sequence is present in the

second one:

Seqgl: CGCACGATGT-ACG
Seg2: CGGA-GATATTACG

The underlined T in Seq2 is an example of insertion.

e Deletion: A residue present in the origin sequence is missing in the

second one:

Seql: CGCACGATGT-ACG
Seg2: CGGA-GATATTACG

The underlined C in Seq! is an example of deletion.

e Substitution: The residue from the origin sequence is different in the

second one:
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Seql: CGCACGATGT-ACG
Seq2: CGGA-GATATTACG

The underlined G in Seq! and A in Seq2 are an example of substitution.
In order to align two specific sequences, there are two possible strategies:

e Global alignment: It attempts to align all the residues of the sequence.
It works better for similar sequences of the same size. For example, the

following two sequences are aligned globally.

Seql: CGCGTGCTCC-GTCGTC
Seqg2: C-—-GTGC—-CCA——-—-GTC

e Local alignment: It is more focused in aligning similar regions inside
the sequence. For example, the following two sequences are aligned lo-

cally.

Seql: CGCGTGCTCC-GTCGTC
Seq2: ——-CGTGC-CCAGTC--—-—

In the previous examples, we have seen the alignment between two se-
quences. According to the number of sequences involved, the sequence align-

ment problem can be divided in two main cases:

e Pair-wise alignment: Only two input sequences are compared and
aligned. This is computationally more simple to calculate, and in the
literature we can find several proposed algorithms. The most com-
monly used ones are the Smith-Waterman [SW81]| algorithm, and the
Needleman-Wunsch [NW70]| algorithm. These algorithms are presented

in detail in the following section.

e Multiple sequence alignment: Three or more sequences have to be
aligned. The problem complexity increases. This problem is explained

in detail throughout this document.
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1.4 Sequence alignment algorithms

The sequence alignment problem, consists on searching coincidences or matches
between two or more biological sequences. These sequences are character
strings, with a biological meaning. A set of aligned sequences helps biologists
to study the evolution of the species along other applications. Furthermore, it
is a computational problem with high demanding of system resources. In the
present section we are going to present the concept of distance and the two

most used algorithms for aligning two sequences.

1.4.1 Levenshtein distance

The Levenshtein distance, is an algorithm that determines the minimal number
of modifications (insertions/deletions) that have to be performed to one of the
compared strings to be exactly like the other one. The general purpose of the
algorithm is to calculate a distance and not to perform an alignment of the
comparing strings. The resulting distance value can be used to have an idea
of how similar are two given sequences, and can be used to sort sequences by
similarity.
Given two string sequences: Seql = ajaqas...q;...a, and Seq2 = bibabs...b;...by,

The matrix H,; is defined as: H;o = ¢ for « < n and Hy; = j for 5 < m. If
a; = bj, then H; ; = H; 1 ;1 for 1 <i<n,1<j5<melse

H; ;-1 +1 Substitution
H;j=minq H;_1;+1, Deletion 1<i<n,1<53<m

H;; 1 +1, Insertion

For the given the sequences:

Seqgl: AGCCUCGCG
Seq2: AUGCCAUUGG

We can build the scoring matrix shown in Table 1.3. The last cell of the table,
H, ., contains the Levenshtein distance value.
The resulting Levenshtein distance between both sequences is four, thus

we have to change four characters of the origin string in order to obtain the
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Table 1.3: Levenshtein scoring matrix.
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second string.

1.4.2 Needleman-Wunsch

The Needleman-Wunsch algorithm [NW70] is used to perform a global se-
quence alignment between two sequences. In this case, the algorithm looks
at the full sequence. It is a dynamic programming algorithm, it builds up
a scoring matrix between both sequences. It obtains the best alignment by
backtracking the optimal path from the cell with the biggest score.
Given two molecular sequences Seql = ajaqas...q;...a,, Seq2 = bibabs...b;...by,,

a matrix is build, using the Seql elements as the columns and the Seq2 ele-
ments as the rows. The matrix is filled from the last row and column, until the
first one. For each pair a;, b;, a score is assigned. An example simple function
to assign a score, is to assign one for matches and zero to mismatches. More
complex implementations are using a scoring matrix which assigns different
scoring values depending on the residues to compare, these matrices will be
discussed at the end of this section. For building the matrix, the initial value
is zero, and it will be assigned to all elements that don’t match. If there is
an assigned score in a previous column or row, then the value used to fill the

matrix is this one, plus the addition of the value returned by the function used
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Table 1.4: Needleman-Wunsch Scoring Matrix
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for comparing residues.
As an example, the algorithm is applied to the given the sequences:

Seql: AGCCUCGCG
Seq2: AUGCCAUUGG

The obtained scoring matrix is shown in Table 1.4.
The path which marks the alignment is marked in bold. The resulting
alignment is:

Seql: A-GCC-UCGCG
Seqg2: AUGCCAUUG-G

Finally, to calculate the score of the alignment, we have to calculate the
sum of the score of each pair a;, b; of the alignment. For each gap, we subtract
a penalty value. For example, using a gap penalty value of one, the score will
be: S(A,A)+(—1)+S(G,G)+S(C,C)+(-1)+S(U,U)+S(C,U)+S(G,G)+
(-)+S5G,G)=1-1+14+1-1+140+1-14+1=3

In order to increase the quality of the alignments, a substitution matrix is
used to determine the score of each pair of residues. These matrices contain all
the possible combinations of all residues. By default we are using the identity

matrix, as seen in Table 1.5, the diagonal of the matrix contains the scores
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Table 1.5: Example of substitution matrix for DNA
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for matching residues. In literature, there are different studies, that contem-
plate the assignation of different weighted scores for different combinations.
Consequently, better alignments are obtained by these matrices. For example
BLOSUMG62 (BLOcks of Amino Acid SUbstitution Matrix) [SJ92] is a matrix
commonly used for amino acids.

One particular fast optimized implementation of the Needleman-Wunsch
algorithm is the Hirschberg’s alogrithm, that reduces the computation time
required to align two sequences. The original Needleman-Wunsch algorithm
has a cost in time of O(nm) and in space of O(nm). This implementation

maintains the same cost in time, but reduces the space cost to O(min{n, m}).

1.4.3 Smith-Waterman

The Smith-Waterman algorithm [SW81] is used to perform a local sequence
alignment between two sequences. It is also a dynamic programming algorithm,
in which a scoring matrix is built with the two input sequences, and a optimal
path is computed by assigning different scores on each cell of the matrix. The
biggest score on the matrix is the beginning of the path, where the algorithm

will perform backtracking to determine the best alignment.

Given two molecular sequences: Seql = ajaza3...a;...a,, and Seq2 = b;bybs...b;...

The matrix H, ; is defined as: Hy o= Hp; =0for0 <k <nand0 <[ <m.

Hi—l,j—l + S(ai, bj> Match
Hi;=max<{ H;_j;—W(k),k>1 Deletion 1<i:<n,1<j<m
H; ;1 —W(),l>1 Insertion
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S(a;, b;) returns a similarity coeflicient between a; and b;. For example, if
a; = b; then the returned value could be 2, and if a; # b; the value could be
-1.

W (k) is a constant or function, that returns a penalty value to be applied
when a; # b;. For example it can be defined as as 1+ 1/3 x k, where k is the
horizontal or vertical distance between two cells in the matrix. For example
for H; ; and H;_3; k is 3. In some implementations W}, is a constant value,
defined as 1.

Given the following sequences:

Seqgl: AGCCUCGCG
Seqg2: AUGCCAUUGG

and applying the algorithm with S(a;,b;) = {2 if a; = b;, -1 if a; # b;},
and defining W), = 1,k = 1 , the scoring matrix shown in Table 1.6 is built.
To initialize the matrix, we put each sequence as the heading of the columns
and rows. The first row and the first column of the matrix will be always
initialized to zero. Finally, each cell contains the value of applying the already
seen algorithm. The path with the biggest scores is marked in bold. The

resulting alignment that we obtain from the path is:

Seqgl: A-GCC-UCGCG
Seg2: AUGCCAUUG-G

There are implementations of this algorithm available in several languages
and with several optimizations. Implementations are available for CPU, GPU
and FPGA. One implementation available is FASTA [WD88|, it is a set of
tools used for generating the alignment of two sequences, and also they can
search a given sequence in a database of sequences. FASTA provides two
optimal implementations of the Smith-Waterman algorithm capable of using

SSE instructions [A97] to speed the alignment process.

1.5 Multiple Sequence Alignment

The Multiple Sequence Alignment problem (MSA), is a specific case of the Se-

quence Alignment, were instead of aligning only two sequences, we have to align
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Table 1.6: Smith-Waterman scoring matrix.
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a set of three or more sequences. These input sequences are assumed to have
an evolutionary relationship. The generated alignment will show shared subse-
quences from a common ancestor, with insertions, deletions or different bases
representing alterations like mutations or single nucleotide polymorphisms.
In Figure 1.8, we can see the output of a MSA of some sequences, the
displayed sequences are a portion of a long output file. These matching char-
acters are aligned on the same column. Gaps, insertions and/or deletions of
characters may be performed to enforce the alignment of the sequence. A gap
is a space between two characters, on a insertion one or more characters are
added, and on the deletion one or more characters are deleted. On this ex-
ample, the alignment quality is represented in a different color tonality, from

light to dark, representing the worst to the bests values respectively.

1.6 Objectives and contents

The present work is focused on the MSA problem. One of the main demands
of the biotechnology researchers for algorithms that solve MSA| is that they
should be able to align as many sequences as possible, thousands if possible,

with good quality alignments in biological meaning. In this framework, we
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CTRB1 16------- KLSL-LLVCVAVASGNPAAGKPW
ELNE_ LG----RRLACL-FLACVLPALLLG-G----
CFAD_ a5----VY----- FVALVILGAAVC-A----
KLK7_ HeV------- W-LL-SLITVLLSLALE-T----

Aligment quality: BAp AvelGEEE

Figure 1.8: Example of a multiple alignment of a set of sequences.

focus our main efforts in a specific implementation of MSA, named T-Coffee,
as it is broadly used among the scientific community. Our goal is to provide T-
Coffee with the ability to execute in the current high performance computing
systems with effectiveness, in order to be able to align thousands of sequences.
To achieve this goal, we are proposing the following specific objectives to de-

velop in the present work of thesis:

e To analyse the main steps involved in the MSA process and to measure

their complexity.

e To study the most commonly used implementations of MSA and to dis-

cern their similarities and differences.

e To analyse the performance and quality of the different MSA implemen-

tations compared with T-Coffee.

e To propose some alternatives to improve T-Coffee to be executed in

current computing systems with an acceptable performance.

e To propose new implementations to solve the steps inside MSA that have
higer complexity and, as a consequence, those that take more computa-

tion time.

e To apply load balancing and resource utilization techniques to distribute

the MSA work in distributed computing platforms in an efficient way.

These proposed objectives are developed throughout the present document

with the following chapters:
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Chapter 2: It introduces the sequence alignment and multiple sequence
alignment problems, different implementation found on literature, pre-

liminary concepts and related work.

Chapter 3: It focuses on a specific MSA implementation, T-Coffee, and
performs a deep efficiency and scalability study of different solutions, by

comparing them.

Chapter 4: Tt starts by presenting our contribution to improve T-Coffee,
by rewriting parts of the T-Coffee code, so it can start using threads
rather than fork/join. It also presents our proposed sequence alignment
solution, with its design discussed and the obtained results compared

with the original MSA application.

Chapter 5: Tt presents an optimal method for determining the most
efficient amount of computing resources to solve the MSA problem with
optimal efficiency. It also presents a set of experiments and results in

order to validate our model.

Chapter 6: Finally, chapter 6 outlines the main conclusions of the work,

and future work.

Appendices: A set of additional resources related with the solutions im-

plemented, is found on the last pages of this document.
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Related Work

Sequence alignment and the multiple sequence alignment, when more than two
sequences are in action, constitutes a computational a problem, on which sev-
eral authors, over the past decades, have proposed different kind of algorithms
and implementations with the aim of solving it in an efficient way, offering
an important value of quality for their alighnments. During the last decade,
authors have started to explore new ways to solve the problem using HPC
systems. These chapter explores in detail the different implementations for
sequence alignment that we can find in the literature. Starting with the most
common and used implementations, to the least ones, we will briefly explore

and name some of its main characteristics.

2.1 Implementations overview

According to their implementations Multiple Sequence Alignment algorithms,
can be classified in different ways. In one way, we can classify algorithms

according on the inner parallelism level of its implementation in the following

25
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categories:

e Sequential: This is the most traditional and simple solution, where

these implementations run one single thread of code, so they are not
optimized to use the capabilities of newer processors. Processor runs
instructions sequentially one by one. Most implementations are mostly
sequential. Example of this implementations are: Clustal [LBBT07],
Kalign [L.S05], MAFFT [KT08|, MUSCLE [Edg04|, Dialign-TX[SKMO08|.

Multi-Threading: These implementations benefit of capabilities of-
fered by multi-core processors and many-core co-processors. The execu-
tion of code runs in parallel, where multiple instructions run simultane-
ously on the same node, over the same data or different data, as they
usually implement a shared memory model. They exploit the execution

in parallel through the cores with different approaches:

1. Forking: On this technique a new process is created after the fork
operating system call. When this occurs, the operating system will
clone the process requesting to fork, by performing a copy on write
of the complete process memory, thus only modified data structures
after the fork will be copied. In this case, each process, although is a
copy of the original one, it will not have access to the memory of the
other processes. These processes will run in parallel and will require
a messaging queue service in order to intercommunicate. This can
be provided by a messaging passing API such as MPI, by using
sockets, shared memory regions or by using temporary files. The
master process may join the execution of its created child processes,
by checking the state of them, until they terminate its execution.
This technique, in general has higher memory and computational
costs in comparative with other techniques. For example T-Coffee
[INHHOO0] implements this technique.

2. Threads: Threading, is a programming technique that allows to
run multiple instances of code simultaneously in parallel. Although
the idea is similar to the forking methodology, threads are lighter

processes than fork based processes, as they don’t perform any kind
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of copy of code or data. Threads will follow a complete shared mem-
ory model, were the process memory is the same across al threads.
A thread will start running a piece of new code when it starts. Cre-
ated threads will and need to be joined. This technique is more
efficient than forking, and benefits on a considerably lighter mem-
ory consumption and processor resources. On the contrary, when
dealing with shared memory, whom should be very careful to write
into data structures that are being processed by a different thread.
Thus bad programming patterns may influence in synchronization

errors and software malfunctioning.

3. OpenMP: OpenMP is a language extension to the C programing
language, that offers a set of preprocessor instructions that will
expand a fully parallel code. One can write code that will expand
to a set of parallel instructions in a specific region of the code, to
be run fully in parallel. These parallel regions work very similar to
creating a set of worker threads. An example using this paradigm
is Clustal Omega [SWDT11].

e SIMD instructions or GPU: The single instruction and multiple data
paradigm can by exploited by two different techniques:

1. Multimedia SIMD: Most processors come with a set of multime-
dia based scalar instructions aimed to be used for video and audio
processing. These instructions allow to operate over larger sets of
data in parallel with the same code. We can observe [Far06| as a
parallel implementation of the Smith-Waterman pair-wise sequence

alignment algorithm.

2. GPU: The graphical processor unit is a complete SIMD system,
capable of running several threads in parallel with different sets of
data. In order to operate with this processor, two languages to in-
terface with them are available. CUDA by Nvidia, is a proprietary
language specific to the Nvidia vendor based GPU cards, in order to
write code that will run on these processors. The program that will

run on the GPU can be loaded by a interface available to the C lan-
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guages, that also offers operations to copy, read and write into the
GPU memory from the main system memory. The second language
available is OpenCL, that is more accepted by the community, as
it is established as an standard, thus it has implementations avail-
able on more platforms than CUDA. OpenCL can benefit of ATI
Radeon, and NVIDTA based GPUs. An example using such imple-
mentation can be seen on [LMS09] as a parallel implementation for

GPU of the Smith-Waterman pair-wise algorithm.

e Distributed computing: This paradigm, based on a distributed mem-

ory model, works by running several processes on any kind of distributed
system. Each process can be either sequential or use any combination of
the previously seen paradigms. Thus the most efficient one will combine
most of them by fully using all available computing resources. For the
communications between each node, we can use plain networking, being
the fastest the better, or other hardware specifically designed devices
such as InfiniBand. Several implementations can be used for the com-
munications between each node, such as message passing interface (MPI)
and parallel virtual machine (PVM). Examples of these implementations
are Parallel-T-Coffee [ZYRAO07], Clus-T-Coffee [Y09] and ClustalW-MPI
[Li03] [CDP*03].

2.2 MSA algorithms

The multiple sequence alignment process consists mostly on set of different

steps. These steps may be different depending on the implementation, algo-

rithms, heuristics, and mechanism used to achieve the final multiple sequence

alignment. We can describe most MSA implementation, seen on Figure 2.1 in

3 main specific steps: Pair-wise alignment, building of the phylogenetic guide

tree and progressive alignment. The functionality of each step is the following:

e Pairunse alignment: Given a set of input sequences, most implementa-

tions build a primary library containing information about all the pos-

sible pairs of sequences, with the goal of obtaining a distance matrix
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El Input Sequences | [ 3. Guidetree ]

THE CAT SLEEPS A: THE CAT SLEEPS
B: THE FAT CAT SLEEPS
C: THE FAT DOG SLEEPS | » B: THE FAT CAT SLEEPS
D: THE FAST BIG DOG C: THE FAT DOG SLEEPS
_ 2. Pairwise alignment ] D: THE FAST BIG DOG
A: THE CAT SLEEPS '
T — 4. Progressive alignment
A: THE CAT SLEEPS
C: THE FAT DOG SLEEPS A: THE --——- CAT —--- SLEEPS
A: THE CA T SLEEPS B: THE FA-T CAT --- SLEEPS
D: THE FAST BIG DOG C: THE FA-T --- DOG SLEEPS

D: THE FAST BIG DOG

Figure 2.1: Steps of the multiple sequence alignment process.

with all this pairs of sequences, which its corresponding scores. All this
computed data, will have an important role in the following steps of the
algorithm. In order to build this library, algorithms seen on the previous
chapter, such as Smith-Waterman or Needleman-Wunsch between others

can be used.

Phylogenetic guide tree: The given implementation may use different
techniques to build a phylogenetic guide tree, according to the scoring
information that relates sequences between them. The final tree, has
the purpose to relate all possible sequences between them as close as a
possible and to indicate the order in which sequences have to be aligned

in the following step.

Progressive alignment: From the given sequences in the guide tree, a
progressive alignment step is performed, by following all nodes in the
tree, we are able to build the final MSA alignment, containing all possible

sequences.

The most used sequential implementations of the MSA process that can be

found

in the literature are the following: Clustal, Kaling, MAFFT, MUSCLE,
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Dialign-TX and T-Coffee. Next we expose a brief description of their operation.

e Clustal [LBB07] It is able to align hundreds of sequences in a couple

of hours. It performs the previously seen three steps:

1. Pair-wise alignment of all input sequences using the Wilbur and

Lipman algorithm.
2. A speculative evolutionary tree is built, using neighbour-joining.

3. The tree is used to perform the multiple alignment.

Two versions of clustal are available, ClustalW is the most known and
mature version available, and they have recently published the beta ver-
sion of Clustal Omega [SWD*11|. While the traditional ClustalW imple-
mentation does not benefit on any kind of paralellization optimizations,
Clustal Omega is a new implementation that uses OpenMP primitives
for its standalone based parallelization in order to use more efficiently a
multiprocessor. Finally, a MPI implementation of ClustalW, known as
ClustalW-MPI [Li03] [CDP'03] is also available. This later implemen-
tation achieves parallelization by dividing into tasks each step, in order

to collaborative achieve the final alignment.

e Kalign [LS05] is another fast MSA serial implementation. It concen-
trates on local regions. It uses a dynamic programming standard pro-
gressive method for its sequence alignment and it performs the following

steps:
1. Performs the pair-wise alignment of all input sequences using the
Wu-Manber algorithm.
2. Constructs a guide tree using the UPGMA or neighbour-joining

algorithms.

3. The tree is used to perform the multiple alignment.
There is not known parallel version of this algorithm implemented.

e MAFFT [KTO08| is a another MSA, with the characteristic of being

implemented using a threading library to speed up its alignments. It



2.2 MSA algorithms 31

implements different algorithms that can be switched in order to obtain
different results. These alignment strategies are classified as: Progressive
methods, iterative refinement method using the weighted sum of pairs
score and the iterative refinement methods using both the weighted sum
of pairs and consistency scores. The following steps are done depending

of the configured method:

— Progressive methods:

Builds distance matrix.
Constructs a guide tree.
Performs progressive alignment.

Re-constructs the tree.

ARl A S .

Re-aligns the sequences to obtain the final alignment.
— Iterative refinement method using the weighted sum of pairs score:

. Builds distance matrix.
. Constructs a guide tree.
. Performs progressive alignment.

1

2

3

4. Re-constructs the tree.
5. Re-aligns the sequences.
6

. Iterative refinement.

— Iterative refinement methods using both the weighted sum of pairs
and consistency scores:
1. Builds distance matrix.
2. Constructs a guide tree.
3. Performs progressive alignment.

4. Tterative refinement.

The distance matrix is built using a fast Fourier transform method that
is described on [KTO08]. The guide tree is built using a custom algorithm
based on UPGMA. On the progressive method, the guide tree is built

two times, with the achievement of obtaining a better quality based
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alignment. The second method, adds an additional step to an additional
refinement algorithm, to adjust the final alignment sequences taking into
account the sum of pairs score. On the final method, the tree is only build

one time, as the consistency scores are used in this case.

MUSCLE (multiple sequence comparison by log-expectation) [Edg04].
This implementation claims to be the fastest with the best quality in
comparison with the other implementations. Similar to previous imple-

mentations Muscle performs the following steps:

1. Distance matrix and guide tree estimation.

2. Pairwise profile alignment, that will be used for the progressive

alignment and finally for performing a refinement alignment.

Dialign-TX [SKMO08]: Another MSA serial implementation. It uses
a different strategy that differs from traditional MSA algorithms. It
uses a straight-forward greedy technique to get the multiple sequential

alignment from a previous local pairwise step.

T-Coffee [NHHO00|: T-Coffee MSA uses a traditional method for solv-
ing the problem. Our work focus on this algorithm, by extending or

improving it. The following steps are performed by it:

1. Builds the primary library by performing the pairwise of all se-

quences.
2. Extends the library, to give more accuracy to its alignments.
3. Builds the guide tree.

4. Performs the progressive alignment obtaining the final alignment.

Parallel versions of T-Coffee addressing different issues have been pro-
posed as Parallel-T-Coffee |[ZYRAO7| and Clustal W-MPI [Li03], being
the first one a parallel aproach of T-Coffee and the second one a com-
plete different mechanisms were performs a clusterization of the input

sequences in order to reduce the problem in smaller ones.
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As we have seen along this chapter, in order to to improve the performance
of these MSA algorithms, some authors have proposed distributed memory so-
lutions based on message passing (MPI), including Parallel-T-Coffee [ZYRA07|
and Clustal W-MPT [Li03] [CDP*03| that have considerably improved their
speedup. They coincide in the need to align several pairs of sequences. Thus,
they are focused on solving the problem using only a distributed memory
paradigm and lack the benefits of a hybrid system (distributed/shared mem-
ory).

While the previous implementations will run several instances of the Smith-
Waterman algorithm in parallel in order to align as many sequences as possi-
ble, there are also parallel implementations focused on the Smith-Waterman
algorithm itself using shared memory such as [Far06|, which describes an accel-
erated version using SIMD processor extensions, and [LMS09]| which describes
an accelerated version running on GPU. These implementations are more spe-
cific in aligning a single pair of sequences as fast as possible rather than several
pairs of them. Using both methods may benefit from a better hybrid imple-
mentation that would exploit and use the modern parallel systems, made up
of nodes with multi-core CPUs and GPUs, more efficiently.

Once have seen the overview of the main algorithms existing in the litera-
ture to carry out MSA, and their improvements to increase performance, we
focus in the present work in T-Coffee algorithm. The reason is that it is the
one that provides the best quality results in the biological meaning of their
alignments, so that it is very useful for the biotechnology community and it
lacks of efficient parallel implementations that combine the use of shared and

distributed memory that permit to efficiently exploit nowadays systems.






CHAPTER 3

Analysis of MSA based on the T-Coffee

implementation

In this chapter, we carry out a deep analysis of T-Coffee, which, as we have
seen in the previous chapter, is one of the existing algorithms to solve the MSA
problem. We expose the different implementations of T-Coffee and we make
a deep analysis of usage of system resources, where the following variables are
analysed: computing time, memory usage and inter-node communications in

the case of the parallel implementations.

3.1 MSA based on T-Coffee

Currently, T-Coffee (Tree-based Consistency Objective Function For alignment
Evaluation) [NHH00] [DTMX™11] is the most extensively MSA implementa-
tion used among biologists. It can be used to align Protein, DNA and RNA
sequences, and it can also combine the output generated by other MSA imple-

mentations like Clustal, Muscle, Mafft, etc.. into one unique alignment using

35
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A: THE CAT SLEEPS
B: THE FAT CAT SLEEFS
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D: THE FAST BIG DOG
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Palr_mﬂse E: THE FAT CAT SLEEPS C: THE PAT DOG SLEEPS
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Primary Library
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D: THE FAST BIG DOG D: THE FAST BIG DOG
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L: THE FAT CAT SLEEPS
A: THE CA T SLEEPS
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Figure 3.1: Steps and example of the T-Coffee process.

another mode of operation called M-Coffee. Input text files containing un-
aligned sequences are processed by it, generating the resulting alignment of all
the involved sequences. It tries to improve the accuracy of the results taking

into account biological information obtained from pair-wise alignments.

The original standalone version of T-Coffee is mostly a sequential imple-
mentation, although some parts of it are parallel using the operating systems
primitive fork calls. Thus, T-Coffee will launch a set of processes to divide part
of the computing work set. However, it cannot be directly used in a cluster
based environment. The other implementations presented in the next sections,
use the message-passing library MPI, to parallelize the different stages of the

algorithm.

The process carried out by T-Coffee, illustrated in Figure 3.1, has the

following three main stages, whose operation is exposed next.
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e Pairwise alignment: Construction of the primary library, containing
all the pair-wise alignments from all input sequences. In our example, all
the pairs of A, B, C and D sequences are aligned obtaining 6 pair-wise
alignments. Information about N(IN —1)/2 pairs is stored in this library,
where N is the number of input sequences. Alignments are represented
as a list of matching pairs of residues. Each of these correlations is
considered by T-Coffee as a restriction. A weight value from a biological
scoring scheme is assigned to each restriction. The computing cost of
this phase is very high because it is necessary to obtain the pair-wise
alignments for all input sequences. Defining L as the average length of
the sequences to align, the alignment of two sequences in particular has a
computing complexity in space of O(3L), as we have to store the original
sequences and the aligned one. Furthermore, the cost in time is O(L?).
Aligning N sequences requires N(N — 1)/2 combinations, thus this is
equivalent to a global complexity of O(N?). Given these premises the
whole process will have a complexity in space of O(N?*3L) and in time
of O(N2L?).

e Extension: The extension is the heuristic used by T-Coffee to adjust
the restrictions group of the primary library into multiple sequence align-
ments. The analysis in the extension is based on taking from the primary
library each pair of aligned residues in two sequences and check whether
these are aligned with the same residue of the third sequence. The weight
of the aligned residue in the third sequence in the primary library is added
to the weight assigned to the pair of residues in the primary library. The
process in the extension is made for each pair of residues with all the
input sequences. In our example, we can see how the aligned pair of se-
quences A and B, are aligned against a third sequence, first with C then
with D. This will be repeated with all possible sequences and pairs. The
extension is designed to generate a list of restrictions used to evaluate the
construction of the final multiple sequence alignment. As described in
the original article of T-Coffee [INHHO0| the complexity in time is about
O(N?L) and the same in space. The generated library is called Extended
Library (EL).
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e Progressive Alignment: In order to obtain the progressive alignment
it is necessary to generate a distance matrix from all input sequences,
taking into account the scores generated by the primary library and its
extension. A guide tree is built with the values of similarity between
pairs and triplets of sequences. The guide tree is built as a Directed
Acyclic Graph [YA99] and its precedences are used to establish the order
to be followed in the progressive alignment. In the example, the order
established by the guide tree indicates a first alignment of sequences A
and B, next with C and finally with D. The complexity for building
the guide tree is O(N?) and the complexity time for performing the
progressive alignment is O(NL?).

T-Coffee is capable on producing alignments with high quality in the biolog-
ical sense, with a considerable good score in comparative with other algorithms,
but as a main drawback, T-Coffee is the slowest implementation, taking more
time to reach the final alignment. Given situations where whom wants to get
a quick alignment, whom may sacrifice a bit of quality to get it fast. When
a good quality alignment is an important achievement, then it is necessary to
dedicate important computing resources to it. As a consequence of this limita-
tions on the current implementation of T-Coffee, authors have proposed some
solutions that parallelize, some or all parts of the T-Coffee algorithm, in order
to achieve the same result in less time. Other implementations have also been

implemented using parallel languages.

3.1.1 Parallel T-Coffee

To overcome the problems in the use of resources that became evident for
T-Coffee, the Parallel-T-Coffee (PTC) [ZYRAO07]| is glimpsed as a possible
alternative to align a greater number of sequences. PTC is a parallel MSA im-
plementation using a message passing library, specifically MPI, with the aim
of aligning a greater number of sequences. PTC, based in T-Coffee version
3.79, was implemented from scratch for a cluster based environment. The con-
straints library is distributed across the different tasks, and performs alignment

operations in parallel using dynamic scheduling techniques. As seen in Figure
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3.2, it performs the same process as T-Coffee but parallelized across a set of
different message-passing tasks implemented in MPI whose computation can

be distributed among different nodes. The parallelized steps are the following:

e Library Generation: In PTC the library generation is computed in a
distributed form. First, the pairwise computation is distributed among
the nodes, then the constraints are grouped and re-weighted. Library
extension is not performed as in original T-Coffee, it is postponed and
done on the fly in the progressive alignment phase. Finally, a 3d lookup
table is built from the library. Caching techniques are applied on this
table.

e Progressive Alignment: Is the most difficult step to parallelize. Compu-
tations in progressive alignment follow a tree order, thus its paralleliza-
tion is reduced to a DAG (Directed acyclic graph) scheduling problem
|[YA99|, where the tasks of sequence alignment are distributed among

system nodes taking into account the precedences marked by the DAG.

3.1.2 Parallel T-Coffee using similarity based clusters of

sequences

According to the performance problems that had been seen in the previous
MSA implementations of T-Coffee, in our group we developed a new message
passing (MPI) implementation that is based in a divide and conquer technique:
Clus-T-Coffee (CTC) [Y09] is based on version 7.81 of T-Coffee and goes one
step further in the way it solves the MSA problem. Clus-T-Coffee tries to apply
the divide and conquer problem by reducing considerably the combinatory
explosion of pairs of sequences to align, by running separate independent T-
Coffee processes with smaller inputs. These inputs are determined by grouping
and dividing all input sequences on clusters of similar sequences.

In CTC, see Figure 3.3, a previous phase of clustering is introduced that
builds a set of different clusters (groups) of sequences. The number of gen-
erated clusters and the amount of sequences depends on a cut-off value that

determines the similarity of the sequences for being grouped in each cluster. As
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the initial task to compute the clusters, CTC needs to compute the pair-wise

alignments between all input sequences. In the following phase, each node will
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Figure 3.2: Steps of Parallel-T-Coffee (PTC) process.
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Figure 3.3: Steps of Clus-T-Coffee (CTC) process.

receive a precomputed cluster and will run the whole T-Coffee algorithm on it.
At the end it will generate a partial alignment. Finally, all partial alignments

are merged on a last invocation of T-Coffee.

3.2 Performance analysis of T-Coffee

One of the basic goals of biologists researching on MSA | is to be able to align as
much sequences as possible with an acceptable quality level. On this section we

are presenting a deep study of the experimentation performed in order to test
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the scalability and overall performance of the implementations presented of
T-Coffee, in order to study the consumption of memory usage and computing
time. This experimentation is an important key in order to know the behaviour

of these implementations, so we can determine how can they be improved.

3.2.1 Experimentation framework

In order to perform the experimentation, a set of system monitoring tools were
used to extract information about CPU and memory usage. The first tool was
vmstat, shipped by default on most operating systems. It displays average
information about the global CPU and memory usage. The second tool used
is sar, it displays more detailed information about the system, like network
usage and CPU usage, detailed per core. All tests were scripted in python,
thus all data generated were also processed by python scripts.

The systems used to perform all the experimentation and tests were: one
of the clusters of the research group to carry out parallel tests, and one stand-
alone machine to execute the serial implementations, with the following char-

acteristics:

e The cluster used had twenty-four nodes and one frontal. All nodes were
Intel Core 2 Quad Q6600 at 2.4GHz processor with four Gigabytes of
RAM and one Gbit of network speed.

e The stand-alone machine was a Intel Core 2 Duo E6850 at 3GHz proces-
sor with four Gigabytes of RAM.

3.2.2 Generating sequences

In order to validate and test the different implementations, we need to provide
us of an adequate set of input data for the MSA aligners.

Two methods were used to generate sequences:

e The first method consisted in extracting sets of biological sequences from
known benchmarking libraries, thus generating a vast set of test input

sequences with different properties.
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e The second method consisted on random generation of sequences trying
to imitate the way in which biological sequences have mutated over the

history.

For the first method, we have generated a set of different input files con-
taining from one hundred to one thousand sequences. The origin data used to
generate these datasets comes from different BAIIBASE sequence files. BAI-
iBASE [TPP99b], is a benchmarking library which contains several input se-
quences divided in a different set of benchmarks. There is not a fixed sequence
length on these tests, as different lengths were concatenated. BAIIBASE is
used to test the quality level of a set of precomputed MSAs. Tts benchmarking
tool gives an score of how good is an alignment. In our study, we are only
using BAIIBASE sequences for generating a set of input sequences.

For the second method, a small application SeqGen was written. See Ap-
pendix A for usage information. This application generates random sequences
trying to mimic the mutations found in real biological sequences. Thus, the
generated sequences, as being random, do not have any kind of biological
meaning and are only useful for testing the scalability of the applications. The

generation of sequences follows the following steps:

1. A pristine sequence is generated, with the settings defined by the user

and stored in the input array.

2. A sequence is randomly extracted from the input array (on initialization,
the input array will contain only the pristine sequence), and it is used

for the duplication.

3. A ) number of sequences are generated by duplication of this pristine

sequence.

3.1 On the duplication process, a weight table is randomly selected for

each sequence.

3.2 Each sequence is duplicated residue by residue applying the weight
table. Each weight determines the probability of the following sit-

uations:
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e Normal copy: The residue is copied one to one. No mutation
present.

e Duplication: The residue from the origin sequence is duplicated
in the new sequence.

e Insertion: A new residue is inserted between the previous one
and the current one.

e Alteration: The origin residue is randomly swapped with an-
other residue.

e Deletion: The origin residue is deleted and then, it is not
present in the destination sequence.

e Subsequence insertion: A new small subsequence is inserted
at this point. This case has very low probability, but might
happen.

3.3 The new sequences are stored in the input array.
4. The origin sequence is stored in the array of generated sequences.
5. Repeat the process from step 2, until the array of generated sequences
contains as many sequences as the user requested.
6. Randomize the order of the generated sequences array.

For the different width of performed experiments on the described systems,

different kind of sequences, with determined sequence lengths were generated.

These sequences are summarized on Table 3.1, and were generated as follows:

e Set A: This set is formed by 20, protein based, input sequences in total for

sequential analysis. The average sequence length is about 100 residues.
The first pair of input test files is about 100 sequences, by incrementing
its amount by 100 sequences, we generate various files, being the last

ones up to 1000 sequences.

Set B: It contains 280 input files, which were generated for sequential
analysis containing from 10 to 140 (three different protein samples, one
RNA sample and one DNA sample) incremented by 10 sequences, and

using lengths of 50, 100, 150, and 200 residues on average per sequence.
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e Set C: Formed by 396 input files for sequential analysis, containing from
100 to 1000 sequences (five different protein samples, two RNA samples
and two DNA samples) incremented by 100.

e Set D: It contains only 36 input files. Formed each one by 2000 sequences,
the lengths used were 50, 100, 150, and 200 residues on average per

sequence.

Table 3.1: Summary of all input sequences used for the study

Total Sample Sequence Number of
Set | samples | First | Last | A length samples
20 100 | 1000 | 100 100 2 prot.

280 10 | 140 | 10 | 50, 100, 150, 200 | 3 prot., L RNA, 1 DNA

396 100 | 1000 | 100 | 50, 100, 150, 200 | 5 prot., 2 RNA, 2 DNA

wli@]lvelie

36 2000 | 2000 | 0 | 50, 100, 150, 200 | 5 prot., 2 RNA, 2 DNA

In addition, BAIIBASE input sequences were used to perform a comparative
study in the quality of the alignment generated by each MSA implementation.

With these sets of sequences and configurations we carried out an exper-
imental performance study that is reported in the following sections. A set
of scripts were designed to automatically generate, configure and launch MSA
tests for each implementation on a single machine or in the cluster. In the
cluster was a bit more tricky, as the scripts had to purge and process data as
they were generating new gsub scripts on the fly for new tests while controlling

the available quota.

3.3 Comparative of T-Coffee with other MSA

implementations

In this section, we present a comparative study of different MSA algorithms to
focus on the quality of the generated alignments. The BAIIBASE benchmark-
ing package was used for such study. BAIIBASE has six different groups of
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benchmarks (RV11, RV12, RV20, RV30, RV40, RV50), each one with a set of
reference aligned sequences. The generated alignment by each implementation
is compared with the reference alignment by the BAIiBASE benchmarking tool

|TPP99al, and two scores are generated by each alignment:

e Sum-of-pairs score: This score is determined by assigning one point
to each pair of residues from all pair-wise alignments, and zero points to
the incorrect ones. The resulting score is the average, being one point
the best score possible. This score determines if the implementation is

capable to align at least some sequences from all the input set.

e Column score: This score is determined by assigning one point to each
column which all residues are correctly aligned, zero if only one or more
are unaligned. The resulting score is the average, being also one point the
best score. In this case, it determines the ability by the implementation

to align all sequences from the input set.

The implementations, presented in the previous chapter, used in the study

along with the corresponding version are the following:

e T-Coflee version 8.99

Clustal Omega version 1.0.2

ClustalW version 2.1

Kalign version 2

MAFFT version 6.857

MUSCLE version 3.8.31

All benchmarks were run on the Dual Core stand-alone machine.

Table 3.2 displays the sum-of-pairs score of all implementations. From this
table we can observe, that the best implementation with the best scores is
T-Coffee, it is followed by Clustal Omega, MUSCLE, Kalign, MAFFT and
ClustalW. Considering all the sequences in all the computations, the last row,

shows the proportional amount of sequences with the biggest score obtained
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by each implementation. Note that the addition of all amounts does not sum
one hundred percent because multiple implementations are performing align-
ments with the same score. We can observe from this table, that despite the
computing time required by T-Coffee to achieve this score, it is the one that

bypasses most in quality in comparative with the other ones.

Table 3.2: BAIIBASE sum-of-pairs score comparative

RV T-Coffee | ClustalO | ClustalW | Kalign | MAFFT | MUSCLE
RV 11 0.62 0.51 0.49 0.54 0.44 0.55
RV 12 0.89 0.85 0.82 0.85 0.82 0.86
RV 20 0.88 0.86 0.82 0.85 0.84 0.85
RV 30 0.79 0.77 0.68 0.73 0.74 0.75
RV 40 0.80 0.80 0.70 0.77 0.76 0.76
RV 50 0.79 0.75 0.67 0.70 0.72 0.73

Average 0.79 0.75 0.70 0.74 0.72 0.75

Best 64% 17% 5% ™% 1% 9%

Table 3.3 displays the column score for all implementations. In this case,
the scores are smaller due to the difficulty by the implementation to align
correctly all sequences of the input set. If we observe and compare the results
obtained from this table with the previous one, we can observe that the results
keep the same line of behaviour. T-Coffee continues to be the one with the
high score values. This, taking into account both scores, we can confirm that
T-Coffee offers a significant higher quality in their alignments compared to
other algorithms.

In addition to the quality, we also carried out a comparative of the average
amount of computation time and memory usage required by each implemen-
tation under study. The results are shown, in logarithmic scale, on Figure 3.4.
From these results, we can observe that T-Coffee is the implementation that
more memory and time needs to solve the MSA problem. On the contrary
the other implementations require less time for computing the alignments.
For example, the fastest implementations are Kalign and MAFFT followed by
MUSCLE, Clustal Omega and ClustalW. From these implementations only
Clustal Omega, MAFFT and T-Coffee present some kind of stand-alone par-
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Table 3.3: BAIBASE column score comparative

RV T-Coffee | ClustalO | ClustalW | Kalign | MAFFT | MUSCLE
RV 11 0.39 0.27 0.24 0.29 0.20 0.31
RV 12 0.74 0.68 0.64 0.67 0.63 0.70
RV 20 0.36 0.34 0.26 0.29 0.27 0.30
RV 30 0.39 0.39 0.25 0.31 0.30 0.31
RV 40 0.42 0.43 0.30 0.37 0.34 0.33
RV 50 0.42 0.36 0.27 0.28 0.32 0.33

Average 0.46 0.41 0.33 0.37 0.34 0.38

Best 62% 31% 11% 11% 8% 13%

allelizations (OpenMP, pthreads and fork respectively). In conclusion, when
most aligners are capable of producing sequence alignment solutions in a fastest
way than T-Coffee, by using less resources, we have to insist in the importance
of the alignment quality, being justified the price that is paid by T-Coffee on
resources, in order to achieve the quality that we have observed, as it is a key

characteristic for being useful for biologists.

3.3.1 Scalability of T-Coffee fork model

In the previous section we have observed and compared T-Coffee with other
MSA implementations, now we want to perform a deep study of the scalability
of T-Coffee. In order to determine how many sequences can be aligned. Thus,
we have run a set of tests in serial mode and using the fork/wait model. All
tests were run on the stand-alone Core 2 Duo machine using a set of input
sample sequences as described on section 3.2.2.

We tested the memory usage and the computation time that were necessary
to be used for different number of input sequences. On an initial benchmarking,
we tried to obtaining the maximum amount of sequences that T-Coffee was
able to process before it exhausted all available system memory. We were
able to successfully align up to 300 hundred sequences of an average length
of 100 residues. Finally, given the limitation of resources, we decided to ran

T-Coffee with an input data set from 10 to 140 sequences of lengths from 50
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to 200 residues. The results are shown in Figures 3.5 and 3.6, were it can be
observed that memory usage and computation time grow in a exponential way,
as expected, due to the exponential nature of the algorithm. Besides, given the
seen experimental results, we can estimate that the maximum scalability of T-
Coffee will be limited by the memory available in the system for a determined
problem, for example we were able to align only up to 300 sequences before

the system reached the four Gigabytes memory limit.

Finally, for the last test, we run both T-Coffee in serial mode (1 thread) and
T-Coffee with fork/wait mode (4 processes). We fixed the number of sequences
to be aligned in this test to 100 sequences, and we increased the sequence
length from 50 to 200 residues. Table 3.4 shows the improvement of T-Coffee
fork versus the serial execution for two cores. The second column, shows the
average speed improvement, the third one shows the speed up average, and
the last one the efficiency. From this table, we can observe that the fork/wait
based implementation gives greater improvements for higher sequence lengths,
as we are able to achieve better speed up and efficiency results. These results
show that T-Coffee can scale quite well while increasing sequence length, and
this is due to the nature of the algorithm. Adding more sequences will always
increase the number of pairs of sequences to align, increasing considerably the
costs of the problem, but increasing the size of these sequences will only affect
on the memory usage by the system, and does not affect negatively to the

parallelization of the process.

Table 3.4: Improvement of fork /wait versus serial in T-Coffee.

Seq. Length | ASpeed | Speed Up | Efficiency

20 15% 1.18 0.59
100 27% 1.38 0.69
150 34% 1.5 0.75

200 38% 1.6 0.8
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3.4 Parallel-T-Coffee

To overcome the problems in the use of resources that became evident for
serial T-Coffee, Parallel-T-Coffee (PTC) is glimpsed as a possible alternative
to align a greater number of sequences.

The analysis of performance of PTC was carried out with different MPI

processes in three different configurations:

e One node with four MPI processes per node (PTC 1n4p)
e Four nodes with one MPI process per node (PTC 4nlp)

e Two nodes with four MPI processes per node (PTC 2n4p)

It has to be noted that for this experimentation the nodes were limited to 1
and 2 because on the initial benchmarking tests, we found that the communi-
cations penalty time was to hight, that it negatively affected by increasing the
overall computation time so much, it was not possible to solve the requested
input files in a limited amount of time.

In order to determine the maximum amount possible of sequences to pro-
cess, we ran an initial simple test, using an input data set of several sequences
with a fixed sequence length of 50 residues. Using this input data set we were
able to execute a maximum amount of 1000 sequences for the one node based
configuration (PTC 1ndp) and 900 sequences for the remaining two configu-
rations. This limitation is mainly caused by the nature of the intensive com-
munications requirement of the implementation. Additionally the fact that we
were using a 100Mbps inter-communications network introduced and impor-
tant penalty, making a greater amount of sequences to be network intensive,
requiring more computation time than its sequential version. Furthermore,
higher amounts of sequences failed due to the exhaustion of available memory
in the system. Thus the required computing time to solve the problem was
higher than 48 hours.

For the second test, we used several samples of 100 to 2000 sequences (with
a sequence length from fifty to two hundred residues). On this test, we have
observed a curious different treatment of the DNA/RNA sequences from the

protein based sequences. PTC is processing more faster DNA /RNA sequences
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DNA/RNA sequences.
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than protein sequences of the same length, while T-Coffee takes exactly the
same amount of time for both types of sequences. We can conclude that PTC is
compressing the four pair based sequences, or transforming them into protein
sequences. Thus, by performing this operation PTC reduces in a proportion
of 1/3 the DNA/RNA sequence length.

Figures 3.7 and 3.8 show the average memory consumed and the computa-
tion time for protein based sequences of different sequence lengths (from fifty
to two hundred residues), and Figures 3.9 and 3.10 show the corresponding
metrics for DNA/RNA sequences. In these results, we can see that memory
usage maintains a stable pattern, while the computation time grows in a ex-
ponential way, due to the exponential nature of the algorithm. In addition,
it is possible to see a drop in performance when comparing the computation
time with one node based execution with the two and four nodes executions.
This is due to the communications intensive nature of PTC (see Figure 3.2),
thus the performance goes down due to the exchange of data between nodes
along the different steps of the MSA process. In addition, it can be observed
that PTC is capable to process more sequences than T-Coffee with the same
amount of memory, due to the different implementation and memory manage-
ment. Unfortunately, this implementation is not maintained any more by its
authors and it is now out of date from T-Coffee current development branch.

We can conclude, that even PTC is capable of processing more sequences
than T-Coffee, this implementation does not scale very well, and its compu-
tation time is higher than the sequential version, thus we obtain a very bad
efficiency and, as a consequence, new more efficient version of parallel algo-
rithms for T-Coffee have to be studied.

3.5 Clus-T-Coffee

The clustering version, CTC, developed in our group, was also run using four
MPT processes in a single node (CTC 1n4p), four processes with one node per
processor in the second test (CTC 4nlp) and four processes in two nodes in
the last test (CTC 2n4p). In Figures 3.11 and 3.12, the graph shows also a

exponential growth of average computation time, but memory consumption
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Table 3.5: Computation time required by CTC for 2000 sequences.

Seq. Length Time (hours)

Indp | 4nlp | 2ndp
20 10.8 | 8.7 5.5
100 12.6 | 10.3 | 6.4
150 15.2 13 7,6
200 177 | 157 | 9.3

seems to maintain an average stable level independently of the number of
sequences.

Furthermore, we can observe a slight performance gain when the four MPI
processes are run on separated nodes rather than in one stand-alone node, or
when we scale the execution tests to run in eight processes. On the contrary to
PTC, CTC does not use communications at all for its parallelization technique,
thus they don’t affect performance. Finally, CTC had been able to process
more sequences in less time than the other implementations, as we were able
to process up to 2000 sequences, see Table 3.5, The division of the input
sequences in separate clusters, reduces considerably the combinatory explosion
of sequences in the pair-wise step of the process.

Although, with Clus-T-Coffee we were able to process more sequences with
a reasonable amount of computing time, its implementation lacks a multicore
implementation, and we think that its performance can be improved by op-
timizing the parallel code for a multicore based architecture. Thus, in the
following chapter we propose a new implementation that should benefit from

multicore systems.

3.6 Analysis of results

To sum up all the performed tests, Table 3.6 shows a global summary of our
study. The simple test, consists on the first fast benchmark that was done on all
implementations in order to find the maximum amount of sequences that can

be processed. The deep test, consists on the specific study that was performed
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on each implementation, thus more sequences were generated and processed
for it, and it consists on data gathered from the different tests sets described on
section 3.2.2. For each test it is shown the number of MPI processes that were
launched, the system configuration expressed in terms of number of nodes and
number of processors per node, and the maximum number of sequences that
we were able to execute for each test. Tests with a higher number of sequences
failed mainly due to complete exhaustion of all the system memory, or due to
exhaustion of the imposed time limit of two-three days.

As can be observed in the table, the sequential implementation of T-Coffee
is able to process a maximum of 300 sequences. As we saw in the previous sec-
tions, although this number is not displayed in the resulting graphics obtained
from the second deep analysis, we were able to align this amount of sequences
on the first simple test. On the other way, on the deep test we only processed
up to 140 sequences due to the limitation of time and resources that we had
during the development of the experimentation, but more sequences can be
achieved and will be achieved in future tests. The parallel versions PTC and
CTC are able to increase this limit up to different values depending on the
implementation. These differences between the parallel implementations are
caused by two reasons. First, on PTC implementation, as seen before, memory
handling of the constraints library allows a bit more of space for processing
more sequences. Second, when it runs with more than one node, the penalty of
the message passing communications is so high that it increases considerably
its processing time, causing the expiration of the time limit that we set on
all tests. CTC handling of memory and communications is different than in
PTC, due to the way the problem is divided into a subset of different parallel
problems, but its limitation to process sequences is due to some stability prob-
lems in the current implementation. Thus stability of CTC decreases when
the number of processes is increased.

In order to improve the memory usage, and to reduce the overhead of
the current available parallelizations, we propose to optimize them using a

multithreading library such as pthreads as we expose in the next chapter.



Table 3.6: Relation of the different tests that we performed

Test | N. Procs. Test | Max. Seqs.
Simple 1 TC 300
Deep 1 TC 140
Simple 4 PTC 1ndp 1000
Deep 4 PTC 1ndp 700
Simple 4 CTC 1ndp 2000
Deep 4 CTC 1ndp 2000
Simple 4 PTC 4nlp 900
Deep 4 PTC 4nlp 700
Simple 4 CTC 4nlp 2000
Deep 4 CTC 4nlp 2000
Simple 8 PTC 2n4p 900
Deep 8 PTC 2n4p 700
Simple 8 CTC 2n4p 2000
Deep 8 CTC 2ndp 2000
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CHAPTER 4

Pairwise alignment

After the deep study performed on T-Coffee MSA and other implementations
based on it, on this chapter, we are presenting a couple of solutions in or-
der to improve its scalability. We will start by analysing the principal issues
and bottlenecks of T-Coffee, and two different solutions are presented and dis-
cussed. Firstly we will discuss about rewriting the T-Coffee based fork model
into a pure threading model. Subsequently we will present a new aligner based
on T-Coffee which combines the threading model with a distributed memory

model.

4.1 Implementation issues of T-Coffee

As we have seen in the previous chapter, one of the main problems of the cur-
rent T-Coffee implementation is the limitation of the amount of sequences that
can be processed imposed by the system memory limit. Thus, the most obvious
solution path is to increase the system memory. Furthermore, we have seen

that parallel implementations are sometimes able to process more sequences

65
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in one single machine than in several machines, due to the different memory
management implementation used in PTC, or the different approach used to
solve the problem seen in CTC. However, these parallel implementations of
T-Coffee present an important drawback due to the overhead of communica-
tions of the message-passing implementation. This makes no benefit in having
the parallel solution. Thus, in the present work, we faced the challenge of
defining and deploying a new parallel implementation of T-Coffee based on a
combination of the message-passing and the multi-threading paradigms.

In order to migrate the current T-Coffee fork/wait based implementation,
we carried out a deep study of the internal code of T-Coffee in order to identify
possible issues that, a priory, are limiting its performance. We studied a set of
issues related with the thread safety of the code. At the first glance, we could

see that T-Coffee is not thread safe, due to several issues:

e Usage of non-reentrant system calls. When more than one thread per-
forms the same call simultaneously, a synchronization issue arises, as non-
reentrant system calls are used to use static memory assignment. When
this happens, multiple threads may modify the same static variable at
the same time, consequently the program will enter into an unpredictable
state where it may give wrong results or crash due to a memory access

violation error.

e Usage of static variables. In the beginning, T-Coffee was designed for a
sequential usage, thus a lot of variables with an static scope are used in
all core functions of the process. The purpose is mainly the performance
impact that such technique offers to T-Coffee, so this kind of optimiza-
tions are for letting the sequential version to be more efficient. A static
variable, is a variable that remembers the last value that it had from a
previous call to the function, thus when it is used in a parallel environ-
ment, where multiple threads access to the same function at the same
time, the value stored by one thread my be altered by another one, when
the first thread still expects its original value. Thus, this technique is

discouraged in multi-threaded programming.

e Shared memory synchronization issues. FEach child instance heavily uses
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the same global memory, thus in the fork/wait model each child process
has its own copy of all the data structures, T-Coffee uses file based 1/0
operations to communicate with the child processes. On a threaded
environment all data structures are shared and accessed simultaneously

causing serious synchronization issues between threads.

As for Parallel-T-Coffee and Clus-T-Coffee, we have seen that paralleliza-
tion is achieved by using the message passing library MPI, thus on a multi-core
machine the different cores are used by multiple MPI processes. On all these
parallel implementations we are not using a shared memory model such as
threads. By this way, the overhead generated by the sub-process creation and
by the interprocess communications should be reduced by applying a different
model, more suitable for a multi-core system. Thus, we proposed a reorienta-
tion of the implementation of the parallel versions of T-Coffee in such a way
that they rely on the best of the studied implementations by combining a mes-
sage passing technology such as MPI with a threading API such as pthreads.

Regarding communications usage in Parallel-T-Coffee, as we have seen in
the experimentation, it suffers a considerable penalty in efficiency when com-
paring a one node execution with an execution in multiple nodes endangering
its scalability, thus Parallel-T-Coffee may work better with higher numbers of
sequences. At the same time that we have seen that Clus-T-Coffee does not
work for smaller amounts of sequences (less than one hundred).

Finally, Clus-T-Coffee has several stability issues on the memory man-
agement, increasing the probability to crash when the number of nodes is
increased.

In the following sections we will discuss how these issues have been ad-

dressed.

4.2 Introducing multithreading

The purpose is to benefit from the current fork/wait parallelization in T-Coffee,
by introducing a threaded shared memory model in order to use more efficiently
a multicore system [MRH"11] [MnRG™13]. Besides, we want to combine this
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proposal with the usage of a message passing (MPI) implementation. By
running T-Coffee in a cluster based environment, we increase considerably the
average memory available in the system, thus we can process more sequences.

The gain in efficiency justifies the usage of a threaded model in substi-
tution of the present model. Some authors have performed some efficiency
comparative studies of the application usage of the threaded model versus the
fork based model, and they coincide that the threaded model achieves better
performance than the other one [KC99|. Although this does not report any-
thing new to the T-Coffee algorithm, thus it is a reimplementation, the new
contribution is a new prototype implementation that will run more faster than
the original one.

In order to migrate the current implementation, we have to address the

thread safety issues enumerated in the previous section:

e Usage of non-reentrant system calls: Most non-reentrant system calls
offer a reentrant implementation available in the standard C library. The

migration of these calls is a simple trivial operation.

e Usage of static variables: The most extended issue on the code, is the
usage of static variables as global ones in all its core functions, thus a
complete rewrite of the code would be needed. As a possible solution for
this issue, we have substituted the static variables with a mechanism that
mimics the same functionality: a memory container. All static variables
have been contextualized inside this container, in order to keep track of
the state of the variable associated to a specific thread. On all affected
functions, the static variables are substituted by normal ones, and its
state is recovered from the container at the beginning of its execution,

and it is stored back at the end of the function.

e Memory management: We have found a lot of synchronization problems
due to incorrectly referred memory locations accessed from the wrong
threads. T-Coffee has its own memory management system, mainly for
debugging purposes. The memory management code has been modified
in a way that each memory allocation keeps track of its own thread caller

identification. Then, the code performs checks over the memory usage
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in a way that it avoids and reports illegal access to memory regions of
other threads. This verification code, causes a considerable penalty on
the efficiency on all the memory allocation code. Finally, as we come
from a fork based implementation, the default implementation relies on
the automatic release of allocated memory on child process termination,
but the threaded implementation does not. In order to address this
issue, we keep track of the memory allocated by each thread, and we

automatically release this memory on thread termination.

At current time, all these issues have been addressed only in the first stage
of the T-Coffee process, on the functions related with the pair-wise alignment
step of T-Coffee, as it is the most time consuming one. For the study, we
have compared our modified version of T-Coffee, which its usage is described
on Appendix B, with the original one without any modifications. The only
modification performed on the original code was to set a timer in order to
measure the time consumed by the pair-wise step.

To study our implementation, we have run several tests using different

generated sequences:

e Starting with 10 sequences, and by incrementing in amounts of 10 se-

quences until reaching an amount of 140.

e For each sample, we generated 4 sets, with 5 sequences each one, of
different lengths, being 50, 100, one 150 and 200 residues.

e The total amount of generated sequences was: 14%4x5 = 280 sequences.

For this test the scoring was ignored, as the generated alignments by the
threaded version will be the same than the ones from the original one, thus we
are not performing changes to the algorithm at all. As a safe guard consistency
check, all generated alignments are compared against the original alignments
generated by T-Coffee, ensuring that they remain the same and have not been
corrupted by our implementation improvements. The tests were run on the
Core 2 Duo stand-alone machine as described on section 3.2.1. We measured
the execution time for T-Coffee in serial mode, the fork based model and our

threaded prototype. Figure 4.1, shows the average time required to perform
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Figure 4.1: Computing time required to process from 10 to 140 sequences in

the pair-wise step by different implementations.
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the pair-wise alignment step for sequences of different lengths by each imple-
mentation (the different sequence lengths are represented by different column
colors, thus we have four columns of different lengths per sample). As we saw
on the previous chapter, all graphs have the same tendency, showing the scal-
ability of T-Coffee, and how it scales better with higher sequence lengths. On
the graphics we can see the overall computation time used by each implemen-
tation, and how the threads version achieves better timings than the fork and
serial versions.

Besides, Figure 4.2, displays the comparison of all implementations for the
specific sequence length of 200 residues. There is a slight improvement in the
computing speed, as our implementation, for 200 residues, runs 10% faster
than the T-Coffee fork model and 49% faster than the serial T-Coffee, when
the fork implementation runs only 43% faster. The ideal speed, as we are in a
dual core machine, would be an improvement of the 50%. So, we are next to
this ideal.

Table 4.1, shows the Speed Up and Efficiency of fork T-Coffee and our
threaded implementation for different sequence lengths. From this table, we
can conclude that our implementation is being able to achieve a 0.98 efficiency
in a dual core machine in contrast with the 0.88 efficiency achieved by the
default fork/wait version of T-Coffee. This demonstrates that a multithreaded
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based implementation has better efficiency than the other model, and that we

are able to obtain a quite good efficiency.

Table 4.1: SpeedUp and Efficiency of T-Coffee implementations in the pair-
wise step.

Seq. Len. Fork Threads
ASpeed | Speed Up | Efficiency | ASpeed | Speed Up | Efficiency
50 10.3% 1.13 0.56 27.9% 1.4 0.7
100 30.6% 1.45 0.72 41.2% 1.71 0.86
150 38.3% 1.62 0.81 46.2% 1.86 0.93
200 43.3% 1.77 0.88 49% 1.96 0.98

4.3 Introducing a new pair-wise implementation

In order to solve the issues that we had with the development of the threaded
version of T-Coffee, we studied the possibility of implementing a new version
from scratch on the pair-wise step based on the T-Coffee algorithm and source
code. With this new implementation we can concentrate and focus more on
performing optimizations for a fully parallel version for current HPC systems.
The overall computation cost of MSA is exponential[WT94|, being the pair-
wise alignment step the part which is determinant in this cost. Studying the
scalability of MSA helps us to determine how much we can obtain from paral-
lelizing MSA and to which limit we can take this parallelization into account.
Thus, the generation of an efficient parallel implementation of the MSA process
necessarily implies an improvement of the global pairwise alignment step.
Since the pair-wise step, is one of the most compute intensive steps of
the MSA process, we are going to be focused on the parallelization of the
construction of the primary library, the pair-wise initial step of T-Coffee. The
algorithm proposed to carry out pairwise sequence alignment is focused on
the exploitation of current distributed systems such as clusters, where several
nodes coexist, each with multiple cores. Thus, the implementation combines

the message-passing paradigm to exploit distributed memory among nodes
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with thread programming to use the shared memory between the internal
cores of each node.

In order to implement our distributed version of the pair-wise aligner
[MnRH13|, we are using a message passing library (MPI), in conjunction with
Linux phtreads library. Pthreads provides a fast an efficient way to parallelize
in a multicore based machine, while MPT is one of the most spread and used
paradigms for parallelizing applications in cluster based environments. For the
programming language, we need to use a fast an efficient language capable of
running all the computation operations as fast as possible. Scripted and or
virtual machine based languages such as Python and Java would have a con-
siderable penalty in the calculations, that is the main justification of the usage
of C or C++ by the programmers in the development of the studied MSA in
this work. We want our code to be easily interoperable with T-Coffee, since

T-Coffee is written in C, we have also written our prototype implementation
in C.

4.4 Parallel pairwise alignment implementation

Our implementation of the parallelized pairwise alignment is based on the
Smith-Waterman [SW81| basic algorithm, as it is an extensively used imple-
mentation. Furthermore, we use the MPI message-passing library to distribute
the work across an arbitrary sized cluster. In a later step the algorithm spawns
as many threads as each node is capable of running, which is determined by
its hardware capabilities. As it is said, the threads are implemented using
the standard pthreads library, as it provides an efficient and simple way to
parallelize on multi-core machines.

Figure 4.3 shows the basic steps of our implementation, whose functionality

is presented below:

1. Input sequences are parsed and loaded into the memory by a master
task, and the system is queried to determine the total number of nodes,

maximum memory available and number of available cores per node.

2. Tt is created one MPI process per node and all possible pairs of sequences
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Figure 4.3: Parallel pairwise alignment steps.

are generated and distributed across them.

3. Each process spawns a worker pool of ¢ threads, where c¢ is the total

number of cores available in a given node.

4. Each thread carries out the Smith-Waterman algorithm for each pair of

sequences that has been assigned to.

5. All threads and processes are joined and all aligned pairs are merged into

a final list.

The implementation of the algorithm that generates all possible pairs as-
sumes that each pairwise computation requires similar computation times.
This way, we can assume that all threads should process the same number of

pairs. Besides, we should send the same number of pairs to each node to be
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processed. Thus, we propose a method to assign the right number of sequences
to each node and each core in order to balance the computation among them.

The model that we are going to use in our prototype is a message passing
(MPI) model with a threading library, thus we will have two levels of paral-

lelization:
e First level: Distributed memory parallelization using MPI.
e Second level: Shared memory parallelization using pthreads.

Figure 4.4 shows the parallelization levels used in our implementation, on the
first level we will run up to n MPI processes, and in the second level we will
run up to c¢ threads per node. The current threading level is determined on
each MPIT process, so if a mixed environment is found, each node will spawn as
many threads as possible, but this will cause that nodes with an high threading
level to terminate earlier than the other ones, and this situation is not yet

contemplated in the code.

Figure 4.4: Tree representing the parallelization levels used in the prototype.

The problem that we want to solve is the pair-wise alignment of all possible
pairs from the input file. Although parallel versions of most pair-wise algo-
rithms are available, in our problem we need to parallelize hundreds of pairs,
so we are using a sequential implementation of the pair-wise algorithm and
performing in parallel the pair alignment of multiple pairs at the same time.
In this way to solve the problem, we need to perform communications between

the different nodes and the master only at the beginning and at the end of the



76 Pairwise alignment

Part 1 Part 2 Part 3
A A
'd ™ 7~ =~
——
L —
A B CD E GHI JK MNOFP RSTUVWIXYZ
4BCDEFGHIJKLNNOPQ ?
Subset 1 Subset 2 Subset 3

Figure 4.5: Pair generation algorithm

job. In the first layer, a master/worker model was implemented, where the
master process distributes all input sequences to the workers to be aligned, at
the end the workers sent back all aligned pairs to the master. For the second
level of parallelization, each worker will split up the work in a pool of worker
threads. The amount of worker threads will be determined by the maximum
number of processes that can be run in parallel in the machine.

Our proposed method consists of dividing the input list of sequences into
different parts in such a way that they generate subsets with similar numbers
of pairs of sequences to be aligned. A subset is created with all combinations
of sequences from part ¢ with all the remaining sequences. We illustrate the
division method with 26 sequences A-Z in Figure 4.5, distributed into three
parts. The sequences assigned to each part are: partl = A, B, ..., E, part2 =
F,.G,...,K and part3 = L, M,...,Z. Then the worker process of partl will
compute the subset of pairs made up of all combinations from A to E with all
sequences A-Z. For part2, it will compute all combinations from F to Z (the
A-E sequences have already been computed by the previous subset). Finally,
the last subset will consist of all remaining [.-Z sequences. With this partition,

there will be three subsets with 115, 105 and 105 pairs of sequences.

TLQ—TL
2

In order to distribute all these sequences, while trying to minimize the data

Given n sequences, the total number of pairs generated will be: pairs.
transmission of the sequences as far as possible, while keeping the same average

computation time per thread, we propose the following distribution method:

e Let f be the parallelization level for our problem, which means the num-

ber of parts our problem will be divided into. Under optimal conditions,

n2 -_n

2f

each node will process up to pairs of sequences.

e Given n sequences, we calculate the size of each part, called p, that will
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balance the number of pairs in each subset. Considering the n sequences
ordered in a list, the first one has to be aligned with n — 1 sequences in
order to generate all the possible combinations. The second has to be
aligned with n — 2 sequences and so on. Thus, considering a size of p
sequences, the corresponding subset will have a number of pairs that can

be calculated as:
p(2n —1) —p’
2

Xn—p= (4.1)

e By assigning (4.1) the total number of pairs, and solving the equality
(4.2), we obtain (4.3)

- (4.2)

o414 \/(2 s — 1)2 — 4(22=n)
2

From the two possible solutions, only the natural number smaller than

p= (4.3)

n will be considered valid. This p indicates the number of sequences to

be assigned to each worker task for a given f.

For example, for a parallelization level f = 4 nodes, and a problem with
size n = 100 sequences, we obtain 4095 pairs to compute, composed by total
of 1237 pairs per node with an addition of 2 remaining pairs.

Thus the parallelization partition size for the first node will be: p =
—19944/(199)2—4(2200)
2
be 1295. For the second node, applying the same equation, but with a paral-

= 14 sequences, the corresponding amount of pairs would

lelization level of f — 1 and a new problem size of n — partitionsize, we obtain
a new partition size of 16 sequences with 1240 pairs, for the third node we
obtain a partition size of 21 sequences and 1239 pairs, and for the last node
the partition size would be 49 with 1176 pairs. This means that the master
node will have to send to the worker nodes only up to 86, 70 and 49 sequences
to each node.

Using this partition schema, the master task will only send up to 100, 86, 70
and 49 sequences to the corresponding 4 workers, thus minimizing the com-

munications and balancing the computation cost of worker tasks.
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As another example, for n = 1000 and f = 8 we obtain: 499500 total pairs
distributed in 62437 pairs per node plus 4.

e Node: 1 (master), partsize: 65, send: 1000, numpairs: 62855
e Node: 2, partsize: 70, send: 935, numpairs: 62965

e Node: 3, partsize: 76, send: 865, numpairs: 62814

e Node: 4, partsize: 84, send: 789, numpairs: 62706

e Node: 5, partsize: 95, send: 705, numpairs: 62415

e Node: 6, partsize: 112, send: 610, numpairs: 61992

e Node: 7, partsize: 146, send: 498, numpairs: 61977

e Node: 8, partsize: 352, send: 352, numpairs: 61776

An additional aspect that is worth considering is how tasks are created in
our method compared with the method used in the pairwise alignment step of
classic MSA implementations. A job list with all possible pairs of sequences
is precomputed sequentially in an early stage. This computation has a cost
of O(n?). This cost is reduced to O(p) with our proposed partition based
algorithm, where p is the total number of threads that can be expanded by
the system.

By default the prototype, which its usage is described in Appendix C, reads
and parses all sequences form a plain text file, the parsing process of the input
file has a cost that increases considerably with greater amounts of sequences,
at the same time the uncompressed input files can use up to ten and more
megabytes of disk space (11 Megabytes for 20000 sequences). As soon as the
prototype has parsed all sequences, it will perform a compressed binary dump
of all these sequences in an indexed binary file, described in Appendix D, for

future invocations of the program.
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4.4.1 Pair-Wise implementation and validation

Currently the prototype is using the Smith-Waterman algorithm for computing
all the pair-wise alignments, T-Coffee uses a combined method were a global
and a local alignment algorithm is used together in order to determine the
best score. For validating the implementation, it is necessary to compare
the resulting alignments with a tool which generates similar using the same
algorithm such as FASTA, in this case the FASTA toolset is used to analyse
and validate the correctness of these alignments.

In order to test the viability of our implementation, we performed different
tests to determine the impact of a pure distributed memory model on perfor-
mance, compared with our hybrid distributed/shared model. A different set
of experiments was performed to test and evaluate the computation time and
memory use. We obtained a selection of input files with numbers of sequences
varying from 400 to 1400 with sets of sequence lengths ranging between 100
and 200 residues.

The environment used consisted of the previously defined 24 nodes clus-
ter 3.2.1. Moreover, the configuration used for each execution consisted of
using different combinations of the hybrid distributed-shared memory paral-
lelization model (MPI+threads) always using all the cores of each node. Thus,
in a Quad Core node with four cores available we always ran a total of four

processes/threads. This allowed us to configure three scenarios in each node:
e p4tl: 4 MPI processes with one thread each.
e p2t2: 2 processes with 2 threads each.
e plt4: a 4-thread process.

In all the samples, the average processing time was calculated by measuring
the total time required by the implementation. The total memory usage on
each node was measured by measuring all memory allocations. The results
show the total system memory by adding the memory measures of each node.

Firstly, we studied the impact of the level of message passing processes used

per node for a different set of sequences. As a representative case, Figure 4.6
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Figure 4.6: Memory usage and processing time for 1400 sequences with 229
residues.

shows the average total memory usage and processing time required to compute

1400 sequences with 229 residues in length for different levels of parallelization.

The graph shows the total number of threads (bottom) launched in the
cluster and the nodes that were used (top). Four processes/threads were always
run on each node, as the nodes had four cores. As can be observed, in all the
cases, the computing time decreased as both the threads and MPI processes
were increasing. However, it reached a limit, in this example at 12 nodes,
where the time tends to stabilize and decreases insignificantly. Moreover, it is
possible to observe how the computation time graphs are inverted after this
point. It is observed how the p4t1 goes from having the best computation time
to become the worst after 32 threads. This was caused by the overhead of the

increased number of MPI processes.
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Regarding the total average memory it can be seen that it grew in line with
the number of expanded threads, and the implementation with the highest
consumption was the one running four MPI processes per node. Otherwise,
running a full threaded version (p1t4) saves around 50 Megabytes of memory
compared with p4t1. This difference is not very high for current systems, but

will increase with the rise in the number of processes and sequences.

Figure 4.7 shows the corresponding SpeedUp from the obtained results for
a deeper analysis of the computing time. These allow us to see the limit up to
which it is interesting to expand more threads and MPI processes using this
parallel pairwise method. Thus, for this test of 1400 sequences, is was not
necessary to use more than 12 nodes (48 threads), as that is the limit where
the SpeedUp stabilizes. The use of more nodes would cause an inefficient use
of system resources. Additionally, it can be observed that until this point of

48 threads, the implementation p4tl is the one that provides more efficiency.

Other experiments consisted of studying the average computation time and
memory usage for different sets with a fixed length, together with the total
number of threads. As a representative threading level, in Figure 4.8, we dis-
play the results corresponding to launching two MPI processes per node (p2t2),
with two threads per process, for sets with different number of sequences from
400 to 1400 sequences. Computation time is directly related to the number of
input sequences and grows exponentially with the rising number of sequences.
Furthermore, the initial computation time in all tests drops considerably when
the number of threads is increased until it stabilizes after a certain point. This
method achieves reductions in computation time. For example, we can see
an improvement from 1000 seconds to 100 seconds for 1400 sequences. With
regard to memory usage, it is possible to observe how this grows exponentially
in proportion to the number of sequences. Besides, the usage stays stable de-
spite the number of threads and the linear growth is caused by the overhead

of running extra processes.

According to the results, we can conclude that the parallel version devel-
oped for the pair-wise alignment step of T-Coffee is able to fully use the whole
cluster without scalability problems. Additionally, we are able to significantly

decrease the computer time, as the level of parallelism is increasing. However,
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Figure 4.7: SpeedUp for 1400 sequences each with 229 residues.

there is a certain point, at which the increase in the amount of resources pro-
duces only slight improvements in computation time. In the next chapter, we

carry out an analytical study to identify this point, previous to execution, in

order to use the system in a efficient way.
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CHAPTER b

Resource scheduling

In this chapter, we are going to define a method for resource scheduling and
usage of the cluster by the sequence alignment algorithms. This method will
aid in determining the correct amount of resources that will be used by a deter-
mined problem input, and will aid in determining the best cluster configuration

that should be used in order to obtain the best performance possible.

5.1 Motivation

When one needs to solve a problem of a determined complexity, a set of several
questions will arise on such as which amount of memory and computation
resources should be given to the application. Providing the suitable amount of
resources will ensure the efficient use of the available infrastructure, assuring
that no more than necessary is spent in the MSA process.

In this chapter we develop a method that estimates the average amount of
resources needed to solve the pair-wise alignment problem [MRH14b| [MRH14a|.

Given a set of several input sequences, by changing different input parameters,

85
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we study the scalability and sensibility of computation usage and how the
overall resources are used. As seen in previous chapters, the implementation
always reaches a scalability limit where by adding more resources to the sys-
tem the overall computation time remains stable. Thus, our goal is to find the
maximum amount of resources to give to the application in order to ensure an
effective usage of them.

To do this, we propose a method to estimate the number of computation
resources needed to solve the problem, given a set of input sequences, in such
a way that an efficient use of resources could be achieved. Finally, we compare
the experimental data with the estimated prediction given by our proposed

model.

5.2 Resource scheduling methodology

In this section, we are going to present an analytical method used to determine
the amount of resources required for its optimal use when solving the pair-wise
alignment into the global MSA.

We assume a computing platform based on a hybrid architecture where
cores in the same node have a shared memory access while different nodes
act in a distributed memory fashion through message-passing. The proposed
method distributes the pairwise alignment work by mapping to each available
core and node a partition of sequences from all possible combinations, by
distributing the total computation time in the best uniform way across the
system.

We consider a number of n sequences of similar length to be aligned. Then,

Tl2 -_n

the number of pairwise alignments to carry out will be , which corresponds
to the total number of pairs. Assuming a balanced distribution of all pairwise
alignments into the cores of the system and considering that a single pair
alignment is entirely done in a core, the total pairwise computation (¢,,.) can
be calculated with expression (5.1), where pwt is the time needed to carry out

a single pairwise operation and f is the total number of cores.

n2—n

2f

tpwe = pwt X (5.1)
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The expected communications overhead (f.omm) of the message passing stack,
for the distribution of their sequences to all nodes and the gathering of all the
aligned pairs, can be calculated with expression (5.2), where £ is the average
sequence length in bytes, bw the transmission speed in bytes per second and
k is the number of nodes of the system.

Exnxk+€x(n2—n) (5.)

tcomm - buw bw

The total computation time ¢, given in (5.3), corresponds, at maximum,
to the sum of total pairwise computation and the communication time. It
has also to be added a value k, that corresponds to the remaining application
overhead used to activate the pairwise tasks and reading sequences from disk.
The communication time between the cores in the same node is considered to
be negligible.

t = tpwe + teomm + Ko (5.3)

Regarding the memory, the expected total amount of memory (mem) that
will be used by our implementation can be defined by (5.4), were kg, is the
average size of required data structures for one pair of sequences and ky, the
overhead penalty for each additional thread. In average, we consider the size
in memory of two aligned sequences as 3/, taking into account that the aligned
sequences can add gaps inside. Additionally it has to be added the storage of

the n original sequences for each of the k nodes.

2

mem = nx(3x€+k5m)+f><kth+n><€><k (5.4)

From equation (5.3), by making k = f = 1, we can calculate the speedup

as the sequential computation time (pwt X ”22_ ) divided by the parallel com-
putation time t. According to this, the efficiency is calculated with expression
(5.5) as the obtained speedup with respect to the optimum one. This permits
us to determine the expected number of resources needed for a specific input

problem.

pwt X bw + 2 x {

Effici =
ficiency pwt X bw +2 x € x f

(5.5)
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This means that the efficiency directly depends on the length of the input
sequences and the computing time required to align one pair of sequences.
From this expression, it can be calculated the recommended number of cores
to achieve the desired efficiency.

As seen on the previous chapter, depending on the size of the problem,
we saw that the sequence alignment algorithm, reaches a limit of scalability,
were adding more and more resources, will not have any notable effect on
the required computation time. The capability of looking for the effective
amount of computing and memory resources, in order to obtain the maximum
efficiency, is going to be vital to correctly configure the HPC system, to obtain
this maximum efficiency with the correct amount of resources. Using less
resources may require more computing time to obtain the desired result, when
using more will not have any effect. It is going to be a key, in order to minimize

the economical costs of running the aligner on HPC based systems.

5.3 Experimental results

Different tests were performed in order to analyse the behaviour of our pre-
sented method, thus proving the correctness of the prediction model used to
evaluate and determine the best parameters for a specific input. In these ex-
periments we are measuring the total computation time and memory usage of
the application and comparing it to the model that defines the expected be-
haviour of the experiments. Different sequence sets from 400 to 1400 sequences
of lengths varying from 94 to 229 residues were used.

The first step is to get a set of input sequences of specific lengths used for the
evaluation of the algorithm. The method used to obtain these sequences is to
extract them from sets of sequences available from different public databases.
The PFAM [PCE*12] database was used as the main input of sequences. Dif-
ferent sequence sets from the PFAM database were randomly selected for the
input data. On these sets, sequence lengths varies from 94 to 229 residues, and
contains thousands of sequences. Furthermore, using these sets as our source
for sequences, we got sub-sets from 400 to 1400 sequences for being used as

the input sets of our implementation.
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The platform used to perform executions consists of the 24 node cluster
previously described on section 3.2.1. Moreover, the configuration used for
each execution consists in running one MPI process per node, expanding as
many threads as available cores on the node. For example, one execution may
consist on expanding 5 MPI processes on 5 nodes with 4 threads each one,

thus achieving a total number of 20 threads.

The total memory usage is measured on each node by measuring all mem-
ory allocations by providing replacements to the standard allocation library.
The displayed results show the total system memory by adding the memory

measures of each node.

Figure 5.1 shows the memory usage for different input sets of sequences,
from 400 to 1400 of size 229 residues varying the number of threads/nodes used
in the execution. The first observation, is the considerable increase of memory
usage in function of the amount of sequences to be processed. Additionally,
it can be observed that in all the cases, incrementing the number of threads
have an impact of increasing the memory about 50MB from the sequential
execution (one thread) to the 96 threads one. As we can see the memory usage
is quite constant indifferently on the amount of nodes and threads expanded,
its increase is only due to the parallellization code overhead term k;;, described

on 5.4. Thus in the following example we will depreciate this term.

In order to validate the correctness of the previously seen expression (5.4),
we are going to perform a comparative of the previously seen graphic with the
table 5.1. The average size of the data structures used to allocate the sequences
is about 400 bytes, thus, we can consider that k,,, = 400 bytes. As previously
seen from the experimental results, we can depreciate the impact of the ky,
term, as it will grow very little in comparison with the other terms, as it is not
dependent in any way on the size of the problem. This permits us to estimate
quite close the required amount of memory that will be used by any amount
of configured threads. We will compare the expected memory usage with the
memory consumed with 1 node running 4 threads. On the obtained resulting
table, we can compare the results, and conclude that the experimental results

are quite close to the results theoretically obtained.
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Figure 5.1: Memory usage for different amounts of sequences.

In all samples, the average processing time is calculated by measuring the
total time required by the application since it loads the sequences from disk
until all the results are written back to disk by the master process.

Figure 5.2 shows in logarithmic scale the execution time, per 1400 sequences
with 229 residues varying the number of threads and measured in seconds,
with the following graphs: t,,.: the execution of Smith-Watermanm, Z.omm:
the communications time, and total: the total time. The predicted graphic
is generated from data gathered from the prediction method using the afore-
mentioned equation models. As it can be observed, the simulated graphs are
a good prediction of the behaviour of the algorithm. The predicted graphs is
quite close to the experimental one, being very little the difference seen be-

tween the graphics. Communications overhead stays stable on both graphs,

n2—n

2
sequences is fixed indifferently on the number of nodes. The computation time

being constant in the simulation because the time to transfer pairs of
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Table 5.1: Comparison of experimental memory usage versus the predicted
one

Num seq. Memory MB

Experimental | Predicted

400 94 92

600 196 196

800 343 341

1000 539 527

1200 762 755

1400 1038 1025

tends to decrease with the number of nodes, but the total computation time
tends to stabilize to a common value.

Figures 5.3 and 5.4 shows in logarithmic scale the computation time, in
seconds, corresponding to the execution of the Smith-Waterman step in each
core. It is also shown the corresponding SpeedUp. On the first two graphs, we
varied the number of sequences and fixed the length of them to 229 residues,
and on the second ones, we varied the length of them from 94 to 229 with
a fixed number of 1400 sequences. As it can be observed the computation
time increases in proportion of the number of sequences to be aligned and the
amount of residues. In all the cases, increasing the number of threads entails
a reduction of computation time. As we can see in the SpeedUp graph, it
shows how the algorithm correctly scales, meaning the computation balance is
correctly distributed among the nodes.

In the same way, Figure 5.5 shows the computation time and the corre-
sponding SpeedUp for a fixed number of sequences (n = 1400), varying the
length of them from 94 to 229 residues. As can be observed, the length has
a similar impact, in computation time, since time increases with increasing
length, and it decreases when the number of threads and nodes increase. The
SpeedUp, shows how the sequence length also scales for longer sequences. But,
it also tends for the stabilization.

Figure 5.6 shows the average time invested in the communications layer

of MPI, for different numbers of sequences, varying the number of nodes. It
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can be seen that the time invested in communications is proportional to the
number of sequences as it is also established in equation (5.2). However, it
can be observed in the experiment that this time is stabilized from 8 nodes
to 24. Indifferently of the number of nodes, this time tends to remain stable
and depends on the problem size, as it will determine the amount of data to
transfer. This is displayed as constant line on the right graphs.

Finally, Figure 5.7 shows the sum of total computation time required by the
expression (5.3). We can see that the time stabilizes to a certain point were
adding more nodes will not improve the overall time, thus we can see that
the impact of the communications are affecting negatively to the Efficiency
endangering the scalability of the algorithm. From the prediction expression
(5.5), with a target efficiency of 0.5, we determined that the best number of
nodes for 400 sequences is 20, between 600 and 1000 is 24, for 1200 is 28, and
lastly for 1400 is 32 cores. Thus, we can see that experimental results are not
so far from the expected ones.

This experimentation, with its comparison with the methodology used for
predicting the best amount of resources, should perfectly validate that the
methodology is closely matched by the real obtained results. This method-
ology, can be used in conjunction with the sequence alignment process, in
order to determine how many resources should be used for an specific prob-
lem, in order to solve it. Thus, we would need to run a set of initial cal-
ibration/benchmarking tests on the target cluster, in order to calculate the
different cluster specific constants, and from this data we can lately configure

the required amount of resources to run the requested algorithm.
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Figure 5.2: Experimental and simulated execution time.
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Experimental pair-wise for varying sequences of length 229
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Figure 5.3: pairwise time and SpeedUp varying the number of sequences.
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Experimental pair-wise for 1400 sequences of varying lengths
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Experimental total for 1400 sequences of varying lengths

Total nodes
1123456 8 12 16 20 222324
10000;| T T 11 T | T | T3 length 94 ——
1 | length 112 e
L i length 201 it
3 - length 205
. 4 |_length 229 =i
1000 |
w
=]
=
(=]
(5]
)
@
£
|_
100 |
oL L L 1 | 1 | 1 | [
14 812162024 32 48 64 80 889296
Total threads
Experimental speedUp total for 1400 sequences of varying lengths
Total nodes
112 3456 8 12 16 20 222324
30 T T T T T T T 1 length 94 ———
length 112w
length 201 st
length 205

length 229 ——

SpeedUp

g S Y — I | | S |

14 812162024 32 48 64 80 889296
Total threads

Figure 5.5: Total computation time and SpeedUp varying the sequence lengths



5.3 Experimental results 97
Experimental communications for varying sequences of length 229
Total nodes
112 3 456 8 12 16 20 222324
1000 E———7—77 | | | | T 1 400 ——
600 ~i
800 i
1000
Py 1200 sl
oy BT uet ===
,I_r‘_ S——— » 2
- | : : iy
=] "
: -
i e
-\% 10 I = e —
[ - L ]
£ ¥ o S |
o J A Y | | | | L |
14 812162024 32 48 64 80 889296
Total threads
Predicted communications for varying sequences of length 229
Total nodes
11 2 3 456 8 12 16 20 222324
100 77171 T | T | 1 400 ——
[ i D | 600 e
- = - #——a—8- | 800 ——
1000
1 1200 —m—
1 (1400 =@
* -
- _
o
c
]
ﬁ 10 |- -
@ [ ]
£
|_ B
1 L [ 1 | | | L1
14 812162024 32 48 64 80 889296

Total threads

Figure 5.6: Communications overhead varying the number of sequences



98 Resource scheduling

Experimental total for varying sequences of length 229
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CHAPTER 6

Conclusions

The main goal of this thesis had been to contribute in the sequence alignment
problem by providing new proposals and solutions in order to increase the
overall efficiency of these algorithms on High Performance Computing HPC
based systems. The Multiple Sequence Alignment (MSA) problem, is a high
computing demanding process, in the biology field. Increasing the amount of
sequences that can be processed by also obtaining a good quality alignment
is the first goal of this problem. The complexity of the problem increases in
an exponential way, thus limiting us the amount of sequences to be processed,
due to the grow in memory consumption and the required computation time.

One of the first tasks performed in the present work, consisted on carrying
out an analysis of performance and scalability of the most common MSA ap-
plications used by the biologists community. First, we performed a study of
the serial implementations T-Coffee, MAFFT, Kalign, Clustal Omega, Clustal
W and MUSCLE. During this study, we validated the quality of the align-
ments generated by each implementation using the BAIiBASE benchmarking

tool and the memory and computation time were measured for a comparative
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study. In the results, we observed that T-Coffee is the implementation that
was able to achieve the best quality scores, but at the same time, it is the
one that takes a significant greater amount of system resources to generate
an alignment, thus limiting the maximum amount of sequences that can be

aligned in comparison with the other implementations.

As T-Coffee is one of the most used implementations among the scientific
community, as it performs the best alignments in comparison with the others,
in the present work we focused in this application and we made a deep analysis
of its behaviour and its code implementation. From the study, we saw that
T-Coffee is only capable to align up to three hundred sequences before it runs

out of available resources.

Furthermore, two different parallel implementations based on T-Coffee, us-
ing a message passing library, have been analysed, to determine their scala-
bility. One is Parallel-T-Coffee (PTC) that parallelizes the internal steps and
then gathers their results to generate a final global alignment. The other par-
allel implementation is Clus-T-Coffee (CTC) that adds an initial step to divide

the input sequences in sets (clusters), where sequences are joined by similarity.

Several files of input sequences were tested, varying their amount from one
hundred to two thousand with different lengths. With the different tests, we
could verify that these parallel implementations were able to process more
sequences than than the serial one. However, there are still some issues to
confront with the communication costs, as when the message-passing tasks
were spread among up to three or four nodes, the global processing time started

to increase.

As a solution of the aforementioned problems, we have proposed to intro-
duce a multi-threading solution in one of the current T-Coffee implementations
in order to increase its efficiency, reduce the consumed memory and reduce the
overhead of using a message-passing library for computation on a multi-core
machine. These optimizations were added to the pair-wise step of the process
in the sequential T-Coffee. The intensive usage of static variables in all core
functions of T-Coffee are the main reason to make any threaded implementa-
tion very hard, as these functions have to be rewritten again so them can be

executed in a concurrent way. Moreover, on the tests that we have executed on
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our proposed prototype are showing us a better efficiency and speed up with
our threaded implementation than with the original implementation based on
the fork/wait model. These achievements and research has been presented in

the following publications:

e Alberto Montanola, Concepci6é Roig, Porfidio Hernandez, Toni Espinosa,
Yandi Naranjo, and Cedric Notredame. Towards an efficient execution
of multiple sequence alignment in multi-core systems. In International
Conference on Computational and Mathematical Methods in Science and
Engineering, CMMSFE, pages 823-835, 2011.

e Alberto Montanola, Concepci6é Roig, Fernando Guirado, Porfidio Hernan-
dez, and Cedric Notredame. Performance analisys of computational ap-
proaches to solve multiple sequence aligment. Journal of Supercomputing,
64:69,78, 2013.

However, the implemented prototype is very difficult to maintain as it
requires a lot of time to audit and rewrite lot of code of T-Coffee, by this way,
it was more faster to start writing a new implementation from scratch. Thus,
we implemented a new threaded and MPI based implementation capable of
generating all possible pair of sequences from the input file.

In order to address these issues, we presented a hybrid implementation us-
ing a threading library combined with a message passing one to exploit the
available resources as best as possible. A new implementation based on the
Smith-Waterman local pairwise algorithm was presented alongside some ex-
perimental results that prove its effectiveness with a shared and distributed
memory hybrid implementation. We can reach the following conclusions from
the experimentation performed: The proposed algorithm is capable of opti-
mizing the average computation time and exploiting the use of the system
distributed and shared memory resources. A fully threaded implementation
saves memory resources by efficiently using the shared memory paradigm, while
a distributed memory only version will have a penalization due to replication
of data structures in multi-core systems. The results obtained show how the
optimal parallelization level can be evaluated in order to obtain efficient use

of the resources. These research was presented on:
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e Alberto Montanola, Concepcié Roig, and Porfidio Herndndez. Pairwise
sequence alignment method for distributed shared memory systems. 2013
21st Furomicro International Conference on Parallel, Distributed, and
Network-Based Processing, 0:432-436, 2013.

The experimentation carried out with the new implementation of the pair-
wise step, showed us that for all the sets of input sequences, increasing the
number of threads and nodes entails a decrease in the computation time. How-
ever, it was also observed that this decrease become very slight from a certain
number of nodes due to the overhead of communications. This implies that
identifying this number of nodes is a key point in order to have an efficient
use of computing resources. With this in mind, we developed an analytical
method to estimate the appropriate number of resources needed to solve the
pair-wise alignment in order to obtain a given efficiency in the speed-up. To
validate the effectiveness of our predicting method, we checked the predicted
resources with the values obtained experimenting in a cluster with shared and
distributed memory. The results showed that we were able to determine the
appropriate number of nodes in order to achieve a given efficiency. This re-

search was presented in the following publications:

e Alberto Montanola, Concepcié Roig, and Porfidio Hernandez. Optimiz-
ing multiple pairwise alignment of genomic sequences in multicore clus-
ters. In PACBB, pages 121-128, 2014.

e Alberto Montafiola, Concepcié Roig, and Porfidio Hernandez. Efficient
mapping of genomic sequences to optimize multiple pairwise alignment
in hybrid cluster platforms. Journal of Integrative Bioinformatics (JIB),
2014.



Future work

There are a lot of open research lines for this work that would contribute to a

greater increase of scalability of the program:

e Using GPUs. Nowadays most computers are shipped with a Graphics
Processor Unit (GPU), while executing MSA on these systems, only the
main CPU would be used leaving the GPU idle, there is the possibility
to send some work also to the GPU. This presents a new challenge, thus
two different implementations of the pair-wise code have to be provided.
Furthermore, another challenge is predicting how much work can process
the GPU and the CPU in order to sent the correct sized batches of

sequences to each one.

e SSE. We have seen as FASTA is using the SSE instruction set in the
Smith-Waterman algorithm in order to achieve better performance than
with the normal implementation. We could benefit from the usage of

this implementation.

e OpenMP. OpenMP is another way to parallelize a problem, this tech-
nology is based in a pure data parallelization. Clustal Omega is using
this technology in their implementation to improve the speed of the al-

gorithm.

In addition of these improvements, it would be interesting to offer mecha-

nisms to easily plug-in other pair-wise alignment implementations, and scoring
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mechanism, and expand the current implementation with more plugins, so a
set of different techniques could be used for obtaining a final alignment. The
current code, is still missing more work on building a pylogenetic tree, and
finally performing the progressive alignment, thus this tasks at current time
can be sent to other MSA implementation, in our case with T-Coffee. We
would like also to validate the proposed prediction model on more up to date
cluster based systems, and introduce to this model more challenges such as

GPU processing between others.
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APPENDIX A

Sequence Generator description

The sequence generator SeqGen.py, can be used to generate arbitrary random
sequences of determined length. The arguments recognized by the generator

are:

e -type |protein, rna, dnal: Sets the type of sequence to generate, whether

it is DNA, RNA or a protein sequence.

e -len |n|: Sets the length of the pristine sequence to the n value. The

generated sequences will have a length approximately around this value.

o seed: Sets the random seed, in theory you can generate the same se-

quences reusing the same seed, as far as the provability tables have not

been modified.
e [z]: Sets the amount of sequences to generate

You may modify the provability tables in order to achieve different distri-
butions of the mutations for the sequences.

An example execution would be:
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./SeqGenerator.py -len 200 -type protein 100

This will generate one hundred protein based sequences with an average of
two hundred residues per sequence. The generated sequences are written in
FASTA format to the standard output.

In order to generate a batch of sequences from a python script, you can

use:
#!/usr/bin/python
from SeqGenerator import SeqGen
if __name__ == "__main__":
tests = [["protA","protein"],
["protB","protein"],

["protC","protein"],
]

[560,100,150,200]
sizes = range(10,150,10)

lengths

path = "inputs/generated"

for size in sizes:
for length in lengths:
for test in tests:

fname = "%041i_%03i_%s.tfa" %(size,length,test[0])
print fname
fout = file(path + "/" + fname,"w"
sg = SeqGen(test[1],length)
sg.generate (size,fout)

fout.close()



APPENDIX B

T-Coftee Threads usage

New input parameters were added to the threaded T-Coffee implementation,

this appendix describes the usage of these parameters.

-n_ core = [n|: Sets the number of threads to spawn, default implementa-
tion already has this parameter but it was ignored by the implementation
and the only way to define the number of threads was by the environment
variable NUMBER _OF PROCESSORS, by default it tries to guess the
number of threads that you can optimally run on the system by reading

the /proc filesystem.
-mcheck: Enables memory checking (must be the first parameter).

-dbg_single: Ignores all parallelization, threads are spawned but only
one runs at a time forcing a pure serial execution. Only affects the

threaded implementation.

-mth = |pthreads, disabled|: Sets the parallelization implementation to
use. By default, it will use threads, by setting it to disabled, it will
disable the threading code, thus it will run as the original T-Coffee.
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Example T-Coffee execution would be:
./t_coffee -mcheck input.fasta -n_core=4 -mth=pthreads

It will run T-Coffee, spawning four threads and using the pthreads imple-
mentation. It will run also some memory checking affecting considerably the

overall performance.



APPENDIX C

Catfee usage

The distributed pair-wise aligner Caffee has the following input parameters:

e -mcheck / -nomcheck: Enables or disables the memory checking, by de-
fault it will be enabled or not depending on the configuration performed
in compilation time. Normally memory should not be checked by default,
but debugging builds of the binary may enable this checking by default,
thus you can disable by passing the correct parameter. It must be the

first parameter passed.

e -n_thd = |n]: Sets the number of threads to spawn, by default it tries

to guess from the operating system by reading the proc filesystem.

e -dbg single: Threads are spawned but only one runs at a time forcing a
pure serial execution in the node, this will not affect the message passing

implementation. Only affects the threaded implementation.

o -ff: Force FASTA, it will not reuse a previous generated BCaffee file, and
it will parse again the FASTA file.
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e -nbc: Disable the generation of the BCatffee file.

e [SequencesFile]: Input sequence file in either FASTA format or BCaffee
format. If the -ff switch is not present, and there is already a correspond-
ing BCaffee file present in the same input directory, the FASTA file will

be ignored and the last one will be used instead.
Example Caffee execution would be:
mpirun -n 4 ./caffee -n_thd=2 input.bcaf

It will run caffee, spawning four MPI processes and two threads.



APPENDIX D

BCaffee file format

This appendix describes the binary file format used by Caffee to store se-

quences.

//Little-Endian
[HEADER]

U32 magic = OxeeffcaOf; //File magic header

Byte version = 0x01;

Bytes compression;

Byte seqtype;

//Version 1

//Compression used,

//data chunk compressed in zlib format
// 0 - No compression

// 1 - Full compression

// 2 - Sequence based compression
//Sequence type

// 0 - Undefined

// 1 - DNA

// 2 - RNA

// 3 - Protein
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Byte reserved = 0x00; //Must be 0

If compression == 0x01 then
U32 iSize; //Size of uncompressed index
U32 cSize; //Size of compressed index
Byte binary[cSize]; //Compressed INDEX

Else
INDEX

Endif

[INDEX]

U32 nSeqs; //Number of sequences

U32 offsets[nSeqs]; //Address of sequence in data chunk

//relative to this offset

SEQUENCE [nSeqgs] ;

[SEQUENCE]

U32 sSize; //Sequence size

U32 nSize; //Sequence name size

If compression == 0x02 and sSize & 0x80000000 then

U32 csSize; //Compressed sequence size
Endif
If compression == 0x02 and nSize & 0x80000000 then

U32 cnSize; //Compressed sequence name size
Endif

//Sequences will be stored as compressed if the field is present
Byte Sequence[SeqSize]; //Sequence
Byte SeqName[SeqNameSizel]; //Sequence name
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