
Extending the Applicability of

Deterministic Multithreading

Vesna Nowack (born Smiljkovi¢)

Department of Computer Architecture

Universitat Politècnica de Catalunya

A dissertation submitted in ful�llment of

the requirements for the degree of

Doctor of Philosophy / Doctor per la UPC

November 2015

Supervisor: Osman S. Ünsal
Co-Supervisors: Adrián Cristal, Mateo Valero

mailto:vesna.smiljkovic@bsc.es
http://docencia.ac.upc.edu/
http://www.upc.edu








Acknowledgements

Fist of all, I would like to express my sincere gratitude to my supervisors
Dr. Osman Ünsal, Dr. Adrián Cristal, and Prof. Mateo Valero for giving
me the opportunity to enrol in a PhD program at Universitat Politècnica
de Catalunya (UPC) and to perform research in Barcelona Supercomputing
Center (BSC). I would like to thank Osman and Adrián for their ideas, guid-
ance, motivation, and expertise. They encouraged my research and helped
me making decisions important for my professional and personal life.

I would also like to thank Prof. Veljko Milutinovi¢ for believing in Neboj²a
Mileti¢, Milan Pavlovi¢, and me, and for helping us to get to BSC in the �st
place. Many thanks go to Neboj²a and Milan for the great idea to move to
Barcelona and enrol in this PhD program together.

During my PhD studies, I had a great opportunity to meet incredible and
enthusiastic researchers. A few of them contributed and in�uenced my thesis
signi�cantly. I am very thankful to Dr. Tim Harris for his guidance, sug-
gestions and all his help while working on a joint publication. I would also
like to thank Prof. Christof Fetzer, who mentored me during my three-month
stay in the System Engineering (SE) group at Technische Universität Dres-
den. He introduced me to deterministic multithreading and motivated me
to continue my PhD research in that direction. I would like to acknowledge
the colleagues from the SE group for being interested in my work, providing
me thoughtful questions and useful suggestions, but also for making my stay
comfortable and enjoyable in any possible way. I am also extremely grateful
to Timothy Merri�eld and Prof. Joseph Devietti for sharing their ideas and
technical knowledge about deterministic multithreading with me.

I would like to thank pre-dissertation defence committee members Prof.
Xavier Martorell, Dr. Adrià Armejach, and Dr. Miquel Moretó, and ex-
ternal reviewers Prof. Pascal Felber and Dr. Pramod Bhatotia for the time
and e�ort they invested to read the thesis and to make suggestions for its
improvement.

I would like to acknowledge the PhD students and the sta� members who made
my stay in BSC successful and pleasant. First, a huge thanks goes to Sr�an
Stipi¢ for collaboration on several papers, long discussions, programming and



debugging tips and tricks, and, most of all, for being my friend. I was also
lucky to share the ideas, doubts, thoughts, the good and bad times with
the o�ce mates: Adrià Armejach, Azam Seyedi, Cristian Perfumo, Daniel
Nemirovsky, Damián Roca, Ferad Zyulkyarov, Gokcen Kestor, Gulay Yalcin,
Ivan Ratkovi¢, Javier Arias, Nehir Sonmez, Nikola Markovi¢, Milan Stani¢,
Milovan Djuri¢, Oriol Arcas, Oscar Palomar, Sa²a Tomi¢, Timothy Hayes,
Vasileios Karakostas, Vladimir Gajinov, Gina Alioto, and many others. I am
also thankful to other BSC people for being my colleagues and friends: Jelena
Koldan, Ana Jokanovi¢, Roberta Piscitelli, German Rodriguez, and Daniel
Cabrera. I sincerely thank you all for the great moments we had together.

I would also like to acknowledge Maja Raji¢ and Verònica Torras for believ-
ing in me, hearing my thoughts, discussing various topics, and especially for
proving that the distance cannot hurt our friendship. Maja, thank you for
being my best friend and for sharing many extraordinary moments with me
in the last twenty years. Vero, thank you for being �mi mejora amiga� and
for correcting my Spanish. With you, Barcelona has been and always will be
my home.

I feel very lucky to be a part of a wonderful family in Serbia. My mum Slavica,
dad Milan, sister Ana, and nephew Aki have always been there for me to share
my success and to count on when times were rough. They, and many other
family members and friends, have been the reason to spend many vacations
in Serbia. Thank you all for your unconditional love, support, and care.

Last but not the least, I would like to give my special thanks to my husband,
Martin, for his love, patience, and understanding over the past several years.
His optimism, positive attitude, great ideas and the ability to solve problems
e�ciently have helped me in many situations. Thanks to him I have made
steps in my PhD and personal life that I thought I was never able to do. Many
thanks to you and our daughter Leona for every smile you show me, every
hug you give me, and every dance we take together.

In conclusion, this research was �nancially supported by Barcelona Super-
computing Center and BSC-Microsoft Research Center, Universitat Politèc-
nica de Catalunya (Barcelona Tech) through the FPI-UPC scholarship, the
Spanish Ministry of Education, the European Network of Excellence on
High-Performance Embedded Architecture and Compilation (HiPEAC), the
VELOX FP7 project, and the Euro-TM COST Action.



Abstract

With the increased number of cores on a single processor chip, an application
can achieve good performance if it splits the execution into multiple threads
that run on multiple cores at the same time. To synchronize threads, Trans-
actional Memory (TM) allows them to concurrently execute sections of code
(transactions) with accesses to shared memory, and requires re-execution of
one of the transactions in case of a con�icting access.

Even though parallel programming with TM is simpler and less error-prone
than with the traditional locking mechanism, concurrent programming errors
are hard to avoid in general. The reason is that threads run in parallel and
might interleave in nondeterministic order. As a consequence, an error can oc-
cur in one execution but be hidden in another (which makes debugging hard),
and the application output might vary (which makes testing and replica-based
fault tolerance hard).

To help programmers in testing, debugging and providing fault tolerance, re-
searchers have proposed deterministic multithreading, which guarantees that
application threads access shared memory in the same order and the applica-
tion gives the same output whenever it runs with the same input parameters.

In this thesis we present DeTrans, a system for deterministic multithreading in
transactional applications. DeTrans ensures determinism even in the presence
of data races, by executing non-transactional code serially and transactions
in parallel. We compare DeTrans with Dthreads, a widely-used deterministic
system for lock-based applications, and analyse sources of the overhead caused
by deterministic execution. Instead of using memory protection hardware and
operating system facilities, DeTrans exploits properties of TM implemented
in software and outperforms Dthreads.

To allow transactions to invoke standard library functions while running de-
terministically and to increase parallelism, this thesis proposes TM-dietlibc, a
TM-aware standard library. Our experience in modifying a lock-based stan-
dard library in order to integrate it in a TM system is applicable for any
TM-aware software. TM-dietlibc provides concurrent execution of standard
library functions and only in a few cases the execution switches to serial. In



comparison to completely serialized execution, TM-dietlibc shows high scala-
bility and performance improvement for benchmarks with short transactions
and low contention.

Serialization of transactions � which is still required for transactions in TM-
dietlibc with non-reversible side e�ects � might enforce an order of threads
execution di�erent from the one enforced by a deterministic system, causing
a deadlock. By porting deterministic system DeTrans in TM-dietlibc, we
ensure deterministic multithreading at application and standard-library level,
and avoid deadlocks by serializing transactions in deterministic order.

In this thesis we also discuss a common limitation of deterministic systems �
ad hoc synchronization. Ad hoc synchronization is in general widely used, but
similarly to transaction serialization, it might be prone to deadlocks during
deterministic execution. We use hardware performance counters to identify
synchronization loops at runtime and to avoid deadlocks by dynamically (but
deterministically) changing the order of threads execution.

With the techniques mentioned above, this thesis shows how we extend the
applicability of deterministic multithreading by supporting transactions, stan-
dard library calls, system calls, and ad hoc synchronization, which allows a
programmer to apply deterministic multithreading on real-world applications
with various synchronization mechanisms.



Contents

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Parallel Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Deterministic Multithreading . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Issues in Deterministic Execution of Transactions . . . . . . . . . 4

1.4.2 Issues in Invocation of Standard Library Functions in Transactions 4

1.4.3 Issues in Deterministic Execution of Applications with Ad hoc Syn-

chronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 How to Use Transactional Memory? . . . . . . . . . . . . . . . . . 10

2.1.2 Management of Transactions . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Version Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Con�ict Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 Additional Support in TM . . . . . . . . . . . . . . . . . . . . . . 14

ix



CONTENTS

2.1.6 TM Implementations and Performance . . . . . . . . . . . . . . . 16

2.2 Deterministic Multithreading . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Why Do I Have Bugs in My Code? . . . . . . . . . . . . . . . . . 18

2.2.2 Bene�t of Deterministic Execution . . . . . . . . . . . . . . . . . 20

2.2.3 Various Levels of Determinism . . . . . . . . . . . . . . . . . . . . 21

3 Experimental Setup 23

3.1 Processor Speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 TM Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Veri�cation of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 DeTrans: Deterministic and Parallel Execution of Transactions 33

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.1 Serial Deterministic Execution of Non-transactional Code . . . . . 39

4.4.2 Parallel Deterministic Execution of Transactional Code . . . . . . 39

4.4.3 Deterministic Eager STM Policy . . . . . . . . . . . . . . . . . . . 40

4.4.4 Deterministic Lazy STM Policy . . . . . . . . . . . . . . . . . . . 41

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Various Orders of Threads Execution � Discussion . . . . . . . . . . . . . 45

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Increasing Concurrency in a Standard Library Invoked in Transactions 49

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Standard Library Function Calls in Transactions . . . . . . . . . . . . . . 52

5.3 Various Standard Library Designs . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Mixing Locks and Transactions . . . . . . . . . . . . . . . . . . . 54

5.3.2 The Library Adaptation Level . . . . . . . . . . . . . . . . . . . . 55

x



CONTENTS

5.3.3 The Library Execution Mode . . . . . . . . . . . . . . . . . . . . 56

5.4 The Transacti�cation of Diet Libc - Implementation Experience . . . . . 57

5.4.1 Identifying Groups of Locks . . . . . . . . . . . . . . . . . . . . . 57

5.4.2 De�ning Critical Section Boundaries . . . . . . . . . . . . . . . . 58

5.4.3 Applying TM Techniques on the Library Functions with System Calls 59

5.4.4 The Con�ict-Detection Extension . . . . . . . . . . . . . . . . . . 62

5.4.5 The System-Call Barrier in HyTM . . . . . . . . . . . . . . . . . 63

5.5 Quantifying Software Development E�ort . . . . . . . . . . . . . . . . . . 65

5.6 Limitations of a �Diet� Standard Library and TM Tools . . . . . . . . . . 65

5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Deterministic Execution in a Standard Library 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Standard-Library Calls in Deterministic Execution . . . . . . . . . . . . . 75

6.3 Design of DeTrans-lib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Support for Ad Hoc Synchronization in Deterministic Execution 83

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.1 Detecting Sync Loops . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3.2 Choosing the Right Threshold . . . . . . . . . . . . . . . . . . . . 87

7.3.3 Making Timing Functions Deterministic . . . . . . . . . . . . . . 88

7.3.4 Detecting Deadlocks in Sync Loops . . . . . . . . . . . . . . . . . 88

7.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xi



CONTENTS

7.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 Related work 95

9 Conclusions 103

9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10 Publications 107

References 109

xii



List of Figures

1.1 The architectural diagram with the contributions of the thesis. . . . . . . 7

2.1 An example of a transaction. . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Assembly code as output of compiled transactional code. . . . . . . . . . 12

2.3 Examples of concurrency bugs. . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Two threads executing transactions and updating a shared counter. . . . 36

4.2 The STAMP benchmarks running with Dthreads. . . . . . . . . . . . . . 37

4.3 Deterministic execution with DeTrans. . . . . . . . . . . . . . . . . . . . 38

4.4 Slowdown of the STAMP benchmarks running with DeTrans. . . . . . . . 44

4.5 Breakdown of benchmarks' execution for 8 running threads. . . . . . . . 46

5.1 The implementation of fgetc in di�erent libraries. . . . . . . . . . . . . . 58

5.2 The implementation of functions for memory allocation. . . . . . . . . . . 61

5.3 The implementation of fwrite. . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 The con�ict detection extension. . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 The optimized implementation of fgets. . . . . . . . . . . . . . . . . . . . 66

5.6 Evaluation of the �le operations. . . . . . . . . . . . . . . . . . . . . . . . 69

5.7 Evaluation of TioBench. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.8 Evaluation of Red-black tree. . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 DeTrans double-barrier technique and token passing. . . . . . . . . . . . 77

6.2 DeTrans-lib invoking system calls in deterministic order. . . . . . . . . . 79

6.3 The slowdown of deterministic execution of the benchmarks. . . . . . . . 81

xiii



LIST OF FIGURES

7.1 A common example of ad hoc synchronization. . . . . . . . . . . . . . . 85

7.2 Ad hoc sync loops in TioBench. . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 The slowdown of the benchmarks running deterministically with DeTrans-

adhoc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xiv



List of Tables

3.1 Characteristics of TM implementations. . . . . . . . . . . . . . . . . . . . 24

3.2 Characteristics of benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 STAMP benchmark input parameters. . . . . . . . . . . . . . . . . . . . 43

4.2 Vacation execution breakdown. . . . . . . . . . . . . . . . . . . . . . . . 47

xv





1
Introduction

1.1 Parallel Programming

For more than a decade, hardware manufacturers have been integrating multiple cores on

a single processor chip. Applications bene�t from the parallel hardware if their execution

is split into control �ows (threads) that are executed on multiple cores at the same

time [77]. In shared memory architecture, threads communicate by reading and writing

to shared variables, and without proper synchronization accesses to shared memory might

lead to a data race. A data race occurs when two or more threads access the same shared

variable concurrently, and at least one of them is a write, which produces unwanted and

unpredictable e�ects on application execution.

A traditional approach to synchronize shared memory accesses and avoid data races

is a locking mechanism. A programmer identi�es a part of application code (a critical

section) with accesses to shared memory and uses a locking variable to ensure mutual

exclusion, i.e. only one thread at a time enters and executes the critical section. Using

locks that protect critical sections with many instructions (coarse-grained locks) makes

1



1. INTRODUCTION

code development and maintenance easier, but extensive mutual exclusion hurts appli-

cation performance. On the other hand, using locks that protect critical sections with

a few instructions (�ne-grained locks) does not a�ect application performance, but the

programmer puts a lot of e�ort to avoid concurrency bugs.

In general, programming with locks can cause data races (due to shared memory

accesses executed out of critical sections), deadlocks (due to incorrect order of lock acqui-

sitions) or erroneous execution (due to multiple releases of locks) [77]. Additionally, locks

are not composable [41], and combining smaller critical sections into bigger ones requires

programmer's knowledge and understanding of locks' ordering and their hierarchy in an

application.

1.2 Transactional Memory

To avoid the issues of programming with locks and to increase concurrency in application

execution, researchers have proposed Transactional Memory (TM) [42, 43]. TM is easier

to use than locks (as shown by Rossbach et al. [83]) because programmers do not have to

be greatly involved in synchronization of shared memory accesses. They mark sections

of code (similar to critical sections), called transactions. The underlying TM library

allows transactions to be executed optimistically and concurrently. For each transaction,

it tracks shared memory accesses, and either makes the updates to shared memory (if

any) globally visible, or � in case of con�icting memory accesses � discards changes, and

re-executes the transaction.

Since TM simpli�es parallel programming, it has been an attractive area for many

researchers in the last two decades, and they have proposed various implementations in

software [31, 88], hardware [6, 36] or as a combination of software and hardware [21, 81].

Furthermore, TM is nowadays supported in mainstream Intel Haswell [35] and IBM

POWER8 [16] processors.

2



1.3 Deterministic Multithreading

Even though TM makes programming of multithreaded applications simpler and less

error-prone than programming with locks, some bugs are hard to avoid in general. The

di�culty of �nding and �xing a bug lies in the underlying (nondeterministic) nature of

multithreaded applications, where application threads run in parallel and interleave in

arbitrary order, i.e. nondeterministically. For a single input set, the number of possible

thread interleavings grows exponentially with the number of running threads and the

number of critical sections (or transactions) [104].

Nondeterminism is common and prevalent in modern multithreaded applications [71].

Sources of nondeterminism are various: process scheduling, concurrent memory accesses,

caches, and microarchitecture structures [23], and they might a�ect debugging, testing

and providing fault tolerance in applications.

Depending on thread interleavings, a bug can occur in one execution, but be hidden

in another. Furthermore, nondeterministic execution of an application might produce a

di�erent output even when it starts with the same input. When multiple replicas of the

same application run in parallel to provide fault tolerance, it is hard to say if di�erent

outputs are due to a faulty execution or a fault-free nondeterministic execution.

On the other hand, determinism provides repeatable execution: for the same input,

threads interleave in the same order, a program behaves in the same way and gives the

same output, which is important for testing. In the presence of a bug, determinism helps

a programmer to reproduce, �nd and �x the bug. Importantly for fault-tolerant systems,

with determinism any mismatch in replicas' outputs is only due to a faulty execution of

one of the replicas.

Although programmers would bene�t from deterministic execution of TM-based

(transactional) applications, the systems proposed so far have limited applicability and

do not provide proper support for transactional applications with data races, standard

library function calls and ad hoc synchronization.

3



1. INTRODUCTION

1.4 Problem Statement

This thesis addresses issues in: (i) deterministic multithreading of transactional applica-

tions, and (ii) invocation of standard library functions in transactions.

1.4.1 Issues in Deterministic Execution of Transactions

Researchers proposed deterministic multithreading to simplify developing, testing and

debugging of applications. However, previous systems for deterministic multithreading

are suitable for lock-based applications, and they execute transactional applications in-

correctly. Programmers would greatly bene�t from a deterministic system that recognizes

transactions, allows their concurrent execution and guarantees determinism even in the

presence of data races.

1.4.2 Issues in Invocation of Standard Library Functions in

Transactions

In general, TM is not able to track accesses to shared variables and data structures in the

standard library or the kernel. Therefore, a transaction that invokes a standard library

function has to be serialized, i.e. it has to be executed as the only running transaction

in the application. Serialization causes two main problems in application execution.

First, serialization hurts scalability and performance. To reduce the number of se-

rialized transactions and to provide more concurrency in transactional applications re-

searchers need a TM-aware standard library that would allow transactions to call standard

library functions and to execute them concurrently.

Second, serialization might induce deadlocks. It enforces the order of threads execu-

tion that might be di�erent from the order enforced by a deterministic system. Therefore,

deterministic execution with serialized transactions might be deadlock-prone. To prevent

this, a deterministic system should support serialization enforced by a TM implementa-

tion.

4



1.4.3 Issues in Deterministic Execution of Applications with Ad

hoc Synchronization

Ad hoc synchronization is a commonly-used synchronization method although it is con-

sidered to be error-prone. Programmers usually use it as a replacement for a standard

barrier. Similarly to serialization of transactions, ad hoc synchronization enforces an

order of threads execution that might be di�erent from the order enforced by a determin-

istic system, and might cause a deadlock. To avoid this, a deterministic system should

identify ad hoc synchronization and guarantee the progress of threads execution.

1.5 Thesis Contributions

In order to address the issues described in the previous section, this thesis makes the

following contributions:

• Deterministic execution of transactional applications. We propose DeTrans,

a runtime library that ensures deterministic execution of transactional applications.

It provides strong determinism, meaning that even in the presence of a data race

an application produces the same output if it runs with the same input parameters.

DeTrans achieves this by executing transactions in parallel and committing them in

round-robin order, and by executing non-transactional code serially, again in round-

robin order. It relies on a software implementation of TM to preserve memory

consistency and to ensure correct parallel execution of transactional code. (This

work was published at SBAC-PAD 2014 1.)

• Increased concurrency in standard library functions invoked in transac-

tions. We present TM-dietlibc, the �rst TM-aware standard library. It is based

on an originally lock-based library (diet libc) and the API remains unchanged in

order to allow software developers to maintain their programming habits and to

ease modi�cation of lock-based to TM-based software. We discuss general design

choices related to (i) interaction between lock-based and transactional code in a

1Vesna Smiljkovi¢, Sr�an Stipi¢, Christof Fetzer, Osman S. Ünsal, Adrián Cristal, and Mateo Valero,
DeTrans: Deterministic and Parallel Execution of Transactions, In Proceedings of the 26th International
Symposium on Computer Architecture and High Performance Computing (SBAC-PAD 2014).

5



1. INTRODUCTION

standard library, (ii) standard library adaptation to a TM implementation, and

(iii) standard library execution. We explain which design choices are suitable for

standard libraries, and we detail our experience with diet libc and TM integration.

We propose optimizations suitable for transactional code, and also an extension of

the TM con�ict detection mechanism that solves the problem of detecting con�icts

in kernel space, which cannot be detected automatically by TM. With TM-dietlibc,

serialization of transactions is needed only for a few system calls. (This work was

published at TRANSACT 2010 1 and IPDPS 2013 2.)

• Deterministic execution in a standard library. We propose DeTrans-lib, the

�rst TM-aware standard library that provides deterministic execution of transac-

tional applications. We port deterministic system DeTrans in TM-dietlibc to ensure

deterministic multithreading at application and standard-library level. DeTrans-

lib supports serialization of transactions and avoids deadlocks caused by busy-

waiting in serialization (enforced by the TM library due to a few system calls) and

busy-waiting in deterministic execution (enforced by DeTrans). With DeTrans-lib,

threads invoke and execute standard library functions and system calls in deter-

ministic order. (This work was published at NPC 2015 and IJPP 2015 3.)

• Support for ad hoc synchronization while running deterministically. We

present DeTrans-adhoc, the extended DeTrans-lib implementation, that supports ad

hoc synchronization in transactional applications while running deterministically.

We use hardware performance counters to identify synchronization loops at runtime

and to avoid deadlocks by dynamically (but deterministically) changing the order

of threads execution.

1Neboj²a Mileti¢, Vesna Smiljkovi¢, Cristian Perfumo, Tim Harris, Adrián Cristal, Ibrahim Hur,
Osman S. Ünsal and Mateo Valero, Transacti�cation of a Real-world System Library, In the 5th ACM
SIGPLAN Workshop on Transactional Computing (TRANSACT 2010).

2Vesna Smiljkovi¢, Martin Nowack, Neboj²a Mileti¢, Tim Harris, Osman S. Ünsal, Adrián Cristal,
and Mateo Valero, TM-dietlibc: A TM-aware Real-world System Library, In Proceedings of 27th IEEE
International Parallel & Distributed Processing Symposium (IPDPS 2013).

3Vesna Smiljkovi¢, Osman S. Ünsal, Adrián Cristal, and Mateo Valero, Determinism at Standard-
Library Level in TM-Based Applications, In Proceedings of the 12th Annual IFIP International Confer-
ence on Network and Parallel Computing (NPC 2015), and International Journal of Parallel Programming
(IJPP 2015), special edition for NPC.

6



1.6 Thesis Organization

Figure 1.1 shows the architectural diagram with the contributions of this thesis.

Figure 1.1: The architectural diagram without (left) and with (right) the contributions of this thesis
(DeTrans, TM-dietlibc, DeTrans-lib, and DeTrans-adhoc).

The organization of this thesis is as follows:

• Chapter 2 describes the background of this thesis by providing more details about

transactional memory and deterministic multithreading.

• Chapter 3 introduces the experimental setup we use in this thesis.

• Chapter 4 presents DeTrans, a runtime library that ensures deterministic execution

of transactional applications even in the presence of data races.

• Chapter 5 introduces TM-dietlibc, a TM-aware standard library that increases con-

currency in transactional applications when standard library functions are invoked

in transactions.

• Chapter 6 presents DeTrans-lib, ported DeTrans in TM-dietlibc, that ensures de-

terministic multithreading at application and standard-library level, and avoids

deadlocks caused by serialization required by TM.

• Chapter 7 extends DeTrans-lib to support ad hoc synchronization in an application

or an external library, while running deterministically.

• Chapter 8 gives an overview of the work related to this thesis.

• Chapter 9 concludes this thesis and provides ideas for future work.

7





2
Background

2.1 Transactional Memory

The basic concepts of Transactional Memory (TM) [42, 43] originate from database

management systems (DBMS), which successfully exploit parallel hardware by executing

transactions � one or more queries that access and process data from a database � at the

same time. Importantly for TM, a transaction satis�es the following properties: atom-

icity, consistency, isolation, and serializability. Operations in a transaction are either all

performed or none of them (atomicity). Shared resources are always in a consistent state,

whether a transaction �nishes successfully or not (consistency). The changes made in a

transaction are not globally visible until it �nishes successfully (isolation). Updates of

shared resources performed in transactions appear like they executed serially, one after

another (serializability).

The concepts of transactions in databases and their parallel execution provide robust-

ness and good performance, and they motivate researchers and developers to use these

concepts in parallel programming.

9



2. BACKGROUND

2.1.1 How to Use Transactional Memory?

When using TM as a concurrency control mechanism, a developer writes a transactional

application by identifying and marking sections of code (transactions) that a thread is

executed atomically and isolated from other threads.

Figure 2.1 shows an example of transactional code. We use the keyword from the

Draft C++ TM Speci�cation [5] to mark a transaction as __transaction_atomic {}.

The transaction performs one read from a shared variable (if read_only is 1), or one read

and one write (if read_only is 0). In the former case, threads execute the transaction

concurrently � they read the shared counter � and the transactions �nish their execution.

In the latter case, one or more transactions have to be aborted and re-executed due to

the con�icting memory update.

The advantage of TM in comparison to the locking mechanism is that a developer

does not have to keep track of locks and shared variables protected by these locks, and

that application code might be executed in parallel by multiple threads. In case of mutual

exclusion ensured by a lock, application code has to be serialized.

In a nutshell, TM provides the simplicity of parallel programming similar to the

coarse-grained locking and the concurrency similar to the �ne-grained locking.

Figure 2.1: An example of a transaction: If �ag read_only is set, the transaction is read-only and threads
can execute it in parallel. Otherwise, one or more transactions have to be aborted and re-executed due
to an update of counter.

10



2.1.2 Management of Transactions

To ensure atomicity and isolation of transactions, a compiler inserts function calls to start

and commit transactions, and to instrument accesses to shared memory (Figure 2.2).

_ITM_beginTransaction()1 initializes the transactional metadata and creates the

snapshot of the register �le and local variables. The compiler instruments all read and

write operations that access shared variables, including operations in invoked functions.

Instrumented reads and writes keep track of all speculative memory accesses. For each

read (_ITM_RU4()2), a TM implementation saves the read address and the read value in

a bu�er called read set. For each write (_ITM_WU4()3), it saves the write address and the

new value in a bu�er called write set4. At the end of a transaction, the compiler inserts

_ITM_commitTransaction() to make speculative writes globally visible, in case there

was no con�ict with any other transaction. In case of a con�ict, the TM implementation

aborts the transaction, rolls back the changes in the register �le and local variables, and

re-executes the transaction.

A con�ict occurs when two or more threads access the same shared variable, and at

least one of them is a write. A con�ict is detected when TM realizes that a con�ict has

occurred. A con�ict is resolved when TM performs an action to maintain the memory

consistency, e.g. it aborts one of the con�icting transactions.

If TM tracks accesses to shared variables even outside transactions, then it provides

strong isolation [20] (also called strong atomicity in Blundell et al. [13]), which is typical

for TM implemented in hardware. On the other hand, if TM tracks accesses to shared

variables only inside transactions, it provides weak isolation, which is typical for TM

implemented in software. A program without data races behaves the same regardless of

the isolation type.

Although we brie�y explained how a compiler and a TM implementation manage

transactions to provide the main properties of transactions, TM implementations di�er in

how they keep track of reads and writes, and how they cope with con�icting transactions.

1According to Intel's TM ABI [18], all functions that are used for managing transactions have �xed
pre�x _ITM_.

2Intel provides di�erent ABI for read and write operations to allow optimizations in a TM imple-
mentation. RU4 stands for a Read operation of an Unsigned integer of 4 bytes.

3WU4 stands for a Write operation to an Unsigned integer of 4 bytes.
4This is typical for lazy versioning, which will be explained in detail in Section 2.1.3.

11



2. BACKGROUND

Figure 2.2: Assembly code as output of compiled transactional code: To manage a transaction, a compiler
(GCC, version 4.7 or newer) inserts function calls to start and commit the transaction and instruments
reads and writes to shared variables.

12



2.1.3 Version Control

TM implementations manage concurrent reads and writes from multiple transactions

by keeping track of the versions of shared variables. There are two data versioning

approaches: eager and lazy.

• Eager versioning. A transaction bu�ers the previous version of shared data

and writes the transactional (speculative) version directly in memory. To be able

to update the memory, the transaction acquires a lock to access the shared data

exclusively, and the lock is released when the transaction commits or aborts. In

the meanwhile, other transactions that read the same shared data have to check for

con�icts, and those that write to the same shared data have to acquire the same

lock. If the transaction commits, it simply discards the bu�ered version, and if it

aborts, the bu�ered version is copied back to memory.

• Lazy versioning. A transaction bu�ers the transactional version of shared data.

If the transaction aborts it discards the bu�ered version and if it commits it copies

the bu�ered version to memory. The updates to memory are also protected by

locks.

The main overhead of eager versioning is at abort time due to restoring shared data

in memory, while the main overhead of lazy versioning is at commit time due to new

memory updates.

2.1.4 Con�ict Detection

A TM implementation tracks read and write accesses in transactions, compares them with

the accesses of other transactions, i.e. validates reads and writes, and prevents one of the

con�icting transactions to commit its changes. In case of a con�ict, a transaction discards

its transactional reads and writes and has to be re-executed. Two di�erent approaches of

con�ict detection are: eager and lazy.

• Eager con�ict detection. This con�ict detection checks for a con�ict at every

transactional memory access by comparing transactional reads and writes of one

transaction with transactional reads and writes of other running transactions. Eager

13



2. BACKGROUND

con�ict detection detects con�icts as early as possible and minimizes the amount

of work that is wasted in case a transaction aborts.

• Lazy con�ict detection. This con�ict detection is optimistic since it allows

transactional memory accesses to be executed without checking for con�icts until

the transaction �nishes its execution. To check for con�icting memory accesses,

the transactional reads and writes are compared with other running transactions.

Lazy con�ict detection avoids the overhead of detecting con�icts at each memory

access, but the amount of work that is wasted in a transaction that aborts might

be signi�cant.

Con�ict detection performed for every memory location would induce high overhead

in validation and application execution in general. Therefore, TM performs con�ict de-

tection at the granularity of objects [44, 60], words [31, 40] or cache lines [68]. Although

the coarse-grained granularity reduces the overhead in validation of transactional memory

accesses, it might cause transactions to have a con�ict when they access di�erent memory

locations, but the same object, word or cache line. This type of a con�ict is called a false

con�ict.

2.1.5 Additional Support in TM

The basic management of transactions (including con�ict detection and version control)

is su�cient for a TM implementation to provide atomicity and isolation of simple trans-

actions like in Figure 2.1. However, developers usually write more complex benchmarks

where they compose transactions and allow (outer) transactions to enclose one or more

(inner) transactions. Therefore, a TM implementation has to provide support for nested

transactions [42, 69]. Depending on the interaction between outer and inner transactions,

nesting can be: �at, closed or open.

• Flat nesting. This is the simplest type of nesting, where inner transactions are

coalesced with the rest of the outer transaction. The commit of an inner transaction

is omitted, and transactional writes are committed to memory at the commit of the

outer transaction. In case of a con�ict in an inner transaction, the outer transaction

gets aborted and re-executed.

14



• Closed nesting. Like in �at nesting, the outer transaction is executed as one big

transaction, and transactional writes of an inner transaction are committed at the

commit of the outer one. However, in case of a con�ict in the inner transaction,

only this transaction is aborted and re-executed.

• Open nesting. This type provides more concurrency, because an inner transaction

commits its changes to memory optimistically assuming that the outer will commit

as well. If a con�ict appears in the inner transaction, only this transaction gets

aborted and re-executed.

Apart from nested transactions, a transactional benchmark might invoke standard

library or system calls within transactions. These calls (called real or unprotected ac-

tions [8]) might make modi�cations that TM is not able to track, and they might cause

side e�ects that TM cannot roll back. Therefore, TM has to provide support to defer

these actions until commit time (in a commit handler), roll back their modi�cations at

abort time (in an abort handler) or execute them when other transactions are not running

(serial execution).

• Commit handlers. Some operations in a transaction should be deferred until

the transaction commits its changes, and executed in a commit handler. This is

very useful for single transactions. However, for nested transactions it can cause

side e�ects that are not obvious at �rst glance. For instance, in �at nesting all

inner transactions are combined into a single one; therefore, a deferred operation is

executed when the outer transaction commits. The problem occurs when the result

of the deferred operation is needed inside the outer transaction, but it still has

not been performed. Therefore, developers should carefully choose operations for

deferring. For example, freeing memory inside a transaction can be safely deferred

until the commit time.

• Abort handlers. TM is not always able to discard changes made in a transaction.

However, it is possible to write compensation code in an abort handler, and to

execute it when the transaction aborts. For example, an abort handler is suitable

for transactions that allocate memory, and the compensation code is the opposite

action, i.e. freeing memory.

15



2. BACKGROUND

• Serial execution. Transactions with visible non-revertible side e�ects should be

neither aborted nor re-executed. Instead, a TM implementation has to guarantee

their commit. If the TM implementation cannot provide this while other transac-

tions are running in parallel, it has to execute the transaction serially, as the only

running transaction in the application. An example is a transaction that updates

a �le on the disk.

2.1.6 TM Implementations and Performance

The idea of supporting atomic operations in parallel programming was suggested by

Lomet [55] in 1977, and the idea of parallel execution of transactions on a multiprocessor,

supported by the cache coherence protocol, by Knight [52] in 1986. Finally, Herlihy and

Moss proposed the �rst implementation of TM in hardware [43] in 1993, and Shavit and

Touitou the �rst implementation in software [88] in 1995. Since then, researchers have

provided various software, hardware, and hybrid implementations, and �nally in the last

few years, TM became integrated in the mainstream processors.

TM implementations in hardware (HTMs) provide the concurrency control in a mod-

i�ed cache and cache coherence protocol. The advantage of HTMs is that they do not

require instrumentation of transactional memory accesses, but the disadvantage is that

hardware transactions might exceed the cache capacity and have to be aborted, and then

re-executed in a fall back path, e.g. protected by a global lock.

The �rst commercial processor with TM support was the Rock processor [66], de-

veloped in Sun Microsystems, but never released since the Rock project was cancelled.

Fortunately for the TM community, other hardware manufacturers started supporting

TM in their processors.

IBM implements HTM in BlueGene/Q [100], zEnterprise EC12 [37], and

POWER8 [16] processors.

Furthermore, Intel implements HTM in Haswell processors [35, 79] as Transactional

Synchronization eXtensions (TSX) to the x86 ISA. It provides two interfaces for devel-

opers to use transactions. Restricted Transactional Memory (RTM) allows developers

to mark transactions that will be executed atomically. In case of a con�ict, a transac-

tion is aborted and execution takes a fall back path (e.g. the same code protected by a

lock). Hardware Lock Elision (HLE) allows lock-based code to be executed optimistically

16



without locks, and the processor provides consistency. In case of a con�ict, the memory

updates are discarded and the code has to be re-executed as lock-based.

Another extension to the x86 ISA with the HTM support is Advanced Synchronization

Facility (ASF) [17]. Unfortunately, AMD has never integrated it in the mainstream

processors.

In general, applications with short transactions and a low con�ict rate bene�t from

a hardware implementation of TM, and they are energy e�cient and have good perfor-

mance [26].

However, for applications with long and con�icting transactions software TM (STM)

implementations are preferable. In STM, a compiler and a runtime library ensure atom-

icity and isolation of transactions. The compiler inserts function calls for managing

transactions in the runtime library, and instruments reads and writes so that the runtime

library keeps track of transactional memory accesses (as explained in Section 2.1.2).

Diegues et al. [26] point out that TinySTM [30, 31] is currently the best choice accord-

ing to execution time and energy e�ciency. In addition, TinySTM is compatible with

the mainstream compilers.

The GNU GCC1 and Intel CC2 compilers rely on the Draft C++ TM Speci�cation [5],

and apart from the compatibility with other STM implementations, they also implement

STM as an extension to the C/C++ programming language. Furthermore, IBM XL [47]

provides support for HTM integrated in POWER8 processors.

Finally, hybrid TM (HyTM) implementations are proposed to take advantage of both

HTM and STM. The hardware provides good performance and the software handles the

transactions that cannot be successfully executed in hardware due to its limitations. In

HyTM, hardware and software transactions run in parallel. Although HyTM performs

well with the simulated HTM (as shown by Matveev et al. [61]), according to the study

provided by Diegues et al. [26], HyTMs do not perform as well as expected when using a

real HTM implementation.

1https://gcc.gnu.org/
2https://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition

17



2. BACKGROUND

2.2 Deterministic Multithreading

Even though TM makes parallel programming easier and less error-prone, concurrency

bugs are still present in multithreaded applications because application threads run in

parallel and interleave in arbitrary order, i.e. nondeterministically. For a single input set,

the number of possible thread interleavings grows exponentially with the number of run-

ning threads and the number of critical sections (or transactions) [104]. Furthermore, this

number gets larger with every shared memory access performed outside critical sections

(or transactions) and with di�erent input parameters.

Sources of nondeterminism are the state of: caches, memory pages, OS global data

structures, I/O bu�ers, and branch predictor tables [23]. Additional sources of nonde-

terminism are concurrency bugs and library calls: malloc (dynamic memory allocation

might return a di�erent address in every execution), gettimeofday (the function returns

current time), sleep (the function suspends thread execution for a speci�ed time), and

rand (the function returns a di�erent value each time it is called) [71].

In this thesis, we assume that program execution is not based on time, random values,

or nondeterministic memory addresses1, and we focus on concurrency bugs.

2.2.1 Why Do I Have Bugs in My Code?

Many di�erent types of concurrency bugs can appear in multi-threaded applications, e.g.

deadlocks, atomicity and order violations [58], due to the lack of proper synchronization

among application threads.

In Figure 2.3 we show an example of very simple code with two bugs (a use of an

uninitialized pointer and a data race) and how they manifest in nondeterministic exe-

cutions. Depending on the order of threads execution, one or none of these bugs might

appear.

Threads Thread1 and Thread2 execute functions foo1() and foo2(), respectively,

and access shared variable n and shared array a. If the threads execute the code in

the order shown in Figure 2.3(a), Thread2 accesses the array using the pointer that was

declared but not initialized yet by Thread1, causing a segmentation fault and crashing

the program.

1We disable the address space layout randomization.

18



(a) An access to an uninitialized variable causes a segmentation fault.

(b) An update of a shared variable out of transactions causes memory
inconsistency.

Figure 2.3: Examples of concurrency bugs: Two threads execute foo1() and foo2() concurrently, and
access shared memory. The circled numbers represent execution order of the code in the functions. The
thread interleaving in (a) triggers a �use of uninitialized pointer� bug, which causes a segmentation fault
and crashes the program. The thread interleaving in (b) causes a �data race� bug where the �nal value
of the shared variable is incorrect because of the lost update n = 2;.

19



2. BACKGROUND

According to the order of threads execution in Figure 2.3(b) Thread1 initializes the

pointer, updates shared variable n to 0, and Thread2 reads that value in the transac-

tion, increments it and commits it to 1, without knowing that the value was changed

to 2 by Thread1 in the meanwhile (see weak isolation in Section 2.1.2). The transac-

tion overwrites the memory update n = 2; (which is a data race, or a intermediate lost

update [89]) and the �nal value of n is 1, which is incorrect.

With the other orders of threads execution, the program �nishes its execution suc-

cessfully and correctly.

To reduce the number of thread interleavings and to help programmers to reproduce,

�nd and resolve concurrency bugs, researchers have proposed deterministic multithread-

ing. A program runs deterministically if for the given input parameters, it always pro-

duces the same output in the same way [57], i.e. application threads always interleave

in a single order. We de�ne input parameters as the arguments used for running an

application, and any input from the network or a user. We de�ne output as what the

program writes to the �le descriptors (e.g. standard output, user terminal, sockets), and

the state of shared memory at the end of the execution.

2.2.2 Bene�t of Deterministic Execution

Deterministic execution provides repeatability, meaning that application threads inter-

leave in a single order and the application �nishes with only one possible output in every

execution with the same input parameters. If the program from Figure 2.3 runs deter-

ministically, the threads will always update the shared variable n in the same order, e.g.

Thread1: n ← 0, Thread2: n ← 1, Thread1: n ← 2 and the program will always �n-

ish execution successfully. Although the �use of uninitialized pointer� bug and the data

race remain hidden in the other orders, running this example deterministically is always

bug-free and with the correct output.

Repeatability reduces the number of possible thread interleavings. It helps a pro-

grammer to understand the behaviour of applications [14], and it is important for testing,

debugging and providing fault tolerance.

• Testing. Programmers perform testing by comparing the program output with the

correct output. In multithreaded applications, it is usually not trivial to know the

correct output in the �rst place, and it is even harder to say if the variety in outputs

20



(even when the application �nishes its execution successfully) is caused by a bogus

execution, or a correct nondeterministic execution. The example in Figure 2.3

might give two di�erent correct outputs: i) Thread1: n ← 0, Thread2: n ← 1,

Thread1: n ← 2, and ii) Thread1: n ← 0, Thread1: n ← 2, Thread2: n ← 3. With

repeatability, the time that a programmer spends in testing can be signi�cantly

reduced since there is only one possible output as long as the application is executed

deterministically.

• Debugging. To debug an application, it is crucial that the application behaves

the same way in every execution, and that it always �nishes successfully, or it al-

ways exits with the same error. With deterministic execution, the order of threads

execution remains the same, with or without a debugger, or even if the programmer

adds function calls such as printfs to gather additional information about appli-

cation execution. If the threads in Figure 2.3 run deterministically and in the order

marked in (a), the deterministic execution will always guarantee the same order and

will help the programmer in �nding the bug of accessing the uninitialized variable.

• Fault tolerance To be able to tolerate faults, the systems based on replication [75,

85] execute the same code multiple times and if one of the replicas gets a�ected by

a fault, the fault stays isolated and does not have in�uence on other replicas. The

comparison of the replicas' outputs shows if any of the replicas was faulty. However,

replicas have to be executed deterministically, so that any mismatch in the outputs

is only due to a faulty execution.

2.2.3 Various Levels of Determinism

Systems for deterministic multithreading can be classi�ed by the level of determinism

they provide (application, standard library, or OS) and how they cope with data races

(weak or strong determinism).

When a system guarantees deterministic execution of application code, we call this

application-level determinism, and in case of deterministic execution when threads con-

currently invoke standard library calls and system calls, we call it standard library-level

determinism and OS-level determinism, respectively.

21



2. BACKGROUND

Weak determinism provides deterministic execution only of critical sections and trans-

actions. If an application is race-free, weak determinism is su�cient to have deterministic

execution of the entire application. Strong determinism provides deterministic execution

of the complete application code. In the presence of a data race, only strong determinism

guarantees deterministic execution of an application. Although it induces higher over-

head, we prefer strong over weak determinism since data races are common concurrency

bugs [87] and their number increases with the increase of parallelism in software and

hardware [49].

22



3
Experimental Setup

In this chapter, we introduce the setup used to perform experiments and evaluate the

TM-aware standard library and the deterministic systems. We give a brief overview of

processor speci�cation, benchmarks, compilers, employed TM implementations, a sim-

ulator for TM implemented in hardware, and tests used to verify the correctness of

implementations of the library and the deterministic systems.

3.1 Processor Speci�cation

We ran benchmarks on the systems with the following processors.

• Intel Xeon E5405 contains four cores serviced by private 32KB L1 Icache and

32KB Dcache, a private 64KB L2 cache, a shared 8MB L3 cache, 4GiB RAM, and

with clock speed of 2.00GHz per core.

• Intel Xeon E3-1220 contains four cores serviced by private 32KB L1 Icache and

32KB Dcache, a private 256KB L2 cache, a shared 8MB L3 cache, 16GiB RAM,

and with clock speed of 3.10GHz per core.

23



3. EXPERIMENTAL SETUP

3.2 TM Implementations

In Table 3.1 we show the TM implementations we use in this thesis and their character-

istics.

TM implementations Version control Con�ict detection Strong isolation Concurrent execution

Serial-TM none none no no

TinySTM-eager (STM) eager eager no yes

TinySTM-lazy (STM) lazy lazy no yes

ASF (HTM) lazy eager yes yes

RTM (HTM) lazy eager yes yes

HyLSA (HyTM) lazy, eager eager yes yes

Table 3.1: Characteristics of TM implementations.

The implementations are in software, hardware and as a combination of both.

• Serial-TM in an implementation that guarantees that a transaction is serialized

and protected by a global lock when it cannot be executed in parallel with other

transactions. Since it runs as the only transaction in an application, transactional

memory accesses are not instrumented, and a serialized transaction accesses shared

memory directly.

• TinySTM [31] is a lightweight TM software implementation, which applies a time-

based algorithm derived from Lazy Snapshot Algorithm (LSA) [80]. It performs

con�ict detection at the word granularity and uses locks for memory updates. Ex-

cept for the mutual exclusion, locks also hold the version number, which is used in

version control of read and write accesses. TinySTM-eager refers to TinySTM

with eager version control and eager con�ict detection, and TinySTM-lazy to

TinySTM with lazy version control and lazy con�ict detection.

• Advanced Synchronization Facility (ASF) [17] is a TM implementation in

hardware proposed by AMD. It ensures that operations on multiple memory objects

are performed atomically inside speculative regions, and this can be used to imple-

ment more sophisticated synchronization mechanisms. ASF uses SPECULATE to

start a speculative region and COMMIT to �nish it. To access memory atomically

24



inside a transaction, MOV instructions have to be explicitly pre�xed with LOCK.

Memory operations without the pre�x do not get undone when a speculative region

is aborted.

ASF tracks data at the cache-line granularity. Con�icts are detected between trans-

actional memory accesses, but also between transactional and non-transactional

memory accesses; therefore, ASF guarantees strong isolation. Aborts happen due

to con�icting memory accesses, capacity over�ows, exceptions, interrupts, and un-

supported instructions (e.g. system calls).

• Restricted Transactional Memory (RTM) [79] is one of two interfaces for

developers to use transactions in Intel's Transactional Synchronization eXtensions

(TSX). A transaction starts with an XBEGIN instruction and commits changes to

memory in an XEND instruction. RTM tracks data at the cache-line granularity.

We emulated RTM, which uses the facility similar to ASF. The main di�erence

is that RTM does not require the LOCK pre�x for MOV instructions and does

not allow non-transactional accesses inside of transactions. Both implementations

mimic the best-e�ort characteristics of hardware and provide a software fall back

in Serial-TM for transactions that cannot �nish their execution due to hardware

limitations.

• HyLSA [81] is a library that allows hardware and software transactions to coexist

(run and commit) in parallel. Transactions run in hardware �rst, synchronized by

ASF, and in case they get aborted due to one of the limitations of HTM, they

are re-executed using the STM part of the library. The STM part uses LSA to

synchronize concurrent software transactions, but also to get noti�ed by updates

of concurrent hardware transactions. Version control is lazy in ASF and eager in

LSA.

The benchmarks' executions, which employed HTM and HyTM, were conducted using

PTLsim [105], a nearly cycle accurate CPU simulator, enhanced with ASF extension and

with the con�guration from Pohlack et al. [74].

25



3. EXPERIMENTAL SETUP

3.3 Benchmarks

In this dissertation we use di�erent types of benchmarks with the characteristics shown

in Table 3.2.

Benchmarks Special operations Nested transactions Ad hoc sync Con�ict rate

STAMP none none none low, medium, high

Microbenchmarks I/O none none low

TioBench I/O none yes high

RBTree memory management none none low, medium, high

Fluidanimate none yes yes low

Table 3.2: Characteristics of benchmarks.

• Microbenchmarks are the benchmarks we implemented to evaluate I/O standard

library functions. Threads perform operations: fgetc, fgets, fread, fputc, fputs,

and fwrite (although the last two have the same implementation in diet libc) inside

transactions, and calculations on thread-local variables outside transactions using

the output of the �le operations. I/O operations are performed on a single �le

of 2 GiB using a shared �le descriptor and its associated internal I/O structure.

Microbenchmarks spend most of the time outside transactions. Transactions are

short but with high contention since whenever two transactions concurrently access

a �le (even to read a character), a con�ict occurs due to updates of the internal

I/O structure performed in both transactions.

• STAMP [65] is a benchmark suite commonly used in the TM community. STAMP

consist of eight benchmarks (Bayes, Genome, Intruder, Kmeans, Labyrinth, SSCA2,

Vacation, and Yada) with di�erent domain, algorithms, sizes of transactions and

the contention level.

� Bayes applies an algorithm for learning the structure of Bayesian networks. A

network is represented as a directed acyclic graph with variables as nodes and

dependences between nodes as edges. Transactions are used to synchronize a

calculation and addition of a new dependency, which is time-consuming. As

26



a consequence, Bayes spends most of the execution time in long transactions

with large read and write sets and high contention.

� Genome takes DNA segments and reconstructs the original source genome

according to the segments. Threads access the segments in transactions, which

are of moderate length and with the moderate size of read and write sets.

Genome spends most of the execution time in transactions with low contention.

� Intruder uses a signature-based network intrusion detection algorithm to scan

network packets looking for matches to intrusion signatures. Threads access

a FIFO queue in transactions in the capture phase of the execution, and a

self-balancing tree in transactions in the reassembly phase of the execution.

Intruder has short transactions with moderate level of contention.

� Kmeans applies the K-means algorithm to group objects into proper subsets.

The application uses transactions to protect the update of a subset. When

threads are updating di�erent subsets, Kmeans has short transactions with

low contention.

� Labyrinth �nds the shortest path between two points in a three-dimensional

uniform grid that represents a maze. Threads take the start and the end

points and try to connect them with the maze grid points, and they perform

the path calculations in transactions. A con�ict occurs when threads pick

an overlapping path. Labyrinth spends almost all of the execution time in

transactions, which are very long, with large read and write sets and with

high contention.

� SSCA2 creates an e�cient graph data structure. Multiple threads add nodes

to the graph, which is performed in transactions. Since this operation is not

time-consuming, SSCA2 does not spend a lot of execution time in transactions.

The transactions are short, with the small sizes of read and write sets and with

low contention.

� Vacation simulates a travel reservation system implemented as a set of tree

data structures that keep track of customers and their reservations. Multi-

ple client threads interact with the in-memory database to make reservations,

cancellations, and updates, and every client session is performed in a transac-

27



3. EXPERIMENTAL SETUP

tion. As a consequence, Vacation spends a lot of time in transactions and its

transactions are of medium length with moderate read and write set sizes.

� Yada implements an algorithm for mesh re�nement. It uses a graph data struc-

ture to store all mesh triangles. Threads access a work queue in transactions

to remove a triangle, perform retriangulation and add new triangles to the

work queue. Yada spends almost all the execution time in transactions.

• TioBench [95] is a benchmark for measuring the performance of I/O operations.

Worker threads invoke system calls lseek, read, and write to: (i) write data to a

�le starting from the beginning (seq write), (ii) write data to a random position of

a �le (rnd write), (iii) read data from a �le starting from the beginning (seq read),

and (iv) read data from a random position of a �le (rnd read). Random positions

in the �le are repeatable in every execution since we use the same seed to generate

the random values.

We modi�ed the original TioBench implementation in order to use it for evaluation

of TM-dietlibc and our deterministic systems. First, to invoke I/O functions from

TM-dietlibc, we replaced system calls with their corresponding standard library

functions: fseek, fread, and fwrite. Second, to have concurrent execution of the

I/O functions, worker threads access a shared �le (using a shared �le descriptor)

instead of a per-thread �le. Third, to evaluate our deterministic system that does

not support ad hoc synchronization (DeTrans-lib), we replaced a variable and a

loop used for ad hoc synchronization with a synchronization provided by a pthread

barrier.

We ran the benchmark with the �le size of 8 MB, large transactions, and high

contention.

• Red-black tree is a commonly used benchmark of inserting, searching and re-

moving elements from a shared balanced tree structure. The original implemen-

tation [32] is lock-based; however, it allows reads to be performed in parallel and

requires writes to be serialized. The benchmark allocates memory by invoking stan-

dard library function malloc (when adding an element) and releases memory by

invoking standard library function free (when removing an element). We modi�ed

the benchmark to use transactions instead of locks and to call the memory manage-

28



ment functions from transactional code. We run the benchmark with the default

proportion of insert and removal operations and a data set of 216 elements.

• Fluidanimate is a benchmark from the PARSEC [12] benchmark suite. It uses an

extension of the Smoothed Particle Hydrodynamics method to simulate the physical

interactions between �uid particles in a bounded space. The collisions of particles

are handled by adding forces in order to change the direction of movement of the

involved particles. The force and mass are then used to compute the acceleration

and the new velocity.

The original implementation is lock-based, but we use the TM-based version with

the conditional variables suitable for transactions [29]. The benchmark also has ad

hoc synchronization and nested transactions. It has linear scalability and transac-

tions with low contention that access a few shared variables.

3.4 Compilers

The benchmarks detailed in the previous sections are compiled using the optimization

level 3 (-O3) and with one the following compilers with TM support that rely on the

Draft C++ TM Speci�cation [5].

• The GNU Compiler Collection (GCC)1 supports TM since its version 4.7. It

recognizes transactional boundaries (__transaction_atomic {}) and instruments

transactional accesses to shared memory. Apart from the code path with instru-

mented memory accesses, the compiler also generates a path with no instrumenta-

tion, which is used by Serial-TM.

• Dresden TM Compiler (DTMC) [17] is based on GCC and LLVM2 and it also

provides several code paths. The path with non-instrumented memory accesses

is used by Serial-TM. Code paths with instrumented memory accesses can invoke

di�erent ABI calls. This allows HyLSA to choose one code path to execute hardware

transactions, and the other path to execute software transactions. The code path

is selected at the beginning of a transaction.

1https://gcc.gnu.org/
2http://www.llvm.org/

29



3. EXPERIMENTAL SETUP

3.5 Veri�cation of Correctness

To verify the correctness of the implementation of TM-dietlibc, apart from the mi-

crobenchmarks, TioBench, and Red-black tree, we implemented additional benchmarks,

linked them against either glibc1 or TM-dietlibc, and executed them with various input

parameters (e.g. with various sizes of transactions). Execution of a benchmark invoking

TM-dietlibc gave the same output as execution of the same benchmark with the same

input parameters invoking glibc, which veri�ed the correctness of our modi�cations and

TM-dietlibc in general.

To verify the correctness of our deterministic systems (DeTrans, DeTrans-lib, and

DeTrans-adhoc), we use Racey [45, 103], the stress test that was used for veri�cation of

previously proposed systems for deterministic multithreading [9, 10, 19, 23, 72].

The test calculates a signature from the values in a shared array that threads update

concurrently. The value of the signature depends on the order of threads accessing the

shared array. One access includes: reading an element of the array, calculating a new value

and an index of the new element that gets updated with this new value, and updating

the element. If the test is executed nondeterministically, threads update the array in

arbitrary order, and the test might give a di�erent signature in every execution. The

probability that nondeterministic execution of the tests gives the same signature twice

is very low. If the test is executed deterministically, the signature remains the same in

every execution.

In the original implementation, accesses to the shared array are not protected by

any concurrency control mechanism. We modi�ed the test so that threads access the

shared array from transactions, which is needed for veri�cation of DeTrans. But we also

kept non-transactional accesses to the array to verify that DeTrans guarantees strong

determinism.

To verify DeTrans-lib, we modi�ed the test to invoke standard library calls inside

transactions. While accessing the shared array, threads also access a shared �le to read

it and update it with new calculated values. The signature is then calculated according

to the both elements in the array and the data in the �le.

Finally, to verify DeTrans-adhoc, we added several ad hoc synchronization variables

and loops, and they were all identi�ed by DeTrans-adhoc, and the test always �nished

1http://gnu.org/software/libc/

30



its execution successfully.

With all the modi�cations described above, we kept the signature highly dependable

on the threads interleaving. We executed the test with each deterministic system 1000

times, and it gave the same signature for each thread con�guration. Therefore, DeTrans,

DeTrans-lib, and DeTrans-adhoc passed veri�cation.

31





4
DeTrans: Deterministic and Parallel

Execution of Transactions

4.1 Introduction

Transactional Memory (TM) simpli�es the development of multithreaded applications

and avoids many concurrency bugs that might appear when using the traditional locking

mechanism (deadlocks, live locks, multiple releases of locks). However, concurrency bugs

are hard to avoid in general. The di�culty of �nding and �xing a bug lies in the underlying

(nondeterministic) nature of multithreaded applications, where threads run in parallel and

interleave nondeterministically. Depending on the thread interleaving, an application's

output can vary, or a bug can occur in one execution, but be hidden in another.

Previous systems for deterministic multithreading [9, 11, 23, 24, 54, 56] focus on lock-

based applications and provide deterministic order of lock acquisitions. However, these

systems are not appropriate for transactional applications. Since they do not recognize

transactions, they might violate the main properties of TM (atomicity, consistency, and

33



4. DETRANS: DETERMINISTIC AND PARALLEL EXECUTION OF TRANSACTIONS

isolation of transactions), and as a consequence, they might execute transactional appli-

cations incorrectly.

In this chapter we present DeTrans, a runtime library that ensures deterministic exe-

cution of a multithreaded transactional application even in the presence of data races

(see strong determinism in Section 2.2.3). DeTrans achieves this by executing non-

transactional part of the application serially in round-robin order, and transactions in

parallel. It relies on an STM library to ensure correct parallel execution of transactional

code with low additional overhead. It is lightweight because it does not use memory pro-

tection hardware or facilities of the underlying operating system to execute multithreaded

applications deterministically. DeTrans is STM agnostic and works with eager and lazy

implementations of STM libraries. Our modi�cations remain within a shared runtime

library and do not require modi�cations of the operating system, system libraries, or

benchmarks.

The rest of this chapter is organized as follows. In Section 4.2, we give the back-

ground of one of the prior systems for deterministic multithreading (Dthreads [54]). In

Section 4.3, we use Dthreads to illustrate the behaviour of a transactional application

running deterministically, and explain our motivation to implement a deterministic sys-

tem for transactional applications from scratch. In Section 4.4 we explain the design

and implementation of DeTrans. DeTrans is based on a double-barrier technique to sep-

arate execution of transactional and non-transactional code. Non-transactional code is

executed serially in round-robin order, and transactions in parallel, with commits in the

same round-robin order.

In Section 4.5 we verify the correctness of the DeTrans implementation by using

the Racey stress test [45, 103], and we evaluate DeTrans with the STAMP benchmark

suite [65]. According to our results, DeTrans is 3.99x, 3.39x, 2.44x faster on average than

Dthreads (when running lock-based STAMP) for 2, 4, and 8 threads, respectively.

Additionally, we discuss di�erent orders of threads execution based on the number of

transactional memory accesses in Section 4.6, and we conclude this chapter in Section 4.7.

The ideas discussed in this chapter were published at SBAC-PAD 20141.

1Vesna Smiljkovi¢, Sr�an Stipi¢, Christof Fetzer, Osman S. Ünsal, Adrián Cristal, and Mateo Valero,
DeTrans: Deterministic and Parallel Execution of Transactions, In Proceedings of the 26th International
Symposium on Computer Architecture and High Performance Computing (SBAC-PAD 2014)

34



4.2 Background

Deterministic multithreading ensures repeatable execution, which greatly helps program-

mers to test and debug multithreaded programs, and to understand their behaviour in

general [14]. However, prior systems for deterministic multithreading [9, 11, 23, 24, 54, 56]

are limited in their applicability since they ensure correct and deterministic execution only

of the programs that use locks as the synchronization mechanism.

In this section, we give the background of one of the prior systems for determinis-

tic multithreading � Dthreads, which is a runtime system widely used in the research

community.

Dthreads is a replacement for a pthread library, and relies on process isolation and

virtual memory protection to isolate concurrent memory updates, and to perform them

deterministically.

In Dthreads, threads are replaced with processes, which access shared memory pages

only for reading shared variables (located either in global memory or on the heap) until

the �rst update. When a process tries to update a shared variable, copy-on-write memory

protection provides a private copy of the shared memory page that the process intents to

modify. From the �rst update, all other writes and reads are performed on the private

copy of the shared memory page.

Execution of programs running deterministically with Dthreads is divided into parallel

and serial phases. While processes access their private pages in parallel, updating the

shared pages is done serially. At a synchronization point (a pthread function call),

Dthreads updates shared memory with the modi�cations from the private copies serially

in round-robin order. The shared pages are updated only by modi�ed bytes, which can

be a cause of runtime overhead in case of numerous updates.

Since Dthreads maintains shared and private memory pages, it increases a memory

footprint of a running application. The memory footprint depends on the number of

modi�ed pages and the number of processes. Furthermore, applications with intensive

synchronization among threads might have a high runtime overhead due to frequent

creation of private pages and modi�cation of shared pages in Dthreads.

The implementation of Dthreads is based on deterministic token passing (only the

thread that has the token can update the shared memory), and the double-barrier tech-

nique where two barriers separate parallel and serial phases of program execution.

35



4. DETRANS: DETERMINISTIC AND PARALLEL EXECUTION OF TRANSACTIONS

4.3 Motivation

In this section, we show an example of transactional code and its behaviour when running

deterministically with Dthreads.

Figure 4.1 shows the code where two threads concurrently increment a shared counter

inside a transaction. If we run the code nondeterministically, the �nal value of the counter

is 2 (independently of the commit order of transactions). If we run it with Dthreads, at

pthread_create threads make a private copy of the counter (the counter is 0), and then

they increment only the private copy. Both transaction update their private copies to the

value 1. At pthread_join, Dthreads updates the shared variable, �rst with the update

from Thread1, and then from Thread2. The �nal value is 1, which is incorrect. This

simple example shows that Dthreads is not TM-aware and might execute transactional

applications incorrectly.

Figure 4.1: An example of two threads executing transactions and updating a shared counter.

In general, Dthreads is a widely-used deterministic system among researchers, and it

is e�cient when critical sections are short and threads perform a lot of work in parallel.

However, even with the support for transactions, it would not be a good �t for the STAMP

benchmarks because of high overhead (see the previous section for general limitations and

causes of runtime overhead).

To show the runtime overhead in Dthreads, we ran lock-based STAMP benchmarks

nondeterministically and deterministically with Dthreads1, and we present the results

in Figure 4.2. The maximum overhead of deterministic execution is for SSCA2. The

benchmark runs 56.2x slower with Dthreads for 8 running threads in comparison to single-

1The evaluation environment and the input parameters are the same as in Section 4.5.

36



Figure 4.2: The STAMP benchmarks running with Dthreads.

threaded nondeterministic execution of the benchmarks. In addition, all the benchmarks

have high memory footprint because of maintaining metadata and copies of memory pages

(one copy per thread). As a consequence, we were able to run STAMP benchmarks only

with a small input set.

Because of the high overhead in execution time and memory, we choose to implement

a deterministic system for transactional applications from scratch, rather than extending

an existing one by adding support for transactions.

4.4 Implementation

In this chapter we propose DeTrans, which implements a double-barrier technique (sim-

ilarly to Dthreads, see Figure 4.3(a)) to ensure deterministic execution of transactional

applications. DeTrans implements the total store ordering consistency model by using

two barriers to separate transactional and non-transactional code of an application, and

to execute non-transactional code serially in round-robin order and transactional code in

parallel.

In order to avoid modi�cations of the STM library and applications, DeTrans is imple-

mented as a library with wrappers for the functions from the standard library (pthread*)

and from the STM library (_ITM_*). We preload and execute the wrappers (instead of

the original functions) at runtime.

When a thread is created, DeTrans places the thread id in the queue of threads ready

for execution (ready_queue). This queue de�nes the order of threads execution in the

37



4. DETRANS: DETERMINISTIC AND PARALLEL EXECUTION OF TRANSACTIONS

(a) The double-barrier technique

(b) Deterministic execution with eager STM

(c) Deterministic execution with lazy STM

Figure 4.3: Deterministic execution with DeTrans: (a) DeTrans implements the double-barrier technique
and executes non-transactional code of a program in round-robin order (Non-txn Phase) and transactional
code in parallel (Txn Phase). (b) DeTrans-eager starts transactions in deterministic order (ensured by TX
Start Barrier) and eager STM commits them in the same order. (c) DeTrans-lazy commits transactions
in deterministic order (ensured by TX Commit Barrier).

38



non-transactional code of an application. When a thread �nishes its execution, it is

removed from the queue, or if it comes to a transactions, the thread id is moved from

ready_queue to txn_queue, which then de�nes the order of threads committing their

transactions. When a transaction commits, the thread id is moved back from txn_queue

ro ready_queue.

4.4.1 Serial Deterministic Execution of Non-transactional Code

DeTrans executes non-transactional code in an application deterministically in round-

robin order (Figure 4.3(a) � Non-txn Phase)1. DeTrans implements token passing where

each thread is blocked until it acquires a global execution token and then it runs until it

reaches a synchronization point (e.g. a transaction) or the end of execution. Only one

thread from ready_queue is executed at a time. Non-txn Phase ends when all running

threads reach the B1 barrier, i.e. when ready_queue is empty.

The B1 barrier is important for strong determinism � it guarantees that execution

of non-transactional code is �nished before execution of transactional code starts. This

way, we do not allow mixing executions of non-transactional and transactional code, and

we avoid nondeterministic concurrency bugs, such as the data race from Figure 2.3(b).

If a thread does not execute any transaction in a program, it runs sequentially until it

exits and passes the execution token to the next available thread. Other threads blocked

on the barrier (if any) do not wait for the exited thread.

4.4.2 Parallel Deterministic Execution of Transactional Code

To provide more parallelism, DeTrans executes transactions in parallel (Figure 4.3(a) �

Txn Phase) and commits them in round-robin order. Txn Phase of a program starts when

all threads start transactions (when ready_queue is empty and txn_queue is not empty),

and ends when they �nish the transactions and reach the B2 barrier (when ready_queue

is not empty and ready_queue is empty). Similarly to the B1 barrier, the B2 barrier is

important for strong determinism � it guarantees that execution of transactional code is

1Another approach would be that threads execute non-transactional code in parallel. To ensure
strong determinism, the non-transactional code would have to be instrumented to track memory updates
and to perform them in deterministic order. We prefer having serial execution with no instrumentation
overhead.

39



4. DETRANS: DETERMINISTIC AND PARALLEL EXECUTION OF TRANSACTIONS

�nished before execution of nontransactional code starts.

DeTrans supports both eager1 and lazy2 implementations of STM. Eager STM per-

forms con�ict detection and memory updates during transaction execution, and lazy STM

performs them at commit time. DeTrans relies on the commit policy called commit-in-

order in TinySTM [31], which guarantees FIFO commit order (the �rst transaction that

starts commits �rst). This commit policy is not su�cient to provide deterministic execu-

tion since in nondeterministic execution of a transactional application, transactions start

in arbitrary order and as a consequence, commit in the same (nondeterministic) order.

Lazy STM does not provide commit-in-order and transactions commit in arbitrary

order. In the following sections, we explain how to provide deterministic execution for

eager and lazy STM.

4.4.3 Deterministic Eager STM Policy

DeTrans executing with eager STM (DeTrans-eager) introduces a TX Start Barrier

(Figure 4.3(b)) that guarantees deterministic execution. After the execution of non-

transactional part of a program (Non-txn Phase), all threads get blocked on the TX

Start Barrier. The TX Start Barrier corresponds to the B1 barrier from Figure 4.3(a),

and it consists of the B1a barrier, in-order transaction start, and the B1b barrier. After

B1a, DeTrans sequentially starts transactions, and the threads get blocked on the B1b

barrier. Finally, DeTrans lets all the threads execute transactions in parallel until they

commit and reach the B2 barrier. After the Txn Phase, DeTrans starts executing the

next Non-txn Phase of the program.

The Txn Phase in DeTrans-eager guarantees deterministic program execution because

TX Start Barrier starts transactions in order and eager STM commits transactions in

order (the commit-in-order policy).

In case a STM library does not have the commit-in-order feature, the con�ict resolu-

tion of the STM library should be modi�ed to ensure that a transaction that will commit

earlier wins a con�icting situation (similarly to the con�ict resolution proposed by Brito

et al. [15]).

1eager versioning and eager con�ict detection
2lazy versioning and lazy con�ict detection

40



4.4.4 Deterministic Lazy STM Policy

DeTrans executing with lazy STM (DeTrans-lazy) introduces a TX Commit Barrier

(Figure 4.3(c)) that guarantees deterministic execution. After the execution of non-

transactional part of a program (Non-txn Phase), all threads get blocked on the B1

barrier. DeTrans allows threads to execute transactions in parallel until they reach the

TX Commit Barrier. The TX Commit Barrier corresponds to the B2 barrier from Fig-

ure 4.3(a), and it consists of the B2a barrier, in-order transaction commit, and the B2b

barrier. After the barrier B2a, DeTrans sequentially commits all transactions. When all

transactions commit, the threads get blocked on the B2b barrier, which is the start of

the next Non-txn Phase of the program.

Txn Phase of DeTrans-lazy guarantees deterministic program execution because the

TX Commit Barrier commits transactions in order.

DeTrans (DeTrans-eager or DeTrans-lazy) guarantees the execution order of trans-

actions that corresponds to the execution order as if the transactions were executed

sequentially one after another. Furthermore, the execution order of transactions is in-

dependent of aborts. DeTrans ensures that the transaction that holds the deterministic

token commits. Any other transaction that has a con�ict with the token holder has to

be aborted. The transaction then gets re-executed in the same Txn Phase and it is not

skipped in the round-robin token passing.

DeTrans separates non-transactional and transactional code and executes them de-

terministically, and as a result, it provides deterministic execution even in the presence

of data races, i.e. strong determinism.

4.5 Evaluation

We evaluate DeTrans with the benchmarks from the STAMP benchmark suite [65], using

2 Intel Xeon E5405 processors (8 cores in total). We compiled the benchmarks with GCC

version 4.7 and linked them against TinySTM [31], version 1.0.5. We also veri�ed the

correctness of the DeTrans implementation by using the Racey stress test [45, 103]. More

details about the experimental setup are given in Chapter 3.

41



4. DETRANS: DETERMINISTIC AND PARALLEL EXECUTION OF TRANSACTIONS

4.5.1 Methodology

We compare DeTrans with the state-of-the-art deterministic system � Dthreads. Since

TinySTM does not use pthread synchronization primitives (synchronization points for

Dthreads), to run transactional applications with Dthreads we replaced transactions with

critical sections protected by pthread_mutex_lock and pthread_mutex_unlock calls.

To measure performance we ran the STAMP benchmarks 10 times using the input

parameters from Table 4.1, and calculated the arithmetic mean execution time. Note that

the input parameters are di�erent than the default parameters proposed by the STAMP

authors, because of Dthreads running out of memory.

We used the Perf pro�ling tool [1] to analyse overheads of deterministic execution.

4.5.2 Results

Figure 4.4 presents the performance of the STAMP benchmarks running: (i) nonde-

terministically (original execution running with TinySTM), (ii) deterministically with

Dthreads, and (iii) deterministically with DeTrans. The �gure shows the slowdown of de-

terministic executions for 1, 2, 4, and 8 threads in comparison to single-threaded original

execution of a benchmark. Evaluation of DeTrans based on eager STM (TinySTM-eager)

is shown in Figure 4.4(a) (DeTrans-eager), and evaluation of DeTrans based on lazy STM

(TinySTM-lazy) is shown in Figure 4.4(b) (DeTrans-lazy). We compare DeTrans-eager

and DeTrans-lazy to the original execution of benchmarks running with TinySTM-eager

and TinySTM-lazy, respectively.

Figure 4.4 shows that DeTrans-eager and DeTrans-lazy perform similarly (the max-

imum performance di�erence is 13.57% for Yada running with 8 threads). On average,

DeTrans is 1.43x slower than Dthreads for 1 thread, and is 3.99x, 3.39x, 2.44x faster than

Dthreads for 2, 4, and 8 threads, respectively. DeTrans performs better than Dthreads

in all benchmarks except Kmeans. Kmeans has infrequent transactions - it spends most

of the execution time outside of transactions, and that is the part of the program that

Dthreads executes in parallel and DeTrans serially.

Figure 4.5 shows the execution breakdown for the STAMP benchmarks. The domi-

nant overheads are: in the kernel when using locks and running nondeterministically (Fig-

ure 4.5(a)), in the Dthread implementation when running deterministically with Dthreads

(Figure 4.5(b)), in the STM implementation when using transactions and running non-

42



benchmark input parameters

Bayes -v32 -r2048 -n10 -p40 -i2 -e8 -s1

Genome -g16384 -s64 -n262144

Intruder -a10 -l64 -n32768 -s1

Kmeans -m40 -n40 -t0.00001 -i inputs/random-n65536-d32-c16.txt

Labyrinth -i inputs/random-x512-y512-z7-n512.txt

SSCA2 -s15 -i1.0 -u1.0 -l3 -p3

Vacation -n2 -q90 -u98 -r131072 -t262144

Yada -a15 -i inputs/ttimeu10000.2

Table 4.1: STAMP benchmark input parameters.

deterministically (Figure 4.5(c)(e)), and in the DeTrans implementation when running

deterministically with DeTrans (Figure 4.5(d)(f)).

In Table 4.2 we show the more detailed execution breakdown of Vacation, which

is a benchmarks with the medium size of transactions, running nondeterministically

(with Lock, TinySTM-eager, and TinySTM-lazy) and deterministically (with Dthreads,

DeTrans-eager, and DeTrans-lazy).

Execution with 1 thread: Dthreads, TinySTM-eager, TinySTM-lazy, DeTrans-eager

and DeTrans-lazy introduce 1.26x, 2.05x, 2.09x, 2.14x and 2.19x slowdown respectively,

compared to the Lock implementation while running with 1 thread. The slowdown in

Dthreads is due the increased time spent in kernel execution (kernel - 12.9%). The

slowdown in TinySTM-eager and TinySTM-lazy is due to overheads of the STM library

(libstm - 57.2% for eager and 59.5% for lazy). DeTrans-eager and DeTrans-lazy have

an additional slowdown (on top of the STM library) due to barrier and implementation

overheads (barr+imp - 3.2% for eager and 2.9% for lazy).

Execution with 2 threads: Dthreads running with 2 threads are 19.6x slower than

Dthreads running with 1 thread. This huge slowdown is caused by the use of memory

protection to provide deterministic execution and by the implementation overheads1.

When running with 1 thread, the kernel (kernel) and bookkeeping (barr+imp) times

1Dthreads creates a new process for each running thread, and uses the facilities of the underlying OS
to protect accesses to shared memory.

43



4. DETRANS: DETERMINISTIC AND PARALLEL EXECUTION OF TRANSACTIONS

(a) Deterministic execution provided by DeTrans-eager and Dthreads compared with original execution.

(b) Deterministic execution provided by DeTrans-lazy and Dthreads compared with original execution.

Figure 4.4: The STAMP benchmarks running nondeterministically and deterministically with DeTrans
and Dthreads.

are 0.25s and 0.07s, respectively, and when running with 2 threads 19.27s and 17.06s,

respectively. Dthreads' implementation consumes 94.6% (barr+imp + kernel time) of

the execution time while running with 2 threads. DeTrans-eager and DeTrans-lazy are

1.43x and 1.54x slower than TinySTM-eager and TinySTM-lazy running with 2 threads.

This slowdown is much lower than the slowdown of Dthreads. Even with all the overheads

introduced when running with 2 threads, DeTrans-eager and DeTrans-lazy are 11.74x and

11.78x faster respectively, than Dthreads.

Execution with more threads: Vacation's execution time running with Dthreads stays

relatively constant for 2 and more threads (38.4s, 38.28s, 36.23s for 2, 4, and 8 threads).

On the other hand, Vacation's execution time running with DeTrans increases mostly

when the number of threads is increased (3.27s, 3.27s, 4.26s for eager, and 3.26s, 3.23s,

4.86s for lazy with 2, 4, and 8 threads, respectively). Even though Vacation's execution

time running with DeTrans increases with the increased number of threads, DeTrans

44



provides a speedup of 11.74x, 11.71x, and 8.5x (eager) and 11.78x, 11.85x, and 7.45x

(lazy) compared to Dthreads for 2, 4, and 8 threads, respectively.

4.6 Various Orders of Threads Execution � Discussion

In the previous section, we showed that the overhead in deterministic execution provided

by DeTrans is partially a result of the time that threads spend waiting on barriers for

the deterministic execution token. The overhead would be reduced if an application had:

(i) very short non-transactional parts, which shortens the Non-txn Phase, and (ii) non-

con�icting transactions that �nish their execution at the same time, which shortens the

Txn Phase.

Since the STAMP benchmarks do not ful�l these requirements, we analyse orders of

threads execution di�erent from the traditional round-robin to reduce the time transac-

tions spend on waiting to commit their changes in the Txn Phase.

We use three characteristics to describe transactions and de�ne the order of trans-

actions committing their changes: (i) transactional memory accesses � only writes (ws),

only reads (rs), or both writes and reads (wsrs), (ii) the extrema � the minimal num-

ber (min) or the maximal number (max ) of transactional memory accesses, and (iii)

the range � transactional memory accesses of the transaction committed in the previous

round (prev) or the transactions committed in all previous rounds of the same thread

(all)1. Combining the characteristics in (i), (ii), and (iii) gives us 12 di�erent orders.

Note that we statically choose one of the orders to apply it in the benchmark's execution,

rather than choosing di�erent orders dynamically.

Our �rst assumption is that some benchmarks might bene�t from the order that

guarantees that a thread with the shortest transaction in the previous round also has a

short transaction in the current round, and that it should commit �rst and release the

deterministic token fast (the order wsrs-min-prev). Our second assumption is that some

benchmarks might bene�t from the order that guarantees that a thread with the longest

transaction in the previous round has also a long transaction in the current round, and

1We cannot deterministically speculate about the transactional memory accesses in the current round,
so we do it for the previous round or rounds.

45



4. DETRANS: DETERMINISTIC AND PARALLEL EXECUTION OF TRANSACTIONS

 0

 20

 40

 60

 80

 100

Bayes

G
enom

e

Intruder

Km
eans

Labyrinth

SSC
A2

Vacation

YadaE
x
e

c
u

ti
o

n
 B

re
a

k
d

o
w

n
 (

%
)

(a) Lock

 0

 20

 40

 60

 80

 100

Bayes

G
enom

e

Intruder

Km
eans

Labyrinth

SSC
A2

Vacation

YadaE
x
e

c
u

ti
o

n
 B

re
a

k
d

o
w

n
 (

%
)

(b) Dthreads

 0

 20

 40

 60

 80

 100

Bayes

G
enom

e

Intruder

Km
eans

Labyrinth

SSC
A2

Vacation

YadaE
x
e

c
u

ti
o

n
 B

re
a

k
d

o
w

n
 (

%
)

(c) TinySTM-eager

 0

 20

 40

 60

 80

 100

Bayes

G
enom

e

Intruder

Km
eans

Labyrinth

SSC
A2

Vacation

YadaE
x
e

c
u

ti
o

n
 B

re
a

k
d

o
w

n
 (

%
)

(d) DeTrans-eager

 0

 20

 40

 60

 80

 100

Bayes

G
enom

e

Intruder

Km
eans

Labyrinth

SSC
A2

Vacation

YadaE
x
e

c
u

ti
o

n
 B

re
a

k
d

o
w

n
 (

%
)

(e) TinySTM-lazy

 0

 20

 40

 60

 80

 100

Bayes

G
enom

e

Intruder

Km
eans

Labyrinth

SSC
A2

Vacation

YadaE
x
e

c
u

ti
o

n
 B

re
a

k
d

o
w

n
 (

%
)

(f) DeTrans-lazy

Figure 4.5: Breakdown of benchmarks' execution for 8 running threads.

46



Imp. type 1 thread 2 threads 4 threads 8 threads

Lock sec % sec % sec % sec %
app 1.45 93.8 1.29 66.3 1.15 53.7 1.13 53.3
barr+imp 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0
kernel 0.09 5.8 0.60 30.9 0.91 42.5 0.91 43.0
libpthread 0.01 0.5 0.05 2.8 0.08 3.8 0.08 3.7
libstm 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0
total 1.55 100.0 1.94 100.0 2.14 100.0 2.12 100.0

Dthreads sec % sec % sec % sec %
app 1.53 78.0 1.71 4.5 0.95 2.5 0.51 1.4
barr+imp 0.07 3.4 17.06 44.4 26.17 68.4 29.14 80.4
kernel 0.25 12.9 19.27 50.2 10.91 28.5 6.44 17.8
libpthread 0.11 5.7 0.35 0.9 0.25 0.7 0.15 0.4
libstm 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0
total 1.96 100.0 38.40 100.0 38.28 100.0 36.23 100.0

TinySTM-eager sec % sec % sec % sec %
app 1.26 39.6 0.84 36.9 0.56 33.9 0.41 31.8
barr+imp 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0
kernel 0.10 3.2 0.07 3.2 0.06 3.4 0.06 4.7
libpthread 0.00 0.0 0.00 0.0 0.00 0.1 0.00 0.0
libstm 1.82 57.2 1.37 59.9 1.03 62.7 0.82 63.5
total 3.18 100.0 2.28 100.0 1.64 100.0 1.29 100.0

DeTrans-eager sec % sec % sec % sec %
app 1.26 37.9 1.05 32.2 0.62 18.9 0.34 8.1
barr+imp 0.10 3.2 0.95 29.2 1.86 57.0 3.50 82.1
kernel 0.10 3.2 0.07 2.2 0.04 1.2 0.04 1.0
libpthread 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0
libstm 1.85 55.8 1.19 36.4 0.75 22.9 0.37 8.8
total 3.32 100.0 3.27 100.0 3.27 100.0 4.26 100.0

STM-lazy sec % sec % sec % sec %
app 1.23 38.0 0.76 35.9 0.51 34.8 0.38 32.9
barr+imp 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0
kernel 0.08 2.6 0.09 4.0 0.06 4.0 0.07 5.9
libpthread 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0
libstm 1.93 59.5 1.28 60.1 0.90 61.2 0.70 61.2
total 3.24 100.0 2.12 100.0 1.47 100.0 1.14 100.0

DeTrans-lazy sec % sec % sec % sec %
app 1.31 38.8 1.04 31.8 0.57 17.6 0.32 6.5
barr+imp 0.10 2.9 1.00 30.6 1.95 60.5 4.18 85.9
kernel 0.08 2.5 0.06 1.9 0.07 2.1 0.04 0.8
libpthread 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0
libstm 1.89 55.9 1.16 35.7 0.64 19.9 0.33 6.7
total 3.39 100.0 3.26 100.0 3.23 100.0 4.86 100.0

Table 4.2: Vacation execution breakdown for 1, 2, 4, and 8 threads for each benchmark implementation
type (Lock, Dthreads, TinySTM-eager, DeTrans-eager, TinySTM-lazy, DeTrans-lazy). The breakdown
shows the time spent in: application (app), barrier and implementation (barr+imp), linux kernel (ker-
nel), pthread library (libpthread), and STM library (libstm). The application time is benchmark's total
execution time excluding barr+imp, kernel, libpthread, and libstm times. The barr+imp time is the
time spent in barrier waiting, synchronization, and implementation dependent bookkeeping.

47



4. DETRANS: DETERMINISTIC AND PARALLEL EXECUTION OF TRANSACTIONS

that this transaction should commit �rst before it gets aborted by another transaction

and waste a signi�cant amount of work (the order wsrs-max-prev).

However, the STAMP benchmarks do not show performance improvement when ap-

plying the proposed orders. In general, even when there is some speedup (e.g. in Kmeans

19% for 8 threads with the order wsrs-max-all), there is also slowdown for the same order,

just with a di�erent number of threads (Kmeans 17% slowdown for 2 threads with the

order wsrs-max-all). Since we cannot bene�t from the proposed orders, we do not show

any detailed evaluation.

4.7 Summary

In this chapter we presented DeTrans, a runtime library for deterministic execution of

transactional applications. We explained how DeTrans ensures deterministic execution

of transactional applications even in the presence of data races. DeTrans provides de-

terministic parallel execution of transactions using a STM library with low additional

overhead. We implemented DeTrans to work with both eager and lazy implementations

of the STM library.

We evaluated DeTrans with the STAMP benchmark suite, and we compared perfor-

mance costs of DeTrans and Dthreads, the state-of-the-art deterministic system. Our

results show that DeTrans is 3.99x, 3.39x, 2.44x faster on average than Dthreads for 2,

4, and 8 threads, respectively.

48



5
Increasing Concurrency in a Standard

Library Invoked in Transactions

5.1 Introduction

In the previous chapter we proposed DeTrans, a system for deterministic execution of

transactional applications, which could help a programmer in testing, debugging and pro-

viding fault tolerance. However, DeTrans has limited applicability and does not provide

support for transactional applications that invoke external libraries, e.g. a C standard

library (libc)1.

Standard libraries abstract and simplify the access to operating system (OS) services

and encapsulate shared data structures, e.g. memory allocation lists and �le structures.

In general, Transactional Memory (TM) is not able to track accesses and detect con�icts

on shared data structures in a libc or an OS. Therefore, in order to guarantee atomicity

1Our deterministic system is suitable for C/C++ applications; therefore, the standard library these
applications might invoke is the standard library for the C programming language.

49



5. INCREASING CONCURRENCY IN A STANDARD LIBRARY INVOKED IN TRANSACTIONS

and isolation, a TM library has to serialize a transaction that invokes libc functions

or system calls. Before serialization, the transaction waits for all other transactions to

�nish their execution (either to commit their changes, or to discard them), and then it

is re-executed as the only running transaction in the application.

Serialization might cause two issues in transactional application execution.

First, serialization hurts scalability and performance. To reduce the number of se-

rialized transactions and to provide more concurrency in transactional applications re-

searchers need a TM-aware standard library that would allow transactions to call standard

library functions and to execute them concurrently. In this case, only transactions that

invoke system calls would have to be serialized.

Second, serialization might induce deadlocks since it enforces the order of threads

execution that might be di�erent from the order enforced by a deterministic system.

Therefore, deterministic execution with serialized transactions might be deadlock-prone.

To prevent this, a deterministic system should support serialization enforced by TM.

In this chapter we address only the �rst issue � how to increase concurrency in trans-

actional applications that invoke standard library functions inside transactions � and the

second issue will be addressed later in this thesis.

Apart from serialization, another concern related to the invocation of a standard li-

brary in transactional applications is a possible interacation bettween transactions and

other concurrency control mechanisms (e.g. locks). If a library is used in a large pro-

gram, then its internal state might be accessed within transactions in some threads, and

outside transactions in other threads using locks. This is especially the case for TM im-

plementations with weak isolation guarantees like most of STM implementations. If an

access to shared data structures is intended to be protected by locks, operations have to

be implemented in a way that the interaction of locks and transactions cannot cause any

unwanted or unde�ned behaviour [96]. In contrast, Hardware TM implementations like

AMD's Advanced Synchronization Facility (ASF) [17] or Intel's Restricted TM (RTM)

in the mainstream Haswell processor [79] provide strong isolation guarantees assuring

consistent views even for unprotected memory accesses.

In this chapter, we present a TM-aware implementation of a C standard library,

based on diet libc [98]. Diet libc is an open-source standard library designed to have the

smallest possible code footprint. We modify the original lock-based implementation to

use transactions as synchronization primitives without introducing new functions, system

50



calls, or instructions. Instead, we perform various modi�cations inside the library which

are invisible to regular users. Other proposals of executing libc and system calls in

transactions require some degree of change, in the form of a particular API [22, 97] or

specialized transactional calls [76].

The rest of this chapter is organized as follows. In Section 5.2 we discuss issues that

appear when a transactional application invokes libc functions inside transactions, and we

suggest modi�cations of the application that are necessary for its successful compilation

and execution. Without a TM-aware standard library, transactions that invoke libc

functions have to be serialized, which limits concurrency in transactional applications.

In Section 5.3 we consider general design choices related to: (i) interaction between

lock-based and transactional library code, (ii) standard library adaptation to a TM im-

plementation, and (iii) standard library execution. Moreover, we explain which design

choices are suitable for standard libraries.

In Section 5.4, we detail our experience about integration of diet libc and TM, which

can be applied to other standard libraries and software in general. We introduce an

extension to the existing TM con�ict detection mechanism. It is a new technique to

detect con�icts that cannot be detected automatically by TM because they modify kernel

space. We also explain how to support transactions with system calls in HyTM [81] and

avoid running them sequentially.

We quantify our e�ort for modifying a lock-based to a transactional standard library

in Section 5.5. In Section 5.6, we explain the limitations of a diet standard library and

existing TM tools, and we propose optimizations for transactional code.

In Section 5.7, we evaluate TM-dietlibc by using a set of benchmarks with �le opera-

tions and memory management functions, and employing software, hardware and hybrid

TM implementations. We show that for short transactions TM-dietlibc is scalable with

a signi�cant speedup for running on 8 cores. In addition, we demonstrate the �rst com-

parison of Intel's RTM implementation1 with other TM implementations.

We conclude this chapter in Section 5.8.

1At time of this work, Haswell processors were still not available.

51



5. INCREASING CONCURRENCY IN A STANDARD LIBRARY INVOKED IN TRANSACTIONS

The ideas from this chapter were published at TRANSACT 20101 and IPDPS 20132.

5.2 Standard Library Function Calls in Transactions

In order to access shared data structures (e.g. a �le bu�er) concurrently in a libc and to

request services of an OS (e.g. to write data to a �le), a transactional application invokes

libc functions inside transactions.

Listing 5.1 shows function write_and_count that should be executed concurrently

by multiple threads. Each thread should perform two actions atomically: write the len

number of characters to a shared �le, and update the counter of the written characters.

1 long count_chars; // global counter of chars written in the file

2

3 size_t fwrite(void* ptr , size_t size , size_t n, FILE *fp);

4

5 size_t write_and_count(void* ptr , size_t size , size_t n, FILE *fp)

6 {

7 size_t len;

8 __transaction_atomic { // start a transaction

9 len = fwrite(ptr , size , n, *fp); // call a libc function

10 count_chars += len; // update the global counter

11 } // commit a transaction

12 return len;

13 }

Listing 5.1: Transactional code with a call of the fwrite libc function.

However, compiling this code with a compiler with TM support (GCC3 4.9) fails with

an error

"unsafe function call `fwrite' within atomic transaction"

1Neboj²a Mileti¢, Vesna Smiljkovi¢, Cristian Perfumo, Tim Harris, Adrián Cristal, Ibrahim Hur,
Osman S. Ünsal and Mateo Valero, Transacti�cation of a Real-world System Library, In the 5th ACM
SIGPLAN Workshop on Transactional Computing (TRANSACT 2010)

2Vesna Smiljkovi¢, Martin Nowack, Neboj²a Mileti¢, Tim Harris, Osman S. Ünsal, Adrián Cristal,
and Mateo Valero, TM-dietlibc: A TM-aware Real-world System Library, In Proceedings of 27th IEEE
International Parallel & Distributed Processing Symposium (IPDPS 2013)

3https://gcc.gnu.org/

52



when the compiler tries to instrument the code inside the transaction.

For the compiler, fwrite is a function of an external library, and without support

for TM in this library, the function is not available for instrumentation. Therefore, we

have to modify the program like in Listing 5.2. We declare fwrite as transaction_pure

(line 3), and call the serialize() function (line 10) to execute the transaction serially.

The transaction_pure attribute indicates GCC that the function does not have side

e�ects and that it is safe to be called inside a transaction without instrumentation. Note

that this does not stand for fwrite, since it accesses the shared �le structure in the libc,

and the shared �le on the disk. However, since we guarantee that this function is always

executed serially, it is safe to declare it as pure.

1 long count_chars; // global counter of written chars in the file

2

3 __attribute__ (( transaction_pure)) // declare as pure

4 size_t fwrite(void* ptr , size_t size , size_t n, FILE *fp);

5

6 size_t write_and_count(void* ptr , size_t size , size_t n, FILE *fp)

7 {

8 size_t len;

9 __transaction_atomic { // start a transaction

10 serialize (); // serialize the transaction

11 len = fwrite(ptr , size , n, *fp); // call a libc function

12 count_chars += len; // update the global counter

13 } // commit the transaction

14 return len;

15 }

Listing 5.2: Transactional code with a call of the fwrite libc function and the

modi�cations needed for successful compilation and correct execution.

In serialize(), a transaction waits for all other running transactions to �nish their

execution, and then it gets restarted and executed as the only running transaction in the

application. Frequent serialization might signi�cantly decrease application performance,

and a standard library compatible with TM could compensate this by reducing the num-

ber of serialized transactions and increasing concurrency in transactional applications.

53



5. INCREASING CONCURRENCY IN A STANDARD LIBRARY INVOKED IN TRANSACTIONS

5.3 Various Standard Library Designs

Developing a TM-aware standard library or changing an existing lock-based one involves

choosing applicable programming models and designs. In this section, we describe di�er-

ent choices related to (i) how to mix locks and transactions, (ii) how to adapt a standard

library to a TM library, and (iii) how to execute standard library code.

5.3.1 Mixing Locks and Transactions

Applications can invoke standard library functions from both transactional and non-

transactional parts, and having lock-based code is still inevitable in some cases. For

example, the functions that are part of TM initialization at application startup have

to remain thread-safe, but should not contain transactions. Therefore, we must handle

any interaction of locks and transactional boundaries as well as any interaction of lock-

protected and TM-protected accesses to the same shared data.

Completely shared data. This programming model requires strong isolation pro-

vided by a TM implementation, which is not the case for most of the implementations in

software. Only with strong isolation, transactional memory accesses are totally synchro-

nized with unprotected memory accesses.

Partially shared data. Dynamic separation [2, 3] is a programming model where a

programmer indicates shared variables that could be accessed inside or outside a trans-

action, and TM provides the necessary synchronization between transactional and non-

transactional accesses.

Completely separated shared data. Some TM implementations require transac-

tional and non-transactional data to be separated. The programming model is called

static separation [4] and the standard library has to contain duplicated data struc-

tures and duplicated code wherever a memory access can be transactional and non-

transactional.

TM-dietlibc design choice: We completely separate shared data protected by locks

and protected by TM in TM-dietlibc. The reasons for avoiding mixing transactional and

lock-protected data and code are the following: (i) breaking the TM isolation rule: a

transaction should not be able to see the intermediate state of another transaction, e.g.

when it directly accesses memory of a lock held by the other transaction, (ii) disabling

54



concurrent execution: if one transaction acquires a lock, all other transactions would have

to wait until the �rst one �nishes, and (iii) causing non-trivial pathological behaviour [96],

e.g. a deadlock. The approach we choose is defensive and safe, and it does not require

strong isolation from a TM implementation.

5.3.2 The Library Adaptation Level

Various TM implementations present a wealth of di�erent features, algorithms and solu-

tions in order to exploit better usability and performance. The level of standard library

adaptation to one speci�c or various TM implementations in�uences its complexity and

portability.

Library adapted to a speci�c TM implementation. A developer of a TM-based

standard library could make design decisions depending on the chosen TM implementa-

tion. As each TM implementation has its policies regarding con�ict detection, validation,

isolation, nesting, etc., adopting a library to one TM implementation increases the per-

formance and decreases the range of TM problems that a developer could face modifying

or developing a standard library.

Library independent of TM implementations. Employing di�erent TM imple-

mentations becomes straightforward with: Intel's ABI [18], the compilers that conform to

this ABI convention, and STM libraries that are compatible with these compilers. How-

ever, a standard library that does not depend on a speci�c TM implementation has to rely

on common TM features which weakens TM optimization and exploitation opportunities.

TM-dietlibc design choice: We adapt TM-dietlibc to be compatible with di�erent TM

implementations [17, 31, 81], all compatible to Intel's ABI [18], with �at nesting and

eager con�ict detection. Flat nesting allows deferring actions from the outer or any inner

transaction until the commit phase of the outer one. Eager con�ict detection provides

the discovery of a con�ict at the moment of a con�icting data access, and immediate

re-execution of the aborted transaction. Relying on these TM features, we enable system

calls to be executed if no con�icts with other transactions occur. For TM with lazy

con�ict detection, transactions with system calls are executed serially.

55



5. INCREASING CONCURRENCY IN A STANDARD LIBRARY INVOKED IN TRANSACTIONS

5.3.3 The Library Execution Mode

To exploit optimistic concurrency that TM provides, the ideal case is when standard

library functions access only local data, or user-space shared data, and can be completely

synchronized by TM. However, more frequent cases are when functions can be only exe-

cuted as transactional with the developer's usage of additional TM mechanisms, or they

have to remain as non-transactional. Therefore, we describe di�erent possibilities to run

standard library functions.

Complete transactional execution. Libc code can be executed transactionally if

it contains only local variables and user-level shared variables.

Transactional execution employing TM techniques. More sophisticated TM

implementations are able to handle non-trivial cases, e.g. to support locking inside trans-

actions.

Transactional execution in a TM-adapted standard library. Library code is

transformed to transactional code, but has to be modi�ed to allow the exploitation of

TM. For instance, a lack of support for locks within transactions requires removing locks

and using another synchronization mechanism whenever needed.

Sequential execution. Transition of a transaction that contains a standard library

call to serial execution ensures safe execution without any libc changes. However, exe-

cuting transactions sequentially hurts parallelism and scalability of programs.

Non-transactional execution within TM integration. A standard library can

be executed non-transactionally, but with a certain adaptation for integration with TM.

For instance, the Intel [18] and DTMC [17] compilers provide deferral and compensation

actions for memory management functions and allow non-transactional execution inside

a transaction.

TM-dietlibc design choice: We use a combination of four design choices: (i) complete

transactional execution is possible when there are no system calls during the execution,

(ii) transactional execution employing TM techniques is preferable when some system

calls occur, and we employ abort and commit handlers provided by TM, (iii) transactional

execution in a TM-adapted standard library is for the cases when we apply the con�ict

detection extension implemented in TM-dietlibc, and (iv) sequential execution for the

system calls where we cannot employ an abort or a commit handler.

TM-dietlibc provides transactional execution of its functions, relying on the TM im-

56



plementation to handle only trivial data sharing. For nontrivial cases, we (i) employ abort

handlers for compensation and commit handlers for deferral; (ii) apply con�ict detection

extensions, and (iii) infrequently transit to serial execution. The library execution mode

is detailed in the next section.

5.4 The Transacti�cation of Diet Libc - Implementa-

tion Experience

In this section, we present details on how we modi�ed the lock-based diet libc in order

to integrate it with TM. Some of the modi�cations are simple; however, the majority

required signi�cant e�ort to: (i) identify groups of locks which are used to protect access

to shared data structures, (ii) replace them with transaction boundaries, (iii) use TM

techniques in the appropriate way for standard library functions, (iv) implement and

apply a TM con�ict detection extension, and (v) support hybrid TM.

The experience we gained during the transacti�cation1 can be used for other standard

libraries, irrespective of them being �diet� or not, e.g. glibc2, EGLIBC3 and uClibc4, or

for writing a TM-aware standard library from scratch. We assume that standard library

developers would face many challenges we faced during the transacti�cation of diet libc.

5.4.1 Identifying Groups of Locks

A standard library contains various synchronization primitives to control accesses to its

critical sections. The �rst challenge is identifying di�erent groups of locks and choosing

groups that are in our area of interest. Since we do not want interaction between locks

and transactions, all locks and locking operations from a chosen group should be replaced

with appropriate TM support.

57



5. INCREASING CONCURRENCY IN A STANDARD LIBRARY INVOKED IN TRANSACTIONS

(a) glibc/EGLIBC (b) uClibc

(c) diet libc (d) TM-dietlibc

Figure 5.1: Lock-based implementations of fgetc for di�erent standard libraries (a), (b), (c) and the
transactional counterpart (d). Locking operations in diet libc are replaced with transactional boundaries
__transaction_atomic{}.

5.4.2 De�ning Critical Section Boundaries

De�ning critical section boundaries is trivial when it is easy to recognize locking opera-

tions and localize them in one function. In other cases, the operations might be missing,

hidden behind macros, or operations for acquiring and releasing the same lock might be

located in multiple �les.

Simple lock-operation pairing. De�ning critical section boundaries is straight-

forward when the functions lock and unlock are paired up and located inside a single

1also called transactionalization in Ruan et al. [84]
2http://gnu.org/software/libc/
3http://eglibc.org/
4http://uclibc.org/

58



function (shown in Figure 5.1 for di�erent standard libraries (a), (b), (c)). This way, they

can be easily replaced with the boundaries of a transaction (Figure 5.1(d)).

Locking operations missing. Some of the library functions in the original lock-

based implementation are left to be unsafe on purpose, i.e. declared to be a weak alias

for a non thread-safe version. Since the thread-safe implementation of these functions

exists in other standard libraries, we wrap them with transactional boundaries to make

them thread-safe.

Locking operations of lexically unstructured critical sections. The examples

we encounter in diet libc are: (i) when lock/unlock pairs do not satisfy a TM requirement

of having critical section boundaries in one function scope, and (ii) when the code �ow

can lead from one lock to multiple unlocks, meaning that it is not possible to establish

one-to-one relationships between them. Lexically unstructured critical sections require

manual program-�ow analysis from the starting point of the critical section until all

possible ending points, and gathering the code distributed in di�erent functions into a

single transaction.

However, transactional boundaries are su�cient for TM to provide atomicity and

isolation when a transaction contains only local variables or shared variables at the user

level, which is not a common case for a standard library.

5.4.3 Applying TM Techniques on the Library Functions with

System Calls

Various functions from a standard library make modi�cations in kernel space that TM

cannot track, or they cause side e�ects that TM cannot revert. To illustrate these cases

and our design choices in practice, we use memory management and �le operations.

Memory management functions operate over arrays of pre-allocated memory

chunks, and they invoke a system call mmap only when no free chunks remain in the

chunk array. Similarly, a system call munmap is called only when the size of the memory

ready to be released is greater than the acceptable size of chunks. Compilers with TM

support (DTMC [17] and Intel [18]) wrap original lock-based functions, add additional

structures and use commit and abort handlers.

Since our goal is to ensure concurrent execution of memory management operations,

we do not rely on the compiler's wrappers. Instead, we provide: (i) speculative execution

59



5. INCREASING CONCURRENCY IN A STANDARD LIBRARY INVOKED IN TRANSACTIONS

of these functions, (ii) an abort handler, used for the functions that allocate memory,

and (iii) a commit handler, used for the functions that release memory. The usage of

abort and commit handlers is shown in Figure 5.2(a) and (b). In our implementation,

the handlers are registered only when a system call occurs. In all other cases, the TM

implementation is su�cient to deal with accesses to shared variables in user space.

In addition, as the memory management is a vital part of the TM implementation

itself, e.g. for managing bu�ers for transactional reads and writes, it is necessary to

keep the original lock-based functions and to separate chunk arrays of transactional from

non-transactional usage (libc_chunks and tx_libc_chunks in Figure 5.2).

Although TM-dietlibc provides two di�erent implementations for every memory man-

agement function (malloc and tx_malloc, free and tx_free), applications call only

the original functions no matter if the calls are inside or outside transactions. When

a TM compiler instruments an application, it �nds the calls from inside transactions

and replaces them with their transactional counterparts. Therefore, the API remains

unchanged, and applications do not require any modi�cations.

File operations provide communication between (i) a user and a program and (ii)

a program and an operating system. Many of them have visible and nonreversible side

e�ects; therefore, if they are invoked within a transaction, the transaction has to be

executed serially. In this case, the transaction waits for the other running transactions

to �nish their execution, and then it continues as the only running transaction in the

application. When the serialized transaction commits, other transactions are allowed to

start and they are executed again in parallel.

I/O functions operate over a shared libc structure called FILE. This structure contains

a storage bu�er for parts of a �le, pointers to the next and the last character in the bu�er,

etc. Only in cases when the bu�er is empty, full, or changes need to be applied to disk,

the library calls read, write and lseek to �ll the bu�er, empty the bu�er, and update

the �le position, respectively. Since I/O operations invoke �le changes in the kernel space

occasionally, we allow late serialization, i.e. a transaction executes concurrently until

a system call occurs and only then the TM library changes the execution mode of the

transaction � from parallel to serial (illustrated with an update to disk in Figure 5.3).

60



(a) Lock-based (left) and TM-based (right) implementations of malloc

(b) Lock-based (left) and TM-based (right) implementations of free

Figure 5.2: Examples of lock-based (left) and TM-based (right) libc functions for memory allocation:
(a) malloc with the abort handler and the distinct structure for transactional access to provide static
separation, (b) free with the commit handler and the same structure as in malloc.

61



5. INCREASING CONCURRENCY IN A STANDARD LIBRARY INVOKED IN TRANSACTIONS

Figure 5.3: Examples of lock-based (left) and TM-based (right) function fwrite. TM-based fwrite

employs the late serialization, i.e. executing serially only if a system call is invoked.

5.4.4 The Con�ict-Detection Extension

The mechanisms explained so far are su�cient for integrating any code with TM. However,

executing serial transactions impacts parallelism, and threads spend most of the time

waiting for a serialized transaction to �nish execution and commit changes. One of

the examples when TM should run a transaction serially is when the transaction causes

side e�ects in kernel space. Kernel space is out of the scope of TM; therefore, TM

cannot observe changes the transaction makes and cannot detect con�icts with other

transactions.

In order to reduce the number of serial transactions running in an application, we

propose an extension for the TM con�ict detection mechanism. The extension ensures

that: (i) transactions run concurrently, (ii) TM keeps track of updates of data structures

in kernel space, and (iii) TM detects con�icting accesses to these structures.

Our proposal creates and maintains copies of the relevant shared data from kernel

space that are accessed inside transactions. These copies reside in user space and they

are under complete control of a programmer and the TM library. The standard library

programmer is responsible for making a copy of the data and for keeping the copy updated

62



according to the always up-to-date kernel data. Based on the copy, the TM library can

detect con�icts and invoke abort handlers to revert the state of kernel space in case the

transaction aborts.

We illustrate our approach using the fseek function. Figure 5.4(a) shows the original

(lock-based) implementation of the function, and Figure 5.4(b) the TM-based implemen-

tation with the extension for the con�ict detection. Since the lseek system call changes

the �le pointer in kernel space, a standard library programmer has to make a copy of

the �le pointer in user space and to keep the copy updated. In our example the copied

variable is OS_fpos, and it is a part of the FILE structure in TM-dietlibc. With the

shared variable stored in user space, a TM library is able to detect con�icting memory

accesses.

In order to detect a con�ict before invoking the lseek system call, the transaction

tries to acquire a writing lock for the update of OS_fpos1. If another thread holds the

lock, TM detects the con�ict before the system call, aborts the transaction and rolls back

returning the old values of the shared variables. On the other hand, if an abort happens

after lseek, TM calls the undo function which invokes a call of lseek with the earlier

stored �le position value. Whenever the abort occurs, the states of user and kernel space

are rolled back to how they were before the transaction started its execution.

5.4.5 The System-Call Barrier in HyTM

The di�erent approaches detailed in the previous sections allow concurrent multithreaded

executions of transactions with system calls inside of software transactions. However, TM

using hardware support does not allow system calls inside a running hardware transaction;

therefore, it aborts the transaction and re-execute it serially.

To increase the possibility of the parallel execution of transactions with system calls,

we propose a safe-syscall execution mode. Before each system call in a transaction, we put

a go_safe_syscall barrier (Figure 5.4(c)), which noti�es HTM about an upcoming system

call. HTM aborts and re-executes the transaction using software fall back solutions, thus

it increases the number of software and hardware transactions that run in parallel.

1In eager implementations of STMs a transaction acquires a lock to update a shared variable, and
all the locks acquired during execution of the transactions are released at commit or abort.

63



5. INCREASING CONCURRENCY IN A STANDARD LIBRARY INVOKED IN TRANSACTIONS

(a) Lock-based fseek

(b) Con�ict detection for STM. (c) Con�ict detection for HyTM.

Figure 5.4: Examples of the fseek implementation (a) lock-based, (b) TM-based for running with STM,
and (c) TM-based for running with HyTM. The variable OS_fpos, re�ecting the current position in a
�le stored in kernel space, is used for detecting con�icts in user space. In addition for HyTM (c), a
go_safe_syscall barrier aborts a hardware transaction and re-execute it concurrently in software.

64



5.5 Quantifying Software Development E�ort

The signi�cance of the e�ort needed in modifying diet libc is in its integration in a

complex TM implementation. Each TM principle implemented in the standard library

or used as an existing TM tool was the result of a time-consuming investigation, rather

than complex code writing. We present quanti�ed e�ort in terms of code modi�cations,

transactions complexity and consumed time.

The number of lines of code (LoC) of C and Assembly in diet libc implementations is:

64k LoC for the original diet libc (version 0.33) and 71k LoC for TM-dietlibc. Therefore,

7k lines of code were added for the transactional version of dietlibc. As an example of

modi�cations, the �le operations in the original diet libc contain 20 critical sections. In

comparison, 25 transactions were inserted into TM-dietlibc. The di�erence arises from

the fact that we modi�ed original unsafe functions to use transactions, as well (described

in Section 5.4.2).

The type and the length of transactions depend on di�erent code �ows. For example,

if an fputc operation is invoked, the character might �t into the internal bu�er leading

to the selection of a very short transactional code path with less than 10 lines of code

of interest (LoCI)1. Otherwise, write and seek operations occur leading to longer and

more complex paths, with almost 100 LoCI.

We developed TM-dietlibc during a three-year period. At the beginning, appropriate

TM tools and TM benchmarks were not mature and needed to include support for building

a TM-aware standard library.

5.6 Limitations of a �Diet� Standard Library and TM

Tools

Choosing a standard library with a small software footprint can make applying changes

and new designs easier and time-saving. A developer deals with fewer and less complex

structures and functions. On the other hand, the �diet� library presents additional ob-

stacles, e.g. missing function implementations, missing thread local storage support, a

small initial stack size, etc. Although the problems might sound trivial, without being

1The code of interest is the instrumented and executed code.

65



5. INCREASING CONCURRENCY IN A STANDARD LIBRARY INVOKED IN TRANSACTIONS

(a) Original lock-based fgets (b) Optimized TM-based fgets

Figure 5.5: An optimization of fgets using local variables to avoid additional, unneeded transactional
accesses that might cause con�icts among threads.

aware of them, the behaviour of some benchmarks was unpredictable and unclear.

The implementations of some libc functions are not well suited for optimistic TM

concurrency, and cause an in�uential contention on shared resources. For instance, func-

tion fgets reads a string from a �le. First, it prefetches and �lls a shared bu�er with a

part of the �le, and then reads characters - one by one - from the bu�er, and increments

a shared bu�er pointer for each character. As a result, reading more characters makes

the transaction longer, the number of transactional memory accesses larger, and con�ict-

ing situations more likely. Our optimization consists of reading as many characters as

possible and using local instead of shared variables for intermediate values (Figure 5.5).

This way, we reduce the number of instrumented memory accesses and lower the running

overhead.

Finally, the lack of debugging and pro�ling tools for various TM libraries at the

66



time when we were transactifying the standard library made testing, debugging and

performance tuning substantially di�cult and time-consuming. Even general-purpose

debuggers like gdb1 were not able to debug an application if it invoked diet libc.

Furthermore, TM libraries and TM compilers were developed for the application us-

age, rather than for the usage of standard libraries, and many modi�cations were needed

to ensure a TM-aware standard library to be successfully built. For successful compila-

tion and execution of benchmarks invoking TM-dietlibc, the modi�cations were applied

in the standard library, the compiler and the TM library.

5.7 Evaluation

We evaluate TM-dietlibc with three types of benchmarks: (i) microbenchmarks with

I/O operations, (ii) TioBench [95] with I/O operations, and (iii) Red-black tree [32] with

memory management functions, all running on 2 Intel Xeon E5405 processors with 8 cores

in total. To verify the the correctness of the TM-dietlibc implementation, we compared

executions of tests linked against TM-dietlibc with executions of tests with the same

input parameters, but linked against glibc2.

Details about the experimental setup are given in Chapter 3.

5.7.1 Methodology

The microbenchmarks we implemented for evaluation of TM-dietlibc invoke �le opera-

tions: fgetc, fgets, fread, fputc, fputs, and fwrite inside transactions, and calcula-

tions on thread-local variables outside transactions. Multiple threads access a single �le

using a shared �le descriptor and its associated FILE structure.

TioBench performs fopen, fclose, fseek, fread, and fwrite to write data to and

read data from a shared �le sequentially or randomly (seq write, rnd write, seq read, rnd

read).

Red-black tree performs read, write and removal operations over the elements of a

balanced tree structure. It invokes memory management functions malloc and free

inside transactions when creating and removing nodes, respectively.

1http://www.gnu.org/software/gdb/
2http://gnu.org/software/libc/

67



5. INCREASING CONCURRENCY IN A STANDARD LIBRARY INVOKED IN TRANSACTIONS

For evaluation with the microbenchmark and Red-black tree, we compiled TM-dietlibc

and the benchmarks with DTMC [17], and for evaluation with TioBench, we compiled

TM-dietlibc and the benchmark with GCC1, version 4.9.

We run the microbenchmarks linked against STM, HTM, and HyTM implementations,

and TioBench and Red-black tree exclusively with the STM implementation. The STM

implementation is TinySTM [31], the HTM is the Advanced Synchronization Facility

(ASF) extension [17] from AMD, and the HyTM library is HyLSA [81]. The executions

involving HTM and HyTM were conducted using a nearly cycle-accurate CPU simulator

PTLsim [105] with the ASF extension.

In addition, we emulated the Intel Haswell processor [79] to employ Restricted Trans-

actional Memory (RTM) and to compare it with other TM implementations.

The simulations were performed on the same machine as the other experiments for

evaluation of TM-dietlibc.

Without TM support in a standard library, a programmer would have to modify an

application to switch to serial execution before calling library functions inside transac-

tions (see Section 5.2 for details). To compare our implementation with this approach,

we compiled two versions of our TM-aware library: (i) transactional employing various

TM implementations (TinySTM, HyLSA, ASF, and RTM), and (ii) transactional with

switching to serial execution at the beginning of a transaction (Serial-TM), which is the

only option without proper TM support in a standard library,.

5.7.2 Results

In Figure 5.6, we show that for the microbenchmarks with short transactions (reading or

writing a single character per transaction), transactional versions perform better than the

serial version (Serial-TM) on average. In comparison to Serial-TM, TM-dietlibc provides

on average 2.9x (TinySTM ), 4.1x (ASF ), and 4.2x (RTM ) performance speedup for 8

running threads. However, HyLSA does not perform as well as STM and HTMs. Due

to many aborts, transactions have to be restarted in software-transactional mode. This

slows down the execution on average 1.04x in comparison to Serial-TM execution for 8

running threads.

TioBench running I/O operations with larger transactions (reading or writing 8 char-

1https://gcc.gnu.org/

68



Figure 5.6: Evaluation of �le operations executed by 1, 2, 4 and 8 threads, with various TM implemen-
tations and normalized to a lock-based single-threaded execution. We show speedup (higher is better).

69



5. INCREASING CONCURRENCY IN A STANDARD LIBRARY INVOKED IN TRANSACTIONS

Figure 5.7: Evaluation of TioBench by 1, 2, 4 and 8 threads, with locks, Serial-TM, and TinySTM, all
normalized to the lock-based single-threaded execution. We show slowdown (lower is better).

acters per transactions) do not scale, although running concurrently with 8 threads and

with TinySTM is 1.5x faster than running serially (Serial-TM) (Figure 5.7)1.

Increasing the number of characters in the microbenchmarks and TioBench decreases

performance due to frequent con�icts among threads, so that the benchmarks neither

scale nor are faster than serial transactional execution.

To evaluate memory management functions, we use Red-black tree. We varied the

ratio of reads to other operations (25%, 50% and 75%), and ran the benchmark with the

original implementation (original), and with TM-dietlibc running transactions serially

(Serial-TM ) and in parallel (TinySTM ) (Figure 5.8)2.

With fewer reads, the benchmark performs more writes and removals, which requires

memory allocation and deallocation. Therefore, general performance is lower in compari-

son to more read-dominated executions. However, the di�erences in performance between

the transactional and serial versions are larger for the benchmarks with many memory

operations. On average, performing memory operations concurrently with TinySTM and

8 running threads is 1.7x faster than serial transactional execution.

For the evaluation of TM-dietlibc we are not able to use any other transactional

1The evaluation was extended by this benchmark at the time of writing this dissertation, and since
we had di�culties to rebuild the evaluation environment, we omit the evaluation with HyLSA, ASF, and
RTM.

2The original benchmark is 32-bit, which does not permit us to use the simulator and employ HyLSA,
ASF, or RTM.

70



 0

 1

 2

 3

 4

 5

 6

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

S
p

e
e

d
u

p

 

original
serial TM
TinySTM

mean75% read50% read25% read

Figure 5.8: Evaluation of Red-black tree by 1, 2, 4 and 8 threads, with locks, Serial-TM, and TinySTM,
all normalized to the original single-threaded execution. We show speedup (higher is better).

benchmarks since they are either without standard library calls (STAMP [65] and Eigen-

bench [46]) or they postpone these calls until non-transactional code (Atomic Quake [106]

and Memcached [84]).

5.8 Summary

In this chapter, we presented the �rst real-world TM-aware standard C library implemen-

tation with the unmodi�ed API. We described various design choices for integrating a

standard library, or any other software, with TM and the design choices most suitable for

diet libc. We proposed static separation of locks and transactions as a safe way to handle

the interaction of these two di�erent synchronization concepts. We discussed handling

system calls inside transactions and revealed a pitfall in detecting kernel space con�icts

that would require many transactions to be serialized. To solve this, we proposed a tech-

nique that enables detection of such con�icts in the scope of the standard library, rather

than involving complex kernel modi�cations.

We provided the �rst comparison of emulated RTM with other TM implementations.

Our results for memory management and �le operations showed that, for the benchmarks

with short transactions and various TM implementations, TM-dietlibc performs better

than TM-based serialized execution, which is the only option for invoking a standard

library without support for TM.

71



5. INCREASING CONCURRENCY IN A STANDARD LIBRARY INVOKED IN TRANSACTIONS

The e�ort we put into diet libc to integrate it with a TM system (a compiler with TM

support and various TM implementations) and the experience we gained while transac-

tifying this library showed that even a �diet� standard library is complex software. As a

consequence, applications are even more di�cult to develop, test and debug when they

invoke standard library functions.

72



6
Deterministic Execution in a Standard

Library

6.1 Introduction

In the previous chapter we introduced TM-dietlibc, the �rst TM-aware standard library

that applies multiple techniques to allow transactions with standard library functions

to be executed concurrently. TM-dietlibc helps TM to track accesses to shared data

structures in the standard library and the kernel, but some changes cannot be postponed

or reverted; therefore, transactions that invoke system calls like write still have to be

serialized so that TM can guarantee atomicity and isolation of these transactions.

Before a transaction is serialized, it waits for all other transactions to �nish their

execution (either to commit their changes, or to discard them), and then it is re-executed

as the only running transaction in the application. However, if running deterministically,

while a transaction is waiting for other transactions to �nish their execution, the other

transactions might be waiting for their turn to be able to commit in deterministic order.

73



6. DETERMINISTIC EXECUTION IN A STANDARD LIBRARY

When the deterministic system and TM try to enforce di�erent orders of transactions

committing their changes, or di�erent orders of threads execution in general, they are

prone to deadlocks.

In this chapter we present DeTrans-lib, a TM-based standard C library that ensures

deterministic multithreading at application and standard-library level. It is based on a

runtime (DeTrans) that provides deterministic execution even in the presence of data

races, and a TM-aware libc (TM-dietlibc) that allows transactions to execute libc func-

tions concurrently, and serializes them only if a libc function invokes a system call with

no-reversible side e�ects. In addition, DeTrans-lib ensures that transactions invoke system

calls in deterministic order, which prevents deadlocks caused by serialization of transac-

tions in deterministic execution.

The rest of this chapter is organized as follows. In Section 6.2. we show an example

of a transaction in TM-dietlibc that has to be serialized in case it invokes a system call,

and we explain why a deterministic system has to provide support for serialization due

to system calls.

In Section 6.3 we describe the DeTrans-lib design. We port the DeTrans determin-

istic system in TM-dietlibc to ensure deterministic multithreading at application and

standard-library level. DeTrans-lib ensures that threads invoke system calls in determin-

istic order, and it avoids deadlocks caused by busy-waiting in serialization (enforced by

a TM library due to system calls) and busy-waiting in deterministic execution (enforced

by DeTrans).

DeTrans-lib is evaluated in Section 6.4. We verify the correctness of the DeTrans-

lib implementation by using stress test Racey [45, 103]. For the evaluation, we use

benchmarks that invoke libc I/O calls: microbenchmarks and modi�ed TioBench [95].

For the microbenchmarks and TioBench invoking DeTrans-lib, the maximum average

slowdown in comparison to original (nondeterministic) single-threaded execution is 4.53x

and 2.29x, respectively, for 8 running threads.

We conclude this chapter in Section 6.5.

This chapter present the ideas published at NPC 2015 and IJPP 20151.

1Vesna Smiljkovi¢, Osman S. Ünsal, Adrián Cristal, and Mateo Valero, Determinism at Standard-
Library Level in TM-Based Applications, In Proceedings of the 12th Annual IFIP International Confer-
ence on Network and Parallel Computing (NPC 2015), and International Journal of Parallel Programming
(IJPP 2015), special edition for NPC.

74



6.2 Standard-Library Calls in Deterministic Execution

In order to access shared data structures (e.g. a �le bu�er) in a libc and to request

services of an OS (e.g. to write data to a �le), a transactional application might invoke

libc functions inside transactions.

Listing 6.1 (similar to Listing 5.2) shows function write_and_count, where a thread

performs two actions atomically. It writes the len number of characters to a shared �le

and updates the counter of the written characters.

If this code invokes a standard library without TM support, fwrite is declared as

transaction_pure (line 4), and the transaction has to be serialized (line 13). On the

other hand, TM support in TM-dietlibc (see Chapter 5) allows threads to concurrently

execute transactions with standard library function calls and serializes only the trans-

actions with non-reversible side e�ects, e.g. when system call write() is invoked (see

Section 5.4.3 for details).

Serialization, implemented in a STM library (Listing 6.2), requires that the trans-

action that has to be serialized waits for all other running transactions to �nish their

execution (line 5), so that it gets restarted and executed as the only running transaction

in the application. If an application is running deterministically, the serialization might

enforce the order of threads execution that is di�erent from the one enforced by a system

for deterministic multithreading, causing a deadlock.

As explained in the previous chapter, DeTrans is a runtime system that ensures deter-

ministic multithreading in transactional applications. It implements the double-barrier

technique and deterministic-token passing (Figure 6.1(a)). In Figure 6.1(b) we show how

application threads cannot make any progress if a thread (Thread1) waits in the serial-

ization due to a libc function call while holding the deterministic token, and the other

threads (Thread2 and Thread3) wait for Thread1 to commit its transaction and pass the

token.

As a consequence, an application running deterministically might be prone to a dead-

lock caused by busy-waiting in transaction serialization (Listing 6.2 line 5), and a de-

terministic system has to be aware of synchronizations that are necessary to invoke libc

functions inside transactions in applications.

75



6. DETERMINISTIC EXECUTION IN A STANDARD LIBRARY

1 long count_chars; // global counter of written chars in the file

2

3 #ifndef TM_SUPPORT // if libc doesn't support TM

4 __attribute__ (( transaction_pure)) // declare as pure

5 size_t fwrite(void* ptr , size_t size , size_t n, FILE *fp);

6 #endif

7

8 size_t write_and_count(void* ptr , size_t size , size_t n, FILE *fp)

9 {

10 size_t len;

11 __transaction_atomic { // start a transaction

12 #ifndef TM_SUPPORT // if libc doesn't support TM

13 serialize (); // serialize the transaction

14 #endif

15 len = fwrite(ptr , size , n, *fp); // call a libc function

16 count_chars += len; // update the global counter

17 } // commit the transaction

18 return len;

19 }

Listing 6.1: An example of transactional code that has to be serialized if the code

invokes a standard library without support for TM (when macro TM_SUPPORT is

unde�ned) or can be executed concurrently if the code invokes TM-dietlibc (when

macro TM_SUPPORT is de�ned)a.

2Note that TM-dietlibc does not require modi�cations of transactional applications, and macro
TM_SUPPORT is added in this example only for comparison of code that invokes a standard libraries
with and without TM support.

76



(a) The double-barrier technique and deterministic-token passing.

(b) Deterministic execution when a transaction invokes a system call.

Figure 6.1: (a) DeTrans implements the double-barrier technique and passes the deterministic token
in round-robin order to ensure deterministic execution. (b) Serialization in a STM library is prone to
deadlock when running deterministically.

1 void serialize ()

2 {

3 if(this ->tx ->isSerialized) // check if the transaction

// is already serialized

4 return;

5 while (others.areExecuting ()){} // wait for others to finish

6 this ->tx ->isSerialized = 1;

7 restart (); // restart the transaction

8 return;

9 }

Listing 6.2: Serialization in a STM library.

77



6. DETERMINISTIC EXECUTION IN A STANDARD LIBRARY

6.3 Design of DeTrans-lib

In this chapter, we propose DeTrans-lib, the �rst TM-aware libc that provides deter-

ministic execution of transactional applications. For this, we needed to port determin-

istic system DeTrans, which guarantees deterministic execution at application level, in

TM-dietlibc to provide determinism at libc level1. In addition, DeTrans-lib guarantees

deterministic execution of libc functions and system calls, and avoids deadlocks caused

by serialization in TM.

We ported DeTrans by copying and adjusting structures and functions from the De-

Trans wrappers to TM-dietlibc. We modi�ed pthread_* functions directly and added

additional functions that are called before and after _ITM_* functions in the STM library.

This way, the implementation remains in TM-dietibc and does not require modi�cations

of benchmarks.

DeTrans-lib guarantees strong determinism by executing non-transactional code seri-

ally in round-robin order, and transactions in parallel committing them in also round-

robin order. In addition, it wraps the function for transaction serialization implemented

in a TM library (Listing 6.3), and ensures that only the transaction executed by the

thread that holds the deterministic token (the token owner) can invoke a system call

(line 3). When the thread gets the token, it kills other running transactions (line 4), so

there are no other running transactions to wait for, which was the original implementation

and a cause of deadlock.

1 int __wrap_serialized ()

2 {

3 while (this != token.owner) {} // wait for the token

4 kill(others); // kill other transactions

5 return serialized ();

6 }

Listing 6.3: Serialization in DeTrans-lib

Figure 6.2 shows examples of threads invoking libc function calls within transactions

while running deterministically with DeTrans-lib.

1Due to the limitations in compilation of TM-dietlibc, we were not able to simply preload DeTrans
while invoking TM-dietlibc. Instead, we had to integrate DeTrans into TM-dietlibc.

78



(a) The token owner invokes a libc function call.

(b) A non-token owner invokes a libc function call.

Figure 6.2: DeTrans-lib invoking system calls in deterministic order.

In Figure 6.2(a) the token-owner thread (Thread1) kills other transactions due to

the libc function call, restarts its transaction as the only running transaction in the

application, passes the deterministic token to the next thread and the other threads

re-execute their transactions in parallel.

In Figure 6.2(b) one of the threads that is not the token owner (Thread2) waits for the

deterministic token to be serialized due to the libc function call, kills the only remaining

running transaction (executed by Thread3) and restarts its transaction. After the serial

execution, the remaining transaction can be executed.

Bst1 and Bst2 are the barriers that separate a serialized transaction from the Txn

Phase. For one round of token passing, from 0 to N transactions can be serialized, where

N is the number of running threads in the round.

With DeTrans-lib, any thread can invoke a libc function. However, since transactions

have to be serialized, the order of serialization and libc functions invocation is repeatable

and deterministic in every execution of an application.

79



6. DETERMINISTIC EXECUTION IN A STANDARD LIBRARY

6.4 Evaluation

We evaluate DeTrans-lib with the benchmarks that call libc I/O functions, using 2 Intel

Xeon E5405 processors with 4 cores (8 cores in total). We compiled the benchmarks with

GCC1 4.9 and linked them against TinySTM [31] 1.0.5. We veri�ed the correctness of the

DeTrans-lib implementation by using the Racey [45, 103] stress test. Chapter 3 describes

the experimental setup in detail.

6.4.1 Methodology

For evaluation, we use microbenchmarks and TioBench [95], where transactions perform

I/O on a single shared �le and occasionally have to be serialized due to system calls.

The microbenchmarks perform (i) I/O functions fgetc, fgets, fread, fputc, and fputs

within transactions, and (ii) calculations on thread-local variables out of transactions.

TioBench performs I/O to write data to and read data from a shared �le sequentially or

randomly (seq write, rnd write, seq read, rnd read).

For showing the bene�t of TM-dietlibc when the benchmarks run deterministically, we

implemented DeTrans-serial, the extended DeTrans implementation that supports seri-

alization of transactions (like DeTrans-lib), and serializes all the transactions that invoke

standard library functions (unlike DeTrans-lib). This way, we can show the performance

improvement in DeTrans-lib that comes from concurrent execution of standard library

functions in TM-dietlibc.

We ran the benchmarks multiple times with 1, 2, 4, and 8 threads, and calculated

the geometric mean of the slowdown of deterministic executions (DeTrans-serial and

DeTrans-lib) in comparison to the original (nondeterministic) single-threaded execution

invoking TM-dietlibc (original).

6.4.2 Results

Figure 6.3 shows the performance of the microbenchmarks and TioBench.

DeTrans-serial and DeTrans-lib behave similarly and have the same source of overhead

as DeTrans � waiting on barriers for the deterministic token.

1https://gcc.gnu.org/

80



(a) Microbenchmarks

(b) TioBench

Figure 6.3: The slowdown of deterministic execution of the benchmarks.

Since the microbenchmarks spend most of the execution time out of transactions, and

that is the part that DeTrans-lib (as well as DeTrans-serial) executes serially (the non-

transactional phase in the double-barrier technique), on average DeTrans-lib slows down

the nondeterministic single-threaded execution by 1.12x, 1.62x, 1.94x, and 4.53x for 1,

2, 4, and 8 threads, respectively. However, DeTrans-lib reduces the number of serialized

transactions by 99.95% for all the threads and speeds up DeTrans-serial by 1.21x, 1.68x

and 2.01x for 2, 4, and 8 threads, respectively.

On the other hand, TioBench spends most of the execution time inside transactions,

and that is the part that DeTrans-lib executes in parallel (the transactional phase in the

double-barrier technique), DeTrans-lib has low overhead and on average slows down the

nondeterministic single-threaded execution by 0.99x, 1.14x, 1.39x, and 2.29x for 1, 2, 4,

and 8 threads, respectively. The number of serialized transactions is reduced in Detrans-

lib by 41.97%, 51.38%, 56.09%, and 58.44% for 1, 2, 4, and 8 threads, respectively. The

average speedup of DeTrans-lib in comparison to DeTrans-serial is 1.08x and 1.34x for 4

and 8 threads, respectively.

81



6. DETERMINISTIC EXECUTION IN A STANDARD LIBRARY

In summary of the evaluation, the overhead of the DeTrans-lib depends on the bench-

mark implementation. First, if threads perform time-intensive operations outside trans-

actions, which is the code that the extensions execute serially, then the overhead of

deterministic execution is high. Second, if a benchmark spends most of the execution

time within transactions, which is the code that the extensions execute in parallel, then

the performance is closer to the performance of the original execution.

6.5 Summary

In this chapter, we presented DeTrans-lib � the �rst libc that provides deterministic exe-

cution of transactional applications at application and standard-library level. Since libc

functions invoke system calls occasionally and transactions that invoke system calls have

to be serialized, DeTrans-lib reduces the number of serialized transactions and prevents

deadlocks caused by busy-waiting in serialization (enforced by the TM library) and busy-

waiting in deterministic execution (enforced by DeTrans), and ensures deterministic order

of libc functions calls.

82



7
Support for Ad Hoc Synchronization in

Deterministic Execution

7.1 Introduction

In the previous chapters we extended the applicability of deterministic multithreading by

providing support for transactions, standard library functions and system calls. However,

deterministic multithreading can be applied only for the applications that use explicit

synchronization operations (lock/unlock, condition wait/broadcast/signal, barrier wait,

and transaction start/commit). If an application, or an external library loaded by the

application, accesses shared memory directly to synchronize threads, this is called ad hoc

synchronization.

Programmers implement ad hoc synchronization as loops (sync loops) with busy wait-

ing on shared variables (sync variables) and use them to ensure the order of threads

execution and the order of their accesses to shared memory. Sync loops are hard to

distinguish from computation loops, and researchers have proposed static and dynamic

83



7. SUPPORT FOR AD HOC SYNCHRONIZATION IN DETERMINISTIC EXECUTION

techniques for their detection [48, 91, 102].

Ad hoc synchronization can be used in applications (e.g. in TioBench, where we

avoided ad hoc synchronization by replacing it with a standard barrier, see Section 3.3)

or in external libraries loaded by applications (e.g. in the STM library, where we han-

dled ad hoc synchronization by providing support for serialization of transactions, see

Section 6.2). In both cases applications might be deadlock prone when running deter-

ministically; therefore, ad hoc synchronization detection should be integrated into the

systems for deterministic multithreading.

In this chapter we propose DeTrans-adhoc, a standard library that ensures deter-

ministic multithreading in transactional applications and provides support for ad hoc

synchronization. DeTran-adhoc identi�es sync loops and changes the order of threads

execution to guarantee their progress.

The rest of this chapter is organized as follows. In Section 7.2 we illustrate the

behaviour of an application with ad hoc synchronization running deterministically and

discuss our motivation for implementing a deterministic system with support for ad hoc

synchronization. In Section 7.3 we explain the design of DeTrans-adhoc. We use hardware

performance counters (registers in the modern processors) to detect loops that contain

few instructions and iterate many times, which are usually sync loops. When DeTrans-

adhoc detects a sync loop, it changes the order of threads execution, so that another

thread can update the sync variable needed to exit the sync loop.

In Section 7.4, we evaluate DeTrans-adhoc with TioBench [95] and Fluidanimate

from the PARSEC [12] benchmark suite and show that DeTrans-adhoc detects sync

loops successfully, and with low runtime overhead in case of occasional synchronization

of threads. We conclude this chapter in Section 7.5.

7.2 Motivation

Figure 7.1 shows a common example of ad hoc synchronization used in applications. The

shared variable start synchronizes two threads, so that the initialization of counter in

foo2() happens before its incrementation in foo1(), and that the threads continue with

their execution in parallel.

However, when this code is running deterministically, a deadlock might occur as a

consequence of two characteristics of deterministic multithreading.

84



Figure 7.1: A common example of ad hoc synchronization.

First, some of the systems for deterministic multithreading (e.g. DeTrans, see Chap-

ter 4) serialize the code that programmers write as parallel. In serialized execution,

threads are executed in statically-de�ned order (e.g. round-robin) and one at a time.

This means that Thread2 can start the execution of foo2() only after Thread1 �nishes

the execution of foo1(), which does not happen due to the busy-waiting loop in foo1().

As a result, the program never �nishes its execution.

Second, some of the systems for deterministic multithreading (e.g. Dthreads [54])

postpone writes to shared memory by working on local copies �rst, and then updating

shared memory at synchronization operations in round-robin order. If our example is

executed deterministically and threads postpone updates to shared memory until they

exit, then Thread1 waits for start to be updated, Thread2 updates only its local copy

of start and waits for its turn to update shared memory, and the program also never

�nishes its execution.

To prevent this, we propose support for ad hoc synchronization in a system for deter-

ministic multithreading.

7.3 Design

In this section we introduce DeTrans-adhoc, a standard library that provides deterministic

execution of transactional applications and supports ad hoc synchronization in the code

of applications and external libraries. DeTrans-adhoc identi�es sync loops at runtime

and changes the order of threads execution to guarantee their progress.

85



7. SUPPORT FOR AD HOC SYNCHRONIZATION IN DETERMINISTIC EXECUTION

DeTrans-adhoc is extended DeTrans-lib (see Chapter 6 for details), and its imple-

mentation is completely in the standard library, as modi�ed pthread_* functions and

additional functions that are called in ITM_* functions in the STM library. It main-

tains two queues to ensure determinism. ready_queue keeps track of threads that are

ready for execution (in the non-transactional part of the execution, where threads are

executed serially), and txn_queue keeps track of threads that are executing their trans-

actions in parallel. The global deterministic token is passed in the round-robin order in

ready_queue to guarantee order of threads execution, and in txn_queue to guarantee

the order of commits of transactions.

7.3.1 Detecting Sync Loops

Programmers implement loops to perform computations (computational loops) or to syn-

chronize threads. A sync loop has the characteristics of a tight loop, since it contains

only a few instructions that are executed in many iterations. Therefore, DeTrans-adhoc

uses performance events to count the number of instructions, to detect sync loops and to

distinguish them from computational loops.

DeTrans-adhoc creates two hardware performance events for each thread: Instructions

Retired and Branch Instructions Retired. Two hardware performance counters � which

are the registers in the modern processors � count these events. The former counts the

number of instructions at retirement, and the latter counts the number of branches at

retirement, which is needed because a loop consists of a branch instruction. The events

are created when threads are created � in the initialization of the program for the main

thread and in pthread_create for worker threads.

After every N1 retired instructions, the counter over�ows and triggers the signal han-

dler in DeTrans-adhoc. The handler reads the values of the counters and calculates their

ratio:

ratio =
number_of_retired_instructions

number_of_retired_branches

If the ratio is less or equal to the previously de�ned threshold, it means that the

thread executes a branch with only a few instructions, and this branch is identi�ed as a

1N is a statically de�ned constant.

86



sync loop. Therefore, the thread passes the deterministic token to the next ready thread

and waits to get the token back to continue its execution. When the token is returned,

the thread resets the counters and returns to its execution of the loop where the counter

of instructions was over�owed. If the condition to exit the loop is still not ful�lled (i.e.

if the sync variable has not been set yet), the thread continues with the execution of the

sync loop until the next over�ow. The whole process (sync loop identi�cation and token

passing) might be repeated multiple times until another thread sets the sync variable,

which causes the exit of the sync loop.

With support for ad hoc synchronization, the threads from the example in Figure 7.1

�nish their execution successfully since Thread1 stops its execution of the sync loop,

passes the deterministic token to Thread2, then Thread2 updates start, exits foo2(),

and passes the token back to Thread1, which also �nishes the execution and exits foo1().

7.3.2 Choosing the Right Threshold

The threshold value is a statically-de�ned constant. If a programmer chooses a too small

value, sync loops might not be detected. On the other hand, if a programmer chooses a

too large value, some computational loops might be falsely detected as sync loops, which

degrades the performance since every time a loop is detected as a sync loop, the thread

stops its execution, passes the deterministic token and waits for the next round to get

the token back and to continue the execution of the loop.

To help a programmer to choose the threshold, we provide an option to enable record-

ing the ratios in the application loops at runtime while the ad hoc support is disabled.

The output of the application is a list of the ratios, and usually the last one is the one from

the sync loop, where program hangs when running deterministically without support for

ad hoc synchronization.

In order to run an application deterministically, a programmer has to link the appli-

cation against DeTrans-adhoc, which was previously build with the chosen threshold and

the ad hoc synchronization support enabled.

This approach can be automated by integrating the dynamic analysis that calculates

ratios into DeTrans-lib.

87



7. SUPPORT FOR AD HOC SYNCHRONIZATION IN DETERMINISTIC EXECUTION

7.3.3 Making Timing Functions Deterministic

To allow one or more threads to perform some work in a given time interval, programmers

use a function that returns a value that depends on the current time (gettimeofday) or a

function that exits after the given time has passed (sleep). These functions are a source of

nondeterminism, and they greatly a�ect debugging of a program since the amount of work

that threads execute with and without a debugger might defer signi�cantly, especially

if the debugger stops the execution of the program while the program is measuring the

time.

To avoid nondeterminism and modi�cations of programs, we implemented determin-

istic versions of functions gettimeofday and sleep.

The �rst time a program calls gettimeofday while running deterministically with

DeTrans-adhoc, the return value is the number of the seconds that passed since the

reference date (1970-01-01 00:00:00 +0000 UTC), which is 0. Every next call of the

function returns the number of the seconds increased by a constant value. As a result,

the number of calls of this function and its result are deterministic and remain the same

in every execution of the program.

We implemented the deterministic version of sleep as a computational loop that it-

erates multiple time while performing several mathematical operations in every iteration.

If the function is called from a sync loop, the computational loop increases the number

of instructions at retirement and might a�ect the sync loop detection. To prevent this,

the performance events are disabled while performing sleep. A simpli�ed alternative is

to have the sleep function with an empty body.

7.3.4 Detecting Deadlocks in Sync Loops

If a program has a deadlock where all running threads busy wait on a sync variable or

multiple sync variables and cannot make any progress in their execution, the program

running deterministically with DeTrans-adhoc cannot avoid this deadlock, and the pro-

gram behaves in the same way as running nondeterministically � it hangs.

To identify this problem, DeTrans-adhoc maintains a queue in the signal handler

� overflow_queue. When the counter over�ows, the handler saves thread's id in

overflow_queue, and removes it when the thread exits the handler. If all the threads

from ready_queue are also in overflow_queue, and txn_queue is empty, it means that

88



all ready threads are in the handler, and none of them is making progress in the execu-

tion. In this case, DeTrans-adhoc prints the order of threads in overflow_queue, which

helps a programmer to debug the program and to know in which order the sync variables

should be provided to solve the deadlock.

7.4 Evaluation

We evaluate DeTrans-adhoc by running TioBench [95] and Fluidanimate from PAR-

SEC [12] on an Intel Xeon E3-1220 processor with 4 cores1. We compiled the benchmarks

with GCC 4.9 and linked them against TinySTM [31] 1.0.5. All the details about the

experimental setup are in Chapter 3.

7.4.1 Methodology

The �rst benchmark we use in evaluation is TioBench, where two sync loops guarantee

that worker threads are synchronized with the main thread before they start performing

I/O operations (Figure 7.2). In the �rst loop, the main thread waits for worker threads

(e.g. Thread1) to be initialized. In the second loop worker threads wait for the main

thread to start executing the I/O operations.

After the synchronization, worker threads write or read data sequentially (seq write,

seq read), or randomly (rnd write, rnd read) inside transactions.

Apart from replacing the system calls with standard library function calls (in order

to evaluate the standard libraries), this benchmark does not require any modi�cations to

run deterministically with DeTrans-adhoc. As shown in the previous section, the timing

functions called from the benchmark (gettimefoday and sleep) are deterministic with

DeTrans-adhoc.

When running deterministically, the main thread detects the �rst sync loop and passes

the deterministic token to the worker thread. The worker thread initializes child_status,

detects its sync loop and passes the token back. The main thread exits the sync loop and

sets start, which is necessary for the worker thread to start performing I/O operations.

1Note that for the performance counters we need a modern architecture; therefore, the machine is
di�erent from the one used in the previous chapters.

89



7. SUPPORT FOR AD HOC SYNCHRONIZATION IN DETERMINISTIC EXECUTION

main

int start;

int child_status;

main()

{

  struct timeval tv1, tv2;

  int done = 0;

  pthread_create( Thread1, start_proc); 

  gettimeofday(&tv1, NULL);

  do 

  {

    if (child_status) {

      done = 1; 

      break;

    }

    sleep(1);

    gettimeofday(&tv2, NULL);

  } while ((tv2.tv_sec - tv1.tv_sec) < 30);

   if (!done) {

      printf("Unable to start Thread1 \n"); 

      exit (-1);

  }

  ...

  start = 1;

  ...

 }

Thread1

start_proc( )

{

  child_status = getpid();

  while (start == 0)

    sleep(0);

  do_IO();

}

sy
nc

 lo
op

 

sy
nc

 lo
op

 

Figure 7.2: Ad hoc sync loops in TioBench.

The second benchmark is Fluidanimate, which simulates an incompressible �uid for

interactive animation purposes. Phases of the simulations are separated by ten barriers,

so that worker threads are always in the same phase. Furthermore, each barrier has

two sub-barriers: one to ensure that worker threads have left the previous barrier, and

another to keep the threads until the last one arrives.

The original implementation of the benchmark is lock-based, which was not possible

to run with other systems for deterministic multithreading (Dthread [54] and Conse-

quence [64]) due to ad hoc synchronization and the limitations of these systems.

We use the TM-based version of the benchmark where the barriers are implemented

90



by using condition variables suitable with TM [29]. Since transactions enclose accesses to

all shared variables, this version of the benchmark does not have ad hoc synchronization.

To evaluate the DeTrans-adhoc implementation, we added one more version of the

barrier by using compare-and-swap instructions to access the current number of threads

at a barrier and by implementing a busy-waiting loop to wait until the last thread ar-

rives. This way, only a deterministic system with the ad hoc synchronization support can

execute this benchmark.

We executed TioBench and Fluidanimate with the threshold for the ratio that was

statically de�ned and remained constant during execution of the benchmarks. The num-

ber of retired instructions when the performance counter over�ows was 100000.

We ran TioBench multiple times with 1, 2, 3, and 4 threads, where each thread read

or wrote 128 characters per transaction. We ran Fluidanimate with 1, 2, and 4 threads

(due to the restriction that the number of threads has to be a power of 2), and with the

maximum input set. We calculated the geometric mean of the slowdown of deterministic

executions in comparison to the original (nondeterministic) single-threaded execution.

7.4.2 Results

In Figure 7.3(a), we compare the overhead in TioBench's execution running nondetermin-

istically and invoking TM-dietlibc (original), deterministically with DeTrans-lib where we

replaced the ad hoc synchronization with a pthread_barrier, and deterministically with

DeTrans-adhoc. The average overhead of DeTrans-adhoc in comparison to DeTrans-lib

is 37.29%, 27.01%, 24.52%, 28.18% for 1, 2, 3, and 4 threads, respectively.

In Figure 7.3(b) we show the slowdown of the benchmark running deterministically

with DeTrans-lib (when the barrier implementation is the original TM-based implemen-

tation) and with DeTrans-adhoc (when the barrier implementation is with compare-and-

swap) in comparison to the original (non-deterministic) single-threaded execution of the

benchmark (original). original-with-cas presents the non-deterministic execution of the

benchmark with the barrier implemented by compare-and-swap instructions and busy

waiting loops.

First, original and original-with-cas perform similarly (the execution times varies in

less than 1% for the same number of threads), which means that we did not improve

nor worsen performance by changing the implementation of the barrier. Second, for four

91



7. SUPPORT FOR AD HOC SYNCHRONIZATION IN DETERMINISTIC EXECUTION

0

1

2

3

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

S
lo

w
d
o
w

n

original
DeTrans-lib

DeTrans-adhoc

meanrnd readseq readrnd writeseq write

(a) TioBench

(b) Fluidanimate

Figure 7.3: The slowdown of the benchmarks running deterministically with DeTrans-adhoc.

running threads DeTrans-lib slows down the single-threaded execution of the benchmark

by 4.71x and DeTrans-adhoc by 9.78x.

The high overhead in DeTrans-adhoc is a result of the intensive synchronization among

threads in Fluidanimate (unlike TioBench). Worker threads perform a workload in trans-

actions between the barriers, and the number of transactions varies in di�erent threads.

Therefore, while one thread is waiting at a barrier, i.e. busy waiting in the sync loop,

other threads might still perform transactions. This means that the thread that arrives

�rst in the sync loop passes the token and gets the token back as long as other threads are

executing transactions. E.g. the token is passed 636 times for 2 worker threads, which

can be reduced by better distributions of work (i.e. transactions) among threads.

7.5 Summary

In this chapter we presented DeTrans-adhoc, the standard library that provides determin-

istic execution of transactional applications and supports ad hoc synchronization. It uses

hardware performance counters to count the retired instructions and retired branches. De-

92



pending on their ratio, DeTrans-adhoc might dynamically, but deterministically, change

the order of threads execution, which prevents an application from hanging in a busy-

waiting loop used for ad hoc synchronization. The additional runtime overhead is low

in case of a benchmark with poor synchronization among threads, and signi�cant in the

benchmarks with intensive synchronization and frequent changes of the order of threads

execution.

93





8
Related work

In this section we describe work related to this dissertation regarding deterministic

multithreading and other techniques for testing and debugging multithreaded applica-

tions, the techniques for ordering transactions, ad hoc synchronization detection, and

integration of TM with standard library and system calls, as well as with any other

software.

Deterministic multithreading

Deterministic multithreading has been a popular research area in the last several

years. Researchers have proposed deterministic systems for programs with data races

(strong determinism) [9, 11, 23, 24, 54, 56, 63], or more relaxed deterministic systems for

data-race-free programs (weak determinism) [19, 72, 78]. Furthermore, according to [86],

the order of threads execution can be de�ned statically (the serial and the round-robin

order) [11, 19, 54, 63] or dynamically (the order depending on the logical clock) [24, 56, 72],

or as a combination of both [9, 23].

95



8. RELATED WORK

Olszewski et al. [72] propose Kendo, a software implementation for weak determinism

of lock-based applications. In Kendo, each thread maintains its logical clock that counts

logical time. Events like lock acquisition and spinning increase logical time. A thread

acquires a lock only if it is available in both logical and physical time, which is su�cient

for weak determinism.

Devietti et al. [23] and Bergan et al. [9] propose several software-only, hardware-only

and software-hardware implementations to ensure strong determinism. The basic imple-

mentation is deterministic serialization of parallel applications: execution of threads is

divided into quanta and threads execute their quanta in round-robin order. Parallelism is

improved by (i) using a shared memory ownership table (strong determinism); (ii) main-

taining thread-local store bu�ers (strong determinism), or (iii) tracking happens-before

dependencies of lock acquisitions (weak determinism). Although they execute quanta

atomically in transactions and commit them in order, they do not use any state-of-the-

art STM library, evaluation with transactional applications is not provided. Furthermore,

the optimization the authors suggest � to allow transactions to see uncommitted updates

of memory � is against the basic TM properties; therefore, it cannot be applied for trans-

actional applications.

BulkCompactor (Duan et al. [28]) is a deterministic system implemented in hardware

with the improved order of chunk (quantum) execution in comparison to the traditional

round-robin order. The chunks that have to be re-executed due to con�icts are skipped,

and they are re-executed in the next round of token passing. This way, BulkCompactor

reduces the time spent on chunks waiting for an aborted chunk to be re-executed. In

our implementation, re-execution of transactions in another round would increase the

number of barriers and rounds in the execution, and would negatively a�ect the bene�t

of reduced waiting time.

Another modi�cation of the round-robin order is implemented in Parrot (Cui et

al. [19]), where the threads interleaving depends on developers' annotations of poten-

tial bottlenecks, which makes deterministic execution more e�cient.

Grace (Berger et al. [11]) and Dthreads (Liu et al. [54]) are software implementations

for strongly deterministic execution of lock-based applications. Threads run concurrently

and work on private memory pages, which are copied to shared pages in round-robin order

at synchronization points. As a consequence of duplicating memory pages, applications

running with Grace or Dthreads have high memory consumption.

96



Combining the ideas from Dthreads [54] and Kendo [72], Lu et al. [56] implemented

RFDet, a deterministic system where: (i) the order of synchronization operations is

deterministic and based on logical time that each thread measures by measuring the

number of synchronization operations, (ii) each thread works on a local copy of memory,

and (iii) at a lock acquisition, a thread gets modi�cations from other threads that happen

before in logical time. Similarly to Dthreads, RFDet is e�cient according to the execution

time of benchmarks (because threads do not waste time on barriers), but ine�cient

according to memory consumption.

When Dthreads uses Conversion (Merri�eld et al. [63]) as the underlying memory

model, it can omit the barriers where threads wait to commit their changes. Therefore, it

outperforms the original Dthreads implementation. Further optimizations are introduced

in Consequence (Merri�eld et al. [64]), a system for deterministic multithreading that uses

private memory pages like in Conversion and guarantees deterministic order of threads

execution by executing chunks according to the number of retired instructions in the

chunks.

The systems discussed above are suitable for lock-based applications. However, they

violate atomicity and isolation of transactions, and as a consequence, execute transac-

tional applications incorrectly (see 4.3 for details).

The recent work by Ravichandran et al. (DeSTM [78]) ensures weak determinism in

transactional applications. DeSTM relaxes the barriers in the double-barrier technique

and allows some transactions to pass the barriers earlier than others, i.e. to start their

execution earlier and to start with the commit earlier. Unlike DeSTM, we guarantee

strong determinism in DeTrans, and also analyse and compare overheads in determin-

istic multithreading provided by DeTrans and one of the state-of-the-art systems for

deterministic multithreading in lock-based applications.

Other techniques for testing and debugging

Apart from deterministic multithreading, Record and Replay (R&R) is another tech-

nique useful for testing and debugging. R&R systems [53, 67, 70, 94] save a log of memory

interleavings in a program's execution and then re-execute the same program according

to the saved log; therefore, they induce overhead in execution time and in memory.

A R&R approach is used by Gottschlich et al. [34] to help a programmer to debug

97



8. RELATED WORK

transactional applications running with HTM on Intel and IBM processors. The R&R

system they propose records information about transactions (transaction starts, commits

and aborts) to be able to reproduce the order of transactions, i.e., the order of shared

memory accesses. The system is based on a hardware mechanism that divides execution

into chunks depending on the number of retired instructions.

Zyulkyarov et al. [107] extended a C# debugger to provide facilities for debugging

STM applications. This approach allows a programmer to control the interleaving of

transactions at debug time, and it can be combined with DeTrans, where an application

runs deterministically until the bug appears, and after that, the programmer could inspect

and change the application state in order to �x the bug.

Harmanci et al. [38, 39] present a framework for testing, evaluating and compar-

ing TM implementations. The tests from this framework enforce the order of memory

accesses that might produce unwanted behaviour in the execution. While the authors

focus on testing TM implementations, our goal with DeTrans is to provide easier testing,

debugging, and fault tolerance of transactional applications.

Kestor et al. [50] detect data races in transactional applications. The data race

detection tool instruments memory operations performed from transactional and

non-transactional code. Although they found data races in a few benchmarks, the

instrumentation overhead slows down the STAMP benchmarks from 5x to 85x for 8

threads runs. In comparison to this, DeTrans ensures that a program always behaves

the same in the presence of a data race with less runtime overhead.

Deterministic and redundant multithreading for standard library and system calls

From the systems for deterministic multithreading mentioned so far, only CoreDet

and Dthreads handle libc and system calls during deterministic execution. CoreDet

either serializes libc calls, or provides its own version of libc functions. Dthreads allows

invoking some system calls, and each thread maintains its private copy of a shared libc

structure. However, these systems cannot be used for transactional applications due to

di�erences in synchronization mechanisms, as mentioned above.

Dobel et al. [27] propose RomainMT, an operating system service that ensures redun-

dant multithreading of lock-based applications. An application thread and its redundant

thread acquire and release the same locks, and perform the same externalization events,

98



e.g. system calls. The runtime overhead is reduced by using a standard library that was

modi�ed to be aware of redundant threads. However. RomainMT improves fault toler-

ance and cannot be used for testing and debugging since it does not provide repeatability

� di�erent runs of an application with the same input parameters might result in di�erent

outputs.

Deterministic operating system Determinator [7] enforces determinism at application

and OS level by creating private copies of shared objects that threads obtain at a

fork and merging the copies back to the global object at a join. On the other hand,

DeTrans-lib is implemented at user level, ensures application and libc-level determinism

and guarantees deterministic order of invoking system calls.

Ordering Transactions

Shpeisman et al. [89] characterize data races that are caused by weak isolation in

STMs and propose read and write memory barriers to enforce strong isolation in Java

transactional applications. DeTrans could bene�t from strong determinism provided by

a STM implementation since it would allow transactional and non-transactional code to

run in parallel while still guaranteeing strong determinism.

Ordering of transactions can be also used to parallelize events in event processing [15],

to parallelize sequential applications [99], or to meat deadlines in reactive transactional

applications [59]. However, these systems do not guarantee repeatability in execution of

applications.

Detection of ad hoc and in�nite loops

Tian et al. [92] propose detection of ad hoc synchronization loops (sync loops) and

their corresponding writes to memory (sync writes) by either instrumenting code in soft-

ware or using the cache coherence protocol in hardware. Furthermore, they provide an

extension for con�ict resolution in TM that is used for runtime monitoring of applica-

tions. With the extension, TM ensures that a transaction with the sync update commits

its changes before the transaction with the sync loop. On the other hand, DeTrans-adhoc

detects sync loops e�ciently without code instrumentation of hardware modi�cations.

SyncFinder [102] is a tool that statically analyses multi-threaded C/C++ programs to

99



8. RELATED WORK

detect ad hoc synchronization. It identi�es sync loops and sync writes and annotates them

to help a programmer to replace ad hoc synchronization with structures and functions

for synchronization (e.g. using a standard POSIX thread library). Unlike SyncFinder,

DeTrans-adhoc provides successful execution of applications with ad hoc synchronization

without programmers removing ad hoc synchronization.

The Bolt detector [51] is a tool that detects in�nitive loops. Bolt gets attached to a

running application to detect if the application is inside of a loop. It takes and records a

snapshot of the register and memory state at the end of each loop iteration, then compares

the snapshot with the previous snapshots, and detects an in�nite loop in case the there

is a match between the snapshots.

Jannesari et al. [48] and Tian et al. [91] propose techniques to identify ad hoc syn-

chronization in a running application and to improve data-race detectors by excluding

sync loops from the data-race detection.

Importantly for deterministic multithreading, ad hoc synhronization is a limitation of

many systems for deterministic multithreading mentioned above [19, 54, 56]. However,

Consequence [64] limits the number of retired instructions in a chunk and similarly to

our approach, postpones execution of the chunks with sync loops. Consequence has very

low overhead in general, but limiting the number of instructions slows down execution

signi�cantly.

Libc and system calls in transactions

TM-dietlibc is the �rst standard C system library with transactional semantics. Dif-

ferent proposals handle I/O and other system calls within transactions, but all of them

require some changes of the software that use these features.

Volos et al. [97] provide system call execution within transactions by implementing

wrappers for system calls and acquiring a lock before accessing a kernel resource, which

hurts parallelism. Demsky et al. [22] provide a Java library with an API extended with

several functions, which ensures that �le changes remain local until commit time.

Porter et al. [76] implement transactions on the operating system level, which requires

invocation of speci�c system calls in the user transaction.

On the other hand, in TM-dietlibc we keep the standard C API so an application

developer does not have to modify application code when invoking a standard library.

100



Transacti�cation of software

To be able to compile and execute code within transactions, in related work [8, 25, 97]

the authors suggest that some critical actions should be deferred until commit time.

However, for nested transactions it can be a pitfall causing certain side e�ects. In �at

nesting, all nested transactions are combined into a single one; therefore, deferred actions

will be executed after the outer-most transaction commits. The problem occurs when

the result of the deferred operation is needed inside the outer one. Only actions with

no in�uence on the rest of the program's execution can be postponed, e.g. memory

deallocation.

Regarding the interaction of locks and transactions, there are proposals to decide

dynamically whether a critical section should be transactional or lock-based by Usui

et al. [93] or for a new type of lock (transaction-safe) by Volos et al. [96]. Similar

to that, Rossbach et al. [82] introduce cooperative transactional locks. Gottschlich and

Chung [33] describe how to statically encode the con�icts between locks and transaction.

In contrast, we take the path of full static separation, which is the safest approach for

any TM implementation.

In TM-dietlibc we presented the novel technique that detects kernel space con�icts

at the user level and compensates their side e�ects. No other related work mentions

the possibility of such con�icts to remain undetected, although some of them propose

compensation and deferral actions [8, 62] or irrevocable execution [90, 101] for handling

system calls and I/O inside transactions.

Ruan et al.[84] provide a transacti�ed version of the Memcached benchmark to anal-

yse and evaluate the features of the Draft C++ TM Speci�cation [5]. To be able to

invoke standard library functions in transactions, they propose several techniques: (i)

reimplementing the functions to be available for compiler instrumentation, (ii) declaring

them as pure and wrapping them so that con�ict can still be detected in the wrapper,

or (iii) postponing them until commit time when they are executed out of transactions.

We implemented similar techniques in TM-dietlibc, so that the benchmarks invoking

TM-dietlibc can remain unmodi�ed.

Pankratius et al. [73], by analysing their students' work on a lock-based and a TM-

based search engine development, concluded that TM needs better support for I/O op-

erations since running transactions serially limits concurrency and scalability.

101





9
Conclusions

In this thesis we proposed techniques to extend the applicability of deterministic mul-

tithreading by supporting transactions, standard library calls, system calls, and ad hoc

synchronization, which allows a programmer to apply deterministic multithreading on

applications with various concurrency mechanisms and at both application and standard-

library level. Furthermore, we extend the applicability of transactional applications by

allowing threads to invoke standard library functions inside transactions and to execute

them concurrently.

In Chapter 4 we presented DeTrans, a runtime library that ensures deterministic

execution of multithreaded transactional applications. DeTrans provides strong deter-

minism, meaning that even in the presence of a data race an application produces the

same output if it runs with the same input parameters. DeTrans achieves this by exe-

cuting non-transactional code serially in round-robin order, and transactions in parallel

and committing them in the same round-robin order. It relies on TM implemented in

software to preserve memory consistency and ensure correct parallel execution of trans-

actional code. DeTrans can reduce the time a programmer spends in developing, testing

103



9. CONCLUSIONS

and debugging a transactional application since it guarantees a single order of threads

execution whenever the application runs with the same input parameters.

To increase concurrency in transactional applications that invoke standard library

functions inside transactions, in Chapter 5 we presented TM-dietlibc, the �rst TM-aware

standard library. TM-dietlibc is based on an originally lock-based library, but modi�ed

to support transactions and to be suitable with various TM compilers and TM imple-

mentations. The experience we gained during TM-dietlibc and TM integration can help

software developers to apply similar techniques when they write transactional programs

from scratch or modify existing lock-based programs to use TM as a concurrency con-

trol mechanism. TM-dietlibc extends the applicability of transactional applications and

allows transactions to invoke standard library functions without modi�cations of the ap-

plication code since the API remained unchanged. In addition, TM-dietlibc serializes

only the transactions that invoke system calls with non-reversible side e�ects.

By porting deterministic system DeTrans to TM-dietlibc, in Chapter 6 we provided

DeTrans-lib, the �rst TM-aware standard library that ensures deterministic multithread-

ing in transactional applications. DeTrans-lib avoids deadlocks caused by busy-waiting

in serialization (enforced by TM due to system calls) and busy-waiting in deterministic

execution (enforced by DeTrans). With DeTrans-lib, threads deterministically execute

standard library calls and invoke system calls.

Finally, in Chapter 7, we presented DeTrans-adhoc, the extended DeTrans-lib im-

plementation that supports ad hoc synchronization in transactional applications while

running deterministically. DeTrans-adhoc relies on hardware performance counters to

identify synchronization loops at runtime and to avoid deadlocks by dynamically and de-

terministically changing the order of threads execution. It detects ad hoc synchronization

in the code of applications and external libraries.

9.1 Future Work

Even though the TM community has provided TM support in compilers and e�cient

TM implementations in hardware and software, the number of transactional applications

and transactional standard libraries is still negligible. The experience we gained during

the transacti�cation of a standard library can help developers to write any transactional

software or to transactify an existing one.

104



On the other hand, deterministic multithreading should be further investigated and

optimized to be widely used for testing and debugging. Systems for deterministic mul-

tithreading should be with low additional overhead in execution time and memory con-

sumption.

If we modify our deterministic system to employ TM implemented in hardware, it

might reduce the runtime overhead since strong isolation provided by this hardware would

allow more code to be executed in parallel and deterministically even in the presence of

data races. There are a few use cases of the deterministic system with low overhead.

The �rst use case is exhaustive testing and benchmarking where the system executes

many threads interleavings deterministically, which could be useful for �nding bugs in ap-

plications. After the exhaustive testing is done, and found bugs are �xed, the applications

could be executed nondeterministically.

The second use case is having determinism �by default�(unless required di�erently),

where a programmer tests and debugs only one thread interleaving in an application, and

the deterministic system guarantees that the application is (and always will be) executed

with this interleaving.

Finally, the deterministic system can be integrated into other tools, like debuggers

and data race detectors to help programmers in developing and debugging multithreaded

applications.

105





10
Publications

The contents of this thesis led to the following publications:

Neboj²a Mileti¢, Vesna Smiljkovi¢, Cristian Perfumo, Tim Harris, Adrián Cristal,

Ibrahim Hur, Osman S. Ünsal and Mateo Valero, Transacti�cation of a Real-

world System Library, In the 5th ACM SIGPLAN Workshop on Transactional

Computing (TRANSACT 2010).

Vesna Smiljkovi¢, Martin Nowack, Neboj²a Mileti¢, Tim Harris, Osman S. Ün-

sal, Adrián Cristal, and Mateo Valero, TM-dietlibc: A TM-aware Real-world

System Library, In Proceedings of the 27th IEEE International Parallel & Dis-

tributed Processing Symposium (IPDPS 2013).

Vesna Smiljkovi¢, Sr�an Stipi¢, Christof Fetzer, Osman S. Ünsal, Adrián Cristal,

and Mateo Valero,DeTrans: Deterministic and Parallel Execution of Trans-

actions, In Proceedings of the 26th International Symposium on Computer Archi-

tecture and High Performance Computing (SBAC-PAD 2014).

107



10. PUBLICATIONS

Vesna Smiljkovi¢, Osman S. Ünsal, Adrián Cristal, and Mateo Valero, Deter-

minism at Standard-Library Level in TM-Based Applications, In Proceed-

ings of the 12th Annual IFIP International Conference on Network and Parallel

Computing (NPC 2015). Also appears in the International Journal of Parallel Pro-

gramming (IJPP 2015) special edition for NPC.

The following publications are related but not included in this thesis:

Vesna Smiljkovi¢, Sr�an Stipi¢, Osman S. Ünsal, Adrián Cristal, and Mateo

Valero, Transaction Coalescing - Lowering Transactional Overheads by

Merging Transactions, In the 6th Workshop On Programmability Issues for Het-

erogeneous Multicores (MULTIPROG 2013).

Sr�an Stipi¢, Vesna Smiljkovi¢, Adrián Cristal, Osman S. Ünsal, and Mateo

Valero, Pro�le-Guided Transaction Coalescing - Lowering Transactional

Overheads by Merging Transactions, In Proceedings of the 9th International

Conference on High-Performance and Embedded Architectures and Compilation

(HiPEAC 2014). Also appears in the ACM Transactions on Architecture and Code

Optimization (TACO 2014).

Sr�an Stipi¢, Vasileios Karakostas, Vesna Smiljkovi¢, Vladimir Gajinov, Adrián

Cristal, Osman S. Ünsal, and Mateo Valero,Dynamic Transaction Coalesing, In

Proceedings of In Proceedings of the 11th Conference on ACM Computing Frontiers

(CF 2014).

108



References

[1] Linux kernel pro�ling with perf. https://perf.wiki.kernel.org. Cited on page:

42

[2] Martín Abadi, Tim Harris, and Katherine F. Moore. A model of dynamic separation

for transactional memory. In Proceedings of the 19th international conference on

Concurrency Theory, CONCUR '08, pages 6�20. Springer-Verlag, 2008. ISBN 978-

3-540-85360-2. Cited on page: 54

[3] Martín Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, and Michael Isard.

Implementation and use of transactional memory with dynamic separation. In CC

'09: Proceedings of the 18th International Conference on Compiler Construction,

pages 63�77, 2009. ISBN 978-3-642-00721-7. Cited on page: 54

[4] Martín Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics of transac-

tional memory and automatic mutual exclusion. ACM Trans. Program. Lang. Syst.,

33(1):2:1�2:50, January 2011. ISSN 0164-0925. DOI: 10.1145/1889997.1889999.

Cited on page: 54

[5] Ali-Reza Adl-Tabatabai, Tatiana Shpeisman, and Justin Gottschlich. Draft spec-

i�cation of transactional language constructs for C++, February 2012. version

1.1. http://justingottschlich.com/tm-specification-for-c-v-1-1/. Cited

on page: 10, 17, 29, 101

[6] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, and

Sean Lie. Unbounded transactional memory. In Proceedings of the 11th Interna-

tional Symposium on High-Performance Computer Architecture, HPCA '05, pages

109

https://perf.wiki.kernel.org
http://dx.doi.org/10.1145/1889997.1889999
http://justingottschlich.com/ tm-specification-for-c-v-1-1/


REFERENCES

316�327, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2275-

0. DOI: 10.1109/HPCA.2005.41. Cited on page: 2

[7] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. E�cient system-

enforced deterministic parallelism. In Proceedings of the 9th USENIX Conference

on Operating Systems Design and Implementation, OSDI'10, pages 1�16, Berkeley,

CA, USA, 2010. USENIX Association. Cited on page: 99

[8] Lee Baugh and Craig Zilles. An analysis of I/O and syscalls in critical sections and

their implications for transactional memory. In Proceedings of the ISPASS 2008 -

IEEE International Symposium on Performance Analysis of Systems and Software,

ISPASS '08, pages 54�62, Washington, DC, USA, 2008. IEEE Computer Society.

ISBN 978-1-4244-2232-6. DOI: 10.1109/ISPASS.2008.4510738. Cited on page: 15,

101

[9] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman.

CoreDet: a compiler and runtime system for deterministic multithreaded execu-

tion. In Proceedings of the �fteenth edition of ASPLOS on Architectural support

for programming languages and operating systems, ASPLOS '10, pages 53�64, New

York, NY, USA, 2010. ACM. Cited on page: 30, 33, 35, 95, 96

[10] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble. Deterministic

process groups in dos. In Proceedings of the 9th USENIX Conference on Operating

Systems Design and Implementation, OSDI'10, pages 1�16, Berkeley, CA, USA,

2010. USENIX Association. Cited on page: 30

[11] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: Safe mul-

tithreaded programming for C/C++. In Proceedings of the 24th ACM SIGPLAN

Conference on Object Oriented Programming Systems Languages and Applications,

OOPSLA '09, pages 81�96, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-

766-0. DOI: 10.1145/1640089.1640096. Cited on page: 33, 35, 95, 96

[12] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton

University, January 2011. Cited on page: 29, 84, 89

110

http://dx.doi.org/10.1109/HPCA.2005.41
http://dx.doi.org/10.1109/ISPASS.2008.4510738
http://dx.doi.org/10.1145/1640089.1640096


REFERENCES

[13] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Subtleties of trans-

actional memory atomicity semantics. Computer Architecture Letters, 5(2), Feb

2006. ISSN 1556-6056. DOI: 10.1109/L-CA.2006.18. Cited on page: 11

[14] Robert L. Bocchino, Jr., Vikram S. Adve, Sarita V. Adve, and Marc Snir. Parallel

programming must be deterministic by default. In Proceedings of the First USENIX

Conference on Hot Topics in Parallelism, HotPar'09, pages 4�4, Berkeley, CA, USA,

2009. USENIX Association. Cited on page: 20, 35

[15] Andrey Brito, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber. Speculative

out-of-order event processing with software transaction memory. In Proceedings

of the Second International Conference on Distributed Event-based Systems, DEBS

'08, pages 265�275, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-090-6.

DOI: 10.1145/1385989.1386023. Cited on page: 40, 99

[16] Harold W. Cain, Maged M. Michael, Brad Frey, Cathy May, Derek Williams, and

Hung Le. Robust architectural support for transactional memory in the Power

architecture. In Proceedings of the 40th Annual International Symposium on Com-

puter Architecture, ISCA '13, pages 225�236, New York, NY, USA, 2013. ACM.

ISBN 978-1-4503-2079-5. DOI: 10.1145/2485922.2485942. Cited on page: 2, 16

[17] Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael Hohmuth, Martin

Pohlack, Christof Fetzer, Martin Nowack, Torvald Riegel, Pascal Felber, Patrick

Marlier, and Etienne Riviere. Evaluation of AMD's advanced synchronization fa-

cility within a complete transactional memory stack. In Proceedings of the 5th

European conference on Computer systems, EuroSys '10, pages 27�40. ACM, 2010.

ISBN 978-1-60558-577-2. Cited on page: 17, 24, 29, 50, 55, 56, 59, 68

[18] Intel Corporation. Intel transactional memory compiler and runtime application

binary interface. http://software.intel.com/sites/default/files/m/5/a/2/

a/f/8097-Intel_TM_ABI_1_0_1.pdf, November 2008. Cited on page: 11, 55, 56,

59

[19] Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu, Junfeng Yang,

Garth A. Gibson, and Randal E. Bryant. Parrot: A practical runtime for deter-

ministic, stable, and reliable threads. In Proceedings of the Twenty-Fourth ACM

111

http://dx.doi.org/10.1109/L-CA.2006.18
http://dx.doi.org/10.1145/1385989.1386023
http://dx.doi.org/10.1145/2485922.2485942
http://software.intel.com/sites/default/files/m/5/a/2/a/ f/8097-Intel_TM_ABI_1_0_1.pdf
http://software.intel.com/sites/default/files/m/5/a/2/a/ f/8097-Intel_TM_ABI_1_0_1.pdf


REFERENCES

Symposium on Operating Systems Principles, SOSP '13, pages 388�405, New York,

NY, USA, 2013. ACM. ISBN 978-1-4503-2388-8. DOI: 10.1145/2517349.2522735.

Cited on page: 30, 95, 96, 100

[20] Luke Dalessandro and Michael L Scott. Strong isolation is a weak idea. In TRANS-

ACT '09: 4th Workshop on Transactional Computing, February 2009. Cited on

page: 11

[21] Luke Dalessandro, François Carouge, Sean White, Yossi Lev, Mark Moir, Michael L.

Scott, and Michael F. Spear. Hybrid NOrec: A case study in the e�ectiveness of

best e�ort hardware transactional memory. SIGPLAN Not., 46(3):39�52, March

2011. ISSN 0362-1340. DOI: 10.1145/1961296.1950373. Cited on page: 2

[22] Brian Demsky and Navid Farri Tehrany. Integrating �le operations into trans-

actional memory. Journal of Parallel and Distributed Computing, 71:1293�1304,

October 2011. DOI: 0.1016/j.jpdc.2011.04.005. Cited on page: 51, 100

[23] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP: deterministic

shared memory multiprocessing. In Proceedings of the 14th international conference

on Architectural support for programming languages and operating systems, ASP-

LOS '09, pages 85�96, New York, NY, USA, 2009. ACM. Cited on page: 3, 18, 30,

33, 35, 95, 96

[24] Joseph Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan Grossman. RCDC:

a relaxed consistency deterministic computer. SIGPLAN Not., 47(4):67�78, 2011.

Cited on page: 33, 35, 95

[25] Ricardo Dias, João M. S. Lourenço, and Gonçalo Cunha. Developing libraries using

software transactional memory. Computer Science and Information Systems, 5(2):

103�117, 2008. Cited on page: 101

[26] Nuno Diegues, Paolo Romano, and Luís Rodrigues. Virtues and limitations

of commodity hardware transactional memory. In Proceedings of the 23rd In-

ternational Conference on Parallel Architectures and Compilation, PACT '14,

pages 3�14, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2809-8. DOI:

10.1145/2628071.2628080. Cited on page: 17

112

http://dx.doi.org/10.1145/2517349.2522735
http://dx.doi.org/10.1145/1961296.1950373
http://dx.doi.org/0.1016/j.jpdc.2011.04.005
http://dx.doi.org/10.1145/2628071.2628080
http://dx.doi.org/10.1145/2628071.2628080


REFERENCES

[27] Björn Döbel and Hermann Härtig. Can we put concurrency back into redundant

multithreading? In Proceedings of the 14th International Conference on Embedded

Software, EMSOFT '14, pages 19:1�19:10, New York, NY, USA, 2014. ACM. ISBN

978-1-4503-3052-7. DOI: 10.1145/2656045.2656050. Cited on page: 98

[28] Yuelu Duan, Xing Zhou, Wonsun Ahn, and J. Torrellas. BulkCompactor: Opti-

mized deterministic execution via con�ict-aware commit of atomic blocks. In High

Performance Computer Architecture (HPCA), 2012 IEEE 18th International Sym-

posium on, pages 1�12, February 2012. DOI: 10.1109/HPCA.2012.6169040. Cited

on page: 96

[29] Polina Dudnik and Michael M. Swift. Condition variables and transactional mem-

ory: Problem or opportunity? In TRANSACT '09: 4th Workshop on Transactional

Computing, February 2009. Cited on page: 29, 91

[30] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tuning of

word-based software transactional memory. In Proceedings of the 13th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming (PPoPP),

pages 237�246, 2008. Cited on page: 17

[31] Pascal Felber, Christof Fetzer, Patrick Marlier, and Torvald Riegel. Time-based

software transactional memory. Parallel and Distributed Systems, IEEE Transac-

tions on, 21(12):1793�1807, 2010. Cited on page: 2, 14, 17, 24, 40, 41, 55, 68, 80,

89

[32] Keir Fraser. Practical lock freedom. PhD thesis, Cambridge University Computer

Laboratory, 2003. Also available as Technical Report UCAM-CL-TR-579. Cited on

page: 28, 67

[33] Justin E. Gottschlich and JaeWoong Chung. Optimizing the concurrent execution

of locks and transactions. In Proceedings of the 24th International Workshop on

Languages and Compilers for Parallel Computing (LCPC), September 2011. Cited

on page: 101

[34] Justin E. Gottschlich, Rob Knauerhase, and Gilles Pokam. But how do we really

debug transactional memory programs. In Presented as part of the 5th USENIX

Workshop on Hot Topics in Parallelism, Berkeley, CA, 2013. Cited on page: 97

113

http://dx.doi.org/10.1145/2656045.2656050
http://dx.doi.org/10.1109/HPCA.2012.6169040


REFERENCES

[35] Per Hammarlund, Alberto J. Martinez, Atiq A. Bajwa, David L. Hill, Erik Hall-

nor, Hong Jiang, Martin Dixon, Michael Derr, Mikal Hunsaker, Rajesh Kumar,

Randy B. Osborne, Ravi Rajwar, Ronak Singhal, Reynold D'Sa, Robert Chappell,

Shiv Kaushik, Srinivas Chennupaty, Stephan Jourdan, Steve Gunther, Tom Pi-

azza, and Ted Burton. Haswell: The fourth-generation intel core processor. Micro,

IEEE, 34(2):6�20, March 2014. ISSN 0272-1732. DOI: 10.1109/MM.2014.10. Cited

on page: 2, 16

[36] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis,

Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and

Kunle Olukotun. Transactional memory coherence and consistency. SIGARCH

Comput. Archit. News, 32(2):102�, March 2004. ISSN 0163-5964. DOI:

10.1145/1028176.1006711. Cited on page: 2

[37] Ruud Haring, Martin Ohmacht, Thomas Fox, Michael Gschwind, David Satter-

�eld, Krishnan Sugavanam, Paul Coteus, Philip Heidelberger, Matthias Blum-

rich, Robert Wisniewski, alan gara, George Chiu, Peter Boyle, Norman Chist, and

Changhoan Kim. The IBM Blue Gene/Q compute chip. IEEE Micro, 32(2):48�60,

March 2012. ISSN 0272-1732. DOI: 10.1109/MM.2011.108. Cited on page: 16

[38] Derin Harmanci, Pascal Felber, Vincent Gramoli, and Christof Fetzer. TMunit:

Testing software transactional memories. In In: The 4th ACM SIGPLAN Workshop

on Transactional Computing. Citeseer, 2009. Cited on page: 98

[39] Derin Harmanci, Vincent Gramoli, Pascal Felber, and Christof Fetzer. Extensible

transactional memory testbed. J. Parallel Distrib. Comput., 70(10):1053�1067,

October 2010. ISSN 0743-7315. DOI: 10.1016/j.jpdc.2010.02.008. Cited on page:

98

[40] Tim Harris and Keir Fraser. Language support for lightweight transactions. In Pro-

ceedings of the 18th Annual ACM SIGPLAN Conference on Object-oriented Pro-

graming, Systems, Languages, and Applications, OOPSLA '03, pages 388�402, New

York, NY, USA, 2003. ACM. ISBN 1-58113-712-5. DOI: 10.1145/949305.949340.

Cited on page: 14

114

http://dx.doi.org/10.1109/MM.2014.10
http://dx.doi.org/10.1145/1028176.1006711
http://dx.doi.org/10.1145/1028176.1006711
http://dx.doi.org/10.1109/MM.2011.108
http://dx.doi.org/10.1016/j.jpdc.2010.02.008
http://dx.doi.org/10.1145/949305.949340


REFERENCES

[41] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable

memory transactions. In Proceedings of the tenth ACM SIGPLAN symposium on

Principles and practice of parallel programming, pages 48�60. ACM, 2005. Cited on

page: 2

[42] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory (Synthesis

Lectures on Computer Architecture). Morgan & Claypool Publishers, 2nd edition,

June 2010. ISBN 978-1598291247. Cited on page: 2, 9, 14

[43] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural sup-

port for lock-free data structures. In Proceedings of the 20th Annual International

Symposium on Computer Architecture, ISCA '93, pages 289�300, New York, NY,

USA, 1993. ACM. ISBN 0-8186-3810-9. DOI: 10.1145/165123.165164. Cited on

page: 2, 9, 16

[44] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Soft-

ware transactional memory for dynamic-sized data structures. In Proceedings of the

Twenty-second Annual Symposium on Principles of Distributed Computing, PODC

'03, pages 92�101, New York, NY, USA, 2003. ACM. ISBN 1-58113-708-7. DOI:

10.1145/872035.872048. Cited on page: 14

[45] Mark D. Hill and Min Xu. Racey: A stress test for deterministic execution. http:

//www.cs.wisc.edu/~markhill/racey.html. Cited on page: 30, 34, 41, 74, 80

[46] Sungpack Hong, Tayo Oguntebi, Jared Casper, Nathan Bronson, Christos

Kozyrakis, and Kunle Olukotun. Eigenbench: A simple exploration tool for or-

thogonal tm characteristics. In Proceedings of the IEEE International Sympo-

sium on Workload Characterization, IISWC '10, pages 1�11, Washington, DC,

USA, 2010. IEEE Computer Society. ISBN 978-1-4244-9297-8. DOI: 10.1109/I-

ISWC.2010.5648812. Cited on page: 71

[47] IBM. IBM XL C/C++ for AIX, V13.1 delivers IBM POWER8 exploita-

tion and enhancements to improve performance and language standards con-

formance. http://www-01.ibm.com/common/ssi/rep_ca/2/897/ENUS214-162/

ENUS214-162.PDF, April 2014. Cited on page: 17

115

http://dx.doi.org/10.1145/165123.165164
http://dx.doi.org/10.1145/872035.872048
http://dx.doi.org/10.1145/872035.872048
http://www.cs.wisc.edu/~markhill/racey.html
http://www.cs.wisc.edu/~markhill/racey.html
http://dx.doi.org/10.1109/IISWC.2010.5648812
http://dx.doi.org/10.1109/IISWC.2010.5648812
http://www-01.ibm.com/common/ssi/rep_ca/2/897/ENUS214-162/ENUS214-162.PDF
http://www-01.ibm.com/common/ssi/rep_ca/2/897/ENUS214-162/ENUS214-162.PDF


REFERENCES

[48] Ali Jannesari and Walter F. Tichy. Identifying ad-hoc synchronization for enhanced

race detection. In Parallel Distributed Processing (IPDPS), 2010 IEEE Interna-

tional Symposium on, pages 1�10, April 2010. DOI: 10.1109/IPDPS.2010.5470343.

Cited on page: 84, 100

[49] Baris Kasikci, Cristian Zam�r, and George Candea. Automated classi�cation of

data races under both strong and weak memory models. ACM Trans. Program.

Lang. Syst., 37(3):8:1�8:44, May 2015. ISSN 0164-0925. DOI: 10.1145/2734118.

Cited on page: 22

[50] Gokcen Kestor, Osman S. Unsal, Adrian Cristal, and Serdar Tasiran. T-Rex: A

dynamic race detection tool for c/c++ transactional memory applications. In Pro-

ceedings of the Ninth European Conference on Computer Systems, EuroSys '14,

pages 20:1�20:12, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2704-6.

DOI: 10.1145/2592798.2592809. Cited on page: 98

[51] Michael Kling, Sasa Misailovic, Michael Carbin, and Martin Rinard. Bolt: On-

demand in�nite loop escape in unmodi�ed binaries. In Proceedings of the ACM

International Conference on Object Oriented Programming Systems Languages and

Applications, OOPSLA '12, pages 431�450, New York, NY, USA, 2012. ACM. ISBN

978-1-4503-1561-6. DOI: 10.1145/2384616.2384648. Cited on page: 100

[52] Tom Knight. An architecture for mostly functional languages. In Proceedings

of the 1986 ACM Conference on LISP and Functional Programming, LFP '86,

pages 105�112, New York, NY, USA, 1986. ACM. ISBN 0-89791-200-4. DOI:

10.1145/319838.319854. Cited on page: 16

[53] Dongyoon Lee, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. Chimera:

Hybrid program analysis for determinism. In In ACM Conference on Programming

Language Design and Implementation, pages 463�474, 2012. Cited on page: 97

[54] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads: E�cient

deterministic multithreading. In Proceedings of the Twenty-Third ACM Symposium

on Operating Systems Principles, SOSP '11, pages 327�336, New York, NY, USA,

2011. ACM. ISBN 978-1-4503-0977-6. DOI: 10.1145/2043556.2043587. Cited on

page: 33, 34, 35, 85, 90, 95, 96, 97, 100

116

http://dx.doi.org/10.1109/IPDPS.2010.5470343
http://dx.doi.org/10.1145/2734118
http://dx.doi.org/10.1145/2592798.2592809
http://dx.doi.org/10.1145/2384616.2384648
http://dx.doi.org/10.1145/319838.319854
http://dx.doi.org/10.1145/319838.319854
http://dx.doi.org/10.1145/2043556.2043587


REFERENCES

[55] David B. Lomet. Process structuring, synchronization, and recovery using atomic

actions. SIGOPS Oper. Syst. Rev., 11(2):128�137, March 1977. ISSN 0163-5980.

DOI: 10.1145/390018.808319. Cited on page: 16

[56] Kai Lu, Xu Zhou, Tom Bergan, and Xiaoping Wang. E�cient deterministic mul-

tithreading without global barriers. In Proceedings of the 19th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP '14, pages

287�300, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2656-8. DOI:

10.1145/2555243.2555252. Cited on page: 33, 35, 95, 97, 100

[57] Li Lu and Michael L. Scott. Toward a formal semantic framework for deterministic

parallel programming. In Proceedings of the 25th International Conference on Dis-

tributed Computing, DISC'11, pages 460�474, Berlin, Heidelberg, 2011. Springer-

Verlag. ISBN 978-3-642-24099-7. Cited on page: 20

[58] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes:

A comprehensive study on real world concurrency bug characteristics. In Proceed-

ings of the 13th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS XIII, pages 329�339, New York, NY,

USA, 2008. ACM. ISBN 978-1-59593-958-6. DOI: 10.1145/1346281.1346323. Cited

on page: 18

[59] Walther Maldonado, Patrick Marlier, Pascal Felber, Julia Lawall, Giller Muller,

and Etienne Rivière. Deadline-aware scheduling for software transactional mem-

ory. In Dependable Systems Networks (DSN), 2011 IEEE/IFIP 41st International

Conference on, pages 257�268, June 2011. DOI: 10.1109/DSN.2011.5958224. Cited

on page: 99

[60] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David

Eisenstat, William N. Scherer III, and Michael L. Scott. Lowering the overhead

of nonblocking software transactional memory. In DEPT. OF COMPUTER SCI-

ENCE, UNIV. OF ROCHESTER, 2006. Cited on page: 14

[61] Alexander Matveev and Nir Shavit. Reduced hardware transactions: A new ap-

proach to hybrid transactional memory. In Proceedings of the Twenty-�fth An-

nual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA '13,

117

http://dx.doi.org/10.1145/390018.808319
http://dx.doi.org/10.1145/2555243.2555252
http://dx.doi.org/10.1145/2555243.2555252
http://dx.doi.org/10.1145/1346281.1346323
http://dx.doi.org/10.1109/DSN.2011.5958224


REFERENCES

pages 11�22, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1572-2. DOI:

10.1145/2486159.2486188. Cited on page: 17

[62] Austen McDonald, JaeWoong Chung, Brian D. Carlstrom, Chi Cao Minh, Hassan

Cha�, Christos Kozyrakis, and Kunle Olukotun. Architectural semantics for prac-

tical transactional memory. SIGARCH Computer Architecture News, 34(2):53�65,

2006. ISSN 0163-5964. Cited on page: 101

[63] Timothy Merri�eld and Jakob Eriksson. Conversion: Multi-version concurrency

control for main memory segments. In Proceedings of the 8th ACM European Con-

ference on Computer Systems, EuroSys '13, pages 127�139, New York, NY, USA,

2013. ACM. ISBN 978-1-4503-1994-2. DOI: 10.1145/2465351.2465365. Cited on

page: 95, 97

[64] Timothy Merri�eld, Joseph Devietti, and Jakob Eriksson. High-performance deter-

minism with total store order consistency. In Proceedings of the Tenth European

Conference on Computer Systems, EuroSys '15, pages 31:1�31:13, New York, NY,

USA, 2015. ACM. ISBN 978-1-4503-3238-5. DOI: 10.1145/2741948.2741960. Cited

on page: 90, 97, 100

[65] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun.

STAMP: Stanford transactional applications for multi-processing. In Workload

Characterization, 2008. IISWC 2008. IEEE International Symposium on, pages

35�46. IEEE. Cited on page: 26, 34, 41, 71

[66] Mark Moir, Kevin Moore, and Dan Nussbaum. The adaptive transactional mem-

ory test platform: A tool for experimenting with transactional code for rock. In

TRANSACT '08: 3rd Workshop on Transactional Computing, Februar 2008. Cited

on page: 16

[67] Pablo Montesinos, Luis Ceze, and Josep Torrellas. DeLorean: Recording and deter-

ministically replaying shared-memory multiprocessor execution e�ciently. In Pro-

ceedings of the 35th Annual International Symposium on Computer Architecture,

ISCA '08, pages 289�300, Washington, DC, USA, 2008. IEEE Computer Society.

ISBN 978-0-7695-3174-8. DOI: 10.1109/ISCA.2008.36. Cited on page: 97

118

http://dx.doi.org/10.1145/2486159.2486188
http://dx.doi.org/10.1145/2486159.2486188
http://dx.doi.org/10.1145/2465351.2465365
http://dx.doi.org/10.1145/2741948.2741960
http://dx.doi.org/10.1109/ISCA.2008.36


REFERENCES

[68] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.

Wood. LogTM: Log-based transactional memory. In Proceedings of the 12th Inter-

national Symposium on High-Performance Computer Architecture, pages 254�265,

2006. Cited on page: 14

[69] J. Eliot B. Moss and Antony L. Hosking. Nested transactional memory: Model

and architecture sketches. Sci. Comput. Program., 63(2):186�201, December 2006.

ISSN 0167-6423. DOI: 10.1016/j.scico.2006.05.010. Cited on page: 14

[70] Satish Narayanasamy, Gilles Pokam, and Brad Calder. BugNet: Continuously

recording program execution for deterministic replay debugging. SIGARCH

Comput. Archit. News, 33(2):284�295, May 2005. ISSN 0163-5964. DOI:

10.1145/1080695.1069994. Cited on page: 97

[71] Adrian Nistor, Darko Marinov, and Josep Torrellas. InstantCheck: Checking the de-

terminism of parallel programs using on-the-�y incremental hashing. In Proceedings

of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitec-

ture, pages 251�262. IEEE Computer Society, 2010. Cited on page: 3, 18

[72] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: e�cient deter-

ministic multithreading in software. SIGPLAN Not., 44(3):97�108, March 2009.

Cited on page: 30, 95, 96, 97

[73] Victor Pankratius and Ali-Reza Adl-Tabatabai. A study of transactional memory

vs. locks in practice. In Proceedings of the 23rd ACM symposium on Parallelism in

algorithms and architectures, SPAA '11, pages 43�52. ACM, 2011. Cited on page:

101

[74] Martin Pohlack and Stephan Diestelhorst. From lightweight hardware transactional

memory to lightweight lock elision. In TRANSACT '11: 6th Workshop on Trans-

actional Computing, June 2011. Cited on page: 25

[75] Stefan Poledna. Replica determinism in distributed real-time systems: A brief

survey. Real-Time Syst., 6(3):289�316, May 1994. ISSN 0922-6443. DOI:

10.1007/BF01088629. Cited on page: 21

119

http://dx.doi.org/10.1016/j.scico.2006.05.010
http://dx.doi.org/10.1145/1080695.1069994
http://dx.doi.org/10.1145/1080695.1069994
http://dx.doi.org/10.1007/BF01088629
http://dx.doi.org/10.1007/BF01088629


REFERENCES

[76] Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach, Alexander Benn,

and Emmett Witchel. Operating system transactions. In Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles, SOSP '09, pages 161�

176. ACM, 2009. Cited on page: 51, 100

[77] Thomas Rauber and Gudula Rünger. Parallel Programming - for Multicore and

Cluster Systems. Springer, 2010. ISBN 978-3-642-04817-3. Cited on page: 1, 2

[78] Kaushik Ravichandran, Ada Gavrilovska, and Santosh Pande. DeSTM: Harness-

ing determinism in STMs for application development. In Proceedings of the 23rd

International Conference on Parallel Architectures and Compilation, PACT '14,

pages 213�224, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2809-8. DOI:

10.1145/2628071.2628094. Cited on page: 95, 97

[79] James Reinders. Transactional synchronization in Haswell.

http://software.intel.com/en-us/blogs/2012/02/07/

transactional-synchronization-in-haswell/, Februar 2012. Cited on

page: 16, 25, 50, 68

[80] Torvald Riegel, Pascal Felber, and Christof Fetzer. A lazy snapshot algorithm with

eager validation. In Proceedings of the 20th International Conference on Distributed

Computing, DISC'06, pages 284�298, Berlin, Heidelberg, 2006. Springer-Verlag.

ISBN 3-540-44624-9, 978-3-540-44624-8. Cited on page: 24

[81] Torvald Riegel, Patrick Marlier, Martin Nowack, Pascal Felber, and Christof Fet-

zer. Optimizing hybrid transactional memory: the importance of nonspeculative

operations. In SPAA '11: Proceedings of the twenty-third annual symposium on

Parallelism in algorithms and architectures, pages 53�64. ACM, 2011. ISBN 978-1-

4503-0743-7. DOI: 10.1145/1989493.1989501. Cited on page: 2, 25, 51, 55, 68

[82] Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E. Ramadan,

Bhandari Aditya, and Emmett Witchel. TxLinux: using and managing hardware

transactional memory in an operating system. In SOSP '07: Proceedings of the

Twenty-�rst ACM SIGOPS Symposium on Operating Systems Principles, pages

87�102. ACM, 2007. Cited on page: 101

120

http://dx.doi.org/10.1145/2628071.2628094
http://dx.doi.org/10.1145/2628071.2628094
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://dx.doi.org/10.1145/1989493.1989501


REFERENCES

[83] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is transactional

programming actually easier? In ACM Sigplan Notices, volume 45, pages 47�56.

ACM, 2010. Cited on page: 2

[84] Wenjia Ruan, Trilok Vyas, Yujie Liu, and Michael Spear. Transactionalizing legacy

code: An experience report using gcc and memcached. In Proceedings of the 19th

international conference on Architectural support for programming languages and

operating systems, pages 399�412. ACM, 2014. Cited on page: 58, 71, 101

[85] Fred B. Schneider. Implementing fault-tolerant services using the state machine

approach: A tutorial. ACM Comput. Surv., 22(4):299�319, December 1990. ISSN

0360-0300. DOI: 10.1145/98163.98167. Cited on page: 21

[86] Cedomir Segulja and Tarek S. Abdelrahman. What is the cost of weak determinism?

In Proceedings of the 23rd International Conference on Parallel Architectures and

Compilation, PACT '14, pages 99�112, New York, NY, USA, 2014. ACM. ISBN

978-1-4503-2809-8. DOI: 10.1145/2628071.2628099. Cited on page: 95

[87] Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer: Data race de-

tection in practice. In Proceedings of the Workshop on Binary Instrumentation and

Applications, WBIA '09, pages 62�71, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-793-6. DOI: 10.1145/1791194.1791203. Cited on page: 22

[88] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of

the Fourteenth Annual ACM Symposium on Principles of Distributed Computing,

PODC '95, pages 204�213, New York, NY, USA, 1995. ACM. ISBN 0-89791-710-3.

DOI: 10.1145/224964.224987. Cited on page: 2, 16

[89] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven Balensiefer,

Dan Grossman, Richard L. Hudson, Katherine F. Moore, and Bratin Saha. En-

forcing isolation and ordering in STM. In Proceedings of the 28th ACM SIG-

PLAN Conference on Programming Language Design and Implementation, PLDI

'07, pages 78�88, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-633-2. DOI:

10.1145/1250734.1250744. Cited on page: 20, 99

121

http://dx.doi.org/10.1145/98163.98167
http://dx.doi.org/10.1145/2628071.2628099
http://dx.doi.org/10.1145/1791194.1791203
http://dx.doi.org/10.1145/224964.224987
http://dx.doi.org/10.1145/1250734.1250744
http://dx.doi.org/10.1145/1250734.1250744


REFERENCES

[90] Michael F. Spear, Maged Michael, and Michael L. Scott. Inevitability mechanisms

for software transactional memory. In TRANSACT '08: 3rd Workshop on Trans-

actional Computing, February 2008. Cited on page: 101

[91] Chen Tian, Vijay Nagarajan, Rajiv Gupta, and Sriraman Tallam. Dynamic recogni-

tion of synchronization operations for improved data race detection. In Proceedings

of the 2008 International Symposium on Software Testing and Analysis, ISSTA '08,

pages 143�154, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-050-0. DOI:

10.1145/1390630.1390649. Cited on page: 84, 100

[92] Chen Tian, Vijay Nagarajan, Rajiv Gupta, and Sriraman Tallam. Automated

dynamic detection of busy wait synchronizations. Softw. Pract. Exper., 39(11):

947�972, August 2009. ISSN 0038-0644. DOI: 10.1002/spe.v39:11. Cited on page:

99

[93] Takayuki Usui, Reimer Behrends, Jacob Evans, and Yannis Smaragdakis. Adaptive

locks: combining transactions and locks for e�cient concurrency. In PACT '09:

Proceedings of the 2009 18th International Conference on Parallel Architectures

and Compilation Techniques, pages 3�14. IEEE Computer Society. ISBN 978-0-

7695-3771-9. DOI: http://dx.doi.org/10.1109/PACT.2009.20. Cited on page: 101

[94] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Pe-

ter M. Chen, Jason Flinn, and Satish Narayanasamy. DoublePlay: Parallelizing

sequential logging and replay. In Proceedings of the Sixteenth International Confer-

ence on Architectural Support for Programming Languages and Operating Systems,

ASPLOS XVI, pages 15�26, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-

0266-1. DOI: 10.1145/1950365.1950370. Cited on page: 97

[95] Duc Vianney. Tiobench benchmark - ltc linux performance team. http://

linuxperf.sourceforge.net/tiobench/tiobench.php. Cited on page: 28, 67,

74, 80, 84, 89

[96] Haris Volos, Neelam Goyal, and Michael Swift. Pathological interaction of locks

with transactional memory. In TRANSACT '08: 3rd Workshop on Transactional

Computing, February 2008. Cited on page: 50, 55, 101

122

http://dx.doi.org/10.1145/1390630.1390649
http://dx.doi.org/10.1145/1390630.1390649
http://dx.doi.org/10.1002/spe.v39:11
http://dx.doi.org/http://dx.doi.org/10.1109/PACT.2009.20
http://dx.doi.org/10.1145/1950365.1950370
http://linuxperf.sourceforge.net/tiobench/tiobench.php
http://linuxperf.sourceforge.net/tiobench/tiobench.php


REFERENCES

[97] Haris Volos, Andres Jaan Tack, Neelam Goyal, Michael M. Swift, and Adam Welc.

xCalls: Safe I/O in memory transactions. In EuroSys '09: Proceedings of the

4th ACM European Conference on Computer Systems, pages 247�260. ACM, 2009.

ISBN 978-1-60558-482-9. Cited on page: 51, 100, 101

[98] Felix von Leitner. diet libc. http://www.fefe.de/dietlibc/talk.pdf, 2001.

Cited on page: 50

[99] Christoph von Praun, Luis Ceze, and Calin Ca³caval. Implicit parallelism with or-

dered transactions. In Proceedings of the 12th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming, PPoPP '07, pages 79�89, New York,

NY, USA, 2007. ACM. ISBN 978-1-59593-602-8. DOI: 10.1145/1229428.1229443.

Cited on page: 99

[100] Amy Wang, Matthew Gaudet, Peng Wu, José Nelson Amaral, Martin Ohmacht,

Christopher Barton, Raul Silvera, and Maged Michael. Evaluation of blue Gene/Q

hardware support for transactional memories. In Proceedings of the 21st interna-

tional conference on Parallel architectures and compilation techniques, PACT '12,

pages 127�136, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1182-3. DOI:

10.1145/2370816.2370836. Cited on page: 16

[101] Adam Welc, Bratin Saha, and Ali-Reza Adl-Tabatabai. Irrevocable transac-

tions and their applications. In SPAA '08: Proceedings of the twentieth an-

nual symposium on Parallelism in algorithms and architectures, pages 285�

296, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-973-9. DOI:

http://doi.acm.org/10.1145/1378533.1378584. Cited on page: 101

[102] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and Zhiqiang Ma. Ad

hoc synchronization considered harmful. In Proceedings of the 9th USENIX Con-

ference on Operating Systems Design and Implementation, OSDI'10, pages 1�8,

Berkeley, CA, USA, 2010. USENIX Association. Cited on page: 84, 99

[103] Min Xu, Rastislav Bodik, and Mark D. Hill. A "�ight data recorder" for enabling

full-system multiprocessor deterministic replay. In Computer Architecture, 2003.

Proceedings. 30th Annual International Symposium on, pages 122�133. IEEE, 2003.

Cited on page: 30, 34, 41, 74, 80

123

http://www.fefe.de/dietlibc/talk.pdf
http://dx.doi.org/10.1145/1229428.1229443
http://dx.doi.org/10.1145/2370816.2370836
http://dx.doi.org/10.1145/2370816.2370836
http://dx.doi.org/http://doi.acm.org/10.1145/1378533.1378584
http://dx.doi.org/http://doi.acm.org/10.1145/1378533.1378584


REFERENCES

[104] Junfeng Yang, Heming Cui, Jingyue Wu, Yang Tang, and Gang Hu. Making parallel

programs reliable with stable multithreading. Commun. ACM, 57(3):58�69, March

2014. ISSN 0001-0782. DOI: 10.1145/2500875. Cited on page: 3, 18

[105] Matt T. Yourst. PTLsim: a cycle accurate full system x86-64 microarchitectural

simulator. In Performance Analysis of Systems Software, 2007. ISPASS 2007.

IEEE International Symposium on, pages 23 �34, April 2007. DOI: 10.1109/IS-

PASS.2007.363733. Cited on page: 25, 68

[106] Ferad Zyulkyarov, Vladimir Gajinov, Osman S. Unsal, Adrián Cristal, Eduard

Ayguadé, Tim Harris, and Mateo Valero. Atomic Quake: Using transactional

memory in an interactive multiplayer game server. SIGPLAN Not., 44(4):25�34,

February 2009. ISSN 0362-1340. DOI: 10.1145/1594835.1504183. Cited on page:

71

[107] Ferad Zyulkyarov, Tim Harris, Osman S. Unsal, Adrián Cristal, and Mateo Valero.

Debugging programs that use atomic blocks and transactional memory. In Proceed-

ings of the 15th ACM SIGPLAN symposium on Principles and practice of parallel

programming, PPoPP '10, pages 57�66. ACM, 2010. ISBN 978-1-60558-877-3. Cited

on page: 98

124

http://dx.doi.org/10.1145/2500875
http://dx.doi.org/10.1109/ISPASS.2007.363733
http://dx.doi.org/10.1109/ISPASS.2007.363733
http://dx.doi.org/10.1145/1594835.1504183

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Parallel Programming
	1.2 Transactional Memory
	1.3 Deterministic Multithreading
	1.4 Problem Statement
	1.4.1 Issues in Deterministic Execution of Transactions
	1.4.2 Issues in Invocation of Standard Library Functions in Transactions
	1.4.3 Issues in Deterministic Execution of Applications with Ad hoc Synchronization

	1.5 Thesis Contributions
	1.6 Thesis Organization

	2 Background
	2.1 Transactional Memory
	2.1.1 How to Use Transactional Memory?
	2.1.2 Management of Transactions
	2.1.3 Version Control
	2.1.4 Conflict Detection
	2.1.5 Additional Support in TM
	2.1.6 TM Implementations and Performance

	2.2 Deterministic Multithreading
	2.2.1 Why Do I Have Bugs in My Code?
	2.2.2 Benefit of Deterministic Execution
	2.2.3 Various Levels of Determinism


	3 Experimental Setup
	3.1 Processor Specification
	3.2 TM Implementations
	3.3 Benchmarks
	3.4 Compilers
	3.5 Verification of Correctness

	4 DeTrans: Deterministic and Parallel Execution of Transactions 
	4.1 Introduction
	4.2 Background
	4.3 Motivation
	4.4 Implementation
	4.4.1 Serial Deterministic Execution of Non-transactional Code
	4.4.2 Parallel Deterministic Execution of Transactional Code
	4.4.3 Deterministic Eager STM Policy
	4.4.4 Deterministic Lazy STM Policy

	4.5 Evaluation
	4.5.1 Methodology
	4.5.2 Results

	4.6 Various Orders of Threads Execution – Discussion
	4.7 Summary

	5 Increasing Concurrency in a Standard Library Invoked in Transactions
	5.1 Introduction
	5.2 Standard Library Function Calls in Transactions
	5.3 Various Standard Library Designs
	5.3.1 Mixing Locks and Transactions
	5.3.2 The Library Adaptation Level
	5.3.3 The Library Execution Mode

	5.4 The Transactification of Diet Libc - Implementation Experience
	5.4.1 Identifying Groups of Locks
	5.4.2 Defining Critical Section Boundaries
	5.4.3 Applying TM Techniques on the Library Functions with System Calls
	5.4.4 The Conflict-Detection Extension
	5.4.5 The System-Call Barrier in HyTM

	5.5 Quantifying Software Development Effort
	5.6 Limitations of a “Diet” Standard Library and TM Tools
	5.7 Evaluation
	5.7.1 Methodology
	5.7.2 Results

	5.8 Summary

	6 Deterministic Execution in a Standard Library
	6.1 Introduction
	6.2 Standard-Library Calls in Deterministic Execution
	6.3 Design of DeTrans-lib
	6.4 Evaluation
	6.4.1 Methodology
	6.4.2 Results

	6.5 Summary

	7 Support for Ad Hoc Synchronization in Deterministic Execution
	7.1 Introduction
	7.2 Motivation
	7.3 Design
	7.3.1 Detecting Sync Loops
	7.3.2 Choosing the Right Threshold
	7.3.3 Making Timing Functions Deterministic
	7.3.4 Detecting Deadlocks in Sync Loops

	7.4 Evaluation
	7.4.1 Methodology
	7.4.2 Results

	7.5 Summary

	8 Related work
	9 Conclusions
	9.1 Future Work

	10 Publications
	References

