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Abstract 
This thesis covers three topics in Market Microstructure. Chapter 1 
demonstrates that market access frictions may play a significant role in the 
competition between trading platforms. Analyzing a recent dataset of the 
trading activity in French and German stocks, we provide evidence that the 
incumbent markets dominate because the sole market entrant exposes 
liquidity providers to an excessive adverse selection risk due to a lack of 
noise traders. Chapter 2 presents a theoretical model of price formation in a 
dynamic limit order market with slow human traders and fast algorithmic 
traders. We show that in most cases, algorithmic trading has a detrimental 
effect on human traders’ welfare. Finally, Chapter 3 empirically analyzes the 
role of pre-trade transparency in call auctions. Comparing the trading 
mechanisms in place on the French and German stock exchanges, we find 
that transparency is associated with higher trading volume, greater liquidity, 
and better price discovery. 
 

Resumen 
Esta tesis estudia tres temas diferentes de la microestructura de los mercados 
financieros. El capítulo 1 demuestra que fricciones en el acceso al mercado 
pueden desempeñar un papel significativo en la competencia entre 
plataformas de negociación de activos. El análisis de un conjunto de datos 
recientes de la actividad en acciones francesas y alemanas demuestra que los 
mercados primarios dominan debido a que el único mercado satélite expone 
los proveedores de liquidez a un riesgo excesivo de selección adversa, 
causado por una falta de noise traders. El capítulo 2 presenta un modelo 
teórico de formación de precios en un mercado dinámico con limit order book 
poblado por agentes humanos lentos y agentes algorítmicos rápidos. Se 
demuestra que, en la mayoría de los casos, la negociación algorítmica tiene 
un efecto negativo sobre el bienestar de agentes humanos. Por último, el 
capítulo 3 analiza empíricamente el papel de la transparencia pre-negociación 
en las subastas de apertura y de cierre. Comparando los mecanismos en las 
bolsas francesas y alemanas, encontramos que la transparencia está asociada 
con un volumen mayor, una liquidez mayor y un mejor price discovery.
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Preface 

The topic unifying the three chapters of this thesis is market microstructure, 

a research field that can be loosely defined as the detailed study of the 

trading process in financial markets. When thinking of a stock exchange, 

most people picture a large hall populated by shouting men. While this could 

somehow be considered to mirror reality until at least the mid 1970’s, the 

landscape has changed dramatically since then. Today, most trading floors 

are little more than a stage for TV journalists, as virtually all exchanges have 

become purely electronic marketplaces. 

 

As the three chapters of this thesis show, the widespread use of modern 

communications technology has had a tremendous effect on the way 

financial assets are traded. Electronic trading platforms allow for the design 

of different market mechanisms that are tailored towards different clienteles 

and serve different purposes. Geographically distant markets are connected 

via high-speed computer networks, enabling competition between market 

centers that have transformed from mutual enterprises into profit-

maximizing corporations. More recently, the technological revolution within 

the financial industry has accelerated dramatically, as more and more trading 

is conducted via sophisticated computer algorithms, rendering human 

intervention superfluous.  

 

The first chapter is motivated by the recent establishment of the pan-

European Markets in Financial Instruments Directive (MiFID) and examines 

the interplay adverse selection and transaction fees in the context of inter-

market competition. Based on the seminal work by Glosten and Milgrom 

(1985), we develop a simple model of trading in a fragmented financial 

market. We show that if so called trade-throughs (transactions at prices 

inferior to the best available quote) are not prohibited, imperfections in 

traders’ market access may lead to differences in the adverse selection risk 
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faced by liquidity providers across trading venues. Consequently, the main 

(primary) market may dominate in equilibrium even if it charges higher fees 

than its competitors. The empirical analysis of a recent dataset of trading in 

French and German stocks suggests that trades on Chi-X, a recently 

launched low-cost trading platform, carry significantly more private 

information than those executed in the Primary Markets. Additionally, we 

present evidence that much of this difference appears to be driven by the 

inability of uninformed traders to choose the market they trade in. 

Consistent with our theory, we find a negative relationship between the 

competitiveness of Chi-X’s quotes and this excess adverse selection risk faced 

by liquidity providers in the cross-section. In conclusion, our results suggest 

that trade-throughs may constitute a serious obstacle to inter-market 

competition.  

 

Without doubt, algorithmic trading is the most intensively debated topic in 

current market microstructure research. Building on prior work by Foucault 

(1999), Chapter 2 contributes to the ongoing controversy by presenting a 

stylized model of price formation in a dynamic limit order market populated 

by slow human traders (HTs) and fast algorithmic traders (ATs). In 

particular, we assume that their increased speed allows ATs to avoid the 

winner’s curse associated with limit orders when trading with HTs. We show 

how algorithmic trading may lead both to increases and decreases in trading 

volume (and thus aggregate welfare). An analysis on individual traders’ 

welfare shows that the presence of ATs has a detrimental effect on HTs’ 

welfare for most parameter constellations. Intuitively, the reduced risk 

incurred when placing limit orders (their endogenous outside option) induces 

ATs do demand better terms of trade for market orders. As a consequence, 

HTs may either increase the aggressiveness of their quotes or accept a 

decreased probability of execution, leading to lower profits from limit orders 

in both cases. In turn, this makes HTs willing to accept lower profits from 
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market orders. 

 

Finally, Chapter 3 (which is joint work with Jos van Bommel) studies call 

auctions, a widely used trading mechanism to determine the opening and 

closing prices on most stock exchanges across the globe. Using a matched 

sample approach, we compare the performance of the trading protocols in 

place on the French (Euronext) and German (Deutsche Börse) stock 

exchanges. While the former market discloses the limit order book to market 

participants during its auctions, the latter only provides indicative 

information about the clearing price and the associated trading volume. 

Using a matched sample approach over a sample period of two years, we 

find that the auctions in the transparent market exhibit a significantly higher 

trading volume, better liquidity (measured as the price impact of order flow) 

and improved price discovery. Overall, these findings are consistent with a) 

transparency enabling liquidity traders to signal their trading intentions and 

b) an informative limit order book.   
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1. ADVERSE SELECTION, TRANSACTION FEES, 

AND MULTI-MARKET TRADING 

1.1. Introduction 

The introduction of the Markets in Financial Instruments Directive (MiFID) 

in late 2007 has spawned competition among stock exchanges across 

Europe. Under the new legislation, alternative trading platforms (so-called 

Multilateral Trading Facilities, henceforth MTFs) may directly compete with 

the national stock exchanges (Primary Markets) for customer order flow. 

Ultimately, MiFID aims at creating a level playing field that promotes 

competition between market centers and fosters innovation.  

 

One issue that has received a great deal of attention in the context of inter-

market competition is the design of best execution policies. Under MiFID, 

intermediaries such as banks and brokers bear the entire responsibility for 

obtaining “the best possible result” for their clients’ orders. Importantly, best 

execution is not only based on prices but rather permits the consideration of 

a wide array of additional execution characteristics such as liquidity, order 

size, and the likelihood of execution, among others (see e.g. Petrella (2009) 

and Gomber and Gsell (2006) for details). Consequently, MiFID does not 

formally enforce inter-market price priority, and orders are permitted to 

execute at a price that is inferior to the best available price across venues 

(“trade-throughs”). This differs considerably from the rules that are in place 

in the United States under Reg NMS, which mandates exchanges to re-route 

orders to other market centers if those are offering a better price (“trade-

through rule”). 

 

In this article, we argue that allowing for trade-throughs may benefit the 

Primary Markets and therefore limit inter-market competition. To this end, 

we study how adverse selection and transaction fees interact in a fragmented 
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financial market where trade-throughs are not prohibited. Inspired by the 

current market setting in Europe, we develop an extension of the Glosten 

and Milgrom (1985) sequential trade model where liquidity providers post 

quotes in two separate trading platforms, the Primary Market and a low-cost 

MTF. A key ingredient in our model is the existence of market access 

frictions. Following Foucault and Menkveld (2008), we assume that the 

Primary Market is accessible by all agents in the economy, while trading on 

the MTF requires a so-called smart order routing system that is only available 

to a subset of the trader population. Due to the absence of a trade-through 

rule, this access friction gives rise to inter-market differences in the adverse 

selection risk faced by liquidity providers. If informed traders are more likely 

than uninformed traders to be “smart routers”, situations can arise where the 

Primary Market offers better quotes frequently despite charging higher 

transaction fees. 

 

The analysis of a recent sample of transactions and quote data for German 

and French stocks confirms the existence of imperfections in traders’ routing 

abilities, as only about every second trade originates from agents with access 

to Chi-X, a recently launched MTF. Moreover, we find that trades executed 

on this new trading platform carry significantly more private information 

than their counterparts on the Primary Markets, while trade-throughs are 

particularly uninformative. This implies that liquidity providers on the MTF 

incur a higher adverse selection risk precisely because an important fraction 

of the uninformed order flow is held captive in the Primary Markets. Cross-

sectional regressions provide empirical support for our theory, as we find 

that this excess adverse selection risk is negatively related to Chi-X’s 

presence at the inside quote.  

 

These results have important implications for the design of best executions 

policies. Allowing for trade-throughs benefits the Primary Markets because 
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captive traders constitute a stable customer basis that is not subject to 

competition from other exchanges. Additionally, liquidity providers on 

alternative trading venues are exposed to a higher adverse selection risk 

because smart routers are more likely to be informed than the average trader. 

This excess risk frequently results in poor quotes and therefore diverts 

additional order flow from smart routers to the Primary Markets. Therefore, 

trade-throughs constitute an important obstacle for inter-market competition 

as the cheaper market (in terms of transaction fees) may end up with very 

little order flow, even from agents that have access to it. In this sense, our 

model supports the idea that the enforcement of inter-market price priority 

may foster competition between exchanges.  

 

Our findings are in line with existing concerns about MiFID’s best execution 

policy. In the absence of inter-market linkages, market fragmentation 

increases the costs of monitoring markets in real-time, as it requires 

intermediaries to adopt a smart order routing system. For smaller market 

participants, the substantial costs associated with such an infrastructure may 

well exceed the expected benefits. Consistent with this view, a recent article 

in the Financial Times1 reports that much retail order flow is routinely routed 

towards the Primary Markets as small brokers shy away from investments in 

technology. Additionally, Ende and Lutat (2010) document a sizeable 

fraction of trade-throughs in European stocks, which confirms the existence 

of market access imperfections post-MiFID. 

 

Moreover, recent anecdotal evidence appears consistent with our view that a 

higher adverse selection risk negatively affects the competitiveness of MTFs. 

On September 8th, 2008, the market opening on the London Stock 

Exchange was delayed until 4 pm in the afternoon due to a technical 

problem. While Chi-X and Turquoise were still available for trading in UK 

                                                
1 See Financial Times, “Private investors fail to see MiFID benefits”, March 7th 2010. 
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stocks, the market activity ceased almost completely during the LSE’s system 

outage. A similar event occurred on Euronext on April 20th, 2009, when 

trading commenced with a delay of one hour. Again, trading did not migrate 

to the MTFs. Presumably, excessive adverse selection risk lead to a market 

breakdown. Yet another outage on the LSE during the afternoon of 

November 9th, 2009 saw some trading migrate to alternative venues. The 

fact that the outage occurred late in the trading day may have helped the 

MTFs, as much of the day’s price discovery had already occurred prior to the 

LSE’s breakdown. 

 

This chapter contributes to the existing literature on inter-market 

competition. While early theoretical papers (e.g. Pagano (1989) and 

Chowhdry and Nanda (1991)) argue that markets display a natural tendency 

to consolidate as a consequence of liquidity externalities, there is a large 

empirical literature that empirically documents the existence of fragmented 

financial markets (e.g. Bessembinder (2003), Boehmer and Boehmer (2003), 

Goldstein et al. (2008), Biais et al. (2010a)).  

 

Most closely related to our work, Foucault and Menkveld (2008) develop and 

test a theory of competition between two markets in an environment that 

allows for trade-throughs. In their model, which abstracts from uncertainty 

about the asset’s fundamental value, risk-neutral competitive agents trade off 

the expected revenue from liquidity provision against order submission fees. 

They find that the share of liquidity provided on the alternative trading 

platform (weakly) increases in the proportion of smart routers. While our 

work shares their assumption of heterogeneity in traders’ routing abilities, we 

consider a model with a risky asset and asymmetric information. We 

therefore contribute to the literature by studying the interplay of adverse 

selection risk and transaction fees in the context of inter-market competition 

under the absence of price priority across trading venues.  
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Naturally, our work is also closely related to a number of papers that study 

differences in informed trading across markets. One strand of this literature 

analyzes the effects of “cream-skimming” and payment for order flow (e.g. 

Easley et al. (1996a), Bessembinder and Kaufman (1997), Battalio et al. 

(2002), Parlour and Rajan (2003)). In our context, the competitiveness of 

alternative trading platforms is hampered by the concentration of 

uninformed order flow on the Primary Markets due to trade-throughs 

generated by captive traders. This contrasts strongly with the standard 

paradigm within this literature, where uninformed order flow is directed away 

from the main market center due to so-called preferencing agreements2. 

Other papers (e.g. Grammig et al. (2001), Barclay et al. (2003), Goldstein et 

al. (2008)) document differences in informed trading between dealer markets 

and anonymous electronic trading systems. Generally, these studies find 

order flow in electronic markets to be more informative, presumably because 

informed traders value the higher speed of execution offered by these venues 

and try to prevent information leakage due to interacting with intermediaries 

such as market makers. In contrast, we show that differences in informed 

trading across exchanges may also arise through the absence of inter-market 

price priority paired with frictions in traders’ market access. 

 

Finally, our model also accommodates the results of Hengelbrock and 

Theissen (2009), who study the market entry of the Turquoise MTF in late 

2008 and find that the trading activity in larger and less volatile stocks tends 

to fragment more.  

 

This chapter is organized as follows. Section 1.2 introduces our theoretical 

model, while Section 1.3 describes the institutional environment and 

                                                
2 Preferencing agreements usually establish a relation between a broker and a trading 
platform, where brokers receive a payment for directing the entire order flow to a 
particular venue. This practice was pioneered by Bernhard Madoff in the 1980’s. 
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presents the data. Section 1.4 introduces estimates for differences in 

informed trading between the Primary Markets and Chi-X, and Section 1.5 

presents evidence on the model’s empirical implication. Section 1.6 

concludes, while proofs and tables are relegated to Appendix A. 

 

1.2. The Model 

There is a single risky asset with liquidation value { },V V V∈ , where we set 

0Pr( ) 1/ 2V V δ= ≡ =  for simplicity. The asset can be traded on two 

separate trading platforms, which we denote by C(hi-X) and P(rimary 

Market). These markets are populated by 2PN ≥  and 2CN ≥  identical, risk 

neutral market makers, respectively, who post bid and ask quotes for a single 

unit of the risky asset. Market P charges a cost 0c >  per trade to market 

makers, while the cost charged by market C is normalized to zero. We 

assume that c is very small in comparison to the asset’s fundamental 

uncertainty, i.e. ( )/ 2c V V<< − . 

 

There is a continuum of traders, who arrive sequentially at time points 

1,  ,  Tt = … . Unlike Dennert (1993), we assume that each trader may buy or 

sell at most one unit of the asset. Moreover, agents may only trade once, 

directly upon entering the market. A proportion µ of the trader population is 

perfectly informed about the liquidation value V, while the remaining traders 

are uninformed. Whereas all agents can trade in market P, trading in market 

C requires a smart order routing system that is not available to everyone in 

the economy. Denote the proportion of informed and uninformed traders 

with smart order routing technology by Iθ and Uθ , respectively. We call 

those traders smart routers, while agents that can only trade in market P are 

named captive traders. Figure A.1 in Appendix A.2 graphically depicts the 

structure of the trader population for the case I Uθ θ> .  
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The overall proportion of smart routers is given by (1 )I Uθ µθ µ θ= + − . Let 

SRµ  and CTµ denote the proportion of informed traders among smart 

routers and captive traders, respectively, which are given by 

(1 )
1

II
SR CT θ µθ µ

µ µ
θ θ

−
≡ ≡

−
 

It is easy to see that I Uθ θ>  ( I Uθ θ< ) implies SR CTµ µ µ> >  

( SR CTµ µ µ< < ). 

[Insert Figure A.1 about here] 

 

Uninformed traders buy or sell with equal probability. Informed traders buy 

if V V=  and the best ask at which they can trade is less or equal to V  at 

the time of their arrival, and sell if V V=  and the best available bid is 

higher or equal to V . Otherwise, they do not trade. Traders always choose 

to trade in the market that offers the better price given their trading interest 

and market access.  

 

One issue arises in situations where both venues display identical quotes, 

such that smart routers are indifferent between markets. Given that market 

makers are not required to place their quotes on a discrete grid (i.e. the tick 

size is zero), such ties may arise even if both trading platforms charge 

different fees for market orders, because ultimately all fees are borne by the 

market order traders (liquidity providers simply pass them on). Clearly, a 

positive tick size can break traders’ indifference, as ties will only occur before 

transaction costs. Then, smart routers will rationally trade in the market that 

demands lower fees for market orders. As the introduction of a tick size 

comes at the expense of additional notation without providing further 

insights, we opt for a reduced-form approach and assume that smart routers 

always trade in market C in the case of an inter-market tie. 
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Assumption (Tie-breaking rule): 
In the case of an inter-market tie, smart routers always trade in market C. 

 

On the other hand, if several market makers post the same price in the same 

market, we assume that one of them is randomly selected (with equal 

probability) as a trading partner for the incoming trader. After each trading 

round t, market makers update their beliefs about the probability of the high 

outcome of the asset’s liquidation value using Bayes’ rule and revise their 

quotes accordingly. We assume that they observe each other’s trades3, which 

implies that they hold identical beliefs about the liquidation value at all times. 

Let 1tδ −  denote this common belief prior to the arrival of the t-th trader. 

 

For simplicity, we restrict our analysis to the bid side. Results for the ask side 

can be derived following exactly the same logic. Let ,i P
tb  and ,j C

tb  the quotes 

of market makers i and j in markets P and C, respectively, where 

1,  , Pi N= … and 1,  , Cj N= … . Moreover, define the best bid in market k 

as { }1, ,max ,...,
kk k N k

t t tb b b=  for { },k P C∈ .  

 

Given that captive traders can only trade in the Primary Market, the 

probability of a sell occurring in market P is always strictly positive. On the 

other hand, trade may only occur in market C if the bid quote at least 

matches the bid prevailing in market P. This leads us to the following 

definition of market co-existence. 

 

Definition (Market co-existence):  

Markets co-exist if and only if C P
t tb b≥ . 

                                                
3 This can be interpreted as markets being subject to post-trade transparency. See  
Madhavan (1995) for a model without post-trade transparency.  
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We are now ready to state our main result, which provides a condition for 

market co-existence to obtain in equilibrium. We restrict our attention to 

symmetric equilibria in pure strategies. 

 

Proposition 1:  

Let PN →∞. Then, in equilibrium, markets co-exist if and only if 

 1( )( ) ( )SR
B tc V V µ µ δ −≥ − − Ψ  (1.1) 

where 

[ ]
1 1

1
1 1

2 (1 )( )
1 (1 2 ) 1 (1 2 )

t t
B t SR

t t

δ δ
δ

µ δ µ δ
− −

−
− −

−
Ψ =

 + − + − 
 

 

Proof:  
See Appendix A.1. 

 

To understand the intuition behind this result, first consider the case where 
I Uθ θ≤ . This implies that SRµ µ≤ , i.e. the proportion of informed traders 

among smart routers is no greater than the proportion of informed traders in 

the overall trader population, such that market makers on platform C face a 

(weakly) lower adverse risk. Additionally, market C does not charge any 

transaction fees, so that the best bid on Chi-X is always strictly higher than 

the best bid in the Primary Market. In this case, condition (1.1) is necessarily 

satisfied as the right-hand side is always negative, such that markets co-exist. 

 

Now consider the converse situation, where I Uθ θ> , or equivalently 
SRµ µ> . In this case, liquidity providers in market C face an excess adverse 

selection risk due to a higher proportion of informed traders among smart 

routers, which is captured by the right-hand side in (1.1). On the other hand, 

they do not incur the transaction fee c that is payable for transactions in 

market P. Clearly, the best bid on Chi-X can only match or improve upon 



 10

the Primary Market if the fee savings compensate for the excess adverse 

selection risk. The function 1( )B tδ −Ψ  captures the behaviour of the adverse 

selection differential over time: As the order flow is informative about the 

asset’s liquidation value, market makers’ beliefs 1tδ −  converge to either zero 

or one as the number of trading rounds becomes large, such that 1( )B tδ −Ψ  

approaches zero. As the adverse selection risk diminishes, differences in 

quotes across markets are entirely determined by the difference in 

transaction fees, and the market co-existence condition is necessarily 

satisfied. 

 

Proposition 1 has an empirical implication for Chi-X’s quote competitiveness 

in the cross-section. In order to see this, define 
1 1max ( )

t tAS ASδ δ
− −∆ = ∆ , 

where 1 1( ) ( )( ) ( )SR
t B tAS V Vδ µ µ δ− −∆ = − − Ψ . Now consider two assets, A 

and B, and suppose that 1 1( ) ( )A t B tAS ASδ δ− −∆ > ∆  for all market maker 

beliefs 1tδ − , i.e. the cross-market adverse selection differential (Chi-X minus 

Primary Market) is always strictly greater for asset A. If Ac AS≥ ∆ , the 

market co-existence condition (1.1) is satisfied for all possible beliefs and the 

best bid on Chi-X will match or improve upon the best bid in the Primary 

Market throughout the entire trading day for both assets. On the other hand, 

condition (1.1) is not always satisfied if Ac AS< ∆ . Moreover, as 

1 1( ) ( )A t B tAS ASδ δ− −∆ > ∆  for all 1tδ − , there exist beliefs for which Chi-X 

matches or improves on the Primary Market for asset B, while the Primary 

Market displays a strictly better quote for asset A. The converse never holds. 

This leads us to the following empirical prediction. 

 
Corollary 1: 
In the cross-section, Chi-X’s presence at the inside quote (weakly) decreases 

in the adverse selection risk differential (Chi-X minus Primary Market). 
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1.3. Institutional details and data 

In the remainder of the chapter, we empirically analyze a sample of 

transaction data from Chi-X and two Primary Markets, Euronext (Paris) and 

Xetra (Frankfurt), in order to validate the empirical prediction of our model 

(Corollary 1). Before we turn to the description and a preliminary analysis of 

our dataset, we provide a brief overview of the institutional details that 

pertain to our sample period (May – April 2008). 

 

1.3.A. Institutional details 

Chi-X was launched on March 30th, 2007, when it started to offer trading in 

German and Dutch blue chips. Later the same year, trading was extended to 

the largest British (June 29th), French (September 28th), and Swiss 

(November 23rd) equities. Several other European markets were added 

subsequently, and starting in late 2008, the spectrum of available stocks was 

extended to mid-caps. As of November 2010, almost 1,400 stocks from 15 

European countries could be traded on Chi-X. According to Fidessa4, Chi-

X’s market share during the first six months of 2010 exceeded 20% for 

Belgian, Dutch, French, German, and British blue chips.  

 

Like virtually all European stock markets, Chi-X is organized as a 

continuous, fully electronic limit order market (LOM). During trading hours, 

participants can continuously submit, revise and cancel limit and market 

orders. Non-executed limit orders are stored in the limit order book, and 

incoming market orders execute against those. Trading is fully anonymous, 

both pre- and post-trade.  

 

                                                
4 See http://fragmentation.fidessa.com. 

http://fragmentation.fidessa.com
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Chi-X offers a very simple fee structure, which is asymmetric (a so-called 

make/take fee scheme): Passive executions (limit orders) receive a rebate of 

0.2 bps, while aggressive executions (market orders) are charged 0.3 bps. 

Therefore, the platforms overall revenue per trade amounts to 0.1 bps. In the 

US market, these make/take fee schemes have proven key to success for the 

ECNs.  

 

As opposed to Chi-X, the Primary Markets under consideration in this 

chapter (Euronext Paris and Deutsche Boerse’s Xetra) do not distinguish 

between active and passive executions, i.e. their fee structures are symmetric. 

Euronext charges €1.20 plus 0.055 bps per executed order, which amounts 

to 0.455 bps for an average trade size of ~€30,000 (see Table A.2). Xetra 

charges 0.552 bps per trade (subject to a minimum charge of €0.69 with a 

cap at €20.70), which is somewhat more expensive for the average trade size 

but cheaper for smaller trades. Both exchanges offer different rebate 

schemes for particularly active members subject to minimum activity 

charges. Overall, the transaction fees in both Primary Markets are relatively 

similar and significantly exceed those on Chi-X, particularly for orders 

providing liquidity5. 

 

Besides charging considerably lower fees, Chi-X distinguishes itself from the 

Primary Markets in several other aspects. Most prominently, the MTF 

specifically targets high frequency traders via an ultra-low system latency, 

which according to the platform6 is “up to ten times faster than the fastest 

European primary exchange”. Moreover, Chi-X offers a wider range of 

admissible order types such as hidden and pegged orders. While the first 

                                                
5 Both Xetra and Euronext have designated market makers that are committed to 
maintain a minimum spread and a certain depth for individual stocks. Those market 
participants are usually exempt from transaction fees. 
6 “Chi-X celebrates its first anniversary”, Chi-X press release, 07.04.2008 
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order type is completely invisible until executed7, the latter type is a limit 

order where the limit price is “pegged” to a reference price, e.g. the best bid 

in the Primary Market, and is updated continuously. Finally, at the time of 

our sample (April-May 2008), Chi-X facilitated the undercutting of Primary 

Markets’ quotes by offering a lower tick size for most securities. The entry of 

additional MTFs triggered a race for lower tick sizes in early 2009, which was 

ended with an agreement brokered by the Federation of European Securities 

Exchanges (FESE), after which the MTFs adopted the tick sizes used by the 

respective Primary Market.   

 

While Chi-X only offers trading in a continuous LOM, both Xetra and 

Euronext additionally hold call auctions to set the opening and closing 

prices. Xetra also has an intraday call auction at 13:00 CET, which 

nevertheless generates only negligible trading volume except on days where 

derivative contracts expire (see Hoffman and van Bommel (2010)). 

Moreover, unlike Chi-X, the Primary Markets have a fixed set of rules that 

triggers an automatic call auction in times of extreme price movements (so-

called volatility interruptions).   

 

1.3.B. Data and preliminary analysis 

Chi-X Ltd. generously provided us with a very detailed dataset for the 

months of April and May 2008, comprising a total of 43 trading days. The 

data contains information on the entire order traffic generated during this 

period, listing limit order additions, cancellations/modifications as well as 

trades separately. Timestamps are rounded to the nearest millisecond. From 

this data, we reconstruct the entire limit order book as well as the best bid 

and offer (BBO) at each point in time. Data for trades and quotes of French 

and German stocks on their respective Primary Markets (Euronext and 

                                                
7 Hidden orders usually must meet minimum size requirements under MiFID. 
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Xetra) during the corresponding time period was obtained from Reuters. 

Again, timestamps are rounded to the nearest millisecond. While the Chi-X 

data always contains a qualifier that tells us whether a market order was a buy 

or a sell, we sign trades on the Primary Markets using the Lee and Ready 

(1991) algorithm. As opposed to trades in a dealer market such as the NYSE, 

the risk of order misclassification is very small in a pure limit order book. 

Merging the BBO data from Chi-X and the Primary Markets, we obtain the 

European Best Bid and Offer (EBBO). We restrict our analysis to the 

continuous trading phase, which spans the time between 9:00 and 17:30 

CET. 

 

At the time of our sample, Chi-X was the only existing MTF and only 

offered trading in blue chips, such that our analysis is limited to the 

constituents of the CAC40 and DAX30 indices. We drop three French 

stocks (Arcelor, EADS and Dexia) from our sample as they are 

simultaneously traded on other European markets (Amsterdam, Frankfurt, 

and Brussels, respectively), such that our final sample comprises of 67 

stocks.  

[Insert Table A.1 and Table A.2 about here] 

 

Table A.1 lists the stocks contained in our sample, while Table A.2 contains 

summary statistics on the trading activity during our sample period. Overall, 

trading on Chi-X accounts on average for 5.95% of total trading volume, or 

12.31% in terms of trades. Consequently, the average trade size on the 

Primary Markets (€28,990) is more than twice as large as the average 

transaction value on Chi-X (€12,620). This is in line with Chi-X being largely 

dominated by algorithmic traders, who have been shown to employ much 

smaller trade sizes than human traders (see e.g. Hendershott and Riordan 

(2009)). Moreover, it is consistent with small orders being particularly cheap 
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to execute on the MTF due to the Primary Markets’ minimum fixed fees per 

order (see Section 1.3.A).  

 

We also report the results for terciles based on stocks’ average trading 

volume. Chi-X has a considerably larger market share (both in terms of 

trades and traded value) for the most active stocks, which is consistent with 

the evidence presented in Hengelbrock and Theissen (2009) for the 

Turquoise MTF. 

 

Panel A of Table A.3 contains statistics about the quality of Chi-X’s quotes. 

The MTF is frequently present at the EBBO (around 49% for either bid or 

ask), and often even improves on the Primary Markets’ quotes (ca. 26% for 

bid or ask). Nevertheless, the frequency with which the MTF is 

simultaneously present at both sides of the inside quote (alone) is 

considerably lower with approximately 24% (7%), indicating that the activity 

on Chi-X is often restricted to one side of the market. While the Primary 

Markets are naturally present at the inside quote more often, they frequently 

face competition for at least one side of the market as they only spend 

roughly 26% of the time alone at the EBBO. Investigating the individual 

terciles, one can see that the MTF’s quote competitiveness is somewhat 

higher for more active stocks, which is in line with the higher market shares 

in those stocks.  

[Insert Table A.3 about here] 

 

Panel B of Table A.3 reports the average available market depth for each 

trading venue conditional on being present at the inside quote. Overall, the 

available depth in the Primary Markets is roughly three times the depth on 

Chi-X, which may in part explain the observed cross-market differences with 

respect to the average trade size. Nevertheless, the MTF displays 

considerable depth for its quotes. 
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Based on its presence at the best quotes, Chi-X’s market share (in terms of 

trades or trading volume) seems strikingly low. This is consistent with the 

market access friction in our model, which forces captive traders to trade in 

the Primary Market irrespectively of the quotes prevailing elsewhere. In 

order to quantify this friction, we follow Foucault and Menkveld (2008), who 

suggest estimating the proportion of smart routers (θ ) by the percentage of 

trades being executed on Chi-X conditional on the Primary Market offering a 

strictly worse quote. We additionally require that the depth on the MTF is 

sufficient to get the order filled entirely because it is natural to assume that 

traders take quantities into account when deciding on where to route their 

orders. Given that Chi-X offers a considerably lower market depth on 

average, some agents may avoid splitting up their orders and therefore prefer 

the Primary Market. This will particularly be the case if the marginally better 

price on the MTF is only available for a small fraction of the total order size. 

 

The results in Table A.4 (first column) strongly confirm the importance of 

imperfect order routing. Conditional on Chi-X offering a better quote with 

sufficient depth, every second order is still executed in the Primary Market, 

such that the proportion of smart routers is roughly 50%. Interestingly, the 

routing friction varies little across the different activity terciles, which is in 

contrast to the results in Foucault and Menkveld (2008), who report a 

marked drop in smart order routing once moving beyond the most active 

stocks.  

[Insert Table A.4 about here] 

 

An additional item of great interest is the tie-breaking rule assumed in the 

theoretical model of Section 1.2. Given the data at hand, we can actually 

compute an estimate of the tie-breaking rule, again following Foucault and 

Menkveld (2008). In particular, the probability of a trade occurring on the 
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Primary Market conditional on equal quotes across venues and sufficient 

depth on Chi-X to fill the order completely is equal to 

(1 )π θ θτ= − +  

where θ  is the proportion of smart routers and τ  denotes the parameter of 

the tie-breaking rule. This equation simply states that all captive traders plus 

a fraction τ  of the smart routers will trade on the Primary Market in the case 

of a tie, while the remaining agents trade on Chi-X. The last two columns of 

Table A.4 contain the estimates for the proportion of trades executing in the 

Primary Market under an inter-market tie (π ) and the tie-breaking rule (τ ) 

for the entire sample as well as the individual terciles. We find that our 

assumption regarding the tie-breaking rule in Section 1.2 is clearly confirmed, 

as we cannot reject the null hypothesis that τ  is equal to zero, indicating that 

smart routers always choose to trade on Chi-X if it at least matches the 

quotes in the Primary Market. Given that Chi-X charges lower fees for 

market orders (except for very large orders), this result is not very surprising. 

 

1.4. Estimating differences in informed trading 

The implications of our model from Section 1.2 regarding market co-

existence crucially depend on whether or not informed traders are more 

likely than noise traders to have access to the alternative trading platform (i.e. 

Chi-X). It is important to notice that traders’ routing abilities directly 

translate into the adverse selection risk faced by market makers and the price 

impact of trades. We can therefore filter out the relevant case for our setting 

by testing for differences in informed trading between Chi-X and the 

Primary Markets.  
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1.4.A. Effective spread decomposition 

One of the most widely used measures for the assessment of trading costs is 

the percentage effective half-spread, which is defined as  

 t t
t t

t

p mES q
m
−

=  (1.2) 

where tp denotes the transaction price at time t, tm is the contemporaneously 

prevailing EBBO mid-quote, and tq  is a trade direction indicator that takes 

the value of 1 for buys and -1 for sells. Compared to the quoted spread, this 

measure has the advantage that it measures trading costs only at the actual 

time of a trade, taking into account that liquidity demanders will attempt to 

time the market and trade when the bid-ask spread is relatively narrow.  

 

Besides its simplicity, this measure has the additional advantage that it can be 

decomposed into an adverse selection (price impact) component  

 t t t
t t

t

m mAS q
m

+∆ −
=  (1.3) 

and an order processing component, usually termed realized half-spread 

 t t t
t t

t

p mRS q
m

+∆−
=  (1.4) 

where t tm +∆  is the mid-quote t∆ minutes after the transaction, the time at 

which the market maker is assumed to cover her position. While these 

measures constitute extreme simplifications of reality (e.g. trades between t 

and t t+ ∆ are ignored), they have become a benchmark for assessing trading 

costs. Moreover, this spread decomposition also allows us to compare 

market maker revenues before transaction fees across markets through the 

realized spread. 

 

For both markets, we calculate all three measures for each stock and trading 

day and then calculate averages across stock-days for the separate activity 
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terciles. Given that even the least active stocks in our sample have a 

considerable trading volume, this procedure delivers relatively conservative 

standard errors. Moreover, trade-weighted statistics would bias the results in 

favour of Chi-X, as it has a larger market share in the most active stocks, 

which generally exhibit lower effective spreads. In all calculations, we 

exclude trades that occur when the market is locked or crossed, i.e. when the 

EBBO spread is non-positive (see Shkilko et al. (2008)). Nevertheless, 

including these observations does not alter the results qualitatively. 

 

The results are listed in Table A.5. Overall, trading on Chi-X is not cheaper 

before fees: Across all stocks and days, the effective spread on Chi-X 

averages 2.67 bps, compared to 2.64 bps in the Primary Market (Panel A). 

The difference of 0.03 bps is very small in economic terms (roughly 1%) and 

statistically insignificant. Given that Chi-X charges lower fees for market 

orders (except for very large trade sizes, see Section 1.3.A), the difference in 

effective spreads can be expected to be slightly negative net of fees. Exact 

calculations are not possible because participants in the Primary Markets may 

be granted rebates depending on their trading activity. Overall, the results 

suggest that trading on Chi-X is at most marginally cheaper than on the 

Primary Markets net of fees. 

 

[Insert Table A.5 about here] 

 

Nevertheless, a look at the spread decomposition8 (Panels B and C) reveals 

important differences between both markets. Chi-X displays a significantly 

larger adverse selection component (2.68 bps compared to 2.27 bps), but 

markedly lower realized spreads (-0.01 bps vs. 0.37 bps). Importantly, the 

differences are both statistically and economically very significant. Liquidity 

                                                
8 We set ∆t = 5 minutes. Setting the interval to 15 or 30 minutes delivers 
qualitatively similar results. 
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providers on Chi-X are exposed to a much greater adverse selection risk, 

while their gross revenues are essentially equal to zero. Nevertheless, as Chi-

X grants a 0.2 bps rebate per executed limit orders, they still net a small 

profit after fees. Given that liquidity providers on the Primary Markets face a 

positive transaction fee9, market makers’ revenues appear to be very similar 

across markets. Additionally, the fact that revenues from liquidity provision 

are very close to zero indicates a very competitive market. 

 

Overall, the effective spread decomposition clearly suggests that liquidity 

providers on Chi-X face a higher adverse selection risk. This result appears 

very robust as it holds across all activity terciles, and we observe a higher 

price impact on Chi-X for all but three stocks10 (these negative differences 

are not statistically different from zero). Moreover, the realized spreads 

nicely illustrate that the liquidity rebate on the MTF helps market makers to 

sustain this excess risk.  

 

In our model, cross-market differences in adverse selection risk arise because 

the proportion of informed traders differs between smart routers and captive 

traders. While a higher price impact for orders executed on Chi-X indicates 

that smart routers are more likely than captive traders to be informed 

( I Uθ θ> or equivalently SRµ µ> ), it also implies that we should observe a 

lower price impact for trade-throughs, as those stem exclusively from less 

informed captive traders ( CTµ µ< ). In order to verify this, we separate the 

Primary Market trades into trade-throughs and non-trade-throughs and 

calculate the effective spread decomposition for both types of transactions.  

 

[Insert Table A.6 about here] 

                                                
9 Except for designated market makers. 
10 For the sake of parsimony, we do not report the results for individual stocks 
(available upon request). 
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The results in Table A.6 strongly confirm that trades violating inter-market 

price priority are more likely to stem from uninformed traders than 

transactions that occur while the Primary Market is at the inside quote. The 

estimated average price impact of a trade-through is 0.91 bps, which is less 

than half of the 2.39 bps price impact of non-trade-throughs. Naturally, 

trade-throughs display a significantly larger effective spread (4.53 bps), as 

they leave money on the table by trading through a better available quote. 

Paired with the lower price impact, this boosts the realized spread (3.62 bps), 

which is pocketed by the market maker. Overall, these results indicate that 

the observed excess adverse selection risk on Chi-X is driven by the absence 

of mainly uninformed captive traders. 

 

1.4.B. Hasbrouck’s structural VAR 

In a seminal contribution, Hasbrouck (1991) suggests a structural VAR 

model to estimate the permanent price impact of a trade. Since then, this 

measure has emerged as one of the most frequently employed procedures in 

the empirical market microstructure literature. The basic idea behind 

Hasbrouck’s model is that there exists a dynamic linear relationship between 

price (quote) changes and trades, where current trades have an impact on 

current and future price changes, while current price changes can only trigger 

future trades. In our context, the model can be written as 

 
1 0 0

K K K
P C r

t i t i i t i i t i t
i i i

r a r b x c x ε− − −
= = =

= + + +∑ ∑ ∑  (1.5)  
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K K K
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t i t i i t i i t i t

i i i
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= + + +∑ ∑ ∑  (1.6)  

 
1 1 1

K K K
C P C C
t i t i i t i i t i t

i i i

x g r h x i x ε− − −
= = =

= + + +∑ ∑ ∑  (1.7) 
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where tr  denotes log changes in the EBBO mid-quote and the 
k
tx , 

{ },k P C∈  are discrete variables that take the value of 1 for a buy, -1 for a 

sell, and 0 otherwise. As detailed by Hasbrouck (1991), the discrete nature of 

the k
tx  does not constitute any obstacle for the structural VAR. We estimate 

the model in tick time, such that trades across markets are necessarily 

uncorrelated11, and truncate the VAR after 10 lags12. At the beginning of 

each trading day, all lags are set to zero. To judge the long-term (permanent) 

price impact of a trade, the VAR is inverted to obtain the VMA 

representation 

 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

r
t t
P P
t t
C C
t t

r A L B L C L
x D L E L F L
x G L H L I L

ε
ε
ε

    
    =     

        

 (1.8) 

where A(L) – I(L) are lag polynomials. This is the impulse response function, 

and the long-term price responses to an unexpected trade in either market 

are given by the coefficient sums 
0

P
i

i

PI B
∞

=

= ∑  and 
0

C
i

i

PI C
∞

=

= ∑ .  

 

[Insert Table A.7 about here] 

 

Table A.7 contains the permanent price impacts for both markets (impulse 

responses are truncated after 20 periods), where we again report stock-day 

averages for the entire sample and the activity terciles. The results are in line 

with those from the effective spread decomposition. On average, the 

permanent price impact of a trade on Chi-X amounts to 1.86 bps, compared 

to 1.61 bps for Primary Market trades. The difference is statistically 

significant at the 1% level. As in the previous section, we observe a higher 

                                                
11 Estimating the model with data aggregated to 5-second intervals delivers 
qualitatively similar results but requires placing upper and lower bounds on a venue’s 
price impact as the order flows are no longer uncorrelated. 
12  The inclusion of additional lags does not alter our conclusions. 



 23

price impact on Chi-X for each activity tercile, which underlines the 

robustness of our findings. For individual stocks, we find a higher price 

impact for Primary market trades in only 6 cases, and none of these 

differences are statistically significant13. Overall, these results provide further 

evidence for liquidity providers facing a higher adverse selection risk on Chi-

X. 

 

In order to check whether the difference in adverse selection across markets 

is indeed due to captive traders being mainly uninformed, we modify the 

VAR from equations (1.5) – (1.7) and split the Primary Market order flow 

into trade-throughs and non-trade-throughs. This results in the following 

VAR system  

 , ,
,
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P NTT P TT C
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where ,P TT
t ix −  and ,P NTT

t ix −  refer to Primary Market order flow due to trade-

throughs and non-trade-throughs, respectively. Table A.8 reports the 

permanent price impacts obtained from the corresponding VMA 

representation. The results are qualitatively similar to those obtained from 

the effective spread decomposition. The permanent price impact of a trade-

through is 0.44 bps, which is significantly lower than 1.72 bps impact of a 

non-trade-through, with a t-statistic of around 15. This supports the view 

that market makers on Chi-X face a higher adverse selection risk precisely 

                                                
13 The results for individual stocks, which we do not report for brevity, are available 
upon request.  
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because their quotes are not exposed to the relatively uninformed captive 

traders. 

[Insert Table A.8 about here] 

 

1.4.C. PIN 

Given our theoretical framework, the PIN model by Easley et al. (1996b) is a 

natural choice for assessing differences in informed trading between Chi-X 

and the Primary Markets. Nevertheless, a number of recent papers (e.g. 

Duarte and Young (2009) and Aktas et al. (2007)) have cast doubt on the 

model’s ability to capture the presence of informed traders. Moreover, it is 

well-known that the PIN model is subject to numerical problems, 

particularly for stocks with high trading activity (see e.g. Yan and Zhang 

(2010) and Easley et al. (2010)). In our case, these problems are additionally 

amplified by the relatively short sample (43 trading days) and the need to 

estimate additional parameters for a two-market PIN model as in Easley et 

al. (1996a) or Grammig et al. (2001). Consequently, we find that the 

numerical maximization of the likelihood function is not successful for most 

stocks in our sample. In Appendix A.3, we provide an alternative method for 

estimating differences in informed trading between two markets via the PIN 

model and present the associated results. 

 

1.5. Differences in adverse selection and Chi-

X’s quote competitiveness 

The results of the previous section suggest that trades on Chi-X carry more 

private information than those executing place in the Primary Markets. From 

the perspective of our theoretical model, this corresponds to the case where 

informed traders have a higher likelihood of being smart routers than captive 

traders (i.e. I Uθ θ>  or equivalently SRµ µ> ). Recall from the discussion of 
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Proposition 1 in Section 1.2 that in this case, liquidity providers on Chi-X are 

only able to match the primary market’s quotes if their cost advantage from 

transaction fees (c) exceeds the excess adverse selection risk they face. 

 

In order to validate our model empirically, we adopt a cross-sectional 

perspective. According to Corollary 1, Chi-X’s presence at the inside quote is 

expected to decrease (weakly) in the adverse selection risk differential. As the 

empirical evidence suggests that the adverse selection risk differential is 

positive for almost all stocks, we actually expect to observe a strictly negative 

relationship. 

 

We begin by calculating, for each stock, the fraction of time during which 

Chi-X is present at the EBBO, taking the average of both sides of the 

market14. We then regress this measure of Chi-X’s quote competitiveness on 

measures that capture the difference in adverse selection across trading 

venues and additional control variables, i.e. we estimate the cross-sectional 

regression 

 [ ]0 1_ _ 1 ( )i i i iEuronextChi at best AS Xα α γ φ ε′= + + ∆ + +  (1.13) 

where [ ]1 Euronext  is an indicator variable that takes the value of 1 if the stock is 

listed on Euronext and 0 otherwise, iAS∆  denotes the excess adverse 

selection risk on Chi-X for stock i, and iX  is a vector of control variables. 

 

We employ three different variables in order to quantify the excess adverse 

selection risk on Chi-X. The first two are the stock-specific cross-market 

differences of the price impact measures from Sections 1.4.A and 1.4.B, 

denoted SD
iAS∆  and HB

iAS∆ , respectively. For the third variable, we ignore 

any cross-sectional variation in the proportion of informed traders and 

                                                
14 Considering only one side of the market (either bid or ask) delivers qualitatively 
similar results. 
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simply proxy ( )( )SR V Vµ µ− −  by iσ , which denotes annualized return 

volatility based on closing prices for the calendar year prior to our sample 

period. Table A.9 contains the cross-sectional correlation matrix of our three 

explanatory variables. Unsurprisingly, we find a strong cross-sectional 

correlation of 0.63 between SD
iAS∆  and HB

iAS∆ . More interestingly, both 

measures are highly correlated with stock price volatility (between 0.42 and 

0.45), which indicates that all three variables are picking up similar effects.  

 

[Insert Table A.9 about here] 

 

We include a number of control variables that we expect to influence Chi-

X’s presence at the best quote.  

 

While we have not incorporated the effect of tick sizes in our model for 

tractability reasons, it is known that a discrete pricing grid leads to rounding 

errors and therefore artificially inflates the bid-ask spread (see e.g. Harris 

(1994)). As a consequence, we expect Chi-X’s quote competitiveness to 

increase in the tick size differential15, which we define as the average16 

difference in tick sizes (Primary market minus Chi-X) for stock i scaled by 

the stock’s average transaction price. We furthermore include the proportion 

of smart routers as a control variable in order to disentangle our story from 

that of Foucault and Menkveld (2008). Additionally, we also control for the 

log of trading volume and a stock’s return synchronicity (based on the R-

                                                
15 For some stocks, the difference in tick sizes is considerable. For example, during 
most of the sample, the tick size for Infineon is €0.01 on Xetra, compared to €0.001 
on Chi-X. Given the stock’s low price level (below €10), the bid-ask spread on the 
Primary Market is frequently equal to the tick size. Consequently, Chi-X is 
particularly attractive for trading in this stock as it allows the placement of orders 
within the primary quotes. A few days before the end of the sample period, 
Deutsche Börse reduced the tick size to €0.005.  
16 A total of 9 stocks experience a change in tick sizes during our sample period, all 
of them corresponding to a reduction in the Primary Market tick size. One stock 
(STMicroelectronics) experiences two changes. 
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Square of a market model regression17). While trading volume is simply a 

variable outside our model, the results in Hengelbrock and Theissen (2009) 

suggest that trading in more active stocks has a higher tendency to fragment. 

Return synchronicity may capture effects of algorithmic traders, which often 

engage in index arbitrage trades and have been shown to be particularly 

quick in reacting to “hard” information (Jovanovic and Menkveld (2010)).  

 

[Insert Table A.10 about here] 

 

The coefficient estimates are listed in Table A.10. As predicted by our model, 

the results indicate that an increase in the adverse selection risk differential is 

associated with Chi-X being less frequently at the inside quote. The 

coefficients on SD
iAS∆ , HB

iAS∆  and iσ  are all negative and strongly 

significant (t-statistics ranging from 3.3 to 8.2). Importantly, the observed 

effects are also economically important. For example, a one standard 

deviation increase in SD
iAS∆  (~0.37 bps) is associated with a decrease of 

around 4.35% in Chi-X’s presence at the inside quote. The other variables 

have marginal effects of similar magnitude (7.07% and 3.95% for HB
iAS∆  

and iσ , respectively). 

 

All control variables carry the expected sign. Particularly the difference in 

tick sizes across venues plays an important role for Chi-X’s quote 

competitiveness. Increasing the tick size differential by one standard 

deviation (~2.2 bps) leads Chi-X’s presence at the best quote to increase by 

7-11%, depending on the specification. Different from Foucault and 

Menkveld (2008), we find that the proportion of smart routers is not 

significantly related to Chi-X’s quote competitiveness. This is likely due to 
                                                
17 We use the transformation 2 2ln( /(1 ))SYNCH R R= − , see e.g. Teoh et al. (2009). 
Market model regressions are estimated using 1 year of daily data prior to our sample 
period. 
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the fact that exchanges do not charge any fees for order submission, which is 

an important feature of their model and data. For the other control variables, 

we find that both higher trading volume and higher return synchronicity are 

associated with Chi-X being at the inside quote more frequently. Finally, 

there is some weak evidence for Chi-X offering worse quotes in stocks listed 

on Euronext. This may be due to the staggered entry of the MTF across 

countries. While Chi-X entered the German market roughly one year before 

the start of our sample period, it did not offer trading in French stocks until 

half a year later.  

 

While our theoretical model is strictly speaking about quotes, it has very 

similar implications regarding Chi-X’s actual market share. Given a fixed 

number of trading rounds, a higher excess adverse selection risk leads to less 

trade on Chi-X after controlling for the proportion of smart routers. We 

therefore re-estimate equation (1.13), but replace Chi-X’s presence at the 

best quote with the MTF’s market share in terms of trades. The results 

(Table A.11) are very similar than the results for quotes. All variables 

capturing the adverse selection risk differential are negative and statistically 

significant. Again, the economic effects are substantial. For example, a one 

standard deviation increase in SD
iAS∆  is associated with an increase of 

1.10% in Chi-X’s market share. Unsurprisingly, the explanatory effect of the 

proportion of smart routers is strongly significant. The coefficients on the 

remaining control variables are, by and large, similar to the results using Chi-

X’s presence at the inside quote. 

 

[Insert Table A.11 about here] 

 

Overall, the cross-sectional evidence suggests that Chi-X’s competitiveness is 

significantly hampered by excess adverse selection risk. These findings 

strongly support our theoretical model. 
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1.6. Conclusion 

Motivated by the current regulatory framework in Europe set forth under 

MiFID, we analyze how adverse selection risk and transaction fees interact in 

a fragmented financial market where trade-throughs are not prohibited. We 

argue that liquidity providers on alternative trading platforms will be subject 

to an increased adverse selection risk if informed traders are more likely to 

have access to this market via a smart order routing system. Consequently, 

the Primary Market will dominate (display better quotes) most of the trading 

day despite charging higher transaction fees. We formalize this argument 

with an extension of the Glosten and Milgrom (1985) sequential trade model. 

 

The analysis of a recent sample of transactions and quote data for German 

and French stocks reveals that liquidity providers on Chi-X (a recently 

launched trading platform) face a significantly greater adverse selection risk. 

Moreover, trade-throughs that execute “by default” in the Primary Markets 

are particularly uninformed. In line with our theoretical model, we find a 

negative relationship between the excess adverse selection risk and Chi-X’s 

presence at the inside quote. Moreover, our view is additionally supported by 

anecdotal evidence from Primary Market outages.  

 

Our findings have some implications for the design of best execution 

policies. Allowing for trade-throughs favors the Primary Markets by ensuring 

that the least informative order flow does not reach the MTFs, thereby 

hampering liquidity provision on these platforms due to an increased adverse 

selection risk. Our findings suggest that protecting orders from trade-

throughs in the spirit of RegNMS may foster competition between trading 

venues as it helps to level the playing field.  

 

There are some interesting avenues for future research. In our theoretical 

analysis, we have taken exchanges’ transaction fees and investors’ routing 
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technologies as given. This choice follows from noise traders’ willingness to 

trade at any price and the assumption that agents do not have the chance to 

trade multiple times. Clearly, a more realistic model would aim to determine 

these variables endogenously. 
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2. ALGORITHMIC TRADING IN A DYNAMIC LIMIT 

ORDER MARKET 

2.1. Introduction  

In recent years, the number of financial market transactions taking place 

without any human intervention has increased dramatically. Recent estimates 

suggest that algorithmic trading now accounts for more than 70% of the 

volume traded in US equity markets18. Many of these computer-driven 

trading strategies, generally dubbed as high-frequency trading, rely on the 

execution of a vast number trades within a very short time, spurring an arms 

race within the financial industry for the most sophisticated technology in an 

effort to be faster than the competition.  

 

The rise of algorithmic trading is being accompanied by a heated debate 

among financial economists, practitioners, and regulators about the pros and 

cons of the increasing computerization of the trading process. While 

proponents argue that technology increases market efficiency via improved 

liquidity19, critiques claim that high-frequency traders (HFT) make profits at 

the expense of other market participants and have the potential to destabilize 

markets20.  

 

This chapter contributes to this debate by presenting a model of trading in a 

limit order market with two types of agents, fast algorithmic traders (ATs) 

and slow human traders (HTs). While limit orders potentially enable traders 

to lower their execution costs by earning instead of paying the bid-ask 
                                                
18 See Financial Times, “High-frequency trading under scrutiny”, July 28th, 2009. 
19 See e.g. Optiver, “High Frequency Trading”, Position Paper, 2011, 
http://fragmentation.fidessa.com/wp-content/uploads/High-Frequency-Trading-
Optiver-Position-Paper.pdf 
20 See SEC Chairman Mary Schapiro's speech in front of the Security Traders 
Association "Remarks Before the Security Traders Association",  
www.sec.gov/news/speech/2010/spch092210mls.htm.  

http://fragmentation.fidessa.com/wp-content/uploads/High-Frequency-Trading
http://www.sec.gov/news/speech/2010/spch092210mls.htm
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spread, they may become stale upon the arrival of new information unless 

being updated or cancelled in a timely fashion (Copeland and Galai (1983)). 

Consequently, the use of sophisticated computer programs that enable the 

continuous monitoring and updating of limit orders may reduce this risk of 

being “picked off” substantially.  

 

In order to model such usage of automated trading in a tractable way, we 

propose an extension of Foucault’s (1999) dynamic limit order market. In the 

original model, traders face the mentioned risk of being picked off in the 

case of adverse price movements (also called the winner’s curse), as they are 

not able to cancel or revise their limit orders. We classify these agents as HTs 

and introduce a new type of trader, ATs. While the use of cutting edge IT 

technology facilitates the monitoring of limit orders and allows for fast 

reactions to changing market conditions, it only constitutes an advantage 

over those market participants that do not have this technology. In other 

words, ATs exert a negative externality on each other. To capture this idea in 

the most parsimonious way, we assume that ATs may revise/cancel their 

limit orders after the arrival of new public information, but only in case the 

next arriving agent is a HT. We analyze the equilibrium in this dynamic limit 

order market and compare it to the baseline case without ATs studied by 

Foucault (1999). Our findings are as follows.  

 

First, algorithmic trading may lead to both increases and decreases in trading 

volume, depending on the magnitude of the winner’s curse problem. If the 

volatility of the fundamental asset value is high, HTs engage in order shading 

due to the risk of being picked off. ATs may avoid this order shading when 

trading with HTs due to their ability to revise limit prices after news arrivals, 

which leads to an increase in trading volume. On the other hand, HTs do 

not engage in any order shading for low levels of fundamental volatility in 

the absence of ATs. But given their comparative advantage at posting limit 
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orders, ATs are not willing to accept the same quotes as HTs when using 

market orders. Thus, if the proportion of ATs is low, it can be optimal for 

HTs to post limit with a lower execution probability, leading to a decrease in 

trading volume. 

 

Second, the introduction of algorithmic trading decreases HTs’ expected 

profits when trading via limit orders. Given ATs’ higher outside option (due 

to their ability to cancel/revise limit orders), HTs either need to post more 

aggressive quotes in order to make them attractive for ATs (otherwise it is 

optimal for them to submit a limit order), or accept a lower execution 

probability by posting limit orders only aimed at HTs. Although the second 

choice allows them to submit lower bids and higher asks than in the absence 

of ATs, the net effect on their expected profits from limit orders is always 

negative. 

 

Third, the expected trading costs of HTs when using market orders may 

increase or decrease with the introduction of algorithmic trading. On the one 

hand, the quotes posted by ATs always reflect the latest fundamental 

information once they are encountered by HTs, rendering a relatively high 

trading cost for market orders. On the other hand, HTs may benefit from 

the increased aggressiveness of other HTs’ limit orders, which are also 

directed at ATs. Nevertheless, this effect diminishes as the proportion of 

ATs increases and their comparative advantage shrinks, such that HTs’ 

trading costs fall below the level that obtains in the absence of ATs.  

 

We close our analysis by examining traders’ welfare. We show that if 

algorithmic trading is widespread, HTs are strictly worse off than under no 

algorithmic trading. Additionally, even low levels of algorithmic trading have 

a detrimental effect on HTs’ welfare in most cases, as the potentially lower 

costs for market orders do not fully compensate the decrease in expected 
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gains from limit orders. Nevertheless, for some intermediate values of 

volatility, a low level of algorithmic trading can increase HTs’ welfare, as it 

induces HTs to post limit orders with a higher execution probability and 

only marginally affects the profits for human limit order traders. 

 

Our work is closely related to several recent studies concerning the impact of 

algorithmic trading on market performance and investor welfare. An 

excellent and comprehensive overview can be found in Biais and Woolley 

(2011). Jovanovic and Menkveld (2010) study the emergence of competitive 

middlemen that intermediate between early limit order traders and late 

market order traders. Similar to our findings, these middlemen may increase 

or reduce trade by either solving or creating an adverse selection problem. In 

Biais et al. (2010b), algorithmic trading helps to reap gains from trade by 

facilitating the search for trading opportunities, but at the same time 

increases adverse selection for slow traders. In equilibrium, investment in 

algorithmic trading is above its social optimum. Finally, Cartea and Penalva 

(2011) propose a model where their increased speed allows HFT to impose a 

haircut on liquidity traders, which increases trading volume and price 

volatility, but lowers the welfare of liquidity traders. 

 

There are several empirical studies of algorithmic trading. Hendershott et al. 

(2011) use the introduction of NYSE’s autoquote system as an exogenous 

instrument and show that algorithmic trading causally improves liquidity. 

Brogaard (2010) and Hendershott and Riordan (2009) study proprietary 

datasets that allow them to distinguish between HTs and ATs, and both 

report that ATs contribute substantially to price discovery and market 

liquidity. The former paper additionally confirms the finding by Chaboud et 

al. (2009), that trading strategies by ATs are more correlated than those of 

HTs. The results in Hendershott and Riordan (2009) additionally indicate 

that algorithmic traders are more informed than humans and manage to time 
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their trades as to demand (supply) liquidity when it is cheap (expensive). 

Menkveld (2011) studies trading of a large HFT market maker in Dutch 

stocks and shows that this activity is highly profitable, particularly if 

positions are held for a very short time. Finally, Kirilenko et al. (2011) study 

the recent “flash crash” in U.S. equity markets and find that HFT may have 

exacerbated volatility during this brief liquidity crisis, although they are not 

to blame for the crash itself. 

 

This chapter is organized as follows. Section 2.2 provides the setup of the 

model, while we solve for the equilibrium in Section 2.3. Section 2.4 analyzes 

this equilibrium, and Section 2.5 concludes. All proofs, tables and figures are 

relegated to Appendix B. 

 

2.2. A dynamic limit order market with fast 
algorithmic traders and slow human traders 

2.2.A. The Limit Order Market 

We consider an infinite-horizon21 version of Foucault’s (1999) dynamic limit 

order market. There is a single risky asset whose fundamental value follows a 

random walk, i.e. 

1 1t t tv v ε+ += +  

where the innovations can take values of σ+  and σ−  with equal probability 

and are independent over time.  Trading takes place sequentially at time 

points 1, 2,t = …  and the order size is fixed at one unit. In this model, 

                                                
21 This assumption is merely for convenience, as it simplifies the algebra and in 
particular the calculation of trader welfare in Section 2.4. Foucault (1999) derives a 
stationary equilibrium by assuming that the terminal date is stochastic, as the trading 
process stops after each period with constant probability 1 0ρ− > . While assuming 
an infinite horizon implies that the asset never pays off, it can be readily interpreted 
as the limiting case where 1ρ → . 
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trading arises due to differences in private values. Specifically, we assume 

that at time t ′ , the reservation price of a trader arriving at time t t ′≤  is 

given by  

t t tR v y′ ′= +  

which is the sum of the asset’s fundamental value and the time-invariant 

private valuation ty . We assume that this private valuation can take two 

values, hy L= +  and y L= −l , with equal probability, where 0L > . The y’s 

are independent and identically distributed across traders, and moreover 

independent from the asset value innovations. All traders are risk-neutral and 

maximize their expected utility. The utility obtained by an agent purchasing 

or selling the asset is given by  

( ) ( )t t t t tU y v y P q′ ′ ′= + −  

where t t′ ≥  denotes the time of the transaction, tP ′  is the transaction price, 

and tq ′  is a trade direction indicator that takes the value of +1 for buy 

transactions and -1 for sell transactions. The utility of an agent that does not 

trade is normalized to zero.  
 

Besides their private valuations, agents differ in their trading technology, 

denoted tθ . They can either be algorithmic traders (ATs, 1tθ = ) or human 

traders (HTs, 0tθ = ). Let [0,1]α ∈  denote the probability that an agent is 

an AT. Again, we assume that θ is identically distributed across traders and 

independent of y and ε. We will comment on the differences between ATs 

and HTs below. We call tθ  a trader’s type. 
 

Trading is organized as a limit order market. Consider a buyer (i.e. an agent 

with private valuation hy ). Upon his arrival, he can either a) submit a market 
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buy order or b) submit a buy limit order for one unit of the asset.22 We 

assume that he decides to submit a limit order if he is indifferent between 

both choices. Similarly, sellers choose between market and limit sell orders. 

All limit orders are valid for one period, i.e. they expire unless being executed 

by the following agent. 

 

In real life, agents face the risk of being picked off unless they are able to 

monitor their limit orders perfectly and revise them instantaneously after the 

arrival of new information (Foucault et al. (2003) and Liu (2009) study the 

cost of monitoring limit orders). Clearly, the use of sophisticated computer 

algorithms allows for a virtually continuous monitoring of outstanding limit 

orders and therefore reduces picking off risks. In order to model this 

difference between HTs and ATs in the most parsimonious way, we allow 

ATs to cancel/revise their limit orders after the arrival of new information 

(i.e. the realization of 1tε + ), but before the arrival of the next agent provided 

he is a HT. If the next trader is an AT as well, the order cannot be 

cancelled/revised. HTs can never cancel their orders. 

 

Let ( , )m m
t t ts A B=  denote the best bid and ask quote in the market. If there 

is no bid (ask) quote posted, we write m
tB = −∞  ( m

tA = ∞ ). Upon entering 

the market, a trader learns his type tθ  and private valuation ty , and observes 

the state of the limit order book ts  as well as the current fundamental value 

of the asset tv . Call ( , )t t tS s v=  the state of the market. 

                                                
22 Foucault (1999) assumes that traders always submit a buy and sell limit order, 
which is without loss of generality as limit prices can always be chosen such that 
limit orders have a zero execution probability. In fact, in equilibrium, the ask (bid) 
quotes of buyers (sellers) are never executed, such that we directly assume that 
buyers (sellers) only submit buy (sell) limit orders. 
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2.2.B. Payoffs 

Consider a buyer that arrives at time t when the state of the market is tS . If 

he chooses to submit a buy market order, his payoff is equal to  
,

, ( )B MO m m
t k t t tU A v L A= + −   { },k HT AT∈  

Instead, he can choose to submit a buy limit order. The expected payoff of a 

HT buyer submitting a buy limit order with bid price ,t HTB  is given by 

 ,
, , , 1 ,( ( )) ( ) ( )B LO B

t HT t HT t t HT Ex t t HTE U B B E v L Bη += + −  (2.1) 

where ,( )B
t t HTBη  denotes the execution probability of a buy limit order with 

bid price ,t HTB  and ( )ExE ⋅  is an expectation conditional on the execution of 

the respective limit order. Given that an AT may revise his limit order in case 

the next arriving trader is a HT, an AT buyer chooses three different bid 

prices, , , ,( , , )t AT t AT t ATB B Bσ σ− + , and his payoff is given by 

,
, , , , , 1 1 ,

, 1 1 ,

, 1 1 ,

( ( , , )) ( | 1) ( )
1(1 )[ ( | 0, )( )
2
1 ( | 0, )( )]
2

B LO B
t AT t AT t AT t AT t t AT t Ex t t AT

B
t t AT t t t t AT

B
t t AT t t t t AT

E U B B B B E v L B

B v L B

B v L B

σ σ

σ σ

σ σ

αη θ

α η θ ε σ σ

η θ ε σ σ

− +
+ +

+ +
+ +

− −
+ +

= = + −

+ − = = + + + −

+ = = − − + −

 (2.2) 

where the 1 1( | , )B
t t tη θ ε+ +⋅  denote execution probabilities conditional on the 

realization of next period’s trader type and asset value innovation. Similarly, a 

seller submitting a sell market order obtains  
,

, ( ) ( )S MO m m
t k t t tU B B v L= − −  { },k HT AT∈  

while the payoffs for HTs and ATs from posting sell limit orders with ask 

prices equal to ,t HTA  and , , ,( , , )t AT t AT t ATA A Aσ σ− +  , respectively, are given by 

 ,
, , , , 1( ( )) ( ) ( ( ))S LO S

t HT t HT t t HT Ex t HT tE U A A E A v Lη += − −  
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,
, , , , , 1 , 1

, 1 1 ,

, 1 1 ,

( ( , , )) ( | 1) ( ( ))
1(1 )[ ( | 1, )( ( ))
2
1 ( | 1, )( ( ))]
2

S LO S
t AT t AT t AT t AT t t AT t Ex t HT t

S
t t AT t t t AT t

S
t t AT t t t AT t

E U A A A A E A v L

A A v L

A A v L

σ σ

σ σ

σ σ

αη θ

α η θ ε σ σ

η θ ε σ σ

− +
+ +

+ +
+ +

− −
+ +

= = − −

+ − = = + − + −

+ = = − − − −

 

 

2.3. Equilibrium 

Let *
,t HTB  denote the optimal bid price chosen by a HT buyer that decides to 

place at limit order at time t. Thus, upon arrival, a HT buyer chooses 

between a) a buy market order at ask price m
tA  and b) a buy limit order with 

bid price *
,t HTB . We call his choice the HT buyer’s order placement strategy 

{ }*
,( ) ,B m

HT t t t HTO S b B∈ , where m
tb  denotes a market buy order at time t. 

Similarly, let * * *
, , ,( , , )t AT t AT t ATB B Bσ σ− +  be the optimal bid prices for an AT buyer 

that opts for limit orders when arriving at time t. He then chooses between 

a) a buy market order at ask price m
tA  and b) a buy limit order with bid price 

*
,t ATB , which, unless the next trader is an AT, is cancelled after the arrival of 

positive (negative) fundamental information and followed by the submission 

of a new buy limit order with bid price *
,t ATB σ+  ( *

,t ATB σ− ). Hence, 

{ }* * *
, , ,( ) ,( , , )B m

AT t t t AT t AT t ATO S b B B Bσ σ− +∈ . The choices of HT and AT sellers are 

completely symmetric, i.e. they choose between a) a market sell at m
tB  and b) 

limit sell orders with ask prices equal to *
,t HTA  and * * *

, , ,( , , )t AT t AT t ATA A Aσ σ− + , 

respectively, such that their order placement strategies are 

{ }*
,( ) ,S m

HT t t t HTO S s A∈  and { }* * *
, , ,( ) ,( , , )S m

AT t t t AT t AT t ATO S s A A Aσ σ− +∈ , where m
ts  

denotes a market sell. As in Foucault (1999) and Colliard and Foucault 

(2011), we focus on stationary Markov-perfect equilibria, which is natural 

because trader’s profits do not depend on the history of the game but only 

on the state of the market upon their arrival. 
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Definition: A Markov-perfect equilibrium of the limit order market consists 

of order placement strategies * ( )B
HTO ⋅ , * ( )S

HTO ⋅ , * ( )B
ATO ⋅  and * ( )S

ATO ⋅  such 

that, for each possible state of the market tS , i) * ( )B
HT tO S  ( * ( )B

AT tO S ) 

maximizes the expected utility of a HT (AT) buyer arriving in state tS  if all 

other traders follow the strategies * ( )B
HTO ⋅ , * ( )S

HTO ⋅ , * ( )B
ATO ⋅  and * ( )S

ATO ⋅  and 

ii) * ( )S
HT tO S  ( * ( )S

AT tO S ) maximizes the expected utility of a HT (AT) seller 

arriving in state tS  if all other traders follow the strategies * ( )B
HTO ⋅ , * ( )S

HTO ⋅ , 

* ( )B
ATO ⋅  and * ( )S

ATO ⋅ . 

 

Foucault (1999) elegantly shows that it is possible to characterize traders’ 

optimal decisions by means of cutoff prices that depend on a trader’s private 

valuation and the current fundamental value of the asset. The buy (sell) 

cutoff price is the highest (lowest) ask (bid) price at which an arriving buyer 

(seller) submits a market buy (sell) order instead of a buy (sell) limit order. 

Let * ( )LO
HT tV y  and * ( )LO

AT tV y  denote equilibrium expected profits from 

posting limit orders for HTs and ATs, respectively, that is 
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Then the buy and sell cutoff prices are given by 
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( ) ( , ) ( )

( ) ( , ) ( )

S LO
HT t t t t HT t
S LO
AT t t t t AT t

B LO
t t HT t t HT t

B LO
t t AT t t AT t

C v y v y V y

C v y v y V y
v y C v y V y
v y C v y V y

− + =

− + =

+ − =

+ − =
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Intuitively, the expected profits from submitting limit orders constitute an 

endogenous outside option for the arriving trader. Therefore, he will only 

submit a market buy (sell) order when the best available ask (bid) price is 

below (above) his cutoff buy (sell) price. The above system of equations can 

be solved for the equilibrium cutoff prices, which in turn give rise to traders’ 

equilibrium quotation strategy. 

 

The following proposition provides a closed-form characterization of the 

equilibrium quotation strategies. 
 
Proposition 1 (Equilibrium Quotes): 

For fixed parameters ( , , )Lα σ , there exists a unique Markov-perfect 

equilibrium. The type of equilibrium is as follows. 
 

Type 1: If *
1α α≤  and *

1σ σ≥ , equilibrium quotes are 

* *
, ,

* *
, ,

* *
, ,

* *
, ,

1 1(2 ) (2 )
5 5
1 1(2 ) (2 )
5 5
1 1(2 ) (2 )
5 5
8 (3 )(2 )

(5 )(4 )

t HT t t HT t

t AT t t AT t

t AT t t AT t

t AT t t AT t

B v L L A v L L

B v L L A v L L

B v L L A v L L

B v L L A v

σ σ

σ σ

α α
σ σ

α α
α α

σ σ
α α
α α

σ σ
α α
α α

σ σ
α α

+ +

− −

− −
= − − + = + + −

− −
− −

= + − + = + + −
− −
− −

= − − + = − + −
− −
− +

= − − + = + +
− +

8 (3 )(2 )
(5 )(4 )

L L α α
α α

− +
−

− +
 
The execution probabilities of buy limit orders are given by 

* * *
, 1 , 1 1( ) (1 )/ 4,  ( | 1) 1/ 4,  ( | 0, ) 1/ 2B B B

t HT t t AT t t t AT t tB B B ση α η θ η θ ε σ+
+ + += − = = = = + =

 

Type 2: If * *
1 2α α α< ≤  and *

4σ σ≥  or *
2α α<  and *

5σ σ≥ , equilibrium 

quotes are 

 

* *
, ,

* *
, ,

3 3(2 ) (2 )
7 3 7 3
1 1(2 ) (2 )
7 3 7 3

t HT t t HT t

t AT t t AT t

B v L L A v L L

B v L L A v L Lσ σ

α α
σ σ

α α
α α

σ σ
α α

+ +

− −
= − − + = + + −

+ +
+ +

= + − + = + + −
+ +
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* *
, ,

* *
, ,

1 1(2 ) (2 )
7 3 7 3
3 3(2 ) (2 )
7 3 7 3

t AT t t AT t

t AT t t AT t

B v L L A v L L

B v L L A v L L

σ σα α
σ σ

α α
α α

σ σ
α α

− −+ +
= − − + = − + −

+ +
− −

= − − + = + + −
+ +

 

The execution probabilities of buy limit orders are given by 
* * *
, , 1 , 1 1( ) 1/ 4,  ( | 1) 1/ 4,  ( | 0, ) 1/ 2B B B

t t HT t t AT t t t AT t tB B B ση η θ η θ ε σ+
+ + += = = = = + =

and *
, 1 1( | 0, ) 1/ 2B

t t AT t tB ση θ ε σ−
+ += = − = . 

 

Type 3: If *
1α α≤  and * *

3 1σ σ σ≤ <  or * *
1 2α α α< ≤  and * *

3 4σ σ σ≤ < , 

equilibrium quotes are 

* *
, ,

* *
, ,

* *
, ,

*
,

2 4 2 4(2 ) (2 )
6 6 6 6
2 4 2 8(2 ) (2 )
6 6 6 6
2 8 2 4(2 ) (2 )
6 6 6 6

t HT t t HT t

t AT t t AT t

t AT t t AT t

t AT t

B v L L A v L L

B v L L A v L L

B v L L A v L L

B v L

σ σ

σ σ

α α α α
σ σ

α α α α
α α α α

σ σ
α α α α
α α α α

σ σ
α α α α

+ +

− −

− − − −
= − + + = + − −

− − − −
− − − −

= − + + = + − +
− − − −
− − − −

= − + − = + − −
− − − −

= − +

*
,

8 (2 ) 20 (6 )(2 )
(6 )(4 ) (6 )(4 )

8 (2 ) 20 (6 )(2 )
(6 )(4 ) (6 )(4 )t AT t

L

A v L L

α α α α
σ

α α α α
α α α α

σ
α α α α

− + + −
−

− + − +
− + + −

= + − +
− + − +

 

The execution probabilities of buy limit orders are given by 
* * *
, , 1 , 1 1( ) (2 )/ 4,  ( | 1) 1/ 4,  ( | 0, ) 1/ 2B B B

t t HT t t AT t t t AT t tB B B ση α η θ η θ ε σ+
+ + += − = = = = + =

and *
, 1 1( | 0, ) 1/ 2B

t t AT t tB ση θ ε σ−
+ += = − = . 

 

Type 4: If *
2α α≤  and * *

2 3σ σ σ≤ < , equilibrium quotes are 

 

 

 

  
 

* *
, ,

* *
, ,

* *
, ,

*
,

2 4 2 4(2 ) (2 )
6 6 6 6
2 4 2 8(2 ) (2 )
6 6 6 6
2 8 2 4(2 ) (2 )
6 6 6 6

t HT t t HT t

t AT t t AT t

t AT t t AT t

t AT t

B v L L A v L L

B v L L A v L L

B v L L A v L L

B v L

σ σ

σ σ

α α α α
σ σ

α α α α
α α α α

σ σ
α α α α
α α α α

σ σ
α α α α

+ +

− −

− − − −
= − + + = + − −

− − − −
− − − −

= − + + = + − +
− − − −
− − − −

= − + − = + − −
− − − −

= − +

*
,

4 (2 ) 14 4(2 )
(6 )(2 ) (6 )(2 )

4 (2 ) 14 4(2 )
(6 )(2 ) (6 )(2 )t AT t

L

A v L L

α α α
σ

α α α α
α α α

σ
α α α α

+ − −
+

− + − +
+ − −

= + − −
− + − +
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The execution probabilities of buy limit orders are given by 
* * *
, , 1 , 1 1( ) (2 )/ 4,  ( | 1) 1/ 2,  ( | 0, ) 1/ 2B B B

t t HT t t AT t t t AT t tB B B ση α η θ η θ ε σ+
+ + += − = = = = + =

and *
, 1 1( | 0, ) 1/ 2B

t t AT t tB ση θ ε σ−
+ += = − = . 

 

Type 5: If *
2α α≤  and *

2σ σ<  or *
2α α<  and *

5σ σ< , equilibrium quotes 

are 

* *
, ,

* *
, ,

* *
, ,

*
,

1 4 1 4(2 ) (2 )
3 3(1 ) 3 3(1 )
1 1 3 1 5 3(2 ) (2 )
3 3(1 ) 3 3(1 )
1 5 3 1 1 3(2 ) (2 )
3 3(1 ) 3 3(1 )
1(2 )
3

t HT t t HT t

t AT t t AT t

t AT t t AT t

t AT t

B v L L A v L L

B v L L A v L L

B v L L A v L L

B v L L

σ σ

σ σ

σ σ
α α
α α

σ σ
α α
α α

σ σ
α α

+ +

− −

= − + + = + − −
+ +

+ +
= − + + = + − +

+ +
+ +

= − + − = + − −
+ +

= − + *
,

4 1 4(2 )
3(1 ) 3 3(1 )t AT tA v L Lσ σ

α α
+ = + − −

+ +
 

The execution probabilities of buy limit orders are given by 
* * *
, , 1 , 1 1( ) 1/ 2,  ( | 1) 1/ 2,  ( | 0, ) 1/ 2B B B

t t HT t t AT t t t AT t tB B B ση η θ η θ ε σ+
+ + += = = = = + =

and *
, 1 1( | 0, ) 1/ 2B

t t AT t tB ση θ ε σ−
+ += = − = . 

 
For each type of equilibrium, the execution probabilities of sell limit orders 

are given by * * * *
, , , 1 , 1( ) ( ),  ( | 1) ( | 1)S B S B

t t HT t t HT t t AT t t t AT tA B A Bη η η θ η θ+ += = = = ,  

* *
, 1 1 , 1 1( | 0, ) ( | 0, )S B

t t AT t t t t AT t tA Bσ ση θ ε σ η θ ε σ+ −
+ + + += = + = = = −  and 

* *
, 1 1 , 1 1( | 0, ) ( | 0, )S B

t t AT t t t t AT t tA Bσ ση θ ε σ η θ ε σ− +
+ + + += = − = = = + . The variables 

* * * * * *
1 2 1 2 3 4, , , , ,α α σ σ σ σ  and *

5σ  are defined in Appendix B.1.A.  

 

Proof : 
See Appendix B.1.A. 

In the following, we briefly describe the different equilibria, focusing on the 

type of limit orders chosen by HTs and ATs. For brevity, we just focus on 

the behavior of buyers (sellers behave symmetrically). 
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Type 1: 

In the type-1 equilibrium, a HT buyer that chooses to submit a limit buy 

order sets the bid price such that the order is only executed if the agent 

arriving subsequently is a HT seller and the fundamental asset value has 

decreased. An AT buyer posting a buy limit order initially sets a bid price 

slightly above the sell cutoff price of an AT seller for the case of a price 

decrease, * *
, ( , )S

t AT AT tB C v Lσ= − − . If the next agent turns out to be a HT, 

the AT will be fast enough to cancel his initial limit order after observing the 

innovation in the asset value. The bid price of the new buy limit order is 

slightly above the sell cutoff price of a HT seller and therefore depends on 

the realization of the observed innovation, i.e. * *
, ( , )S

t AT HT tB C v Lσ σ+ = + −  and 

* *
, ( , )S

t AT HT tB C v Lσ σ− = − − . 

 

Type 2: 

In this equilibrium, HT buyers that post limit orders choose the bid price 

such that the order is executed if the next agent is either a HT or an AT 

seller and the asset value has decreased. AT buyers post the same limit orders 

as in a type-1 equilibrium. 

 

Type 3: 

HT buyers submit buy limit orders whose bid price is slightly above the sell 

cutoff price of a HT seller after a price increase, that is 
* *
, ( , )S

t HT HT tB C v Lσ= + − . Therefore, such orders are executed if a) the next 

arriving agent is a HT seller independently of the asset value innovation, or 

b) the next trader is an AT seller and the asset value has decreased. AT 

buyers post the same limit orders as in a type-1 equilibrium. 
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Type 4: 

HT buyers post the same limit orders as in a type-3 equilibrium. An AT 

buyer posting a buy limit order initially sets a bid price slightly above the sell 

cutoff price of an AT seller for the case of a price increase, 
* *
, ( , )S

t AT AT tB C v Lσ= + − . Therefore, this order is executed if the next 

arriving agent is an AT seller, independently of the evolution of the 

fundamental asset value. If the next agent turns out to be a HT, the AT 

buyer behaves as in a type-1 equilibrium. 

 

Type 5: 

HT buyers that opt for a limit order choose a bid price such that the order is 

executed if the next agent is a seller. AT buyers posting limit orders behave 

as in a type-4 equilibrium.  

 

Figure B.1 in Appendix B.2 graphically depicts the regions in the ( , )α σ -

space that correspond to the different equilibria, where we have set 1L = . 

 

2.4. Order flow composition, trading costs, and 
welfare 

2.4.A. Order flow composition 

At each point in time, the arriving agent can be 1) a HT submitting a limit 

order, 2) a HT submitting a market order, 3) an AT submitting a limit order, 

or 4) an AT submitting a market order. Let 1 2 3 4( , , , )i i i i iφ φ φ φ φ=  be the 

corresponding stationary probability distribution in a type-i equilibrium, 

where { }1,2,3,4,5i ∈ . Given this distribution, one can easily deduce the 

equilibrium order flow composition. Call the probability of a randomly 
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arriving investor submitting a market (limit) order the trading (make) rate, 

which are given by 

 2 4

1 3 1

i i i

i i i i

TR
MR TR

φ φ

φ φ

= +

= + = −
 

Similarly, we can calculate the trading and make rates for HTs and ATs 

separately, which are given by  

 

2 1 2

1 1 2

4 3 4

3 3 4

/( )

/ ( ) 1

/( )

/ ( ) 1

i i i i
HT

i i i i i
HT HT

i i i i
AT

i i i i i
AT AT

TR

MR TR
TR
MR TR

φ φ φ

φ φ φ

φ φ φ

φ φ φ

= +

= + = −

= +

= + = −

 

Let *TR  denote the equilibrium trading rate (e.g. * 1TR TR=  if *
1α α≤  and 

*
1σ σ≥ ), and let *

0
TR

α =
 be the equilibrium trading rate without ATs (i.e. 

the trading rate in the Foucault (1999) model). Then, we obtain the following 

results. 

 

Proposition 2 (Order flow composition): 

Let (0,1)α ∈ . Then, * *
HT ATTR TR≥ . Moreover, if *

1 (0)σ σ≥  ( *
1 (0)σ σ< ), 

then * *

0
TR TR

α =
>  ( * *

0
TR TR

α =
≤ ). 

Proof: See Appendix B.1.B. 

 

First, in equilibrium, HTs use market orders more frequently than ATs. This 

result is hardly surprising given ATs’ comparative advantage at posting limit 

orders. The intuition for the second result is as follows. Consider the  

Foucault (1999) model, i.e. suppose there are no ATs. If volatility (and 

therefore the picking off risk) is high ( *
1 (0)σ σ≥ ), buyers (sellers) submit 

limit orders that only execute in case the asset value decreases (increases). 

Now, introducing ATs reduces such order shading, because ATs do not risk 

being picked off when trading with humans. Consequently they can 
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condition their quotes on the most recent innovation in the asset value, 

which enables some trade after asset value increases (decreases) and thus 

leads to a higher trading volume.  

 

Now suppose that volatility is low ( *
1 (0)σ σ< ). In the absence of ATs, it is 

not optimal for limit order traders to engage in order shading, as the risk of 

being picked off is very small. Then, introducing ATs may actually reduce 

trade. The reason behind this is that, for a low value of α, the outside option 

of placing a limit order is very high for ATs (they only face the risk of being 

picked off when trading with other ATs), and therefore HTs find it optimal 

to engage in a low level of order shading (they place buy (sell) limit orders 

that AT sellers (buyers) only find worth executing in the case of a price 

decrease (increase)). Once α rises above a certain threshold, it becomes 

optimal for HT buyers (sellers) to submit limit orders that are executed by 

AT sellers (buyers) irrespectively of the asset value innovation, such that the 

trading rate is back to its level without ATs.  

 

For illustration, Figure B.2 in Appendix B.2 depicts *
HTTR , *

ATTR  and *TR  

as a function of α for different values of σ. Notice that different values of α 

may give rise to different equilibria for a fixed level of σ (see Figure B.1). 

Moreover, the exact values of α for which we move from one equilibrium to 

another depend on σ itself in most cases. Therefore, for each possible 

equilibrium combination that can arise as α moves from zero to one, we 

choose the mean level of σ that gives rise to the respective combination of 

equilibria. For example, for *
30 (0)σ σ≤ < , we may end up in a type-4 or a 

type-5 equilibrium, depending on α. Therefore, we plot the graph for 
*
3 (0)/ 2σ σ= . Table B.4 lists the employed values for σ together with the 
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associated values of α (we call them “switching points”) where we move 

from one equilibrium to another23. 

 

Our results are somehow similar to those derived in Jovanovic and 

Menkveld (2010), where ATs intermediating between human traders can 

either increase trade by solving an adverse selection problem or decrease 

trade by creating an adverse selection problem. Empirically, they find that 

the entry of Chi-X, a trading platform particularly catering to the algorithmic 

trading community was associated with a reduction in trading volume for 

Dutch stocks of about 13%. 

 

2.4.B. Gains from posting limit orders 

Given the equilibrium quotes and execution probabilities, it is 

straightforward to compute the expected profits from posting limit orders. 

For simplicity, we here focus on the expected profits of buyers (in 

equilibrium, they are equal to the expected profits of sellers due to 

symmetry). Let ,
,

B
j k

σπ + ( ,
,

B
j k

σπ − ) denote the equilibrium probability that the 

asset value increases (decreases) and subsequently a buy limit order posted by 

a type-k trader is executed by a sell market order from a type-j trader, where 

, { , }j k HT AT∈ . Then, using equations (2.1) and (2.2), the equilibrium 

expected profits from posting limit orders can be written as 

 
, * , , *

, , , , ,

, , *
, , ,

( ( )) ( )( )

( )( )

B LO B B
t HT t HT HT HT AT HT t t HT

B B
HT HT AT HT t t HT

E U B v L B

v L B

σ σ

σ σ

π π σ

π π σ

− −

+ +

= + − + −

+ + + + −
 (2.3) 

 
, * * * , * , *

, , , , , , , ,

, * , *
, , , ,

( ( , , )) ( ) ( )

( ) ( )

B LO B B
t AT t AT t AT t AT AT AT t t AT AT AT t t AT

B B
HT AT t t AT HT AT t t AT

E U B B B v L B v L B

v L B v L B

σ σ σ σ

σ σ σ σ

π σ π σ

π σ π σ

− + − +

− − + +

= − + − + + + −

+ − + − + + + −
 (2.4) 

                                                
23 We use  1σ = for the case where * *

1 1( )σ σ α≥ , as there exists no upper bound.  
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Let * , *
, ,( ) ( ( ))LO B LO

HT t HT t HTE U E U B=  and * , * * *
, , , ,( ) ( ( , , ))LO B LO

AT t AT t AT t AT t ATE U E U B B Bσ σ− +=  

be the equilibrium expected utilities obtained by HTs and ATs, respectively, 

when posting limit orders24. Moreover, let *

0
( )LOE U

α =
 denote the expected 

utility obtained from limit orders in the absence of ATs. 

 

Proposition 3 (Expected profits from limit orders): 

For any (0,1)α ∈ , we have * * *

0
( ) ( ) ( )LO LO LO

AT HTE U E U E U
α =

> > . 

Proof: See Appendix B.1.C. 

 

This result follows directly from ATs’ ability to revise limit orders when 

trading with HTs, which reduces their risk of being picked off in the case of 

adverse price movements. There are two possible ways HTs may react to the 

improved outside option of ATs (which of the two is optimal depends on 

the level of α). They may i) post more aggressive limit orders than in the 

absence of ATs or ii) accept a reduced probability of execution for their limit 

orders (i.e. they decide to post quotes that are not (always) executed by ATs). 

It is immediate that the first reaction always harms HTs’ expected profits 

from limit orders, as they simply offer better quotes, but the execution 

probability of their orders is as in the case where 0α = . On the other hand, 

choosing ii) allows HTs to post less aggressive quotes than in the absence of 

ATs, as the outside option of other HTs’ has suffered. Nevertheless, the 

effect of a reduced execution probability dominates, such that their expected 

profits are also lower in this case. 

 

2.4.C. Costs of submitting market orders 

Following Foucault (1999), we define the trading cost as the signed 

difference between the transaction price and the fundamental asset value. In 
                                                
24 Notice that we may drop the time subscripts due to stationarity. 
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equilibrium, the cost incurred by a seller submitting a sell market order at 

time t is given by the fundamental value of the asset minus the best available 

bid price. 

 S m
t t tTC v B= −  

It is important to note that the best available bid crucially depends on the 

type of both the market order trader and the limit order trader whose quote 

is executed. This is due to the assumption that ATs may revise their quotes, 

but only in the case the agent arriving after him is a HT. Additionally, the 

trading cost may also depend on the most recent realization of the 

fundamental asset value due to the picking off risk faced by the limit order 

trader. 

 

Let , ,
S
t j kTC  denote the trading cost for a type-j seller that arrives at time t and 

submits a sell market order that executes against a buy limit order posted by 

a type-k buyer at time 1t − , where , { , }j k HT AT∈ . In particular, consider 

a HT seller who arrives at time t and submits a sell market order that 

executes against the best available bid. If the bid stems from a HT, the 

trading cost is given by 

 , *
, , 1 1,( )S

t HT HT t t HTTC v Bσ σ+
− −= + −  (2.5) 

for tε σ= +  and 

 , *
, , 1 1,( )S

t HT HT t t HTTC v Bσ σ−
− −= − −  (2.6) 

for tε σ= − . In case the best available bid was posted by an AT buyer (and 

therefore was revised before the arrival of the market order trader), the 

trading cost is given by  

 , *
, , 1 1,( )S

t HT AT t t ATTC v Bσ σσ+ +
− −= + −  (2.7) 

for tε σ= +  and 

 , *
, , 1 1,( )S

t HT AT t t ATTC v Bσ σσ− −
− −= − −  (2.8) 
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for tε σ= − . In order to calculate the expected trading costs, we simply have 

to weight the trading costs for each possible event by its stationary 

probability. Then, submitting time subscripts, we have 

 
, , , , , , , ,

1 , , , , 3 , , , ,
, , , ,

1 , , 3 , ,

( ) ( )
( )

( ) ( )

B S B S B S B S
HT HT HT HT HT HT HT HT HT AT HT AT HT AT HT ATS

HT B B B B
HT HT HT HT HT AT HT AT

TC TC TC TC
E TC

σ σ σ σ σ σ σ σ

σ σ σ σ

φ π π φ π π
φ π π φ π π

+ + − − + + − −

+ − + −

+ + +
=

+ + +
 (2.9) 

 
Following exactly the same logic, the expressions for the trading costs of AT 

sellers are given by 

 , *
, , 1 1,( )S

t AT HT t t HTTC v Bσ σ+
− −= + −  (2.10) 

 , *
, , 1 1,( )S

t AT HT t t HTTC v Bσ σ−
− −= − −  (2.11) 

 , *
, , 1 1,( )S

t AT AT t t ATTC v Bσ σ+
− −= + −  (2.12) 

 , *
, , 1 1,( )S

t AT AT t t ATTC v Bσ σ−
− −= − −  (2.13) 

 
and the expected trading cost for an AT seller is consequently given by 

 
, , , , , , , ,

1 , , , , 3 , , , ,
, , , ,

1 , , 3 , ,

( ) ( )
( )

( ) ( )

B S B S B S B S
AT HT AT HT AT HT AT HT AT AT AT AT AT AT AT ATS

AT B B B B
AT HT AT HT AT AT AT AT

TC TC TC TC
E TC

σ σ σ σ σ σ σ σ

σ σ σ σ

φ π π φ π π
φ π π φ π π

+ + − − + + − −

+ − + −

+ + +
=

+ + +
 (2.14) 

 

Finally, the average expected trading cost for sellers is given by 
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2 4 2 4

( ) ( ) ( )S S S
HT ATE TC E TC E TCφφ

φ φ φ φ
= +

+ +
 (2.15) 

 
By symmetry, we have that ( ) ( ) ( )B S

HT HT HTE TC E TC E TC= ≡ , 

( ) ( ) ( )B S
AT AT ATE TC E TC E TC= ≡  and ( ) ( ) ( )B SE TC E TC E TC= ≡ .  
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Similar to the previous section, let *( )E TC  denote the equilibrium average 

expected trading cost, and let *

0
( )E TC

α =
 be the equilibrium average 

expected trading cost without ATs. One can show the following.  

 

Proposition 4 (Expected trading costs): 
* * *( ) ( ) ( )HT ATE TC E TC E TC> >  for all (0,1)α ∈ . Define (7 33 )/ 2α = −  

and let α  be such that * *
4 1( ) (0)σ α σ= . Then, the following holds.  

i) Let * *
1 1( )σ σ α≥ . Then  

a) If *
1α α≤ , then * * *

0
( ) ( ) ( )HTE TC E TC E TC

α =
> > . 

b) If *
1α α α≥ > , then * * *

0
( ) ( ) ( )HTE TC E TC E TC

α =
< ≤ .  

c) If α α> , then * * *

0
( ) ( ) ( )HTE TC E TC E TC

α =
> > . 

ii) Let * * *
1 1 1( ) (0)σ α σ σ> ≥ . Then 

a) If α α≤ , then *( )E TC and *( )HTE TC  may be higher or lower 

than *

0
( )E TC

α =
. 

b) If α α α≥ > , then * * *

0
( ) ( ) ( )HTE TC E TC E TC

α =
< ≤ . 

c) If α α> , then * * *

0
( ) ( ) ( )HTE TC E TC E TC

α =
> > .  

iii) Let * *
1 3(0) (0)σ σ σ> ≥ . Then * * *

0
( ) ( ) ( )HTE TC E TC E TC

α =
> > . 

iv) Let *
3 (0)σ σ> .  

a) If 1/ 4α ≤ , then *( )E TC  and *( )HTE TC  may be higher or lower 

than *

0
( )E TC

α =
. 

b) If 1/ 4 1/ 3α< ≤ , then * *

0
( ) ( )HTE TC E TC

α =
> . *( )E TC   may be 

higher or lower than *

0
( )E TC

α =
. 

c) If 1/ 3 α< , then * * *

0
( ) ( ) ( )HTE TC E TC E TC

α =
> > . 

v) If * * *
1 3 2(0) ( )σ σ σ α> ≥  and *

1α α> , then *( )ATE TC  may be higher or 

lower than *

0
( )E TC

α =
. Otherwise, we have * *

0
( ) ( )ATE TC E TC

α =
> . 

  

Proof: See Appendix B.1.D. 
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ATs enjoy lower trading costs than HTs because the latter may only pick off 

stale quotes when trading with other HTs. Moreover, the outside option of 

posting limit orders is more profitable to ATs, such that they are not willing 

to incur the same trading costs as HTs. This result is very much in line with 

the findings reported by Hendershott and Riordan (2009), who report that 

ATs “consume liquidity when it is cheap”, i.e. they incur lower trading costs 

than HTs. 

 

We find that both the expected trading costs for HTs and average expected 

trading costs in the presence of algorithmic traders may be higher or lower 

than in an economy with only HTs. This is also illustrated in Figure B.3, 

where we plot equilibrium expected trading costs as a function of α for 

different values of σ. 

 

To see how the presence of ATs can increase expected trading costs for 

HTs, consider for example the case where * *
1 1( )σ σ α≥ . Without ATs 

( 0α = ), the equilibrium bid (ask) prices are set such that a buy (sell) limit 

order is only executed in case the next agent is a seller (buyer) and the asset 

value has decreased (increased). In other words, the picking off risk is 

sufficiently high to induce order shading by limit order traders. Not consider 

what happens if we introduce a small proportion of ATs ( *
1α α≤ ). Given 

that α  is small, it is optimal for HTs to submit buy (sell) limit orders that are 

only executed by other HTs, but not by ATs. As described in the previous 

section, this allows HTs to reduce the aggressiveness of their quotes, because 

their limit orders only target other HTs, whose outside option has become 

less valuable due to a decreased execution probability. As a consequence, the 

expected trading costs for HTs increase below their level in the absence of 

ATs. Given that there are relatively few ATs, the increase in the expected 

trading cost for HTs also leads to higher average expected trading costs.  
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To see how algorithmic trading can lead to a decrease in HTs’ expected 

trading costs, consider what happens in the above scenario if we increase α. 

Once we have *
1α α> , it becomes optimal for HTs to post buy (sell) limit 

orders that can also be executed by AT sellers (buyers) in the case of a price 

decrease (increase). This happens for two reasons. First, given that α is now 

relatively large, the new strategy leads to a considerably higher execution 

probability of HTs’ limit orders. Second, ATs exert a negative externality on 

each other by increasing the picking off risk (note that ATs may not cancel 

their limit orders if the next trader is also an AT), resulting in a lower outside 

option. The increased aggressiveness of HTs’ limit orders benefits other HTs 

and decreases their expected trading costs below the level obtained when 

0α = . Nevertheless, this effect diminishes as α increases further. First, HTs 

that arrive to the market are less and less likely to find a quote submitted by 

another HT (note that ATs can discriminate between HTs and ATs, offering 

worse quotes to the former), and second, the aggressiveness of the HTs’ 

quotes diminishes as ATs face an increasingly higher picking off risk and 

therefore are willing to accept worse quotes. Given that α is relatively high, 

average expected trading costs are nevertheless lower than in the absence of 

ATs.  

 

It is worth mentioning that HTs’ expected trading costs may also decrease 

for very low values of α under some circumstances. Consider the economy 

without ATs and suppose that σ is such that it is optimal for traders to 

engage in order shading, but they are almost indifferent to not doing so (i.e. 
* * *
1 1 1( ) (0)σ α σ σ> ≥ ). Thus in equilibrium, HT buyers (sellers) submit buy 

(sell) limit orders that are only executed by HTs in the case of a price 

decrease (increase). Now, introduce a small proportion of ATs, which leads 

to a decrease (increase) in HTs’ sell (buy) cutoff prices. Suddenly, it becomes 

optimal for HTs to submit limit orders that may also be executed if the asset 
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value increases (decreases), albeit only by HTs. As these limit orders now 

face the risk of being picked off (which is profitable for market order 

traders), HTs’ expected trading costs experience a drop. Once α increases, 

this effect disappears as the execution probability of HTs’ limit orders 

decreases and they are better off not incurring any picking off risk.  

 

Several empirical studies (e.g. Hendershott et al. (2011), Jovanovic and 

Menkveld (2010)) report that algorithmic trading improves liquidity as it 

leads to lower trading costs (as measured e.g. by the effective spread), 

supporting the claim of HFT advocates. While we indeed find that the 

presence of ATs can lead to decreases in average expected trading costs, this 

may well come along with an increase in HTs’ expected trading costs, in 

particular for high levels of algorithmic trading. 

 

2.4.D. Welfare 

Consider a HT. In equilibrium, his order type choice depends on the state of 

the limit order book upon his arrival. For example, a HT seller will opt for a 

market sell order if the best available bid price is above his sell cutoff price 

and otherwise post a sell limit order. Thus his ex-ante (before arriving to the 

market, but after learning his type) expected utility can be written as  

 ( ) ( )MO LO
HT HT HT HT HTEU TR E U MR E U= +  

where we have omitted the buyer/seller superscripts as both have the same 

expected utilities. Similarly, we can write the ex-ante expected utility of an 

AT as 

 ( ) ( )MO LO
AT AT AT AT ATEU TR E U MR E U= +  

It is easy to see that ( ) ( )MO
HT HTE U L E TC= −  and ( ) ( )MO

AT ATE U L E TC= − , 

i.e. the expected utility from submitting a market order is equal to the private 

gains from trade ty L=  minus the expected trading cost. Given the results 
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from the previous two sections, the calculation of the ex-ante expected 

utilities is straightforward. Finally, the ex-ante expected utility of the average 

trader is given by 

 (1 ) (2 )HT ATEU EU EU TR Lα α= − + = ×  

which is simply the trading rate multiplied by the overall gains from trade.  

 

Similar to the previous sections, let *
HTEU  and *

ATEU  be the equilibrium 

expected utilities of HTs and ATs, respectively. Moreover, let 
*

EU  denote 

the equilibrium expected utility of the average trader and write 
*

0
EU

α =
 for 

the expected utility in the absence of ATs. 

 

Proposition 5 (Welfare): 
* *
AT HTEU EU>  for all (0,1)α ∈ . Moreover 

i) If *
1 (0)σ σ≥  ( *

1 (0)σ σ< ), then 
* *

0
EU EU

α =
>  (

* *

0
EU EU

α =
≤ ). 

ii) If *
1 (0)σ σ< , then 

**

0
HTEU EU

α =
< . 

iii) If * *
1 1( )σ σ α≥ , then 

**

0
HTEU EU

α =
< . 

iv) Let * * *
1 1 1(0) ( )σ σ σ α≤ < .  

a) If α α> , then 
**

0
HTEU EU

α =
< . 

b) If α α≤ , then *
HTEU  may be higher or lower than 

*

0
EU

α =
. 

v) If * * *
1 3 2(0) ( )σ σ σ α> ≥  and *

1α α> , then *
ATEU  may be higher or lower 

than 
*

0
EU

α =
. Otherwise, we have 

**

0
ATEU EU

α =
> . 

 
Proof: See Appendix B.1.E. 

 

The fact that ATs obtain a strictly higher expected utility than HTs directly 

follows from Propositions 3 and 4, as they reap greater expected profits 
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from limit orders and incur lower expected trading costs for market orders. 

Similarly, the fact that aggregate welfare (i.e. the ex-ante expected utility of 

the average trader) increases in the presence of ATs for high asset value 

volatility, but may decrease otherwise directly follows from Proposition 2 

and the fact that aggregate welfare is equal to the overall gains from trade 

multiplied by the trading rate. 

 

Moreover, combining these results, it is immediate that algorithmic trading 

decreases HTs’ welfare in the case where *
1 (0)σ σ< . As HTs obtain a 

strictly lower expected utility than ATs, and the average trader is worse off as 

under no algorithmic trading, HTs must incur some loss in welfare.  

 

For *
1 (0)σ σ≥ , the overall effect of algorithmic trading on HTs’ welfare is 

more ambiguous, as aggregate welfare increases. While ATs reap the entire 

welfare gain in most cases, a low level of algorithmic trading may actually 

lead to an increase in HTs’ welfare (see Panel 2 in Figure B.4 in Appendix 

B.2). This is because the presence of ATs may reduce order shading by HTs 

(as discussed in Section 2.4.C). Nevertheless, this scenario unfolds only if 

volatility is slightly above the level where HTs are almost indifferent between 

submitting limit orders with high or low execution probabilities for 0α = . 

In any case, HTs’ welfare under a high level of algorithmic trading is strictly 

below its level reached with only human market participants. 

 

Finally, part v) of the proposition shows that for some parameter 

constellations, the welfare loss from algorithmic trading may be so severe 

that even the equilibrium expected utility of ATs falls below the welfare 

obtained by traders in an economy without any algorithmic trading. This is 

illustrated in Panel 3 of Figure B.4. 
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2.5. Conclusion 

Extending the model of Foucault (1999), we have studied a dynamic limit 

order market with slow human traders and fast algorithmic traders. The use 

of modern IT-infrastructure allows market participants to manage limit 

orders more efficiently and therefore reduces their risk of being picked off. 

 

Although we assume (for tractability) that the presence of ATs does not 

increase HTs’ risk of being picked off, the latter are still affected by the 

introduction of algorithmic trading. This occurs because agents’ choice 

between limit and market orders is endogenous. While the sequential 

structure of the model endows limit order traders with some level of market 

power, their advantage is limited by the ability of the next trader to post a 

limit order himself. Thus, intuitively, their increased speed endows ATs with 

an improved outside option compared to HTs, which is detrimental to the 

welfare of HTs in most cases, although aggregate welfare (which is 

proportional to trading volume in our setting) may actually increase. 

 

There are several interesting avenues for further research. For example, 

many electronic trading platforms have established asymmetric fee structures 

in recent years, now charging different costs to limit and market orders (so-

called maker/taker schemes). Given that ATs have a comparative advantage 

at using limit orders, it may be very interesting to study the interplay of 

algorithmic trading and the employed fee structure. Nevertheless, recent 

work by Colliard and Foucault (2011) suggests that the fee structure may 

only matter in the case of a discrete pricing grid. 
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3. PRE-TRADE TRANSPARENCY IN CALL 

AUCTIONS 

3.1. Introduction 

Today, trading in most of the world’s equity markets takes place via an 

electronic limit orders book. Nevertheless, the daily opening and closing 

prices are usually determined via a uniform price call auction. Whereas the 

merits of call auctions have been widely documented, their design has 

received relatively little attention. 

 

In this chapter, we empirically investigate the call auctions of two of the 

world’s leading electronic stock exchanges, Euronext (Paris Bourse) and 

Xetra (Frankfurt). Although the auctions in both markets share many 

important features such as the price setting mechanism, they crucially differ 

in the degree of pre-trade transparency, i.e. the information disclosed to 

market participants during the auction. While Euronext continues to display 

the limit order book as during the continuous trading phase, Xetra only 

discloses an indicative clearing price and the associated trading volume. 

Additionally, Euronext auctions last for a fixed time period, whereas Xetra 

randomizes the crossing time within a given corridor. Given that both 

exchanges have been employing these different mechanisms for more than a 

decade without making major changes, we believe that a comparison of both 

systems is overdue. 

 

There is a large literature on the role of call auctions on stock exchanges. 

Garbade and Silber (1979) point to an auction’s enhanced price efficiency 

and reduced price impact, which is traded off against the cost of delay and 

loss of order flow information. Madhavan (1992) shows how call auctions 

can jump-start continuous trade, which may otherwise stagnate due to 

adverse selection. 
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Most of the work related to the opening auction has focused on the role of 

price discovery after the arrival of new information in the non-trading period 

between days. In a seminal paper, Biais et al. (1999) study the opening 

auction on the Paris Bourse and find evidence for price discovery during the 

call phase, despite the fact that orders are non-binding. Cao et al. (2000) 

report similar evidence for the pre-opening period on NASDAQ. 

 

Price discovery generally plays a less prominent role during the closing 

auction, as it is not preceded by an extended non-trading period with the 

arrival of new information. Instead it allows market participants to execute 

large orders at the closing price with a relatively low price impact25. This is 

particularly interesting for large institutional investors, as the closing price is 

of special importance to them, serving for the calculation of net asset values 

(NAVs), portfolio returns and subsequently performance evaluation. 

Moreover, changes in index weights and constituents become usually 

effective at the market close, inducing a particular need by passive investors 

to trade at these prices. Cushing and Madhavan (2000) provide anecdotal 

evidence on the inclusion of shares of “Safeway” into the S&P 500 index, 

which was accompanied by a substantial inflation of the closing price due to 

large demand by passive investors replicating the index. Overall, the related 

literature has largely endorsed the use of closing auctions. Pagano and 

Schwartz (2003) find that the introduction of closing call auctions on the 

Paris Bourse lowered execution costs, increased liquidity, and sharpened 

price discovery. Comerton-Forde et al. (2007) find similar findings for the 

Singapore Stock Exchange. 

 

An additional motive for the use of call auctions to set closing prices is the 

prevention of price manipulation. Empirical regularities such as the day-end 

                                                
25 As opposed to trading in a continuous market, a call auction allows for the 
simultaneous execution of a large number of orders, allowing traders to increase 
liquidity by pooling as in Admati and Pfleiderer (1988). 
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effect, first documented by Harris (1989), and the volatility spike during the 

last minutes of trading reported by Chan et al. (1995) and others have cast 

doubt on whether closing prices represent equilibrium valuations.  

Comerton-Forde and Putniņš (2011) provide a plethora of anecdotal 

evidence by studying a sample of 160 court cases dealing with price 

manipulation. Overall, most cases relate to trading of illiquid stocks at the 

market close. Motives for manipulating the closing price (also known as 

marking the close) can arise from principal-agent relations such as broker 

intermediation (Hillion and Suominen (2004)), delegated investment 

management (e.g. Sias and Starks (1997)), or the gaming of derivatives cash 

settlements (Kumar and Seppi (1992), Pirrong (2001) and Xiaoyan Ni et al. 

(2005)). Comerton-Forde et al. (2007) show that the introduction of a closing 

auction on the Singapore Stock Exchange has reduced the skewness and 

kurtosis of closing returns, suggesting less price manipulation. 

 

While there seems to be a widespread consensus among both academics and 

practitioners in favour of the use of call auctions, their actual design has not 

been studied intensively. Although the issue of pre-trade transparency has 

generally experienced a great deal of attention within the market 

microstructure literature, most research has focused on limit-order and 

dealer markets (see Madhavan (2000) and Biais et al. (2005) for an excellent 

overview), as call auctions are a more recent phenomenon. One notable 

exception is the paper by Baruch (2005), who models the NYSE opening 

procedure and shows that an open limit-order book fosters competition 

among informed liquidity providers (which act as limit-order traders) and 

thus improves liquidity. Chakraborty et al. (2010) develop a model of call 

auctions where order shading due to uncertainty about potential 

counterparties may result in inefficiencies. They show that disclosure of the 

order book may restore efficiency as it allows for signalling of trading 

intentions in the absence of private information. This closely relates to the 
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concept of “sunshine trading” (Admati and Pfleiderer (1991)). Dia and 

Pouget (2004) study the transparent but illiquid call auctions of the West 

African stock exchange and find that a transparent system is critical for 

liquidity and price discovery. Similarly, Gerace et al. (2009) find evidence of 

increased investor participation during the pre-opening session on the 

Shanghai Stock Exchange after an increase in market transparency. 

 

On the other hand, experimental studies largely argue against transparency in 

call auction settings. Friedman (1993) finds that order book disclosure results 

in lower price discovery, while his results on trading volume are mixed. 

Similarly, Arifovic and Ledyard (2007) compare repeated open book and 

closed book auctions, and find that the latter yield higher allocative 

efficiency, both with artificial agents and in laboratory experiments. 

Transparency may also encourage bluffing and therefore reduce gains from 

trade, as found by Biais et al. (2009).  

 

Given the mixed evidence, the co-existence of different transparency regimes 

in real markets is not very surprising and likely to be a manifestation of the 

ongoing controversy regarding the optimal degree of transparency. We 

contribute to this debate by analyzing a matched sample of German and 

French stocks traded on Xetra and Euronext, respectively. Both markets 

have pioneered the use of call auctions in modern equity markets, but 

operate under very different transparency regimes. 

 

Overall, our findings suggest that pre-trade transparency in the form of order 

book disclosure is beneficial. Compared to Xetra, call auctions on Euronext 

display significantly higher trading volume both at the open and at the close. 

While we observe this pattern across the board, the observed difference is 

most pronounced for trading in blue chips at the market close (10.34% vs. 

7.87% of total trading volume). Overall, we interpret these findings as being 
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consistent with an open order book facilitating the location of trading 

partners by signalling the willingness to trade, particularly in a setting where 

trades are not motivated by private information but rather due to liquidity 

trading (e.g. by passive investors). The analysis of cross-sectional correlations 

in trading volume (Sias and Starks (1997)) provides additional support for 

the concentrated presence of institutional investors in Euronext closing 

auctions for the most heavily traded stocks. Moreover, Euronext’s call 

auctions are more liquid (as measured by the inverse of the Amihud ratio), 

i.e. liquidity seekers enjoy a lower price impact on average.  

 

Turning to price discovery, our findings indicate that an open order book 

also fosters price discovery, particularly at the open. Except for the most 

active stocks, the opening auction on Euronext contributes significantly 

more to price discovery (between 24% and 38%) than on Xetra (18% and 

28%). This evidence is consistent with an informative limit order book (see 

e.g. Cao et al. (2009) and Hendershott and Jones (2005)). As expected, the 

closing auctions contribute very little to price discovery (3-4%) due to the 

absence of news arrivals, and we find no significant differences across 

markets. Euronext’s dominance in terms of price discovery at the opening is 

furthermore confirmed by the analysis of quoted spread within the first 60 

minutes of the continuous trading period: Stocks on Xetra start the day with 

wider quoted spread (as compared to the average daily spread), but converge 

to the level of the spreads found on Euronext within the first 15 minutes. 

 

Additionally, we examine the efficiency of opening and closing prices. 

Overall, closing prices appear to contain large transitory components of up 

to 50%, with no significant differences across markets. We show that these 

transitory effects are purely idiosyncratic and most likely to represent an 

increased inventory risk faced by liquidity providers in the face of the illiquid 

overnight period. Opening prices display relatively small transitory 
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components, with Euronext displaying smaller inefficiencies consistent with 

improved price discovery. Finally, we briefly examine the possibility of 

sniping (the practice of entering orders at the very last moment so as to 

prevent any reaction from other market participants) during Euronext’s 

closing auction, given that its ending time is deterministic as opposed to 

Xetra. Overall, sniping seems to be a relatively minor issue. 

 

The remainder of this chapter is organized as follows: Section 3.2 gives an 

overview of the auction mechanisms in place at both exchanges, while 

Section 3.3 describes the data and sample construction. Section 3.4 

investigates trading volume and liquidity and Section 3.5 examines price 

discovery and efficiency. Section 3.6 concludes, and all tables and figures are 

relegated to the Appendix C. 

 

3.2. Description of the Auction Mechanisms 

This section provides a brief description of the auction mechanisms in place 

on Xetra and Euronext, respectively. For the sake of brevity, we only touch 

the aspects that are relevant to our analysis. For a more comprehensive 

overview of the detailed rules and regulations governing each market, we 

refer the reader to the respective trading manuals that are available on the 

exchanges’ websites26. A much more detailed account can also be found in 

Kasch-Haroutounian and Theissen (2009). 

 

3.2.A. Euronext 

Euronext starts displaying its electronic limit order book every morning at 

07:15. During the call phase, the system continuously displays the indicative 

clearing price and five levels of unfilled buy and sell orders. At any point in 

                                                
26 www.euonext.com and www.deutscheboerse.com, respectively. 

http://www.euonext.com
http://www.deutscheboerse.com
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time, market participants may submit, cancel and modify orders at their 

convenience until exactly 09:00, when the book is briefly frozen and the 

clearing price is calculated as to maximize trading volume and minimize the 

resulting surplus (in the case of multiple prices leading to the same trading 

volume). After orders are matched and removed from the limit order book, 

continuous trade starts. At 17:3027 continuous trading is halted and the 

closing call phase commences. The disclosure and order submission rules are 

identical to those for the opening auction. The call phase terminates at 

exactly 17:35, when orders are assigned and filled. Subsequently, the resulting 

surplus is offered during a “trading at last session”, which lasts for ten 

minutes. During this period, where all trades are executed at the closing 

price, traders can also submit new buy and sell orders. In all auctions, the call 

phase may be extended at the discretion of the exchange, and there are static 

and dynamic price ranges whose violation can trigger time extensions. 

 

3.2.B. Xetra 

Every morning at 07:30, the Xetra system starts collecting limit buy and sell 

orders, with cancellations and modifications possible at any point in time. 

From 08:50 onwards it starts displaying the indicative clearing price and the 

associated trading volume, while the limit order book remains undisclosed. 

At 09:0028, a thirty second random ending period starts, during which the call 

phase is terminated at random (the call phase is ended for each stock 

individually). Upon the ending of the call phase, the clearing price is set using 

the same algorithm as on Euronext. Subsequently, orders are crossed and 

removed from the limit order book, which is now being displayed, and 

continuous trading commences. The closing auction (starting at 17:30 and 

                                                
27 Previously to February 19th 2007, the closing auction was held from 17:25 to 
17:30. The timing was changed in order to align the auction with other European 
equity markets. 
28 9:00 am for members of DAX and TecDAX, 9:02 am otherwise. 
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lasting until 17:35 plus a maximum of 30 seconds) follows exactly the same 

rules as the opening auction, except that it starts directly in the call phase. As 

on Euronext, call phases may be extended due to high volatility and other 

reasons at the discretion of the exchange. Xetra also offers a noon auction, 

which usually lasts 2 minutes plus a maximum of 30 seconds and is held 

launched at 13:00. In our analysis, we discard the noon auction, as it attracts 

very little trading volume and there is no direct counterpart on Euronext29. 

 

3.3. Data description and sample selection 

Our sample spans the period 2006-2007. We obtain intraday prices and 

quotes for French and German stocks from SIRCA. The files contain all 

executed trades together with the traded volume and execution time (up to 

1/1000 of a second) as well as the best bid and ask quotes with their 

respective depth at any point in time. Additional data on stock 

characteristics, dividends, capital structure changes, stock splits, etc. are 

obtained from Datastream. 

 

Following the literature on cross-exchange comparisons (e.g. Huang and 

Stoll (1996), Venkataraman (2001), and Kasch-Haroutounian and Theissen 

(2009)), we control for differences in stock characteristics by constructing a 

matched sample. 

 

We start by defining an initial pool of securities for each of the two 

exchanges. For Euronext we choose the members of the SBF 250, which is 

composed of the 250 largest and most heavily traded stocks that are listed on 

the Paris Bourse. The stocks in this index are subdivided into the CAC40 

                                                
29 The main objective of the noon auction is the setting of the settlement price for 
index futures and options on expiry dates, when the auction lasts 5 minutes. On 
these days, which we discard from our sample (see Section 3.3), trading volume in 
the noon auction is considerable (up to 30% of the daily total).  
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(large caps), the NEXT20 (next 20 largest stocks after CAC40), the MID100 

(mid-caps) and the SMALL90 (small-caps). For Xetra, we select the stocks 

comprising the following main indices: Dax30 (large caps), MDax (mid-

caps), SDax (small-caps) and TecDax (technology stocks, mid- or small cap). 

As we suspect that index membership might be an important determinant of 

call auction trading (in particular due to the rising importance of passive 

investment strategies), we restrict our sample to those stocks that have been 

member of any of the above indices during the whole sample period30. This 

leaves us with a sample of 213 French stocks and 129 German stocks. We 

furthermore exclude all stocks that are traded on less than 495 days31 of the 

sample in order to ensure sufficiently regular trading activity. Finally we 

exclude shares of EADS, as the company is listed on both exchanges but 

Euronext is clearly the main market (with a market share of roughly 90%), as 

well as shares of BAINS MER MONACO, whose continuous trading period 

is shorter than the regular trading hours. This reduces our sample to 199 

French and 125 German stocks. 

 

We consider three characteristics in order to create a matched sample: 

trading volume ( 1x ), free float capitalization ( 2x ), and volatility as measured 

by the standard deviation of daily returns ( 3x ). We then compute the 

following distance measures between German stocks i and French stocks j: 

 ( )

2
3

,
1 / 2

i j
k k

i j i j
k k k

x xDIST
x x=

 − =
 + 

∑  (3.1) 

For each German stock we select the French stock which generates the 

lowest DISTi,j. If a French stock is matched to more than one German stock, 

                                                
30 This means that we allow a stock to change the index (e.g. moving from MDax to 
SDax). 
31 There are a total of 507 trading days for Xetra and 510 trading days for Euronext. 
So we effectively exclude stocks that trade at least on roughly 97.5% of all trading 
days. While this cut-off is somewhat arbitrary, our results are not sensitive to small 
changes in the cutoff. 
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we keep the match with the lowest distance and drop the other ones. Finally, 

we require that the differences in the individual characteristics do not exceed 

a threshold by imposing 

 ( ) 0.75
/ 2

i j
k k

i j
k k

x x k
x x

−
≤ ∀

+
 (3.2) 

This procedure leaves us with a final sample of 63 pairs of stocks, which we 

further divide in three size groups according to trading volume (in Euros) - 

large caps, mid caps, and small caps. For robustness, we additionally conduct 

our analysis on samples obtained with several variations of the matching 

procedure. None of the presented results are qualitatively different under 

alternative matching procedures.32  

 

[Insert Table C.1 and Table C.2 about here] 

 

Table C.1 lists the stock pairs resulting from our matching procedure, while 

the associated descriptive statistics regarding the variables employed are 

tabulated in Table C.2.  The quality of the matching is evident from the small 

and non-systematic differences in matching characteristics. The only notable 

exception is that German large cap stocks tend to have higher trading 

volumes. This finding is in line with Kasch-Haroutounian and Theissen 

(2009), who find a higher turnover for Xetra stocks. 

 

3.4. Trading volume and liquidity 

3.4.A. Trading Volume 

We start our analysis by looking at the trading volumes executed during the 

call auctions. For each day t and stock i in the sample, we compute the 
                                                
32 Among others, we changed the order of selection (starting with French instead of 
German stocks), and used different cutoff values (of data availability and distance).  
We also matched on trading volume and volatility only.  
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relative trading volume as the proportion of total daily trading volume, 

,
d
i tVol , that is executed during an auction  

 ,
,

,

x
i tx

i t d
i t

Vol
RV

Vol
=  (3.3) 

where { ( ), ( )}x o pen c lose∈ . We asses the difference across exchanges by 

calculating, for each pair ( ),  i j  and trading day t the difference in RV as 

 , , , ,
x x x

i j t i t j tRV RV RV∆ = −  (3.4) 

where stock i is traded on Euronext and stock j is the matched stock traded 

on Xetra.  

 

One important difference between Xetra and Euronext lies in the procedures 

used for setting the settlement prices for options and futures: On Euronext, 

the settlement prices for all derivative contracts are determined as the prices 

of the closing call auction, while on Xetra the index options and futures are 

settled with the prices determined in the noon auction (the individual stock 

options are also settled with the closing prices). As expiry effects may 

potentially lead to extremely high trading volume, we exclude the third 

Friday of each calendar month33 when calculating RV and ΔRV in order not 

to pick up expiry effects. 

 

[Insert Table C.3 about here] 

 

The results can be found in Table C.3. On average, the Euronext (Xetra) 

opening auction accounts for 2.6% (1.4%) of daily trading volume, while the 

closing auction represents roughly 6.8% (5.5%) of the transacted value. The 

differences of 1.2% and 1.3% are statistically significant at any conventional 

                                                
33 The third Friday of the month is the expiry date for exchange-traded stock and 
index options. Every third month, this day is also the expiry date for Index Futures. 
Those dates are common for both exchanges. 
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level using a simple t-test on the paired differences ΔRV. The fact that we 

observe a higher RV for Euronext across both auctions and all individual 

volume terciles underlines the robustness of these results. Overall, the 

closing auction attracts considerably more trading activity than the opening 

auction, except for the least active stocks, which is in contrast to the results 

obtained earlier studies. Kehr et al. (2001) study a sample of 15 large German 

stocks and find that approximately 10% of the day’s trading volume takes 

place during the opening auction. Amihud and Mendelson (1987) report that 

on the NYSE 5.6% of the daily volume is negotiated during the opening, 8.4 

times as much as at the close. Lehmann and Modest (1994) find that on the 

Tokyo stock exchange, approximately 27% of trade is executed during the 

opening and only 3% during the closing auctions. Given the enormous 

growth of passive investment strategies, this migration of transactions 

volume is not very surprising. After all, index trackers face the constant need 

to adjust their portfolios towards the current index weights. Given that these 

weights are usually based on closing prices, the closing auction is the optimal 

point in time to rebalance their portfolios (see e.g. Cushing and Madhavan 

(2000)). In line with this argument, we find that the closing auction appears 

to be particularly important for stocks with high trading volume, accounting 

for 10.30% (7.87%) of the total trading activity on Euronext (Xetra). Given 

that we observe the largest absolute difference ΔRV (roughly 2.5%) for these 

stocks, this suggests that the transparent Euronext system may facilitate 

institutional liquidity traders’ search for liquidity by enabling them to signal 

their demands, as proposed in the theoretical model of Chakraborty et al. 

(2010). As most passive strategies focus mainly on blue chips (this is almost 

by definition because most benchmarks are constructed using market 

capitalization as portfolio weightings), this would additionally explain why we 

observe a smaller ΔRV for mid and small caps. 
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3.4.B. Liquidity / Price Impact 

Given that we document a higher trading volume for Euronext’s call 

auctions, a natural question that arises in our context is whether this 

translates into higher liquidity (a lower price impact of trading). While many 

widely used liquidity measures either rely on the bid-ask spread or strings of 

transaction prices (for a recent overview of liquidity measures, see Goyenko 

et al. (2009)) and are therefore not applicable in our setting, we can resort to 

Amihud’s illiquidity measure (Amihud (2002)), which is based on Kyle’s 

concept of liquidity (Kyle (1985)), the response of prices to order flow. The 

inverse of this measure can then be taken as a measure of liquidity and is 

calculated as 
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where iT  denotes the number of trading days with non-zero trading volume 

for stock i and ,
x

i tr  is the return associated with the trading volume ,
x

i tV . The 

return of the opening (closing) auction is defined as the return from the 

previous day’s close (same day’s midquote right prior the start of the closing 

auction) to the opening (closing) auction’s clearing price34. Similarly, the 

return of the continuous trading session is the return from the opening price 

to the last midquote before the closing auction. 

 

We calculate this measure for the opening and closing auctions as well as for 

the continuous trading phase. Table C.4 reports the results. We assess the 

statistical significance of cross-market differences using a paired t-test and 

(given the small sample size) a non-parametric Wilcoxon signed-rank test. 

First, a look at the results for the continuous trading phase (Panel C) 

                                                
34 In the calculation of the overnight return (close-to-open), we adjust the opening 
price for dividends, stock splits, and rights issues. 
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confirms that our matching algorithm has eliminated any important cross-

market differences in liquidity. The exception is the large cap tercile, for 

which the Xetra stocks are slightly more liquid. 

 

[Insert Table C.4 about here] 

 

The results for the opening and closing auctions (Panels A and B) indicate 

that, by and large, Euronext is the more liquid market, as we find a higher 

inverse Amihud ratio on Euronext across the board. Overall, these results 

confirm the picture that has emerged from our analysis of trading volumes, 

suggesting that the elevated auction trading volume on Euronext does not 

come at the cost of higher price volatility and can therefore be interpreted as 

being the more efficient mechanism. 

 

3.4.C. Cross-sectional volume correlations 

Sun (2008) argues that similarities in institutional portfolios lead to positively 

correlated trading volume. Pollet and Wilson (2008) show that institutional 

investors scale their portfolio up or down as a reaction to in/outflows from 

their principals. Finally, rebalancing by index funds automatically creates 

correlated trading volume as it involves trading simultaneously in several 

stocks. Thus, correlated trading volume across assets can be interpreted as a 

sign of institutional trading. Sias and Starks (1997) have looked at 

correlations in trading volume to gauge institutional presence.  

 

Call auctions provide relatively easy access to a high volume, competitively 

determined price. We suspect that institutional investors such as index funds, 

mutual funds, and pension funds, are particularly interested in trading in the 
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closing auction, as its clearing price is a popular benchmark for portfolio 

valuations.35  

 

To gauge the concentrated presence of institutional (liquidity) traders, we 

therefore study the correlation of trading volume across stocks during the 

auctions and the continuous trading session. Since we have total of 21 stocks 

in each size group, we obtain ½⋅21⋅20 = 210 pairwise correlations 

coefficients for each market and trading activity tercile. In order to examine 

the presence of institutions in the different auctions, we calculate the ratio of 

the average cross-sectional volume correlation in the respective auction to 

the average cross-sectional volume correlation during the continuous trading 

phase. Standard errors for this ratio are easily obtained using the delta 

method. Finally, we assess differences in the concentration of institutional 

traders by comparing the ratios across markets, where we base inference on a 

simple t-test assuming independence across samples. 

 

[Insert Table C.5 about here] 

 

Table C.5 details the results. First, we notice that average volume 

correlations are higher for Xetra stocks across the board, which may be due 

to higher correlations in fundamentals or other exogenous reasons. Overall, 

we find that average volume correlations for the opening auction are 

significantly lower than during the continuous trading phase, which is likely 

to be due to cross-sectional heterogeneity in news arrivals. While the same 

pattern obtains for the closing auction in mid and small caps, we find an 

increase in the average cross-sectional volume correlation for large caps. This 

is consistent with the concentrated presence of institutional traders that trade 

simultaneously in several blue chips in order to rebalance their portfolios. 
                                                
35 Net Asset Values are computed at closing prices and changes in index weights 
become effective at the close. These are strong incentives for risk averse fund 
managers to trade at the close. 
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While we see a marginal increase on Xetra (7.4% with statistical significance 

at the 10% level), we find a strong increase of 26.8% on Euronext with a p-

value of less than 0.01. Assuming independent distributions, we find that this 

difference of 19.4% is statistically significant at the 1% level, which is in line 

with the increased trading volume for the most active Euronext stocks 

during the closing auction. Overall, our results suggest that much of the 

trading at the close is driven by institutional investors and there is some 

evidence that the transparent Euronext system may help institutions to 

execute their trades more efficiently. 

 

3.5. Price Discovery and efficiency 

In this section, we turn to the analysis of price discovery and efficiency. We 

begin by computing several measures of price discovery for both markets 

and then investigate whether auction prices are subject to transitory effects.  

 

3.5.A. Price discovery 

We begin by examining the contribution of call auctions to price discovery. 

To this end, we compute three different measures of price discovery, the 

variance ratio (VR), the weighted price contribution (WPC) and the 2R  of 

unbiasedness regressions. van Bommel (2009) shows that all three measures 

are asymptotically equivalent if prices follow a driftless martingale. The VR 

is defined as the ratio of the variance of auction returns to the variance of 

daily returns, i.e. 
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where { ( ), ( )}x o pen c lose∈  and d denotes daily close-to-close returns.  
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The second measure of price discovery is the weighted price contribution 

(WPC), introduced by Barclay and Warner (1993), which is defined as 
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where ,
d

i tr  denotes the close to close return on day t, and ,
x

i tr  denotes the 

return during auction x on day t. Intuitively, the WPC measures the 

proportion of a period return that is due to a sub-period, weighted by the 

absolute period return. 

 

Finally, we consider the R2 of the regression of the close-to-close returns on 

the auction returns. Biais et al. (1999) first used such unbiasedness regressions to 

assess price discovery during the pre-opening auction of the Paris Bourse. 

 

[Insert Table C.6 about here] 

 

Unsurprisingly, the results (Table C.6) show that the opening auctions play a 

vital part in the process of price discovery, as they contribute between 18% 

and 38% to total price discovery, depending on the measure and market 

considered. Given their trading volume, closing auctions hardly contribute 

anything to price discovery, averaging roughly 3% to 4%. Together with the 

findings from the previous section, these results highlight the different focus 

of the opening and closing auctions.  

 

Taking a glance at the differences across markets, we find that opening 

auctions on Euronext constitute a significantly higher contribution to overall 

price discovery than the auctions conducted on Xetra. For example, we find 

an average 2R  of 27.0% for French stocks compared to 17.9% for German 

equities. The difference is statistically significant at the 1% level. The results 

for the other two measures are qualitatively very similar. In contrast, the 
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overall picture suggests that there are no significant differences across 

markets regarding price discovery at the close. In summary, these results 

suggest that transparency appears not only to foster trading volume by 

facilitating the location of suitable counterparties, but additionally may 

improve price discovery. This finding is consistent with an informative limit 

order book, as e.g. in Cao et al. (2009) or Hendershott and Jones (2005). 

 

3.5.B. Post-open quoted spreads 

Among others, McInish and Wood (1992) report a pattern of declining 

quoted spreads throughout the first hours of continuous trading, which is 

consistent with a gradual reduction in uncertainty about the asset’s true 

fundamental value as equilibrium prices are discovered. This suggests that we 

can judge the extent of price discovery occurring in the opening auction by 

looking at the quoted spread relative to its average value throughout the 

trading day, as a low (high) degree of price discovery should lead to wider 

(tighter) spreads right after the open. In order to investigate this issue, we 

divide the first hour of continuous trading into twelve 5-minute intervals. 

Then, for each interval 1,...,12τ = , we compute the relative quoted spread, 

which is simply the time-weighted bid-ask spread for stock i on day t during 

interval τ normalized by the average bid-ask spread throughout the entire 

trading day 

 ,
,

i
ti

t i
t

QS
RQS

QS
τ

τ =  (3.8) 

We assess the difference across exchanges for a particular auction by 

computing the differences for each trading day t and stock pair ( ),  i j  as 

 ,
, , ,

i j i j
t t tRQS RQS RQSτ τ τ∆ = −  (3.9) 

and base inference on a simple paired t-test.  
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[Insert Table C.7 and Figure C.1 around here] 

 

The results can be found in Table C.7 and are also depicted in Figure C.1 for 

illustration. Overall, we find that stocks traded on Euronext display 

considerably lower relative quoted spreads at the start of the continuous 

trading session than the matched German stocks. For example, French large 

caps start the day with a quoted spread that is roughly 2.5 times the intraday 

average, while German large exhibit a bid-ask spread that is three times as 

high as its average value throughout the day. The results for mid and small 

caps are qualitatively very similar. Across the board, the average difference 

RQS∆  is highest for the first 5-minute interval, and then gradually 

converges towards zero. For the most and least active stocks, full 

convergence is reached within the first 15 minutes, while the convergence 

for mid caps is somewhat slower, taking roughly 30 minutes. Overall, this 

strongly confirms the picture that has emerged from the previous section. 

 

3.5.C. Price efficiency 

In market microstructure research, prices are called efficient if they follow a 

random walk, i.e. returns do not display any autocorrelation (see e.g. 

Hasbrouck (2007)). In order to examine the issue of price efficiency in our 

context, we run panel regressions of post-auction returns on the returns 

realized in the call auctions. 

 

To assess the efficiency of the opening auction we regress the returns during 

the first fifteen minutes of continuous trading on the returns established at 

the open. In order to estimate differences in price efficiency across markets, 

we include a dummy variable that takes the value of 1 for stock listed on 

Xetra and zero otherwise, such that the linear model is given by 

 , , , ,
po o X X o

i t i t i t i tr r D D rα β δ γ ε= + + + +  (3.10) 
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where ,
o

i tr  denotes the return during the opening auction (measured versus 

yesterday’s close) for stock i on day t, ,
po

i tr  denotes the corresponding return 

during the first fifteen minutes of the continuous trading phase (measured 

versus the clearing price of the opening auction), and XD  is the 

aforementioned dummy variable. Similarly, we regress the return overnight 

return ,
o

i tr  on the return from the previous day’s closing auction , 1
c

i tr −  

(measured versus the midquote prior to the start of the closing auction’s call 

phase) 

 , , 1 , 1 ,
o c X X c

i t i t i t i tr r D D rα β δ γ ε− −= + + + +  (3.11) 

The estimated slope coefficients β  and γ  are tabulated in Panel A of Table 

C.8. In order to account for cross-sectional and serial correlation, we employ 

standard errors clustered by stocks and trading days (Rogers (1993) and 

Petersen (2009)). The inclusion of time and stock-specific fixed effects does 

not yield qualitatively different estimates, so we simply report the results for 

the pooled OLS estimates.  

 

[Insert Table C.8 about here] 

 

For both the opening and the closing auctions, we find β  to be negative 

and statistically significant. While opening prices are relatively close to 

following a random walk ( 0.090β = − ), the returns from the closing 

auctions experience a sharp overnight reversal ( 0.446β = − ). This suggests 

that returns at the close contain a large transitory component, which is most 

likely due to an increased inventory risk for liquidity providers in the face of 

the illiquid overnight period (see e.g. Stoll (1978)). These results are in line 

with those from other studies such as Michayluk and Sanger (2006) and 

Kandel et al. (Forthcoming). Regarding differences in price efficiency across 

markets, we find that opening prices on Euronext are slightly more efficient 
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than those set on Xetra ( 0.034γ = − ), while there is no significant difference 

at the close. These results are in line with our findings regarding price 

discovery (Sections 3.5.A and 3.5.B). In order to distinguish whether the 

observed return reversals are of rather idiosyncratic or systematic nature, we 

re-estimate the above regressions with returns for equal-weighted portfolios 

and abnormal returns, where the latter are calculated as the raw returns for 

stock i minus the equal weighted portfolio from the corresponding trading 

activity tercile. The estimates (Panels B and C) reveal that the return reversals 

constitute purely idiosyncratic effects. We find that the reversal coefficients 

for the equal weighted portfolios are either slightly positive (opening auction) 

or statistically insignificant (closing auction), while the coefficients for the 

idiosyncratic reversal regressions are very similar to the result obtained when 

using raw returns. Nevertheless, the difference across markets for the 

opening auction has become more pronounced ( 0.068γ = −  and significant 

at the 1% level), suggesting that opening prices set on Euronext are 

significantly more efficient than those resulting from Xetra’s opening 

auction.  

 

One potential concern regarding the overnight reversal regression is the fact 

that both opening and closing prices are set via call auction. Thus, the 

observed difference across markets with respect to price discovery may 

affect our results for the closing auction’s price efficiency. In order to 

circumvent this issue, we alternatively calculate the overnight return in 

equation (3.11) as the return from the previous day’s close until the 

midquote prevailing at 10:00 am. The results, which we do not report for 

brevity, are qualitatively very similar to those obtained using the opening 

prices. 
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3.5.D. Sniping 

As described in Section 3.2, the ending time of the call auctions on Xetra is 

randomized within a 30-second corridor. According to the exchange, the 

main motive for this randomization is the avoidance of potential price 

manipulation36. In contrast, the ending time on Euronext is deterministic. 

Roth and Ockenfels (2002) study online auctions for items with private and 

common values and find overwhelming evidence for sniping in the presence 

of a deterministic deadline. In our context, the deterministic ending on 

Euronext may induce a potential manipulator to submit a price-changing 

order in the very last second of the call auction, leaving no chance for other 

participants to react to his action. This kind of behaviour may particularly 

obtain for the closing auction, where there is a considerable incentive to 

manipulate prices.  

 

[Insert Table C.9 about here] 

 

In order to investigate such potential price manipulations, we calculate the 

proportion of closing auctions on Euronext where the indicative price has 

changed at least once in the last s seconds, { }1,3,5s ∈ . The results are in 

Panel A of Table C.9. As can be seen, last-second changes in the indicative 

price are quite common: The indicative price is altered in about 42% of all 

auctions within the last 5 seconds, and around 19% of all times in the very 

last second. Moreover, last-second price changes are by far more common 

for more active stocks, where the indicative price changes in the last second 

in almost 65% of all closing auctions, compared to only 10.5% for low-

volume stocks. This may simply be due to a much more competitive 

behaviour of traders for high-volume stocks. In order to investigate whether 

                                                
36 Xetra Market Model, Release 7.1 
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these price changes are the result of considerable price manipulation via 

sniping, we estimate 

 , , 1 , 1 ,
o c s s c

i t i t i t i tr r D D rα β δ γ ε− −= + + + +  (3.12) 

where sD  is a dummy variable taking the value 1 if the indicative price has 

changed within the last s seconds. If manipulation takes place, the observed 

overnight reversal should be stronger, i.e. we expect γ to be negative. Panel B 

of Table C.9 contains the results, where we only report the coefficient γ to 

conserve space. We find that γ is negative and statistically significant at the 

5% level for the least active stocks with 5 and   3s s= = , while it is not 

significantly different from zero for 1s = . While it is intuitive that 

manipulation in less active stocks should be more feasible, the fact that the 

coefficient turns insignificant for the last second is counterintuitive. All other 

coefficients are not significant. Thus, there is at most weak evidence for 

sniping on Euronext in less active stocks, such that we conclude that sniping 

seems to be a relatively minor issue. 

 

3.6. Conclusion 

Motivated by the ongoing controversy about the optimal degree of pre-trade 

transparency, we examine the call auctions on two major European equity 

markets, Euronext (Paris) and Xetra (Frankfurt). While the former trading 

system displays the limit order book during its auctions, the latter only 

provides indicative information about the clearing price and the associated 

trading volume. In our analyses, we focus on two aspects, namely liquidity 

and price discovery.  

 
Our findings suggest that transparency in the form of order book disclosure 

enhances liquidity, as it fosters trading volume without leading to higher 

absolute price changes. The analysis of trading volume correlations 

additionally points at the concentrated presence of institutional investors in 
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the closing auction, particularly on Euronext. Hence, our results are 

consistent with transparency enabling agents to signal their willingness to 

trade as in Chakraborty et al. (2010). Additionally, an open order book also 

appears to improve price discovery at the market opening, which is 

consistent with an informative limit order book as in Cao et al. (2009) and 

Hendershott and Jones (2005). Our findings regarding price discovery are 

furthermore supported by higher post-open bid-ask spreads on Xetra, which 

gradually converge to the levels found on Euronext within the first 15 

minutes of continuous trading. Additionally, we provide evidence that price 

changes occurring during the closing auctions carry significant transitory 

components that are largely idiosyncratic and are most likely to constitute a 

premium for providing liquidity in the face of overnight inventory risk. 

Finally, we provide some evidence that the deterministic ending time of 

Euronext’s auction does not give rise to systematic price manipulation via 

sniping. 

 

Additionally, our findings confirm that the opening and the closing auction 

have very different objectives. While the opening auction mainly serves as a 

tâtonnement process that facilitates the formation of equilibrium prices after 

the arrival of overnight information, the closing auction is rather concerned 

minimizing trading costs for institutional (liquidity) traders. It is very 

interesting that both markets under consideration (as well as many other 

exchanges) are using the same mechanisms to set the opening and closing 

prices. In fact, either market additionally uses the same mechanism as so-

called “circuit-breaker” in the case of abnormally high volatility. While 

exchanges in practice will be very reluctant to make even minor changes to 

an established mechanism, it is an interesting question for further research to 

investigate whether this “one size fits all” paradigm is the optimal solution. 
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A. APPENDICES TO CHAPTER 1 

A.1. Proof of Proposition 1 
Before we state the proof of Proposition 1, it is useful to introduce some 

additional notation. 

 

As trader populations differ across markets, so does the function that maps 

market makers (henceforth MMs) prior into their posterior beliefs. Let 

( )1,t t tsellδ δ −  denote the posterior belief about the probability of a high 

realization of the liquidation value after a sell by the t-th trader, given the 

prior 1tδ − . Then, using Bayes’ rule, 

 1
1

1

(1 )
( , ) if sell in P and

1 (1 2 )
P Ct

t t t t t
t

sell b bµ δ
δ δ

µ δ
−

−
−

−
= >

+ −
 (A.1) 

 1
1

1

(1 )( , ) if sell in P and
1 (1 2 )

CT
P Ct

t t t t tCT
t

sell b bµ δ
δ δ

µ δ
−

−
−

−
= ≤

+ −
 (A.2) 

            1
1

1

(1 )( , ) if sell in C
1 (1 2 )

SR
t

t t t SR
t

sell µ δ
δ δ

µ δ
−

−
−

−
=

+ −
 (A.3) 

From this follows that the expected liquidation value of the asset conditional 

on the arrival of a sell order is given by 
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Clearly,  ( )SR CT SR CTµ µ µ µ µ µ> > < <  implies 

1 1 1( , ) ( , ) ( , )CT SR
t t tB B Bµ δ µ δ µ δ− − −≥ ≥   

1 1 1( ( , ) ( , ) ( , ))CT SR
t t tB B Bµ δ µ δ µ δ− − −≤ ≤ , where equality applies to the 

limiting cases of 1 0tδ − =  and 1 1tδ − = .  

 

We are now ready to state the proof of Proposition 1. For notational 

simplicity, we omit the time subscripts on MMs beliefs. 

 

Proof of Proposition 1: 

Part A: I Uθ θ>  

Case A1: ( , ) ( , )SRB c Bµ δ µ δ− >  

In this case, , * ( , )i P
tb B cµ δ= −  for  1, , Pi N= …  and , * *j C P

t tb b<  for 

 1, , Cj N= …  constitutes a Nash equilibrium. All trade occurs in market P, 

and MMs obtain zero expected profits in both markets. Unilaterally 

decreasing the bid in market P does not improve on zero expected profits, as 

such a quote does not attract any market order, given the other MMs quote. 

On the other hand, ( , )B cµ δ −  is the maximum bid that does not lead to 

expected losses, thereby ruling out any unilateral increases in the quote. 

Concerning market C, any bid , ( , )j C
tb B cµ δ≥ −  will yield an expected loss 

for market maker j as the expected liquidation value conditional on the sell 

of a smart router is ( , ) ( , )SRB B cµ δ µ δ< − . Lowering the bid unilaterally 

does not improve on zero expected profits. 
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To see that we must have * *P C
t tb b>  in equilibrium, first consider the case 

where * *P C
t tb b< . Clearly, equilibrium requires * ( , )C CT

tb B µ δ≤ . Given 

* *P C
t tb b< , market makers in market P make expected profits. Thus for 

every * *P C
t tb b< , there exists some , * *i P P C

t t tb b bε= + <  that allows market 

maker i to overbid her rival in the same market and thereby increase her 

profits. Hence, this cannot be an equilibrium. Now consider the situation 

where * *P C
t tb b= . Given that MMs in market P (C) face proportions 

( )CT SRµ µ  of informed traders, we must have * ( , )P CT
tb B cµ δ≤ −  and 

* ( , )C SR
tb B µ δ≤  and therefore * ( , )P SR

tb B µ δ≤ . By symmetry, we have 

, * *i P P
t tb b=  and , * *j C C

t tb b=  for 1, , Pi N= …  and 1, , Cj N= … . 

If * * ( , )P C SR
t tb b B µ δ= < , then market maker j in market C can capture the 

market by posting , *j C C
t tb b ε= + , such that this is not an equilibrium. On 

the other hand, if * * ( , )P C SR
t tb b B µ δ= = , market maker i in market P makes 

an expected profit equal to (1 )( ( , ) ( , ) )/ 0CT SR PB B c Nθ µ δ µ δΠ = − − − > . 

Increasing her bid marginally to , ( , ) ( , )i P SR
tb B B cµ δ ε µ δ= + < − , her profit 

is equal to ( , ) ( , )SRB B cµ δ µ δ ε− − − , which is always greater than Π  for 

PN →∞. 

 

Case A2: ( , ) ( , ) ( , )CT SRB c B B cµ δ µ δ µ δ− ≥ ≥ −  

For this case, , ,* * ( , )j C i P SR
t tb b B µ δ= =  for 1, , Pi N= …  and 1, , Cj N= …  is 

a Nash equilibrium. Given our assumption regarding inter-market ties, smart 

routers trade in market C and captive traders in market P. MMs in market C 

earn zero expected profits and MMs in market P make expected profits as 

( , ) ( , ) 0CT SRB c Bµ δ µ δ− − ≥ . Unilaterally decreasing any bid leads to zero 

profits, as it attracts no market order, given the other quotes. On the other 

hand, a unilateral increase in the bid quote in market P (C) generates 
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expected losses as such a quote then faces a proportion µ  ( SRµ ) of 

informed traders. 

 

To see that any equilibrium must satisfy * *C P
t tb b= , first assume that 

* *C P
t tb b> . Clearly, we must have that * ( , )C SR

tb B µ δ= . Given the quotes in 

market C, market makers in market P face a proportion CTµ  of informed 

traders. As long as * *C P
t tb b> , there always exists some , * *i P P C

t t tb b bε= + <  

that allows market maker i to overbid her rivals in the same market and 

thereby increase her profits. Hence, this cannot be an equilibrium. Now 

consider the converse situation, i.e. * *P C
t tb b> . Given that market P displays 

the best quotes across markets, the adverse selection risk is defined by a 

proportion µ  of informed traders, such that we must have 

* ( , )P
tb B cµ δ= − . But then, market maker j in market C faces a proportion 

SRµ  of informed traders, such that she can obtain an expected profit by 

increasing her bid to , ( , )j C
tb B cµ δ= − . Hence, this cannot an equilibrium 

either.  

 

Case A3: ( , ) ( , )SR CTB B cµ δ µ δ> −  

Under this constellation, , * ( , )i P CT
tb B cµ δ= −  and , * ( , )j C SR

tb B µ δ=  for 

1, , Pi N= …  and 1, , Cj N= …  constitutes a Nash equilibrium. Smart routers 

trade in market C, captive traders in market P, and all MMs obtain zero 

expected profits. Unilaterally lowering a bid quote in either does not attract 

any market orders, given the other quotes. Increasing the quote in market P 

leads to expected losses because such a quote faces proportions CTµ  (if 

, ( ( , ) , ( , )]i P CT SR
tb B c Bµ δ µ δ∈ − ) or µ  (if , ( , )i P SR

tb B µ δ> ) of informed 

traders. Similarly, higher bid quotes in market C lead to expected losses as 
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the expected liquidation value conditional on a sell order in market C is equal 

to ( , )SRB µ δ . 

 

To see that we must have * *C P
t tb b>  in equilibrium, first consider the case 

where * *C P
t tb b< . Under this constellation, markets makers in market P face 

a proportion µ  of informed traders and equilibrium requires that 

* ( , )P
tb B cµ δ= − . As in the previous case, market maker j in market C can 

make an expected profit by posting , * ( , )j C
tb B cµ δ= − , such that this is not 

an equilibrium. Now suppose that * *C P
t tb b= . Clearly, we must have that 

* ( , )P CT
tb B cµ δ≤ − , because any higher bid in market P will lead to losses 

given a proportion CTµ  of informed traders. But then, any market maker j in 

market C has an incentive to increase her bid marginally to some 
, *j C C

t tb b ε= + , thereby capturing the market and increasing her profits. 

 

Combining cases A1-A3, we find that * *C E
t tb b≥  if and only if 

( , ) ( , )SRB B cµ δ µ δ≥ − . Using equations (A.4) and (A.6), the market co-

existence condition (1.1) follows. 

 

Part B: U Iθ θ≥  

In this case, the inequality ( , ) ( , )SR CTB B cµ δ µ δ> −  is always satisfied 

because SR CTµ µ< . It follows from case A3 that we must have 

, * ( , )j C SR
tb B µ δ=  for 1, , Cj N= … and , * ( , )i P CT

tb B cµ δ= −  for 

1, , Pi N= …  in equilibrium, such that markets co-exist. Condition (1.1) is 

satisfied because 0SRµ µ− < . 

 

Q.E.D.



96 

A.2. Tables and Figures 
Table A.1 Sample Stocks 

This table contains a list of the 67 French and German stocks contained in 
our sample, separated into terciles based on their average trading volume (in 
€). 

 

 
High Volume Stocks Medium Volume Stocks Low Volume Stocks

(N=22) (N=23) (N=22)

Total Carrefour Postbank
Deutsche Bank BMW Linde

Allianz Deutsche Post Michelin
Siemens Vivendi Bouygues
Daimler ThyssenKrupp Pernod Ricard
E.ON Credit Agricole Alcatel Lucent

Societe Generale EDF PPR
BNP Paribas Lafarge Accor

Deutsche Telekom Renault Adidas
France Telecom Schneider Cap Gemini

RWE Vallourec Gaz de France
Volkswagen L'Oreal STMicroelectronics

AXA Veolia Merck
SAP Lufthansa Metro

Bayer Danone Unibail Rodamco
BASF LVMH Hypo Real Estate

Deutsche Börse MAN Air France - KLM
Suez Alstom Henkel

Munich Re Saint Gobain TUI
Sanofi Synthelabo Vinci Fresenius Medical Care

Continental Peugeot Essilor
Commerzbank Air Liquide Lagardere

Infineon



 97

Table A.2 Sample Statistics 

This table contains summary statistics of the trading activity on Chi-X and 
the Primary Markets for our sample of 67 French and German stocks, 
aggregated into terciles based on trading activity. MS Chi-X denotes the 
market share of Chi-X for trades and trading volume as a percentage of the 
consolidated market (Chi-X plus primary market). Ratio C/P denotes the 
average trade size on Chi-X as percentage of the average trade size in the 
Primary Market. 
 

 

Chi-X Primary MS Chi-X (%)

High Volume 1.06 5.85 14.98

Medium Volume 0.52 3.99 11.47

Low Volume 0.30 2.59 10.52

All 0.63 4.14 12.31

Chi-X Primary MS Chi-X (%)

High Volume 18.33 244.31 6.99

Medium Volume 5.83 96.85 5.53

Low Volume 2.96 51.54 5.36
All 8.99 130.39 5.95

Chi-X Primary Ratio C/P (%)

High Volume 17.38 42.26 41.82
Medium Volume 10.99 24.86 43.63

Low Volume 9.55 20.04 47.94

All 12.62 28.99 44.45

Panel A: Avg. daily # of trades (1,000 trades)

Panel C: Average trade size (€1,000)

Panel B: Avg. daily trading volume (Mio. €)
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Table A.3 Quote competitiveness and market depth 

This table contains statistics on the quote competitiveness and the available 
market depth for our sample of 67 French and German stocks, aggregated 
into terciles based on trading activity and reported separately for Chi-X and 
the Primary Markets. Panel A reports the average frequency with which a 
given market is present (alone) at the inside quote, while Panel B reports the 
average market depth (in €10,000) for each market conditional on being 
present (alone) at the inside quote. 

 

 

High Volume 52.65 53.56 27.45 27.75 28.18 7.11

Medium Volume 49.77 48.59 23.84 27.28 25.66 6.54

Low Volume 45.13 45.63 20.98 24.99 23.00 6.21

All 49.30 49.25 24.08 26.68 25.62 6.62

High Volume 72.25 71.82 51.18 47.35 46.44 21.24

Medium Volume 72.72 74.34 53.59 50.23 51.41 25.48

Low Volume 75.01 77.00 58.22 54.87 54.37 30.22

All 73.32 74.38 54.32 50.81 50.75 25.64

High Volume 31.02 31.02 30.64 27.08 27.27 26.94

Medium Volume 17.69 17.53 17.45 16.43 15.51 15.94

Low Volume 14.49 15.29 14.77 14.06 13.29 13.86

All 21.02 21.22 20.90 19.15 18.64 18.88

High Volume 91.74 102.41 103.04 74.62 87.42 95.70

Medium Volume 50.42 53.35 55.78 43.20 46.94 50.78

Low Volume 39.25 42.46 42.91 35.16 38.28 39.20

All 60.32 65.88 67.07 50.88 57.39 61.73

At best ask    
alone

At both           
aloneAt best bid At best ask At both At best bid       

alone

 Panel A: Presence (%) at the inside quote

Primary market

Primary market

 Panel B: Depth (in €10,000) conditional on presence at the inside quote

Chi-X

Chi-X
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Table A.4 The proportion of smart routers and the tie-breaking rule 

This table contains estimates for the proportion of smart routers (θ), the 
proportion of executions in the Primary Market under inter-market ties (π), 
as well as for the tie-breaking rule parameter (τ) for our sample of 67 French 
and German stocks, aggregated into terciles based on trading activity. All 
variables are defined in Section 1.3. Standard errors are robust to serial and 
cross-sectional correlation. The standard errors for the tie-breaking rule 
parameter are based on the delta method. 
 

High Volume 0.514 0.510 0.046
(0.018) (0.022) (0.035)

Medium Volume 0.495 0.513 0.015
(0.018) (0.018) (0.033)

Low Volume 0.494 0.525 0.039
(0.020) (0.027) (0.041)

All 0.501 0.516 0.033
(0.013) (0.015) (0.025)

Proportion of smart 
routers

Tie-breaking rule 
parameter

Proportion of Primary 
Market Trades under    

inter-market ties
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Table A.5 Effective spread decomposition (Chi-X vs. Primary Market Trades) 

This table contains the average effective spreads as well as the 
decomposition into the adverse selection (price impact) and realized spread 
components for trades on Chi-X and the Primary Markets, respectively, 
following equations (1.2) to (1.4) in Section 1.4.A. Averages are based on 
stock-days and aggregated into terciles based on trading activity. For 
differences, statistical significance at the 10%, 5%, and 1% level is denoted 
by *, **, and ***, respectively. Standard errors are robust to serial and cross-
sectional correlation. 
 

Chi-X Primary Difference

High Volume 1.999 1.996 0.003
(0.126) (0.138) (0.020)

Medium Volume 2.672 2.705 -0.033
(0.151) (0.245) (0.035)

Low Volume 3.341 3.217   0.124**
(0.217) (0.219) (0.052)

All 2.671 2.640 0.031
(0.128) (0.140) (0.074)

Chi-X Primary Difference

High Volume 2.088 1.628    0.460***
(0.149) (0.119) (0.073)

Medium Volume 2.693 2.306    0.387***
(0.190) (0.161) (0.091)

Low Volume 3.270 2.877    0.393***
(0.210) (0.163) (0.122)

All 2.684 2.271    0.413***
(0.139) (0.122) (0.076)

Chi-X Primary Difference

High Volume -0.090 0.367 -   0.457***
(0.102) (0.098) (0.074)

Medium Volume -0.021 0.399 -  0.419**
(0.104) (0.152) (0.191)

Low Volume 0.071 0.340 -0.269
(0.114) (0.158) (0.168)

All -0.013 0.369 -   0.382***
(0.078) (0.094) (0.104)

Panel A: Effective Spread

Panel B: Price Impact

Panel C: Realized Spread



 101 

Table A.6 Effective spread decomposition (Trade-Throughs vs. Non-Trade-
Throughs) 

This table contains the average effective spreads as well as the 
decomposition into the adverse selection (price impact) and realized spread 
components for both trade-throughs and non-trade-throughs on the Primary 
Markets, following equations (1.2) to (1.4) in Section 1.4.A. Averages are 
based on stock-days and aggregated into terciles based on trading activity. 
For differences, statistical significance at the 10%, 5%, and 1% level is 
denoted by *, **, and ***, respectively. Standard errors are robust to serial 
and cross-sectional correlation. 

 

High Volume 1.883 3.173 -   1.290***
(0.135) (0.196) (0.140)

Medium Volume 2.527 4.659 -   2.132***
(0.191) (0.256) (0.152)

Low Volume 3.052 5.762 -   2.710***
(0.196) (0.436) (0.294)

All 2.488 4.533 -   2.046***
(0.122) (0.232) (0.145)

High Volume 1.713 0.804    0.909***
(0.120) (0.154) (0.116)

Medium Volume 2.453 0.690    1.763***
(0.200) (0.247) (0.171)

Low Volume 2.995 1.253    1.742***
(0.170) (0.201) (0.200)

All 2.388 0.912    1.476***
(0.130) (0.151) (0.124)

High Volume 0.170 2.369 -   2.199***
(0.085) (0.248) (0.242)

Medium Volume 0.074 3.969 -   3.896***
(0.079) (0.286) (0.286)

Low Volume 0.057 4.509 -   4.452***
(0.115) (0.484) (0.465)

All 0.100 3.621 -   3.521***
(0.068) (0.262) (0.247)

Trade-  
throughs Difference

Non-trade-
throughs

Trade-  
throughs Difference

Panel A: Effective Spread

Panel B: Price Impact

Panel C: Realized Spread

Non-trade-
throughs

Trade-  
throughs Difference

Non-trade-
throughs
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Table A.7 Permanent Price Impacts (Chi-X vs. Primary Market Trades) 

This table contains the average permanent price impact measures obtained 
from the VAR model in Section 1.4.B, equations (1.5) – (1.7). Averages are 
based on stock-days and aggregated into terciles based on trading activity. 
For differences, statistical significance at the 10%, 5%, and 1% level is 
denoted by *, **, and ***, respectively. Standard errors are robust to serial 
and cross-sectional correlation. 

 

 

 

 

 

 

Chi-X Primary Difference

High Volume 1.345 1.128    0.218***
(0.078) (0.068) (0.039)

Medium Volume 1.883 1.610    0.273***
(0.094) (0.071) (0.056)

Low Volume 2.337 2.106    0.232***
(0.138) (0.110) (0.081)

All 1.856 1.614    0.241***
(0.087) (0.078) (0.043)
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Table A.8 Permanent Price Impacts (Trade-Throughs vs. Non-Trade-
Throughs) 

This table contains the average permanent price impact measures obtained 
from the VAR model in Section 1.4.B, equations (1.9) – (1.12). Averages are 
based on stock-days and aggregated into terciles based on trading activity. 
For differences, statistical significance at the 10%, 5%, and 1% level is 
denoted by *, **, and ***, respectively. Standard errors are robust to serial 
and cross-sectional correlation. 

High Volume 1.208 0.274     0.934***
(0.071) (0.064) (0.071)

Medium Volume 1.745 0.326     1.419***
(0.113) (0.091) (0.114)

Low Volume 2.196 0.725     1.471***
(0.109) (0.129) (0.109)

All 1.717 0.440     1.277***
(0.083) (0.087) (0.085)

Non-trade-
throughs

Trade-  
throughs Difference
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Table A.9 Correlation matrix of explanatory variables 

This table contains the correlation matrix for the explanatory variables 
capturing the excess adverse selection risk on Chi-X. All variables are 
described in Section 1.5. Statistical significance at the 10%, 5%, and 1% level 
is denoted by *, **, and ***, respectively.  

 

 ΔAS(SD) ΔAS(HB) σ

ΔAS(SD) 1.000     0.635***     0.424***

ΔAS(HB) 1.000     0.453***

σ 1.000
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Table A.10 Cross-sectional regressions 

This table contains estimates for the linear cross-sectional regression 
following equation (1.13). All variables are described in Section 1.5. Robust 
standard errors are given in parentheses. Statistical significance at the 10%, 
5%, and 1% level is denoted by *, **, and ***, respectively. 

 

 

 (1) (2) (3)

ΔAS(SD) -   11.748***
(2.692)

ΔAS(HB) -   29.460***
(3.606)

σ -   0.564***
(0.169)

% Smart Routers 0.092 -0.095 0.040
(0.175) (0.152) (0.185)

ln(Volume)    7.176***    8.253***    5.267***
(1.304) (1.162) (1.339)

Synch   3.406**   2.288**    4.847***
(1.409) (1.007) (1.616)

Δtick (bps)    4.044***    4.705***    3.449***
(0.790) (0.460) (0.750)

Euronext dummy -2.280 2.863 -2.624
(1.915) (1.726) (1.967)

Constant -   86.932*** -   99.333*** -34.504
(27.592) (20.508) (30.037)

N 67 67 67
Adj. R² 0.606 0.733 0.580

Dependent Variable: Avg. Presence of Chi-X at the best quote
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Table A.11 Cross-sectional regressions 

This table contains estimates for the linear cross-sectional regression 
following equation (1.13), where we replace the independent variable by Chi-
X’s market share in terms of trades. All variables are described in Section 1.5. 
Robust standard errors are given in parentheses. Statistical significance at the 
10%, 5%, and 1% level is denoted by *, **, and ***, respectively. 

 

 

 
(1) (2) (4)

ΔAS(SD) -   2.989***
(1.091)

ΔAS(HB) -   6.997***
(1.862)

σ -  0.137**
(0.059)

% Smart Routers    0.318***    0.273***    0.305***
(0.059) (0.056) (0.061)

ln(Volume)    2.491***    2.735***    2.020***
(0.419) (0.403) (0.419)

Synch   1.390**   1.106**    1.726***
(0.549) (0.500) (0.575)

Δtick (bps)    1.094***    1.235***    0.939***
(0.271) (0.217) (0.244)

Euronext dummy -   3.472*** -   2.232*** -   3.542***
(0.748) (0.827) (0.757)

Constant -   47.826*** -   50.598*** -   34.990***
(8.668) (7.702) (9.344)

N 67 67 67
Adj. R² 0.588 0.643 0.572

Dependent Variable: Avg. Market Share Chi-X (# of Trades)
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Figure A.1 Graphical representation of the trader population for I Uθ θ>  
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A.3. A two-market PIN model using regression 
As maximum likelihood estimation of the PIN model has become 

increasingly difficult, Easley et al. (2010) point out that that PIN can be 

approximated by  

 
( )

( )
Approx E I

PIN
E B S

=
+

 (A.7) 

where B and S denote the number of buys and sells, and I = B - S is the 

order imbalance. The intuition behind this approximation is straightforward. 

Total order flow is the sum of informed and uninformed trades, while the 

order imbalance is entirely attributable to informed trades. As a result, PIN 

can be approximated by the average imbalance divided by the average 

number of trades.  

 

In our case, unfortunately, it is not sufficient to simply calculate this 

approximation for each market in isolation, as this would not impose equal 

event probabilities across markets. A two-market PIN model implies that the 

order imbalance in each market has the same sign (in expected terms), and 

the relative order imbalance is higher in the market with a larger proportion 

of informed traders. Let k
tI  denote the order imbalances in market 

{ },k C P∈  on day t, such that the imbalance in the consolidated market is 

given by T C P
t t tI I I= + . Moreover define venue k’s market share as 

( )/ ( )k k k T T
t t t t tS B S B S= + + , where the superscript T refers to the 

consolidated (total) market. Then, the product T k
t tI S  is the expected order 

imbalance in market k in the case where the probability of informed trading 

in this market is equal to the probability of informed trading in the 

consolidated market. 

 

Then, we can test for differences in informed trading across venues via the 

simple linear regression 
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 ( )k k T k
t t t tI I Sλ ε= +  (A.8) 

If 1( 1)k kλ λ> < , the probability of informed trading in market k is higher 

(lower) than in the consolidated market, as observed imbalances are of 

greater (lower) magnitude than expected from its actual market share.  

 

Table A.12 details the estimation results for both Chi-X (Panel A) and the 

Primary Markets (Panel B). The first two columns report the mean and 

median coefficients from stock-specific OLS regressions for the entire 

sample and the different activity terciles, while the latter two columns 

contain the p-values from t-tests and Wilcoxon rank sum tests. Overall, the 

evidence indicates excess informed trading on Chi-X and a shortfall of 

informed traders on the Primary Markets. Except for the tercile with the 

most active stocks, the mean (median) regression coefficient for the MTF 

exceeds one, while the one for the Primary Markets is less than one.  

 

We then use the product ˆ( 1)C
i iλ σ−  as another measure of iAS∆  in 

regression (1.13), where ˆC
iλ  is the regression coefficient from equation (A.8) 

using the Chi-X imbalance as independent variable, and iσ  denotes stock i’s 

annualized return volatility. The results can be found in Table A.13, where 

we also show the coefficients for the alternative specification using Chi-X’s 

market share in terms of trades. The coefficients are negative and statistically 

significant, which is in line with the results obtained using the other measures 

of the adverse selection risk differential. Nevertheless, the effect’s magnitude 

in terms of economic significance is considerably smaller than for the other 

variables employed in Section 1.5. For example, a one standard deviation 

increase in ˆ( 1)i iλ σ−  (~15.44) is associated with a decrease of 1.96% in Chi-

X’s presence at the best quote, which is less than half of the effect for 
SD
iAS∆ . 
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Table A.12 Imbalance Regressions 

This table contains summary statistics on the order imbalance regression in 
equation (A.8) for estimating differences in the probability of informed 
trading between Chi-X, the Primary Markets, and the consolidated market. 
Results are based on our sample of 67 French and German stocks, 
aggregated into terciles based on trading activity. The first two columns 
present the mean and median regression coefficients minus one, while the 
last two columns contain p-values from t-tests and non-parametric Wilcoxon 
signed-rank tests. 

 
 

 

 

 

 
Mean Median T-test Wilcoxon

High Volume 0.095 -0.003 0.419 0.518

Medium Volume 0.322 0.301 <0.001 <0.001

Low Volume 0.275 0.279 0.034 0.012

All 0.232 0.219 <0.001 <0.001

Mean Median T-test Wilcoxon

High Volume 0.001 0.003 0.952 0.863

Medium Volume -0.034 -0.032 0.002 0.002

Low Volume -0.031 -0.030 0.026 0.018

All -0.021 -0.027 0.012 0.008

Panel A: Imbalance Regressions for Chi-X

Panel B: Imbalance Regressions for Primary Markets

λ-1 p-value (Ho: λ=1)

λ-1 p-value (Ho: λ=1)
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Table A.13 Cross-sectional regressions 

This table contains estimates for the linear cross-sectional regression 
following equation (1.13), where column headings denote the dependent 
variable. All variables are described in Section 1.5. Robust standard errors are 
given in parentheses. Statistical significance at the 10%, 5%, and 1% level is 
denoted by *, **, and ***, respectively. 

 

(λ-1)σ - 0.127* -  0.061**
(0.072) (0.029)

% Smart Routers 0.095    0.330***
(0.196) (0.055)

ln(Volume)    5.780***    1.971***
(1.804) (0.588)

Synch 2.009  0.965*
(1.569) (0.530)

Δtick (bps)    3.066***    0.838***
(0.706) (0.210)

Euronext dummy -1.984 -   3.589***
(2.538) (0.833)

Constant - 64.334* -   39.253***
(37.762) (12.077)

N 67 67
Adj. R² 0.505 0.575

% Chi-X at inside 
quote

Chi-X Market 
Share
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B. APPENDICES TO CHAPTER 2 

B.1. Proofs 

B.1.A. Proof of Proposition 1 
For each type of equilibrium, the proof proceeds in three steps: 

Step 1: Conjecture an ordering of cutoff prices. 

Step 2: Conjecture equilibrium strategies and solve for the equilibrium cutoff 

prices. 

Step 3: Verify that a) the assumed strategies are best replies (i.e. deviations 

are not profitable) and b) the cutoff prices satisfy the assumed ordering. 

Define the following four orderings of sell cutoff prices. 

Ordering 1: 

 
* * * *

* * * *

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

S S S S
H t A t H t A t

S S S S
H t A t H t A t

C v L C v L C v L C v L
C v L C v L C v L C v L

σ σ σ σ

σ σ σ σ

− − ≤ − − ≤ − + ≤ − +

≤ + − ≤ + − ≤ + + ≤ + +
 

Ordering 2: 

 
* * * *

* * * *

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

S S S S
H t A t H t H t

S S S S
A t A t H t A t

C v L C v L C v L C v L
C v L C v L C v L C v L

σ σ σ σ

σ σ σ σ

− − ≤ − − ≤ − + ≤ + −

≤ − + ≤ + − ≤ + + ≤ + +
 

Ordering 3: 

 
* * * *

* * * *

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

S S S S
H t A t H t H t

S S S S
A t A t H t A t

C v L C v L C v L C v L
C v L C v L C v L C v L

σ σ σ σ

σ σ σ σ

− − ≤ − − ≤ + − ≤ − +

≤ + − ≤ − + ≤ + + ≤ + +
 

Ordering 4: 

 
* * * *

* * * *

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

S S S S
H t A t H t A t

S S S S
H t A t H t A t

C v L C v L C v L C v L
C v L C v L C v L C v L

σ σ σ σ

σ σ σ σ

− − ≤ − − ≤ + − ≤ + −

≤ − + ≤ − + ≤ + + ≤ + +
 

For each ordering of sell cutoff prices, there is a corresponding ordering (due 

to symmetry) of buy cutoff prices. For example, for Ordering 1, we have   

 
* * * *

* * * *

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

B B B B
H t A t H t A t

B B B B
H t A t H t A t

C v L C v L C v L C v L
C v L C v L C v L C v L

σ σ σ σ

σ σ σ σ

+ + ≥ + + ≥ + − ≥ + −

≥ − + ≥ − + ≥ − − ≥ − −
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Table B.1 Cutoff price orderings and associated execution probabilities 

The following four tables contain the conditional and unconditional 

execution probabilities of buy limit orders according to the position of the 

limit price relative to the cutoff prices, separately for each employed 

ordering. 

Panel 1: Ordering 1 

Panel 2: Ordering 2 

Bid Price 
Execution 
Probability 

Execution 
Probability 
conditional on 

1tε σ+ = −  

Execution 
Probability 
conditional on  

1tε σ+ = +  
* ( , )S

HT tC v Lσ< − −  0 0 0 
* *( ( , ), ( , )]S S

HT t AT tC v L C v Lσ σ∈ − − − −  (1 )/ 4α−  (1 ) / 2α−  0 
* *( ( , ), ( , )]S S

AT t HT tC v L C v Lσ σ∈ − − − +  ¼ 1/2 0 
* *( ( , ), ( , )]S S

HT t AT tC v L C v Lσ σ∈ − + − +  (2 )/ 4α−  (2 )/ 2α−  0 
* *( ( , ), ( , )]S S

AT t HT tC v L C v Lσ σ∈ − + + −  ½ 1 0 
* *( ( , ), ( , )]S S

HT t AT tC v L C v Lσ σ∈ + − + −  (3 )/ 4α−  1 (1 ) / 2α−  
* *( ( , ), ( , )]S S

AT t HT tC v L C v Lσ σ∈ + − + +  ¾ 1 1/2 
* *( ( , ), ( , )]S S

HT t AR tC v L C v Lσ σ∈ + + + +  (4 )/ 4α−  1 (2 )/ 2α−  
* ( , )S

AT tC v Lσ> + +  1 1 1 

Bid Price 
Execution 
Probability 

Execution 
Probability 
conditional on 

1tε σ+ = −  

Execution 
Probability 
conditional on  

1tε σ+ = +  
* ( , )S

HT tC v Lσ< − −  0 0 0 
* *( ( , ), ( , )]S S

HT t AT tC v L C v Lσ σ∈ − − − −  (1 )/ 4α−  (1 )/ 2α−  0 
* *( ( , ), ( , )]S S

AT t HT tC v L C v Lσ σ∈ − − − +  1/4 1/2 0 
* *( ( , ), ( , )]S S

HT t HT tC v L C v Lσ σ∈ − + + −  (2 )/ 4α−  (2 )/ 2α−  0 
* *( ( , ), ( , )]S S

HT t AT tC v L C v Lσ σ∈ + − − +  (3 2 )/ 4α−  (2 )/ 2α−  (1 )/ 2α−  
* *( ( , ), ( , )]S S

AT t AT tC v L C v Lσ σ∈ − + + −  (3 )/ 4α−  1 (1 )/ 2α−  
* *( ( , ), ( , )]S S

AT t HT tC v L C v Lσ σ∈ + − + +  3/4 1 1/2 
* *( ( , ), ( , )]S S

HT t AT tC v L C v Lσ σ∈ + + + +  (4 )/ 4α−  1 (2 )/ 2α−  
* ( , )S

AT tC v Lσ> + +  1 1 1 
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Panel 3: Ordering 3 

Panel 4: Ordering 4 

 
Type 1 equilibrium: 

Let *
1 4 / (5 )Lσ α= −  and *

1 5 2α = − . 

CASE A: 
Step 1: Assume Ordering 1.  

Bid Price 
Execution 
Probability 

Execution 
Probability 
conditional on 

1tε σ+ = −  

Execution 
Probability 
conditional on  

1tε σ+ = +  
* ( , )S

HT tC v Lσ< − −  0 0 0 
* *( ( , ), ( , )]S S

HT t AT tC v L C v Lσ σ∈ − − − −  (1 )/ 4α−  (1 )/ 2α−  0 
* *( ( , ), ( , )]S S

AT t HT tC v L C v Lσ σ∈ − − + −  1/4 1/2 0 
* *( ( , ), ( , )]S S

HT t HT tC v L C v Lσ σ∈ + − − +  (2 )/ 4α−  1/2 (1 )/ 2α−  
* *( ( , ), ( , )]S S

HT t AT tC v L C v Lσ σ∈ − + + −  (3 2 )/ 4α−  (2 )/ 2α−  (1 )/ 2α−  
* *( ( , ), ( , )]S S

AT t AT tC v L C v Lσ σ∈ + − − +  (3 )/ 4α−  (2 )/ 2α−  1/2 
* *( ( , ), ( , )]S S

AT t HT tC v L C v Lσ σ∈ − + + +  3/4 1 1/2 
* *( ( , ), ( , )]S S

HT t AT tC v L C v Lσ σ∈ + + + +  (4 )/ 4α−  1 (2 )/ 2α−  
* ( , )S

AT tC v Lσ> + +  1 1 1 

Bid Price 
Execution 
Probability 

Execution 
Probability 
conditional 
on 1tε σ+ = −  

Execution 
Probability 
conditional on  

1tε σ+ = +  
* ( , )S

HT tC v Lσ< − −  0 0 0 
* *( ( , ), ( , )]S S

HT t AT tC v L C v Lσ σ∈ − − − −  (1 )/ 4α−  (1 )/ 2α−  0 
* *( ( , ), ( , )]S S

AT t HT tC v L C v Lσ σ∈ − − + −  1/4 1/2 0 
* *( ( , ), ( , )]S S

HT t AT tC v L C v Lσ σ∈ + − + −  (2 )/ 4α−  1/2 (1 )/ 2α−  
* *( ( , ), ( , )]S S

AT t HT tC v L C v Lσ σ∈ + − − +  1/2 1/2 1/2 
* *( ( , ), ( , )]S S

HT t AT tC v L C v Lσ σ∈ − + − +  (3 )/ 2α−  (2 )/ 2α−  1/2 
* *( ( , ), ( , )]S S

AT t HT tC v L C v Lσ σ∈ − + + +  3/4 1 1/2 
* *( ( , ), ( , )]S S

HT t AT tC v L C v Lσ σ∈ + + + +  (4 )/ 4α−  1 (2 )/ 2α−  
* ( , )S

AT tC v Lσ> + +  1 1 1 
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Step 2: Conjecture the following equilibrium strategies: HT buyers submit a 

buy limit order with a bid price slightly above * ( , )S
HT tC v Lσ− − , which has a 

probability of execution of ( )1 / 4α−  (see Table B.1, Panel 1). AT buyers 

submit a buy limit order with a bid price slightly above * ( , )S
AT tC v Lσ− − . If 

the next trader is not an AT, they cancel this order after observing the 

innovation in the fundamental value and set a new bid price slightly above 
* ( , )S

HT tC v Lσ− −  ( * ( , )S
HT tC v Lσ+ − ) if 1tε σ+ = −  ( 1tε σ+ = + ). The 

probability of execution for this strategy is 

( ) ( ) ( )1 / 4 1 / 4 / 4 2 / 4α α α α− + − + = −  (see Table B.1, Panel 1).  

Moreover, conjecture the analogous strategies for HT and AT sellers, e.g. a 

HT seller submits a sell limit order with ask price slightly below 
* ( , )B

HT tC v Lσ+ +  with probability of execution equal to(1 )/ 4α− . Thus, 

cutoff prices have to satisfy the following system of equations. 

 

* *

* *

* *

*

*

*

1( , ) ( ( , ))
4

1( , ) ( ) ( ( , ) ( ))
4

1( , ) ( ( , ))
4

1
( ( , ))

4

( ( , ))
4

(

B S
t HT t t HT t

S B
HT t t HT t t

B S
t AT t t HT t

S
t HT t

S
t AT t

S
AT

v L C v L v L C v L

C v L v L C v L v L

v L C v L v L C v L

v L C v L

v L C v L

C v

α
σ σ

α
σ σ

α
σ σ

α
σ σ

α
σ σ

−
+ − + = − + − − −

−
− − − = + + − + −

−
+ − + = − + − − −

−
+ + + − + −

+ − + − − −

*

*

*

1, ) ( ) ( ( , ) ( ))
4

1 ( ( , ) ( ))
4

( ( , ) ( ))
4

B
t t HT t t

B
HT t t

B
AT t t

L v L C v L v L

C v L v L

C v L v L

α
σ σ

α
σ σ

α
σ σ

−
− − − = + + − + −

−
+ − + − − −

+ + + − + −

 

Tedious, but straightforward algebra yields the following cutoff prices: 

 * 1( , ) (2 )
5

S
HT t tC v L v L L α

α
−

− = − +
−
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*

*

*

8 (3 )( , ) (2 )
(5 )(4 )
1( , ) (2 )
5
8 (3 )( , ) (2 )

(5 )(4 )

S
AT t t

B
HT t t

B
AT t t

C v L v L L

C v L v L L

C v L v L L

α α
α α

α
α
α α
α α

− +
− = − +

− +
−

+ = + −
−
− +

+ = + −
− +

 

Step 3: Due to symmetry, it suffices to analyze the strategies of buyers. First, 

notice that the optimal bid price must be chosen such that it is slightly higher 

than the lower bound of any of the proposed intervals, because a higher bid 

can be decreased without reducing the execution probability. Moreover, it is 

easy to see that Ordering 1 implies that it is not optimal to post a bid price B 

that lies in the interval * *( ( , ), ( , )]S S
HT t HT tC v L C v Lσ σ∈ − + + − . Such a limit 

order is only executed in the case of a price decrease, and 

therefore * ( , )S
HT t tB C v L v Lσ σ> − + ≥ − + . But then, the execution of this 

limit order cannot be profitable, because the bid price is above the 

reservation price of the trader posting the limit order. Moreover, it is clear 

that a bid price * ( , )S
HT tB C v L v Lσ σ> + + ≥ + +  cannot be optimal, because 

it is higher the maximum valuation of any trader37. Thus, the proposed 

strategy for HT buyers is a best reply if and only if 38: 

 

* *

* *

*

1 1( ( , )) ( ( , ))
4 4

1 1( ( , )) ( ( , ))
4 2

1 ( ( , ))
4

S S
t HT t t AT t

S S
t HT t t HT t

S
t HT t

v L C v L v L C v L

v L C v L v L C v L

v L C v L

α
σ σ σ σ

α
σ σ σ σ

α
σ σ

−
− + − − − ≥ − + − − −

−
− + − − − ≥ − + − + −

−
+ + + − + −

 

 

* *

*

1 1( ( , )) ( ( , ))
4 2

1 ( ( , ))
4

S S
t HT t t AT t

S
t AT t

v L C v L v L C v L

v L C v L

α
σ σ σ σ

σ σ

−
− + − − − ≥ − + − + −

+ + + − + −
 

                                                
37 Using the same kind of reasoning, we can reduce the possible equilibrium bid 
prices for other orderings of cutoff prices as well. 
38 In the following, we abuse notation by proceeding as if the bid prices were equal 
to the cutoff prices, as they can be chosen arbitrary close. 
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Similarly, AT buyers have no incentives to deviate if and only if: 

 

* *

*

*

( ( , )) ( ( , ))
4 2

( ( , ))
4

( ( , )) 0
4

S S
t AT t t AT t

S
t AT t

S
t AT t

v L C v L v L C v L

v L C v L

v L C v L

α α
σ σ σ σ

α
σ σ

α
σ σ

− + − − − ≥ − + − + −

+ + + − + −

− + − − − ≥

 

Brute-force algebra reveals that these inequalities and the assumed ordering 

of cutoff prices are satisfied if and only *
1α α≤  and 24 (1 )

(5 )(4 )
Lα α

σ
α α

+ −
≥

− +
. 

CASE B: 
Step 1: Assume Ordering 2.  

Step 2: Conjecture the same equilibrium strategies as in Case A, which 

implies identical cutoff prices. 

Step 3: The proposed strategies are best replies (for buyers) if and only if 

 

* *

* *

*

* *

1 1( ( , )) ( ( , ))
4 4

1 2( ( , )) ( ( , ))
4 4

1 ( ( , ))
4

1 1
( ( , )) ( ( , ))

4 2
1 (
4

S S
t HT t t AT t

S S
t HT t t HT t

S
t HT t

S S
t HT t t AT t

t

v L C v L v L C v L

v L C v L v L C v L

v L C v L

v L C v L v L C v L

v L

α
σ σ σ σ

α α
σ σ σ σ

α
σ σ

α
σ σ σ σ

σ

−
− + − − − ≥ − + − − −

− −
− + − − − ≥ − + − + −

−
+ + + − + −

−
− + − − − ≥ − + − + −

+ + + − *

* *

*

*

( , ))

( ( , )) ( ( , ))
4 2

( ( , ))
4

( ( , )) 0
4

S
AT t

S S
t AT t t AT t

S
t AT t

S
t AT t

C v L

v L C v L v L C v L

v L C v L

v L C v L

σ

α α
σ σ σ σ

α
σ σ

α
σ σ

+ −

− + − − − ≥ − + − + −

+ + + − + −

− + − − − ≥

 

These inequalities together with the conjectured ordering of cutoff prices are 

satisfied if and only if *
1α α≤  and 24 (1 )

(5 )(4 )
L Lα α

σ
α α

+ −
> ≥

− +
. 
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CASE C: 
Step 1: Assume Ordering 3. 

Step 2: Conjecture the same equilibrium strategies as in Case A, which 

implies identical cutoff prices. 

Step 3: The proposed strategies are best replies (for buyers) if and only if 

 

* *

* *

*

* *

1 1( ( , )) ( ( , ))
4 4

1 1( ( , )) ( ( , ))
4 4

1 ( ( , ))
4

1 2( ( , )) ( ( , ))
4 4

1 (
4

S S
t HT t t AT t

S S
t HT t t HT t

S
t HT t

S S
t HT t t AT t

t

v L C v L v L C v L

v L C v L v L C v L

v L C v L

v L C v L v L C v L

v L

α
σ σ σ σ

α
σ σ σ σ

α
σ σ

α α
σ σ σ σ

σ

−
− + − − − ≥ − + − − −

−
− + − − − ≥ − + − + −

−
+ + + − + −

− −
− + − − − ≥ − + − + −

+ + + − *

* *

*

( , ))

( ( , )) ( ( , ))
4 2

( ( , )) 0
4

S
AT t

S S
t AT t t AT t

S
t AT t

C v L

v L C v L v L C v L

v L C v L

σ

α α
σ σ σ

α
σ σ

+ −

− + − − − ≥ + − + −

− + − − − ≥

 

These inequalities together with the conjectured ordering of cutoff prices are 

satisfied if and only if *
1α α≤  and *

1L σ σ> ≥ . 

 

Combining Cases A, B and C, we conclude that the following quotation 

strategy and the associated order choice strategy constitute an equilibrium if 

and only if *
1α α≤  and *

1σ σ≥ . 

 

* * * *
, ,

* * * *
, ,

* * * *
, ,

* *
,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) (

S S
t HT t HT t t AT t HT t

S S
t AT t HT t t AT t AT t

B B
t HT t HT t t AT t HT t

B
t AT t HT t

B v L C v L B v L C v L

B v L C v L B v L C v L

A v L C v L A v L C v L

A v L C v

σ

σ

σ

σ

σ σ

σ σ

σ σ

σ

−

+

−

+

+ = − − + = − −

+ = + − + = − −

− = + − − = − −

− = + * *
,, ) ( , ) ( , )B

t AT t AT tL A v L C v Lσ− − = + −

 

 

These quotes can be written as in Proposition 1 after substituting the cutoff 

prices obtained in Step 2 of Case 1. The execution probabilities follow 
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directly from Table B.1, where the execution probabilities conditional on the 

next trader’s type can be obtained easily by setting 0α =  ( 1α = ) for 

1 0tθ + =  ( 1 1tθ + = ). 

 

The proof for the remaining types of equilibria follows exactly the same 

logic. In order to conserve space, we will simply indicate the orderings that 

give rise to these equilibria and provide the equilibrium bid quotes in terms 

of the equilibrium sell cutoff prices (the ask quotes follow by symmetry). 

Define the following variables. 

 

* * *
2 2 3 2

* *
4 5

2 (1 ) 4(4 )33 5
2 3 4 26

2(1 )(4 ) 4(1 )
7 3 7 3

L L

L L

α α α
α σ σ

α α
α α α

σ σ
α α

+ +−
= = =

− −
− + +

= =
+ +

 

 

Type 2 equilibrium: 
This equilibrium arises under Orderings 1 – 4. Equilibrium bid quotes satisfy 

 
* * * *
, ,

* * * *
, ,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

S S
t HT t AT t t AT t HT t

S S
t AT t HT t t AT t AT t

B v L C v L B v L C v L

B v L C v L B v L C v L

σ

σ

σ σ

σ σ

−

+

+ = − − + = − −

+ = + − + = − −
 

 
Type 3 equilibrium: 
This equilibrium arises under Orderings 3 and 4. Equilibrium bid quotes 

satisfy 

 
* * * *
, ,

* * * *
, ,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

S S
t HT t HT t t AT t HT t

S S
t AT t HT t t AT t AT t

B v L C v L B v L C v L

B v L C v L B v L C v L

σ

σ

σ σ

σ σ

−

+

+ = + − + = − −

+ = + − + = − −
 

 

Type 4 equilibrium: 
This equilibrium arises only under Ordering 4. Equilibrium bid quotes satisfy 

 
* * * *
, ,

* * * *
, ,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

S S
t HT t HT t t AT t HT t

S S
t AT t HT t t AT t AT t

B v L C v L B v L C v L

B v L C v L B v L C v L

σ

σ

σ σ

σ σ

−

+

+ = + − + = − −

+ = + − + = + −
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Type 5 equilibrium: 
This equilibrium arises only under Ordering 4. Equilibrium bid quotes satisfy 

 
* * * *

, ,

* * * *
, ,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

S S
t HT t AT t t AT t HT t

S S
t AT t HT t t AT t AT t

B v L C v L B v L C v L

B v L C v L B v L C v L

σ σ

σ

σ σ

σ σ

− −

+

+ = + − + = − −

+ = + − + = + −
 

 

Finally, it is possible to show that there exist no other equilibria than the 

ones just obtained, which yields uniqueness. The involved calculations are 

very long and tedious, such that they are omitted for brevity.  

Q.E.D. 
 

B.1.B. Proof of Proposition 2 
For each type of equilibrium, the transitions from one state to another 

follow a Markov chain with transition matrix iP , {1, 2,3,4,5}i ∈ . Using 

Table B.1 together with the equilibrium quotes in terms of cutoff prices (see 

the proof of Proposition 1), it is straightforward to obtain 

 

 

 

 

 

 

 

 

 

 

 

  

Given these transition matrices, the stationary probability distribution 

1 2 3 4( , , , )i i i i iφ φ φ φ φ=  is given by the left eigenvector associated with the unit 

eigenvalue. Straightforward calculations reveal 

1 2

3

3(1 )/ 4 (1 )/ 4 0 3(1 )/ 4 (1 )/ 4 3 / 4 / 4
1 0 0 1 0 0

(1 )/ 2 (1 )/ 2 3 / 4 / 4 (1 )/ 2 (1 )/ 2 3 / 4 / 4
1 0 0 1 0 0

(1 )/ 2 (1 )/ 2 3 / 4 / 4
1 0 0

(1 )/ 2 (1 )/ 2 3 / 4 / 4
1 0 0

P P

P

α α α α α α α
α α α α

α α α α α α α α
α α α α

α α α α
α α

α α α α
α α

− − − −   
   − −   = =
   − − − −
   − −   

− − 
 −=
 − −
 − 

4

5

(1 )/ 2 (1 )/ 2 3 / 4 / 4
1 0 0

(1 )/ 2 (1 )/ 2 / 2 / 2
1 0 0

(1 )/ 2 (1 )/ 2 / 2 / 2
1 0 0

(1 )/ 2 (1 )/ 2 / 2 / 2
1 0 0

P

P

α α α α
α α

α α α α
α α

α α α α
α α

α α α α
α α

− − 
  −  =
  − −
  − 

− − 
 − =
 − −
 − 
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2 2
1

2 2
2

2 2 2 2

3

4

4(1 )(4 ) (1 )(4 5 ) 4, , ,
(4 )(5 ) (4 )(5 ) 4 4

4(1 )(4 ) (1 )(4 3 ) (4 )16, , ,
20 20 20 20

(1 )(4 ) 2(1 ) (5 ), , ,
6 6 6 6

8(1 )

α α α α α α α
φ

α α α α α α

α α α α α α α αα
φ

α α α α α α α α

α α α α α α
φ

α α α α

α
φ

 − − − + −
=  + − + − + + 

 − − − + + − +
=  − + − + − + − + 

− − − − =  − − − − 

−
=

2 2

2 2 2 2

5

(1 )(4 ) 2 (5 ) (2 3 ), , ,
12 12 12 12

2(1 ) 1 2, , ,
3 3 3 3

α α α α α α α α
α α α α α α α α

α α α α
φ

 − + − − + −
 + − + − + − + − 

− − =  
 

 

Using the definition of the trading rate, we obtain 

 

1 1 1

2 2 2

3 3 3

4 4

4 (1 ) 4 (5 )
(4 )(5 ) (4 )(5 ) 4
4 3 (1 ) 4 (3 ) 4 (1 )
20 (1 ) 20 (1 ) 20 (1 )
2 2 1
6 6 6
4 (1 ) 4 (1 )

12 (1 ) 12 (1 )

HT AT

HT AT

HT AT

HT

TR TR TR

TR TR TR

TR TR TR

TR TR TR

α α α α α
α α α α α
α α α α α α
α α α α α α

α
α α α
α α α α
α α α α

+ − + −
= = =

+ − + − +
+ − + + − −

= = =
− − − − − −

−
= = =

− − −
− − + −

= =
+ − + −

4

5 5 5

2 (3 )
12 (1 )

1 1 1
3 3 3

AT

HT ATTR TR TR

α α
α α

+ −
=

+ −

= = =

 

It is immediate that we have i i
HT ATTR TR≥  for all i, such that * *

HT ATTR TR≥  

follows. Foucault (1999) shows that *

0
1/ 5TR

α =
=  for *

1 (0)σ σ≥  and 

*

0
1/ 3TR

α =
=  otherwise. If *

1 (0)σ σ≥ , a type-1, type-2 or type-3 

equilibrium may arise. It is straightforward to verify that 1/ 5iTR >  for 

1,2,3i = . Similarly, if *
1 (0)σ σ< , a type-2, type-3, type-4 and type-5 

equilibrium may arise. It is easy to check that in this case, we have 

1/ 3iTR ≤  for 2,3,4,5i = as required.  

Q.E.D. 
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B.1.C. Proof of Proposition 3 
The event probabilities ,

,
B
j k

σπ +  and ,
,

B
j k

σπ −  for each type of equilibrium can be 

easily obtained using the execution probabilities in Table B.1 together with 

the equilibrium quotes in terms of cutoff prices (see the proof of Proposition 

1).  

 

Consider the type-1 equilibrium and recall that the asset value increases or 

decreases with probability 1/2. First, we have * * ( , )S
HT HT tB C v Lσ= − − , which 

is never executed by an AT and only executed by a HT if he is a seller and 

the asset value decreases, such that ,
, 0B

HT HT
σπ + = , ,

, (1 )/ 4B
HT HT

σπ α− = − , 

,
, 0B

AT HT
σπ + =  and ,

, 0B
AT HT

σπ − = . Similarly, we have * * ( , )S
AT HT tB C v Lσ σ+ = + −  and 

* * ( , )S
AT HT tB C v Lσ σ− = − − , such that ,

, (1 )/ 4B
HT AT

σπ α+ = −  and 

,
, (1 )/ 4B

HT AT
σπ α− = − . Finally, * * ( , )S

AT AT tB C v Lσ= − −  implies ,
, 0B

AT AT
σπ + =  

and ,
, / 4B

AT AT
σπ α− = . The probabilities for all other types of equilibria are 

obtained in exactly the same fashion. We collect them in Table B.2 below. 

Table B.2 Event Probabilities 

This table contains the event probabilities ,
,

B
j k

σπ +  and ,
,

B
j k

σπ −  for each type of 

equilibrium. 

Probability Type 1 
Equilibrium 

Type 2 
Equilibrium 

Type 3 
Equilibrium 

Type 4 
Equilibrium 

Type 5 
Equilibrium 

,
,

B
HT HT

σπ +  0 0 (1 )/ 4α−  (1 )/ 4α−  (1 )/ 4α−  
,

,
B
HT HT

σπ −  (1 )/ 4α−  (1 )/ 4α−  (1 )/ 4α−  (1 )/ 4α−  (1 )/ 4α−  
,

,
B
AT HT

σπ +  0 0 0 0 / 4α  
,

,
B
AT HT

σπ −  0 / 4α  / 4α  / 4α  / 4α  
,

,
B
HT AT

σπ +  (1 )/ 4α−  (1 )/ 4α−  (1 )/ 4α−  (1 )/ 4α−  (1 )/ 4α−  
,

,
B
HT AT

σπ −  (1 )/ 4α−  (1 )/ 4α−  (1 )/ 4α−  (1 )/ 4α−  (1 )/ 4α−  
,

,
B
AT AT

σπ +  0 0 0 / 4α  / 4α  
,

,
B
AT AT

σπ −  / 4α  / 4α  / 4α  / 4α  / 4α  



 123 

Now the equilibrium expected profits from posting limit orders can be 

obtained directly by substituting the above probabilities and the equilibrium 

quotes (Proposition 1) into equations (2.3) and (2.4). Let ,( )LO i
HTE U  and 

,( )LO i
ATE U  denote the expected utility obtained by HTs and ATs, respectively, 

when posting limit orders in a type-i equilibrium. We find 

 

 

 

 

 

 

 

 

 

It is easy to see that 
0

( ) (2 )/ 5LOE U L
α =

=  for *
1 (0)σ σ≥  and 

0
( ) (2 )/ 3LOE U L

α
σ

=
= −  otherwise. If *

1 (0)σ σ≥ , a type-1, type-2 or type-

3 equilibrium may arise. It is straightforward to verify that in this case, 
, ,( ) (2 )/ 5 ( )LO i LO i

AT HTE U L E U> >  for 1,2,3i = . Similarly, if *
1 (0)σ σ< , a 

type-2, type-3, type-4 and type-5 equilibrium may arise. It is easy to check 

that in this case, we have , ,( ) (2 )/ 3 ( )LO i LO i
AT HTE U L E Uσ> − >  for 

2,3,4,5i = as required. 

Q.E.D.

,1 ,2

,1 ,2

,3 ,3

,4

1 3( ) (2 ) ( ) (2 )
5 7 3
8 (3 ) 1( ) (2 ) ( ) (2 )

(5 )(4 ) 7 3
8 (2 ) 4(1 )2 2( ) (2 ) ( ) (2 )

6 6 (6 )(4 ) (6 )(4 )
2 2( ) (2 )
6

LO LO
HT HT

LO LO
AT AT

LO LO
HT AT

LO
HT

E U L E U L

E U L E U L

E U L E U L

E U L

α α
α α
α α α
α α α

α α αα
σ σ

α α α α α α
α

σ
α

− −
= =

− +
− + +

= =
− + +

− + −−
= − = +

− − − + − +
−

= −
−

,4

,5 ,5

4 (2 ) 2 (8 )
( ) (2 )

6 (6 )(2 ) (6 )(2 )
1 2 1 1 3( ) (2 ) ( ) (2 )
3 3(1 ) 3 3(1 )

LO
AT

LO LO
HT AT

E U L

E U L E U L

α α α α
σ

α α α α α
α

σ σ
α α

+ + − −
= +

− − + − +
−

= − = +
+ +
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B.1.D. Proof of Proposition 4 
Using the equilibrium quotes from Proposition 1, we can calculate the 

trading costs for each combination of limit order trader and market order 

trader via equations (2.5) – (2.8) and (2.10) – (2.13). We collect them in Table 

B.3 below.  

Table B.3 Trading costs 

This table contains, for each type of equilibrium the trading costs for every 

possible combination of limit order trader and market order trader type.  

 

 EQUILIBRIUM  TYPES 
Trading 

Cost Type 1  Type 2  Type 3  Type 4  Type 5  
,

, ,
S
t HT HTTC σ+

 
- - 

2 2
6 6

L α
σ

α α
+

+
− −

 2 2
6 6

L α
σ

α α
+

+
− −

 
1 1 3
3 3(1 )

L α
σ

α
−

−
+

 

,
, ,

S
t HT HTTC σ−

 
3
5

L α
α

+
−

 
1 5
7 3

L α
α

+
+
 

2 10 2
6 6

L α α
σ

α α
+ −

−
− −

 

2 10 2
6 6

L α α
σ

α α
+ −

−
− −

 

1 7 3
3 3(1 )

L α
σ

α
+

−
+

 

,
, ,

S
t AT HTTC σ+

 
- - - - 

1 1 3
3 3(1 )

L α
σ

α
−

−
+

 

,
, ,

S
t AT HTTC σ−

 
- 

1 5
7 3

L α
α

+
+
 

2 10 2
6 6

L α α
σ

α α
+ −

−
− −

 

2 10 2
6 6

L α α
σ

α α
+ −

−
− −

 

1 7 3
3 3(1 )

L α
σ

α
+

−
+

 

,
, ,

S
t HT ATTC σ+

 
3
5

L α
α

+
−

 
5
7 3

L α
α

+
+
 

2 2
6 6

L α
σ

α α
+

+
− −

 2 2
6 6

L α
σ

α α
+

+
− −

 
1 2
3 3(1 )

L σ
α

+
+

 

,
, ,

S
t HT ATTC σ−

 
3
5

L α
α

+
−

 
5
7 3

L α
α

+
+
 

2 2
6 6

L α
σ

α α
+

+
− −

 2 2
6 6

L α
σ

α α
+

+
− −

 
1 2
3 3(1 )

L σ
α

+
+

 

,
, ,

S
t AT ATTC σ+

 
- - - 

24
(6 )(2 )

2 (8 )
(6 )(2 )

L α
α α

α α
σ

α α

+
− +

− −
−

− +

 
1 1 3
3 3(1 )

L α
σ

α
−

−
+

 

,
, ,

S
t AT ATTC σ−

 

4 (7 )
(5 )(4 )

L α α
α α

+ +
− +

 

1 5
7 3

L α
α

+
+
 

8 (6 )
(6 )(4 )

4(1 )
(6 )(4 )

L α α
α α

α
σ

α α

+ +
− +

+
−

− +

 

2

2

4
(6 )(2 )

26
(6 )(2 )

L α
α α

α
σ

α α

+
− +

−
−

− +

 
1 7 3
3 3(1 )

L α
σ

α
+

−
+
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Then, the expected trading costs for HTs and ATs, respectively, are obtained 

by straightforward substitution into equations (2.9) and (2.14). We obtain 

 

1

1

2

2

2
3

3

3( )
5
4 (7 )( )

(5 )(4 )
(1 )(4 )(1 5 ) 8 (5 )( )

(7 3 )((4 )(1 ) 8 )
1 5( )
7 3

2 (5 ) (1 )(4 )2( )
6 4(6 )
(1 )(4 )(4 )(2 ) (5 )(8( )

HT

AT

HT

AT

HT

AT

E TC L

E TC L

E TC L

E TC L

E TC L

E TC

α
α
α α
α α
α α α α α

α α α α
α
α

α α α αα
σ

α α
α α α α α α α

+
=

−
+ +

=
− +
− − + + +

=
+ − − +

+
=

+
− − − −+

= +
− −
− − + + + − +

=

2
4

2 2
4

(6 ))
(4 )(6 )

2(5 )((4 )(4 ) 2 )
(4 )(6 )

2 (5 ) (1 )(4 )2( )
6 4(6 )
8(1 )(2 ) 4 (5 )(4 )

( )
(2 )(6 )(8 4 (3 ))

2(5 )(8(1 )(2 ) (28 8 )
(2 )(6 )(8 4 (3 ))

HT

AT

L

E TC L

E TC L

E

α
α α

α α α α
σ

α α

α α α αα
σ

α α

α α α α α
α α α α

α α α α α
α α α α

+
+ −

− + − +
+

+ −

− − − −+
= +

− −

− + + − +
=

+ − + −
− − + + −

+
+ − + −

5

5

1 4 6( )
3 3(1 )
1 4( )
3 3(1 )

HT

AT

TC L

E TC L

α
σ

α

σ
α

−
= −

+

= −
+

 

Average expected trading costs for each type of equilibrium are then 

computed using equation (2.15). 

 

It is easy to see that expected overall trading costs in the absence of ATs are 

given by *
0

3( )
5

E TC L
α =

=  for *
1 (0)σ σ≥  and *

0

1 2( )
3 3

E TC L
α

σ
=

= −  

otherwise. 



 126 

i) Let * *
1 1( )σ σ α≥ , which implies that *

0

3( )
5

E TC L
α =

= .  

a) If *
1α α≤ , we are always in a type-1 equilibrium such that 

* 1( ) ( )HT HTE TC E TC=  and * 1( ) ( )E TC E TC= . It is easy to check that 

1 1 3( ) ( )
5HTE TC E TC L> > . 

b) If *
1α α α≥ > , we are always in a type-2 equilibrium and hence 

* 2( ) ( )HT HTE TC E TC=  and * 2( ) ( )E TC E TC= . Some algebra reveals that 

2 2 3( ) ( )
5HTE TC E TC L< ≤  for the assumed range of α.  

c) If α α> , we are always in a type-2 equilibrium and hence 
* 2( ) ( )HT HTE TC E TC=  and * 2( ) ( )E TC E TC= . It is straightforward to 

check that 2 23( ) ( )
5 HTE TC L E TC< <  in this case. 

 

ii) Let * * *
1 1 1( ) (0)σ α σ σ> ≥ , which implies that *

0

3( )
5

E TC L
α =

= .  

a) If α α≤ , we are either in a type-1, a type-3 or a type-2 equilibrium. It 

can be shown that, under the assumed range for the parameters, we have 

1 1 3( ) ( ) ( ) ( )
5

i i
HT HTE TC E TC L E TC E TC> > > >  for 2,3i = , which 

establishes the desired result.  

b) If α α α≥ > , we are always is a type-2 equilibrium, such that the 

desired result follows from i) b).  

c) If α α> , we are always is a type-2 equilibrium, such that the desired 

result follows from i) c).  

 

iii) Let * *
1 3(0) (0)σ σ σ> ≥ , which implies *

0

1 2( )
3 3

E TC L
α

σ
=

= − . 
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First, suppose that * * *
1 3 2(0) ( )σ σ σ α> ≥ . Depending on α, a type-1, type-2 or 

type-3 equilibrium may arise. Tedious algebra reveals that 

1 2( ) ( )
3 3

i i
HTE TC E TC L σ> > −  for 1,2,3i =  in the assumed parameter 

range. 

 

Now suppose that * * *
3 2 3( ) (0)σ α σ σ> ≥ , such that a type-3, type-4 or type-5 

equilibrium may arise. One can show that 1 2( ) ( )
3 3

i i
HTE TC E TC L σ> > −  

for 3,4,5i =  in the assumed parameter range. 

 

iv) Let *
3 (0)σ σ> , which implies *

0

1 2( )
3 3

E TC L
α

σ
=

= − .  

a) If 1/ 4α ≤ , we are either in a type-4 or a type-5 equilibrium. One can 

show that under the assumed parameter configuration, 

4 51 2( ) ( )
3 3HT HTE TC L E TCσ> − ≥ and 4 51 2( ) ( )

3 3
E TC L E TCσ> − > , 

which leads to the desired result. 

b) If1/ 4 1/ 3α< ≤ , we are either in a type-4 or a type-5 equilibrium. One 

can show that under the assumed parameter configuration, 

4 5 1 2( ) ( )
3 3HT HTE TC E TC L σ> > −  and 4 51 2( ) ( )

3 3
E TC L E TCσ> − ≥ , 

which leads to the desired result. 

c) Let 1/ 3α > . 

(1) If *
2 1/ 3α α≥ > , we are either in a type-4 or a type-5 equilibrium. 

One can show that 4 5 1 2( ) ( )
3 3HT HTE TC E TC L σ> > −  and 

4 5 1 2( ) ( )
3 3

E TC E TC L σ> > −  in this case, which yields the desired 

result. 
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(2) If *
2α α> , we are in a type-5 equilibrium. Some quick algebra yields 

5 5 1 2( ) ( )
3 3HTE TC E TC L σ> > − . 

 

v) If * * *
1 3 2(0) ( )σ σ σ α> ≥  and *

1α α> , we are either in a type-2 or a type-5 

equilibrium. It is straightforward to show that in this case, 

2 51 2( ) ( )
3 3AT ATE TC L E TCσ> − > . On the other hand, one can show that 

for any other parameter configuration, * *

0
( ) ( )ATE TC E TC

α =
> . 

Q.E.D. 
 

B.1.E. Proof of Proposition 5 
** *

AT HTEU EU EU> >  is a direct consequence of Propositions 3 and 4. 

Moreover,  

i) This follows directly from Proposition 2 because 
* * (2 )EU TR L= × . 

ii) From Proposition 2, we have that * *

0
TR TR

α =
≤  for *

1 (0)σ σ< . 

Combined with 
** *

AT HTEU EU EU> > , this implies 
**

0
HTEU EU

α =
< . 

iii) For * *
1 1( )σ σ α≥ , 

*

0
(2 / 5)EU L

α =
= . For this level of σ, a type-1 or 

type-2 equilibrium may arise, i.e. we have * 1
HT HTEU EU=  for *

1α α≤  

and * 2
HT HTEU EU=  otherwise. Using the expressions for expected gains 

from limit orders and expected trading costs derived in the proofs of 

Propositions 3 and 4 together with the stationary distribution derived in 

the proof of Proposition 2, straightforward calculations yield the desired 

result.  

iv) For * * *
1 1 1(0) ( )σ σ σ α≤ < , 

*

0
(2 / 5)EU L

α =
= . 
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a) Given that *
1α α< , the result follows directly from iii). 

b) Forα α≤ , we can be in a type-1, type-2 or type-3 equilibrium. 

Straightforward, but tedious algebra reveals that for the assumed range 

of α, we have 3 (2 / 5)HTEU L> , but (2 / 5) i
HTL EU>  for i=1,2, which 

establishes the result. 

v) For * * *
1 3 2(0) ( )σ σ σ α> ≥  and *

1α α> , one can verify that *
ATEU  may be 

higher or lower than 
*

0
EU

α =
. Combining Propositions 3 and 4, it is 

immediate that 
**

0
ATEU EU

α =
>  otherwise, because we have 

* *

0
( ) ( )ATE TC E TC

α =
>  and * *

0
( ) ( )LO LO

ATE U E U
α =

> . 

Q.E.D.
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B.2. Tables and Figures 
Table B.4 Equilibrium combinations  
This table contains the equilibrium combinations for fixed levels of σ (details 
are described at the end of Section 2.4.A). We have set 1L = . The switching 
point levels of α are denoted by 1α%  and 2α% . 
 

Equilibrium 
Combination σ range σ 1α%  2α%  

1: EQ 1, EQ 2 * *
1 1( )σ σ α≥  1 0.2361 - 

2: EQ 1, EQ 3, EQ 2 * * *
1 1 1( ) (0)σ α σ σ> ≥  0.8198 0.1220 0.2521 

3: EQ 3, EQ 2, EQ 5 * * *
1 3 2(0) ( )σ σ σ α> ≥  0.7381 0.3198 0.6544 

4: EQ 3, EQ 4, EQ 5 * * *
3 2 3( ) (0)σ α σ σ> ≥  0.6458 0.1930 0.3647 

5: EQ 4, EQ 5 *
3 (0) 0σ σ> ≥  0.3077 0.2477 - 
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Figure B.1 Equilibrium Map 

This graph depicts the different regions in the (α,σ)-space that give rise to 

the respective equilibria. We have set 1L = .  

 

EQ 3 

EQ 4 

EQ 2 

EQ 5 

EQ 1 

α 

σ 
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Figure B.2 Equilibrium Trading Rate 
The figures in the left column (a) depict the equilibrium trading rates for 
HTs (blue) and ATs (red) for different levels of σ  (descending from top to 
bottom, see Table B.4 as a function of α. The figures in the right column (b) 
show the equilibrium aggregate trading rate. Notice that the equilibrium 
trading rate in the absence of ATs is equal to the equilibrium trading rate for 
HTs in the case where 0α = . 

 
                          1a)                                      1b) 
 

                         2a)                                      2b) 

                         3a)                                      3b) 
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                        4a)                                      4b) 
 

                       5a)                                      5b) 
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Figure B.3 Equilibrium Trading Costs 

The figures in the left column (a) depict the equilibrium expected trading 
costs for HTs (blue) and ATs (red) for different levels of σ  (descending 
from top to bottom, see Table B.4 as a function of α. The figures in the right 
column (b)  show the equilibrium average expected trading cost. Notice that 
the equilibrium expected trading cost in the absence of ATs is equal to the 
equilibrium expected trading cost for HTs in the case where 0α = . 
 

                         1a)                                      1b) 
 

                         2a)                                      2b) 
 

                        3a)                                      3b) 
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                       4a)                                      4b) 
 

                      5a)                                      5b) 
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Figure B.4 Welfare 
These graphs depict the equilibrium expected utilities for HTs (blue) and 
ATs (red) for different levels of σ  (descending from top left to bottom right, 
see Table B.4) as a function of α. Notice that the equilibrium expected utility 
in the absence of ATs is equal to the equilibrium expected utility for HTs in 
the case where 0α = . 
 

                            1)                               2) 
 

                           3)                               4) 
 

 
                           5) 
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C. APPENDIX TO CHAPTER 3 

C.1. Tables and Figures 
Table C.1 Matched Sample Stocks 

This table lists the stocks contained in the matched sample obtained by 
applying the matching algorithm described in Section 3.3. We further divide 
the sample into three terciles based on trading activity (Euro trading 
volume), denoted L (large caps), M (mid caps), and S (small caps). 

 
Xetra Euronext Xetra Euronext

ALTANA CGG VERITAS AMB GENERALI BIC
BEIERSDORF SODEXHO ALLIANCE ARQUES INDUSTRIES BULL REGPT
COMMERZBANK RENAULT BILFINGER BERGER NEXANS
DAIMLER SOCIETE GENERALE CELESIO CNP ASSURANCES
DEUTSCHE BOERSE LAFARGE DEUTSCHE EUROSHOP CLARINS
DEUTSCHE POST AG CREDIT AGRICOLE DEUTZ HAULOTTE GROUP
E.ON BNP PARIBAS DOUGLAS HOLDING HAVAS
FMC VZ EIFFAGE HANNOVER RUECK DASSAULT SYSTEMES
HENKEL VZ GAZ DE FRANCE HEIDELBERGCEMENT EULER HERMES
HOCHTIEF ATOS ORIGIN HUGO BOSS VZ TELEPERFORMANCE
HYPO REAL ESTATE CAP GEMINI IVG PAGESJAUNES
INFINEON PEUGEOT KRONES GROUPE STERIA
LANXESS SAFRAN MLP UBISOFT ENTERTAIN
LUFTHANSA STMICROELECTRONICS MPC ALTEN
MAN ALSTOM PREMIERE SOITEC
MERCK AIR FRANCE -KLM RHOEN KLINIKUM CIMENTS FRANCAIS
MUENCHENER RUECK CARREFOUR SOFTWARE NEXITY
PUMA TF1 SUEDZUCKER MAUREL ET PROM
RWE AG FRANCE TELECOM TELE ATLAS FONC DES REGIONS
SALZGITTER TECHNIP VIVACON NICOX
STADA VALEO WINCOR NIXDORF BOURBON

Xetra Euronext

ADVA DERICHEBOURG
BB BIOTECH BIOMERIEUX
COMDIRECT BANK IMS INTL METAL SCE
CTS EVENTIM STALLERGENES
CURANUM WAVECOM
DEUTSCHE BETEILIG ASSYSTEM
DRAEGERWERK VZ RODRIGUEZ GROUP
DYCKERHOFF VZ DELACHAUX
ELEXIS DEVOTEAM
ELRINGKLINGER MANITOU BF
FIELMANN SECHILIENNE SIDEC
FUCHS PETROLUB IPSOS
GERRY WEBER BOURSORAMA
GRAMMER LISI
HCI CAPITAL FAURECIA
JUNGHEINRICH VZ EUROFINS SCIENT
KOENIG + BAUER PLASTIC OMNIUM
PFEIFFER VACUUM SECHE ENVIRONNEM
ROFIN SINAR VILMORIN & CIE
SIXT GFI INFORMATIQUE
TAKKT SWORD GROUP

High turnover stocks (Large Caps, L) Medium turnover stocks (Mid Caps, M)

Low turnover stocks  (Small Caps, S)
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Table C.2 Matched Sample Descriptive Statistics 

This table reports summary statistics on the variables used for the 
construction of the matched sample, as detailed in Section 3.3.  
 
 
 

Tercile Euronext Xetra Euronext Xetra Euronext Xetra
Mean 105.1 121.8 1.78 1.75 14,835 14,155

Median 71.1 62.8 1.65 1.79 7,089 6,216
StDev 101.7 129.9 0.36 0.38 17,726 18,064

Mean 8.4 8.5 2.12 2.05 1,321 1,262
Median 6.7 6.0 1.95 2.08 1,218 1,048
StDev 5.8 5.6 0.69 0.67 808 757

Mean 1.2 1.2 1.96 2.09 354 387
Median 1.2 1.2 1.90 2.07 275 275
StDev 0.6 0.6 0.42 0.47 190 275

Mean 38.2 43.8 1.95 1.96 5,504 5,268
Median 6.7 6.0 1.90 1.98 1,218 1,178
StDev 75.0 92.5 0.52 0.54 12,082 12,072

L (N=21)

S (N=21)

All (N=63)

M (N=21)

Trading Volume                                 
(daily in Mio. €) Volatility (%)

Free Float Capitalization                              
(Mio. €)
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Table C.3 Relative call auction trading volumes 

For each trading day and stock, we compute the trading volume during the 
opening and closing auction as a proportion of the trading volume during 
the day as defined in equation (3.3) of Section 3.4.A. The first two columns 
report the averages for each exchange and trading activity tercile. Inference 
regarding differences across markets is based either on a paired t-test (t) or a 
non-parametric Wilcoxon signed rank test (np). ***, **, and * denote 
statistical significance at the 1%, 5%, and 10% level, respectively. All 
numbers are given in percentage values.  
 
 

Euronext Xetra t np

L 1.17 0.83 ***  ***  
M 2.12 1.04 ***  ***  
S 4.40 2.39 ***  ***  
All 2.56 1.42 ***  ***  

Euronext Xetra t np

L 10.30 7.87 ***  ***  
M 5.93 5.27 ***  ***  
S 4.06 3.39 ***  ***  
All 6.76 5.51 ***  ***  

Panel B: Closing Auction

Panel A: Opening Auction
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Table C.4 Call auction liquidity (Amihud Ratio) 

This table reports the average inverse Amihud Ratio as defined in equation 
(3.5) of Section 3.4.B. for the opening and closing auctions as well as the 
continuous trading phase separately for each exchange. Inference regarding 
differences across markets is based either on a paired t-test (t) or a non-
parametric Wilcoxon signed rank test (np). ***, **, and * denote statistical 
significance at the 1%, 5%, and 10% level, respectively. For improved 
visibility, we adjust the average measure with a different scale for each 
trading activity tercile, which is given in the last column as Euro trading 
volume per basis point price change. 
 
 
 

Euronext Xetra t np € / BP

L 14.6 14.1 - * 1,000
M 10.7 2.5 *** *** 100
S 12.2 7.2 ** ** 10

Euronext Xetra t np € / BP

L 6.35 5.70 ** ** 100,00
M 1.69 1.25 - ** 10,000
S 0.19 0.12 - ** 1,000

Euronext Xetra t np € / BP

L 8.14 9.63 * - 100,00
M 4.68 5.05 - - 10,000
S 4.75 5.24 - - 1,000

Panel B: Closing Auction

Panel C: Continuous Trading

Panel A: Opening Auction
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Table C.5 Volume Cross Correlations 

This table reports the average cross-sectional correlation coefficient of Euro 
trading volume for each trading activity tercile on each exchange. We report 
the averages for the opening (Panel A) and closing (Panel B) auction as well 
as for the continuous trading phase (reported in both panels). Ratio A/C 
denotes the average correlation coefficient for the respective auction divided 
by the corresponding average for continuous trading, where standard errors 
are calculated using the delta method. The last column denotes the 
difference in the Ratio A/C across exchanges, where standard errors have 
been obtained under the assumption of independence. ***, **, and * denote 
statistical significance at the 1%, 5%, and 10% level, respectively. 
 

Difference

Cont. Trading Auction Ratio A/C Cont. Trading Auction Ratio A/C Ratio A/C

L 0.179 0.067      0.375*** 0.269 0.125      0.463***       -0.088***
(0.009) (0.006) (0.028) (0.009) (0.007) (0.019) (0.034)

M 0.128 0.079      0.615*** 0.236 0.058      0.247***        0.369***
(0.009) (0.007) (0.043) (0.012) (0.005) (0.019) (0.047)

S 0.088 0.081 0.921 0.143 0.098      0.682***        0.239***
(0.006) (0.005) (0.070) (0.007) (0.006) (0.042) (0.082)

Difference

Cont. Trading Auction Ratio A/C Cont. Trading Auction Ratio A/C Ratio A/C

L 0.179 0.227      1.268*** 0.269 0.289   1.074*      0.194***
(0.009) (0.009) (0.063) (0.009) (0.011) (0.039) (0.074)

M 0.128 0.100      0.780*** 0.236 0.221 0.936      -0.156*** 
(0.009) (0.007) (0.039) (0.012) (0.012) (0.050) (0.063)

S 0.088 0.075      0.849*** 0.143 0.080      0.558***      0.291***
(0.006) (0.005) (0.069) (0.007) (0.005) (0.037) (0.078)

Panel A: Opening Auction

Euronext Xetra

Euronext Xetra

Panel B: Closing Auction
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Table C.6 Price discovery 

This table reports the average values of the three price discovery measures 
presented in Section 3.5.A, separately for each exchange and trading activity 
tercile. Inference regarding differences across markets is based either on a 
paired t-test (t) or a non-parametric Wilcoxon signed rank test (np). ***, **, 
and * denote statistical significance at the 1%, 5%, and 10% level, 
respectively.  
 

Euronext Xetra t np Euronext Xetra t np Euronext Xetra t np

L 0.335 0.275 - * 0.262 0.250 - - 0.249 0.221 ** ***  
M 0.451 0.306 ** * 0.329 0.165 *** *** 0.244 0.202 *** ***
S 0.353 0.247 *** *** 0.218 0.122 *** ** 0.233 0.174 *** ***
All 0.380 0.276 *** *** 0.270 0.179 *** *** 0.242 0.200 *** ***

Euronext Xetra t np Euronext Xetra t np Euronext Xetra t np

L 0.015 0.015 - - 0.026 0.015 - - 0.013 0.011 - -
M 0.029 0.019 ** * 0.040 0.024 * ** 0.036 0.026 - **
S 0.062 0.062 - - 0.062 0.069 - - 0.076 0.065 - *
All 0.035 0.032 - - 0.043 0.036 - - 0.041 0.034 - -

Panel A: Opening Auction

Panel B: Closing Auction

Variance Ratio

Variance Ratio

unbiasedness R 2

unbiasedness R 2

WPC

WPC
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Table C.7 Bid-ask spreads during the first hour of continuous trading 

This table reports the relative quoted spread (see equation (3.8) in Section 
3.5.B for each exchange and trading activity tercile during the first hour of 
continuous trading, which we divide into 12 5-minute intervals. Inference 
regarding differences across markets is based either on a paired t-test (t). ***, 
**, and * denote statistical significance at the 1%, 5%, and 10% level, 
respectively. 
 

Euronext Xetra t Euronext Xetra t Euronext Xetra t

1 2.500 2.994 *** 2.230 3.157 *** 1.621 1.887 ***

2 2.117 2.155 ** 2.162 2.529 *** 1.675 1.753 ***

3 1.788 1.819 ** 1.931 2.118 *** 1.609 1.631

4 1.627 1.619 1.741 1.822 *** 1.524 1.525

5 1.520 1.498 ** 1.605 1.659 *** 1.453 1.445

6 1.463 1.432 *** 1.533 1.554 ** 1.396 1.384

7 1.394 1.371 ** 1.470 1.470 1.358 1.339 *

8 1.322 1.333 1.381 1.397 1.312 1.288 *

9 1.262 1.254 1.306 1.297 1.258 1.235 *

10 1.204 1.211 1.232 1.246 1.210 1.205

11 1.187 1.197 1.205 1.206 1.187 1.180

12 1.175 1.160 ** 1.178 1.163 * 1.171 1.153

5 minute 
interval

Large Caps Mid Caps Small Caps
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Table C.8 Reversal regressions 

This table contains the estimated regression coefficients from the models 
defined in equations (3.10) and (3.11) in Section 3.5.C, presented separately 
for each activity tercile and the entire sample. Standard errors clustered by 
stock and trading day are given in parentheses. ***, **, and * denote 
statistical significance at the 1%, 5%, and 10% level, respectively.  
 
 

L -0.082 *** 0.017 L -0.231 *** -0.085
(0.021) (0.026) (0.068) (0.125)

M -0.069 *** -0.079 *** M -0.482 *** 0.167 **
(0.017) (0.030) (0.084) (0.083)

S -0.141 *** -0.010 S -0.477 *** 0.023
(0.021) (0.028) (0.033) (0.043)

All -0.090 *** -0.034 * All -0.446 *** 0.047
(0.013) (0.020) (0.033) (0.040)

L 0.050 *** -0.039 L 0.118 -0.664
(0.022) (0.022) (0.373) (0.524)

M 0.119 *** -0.057 * M 0.398 -0.309
(0.030) (0.032) (0.363) (0.469)

S 0.010 0.116 S -0.013 -0.107
(0.020) (0.071) (0.010) (0.273)

All 0.068 *** -0.008 All 0.158 -0.218
(0.011) (0.015) (0.176) (0.229)

L -0.139 *** 0.031 L -0.281 *** -0.002
(0.038) (0.054) (0.058) (0.131)

M -0.084 *** -0.135 *** M -0.551 *** 0.200 ***
(0.022) (0.039) (0.076) (0.084)

S -0.170 *** -0.068 ** S -0.491 *** 0.018
(0.026) (0.034) (0.033) (0.044)

All -0.127 *** -0.068 *** All -0.482 *** 0.066
(0.018) (0.029) (0.031) (0.043)

β

β β

β

γ γ

γ

Opening Auction Closing Auction

Panel C: Abnormal returns

γ

γ

Opening Auction Closing Auction

Panel B: Portfolio Returns

Panel A: Raw returns

Opening Auction Closing Auction

γβ β
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Table C.9 Sniping 

Panel A of this table contains the proportion of closing auctions on 
Euronext that experience a change in the indicative clearing price in the last 
5, 3, or 1 seconds, reported separately for the different terciles and the entire 
sample. Panel B reports the estimated regression coefficient γ of equation 
(3.12) in Section 3.5.D. Standard errors clustered by stock and trading day 
are given in parentheses. ***, **, and * denote statistical significance at the 
1%, 5%, and 10% level, respectively. 
 
 
 

L 64.6% 54.8% 28.6%

M 47.1% 42.1% 21.4%

S 10.5% 8.5% 5.7%

ALL 41.8% 36.1% 19.0%

L -0.05 -0.08 0.03
(-0.41) (-0.77) (0.29)

M 0.02 0.01 -0.11
(0.25) (0.11) (-0.94)

S    -0.22**    -0.24** -0.14
(-2.07) (-2.18) (-0.91)

ALL 0.04 0.02 0.01
(0.78) (0.43) (0.11)

Panel A: Late Price Changes

5 sec 3 sec 1 sec

Panel B: Regression coefficients

5 sec 3 sec 1 sec
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Figure C.1 Bid-ask spreads during the first hour of continuous trading 

This figure graphs the relative quoted spread (defined in equation (3.8) in 
Section 3.5.B for each exchange and trading activity tercile during the first 
hour of continuous trading, which we divide into 12 5-minute intervals. The 
exact figures are contained in Table C.7. 
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