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Summary 

This doctoral thesis covers the use of advanced analytical techniques (UHPLC-QTOF, UHPLC-QqQ-

MS/MS and LC-LTQ-Orbitrap) and computational software (Artificial Neural Networks, Sieve, 

MsXelerator) from the prediction of chromatographic retention time to the qualitative screening and 

quantification of pharmaceuticals and illicit drugs (PIDs) in wastewater (WW) and surface water (SW). 

It is divided into three sections and consists of six scientific articles and one review article (Scientific 

Article 1).   

The first section consists of three research articles and deals with the use of high resolution mass 

spectrometry (HRMS) in the screening and occurrence of PIDs in environmental waters of three 

countries: Colombia, Italy and Spain. The use of different HRMS instruments (QTOF and LTQ-

Orbitrap) combined with in-house and online databases of up to thousands of compounds enabled 

numerous compounds to be detected and identified. A continuously-updated in-house database of 

more than 1000 PIDs and metabolites was made incorporating their exact mass, and also adduct 

formation, fragment ions and retention time when a standard was available. This entire database was 

used for the first work, investigating influent and effluent WW as well as SW samples from Bogotá, 

Colombia, leading to the identification of 40 compounds across all samples (Scientific Article 2). A 

subset of approximately 100 of the most commonly identified compounds was used in the next work, 

looking at the use of two HRMS instruments (QTOF and Orbitrap) in the suspect screening of WW 

and SW samples from Italy and Spain, with up to 28 compounds at least detected (Scientific Article 

3). Finally, a non-target screening approach was made using two advanced deconvolution software 

and incorporating two databases: one of 250 PIDs and the ChemSpider database, with more than 20 

compounds being tentatively identified (Scientific Article 4). 

The second section consists of two research articles and covers the development and utilisation of 

two retention time prediction approaches in the identification of PIDs in waste and environmental 

water samples. Initially, a very simple approach was made, using only logKow and a combined in-house 

and Waters database of 595 reference standards. This led to a prediction accuracy of approximately 

70-80% within a retention time window of ±2 minutes. A comparison was made to see whether 

reducing the mass extraction window incrementally from 50mDa to 5mDa would result in more peaks 

being removed than the prediction method. 
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It was found that even at the narrowest window investigated, this prediction method resulted in almost 

one quarter of all chromatographic peaks able to be removed as false positives (Scientific Article 5). 

While this simple approach showed itself quite useful, a more precise method was hoped to aid in the 

identification of transformation products for which no reference standards are available. Artificial 

neural networks were thus investigated and found to be much more precise, with up to 95% of all 

compounds being within a ±2 minute window, leading to the tentative identification of ten metabolites 

and transformation products and several other compounds for which standards were unavailable 

(Scientific Article 6).  

Finally, the third section consists of one research article on the quantitative analysis of new 

psychoactive substances (NPS) using UHPLC-QqQ-MS/MS. Ten NPS were chosen, based on their 

current (ab)use and prevalence in toxicological and wastewater-based epidemiological approaches. 

This method was based on offline solid phase extraction (SPE) using mixed cation exchange (MCX) 

cartridges due to the basic nature of the NPS. A study was also made on the stability of the compounds 

in influent wastewater (both at natural pH and pH=2), with the compounds maintaining their stability 

for up to 7 days in acidified influent wastewater. This method was fully validated and tested on samples 

from throughout Europe – Utrecht, The Netherlands; Oslo, Norway; Bristol, United Kingdom; Milan, 

Italy; Copenhagen, Denmark; Brussels, Belgium, Zurich, Switzerland and Castellon, Spain – with 

mephedrone, methylone and methylenedioxypyrovalerone (MDPV)  able to be identified (Scientific 

Article 7).   
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Resumen 

Esta tesis doctoral abarca el uso de técnicas avanzadas de análisis (HPLC-QTOF, HPLC-QqQ-

MS/MS y LC-LTQ-Orbitrap) y software computacional (Artificial Neural Networks, Sieve, 

MsXelerator) desde la predicción de tiempo de retención cromatográfico a la detección cualitativa y 

cuantitativa de productos farmacéuticos y drogas ilícitas (PIDs) en aguas residuales (WW) y 

superficiales (SW). Se divide en tres secciones y consta de seis artículos científicos y un artículo de 

revisión.  

La primera sección consta de tres artículos de investigación y se ocupa de la utilización de la 

espectrometría de masas de alta resolución (HRMS) en el “screening” de PIDs en aguas ambientales 

de tres países: Colombia, Italia y España. El uso de diferentes instrumentos de HRMS (QTOF y LTQ-

Orbitrap) combinado tanto con bases de datos internas como en línea de hasta miles de compuestos 

ha permitido la detección e identificación de numerosos compuestos. Se ha desarrollado una base de 

datos que se actualiza de manera continua, con más de 1000 PIDs y  metabolitos que incluye su masa 

exacta, así como la formación de aductos, los iones fragmento así como el tiempo de retención cuando 

se contaba con un patrón. Esta base de datos se utilizó para el primer artículo, la investigación de 

influentes y efluentes de WW, así como muestras de SW de Bogotá, Colombia, que permitió la 

identificación de hasta 40 compuestos en todas las muestras (Scientific Article 2). Una base de datos 

reducida, conteniendo un subconjunto de aproximadamente 100 de los compuestos más comúnmente 

identificados, se utilizó en el siguiente artículo, evaluando la utilización de dos instrumentos HRMS 

(QTOF y Orbitrap) para el “suspect screening” de muestras WW y SW de Italia y España, con un 

máximo de 28 compuestos detectados (Scientific Article 3). Por último, un método combinado de 

“suspect” y “non-target” se ha llevado a cabo mediante dos programas de deconvolución avanzada y 

la incorporación de una pequeña base de datos de 250 PIDs para “suspect screening” y la base de 

datos generalista ChemSpider para el “non-target screening”, con casi 20 compuestos  identificados 

tentativamente (Scientific Article 4). 

La segunda sección consta de dos artículos de investigación que incluyen el desarrollo y la utilización 

de dos enfoques distintos para la predicción del tiempo de retención cromatográfico en la 

identificación de PIDs en muestras de aguas residuales y ambientales. Inicialmente, se realizó un 

enfoque muy simple, utilizando sólo logKow pero combinando una base de datos interna y otra de 

Waters, lo que permitió emplear los datos de 595 patrones de referencia. Esto condujo a una exactitud 
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en la predicción de aproximadamente el 70-80% de todos los compuestos dentro de una ventana de 

tiempo de retención de ±2 minutos. Se llevó a cabo una comparación reduciendo la ventana de 

extracción de masa desde 50mDa a 5mDa para evaluar si conllevaría la eliminación de más picos 

cromatográficos que el método de predicción de tiempo de retención. Se observó que incluso con la 

ventana más estrecha investigada, este método de predicción de tiempo de retención permitió eliminar 

casi un cuarto de todos los picos cromatográficos como falsos positivos (Scientific Article 5).  Si bien 

este enfoque simple se mostró bastante útil, se requiere un método más exacto para ayudar en la 

identificación de los productos de transformación para los que no hay patrones de referencia 

disponibles. Se investigó el uso de las redes neuronales artificiales (ANNs), resultando ser mucho más 

precisas, con hasta un 95% de todos los compuestos dentro de una ventana ±2 minutos, dando lugar 

a la identificación tentativa de diez metabolitos y productos de transformación así como otros 

compuestos para los que los patrones de referencia no estaban disponibles (Scientific Article 6). 

Finalmente, la tercera sección consiste en un artículo de investigación para el análisis cuantitativo de 

nuevas sustancias psicoactivas (NPS) utilizando HPLC-QqQ-MS/MS. Diez NPS fueron elegidos, en 

función de su (ab)uso actual y prevalencia tanto toxicológica como en epidemiología de aguas 

residuales. Este método se basa en un tratamiento previo de extracción en fase sólida (SPE), usando 

cartuchos de modo mixto de intercambio catiónico (MCX), debido a la basicidad de los NPS 

investigados. También se realizó un estudio sobre la estabilidad de los compuestos en agua residual 

influente a pH natural y a pH 2, resultando estables durante un máximo de 7 días en el agua residual 

acidificada. Este método fue totalmente validado y evaluado en muestras procedentes de toda Europa 

- Utrecht, Países Bajos; Oslo, Noruega; Bristol, Reino Unido; Milan, Italia; Copenhague, Dinamarca; 

Bruselas, Bélgica, Zurich, Suiza y Castellón, España – identificando en las muestras mefedrona, 

metilona y methylenedioxypyrovalerone (MDPV) (Scientific Article 7) 
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25-B-NBOMe: 2-(4-bromo-2,5- dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine 

25-C-NBOMe: 2-(4-chloro-2,5- dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine 
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H2O: Water 

HILIC: Hydrophobic interaction liquid chromatography 
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HRMS: High resolution mass spectrometry 

IT: Ion trap mass analyser 

ITN: International training network 

KWR: KWR Watercycle Research Institute 

LC: Liquid chromatography 

LC-MS: Liquid chromatography coupled to mass spectrometry 

LC-MS/MS: Liquid chromatography coupled to tandem mass spectrometry 

logKOW: Octanol-water partition coefficient 

LSER: Linear solvent energy relationship 

LTQ: Linear ion trap mass analyser 

MCX: Mixed-mode cation exchange 

MDMA: 3,4-methylenedioxymethamphetamine, also known as ecstasy 

MDPV: methylenedioxypyrovalerone 

MeOH: Methanol 

MN: Mario Negri Institute of Pharmacological Research 

MS: Mass spectrometry 

MS/MS: Tandem mass spectrometry 
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m/z: mass to charge ratio 

NH4Ac: Ammonium acetate 

NP: Normal phase 

NPS: New psychoactive substances 

nw-XIC: Narrow window extracted ion chromatogram 

OECD: Organisation for Economic Co-operation and Development 

PCB: Polychlorinated biphenyls 

PID: Pharmaceuticals and illicit drugs 

ppb: Parts per billion 

ppt: Parts per trillion 

q: non-mass resolving quadrupole, acting as a collision cell 

Q: Quadrupole mass analyser 

QqQ: Triple quadrupole mass analyser 

QSRR: Quantitative structure-retention relationships 

QTOF: Quadrupole time-of-flight mass analyser 

RF: Random forest 
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SIM: Selected ion monitoring 

SMILES: Simplified molecular-input line-entry system 

SPE: Solid phase extraction 

SRM: Selected reaction monitoring 

SVM: Support vector machine 

tR: Retention time 

TIC: Total ion chromatogram 

TOF: Time-of flight mass analyser 

TP: Transformation product 

UHPLC: Ultra high performance liquid chromatography 

WBE: Wastewater based epidemiology 

WWTP: Wastewater treatment plant 

XIC: Extracted ion chromatogram 
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Objectives  

The main objective of this doctoral thesis was to investigate licit and illicit drugs and metabolites in 

waste and surface water using advanced analytical techniques. To reach this aim, retention time 

prediction, suspect, non-target and target screening strategies have been applied. Different 

instrumental configurations have been investigated, including low resolution tandem mass 

spectrometry (MS) using triple quadrupole (QqQ) and high resolution MS using quadrupole time-of-

flight (QTOF) and linear ion trap Orbitrap (LTQ Orbitrap) mass analysers.  

In order to reach this general objective, several specific objectives have been established: 

1) Application of a qualitative analytical methodology based on ultra-high performance liquid 

chromatography (UHPLC) coupled to QTOF MS in MSE mode, allowing rapid wide-scope 

screening for a large number of compounds based on a large in-house database. This 

methodology was to be applied to a number of water samples (influent and effluent wastewater 

and surface water) from different geographic origins and countries (Colombia, Italy and 

Spain).  

2) Development of a simple retention time prediction approach that can easily be applied during 

the suspect screening of pharmaceuticals and illicit drugs to aid in their identification. A 

comparison with mass extraction window width was also to be tested.  

3) Development of a second, more complex and precise retention time prediction approach that 

could be applied in the identification of metabolites and transformation products for which 

standards are unavailable. 

4) Development and application of a combined suspect and non-target screening workflow using 

advanced deconvolution software following injection in LTQ-Orbitrap. 

5) Development of an analytical strategy for quantification of new psychoactive substances 

(NPS) in influent wastewater based on offline solid phase extraction (SPE) followed by LC-

MS/MS measurement with a triple quadrupole mass analyser. A comparative direct injection 

method was also performed. Target compounds were selected based on consumption and 

prevalence in previous toxicological and wastewater samples.  
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Working Plan 
 
This entire doctorate was supported by the Marie Curie funded International Training Network, 

SEWPROF (more in Chapter 1), which made it possible to perform research stays at several 

international institutes. 

 

The working plan followed in order to achieve the objectives outlined above was as follows: 

 

Qualitative Screening with Liquid Chromatography coupled with High Resolution Mass 

Spectrometry 

The work in this section was performed at three different institutes: University Jaume I, Mario Negri 

Institute for Pharmacological Research and KWR Watercycle Research Institute and the specific 

working plans within each institute is summarised below: 

Working Plan for work performed at University Jaume I (Spain) 

1. Continued upkeep of an in-house database developed by our group for the qualitative 

screening of pharmaceuticals and illicit drugs. This meant including (at least) the name and 

molecular mass, with the exact mass of fragment ions added when known.  

2. Manual collection of surface water samples from different areas in the Valencian region. This 

entailed physically collecting samples in high density polyurethane bottles, transporting them 

to the laboratory and storing them at 4°C. 

3. Sample treatment of wastewater and surface water samples following previously developed 

solid phase extraction techniques employed in our laboratory. 

4. Injection of samples in UHPLC-QTOF in MSE mode, thereby allowing simultaneous 

collection of low and high energy full-spectrum accurate mass data.  

5. Data analysis on specialised software, Chromalynx (Within MassLynx, version 4.1, Waters 

Corporation) which facilitates wide-scope screening analyses by automatically extracting the 

exact mass of a compound at low energy (and high energy in the cases of fragment ions) in 

the form of an extracted ion chromatogram (XIC).  

6. Further data analysis performed on the raw data for parent compounds and fragment ions to 

ensure no compounds are erroneously not detected or identified. 
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Working Plan for work performed at Mario Negri Institute for Pharmacological Research 

(Italy) 

1. Initial training with LTQ-Orbitrap based on theory and practice. 

2. Injection of samples in the LTQ-Orbitrap in data-dependent acquisition (DDA) mode, 

meaning that when a peak passed a certain pre-set threshold, MS/MS scans were made to 

acquire fragment ions. 

3. Data analysis on specialised software (TraceFinder EFS, Thermo Scientific) based on the same 

database used at University Jaume I where “positive” findings are based on the exact mass of 

the protonated molecule together with isotopic pattern, fragment ions and a library search (the 

latter two only when available). 

4. For closer examination of “positive” compounds, the samples were reinjected in the LTQ-

Orbitrap in MS/MS mode, based on a target list of the “positive” compounds to give 

information on product ions.  

5. Further data analysis performed on the raw data (in QualBrowser, Themo Scientific) for parent 

compounds and fragment ions to ensure no compounds are erroneously not detected or 

identified. 

 

Working Plan for work performed at KWR Watercycle Research Institute (The 

Netherlands) 

1. Injection of samples in the LTQ-Orbitrap in data-dependent acquisition (DDA) mode, 

meaning that when a peak passed a certain pre-set threshold, MS/MS scans were made to 

acquire fragment ions. 

2. Data analysis on specialised software for non-target (MsXelerator (MsMetrix) and Sieve 2.1 

(Thermo Scientific)) analysis.  

3. A hidden target screening was made after initial peak-picking parameters were set and the 

same database as in previous studies was used to detect compounds within the samples.  

4. Addtionally, following initial peak-picking, the ChemSpider database was used to detect 

compounds. 
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5. All samples were reinjected in MS/MS mode in the LTQ-Orbitrap based on a target list from 

the combined detected compounds found by both suspect and non-target analysis, to help 

initiate fragmentation. 

6. Analysis of samples within QualBrowser (Thermo Scientific) was made to compare fragment 

ions observed experimentally with those found in literature or in online mass spectral 

databases for tentative identification.  

Retention Time Prediction 

Retention Time Prediction based on logKow  

1. Bibliographic revision of the current trends and means of retention time prediction. 

2. Development of database based on reference standards in our laboratory and a Waters 

database. 

3. SMILES codes found for all compounds in the database. 

4. Predicted logKow values found using VCCLabs freeware, experimental values found in 

literature and online databases. 

5. Linear regression made between logKow values (both experimental and predicted) and 

retention time; different subsets based on chemical family also made to improve correlation. 

6. Investigation and comparison of the impact of a logKow predicted retention time and 

narrower extraction windows in the removal of false positive peaks for the detection of 

emerging contaminants (with reference standards available) in environmental waters. 

 

Retention Time Prediction based on Artificial Neural Networks (in collaboration with  

Leon Barron, King’s College London) 

1. Bibliographic revision of current means of retention time prediction based on artificial 

neural networks (ANN). 

2. Additional descriptors required for ANN approach found on Parameter Client (VCC Labs) 

3. Optimisation of ANN method based on implementing different training:verification:blind 

set ratios, as well as different architectures and model types. 

4. Investigation of the impact of ANN-based predicted retention times on the exclusion of 

false positive peaks for the detection of emerging contaminants (with reference standards 

available) in environmental waters. 
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5. Investigation of ANN-based predicted retention times in the tentative identification of 

metabolites and transformation products for which reference standards are unavailable 

 

Quantitative Determination of Selected New Psychoactive Substances in Influent 

Wastewater Samples 

1. Selection of target new psychoactive substances (NPS) based on literature revision 

2. Optimisation of MS and MS/MS parameters by injection of a mixture of all 

compounds in solvent. 

i. Acquisition of full-scan MS spectra to establish the most appropriate 

ionisation mode and cone voltage of the precursor ion. 

ii. Improve formation of the protonated molecule by using additives in the 

mobile phase (i.e. formic acid and ammonium acetate).  

iii. Following optimisation of cone voltage of the precursor ion, collision energy 

is then optimised in order to select the most appropriate product ions, taking 

into account sensitivity and specificity (i.e. avoid non-specific transitions such 

as loss of water). 

iv. Selection of at least two MS/MS transitions per compound: one for 

quantification and at least one other for confirmation.  

3. Selection of chromatographic conditions by injecting standard solutions, with mobile 

phase altered using additives to improve the chromatographic peak shape and 

separation. 

4. Study of the SPE process (comparing different SPE cartridges to gain an idea of the 

best for the study) using blank samples spiked before and after the SPE step. 

5. Study the possibility of direct injection for this method. 

6. Evaluate filtration recoveries for both vacuum and syringe filters. 

7. Evaluate stability of all compounds at different temperatures (-20ºC, 4ºC and 20ºC) 

for up to 7 days (30 days at -20ºC).  

8. Validation of the optimised methods by evaluating linearity, accuracy and precision 

from recovery experiments at different concentration levels. Estimation of the limits 

of quantification and detection of all studied compounds.  

9. Application of the developed, validated method to the analysis of wastewater samples.



    

 

 

 



 Objetivos y Plan de Trabajo 

 

9 

Objetivos 

El objetivo principal de esta tesis doctoral fue investigar drogas (lícitas e ilícitas) y metabolitos en aguas 

residuales y superficiales utilizando técnicas analíticas avanzadas. Para alcanzar este objetivo, se han 

aplicado tanto la predicción del tiempo de retención, como las estrategias de “screening” de “suspect”, 

“non-target” y “target”. Diferentes configuraciones instrumentales han sido investigadas, incluyendo 

analizadores de masas con baja resolución usando espectrometría de masas en tándem (MS/MS) de 

triple cuadrupolo (QqQ) y alta resolución MS utilizando el cuadrupolo - tiempo de vuelo (QTOF) y 

la trampa de iones lineal - Orbitrap (LTQ Orbitrap).  

Para alcanzar este objetivo general, se han establecido varios objetivos específicos: 

1) Aplicación de una metodología de análisis cualitativo basada en cromatografía líquida de ultra-

alta resolución (UHPLC) acoplada a QTOF MS en el modo de MSE, lo que permite el 

“screening” amplio y rápido de un gran número de compuestos apoyado en una gran base de 

datos interna. Esta metodología se aplica a una serie de muestras de agua (influente y efluente 

de aguas residuales así como aguas superficiales) de diferentes orígenes y países (Colombia, 

Italia y España). 

2) El desarrollo de una aproximación sencilla para la predicción del tiempo de retención que 

pueda ser fácilmente aplicada durante el “suspect screening” de productos farmacéuticos y 

drogas ilícitas para ayudar en su identificación. Se realiza una comparación con la anchura de 

la ventana de extracción de masa. 

3) El desarrollo de una segunda aproximación de predicción de tiempo de retención, más 

compleja y precisa, que se puede aplicar en la identificación de los metabolitos y productos de 

transformación para la que no están disponibles los patrones. 

4) El desarrollo y aplicación de un flujo de trabajo combinado “suspect” y “non-target screening” 

mediante un software avanzado de deconvolución tras la inyección en LTQ-Orbitrap. 

5) El desarrollo de una estrategia de análisis cuantitativo para nuevas sustancias psicotrópicas 

(NPS) en aguas residuales influentes basada en la extracción en fase sólida (SPE), seguida de 

la determinación medfiante LC-MS/MS con un analizador de masas de triple cuadrupolo. 

También se comparan los resultados frente a un método de inyección directa. Los compuestos 

de interés se seleccionan en función del consumo y la prevalencia en los estudios previos 

toxicológicos y de epidemiología de aguas residuales. 



Objetivos y Plan de Trabajo    

 

10 

Plan de Trabajo 
 
Esta Tesis Doctoral se enmarca dentro de las Redes Internacionales de Formación (ITN) Marie Curie, 

en concreto la Red SEWPROF financiada por la Unión Europea (más información en el Chapter 1), 

lo que hizo posible la realización de diversas estancias de investigación en varios institutos 

internacionales. 

 

El plan de trabajo seguido con el fin de alcanzar los objetivos señalados anteriormente es el siguiente: 

 

Screening Cualitativo mediante Cromatografía Líquida de Alta Resolución acoplada a 

Espectrometría de Masas 

El trabajo en esta sección se realizó en tres institutos diferentes: Universitat Jaume I, Mario Negri 

Institute for Pharmacological Research y KWR Watercyle Research Institute y los planes de trabajo 

específicos dentro de cada instituto se resumen a continuación: 

Plan de trabajo en la Universitat Jaume I (España) 

1. Mantenimiento continuado de la base de datos interna desarrollada por nuestro grupo para la 

detección cualitativa de productos farmacéuticos y drogas ilícitas. Esto implicaba incluir (al 

menos) el nombre y la masa molecular, junto con la masa exacta de los iones fragmento cuando 

se conozca. 

2. Toma de muestras de aguas superficiales procedentes de diferentes zonas de la región 

valenciana. Esto implicó físicamente la toma de muestras en botellas de poliuretano de alta 

densidad, transportarlas al laboratorio y almacenarlas a 4°C. 

3. Tratamiento de las muestras de aguas residuales y de aguas superficiales siguiendo la técnica 

de extracción en fase sólida previamente desarrollada y empleada en nuestro laboratorio.  

4. Inyección de los extractos de muestra en UHPLC-QTOF en modo MSE, lo que permite 

simultáneamente la recogida de datos de masa exacta de baja y alta energía. 

5. Análisis de los datos mediante un software especializado, ChromaLynx (MassLynx, versión 

4.1, Waters Corporation), que facilita la realización de un análisis de “wide-scope screening” 

mediante la extracción automática de la masa exacta de un compuesto a baja energía (y de alta 

energía en el caso de los iones fragmento) en forma de un cromatograma de iones extraídos 

(XIC). 
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6. Un análisis más detallado se realiza sobre los datos brutos para compuestos intactos e iones 

fragmento para asegurar que ningún compuesto es no detectado o identificado erróneamente. 

 

Plan de trabajo en el Mario Negri Institute for Pharmacological Research (Italia) 

1. Formación inicial teórico-práctica sobre LTQ-Orbitrap. 

2. Inyección de muestras en el LTQ-Orbitrap en modo de adquisición dependiente de los datos 

(DDA), lo que significa que cuando un pico supera un cierto umbral preestablecido, se realizan 

barridos en modo MS/MS para adquirir iones producto. 

3. Análisis de los datos mediante un software especializado (TraceFinder EFS, Thermo 

Scientific) basado en la misma base de datos utilizada en la Universitat Jaume I, donde los 

resultados "positivos" se basan en la masa exacta de la molécula protonada junto con el patrón 

isotópico, los fragmentos de iones y una búsqueda en la biblioteca (los dos últimos sólo cuando 

esté disponible esta información). 

4. Para un examen más detallado de los compuestos "positivos", se inyectaron las muestras en el 

LTQ-Orbitrap en modo MS/MS, sobre la base de una lista de “target” de los compuestos 

"positivos" para obtener información sobre los iones producto. 

5. Un análisis más profundo se lleva a cabo sobre los datos en bruto (con el QualBrowser, 

Thermo Scientific) para compuestos intactos y los iones producto para asegurar que ningún 

analito no es detectado o identificado por error. 

 

Plan de trabajo en el KWR Watercycle Research Institute (Paises Bajos) 

1. Inyección de muestras en el LTQ-Orbitrap en modo de adquisición dependiente de los datos 

(DDA), lo que significa que cuando un pico supera un cierto umbral preestablecido, se realizan 

barridos MS/MS para adquirir iones producto. 

2. Análisis de datos con el software especializado para tanto “suspect” (Ms Xcelerator 

(MsMetrix) y Sieve 2.1 (Thermo Scientific)) como “non-target” análisis (Sieve 2.1 (Thermo 

Scientific)). 
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3. Para el análisis “hidden target”, después de que se establecen los parámetros iniciales de “peak-

picking”, se utiliza la misma base de datos, como en estudios previos, para detectar 

compuestos dentro de las muestras. 

4. Además tras el “peak-picking” inicial, se utiliza la base de datos ChemSpider para detectar 

compuestos. 

5. Todas las muestras se reinyectan en modo MS/MS en el LTQ-Orbitrap generando una lista 

de “target” combinando los compuestos detectados tanto en análisis “suspect” como “non-

target”, para favorecer la fragmentación. 

6. También se realiza un análisis de las muestras mediante QualBrowser (Thermo Scientific) para 

comparar los iones fragmentos observados experimentalmente con los encontrados en la 

literatura o en bases de datos de espectros de masas, para la identificación tentativa de los 

positivos. 

 

Predicción de Tiempo de Retención 

Predicción de Tiempo de Retención basado en logKow  

1. Revisión bibliográfica de las tendencias y los métodos de predicción de tiempo de retención 

actuales. 

2. Desarrollo de una base de datos de tiempos de retención basada en patrones de referencia 

tanto de nuestro laboratorio como de la empresa Waters. 

3. Obtener los códigos SMILES para todos los compuestos de la base de datos. 

4. Los valores de logKow teóricos se generan mediante el software gratuito de VCCLabs 

mientras que los valores experimentales se encuentran en la literatura y en bases de datos en 

línea. 

5. Se realiza una regresión lineal entre los valores de logKow (tanto experimentales como 

teóricos) y el tiempo de retención; diferentes subconjuntos, basados en distintas familias 

químicas se evalúan para mejorar la correlación. 

6. Investigación y comparación del impacto de un tiempo de retención predicho mediante 

logKow y la anchura de las ventanas de extracción sobre la eliminación de picos de falsos 

positivos en la detección de contaminantes emergentes (con patrones de referencia 

disponibles) en aguas ambientales. 
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Predicción de Tiempo de Retención basado en Redes Neuronales Artificiales (en 

colaboración con Leon Barron, King’s College London) 

1. Revisión bibliográfica de los métodos de predicción de tiempo de retención actuales basados 

en redes neuronales artificiales (ANN) 

2. Los descriptores moleculares adicionales requeridos por la aproximación ANN se generan 

mediante el software Parameter Client (VCC Labs) 

3. Optimización del método ANN basado en la aplicación de diferentes proporciones de los 

conjuntos de training:verification:blind, así como diferentes arquitecturas y tipos de modelo. 

4. Investigación del impacto de los tiempos de retención predichos mediante ANN en la 

exclusión de los picos de falsos positivos en la detección de contaminantes emergentes (con 

estándares de referencia) en aguas ambientales. 

5. Investigación de tiempos de retención predichos mediante ANN en la identificación 

tentativa de metabolitos y productos de la transformación para los que no se dispone de 

patrones de referencia. 

 

Determinación Cuantitativa de Nuevas Sustancias Psicoactivas Seleccionadas en Muestras 

Influente de Aguas Residuales 

1. Selección de nuevas sustancias psicotrópicas (NPS) basada en revisión de la literatura 

2. Optimización de los parámetros de MS y MS/MS a partir de una mezcla de patrones 

en disolvente. 

i. Adquisición de espectros de masas en modo “full-scan” para establecer el 

modo de ionización y el voltaje de cono más apropiado para el ión precursor. 

ii. Mejorar la formación de la molécula protonada mediante el uso de aditivos en 

la fase móvil (es decir  ácido fórmico y acetato de amonio). 

iii. Después de la optimización del voltaje de cono del ión precursor, la energía de 

colisión se optimiza a continuación a fin de seleccionar los iones producto más 

adecuados, teniendo en cuenta la sensibilidad y la especificidad (es decir, evitar 

transiciones no específicos tales como la pérdida de agua). 

iv. La selección de al menos dos transiciones MS/MS por compuesto: una para la 

cuantificación y al menos otra para la confirmación. 
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3. Selección de las condiciones cromatográficas óptimas mediante la inyección de 

soluciones estándar, modificando la fase móvil con aditivos para mejorar la forma del 

pico cromatográfico y/o la separación. 

4. Estudio del proceso SPE (comparación de diferentes cartuchos SPE) usando muestras 

blanco enriquecidas antes y después del paso por la SPE. 

5. Estudiar la posibilidad de inyección directa para este método. 

6. Evaluar las recuperaciones de filtración para ambos filtros de vacío y jeringa. 

7. Evaluar la estabilidad de todos los compuestos a diferentes temperaturas (-20ºC, 4ºC 

y 20ºC) durante un máximo de 7 días (30 días a -20ºC). 

8. Validación de los métodos optimizados mediante la evaluación de la linealidad, 

exactitud y precisión de los experimentos de recuperación a diferentes niveles de 

concentración. Estimación de los límites de cuantificación y detección de todos los 

compuestos estudiados. 

9. Aplicación del método desarrollado y validado para el análisis de muestras de aguas 

residuales. 
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1.1 Emerging Contaminants in Water 

Water is the most important resource on the planet, essential for all life and covers more than two-

thirds of the Earth’s surface; however, less than 3% of that is freshwater, able to be used for drinking.  

It is therefore crucial to ensure that this great minority of freshwater is kept clean, which is being 

achieved thanks to the introduction of wastewater and drinking water treatment plants. However, 

despite these measures, it is impossible to remove all unwanted compounds, resulting in them entering 

effluent, surface water and even in drinking water. Many of these unwanted compounds belong to the 

group called emerging contaminants (ECs), a wide group of compounds that are not yet regulated 

despite their wide presence in the environment. 

The occurrence of ECs in water is a cause for concern. ECs encompass a wide variety of everyday, 

well-consumed anthropogenic and natural products including pharmaceuticals, drugs of abuse, 

pesticides, personal care products and industrial chemicals. With burgeoning populations, new 

chemicals being made and used combined with the impossibility of wastewater treatment plants 

(WWTPs) to completely remove all ECs, they can be detected in effluent wastewater, and more 

worryingly,  surface waters.  In the early 1990s, reports began marking their appearance in groundwater 

and drinking water and it was found that WWTPs were the major source of these ECs (Ferrer and 

Thurman, 2013). In the early days of environmental analytical chemistry the focus was on the 

contaminants emitted at higher concentrations, such as polychlorinated biphenyls (PCBs) and 

dichlorodiphenyltrichloroethane (DDT), due to instrumental limitations.  But now, with instrumental 

and analytical improvements, more ECs can be detected and identified at the trace levels that they are 

commonly present at, albeit as a real analytical challenge.  

This thesis is primarily concerned with two subsets of ECs: pharmaceuticals and illicit drugs (PIDs). 

PIDs still encompass a huge number of compounds, with approximately 3000 pharmaceuticals alone 

and almost 600 illicit drugs and new psychoactive substances (Richardson and Ternes, 2014; UNODC, 

2014). In spite of these huge numbers, little is known about their individual use (or abuse), let alone 

their environmental impact. The big question, alluded to throughout this section, is whether the 

relative low concentrations of PIDs found in the environment (~ng/L) would cause adverse effects 

to either humans or wildlife. Environmental and public health organisations periodically revise their 

priority lists of contaminants based on health effect and occurrence in environmental waters. In the 

United States, the Environmental Protection Agency has recently included one antibiotic 
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(erythromycin) and nine natural and synthetic hormones (17α-ethinylestradiol, 17α-estradiol, 17β-

estradiol, equilenin, equilin, estriol, estrone, mestranol, and norethindrone) as priority drinking water 

contaminants. The European Commission have included two pharmaceuticals (diclofenac and 

ibuprofen) and two hormones (17α-ethinylestradiol and 17β-estradiol) in their directive (Richardson 

and Ternes, 2014). In spite of these findings, it is important to note that it is not just these ~3600 

parent compounds to investigate, but also their metabolites and transformation products (TPs), giving 

altogether a huge list of compounds of concern in the aquatic environment. 

As a means to investigate illicit drug use, wastewater-based epidemiology (WBE), first surmised by 

Daughton (Daughton, 2001) and first employed four years later (Zuccato et al., 2005) has become a 

very interesting and continually-widening area of research.  

1.1.1 Wastewater-based Epidemiology 

Traditionally, surveys and interview data have been used to estimate the number of illicit drug 

consumers within a society. However, this comes with distinct biases and is open for conjecture. 

Coupled with the ever-changing world of drug use, a more real-time approach was needed, first 

theorised in 2001 (Daughton, 2001).   WBE was first introduced in 2005 in Italy (Zuccato et al., 2005) 

and has been particularly utilised in Europe (Ort et al., 2014; Thomas et al., 2012) but has since 

expanded into China (Du et al., 2015; Khan et al., 2014), Hong Kong (Lai et al., 2013b), South Korea 

(Kim et al., 2015) Australia(Irvine et al., 2011; Lai et al., 2013a), Canada (Metcalfe et al., 2010) and the 

United States (Banta-Green et al., 2009; Subedi and Kannan, 2014).  

WBE initially focussed on the consumption of illicit drugs (conventionally cocaine, amphetamine, 

methamphetamine,  cannabis and MDMA (ecstasy))(Ort et al., 2014; Thomas et al., 2012), but has 

since moved, together with the drug users, to more current drugs such as new psychoactive substances 

(NPS)(Kinyua et al., 2015) and other lifestyle biomarkers such as caffeine, nicotine (Senta et al., 2015) 

and alcohol (Reid et al., 2011). Recently, further population biomarkers such as F2-isoprostanes 

(Daughton, 2012; Ryu et al., 2015) and health and exposure biomarkers including pesticides, 

pharmaceuticals and steroids have also been postulated (Thomas and Reid, 2011; Venhuis et al., 2014).   

This approach is based on the knowledge that illicit drugs consumed by an individual may be excreted 

either unchanged or as one (or a number of) metabolites. From the excretion and metabolism data, 

the parent drug (in the case of amphetamine, methamphetamine and MDMA) or a metabolite 

(benzoylecgonine for cocaine and THC-COOH for cannabis) can be chosen as the biomarker. It can 

be assumed that if a biomarker is sufficiently stable in water and is conveyed efficiently to the WWTP, 
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the amount collectively excreted in a given timeframe should be reflected by the amount reaching the 

WWTP in the corresponding interval. (van Nuijs et al., 2011)  

This approach provides objective, quantitative, near real-time profiles of illicit drug consumption by 

monitoring selected drug biomarkers entering the municipal sewage system. The concentration of 

these illicit drug biomarkers measured in influent wastewater (IWW) can be used to back-calculate the 

mass loads of the parent drugs and/or metabolites. These loads, together with knowledge of the drug 

metabolism and excretion can be used to estimate drug consumption which can then be extrapolated 

to the population served by the WWTP by dividing the drug consumption by the population.  

While this approach sounds simple, there are a lot of underlying assumptions and limitations, including 

sampling procedure, characteristics of the sewer system, and the biomarker chosen (Burgard et al., 

2014; Castiglioni et al., 2013). The biomarker selected should have a known excretion rate, be stable 

in wastewater (under a variety of weather conditions) for an extended period of time and be unique 

for the drug of interest. The first of these issues can be helped with toxicological information, leading 

to great collaborations between chemists and toxicologists within the WBE field (see Section 1.4 for 

more information on these collaborations). The second of these issues is one that has recently been 

reviewed and readers are advised to refer to McCall et al. (McCall et al., 2016). Finally, the third issue 

can be very troublesome.  For example, amphetamine is a metabolite of methamphetamine; while 

MDMA and amphetamine are enantiomeric, so differentiating excreted and dumped drugs needs 

advanced and expensive enantiomeric profiling (Emke et al., 2014). Furthermore, in spite of heroin 

being one of the most concerning drugs of abuse, it’s analysis for WBE is very complex, as it’s major, 

stable, metabolite is morphine, which is in itself a well-known prescribed drug. However, the exclusive 

metabolite, 6-monoacetyl morphine has a low excretion rate, low in-sample stability and can easily 

transform to morphine. A reliable, unbiased biomarker for heroin has thus not yet been found (McCall 

et al., 2016).  In spite of these limitations, WBE is a rapidly expanding field, with research spanning 

the world, and the traversing chemical fields: from pure analytical chemists to toxicologists, engineers, 

epidemiologists, statisticians, environmental chemists and computational chemists. With such a 

diverse range of fields and (so far) very promising and interesting results, the future is looking bright 

for WBE.  
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1.2 Analytical Strategies 

WBE approaches are normally quantitative, focussing on a small number of target compounds, for 

which low resolution but highly sensitive LC-MS/MS approaches are perfect. However, as WBE grew, 

so did the knowledge that there are thousands of potential compounds of interest in any given sample, 

changing the focus to  high resolution mass spectrometry (HRMS) instruments, capable of performing 

suspect screening methods based on in-house databases containing hundreds if not thousands of 

compounds. These instruments lead researchers beyond WBE, and into the environmental field, 

determining the existence of compounds in environmental matrices.  Beyond suspect screening is 

non-target screening, which has become a significant aspect of environmental analytical chemistry, 

where HRMS again is a prerequisite and theorises that no previous information on potential 

compounds of interest is available.  

1.2.1 Liquid Chromatography coupled to Mass Spectrometry 

Liquid Chromatography (LC) is an affinity-based chromatographic separation technique. Simply put, 

it is used to separate the components of a mixture present in a sample into its individual constituents. 

This is based on the polarity each individual component has, and their affinity to the stationary and 

mobile phases. Those components that are strongly retained by the sorbent particles of the stationary 

phase move slowly with the flow of the liquid mobile phase, and vice versa. This difference in “retention 

time” separates the samples into its individual parts, which can then be analysed quantitatively or 

qualitatively. 

The most common LC technique for the analysis of environmental samples is reversed phase (RP), 

although normal phase (NP) also has some applications as well as the intermediary hydrophilic 

interaction LC (HILIC). NP chromatography is used for the separation of more non-polar 

compounds, based on their affinity for a more polar stationary phase (i.e. silica) with a non-polar 

mobile phase (i.e. hexane, chloroform) used to separate those compounds more readily soluble in 

non-polar solvents. RP chromatography is far more common, incorporating an aqueous mobile phase 

and more non-polar column (based on silica stationary phases, which has been surface-modified to 

include long alkyl chains (e.g. C8H17, C18H37; called C8 and C18 columns respectively). Finally, HILIC 

chromatography provides improved separations and detection for highly polar compounds. The 

stationary phase is polar, similar to NP, incorporating silica, amino or cyano, but the mobile phase is 

similar to those employed in RP. HILIC also allows the analysis of charged substances, as in ion 

chromatography (Buszewski and Noga, 2012).  In spite of its complex retention mechanisms, HILIC 
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is suitable for analysing compounds that elute near the void in RP, which has led some groups to use 

it for analysing polar contaminants in the environment. (van Nuijs et al., 2011)  

The latter two chromatographic techniques also incorporate buffer solutions or additives to improve 

chromatographic peaks. The most common are small organic acids such as formic and acetic acid. 

Their widespread use is based on two fundamental reasons. First, many chromatographic separations 

benefit in terms of retention and/or peak shape under acidic conditions, because any silanol activity 

is suppressed. Second, most mass spectrometric measurements are done in positive ion mode, which 

is accomplished by the addition of a proton to form the protonated molecule [M+H] +. Organic acids 

have the necessary acidity and volatility to provide an excess of protons for this purpose. This volatility 

is necessary because one of the functions of the LC-MS interface is to vaporise the mobile phase, 

meaning that these acids are preferred to the popular but non-volatile LC-UV phosphate buffers. 

Although organic acids are the most common mobile phase additive, it may be necessary under certain 

circumstances to use more neutral conditions, either because the analytes are sensitive to acids, do not 

exhibit optimal resolution at low pH or because ionization in negative mode is used. When acids are 

not suitable, volatile salts such as ammonium formate and ammonium acetate may be the additives of 

choice.  

High performance liquid chromatography (HPLC) and ultra-high performance (or pressure) liquid 

chromatography (UHPLC) have both been used for the determination of emerging contaminants in 

water, with the latter being more highly utilised since its introduction in 2004. UHPLC has 

revolutionised LC, with HPLC methods able to be easily transferred. This, combined with a reduction 

in analysis time, has made it a powerful technique (Guillarme et al., 2010). More information relating 

to the use of HPLC and UHPLC in combination with high resolution mass spectrometry (HRMS) for 

the investigation of PIDs is found in Scientific Article 1.  

The interface between the LC and mass spectrometer is one of the most important aspects of LC-MS. 

Electrospray ionisation (ESI) is almost exclusively used in the analysis of emerging contaminants in 

environmental waters. The electrospray interface produces singly or multiply charged ions directly 

from an aqueous–organic solvent system by creating a fine spray of highly charged droplets in the 

presence of a strong electric field, with the assistance of heat or pneumatics. The successful formation 

of ions using ESI requires two steps: the transfer of the compound of interest into the gas phase and 

the addition of a charge to the analyte if it is not already in a charged state (Taylor, 2005). This interface 
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can work in both positive mode ([M+H]+, where the analyte gains a proton and becomes positively 

charged; i.e. basic compounds) and negative mode ([M-H]-, where the analyte loses a proton and 

becomes negatively charged; i.e. acidic compounds).  

The second part of an “LC-MS” instrument, mass spectrometry (MS), is the means for identification 

of a compound, where, after a compound has been separated chromatographically, it can be identified 

based on its mass. The interface converts components of the sample into rapidly moving gaseous ions, 

which the MS can then measure the mass-to-charge (m/z) ratio of, either in space or time, in the form 

of mass spectra. As most emerging contaminants are small molecules, the charge is almost exclusively 

1, meaning the m/z is simply the mass of the compound, with an extra proton or less a proton, 

depending on whether positive or negative ionisation was used (i.e. [M+H]+ or [M-H]-).  

The different mass spectrometers are differentiated based on their mass analysers, all of which have 

their own advantages and disadvantages. Some of the most common are quadrupole (Q), ion trap 

(IT), time-of-flight (TOF), Orbitrap and Fourier-transformed ion cyclotron resonance (FT-ICR). The 

main criteria used to distinguish the mass analysers are the resolution (R) (the ability to separate two 

peaks of similar m/z) and mass accuracy (the error associated with the measured m/z). Table 1.1 

(adapted slightly from (Krauss et al., 2010)) compares the parameters of these instruments. In order 

to improve sensitivity and to provide greater information than a single MS alone, the combination of 

two MS analysers has become prevalent, giving rise to triple quadrupole (QqQ), linear ion trap-

Orbitrap (LTQ-Orbitrap) and quadrupole-time-of-flight (QTOF), all of which were utilised in the 

work carried out for this thesis.  

  



 Chapter 1: General Introduction 

 

    23 

Table 1.1: Comparison of commercial mass analysers in LC-MS instruments. Typical values for an m/z 

range of 300-400 are given; specific instruments or configurations might have improved figures 

Mass 

Spectrometer 

Resolving 

Powera 

(FWHM) 

Mass accuracy 

(ppm) 

Linear dynamic 

range 

Sensitivityc 

(absolute mass) 

QqQ Unit resolutionb 50 104 fg-pg 

QIT 10,000 50 103 fg-pg 

TOF 20,000 3 102-103 pg (full scan) 

Orbitrap 100,000 2 103-104 fg-pg (full scan) 

FT-ICR 1,000,000 ≤1 104 pg (full scan) 

a: Resolving power depends on m/z range and scan speed on most instruments 
b Unit mass resolution is the resolution for standard quadrupole instruments; with special hyperbolic quadrupole 

instruments a resolving power of 5,000 and a mass accuracy of 5 ppm can be achieved without a major loss of signal 

intensity  
c fg (femtogram, 10-15g), pg (picogram, 10-12g) 

 Sensitivity depends strongly on the ionization efficiency of the compound in the ion source  

Within low resolution mass analyzers, the triple quadrupole (QqQ) is the most popular at present, and 

the choice for the majority of analytical environmental chemistry methods, especially because of its 

high sensitivity – required for the trace analysis of emerging contaminants in environmental waters – 

and robustness. It consists of two quadrupole mass analysers (Q) in series, with a non-mass-resolving 

radio frequency only quadrupole (q) in between to act as a collision cell, to aid in collision induced 

dissociation (CID). CID occurs based on the collision between an ion that is selected in the first 

quadrupole (Q1) and an inert gas. The fragment ions produced are then passed through to the second 

quadrupole (Q2) where they may be filtered or scanned. Each quadrupole can be operated 

independently in either full-scan or selected ion monitoring (SIM) mode. The objective of the analysis 

influences which mode is used by each Q, with the four most common being product ion scan, neutral 

loss scan, precursor ion scan and selected reaction monitoring (SRM) mode, all of which will be briefly 

explained below.      
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i) Product ion scan 

In the product ion scan, Q1 is set to select an ion of a certain mass which is fragmented in the q. Q2 is 

then set to scan the full m/z range, giving information on fragment ions of the selected precursor ion. 

The information obtained from this scan can be useful for the elucidation of the structure of the 

original ion, but is commonly used to identify the transitions used for a subsequent quantitative 

analysis in the method development.  

 

ii) Neutral loss scan 

In this scan, both Q1 and Q2 are scanned together but Q2 has a mass offset equal to that of a neutral 

loss (i.e. H2O, CO, NH3). This allows the selective detection of all ions which, by fragmentation in q, 

lead to the loss of a given neutral fragment. This technique is useful in the screening of closely related 

classes of compounds in a mixture or unknown samples.  
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iii) Precursor ion scan 

When utilizing a precursor ion scan, a certain product ion is selected in Q2, and the precursor masses 

are scanned in Q1. This method used for the detection of structural homologues that have a common 

fragment ion. 

iv) Selected reaction monitoring 

 

When employing selected reaction monitoring (SRM) mode, both Q1 and Q3 are set at a specific mass, 

allowing only a distinct fragment ion from a certain precursor ion to be detected. This is normally 

known as a “transition” when working in tandem MS. This working mode results in increased 

sensitivity, and is the approach typically used in quantitative analysis as in Scientific Article 7.  

The use of QqQ instruments for quantitative, small scale studies does hold promise and should be a 

mainstay in environmental analytical chemistry laboratories. The use of these instruments in LC-

MS/MS methods is nowadays the most common way to determine priority (polar) contaminants in 

the aquatic environment. However, with only a limited number of compounds able to be quantified 

in this way due to the acquisition time of each transition and the related instrumental limitations, it is 

insufficient for a complete overview of contaminants present in the samples.  

High Resolution MS transcends these limitations and enables the detection of a theoretically limitless 

number of compounds, even without the need of reference standards. This is made possible with the 

Q1 q Q2

Ar(g)

Ion source

Q1 q Q2

Ar(g)
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combination of full-spectrum data with high mass resolution and mass accuracy. More information 

on these instruments, combined with UHPLC is given in Scientific Paper 1.   

1.2.2  Matrix Effects 

The main limitation of LC-MS/MS quantitative strategies interfaced with ESI is matrix effects, which 

occur when matrix interferences coeluting with the compound(s) of interest alter the ionisation 

efficiency, resulting in signal enhancement or suppression. Matrix effects are the result of competition 

between nonvolatile matrix components and analyte ions for access to the droplet surface for transfer 

to the gas phase (Taylor, 2005). The magnitude of these effects are influenced by analyte and matrix 

properties such as proton affinity, surface activity, and polarity, as well as the ratio of analyte to matrix 

mass and instrument parameters including the desolvation temperature and ionization polarity of the 

mass spectrometer and the flow rate of the HPLC (Backe and Field, 2012).  

In order to count for matrix effects, appropriate correction means are necessary, which include the 

use of isotope-labelled isotopic standards (ILIS), matrix-matched calibration, sample dilution, further 

sample clean-up and treatment and standard addition. These have all been evaluated and contain 

various advantages and disadvantages (Niessen et al., 2006; Stahnke et al., 2012; Taylor, 2005). It is 

important to take into account the specific matrix being analysed, before deciding the appropriate 

means of correction. For example, matrix-matched calibration or standard addition, common in 

pesticide residue analysis are less suitable for the analysis of drugs in wastewater. This is primarily due 

to the availability of a suitable “blank” sample being very difficult to obtain, let alone one that is 

representative of the samples.  

For the analysis of illicit drugs in water samples, alternative approaches are applied to compensate for 

matrix effects. Most common is sample pretreatment, where solid-phase extraction (SPE) is 

performed to selectively retain and pre-concentrate the analytes of interest while removing interfering 

compounds.  However, this may also lead to a pre-concentration of interfering compounds, which 

has led to some utilising online SPE or large volume injection (Anumol and Snyder, 2015; Farré et al., 

2012; Vazquez-Roig et al., 2013). A simple approach to reduce matrix effects is sample dilution or to 

use smaller injection volumes. In this way, the amount of matrix introduced in the ion source is 

reduced, thereby decreasing signal enhancement/suppression problems generated by the interferences 

(Bijlsma et al., 2014; Stahnke et al., 2012).  
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The preferred method to compensate for matrix effects is the use of internal standards. An isotopically 

labelled internal standard (ILIS) is considered to be the ideal internal standard, as it shows (almost) 

identical behaviour to the target analyte in both sample pre-treatment, chromatography, and analyte 

ionization. Unfortunately, ILIS are available for only a limited number of target analytes, they are 

expensive, and often difficult to obtain for other target compounds, especially with sufficient isotopic 

purity with respect to the non-labelled variant (Niessen et al., 2006). This makes multiresidue methods 

troublesome, especially if some target analytes do not have an ILIS, and must therefore share with an 

ILIS of another compound that has a similar structure or retention time. In spite of the assurances of 

ILIS, even with their availability, in complex matrices it is generally recommended to also incorporate 

an additional means of matrix effect reduction, such as a pretreatment step in order to gain maximum 

sensitivity and precision.  
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1.2.3 Target, Suspect and Non-Target Screening 

 

 

Figure 1.1: Workflow for target, suspect and non-target screenings. Each method has its own individual colour: target 

(green), suspect (blue) and non-target (orange), with each step specific for any particular method coloured respectively. 

Steps concerning more than one method are in grey, while levels of confidence of identity obtained are in yellow.  

 

Target screening is the common approach when using the SRM mode of LC-MS/MS QqQ 

instruments, described above. In this method, a limited number of compounds are selected in advance, 

their specific transitions monitored and their presence in samples quantified based on their respective 

reference standards. The big limitation of this method is that there are many other compounds 

potentially present in samples being ignored. Some authors have proposed the term pre-target analysis 

for the methods based on QqQ, where the analytes must be selected before analysis, and therefore 

data acquisition is analyte-specific (Hernández et al., 2005).  

The limitation in the number of compounds to be investigated by QqQ, has led to a shift from the 

traditional LC-MS/MS pre-targeted approach to HRMS (QTOF and Orbitrap) suspect and non-target 

approaches. These two methods rely on the high resolution, exact mass capabilities of these 

instruments, as no reference standards are needed, at least in the initial stages. As well as HRMS 

instruments, these methods also require powerful deconvolution software.  
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As in the famous Donald Rumsfeld speech, these three screening methods can be thought of as 

analysing known knowns (target), known unknowns (suspect) and unknown unknowns (non-target). 

In other words, target methods are specific, analysing compounds that are being deliberately searched 

for; suspect methods search for a much larger range of compounds (i.e. through the use of a database) 

but it is not known which of these compounds will be encountered in the samples; finally in non-

target methods it is not known which compounds are in the samples or are being searched for. The 

steps associated with each method are shown in Figure 1.1.  

Suspect analyses investigate a list of compounds that are potentially present in samples on the basis 

of a database, containing name, molecular formula (or exact mass), as a minimum requirement. Further 

information, such as fragment ions and adduct formation can also be added. The main difference with 

pre-target analysis is that availability of reference standards is not a prerequisite, as the information 

acquired is the accurate-mass full-spectrum, which implies that HRMS is needed. In this way, the 

selection of analytes to be searched in the samples can be made after mass data acquisition, a reason 

why some authors have named it as a post-target screening (Hernández et al., 2005). The data 

acquisition is a very important aspect of suspect analyses, with simultaneous low- and high-energy 

acquisition highly recommended. This HRMS acquisition is known as MSE, all-ions MS/MS or all-

ions fragmentation, depending on the manufacturer, and means that in a single run, data can be 

acquired relating to the parent compound (low energy) and fragment ions (high energy).  

After data acquisition by HRMS, specialised, manufacturer-specific software such as ChromaLynx 

(Waters), TraceFinder (Thermo Scientific), DataAnalysis (Bruker) and MassHunter PCDL Manager 

(Agilent Technologies) incorporates the database and extracts all “positive” findings based on the 

user-set parameters in the form of extracted ion chromatograms (XICs).   In the cases where reference 

standards are available, the suspect compounds can be identified based on a comparison of the parent 

ion (at exact mass), fragment ions (for confirmation, where possible) and retention time.  

As reference standards are not necessarily available for all compounds, further steps can be used to 

gain tentative identification.  Initially, the mass accuracy of the HRMS instruments can be utilised, 

with accuracy possible down to <5ppm giving great confidence to (at least) the molecular formula of 

a compound within the database. However, there is a distinct possibility of isobaric compounds (e.g. 

with the same exact mass), depending on the width of the extraction window used within the software, 

and even at a certain m/z there is a chance of an isomeric compound within the XIC. Isotopic pattern 



Introduction 

30 

fitness or retention time prediction can then be used to gain further identification confidence. 

Alternatively, fragment ions can be searched and compared with literature or online mass spectral 

databases. Even though reference standards may be unavailable, a high degree of confidence in the 

“tentative” identification can be found, based on fragment ions and their comparability and 

compatibility with literature and possible chemical structure, respectively.   

Some groups have introduced confidence levels for the detection and identification of compounds 

(Schymanski et al., 2014). However, for the sake of clarity and continuity within this thesis, the criteria 

set out in Scientific Article 2 are followed: 

Detection: based on the presence of one accurate mass ion and retention time agreement (with 

reference standard)  

Confirmation of the identity (shortened to confirmation), with at least two accurate mass ions and 

retention time agreement (with reference standard) 

Tentative identification: with at least two accurate mass ions justified by literature data and/or 

compatibility with candidate chemical structure 

In all cases, the isotope pattern observed must fit the theoretical expected from the presence in the 

molecule of relevant atoms such as carbon, chlorine, bromine, among others. The parameters for mass 

error may differ depending on instrument used, with Orbitrap tending to have better mass accuracy 

and therefore the acceptable mass error may be smaller than that of a QTOF. However, within QTOF 

instruments, depending on the vendor as well as the age and use of the instrument, maximum allowed 

mass errors may differ from 20ppm (Kinyua et al., 2015) down to 5ppm, the latter being used in all 

works performed in this Thesis (Scientific Articles 2 and 3).   

With the ever-improving manufacturer-specific software, it is becoming more feasible to perform 

non-target analyses (such as the identification of metabolites or TPs) on a single platform, such as 

Metabolynx (Waters), Sieve (Thermo Scientific), Metabolite Tools (Bruker) and Metabolite ID 

(Agilent). However, it is impossible to include all necessary parameters in a single software, with 

complementary programs commonly sought.   

Non-target analyses begin with a simple hypothesis: “I do not know anything about this sample and 

the possible contaminants therein, but I want to know which compounds are there.”  While this does 

indeed sound simple and achievable, in practice it is very complex. Unlike the previous two methods, 
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where some sort of a priori knowledge is used in the development of the “target” or “suspect” lists, in 

non-target analysis, there is no previous knowledge at all, as implied by the name. To begin the analysis 

procedure, the chromatographic peaks need to be picked (i.e. which peaks are the most important). 

This determination can be made based on the end result: if the analyst wants to look for compounds 

of a high concentration, a high threshold will be given for the peaks requiring further analysis, thereby 

removing all peaks under the set threshold. Alternatively, if the analyst is searching for compounds, 

TPs or metabolites of a likely low concentration, a low threshold will be set. Nevertheless, for both 

methods, a subtraction based on a (procedural) blank sample is made to remove peaks known to not 

belong to the sample.  

Once the peaks for further investigation are found, molecular formulae are given, based on various 

heuristic filters (Kind and Fiehn, 2007). These can then be searched in databases such as ChemSpider, 

PubChem, NIST and DAIOS to give an idea of the possible compound of interest (Bletsou et al., 

2015; Little et al., 2012; Müller et al., 2011). When searching databases based on a molecular formulae, 

there is a high likelihood of isomers and therefore a ranking system is necessary to determine which 

the compound of interest is. This can be made based, simply, off the number of available sources 

(with the higher number of sources indicating a more common/known compound), or by utilising 

the HRMS data originally obtained, i.e. the fragment ions generated. A very useful non-target tool has 

been developed for this purpose, MetFusion. This software takes the fragment ions obtained for a 

specific peak and those computationally derived from its sister software MetFrag, compares them with 

the online mass spectra database, MassBank, and gives a ranked list of possible candidates based on 

spectral similarity (Gerlich and Neumann, 2013). The candidates given, based on either the ranking 

system or through the use of fragment ions can then be compared with literature data to give tentative 

identification or lead to the purchase or synthesis of standards can lead to confirmation.  

While the methodology seems straightforward, there are distinct difficulties associated with non-target 

analyses. The most complex problem is that the compounds traditionally searched for using this 

approach are those of lower concentration and not necessarily known or incorporated into suspect 

databases. The peaks would therefore be in the “noise” range of most chromatograms, so powerful 

software is required to help deconvolute the chromatograms.  Furthermore, even after distinct masses 

are found, there is a very high probability that there is more than one compound relating to any one 

specific m/z, and even isomers. For these reasons, non-target approaches are a real analytical challenge, 

very time-consuming and may only yield limited results. Nevertheless, this approach is gaining in 
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scientific interest, and with advances in the sensitivity of high resolution instruments combined with 

even more powerful software, they could become a routine part of environmental analytical chemistry.   
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1.3 Scientific Article 1 

INVESTIGATION OF PHARMACEUTICALS AND 

ILLICIT DRUGS IN WATERS BY LIQUID 

CHROMATOGRAPHY-HIGH-RESOLUTION MASS 

SPECTROMETRY 

F. Hernández *, M. Ibáñez, R. Bade, L. Bijlsma, J.V. Sancho 

Trends in Analytical Chemistry (2014) 63: 140-157 
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Abstract 

Mass spectrometry (MS) coupled to chromatography has been increasingly used in the environmental 

field, as it allows the best performance currently attainable for the investigation of a wide range of 

organic pollutants. When dealing with emerging contaminants, there is a clear trend towards the use 

of liquid chromatography-mass spectrometry (LC-MS) techniques, from tandem (low-resolution) MS 

to high-resolution (HR) MS. HRMS allows targeted and untargeted analysis, thanks to full-spectrum 

acquisition at high mass accuracy with good sensitivity. With the same instrument, target, suspect and 

non-target screening can be performed, as can retrospective analysis and discovery of 

transformation/degradation products. This article gives a general overview on the use of HRMS in 

LC-based methods directed towards the investigation of illicit drugs and pharmaceuticals in the 

aqueous environment. We consider time-of-flight and Orbitrap mass analyzers, and we discuss the 

benefits of using ultra-high-performance liquid chromatography (UHPLC) in combination with 

HRMS. 
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Emerging contaminant; High-resolution mass spectrometry (HRMS); Illicit drug; LC-HRMS; Liquid 

chromatography (LC); Orbitrap; Pharmaceutical; Screening; Time of flight; Transformation product
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1. Introduction 

The increasing number of emerging contaminants, such as pharmaceuticals (both human and veterinary) and 

personal-care products (PPCPs), or illicit drugs, detected in the water cycle can be attributed to the growth of 

the human population, the shift towards the use of more hydrophilic compounds in consumer applications, 

and undoubtedly the improvements in selectivity and sensitivity of modern analytical techniques. 

Pharmaceuticals and illicit drugs (PIDs) are continuously excreted or discarded into the sewer systems as the 

unaltered parent compounds or their metabolites. Subsequently, they often end up in environmental waters, as 

a consequence of incomplete elimination by wastewater-treatment plants (WWTPs) [1]. There is justified 

concern over the possible impact of these pharmacologically-active compounds on the environment, especially 

over the long-term toxicological effects on living organisms and the combined effect of exposure to multiple 

compounds, particularly antibiotics [2]. In addition, a large number of transformation products (TPs), in many 

cases unknown, can be formed in the water cycle and need to be taken into account to know the overall 

contribution of these contaminants in the environment [1]. The presence of PIDs and their metabolites in water 

and sediments has spurred researchers to set up monitoring studies to evaluate their fate [2] and [3], and their 

removal and transformation in WWTPs [4], [5] and [6]. An interesting field that has emerged from the analysis 

of wastewater is the so-called sewage-based epidemiology (SBE), directed towards the estimation of illicit drug 

use of a population on the basis of the determination of appropriate biomarkers in influent wastewater. SBE is 

a promising, complementary tool to existing population surveys and other conventional approaches to 

estimating illicit drug use. SBE requires the application of sophisticated analytical methodologies able to 

quantify illicit drugs accurately in urban raw wastewater [7], [8] and [9]. 

The very low concentrations generally found for PIDs and/or their metabolites (commonly sub-µg/L levels), 

in combination with the complexity and the unknown composition of the different aqueous matrices to be 

analyzed, makes it necessary to use highly sensitive, selective analytical methodologies. The majority of the 

methods developed have been based on liquid chromatography (LC) coupled to tandem mass spectrometry 

(LC-MS/MS), particularly with triple quadrupole (QqQ) analyzers [2] and [10]. The medium-high polarity of 

most PIDs justifies the predominance of this technique. The use of MS/MS under selected-reaction monitoring 

(SRM) mode facilitates the accurate quantification of target analytes at trace levels. Furthermore, the acquisition 

of two SRM transitions, together with retention-time data and measurement of ion-intensity ratios, gives 

sufficient information for safe identification. Typically, the most sensitive transition is selected for 

quantification and at least one additional transition is acquired to render a reliable confirmatory method. 

However, the MS source and the conditions of the analyzer need to be optimized for determination, carefully 

considering the specificity of transitions to avoid potential false negatives or positives [11]. 
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The current trend in analytical chemistry is the development of LC-MS based methods that seek the 

simultaneous determination of many compounds in a single run, providing considerable information about 

their occurrence, and reducing analysis time and cost [10], [12], [13] and [14]. In spite of the high sensitivity and 

selectivity reached, LC-MS/MS has some limitations regarding multi-class analysis, especially when broadening 

the scope of the method to a large number of compounds. In MS/MS methods, the acquisition time of each 

transition restricts the number of target analytes that can be monitored. Although latest-generation QqQ 

instruments have low dwell times and allow notable increase in the number of transitions acquired within a run, 

there is still a limitation when dealing with thousands of contaminants that may potentially be present in waters. 

Thus, the application of target LC-MS/MS methods is clearly insufficient to achieve a realistic, extensive 

overview of pollutants present in the samples. This is because, in target LC-MS/MS methods, compounds 

other than the selected analytes are commonly ignored, even if they are present at high levels in the sample. 

High-resolution MS (HRMS) transcends this major limitation of targeted MS/MS analysis. HRMS instruments 

[e.g., time-of-flight (TOF) and Orbitrap] provide high-quality information by combining sensitive full-spectrum 

data with high mass resolution and mass accuracy [15] and [16]. In theory, the presence of an unlimited number 

of compounds can be investigated, without requiring the pre-selection of analytes or even without having 

reference standards available. 

With the ever-improving technology of LC-MS systems, it is easy to overlook the equally important aspect of 

chromatography. However, an efficient chromatographic separation is essential to avoid or to minimize matrix 

interferences, and to get reliable identifications. Ultra-high-performance (pressure) LC (UHPLC) has emerged 

as an innovative, powerful separation technique based on the use of columns containing stationary-phase 

packing with particle sizes smaller than those of conventional HPLC [17]. It has led to evident improvements 

in chromatographic separations, an important and relevant aspect in LC-MS analysis. Shorter chromatographic 

run times and improved sensitivity are common advantages derived from the use of UHPLC, but some other 

aspects may also be considered, as highlighted in this review. This article discusses the application of LC-HRMS 

for the investigation of PIDs and metabolites/TPs in water samples, and the role that UHPLC can play within 

this field of analysis. 

2. High-resolution mass spectrometry 

HRMS circumvents the main drawback of targeted SRM analysis (i.e., missing non-pre-selected compounds 

even if they are present at high concentrations in the samples). HRMS instruments (e.g., TOF and Orbitrap) 

provide high-quality data by combining sensitive full-spectrum mass data with high mass resolution and mass 

accuracy. Since acquisition is not targeted, any ionizable compound in the sample can be, in principle, detected 

and investigated. Furthermore, hybrid instruments, such as quadrupole-TOF (QTOF) and Linear Trap 

Quadrupole Orbitrap (LTQ-Orbitrap), offer additional information on compound confirmation and/or 

structure elucidation [18]. 
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Several studies employ a post-targeted approach, which involves an initial data inspection, based on the use of 

the exact mass of known substances in a customized database. Hundreds of compounds can be investigated 

on the basis of their theoretical exact mass, compared with the accurate-mass measurements, which greatly 

increase the reliability of identification [19]. Moreover, the presence of compounds initially not considered, 

such as new substances and TPs, can be investigated from full-scan accurate-mass data acquired at any time 

without the need for additional analysis [20], [21], [22] and [23]. This ability is advantageous, as, in many 

occasions, the samples may already have been discarded or the analytes degraded, so additional sample 

injections may not be possible. This retrospective analysis enables the screening to be further widened, by 

reprocessing only raw data. The main benefit of using HRMS is that it eschews the need for reference standards, 

as tentative identifications of suspect compounds can be made on the basis of the information provided by this 

technique. Obviously, reference standards are required for ultimate confirmation, but they may be acquired in 

a final stage when solid well-founded evidence exists on the presence of the compound in the sample. In this 

way, laboratories do not need to acquire all reference standards before analysis, with the subsequent problems 

of availability (e.g., TPs), costs and expiry dates [24]. 

Non-target analysis may also be explored when using HRMS. A true “unbiased” non-target screening, without 

any a priori information on the compounds to be detected, is an analytical challenge, as the process needs 

expertise, and is complex and time-consuming [15], [25] and [26]. An intermediate situation between target and 

true non-target analysis is the application of “biased” non-target approaches, where, for example, the formation 

of “unknown” TPs from a given parent compound is computationally predicted [27] and [28], or tentatively 

identified by performing laboratory experiments [22], [29], [30], [31] and [32]. Other options (e.g., searching for 

common fragments or mass-defect filtering) are also feasible and useful in investigating the presence of related 

compounds. Here, the number of chemically meaningful structures, which can be assigned to an unknown peak, 

is limited to structures showing a close relationship with the parent compound [15]. 

Krauss et al. gave an overview of the state of the art and future trends of LC-HRMS applied to the 

environmental analysis of polar micropollutants [15], showing illustrative systematic workflows for different 

approaches: quantitative target analysis with reference standards; suspect screening without reference standards; 

and, non-target screening of unknowns (Fig. 1). 
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Fig. 1: Comparison of systematic workflows for (a) quantitative target analysis with reference standards, (b) suspects screening without reference 

standards, and (c) non-target screening of unknowns in environmental samples by using liquid chromatography-high resolution (tandem) mass 

spectrometry [LC-HRMS(MS)]. *Note that the m/z range of the extraction window for the exact-mass filtering depends on the mass accuracy 

and the resolving power of the mass spectrometer used. {Reproduced from [15] with permission}. 

After a compound (based on a suspect or non-target approach) is discovered, the next step is to confirm its 

identity. Usually, this process involves acquisition of full product-ion spectra after re-analyzing the sample by 

MS/MS systems (i.e. hybrid QTOF or LTQ-Orbitrap), in order to match the observed accurate-mass product 

ions with the chemical structure of the suspect or candidate(s). In order to obtain fragmentation information 

in a single run, some hybrid analyzers allow acquisition of full-scan spectra with and without applying collision 

energy in a sequential fashion. Using this acquisition mode, named MSE by Waters, or high-collision dissociation 

(HCD) by Thermo [33] and [34], two separate acquisition functions are sequentially measured in full-scan mode. 

The first, without applying collision energy in the cell (LE), obtains a conventional full spectrum, where intact 

(de)protonated molecules/adducts are commonly observed, followed by a second (HE), where a fixed or 

collision-energy ramp is applied in order to induce ion fragmentation. In this way, fragmentation information 

is obtained in advance for all compounds in a single run without the need to re-inject the sample in MS/MS 

mode. 

Despite its qualitative potential, HRMS typically shows lower sensitivity than QqQ instruments operating in 

SRM mode, and quantitative LC-HRMS applications are more limited. However, Orbitrap and the latest TOF 

instruments show improved sensitivity and wider linear dynamic range, similar to that of QqQ, so prompting 

their use for quantification and identification/confirmation in a single run [20], [35] and [36]. 
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3. Contributions of UHPLC 

UHPLC is the most important development in LC in recent years. This technique uses chromatographic 

columns packed with particles with diameters below 2 µm, which significantly increase efficiency, even at high 

mobile-phase flow rate, achieving faster separations [17] and [37]. Conventional HPLC runs can be relatively 

long, particularly to avoid or to minimize co-elution of matrix interferences that may lead to difficulties in terms 

of identification. To this end, UHPLC can be of additional value. First, it shortens the run time, and, second, 

it facilitates attaining sufficient chromatographic resolution to minimize co-elution of compounds with close 

m/z values. In addition, a remarkable increase in detectability can be achieved as a consequence of the narrower, 

higher peaks provided by this technique. 

The combination of UHPLC with MS appears to be a suitable approach that fulfils sensitivity, selectivity and 

peak-assignment certainty. However, due to the very narrow peaks produced by UHPLC (commonly 1–6 s), 

coupling with MS devices may be critical. For this reason, specific quadrupole-based instruments that show 

improved acquisition rates were launched for UHPLC coupling. The short dwell times (low-ms range) offered 

by modern QqQ instruments allow easy coupling to UHPLC due to the narrow chromatographic peaks 

obtained. 

Initially, UHPLC found many applications in pesticide residues, where a large number of pesticides could easily 

be separated and measured by MS/MS in less than 10 min [38], [39] and [40]. Obviously, UHPLC-MS/MS has 

also been applied in other fields, including the quantitative determination of PIDs in water [14], [41], 

[42] and [43]. 

Aside from triple quadrupole (QqQ) mass analyzers, TOF instruments afford fast full-spectral acquisition rates 

at good sensitivity and high mass-resolution (10,000–40,000 FWHM depending on the instrument) with high 

mass accuracy (typically lower than 5 ppm). The scan speed attainable by recent accurate-mass TOF analyzers 

falls in the range of 10–100 scans/s, more than enough to follow the narrow chromatographic peaks obtained 

under UHPLC separations, without compromising mass resolution and sensitivity. 

Modern TOF analyzers represent a promising alternative, particularly for screening purposes, to the well-

established QqQ instruments, as TOF can deal with the large number of compounds to be searched in 

environmental research. The improved chromatographic resolution and detectability achieved by UHPLC 

separations were particularly essential when using QTOF mass analyzers in MSE acquisition mode. As 

fragmentation is promoted in HE function, without pre-selecting any precursor ion, recognizing which ions are 

fragment ions and which are not becomes essential to avoid spectral interferences that would complicate the 

identification process. With this aim, UHPLC has become a valuable tool for choosing ions obtained from the 

HE function that perfectly co-elute with the intact (de)protonated molecule from the LE function, and 
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assigning them as potential fragment ions. In this way, an additional MS/MS acquisition can be avoided, 

speeding up the screening and confirmation steps following the MSE approach. 

In order to illustrate the benefits of UHPLC separations along this process, Fig. 2a shows the LE and HE mass 

spectra for a wastewater-sample extract obtained after solid-phase extraction (SPE). The LE mass spectrum 

(bottom) shows several abundant ions, which are expected to be the “precursor ions” of the fragments, 

observed in the HE mass spectrum (top). In order to correlate the potential (de)protonated molecules with 

their fragment ions, extracted ion chromatograms (XICs) were obtained for all ions (at LE and HE) and 

chromatographic peak shapes and retention times were evaluated. As can be seen in Fig. 2b, two co-eluting 

compounds appeared in this sample, but, based on the improved chromatographic profile achieved by UHPLC, 

their fragment ions could be easily differentiated. Thus, the fragment ions observed in HE with m/z 119 and 

m/z 91 were assigned to the “precursor” m/z 192, while the ions m/z 207 and m/z 159 were assigned to m/z 

297. 

 

 
 

Fig. 2: (a) Low-energy (LE) and high-energy (HE) (Q)TOF mass spectra for a wastewater-sample extract after SPE; (b) XICs for the 

protonated molecule (at LE) and main fragment ions (at HE) for two co-eluting compounds. 
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A new type of HRMS analyzer, Orbitrap, was invented by Alexander Makarov in 2003 [44] and [45]. This device 

shows high mass resolution (>100,000 FWHM), high mass accuracy (<5 ppm) and acceptable dynamic range 

(103). The main drawback is its scanning speed, which is inverse of mass resolution. For example, only 1 scan/s 

can be acquired when using a resolution of 100,000. This limitation obviously affects the number of points per 

chromatographic peak and therefore its correct chromatographic peak shape when coupled to UHPLC, where 

peak widths are only a few seconds. By contrast, when a faster scanning speed is selected (e.g., 10 scans/s), 

resolution decreases dramatically (e.g., 10,000 FWHM). Thus, a compromise between achievable resolution and 

adequate chromatography must be found [46] and [47]. Nevertheless, several examples of the use of UHPLC 

columns combined with Orbitrap mass analyzers can be found [48], [49], [50] and [51]. Unfortunately, the mass 

resolution used is not reported or the chromatographic peak widths estimated from the chromatograms shown 

are unacceptably large (20–60 s) for a genuine UHPLC separation. Apparently, only Pinhancos et al. [48] 

worked in pseudo-UHPLC conditions, reporting chromatographic peaks of around 10s width. 

In summary, so far, insufficient data have been reported to support the efficient combination of UHPLC with 

Orbitrap in this field. We expect further improvements in the scan speed of these mass analyzers without 

significantly affecting the mass-resolving power in the near future, making possible successful coupling to true 

UHPLC separations. 

4. Applications of LC-HRMS 

In this section, we present different approaches to the investigation of PIDs in waters by LC-HRMS, including 

target, suspect and non-target screening, and characterization of TPs of PIDs subjected to degradation under 

laboratory-controlled conditions. 

Table 1 and Table 2 give overviews of the literature on LC-(Q)TOF-MS and LC-(LTQ)Orbitrap-MS 

applications, respectively. 
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Table 1: Literature overview on LC-QTOF-MS applications 

Author 

(year) LC Compound (no.)a 

T/S/NT/D

a Matrixb Observationsc Ref. 

Marchese 

(2003) 

HPLC Pharmaceuticals (5) T SW Quantification and 

confirmation 

(QqQversus QTOF) 

[52] 

Stolker 

(2004a) 

HPLC Pharmaceuticals 

(13) 

T SW, GW, 

DW 

Quantification 

(QqQ) and 

confirmation 

(QqQversus QTOF) 

[56] 

Stolker 

(2004b) 

HPLC Pharmaceuticals (5) T SW, WW Quantification and 

confirmation 

(QqQversus QTOF) 

[57] 

Agüera 

(2005) 

HPLCd Diclofenac D A Elucidation of Hy 

and PhN TPs by LC-

TOF MS+GC-MS 

(13) 

[97] 

Boreen 

(2005) 

Infusiond Pharmaceuticals (5) D SW Elucidation of PhN 

TPs of sulfa drugs by 

LC-UV + TOF-

MS + FTIR + 1H 

NMR + 13C NMR (5) 

[88] 

Eichhorn 

(2005) 

HPLC Trimethoprim D WW Elucidation of Bd 

TPs (2) by LC-

QTOF-MS + LC-IT-

MS + H/D exchange. 

Quantification by 

LC-MS 

[89] 

Ibáñez 

(2005) 

HPLC Unknown 

compounds 

NT SW,GW,W

W 

Screening and 

elucidation of 

unknown 

compounds 

[25] 

Petrovic 

(2006) 

UHPLC Pharmaceuticals 

(29) 

T SW,WW Screening, 

quantification and 

confirmation 

[71] 

Pozo 

(2006) 

HPLC Antibiotics (16) T SW,GW Quantification 

(QqQ) and 

confirmation 

(QqQversus QTOF) 

[11] 



 Chapter 1: General Introduction 

 

45 

Author 

(year) LC Compound (no.)a 

T/S/NT/D

a Matrixb Observationsc Ref. 

Martínez 

Bueno 

(2007) 

HPLCd Pharmaceuticals 

and metabolites 

(48), and other 

emerging 

contaminants (56T, 

5S) 

T, S, NT WW Quantification 

(QTRAP) and 

confirmation 

(QTRAP versusTOF) 

[64] 

Pérez 

(2007) 

UHPLC Enalapril and its 

metabolite 

enalaprilat 

D A Elucidation of PhS 

TPs (3 from 

enalapril + 1from 

enalaprilat by 

QTOF+QqLIT MS) 

[98] 

Farré 

(2008) 

UHPLC Pharmaceuticals 

(28) + phytoestroge

ns (4) 

T SW, WW Quantification and 

confirmation 

(QqQversus QTOF) 

[55] 

Ibáñez 

(2008) 

UHPLCd Organic pollutants NT SW, WW Screening and 

identification. 

Empirical library 

(104) versusTheoretica

l library (500) 

[114] 

Kosjek 

(2008) 

UHPLC Diclofenac D A, HPLC Elucidation of Bd 

TPs (4). Isotopic 

cluster analysis 

[87] 

Radjenović 

(2008) 

UHPLC Atenolol and 

glibenclamide 

D WW Elucidation of Bd 

TPs (1 from 

atenolol + 1from 

glibenclamide). 1 TP 

detected in WW by 

QqLIT-MS. 

[107] 

Ibáñez 

(2009) 

UHPLC Pharmaceuticals 

(62) 

T SW, WW Screening and 

confirmation 

[69] 

Lavén 

(2009) 

HPLC Pharmaceuticals 

(15) 

T WW Screening, 

quantification, 

confirmation and 

removal efficiency 

[72] 

Ferrer 

(2010) 

HPLC Chlorine-

containing 

compounds 

Semi-NT DW, GW, 

WW, SW, 

HPLC 

Lamotrigine and its 

metabolite (2-N-

glucuronide) detected 

[112] 
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Author 

(year) LC Compound (no.)a 

T/S/NT/D

a Matrixb Observationsc Ref. 

in DW, SW and WW 

samples. 

Quantification 

Gómez 

(2010) 

HPLC Pharmaceuticals, 

transformation 

products and 

pesticides 

NT WW, SW Screening, 

quantification and 

confirmation. 

Database containing 

pharmaceuticals 

(87) + pesticides 

(300) 

[74] 

López-

Roldán 

(2010) 

UHPLCd Pharmaceuticals 

(28) and estrogens 

(10) 

T SW Quantification 

(QqQ) and 

confirmation (TOF) 

[65] 

Magnér 

(2010) 

UHPLC Pharmaceuticals 

(10) 

T SW, MW Screening, 

quantification and 

confirmation 

[67] 

García-

Galán 

(2011) 

UHPLC Sulfamethazine D A Elucidation of TPs 

after Bd by 

fungusTrametes 

versicolor(4). Removal 

efficiency in SS by 

QqLIT-MS 

[108] 

Gómez-

Ramos 

(2011a) 

HPLC Sulfamethoxazole D n.d. Elucidation of Oz 

TPs (6) 

[105] 

Gómez-

Ramos 

(2011b) 

HPLC Pharmaceuticals, 

illicit drugs, TPs and 

other organic 

pollutants 

NT WW Screening and 

identification. 

Database containing 

147 compounds. 

Identification of 

related and 

unexpected TPs 

[115] 

Hernández 

(2011a) 

UHPLC Pharmaceutical 

metabolites (160) 

S WW Screening and 

identification 

(retrospective 

analysis) 

[21] 
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Author 

(year) LC Compound (no.)a 

T/S/NT/D

a Matrixb Observationsc Ref. 

Hernández 

(2011b) 

UHPLC Illicit drugs and 

metabolites (11 T + 

65 S) 

T, S WW Screening and 

identification 

[73] 

Nurmi 

(2011) 

UHPLCd Pharmaceuticals 

(16) and pesticides 

(68) 

T WW Screening, 

quantification and 

confirmation 

[120] 

Pérez-

Parada 

(2011) 

HPLC Amoxicillin D WW, SW Elucidation of Hy 

TPs (4). 1 TP 

detected in SW 

samples 

[91] 

Postigo 

(2011a) 

UHPLC Methadone D A, HPLC Elucidation of Hy, 

PhN and Pc TPs (6). 

1 confirmed with 

reference standard 

[100] 

Postigo 

(2011b) 

UHPLC Cocaine D A, HPLC Elucidation of Hy, 

PhN and Pc TPs (14) 

[101] 

Terzic 

(2011) 

UHPLC Polar contaminants NT Sed The aquatic sediment 

was influenced by 

pharmaceutical 

industry 

[111] 

Díaz 

(2012) 

UHPLC Pharmaceuticals, 

illicit drugs, TPs and 

other organic 

pollutants 

(231 T + 1100 S) 

T, S, NT WW Screening and 

identification 

[16] 

Eichhorn 

(2012) 

UHPLC Sildenafil (Viagra) 

and its N-

demethylated 

metabolite 

D HPLC,A,SW Elucidation of PhS 

TPs (8 from 

sildenafil + 6 from N-

demethylsildenafil) by 

LC-ESI-TOF-

MS + LC-APCI-

QqQ-MS + H/D 

exchange 

[90] 

Ferrer 

(2012) 

HPLC Pharmaceuticals 

and degradation 

products (100) 

T DW, GW, 

SW WW 

Screening, 

quantification and 

confirmation 

[36] 
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Author 

(year) LC Compound (no.)a 

T/S/NT/D

a Matrixb Observationsc Ref. 

Gonzalez-

Mariño 

(2012) 

HPLC Illicit drugs and 

metabolites 

(24 T + 130 S) 

T, S WW Screening, 

quantification and 

identification 

[35] 

Leknes 

(2012) 

UHPLCd Oseltamivir and its 

metabolite 

oseltamivir 

carboxylate 

T WW Screening, 

quantification and 

confirmation 

[66] 

Martínez 

Bueno 

(2012) 

HPLC Pharmaceuticals 

and illicit drugs 

(10 T, 1200 S) 

T, S, NT SW Screening, 

quantification and 

identification 

[116] 

Nurmi 

(2012) 

 Pharmaceuticals 

and pesticides 

(88 T + 201 S) 

T, S, NT WW Evaluation of T, S, 

NT screening with 

spiked samples. 

Application of T, S to 

real WW. Theoretical 

library (6) 

[117] 

Bijlsma 

(2013) 

UHPLC Cocaine and its 

metabolite 

benzoylecgonine 

D SW Elucidation of Hy, Cl 

and PhS TPs (16 

from cocaine + 10 

from 

benzoylecgonine). 7 

TPs detected in SW 

and WW samples by 

UHPLC-QqQ-MS 

[30] 

Boix 

(2013) 

UHPLC Omeprazole D SW Elucidation of TPs 

after Hy, Cl, PhS (17). 

4 TPs detected in SW 

and WW samples by 

UHPLC-TOF-MS 

and UHPLC-QqQ-

MS 

[22] 

Díaz 

(2013) 

UHPLC Pharmaceuticals, 

illicit drugs and TPs 

(150 organic 

pollutants) 

T SW, GW, 

WW 

Qualitative validation [121] 

Masiá 

(2013) 

UHPLC Pharmaceuticals, 

illicit drugs and 

other emerging 

T, S WW, SW Quantification (42 

pesticides by QqQ), 

confirmation (QqQ 

and QTOF) and 

[75] 
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Author 

(year) LC Compound (no.)a 

T/S/NT/D

a Matrixb Observationsc Ref. 

contaminants 

(250 T + 1100 S) 

identification 

(QTOF) 

Vergeynst 

(2013) 

UHPLC Pharmaceuticals 

(69) 

T SW Screening, 

quantification and 

confirmation 

[70] 

Boix 

(2014a) 

UHPLC Omeprazole 

metabolites (24) 

T WW, SW Retrospective 

screening of 

metabolites 

previously identified 

in metabolism study. 

9 metabolites 

detected in samples 

[23] 

Boix 

(2014b) 

UHPLC THC-COOH 

(Cannabis 

metabolite) 

D SW Elucidation of Hy, Cl 

and PhS TPs (19). 8 

TPs detected in SW 

and WW samples by 

UHPLC-QqQ-MS 

[29] 

Rodriguez-

Alvarez 

(2014) 

HPLC Ethyl sulfate 

(biomarker for 

ethanol tracing) 

T WW Quantification and 

confirmation 

(QqQversus QToF) 

[68] 

a T, Target; S, Suspect; NT, Non-Target; D, Degradation study. 
b HPLC, High-performance liquid chromatography, distilled, Ultrapure or demineralized water; SW,Surface water; 

WW, Wastewater; GW, Groundwater; DW, Drinking water; SS, Sewage sludge; A, Any artificial water matrix; 

MW, Marine environment; Sed, Sediment; n.d., Not clearly defined. 

c PhN, Photolysis with natural sunlight; PhS, Photolysis with simulated sunlight; Bd, Biodegradation; Hy, Hydrolysis; 

Pc, Photocatalysis; Cl, Chlorination; Oz, Ozonation. 

d Only TOF instrument used. 
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Table 2: Literature overview on LC-LTQ Orbitrap-MS applications 

Author (year) LC Compound (no.)a T/S/NT/Da Matrixb Observationsc Ref. 

Hogenboom 

(2009) 

HPLC Pharmaceuticals, illicit 

drugs and other 

emerging 

contaminants (3000 T) 

T, NT SW, 

WW, 

GW, 

DW 

Screening, 

quantification and 

identification 

[118] 

Hollender 

(2009) 

HPLC Emerging 

contaminants (220 T, 

including 77 

pharmaceuticals); 

known oxidation TPs 

of 5 pharmaceuticals 

(S) 

T,S WW Screening and 

removal efficiency 

for 220 pollutants 

after Oz 

degradation. 

Screening of 

known oxidation 

products of 5 

pharmaceuticals 

[85] 

Kern (2009) HPLC Plausible TPs 

assembled using 

computer-aided 

prediction (UM-PPS) 

of pesticides 

(24) + biocides 

(7) + pharmaceuticals 

(21). TPs reported in 

literature of 

pharmaceuticals (21) 

and pesticides (31). 

Total: 1794 proposed 

TPs (890 from 

pharmaceuticals) 

S SW 19 TPs identified 

in SW (7 from 

pharmaceuticals) 

→ 12 confirmed 

with reference 

standards 

[28] 

Helbling (2010) HPLC Plausible TPs 

assembled using 

computer-aided 

prediction (UM-PPS) 

of pharmaceuticals 

(6) + pesticides (6). 

Degradation study 

S, D WW 26 TPs identified 

after Bd (13 from 

pharmaceuticals). 

UM-PPS predicted 

the structures of 21 

TPs. Elucidation 

resulted in 26 TPs 

[84] 

Kern (2010) HPLC Plausible TPs 

assembled using 

computer-aided 

prediction (UM-

S WW 12 TPs identified 

after Bd. 

Application to real 

samples 

[27] 
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Author (year) LC Compound (no.)a T/S/NT/Da Matrixb Observationsc Ref. 

PPS) + TPs reported 

in literature (7) 

(quantification by 

QqQ) 

Bagnati (2011) HPLC Cocaine and 

benzoylecgonine 

T WW, 

SW 

Evaluation of 

HRMS capabilities: 

screening, 

quantification and 

confirmation 

[122] 

Pinhancos 

(2011) 

UHPLC Pharmaceuticals 

(8) + metabolite of 

caffeine 

T DW Screening, 

quantification and 

confirmation 

[48] 

Wille (2011) UHPLCd Pharmaceuticals (16) 

and pesticides (13) 

T MW Screening, 

quantification and 

confirmation 

[49] 

Bijlsma (2012) HPLC Illicit drugs and 

metabolites (24) 

T WW Quantification, 

confirmation and 

removal efficiency 

[77] 

Cahill (2012) HPLC Pharmaceuticals (5) 

and pesticides (4) 

T WW Screening, 

quantification and 

confirmation 

[78] 

Calza (2012a) HPLC Clarithromycin and 

carbamazepine 

D HPLC Elucidation of Pc 

TPs (28 from 

carbamazepine and 

29 for 

clarithromycin) 

[31] 

Calza (2012b) HPLC Lincomycin D HPLC Elucidation of Pc 

TPs(21) 

[32] 

de Jongh (2012) HPLC Pharmaceuticals and 

TPs (26) 

T SW, 

DW, 

GW 

Screening and 

quantification 

[79] 

ter Laak (2012) HPLC Pharmaceuticals, illicit 

drugs, personal care 

products and other 

organic pollutants 

(635) 

T GW Screening and 

confirmation 

[82] 

Bijlsma (2013) HPLC Illicit drugs and 

metabolites 

(24 T + 2 S) 

T, S WW Quantification and 

confirmation. 

[20] 
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Author (year) LC Compound (no.)a T/S/NT/Da Matrixb Observationsc Ref. 

Calza (2013) HPLC Lincomycin, 

clarithromycin and 

carbamazepine 

D SW Elucidation of PhS 

TPs (19 from 

lincomycin, 21 

from 

carbamazepine and 

6 from 

clarithromycin).13 

TPs detected in 

samples 

[99] 

Chiaia-

Hernandez 

(2013) 

HPLC Pharmaceuticals, 

personal-care 

products and other 

organic pollutants 

(>180 T + 80 S) 

T, S Sed Screening and 

identification 

(APPI and ESI) 

[81] 

van der Aa 

(2013) 

HPLC Illicit drugs and 

metabolites (34) 

T DW, 

SW, 

WW 

Screening and 

quantification (incl. 

QqQ, Orbitrap) 

from different 

research groups 

[123] 

Rodayan (2014) UHPLC Illicit drugs and TPs 

(7) 

D WW Elucidation of Oz 

TPs (10). Removal 

efficiency 

[50] 

Emke (2014) HPLC Amphetamine and 

MDMA 

T WW Enantiomeric 

profiling. 

Quantification and 

confirmation 

[83] 

Hug (2014) HPLC Novel micropollutants 

(98 T + 2160 S) 

T, S, NT WW Screening and 

identification 

[26] 

Kosma (2014) HPLC Pharmaceuticals and 

personal-care 

products (18) 

T,S WW Confirmation of 

positives detected 

by LC-MS. 

Removal efficiency 

by LC-MS. 

Identification of 

trimethoprim TPs 

(2). 

[80] 

Schymanski 

(2014) 

HPLCe Polar organic 

contaminants 

(364 T + ~180 S) 

T, S, NT WW Screening and 

identification 

[119] 
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Author (year) LC Compound (no.)a T/S/NT/Da Matrixb Observationsc Ref. 

Zonja (2014) HPLC Zanamivir D A, SW Identification of 

TPs after PhN and 

PhS (4). 1 TP 

confirmed with 

reference standard 

[51] 

a T, Target; S, Suspect; NT, Non-target; D, Degradation study. 
b HPLC, High-performance liquid chromatography; distilled, Ultrapure or demineralized water; SW,Surface 

water; WW, Wastewater; GW, Groundwater; DW, Drinking water; SS, Sewage sludge; A, any artificial water 

matrix; MW, marine environment; Sed, Sediment. 

c PhN, Photolysis with natural sunlight; PhS, Photolysis with simulated sunlight; Bd, Biodegradation; 

Hy, Hydrolysis; Pc, Photocatalysis; Cl, Chlorination; Oz, Ozonation. 

d Exactive instrument used. 

e Q Exactive instrument used. 

 

4.1. Screening of pharmaceuticals and illicit drugs in waters 

LC-HRMS has extraordinary potential for screening PIDs in waters. The most efficient, rapid way is to perform 

target screening of a large number of compounds on the basis of large (in-house) databases. In this target 

approach, theoretical exact masses of analytes are extracted from full-spectrum acquisition data, reconstructing 

accurate-mass chromatograms, where the presence of analytes in the samples can be depicted as a 

chromatographic peak. Mass accuracy is critical for identification purposes. Normally, mass errors below 5 ppm 

are observed in routine analysis with the new instruments commercially available. The accurate mass of the 

(de)protonated molecule (on occasions adducts), the information on characteristic fragment ion(s), the isotopic 

pattern, and retention time matching with reference standards enable unambiguous identification of PIDs in 

environmental samples. 

4.1.1. (Q)TOF-MS applications 

TOF and/or hybrid QTOF analyzers are most commonly used in this field. The first works dealing with the 

analysis of pharmaceuticals in the environment by LC-QTOF-MS were reported in 2003. Marchese et al. [52] 

compared the potential of QqQ and QTOF for the LC-MS determination of five pharmaceuticals in river-

water samples. According to the authors, the selectivity was much better on QTOF than on QqQ because of 

the high resolving power of the TOF analyzer, permitting high-accuracy fragment-ion selection and minimizing 

interferences from environmental matrices. In the same year, Ferrer et al. showed the benefits of the enhanced 

resolving power of LC-QTOF-MS when investigating polar organic contaminants in complex environmental 

matrices, as isobaric interferences could be separated from the analyte signals [53] and [54]. 
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After these pioneering works, the capability of (Q)TOF-MS for screening, quantification and/or confirmation 

of pharmaceuticals in water samples has been regularly compared to that of LC-MS/MS with QqQ [11], [55], 

[56] and [57], and that resulted in a general agreement on the strong points and the weak points of these 

techniques. The elevated mass resolution and selectivity of TOF instruments diminish the problem of isobaric 

interferences [55], making TOF-MS very useful for not only identification and confirmation purposes, but also 

studying metabolic routes and degradation pathways [57]. The main limitation of TOF instruments has 

traditionally been lower sensitivity than QqQ instruments, making QqQ more appropriate for analysis at low 

ng L−1 concentrations of analytes [11]. In terms of dynamic range and limits of detection (LODs), the 

quantitative performance of QqQ instruments still presents better features than TOF-MS [55]. 

Several reviews were published in the past decade dealing with the use of LC-HRMS for the determination of 

PIDs in environmental analysis. We recommend reading of these reviews by researchers interested in this field 

[2], [3], [10], [13], [18], [58], [59], [60], [61], [62] and [63]. 

QTOF-MS has been used for unequivocal confirmation of the identity of pharmaceuticals previously detected 

and quantified by LC-MS/MS in SRM mode using hybrid quadrupole linear ion trap (QTRAP) [64] or QqQ 

[65]. The possibility of performing retrospective analysis has allowed the revision of recorded chromatograms 

for new compounds, metabolites or TPs in the samples, increasing the scope of the method in monitoring 

programs [21] and [64]. LC-MS/MS and LC-(Q)TOF-MS can be seen as complementary techniques. On the 

one hand, LC-MS/MS is the first choice for quantification in pre-target analysis, due to its good sensitivity and 

precision. On the other hand, QTOF provides accurate-mass measurements, and is ideal for post-target 

screening and confirmation. The most suitable strategy seems to be automated screening and identification by 

LC-(Q)TOF, followed by quantification by LC-MS/MS [65]. 

The use of (Q)TOF instruments for quantification of target analytes in environmental samples has been rather 

limited; however, in the past few years, there was increased use of quantitative analysis, since the limitations of 

lower sensitivity and linear dynamic range were mostly solved. This improvement contributed to extending the 

use of LC-(Q)TOF-MS to quantitation of target pharmaceuticals [66] and [67] and drugs [35] or alcohol 

biomarkers [68] in water. 

The qualitative field is undoubtedly where HRMS can take full advantage of its capabilities derived from 

sensitive accurate-mass, full-spectrum acquisition. These capabilities offer the possibility of investigating the 

presence of compounds once sample analysis has been performed and MS data acquired (i.e., without pre-

selection of analytes), and are especially suitable for screening/identification of contaminants and confirmation 

of presumed positive samples reported by other techniques. 

LC-(Q)TOF-MS has been applied successfully to the investigation of pharmaceuticals belonging to different 

therapeutic classes in surface waters [55], [69] and [70], seawater [67] and wastewaters [55], [66], [71] and [72], 
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and also illicit drugs and their metabolites in wastewaters [35] and [73]. As a consequence of the intrinsic 

characteristics of HRMS analyzers, their use enables screening for a large number of contaminants with high 

sensitivity within one run, with the obvious restrictions derived from the chromatographic and ionization 

processes in LC-MS and from sample pre-treatment. LC-(Q)TOF-MS instruments have been applied for 

comprehensive screening of many pollutants of different chemical families, including PIDs [36], [64], 

[73] and [74] in water samples. In some cases, LC-(Q)TOF-MS has also been used as a complementary tool for 

target LC-QqQ-MS-based methods allowing the detection of analytes different to those selected in previous 

QqQ methods [75]. 

The easy review step and the useful information provided by TOF-MS gives high confidence in the 

identification of the compounds detected, even without reference standards being available. In these cases, 

tentative identification may be possible based on the presence of the (de)protonated molecule (i.e., when a 

chromatographic peak is detected at its accurate mass). Subsequently, the collision-induced dissociation (CID) 

fragments/product ions (or characteristic isotopic ions) are then evaluated [16]. For this purpose, different 

possibilities are available, such as comparing experimental MS(/MS) spectra or the main fragment ions with 

those reported in the literature (massbank, or METLIN public library), or justifying the accurate-mass 

fragments taking into account the structure of the molecule. For the latter approach, the use of specialized 

software (e.g., MassFragment) can help. 

As an example, Fig. 3 illustrates the detection and the tentative identification of veterinary anthelminthic drug 

levamisole, recently also recognized as an adulterant in cocaine, in an effluent wastewater by using UHPLC-

QTOF-MS, operating in MSE mode. The protonated molecule of levamisole was detected in the LE function 

(Fig. 3a, bottom), with 3.4-ppm mass error. As the reference standard was not available at the laboratory, the 

accurate mass of the fragment ions was justified using the MassFragment software (Waters) in order to advance 

towards a tentative identification. To minimize spectral interferences that would complicate the identification 

process, recognizing which ions are and which are not fragments became essential. To this end, UHPLC was 

valuable for choosing perfectly co-eluting ions (see chromatographic peak at 3.86 min, Fig. 3b). The elemental 

composition for the two fragments detected in the HE function (Fig. 3a, top) (m/z 178.0689 and 123.0267) 

was calculated, obtaining errors less than 1 ppm in relation to the theoretical exact masses predicted. In addition 

to all information available, tentative identification of levamisole was supported by the MS/MS product ions 

reported in the literature, where the two fragments (m/z 178 and m/z 123) observed had been previously 

reported using an LTQ-Orbitrap with a resolution of 7,500 [76]. The final acquisition of the reference standard 

allowed the ultimate confirmation of this compound in the wastewater sample. 
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Fig.3: Detection and identification of levamisole by UHPLC-QTOF-MS in effluent wastewater (the reference standard was not available at 

the laboratory at the time of analysis): (a) Low-energy (LE) (bottom) and high-energy (HE) (top) spectra of the compound eluting at 3.86 min. 

(b) Extracted-ion chromatograms (0.02 Da mass width) for the protonated molecule in LE function and different fragment ions in HE function. 

(×) indicates that this ion is not related to levamisole 

The interesting possibilities offered by hybrid QTOF-MS, including the option of working in MSE mode, have 

led to a dramatic increase in the number of contaminants being included in the search, with more than 1000 

compounds included in some cases [16] and [75] by applying suspect-screening approaches. This opens up a 

new scenario in screening strategies, favoring a wider, more realistic overview when investigating organic 

contaminants or residues in different applied fields. 

4.1.2. (LTQ) Orbitrap-MS applications 

The development of the Orbitrap analyzer in 2003 spurred researchers to explore its potential for accurate-

mass screening, identification and quantification of PIDs in wastewaters [77] and [78], surface waters [79] and 

drinking waters [48] and [79] with good recoveries and RSD values. Similarly to QTOF, Orbitrap has also been 

used for the confirmation of PIDs previously found by other techniques [80] and for wide-scope target 

screening. A multi-residue method has been developed for target and suspect screening (i.e., compounds that 

did not form a part of the original target-screening list but were expected to be present in samples) of more 

than 180 organic contaminants, including pharmaceuticals, in lake sediments [81]. Orbitrap also enables 

retrospective analysis of the full-scan data, without the need for additional analysis [20], [48] and [49]. Assessing 

steps included retention-time prediction, isotope patterns, ionization efficiency and fragmentation pattern. 

Product ions of the MS/MS spectrum of a suspect compound were compared with the spectrum of a reference 

standard or with a predicted fragmentation pattern. This allowed the tentative identification of TPs of triclosan 
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and triclocarban. In another work, 42 groundwater samples were screened for 249 known chemicals and 386 

unidentified chemicals (i.e., accurate masses and retention times) [82]. Nearly 400 chemicals were observed in 

the samples, of which 82 were known and more than 300 were of unknown identity.  

Emke et al. [83] applied enantiomeric profiling in verifying sources of MDMA and amphetamine present in 

Dutch wastewater. The results from Orbitrap analysis showed that MDMA was usually present in wastewater 

due to its consumption as MDMA enriched with the R(−)-enantiomer. The high mass loads of racemic MDMA 

detected during a sampling campaign in The Netherlands therefore seemed to proceed from the direct disposal 

of unused MDMA, possibly as the result of a police raid at a nearby illegal production facility. HPLC separation 

was successfully performed using Chiral-CBH column, 100 × 2 mm, 5 µm. Unfortunately, this approach is not 

yet feasible for UHPLC, due to the lack of chiral sub-2-µm stationary phases. 

4.2. Screening metabolites/transformation products in water samples 

After human or animal consumption, PIDs or veterinary drugs may be excreted unchanged and/or as free or 

conjugated metabolites. Some of these compounds are not completely removed during wastewater treatment 

and may finally reach surface waters and even groundwaters. Consequently, several authors have included the 

main metabolites and TPs among the compounds monitored [21], but only a few works have focused on 

screening a notable number of TPs in aquatic compartments. Different approaches have been proposed in the 

literature for the investigation of metabolites and TPs, as shown below. 

4.2.1. (Q)TOF-MS applications 

Hernández et al. [21] studied the presence of 160 pharmaceutical metabolites in wastewater samples that had 

previously been analyzed for only parent compounds using LC-QTOF-MS (MSE mode). The compounds 

investigated were selected after extensive search for TPs and metabolites reported in the literature and from 

lists of commercially available reference standards. As a first step, the presence of the metabolite ion (typically 

[M+H]+ or [M-H]-) at its accurate mass was evaluated. Different strategies were applied in the tentative 

identification: 

• when the reference standard of the parent compound was available, and therefore accurate-mass 

fragment ions of the pharmaceutical were known, the accurate-mass fragments of the suspected 

metabolite were predicted, taking into account the structural differences between both molecules; 

and, 

• when fragmentation information on the parent was not available, chemical structures of the accurate-

mass fragments were proposed using specialized software (MassFragment). 
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In this case, information reported in the literature on product ions for the suspect metabolite or for the parent 

compound was essential (based on measurements of nominal mass or accurate mass). Following this strategy, 

several metabolites, such as clopidogrel carboxylic acid and N-desmethyl clarithromycin, were tentatively 

identified and subsequently confirmed after acquisition of the reference standards. 

In a recent work, Boix et al. [23] investigated the presence of 24 omeprazole metabolites (identified in previous 

excretion tests performed with healthy volunteers) in surface water and effluent wastewater by UHPLC-QTOF-

MS and UHPLC-MS/MS. Up to nine metabolites were detected, the most frequent being an omeprazole isomer, 

which presented the same exact mass (m/z 346.1225), and also shared a major common fragment at m/z 

198.0589. By contrast, parent omeprazole was never detected in any of the water samples. The authors 

emphasized that monitoring the presence of omeprazole in the aquatic environment should focus on the main 

metabolites and some of the major TPs identified in laboratory experiments, instead of the parent compound. 

4.2.2. (LTQ) Orbitrap-MS applications 

Another strategy makes use of target lists of plausible TPs assembled using the University of Minnesota 

Pathway Prediction System (UM-PPS) for the computer-aided prediction of products of microbial metabolism 

and of metabolites and TPs reported in the literature. In this way, Kern et al. screened for potential 

biotransformation-product structures of pharmaceuticals in sludge-seeded batch reactors [27] or surface water 

[28] using HRMS (LTQ Orbitrap). These authors developed an identification procedure to examine a large 

number of proposed TPs efficiently for tentative identification without reference standards [28]. The procedure 

was based on a series of steps, with each step reducing the number of potential false-positive findings: 

(a) mass error of the measurements was <5 ppm for all compounds; 

(b) positive peak findings from the extracted chromatogram were discarded if the peak intensities in the 

extracted chromatogram were <105 (arbitrary units), or if a peak at similar retention and similar intensity was 

found in the blank sample; 

(c) experimental gradient retention times of the target TPs were tested against an upper plausible limit; 

(d) the isotope pattern of the HRMS spectra was evaluated to confirm a target molecular formula; 

(e) peaks with reasonable retention times and isotopic patterns were further checked for plausibility of a 

proposed TP in positive or negative ionization mode (e.g., compounds containing amino but no acidic groups 

were considered analyzable in positive-ionization mode only, whereas strong acids or sulfonates were expected 

to be detectable in negative mode); and, 

(f) to confirm further the presence of the target compounds in the samples, HR-MS/MS was used at higher 

energy collision-dissociation settings. 

Altogether, 19 TPs were identified [28], including some rarely reported TPs, such as biotransformation products 

of pharmaceuticals venlafaxine and verapamil. 
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In another work, Helbling et al. [84] performed a preliminary identification of TPs formed within a 

biotransformation-test system using HRMS with two independent post-acquisition data-processing approaches: 

• target screening at the exact masses of plausible TPs proposed by the UM-PPS for 12 selected parent 

compounds; and, 

• screening for compound masses formed during biodegradation experiments based on background 

subtraction and exact mass filtering. 

With this strategy, previously unreported microbial TPs were tentatively identified for several pharmaceuticals. 

Hollender et al. [85] evaluated the removal efficiency of 220 micropollutants at a municipal WWTP upgraded 

with post-ozonation treatment followed by sand filtration. Afterwards, screening was conducted for known 

ozonation TPs of diclofenac, carbamazepine, and sulfamethoxazole, and possible oxidation products of 

benzotriazole and atenolol by LC-HRMS (Orbitrap). 

4.3. Degradation/transformation under laboratory-controlled conditions 

Once PIDs enter the WWTP, they can be completely mineralized, transformed into metabolites/TPs, adsorbed 

onto the solid phase (e.g., sewage sludge), or pass through the WWTP unaltered. Similarly, once released into 

the environment via the discharge of treated wastewater, PIDs are subjected to different processes, such as 

hydrolysis and photo-degradation by natural sunlight. In order to evaluate the fate of PIDs in the water cycle, 

the removal of the parent compounds and metabolites in the WWTP must be taken into account, but also the 

possible formation of TPs. The identification of TPs is complicated, but important, not only to provide a 

comprehensive risk assessment on drug residues in the environment (TPs can be equally or even more toxic 

and dangerous than the parent pollutants), but also to design improved treatment technologies for organic 

contaminants. From the different possibilities currently available, LC-HRMS has gained popularity and has 

become one of the techniques preferred for elucidating TPs in the environment. Several reviews have focused 

on the capabilities and the potential of MS techniques to determine pharmaceutical-degradation products [4], 

[5] and [86], although very little was included on the use of HRMS, surely due to the time-frame reviewed. 

The process of identification and elucidation of unknown TPs is arduous, and commonly starts with laboratory 

experiments to study the formation of TPs under controlled conditions simulating those that occur in the 

environment. The most feasible strategy relies on MS measurement of their accurate molecular mass and 

subsequent determination of the empirical formula, considering low mass errors (e.g., <5 ppm). The maximum 

and minimum parameters considered in the elemental composition calculation may be restricted on the basis 

of the structure of the parent compound, and the number of halogen atoms selected according to the observed 

isotopic pattern. Further accurate MS/MS measurement and observation of characteristic fragmentation 

pattern of the precursor ion provide valuable information for identifying TPs. In some cases, HRMS alone is 
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insufficient to identify the exact position of transformation, to differentiate isomers, or to provide the precise 

structure of TPs. Thus, LC-HRMS can be combined with other techniques, such as nuclear magnetic resonance 

(NMR), or hydrogen/deuterium-exchange (H/D-exchange) for the final characterization of TP candidates of 

PIDs [87]. Although these techniques have little applicability in the environmental field, as they require high 

concentrations of analyte for measurement, they might be useful in laboratory experiments, where higher 

concentrations can be used. 

Considerable time and effort are required to interrogate the intensive LC-HRMS data to identify unknowns. 

However, normally, the TPs are not complete unknowns as they hold a certain structural relationship with their 

parent compound. Some works only focus the research on the peaks visible in the total ion chromatogram 

(TIC), which implies that other invisible peaks, which may correspond to TPs, would be lost. To avoid this 

problem, detection can be improved by applying spectral and chromatographic search algorithms [e.g., 

MetaboLynx (Waters), Analyst/MetaboliteID (Applied Biosystems), Xcalibur/MetWorks (Thermo Fisher) or 

MassHunter (Agilent)]. Such algorithms search XICs for expected metabolites based on predicted or 

unpredicted molecular changes relative to the parent compound, and thus aid in the detection and identification 

of TPs, particularly those buried in spectral noise. The software compares mass spectral chromatograms of a 

control sample versus an analyte sample (i.e. metabolized, stressed or treated sample), and automates detection, 

identification and reporting of metabolites [88], [89] and [90]. 

PIDs can be degraded in natural environments or in WWTPs by both abiotic (advanced oxidation, photolysis 

and hydrolysis) or biotic (biodegradation) processes [87]. Different degradation/transformation experiments 

have been performed under laboratory-controlled conditions, trying to simulate the probable processes 

occurring in the aquatic environment and/or in WWTPs. Some representative examples are discussed below. 

4.3.1. Hydrolysis experiments 

Hydrolysis is a process occurring naturally in the environment. Pérez-Parada et al. [91] performed solely 

hydrolysis degradation experiments on amoxicillin in both alkaline and acidic aqueous media. Four compounds 

were identified as main TPs by LC-QTOF-MS. Data showed that although this antibiotic is not present as such 

in environmental samples, different TPs might occur. However, most papers reported on hydrolysis, studied 

this process together with other degradation experiments [22], [29] and [30]. 

4.3.2. Photodegradation experiments 

Photodegradation by sunlight may constitute a relevant natural attenuation process for pollutant residues that 

have been discharged from WWTPs. It is one of the most important processes responsible for the degradation 

of contaminants in environmental systems [92], [93] and [94]. Understanding the degradation pathways is 

essential to predict the fate and the environmental impact of organic contaminants in waters. Photolytic 
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reactions lead to multiple reaction products that may be more toxic than the parent compound [95], retain the 

properties of the parent compound (e.g., antibiotic activity) [96], or lose antimicrobial activity and/or toxicity 

[95]. 

LC-TOF-MS has been used to elucidate the photo-TPs of several pharmaceuticals in water exposed to direct 

solar irradiation. Analytes studied included sulfa-drugs containing six-membered heterocyclic substituents (i.e., 

sulfamethazine, sulfamerazine, sulfadiazine, sulfachloropyridazine, and sulfadimethoxine) [88] and non-

steroidal anti-inflammatory drug diclofenac [97]. For diclofenac, the authors combined LC-TOF-MS with GC-

MS to detect and to identify a complete range of TPs, as both techniques provided complementary information. 

Similarly, the photochemical fate of prodrug enalapril and its active metabolite, enalaprilat [98], and sildenafil 

(Viagra) and its human metabolite, N-demethylsildenafil [90], have been investigated in aqueous media under 

the influence of a sunlight simulator. To postulate plausible chemical structures for several photo-TPs, accurate-

mass measurements were combined with complementary data sets from different instruments: 

• a QTRAP mass spectrometer exploiting its MS3 capabilities [98]; and, 

• LC-APCI-QqQ MS and H/D-exchange experiments [90]. 

The aqueous environmental fate of pharmaceuticals has also been studied using LTQ Orbitrap MS. Calza et al. 

[31] and [32] investigated the degradation of antibiotics lincomycin and clarithromycin, and antiepileptic drug 

carbamazepine, whereas Zonja et al. [51] evaluated the phototransformation of antiviral zanamivir in surface 

waters using simulated and natural sunlight. Several species were formed under irradiation, and were 

characterized by evaluating MS and MSn spectra. Fig. 4 shows an MS2 spectrum of a dihydroxyl derivative of 

lincomycin. The presence of a product ion at m/z 407.1836, due to the loss of methanol from the N-

hydroxymethyl moiety, combined with m/z 142.1219, indicates the existence of a hydroxyl group in the ortho 

position, and this allowed tentative structure elucidation. In the end, eight TPs from carbamazepine, three from 

clarithromycin, and two from lincomycin were detected in natural river water [99]. 

S
c
ie

n
ti

fi
c
 A

rt
ic

le
 1

 



Hernández et al. Trends in Analytical Chemistry 63 (2014) 140-157 

62 

 
 

Fig. 4: MS2 spectrum of a dihydroxy derivative of lincomycin. {Reproduced from [32] with permission}. 

Illicit drugs have also been subjected to degradation experiments, although they have been studied less than 

pharmaceuticals. Postigo et al. described the transformation of synthetic opioid methadone [100] and cocaine 

[101] in distilled water and simulated effluent wastewater after natural solar irradiation and two solar 

photocatalytic processes: 

• heterogeneous photocatalysis with titanium dioxide; and, 

• homogeneous photocatalysis by photo-Fenton. 

Phototransformation intermediates generated during each treatment were investigated and characterized by 

UHPLC-QTOF-MS/MS. Identity confirmation was possible for some of them with the analysis of 

commercially available analytical standards. 

The group of Hernández et al. performed laboratory-controlled degradation experiments for several PIDs in 

surface water. Hydrolysis, photo-degradation under ultraviolet (UV) irradiation and simulated sunlight, and 

chlorination experiments, were carried out. The TPs formed were investigated by LC-QTOF in MSE mode. 

Studies were directed towards the degradation of cocaine and its main metabolite benzoylecgonine [30], THC-

COOH (the main metabolite of cannabis and commonly selected as biomarker for the investigation of its 

consumption) [29] and omeprazole (one of the most consumed pharmaceuticals world-wide for treating gastric 

diseases) [22]. Six TPs from cocaine and 10 TPs from benzoylecgonine were tentatively identified. Regarding 

THC-COOH, one hydrolysis, eight chlorination, three UV photo-degradation and seven sunlight photo-

degradation TPs were tentatively identified. In addition, 17 TPs were identified for omeprazole. In a subsequent 

step, samples of influent and effluent sewage water, and surface water, were retrospectively screened using 

UHPLC-QTOF-MS and UHPLC-QqQ MS for the TPs previously identified in the laboratory experiments. In 
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addition to some known compounds, several TPs that had not been reported in the literature were found in 

the samples, illustrating the usefulness of the degradation experiments performed. 

As an illustrative example, Fig. 5 shows the detection and the identification of an omeprazole photo-TP (OTP 

5) after 14 days of solar irradiation of spiked surface water. A chromatographic peak was observed at 5.68 min 

(Fig. 5a, bottom), while it was absent in the blank control sample (Fig. 5a, top). According to its accurate mass 

(m/z 330.1284, Fig. 5b, bottom), the elemental composition of the protonated molecule was assigned as 

C17H20N3O2S+ (+2.4 ppm mass error), which would imply the loss of one oxygen atom from the omeprazole 

molecule. The fragment ions at m/z 297.1497 (C17H19N3O2
+•, 6.7 ppm mass error) and m/z 282.1240 

(C16H16N3O2
+, −1.1 ppm) (Fig. 5b, top) were assigned to thiol [•SH] and subsequent methyl [•CH3] radical 

losses, respectively, and were related to the presence of a sulfide group [23]. Thus, an oxygen loss from the 

sulfur atom in the original omeprazole structure was suggested for this TP. This compound, identified in 

laboratory experiments, was later found in the water samples analyzed. 

 
Fig. 5: Detection and identification of a TP of omeprazole (OTP 5) by LC-QTOF-MS (MSE) resulting from photodegradation. (a) XIC 

at m/z 330.1276 (0.02-Da mass-window width) for analyte-sample (bottom) and control-sample (top), after 14 days of solar irradiation. (b) 

Low-energy (LE) (bottom) and high-energy (HE) (top) spectra and justification of fragment ions observed. 

4.3.3. Advanced oxidation processes (AOP) experiments 

Great efforts were made in recent years to develop additional (or alternative) processes for wastewater 

treatment. An interesting review on removal of pharmaceuticals from water was recently published, and is 

recommended for additional information on this issue [102]. Although ozonation leads to the elimination of 
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many organic compounds in aqueous solution, this is not necessarily accompanied by total mineralization [103]. 

In most cases, degradation by-products generated in the process persist after the parent compounds have been 

totally eliminated. Recently, it was reported that ozonation may release oxidation intermediates with enhanced 

toxicity for aquatic life [104] and [105]. This hypothesis highlights the need to characterize reaction mixtures in 

order to identify persistent and possibly toxic compounds. 

Gómez-Ramos et al. [105] identified six TPs using LC-QTOF-MS after ozonation of antibiotic 

sulfamethoxazole under different operational conditions. In a recent study [50], several illicit drugs were 

subjected to ozonation to estimate their removal as a function of ozone dose and to identify the significant 

oxidation TPs. Once the potential TPs were identified by LC-LTQ-Orbitrap, their structures were elucidated 

by carrying out HRMSn experiments (up to MS4). 

4.3.4. Biodegradation experiments 

The use of membrane bioreactor (MBR) technology for wastewater treatment presents advantages over the 

conventional activated sludge (CAS) process, such as enhanced biological performance, complete retention of 

solids, and smaller footprint [106]. 

To date, a number of abiotic PID degradation products have been identified, but published studies dealing with 

the structural elucidation of these degradates resulting from microbial transformation are still scarce. UHPLC-

QTOF-MS has been used for screening and structural elucidation of biodegradation products, previously 

generated in small-scale laboratory batch reactors, of β-blocker atenolol and hypoglycemic agent glibenclamide 

[107], antimicrobial trimethoprim [89] and analgesic diclofenac [87]. In some cases, QTOF-MS has been 

combined with multiple-stage fragmentation studies and H/D-exchange experiments using IT-MS for final 

elucidation [89] or with HPLC-QqLIT-MS for confirmation of bio-TPs in wastewater samples [107]. For 

diclofenac, pre-processing based on isotopic cluster analysis was performed, since the parent compound 

contained two chlorine atoms in its chemical structure. In this way, the number of resulting peaks could be 

reduced to only those attributed to chlorinated diclofenac bio-TPs [87]. 

Helbling et al. [84] used HRMS Orbitrap data from a single bioreactor to identify compound masses formed 

during the biotransformation experiment. For each sample, a two-dimensional matrix of masses (m/z versus 

intensity) was found and their corresponding intensities were extracted. A script in Visual Basic was written to 

compare the mass-intensity matrices between t = 0 (sample withdrawn immediately after spiking with the 

compound of interest) and each t > 0 (samples withdrawn from the reactors at time points), and used a series 

of mass filters to reduce the number of extracted masses to a list of masses of candidate TPs. Candidate TP 

masses were further confirmed or rejected following manual inspection of MS spectra for the relative 

abundance of 13C and/or 37Cl monoisotopic masses and/or adduct masses. Also, data-dependent MS/MS 

acquisitions were triggered when peaks were detected in full-scan mode at the exact masses of any parent 
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compound or candidate TP. Comparison of MS/MS fragments between each parent compound and TP further 

confirmed or rejected each candidate mass as a TP. Following this strategy, a dehydrogenation product of 

bezafibrate (not predicted by UM-PPS) was tentatively identified. 

Degradation of sulfamethazine by white-rot fungus Trametes versicolor was also assessed. Four degradation 

intermediates produced by fungal cultures or purified laccase were identified using UHPLC–QTOF-MS [108]. 

4.4. Non-target analysis of water samples 

4.4.1. Unbiased non-target analysis 

The fact that HRMS provides full-spectrum acquisitions at accurate masses opens up the possibility of 

investigating non-target compounds in environmental samples. A genuine non-target analysis pursues the 

investigation (i.e., detection and identification or elucidation) of unknowns, which means that the analyst does 

not have any information on the compounds to be investigated (i.e., an unbiased analysis is pursued). The term 

“unknown” does not necessarily mean that the compound discovered in the analysis is new or not previously 

reported. It may be a very well-known compound that was not specifically searched for in analysis, so it was 

treated as an unknown [109]. 

It was early recognized that non-target analysis in environmental waters using LC-HRMS is a challenging task 

and successful identification of non-targets relies heavily on the (free) availability of chemical databases for 

finding candidates [25]. Two unidentified components in the pioneer work reported by Ibáñez et al. [25] were 

subsequently characterized thanks to the use of commercial chemical database SciFinder to find the candidate 

chemical structures [110]. 

A non-target analysis would require a visual inspection of the TIC to find potential components that might be 

present in the sample. Following this idea, Terzic et al. [111] developed a comprehensive analytical procedure 

based on UHPLC-QTOF-MS for the identification of non-target polar contaminants in aquatic sediments from 

a small water course greatly influenced by wastewater discharges from the pharmaceutical industry. The 

chromatograms, recorded in TIC mode, were systematically examined by manually generating mass spectra of 

each individual chromatographic peak. Only major peaks (>10% of the full scale intensity) were subjected to 

the identification process as non-target analytes. The first identification step was calculation of the possible 

elemental composition of the (de)protonated molecules from the mass spectra recorded, followed by a database 

search [using Chemspider, Merck Index and European chemical Substances Information System (ESIS), and 

an in-house database] for possible candidate compounds. For some contaminants, for which a reference 

standard was available, the information on accurate mass and information on retention time were sufficient for 

a reliable identification. For unknown compounds, the ultimate assignment of their identity was achieved by 
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MS/MS experiments, followed by comparing the observed fragmentation patterns with the main product ions 

expected for the selected candidates. Different pharmaceuticals were successfully identified and confirmed with 

reference compounds. However, eight prominent peaks remained unidentified. 

One of the limitations of non-target analysis is that compounds of low abundance may not be apparent by 

visual inspection or, to the contrary, intense peaks may not necessarily be associated with a single component 

or “relevant” organic contaminants. Powerful software with chromatographic peak-deconvolution capabilities 

is required to detect multiple components and to produce pure spectra for each individual component. The 

non-target analysis workflow commonly starts with automated peak detection by exact-mass filtering from the 

chromatographic run, followed by assignment of an elemental formula to the exact mass of interest, and a 

subsequent search of plausible structures in available chemical databases for the elemental formula determined 

[15]. This is a laborious, difficult, time-consuming task when the unknown compounds are present at trace 

levels in complex-matrix samples. 

4.4.2. Biased non-target analysis 

An intermediate situation between target and non-target analysis is what some authors call a semi-non-target 

approach, based, for example, on the use of a chlorine mass-filter technique in accurate-mass and high-

resolution systems [112]. Following this strategy, which only applies to the investigation of chlorine-containing 

compounds, antidepressant lamotrigine and its major metabolite (2-N-glucuronide) were identified in 

environmental water samples [112]. 

In non-target analysis, the use of large mass spectra libraries can notably facilitate the identification of unknowns. 

The main difficulty is the lack of LC-MS standardized libraries, as a consequence of the differences in the 

ionization efficiency between the existing interfaces together with variability in the results depending on the 

mobile-phase composition or the cone voltage applied. Under these circumstances, it is more convenient to 

build home-made libraries to simplify searching. Obviously, the higher the number of compounds included in 

the library, the wider the possibilities to detect as many contaminants as possible in the samples. With the 

software currently available, it is possible to build both empirical and/or theoretical libraries [16], 

[113] and [114]. Home-made empirical libraries offer the possibility to include fragmentation and retention-

time information, which greatly aid the identification process. However, commonly, not many compounds are 

included, due to the need to inject reference standards. Instead, theoretical mass spectra libraries, based on a 

database with solely the molecular formulae, can easily be built including a large number of compounds. Díaz 

et al. [16] and [113] combined UHPLC-QTOF-MS (MSE) with specialized software (ChromaLynx) for non-

target screening of environmental water and wastewater. After chromatographic peak deconvolution, the 

software discriminated ions coming from organic compounds present in the sample from background ions. In 

a second step, a library search was performed to match the experimental deconvoluted mass spectra with the 

existing entries in the available libraries (theoretical and empirical). Finally, the formula from the library hit was 
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submitted to an elemental composition calculator and the most intense ions were either confirmed or rejected 

based on accurate-mass criteria and isotopic pattern. 

In a similar way, Gómez-Ramos et al. [115] proposed a systematic strategy to simplify the identification of 

organic-contaminant TPs, based on characteristic fragmentation undergone by the parent compound during 

MS/MS fragmentation, and on the relationship with the transformations experienced by these chemicals in the 

environment or during water-treatment processes. A database containing accurate-mass information of 147 

compounds (including pharmaceuticals, drugs and some relevant metabolites) and their main fragments 

generated by MS/MS was created using LC-QTOF-MS/MS. This database was applied to the tentative 

identification of TPs and related unexpected compounds in eight wastewater effluent samples. The approach 

comprised three stages: 

(a) automatic screening, consisting of extraction of compounds using a “molecular feature extraction” algorithm 

and database search; 

(b) identification of possible TPs (those reported compounds that yielded a good match in accurate mass but 

presented different retention times were initially considered as potential TPs or fragments of potential TPs); 

and, 

(c) confirmation by MS/MS analysis of the TPs tentatively identified in the previous step. 

Eight degradation products, from pharmaceuticals acetaminophen, amoxicillin, carbamazepine, erythromycin 

and azithromycin, were tentatively identified. Three of them were confirmed by analysis of the corresponding 

analytical standards. 

4.4.3. The “All-in-One” approach 

In recent years, there has been a move towards the “All-in-One” approach, which involves the combination of 

suspect and non-target screening with (quantitative) target analysis. Thus, LC-QTOF-MS has been proposed 

for simultaneous quantitative screening of target analytes and qualitative analysis of non-target compounds 

[116]. For 10 target compounds, the use of specialized software allowed mass spectral data to be processed 

using LC retention time, accurate mass (error) and spectral purity score. Satisfactory results were obtained in 

terms of sensitivity and linearity. A second identification approach was presented based on library searching 

for compounds not included in the analytical method as target, but which were present in a commercial 

accurate-mass MS/MS library (including ~1200 pharmaceuticals and personal-care products). The spectra 

acquired were automatically searched by spectral comparison using the MS/MS library to assist in compound 

identification. Following this, ketorolac, trazodone, fluconazole, metformin and venlafaxine could be identified 

in river-water samples. Furthermore, other compounds not included in the library were also identified by 

screening the peaks of highest intensity in the samples and by analysis of the full-scan TOF-MS, isotope pattern 

and MS/MS spectra. This was the case for histaminergic loratadine. 
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Nurmi et al. [117] evaluated the performance of UHPLC-TOF-MS in the identification of emerging 

contaminants in spiked wastewater, using target and non-target analysis. The method was satisfactory for target 

analysis with information about retention times. For those compounds lacking retention time (suspect 

screening), a four-stage process for identification was developed: the number of candidate compounds was 

reduced by using the accurate mass of selected compounds in two steps (30 mDa nw-XIC (stage 1) and ±5 mDa 

mass error (stage 2)), structure–property relationships [i.e., retention-time prediction (stage 3)] and isotope 

patterns of the analytes (stage 4). Non-target analysis was tested by applying a theoretical mass spectra library 

for a wastewater sample spiked with six pharmaceuticals. The results showed a large number of false 

identifications. In addition, manual processing of the data was considered laborious and ineffective. Finally, 

target analysis was applied to a real wastewater sample. The analysis revealed the presence of six compounds 

that were afterwards confirmed with reference standards. Three psycholeptics (nordiazepam, oxazepam and 

temazepam) could be tentatively identified. 

Hogenboom et al. applied similar approaches but using an LTQ-Orbitrap mass spectrometer [118]. Full-scan 

accurate-mass measurements were compared with theoretical exact masses of known environmental 

microcontaminants and/or with their self-created accurate-mass MS and MSn database, containing ~3000 water 

pollutants. The database included theoretical mass, retention time, retention time relative to two internal 

standards and elemental composition of product ions. For accurate masses not found in the mass database, a 

(possible) elemental composition was proposed, and searched in databases, such as Chemfinder or Chemspider, 

to find out whether the unknown compound was ever patented, studied or commercialized. MSn measurements 

were performed to obtain information on the fragment ions generated in the LIT (nominal mass of product 

ions) within the same analysis. The structures found in the libraries were evaluated based on the fragmentation 

patterns observed in the product-ion spectra acquired simultaneously. Confirmation of identity was done by 

comparing retention time and fragmentation pattern to those of a reference standard. If no information on the 

reference standard was available, the theoretical log Kow was calculated based on the proposed structure and 

compared to the retention time of the compound detected. 

Very recently, Schymanski et al. [119] developed and applied a three-fold approach: 

• (semi)-quantitative target analysis for 364 target compounds; 

• suspect screening, demonstrated for sulfur-containing surfactants [evidence used to support (or 

reject) the tentative suspect identification included expected retention time behavior and 

interpretation of the MS/MS spectra]; and, 

• non-target screening, to perform a comprehensive characterization of polar compounds in 

wastewater effluents. 

A non-target mass list for each sample was compiled with the enviMass software. Isotope and adduct grouping 

of these non-target masses was subsequently performed using the “non-target” R package. Finally, non-target 
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identification was performed on selected masses from the top 30 most intense peaks. The program system 

MOLGEN-MS/MS (MOLecular structure GENeration) was used to calculate molecular formulas from the 

exact mass and isotope patterns from the MS and MS/MS fragmentation information, if available. MetFusion 

was used to perform parallel searches of compound databases and spectral libraries and to perform in silico 

fragmentation of the candidate structures. The number of references per compound, retrieved from 

Chemspider, was also used to rank candidates. 

Systematic strategies with automated approaches are required to filter the suspect compounds to be searched 

and to select “relevant” peaks on which the identification efforts should focus. Hug et al. [26] established a 

screening procedure based on LC-HRMS to detect site-specific, suspected and formerly unknown 

contaminants in a WWTP effluent. First, the effluent was screened for the 98 target compounds using known 

retention time, exact mass and fragment ions. Some 15 target compounds were detected and quantified, 

including seven pharmaceuticals. Second, accurate-mass ion chromatograms and peak lists were generated from 

full-scan data using MZmine. For suspect screening, an initial list of 2160 site-specific and reported water 

contaminants was reduced to those amenable to LC-HRMS. Thus, only suspects containing at least one atom 

of nitrogen, phosphorus, oxygen, sulfur or any metal(loid) were considered ionizable by ESI. After searching 

MZmine peak lists for the exact masses of suspects (only those with intensity higher than 105 a.u.), presumably 

false positive detections were stepwise excluded by retention-time prediction, evaluation of isotope patterns, 

ionization behavior, and HRMS/MS spectra. Finally, in non-target analysis, masses for identification were 

selected using the R package “non-target” based on distinctive isotope patterns (containing 37Cl, 81Br, 34S or 

15N isotope peaks) and intensity (>106 a.u.). For the remaining masses, all possible formulae were calculated 

and checked using the Seven Golden Rules to reduce the number to one or two molecular formulae, which 

were searched in the Chemspider database, generating candidate lists for each formula. Only candidates 

with >10 data sources were considered of commercial importance and necessitated an automated HRMS/MS 

evaluation using MetFrag software. To confirm tentative identifications of compounds further, deuterium-

exchange experiments were also conducted. Six suspected and five non-target chemicals were identified, of 

which two had not been previously reported as environmental pollutants. However, another five non-target 

compounds could not be confirmed by the reference standard of the most likely candidate structure. 

5. Conclusions and future trends 

HRMS provides high-resolution, accurate-mass and high full-scan sensitivity and selectivity, making it very 

attractive for both target and non-target screening. Other advantages are the possibility of performing 

retrospective data examination and tentative identification of compounds when reference standards are 

unavailable. HRMS is also very powerful in the identification of degradation products or TPs in laboratory 

experiments and the elucidation of unknown compounds. 
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Recent developments in HRMS have allowed improvement of analytical methodologies applied in 

environmental MS. The search for the “All-in-One” method and instrument will continue in the coming years, 

as combining all desired features in just one method and instrument is an exciting issue: qualitative and 

quantitative analysis, with possibilities for structural elucidation of unknowns. Some recent configurations 

appearing in the market in the past few years (e.g., Triple TOF from AB Sciex, Xevo G2 QTOF from Waters, 

and Q Exactive from Thermo) are trying to meet this purpose: high sensitivity and selectivity, accurate mass, 

sufficient fragmentation to provide information on ion fragments, and satisfactory linear dynamic range. In the 

near future, rapid growth in HRMS applications will surely occur, in not only environmental research but also 

other fields, such as food safety, toxicology and doping-control analysis. 

UHPLC has become a very popular technique, replacing HPLC separations in the most recently developed 

methods. It has been successfully coupled to MS(/MS) analyzers working at nominal mass and to HR-TOF-

MS analyzers, with evident advantages deriving from its superior performance: short chromatographic runs, 

better sensitivity and more efficient separations. However, its coupling to Orbitrap is still problematic due to 

the low scan rates attainable when selecting high resolving power. 

The expected developments of HRMS will surely relate to improvement in scan speed for Orbitrap, which will 

allow coupling to UHPLC and certainly increase the number of applications, and in mass resolving power for 

TOF. Advances in accurate-mass full-acquisition data processing using more powerful, user-friendly software 

are also likely. New hybrid analyzers incorporating ion-mobility spectrometry (IMS), before or between mass 

analyzers, are appearing in the market, adding an orthogonal separation mechanism to classical m/z ratio. IMS 

will probably improve identification of co-eluting isomers or confirmation of suspect compounds in complex 

samples. 
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1.4 Marie Curie SEWPROF ITN  

This work has been made as part of the European Union funded Marie Curie International Training 

Network (ITN) SEWPROF: A new paradigm in drug use and human health risk assessment: Sewage 

profiling at the community level. This ITN is multi-disciplinary and multi-institutional, covering 

subjects from analytical chemistry to statistics and epidemiology and includes eleven institutions in 

nine countries (Norway, Denmark, Germany, United Kingdom, The Netherlands, Belgium, 

Switzerland, Italy and Spain). Eleven Early Stage Researchers (ESRs) and four Experienced 

Researchers (ERs) from all over the world were recruited for this project. The main objective of this 

project is to “advance knowledge of the epidemiology of (illicit) drug use and to bridge gaps in the 

available expertise with the ultimate goal of applying this cutting edge interdisciplinary approach within 

epidemiological studies of societal health” (http://sewprof-itn.eu/).  

The interdisciplinary nature of this project is exemplified by the institutes and departments involved: 

from toxicologists (Toxicological Centre, University of Antwerp and Department of Experimental 

and Clinical Toxicology, University of Saarland) to water and environmental research institutes (KWR 

Watercycle Research Institute, Department of Environmental Health Sciences (Mario Mario Negri 

Institute of Pharmacological Research), Ecotoxicology and Risk Assessment (Norwegian Institute for 

Water Research  and Research Institute of Pesticides and Water (University Jaume I)), engineers 

(Department of Environmental Engineering (Technical University of Denmark) and Urban Water 

Management (Swiss Federal Institute of Aquatic Science and Technology)), epidemiologists (Centre 

for Drug and Addiction Research (University of Oslo), drug identification agencies (TICTAC 

Communications Ltd.) and pure chemists (Department of Chemistry (University of Bath).  

As implied from the title “International Training Network”, research stays for training and research 

purposes are mandatory. Research stays were thus performed by the PhD candidate at Mario Negri 

Institute of Pharmacological Research, Milan, Italy; KWR Watercycle Research Institute, Nieuwegein, 

The Netherlands; University of Saarland, Homburg, Germany; and University of Antwerp, Belgium.  
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Research stays and brief statement of work undertaken: 

Mario Negri Institute of Pharmacological Research: Suspect screening of wastewater and surface water 

samples from Spain and Italy using an LTQ-Orbitrap, under supervision of Dr. Sara Castiglioni. 

Duration: 28 April – 26 May 2014.  This work resulted in Scientific Article 3.  

KWR Watercycle Research Institute: Suspect and non-target screening of wastewater samples 

following injection in LTQ-Orbitrap using advanced deconvolution software, under supervision of 

Erik Emke and Prof. Dr. Pim de Voogt. Duration: 17 August – 13 September 2014. This work resulted 

in Scientific Article 4. 

University of Saarland: in vitro metabolism studies of 3-fluorophenmetrazine, under supervision of 

Prof. Dr. Hans Maurer. Duration: 1-18 June 2015.This work resulted in a co-authored paper (M. 

Mardal, B.  Miserez, R.  Bade, T.  Portolés, M.  Bischoff, F.  Hernández, M. R. Meyer; “3-

Fluorophenmetrazine, a fluorinated analogue of phenmetrazine: studies on in  vivo metabolism in rat 

and human, in vitro metabolism in human CYP isoenzymes and microbial biotransformation in 

Pseudomonas Putida and wastewater using GC and LC coupled to (HR)-MS techniques”, 

SUBMITTED) 

University of Antwerp: retention time prediction using artificial neural networks of three different LC 

columns: biphenyl, C8 and HILIC, under supervision of Dr. Alexander van Nuijs and Dr. Adrian 

Covaci. Duration: 20 July – 14 August 2015.  While this work did provide some good results, further 

research is required before a publication can be anticipated (see Future Perspectives).  
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1.5 Scientific Articles Included in this Thesis 

The core of this doctoral thesis consists of seven scientific articles published in (or submitted to) peer-

reviewed journals within the first quartile of the ranking by Impact factor (ISI web of knowledge). It 

is worth mentioning that five of these articles were made in collaboration with some internationally-

regarded scientists as part of the mandatory research stays mentioned in Section 1.4 as well as separate 

international collaborations. The role of the PhD candidate within these articles is outlined below.  

Scientific Article 2 was made in collaboration with researchers at the Universidad Nacional de 

Colombia and Universidad Antonio Nariño in Bogotá, Colombia. The PhD candidate was involved 

with the analysis of these samples in the UHPLC-QTOF as well as the data processing and writing of 

the article.  

Scientific Article 3 was the result of a collaboration with the Mario Negri Institute of 

Pharmacological Research (MN), Milan, Italy as part of a research stay within the SEWPROF project. 

Sample collection, preparation and analysis was all performed by the PhD candidate at the University 

Jaume I (using UHPLC-QTOF) while the candidate analysed the samples at MN following injection 

in LC-Orbitrap. Furthermore, the candidate drafted and revised the manuscripts. This work was 

performed independently under the supervision of Prof. Dr. Félix Hernández and Dr. Sara Castiglioni.  

Scientific Article 4 resulted from a collaboration with KWR Watercycle Research Institute, 

Nieuwegein, The Netherlands as part of two separate research stays (the first as a SEWPROF 

secondment and the second as a Short-Term Scientific Mission funded by COST ES1307). The 

experimental work (discounting sample preparation) and data analysis was entirely performed at KWR, 

independently under the supervision of Prof. Dr. Félix Hernández, Prof. Dr. Pim de Voogt and Erik 

Emke. The candidate drafted and revised the manuscripts. 

Scientific Article 6 involved a collaboration with Dr. Leon Barron and Thomas Miller of King’s 

College, London. This work was a follow-up to Scientific Article 5, with a subset of 544 compounds 

used in the development of a retention time prediction method using Artificial Neural Networks. The 

PhD candidate was involved in the initial development of the molecular descriptor selection and 

analysis and subsequent implementation for suspect analysis as well as writing and revision of the 

article. 



   

88 

Scientific Article 7 was the results of a final collaboration between eight institutions within the 

SEWPROF network. Samples from collected by all institutes and were used investigated using the 

optimised and validated method for new psychoactive substances, which was performed solely at 

University Jaume I.   The candidate performed all experimental work and drafted the initial 

manuscript, which was later revised by all co-authors.   This work was performed independently under 

the supervision of Prof. Dr. Juan V. Sancho, Dr. Lubertus Bijlsma and Prof. Dr. Felix Hernandez.  
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2.1 Introduction 

Liquid Chromatography coupled to High Resolution Mass Spectroscopy (LC-HRMS) is the 

technique of choice for the quick detection and (possible) identification of a large number of 

emerging contaminants in the aquatic environment. HRMS instruments combine full spectrum MS 

data with high mass resolution which makes them able to accurately measure the mass of any 

ionisable analyte in a sample. Theoretically, this means that there is a limitless number of 

compounds able to be detected using HRMS, given that they fit the requirements of the sample 

treatment, chromatographic treatment and MS ionisation. With the increased mass accuracy and 

resolution associated with HRMS (up to 100,000) compared to QqQ instruments, compounds of a 

similar exact mass are more easily differentiated and therefore it is very useful in the derivation of 

molecular formulae. Isobaric compounds, inseparable based on nominal mass (one decimal place) 

but containing different molecular formulae and thus exact mass (four decimal places), can hereby 

be distinguished using accurate mass measurements. 

In low resolution instruments, such as QqQ, isobaric compounds can be discriminated only by 

product ions and retention time. However, when bi-isobaric compounds co-elute or full 

chromatographic separation is not made, a false positive or negative may be reported. In HRMS, 

isobaric interferences can be discriminated by reducing the extracted ion chromatogram (XIC) 

window (down to 0.01-0.05 Da), which increases the signal-to-noise ratio by simultaneously 

decreasing the chemical noise, therefore improving the reliability and sensitivity of the data. 

(Hernández et al., 2005; Nurmi and Pellinen, 2011) 

The high quality, sensitive and accurate-mass data obtained by HRMS allows the determination of 

the elemental composition of a compound with high confidence. Because of the resolution, very 

similar masses can be differentiated by their different elemental compositions. For example, purine 

(C5H4N4) and acetophenone (C8H8O) both have the same nominal mass of 120.1, and with the 

nominal mass resolution of a QqQ, these ions would be indistinguishable. However, based on their 

different elemental compositions, they have different exact masses (120.0436 and 120.0575 

respectively), which could be easily distinguished using an instrument with a higher resolving power, 

such as a QTOF or Orbitrap. Furthermore, the characteristic isotopic patterns of carbon, bromine, 

sulphur and chlorine can be utilised to reduce the number of possibilities and help find the correct 

elemental composition.  
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All of these characteristics combined make HRMS a suitable instrument for environmental samples 

analysis, such as surface and wastewater, where there are potentially thousands of compounds 

warranting investigation. On the one hand, environmental analytical chemists can apply target 

approaches, being limited when choosing which compounds to focus on, as reference standards, 

required for quantitative analysis, can be very costly. With a reliance on sensitivity for these analyses, 

HRMS is not commonly the choice, although it has been used (Bijlsma et al., 2013; Gonzalez-

Mariño et al., 2012; Leendert et al., 2015), rather, triple quadrupole (QqQ) instruments (Farré et al., 

2012). But on the other hand, qualitative screening methods, making use of databases containing 

thousands of (known) emerging contaminants and metabolites can be used to get more of a general 

idea on which compounds are present. This can provide a quick overview of compounds present in 

the samples. However, one disadvantage associated with this approach is that even with a database 

containing thousands of compounds, there may still be peaks present that are unaccounted for.  

Alternatively, analyses could be made without reference standards or databases, but based solely on 

the data obtained from the LC-HRMS. These three ideas are, indeed, the three strategies used for 

the detection and identification of emerging contaminants in environmental analyses: target (list of 

targeted compounds to be searched, with reference standards available), suspect (list of targeted 

compounds to be searched, without reference standards available to the laboratory), and non-target 

(discovering of unknowns, without any selection of targets to be searched).  

One disadvantage of target and suspect screening is the “Matthew Effect” as noted by Daughton 

(Daughton, 2014), which basically states that compounds that have been detected/identified in 

previous studies are more likely to be included in target/suspect screening strategies. Although this 

seemingly self-fulfilling selection bias could be construed as chemical or environmental ignorance, 

there are several plausible reasons why not all compounds are able to be studied: 

 Newly registered/developed pharmaceuticals/drugs of abuse may gain rapid market 

penetration and ascend the rankings of prescription data and consumer consumption faster 

than targeted analysis are able to be developed. 

 Some compounds are not easily applicable for analytical methods, with difficulties resulting 

from their physicochemical characteristics, from polarity to stability. Therefore, some 

compounds which may be present will not (or cannot) be demonstrated.  

 Some compounds are simply ignored, due to wrongly predicted or performed environmental 

prevalence studies. Alternatively, even correctly performed predictions or studies can be 
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confounded due to the extreme (and irreproducible) conditions associated with the transport 

from the source. 

The first of these is particularly relevant for new psychoactive substances (NPS; more in Chapter 4), 

which are readily produced and changed depending on consumers and legal regulations, with 

analytical methods often one step behind the production and user uptake.  Furthermore, with costly 

reference standards necessary for target (and ultimately, suspect) analyses, most laboratories are 

(rightly) apprehensive when it comes to purchasing new reference standards for compounds which 

may not be present in the environment or for which limited data is available.  

The second reason is one which is very important, often overlooked by environmental 

epidemiologists and non-chemists. It is impossible to make a single analytical method for all 

compounds. Even making a small, targeted method for tens of compounds is time-consuming. 

Conversely, in wide-scope suspect screening methods, a compromise is made so as to ensure that as 

many compounds as possible can be detected. This can mean that very polar and non-polar 

compounds can sometimes be overlooked. 

The last reason is difficult to foresee. It is impossible on a lab-scale to reproduce the conditions seen 

in the environment, in terms of sunlight, water, possible sorption and interaction with other 

compounds. Even with studies performed well, these unknown interactions could result in 

compounds initially not expected to be present, to be present.  

This bias and “Matthew Effect” can be overcome by using non-target analysis, where no prior 

information is known at all, so no selection or availability bias can be inputted. However, the 

compounds detected are limited by the analytical methodology, as explained above, where some 

compounds may not be able to be detected due to their particular chemical characteristics. Moreover, 

it is unrealistic to investigate the identity of every peak appearing in a total ion chromatogram (TIC), 

with the additional limitation that “relevant compounds” from the environmental or WBE point of 

views, are commonly present at very low concentration in complex unknown matrices, such as 

wastewater samples. 

It is difficult to assign one HRMS instrument (i.e. TOF or Orbitrap) as being superior, as their use 

depends on the aim of a particular study. Most recent publications include TOF MS instruments 

with mass accuracies typically less than 5ppm and mass resolving power of 20,000 - 40,000 FWHM 

depending on the instrument. The scan speed attainable in recent TOF instruments falls in the range 

of 10-100 scans/s, more than enough for UHPLC separations, leading to shorter run times, enabling 
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sufficient chromatographic resolution to minimize co-elution of compounds with close m/z values.  

One further advantage of a (Q)TOF is its ability to perform simultaneous full-scan and MS/MS 

(Martínez Bueno et al., 2012) (or “pseudo”-MS/MS(Hernández et al., 2011)), meaning that 

information pertaining to fragment ions can be collected in a single injection, rather than having to 

reinject a second time. The aforementioned “pseudo”-MS/MS mode, MSE, of the QTOF was used 

in both Scientific Article 2 and 3 for suspect screening.  The ability to acquire low-energy (LE) and 

high-energy (HE) data at the same time, without the need to preselect a precursor molecule, 

facilitated data analysis. By applying LE in the collision cell, fragmentation is minimized, and the 

information obtained corresponds normally to non-fragmented ions, related to the parent molecule. 

However, at HE, fragmentation will take place, resulting in abundant fragments (Hernández et al., 

2011; Plumb et al., 2006). The MSE approach is also known as All-Ion Fragmentation or broadband 

collision-induced dissociation, depending on the manufacturer. 

Orbitrap has a higher resolution than TOF (up to 150.000 FWHM), which gives obvious advantages 

in the analysis, particularly in samples of high complexity, and is considered better for quantitative 

analysis, as it affords a linear dynamic range of up to three-four orders of magnitude, at least one 

order of magnitude higher than the TOF instruments (Agüera et al., 2013; Krauss et al., 2010). The 

main drawback of this instrument is its scanning speed, which is inverse of mass resolution. For 

example, at a mass resolution of 100,000, a scan speed of only 1 scan/s is attainable. It can, however, 

be coupled to UHPLC, but only when using a sufficiently low mass resolution (i.e. 10,000 FWHM 

for a scan speed of 10 scans/s).  

Sample treatment associated with wide-scope screening methods is an important aspect, and can be 

a limitation when dealing with many compounds of quite different physicochemical characteristics. 

A simple sample treatment can be applied, such as SPE with Oasis HLB for pre-concentration and 

to enable detecting the analytes at the low concentration levels normally present, which can be 

thought of as “universal” and generic (Hernández et al., 2015), thereby allowing as many 

compounds as possible being detected following sample analysis.  Alternatively, to gain more 

specific information on the compounds present multiple SPE cartridges could be used (Kern et al., 

2009; Schymanski et al., 2014), or, if, in advance, a screening was made on a more specific set of 

compounds, different sample treatment can be applied – such as adding activated carbon for more 

polar compounds (Schollée et al., 2015).  

This chapter focusses on the use of both UHPLC-QTOF-MS and LC-LTQ-Orbitrap-MS in the 

detection and identification of emerging contaminants in environmental waters.  
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2.2 Scientific Articles 

This chapter includes three scientific articles, “LC-QTOF MS screening of more than 1,000 licit and illicit 

drugs and their metabolites in wastewater and surface waters from the area of Bogotá, Colombia” (Scientific 

Article 2), “Screening of pharmaceuticals and illicit drugs in wastewater and surface waters of Spain and Italy by 

high resolution mass spectrometry using UHPLC-QTOF MS and LC-LTQ-Orbitrap MS” (Scientific Article 

3) and “Facilitating high resolution mass spectrometry data processing for screening of environmental water samples: 

An evaluation of two deconvolution tools” (Scientific Article 4). They concern suspect and non-target 

screening for the identification of pharmaceuticals, illicit drugs and their metabolites in 

environmental waters of different geographic and aquatic origin. All of the studies incorporated the 

same sample treatment: with samples being filtered through a membrane filter (0.45µm) to remove 

any solid particulates, then extracted on HLB SPE cartridges. This generic sample treatment was 

employed due to the wide-scope nature of the studies. With no specific compounds under 

investigation, no specific sample treatment could be applied. 

Scientific Article 2 was envisaged as a very comprehensive initial study into the pharmaceuticals 

and illicit drugs present in waste and surface waters of Bogotá, Colombia. This was seen as a first 

step towards target analysis of the detected compounds, to get a more sensitive and quantitative idea 

of their existence. A database of more than 1000 compounds was used in the 

detection/identification process. After a simple SPE extraction with a generic polymeric cartridge as 

Oasis HLB, sample extracts were injected in MSE mode in the UHPLC-QTOF so as to gain 

information relating to parent and fragment ions in a single injection. In the end, 30 parent 

compounds and metabolites could be confirmed, based on the presence of at several ions at accurate 

mass, while a further five could not be confirmed as there was only one ion. Six compounds, were 

tentatively identified based on fragment ions, three of which were tentatively identified based on a 

common fragmentation pathway. 

A similar procedure was followed in Scientific Article 3, but employing a smaller list of compounds, 

those, which, based on previous experience, would be more likely to be found in environmental 

waters. To take this suspect analysis a step further, it was also performed on an LTQ-Orbitrap 

instrument. Because the methods and instruments were completely different, a comparison was not 

made, rather to see whether any additional compounds could be detected by employing a different 

instrument. After injection, the data was analysed using the respective vendors’ software. When one 

compound was found using one combination of instrument and software but not the other, the raw 
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data was investigated. In the end, little difference was seen between the instruments, proving that 

they are both powerful instruments, useful in the qualitative identification of emerging contaminants. 

Scientific Article 4 investigated a non-target approach for the tentative identification of 

pharmaceuticals and illicit drugs. Following injection in an LC-LTQ-Orbitrap, two software types 

were utilised for hidden target screening (MsXelerator and Sieve 2.1).  Two databases were used, one 

similar to that employed in Scientific Article 3 as well as ChemSpider, to detect possible 

compounds following automated exact mass extraction. Combining the detected compounds from 

the two hidden target methods, a target list was made for subsequent MS/MS investigation, in order 

to tentatively identify compounds based on product ions and their comparability with literature 

and/or the online mass spectral database MassBank.  

The results of these three articles have been published as follows: 

LC-QTOF MS screening of more than 1000 licit and illicit drugs and their metabolites in wastewater 

and surface waters from the area of Bogotá, Colombia F. Hernández, M. Ibáñez, A. M. Botero-Coy, R. 

Bade, M. Bustos-Lopez. J. Rincon, A. Moncayo, L. Bijlsma, Analytical and Bioanalytical Chemistry 407, 

2015, 6405-6416. 

Screening of pharmaceuticals and illicit drugs in wastewater and surface waters of Spain and Italy by 

high resolution mass spectrometry using UHPLC-QTOF MS and LC-LTQ-Orbitrap MS R. Bade, N. 

I.  Rousis, L. Bijlsma, E. Gracia-Lor, S. Castiglioni, J. V. Sancho, F. Hernández, Analytical and 

Bioanalytical Chemistry 407, 2015, 8979-8988. 

Facilitating high resolution mass spectrometry data processing for screening of environmental water 

samples: An evaluation of two deconvolution tools R. Bade, A. Causanilles, E. Emke, L. Bijlsma, J. V. 

Sancho, F. Hernandez, P. de Voogt Science of the Total Environment UNDER REVISION. 
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2.2.1  Scientifc Article 2 

LC-QTOF MS SCREENING OF MORE THAN 1,000 

LICIT AND ILLICIT DRUGS AND THEIR 

METABOLITES IN WASTEWATER AND SURFACE 

WATERS FROM THE AREA OF BOGOTÁ, COLOMBIA 

 
Félix Hernández, Maria Ibáñez, Ana-Maria Botero-Coy, Richard Bade, Martha 

Cristina Bustos-López, Javier Rincón, Alejandro Moncayo, Lubertus Bijlsma 

 

Analytical and Bioanalytical Chemistry (2015) 407: 6405-6416 
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Topical Collection: High-Resolution Mass Spectrometry in Food and Environmental Analysis   

Abstract 

A large screening of around 1,000 emerging contaminants, focused on licit and illicit drugs and their metabolites, 

has been made in urban wastewaters (both influent and effluent) and surface waters from the area of Bogotá, 

Colombia. After a simple generic solid-phase extraction (SPE) step with Oasis hydrophilic-lipophilic balanced 

(HLB) cartridges, analyses were made by ultra high-performance liquid chromatography coupled to quadrupole 

time-of-flight mass spectrometry (UHPLC-QTOF MS) under MSE mode (sequential acquisition of mass 

spectra at low energy (LE) and high collision energy (HE)). Accurate mass measurements and the information 

provided by MSE on the presence of the (de)protonated molecule and fragment ions allowed the reliable 

identification of the compounds detected, even without reference standards being available in some cases 

(tentative identification). The compounds most frequently found were acetaminophen/paracetamol, 

carbamazepine and its dihydro-dihydroxylated metabolite, clarithromycin, diclofenac, ibuprofen, gemfibrozil, 

lincomycin, losartan, valsartan, the two metabolites of metamizole (4-acetamido-antipyrine and 4-formylamino-

antipyrine), sucralose, and cocaine and its main metabolite benzoylecgonine. Caffeine, the sweetener saccharin, 

and two hydroxylated metabolites of losartan were tentatively identified in almost all samples analyzed. 

Pharmaceutical lidocaine was tentatively identified and subsequently confirmed with reference standard. For 

the first time, a general overview of the occurrence of drugs and their metabolites in the aquatic environment 

of Colombia has been reported. In the near future, target methodologies, typically based on liquid 

chromatography coupled to tandem mass spectrometry (LC-MS/MS), will need to be set up for accurate and 

sensitive quantification of the contaminants selected on the basis on the information provided in the present 

paper. 

 

Keywords 

Screening, ultra high-performance liquid chromatography, time-of-flight mass spectrometry, drugs, water, 

Colombia 
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Introduction 

Changes in industry, agriculture, and urban development present interlinked challenges to water quality [1, 2]. 

Due to the increasing use of pharmaceuticals and personal care products (PCPs) as well as veterinary drugs and 

illicit drugs, the amount of these newly emerging chemicals detected in waters raises environmental and health 

concerns. Many of these contaminants survive the passage through conventional wastewater treatment 

processes resulting in the growing discharge of these compounds into receiving waters where their presence is 

increasingly common [3, 4]. However, little information is available from Latin America despite the fact that 

this region undergoes rapid land, economical, and social changes [5] and where, in some areas, the discharge of 

raw sewage into rivers, lakes, and reservoirs is widely practiced [6–8]. Concern over the presence of these 

contaminants is well founded as these rivers not only flow through tropical areas rich in biodiversity, but also 

surface waters are also used as a source for human consumption after conventional chlorination processes or 

directly as irrigation water without any treatment. 

Monitoring licit and illicit drugs is generally based on multi-residue methodologies using liquid chromatography 

coupled to tandem mass spectrometry (LC-MS/MS) for target substances considered as harmful for human 

health or the ecosystem. Analyses are commonly focused on a limited number of priority compounds, and the 

main objective is the accurate quantification of the target analytes. However, the use of pharmaceuticals and 

veterinary drugs differs temporally and spatially between regions and countries due to different marketing, 

regulations, prescription practices, etc. [9]. Thus, drugs used in Latin America may differ from those generally 

prescribed or consumed in Europe and North America. Accordingly, target approaches applied for routine 

analysis of water samples in one country might ignore important contaminants from another country, as they 

are simply not included in the scope of the method. Therefore, a large screening of contaminants is of high 

interest in order to define priority compounds and to subsequently set up target methodologies for monitoring. 

To this end, high-resolution mass spectrometry (HRMS) plays an important role for screening of emerging 

contaminants, in relevant fields like environmental pollution [10, 11]. 

Hybrid HRMS, such as a quadrupole time-of-flight mass spectrometry (QTOF MS) in MSE or all ion MS/MS 

mode (the term depends on the manufacturer), has demonstrated its use as an advanced tool that allows the 

investigation of hundreds of compounds in the same run, making use of homemade databases [12–14]. The 

presence of compounds in samples can be investigated once the analysis has been performed and data acquired, 

without being dependent on the pre-selection of analytes. It allows detection/rapid screening for compounds 

by means of searching the exact mass of the (de)protonated molecules in the full spectra generated using 

low collision energy (LE function). Confirmation with reference standards, or tentative identification, could 

subsequently be performed searching for exact masses of fragment ions in the acquired spectra at high collision 

energy (HE), where fragmentation of the molecule is promoted. 
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We performed a previous monitoring in the irrigate district of Usosaldaña, an important agricultural area in 

Colombia, mainly devoted to the cultivation of rice. Analysis of surface water and soil samples by TOF MS, 

coupled to both gas and liquid chromatography revealed the presence of several pesticides and metabolites in 

most of the samples. Also, some personal care products were identified [15]. However, there is little or no 

information on the presence of emerging organic contaminants in the area of Bogotá. In the present work, a 

large screening of pharmaceuticals belonging to different therapeutic groups, veterinary drugs, X-ray agents, 

PCPs (preservatives and UV filters), sweeteners, illicit drugs, and a notable number of metabolites has been 

performed in urban wastewaters (both influent and effluent) and receiving surface waters from the surrounding 

area of Bogotá. A customized database with more than 1,000 emerging contaminants was developed including 

pharmaceuticals frequently prescribed in Colombia. As far as we know, this is the first wide-scope screening 

based on HRMS that has been applied to this aim. Henceforth, future monitoring in this area can be focused 

on the compounds identified in this initial step. 

Material and methods 

Chemicals and standards 

Eight hundred and sixty-five human and veterinary pharmaceuticals including metabolites (see Electronic 

Supplementary Material (ESM), Table S1), 29 X-ray agents (ESM Table S2), 20 UV filters (ESM Table S3), 4 

preservatives (ESM Table S4), 9 sweeteners (ESM Table S5), and 130 illicit drugs including metabolites (ESM 

Table S6) were studied, of which 215 reference standards were available (asterisk in ESM Tables S1–S6). 

Reference standards of these compounds were purchased from Across Organics (Geel, Belgium), Aventis 

Pharma (Madrid, Spain), Bayer Hispania (Barcelona, Spain), Cerilliant (Round Rock, TX, USA), Fluka (Buchs, 

Switzerland), Dr. Ehrenstorfer (Augsburg, Germany), Fort Dodge Veterinaria (Gerona, Spain), LGC 

Promochem (London, UK), National Measurement Institute (Pymble, Australia), Riedel-de Haën (Seelze, 

Germany), Sigma-Aldrich (St. Louis, MO, USA), Toronto Research Chemicals (Ontario, Canada), Vetoquinol 

Industrial (Madrid, Spain), and Witega (Berlin, Germany). All reference materials had purities higher than 98 % 

(w/w), except for marbofloxacin and pefloxacin, which had purities higher than 93 %. 

HPLC-grade methanol (MeOH), HPLC-grade acetonitrile (ACN), sodium hydroxide (NaOH) (>99 % w/w), 

and formic acid (HCOOH) (>98 % w/w) were purchased from Scharlau (Barcelona, Spain). Leucine enkephalin 

was purchased from Sigma-Aldrich (Madrid, Spain). HPLC-grade water was obtained by purifying 

demineralized water in a Milli-Q plus system from Millipore (Bedford, MA, USA). Solid-phase extraction (SPE) 

cartridges used were 3-cm3 Oasis hydrophilic-lipophilic balanced (HLB) (60 mg) from Waters (Milford, MA, 

USA). 
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Samples 

Seven influent wastewater (IWW) samples and seven effluent wastewater (EWW) samples were taken from the 

Salitre wastewater treatment plant (WWTP), in Northwest Bogotá D.C., Colombia, which serves a population 

of approximately three million inhabitants. The 24-h composite samples were collected over seven consecutive 

days in March 2014 (starting on Wednesday, March 12, and ending on Tuesday, March 18) in high-density 

polystyrene bottles, immediately centrifuged, and stored in the dark at −20 °C until analysis. In addition, ten 

grab surface water (SW) samples were collected from around Bogota (Fig. 1) in July 2013, concerning areas of 

interest along the Tunjuelo River (samples 1–4) and in La Ramada Irrigation District (samples 5–10). Seven 

individual samples (250 mL) were taken for each sampling point. These were then combined to form a 

composite sample to provide a more complete overview of each area. An aliquot was then taken for the sample 

treatment and subsequent analysis. 

 
Sampling points 

Number Name/Description 

1 Landfill, Doña Juana (Tunjuelo river) 

2 San Benito (tanneries area) (Tunjuelo river) 

3 Guadalupe (slaughterhouse) (Tunjuelo river) 

4 Bosa (Tunjuelo river) 

5 Irrigation channel San Jose- La Victoria (Ramada irrigation area) 

6 Irrigation channel San Jose- Los Pinos (Ramada irrigation area) 

7 Wetland Güali-Tres Esquinas (Ramada irrigation area) 

8 Canal C. Agricultural Center, Marengo (Ramada irrigation area) 

9 Canal C. Agricultural Center, Marengo (Ramada irrigation area) 

10 Exit of swamp (Ramada irrigation area) 

11 Wastewater, Salitre WWTP 
Seven influent and seven effluent wastewater samples (one whole week) 

Fig. 1 Location of sampling sites 
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Sample treatment 

An SPE step was applied prior to analysis to pre-concentrate the sample. All samples were filtered through 

0.45-μm mixed cellulose ester membrane filter (Whatman, Dassel, Germany). SPE was performed using Oasis 

HLB cartridges (60 mg). The cartridges were conditioned by washing and rinsing with 6 mL MeOH and 6 mL 

Milli-Q water. The water samples (IWW was four times diluted with Milli-Q water, i.e., 25 mL sample in 100 mL; 

EWW and SW were 100 mL, no dilution) were loaded onto the cartridges, percolated by gravity (flow rate 

around 3 mL/min), and vacuum dried for approximately 15 min. Analytes were eluted with 5 mL MeOH. The 

extracts were evaporated to dryness at 35 °C under a gentle stream of nitrogen and reconstructed in 1 mL of 

10:90 MeOH/H2O. Analyses were performed by injecting 20 μL of the final extract into the UHPLC-QTOF 

MS. 

Instrumentation 

A Waters Acquity UPLC system (Waters, Milford, MA, USA) was interfaced to a hybrid quadrupole-orthogonal 

acceleration-TOF mass spectrometer (XEVO G2 QTOF, Waters Micromass, Manchester, UK), using a Z-

Spray electrospray ionization (ESI) interface operating in both positive and negative ion mode. The 

chromatographic separation was performed using an Acquity UPLC BEH C18 1.7-μm particle size column 

100 × 2.1 mm (Waters) at a flow rate of 300 μL/min. The mobile phases used were A = H2O with 0.01 % 

HCOOH and B = MeOH with 0.01 % HCOOH. The initial percentage of B was 10 %, which was linearly 

increased to 90 % in 14 min, followed by a 2-min isocratic period and, then, returned to initial conditions during 

2 min. The total run time was 18 min. Nitrogen was used as drying gas and nebulizing gas. The desolvation gas 

flow was set at 1,000 L/h and the cone gas at 80 L/h. TOF MS resolution was approximately 20,000 at full 

width at half maximum (FWHM) at m/z 556. 

MS data were acquired in centroid mode over an m/z range of 50–1,000 Da. Data were acquired in both positive 

and negative ionization mode in two separate runs. A capillary voltage of 0.7 and 2.5 kV was used in positive 

and negative ionizations mode, respectively. A cone voltage of 20 V was used. Collision gas was argon 99.995 % 

(Praxair, Valencia, Spain). The desolvation temperature was set to 600 °C and the source temperature to 130 °C. 

The column temperature was set to 40 °C. 

For MSE experiments, two acquisition functions with different collision energies were created: the LE function, 

selecting a collision energy of 4 eV, and the high energy (HE) function, with a collision energy ramp ranging 

from 15 to 40 eV in order to obtain a greater range of fragment ions. The scan time for both LE and HE 

function was 0.4 s. 
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For elucidation of losartan metabolites, MS/MS experiments at different collision energies (10, 20, 30, 40, and 

50 eV) were performed to promote higher fragmentation and also to ensure that fragment ions observed in 

MSE come from the parent ion. 

Data processing  

Processing of MS data was done using ChromaLynx XS application manager (within MassLynx v 4.1; Waters 

Corporation). The following parameters were used for screening: mass window 150 ppm (for positive ID 

≤5 ppm), isotope fit as well as retention time (maximum deviation of ≤2.5 %) and fragmentation, when 

available. Software-specific settings were as follows: peak width at 5 % height, 6 s; peak-to-peak baseline noise, 

1,000; and threshold absolute area, 200. 

Results and discussion 

Detection, confirmation and tentative identification 

The full-spectrum accurate mass data, generated by QTOF under MSE mode, were inspected in ChromaLynx 

XS (within MassLynx) using a homemade database containing 1,057 LC-amenable organic contaminants (see 

ESM, Tables S1–S6), which is continuously being updated. Analytes were mostly selected based on our own 

experience and on existing compound lists encountered in the literature on LC-MS methods for determination 

of organic contaminants. Empirical data (retention time, adduct information, and/or fragment ions) obtained 

from compounds of which reference standards (up to 215) were available in our laboratory was included. This 

information was used for an easier and more straightforward detection and unambiguous confirmation of the 

identity of the compound. Furthermore, pharmaceuticals frequently prescribed in Colombia were also included. 

For those compounds for which reference standards were not available at our laboratory, the only information 

included in the database was the name and elemental composition of the compounds. Here, the tentative 

identification was a manual and more time-consuming process, incorporating Internet resources, such as 

MassBank [16] or MetLin [17], to look for information about possible fragment ions. 

The confidence in HRMS-based identification is an important issue as pointed out by Schymanski et al. [18]. 

Discussion on how to best communicate confidence regarding identification for the exchange of results via 

literature and databases is ongoing, but criteria are needed and should be well reported. Criteria used in this 

study were based on the availability (detection and confirmation of the identity) or non-availability (tentative 

identification) of reference standards. The information given by QTOF MS spectra, both LE and HE accurate 

mass spectra, and retention times allowed the compounds to be distinguished using different possibilities: 
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 Detection, based on the presence of one accurate mass ion (mass error ≤5 ppm) and retention time 

agreement (maximum deviation ≤2.5 %) 

 Confirmation of the identity, with at least two accurate mass ions (≤5 ppm) and retention time (≤2.5 %) 

 Tentative identification, with at least two accurate mass ions justified by literature data and/or compatibility 

with candidate chemical structure 

For those compounds containing chlorine or bromine atoms, the characteristic isotopic profile should be 

observed. However, we considered the isotopic pattern as a prerequisite for identification, but not as valuable 

as an accurate mass fragment ion. Therefore, when only those ions corresponding to the parent compound and 

the isotopic peak were present, we considered the compound as detected, not as confirmed. 

In the case of tentative identification, reference standards and additional MS/MS experiments would be 

necessary for final unequivocal confirmation of the compounds. However, we do not need expensive reference 

standards for all 1,057 compounds in the database, only for the positive findings. From our previous experience, 

the subsequent acquisition of reference standards has allowed confirmation of nearly all tentative identifications. 

This supports the high degree of reliability of tentative identification by using this technique [19]. 

Screening of Colombian water samples 

In order to perform a large screening, a non-selective sample treatment, and a generic chromatographic 

separation were chosen to broaden the system applicability to as many compounds as possible. Due to the large 

level of dilution in these types of samples, SPE was performed, using a generic Oasis HLB cartridge for pre-

concentration and to enable detecting the analytes at the low concentration levels normally present. Using this 

analytical procedure and from the information obtained by UHPLC-QTOF MS under MSE mode, several 

compounds could be detected, confirmed, and/or tentatively identified in all type of Colombian water samples 

analyzed (Table 1). 

Samples were screened for pharmaceuticals belonging to different therapeutic groups, veterinary drugs, X-ray 

agents, PCPs (preservatives and UV filters), sweeteners, illicit drugs, and several metabolites. The compounds 

most frequently detected were the analgesics/anti-inflammatory drugs N-acetyl-p-aminophenol (commonly 

known as acetaminophen or paracetamol), diclofenac, ibuprofen, and lidocaine. The antibiotics clarithromycin 

and lincomycin, the angiotensin II antagonists valsartan and losartan, the anti-epileptic carbamazepine, the beta-

blocker metoprolol, the lipid regulator gemfibrozil, and the X-ray agent iopromide were also found. It is 

interesting to remark the detection or tentative identification of several metabolites such as those of metamizole 

(4-acetylamino-antipyrine and 4-formylamino-antipyrine), carbamazepine-10,11-dihydro-10,11-dihydroxy, and 

three metabolites of losartan (losartan carboxylic acid and two hydroxy-losartan isomers). Furthermore, the 

sweeteners acesulfame, sucralose, saccharin and the psychoactive drugs, cocaine and its main metabolite 
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benzoylecgonine, as well as caffeine were frequently detected or tentatively identified. UV filters were not 

detected, while the preservatives methylparaben and propylparaben were found, but only in wastewater samples. 

These data are consistent with studies on over-the-counter medicines in Colombia, where analgesics are most 

frequently sold (60 %), in Bogotá [20]. In addition, 11 % of the population of Bogotá has been diagnosed with 

hypertension of which 5.5 % take mainly losartan, valsartan, and metoprolol for its control [21] and regarding 

antibiotics, clarithromycin and lincomycin are most often prescribed [22]. Based on general population surveys, 

cocaine is the second most consumed illicit drug, but the main illicit psychoactive drug consumed in Colombia 

is cannabis [23]. However, the main metabolite of cannabis (11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-

COOH)), which is commonly used as biomarker in wastewater for cannabis consumption, was not detected. 

This was probably due to the low sensitivity of the technique applied for this compound. The analytical 

problems found in the determination of this compound have been widely recognized in the literature [24–26]. 

Most compounds were found in both wastewaters (influent and effluent) and surface waters suggesting 

incomplete removal by WWTPs and possible disposal to receiving surface waters. The pharmaceuticals 

carbamazepine and its metabolite carbamazepine-10,11-dihydro-10,11-dihydroxy, acetaminophen, diclofenac, 

ibuprofen, the highly consumed caffeine, cocaine and its metabolite benzoylecgonine are widely occurring 

contaminants in the aquatic environment, having been reported to be also present in Brazilian surface waters 

[5, 7]. 



  

 

 

Table 1. Positive findings by UHPLC-(Q)TOF MS in 10 surface water samples. Results obtained in influent and effluent samples. 

COMPOUND 

SURFACE WATER (number of the sampling site) 
INFLUENT* 

(n=7) 

EFFLUENT* 

(n=7) 
1 2 3 4 5 6 7 8 9 10 

Pharmaceuticals and veterinary drugs 

4-Acetamido antipyine            

4-Formylamino antipyrine            

Acetaminophen/paracetamol            

Carbamazepine            

Carbamazepine 10,11-dihydro-10,11-

dihydroxy            

Clarithromycin            

Clindamycin             

Codeine            

Diclofenac            

Dimetridazole            

Gabapentin            

Gemfibrozil            

Ibuprofen            

Iopromide            

Irbesartan            

Ketoprofen            

Levamisole            

Lidocaine**            

Lincomycin            

Losartan            

Losartan, carboxylic acid**            

Scientific Article 2 



 

 

Losartan, hydroxy (1)            

Losartan, hydroxy (2)            

Metformin            

Metoprolol            

Metronidazole            

Naproxen            

Pirantel            

Salbutamol            

Sulfamethoxazole            

Trimethoprim            

Valsartan            

Psychoactive drugs 

Benzoylecgonine            

Caffeine            

Cocaine             

Preservatives 

Methylparaben            

Propylparaben            

Sweeteners 

Acesulfame            

Saccharin            

Sucralose            
Dot (•) detected, not confirmed (one accurate mass ion <5 ppm + retention time <2.5 %), square root (√) confirmed with at least two accurate mass ions (<5 ppm) and retention time 

(<2.5 %) with reference standard, circled plus (⊕) tentatively identified (at least two accurate mass ions justified by literature data and/or compatible with the candidate chemical 
structure) aResults given for IWW and EWW correspond to seven samples (one whole week). The compounds indicated as dot, circled plus, or square root were found in at least six out 
of seven samples analyzed. b These compounds were firstly tentatively identified in the samples and afterwards confirmed with reference standards 
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In relation to surface waters, the presence of pharmaceuticals was more noticeable in samples collected from 

the Tunjuelo River (samples one to four)—a tributary of the Bogotá River—in the south of Bogotá. In this 

area, around 2.5 million inhabitants discharge their sewage directly to this river without any treatment. In 

addition, solid urban waste are located here (Doña Juana landfill, Fig. 1), and potential leaching surely 

contributes to the pollution in the area. This can explain that the profile of emerging contaminants found in 

these surface waters and in wastewaters collected from Salitre WWTP was rather similar, in both cases reflecting 

the drug consumption of a large population (2.5–3 million inhabitants). 

In contrast, the irrigation area of Ramada—supplied by the Bogotá river in its northern part—may be affected 

by industrial and urban waste, albeit with a lower population (around 600,000 inhabitants). Although these 

surface water samples (five to ten) had several contaminants in common with those samples from the Tunjuelo 

River and with wastewater samples, the number of compounds detected was notably lower. Despite this fact, 

the presence of emerging contaminants may have undesirable consequences for public health as these waters 

are mainly used for irrigation on this agricultural area. A more in-depth study would be required to quantify the 

compounds detected in water samples from this area for better knowledge and estimation of potential human 

risks. 

Below, some examples are given in detail, to illustrate the screening strategy applied in this study, which led to 

the detection, confirmation, or tentative identification of several compounds. The different possibilities 

considered in this work will be taken into account: presence/absence of reference standards in the laboratory 

and searching for known and unknown metabolites on the basis of common fragmentation pathway between 

parent compound and possible metabolites. 

1. Reference standards available  

Up to 215 reference standards were available in our laboratory and, therefore, experimental data such as 

retention time and fragment ions could be included in the homemade database. This information was used 

for easier detection and unambiguous confirmation of the identity of the compounds. Figure 2 shows the 

unequivocal confirmation in surface water of 4-acetamido-antipyrine, a metabolite of the widely used 

analgesic metamizole. The LE spectrum (Fig. 2a, top) of the peak at 3.78 min showed the m/z 

corresponding to the protonated molecule (m/z 246.1237) with a mass error of −2.4 ppm. The HE spectrum 

(Fig. 2a, bottom) also showed the remaining protonated molecule and five fragment ions with mass errors 

all below 5 ppm. In this figure, narrow-window eXtracted Ion Chromatograms (nw-XICs) for the six m/z 

ions are also depicted, with a chromatographic peak at exactly the same retention time. 
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Fig. 2 Detection and identification of metabolite 4-acetylamino-antipyrine in surface water by UHPLC-QTOF MS. (a) Low energy 

(LE, bottom) and high energy (HE, top) mass spectra for the peak at 3.78 min. (b) eXtracted Ion Chromatograms (XICs) at 150 ppm 

mass window for [M+H]+ in LE and main fragments in HE 

In a similar way, most of the detected compounds could be confirmed in the samples (see the compounds 

marked as square root in Table 1). The compounds metoprolol and codeine could not be confirmed despite 

the reference standards were available, as only the protonated molecule was observed at the corresponding 

retention time. In these cases, the compounds were marked as detected (dot in Table 1). Additional analysis 

would be required to promote the fragmentation, using higher collision energies in new MS/MS 

experiments.  

2. Reference standards not available  

When reference standards were unavailable, the only information included in the database was the name 

and elemental composition of the contaminants. Even in this situation, a tentative identification could be 

performed on the basis of the relevant information on the accurate mass of the (de)protonated molecule 

and the fragment ions offered by QTOF MSE. Figure 3 illustrates the potential of this screening approach 

with two case studies: the detection and tentative identification of lidocaine and caffeine in effluent 

wastewater. 
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Fig. 3 Tentative identification of lidocaine and caffeine in effluent wastewater by UHPLC-QTOF MS. (a) LE and HE mass spectra 

for the peaks at 3.89 and 3.98 min in positive ionization mode. (b) XICs at 150 ppm mass window for [M+H]+ of lidocaine (3.98 

min) and caffeine (3.89 min) in LE and for the fragment ions (m/z 86, 138, and 110) in HE 

The LE spectrum in ESI positive of an abundant chromatographic peak at 3.97 min showed an intense 

signal at m/z 235.1808 (Fig. 3a, bottom). This might correspond to the protonated molecule of lidocaine 

(C14H23N2O, expressed as protonated molecule), with a mass error of −0.9 ppm in relation with the 

theoretical exact mass. The LE spectrum also showed an important signal at m/z 195.0883 (retention time 

3.89 min) which could be attributed to caffeine (C8H11N4O2, 0.5 ppm mass error). The HE spectrum 

showed three fragment ions at m/z 138.0667 (C6H8N3O), 110.0716 (C5H8N3), and 86.0971 (C5H12N), all 

with mass errors below 2 ppm (Fig. 3a, top). At this point, UHPLC was a valuable tool for selecting almost 

co-eluting fragment ions that might correspond to different precursor ions. Thus, the fragments at m/z 138 

and 110 were related to caffeine, whereas the fragment at m/z 86 was related to lidocaine. The structures of 

the fragment ions were justified on the basis of their measured accurate masses, which was moreover in 

agreement with the information available in scientific literature [16, 17]. Lidocaine could be tentatively 

identified and subsequently confirmed after acquiring its reference standard (circled plus and square root in 

Table 1). The confirmation of caffeine would require the injection of the reference standard, which at the 

time of writing this paper was not available at our laboratory (we did not consider this compound relevant 

in our study). Similar situations occurred for other compounds tentatively identified, as metformin, pirantel, 

and the sweetener saccharin, due to the lack of reference standard (circled plus in Table 1).  
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3. Searching for metabolites  

A detailed discussion is made on the particular case of losartan, an angiotensin II receptor antagonist drug 

used mainly to treat high blood pressure (hypertension), and its metabolites identified making use of the 

common fragmentation pathway. 

Losartan was confirmed to be present in all the samples analyzed. The LE spectrum in ESI+ showed an 

abundant chromatographic peak at the expected retention time (10.13 min) for this pharmaceutical (m/z 

423.1695, −1.2 ppm mass error) and also presented the typical isotopic pattern of a chlorine atom 

(C22H24N6OCl, expressed as protonated molecule). The expected fragment ion at m/z 405.1590 (C22H22N6Cl, 

−1.0 ppm), due to a loss of water, was also observed in the LE spectrum, as well as a minor fragment ion 

at m/z 377.1528 (C22H22N4Cl, −1.3 ppm), corresponding to a N2 loss from m/z 405. The HE spectrum 

showed a predominant ion at m/z 207.0916 (C14H11N2) and minor peaks at m/z 235.0979 (C14H11N4), 

192.0813 (C14H10N), 190.0661 (C14H8N), and 180.0805 (C13H10N), all with mass errors below 4 ppm. These 

fragments correspond to the fragmentation at the benzylic carbon (CH2 near to the two rings) (m/z 235) 

with losses of N2 (m/z 207), N3H (m/z 192), or N3H3 (m/z 190). Losartan was also detected in negative 

mode at m/z 421.1552, showing fragment ions at m/z 187.0631 (C8H12N2OCl), 179.0868 (C14H11), 157.0529 

(C7H10N2Cl), and 127.0066 (C5H4N2Cl). With all this information, the compound detected in the samples 

was unequivocally confirmed to be losartan. 

The presence of three additional chromatographic peaks at 8.25, 9.29, and 10.47 min in all the three XICs 

at m/z 207, 235, and 190 performed at the HE function in ESI+ (for losartan, retention time 10.13 min) 

suggested that the three compounds were chemically related with this pharmaceutical (Fig. 4). The 

common fragmentation pathway strategy has been successfully applied by our group in the elucidation of 

metabolites of the new psychoactive substance methylenedioxypyrovalerone (MDPV) and of degradation 

products of cocaine and benzoylecgonine [27, 28]. This encouraged us to investigate the identity of the 

potential metabolites/transformation products of losartan from the data provided by QTOF MS. 

Firstly, the LE spectra (all showing the isotopic distribution corresponding to a chlorine atom) of these 

three possible metabolites were studied in more detail. In relation to the peak at 10.47 min, the protonated 

molecule corresponded to m/z 437.1490 (C22H22N6O2Cl, −0.7 ppm), which might be attributed to an 

oxidation of losartan. This compound might correspond to losartan carboxylic acid, the main metabolite 

reported in the literature [29]. 

Regarding the peaks at 8.25 and 9.29 min, accurate masses of m/z 439.1643 and 439.1661 were obtained, 

respectively, both corresponding to the same empirical formulae C22H24N6O2Cl with mass errors lower than 

3 ppm. This implies the presence of an extra oxygen atom with respect to losartan. Hence, these two 

compounds might correspond to hydroxylated metabolites of losartan. 
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The following step consisted on the elucidation of the structure of these three potential metabolites. For 

this purpose, MS/MS experiments were performed at different collision energies (10–50 eV). 

 

Fig. 4 Common fragmentation pathway strategy applied for the detection of metabolites of losartan. (a) eXtracted Ion Chromatograms 

(XICs) at 150 ppm mass window for [M+H]+ of losartan in LE function and (b) main fragments (m/z 207, 235, 190) in HE 

function. (c) XICs at 150 ppm mass window for [M+H]+ of possible carboxylic acid metabolite in LE function. (d) XICs at 150 ppm 

mass window for [M+H]+ of possible hydroxylated metabolites of losartan in LE function 

 

Regarding the peak at 10.47 min (m/z 437.1490, C22H22N6O2Cl, −0.7 ppm), five common product ions with 

losartan were observed at m/z 235.0982, 207.0919, 192.0816, 190.0654, and 180.0809. This compound was 

also detected in negative mode, with m/z 435.1327 (C22H22N6O2Cl, −2.1 ppm). At the lowest collision 

energy, a product ion was observed at m/z 391.1429 (C21H20N6Cl, −2.3 ppm), corresponding to a loss of 

CO2. When the collision energy was increased, product ions at m/z 363.1375 (C21H20N4Cl, this is a N2 loss 
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from 391, −0.3 ppm), 157.0530 (C7H10N2Cl, −1.9 ppm), and 113.9989 (C4H3N2Cl, 3.5 ppm) were observed. 

All these fragments fitted with the chemical structure of losartan carboxylic acid. After this careful evaluation 

and well-supported tentative identification, the reference standard of losartan carboxylic acid was acquired 

and injected, allowing the ultimate confirmation of this metabolite in the samples. 

Regarding the hydroxylated metabolite 1 (8.25 min, m/z 439.1643, C22H24N6O2Cl, −1.4 ppm), two minor 

product ions were observed at 10 eV at m/z 421.1536 (C22H22N6OCl) and 385.1772 (C22H21N6O), resulting 

from a loss of water and subsequent loss of hydrochloric acid. At higher collision energies, product ions at 

m/z 235.0978 (C14H11N4), 207.0915 (C14H11N2), 192.0806 (C14H10N), 190.0649 (C14H8N), and 180.0803 

(C13H10N) were obtained (Fig. 5a). Thus, ESI+ fragmentation advises about what is happening near to the 

tetrazol group but not about the location of the hydroxyl group. Accordingly, these fragments seem to 

indicate that the hydroxylation has occurred in the imidazole part. In negative mode, product ions at m/z 

203.0585 (C8H12N2O2Cl) and 173.0488 (C7H10N2OCl) were observed at 20 eV. When the collision energy 

was increased up to 50 eV, product ions at m/z 155.0384 (C7H8N2Cl), 127.0060 (C5H4N2Cl), 113.9991 

(C4H3N2Cl), and 100.9912 (C3H2N2Cl) were observed (Fig. 5b). Considering all this information, the –OH 

group could be placed in the benzimidazole part, being an N-oxide the most plausible candidate. Otherwise, 

if the hydroxyl group was located in the alkylic chain, a second loss of water should in principle be observed 

in ESI+. 

 

Fig. 5 MS/MS spectra at 10 eV (bottom), 20 eV (middle), and 50 eV (top) for hydroxylated metabolite 1 (8.25 min) in (a) ESI+ 

and (b) ESI− (dot) indicates the possible hydroxylation sites, as reported in the literature 
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Regarding the hydroxylated metabolite 2 (9.29 min, m/z 439.1645, C22H24N6O2Cl, −0.9 ppm), two 

important fragment ions were observed at 10 eV (ESI+) at m/z 421.1538 (C22H22N6OCl) and 403.1435 

(C22H20N6Cl) corresponding to two consecutive losses of water. At higher collision energies, the common 

fragment ions at m/z 235.0983, 207.0920, 192.0811, 190.0659, and 180.0808 were observed. The spectra in 

negative mode were different from those of losartan and the other hydroxylated metabolite (e.g., respectively, 

m/z 187/157 or 203/173 were not seen), and only two product ions at m/z 100.9908 (C3H2N2Cl) and 

131.0008 (C4H4N2OCl) were observed. The presence of the –OH group on the other N of the imidazole 

group would not explain the easy loss of water observed in ESI+. Another possibility would be the hydroxyl 

group to be located in the benzilic carbon, although this would hamper (but not prevent) the formation of 

the ions 235/207 in ESI+. 

After a literature search [29], three hydroxylated candidates were found (see the hydroxylated reported sites, 

marked as dot in Fig. 5): two metabolites are hydroxylated in the alkylic chain and the other in the benzilic 

carbon. However, on the basis of the MS/MS fragmentation, it was not possible to unequivocally locate the 

position of the –OH group. It would be very interesting to perform NMR to help identify the structure of 

these compounds. However, this was not possible due to the expected low concentrations of the discovered 

TPs together with the need for on-line coupling of UHPLC separations to NMR spectroscopy. 

Unfortunately, this type of instrumentation is not easy available in our area. 

It is interesting to remark that losartan, its carboxylic acid, and the two hydroxylated metabolites were found 

in all water samples analyzed (ten surface, seven effluent WW, seven influent WW). 

Conclusions 

The potential of UHPLC-QTOF MS for large screening of more than 1,000 licit and illicit drugs, even without 

the need of having all reference standards available, has allowed the detection of many of these compounds in 

water samples from the area of Bogotá. The screening performed in urban wastewater and surface water 

confirmed the presence of emerging contaminants, mainly pharmaceuticals, in the samples. This work provides 

new information on the occurrence of these compounds and metabolites in the Colombian water cycle. The 

availability of full-spectrum acquisition accurate mass QTOF data will also facilitate retrospective analysis of 

other contaminants in the future, not considered in this initial screening, if required. The results obtained in 

this first study may help Colombian institutions to select priority contaminants for future actions. Thus, target 

methodologies, typically based on LC-MS/MS, will need to be set up in the near future for accurate and 

sensitive quantification of the contaminants selected on the basis on the information provided in the present 

paper. 

  

S
c
ie

n
ti

fi
c
 A

rt
ic

le
 2

 

 



Hernández et al. Analytical and Bioanalytical Chemistry 407 (2015) 6405-6416 

116 

Acknowledgments 

The authors are very grateful to Nubia Irley León and colleagues of Acueducto de Bogotá (Bogotá, Colombia) 

for providing wastewater samples, Natalia Gonzalez for preparing the wastewater samples, Jose Roberto Vergas 

for collecting and processing the surface water samples, and Carlos Sales Martinez for making Fig. 1. 

Furthermore, the collaboration of Juan V. Sancho and Oscar J. Pozo of the Hospital del Mar Medical Research 

Institute, Bioanalysis Research Group (Barcelona, Spain), for the interpretation of the fragmentation pathways 

of the losartan metabolites is highly appreciated. 

This work has been developed under financial support provided by the Plan Nacional de I+D+I, Ministerio 

de Economía y Competitividad (Project ref. CTQ2012-36189) and the University Antonio Nariño, Colombia 

(Project ref. 20141082). The authors also acknowledge the financial support from Generalitat Valenciana 

(Group of Excellence Prometeo 2009/054, Prometeo II 2014/023; Collaborative Research on Environment 

and Food Safety ISIC/2012/016). 

R. Bade acknowledges the European Union for his Early Stage Researcher (ESR) contract as part of the EU-

International Training Network SEWPROF (Marie Curie- PEOPLE Grant #317205). 

 

  



 Chapter 2: Suspect and Non-Target Screening 

 

 

117 

References 

1. Pal A, He Y, Jekel M, Reinhard M, Yew-Hoon Gin K (2014) Emerging contaminants of public health 

significance as water quality indicator compounds in the urban water cycle. Environm Int 71:46-62 

2. Richardson SD, Ternes TA (2014) Water Analysis: Emerging Contaminants and Current Issues. Anal 

Chem 86:2813-2848 

3. Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and 

wastewater: current state of knowledge and future research. Anal Bioanal Chem 399:251-275 

4. Gros M, Petrovic M, Ginebreda A, Barceló D (2010) Removal of pharmaceuticals during wastewater 

treatment and environmental risk assessment using hazard indexes. Environm Int 36:15-26 

5. Thomas KV, Araújo da Silva FM, Langford KH, Leão de Souza A, Nizzeto L, Waichman AV (2014) 

Screening for selected human pharmaceuticals and cocaine in the urban streams of Manaus, Amazonas, Brazil. 

JAWRA 50:302-308 

6. De Paula VS, Diniz-Mendes L, Villar LM, Luz SLB, Silva LA, Jesus MS, da Silva NMVS, Gaspar AMC 

(2007) Hepatitis A virus in environmental water samples from the Amazon Basin. Water Res 41:1169-1176 

7. Montagner CC, Jardim WF (2011) Spatial and seasonal variations of pharmaceuticals and endocrine 

disruptors in the Atibaia River, São Paulo State (Brazil). J Braz Chem Soc 22:1452-1462 

8. Gracia-Lor E, Martínez M, Sancho JV, Peñuela G, Hernández F (2012) Multi-class determination of 

personal care products and pharmaceuticals in environmental and wastewater samples by ultra-high 

performance liquid-chromatography-tandem mass spectrometry. Talanta 99:1011-1023 

9. Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley 

JP, Verslycke T, Ankley GT, Beazley KF, Belanger SE, Berninger JP, Carriquiriborde P, Coors A, DeLeo PC, 

Dyer SD, Ericson JF, Gagné F, Giesy JP, Gouin T, Hallstrom L, Karlsson MV, Larsson DGJ, Lazorchak JM, 

Mastrocco F, McLaughlin A, McMaster ME, Meyerhoff RD, Moore R, Parrott JL, Snape JR, Murray-Smith R, 

Servos MR, Sibley PK, Straub JO, Szabo ND, Topp E, Tetreault GR, Trudeau VL, van der Kraak G (2012) 

Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions? Environ Health 

Perspect 120:1221-1229 

10. Schymanski EL, Singer HP, Longrée P, Loos M, Ruff M, Stravs MA, Ripollés Vidal C, Hollender J 

(2014) Strategies to Characterize Polar Organic Contamination in Wastewater: Exploring the Capability of High 

Resolution Mass Spectrometry. Environ Sci Technol 48:1811-1818 

11. Hernández F, Ibáñez M, Bade R, Bijlsma L, Sancho JV (2014) Investigation of pharmaceuticals and 

illicit drugs in waters by liquid chromatography-high-resolution mass spectrometry. Trends Anal Chem 63:140-

157 

S
c
ie

n
ti

fi
c
 A

rt
ic

le
 2

 

 



Hernández et al. Analytical and Bioanalytical Chemistry 407 (2015) 6405-6416 

118 

12. Díaz R, Ibáñez M, Sancho JV, Hernández F (2012) Target and non-target screening strategies for 

organic contaminants, residues and illicit substances in food, environmental and human biological samples by 

UHPLC-QTOF-MS. Anal Meth 4:196-209 

13. Hernández F, Bijlsma L, Sancho JV, Díaz R, Ibáñez M (2011) Rapid wide-scope screening of drugs of 

abuse, prescription drugs with potential for abuse and their metabolites in influent and effluent urban 

wastewater by ultrahigh pressure liquid chromatography–quadrupole-time-of-flight-mass spectrometry. Anal 

Chim Acta 684: 96-106 

14. Laks S, Pelander A, Vuori E, Ali-Toppa E, Sippola E, Ojanpera I (2004) Analysis of street drugs in 

seized material without primary reference standards. Anal Chem 76: 7375-7379 

15. Hernández F, Portolés T, Ibáñez M, Bustos-López  MC, Díaz R, Botero-Coy AM, Fuentes CL, Peñuela 

G (2012) Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters 

and soils from a rice production area in Colombia. Sci Total Environ 439: 249-259  

16. MassBank Norman. High Resolution Mass Spectral Database. http://massbank.ufz.de/MassBank/ 

Accessed 29 Jan 2015 

17. Metlin. Metabolite and tandem MS database. http://metlin.scripps.edu/index.php Accessed 29 Jan 

2015 

18. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J (2014) Identifying Small 

Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ Sci Technol 48:2097-

2098 

19. Hernández F, Ibáñez M, Gracia-Lor E, Sancho JV (2011) Retrospective LC–QTOF-MS analysis 

searching for pharmaceutical metabolites in urban wastewater. J Sep Sci 34:3517–3526 

20. López JJ, Dennis R, Moscoso SM (2009) Estudio sobre la Automedicación en una localidad de Bogotá. 

Revista de Salud Pública 11:432-442 

21. Rodríguez J, Ruiz F, Peñaloza E, Eslava J, Gómez LC, Sanchez H, Amaya JL, Arenas R, Botiva Y. 

(2009) Encuesta Nacional de Salud 2007. ISBN 978-958-716-220-2 

22. Machado-Alba JE, González-Santos DM (2009) Dispensación de antibióticos de uso ambulatorio en 

una población colombiana. Revista de Salud Pública 11:734-744 

23. United Nations Office on Drugs and Crime. 

https://www.unodc.org/documents/colombia/2014/Julio/Estudio_de_Consumo_UNODC.pdf     Accessed 

26 Jan 2015 



 Chapter 2: Suspect and Non-Target Screening 

 

 

119 

24. Bijlsma L, Beltrán E, Boix C, Sancho JV, Hernández F (2014) Improvements in analytical methodology 

for the determination of frequently consumed illicit drugs in urban wastewater. Anal Bioanal Chem 406:4261 

– 4272 

25. Ort C, van Nuijs ALN, Berset J-D, Bijlsma L, Castiglioni S, Covaci A, de Voogt P, Emke E, Fatta-

Kassinos D, Griffiths P, Hernández F, González-Mariño I, Grabic R, Kasprzyk-Hordern B, Mastroianni N, 

Meierjohann A, Nefau T, Östman M, Pico Y, Racamonde I, Reid M, Slobodnik J, Terzic S, Thomaidis N, 

Thomas KV (2014) Spatial differences and temporal changes in illicit drug use in Europe quantified by 

wastewater analysis. Addiction, 109;1338-1352 

26. Pedrouzo M, Borrull F, Pocurull E, Marcé RM (2011) Drugs of abuse and their metabolites in waste 

and surface waters by Liquid Chromatography-tandem Mass Spectrometry. J Sep Sci 34:1091–1101 

27. Ibáñez M, Pozo OJ, Sancho JV, Orengo T, Haro G, Hernández F (2015) Discovering human urinary 

metabolites of methylenedioxypyrovalerone (MDPV) by Liquid Chromatography/Quadrupole Time-of-Flight 

Mass Spectrometry. Forensic Toxicol submitted 

28. Bijlsma L, Boix C, Niesen WMA, Ibáñez M, Sancho JV, Hernández F (2013) Investigation of 

degradation products of cocaine and benzoylecgonine in the aquatic environment. Sci Total Environ 443:200-

208 

29. PGKB Pharmacogenomics. https://www.pharmgkb.org/pathway/PA164713428# Accessed 29 Jan 

2015 

S
c
ie

n
ti

fi
c
 A

rt
ic

le
 2

 

 



 

 

 

  



 Chapter 2: Suspect and Non-Target Screening 

 

121 

2.2.2 Scientific Article 3 

SCREENING OF PHARMACEUTICALS AND ILLICIT 

DRUGS IN WASTEWATER AND SURFACE WATERS OF 

SPAIN AND ITALY BY HIGH RESOLUTION MASS 

SPECTROMETRY USING UHPLC-QTOF MS AND 

LC-LTQ-ORBITRAP MS 

 
Richard Bade, Nikolaos I. Rousis, Lubertus Bijlsma, Emma Gracia-Lor, Sara 

Castiglioni, Juan V. Sancho, Felix Hernandez 

 

Analytical and Bioanalytical Chemistry (2015) 407:8979-8988 

S
c
ie

n
ti

fi
c
 A

rt
ic

le
 3

 

 



 

 

 



 Chapter 2: Suspect and Non-Target Screening 

 

    123 

 

 

Abstract 

The existence of pharmaceuticals and illicit drugs (PIDs) in environmental waters has led many 

analytical chemists to develop screening methods for monitoring purposes. Water samples can contain 

a huge number of possible contaminants, commonly at low concentrations, which makes their 

detection and identification problematic. Liquid chromatography coupled with high resolution mass 

spectrometry (LC-HRMS) has proven itself effective in the screening of environmental contaminants. 

The present work investigates the use of the most popular HRMS instruments, quadrupole time-of-

flight and linear trap quadrupole-Orbitrap, from two different laboratories. A suspect screening for 

PIDs was carried out on wastewater (influent and effluent) and surface water samples from Castellón, 

Eastern Spain, and Cremona, Northern Italy, incorporating a database of 107 PIDs (including 220 

fragment ions). A comparison between the findings of both instruments and of the samples was made 

which highlights the advantages and drawbacks of the strategies applied in each case. In total, 28 

compounds were detected and/or identified by either/both instruments with irbesartan, valsartan, 

benzoylecgonine and caffeine being the most commonly found compounds across all samples. 

Keywords: Liquid chromatography, Screening, Pharmaceuticals, Illicit drugs, High resolution mass 

spectrometry 
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Introduction 

The presence of pharmaceuticals and illicit drugs (PIDs) in environmental waters has become more apparent 

in the past decade due to the improvements in selectivity and sensitivity of modern analytical techniques. PIDs 

are continuously excreted or disposed into the sewer systems as the unaltered parent compound or as 

metabolites [1]. Compounds of the most concern in the environment are those found with high concentrations 

and those that have been proven detrimental to the aquatic life; in fact, for several antibiotics, hormones and 

pharmaceuticals, some effects have been shown [2–4]. Various pharmaceuticals, antibiotics and illicit drugs and 

metabolites such as acetaminophen, carbamazepine, diclofenac, ciprofloxacin and benzoylecgonine are 

frequently detected in waters and are considered a potential threat [2, 5, 6]. 

Nowadays, data processing is often the most time-consuming step when screening a large number compounds. 

A fast screening method, referring to the easy searching of PIDs by software following full scan acquisition by 

high resolution mass spectrometry (HRMS), is therefore of great interest in order to gain a complete overview 

of possible contaminants and their fate in the aquatic environment. Another time-consuming step is sample 

preparation. Important improvements in sensitivity and specificity of recent instrumentation have facilitated 

the direct injection of the samples [7, 8]. 

HRMS instruments, such as quadrupole time-of-flight (QTOF) MS and Orbitrap MS, provide high quality data 

by combining full spectrum mass data with high mass resolution and mass accuracy [9]. Powerful deconvolution 

software is required to facilitate sample analysis for these instruments. Each manufacturer has its own software, 

such as ChromaLynx (Waters) and TraceFinder (ThermoScientific). These systems allow post-target analysis, 

whereby the presence of an unlimited number of contaminants can be investigated through the addition of 

empirical or theoretical compound databases, without depending on the pre-selection of analytes or having 

reference standards available [10]. In the processing of numerous samples and compounds, these programs 

undeniably save time and hence are a necessity for a large screening of environmental contaminants. 

It is difficult to compare the individual HRMS mass analysers (i.e. TOF and Orbitrap), but each hold distinct 

advantages. The main advantage of Orbitrap is its high mass resolving power (>100,000 full width at half 

maximum (FWHM)). In complex environmental matrices, co-elution of analytes with matrix interferences can 

result in ambiguous peaks. By utilising the ultra-high resolution capabilities, compounds with a very similar 

exact mass can be easily differentiated [11]. However, its main drawback is its slower scanning speed and inverse 

relationship to resolution. Conversely, the higher scanning speed of TOF enables it to be used with the highly 

efficient separation technique ultra-high performance liquid chromatography (UHPLC), resulting in shorter 

run times and improved sensitivity [10]. 

To achieve better performance such as higher sensitivity and mass resolving power, manufacturers have 

implemented hybrid mass spectrometers, two of which are used in the current work: QTOF and linear trap 

quadrupole-Orbitrap (LTQ-Orbitrap). The UHPLC capabilities are exemplified when QTOF is employed in 
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MSE mode, which involves the simultaneous acquisition of exact mass data at low and high collision energy 

[12]. At low energy, information pertaining to the non-fragmented (de)protonated molecule is obtained, whilst 

at high energy, information regarding the fragments is attained. This means that all required information is 

obtained in just one injection. LTQ-Orbitrap combines the tandem mass spectrometric capability of the LTQ 

with the high resolution and mass accuracy capability of the Fourier transform (FT) Orbitrap [13]. LTQ-

Orbitrap is operated in data-dependent acquisition (DDA) mode whereby MS and MSn spectra are obtained 

simultaneously; however, the number of compounds able to be acquired is limited and therefore may require 

subsequent injections. Some studies have been made on the identification of organic pollutants in water by 

QTOF MS [12, 14–16] and LTQ-Orbitrap MS [17–19]. 

This work derives from a collaborative study between two laboratories within the ITN Marie Curie SEWPROF 

network [20]. The aim was to perform a screening of PIDs in waste- and environmental waters using two 

different liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS) systems 

(UHPLC-QTOF MS and Capillary-LC-LTQ-Orbitrap MS) available in our laboratories. Normally, a given 

laboratory would use just one of the instruments, but as both have a great capability for screening and 

identification, in this work, we pursued the comparison of data from the same analysed samples (samples 

collected from Spain and Italy). In addition, the complementary use allows true confirmation of the compound 

in the sample [9]. Although the same compounds were initially searched, the different acquisition modes may 

additionally detect other contaminants and widen the scope of the screening. It is worth noting that a 

comparison of the instruments or methods used was not pursued, rather their use to ratify the findings of the 

other instrument. In this way, on the basis of the results of the present paper, the methodologies applied by 

each laboratory could be validated by the results obtained by the other laboratory in terms of qualitative analysis. 

When performing the screening, four criteria were used based on the level of confidence and on the availability 

of reference standards. Numerous compounds were detected and identified from samples of different origin 

and matrix composition (influent and effluent urban wastewater, surface water). All samples, independently of 

they were collected from Spain or from Italy, were analysed by both HRMS instruments (Orbitrap in Milan and 

TOF in Castellón), which supports the feasibility and robustness of high resolution screening of PIDs in 

complex environmental samples. 
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Experimental 

Chemicals and reagents 

For information regarding the reference standards used for QTOF and LTQ-Orbitrap analysis (see Electronic 

Supplementary Material (ESM), Section 2.1). 

HPLC-grade methanol (MeOH), ammonia solution (25 %) and formic acid (HCOOH, 98–100 %) were 

acquired from Scharlau (Barcelona, Spain) and acetonitrile for LC-MS from Riedel de Haen (Seelze, Germany). 

HPLC-grade water was obtained by purifying demineralised water in a Milli-Q plus system from Millipore 

(Bedford, MA, USA). Solid phase extraction (SPE) cartridges used were Oasis HLB 3 mL (60 mg) from Waters 

(Milford, MA, USA). Mixed cellulose ester membrane filters (0.45 μm) and 1.6 μm GF/A glass microfiber 

filters were purchased from Whatman (Kent, UK). 

Samples 

Influent and effluent wastewater 

In total, 18 wastewater samples (nine influent wastewater (IWW) and effluent wastewater (EWW)) were taken 

from a wastewater treatment plant (WWTP) in Castellón, Eastern Spain and Cremona, Northern Italy. The 24-

h composite IWW and EWW samples were collected over seven consecutive days in March 2014 (Castellón) 

and two consecutive days in May (Cremona) in high-density polystyrene bottles and directly transported to the 

lab where they were immediately filtered and stored in the dark at −20 °C until analysis. 

Surface waters 

Five grab samples were taken from the Castellón region, Eastern Spain: Almenara, Burriana Clot, Nules and 

two sites in Albufera Natural Park. All samples were stored in high-density polystyrene bottles at 4 °C for less 

than 48 h, until sample treatment. 

Sample treatment 

Prior to SPE, Spanish WW samples were vacuum filtered through 0.45 μm mixed cellulose ester membrane 

filters, and the Italian samples were filtered through 1.6 μm GF/A glass microfiber filters. Surface water samples 

were not filtered. Subsequently, 100 mL of the samples (IWW was four times diluted with Milli-Q water, i.e. 25 

mL sample in 100 mL) was extracted using SPE cartridges (Oasis HLB), which were first conditioned by 

washing and rinsing with 6 mL of MeOH and 6 mL of Milli-Q water. Samples were percolated through the 

cartridges by gravity (flow rate around 3 mL min−1) and vacuum dried for approximately 15 min. After elution 

with methanol, extracts were evaporated to dryness at 35 °C under a gentle stream of nitrogen and 

reconstructed in 1 mL of 10 % methanol aqueous solution [21]. Two 0.5-mL aliquots were taken from the 

extract, one each for the QTOF and Orbitrap analyses. UHPLC-MS QTOF analyses were performed by 
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injecting 20 μL of the final extract into the system. Capillary-LC-LTQ-Orbitrap analyses were performed by 

injecting 2 μL of the final extract into the system.  

Instrumentation 

Ultra high-performance liquid chromatography-QTOF-mass spectrometry 

A Waters Acquity UPLC system (Waters, Milford, MA, USA) was interfaced to a hybrid quadrupole-orthogonal 

acceleration-TOF mass spectrometer (XEVO G2 QTOF, Waters Micromass, Manchester, UK), using a Z-

Spray ESI interface operating in positive ion mode. 

The chromatographic separation was performed using an Acquity UPLC BEH C18 1.7 μm particle size column 

100 × 2.1 mm (Waters) at a flow rate of 300 μL/min. The mobile phases used were A = H2O and B = MeOH 

(both with 0.01 % HCOOH). The total run time was 18 min. The initial percentage of B was 10 %, which was 

linearly increased to 90 % in 14 min, followed by a 2-min isocratic period and, then, returned to initial conditions 

during 2 min. Nitrogen was used as drying gas and nebulizing gas. 

MS data were acquired over an m/z range of 50–1,000. A capillary voltage of 0.7 kV and cone voltage of 20 V 

were used. Collision gas was argon 99.995 % (Praxair, Valencia, Spain). The desolvation temperature was set to 

600 °C and the source temperature to 135 °C. The column temperature was set to 40 °C. 

For MS E experiments, two acquisition functions with different collision energies were created: the low energy 

function (LE), selecting a collision energy of 4 eV, and the high energy (HE) function, with a collision energy 

ramp ranging from 15 to 40 eV in order to obtain a greater range of fragment ions. The total scan time was 0.4 

s. 

QTOF MS data was processed using ChromaLynx XS application manager (within MassLynx v 4.1; Waters 

Corporation). The following parameters were used: target RT tolerance (1.50 min) from empirical retention 

time (obtained from injecting standards), mass tolerance 0.020 Da (for positive ID 0.010 Da), peak width at 5 % 

height 6 s, peak-to-peak baseline noise 1,000 and threshold absolute area: 250 for SW and 500 for IWW and 

EWW. 

Liquid chromatography-LTQ-Orbitrap mass spectrometry 

Mass spectrometry analysis was performed on a high resolution LTQ-Orbitrap XL instrument, interfaced to 

the HPLC system through a desorption electrospray ionisation (DESI) source and used in nano-spray mode 

(Prosolia, Indianapolis, IN, USA). The instrument was operated at 60,000 resolution for full MS scans and at 

15,000 resolution for MS2 scans, after CID fragmentation in the linear ion trap cell. The scan time was 0.85 s 

and the cycle time was 4.8 s. Every sample was analysed in a DDA mode, in which the first data event was a 

full scan MS, whilst the following four data events were MS2 scans of the four most intense ions recorded in 

S
c
ie

n
ti

fi
c
 A

rt
ic

le
 3

 

 



Bade et al. Analytical and Bioanalytical Chemistry 407 (2015) 8979-8988 

128 

the first event. A subsequent injection in MS/MS mode was made to find further fragments, based on target 

lists (see Section 3.1). 

The chromatographic separation was performed using a Zorbax SB-C18 5 μm particle size column 150 × 0.5 

mm (Agilent Technologies) at a flow rate of 10 μL/min. The mobile phases used were A: H2O (0.1 % HCOOH) 

and B: acetonitrile. The total run time was 46 min. The initial percentage of B was 1 % and was linearly increased 

to 99 % in 24 min, followed by a 10-min isocratic period and then reduced back to initial conditions in 2 min 

which were kept for 10 min (post-run) to equilibrate the column. 

Processing of the Orbitrap data was made using TraceFinder EFS and QualBrowser software (Thermo 

Scientific). The following parameters were used: [M+H]+ intensity (5,000), signal-to-noise ratio threshold (=5), 

retention time window override for confirmation (90 s), fragment intensity (1,000 with 10 ppm mass tolerance); 

isotopic pattern (60 % fit threshold, 5 ppm mass deviation, 10 % intensity deviation); and library search (20 % 

score threshold) using the Toxicology HCD 30-70-110 eV Library of Thermo Scientific. This library contained 

the information of 1,700 compounds, but not all PID compounds selected in our list were included in the 

library. 

Criteria for detection/identification 

Up to four levels were considered for detection and identification of the compounds based on the availability 

of reference standard and on the reliability of the data obtained. These levels were derived from a recent article 

exploring the means of identification of small molecules [22] and the European Commission Decision 

2002/657/EC for the confirmation of contaminants in samples of animal origin, commonly employed in 

environmental studies. The criteria used included the presence of the protonated molecule at accurate mass, 

fragment ion(s) at accurate mass, retention time and isotopic pattern. 

Selected criteria for QTOF MS 

The standards injected on each instrument were those available at the respective laboratories (see ESM Section 

2.1). They may be different; however, as explained above, a comparison between the labs is not proposed. 

Standard available (11 illicit drug and 61 pharmaceutical standards, see ESM Section 2.1) 

1. Detection: Protonated molecule [M+H]+ at accurate mass (<5 ppm) and retention time in agreement 

with reference standard (±2.5 %) 

2. Identification: Protonated molecule [M+H]+ at accurate mass (<5 ppm), at least one fragment ion, 

commonly in HE (<5 ppm), retention time agreement with reference standard (±2.5 %) 
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Standard not available 

3. Tentative detection (potential positive): Presence in the extracted ion chromatogram of the protonated 

molecule [M+H]+ at accurate mass (<10 ppm), typically in the LE function 

4. Tentative identification: Protonated molecule [M+H]+ at accurate mass (<10 ppm) and at least one 

fragment ion, commonly in HE function (<10 ppm), in agreement with data reported from literature 

or online databases 

Selected criteria for LTQ-Orbitrap MS 

Standard available (25 illicit drug and 27 pharmaceutical standards, see ESM Section 2.1) 

1. Detection: Protonated molecule [M+H]+ at accurate mass (<5 ppm), retention time agreement with 

standard (±2.5 %), isotopic pattern (60 % fit threshold, 5 ppm mass deviation, 10 % intensity deviation) 

2. Identification: Protonated molecule [M+H]+ at accurate mass (<5 ppm, intensity >5,000), at least one 

fragment ion in MS/MS (intensity > 1,000, <10 ppm), retention time agreement with standard 

((±2.5 %), isotopic pattern (60 % fit threshold, 5 ppm mass deviation, 10 % intensity deviation); library 

search (20 % score threshold) using the Toxicology HCD 30-70-110 eV Library. 

Standard not available 

3. Tentative detection (potential positive): Protonated molecule [M+H]+ at accurate mass (<10 ppm, 

intensity >5,000) 

4. Tentative identification: Protonated molecule [M+H]+ at accurate mass (<10 ppm intensity >5,000), 

at least one fragment ion (intensity >1,000, <10 ppm mass tolerance), comparable with literature or 

online databases, isotopic pattern (60 % fit threshold, 5 ppm mass deviation, 10 % intensity deviation) 

Results and discussion 

The methodologies followed for these analyses are based on the generic configuration employed by each 

laboratory. We acknowledge that the Orbitrap configuration is not optimal for screening of PIDs in water, as 

its use is primarily in the field of proteomics, which justifies the use of a capillary column and DESI source. 

Therefore, we do not intend to show a comprehensive comparison of the instruments but to determine whether 

both laboratories and instruments can detect and identify the same compounds using their individual workflows. 

Furthermore, in this work, we do not set out to perform a wide-scope screening of a huge number of 

compounds but rather to focus on a limited number of well-known, widely detected PIDs in wastewater to test 

the usefulness of the different approaches and instruments used and also to compare the countries. 
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Selection of PIDs 

The compounds to be investigated were initially based on a database similar to that made by Diaz et al. [23] but 

focussing solely on pharmaceuticals and illicit drugs. The database contained the compound name, associated 

fragments (if known), retention time (if standard was available) and molecular formula. A qualitative validation 

was previously performed using a similar analytical procedure based on LC-QTOF MS measurements, and the 

empirical screening detection limits (SDL) and limits of identification (LOI) in different type of water samples 

were established for some of the compounds included in the present work. For most compounds evaluated, 

SDLs were 0.02 or 0.1 μg/L [24, 25]. For compounds where no standards were available, the database included 

data regarding fragment ions and molecular formula from literature or online databases such as MassBank [26]. 

To ensure national significance, compounds found from previous studies of these regions were investigated 

and added to the database (Spain [27, 28]; Italy [29–31]). In total, 107 PIDs and 220 fragment ions were 

incorporated in the database (see ESM Table S1). 

As stated in Section 2.4.2, each sample was injected twice in the Orbitrap. The first injection enabled full scan 

acquisition. In this data, the original database of 107 PIDs was searched using TraceFinder and potential 

positive compounds were then selected, based on retention time and exact mass, as unfortunately the expected 

fragment ion information of the targeted compounds was not amongst the four most intense ions detected 

within the data events. These “positives” were then grouped into target lists, according to whether they were 

found in the Spanish (40 compounds) or Italian (52 compounds) samples (see ESM Tables S2 and S3). The 

second injection incorporated these target lists, thereby enabling their product ions to be seen. 

Within the software of the QTOF and Orbitrap, a threshold was given for intensity and mass error, outside 

which peaks were disregarded as noise. The majority of compounds were able to be automatically identified or 

detected thanks to the ChromaLynx and TraceFinder software. However, in some cases, some compounds 

were only able to be detected (i.e. no fragment ions found). This demonstrated the complementariness of the 

instruments: when one instrument was solely able to detect a compound (only the precursor ion found), the 

other was able to at least tentatively identify the compound with fragments. The raw data of both instruments 

was manually inspected in these situations to ratify the fragments (see Table 1). This secondary examination 

also reduced the possibility that one of the software had erroneously eliminated some compounds. The raw 

data investigations were only required for a small number of compounds, which is testament to the utility of 

the software. However, by decreasing the identification thresholds used, the need for manual inspection could 

be avoided, which is especially recommended for wide-scope screening methods incorporating thousands of 

compounds. 
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Table 1: All compounds detected/identified in wastewater and surface water samples of Spain and Italy 

 

 

Comparison of results from Spain and Italy 

Table 1 shows the number of compounds identified (according to identification criteria 2 and 4, from Section 

2.5) and detected (according to detection criteria 1 and 3, from Section 2.5) in each sample. In general, more 

compounds were able to be identified (up to 18) or detected (up to 25) in the Spanish samples than the Italian. 

However, some compounds were only able to be detected and not identified in some samples, due to low 

analyte concentration. For example, ofloxacin in Castellón IWW was identified in only three samples by QTOF 

but detected in the all, whilst it was identified in all samples by Orbitrap. In addition, trimethoprim was only 

Compound Spain IWW (n=7) Spain EWW (n=7) Spain SW (n=5) Italy IWW (n=2) Italy EWW (n=2) 

 QTOF Orbitrap QTOF Orbitrap QTOF Orbitrap QTOF Orbitrap QTOF Orbitrap 

4-aminoantipyrinea 7/1b 6/5 7/7 7/3       

Acetaminophen 7/7 7/7 (7)c     2/2 2/2 (2)   

Atorvastatin   2/0 5/0       

Benzoylecgonine 7/7 7/7 7/7 (7) 7/7 1/0  2/2 (2) 2/2   

Bezafibrate  3/3 7/0 7/7   2/1 (1) 2/2  1/1 

Caffeinea,d 7/7 6/6 7/1 7/7 4/3 5/5 2/2 2/2   

Carbamazepine 3/0 7/7 7/7 7/7   2/2 2/1 2/2 2/2 

Ciprofloxacin 7/6 (6) 6/6 6/5 (5) 6/5   2/2 (2) 2/2   

Clarithromycin  1/0 5/5 (5) 6/6   2/1 (1) 2/1 2/1(1) 2/1 

Cocaine 7/3 (3) 3/3 2/0 1/0   2/2 (2) 1/1   

Codeine 7/7 (7) 7/7 7/4 (4) 6/6   2/1 (1) 2/1 2/1(1) 1/1 

Cotininea,d 7/6  7/7  2/0  2/0    

Diclofenac  3/3 7/7 7/7   2/2  2/2 2/2 2/2 

Enalapril 1/0          

Gabapentina 5/0  6/6      2/0  

Gemfibrozil        2/0   

Irbesartana 7/7 7/7 7/7 7/7 2/1 2/2 2/2 2/2 2/2 2/2 

Ketoprofen 7/6 (6) 6/5 6/2 2/2   2/2    

Morphine 7/0 4/4 2/0 4/4   2/0 2/2 2/0 2/0 

Moxifloxacin   2/0        

Naproxen 7/7 7/7 (3) 4/0    2/1 1/1 (1)   

Ofloxacin 7/3 7/7 7/7 7/7 1/0  2/2  2/2 2/2  2/2 

Oxazepama,d  3/3 7/7 5/5    1/1  1/0 

Sulfamethoxazole 3/2 (2) 6/6 7/5 5/4   2/2 (2) 2/2 2/1(1) 2/2 

Temazepama,d 3/3 (3) 6/5 7/5 7/7    1/0  1/1 

Trimethoprim 1/0  7/0 7/0   2/0  2/0 2/0 

Valsartana 7/7 7/7 7/7 7/7 2/0 3/3 2/2 2/2 1/1 2/2 

Venlafaxinea 7/7 (6) 7/7 7/7 7/7  1/0 2/0 2/2 2/2 2/2 

           

Total  21/16 23/18 25/18 21/18 6/2 4/4 20/16 20/16 12/9 12/10 

a: no reference standard for Orbitrap analysis 
b: number of compounds detected/identified 
c: number in brackets refers to the number of samples manually checked in raw data for missing fragment ions 
d: no reference standard for QTOF analysis 
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detected in all Spanish and Italian EWW samples by both instruments. These results show that these 

compounds were likely present in all the detected samples but unable to be identified due to a combination of 

their low concentrations and the difference in MS/MS acquisition between the instruments. 

There is little national difference, with just cotinine, gabapentin, oxazepam, temazepam and a metabolite of 

metamizole (4-aminoantipyrine), not identified in the Italian samples. This is not to say that these compounds 

are not in the samples, rather that their concentration is lower than that necessary for detection or identification. 

In fact, 4-aminoantipyrine was the only compound in the aforementioned list not detected in at least one of 

the Italian samples. Metamizole (also known as dipyrone) is a non-steroidal anti-inflammatory drug. In some 

countries such as Sweden, UK, Canada or USA, metamizole has been banned or restricted for human use due 

to its association with diseases like agranulocytosis [32]. However, in many other countries including Spain and 

Italy, it can be purchased without a medical prescription [33]. Metamizole is a widely consumed pharmaceutical 

in Spain, and some years ago, it was amongst the ten most consumed pharmaceuticals (considering the amount 

of prescriptions), according to the information published by the Spanish Ministry of Health [34]. In Italy, 

metamizole is also highly consumed but is not included in the list of the most consumed pharmaceuticals [35]. 

This apparent difference in consumption could reflect the difference in its detection in the samples of Spain 

and Italy. 

The most commonly detected compounds mirrored those found in similar studies [12, 29, 30, 36]. Irbesartan, 

ofloxacin, sulfamethoxazole and valsartan were identified in IWW and EWW of both Spain and Italy. Caffeine, 

irbesartan, valsartan and venlafaxine were also found in a high enough concentration in surface water to be 

identified by at least one of the two instruments. Several previous studies have also shown that these 

compounds are not fully removed in WWTPs and can be present in surface waters [2, 5, 37, 38], which indicates 

that further investigation into their potential fate and harm to the environment is necessary. 

 

Use of QTOF and LTQ-Orbitrap 

There was little difference between the number of compounds able to be identified by QTOF and Orbitrap. 

However, there are some discrepancies between the numbers of compounds in each sample that are identified 

by each instrument. For example, naproxen is identified using the software in all seven Spanish IWW samples 

by QTOF whilst in only four by the Orbitrap. Alternatively, with Orbitrap, bezafibrate and morphine are 

identified in seven and four Spanish EWW samples, respectively, but in none by QTOF. In both cases, the 

compounds were detected and compared with standards. Figures 1 and 2 show the examples of naproxen and 

bezafibrate, respectively. 
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Fig. 1: (a): Identification of naproxen in an IWW sample by QTOF (ChromaLynx); LE spectrum shows the parent and fragment of 
naproxen (blue at 231.1017 and 185.0971).  

(b): Identification of naproxen in the same IWW sample by Orbitrap (raw data, using QualBrowser) based on the fragment of 185.0961, 
compared with the standard (left).  

The QTOF data is from the single MSE injection, while the Orbitrap data is from the second MS/MS injection. 

 

Fig. 2: (a) Detection of bezafibrate in an EWW sample by QTOF (raw data). The XICs (left) and related mass spectrum (bottom) of the 
standard show the fragments (316.1104, 276.0791 and 138.9951), and mass errors. The sample (right) shows none of the related fragments 
at a similar peak shape or retention time to the precursor (362.1159).  

(b) Identification of bezafibrate in the same EWW sample (right) by Orbitrap (QualBrowser), compared with the standard (left). The fragment 
ions of 316.1102, 276.0787 and 138.9946 are clear in both, as is the chromatographic peak at ~20.85 minutes.  

The QTOF data is from the single MSE injection, while the Orbitrap data is from the second MS/MS injection. 
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Figure 1 provides an example of raw data investigation, touched upon in Section 3.1. In an IWW sample, the 

QTOF data was searched with ChromaLynx and able to identify naproxen, without having to refer to the raw 

data (Fig. 1a). The protonated molecule (231.1017) and primary fragment ion (185.0971) were seen in the LE 

and HE spectra within the thresholds of mass error for identification. To gain further confidence in this finding, 

the Orbitrap data was searched with TraceFinder. However, the software could not identify naproxen in this 

IWW sample. A subsequent search of the raw data by QualBrowser revealed its presence (Fig. 1b). 

Figure 2 exemplifies the compatibility of the two HRMS instruments. ChromaLynx was unable to identify 

bezafibrate through the use of fragments, so the raw data was checked (Fig. 2a, right). Again, only the precursor 

was able to be found. A comparison with the standard is also made, showing the three fragments of 316.1105, 

276.0788 and 138.9947 (Fig. 2a, left). These fragments were searched in the HE spectrum of the sample, but 

no suitable peaks were found (Fig. 2a, right). It was thought that bezafibrate was below the detection threshold 

for the QTOF, which has a known relationship between intensity and mass error (i.e. at low concentration, the 

mass error would be high), and therefore at a low concentration, the fragment ions would fall outside the given 

mass error threshold. Conversely, Orbitrap is able to maintain its mass accuracy, even at low concentrations. 

Hence, for the same sample, using Orbitrap, bezafibrate was able to be identified with all three fragments (Fig. 

2b, right). 

A further example of the use of these instruments was in the identification of benzoylecgonine in an IWW 

sample. The protonated ion was seen in the QTOF data with a mass error of 0.07 ppm, a retention time of Δ 

0.01 min from that of the standard, and only one fragment with a mass error of 6.31 ppm—just outside the 

criteria used for identification (see Section 2.5). Although we were confident this was in fact benzoylecgonine, 

and did tentatively assign it as ‘identified’, it did not quite fulfil our set requirements. To appease our doubts, 

we also checked the Orbitrap data. Here, the protonated molecule and fragment ion were found within the 

threshold of 5 ppm and the retention time differed by 0.1 min from the standard. The isotopic pattern fit was 

above the 60 % threshold and the library search score of 50 %, above the threshold set. Therefore, full 

confidence in identification was gained for this compound. Although identification could also have been 

possible by manually scouring the raw data, as the fragment ion was only just outside the given threshold, it 

was thought better to compare with the Orbitrap data. 

The mere fact that further information can be gleaned from these two instruments shows their 

complementariness. The European Directorate General for Health and Consumer Protection (SANCO) 

guidelines on analytical quality control and validation procedures for pesticide residue analysis in food and feed 

[39], which are also applied for environmental samples in the absence of specific guidelines for the 

environmental field, state that ‘confirmation is the combination of two or more analyses that are in agreement 

with each other’. The use of two HRMS instruments thus follows these SANCO guidelines, and as shown in 

Section 3.3 and Table 1, confirmation (i.e. identification) of numerous compounds is made. The examples given 
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thus demonstrate the complementary use of QTOF and Orbitrap in the suspect screening of PIDs in 

environmental and wastewaters. 

Conclusions 

In this paper, two LC-HRMS instruments (QTOF and LTQ-Orbitrap) used in different laboratories were used 

to screen for PIDs in samples of wastewater and surface water from Spain and Italy. A database of compounds 

frequently detected in water was used by both instruments, incorporating compounds of national significance. 

The samples were first investigated through the use of the manufacturer’s software (ChromaLynx or 

TraceFinder), which allowed the detection of various compounds and in some cases the positive identification 

with fragment ions. Following this strategy, up to 18 compounds were identified with fragment ions across 

both instruments, whilst 28 compounds were at least detected (only the most abundant ion present) across all 

samples. In particular cases where identification was not automatic using software, the raw data was manually 

investigated. This was only necessary for a few compounds and occurred when the compound was detected 

but could not be identified. There was no significant difference between the countries, the metamizole 

metabolite, 4-aminoantipyrine, being the only compound found solely in Spanish waters. 

The screening results obtained by QTOF MS and LTQ-Orbitrap MS were very similar, with the number of 

compounds detected/identified only differing by up to four across all samples. Although the objective of this 

work was not to compare the methods, rather the results in terms of detection and reliable identification, it is 

worth noting that the LTQ-Orbitrap was able to identify a few more compounds without having to manually 

search for fragment ions. On the whole, this paper shows that these powerful instruments, used in these 

configurations, are suitable for the detection and identification of numerous environmental contaminants in 

waste and environmental waters. The general agreement in data obtained will serve to validate the 

methodologies commonly used by our laboratories for qualitative screening of emerging contaminants in waters. 
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Electronic Supplementary Material 

 

The tables “List of Compounds” (Table S1),  Compounds search in Italian samples by Orbitrap (Table S2) and 

Compounds search in Spanish samples by Orbitrap (Table S3) are too large for this thesis, but are available in 

the online edition of this article: doi:10.1007/s00216-015-9063-x 

 

2.1 Reagents 

 

2.1.1 Illicit Drugs (for QTOF) 

 

In total, 11 illicit drugs and/or main metabolites were selected: amphetamine, methamphetamine, 3,4-

methylenedioxymethamphetamine (MDMA, or ecstasy), cocaine, benzoylecgonine (BE), 11-nor-9- carboxy-

Δ9-tetrahydrocannabinol (THC-COOH), heroin, morphine, 6-monoacetylmorphine (6-MAM), codeine and 

ketamine. Reference standards of these compounds were purchased from Cerilliant (Round Rock, TX, USA) 

and the National Measurement Institute (Pymble, Australia) as solutions in methanol, acetonitrile or as salt. 

HPLC-grade methanol (MeOH), HPLC-grade acetonitrile (ACN), ammonium acetate, formic acid (>98 %) 

and primary secondary amine (PSA, 40–60 μm) sorbent were acquired from Scharlau (Barcelona, Spain). 

HPLC-grade water was obtained by purifying demineralised water in a Milli-Q plus system from Millipore 

(Bedford, MA, USA). Standard stock solutions of each compound were prepared at 100 mg/L in MeOH or 

ACN. Intermediate solutions (10 mg/L) were prepared by diluting the stock solution ten times with MeOH. 

Infusion solutions of individual standards were prepared at a concentration of 1.5 mg/L in MeOH:water (50:50, 

v/v). Mixed working solution of 25μg/L containing all analytes was prepared from intermediate solutions by 

appropriate dilution with Milli-Q water. 

 

2.1.2 Illicit Drugs (for Orbitrap) 

 

Illicit drugs and metabolites analyzed were the following: cocaine and its metabolites benzoylecgonine, 

norbenzoylecgonine, norcocaine, and cocaethylene; amphetamine, methamphetamine, 3,4-

methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, or ecstasy), 3,4-

methylenedioxyethamphetamine (MDEA) and MBDB; ketamine, norketamine, dehydronorketamine; codeine, 

6-aceyl codeine; oxycodone, hydrocodone; morphine, morphine-3β-D-glucuronide, 6-momoacetylmorphine (a 

metabolite of heroin); 11-nor-9-carboxy-∆9-tetrahydrocannabinol (11-nor-9- carboxy-∆9-THC), the main 

metabolite of ∆9-tetrahydrocannabinol; and methadone and its main metabolite, 2-ethylidene-1,5- dimethyl-

3,3-diphenylpyrrolidine (EDDP). Reference standards of all the substances were acquired were acquired from 

Cerilliant Corporation (Round Rock, Texas, USA). The standards, available as solutions in methanol or 

acetonitrile (1. 0.4 mg/mL or 0.1 mg/ mL), were diluted to 10 ng/µL with methanol and stored at -20 °C in 
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the dark. Working solutions containing all the substances to be analyzed were prepared before each analytical 

run. 

 

2.1.3 Pharmaceuticals (for QTOF) 

 

The pharmaceutical standard mix was made from a combination of human and veterinary pharmaceuticals 

and/or main metabolites (in alphabetical order): 

 4-Acetylamino-Antipyrine, Acetaminophen, Alprazolam, Ampicilline, Atorvastatin, Azithromycin , 

Bezafibrate, Carbamazepine, Cefotaxime, Cephalexin, Chloramphenicol, Ciprofloxacin, Clarythromycin, 

Clenbuterol, Clindamycin, Cloxacillin, Diclofenac, Dicloxacillin, Enalapril, Enrofloxacin, Erythromycin A, 

Flumequine, Furazolidone, Gabapentin, Gemfibrozil, Ibuprofen, Irbesartan, Ketoprofen, Lincomycin, 

Lorazepam, Marbofloxacin, Moxifloxacin, Naproxen, Nalidixic acid, Norfloxacin, Ofloxacin, Olanzapine, 

Oxacillin, Oxolinic acid, Oxytetracycline, Pefloxacin, Penicillin G, Pipedimic acid, Piperacillin, Pravastatin, 

Roxythromycin, Salicylic acid, Spiramycin, Sulfadiazine, Sulfadoxine, Sulfamerazine, Sulfamethazine, 

Sulfamethoxazole, Tetracycline, Thiabendazole, Temazepam. Tiamulin, Trimethoprim, Valsartan, Venlafaxine. 

All standards were purchased from Across Organics (Geel, Belgium), Aventis Pharma (Madrid, Spain), Bayer 

Hispania (Barcelona, Spain), Cerilliant (Round Rock, TX, USA), Fluka (Buchs, Switzerland), Dr. Ehrenstorfer 

(Augsburg, Germany), Fort Dodge Veterinaria (Gerona, Spain), National Measurement Institute (Pymble, 

Australia), Riedel-de Haën (Seelze, Germany), Sigma Aldrich (St Louis, MO, USA), Vetoquinol Industrial 

(Madrid, Spain), and Witega (Berlin, Germany). All reference materials had purities higher than 98% (w/w), 

except for marbofloxacin and pefloxacin, which had purities higher than 93%. 

The standard stock solutions of each compound ranged between 19 and 1200mg/L, prepared in MeOH or 

ACN. These compounds were separated into 6 separate intermediate working mixtures of 5mg/L. Prior to 

analysis, a working standard mixture of 50μg/L was made from the intermediate solutions by diluting with 

water.  

 

2.1.4 Pharmaceuticals (for Orbitrap) 

 

The following pharmaceuticals were included in the standard mix: Acetaminophen, Atenolol, Atorvastatin, 

Bezafibrate, Carbamazepine, Ciprofoxacin, Clarythromycin,   Diazepam, Diclofenac, Enalapril, Erythromycin 

A, Furosemide, Gemfibrozil, Hydrochlorothiazide, Ibuprofen, Ketoprofen, Lincomycin, Naproxen, Ofloxacin, 

Omeprazole, Oxytetracycline,  Ranitidine,  Spiramycin, Sulfamethoxazole.   

 

All reference standards were purchased from Sigma-Aldrich (Steinheim, Germany), ICN Biochemicals 

(Meckenheim, Germany) or Glaxo SmithKline (Philadelphia, USA); clarythromycin and omeprazole were 

obtained from pharmaceutical preparations for intravenous injection, respectively, from Abbott, Latina, Italy 
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(Klacid® i.v. 500 mg) and Malesci, Florence, Italy (Omeprazen®, 40 mg). All the reference standards were 

stored at 4 ◦C. 

 

Standards were dissolved in methanol (except those for intravenous injection that were dissolved in saline) up 

to a concentration of 1 mg/mL and subsequently diluted to 10 ng/L (stock solutions). Three standard mixtures, 

containing all the pharmaceuticals to be analysed, were prepared before each analytical run by diluting stock 

solutions in methanol. The stock solutions of ciprofloxacin, ofloxacin, omeprazole, oxytetracycline and 

sulfamethoxazole were renewed monthly because of their limited stability. Purity of the stock solutions was 

checked before each analytical run by HPLC–MS–MS. All stock solutions were stored at −20 ◦C in the dark. 
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2.2.3 Scientific Article 4 

FACILITATING HIGH RESOLUTION MASS 

SPECTROMETRY DATA PROCESSING FOR SCREENING 

OF ENVIRONMENTAL WATER SAMPLES: AN 

EVALUATION OF TWO DECONVOLUTION TOOLS 

Richard Bade, Ana Causanilles, Erik Emke, Lubertus Bijlsma, Juan V. Sancho, Felix 

Hernandez, Pim de Voogt 

Submitted to Science of the Total Environment  
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Facilitating high resolution mass spectrometry data processing for screening of environmental water 

samples: An evaluation of two deconvolution tools 

Richard Badea,1, Ana Causanillesb, Erik Emkeb, Lubertus Bijlsmaa, Juan V. Sanchoa, Felix Hernandeza, Pim de 

Voogtb,c* 

a Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellón, 

Spain.  

b KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB, 

Nieuwegein, The Netherlands 

c Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE, 

Amsterdam, The Netherlands 

* Corresponding author: w.p.devoogt@uva.nl Tel.: +31 20 5256565; fax: +31 20 5257431 

1 Visiting researcher at KWR Watercycle Research Institute 

 

Abstract 

 

A screening approach was applied to influent and effluent wastewater samples. After injection in a LC-LTQ-

Orbitrap, data analysis was performed using two deconvolution tools, MsXelerator (modules MPeaks and MS 

Compare) and Sieve 2.1. The outputs were searched incorporating an in-house database of more than 200 

pharmaceuticals and illicit drugs or ChemSpider. This hidden target screening approach led to the detection of 

numerous compounds including the illicit drug cocaine and its metabolite benzoylecgonine and the 

pharmaceuticals carbamazepine, gemfibrozil and losartan. The compounds found using both approaches were 

combined, and isotopic pattern and retention time prediction were used to filter out false positives. The 

remaining potential positives were reanalysed in MS/MS mode and their product ions were compared with 

literature and/or mass spectral libraries. The inclusion of the chemical database ChemSpider led to the tentative 

identification of several metabolites, including paraxanthine, theobromine, theophylline and carboxylosartan, 

as well as the pharmaceutical phenazone. The first three of these compounds are isomers and they were 

subsequently distinguished based on their product ions and predicted retention times. This work has shown 

that the use deconvolution tools facilitates non-target screening and enables the identification of a higher 

number of compounds.  

 

Keywords: Non-target screening, peak-picking, hidden target screening, software, high resolution mass 

spectrometry, aquatic environment   
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Introduction 

The investigation of emerging contaminants has become prevalent in analytical environmental chemistry circles. 

The use of pharmaceuticals, personal care products and illicit drugs is increasing worldwide, due to the growing 

population and the rise in available products and the amount of these contaminants entering the aquatic 

environment is of concern (Fatta-Kassinos et al., 2011). There is no blanket removal process able to be 

undertaken by wastewater treatment plants (WWTPs) for all compounds, leading to poor removal rates and 

detection of many of these compounds in effluent wastewaters (EWW) and consequently in surface waters 

(Bijlsma et al., 2012; Luo et al., 2014; van der Aa et al., 2013).  

High Resolution Mass Spectrometry (HRMS) instruments, such as Time of Flight (TOF) and Orbitrap have 

revolutionized the investigation of emerging contaminants in the aquatic environment due to their high 

sensitivity in full scan mode, their increased mass accuracy and the possibility to distinguish the isotopic pattern. 

HRMS instruments have the ability to screen for unknowns due to exact mass measurements and these are 

unique characteristics compared to other mass spectrometry instruments. Hybrid systems i.e. HRMS 

hyphenated to a quadrupole or linear ion trap (LTQ), such as the LTQ-Orbitrap, combines the tandem mass 

spectrometric capability associated with the LTQ with the high mass resolving power (up to 100,000 FWHM) 

and mass accuracy capability of the Orbitrap (de Voogt et al., 2011; Makarov and Scigelova, 2010). These hybrid 

configurations based on HRMS allow reliable interpretation of MS/MS spectra and are very valuable when 

dealing with complex environmental matrices, such as wastewater, where co-elution of analytes with matrix 

interferences can result in ambiguous peaks (Hogenboom et al., 2009). By utilising the ultra-high resolution 

capabilities, isobaric compounds can easily be differentiated (Hernández et al., 2012).  

In the literature, three different approaches are described for the detection and/or identification of compounds: 

target, suspect/post-target and non-target (Aceña et al., 2015; Bletsou et al., 2015; Gago-Ferrero et al., 2015; 

Hernández et al., 2015b, 2014, 2005; Krauss et al., 2010; Leendert et al., 2015). Target methods are limited to a 

restricted number of compounds, for all of which reference standards must be obtained and, therefore, 

information on the occurrence of other unknown, relevant micropollutants may be missed. Suspect screening 

takes advantage of a database of “known” compounds, including molecular formulae, fragmentation and 

retention time, which can then be computationally correlated to spectral HRMS data to give potential positive 

compounds. As the concept of suspect screening implies that reference standards are not necessarily available, 

the tentative identification of potential positives needs to be confirmed by the use of reference standards (and 

MS/MS injections, if required) in a final step.  

The third, non-target, approach is of increasing interest but notoriously difficult to undertake, as, strictly 

speaking, no a priori information is available  (Krauss et al., 2010; Schymanski et al., 2014b; Zedda and Zwiener, 

2012). Even with the help of automated peak-picking software, thousands of peaks can be detected in an 

individual sample (Hug et al., 2014; Kern et al., 2009). Consequently, subsequent steps must then be made to 
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reduce the number of peaks to a more manageable number, including molecular formula derivation, isotopic 

pattern, mass defect analysis and retention time prediction (Gago-Ferrero et al., 2015; Helbling et al., 2010; 

Kind and Fiehn, 2007). Further confidence in the “potential positives” remaining can be gained through the 

use of fragmentation in a subsequent MS/MS injection and comparison with in silico fragmentation and/or 

mass spectral libraries (Bletsou et al., 2015; Herrera-Lopez et al., 2014; Hug et al., 2014; Little et al., 2012), with 

the latter referred to as “hidden targets” (Letzel et al., 2015). In these situations, it is of prime importance and 

for ease of the analyst to have software capable of fulfilling most (if not all) of these steps automatically. Most 

manufacturers have software specific for their instrument and data, which can automatically extract analytes of 

interest from the raw data, to facilitate suspect screening approaches. However, despite the tremendous 

advances in software for metabolite/transformation product detection and further non-target work, sometimes 

not all required information is available in one platform, leading users to manufacturer-independent software, 

such as the Eawag open-source R-code packages enviMass, enviPick, nontarget and RMassBank (Schollée et 

al., 2015; Schymanski et al., 2014a) which can enable the incorporation of additional parameters, such as the 

steps outlined above. In spite of these problems, non-target screening is necessary to identify new or unknown 

relevant pollutants, which is why efforts need to be made in developing proper software and efficient 

identification tools. 

This work portrays the combination of non-target data processing and hidden target searching of environmental 

water samples after injection in an LC-LTQ-Orbitrap. Two computational programs were utilized: MsXelerator 

(MsMetrix) and Sieve 2.1 (Thermo Scientific). An in-house database of more than 200 pharmaceuticals, 

personal care products and illicit drugs was incorporated in both programs. Additionally, Sieve 2.1 was used in 

combination with the ChemSpider search feature. The main objective was to demonstrate the utility and 

additional value of these software packages for screening.  This led to the detection of numerous compounds 

across both programs. The compounds detected by both methods were then reinjected to obtain MS/MS 

fragmentation, leading to the tentative identification of 24 compounds. Ultimately, this work shows that the 

combined use of two deconvolution tools combined with two hidden target screening approaches provides 

more information than either one used individually. 

2. Materials and Methods 

2.1 Reagents  

HPLC-grade methanol (MeOH), and formic acid (>98 % w/w) were purchased from Mallinckrodt Baker 

(Deventer, The Netherlands). The ultrapure water was obtained by purifying demineralized water in a Milli-Q 

system from Millipore (Bedford, MA, USA). SPE cartridges used were Oasis HLB 3 mL (60 mg) from Waters 

(Milford, MA, USA). Polytyrosine-1,3,6 standard used for mass axis calibration was purchased from Cs Bio Co. 

(Menlo Park, CA, USA). Mixed cellulose ester membrane filters (0.45 μm) were purchased from Whatman 

(Dassel, Germany). 
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2.2 Water samples and extraction procedure 

Seven influent wastewater (IWW) and seven effluent wastewater (EWW) 24-hour composite samples were 

collected over seven consecutive days in March 2014. They were stored in high density polystyrene bottles, 

immediately centrifuged and stored in the dark at -20°C.  Analyses were performed as soon as possible after 

collection in order to keep biotic or abiotic degradation to a minimum (Llorca et al. 2014).     

A solid phase extraction (SPE) step was applied prior to analysis to pre-concentrate the samples. All samples 

were filtered through a mixed cellulose ester membrane filter (0.45 μm). SPE was performed using Oasis HLB 

cartridges (60 mg). The water samples (EWW 100 mL, with IWW four times diluted (i.e. 25 mL sample diluted 

to 100mL by adding Milli-Q water)) were loaded onto the cartridges and reconstructed in 1 mL of 10:90 

MeOH:H2O after elution with MeOH (5 mL). A procedural blank was also made, following the steps above 

but using Milli-Q water. Analyses were performed by injecting 20 μL of the final extract (in triplicate) into the 

LC-LTQ FT Orbitrap.  For further information on the SPE procedure, see (Hernández et al., 2015a).   

2.3 Liquid Chromatography  

The HPLC system, consisted of a Surveyor auto sampler model Plus and a Surveyor quaternary gradient HPLC-

pump (Thermo Fisher Scientific, Breda, The Netherlands). Chromatographic separation of the compounds was 

made using an XBridge C18 column (150 mm × 2.1 mm I.D., particle size 3.5 µm) (Waters). The pre-column 

used was a 4.0 mm × 2.0 mm I.D. Phenomenex Security Guard column (Bester, Amsterdam, the Netherlands). 

The analytical column and the guard column were maintained at a temperature of 21ºC in a column thermostat. 

A gradient was used at a constant flow rate of 0.3 mL min−1 using Milli-Q water (Solvent A) and MeOH 

(Solvent B) both with 0.05% formic acid. The percentage of organic modifier (B) was changed linearly as 

follows: 0 min, 5%; 40 min, 100%; 45 min, 100%; 47 min, 5%. Between consecutive runs, the analytical column 

was re-equilibrated for 5 min. 

2.4 LTQ-FT Orbitrap mass spectrometry 

An LTQ FT Orbitrap mass spectrometer (Thermo Electron, Bremen, Germany) was used. The LTQ part of 

this system was equipped with a Heated Ion Max Electrospray Ionization (HESI) probe and operated in the 

positive ion mode. The conditions were: source voltage 3.0 kV, heated capillary temperature 300ºC, vaporizer 

temperature 350ºC, capillary voltage 13 V and tube lens 70 V. Products ions were generated in the LTQ trap 

at a normalized collision energy setting of 35% and using an isolation width of 2 Da. 

Full-scan accurate mass spectra (mass range from 50 to 1300 Da) were obtained at a mass resolution of 60,000. 

The total cycle time depends upon the resolution; at the selected resolution the total cycle time is 0.5 s. The 

instrument was initially set to operate in full-scan (‘survey’) mode with accurate mass measurements. When an 

ion exceeded a preset threshold, the instrument switched to product-ion scan mode in the ion trap part. Further 

details on instrument operating conditions can be found elsewhere (Bijlsma et al., 2013) 
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All data were acquired and processed using Xcalibur version 2.1 software. A second MS/MS injection was 

made by incorporating an inclusion list of masses (see Supporting Information (S.I.) Table S1 for list) with a 

retention window of ±2 minutes and collision energy of 35%. Since MS/MS fragmentation was carried out in 

the ion trap, only nominal mass was measured.  

Mass axis calibration was performed with every batch run just prior to starting the batch by using flow injection 

of a polytyrosine-1,3,6 solution ([M+H]+ 182.01170/508.20783 and 997.39781) at a flow rate of 10 µL min−1 . 

2.5 Settings of Deconvolution tools  

MsXelerator (MsMetrix) 

MS Compare and MPeaks are modules within MsXelerator. MS Compare is specifically designed for comparing 

MS spectra, whereas the MPeaks module picks peaks, with the “keep largest C13 peaks only” and the “peak 

cluster” algorithms used to help discard some, the latter performing componentization which groups together 

all peaks (i.e. isotopes and adducts) arising from a single retention time. All samples were uploaded individually 

and later investigated as triplicates, corresponding to the three triplicate injections of each sample. Procedural 

blank samples were initially processed using the optimized software settings (see below) to subtract identical 

peaks from each wastewater sample. 

The “peak picking”  was carried out by MPeaks on each individual sample using the following parameters and 

values: Base peak width =11 (arbitrary units); spike width = 5 scans; peak separation = 5 scans; peak threshold 

= 0.5% (vs. largest peak); smoothness threshold = 0.65%, signal/noise ratio = 20. The sensitivity value, which 

helps the user find more or less sensitive parameters for the previous three parameters, was set a relatively low, 

at 2 (out of a maximum setting of 6). The peaks picked using these parameters were further reduced by only 

keeping peaks relating to an [M+H] + charge state.   

 Using the second module, MS Compare, all samples were subjected to the following LC/MS settings (in 

accurate mass mode) of the module for peak picking across multiple samples: No baseline correction; FWHM 

(scans) = 3 (min) - 40 (max); min peak height = 10,000 counts; delete spikes; m/z range: 100-650; Max. shift 

between peaks for grouping: 20 scans; Time window for XIC: 0.25min; Mass accuracy: 10 ppm.  

.  

Sieve 2.1 (Thermo Scientific) 

The “control compare trend” feature of Sieve 2.1 (Thermo Scientific) was used with the following parameters: 

peak intensity threshold = 250,000 (62,500 for IWW); m/z range = 100-650; m/z width = 10ppm; retention 

time range = 3-40 minutes; maximum number of frames = 5,000; frame time width = 1.00 minute; align bypass 

= true. For the hidden target screening, either the database used in the analyses of MPeaks and MS Compare 

or ChemSpider was incorporated. 
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2.6 General workflow 

The general workflow followed in this work (pictorialized in Figure 1) falls into the “hidden target” area of 

non-target screening, hypothesized by Letzel et al. (Letzel et al., 2015), wherein non-target techniques (i.e. peak 

picking) are originally applied, but a database (i.e. in-house database or ChemSpider) is used for identification.  

All samples were injected in triplicate and the data were processed with the different software packages of 

MsXelerator or Sieve 2.1. Only peaks in all three injections were further investigated. This resulted in a list of 

chromatographic peaks, based on the accurate masses of their protonated molecules. To gain a list of potential 

positives, two hidden target identification methods were used: 1) an in-house database, containing more than 

200 parent compounds and metabolites and the online database ChemSpider. False positives were manually 

removed after investigating the isotopic pattern (for the characteristic patterns of sulfur- and chlorine-

containing species) and retention time prediction. A final “target list” was investigated by reinjecting the samples 

in MS/MS mode, to get product ions. Fragmentation was then compared with online databases and literature, 

which allowed the tentative identification of several compounds. 

 

Figure 1: Workflow for screenings using the deconvolution tools MsXelerator and Sieve. All orange levels represent specific identification 

confidence levels 

Potential Positive List

LC-LTQ-Orbitrap-MS

Hidden target screening
In-house database

ChemSpider

Non-target data processing
Software: MsXelerator (Mpeaks

and MS Compare) and Sieve

Remove false positives: retention
time prediction, isotopic pattern

Detected (Target List)

Reinject MS/MS 

Compare fragmentation with
mass spectral databases/literature

Tentative Identification



 Chapter 2: Suspect and Non-Target Screening 

 

    151 

MPeaks and MS Compare are modules within MsXelerator. Procedural blank samples were initially processed 

using the optimized software settings (Section 2.5) to subtract identical peaks from each wastewater sample. 

MS Compare is specifically designed for comparing MS spectra, whereas the MPeaks module picks peaks, with 

the “keep largest C13 peaks only” and the “peak cluster” algorithms used to help discard some, the latter 

performing componentization which groups together all peaks (i.e. isotopes and adducts) arising from a single 

retention time.  

Sieve 2.1 combines the power of the two modules from MsXelerator as described above. After an initial peak-

picking process using the settings described in Section 2.5, it compares MS spectra of the procedural blank 

samples and the studied wastewater samples. Only compounds with an m/z between 150 and 500, and only 

protonated molecules ([M+H]+) were considered. The list of potential positives were then search by either the 

in-house database or ChemSpider, which were incorporated in the software. The results of the ChemSpider 

search were exported into Microsoft Excel, and positive “hits” were considered based on their mass error (< 2 

ppm), and if the compound commercially existed i.e. hits which only represented chemical formula were 

excluded. 

3. Results and Discussion 

In this study, in order to show the progression through confidence levels of identification, the terminology 

proposed in the literature by Hernández et al. (Hernández et al., 2015) and Schymanski et al. (Schymanski et al., 

2014) were followed. It must be noted that potential positives and detected compounds, differentiated in this 

work, would both be level 3 tentative candidate in the terminology of Schymanski et al. The final, tentatively 

identified compounds are of a higher confidence level (level 2a). However, in order to have total confirmation 

(level 1), reference standards are necessary. As no reference standards were utilized in this work, this level could 

not be attained. 

3.1 Optimization of deconvolution tools 

All samples were injected and processed in triplicate, which were compared together, with only peaks in all 

three injections being further investigated.  Procedural blank samples were processed first, to subtract identical 

peaks from each subsequent IWW and EWW sample.  

The m/z range of MS Compare was made quite narrow as the compounds of interest in this study and in the 

in-house database (small pharmaceutical/drug molecules) would be within that range. The retention time range 

was reduced just to 3-40 mins to reduce the likelihood of erroneously detecting species that elute very early and 

late due to the high/low ratio of organic modifier, with the vast majority of all peaks in the total ion 

chromatogram falling within this range. In spite of the known mass accuracy capability of the Orbitrap, the 

mass accuracy was set at 10ppm to ensure that no compound would be missed. After this processing, a list of 
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masses common within each triplicate set was made, with compounds being detected using the same peak 

peaking parameters and database used in the final step of the MPeaks analysis. 

Sieve 2.1 used the same m/z range, m/z width and retention time range as MS Compare for better ease of 

results comparison. The peak intensity threshold was originally set quite high for both IWW and EWW samples, 

but it was later found that IWW gave fewer peaks, possibly due to the complexity of these samples and stronger 

matrix effects, mostly leading to ionization suppression. The threshold was thus reduced to one quarter to 

account for this. The maximum number of components was raised to 10,000 to ensure that no compounds 

would be missed, leading to more than 5,000 components being detected in the IWW and EWW samples (Table 

1). These were reduced by including compounds with only a m/z 150-500 and [M+H]+ =1.  The in-house 

database used by the previous two modules within the “Accurate Mass Identification Parameters” of Sieve was 

then used to gain a list of potential positives.  

The ChemSpider database (with 10ppm mass accuracy threshold) was also used within Sieve and was begun 

after the initial component optimization was completed (Figure 2). The threshold was made quite high, for 

optimal “hidden target” analysis, where the detected peaks should correspond to compounds which are 

commonly and/or highly used. The peak lists of both IWW and EWW results with all data pertaining to mass 

error, m/z and intensity were exported into Microsoft Excel. From these lists, several thresholds were set and 

outlying peaks removed: only compounds between m/z 150-500; only [M+H]+; mass error under 2.0ppm; all 

“hits” just representing a chemical structure, rather than a generic/known name. This final step is rather 

pragmatic but makes for a more optimal non-target screening, where the remaining compounds should be the 

more common and/or highly used, as emphasized by having a high intensity threshold. However, this could 

lead to some less intense peaks being missed and not noted as a possible emerging contaminant in the 

environment. 

Table 1: Number of components left after each step of the Sieve hidden target identification approaches. 

Step IWW components EWW components 

1. 6690 5091 

2. 5158 3528 

3. 2014 2175 

4.  18 16 

NON-TARGET SCREENING 

Number of distinct m/z (total number of compounds) 

5. 239 (437) 441 (677) 

6. 166 (362) 308 (543) 

7. 100 (150) 64 (108) 

Final 18 8 
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Figure 2: Sieve workflow for the two hidden target identification approaches.  

3.2 Identification with in-house database 

Both programs incorporated an in-house database of more than 200 pharmaceuticals, illicit drugs and 

metabolites (Table S3) to get a list of potential positives. All samples were first processed with MsXelerator 

(modules MPeaks and MSCompare) and Sieve 2.1 using the parameters outlined in Section 2.5. Table 2 shows 

the compounds detected by each.  

There was very little difference between the compounds found with Sieve and MS Compare, while MPeaks 

detected somewhat fewer compounds. This could be due to their apparent uses: MPeaks is for pick-peaking, 

MS Compare for comparing samples, while Sieve does both, resulting in the latter two have more similar results. 

The fact that all compounds detected by MPeaks were also found with MS Compare leads to the preferential 

use of the latter module for screening. However, by optimizing the peak-peaking parameters of MPeaks, 

specifically the sensitivity value, this module could also be of future use in suspect and/or non-target screening.  

Two methods were used to remove potential false positive peaks: isotopic pattern (for chlorine- and sulfur-

containing species) and retention time prediction. Only three of the above compounds (losartan, 

sulfamethoxazole and temazepam) had a chlorine or sulfur atom, giving rise to a characteristic isotopic pattern. 

1. Initial peak picking

2. m/z 150-500

3. [M+H]+ only

4. Database search 5. ChemSpider search

6. Mass error <2ppm

7. Generic/known name

Potential Positives
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Extracted ion chromatograms were extracted from the initial full-scan data of the Orbitrap and investigated 

manually. Both sulfamethoxazole and losartan showed the characteristic isotopic pattern, while temazepam did 

not. Temazepam was thus considered as a false positive and removed from further investigation. 

Table 2: All compounds detected (in at least one sample) by each program following suspect screening.  

Compound IWW  EWW 

 Sieve MSCompare Mpeaks  Sieve MSCompare Mpeaks 

4-acetylamino 

antipyrine 

       

4-formylamino-

antipyrine 

       

Acetaminophen        

Benzocaine        

Benzoylecgonine        

Caffeine        

Carbamazepine        

Cocaine        

Cotinine        

Gemfibrozil        

Ibuprofen        

Irbesartan        

Ketoprofen        

Lidocaine        

Lincomycin        

Losartan        

Metoprolol        

Naproxen        

Phenacetin        

Phenytoin        

Salbutamol        

Sulfamethoxazole        

Temazepam        

Trimethoprim        

Valsartan        
 

 Detected by the program 

 Not detected by the program 
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A retention time predictor was made, based on artificial neural networks, as in (Miller et al., 2013; Munro et al., 

2015) and in our previous work (Bade et al., 2015a).    A retention time window of ±11% of total run time was 

used to find compounds to focus on, based on the window used in our previous work. Of the 25 potential 

positives investigated, four were removed using this method (benzocaine, ibuprofen, lincomycin and 

salbutamol) with predicted retention times between 11.5-16.8 minutes (24-36% of the total run time) away from 

the experimental times. While only four compounds were removed using this technique, it does simplify the 

identification process, and provides greater confidence in the compounds remaining. 

3.3 Identification with ChemSpider 

To make a more comprehensive analysis of the samples, an investigation was made using the ChemSpider 

database search feature of Sieve (Figure 2). The introduction of ChemSpider, while removing many components, 

had the added complication of isobaric and isomeric compounds, with most distinct m/z values having more 

than one compound associated, as seen in step 5 of Table 1.  To further refine this list, the mass error was 

limited to 2ppm (step 6) and all compounds having a formula-only entry were deleted, leaving just compounds 

with generic names (step 7), leaving up to 100 components in the samples. The literature was then searched to 

determine whether or not their detection in wastewater could be expected,  leading to approximately 30 

components and up to 34 isomeric/isobaric compounds in the samples. The literature search was made using 

the Scopus database, and search terms were the generic name of interest, “HRMS”, “LC”, “environment” and 

“water”. If there were no suitable papers concerning the generic name of interest, the compound was removed 

from further investigation. To determine which of the isomeric/isobaric compounds the compound within the 

sample was, the molecular formula was manually searched on ChemSpider, with the compound having the 

highest number of references deemed to be the compound of interest. Step 7 and the literature search, while 

pragmatic, were employed to ensure that the compounds detected were those of high 

consumption/prescription and could therefore be more easily identified in the later in silico fragmentation 

comparison. Finally, eighteen (including three isomers) and eight compounds were finally deemed as potential 

positives using this non-target approach for IWW and EWW samples respectively (Table S4).    

It is worth noting that by using this approach, most of the same compounds were found as with the in-house 

database (Table 2 and S4). With such great similarities between the set of potential positive compounds, only 

2-hydroxy carbamazepine, desvenlafaxine, adenosine, albendazole, phenazone and the three isomers 

theophylline, paraxanthine and theobromine required further investigation. Albendazole was the only 

compound that required an investigation of isotopic pattern as it contains one sulfur atom, which was 

inconsistent with the mass spectrum, leading to its removal as a false positive. The remaining seven compounds 

were subjected to retention time prediction based on the time given by Sieve 2.1, and all were found within the 

set ±11% of total run time retention time window.  
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3.4 Tentative identification  

Table 3: All compounds tentatively identified, together with retention time and fragment ions 

The parent ions were recorded at accurate mass (full-scan mode) while the fragment ions were recorded as part of a 
product ion scan in the ion trap part with nominal mass measurement.  
1 Information on fragment ions from Hernández et al (Hernández et al., 2015a) 
2 Information on fragment ions from MassBank (Horai et al., 2010) 
3 Information on fragment ions from Bade et al (Bade et al., 2015c)  
4 Information on fragment ions from Gómez et al (Gómez et al., 2010) 

 

The potential positives found using both hidden target screening approaches were combined, less those 

removed in previous steps, leaving 28 compounds to investigate (Table S1). These compounds were added to 

a target list and several IWW and EWW samples were reinjected to see if fragment ions from these compounds 

Compound m/z RT Fragment ions IWW  EWW  

        

4-acetylaminoantipyrine1 246.1234 9.43 228.1 204.1  X X 

4-formylaminoantipyrine2 232.1086 9.29 214.1 204.1  X X 

Acetaminophen3 152.0706 6.09 110.1 134.0  X X 

Adenosine2 268.1035 3.58 136.0    X 

Benzoylecgonine2 290.1385 12.22 168.1   X X 

Caffeine1 195.0876 10.4 138.1   X X 

Carbamazepine3 237.1022 22.56 194.1 152.9  X X 

Carboxylosartan1 437.1480 26.94 207.1 235.1 365.3 X X 

Cocaine2 304.1543 13.84 182.2   X  

Ketoprofen3 255.1014 16.78 237.1 209.1  X X 

Lidocaine1 235.1807 10.12 86.1   X  

Losartan1 423.1695 25.58 405.0 207.2 377.2 X X 

Metoprolol2 268.1908 13.71 218.1 191.1 159.1 X  

Naproxen3 231.1016 27.24 185.1   X X 

Paraxanthine2 181.0721 7.98 124.1   X X 

Phenacetin2 180.1030 17.22 138.1 110.0  X X 

Phenazone2 189.1022 12.15 161.2 146.1 131.1 X X 

Sulfamethoxazole2 254.0594 12.41 235.8 188.1 156.1 X X 

Theobromine2,4 181.0721 6.28 163.1 137.1 138.1 X X 

Theophylline2,4 181.0721 8.37 124.1   X X 

Trimethoprim2 291.1454 9.91 230.2 123.2 261.1 X X 

Valsartan2 436.2341 28.96 335.1 265.2 155.1 X X 
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could give further confidence to their identification. Metfusion and MassBank were used to help provide further 

confidence to the fragment ions. As has been mentioned in previous suspect and non-target studies (Agüera et 

al., 2013; Herrera-Lopez et al., 2014; Zedda and Zwiener, 2012), the use and improvement of mass spectral 

databases, such as MassBank, is extremely important in the tentative identification of compounds for which 

standards are unavailable. In the end, 22 compounds were able to be tentatively identified (Table 3) with at least 

one fragment ion, while the other six were removed as false positives due to having incorrect fragment ions. 

One interesting finding was the detection of three isomers (paraxanthine, theobromine and theophylline). These 

three isomers are all metabolites of caffeine, accounting for 80%, 11% and 4% of total metabolism, respectively 

(Miners and Birkett, 1996). Conventionally, isomeric compounds, separated chromatographically, would be 

distinguished by retention time. However, as no standards were available, the best way to order the peaks was 

with retention time prediction. The approach outlined in Section 3.3 predicted retention times of 8.48 min, 9.34 

min and 9.41 min for theobromine, paraxanthine and theophylline, respectively. While these times are 1-2 

minutes from the experimental retention time, they do provide an idea for the order of the isomers. To give 

more confidence to this information, the fragment ions were checked. As seen in Figure 3, the peak at 6.27 min 

had fragment ions of m/z 163 and 138 while the peaks at 7.98 and 8.37 both had one major peak of m/z 124.  

These fragment ions were checked and compared with MassBank and the literature (Bianco et al., 2009; Gómez 

et al., 2010; Horai et al., 2010).. Theobromine was found to have fragment ions of m/z 163 and 138, while both 

paraxanthine and theophylline were found to have a main fragment ion of m/z 124. The losses leading to each 

fragment ion is defined in Figure 3. To differentiate the latter two, the initial retention time predictions led to 

paraxanthine being the larger peak at 7.98 min and theophylline the small peak at 8.37 min.  

While 22 compounds were tentatively identified using the workflow outlined throughout this paper, it must be 

noted that even incorporating the false positive removal strategies of retention time prediction and isotopic 

pattern as well as fragment ions, the final confirmation of the identity of compounds requires the use of 

reference standards.  Nevertheless, the addition of advanced deconvolution tools (MsXelerator and Sieve) to 

the HRMS data of the Orbitrap has been shown to be of great value, and the results show how far one can go 

without the need to purchase reference standards. The information obtained with this strategy circumvents the 

cost and problems associated with the storage and expiry dates of standards in the laboratories, as the purchase 

can be directed only towards those compounds that have been previously tentatively identified in the samples. 
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Figure 3: Tentative identification of theobromine (top left), paraxanthine (bottom left) and theophylline (bottom right), with chromatographic 

peaks (top right). The generic structure has been shown in the top right corner, where R1, R2 and R3 differ for the metabolites as follows: 

theobromine: R1 =CH3, R2 = CH3 and R3 = H; theophylline: R1 =H, R2 = CH3 and R3 = CH3; paraxanthine: R1 =CH3, R2 = H and 

R3 = CH3 
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Conclusion 

This work has shown that, following initial unbiased, non-target oriented deconvolution using two tools 

(MsXelerator and Sieve), allowed relevant peaks of interest to be attained. The complementary use of an in-

house database or ChemSpider facilitated detection and enabled the identification of more compounds than 

using just one of these databases.  

The combination of deconvolution tools and high resolution mass spectrometry, without the use of any 

reference standards, has enabled 22 compounds to be tentatively identified in environmental water samples. 

The majority of compounds that were identified in wastewater samples were pharmaceuticals, including the 

metabolites 4-formylamino antipyrine, 4-acetylamino antipyrine, theobromine, theophylline, paraxanthine and 

carboxylosartan.  

It is worth noting that the two hidden target approaches primarily found the same compounds, with some 

exceptions. Furthermore, when applying small databases it is often easier to analyse the raw data directly. 

Whereas, when a much larger database is incorporated, these software tools will facilitate searching as well as 

reducing processing time. With further improvements to these computational programs non-target analysis will 

become more enticing and easier for laboratories to use in everyday screening methods. 
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Supporting Information 

Table S3, “All compounds and respective m/z used for the suspect analysis” is too large for this thesis, 

however all other supporting tables are included here.  

Table S1: All target compounds used for final MS/MS analysis 

Compound m/z 

2-hydroxy-carbamazepine 271.1080 

4-acetylamino antipyrine 246.1234 

4-formylamino-antipyrine 232.1086 

Acetaminophen 152.0706 

Adenosine 268.1035 

Benzoylecgonine 290.1385 

Caffeine 195.0876 

Carbamazepine 237.1022 

Carboxylosartan 437.1480 

Cocaine 304.1543 

Cotinine 176.0939 

Desvenlafaxine 264.1958 

Gemfibrozil 250.1564 

Irbesartan 428.2320 

Ketoprofen 255.1014 

Lidocaine 235.1807 

Losartan 423.1695 

Metoprolol 268.1908 

Naproxen 231.1016 

Paraxanthine/Theobromine/Theophylline 181.0721 

Phenacetin 180.1030 

Phenazone 189.1022 

Phenytoin 252.0888 

Sulfamethoxazole 254.0594 

Trimethoprim 291.1454 

Valsartan 436.2341 
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Table S2: Non-target workflow for MPeaks, impact of each algorithm to the number of peaks remaining in each 

sample 

 

  

Samples Default parameters, less 

procedural blank peaks, 

charge state 1, across 

triplicate 

Keep largest 13C peak Cluster 

analysis 

Keep 

largest 

peak from 

cluster 

IWW 

1 502 500 459 292 

2 419 417 389 243 

3 415 415 389 238 

4 457 457 420 262 

5 418 417 385 236 

6 379 374 343 209 

7 482 481 445 267 

      

EWW 

1 277 276 250 182 

2 303 303 263 184 

3 415 415 360 227 

4 407 407 357 224 

5 378 378 323 210 

6 398 397 338 226 

7 660 658 576 339 
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 Table S4: Compounds detected in IWW and EWW using ChemSpider-lookup feature of Sieve 

Compounds detected in IWW Compounds detected 

in EWW 

2-hydroxy-carbamazepine Adenosine 

Benzoylecgonine Albendazole 

Caffeine Benzoylecgonine 

Carbamazepine Carboxylosartan 

Carboxylosartan Losartan 

Cocaine Paracetamol 

Desvenlafaxine Phenazone 

Ibuprofen Valsartan 

Lidocaine  

Losartan  

Metoprolol  

Naproxen  

Paracetamol  

Theophylline/Paraxanthine/ Theobromine  

Trimethoprim  

Valsartan  
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2.3 Discussion of Results  

All of the articles in this section exemplify the utility of suspect and/or non-target screening. As 

explained previously, suspect screening incorporates a number of compounds far larger than those 

available in target screenings. The big advantage of this strategy is that a much wider variety of 

compounds can be included and there is no need to initially have the reference standards available. 

Scientific Article 2 included a database of more than 1000 parent compounds and metabolites, while 

Scientific Articles 3 and 4 used a database of 107 and 250 parent compounds and metabolites, 

respectively. These databases contained compounds of diverse chemical families: drugs of abuse, 

antibiotics and both human and veterinary pharmaceuticals. While reference standards are commonly 

purchased to supplement and confirm tentatively identified compounds, the reliability of the tentative 

identification is high.    

The idea of suspect screening is simple: incorporate a database containing a huge number of 

compounds (as molecular formulae or exact mass and, when available, fragment ions) and use 

powerful software to match “hits” between the database and injected samples. However, this simple 

approach has vast consequences for environmental analytical chemists, especially, as it enables 

compounds for which reference standards are unavailable to be tentatively identified as well as low 

abundant species which may have been overlooked by a manual inspection. In Scientific Articles 2 

and 3, a QTOF instrument was used in MSE mode which allowed the simultaneous acquisition of high 

and low collision energy accurate-mass data. These simultaneous acquisitions can be visualised in 

ChromaLynx (within MassLynx), with nw-XICs at the m/z of all compounds in the database being 

performed automatically by the software (at low energy), and fragment ions at high energy.  The 

agreement between the software and the database (and sufficiently low mass error, set by the user) 

leads to the tentative identification of compounds. 

Scientific Article 2 focussed on the investigation of surface and wastewaters from Bogotá, Colombia. 

Samples were screened for pharmaceuticals belonging to different therapeutic groups, veterinary drugs, 

X-ray agents, PCPs (preservatives and UV filters), sweeteners, illicit drugs, as well as several 

metabolites. The compounds most frequently detected were the analgesics/anti-inflammatory drugs 

acetaminophen, diclofenac, ibuprofen, and lidocaine. The antibiotics clarithromycin and lincomycin, 

the angiotensin II antagonists valsartan and losartan, the anti-epileptic carbamazepine, the beta-

blocker metoprolol, the lipid regulator gemfibrozil, and the X-ray agent iopromide were also found. 

It is also interesting to note that the metabolites of carbamazepine 10,11-dihydro-10,11-dihydroxy and 
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benzoylecgonine (the main metabolite of cocaine) were also found. One fascinating aspect of this 

work was the implementation of a common fragmentation workflow for the identification of several 

metabolites of losartan (Figure 4 in Scientific Article 2) based on three chromatographic peaks 

sharing three m/z in their respective XICs: 207, 235 and 190. Closer inspection of these peaks led to 

the identities of two hydroxyl losartan metabolites as well as losartan carboxylic acid being elucidated.  

Scientific Article 3 dealt with the analysis of environmental and wastewaters from two countries 

(Spain and Italy) using two HRMS instruments (QTOF and LTQ-Orbitrap). A small database, similar 

to that used in Scientific Article 2, containing 107 pharmaceuticals and illicit drugs and metabolites 

was used in both instruments, to allow a wider scope for the screening, based on the different 

acquisition modes of the instruments. In general, more compounds could be detected (protonated 

molecule ([M+H]+) at accurate mass and retention time data when standard available) and identified 

(at least one fragment ion and [M+H]+ and retention time data when standard available) in the Spanish 

than Italian samples, with cotinine, gabapentin, oxazepam, temazepam and a metabolite of metamizole 

(4-aminoantipyrine), not identified in the Italian samples (Table 2, Scientific Article 3). Irbesartan 

(antihypertensive), valsartan (angiotensin II antagonist) and two antibiotics ofloxacin and 

sulfamethoxazole were the most commonly identified compounds in the wastewater samples of both 

Spain and Italy, while the illicit drug cocaine and its main metabolite benzoylecgonine as well as the 

addictive opioid painkillers morphine and codeine were also identified. Caffeine, irbesartan, valsartan 

and venlafaxine (antidepressant) were also found in a high enough concentration in surface water to 

be identified by at least one of the two instruments. When looking at the results of the two instruments, 

there was little difference between those compounds found, but there was a discrepancy in the number 

of compounds identified, which shows the complementary use of two HRMS instruments. As shown 

in Figure 2 of Scientific Article 3, the antihyperlipidemic bezafibrate could not be identified (i.e. 

only the [M+H]+ at a comparable retention time to the standard was found) in an EWW sample using 

the QTOF, due to its low concentration, while in the same sample after analysis with the  Orbitrap, 

three fragment ions were also found, leading to its identification.  

In Scientific Articles 3 and 4, an LTQ-Orbitrap was used for suspect and non-target screening. With 

this instrument, simultaneous acquisition of high and low energy data was impossible, due to the 

longer cycle time of the Orbitrap compared to the QTOF. Instead, the mass spectrometer operated 

under data-dependent-acquisition (DDA) mode during the complete chromatographic run, in which 

both MS and MS2 spectra were acquired simultaneously. The instrument was initially set to operate in 

full-scan (‘survey’) mode with accurate mass measurements. When an ion exceeded a preset threshold, 
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the instrument switched to product-ion scan mode in the ion trap part. However, this only meant that 

compounds of a certain (high) intensity would have product ions recorded, and only the protonated 

molecule would be seen for lower abundant compounds. Nevertheless, the exact mass capabilities of 

this instrument did lead to the tentative identification of some compounds (as a protonated molecule), 

which later could be examined in MS/MS mode for fragment ions. The MS/MS acquisition of this 

instrument was carried out in the ion-trap, and therefore only nominal mass measurements could be 

recorded for the product ions, which can lead to some erroneous tentative identifications (furthered 

below).  Even so, this instrument does hold distinct advantages, relating to its high resolving power 

(up to 100,000 FWHM) and MSn capability, which lends itself to non-target analysis.  

It must be noted that while tentative identifications do result in fairly high confidence in identity, 

without a reference standard, it is impossible to have total confidence. This is touched upon in 

Scientific Article 4, for which only tentative identification was possible as no reference standards 

were utilised in the study. In this article, the steps applied for removing possible false positives 

included mass error evaluation, isotopic pattern fit, retention time prediction before final fragment 

ion analysis after MS/MS fragmentation. In total, 22 parent compounds and metabolites were 

tentatively identified, primarily pharmaceuticals and antibiotics, but more interestingly, also phenacetin, 

a withdrawn painkiller - now seen as a cocaine adulterant, three alkaloid metabolites of caffeine 

(theobromine, theophylline and paraxanthine), the purine nucleoside adenosine and cocaine and its 

main metabolite benzoylecgonine (Table 3, Scientific Article 4). Although some uncommon and 

unexpected compounds were found using the non-target approach, the false positive removal steps 

explained above give high confidence to their eventual tentative identification.  

One interesting aspect that was not covered in Scientific Article 4 was the implications of the 

exclusion of benzocaine from further analysis after being outside the predicted retention time 

following the suspect screening. For the article, the ANN retention time prediction approach was used 

(Scientific Article 6), with a predicted retention time of 15.83 mins. A second retention time 

prediction analysis was performed using a logKow only approach (as in Scientific Article 5), which 

predicted benzocaine would have a retention time of 13.35 mins. Using a retention time window of 

±11% (±5.5mins) neither of these values are close to the experimental value of 4.81 mins.   

There was nevertheless some doubt over the removal of benzocaine, an anaesthetic also used as a 

cocaine adulterant and as retention time prediction is not perfect, benzocaine was included in the 

target list for MS/MS analysis, to ensure that it was a false positive. As seen in Figure 2.1, there was 
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only one main chromatographic peak corresponding to the protonated mass of benzocaine (166.0863 

± 5ppm) at 4.81. In the respective product ion spectra, there was one major fragment (m/z 120.1). 

Benzocaine was checked in MassBank, for a study using a 30V collision energy (closest to the 35V of 

this study) to see what the expected product ions are, and found to be 138.3, 120.1 (major), 94.1 and 

77.0. Although one fragment ion is in the MS/MS spectrum, there is not enough confidence to assign 

benzocaine as tentatively identified.  

 

Figure 2.1: Extracted ion chromatogram of m/z 166.0863 +/- 5ppm with respective mass spectra for the peaks at 4.81 min in EWW 

(left) and IWW (right). The fragment ions associated with the tentatively identified phenylalanine are shown in the mass spectra. 

As benzocaine was found following hidden target screening, the exclusion of it based on inconsistent 

fragment ions (combined with the predicted retention time data) is enough to totally disregard it for 

further investigation and accept it as a false positive. It was also not found in the subsequent Sieve 

hidden target analysis with the in-house database, possibly due to the relatively high intensity threshold 

used (250,000 for EWW and 62,500 for IWW) and the corresponding intensities of the peak of m/z 

166.0863 seen in Figure 2.1. Nevertheless, the ChemSpider strategy was followed to determine what 

the peak may have come from. With benzocaine excluded as the source of the peak of m/z 166.0863, 
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a search was made in the ChemSpider database, based on the molecular formula of C9H11NO2. This 

formula led to more than 1000 hits, and based on the number of sources, the best candidates were 

benzocaine and phenylalanine, an amino acid that is used in the biosynthesis of proteins. It is essential 

in humans, but is not synthesised by the body and must be obtained from the diet, so could plausibly 

be found in wastewater. Using the ANN model, a predicted retention time of 7.30 mins was found, 

within the set ±11% window. A search for this compound on MassBank showed that it has one major 

fragment ion at 120.1, along with a small fragment ion at 149.1. So, phenylalanine could be tentatively 

identified, based on these fragment ions. Although both benzocaine and phenylalanine have the same 

major fragment ion (120.1), but different structures (Figure 2.2), it is impossible that the same loss 

occurred in both compounds to give these ions. Further analysis of the structures led to the findings 

that in the case of benzocaine, a loss of ethanol occurred, while for phenylalanine, it was a loss of 

formic acid. This points out a limitation of performing MS/MS within an ion trap, where only nominal 

mass is given. Although ethanol and formic acid have the same nominal mass (46), their exact masses 

are 46.0419 and 46.0055, respectively, so if an exact mass fragmentation was made, it would have been 

much easier to determine which compound gave rise to the chromatographic peak. 

 

Figure 2.2: Structures of benzocaine (left) and phenylalanine (right) 

Phenylalanine does seem a more likely tentative candidate than benzocaine, based on the retention 

time and fragment ion data. However, a literature search revealed that phenylalanine has never been 

found in environmental waters, although, being a very common amino acid, its presence should not 

be discounted. Rather than conform to the “Matthew Effect” phenylalanine can be tentatively 

assigned as the m/z of 166.0863.  

Nevertheless, the conclusions from this investigation are three-fold: 

a) The retention time prediction correctly removed benzocaine as a false positive. 

b) The workflow followed in the article was sound, and correctly led to the removal of 

benzocaine following the hidden-target analysis. As phenylalanine was not also in the database, 
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it was not initially considered. However, an additional non-target approach led to its tentative 

identification. 

c) Without a reference standard, it is impossible to have complete confidence in the identification 

of a compound. Even with retention time prediction, fragment ions, and a comparative 

fragment ion spectrum, the lack of studies finding phenylalanine in environmental waters casts 

doubt over its identification.  

One further point regarding the method employed in Scientific Article 4 is the use of the number of 

sources to determine which isomer to investigate after the ChemSpider search. This was selected, as 

explained in the article, as a means to investigate highly consumed/more common drugs and 

pharmaceuticals, to focus on those of higher commercial importance. This is a known technique to 

limit the number of possible compounds to focus on, utilised in other non-target methods (Gago-

Ferrero et al., 2015; Hug et al., 2014; Little et al., 2012). It does simplify the non-target process, 

however in doing so, many “potential positive” compounds could be ignored, and, at the same time, 

some false positives could be included. These false positives are exemplified with the six compounds 

that made it all the way to the final MS/MS measurement, only to have no comparable fragment ions 

(2-hydroxy carbamazepine, cotinine, desvenlafaxine, gemfribrozil, irbesartan and phenytoin). 

Nevertheless, this article did show a way for a non-target (and hidden target) analysis, without the 

need for any reference standards, and from the steps employed, a high confidence in the tentatively 

identified compounds was gained.  

 

 

 

 

 

 

 

 

 



  

 

CHAPTER 3 

 

RETENTION TIME PREDICTION IN THE 

IDENTIFICATION OF EMERGING CONTAMINANTS 

IN THE AQUATIC ENVIRONMENT 

 

  



 

 

 

 



Chapter 3: Retention Time Prediction 

175 

3.1 Introduction 

The detection and identification of emerging contaminants in the aquatic environment is of increasing 

concern. The current technique of choice for an initial wide-scope screening for qualitative detection 

and identification is liquid chromatography coupled to high resolution mass spectroscopy (LC-

HRMS). As was explained in Chapter 2, there are three screening methods: target, suspect and non-

target. In a non-target and suspect screening, either a computationally derived or a manually inputted 

list of compounds, which contains the exact mass of the compounds of interest, is used as a basis for 

detection and subsequent identification. Ideally, there would just be one peak arising from the exact 

mass of the compound of interest in the extracted ion chromatogram (XIC), however, with thousands 

of organic compounds potentially present in the aqueous environment, there is a high chance that 

isobaric and isomeric compounds are also present in the same XIC, thereby complicating 

identification. Several approaches can be used to eliminate unwanted peaks, such as mass window 

filtering, mass defect analysis and isotopic pattern fit, however, this totally ignores the initial separation 

by LC, which is also an important parameter (Croley et al., 2012).  

Retention time (tR) prediction does take this important aspect into account, and therefore should be 

used as an additional means to gain confident identification of compounds. It is best incorporated at 

the beginning of the identification process, to aid in the removal of false positive peaks and is especially 

useful in the aforementioned scenario when more than one chromatographic peak is visible at a certain 

mass. In spite of the improvements in tR prediction, it is impossible to have an absolutely precise 

method, so a time window should be incorporated to aid in the identification of possible peaks of 

interest. The width of this window depends on the initial development and optimization of the 

prediction method used. For example, a simple approach consisting of only one molecular descriptor 

would generally have a lower accuracy than a more complex Quantitative structure-retention 

relationships (QSRRs) approach, necessitating a wider window.  

Liquid chromatographic tR prediction was pioneered by Kaliszan in the late 1970s (Kaliszan, 1977) but 

only in the past two decades has the evolution and capability of computational techniques enabled 

serious research. QSRRs represent a powerful tool in chromatography (Kaliszan, 1992), which 

correlate chromatographic parameters with molecular descriptors, thereby describing the analyte’s 

chemical structure (Giaginis and Tsantili-Kakoulidou, 2012). There are many different QSRR 

approaches, with linear solvent energy relationships (LSERs) and, lately, support vector machines 

(SVM), random forests (RF) and artificial neural networks (ANNs) the most popular.   
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The current work on LSERs is based on the research of Abraham et al.,  with the following equation 

representing LSERs for LC, which describes the phase transfer of a substance between two different 

phases (Abraham et al., 2004): 

Solute property = aA +bB +sS +eE +vV + c 

where solute property can be of any kind, such as logKOW and logP. A, B, S, E and V are compound 

descriptors, while a, b, s, e and v are phase descriptors describing the matrix/solvent interactions and 

c is the intercept of the equation (Ulrich et al., 2011). The terms aA and bB represent the hydrogen 

bond interactions, representing the acidity and basicity respectively. The term sS reflects the 

dipolarity/polarizability, eE is the excess molar refraction and vV is the McGowan volume.  The 

outcome of a LSER analysis is a set of regression coefficients which provide information about which 

solute–solvent interactions significantly affect the retention process. It should be mentioned that the 

regression coefficients are interrelated and do not carry independent information. This model is 

known to contribute primarily to the general understanding of a partition process and less to optimise 

separations, but is usually not accurate enough for prediction purposes (Héberger, 2007). Another 

major problem is that all values are needed and any missing value can be problematic (Livingstone, 

2003). 

SVM, RFs and ANNs have all been utilised and compared in numerous studies (Fatemi et al., 2010; 

Goudarzi and Shahsavani, 2012; Hancock et al., 2005; Héberger, 2007; Ibáñez et al., 2016; Shinoda et 

al., 2008), but no one can be considered distinctly superior. 

SVM are a group of supervised learning methods that can be applied to classification or regression 

and have gained popularity among computational chemists, particularly for drug design. The QSRR 

application of SVM regression, however, are rare, despite its potential as a viable alternative (Ivanciuc, 

2007). The main advantage seen for SVM (particularly over ANNs) is that the strong theoretical 

background provides a high generalization capability and can avoid local minima, i.e. it has the ability 

to accurately predict for new data (Shinoda et al., 2008). On the other hand, while its predictive 

capacity is great, for simple datasets, the solution can be overfitted (Ivanciuc, 2007). 

RF is a set of individual classification and regression trees which are combined to provide a prediction 

tool with high performance, introduced by Breiman (Breiman, 2001). In the RF algorithm, each tree 

is grown on a separate training set that is a bootstrap replicate of the original data. In each bootstrap 

sample, with the same length as the original data, some of the original data is repeated, and the left 

out samples are called ‘‘out-of-bag’’. To construct a tree, at each node, a small random subset of p 
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descriptors or explanatory variables (m < p) is chosen, and the best split of the feature space is done 

using only this subset (Goudarzi and Shahsavani, 2012). Each tree is then grown to the maximum size 

and is not pruned. It has been shown that as the number of trees increases, the test error always 

converges. By using many trees, RF have the ability to identify important variables and their 

relationship with the response. The number of trees, therefore, needs to be set sufficiently high to 

allow for this convergence as well as to identify the most important variables (Goudarzi and 

Shahsavani, 2012; Hancock et al., 2005). This randomness has the effect of building new trees with 

different structures, increasing the variety of relationships modelled within the forest, which in turn 

improves the overall predictive performance and makes it robust against overfitting. However, while 

RF are good for identifying main trends, it can lead to some points being poorly predicted (Hancock 

et al., 2005). 

ANNs mimic the neurons of the human brain’s way of working in acquiring knowledge from its 

environment, by “learning” from a set of case examples in the training phase (Giaginis and Tsantili-

Kakoulidou, 2012; Kaliszan et al., 2003).  There are three phases in the optimisation of ANNs: training, 

validation and blind. In the first, training phase, a list of appropriate molecular descriptors as well as 

the true output value is needed (i.e. retention time that will be later predicted). Simultaneously, a 

second dataset of case examples is used for verification and to evaluate the overall ANN predictive 

error. In this set, the true output values are not used for learning and the number of training cycles 

can be stopped by the user or when the software determines the measured error is at its minimum. In 

many cases, this is where the optimisation and development of the ANN would end, however, 

sometimes a third, blind test, dataset can be used, where the true output value is not needed, to test 

the predictive power of the network. The main disadvantage seen for ANN is a tendency for 

overfitting (i.e. giving a misleadingly accurate set of predictions) and the need to select variables in 

advance. (Goudarzi and Shahsavani, 2012; Héberger, 2007) 

While QSRRs sound quite straightforward in theory, in practice there are some key points to consider; 

with one crucial aspect being which molecular descriptors should be used and how they should be 

calculated (Héberger, 2007). While some techniques (SVM and RF) are able to incorporate variable 

selection as well as predictive analysis, ANN and simple linear regression require prior selection of 

variables.  Simplified molecular-input line-entry system (SMILES) was developed in the late 1980s as 

a way in which to easily transfer and encode molecular structures using line notation (Weininger, 

1988). Together with mol files (Dalby et al., 1992)  they have become one of the quintessential means 
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for gaining molecular descriptors of compounds from software such as Dragon (Talete S.R.L, 2013) 

and VCCLabs (Tetko et al., 2005).   

There are thousands of potential molecular descriptors, including physicochemical, topological, 

electro-topological and energy parameters that could be used for QSRR calculations, leading to 

difficulties in deciding which to use. Physicochemical descriptors are generally strongly correlated to 

retention, and are therefore more widely used as a starting point for retention time prediction, however 

they are often not experimentally available and predicted values differ widely (Livingstone, 2003). To 

eliminate a priori knowledge from impacting on the prediction capabilities, and to derive the most 

relevant molecular descriptors, various methods can be used, such as stepwise correlation and genetic 

algorithms (Pourbasheer et al., 2015; Shen et al., 2003). Barron et al have also looked into the impact 

of various descriptors in the calculation of a retention time prediction model, with logP and pKa 

expectedly the most important (Barron et al., 2009; Miller et al., 2013).  It is imperative to note that 

the descriptors found to be of the greatest influence will differ depending on the LC system, gradient, 

additives and column.  Therefore, all descriptors will have to be rechecked if any aspect of the LC 

methodology changes.  

In order to avoid these issues, and to have a simpler, albeit less precise, tR predictor, a single descriptor 

can be used together with retention time, such as logKOW, which is known to represent a  reasonably 

good model for retention of neutral compounds on C18 columns with methanol as the organic modifier 

(Kern et al., 2009). Kow itself is a complex property, which expresses the hydrophobicity of neutral 

organic chemicals as their octan-1-ol/water partition coefficient. Ideally, for a reversed-phase liquid 

chromatography system the capacity ratio (log k’) of a compound obtained with a mobile phase 

consisting of pure water would best represent its hydrophobicity (Braumann, 1986). It has been shown 

that the relationship between log k’ and the volume fraction (φ) of the organic fraction gives the 

following equation, which can then be used as an indicator of Kow (De Voogt et al., 2012): 

log k’ = log k0 -bφ 

The slope -b represents the decrease in retention of the solute as a function of increasing organic 

modifier content. This slope depends on the chromatographic conditions (type of column, chemical 

composition, temperature, back pressure, etc.), and it can be postulated that a log k’ value obtained 

on a C18 column with a methanol-water mobile phase could be used at single value of φ (de Voogt et 

al., 2012). The robustness of the relationship between C18 retention time and logKow is shown in the 
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use of C18 columns in the Organisation for Economic Co-operation and Development (OECD) 

Guidelines for the Testing of Chemicals for the estimation of LogKow(OECD, 2004).  

This simplistic approach linearly correlates the retention time and logKOW of the studied compounds, 

giving an equation that can be used to predict further compounds. The big advantage of using this 

approach is its simplicity to implement and that fewer compounds are needed for prediction. With 

the less precision associated with this method of retention time prediction, it is generally applied as an 

additional rather than stand-alone means of detection/identification. Nevertheless, its use as a means 

of retention time prediction is not necessarily worse than incorporating multiple descriptors.  

While research on tR prediction and the detection/identification of emerging contaminants in the 

aquatic environment has been made separately, the unification of these two topics is of great current 

and future interest. Currently, tR prediction is based on a laboratory’s own chromatographic system 

and is therefore not easily transferable. However, recently, Barron and McEneff have shown that 

ANNs can be used to successfully predict the retention times of more than 1000 structurally and 

chemically diverse molecules in a range of complex matrices (Barron and McEneff, 2016), while 

PredRet has been introduced as a community-sharing approach for tR prediction, which uses a direct 

mapping approach for the prediction of tR across different chromatographic systems  (Stanstrup et al., 

2015). This shows that the future is looking bright for this area and with computational and 

instrumental advances, this research will continue to flourish.  
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3.2 Scientific Articles 

This chapter includes two articles, “Critical evaluation of a simple retention time predictor based on LogKow as 

a complementary tool in the identification of emerging contaminants in water” (Scientific Article 5) and “Suspect 

Screening of Large Numbers of Emerging Contaminants in Environmental Waters using Artificial Neural Networks 

for Chromatographic Retention Time Prediction and High Resolution Mass Spectrometry Data Analysis” (Scientific 

Article 6). The first concerns the development and evaluation of a very simple retention time 

prediction method, based solely on logKow and retention time, while the latter incorporated a more 

complex artificial neural network (ANN) approach. 

Scientific Article 5 was envisaged as an example of how a research group could initially start 

investigating and using retention time prediction. It was not proposed to be a perfect predictor, rather 

a simple approach that any and every laboratory could use. All that is needed for this approach is 

reference standards and a reliable LC instrument.  Nearly 600 standards, including pesticides, human 

and veterinary pharmaceuticals, drugs of abuse and mycotoxins were used for this work, however, 

similar works have incorporated as little as 88 (Nurmi et al., 2012) and 92 (Kern et al., 2009) standards, 

with similar results. These standards were injected in an UHPLC-QTOF instrument and the logKOW 

values were searched on the freeware ALOGPS 2.1 (Tetko et al., 2005).  Three subsets were made to 

test the predictor: all compounds (n=595), pesticides (n=350) and non-pesticides (n=245), with the 

first two showing the greatest promise and were later used to test real samples. A comparison was also 

made with mass window to see whether reducing the mass window also reduces the number of peaks 

in the extracted ion chromatogram.  

Scientific Article 6 used a slightly smaller subset (544) of the standards of Scientific Article 5 and 

an alternative, QSRR method; employing artificial neural networks (ANNs). To test network 

performance, training (n=344), verification (n=100) and blind (n=100) sets were used. For all datasets 

(n=544), 85% of all compounds could be predicted within two minutes of the measured retention 

time, while this increased to 90% for the verification set (n=344) and 95% for the blind set (n=100). 

The accuracy for the blind set was very good, leading to further blind testing with metabolites and 

compounds for which no reference standards were available, which led to the tentative identification 

of eleven compounds. As with Scientific Article 5, an investigation was made into the number of 

peaks able to be disregarded after incorporating the retention time window.  

 

 



Scientific Articles 

 

182 

The results of the two studies in this section have been published: 

Critical evaluation of a simple retention time predictor based on LogKow as a complementary tool in 

the identification of emerging contaminants in water  R. Bade, L. Bijlsma, J. V. Sancho, F. Hernández, 

Talanta 139, 2015, 143-149. 

Suspect screening of large numbers of emerging contaminants in environmental waters using artificial 

neural networks for chromatographic retention time prediction and high resolution mass spectrometry 

data analysis R. Bade, L. Bijlsma, T. H. Miller, L. P. Barron, J. V. Sancho, F. Hernández, Science of 

the Total Environment 538, 2015, 934-941. 
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3.2.1 Scientific Article 5 

CRITICAL EVALUATION OF A SIMPLE RETENTION 

TIME PREDICTOR BASED ON LOGKOW AS A 

COMPLEMENTARY TOOL IN THE IDENTIFICATION 

OF EMERGING CONTAMINANTS IN WATER  

 
Richard Bade, Lubertus Bijlsma, Juan V. Sancho, Felix Hernández 

 

 

Talanta (2015) 139: 143-149  
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Abstract 

There has been great interest in environmental analytical chemistry in developing screening methods based on 

liquid chromatography-high resolution mass spectrometry (LC-HRMS) for emerging contaminants. Using 

HRMS, compound identification relies on the high mass resolving power and mass accuracy attainable by these 

analyzers. When dealing with wide-scope screening, retention time prediction can be a complementary tool for 

the identification of compounds, and can also reduce tedious data processing when several peaks appear in the 

extracted ion chromatograms. There are many in silico, Quantitative Structure-Retention Relationship methods 

available for the prediction of retention time for LC. However, most of these methods use commercial software 

to predict retention time based on various molecular descriptors. This paper explores the applicability and 

makes a critical discussion on a far simpler and cheaper approach to predict retention times by using LogKow. 

The predictor was based on a database of 595 compounds, their respective LogKow values and a 

chromatographic run time of 18 minutes. Approximately 95% of the compounds were found within 4.0 minutes 

of their actual retention times, and 70% within 2.0 minutes. A predictor based purely on pesticides was also 

made, enabling 80% of these compounds to be found within 2.0 minutes of their actual retention times. To 

demonstrate the utility of the predictors, they were successfully used as an additional tool in the identification 

of 30 commonly found emerging contaminants in water. Furthermore, a comparison was made by using 

different mass extraction windows to minimize the number of false positives obtained.  

 

Keywords: Retention Time Prediction, Liquid Chromatography, Time-of-flight mass spectrometry, Water, 

Emerging Contaminants, Pesticides 
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1. Introduction 

Many environmental chemists have focused their research on “emerging contaminants” in water, which 

encompass a wide-range of compounds including drugs for health and personal care, flame retardants, illicit 

drugs and all kinds of transformation or by-products [1]. These compounds can have some detrimental effects 

on the environment [2] and it is therefore important to perform frequent monitoring on these compounds in 

order to know their concentrations and fate in water. 

High resolution mass spectrometry (HRMS), using analyzers such as Quadrupole Time-of-Flight (QTOF)-MS 

and Linear Ion Trap (LTQ) Orbitrap MS, has revolutionized screening of emerging contaminants [3], [4], 

[5] and [6]. It offers the possibility to investigate the presence of theoretically unlimited compounds once the 

analysis has been performed and data acquired, and considering their compatibility with the requirements of 

the chromatographic separation and MS ionization. Due to their high resolution, both hybrid instruments 

provide data with high mass accuracy and frequently allow tentative identification of compounds even without 

having reference standards [7] and [8]. 

Identification of the compounds detected is obviously facilitated when reference standards are available, as 

relevant information on retention time and fragment ions is included. However, it is also possible to perform 

screening without the need for reference standards, simply on the basis of a large database, where empirical 

formulae (i.e. exact mass) are the only information required. Post-target screening without standards (i.e. 

suspect) is becoming more and more common. Here, the exact mass of the compounds of interest are gathered, 

then searched and extracted from HRMS spectra, using a narrow mass window (20 mDa), in order to find 

potential positives [5], [7], [9], [10] and [11]. The increased resolving power of modern TOF and Orbitrap allows 

an even narrower mass window, reducing matrix interferences, leading to a cleaner chromatogram. Ideally, 

there would be a single peak in the chromatogram, coming from the suspect. However, in more complex 

environmental matrices, it is likely that there is more than one peak in the eXtracted Ion Chromatogram (XIC), 

arising from various isobaric or isomeric compounds, complicating the identification of the compound of 

interest. A variety of techniques can be used to aid in the detection/identification process, such as mass window 

filtering, mass defect analysis or isotopic pattern fit. 

With the high quality data obtained by HRMS, compound separation by liquid chromatography (LC) is 

sometimes overlooked, while it is also an important parameter [12]. Retention time prediction does take this 

LC aspect into account in the identification process and can therefore be a useful technique when performing 

a wide-scope screening. Reliable information on retention time can focus the identification process solely on 

those peaks that are in agreement with the predicted retention time, ignoring other false positives that may 

appear in complex matrix samples which do not correspond to the candidate under research. 
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There are several in silico, Quantitative Structure–Retention Relationship (QSRR) methods available for the 

prediction of LC retention times, used in a variety of research [13] and [14]. The principal aim of QSRR is to 

predict retention data from the molecular structure, using descriptors such as molecular mass, polar surface 

area, log P, molar polarisability and molar volume. Linear Solvation Energy Relationship (LSER) has been also 

proposed for retention time prediction. LSERs analyze any free energy related property by five fundamental 

solute parameters: the hydrogen bond acidity and hydrogen bond basicity, excess molar refraction, 

dipolarity/polarizability and the logarithm of the gas–hexadecane partition coefficient or the characteristic 

McGowan volume [14]. The major problem for LSERs is that all terms are needed and any missing value can 

be problematic [15]. While work with LSERs in this area is ongoing, Artificial Neural Networks (ANNs), a 

predictive computing technique, has shown itself as a promising retention time predictor [16]. 

In the presented work, a free and much simpler approach was tested using only LogKow for retention time 

prediction. By utilizing this predictor, we show a way to reduce the amount of time spent poring through 

chromatograms, with many peaks in the chromatogram able to be disregarded. A critical discussion is made on 

this predictor, showing the advantages and drawbacks. The usefulness of mass window filtering as a 

complementary tool to eliminate peaks not arising from the compound of interest is also evaluated in order to 

facilitate the identification process of emerging contaminants in water in wide-scope screening procedures. 

2. Experimental 

2.1. Reagents and chemicals 

A total of 595 reference standards were used in the development of the retention time predictor. This combined 

retention times of 311 and 284 individual standards and their retention times from an in-house database and a 

Waters database (Waters, Milford, MA, USA), respectively. See Table S1 for a list of all compounds used, 

retention time and LogKow. There were some duplicates between the two sets of standards, which were used 

to ensure the consistency in retention time (see Section 3.1 for more information). 

Details relating to the standards can be found elsewhere [17]. Retention times were obtained by injecting mixed 

working standard solutions (25 μg/L or 50 μg/L, diluted from mixed standard solutions in methanol or 

acetonitrile with water). 
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2.2. Water samples 

Four influent wastewater samples (24 h composite samples) were collected from different wastewater treatment 

plants (WWTPs) of Spain and Germany, in March, 2013. In addition, grab samples were taken from 11 surface 

waters from several points located in Spain and Colombia between November, 2010 and May, 2013. All these 

samples had previously been used in different studies performed at our lab using UHPLC–QTOF MS for their 

analysis. Sample treatment was based on solid phase extraction using polymeric Oasis HLB cartridges, which 

are able to retain organic compounds within a wide range of polarity. 

2.3. UHPLC–QTOF MS 

A Waters Acquity UPLC system (Waters, Milford, MA, USA) was interfaced to a hybrid quadrupole-orthogonal 

acceleration-TOF mass spectrometer (XEVO G2 QTOF, Waters Micromass, Manchester, UK), using a ESI 

(Z-Spray) interface operating in positive ion mode. The chromatographic separation was performed using an 

Acquity UPLC BEH C18 100× 2.1  mm2, 1.7 µm particle size column (Waters) at a flow rate of 300 µl/min. 

The mobile phases used were A = H2O and B = MeOH, both with 0.01% formic acid. The initial percentage 

of B was 10%, which was linearly increased to 90% in 14 min, followed by a 2 min isocratic period and, then, 

returned to initial conditions during 2 min. The total run time was 18 min. Nitrogen was used as drying gas and 

nebulizing gas. TOF-MS resolution was approximately 20.000 at full width half maximum at m/z 556. MS data 

were acquired over an m/z range of 50–1000, at 0.4 s scan time. A capillary voltage of 0.7 kV and cone voltage 

of 20 V were used. Collision gas was argon 99.995% (Praxair, Valencia, Spain). The desolvation temperature 

was set to 600 °C, and the source temperature to 135 °C. The column temperature was set to 40 °C. MS data 

was acquired in MSE mode, selecting a collision energy of 4 eV for low energy (LE) and a ramp of 15–40 eV 

for high energy (HE) [5] and [18]. 

2.4. Data processing 

MS data processing was performed manually on MassLynx v 4.1 (Waters Corporation), looking at the raw data 

in chromatogram view, initially with a mass extraction window of 20 mDa using the retention time predictor 

developed in this study. Later, different mass extraction windows (50 mDa, 10 mDa and 5 mDa) were also 

evaluated (see Section 3.3). All peaks above an intensity of 3000 were counted. 
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3. Results and discussion 

3.1. Development of retention time predictor 

A dataset of 595 compounds was used to initially prepare the retention time predictor. The retention times for 

the compounds from the “Waters” database were obtained using the same column but a slightly different 

gradient from the one described in this paper, however the 94 common compounds between the datasets were 

compared using a linear correlation on Excel (R2=0.9279). These compounds cover the LogKow range of −1 

to 8, therefore comprising the great majority of the LogKow range for the compounds under investigation. 

The equation from this correlation was used to convert all the Waters retention times to fit our in-house 

retention times (Fig. S1). The LogKow of each of these compounds was estimated using the freely available 

ALOGPS 2.1 software (VCCLAB, 2005 [19]). A linear correlation was again made to compare the LogKow 

and retention time (Fig. 1). 

 

 

Fig. 1: Correlation between retention time and LogKow for all compounds, with 95% confidence interval 

In a similar study, Nurmi et al. [11] investigated the relationship between LogKow and retention time to help 

reduce the number of candidates in a post-target screening method, using calculated LogKow values. A linear 

regression for 88 compounds was made, giving an R2 of 0.63, and a retention time window of 5 min over the 

chromatographic run of 16 min was used. Likening this work to the current, in spite of having a far larger 

dataset, the correlation coefficient does not differ markedly. Kern et al. [9] exploited this relationship in the 

analysis of transformation products (TPs) of organic contaminants. Specific compounds were used for the 

training set, with only standards that were estimated to be predominately neutral at an elution pH of 3 deemed 

acceptable, to reduce the number of false negatives for both neutral and ionic TPs as the latter are less retained 

than their corresponding neutral species. Nevertheless, the correlation for the 92 reference standards was very 
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good, with an R2 of 0.87. However, the current work is more wide-reaching, containing nearly 600 compounds 

of differing classes and physicochemical properties and is therefore expected to have a worse correlation. 

In order to improve this correlation, the 595 compounds were subdivided, not based on physicochemical 

parameters, solely on class, into two smaller subsets: pesticides and non-pesticides. The dataset initially 

contained pesticides, drugs of abuse, antibiotics, pharmaceuticals, veterinary drugs and mycotoxins. The vast 

majority of the compounds were pesticides (345 compounds), which made up one subgroup, while all the other 

compounds made up the other (250 compounds) (Figs. S2 and S3). 

The “pesticides only” grouping did make for a scarcely better correlation (R2=0.6947), while the “non-

pesticides” had a slightly worse correlation (R2=0.6518), compared with the overall correlation (R2=0.6704). 

Although these correlations have rather large variability (especially for “non-pesticides”), it was thought to 

compare the predicted retention time (made from the equations, where “x” is the LogKow, in each of the 

figures) with the actual retention time for each compound. It was expected that there would be some deviation 

between the experimental and predicted retention times because it is difficult for the algorithm used by the 

LogKow predictor (ALOGPS 2.1) to cope with complex molecules, leading to some inaccurate LogKow values. 

Table 1 shows the differences between the predicted and actual retention times for the three cases. 

Table 1: Comparisons between predicted and actual retention times 

RT window 

(± minutes) 

Prediction for all 

compounds (% of all 

compounds found within 

RT window) 

Prediction for subsets (% of all 

compounds found within RT window) 

 All (n=595) Non-Pesticides 

(n=250) 

Pesticides 

(n=345) 

0.5 18 15 30 

1 37 34 53 

1.5 55 49 68 

2 68 65 79 

2.5 81 73 86 

3 88 83 90 

3.5 92 89 93 

4 96 90 95 

4.5 97 93 96 

5 98 95 97 

 

In spite of the variability of the data, the retention times of approximately 95% of the compounds were found 

within 4 min of their actual retention time. In the case of the subsets, 79% of the pesticides can be found within 

2 min of their actual retention time, which is 14% better than for non-pesticides. 



 Chapter 3: Retention Time Prediction 

 

191 

From these results, it was thought to use ±2 min window (±11% of the chromatographic run) for use in real 

samples. The “pesticides only” predictor was selected for pesticides and “all compounds” for the other 

compounds, wherein approximately 80% and 70% of the compounds will be respectively found. 

This predictor was designed specifically for this precise chromatographic system, gradient and method. If 

applied to other separation systems, the correlation between LogKow and retention time for these particular 

compounds may differ widely. However, it is easy to adapt this retention time predictor to other systems using 

the methodology outlined in Section 3.1. Some groups have introduced a retention time index [6] to cope with 

this limitation. In order for a more complete predictor, training/validation sets comprising different 

compounds could be incorporated. Furthermore, the evaluation of different chromatographic conditions such 

as different columns and gradients could be carried out. 

3.2. Impact of experimental and predicted LogKow 

In an attempt to gain narrower retention time windows, a study was made on the impact of experimental versus 

predicted LogKow values. A study was made comparing the accuracy of predictive software, wherein ALOGPS 

2.1 was shown to be quite accurate and only differed from the measured values by up to 0.5 log units [15]. 

Software such as ALOGPS 2.1 is prone to systematic errors, especially for complex molecular structures, 

because correction factors for certain structural configurations might be missing [9]. To test the difference 

between experimental and predicted LogKow for the retention time predictors, “experimental” LogKow values 

were found for 280 of the pesticides in the Pesticide Manual [20] and for 52 drugs of abuse, antibiotics, 

veterinary drugs and pharmaceuticals on DrugBank [21]. 

Fig. 2 shows the difference between the experimental and predicted values for the 332 compounds at intervals 

of 0.1 log units. As seen in the figure, fewer than 2% (corresponding to 5 of the 332 compounds) had the same 

experimental and predicted LogKow. Cumulatively, 77% of the compounds had an absolute difference within 

1 log unit; however 10% still had a difference greater than 2 log units. 
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Fig. 2: Difference between experimental and predicted LogKow values and cumulative percentage of compounds within each differential interval. 

These findings alone show that while predicted values give a good estimate, the fact that some compounds had 

a difference more than two Log values shows that experimentally derived values are preferable for any latter 

retention time predictions. The 36 compounds whose values of experimental and predicted LogKow differed 

by greater than 2 log units were removed from the overall compound list to see the impact on the correlation 

coefficient. It was found that the R2 did not differ, with only a change from 0.6704 to 0.6737 following their 

removal (Fig. S4). 

The difference between experimental and predicted LogKow values had such little impact on the correlation 

between LogKow and retention time, which gives credence to the use of predicted values. Furthermore, 

experimental values are not possible for all compounds and predicted values open up the possibility to work 

with new emerging contaminants and TPs, which is of particular relevance when investigating organic 

micropollutants in waters. 
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3.3. Application of the retention time predictor to real water samples 

Fifteen influent wastewater and surface water samples were selected, representing different types of water 

sources, to test the retention time predictors. As stated previously, two predictors were used: one for pesticides 

only and one for non-pesticides. A set of 30 compounds were selected, based on their prevalence in 

environmental water samples [22], [23] and [24] and their retention times were predicted using the 

aforementioned equations with the predicted LogKow of each of the compounds (Table S2). 

A retention time window of ±2 min (from the predicted value) was given for each compound, and they were 

searched with a mass window of 20 mDa. All peaks in the narrow window (nw)-XIC for each compound were 

counted manually (above intensity of 3000), while all peaks outside the prediction window were disregarded. 

All of the 30 compounds were detected in the water samples. Of these, 20 were found in the ±2 min retention 

time window (Fig. 3). Remarkably, eight of the 20 compounds had only one peak inside the retention time 

window. In addition, the percentage of peaks outside the retention time window of ±2 min (and therefore not 

pertaining to the compound of interest) was found to be 35%, meaning that over one-third of the peaks in the 

XICs could be disregarded through retention time prediction. This retention time prediction shows a noticeable 

reduction in time spent processing data for potential positive samples. 

 
 

Fig. 3: All 20 compounds found within the ± 2 minute retention time window and their associated peak data. The compounds on the left are 

all pesticides while those on the right are pharmaceuticals. The dark grey lines represent the average number of peaks found in the XIC of each 

compound and the light grey lines represent the average number of peaks inside the retention time window.  
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3.4. Complementary use of mass chromatogram extraction window 

Using a mass window of 20 mDa, four compounds only had one peak in the XIC (Fig. 3). To complement the 

information and applicability of the retention time predictor, a comparison was made with three additional 

mass chromatogram extraction windows (50 mDa, 10 mDa and 5 mDa). An extra window of 20 mDa was used 

as a reference for these tests. 

The 10 extra compounds, whose predicted retention time fell outside of the ±2 min window, were also included 

in this test (see Table S2). The results of this comparison are shown in Table 2. As expected, the number of 

peaks observable in the XIC decreases as the extraction window decreases, from 119 (50 mDa) down to 62 

peaks (5 mDa). However, it is of note that even at the 5 mDa extraction window and within the retention time 

window, there were still unknown peaks not just pertaining to the compound of interest. In these situations, 

retention time prediction is very helpful in the reduction of false positive findings. 
 

Fig. 4 shows the influence of mass windows in XICs and the predicted retention time window for two 

compounds detected in surface water (benzoylecgonine, BE) and influent wastewater (trimethoprim). In the 

case of BE (major metabolite from cocaine), using a 50 mDa XIC, several isobaric compounds are also seen; 

however, by decreasing the mass extraction window, all of these peaks disappear, leaving just the peak of BE 

at 4.53 min and a small spike at 6.5 min. Although BE was able to be identified solely with a nw-XIC, the 

retention time fell just outside the predicted window (2.48±2 min). As stated above, the use of ±2 min retention 

time window led to a 70% success rate in the predictions for the “all compounds” group, where BE is included. 

Using a slightly wider window such as ±2.5 min to get a success rate of 80%, similar to the pesticides group 

(see Table 1) would have led to BE being inside the prediction window. In any case, it seems that improvements 

are needed in the retention time prediction in order for it to be more useful in the identification process. 
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Table 2: Number of peaks found in the chromatograms (XICs) of 50mDa, 20mDa, 10mDa and 5mDa and inside the predicted retention 

time window. The lower compounds are those whose empirical retention times fall outside the ±2minute predicted retention time window 

a : not found in this mass extraction window 

Compound 50mDa 20mDa 10mDa 5mDa 

Peaks Inside 

RTW 

Peaks Inside 

RTW 

Peaks Inside 

RTW 

Peaks Inside 

RTW 

2-hydroxyatrazine 7 3 4 2 3 2 3 2 

2-

hydroxyterbuthylazine 

5 3 3 2 2 2 1 1 

Atrazine 4 2 3 2 2 1 2 1 

Desethylterbuthylazine 3 2 3 2 2 1 2 1 

Diuron 2 1 1 1 1 1 1 1 

Simazine 3 2 3 2 3 2 3 2 

Terbuthylazine 2 1 2 2 1 1 1 1 

Terbutryn 4 2 1 1 1 1 a a 

4-Aminoantipyrine 4 3 4 4 3 2 3 2 

Bezafibrate 2 1 2 1 2 1 2 1 

Carbamazepine 4 3 5 4 2 2 2 2 

Diclofenac 2 1 2 2 2 1 1 1 

Enrofloxacin 1 1 1 1 1 1 1 1 

Irbesartan 6 3 5 3 3 2 3 2 

Lincomycin 3 2 2 1 2 1 3 2 

Ofloxacin 2 1 1 1 1 0 1 1 

Oxazepam 4 3 3 2 3 2 2 2 

Sulfamethoxazole 3 1 2 1 2 1 1 1 

Trimethoprim 7 3 6 3 6 3 4 2 

Valsartan 4 2 2 2 1 1 1 1 

         

Total peaks 76 43 57 37 45 29 39 29 

         

Carbendazim 4  3  2  2  

Desethylterbumeton 7  4  3  3  

Imazalil 4  2  2  2  

Codeine 5  5  3  2  

Paracetamol 4  4  4  4  

Temazepam 7  4  3  3  

Venlafaxine 5  5  3  3  

Benzoylecgonine 3  3  2  2  

Cocaine 3  2  2  2  

Methamphetamine 5  3  3  2  

         

Total peaks 119  90  70  62  S
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Fig. 4: TOP: XIC of Benzoylecgonine (m/z 290.139, 4.53 min) at 50mDa, 20mDa, 10mDa and 5mDa, with related predicted retention 
time window (2.48min ± 2 minutes) in surface water. BOTTOM: Trimethoprim (m/z 291.146, 3.64 min) and related retention time 
prediction window (Predicted retention time 5.61 min ± 2 minute window) at XICs of 50mDa, 20mDa, 10mDa and 5mD in influent 
wastewater. XICs at 10mDa, 20mDa and 50mDa all have been 5 times magnified (from 3 – 16 min) to highlight other peaks. 

In the case of the antibiotic trimethoprim, the peak is easily seen at 5 mDa (3.66 min); however at a larger mass 

extraction window, two isobaric compounds are observed at a much higher intensity (2.5–3.0 min). With the 

retention time window (5.61±2 min), these peaks, as well as the one at 7.6 min are removed, leaving just the 

two peaks at 3.66 and 4.6 min. The first one corresponded to trimethoprim, while the second was an unknown. 

This example shows the true utility of retention time prediction, especially in alliance with HRMS. While mass 

extraction windows can be narrowed to remove some interfering peaks, even at a 5 mDa mass window, pseudo-

isobaric interferences remain. By incorporating retention time prediction, some of these false positive peaks 

can be removed. 

 

 

50 mDa

5 mDa

20 mDa

10 mDa

5.61

Time
2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

%

1

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

%

0

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

%

0

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

%

0

EUDRUGS136 1: TOF MS ES+ 
291.146 0.05Da

9.79e5
x5

3.66

EUDRUGS136 1: TOF MS ES+ 
291.146 0.02Da

9.79e5
x5

3.66

EUDRUGS136 1: TOF MS ES+ 
291.146 0.01Da

9.78e5
x5

3.66

EUDRUGS136 1: TOF MS ES+ 
291.146 0.00Da

6.77e4

3.66

50 mDa

20 mDa

10 mDa

5 mDa

Trimethoprim

2.48

Benzoylecgonine

Time
2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

%

8

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

%

8

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

%

3

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

%

3

ATTENAG_LC_008 1: TOF MS ES+ 
290.139 0.05Da

1.70e4

4.53

ATTENAG_LC_008 1: TOF MS ES+ 
290.139 0.02Da

1.68e4

4.53

ATTENAG_LC_008 1: TOF MS ES+ 
290.139 0.01Da

6.03e3
4.53

ATTENAG_LC_008 1: TOF MS ES+ 
290.139 0.00Da

5.99e3
4.53



 Chapter 3: Retention Time Prediction 

 

197 

4. Conclusions 

A critical evaluation has been made on the applicability of retention time prediction based on LogKow to help 

in identification of suspect compounds in screening procedures. Two predictors were used; one based on 

pesticides only, and one for all other compounds (mainly licit and illicit drugs). Both were tested on 30 emerging 

contaminants commonly found in environmental and wastewater samples by retrospective analysis with 

QTOF-MS. In addition to help identify the compound of interest, the retention time predictors also allowed 

over one-third of isobaric chromatographic peaks to be disregarded for further analysis as they were outside 

the retention time window, thereby enabling the reduction of tedious data processing. This is relevant when 

applying wide-scope screening for a large number of compounds (e.g. emerging contaminants and pesticides) 

or when investigating the presence transformation products, where many of the required reference standards 

are not available at the laboratory. In addition to the retention time prediction, the impact of extracted mass 

windows was investigated as a complementary tool for the screening. A smaller mass extraction window also 

removed unwanted peaks from the chromatogram. However, in some cases, even at a narrow mass extraction 

window of 5 mDa, some isobaric peaks still appeared. 

The combination of this simple retention time predictor with extracted mass windows facilitated the removal 

of many false positives. In this work, 70–80% of compounds studied were able to be found in a ±2 min window, 

but a ±5 min window was needed for ≥98% confidence. Our present research is focused on alternate and more 

sophisticated retention time predictors in order to improve the precision. This would allow the use of narrower 

time windows, thereby simplifying data processing due to fewer peaks needing to be investigated in the 

chromatograms. 
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Supporting Information 
 
The table “All 595 Compounds used in retention time predictor, empirical retention time and predicted Log 

Kow” (Table S1), is too large for this thesis, but are available in the online edition of this article: 

doi:10.1016/j.talanta.2015.02.055. However the other supporting information tables and figures are included 

here. 

 

Table S2: Predicted retention time, empirical retention time and parent ion ([M+H]+) m/z for all 30 compounds. Those in 
bold fall outside the retention time window of +/-2 minutes used for the analysis but used in Section 3.3 
 

Type of Compound Compound RT (pred) RT (emp) [M+H]+  

Pesticides 2-hydroxyatrazine 2.66 2.79 198.1355 

2-hydroxyterbuthylazine 3.95 5.76 212.1511 

Atrazine 9.93 9.34 216.1016 

Carbendazine 7.47 3.42 192.0773 

Desethylterbuthylazine 8.47 7.91 202.0859 

Desethylterbumeton 8.95 5.72 198.1355 

Diuron 9.11 8.78 233.0248 

Imazalil 11.20 8.19 297.0561 

Simazine 8.71 8.14 202.0859 

Terbuthylazine 9.99 10.51 230.1172 

Terbutryn 10.72 9.91 242.1439 

Pharmaceuticals/ 

Antibiotics 

 

4-Aminoantipyrine 4.38 3.52 204.1137 

Bezafibrate 10.98 10.86 362.1159 

Carbamazepine 7.93 7.36 237.1028 

Codeine 6.45 2.75 300.1600 

Diclofenac 10.38 12.17 296.0245 

Enrofloxacin 5.56 4.58 360.1723 

Irbesartan 12.60 10.36 429.2403 

Lincomycin 4.93 3.56 407.2216 

Ofloxacin 4.19 4.08 362.1516 

Oxazepam 9.68 9.77 287.0587 

Paracetamol 4.90 2.44 152.0711 

Sulfamethoxazole 5.22 3.91 254.0599 

Temazepam 7.77 10.09 301.0744 

Trimethoprim 5.61 3.64 291.1457 

Valsartan 10.06 10.56 436.2349 

Venlafaxine 9.50 7.23 278.2120 

Drugs of Abuse Benzoylecgonine 2.48 4.53 290.1392 

Cocaine 7.80 4.66 304.1549 

Methamphetamine 7.88 3.05 150.1282 

 

S
c
ie

n
ti

fi
c
 A

rt
ic

le
 5

 



Bade et al. Talanta 139 (2015) 143-149 

 

202 

Figure S1: Correlation of in-house and Waters data 
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Figure S2: Correlation between retention time and LogKow for all non-pesticides (250 compounds) with 95% confidence interval 
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3.2.2 Scientific Article 6 

SUSPECT SCREENING OF LARGE NUMBERS OF 

EMERGING CONTAMINANTS IN ENVIRONMENTAL 

WATERS USING ARTIFICIAL NEURAL NETWORKS 

FOR CHROMATOGRAPHIC RETENTION TIME 

PREDICTION AND HIGH RESOLUTION MASS 

SPECTROMETRY DATA ANALYSIS 

 
Richard Bade, Lubertus Bijlsma, Thomas H. Miller, Leon P. Barron, Juan V. Sancho, 

Felix Hernández 

 

 

Science of the Total Environment (2015) 538: 934-941 
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Abstract 
The recent development of broad-scope high resolution mass spectrometry (HRMS) screening methods has 

resulted in a much improved capability for new compound identification in environmental samples. However, 

positive identifications at the ng/L concentration level rely on analytical reference standards for 

chromatographic retention time (tR) and mass spectral comparisons. Chromatographic tR prediction can play a 

role in increasing confidence in suspect screening efforts for new compounds in the environment, especially 

when standards are not available, but reliable methods are lacking. The current work focuses on the 

development of artificial neural networks (ANNs) for tR prediction in gradient reversed-phase liquid 

chromatography and applied along with HRMS data to suspect screening of wastewater and environmental 

surface water samples. Based on a compound tR dataset of > 500 compounds, an optimized 4-layer back-

propagation multi-layer perceptron model enabled predictions for 85% of all compounds to within 2 min of 

their measured tR for training (n = 344) and verification (n = 100) datasets. To evaluate the ANN ability for 

generalization to new data, the model was further tested using 100 randomly selected compounds and revealed 

95% prediction accuracy within the 2-minute elution interval. Given the increasing concern on the presence of 

drug metabolites and other transformation products (TPs) in the aquatic environment, the model was applied 

along with HRMS data for preliminary identification of pharmaceutically-related compounds in real samples. 

Examples of compounds where reference standards were subsequently acquired and later confirmed are also 

presented. To our knowledge, this work presents for the first time, the successful application of an accurate 

retention time predictor and HRMS data-mining using the largest number of compounds to preliminarily 

identify new or emerging contaminants in wastewater and surface waters. 

Keywords: Retention time prediction; Artificial neural networks; Time-of-flight high resolution mass 

spectrometry; Screening of emerging contaminants 
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1. Introduction 

The number of emerging contaminants in the aquatic environment is increasing, due to urbanization and 

subsequent societal and industrial needs (Pal et al., 2014). The development of liquid chromatography–high 

resolution mass spectrometry (LC–HRMS) technologies has revolutionized the analysis of emerging 

contaminants in environmental waters, and especially for screening of large numbers of compounds (Agüera 

et al., 2013, Gómez et al., 2010, Hernández et al., 2011 and Hogenboom et al., 2009). HRMS instruments allow 

the recording of full-scan spectra with high mass accuracy and resolution, thus making it possible to search for 

any given compound based on its exact mass. 

There has been much interest in improving the confidence in the identification of small molecules with HRMS; 

from potential positives through to detection and finally confirmation (Hernández et al., 2015a and Schymanski 

et al., 2014). The main distinguishing factor between these levels is the (non-) availability of reference standards. 

Suspect screening refers to compounds tentatively identified based solely on HRMS data and comparable 

spectral libraries. Confirmation requires reference standards. An additional tool to increase the confidence in 

the tentative identification of compounds for which standards are unavailable is reliable and accurate tR 

prediction. This is of particular relevance in the case of degradation/transformation products (TPs), which can 

reach the aquatic environment in high concentrations, but commonly for which reference standards are less 

accessible. Chemical risk assessment is therefore significantly challenging for such compounds. 

Prediction of tR plays an important role in the qualitative identification of emerging contaminants. Many 

different approaches to tR prediction exist and range from the simple ( Kern et al., 2009 and Nurmi et al., 2012) 

to the complex ( Goryński et al., 2013, Ji et al., 2009, Kaliszan et al., 2003 and Ukić et al., 2014a). For example, 

logKow models can be derived using freely accessible data from chemical databases such as ChemSpider and 

PubChem, as well as freeware prediction sources such as VCCLABS. Its use in tR prediction is extremely simple 

to implement. It is frequently used in environmental studies for the description of the fate of various pollutants 

and as a simple tR predictor for TPs (Kern et al., 2009) and emerging contaminants (Bade et al., 2015 and Nurmi 

et al., 2012). Alongside simple algorithms, other and more complex in silico approaches now exist which are 

based on quantitative structure–retention relationship (QSRR) modeling, including artificial neural networks, 

support vector machines and random forests ( Giaginis and Tsantili-Kakoulidou, 2012 and Héberger, 2007). 

The principal aim of QSRR is to predict retention data from the molecular structure and its physicochemical 

properties, using a range of input descriptors and measured tR data. One QSRR method gaining recent attention 

for broad screening using high resolution techniques is the use of artificial neural networks (ANNs), a predictive 

computing technique that has shown itself as a promising tR predictor with potentially higher accuracy than 

classical models ( Miller et al., 2013 and Ukić et al., 2014b). The design of ANNs were inspired by the human 

brain and differ from classical computer programs in that they generally employ non-linear learning techniques 
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using a set of case examples (i.e. a training dataset) ( Kaliszan et al., 2003). In the training phase, the ANN 

requires a range of suitable molecular descriptors as well as the true output value (in this case, measured tR) to 

use for comparison with predicted values. At the same time, a second dataset of case examples is often used 

for verification and to assess overall ANN predictive error. The true output values in the verification set are 

generally not employed for learning, but the number of training cycles can be stopped by the user or the 

software when the overall measured error across all cases is at its minimum. Therefore, ANN learning is 

generally an iterative process and once an acceptable number of training cycles is reached, the optimized ANN 

can be applied to predict the output where experimentally derived data are unavailable (Miller et al., 2013). In 

some cases, a third dataset can be used after the model has been finalized to ‘blind test’ the predictive power 

of the network. Its use is even more pertinent for analyses where large number of new analytes are expected to 

occur and with potentially high variance from sample to sample, such as in environmental and municipal water 

samples. Therefore, since information from the sample includes chromatographic tR as well as HRMS data, it 

makes this interpretation of suspect occurrence more accessible in the first instance. 

The aim of this work was to develop and evaluate ANN for predictions of unknown chromatographic tR in 

suspect screening of environmental waters. To the best of our knowledge, this method includes the largest 

range of physicochemically diverse compounds for this purpose (n = 544 in total) and includes both neutral 

and charged compounds eluted under gradient reversed-phase LC conditions. Lastly, this work aimed to 

improve upon a recent logKow-based tR prediction approach (Bade et al., 2015) using the ANNs as an 

alternative. This work, for the first time, presents the use of ANN for identification of additional suspect 

compounds (including metabolites and TPs) in wastewater and surface water samples both with and without 

reference standards. 

2. Experimental 

2.1. Reagents and chemicals 

A total of 544 analytical grade reference materials were used for preparation of model solutions at 25 μg/L or 

50 μg/L (diluted from mixed standard solutions in methanol or acetonitrile with water) for ANN modeling of 

tR. These included pesticides, drugs of abuse, human/veterinary pharmaceuticals and mycotoxins (See 

Supplementary Information (SI) Table S1 for all compounds used in this study). These covered a large range 

of molecular hydrophobicity (logKow − 3 to 9). Information relating to 595 standards was available (Bade et 

al., 2015), however after transforming the compounds using SMILES codes, some errors were observed, leading 

to incomplete data, and a further 42 were removed from the initial ANN method development (Section 3.1) to 

use in a subsequent blind test (Section 3.2). Further details relating to these compounds can be found elsewhere 

(Bade et al., 2015 and Hernández et al., 2015b). 
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2.2. Water samples for suspect identification 

A total of 44 composite (24-h) influent and effluent wastewater (IWW and EWW) samples and grab surface 

water (SW) samples were used to demonstrate the application of the developed ANN model. All these samples 

were previously used in different studies performed at our lab using the same analytical instrumentation for 

analysis (Hernández et al., 2015a). All measured tR data herein were generated using ultra-high pressure liquid 

chromatography coupled to quadrupole-time of flight mass spectrometry (UHPLC–QTOF-MS). 

2.3. UHPLC-QTOF MS 

A Waters Acquity UPLC system (Waters, Milford, MA, USA) was interfaced to a hybrid quadrupole-orthogonal 

acceleration-TOF mass spectrometer (XEVO G2 QTOF, Waters Micromass, Manchester, UK), using a 

electrospray ionization (ESI) Z-Spray interface operating in positive mode. The chromatographic separation 

was performed using an Acquity UPLC BEH C18 100 × 2.1 mm, 1.7 μm particle size column (Waters) at a 

flow rate of 300 μl/min. Gradient elution was performed using mobile phases of A = H2O and B = MeOH, 

both containing 0.01% HCOOH. The initial percentage of B was 10%, which was linearly increased to 90% in 

14 min, followed by a 2 min isocratic period and, then, returned to initial conditions during 2 min. The total 

run time was 18 min. Nitrogen was used as the drying gas and nebulizing gas. 

MS data were acquired over an m/z range of 50–1000. A capillary voltage of 0.7 kV and cone voltage of 20 V 

were used. Collision gas was argon 99.995% (Praxair, Valencia, Spain). The desolvation temperature was set to 

600 °C, and the source temperature to 135 °C. The column temperature was set to 40 °C. MS data was acquired 

in MSE mode, selecting a collision energy of 4 eV for low energy (LE) and a ramp of 15–40 eV for high energy 

(HE). The LE and HE functions settings were for both a scan time of 0.4 s (Hernández et al., 2011 and Ibáñez 

et al., 2013). 

Processing of MS data was made using ChromaLynx XS application manager (within MassLynx v 4.1; Waters 

Corporation). The following parameters were used: mass window 0.020 Da (for positive ID ≤ 0.010 Da), peak 

width at 5% height: 6 s, peak-to-peak baseline noise: 1000 and threshold absolute area 500. When manually 

searching the data for all peaks in an eXtracted Ion Chromatogram (XIC), a chromatographic peak was thought 

viable when above an intensity threshold of 3000 counts. 

2.4. Molecular description and neural network optimization procedures 

Compound logD data (for a mobile phase of pH = 3.2) were generated using Percepta PhysChem Profiler 

(ACD Laboratories, ON, Canada) and for all other descriptors, Parameter Client freeware was used (Virtual 

Computational Chemistry Laboratory, Munich, Germany). Canonical simplified molecular line entry system 

strings (SMILES) were created using ChemSpider freeware (Royal Society of Chemistry, UK) for 544 

compounds and from these 16 molecular descriptors (as ANN inputs) were generated including the number of 

double and triple bonds (nDB or nTB), the number of carbon and oxygen atoms (nC or nO), the number of 
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4–9 membered rings (nR04-nR09), unsaturation index (UI), hydrophilic factor (Hy), Moriguchi and Ghose–

Crippen logP (MlogP and AlogP respectively) as well as with software predicted logKow data (Tetko et al., 

2005). Prediction of tR (as the designated single output) via neural networks was performed using Trajan 

version 6.0 neural network simulator (Trajan Software Ltd., Lincolnshire, U.K.) and compared with 

experimentally determined tR via correlation graphs as well as assessment of residual errors. Table S1 has all 

compounds and their respective predicted and experimental tR and ANN subset. 

3. Results and discussion 

In a previous study, we developed a simple tR prediction model based on logKow of nearly 600 compounds, 

predicted using freeware (Bade et al., 2015). This resulted in approximately 70% of all compounds being 

predicted within 2 min of the measured tR, and 95% within 4 min. This technique was simple to implement and 

facilitated the removal of several false positives. However, when investigating unknowns and compounds for 

which reference standards were unavailable, it was concluded that a more robust, accurate and precise 

methodology was still needed. In this vein, ANNs were considered as an alternative. Recent work successfully 

used ANN for a similar purpose, albeit using a much smaller set of compounds of 86 and 166 compounds in 

either study and focused only on pharmaceuticals (Miller et al., 2013 and Munro et al., 2015). It is unlikely that 

this fully represents the breadth of alternative compound classes and chemistries potentially occurring 

simultaneously in environmental waters. However, these models successfully predicted tR for a range of blind 

test drug compounds in wastewater and urine to warrant further investigation here using a much larger case 

dataset. 

3.1. Prediction of tR using Artificial Neural Networks (ANNs) 

The molecular descriptors chosen were based on the previous work wherein more than 200 descriptors were 

evaluated (Miller et al., 2013). As the same type of reversed-phase column and LC system were used in both 

studies, the same descriptors were hoped to provide similar results. These descriptors were used again to also 

assess the possibility for transferring the model to another laboratory and to extend the prediction to a much 

larger set of chemically diverse compounds. Collinearity data for all molecular descriptors and retention time 

are given in the SI. Higher Pearson correlations were observed for hydrophobicity-based descriptors with 

retention time as was perhaps expected (maximum R = 0.823 with logKow). Similarly, these descriptors also 

showed some collinearity with each other (R ≤ 0.889) which prevented strong conclusions to be drawn 

regarding their relative importance to an ANN model. As molecular descriptors selected were from previous 

investigations, there is also the possibility that additional descriptors may have had more importance to 

retention prediction on this system. For example, retention on reversed-phase media is not only dependent on 

hydrophobic interactions, but also steric and shape effects. Large molecules may not interact with the stationary 

phase well and thus show reduced retention (Wilson et al., 2002). A simple Pearson correlation was examined 

for a selection of potentially relevant additional descriptors covering charge states, geometrical, topological and 
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physicochemical properties. Overall, most of these descriptors showed weak relationships < 0.5 except for the 

descriptor BTLA96 which showed a negative Pearson coefficient of − 0.649. 

Over 100,000 network architectures for each model type were initially investigated for their predictive ability 

across five different ANN model types including 3- and 4-layer multi-layer perceptrons (MLPs), generalized 

regression neural networks (GRNNs), radial basis functions (RBFs), linear neural networks and probabilistic 

neural networks (PNN). For training, 344 cases were used along with 100 cases for both verification and blind 

testing of network performance. Cases were randomly assigned at the beginning of each network test to prevent 

any bias from pre-selection. Upon selection of the ‘best’ model statistics (minimum/maximum values, 

interquartile ranges, standard deviations, medians and means) were generated to ensure that a fair representation 

of cases and descriptors were present in each dataset subset (see SI). The diversity of ANN types and 

architectures tested was balanced against the error generated. For network design and testing the omission of 

input descriptors was included as an option. One hundred of the best networks (software selected) were 

retained for further investigation which mainly comprised of MLPs, GRNNs and RBFs. Overall for this 

separation system, the best correlations of predicted versus experimentally measured tR were observed using 

MLPs in comparison to all other types and these correlations were in agreement with previous works despite 

different compounds being used for training, verification and blind testing ( Barron et al., 2009, Miller et al., 

2013 and Munro et al., 2015). The finalized network was found to be a 4-layer 16-19-9-1 MLP using all 16 

molecular descriptors as inputs (Fig. 1). The source code (in C) for this ANN has been attached in the SI. 

Reducing the number of descriptors further worsened predictive accuracy of the blind test set in general. This 

ANN type and architecture was chosen based on the lowest absolute errors (i.e. predicted tR -measured tR) in 

the training, verification and blind test sets across all networks. Therefore, ANN architecture was based on 

performance and the software designer tool was used to optimize the number and composition of hidden 

layers. The coefficients of determination (R2) were between 0.86 and 0.90 between the three sets, which was 

already a marked improvement on that obtained from our previous study at R2 = 0.67. Furthermore, the root-

mean-squared error (RMSE) of the blind set of compounds (1.03 min) is less than half that of our previous 

work (2.19 min) (Bade et al., 2015). 
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Fig. 1: TOP: Correlation of measured and predicted tR for all compounds. The worst outliers in each set are also shown: A=atenolol (training 

set, error of -6.21 minutes); B=levamisole (verification set, +5.19 minutes); C=metosulam (blind set, +3.56 minutes). BOTTOM: Residual 

errors for all compounds in each dataset. For training, verification and blind test sets, n=344, 100 and 100 compounds respectively. 

 

The maximum measured tR on this chromatographic system was 16.50 min (narasin; an antibiotic) and the 

lowest was 0.86 min (methamidophos; an organophosphate insecticide). For all compounds within this 

retention window of 15.64 min, the mean error in tR prediction was < 6% using this ANN approach for all 

compounds. Overall, the mean absolute errors and standard deviations were recorded as 0.97 ± 0.95 min  

(training set); 0.79 ± 0.85 min (verification set); 0.79 ± 0.69 min (blind test set); and 0.91 ± 0.89 min (all sets 

combined). When focussing specifically on the blind test set which was used to simulate a true application of 

the approach, 95% of compounds had predicted tR values within 2.00 min of the measured value and the 

maximum error was 3.56 min for metosulam (Fig. 1). However, across the other datasets some larger errors 

were recorded in isolated cases.  Table 1 shows that for all datasets, 90% of all 544 compounds could be 

predicted to within 2.00 min of the measured tR value. Upon sub-division of the datasets, 85% of the 
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compounds in the training and verification sets and 95% of compounds in the blind test set were predicted to 

within two minutes of the measured value. The maximum error recorded within the training set was + 6.25 

min (for the beta blocker atenolol; measured tR = 2.49 min); within the verification set was + 5.19 min (for the 

anti-helminthic drug levamisole; measured tr = 3.02 min) and within the blind test set was + 3.56 min (for the 

pesticide, metosulam; measured tr = 7.54 min). 

Table 1: Summary of predicted tR errors for all ANN test sets. Numbers given in italics are those which fall below the proposed 2-min window 

limit 

Percentile of compounds  50 55 60 65 70 75 80 85 90 95 

Predicted tR error/min           

All sets (n=544) 0.66 0.75 0.85 0.97 1.05 1.19 1.39 1.56 1.96 2.80 

Training set (n=344) 0.70 0.81 0.89 1.02 1.13 1.24 1.45 1.70 2.21 2.87 

Verification set (n=100) 0.51 0.59 0.64 0.76 0.89 0.99 1.35 1.44 1.60 2.43 

Blind test set (n=100) 0.70 0.78 0.84 0.89 1.01 1.08 1.16 1.34 1.63 1.99 
 

Prediction errors for all cases were investigated again with respect to any apparent trends and it was found that 

a very slight over-estimation existed for poorly retained compounds, as well as the converse for strongly 

retained compounds. Recent work focussing on modeling a smaller number of compounds in wastewater also 

revealed a similarly slight bias, but used a different network type (a GRNN) (Munro et al., 2015). When 

examining those compounds with absolute errors > 2.00 min (54 compounds in total across all sets), these were 

spread across the entire compound retention range (mean measured tR = 7.81 ± 3.93). However, a slight over-

estimation was again apparent for 29 compounds with tR from 1.34–5.38 min (mean measured tR = 2.97 min). 

Reduced under-estimation was observed for the remaining 25 compounds eluting between 5.38–16.30 min 

(mean measured tR = 10.67 min for these compounds). Seventeen compounds eluting < 5.38 min were over-

estimated and tR for eleven were under-estimated when eluting > 10.00 min. 

The contribution of each descriptor towards the final prediction output was investigated using the ANN 

software sensitivity analysis tool. In this test, each molecular descriptor is removed and treated as missing by 

the ANN. A new predicted tR is generated and a ratio calculated between the network error with a given input 

omitted to the error of the network with a complete input dataset. Ratios > 1 indicated higher importance in 

the prediction. Perhaps not surprisingly for a reversed-phase chromatography system, the most important 

molecular descriptors and their measured error ratios were: logD (1.443), logKow (1.182), AlogP (1.114), nO 

(1.096), UI (1.006) MlogP (1.023), Hy (1.017), nDB (1.012), nR04-nR09 (all 1.000–1.063), nTB (1.004) and nC 

(1.002) Hydrophobicity-based descriptors are likely to show importance as retention on reversed-phase media 

is primarily by van der Waals interactions. Again, while these descriptors together show their combined 

importance to the network, moderate collinearity between them means relative error ratios should be treated 

with caution for these descriptors (Table SI). However, such collinearity should not adversely affect predictive 

ability of the model. The lowest ratio was observed for nR04 with a ratio of 1.000 meaning no change in 
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network performance was measured for its removal. Within the dataset, only 14 compounds had 4-membered 

rings (amoxicillin, ampicillin, cefaclor, cefadroxil, cefalexin, cefotaxime, cefquinome, cefuroxime, cloxacillin, 

dicloxacillin, heptenophos, oxacillin, oxasulfuron, and penicillin G). Inclusion of nR04 still resulted in better 

performance in comparison to any other type or architecture investigated during the network optimization 

stage and so was retained as a descriptor in the final ANN model. Error ratios discussed above represent that 

of the entire dataset (training, verification and blind test). Sensitivity analysis (see SI) of each set separately 

revealed excellent consistency across all sets, showing that predictive accuracy was likely to be the dominant 

contributors to error ratios rather than over-fitting of the training set alone. 

3.2. Use of ANN as a tR predictor in environmental water samples 

In wide-scope screening methods, where thousands of compounds are searched, it is of great importance to 

have secondary techniques for aid in the identification process. While reference standards can unequivocally 

confirm the identification of a compound, purchasing and maintaining standards for all compounds is 

prohibitively expensive. Data acquired from MS fragmentation of suspect compounds may also direct 

investigations. Furthermore, for many TPs, reference standards are not available and therefore alternate means 

for confidence in detection/identification are necessary. Although it is not comparatively informative as mass 

spectra, tR prediction models can be very helpful in gaining more confidence in the obtained data and reducing 

time-consuming data processing. Most importantly, the application of tR prediction is not to replace the use of 

reference standards, but to help (along with MS/MS data) to direct synthesis efforts for confirmation in the 

usual manner. Prediction of tR is best used at the beginning of this process and is especially useful when at a 

certain exact mass (i.e. (de)protonated molecule of a suspect compound), more than one chromatographic peak 

appears in the corresponding XIC. 

Along these lines, and to test the “blind” skills of the ANN in a real environmental application, the 100 blind 

compounds as well as an additional set of compounds from our previous study not initially used into the ANN 

method (a total of 142 compounds), including primarily metabolites and TPs were searched. None of these 

compounds were in the training or verification sets used for ANN development. From this list of 142 

compounds, 46 were finally selected and searched in 44 water samples (EWW, IWW and SW) using 

ChromaLynx and the ANN predicted tR, based on their possible occurrence in the environment (Table S2)       

(Gracia-Lor et al., 2010, Gracia-Lor et al., 2011, Hernández et al., 2015a and Zuccato et al., 2006). For further 

confidence, and to see how many false positive chromatographic peaks (above the intensity threshold) could 

be disregarded, fragment ions were also included in the detection process (Table S3). When a compound was 

identified on the basis of the accurate mass of the (de)protonated molecule and at least one fragment ion in at 

least one sample it was included in this test, leaving 26 compounds of various chemical classes and including 

nine metabolites, for only some of which standards were available in our laboratory (Table 2). A tR window of 

2 min was used in this section, as 95% of all compounds in the ANN blind set were within this window, thereby 

giving high confidence that almost all compounds should be found. The only compound found to have a tR 
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outside that of the ANN predicted 2 minute window was codeine. The incorporation of the ANN predicted tR 

allowed almost half (49%) of all chromatographic peaks to be ignored, and even after removing codeine from 

the calculation, 48% could be disregarded. Furthermore, all but three compounds had a reduction in the median 

number of potential positive peaks, while 11 compounds had a median value of only one chromatographic 

peak remaining after the introduction of the ANN predicted window. 

In this section, examples are shown in the identification of losartan (originally tentatively identified with tR 

prediction before a reference standard was purchased) and the tentative identification of the metabolites 10,11-

dihydroxy carbamazepine and O-desmethyl venlafaxine (no reference standard available). 
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Table 2: All compounds used for testing ANN predicted tR, together with the number of samples each compound was detected, average number 

of peaks in the XIC and the ±2 minute window and the predicted and sample tR 

Compound  Detection 

rate out of 44 

samples 

Median peaks 

per XIC 

(range)  

Median peaks 

inside ±2 min tR 

window (range) 

 Predicted 

tR (min) 

Sample tR 

(min) 

Inaccuracy in 

predicted tR 

(min) 

10,11-dihydroxy 

carbamazepinea 

30 2 (1-4) 1 (1-3)  6.29 6.66 0.37 

2-hydroxy-

terbuthylazineb 

6 6 (4-8) 2 (1-3)  4.24 5.50 1.26 

4-desmethoxy 

omeprazolea 

33 1 (1-2) 1 (1-2)  8.15 6.29 -1.86 

4-formylamino-

antipyrineb,c 

37 2 (1-8) 2 (1-4)  3.53 3.70 0.17 

a-hydroxy 

metoprolola 

17 5 (2-10) 3 (2-4)  2.73 3.30 0.57 

Benzoylecgonineb 40 3 (1-6) 2 (1-5)  4.11 4.65 0.54 

Bezafibrateb 2 6 (4-7) 1 (1-1)  10.80 10.78 -0.02 

Caffeinea 40 3 (1-6) 1 (1-3)  3.17 3.83 0.66 

Carbamazepineb 40 3 (1-10) 3 (1-5)  7.73 8.82 1.09 

Carboxy losartana 35 2 (1-3) 1 (1-1)  10.75 10.44 -0.31 

Codeineb 25 5 (1-7) 1 (0-3)  4.85 2.46 -2.39 

Cotininea 32 10 (4-14) 5 (3-7)  2.00 1.81 -0.19 

Diazinonb,c 4 3 (2-5) 2 (1-2)  11.64 12.50 0.86 

Diclofenacb 13 1 (1-2) 1 (1-1)  11.71 12.17 0.46 

Gemfibrozilb 13 4 (3-7) 2 (1-4)  12.29 13.34 1.05 

Lidocainea 40 5 (1-11) 2 (1-4)  5.21 4.24 -0.97 

Lincomycinb,c 14 4 (2-8) 2 (1-4)  4.28 3.73 -0.55 

Losartanb 42 2 (1-4) 2 (1-3)  9.95 10.13 -0.18 

Metoprolola 24 3 (1-9) 1 (1-3)  4.07 5.44 1.37 

Naproxenb 32 7 (4-11) 2 (1-4)  10.06 10.54 0.48 

O-

desmethylvenlafaxinea 

29 3 (2-5) 3 (1-5)  5.76 4.68 -1.08 

Paraxanthinea 39 7 (2-12) 3 (2-4)  2.03 2.97 0.94 

Ranitidinea 23 4 (2-6) 1 (1-1)  3.03 2.10 -0.93 

Terbuthylazineb,c 4 1 (1-3) 1 (1-2)  9.60 10.78 1.18 

Trimethoprimb 32 7 (2-10) 4 (1-6)  3.11 3.52 0.41 

Valsartanb 39 2 (1-7) 1 (1-3)  10.90 11.24 0.34 

a: Standard not available in laboratory Sample tR was based on HRMS data and the incorporation of fragment 
ions 
b: Standard available in laboratory 
c: Compound in blind set of ANN 
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3.2.1. Assignment with reference standards 

Losartan is a pharmaceutical used to treat hypertension that has been both predicted (Howard and Muir, 2013 

and Oosterhuis et al., 2013) and detected in environmental waters (Hernández et al., 2015a and Matsuo et al., 

2011). Its presence in a suspect list is thus warranted, and its exact mass was incorporated into our HRMS 

database. When screening WW and SW samples, XICs at the exact mass of losartan (m/z 423.1700) resulted 

in two chromatographic peaks (4.63 and 10.13 min) (Fig. 2, bottom left). The ANN tR predictor was used and 

calculated a tR of 9.95 min. This is almost exactly the tR of one of the peaks, but it is worth noting than even 

after incorporating a ± 2 minute window only one peak warranted further investigation. Nevertheless, both 

peaks could have conceivably corresponded to losartan, therefore further research was conducted. 

The LE and HE mass spectrum of the peak at 10.13 min was investigated for fragment ions: m/z 207.0917 

(C14H11N2, − 2.4 ppm), 377.1552 (C22H22N4Cl, + 5 ppm) and 405.1590 (C22H22N4Cl, − 2.3 ppm) (Fig. 

2, right). Literature (Hernández et al., 2015a) and the mass spectral database MassBank (Horai et al., 2010) were 

also searched to aid in the confidence of these fragment ions. It was found that these three fragment ions did 

indeed correspond to losartan. As seen in the figure, all associated fragments corresponded to the peak at 10.13 

min, following the assertion of the tR predictor. Furthermore, it is clearly seen that none of the fragment ions 

correspond with that of the other peak in the LE (4.63 min). A standard was later purchased and injected, 

unequivocally confirming that the peak at 10.13 min did correspond to losartan. 

 

Fig. 2: LEFT: eXtracted Ion Chromatograms (XICs) of losartan in an EWW sample, together with ANN tR prediction (9.95 min) and 

associated ±2 minute window (dotted lines; centre dashed line is the ANN-predicted value). RIGHT: Mass spectra from LE (bottom) and 

HE (top), showing fragment ions (423.158, 377.156, 207.092).    
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3.2.2. Tentative identification of metabolites without standard reference materials 

The elimination of false positives in suspect analysis is challenging, especially the environmental matrices 

investigated herein (SW and WW) as thousands of compounds may be present. Suspect screening, by definition, 

does not rely on reference standards (Krauss et al., 2010). While the exact mass capability of HRMS has gone 

some way to avoid false positives, even at narrow mass window chromatograms, matrix inferences can be 

present, thereby hindering confident identification (Bade et al., 2015 and Croley et al., 2012). A precise tR 

predictor can therefore be a great additional means of identification. 

Most research of emerging contaminants in the environment has focused on parent compounds, however many 

compounds can be at least partially metabolized or degraded in natural conditions (Jakimska et al., 2014). In 

this respect, the tentative identification of two major metabolites of carbamazepine and venlafaxine were 

explored: 10,11-dihydroxy carbamazepine and O-desmethyl venlafaxine (Fig. 3a). More than one 

chromatographic peak was observed at the exact mass of each protonated molecule. The ANN tR predictor 

was then used to try to help minimize the number of peaks to be analyzed, with the predicted tR calculated to 

be 6.29 and 5.76 min for 10,11-dihydroxy carbamazepine and O-desmethyl venlafaxine, respectively. 

 

Fig. 3: Tentative identification of 10,11-dihydroxy carbamazepine (a) and O-desmethyl venlafaxine (b) in an IWW and EWW sample 

respectively, together with ANN prediction and ± 2 minute window. 
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Two large (~ 4.00 and 6.66 min) and one small (~ 4.90 min) peaks are seen in the LE XIC of 10,11-dihydroxy 

carbamazepine (m/z = 271.1080). The predicted tR was calculated to be 6.29 min and by including a ± 2 minute 

window as in Section 3.2.1, the large peak at ~ 4.00 min could be disregarded, leaving the peaks at 6.66 and ~ 

4.90 min. The ability to focus on fewer peaks is the primary aim and benefit of tR prediction in environmental 

screening applications for unknowns. While having only one (correct) peak remaining is ideal, being able to 

disregard some peaks gives credence to the use of tR prediction in the identification process. To aid in the 

differentiation of these peaks, fragment ions were sought in literature, whereby one group performed an 

MS/MS experiment with a QTOF instrument to find the fragment ions of 10,11-dihydroxy carbamazepine 

(271.1080, 236.0706, 210.0913 and 180.0808) ( Ferrer and Thurman, 2012). As the XICs in the figure show, all 

fragment ions have the peak at 6.65 min in common. This provides great confidence that this peak is indeed 

from 10,11-dihydroxy carbamazepine, however for unequivocal identification, a standard would still have to be 

purchased. 

The example of O-desmethyl venlafaxine represented the worst case scenario, where no peaks could be 

removed after application of the ± 2 minute limit window. However, it must be noted that this was a rare case 

and only occurred for three of 26 compounds. In the LE XIC, two large (4.69 and 5.00 min) and two small 

peaks (~ 4.20 and 6.50 min) are seen. Even after incorporating the ANN predicted tR and associated window 

(5.76 ± 2 min), all four peaks are still of interest. With the peaks being so close together, even using a ± 1.3 

minute window (corresponding to ~ 80% of compounds being successfully inside this window) would result 

in the correct elimination of only one small peak. In this situation, fragment ions have to be used to gain further 

information on the identity. Fragment ions were thus searched in literature (Herrera-Lopez et al., 2014) and 

investigated in the HE. Fig. 3b shows all ions corresponding to the peak at 4.69 min. While the ANN predicted 

tR and associated window did include O-desmethyl venlafaxine, all other peaks in the LE XIC were also inside, 

meaning that no further confidence could be gained by tR prediction, rather through the investigation of 

fragment ions. Nevertheless, the combination of ANN predicted tR and fragment ions led to the tentative 

identification of this compound. 

While the examples explained here show the successful assignment of chromatographic peaks, it is impossible 

to have total confidence with tR prediction. In cases where there is more than one peak in the XIC, and the 

predicted peak is found to be incorrect, the peaks slightly outside the prediction window will also have to be 

investigated. Nevertheless, with data processing nowadays being the most time consuming part of 

environmental screening methods, the time saved by incorporating tR prediction outweighs the possibility of 

false negatives (and positives). 

These examples clearly show the utility of ANN as a tR predictor, not just for its ability to disregard some false 

positive peaks, but also for its accuracy and subsequent confidence for tentatively identified compounds. It is 

therefore recommended when performing large scope (e.g. > 1000 compounds) screening of environmental 
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samples to include accurate tR prediction in the strategy used for identification. This is particularly useful in the 

investigation of metabolites and TPs, for which standards can be very costly or unavailable. 

4. Conclusions 

This work showed the development and use of a tR predictor based on artificial neural networks. In particular, 

a four layer multilayer perceptron successfully modeled retention of 544 compounds under these separation 

conditions. Overall, 90% of all compounds eluted within 2.00 min of the predicted value and for 100 blind test 

compounds, 95% were predicted within this window. The network was applied to additional suspect compound 

occurrence in wide-scope screening based on the use of LC-HRMS, demonstrating that it can reduce the 

number of false negatives or positives. This saves time and effort in the tentative identification of the 

compounds detected, as only those chromatographic peaks that fit the predicted tR need to be focused on. 

Several representative examples are given to illustrate the usefulness of the complementary use of precise tR 

prediction in large suspect screening of emerging contaminants. It is recommended to include this prediction 

for the identification of suspect compounds, particularly in the investigation of metabolites and TPs of organic 

contaminants, for which reference standards are commonly less accessible. 
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Supporting Information 

The tables in the supporting information: A All compounds used for the initial ANN predictions, including 

experimental tR, predicted tR, absolute error and subset (Table S1),  All 46 compounds investigated in the 

samples, including predicted tR  and exact mass (m/z) of their protonated molecule (Table S2), All compounds 

searched in the secondary blind test, together with exact mass (m/z) of protonated  molecules and fragment 

ions (Table S3) as well as information relating to the descriptors used, collinearity tests and ANN sensitivity 

analysis are too large for this thesis, but are available in the online version: doi: 10.1016/j.scitotenv.2015.08.078.  
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3.3  Discussion of Results 

These two scientific articles have shown the potential of tR prediction: from an initial, very simple 

approach based solely on logKow to a more complex, computational, QSRR method based on ANN.  

The investigation into tR prediction was begun because of the ever-increasing number of compounds 

able to be detected based on high-resolution mass spectrometry in our laboratory. With the expense 

associated with purchasing reference standards and the expiration date of stock solutions, a 

complementary means of tentative identification would give more confidence to detected peaks before 

having to purchase standards. Moreover, for degradation and metabolism studies, where reference 

standards are oftentimes impossible to obtain, a secondary means of confidence would be of great 

use.  

Initially, a simple approach was advised, which any laboratory could also do without having to buy 

expensive software: the logKow only approach. This approach was indeed very simple, from a 

computational point of view, being based on a single descriptor and the retention times of all the 

reference standards we had previously injected into our UPLC-QTOF MS as well as a set from Waters, 

which had been run on the same instrument using a slightly different gradient. LogKow was decided 

upon as the descriptor of choice as it mimics the processes involved in reversed phase as well as being 

known to have a good correlation with tR for C18 columns with methanol as the organic modifier. This 

was shown to be the case, however with almost 600 compounds from differing chemical families and 

physicochemical properties, an R2 of slightly under 0.70 was the best that could be achieved. This 

imperfect correlation meant that the tR window would have to either be made wide (i.e. ±4 minutes)  

to have a statistically significant 90-95% of the compounds being found or be made small enough to 

be analytically relevant (i.e. ±2 minutes) with the related prediction error leading to 70-80% of all 

compounds being found. The latter was chosen, with the associated disadvantages described in 

Scientific Article 5. While this approach did succeed in its initial goal to produce a simple and free tR 

predictor, a more precise approach was sought. 

An approach was made to Leon Barron at King´s College, London, who had successfully applied 

ANN for tR prediction for anti-doping screening of urine, for a collaboration using our compilation 

of almost 600 reference standards. It turned out that using the same fifteen descriptors they had used 

(Miller et al., 2013) as well as logKow led to a very good prediction, with up to 95% of all compounds 

found within two minutes of their experimental tR. As shown in Scientific Article 6 this enabled its 
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use in the tentative identification of compounds, metabolites and transformation products for which 

reference standards were unavailable.  

To compare the two approaches, Figure 3.1 shows the use of both tR prediction methods in the 

detection of three common emerging contaminants: bezafibrate (a), trimethoprim (b) and codeine (c), 

using the tR window of ± 2 minutes as in both scientific articles. These three examples portray three 

specific cases: when the compound is within the two minute window of the simple logKow only 

approach (a); when the compound is outside the window of the logKow only but inside that of the 

ANN approach (b); and finally where the compound is neither within the logKow only nor ANN 

windows (c). 

The first example (a) shows the utility of the simple logKow only approach, where the predicted tR (± 

2 minutes) includes the peak of bezafibrate (10.91), whilst also enabling all other chromatographic 

peaks to be disregarded. The second example (b) is one typical of suspect screening, with more than 

one large peak inside the XIC. While the logKow prediction is unable to remove (or include) either of 

the large peaks, the ANN prediction includes the peak of benzoylecgonine. The final example is very 

uncommon and unwanted: where both approaches fail. The tR prediction windows do not include any 

of the three peaks of the XIC, where the predictions from logKow (6.46 mins) and ANN (4.85 mins) 

are nowhere near the three peaks in the XIC, let alone the peak of codeine (2.46 mins). This final case 

is one which, albeit rare, can happen; as explained in both scientific articles, whereby not 100% of all 

compounds can be found within two minutes. In order to improve the chance of the compounds 

being within the tR window, it may be necessary to widen the window, which can have the adverse 

effect of increasing the number of potential peaks needing to be later analysed. However, as has been 

shown, especially for the ANN approach, a window of ±2 minutes is more than enough for the vast 

majority of compounds.  
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Figure 3.1: Extracted ion chromatograms of three compounds; bezafibrate (a), benzoylecgonine (b) and codeine (c) at a mass 

extraction window of 10mDa and incorporating  the retention time predictions of both the logKow only approach (blue), ANNs 

(yellow), while green is the peak of actual compound.  
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While the examples of Figure 3.1 do show the advantages and disadvantages of tR prediction in terms, 

all had reference standards, so it was straightforward to finally identify the compounds. However, 

when investigating new compounds, metabolites and transformation products, for which standards 

may not be available, it is imperative to have a complementary means of identification; a precise tR 

predictor such as ANNs alongside conventional mass spectrometric fragment ion analysis. Figure 3 

in Scientific Article 6 shows two examples of 10,11-dihydroxy carbamazepine and O-desmethyl 

venlafaxine, the first of which shows the perfect example of the utility of a precise tR predictor, able 

to remove three peaks from later analysis, while the latter shows the situation of two almost co-eluting 

peaks which are unable to be distinguished solely with tR prediction. A further example is shown in 

Figure 3.2, of carboxy losartan, a metabolite of the antihypertensive, losartan. It is clear to see in the 

low energy XIC (where solely the parent compound should be seen) there are two peaks, one small 

one at ~8 minutes and a second, larger one at 10.45 minutes. While some analysts performing suspect 

screening may (sometimes erroneously) assume that the larger peak is their compound of interest, the 

introduction of  tR prediction (10.75 mins) immediately removes the smaller peak from further 

investigation, vindicated by the fragment ions relating solely to the peak at 10.45 mins.  
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Figure 3.2: Tentative identification of carboxy losartan following the introduction of ANN optimised tR prediction 

The previous examples have shown the way toward tentative identification using tR prediction as the 

initial point of call. However, this is not necessarily always the case, with some laboratories performing 

mass spectral analysis (i.e. common fragmentation pathways) first to determine the fragment ions 

relating to metabolites of a known parent compound. This can provide some idea of which 

chromatographic peaks give rise to which metabolite. Figure 3.3 shows the common fragmentation 

pathway route for the tentative identification of six metabolites of the antihypertensive diltiazem 

(Ibáñez et al., 2016) with no reference standards being available to aid in their identification. To 

provide further confidence to their identification, tR prediction was used. As can be seen, all predictions 

were within the ±2 minute window used in previous examples, most within one minute.  

One interesting aspect of this diltiazem example is the observance of isomers, which are notoriously 

difficult to distinguish based solely on mass spectral analysis. Without spending further analysis time 

and expense in synthesising standards, to help differentiate the isomers, tR prediction could be used. 

As tR prediction is based on the chemical structure, isomers can have slightly different properties, 
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giving rise to different tR. While total confirmation cannot be made with tR prediction, a qualitative 

idea on the elution order of the isomers is possible. This is shown perfectly where the two sets of 

isomers: O-deacetyl-O-desmethyldiltiazem and O-deacetyl-N-desmethyldiltiazem and O-desmethyl 

diltiazem and N-desmethyl diltiazem could not be distinguished based on mass spectral analysis. 

Although the predicted tR were similar, the metabolites were able to be assigned based on the elution 

order (i.e. 6.23, 6.48, 7.06, 7.52 for the aforementioned metabolites, respectively).  

 

 

Figure 3.3: Tentative identification of diltiazem and six metabolites using common fragmentation pathways and tR prediction. 

The solid lines are the predicted tR while the circled peaks are those found based on common fragmentation with the colours relating 

to the colour of the borders of the compounds. Adapted from (Ibáñez et al., 2016).  
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In spite of the advances made using the ANN approach, it is impossible to have an absolutely precise 

means of prediction, not least due to reproducibility of liquid chromatography instruments, especially 

with respect to the stationary phase and the composition of the mobile phase as well as the matrix 

involved. Furthermore, as explained in Scientific Article 6, QSRR models are usually based solely on 

one laboratory´s chromatographic instrument and its associated parameters, making it very difficult 

to transfer to other instruments and even slightly different parameters. As collaboration and 

information-sharing is very important in academia, it is therefore pertinent find a way to make 

retention time prediction models transferable and easy for anyone to use. Stopping short of insisting 

all laboratories use one instrument with all the same parameters, two possible solutions are: 

i) Indexing compounds, similar to the way Kovat’s Index works in gas chromatography. This 

could be based on compounds not found in nature (i.e. deuterated standards) which cover 

the entire retention time range.  

ii) Performing retention time prediction on a range of columns and under different 

chromatographic conditions. This could then provide information on relevant descriptors 

needed for optimal prediction, which can be utilized by all laboratories. 
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4.1 Introduction 

New psychoactive substances (NPS) are emerging narcotic or psychotropic drugs that are not 

controlled by the 1961 Single Convention on Narcotic Drugs or the 1971 Convention on Psychotropic 

Substances, but which may pose a public health threat. It must be noted that here the term ‘new’ does 

not necessarily refer to new inventions but to substances that have been recently become available in 

the market (UNODC, 2014). While the use of NPS appears to be limited overall, over the past ten 

years, the pace of emergence of new drugs has not diminished. Reports to the EU Early Warning 

System indicate that both the variety and quantity of NPS on Europe’s market are increasing. In 2014, 

more than 100 NPS were detected in Europe alone for the first time, and it is interesting to note how 

the new drugs on the market, mainly synthetic cannabinoids, stimulants, hallucinogens and opioids, 

mirror the established substances (i.e. cannabis, amphetamine, methamphetamine and cocaine) 

(EMCDDA, 2015). Initially not controlled under drug misuse legislation, NPS are easily available via 

the internet and “head shops”, described as ‘bath salts’ and ‘plant foods’ marketed as not for human 

consumption but which are indeed intended for recreational use.  

The trouble with NPS is that they are continually changing due to the impact of legislation, with 

regulated compounds becoming “illicit drugs”, meaning possession and consumption is forbidden. 

New substances then fill this gap, and the process repeats.  This means that determining which 

compounds to focus on for WBE approaches is very difficult, with there being a distinct possibility 

that the NPS in the methods are not found in any analysed samples. However, this may not be because 

the NPS are not being used, but rather the wrong biomarker is being searched. Little research has 

been made into the metabolism of NPS, and even when metabolism studies have been performed 

(Caspar et al., 2015; Chimalakonda et al., 2012; Mardal and Meyer, 2014; Moran et al., 2011), the 

standards (let alone deuterated standards) are sometimes difficult to obtain. This has led to WBE 

studies of NPS incorporating (predominantly) the parent compounds. (Borova et al., 2015; Kinyua et 

al., 2015a; Senta et al., 2015) 

Between 2008-2013, the majority of NPS reported to the United Nations Office on Drugs and Crime 

were synthetic cannabinoids (28%), synthetic cathinones (26%) and phenethylamines (17%) 

(UNODC, 2014), on which NPS-based WBE approaches have been focusing.  



Introduction 

238  

 

Figure 4.1: Structures of some synthetic cannabinoids  

Synthetic cannabinoids are functionally but not necessarily structurally related to Δ9-

tetrahydrocannabinol (THC), the active compound of cannabis, binding to the same cannabinoid 

receptors. They have become extremely popular as legal alternatives to cannabis and many have greater 

binding potency for CB1 and CB2 receptors than Δ9-THC and are full rather than partial agonists. 

(Hill and Thomas, 2016). They are sold as ‘legal’ smoking mixtures, containing many different 

compounds, some of which are non-psychoactive such as vitamin E, added in an attempt to ‘mask’ 

the active components. There has been much publicity around the synthetic cannabinoids, marketed 

as ´K2´and ‘Spice’ in the past ten years, with the European Monitoring Centre for Drugs and Drug 

Addiction convening an expert meeting on them in 2009 (EMCDDA, 2009). With legislation being 

introduced to halt the popularity of these mixtures, new analogues are being introduced as substances 

become restricted. Thus, the detection and identification of these compounds is very difficult and 

necessitate the use of HRMS to be able to differentiate the analogues (Grabenauer et al., 2012; Ibáñez 

et al., 2013). Nevertheless, for the most common synthetic cannabinoids (such as AM2201, JWH-018 

and JWH-073, Figure 4.1), metabolism studies have been made (Chimalakonda et al., 2012; Moran et 

al., 2011), with the described metabolites used in quantitative WBE methods (Reid et al., 2014).   
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Figure 4.2: Structures of cathinone and the synthetic cathinone derivatives 

Synthetic cathinones such as naphyrone, butylone, mephedrone, N-ethylcathinone, methedrone, 

methylone and methylenedioxypyrovalerone (MDPV) are structurally related to cathinone (Figure 

4.2), a natural compound found in the khat plant (Catha edulis), which is commonly chewed by people 

originating from countries around East Africa and the Arab Peninsula. They form a large family of 

compounds produced by substitutions at three locations of the cathinone molecule: phenyl ring, 

amino group and propanone terminus. Alkyl, alkoxy, alkylenodioxy, haloalkyl, cyclic groups and 

halides may be introduced to the molecule (Fornal, 2013).  This has led to copious synthetic cathinones 

being developed and sold to the public in mixtures, with numerous synthetic cathinones currently 

identified and known (Ibáñez et al., 2014; Leffler et al., 2014; National Alliance for Model State Drug 

Laws, 2012; Zancajo et al., 2014). Due to the known toxicity of synthetic cathinones, legislation has 

been enacted in some countries, leading to a decrease in their use, however, in spite of these legal 

controls, some synthetic cathinones are still commonly abused (German et al., 2014; Hill and Thomas, 

2016).  
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Figure 4.3: Structures of the “2C” phenethylamines 

The N-2-methoxybenzyl phenethylamine (NBOMe) set of compounds are derived from a class of the 

well-known potent hallucinogenic phenethylamines, the so-called 2Cs (Maurer, 2010). Thus, they 

have a high potential for hallucinogenic effects with the risk of serotonergic toxicity. Among others, 

2-(4-bromo-2,5- dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25B-NBOMe), 2-(4-

chloro-2,5-dimethoxyphenyl)-N-[(2 methoxyphenyl)methyl]ethanamine (25C-NBOMe), and 2-(4-

iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe) (Figure 4.3) 

have been sold and consumed as so-called research chemicals. Among the NBOMe derivatives, 25I-

NBOMe seems to be the most commonly used drug, seen as a ‘legal’ alternative to LSD. (Caspar et 

al., 2015; EMCDDA, 2015) These drugs may serve as replacements for the previously popular beta-

keto derivatives of amphetamine – methcathinone and methedrone – as well as the methylenedioxy 

ring derivatives similar to MDMA (Ecstasy), methylone and methylenedioxypyrovalerone (MDPV), 

which are now controlled substances in Europe and the USA (Gibbons, 2012).   

The metabolism of 25I-NBOMe has been studied (Caspar et al., 2015), with more than 60 metabolites 

found, including 26 in a human urine sample. With deuterated analogues of these metabolites very 

difficult to obtain, the parent compound is generally used for qualitative and quantitative analyses, and 

have been attributed to fatal intoxications (Kinyua et al., 2015b; Poklis et al., 2014; Tang et al., 2014).  

The main difficulty associated with the quantitative analysis of new psychoactive substances (NPS) is 

the extremely low analyte concentration in the aquatic matrix. Within the context of WBE, traditional 

illicit drugs such as cocaine, MDMA, amphetamine and methamphetamine are found in the low ppb 

– ppt range, however, NPS are at even lower concentrations, due to their niche markets and ever-

evolving compounds. This results in the need for very sensitive instrumentation, combined with 

specific sample pretreatment to minimise matrix effects. Furthermore, the complex nature of influent 
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wastewater requires filtration or centrifugation of samples prior to pretreatment. Filtration is generally 

made using glass fibre filters to remove any solid particulates. Due to the basicity of NPS, SPE is 

normally performed using cartridges with cationic exchange sorbents (e.g. Oasis MCX), with samples 

acidified (pH 2-3) prior to extraction. Comparisons have been made between the more generic Oasis 

HLB cartridges and the MCX, at differing pH, with MCX at pH 2-3 giving far better recoveries for 

the more basic synthetic cathinones and phenethylamines (Kinyua et al., 2015a; Senta et al., 2015; van 

Nuijs et al., 2013) while MCX has also been used for synthetic cannabinoids(Reid et al., 2014).   

With the diverse range and ever-changing environment of NPS, one all-encompassing method has yet 

to be developed for their quantitative analysis in wastewater. In fact, a single LC technique has also 

yet to be decided upon, with both RP and HILIC used for their analysis. Within RP LC separation, 

various columns have been used, based on the NPS being analysed: from the generic C18 for the 

conventional illicit drugs and the NPS mephedrone, methylone and MDPV (Kankaanpää et al., 2014; 

van Nuijs et al., 2013) to the less hydrophobic C8 for the analysis of synthetic cannabinoids (Reid et 

al., 2014), pentafluorophenyl column for the analysis of synthetic cannabinoids, cathinones and 

amphetamines (Borova et al., 2015) and the polar ether-linked phenyl column for synthetic cathinones 

and amphetamines (Senta et al., 2015). Interestingly, HILIC has also been used for the analysis of the 

very polar phenethylamine-based compounds, which are retained well on HILIC columns (Kinyua et 

al., 2015a).  

Nevertheless, the mobile phases utilised for all separations incorporate an aqueous and organic phase 

(typically methanol or acetonitrile). As mentioned previously, the addition of specific additives or 

buffers can enhance the chromatographic separation or influence the ionisation. The aqueous phase 

usually consists of acidified water (using 0.05-0.2% formic or acetic acid) and ammonium formate or 

ammonium acetate (5-10mM). The acidification improves the ionisation of the NPS, which are best 

ionised in positive ion mode.   

As explained previously, sensitive determination of NPS is necessary for WBE, leading QqQ to be 

the instrument of choice, typically in SRM mode. This requires the preselection of all analytes, and all 

MS parameters are then optimised individually, such as cone voltage and collision energy. First of all, 

the ionisation mode and cone voltage are optimised, to define the precursor ion. Next, using the 

defined cone voltage and ionisation mode, variable collision energies are applied to determine product 

ions. At least two transitions (i.e. precursor ion > product ion) are necessary: one for quantification 

and one for confirmation. Typically the most abundant and sensitive transition is used for 

quantification. However, for oxygen-containing ephedrine-, cathinone- and phenethylamine-like NPS, 
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the most abundant transition corresponds mainly to the loss of water, which is a relatively non-specific 

transition.  This can result in some matrix interferences, particularly in the complex matrix that is 

wastewater, which is full of organic hydroxyl-containing compounds. For such compounds, the 

second, less abundant, but specific transition should be used for quantification. In these cases, it is 

advisable to monitor additional transitions that can also be used for confirmation.  

This chapter focusses on the use of UHPLC-QqQ-MS for the quantitative determination of NPS in 

influent wastewater.  
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4.2 Scientific Articles 

This chapter includes one scientific article, “Ultra-high performance liquid chromatography-tandem mass 

spectrometry determination of selected new psychoactive substances including synthetic cathinones and phenethylamines in 

influent wastewater” (Scientific Article 7).  

Scientific Article 7 presents a sensitive method for the quantification of ten NPS (N-ethylcathinone, 

methylone, butylone, MDPV, naphyrone, mephedrone, methedrone, 25-B-NBOMe, 25-I-NBOMe 

and 25-C-NBOMe) in influent wastewater. An investigation was made into the best extraction 

technique, with HLB and MCX SPE cartridges used, with MCX deemed to be superior for these basic 

compounds. Furthermore, the stability of these compounds was tested for up to 30 days at 20ºC, 4ºC 

and -20ºC at both natural pH and pH 2. This method was used on wastewater samples from 

throughout Europe, with mephedrone, methylone and MDPV identified in several of the wastewater 

samples analysed.   

 

These results have been written in the following article, submitted for publication: 

Ultra-high performance liquid chromatography-tandem mass spectrometry determination of selected 

new psychoactive substances including synthetic cathinones and phenethylamines in influent 

wastewater of eight European cities R.Bade, L. Bijlsma, J. V. Sancho, J. A. Baz-Lomba, S. Castiglioni, E. 

Castrignanò, A.Causanilles, E. Gracia-Lor, B. Kasprzyk-Hordern, J. Kinyua, A.-K. McCall, A. L.N. van Nuijs, 

C.Ort, B. G. Plósz, P. Ramin, N. I. Rousis, Y. Ryu, K.V. Thomas, P. de Voogt, E. Zuccato, F. Hernández 
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4.2.1 Scientific Article 7 

ULTRA-HIGH PERFORMANCE LIQUID 

CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY 

DETERMINATION OF SELECTED NEW 

PSYCHOACTIVE SUBSTANCES INCLUDING 

SYNTHETIC CATHINONES AND PHENETHYLAMINES 

IN INFLUENT WASTEWATER OF EIGHT EUROPEAN 

CITIES 

 
Richard Bade, Lubertus Bijlsma, Juan V. Sancho, J. A. Baz-Lomba, Sara Castiglioni, 

Erika Castrignanò, Ana Causanilles, Emma Gracia-Lor, Barbara Kasprzyk-Hordern, 

Juliet Kinyua, Ann-Kathrin McCall, Alexander L.N. van Nuijs, Christoph Ort, Benedek 

G. Plósz, Pedram Ramin, Nikolaos I. Rousis, Yeonsuk Ryu, Kevin V. Thomas, Pim de 

Voogt, Ettore Zuccato, Félix Hernández 

Submitted for Publication 
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Ultra-high performance liquid chromatography-tandem mass spectrometry determination of 

selected new psychoactive substances including synthetic cathinones and phenethylamines in 

influent wastewater of eight European cities 

Richard Badea, Lubertus Bijlsmaa, Juan V. Sanchoa, J. A. Baz-Lombab,c, Sara Castiglionid, Erika Castrignanòe, 

Ana Causanillesf, Emma Gracia-Lora,d, Barbara Kasprzyk-Horderne, Juliet Kinyuah, Ann-Kathrin McCalli, 
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Abstract 

The use of new psychoactive substances (NPS) has grown in popularity over the past few years. 

Certain NPS are still commonly and even preferentially consumed even with the introduction of 

preventative legislation. With the objective to improve the knowledge on the use of NPS a rapid and 

very sensitive method was developed for the determination of ten priority NPS (N-ethylcathinone, 

methylenedioxypyrovalerone (MDPV), methylone, butylone, methedrone, mephedrone, naphyrone, 

25-C-NBOMe, 25-I-NBOMe and 25-B-NBOMe) in influent wastewater. Sample clean-up and pre-

concentration was made by off-line solid phase extraction (SPE) with Oasis MCX cartridges. 

Isotopically labelled internal standards were used to correct for matrix effects and potential SPE losses. 

Following chromatographic separation on a C18 column within 6 minutes, the compounds were 

measured by tandem mass spectrometry (triple quadrupole) in positive ionisation mode. The method 

was optimised and validated for all compounds, with limits of quantification being 1 or 5 ng L-1, 

with the method having been fully validated in samples spiked at these levels.  An investigation 

into the stability of these compounds in influent wastewater was also performed, showing that, 

following acidification at pH 2, all compounds were relatively stable for up to 7 days. The method was 

then applied to influent wastewater samples from eight European countries, in which mephedrone, 

methylone and MDPV were detetcted.  This work reveals that although NPS use is not as extensive 

as for classic illicit drugs such as cocaine, cannabis, amphetamines, the application of a highly sensitive 

analytical procedure makes their detection in wastewater possible. The developed analytical 

methodology forms the basis of a subsequent model-based back-calculation of abuse rate in urban 

areas (i.e. wastewater-based epidemiology) in the future.  
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1. Introduction 

New psychoactive substances (NPS) are emerging narcotic or psychotropic drugs that are not controlled by 

legislation, but which may pose a public health threat. It must be noted that in this context, the term ‘new’ does 

not necessarily refer to new inventions but to substances that have been recently become available [1]. The use 

of NPS has grown rapidly over the past decade and there have been increasing reports of the availability and 

manufacture of such substances, with the number of NPS reported globally more than doubling between 2009-

2013 (UNODC 2014). In 2014 alone, 101 NPS were for the first time reported to the EU Early Warning System 

[2]. Given the nature of the NPS market, with developers limited only by their imagination and ability to side-

step legislation [3] there is a sustained need to analyse the extent of the NPS problem. 

 

The analysis of wastewater to estimate (illicit) drug consumption based on biomarkers, has traditionally 

focussed mainly on the most commonly used illicit drugs - cocaine, cannabis, amphetamine, methamphetamine, 

3,4-methylenedioxymethamphetamine (ecstasy, MDMA) [4,5], leaving a large information gap on other illicit 

drugs and NPS. Little research has been made on NPS and their suitable biomarkers, let alone their stability. 

In the few papers that have been published until now on the determination of NPS in wastewater, the target 

analytes included are commonly the synthetic cathinones mephedrone, methylone and MDPV [6–15]. Within 

these studies, the most commonly detected NPS in wastewater are mephedrone and MDPV, generally found 

at the low ng/L range.     

 

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is commonly the technique of 

choice for the quantitative determination of illicit drugs in wastewater, due to the low concentrations involved 

and the high sensitivity of the instrument. When using this technique, several analytical aspects are of relevance 

in order to report accurate data. In addition to the required validation at realistic concentrations that can be 

found in the samples, relevant issues must be considered, such as the way to correct/minimize matrix effects, 

and the proper identification of the compound detected. The use of isotopically-labelled internal standards 

(ILIS) is one of the most efficient tools to correct for matrix effects as well as potential losses from solid phase 

extraction (SPE). The confirmation of identity of the compounds is essential in order to avoid reporting false 

positives. By utilising LC-MS/MS instruments in selected reaction monitoring (SRM) mode, at least two 

transitions should be incorporated in the method (one for quantification and the other(s) for confirmation). 

However, the specificity of the transitions should be taken into account, as non-specific transitions (such as the 

loss of water) can lead to false negatives due to the non-compliance of ion ratios [16].  

 

The purpose of this study was to develop and validate a sensitive LC-MS/MS method for the quantitative 

determination of a number of NPS of the synthetic cathinone and phenethylamine families: butylone, ethylone, 

methylone, naphyrone, methedrone, methylenedioxypyrovalerone (MDPV), mephedrone, 25-I-NBOMe, 25-
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C-NBOMe and 25-B-NBOMe. These compounds were selected on the basis of their frequent detection in 

analytical, forensic and toxicological studies [6–10,12,13,17–19] as well as reports from the EMCDDA [20] and 

UNODC [1].The developed method, using Oasis MCX SPE cartridges for sample pre-treatment, followed by 

UHPLC-MS/MS measurement, has been applied to influent wastewater samples from around Europe, with an 

additional study on stability being made. Special emphasis is placed on the reliable confirmation of the NPS 

detected in water, with up to three SRM transitions being acquired, which, together with ion ratios, allowed 

simultaneous detection, quantification and confirmation of positive samples.  

 

2. Experimental 

2.1 Chemicals and Materials 

Reference standards of all analytes: N-ethylcathinone, MDPV, methylone, butylone, methedrone, mephedrone, 

naphyrone, 25-C-NBOMe, 25-I-NBOMe and 25-B-NBOMe were purchased from Cerilliant (Round Rock, TX, 

USA) at a concentration of 1 mg/mL in methanol for the analytes. Standard stock solutions of each compound 

were prepared at 100 mg/L.  

Mixed working solutions containing all analytes were prepared from stock solutions at different concentrations 

by appropriate dilution with water, and were used for preparation of the aqueous calibration standards and for 

spiking samples in the validation study.  

Deuterated analogues: MDPV-d8, methylone-d3, butylone-d3, mephedrone-d3, naphyrone-d5, 25-C-NBOMe-

d3, 25-I-NBOMe-d3 and 25-B-NBOMe-d3 were also purchased from Cerilliant (Round Rock, TX, USA) at a 

concentration of 100 µg/mL in methanol. Standard stock solutions of each compound were prepared at 10 

mg/L. Mixed standard solutions containing all compounds were made with appropriate dilution with water.  

All standard solutions were stored in amber glass bottles in the dark at -20°C.  

HPLC-grade methanol (MeOH), ammonium acetate, ammonia solution (25 %) and formic acid (HCOOH, 98–

100 %) were acquired from Scharlau (Barcelona, Spain) HPLC-grade water was obtained by purifying 

demineralised water in a Milli-Q plus system from Millipore (Bedford, MA, USA).  SPE cartridges used were 

Oasis HLB 3cc (60mg) and Oasis MCX 6cc (150 mg) from Waters (Milford, MA, USA) 

2.2 Samples 

A number of different influent wastewater (IWW) samples were utilised in the development and validation of 

the present method: from Zurich, Switzerland; Copenhagen, Denmark and Castellon, Spain. The developed 

method was applied to IWW samples. The 24-h composite samples were taken in March 2015 from Zurich, 

Switzerland; Copenhagen, Denmark; Oslo, Norway; Castellon, Spain; Milan, Italy; Brussels, Belgium and 
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Utrecht, The Netherlands and Bristol, United Kingdom. All samples were collected in high density polyethylene 

bottles, transported to Castellon and stored in the dark at -20ºC until pre-treatment.  

2.3 Instrumentation 

A Waters Acquity UHPLC system (Milford, MA, USA) was interfaced to a triple quadrupole mass spectrometer 

(Xevo TQS, Waters Micromass, Manchester, UK) equipped with Z-Wave devices and an electrospray 

ionization interface (ESI) operated in positive-ion mode. The chromatographic separation was performed using 

an Acquity UPLC BEH C18 column, 1.7 μm, 50 mm × 2.1 mm (i.d.) (Waters) at a flow rate of 0.3 mL min−1. 

The mobile phases used were water with 5 mM ammonium acetate and 0.01% formic acid (solvent A) and 

MeOH with 0.01% formic acid (solvent B). The percentage of B changed linearly as follows: 0 min, 10 %; 3 

min, 90 %; 3.5 min, 90 %; 3.6 min, 10 %; 6 min 10 %, equilibration of the column. Cone gas as well as 

desolvation gas was dry nitrogen, with flows set to 150 and 800 L h−1, respectively. For operation in the 

MS/MS mode, collision gas was argon 99.995 % (Praxair, Madrid, Spain) with a pressure of 4×10−3 mbar in 

the collision cell (0.15 mL min−1). Other parameters optimized were: capillary voltage, 3.0 kV; source 

temperature, 150 °C and desolvation temperature, 650 °C. Dwell times of 0.01 s/transition were automatically 

selected. 

All data were acquired and processed using MassLynx v4.1 software (Waters, Manchester, UK). 

2.4 Sample Pre-treatment 

All water samples were acidified to pH 2 with formic acid (98%), then centrifuged for 5 minutes at 6000 rpm. 

SPE cartridges were conditioned with methanol (6mL), water (3mL) and acidified water (pH 2 with formic acid, 

3mL). The IWW samples (100mL) were spiked with mixed surrogate ILIS to give a final in sample 

concentration of 20 ng L-1, then percolated through the cartridges at ±5 mL min-1. The cartridges were then 

washed with 5 mL acidified methanol (pH 2 with formic acid) and dried under vacuum for 10 minutes. The 

analytes were eluted with 5 mL MeOH (2% ammonia), evaporated to dryness at 35ºC under nitrogen and 

reconstituted to 1mL with 10:90 methanol:water.  

Analyses were performed by injecting 3 μL of the final extract in the UHPLC-MS/MS system. 

2.5 Quantification and Method Validation 

SRM mode was used to acquire all data, with the precursor ion of each compound being the protonated 

molecule.  In general, the most abundant product ion of each target analyte was used for quantification, with 

one or two additional product ions and their ion ratios used for confirmation.  In order to confirm the 

compounds detected, LC retention time was compared to that of the reference standards (within ± 0.1 minutes). 

These steps are in line with the SANCO guidelines for analytical quality control and validation procedures [21], 

which has been utilised previously by research groups for quantification of illicit drugs in wastewater [22]. Each 
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compound was quantified using its corresponding ILIS as surrogate internal standard, except N-ethylcathinone 

and methedrone, which were quantified using butylone-d3 and methylone-d3, respectively. These ILIS were 

chosen based on their ability to correct for matrix effects as well as having similar retention times and chemical 

structures closely related to the analyte of interest.  

The performance of the method was evaluated in terms of linearity, limits of detection and quantification, 

accuracy and precision.  

The linearity was studied by analysing standard solutions in solvent in triplicate at seven concentration levels 

ranging from 0.5-100 ng L-1. Satisfactory linearity using weighted (1/X) least squares regression was assumed 

when the correlation coefficient (r) was >0.99.  

For limits of quantification and detection (LOQ and LOD), two different concentration levels (1 and 5 ng L-

1) were tested so as to provide a more accurate measure. The limit of quantification (LOQ) was established as 

the lowest level for which the method was fully validated using spiked IWW samples with satisfactory accuracy 

based on recovery experiments (between 70-120%) and precision (relative standard deviation (RSD) ≤20%). 

Furthermore, at least two MS/MS transitions were required at the LOQ level for confirmation. All recovery 

experiments were performed in quintuplicate. 

The limit of detection (LOD) was estimated using blank samples spiked at the lowest analyte concentration 

tested, based on a signal-to-noise level of three from the quantification SRM chromatogram.  

2.6 Stability experiments 

Stability experiments were performed under different conditions (IWW at natural pH and acidified to pH 2, 

filtered influent wastewater at natural pH and acidified to pH 2 and MilliQ water) and at three different 

temperatures (20ºC, 4ºC and -20ºC) for 24 hours, 48 hours, 7 days, and 30 days (at -20ºC only). The samples 

were each initially spiked at a concentration level of 100ng L-1. One mL of each sample was collected at the 

time intervals outlined above and spiked with ILIS (100 ng L-1) just before analysis.  

3. Results and Discussion 

3.1 Selection of Compounds 

Only parent compounds were selected for this study. This is based on the previous metabolism studies 

performed on the selected ten  as well as related NPS in human and rat urine [18,23–27], which showed that in 

spite of the number of metabolites identified, the parent compound could still be detected in urine, thereby 

giving credence to their inclusion as a biomarker in this method. Furthermore, it has been noted that the 

metabolic patterns of selected phenethylamine-based designer drugs have indicated rather slow metabolism 

rates, with parent drugs being the key biomarkers of consumption [8,28], somewhat expected due to their 

structural similarity to amphetamine and MDMA [5].   
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In addition, for the phenethylamine-based 25-X-NBOMe compounds, the parent compound is generally used 

in both qualitative and quantitative toxicological studies [29–31]. 

3.2 Instrument Optimisation 

Initially, all cone voltages were optimised concurrently for all compounds, using a mixed standard solution (10 

µg L-1), with the cone voltage ranging from 10-50 V at 10 V intervals. For all compounds, the precursor ion 

was [M+H]+. Collision energies were optimised for each compound independently using a collision energy 

ranging from 10-50eV at 10eV intervals. The most sensitive transition was typically selected for quantification 

(Q) while an additional one (or two) were selected for confirmation (q).  Some compounds only had two 

product ions of significant intensity, meaning that only two transitions (i.e. Q and q1 only) could be monitored 

(Table 1). Non-specific transitions such as the loss of water were avoided as much as possible (except for 

methylone, mephedrone and N-ethylcathinone where they were used as confirmation transitions) in order to 

reduce the likelihood of false positives [22]. For the three 25-X-NBOMe compounds, the same product ions 

were seen (m/z 121 and 91), corresponding to the cleavage of the methoxybenzyl moiety (m/z 121) and the 

further loss of the methoxy group producing the tropylium ion (m/z 91). These transitions are not very specific, 

and can come from any compound with a methoxybenzoyl moiety, however as there were no other transitions 

available for these compounds, they had to be used as quantification and confirmation transitions. Regarding 

the ILIS, only a single transition was monitored. 

The chromatographic separation was initially based on a mobile phase composed of water:MeOH, which 

resulted in very poor peak shapes. Different concentrations of ammonium acetate buffer and pH (formic acid) 

were investigated. The effects of pH and mobile phase ionic strength on the peak shapes, resolution and 

efficiencies were evaluated by varying the buffer concentration. An optimal mobile phase consisting of water 

with 5 mM ammonium acetate and 0.01% formic acid (solvent A) and MeOH with 0.01% formic acid (solvent 

B) was finally selected.
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Table 1: MS/MS optimised conditions for all studied compounds 

Compound 
Retention 

time 
(mins) 

Precursor 
ion 

[M+H]+ 
(m/z) 

Cone 
Voltage 

(V) 

Collision 
Energy 

(eV) 

Product 
Ions 

(m/z) 

LOQa 

(ng L-1) 

LODb 

(pg L-1) 

q/Q ratio  

(RSD %) 

         

25-B-NBOMe 3.76 380.1 40 20 121.0 1 100  

    30 91.0   0.4 (6) 

25-C-NBOMe 3.70 336.1 20 20 121.1 5 70  

    40 91.0   0.6 (6) 

25-I-NBOMe 3.86 428.1 20 20 121.0 5 100  

    50 91.0   0.5 (6) 

Butylone 2.68 222.1 20 20 174.0 5 200  

    20 146.0   0.3 (6) 

    30 131.2   0.3 (7) 

Mephedrone 2.77 178.1 30 20 145.2 5 200  

    20 119.0   0.1 (11) 

    10 160.0   1.3 (7) 

Methedrone 2.57 194.1 20 20 161.1 5 200  

    20 146.0   0.4 (4) 

MDPV 3.11 276.2 50 20 175.1 1 200  

    20 126.0   0.6 (5) 



  

 

 

    20 205.0   0.8 (9) 

Methylone 2.36 208.1 50 20 160.0 5 50  

    20 132.1   0.4 (6) 

    10 190.0   0.5 (11) 

Naphyrone 3.71 282.2 50 20 141.2 1 50  

    20 211.1   0.5 (6) 

    40 127.4   0.2 (6) 

N-ethylcathinone 2.42 178.1 20 10 130.0 5 200  

    20 117.1   1.1 (7) 

    30 160.1   0.7 (10) 

25-B-NBOMe-d3 3.76 383.3 40 20 124.0    

25-C-NBOMe-d3 3.70 339.1 20 20 124.0    

25-I-NBOMe-d3 3.86 431.1 20 20 124.0    

Butylone-d3 2.68 225.1 20 20 177.1    

Mephedrone-d3 2.77 181.1 30 20 145.2    

MDPV-d8 3.11 284.2 50 20 205.0    

Methylone-d3 2.36 211.1 50 20 163.1    

Naphyrone-d5 3.71 287.2 50 20 141.2    

aLOQ objective. Lowest concentration tested for the method being fully validated with satisfactory results. 

bLOD estimated for a signal-to-noise level of three from the quantification SRM chromatogram of blank samples spiked at the lowest analyte concentration tested.
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3.3 Optimisation of extraction procedure 

An investigation into the filtration losses of these compounds was made in samples at both natural and pH 2, 

using a vacuum filter (Whatman, 0.45μm mixed cellulose ester membrane). It was found that for naphyrone 

and the 25-X-NBOMe compounds, less than 5% of the compounds were recovered following filtration, while 

for MDPV a recovery of 55-71% was found. (Table S1) With these results, filtration was not employed in this 

method, instead we only performed centrifugation. 

Two cartridges were evaluated in the optimisation of the SPE procedure: Oasis HLB and Oasis MCX, which 

are two of the most popular cartridges for the extraction of different types of illicit drugs in environmental 

waters [32]. The backbone of the Oasis sorbents consists of apolar moieties (benzyl groups, aliphatic chains) 

and polar groups (pyrrolidone). HLB is only synthesised from these two monomers and neutral. MCX has extra 

sulfonic acid functional groups (1.01mmol g-1) implemented at a fixed location and contain permanently 

charged groups at any relevant pH. For both cartridges, 100 mL of IWW was spiked with the compounds (100 

ng L-1) before and after extraction and the recovery was used to determine the better cartridge for further 

optimisation.  No pH adjustment was made for the Oasis HLB cartridges, while for the MCX, samples were 

acidified (pH 2) in order to protonate all basic analytes, thereby enhancing their ionic interactions with the 

sorbent [8]. This led to a reduction in matrix interferences, giving higher sensitivity and peak shapes for the 

majority of the compounds (Figure 1). The SPE procedure followed for the HLB cartridges was the same as 

in previously published studies. [33,34]  

Higher recoveries were obtained when using Oasis MCX cartridges (Figure 2) and therefore these were 

selected for further optimisation. For the washing step, water, pure MeOH and acidified MeOH (pH 2) were 

tested. Drying under vacuum (or not) was also tested, to determine the optimal washing/drying steps (Figure 

2).  

As seen in Figure 2, the optimal SPE procedure involved washing with 5mL acidified methanol and drying for 

10 minutes, with recoveries ranging from 83%-93% (Figure 2, MCX 3). 

In previous methods for NPS using MCX cartridges, different percentages of ammonia in methanol have been 

used for elution, ranging from 0.5% to 4% [7,8,11,12]. A compromise of 2% was utilised in this work, and 

showed good recoveries for all compounds. An elution volume of 5mL of 2% ammonia in MeOH solution 

was finally chosen. This was based on the comparison of the recoveries of 5mL and 10mL elution volumes, 

with recoveries only 2% less for the 5mL than the 10mL.  
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Figure 4: SRM of a selection of compounds, after extraction with HLB (LEFT) and MCX (RIGHT) cartridges.  From top to bottom: 

methedrone, butylone, mephedrone, MDPV and N-ethylcathinone.  

 

 

Figure 5: Recoveries for all compounds using HLB and MCX cartridges. Legend shows different washing/drying steps used. Black lines are 

shown at the threshold limits for satisfactory recovery (70-120%) 
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3.4 Method Validation 

Before applying the developed methodology to IWW samples, the method was fully validated for linearity, 

precision and accuracy (recovery), LOD, LOQ and q/Q ratio (Tables 1 and 2). A calibration curve of seven 

points was made in solvent from 0.5-100ng L-1. Correlation coefficients were greater than 0.99 for all 

compounds, except for naphyrone and the NBOMe compounds, which had values between 0.97-0.98. For 

precision and accuracy, blank IWW samples were spiked at four concentration levels (1 ng L-1, 5 ng L-1, 10 ng 

L-1 and 50 ng L-1), and analysed in quintuplicate. These two sets corresponds to the different LOQs of some 

of the compounds (either 1 ng L-1or 5 ng L-1, see Table 1). Accuracy was measured by means of recovery, with 

all compounds showing satisfactory recovery (between 70-120%), and precision (all within RSD 20%). 

LOQs were estimated from a non-statistical point of view, utilising an LOQ objective: the lowest level in sample 

for which the method was fully validated in terms of accuracy and precision. This criterion has been utilised in 

the past in published results [22] and is used in other fields, such as pesticide residue analysis [21]. This gives a 

more realistic LOQ value, albeit generally higher than those estimated from statistical criteria (i.e. signal-to-

noise of 10 at the lowest validation level tested).  

Average intensity q/Q ratios were calculated from reference standards in solvent of different concentrations 

(Table 1). With RSD% values ≤11% for all q/Q ratios, there was high confidence that the ratios are not 

concentration dependent.  These were compared to those experimentally obtained from sample extracts spiked 

at the lowest level validated. The aim of this was to test the robustness of these values and to check for potential 

matrix interferences that could affect the q/Q ratios and consequently, the confirmation process. As Table 2 

shows, average q/Q deviations were all below 30% [21], except for 25-I-NBOMe and 25-C-NBOMe at the 

lowest level of 1ng/L. This finding returns to the previous discussion of the non-specificity of the NBOMe 

transitions, whereby although these transitions could be seen at this level, matrix interferences let the q/Q 

deviations far exceed the threshold of the SANCO guidelines, which were being followed in this work. This 

led to the LOQ for these two compounds being increased to 5 ng L-1.  

Matrix effects are a known drawback of LC-MS/MS, which can adversely affect the compounds of interest, 

leading to signal enhancement or suppression, thereby affecting the quantification process. These effects are 

most pronounced in more complex matrices, such as IWW. In this work, matrix effects were calculated by 

comparing the peak areas of Set 1 (SPE eluates (IWW previously extracted) spiked with the mixed standard 

and ILIS solutions) with Set 2 (mixed standard solution in solvent, including ILIS).  All samples were performed 

in triplicate and averaged to perform the following calculations [35]: 

Matrix effects (%) = 
average peak area (Set 1) 

average peak area (Set 2)
 ×  100  

These calculations showed the true impact of the matrix on the compounds, with all showing significant matrix 

enhancement (Table 2). To correct for these interferences, ILIS were included in the calculation: 
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Matrix effects (%) = 
average peak area (Set 1,ILIS) / average peak area (Set 2,ILIS)

average peak area (Set 1) / average peak area (Set 2)
 ×  100 

Including ILIS to the calculations led to corrected matrix effects under 10% for all compounds.   

Additional data pertaining to the use of ILIS is shown in Table 2, for SPE recovery and matrix effects, showing 

how well the ILIS are able to correct for matrix interferences. 

S
c
ie

n
ti

fi
c
 A

rt
ic

le
 7

 



 

 

Table 2:  Method validation for all compounds in IWW at 2 validation levels (all values are in %), together with recovery and matrix effects before and after correction with internal standard (n=5). Linearity is 

also shown. 

Compound 
Matrix effects 

(%)a 
q1/Q ratio q2/Q ratio SPE Recovery (%) Linearity 

   Lowb Highc Lowb Highc Lowb  Highc   

  No ILIS      No ILIS  No ILIS  

            

25-B-NBOMe -4 60 -11 (12) -9 (4) - - 121 (7) 87 (13) 83 (4) 57 (16) 0.9722 

25-C-NBOMe -7 50 -7 (8) -2 (0) - - 86 (9) 51 (14) 89 (7) 73 (15) 0.9737 

25-I-NBOMe -6 66 5 (8) -13 (1) - - 111 (9) 85 (16) 77 (6) 78 (16) 0.9722 

Butylone -6 29 -13 (12) -4 (6) 24 (26) -11 (4) 79 (10) 49 (13) 83 (4) 55 (8) 0.9923 

MDPV -7 48 6 (8) 10 (4) 17 (13) 9 (8) 122 (10) 94 (8) 74 (9) 52 (10) 0.9900 

Mephedrone -9 26 -6 (11) 12 (4) 0 (5)d 15 (4)d 71 (10) 40 (8) 94 (7) 52 (6) 0.9914 

Methedrone -10 31 -12 (4) -7 (6) - - 73 (8) 49 (7) 80 (5) 53 (7) 0.9923 

Methylone -6 30 6 (7) -1 (8) d d 71 (8) 30 (4) 89 (4) 36 (7) 0.9919 

Naphyrone -10 62 -5 (5) -7 (9) -5 (9) -13 (3) 111 (10) 75 (10) 76 (8) 50 (15) 0.9883 

N-ethylcathinone 3 27 -33 (21) 1 (7) d 5 (6)d 113 (7) 47 (12) 84 (7) 34 (5) 0.9975 

ILIS (Isotopically-labelled Internal Standard)  
a: for matrix effects, a negative value (-) denotes matrix suppression, while positive values indicate matrix enhancement.  
b: Low refers to the LOQ value of all compounds: 1 ng L-1 for MDPV, Naphyrone and 25-B-NBOMe and 5 ng L-1 for all other compounds 
c: High refers to the 10xLOQ value of all compounds: 10 ng L-1 for MDPV, Naphyrone and 25-B-NBOMe and 50 ng L-1 for all other compounds 
d: These transitions were for a loss of water. The non-specificity associated with these transitions combined with the complex IWW matrix led to some of these transitions being non-
observed/interfered. However, as they were all q2 transitions, the method could still be validated based on q1. 
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3.5 In-sample Stability 

Stability of analytes is a key matter in any analysis, particularly when dealing with very low analyte concentrations 

in complex matrices such as wastewater. It is imperative that target analytes do not degrade during the 24-hour 

composite samples collection or during their storage before extraction. Composite samples are normally 

collected at 4 °C and are stored either at that temperature, or at -20 °C, depending on the time lapsing between 

collection and extraction[8], while extraction is usually carried out at room temperature. For these reasons, the 

stability of the target analytes in this study was studied at 4 °C, -20 °C and 20 °C. The study was carried out in 

both raw and filtered wastewater (as some research groups filter their samples prior to storage) as well as in 

Milli-Q water. Furthermore, the impact of acidification was also examined, with the samples examined at both 

natural pH and at pH 2.  

In this section, low (60-100% transformation), medium (20-60% transformation) and high stability (0-20% 

transformation) is defined as by McCall et al [36], with all results being normalised to t=0. It must be stated 

that there was little difference between the filtered and unfiltered wastewater for most analytes, with the 

compounds less stable at natural pH. At 20 ºC, N-ethylcathinone and mephedrone, showed low stability after 

24 hours. However, at pH 2, all compounds exhibited high stability at all temperatures, for at least 7 days.  

The results show that if the samples are not acidified they should be refrigerated (at 4 °C), or frozen (at -20 °C), 

and analysed within 7 days to ensure no significant degradation has occurred. Alternatively, if samples are 

acidified to pH 2, all investigated compounds are more stable and can even be maintained at room temperature 

for up to 7 days. However, after 30 days, there were some distinct stability issues with some compounds: 

mephedrone, methedrone and butylone all exhibiting low stability (up to 84% transformation); N-

ethylcathinone, MDPV and methylone showing medium stability while the 25-X-NBOMe compounds and 

naphyrone still had high stability (less than 10% transformation) (Figure 3). All other results of the stability 

tests (i.e. in filtered wastewater and Milli-Q water) can be found in the supporting information (Figures S1-S3). 

These results also mirror those of the recent studies of Senta et al [8], and Reid et al [12], who investigated the 

stability of some of these compounds. 
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Figure 3: Stability of all compounds in raw IWW at (pH 2) at 20 ºC (TOP), 4 ºC (MIDDLE) and -20 ºC (BOTTOM). Transformation 

(y axis) shows the value of the analyte remaining (i.e. a value of 20% means a transformation of 80%) 
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3.6 Application to Real Samples 

A selection of samples from throughout Europe were investigated for the presence of NPS. In total, IWW 

from eight cities were investigated: Bristol, United Kingdom; Brussels, Belgium; Castellon, Spain Oslo, 

Norway; Copenhagen, Denmark; Milan, Italy; Utrecht, The Netherlands; Zurich, Switzerland, and samples 

were from weekends (Saturday and Sunday) and weekdays (Monday-Friday).   

In every sequence of analysis, water samples were injected between two calibration curves. Two quality 

control samples (QCs), i.e. a blank water sample (previously analyzed) spiked at LOQ and 10×LOQ levels, 

were also analysed. QC recoveries were considered satisfactory when they were in the range of 70–120% for 

each analyte. 

Table 3: Concentrations (in ng L-1) of investigated NPS in IWW throughout Europe (weekday/weekend) 

Compound 
South 

West UK 
Brussels Castellon Copenhagen Milan Oslo Utrecht Zurich 

N-
ethylcathinone - - - - - - - 

- 

MDPV - - - - -/3 -/2 - 6/- 

Mephedrone 61/106 d/- - 5/5 - d/d -/d -/d 

Methylone -/d - - -/12 - - 7/5 - 

Butylone - - - - - - - - 

Methedrone - - - - - - - - 

Naphyrone - - - - - - - - 

25-B-NBOMe - - - - - - - - 

25-I-NBOMe - - - - - - - - 

25-C-NBOMe - - - - - - - - 

d: detected, at a concentration below LOQ; -: not detected (<LOD) 

 

 

As shown in Table 3, mephedrone was the most commonly identified NPS, with concentrations ranging from 

<5 ng L-1 (Brussels, Oslo, Copenhagen and Utrecht) to 106 ng L-1 (South West UK). The high concentrations 

found in Bristol are similar to another study in the United Kingdom, which found concentrations up to 114 (± 

15) ng L-1. [15] These data also follow that from the UNODC, stating that mephedrone has the highest 

prevalence rate of any NPS in the United Kingdom, and behind only cannabis, cocaine and ecstasy in terms of 

drug use [1]. The only other compounds confirmed in our study were methylone and MDPV, with 

concentrations ranging from below LOQ to 12 ng L-1 (methylone) and 6 ngL-1 (MDPV), with these low 

concentration in line with previous studies in Croatia and Switzerland [7,8]. These overall results are also 
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comparable with EMCDDA seizure data, with mephedrone (20%), methylone (7%) and MDPV (9%) some of 

the most commonly seized synthetic cathinones. Furthermore, the United Kingdom had one of the most 

synthetic cathinone seizures in Europe, implying a high consumption of these NPS [20].  



 

 

 

Figure 4: Positive findings (from left to right) of MDPV, mephedrone and methylone in IWW of Milan, South West UK and Copenhagen, respectively. The uppermost transition for each compound is 

the confirmation (Q) transition in the QC (low, 5 ng L-1), while the lower three are all from the sample. All include three transitions, and the q/Q ratio, together with the deviation from the QC.  
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Figure 4 shows the confirmation in three IWW samples of MDPV, mephedrone and methylone. All show 

the compliance of all the necessary criteria: retention time compatibility with the standard (in the form of the 

QC in the figure), at least two transitions, and ion ratio within 30% for at least one confirmation transition. It 

must be noted that the q2/Q ratio for both MDPV and methylone are outside the accepted ±30% ion ratio 

window, but as the q1/Q ratio for both are within the window, both can be confirmed. 3.6.1 False positive 

identification 

 

3.6.1 Occurrence of false positives 

 

With quantification methods, it is easy to distinguish positive findings from negative, using strict criteria such 

as ion ratio (±30%), retention time (± 0.1 min) and at least one additional, confirmatory transition. However, 

there are some scenarios where the rulings are not so obvious.  

 

For some compounds, only one, the most sensitive, transition may be observed, but may not be confirmed 

with a subsequent transition, suggesting that the compound could be present, although only at very low 

concentrations. If criteria are not strictly adhered to, this could lead to false positive findings. This was the case 

for MDPV in a sample from Zurich (Figure 5). Within this sample, the Q transition was found at the correct 

retention time, but the two q transitions were between 0.09-0.2 minutes away. This suggests that two different 

compounds were present in the samples showing the above transitions. Even though the shift in retention time 

itself is enough to reject the detection of this compound, the ion ratios were still checked. The q1 transition 

was found within the q/Q ratio threshold (30%). Although the q2 ratio was more than 100% lower than 

expected, if the sample was not well checked, it could have been erroneously assigned as a false positive on the 

basis of one q/Q ratio accomplishment.  

 

Figure 5 also shows the curious case of butylone, which seemed to have been detected in an IWW sample 

from Bristol. As this figure shows, all three transitions can clearly be seen, albeit at a retention time 0.17 minutes 

lower than in the quality control. Although one q/Q ratio is within the ±30% threshold, the fact that the 

retention time is greater than 0.10 minutes from the standard is enough evidence to say that this is not butylone. 

However, with all the same transitions present, there is a possibility that this compound could be related to 

butylone. Due to the retention time being less than the reference standard, this compound could be a metabolite, 

which, due to its more polar characteristics would lead it to elute earlier. Alternatively, it could be a related 

cathinone-derivative, for example ethylone, which has the same fragmentation, and has been found in previous 

European samples [7]. However, more research is needed to confirm its identity.   
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Figure 5: The false positive detections of butylone in Bath (LEFT) and MDPV in Zurich (RIGHT). The uppermost transition is the 

quantification (Q) transition in the QC (low, 5ng/L), while the lowermost is the Q of the ILIS (in sample). All transitions are shown, together 

with the q/Q ratios. 

 

Conclusions 

A very sensitive analytical method based on UHPLC-MS/MS has been developed for the determination of ten 

NPS of the synthetic cathinone and phenethylamine classes in influent wastewater. The overall analytical 

procedure, based on an off-line SPE step using Oasis MCX cartridges prior to the determination by UHPLC–

MS/MS using a triple quadrupole analyzer, has been fully validated, obtaining satisfactory accuracy and 

precision. Extra emphasis was made on the SPE cartridge, clean-up step and matrix effects. An additional study 

was also made into the stability of these compounds in five matrices at -20 °C, 4 °C and 20 °C, with advice 

given on the optimal means of storage. 

The method was tested on samples from throughout Europe, with mephedrone, methylone and MDPV able 

to be identified in various samples.  These data support the applicability of the method to influent wastewaters, 

despite the very low concentrations observed, and also support the previous information available on NPS use 

in Europe, where these compounds are in agreement with prevalence and seizure data.  

In the future, with information on flow data for the IWW plants and metabolic data to correct for excretion, 

this method could be used to obtain accurate analytical concentrations which subsequently could allow the 

estimation of NPS consumption within a population.  
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Supporting Information 

 

Table S1: Filtration recovery for all compounds using vacuum filter (%) 

 

 

Compound Natural pH pH = 2 

N-ethylcathinone 98 106 

MDPV 55 71 

Mephedrone 97 102 

Methylone 88 104 

Butylone 84 104 

Methedrone 90 102 

Naphyrone 1 4 

25-B-NBOMe 1 1 

25-I-NBOMe 0 1 

25-C-NBOMe 1 1 
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Figure S1: Stability of all compounds in filtered IWW (pH2) at 20ºC (LEFT), 4ºC (MIDDLE) and -20ºC (RIGHT) 

 

Figure S2: Stability of all compounds in filtered IWW (natural pH) at 20ºC (LEFT), 4ºC (MIDDLE) and -20ºC (RIGHT) 
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Figure S3: Stability of all compounds in Milli-Q water at 20ºC (LEFT), 4ºC (MIDDLE) and -20ºC (RIGHT) 
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4.3 Discussion of Results 

Within the realm of WBE, illicit drugs (especially cocaine, methamphetamine, amphetamine, MDMA, 

and cannabis) have been the focus. The success of this approach has led researchers to explore further 

biomarkers in fields other than illicit drugs, including F2-isoprostanes, alcohol, caffeine, nicotine, 

phosphodiesterase type V inhibitors and pesticides. In the past five years, there has been a rapid 

growth in NPS, as ‘legal’ alternatives to the conventional illicit drugs outlined above. With little 

toxicological knowledge of these compounds, governments and regulators have been quick to illegalise 

these compounds. However, slight modifications can be made to get around the legislation, leading 

to more NPS hitting the market. In spite of the legislation, and the new NPS continuously reaching 

the market, some NPS have proven more popular that others (even after being deemed illegal), such 

as mephedrone (in Europe) and MDPV and methylone (mainly in the United States).  

Several research groups have developed WBE methods for various NPS (Borova et al., 2015; Kinyua 

et al., 2015a; Senta et al., 2015), while our group has previously analysed legal highs – in the form of 

herbal blends, pills, powders, drinkable solutions and truffles – to identify the NPS inside (Ibáñez et 

al., 2014). This information, combined with that from recent toxicological studies (Caspar et al., 2015; 

Kinyua et al., 2015b; Mardal and Meyer, 2014), led to the ten NPS being chosen for this study:  N-

ethylcathinone, butylone, methylone, naphyrone, MDPV, mephedrone, methedrone, 25-B-NBOMe, 

25-C-NBOMe and 25-I-NBOMe.  

Only parent compounds were selected for this study. This is based on the previous metabolism studies 

made on these and related NPS in human and rat urine (Caspar et al., 2015; Ibáñez et al., 2016; Kamata 

et al., 2006; Mardal and Meyer, 2014; Meyer et al., 2010; Uralets et al., 2014), which showed that in 

spite of the number of metabolites identified, the parent compound could be detected, thereby giving 

credence to their inclusion as a biomarker for drug consumption. Furthermore, it has been noted that 

the metabolic patterns of selected phenethylamine-based designer drugs have indicated rather slow 

metabolism rates, with parent drugs being the key biomarkers of the drug consumption(Lai et al., 2015; 

Senta et al., 2015), somewhat expected due to their structural similarity to amphetamine and MDMA, 

for both of which the parent drug is used as the biomarker for drug consumption.   

Matters are further complicated with information relating to routes of administration, dosage levels, 

habits of consumption and individual metabolism lacking. This could have a big impact on the most 

suitable biomarker, as the excretion rate can vary according to the route of administration and the 
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frequency of use of a substance(Castiglioni et al., 2016, 2013). Although back-calculation to estimate 

consumption is not (yet) the goal of identifying NPS in wastewater, knowledge of the most highly 

excreted metabolites could allow more of these NPS to be found, and can be used for future WBE 

methods. 

With the conventional WBE drugs, excretion rates of the biomarkers used range from 0.6% (THC-

COOH for cannabis) to 65 % (MDMA) (Burgard et al., 2014; Castiglioni and Gracia-Lor, 2016). The 

fact that these compounds are still utilised as the most suitable biomarkers despite the small excretion 

rates in some cases, combined with the findings of the aforementioned metabolism studies, leads the 

parent drugs to being a plausible biomarker of consumption. 

When developing this method, the first parameters to be optimised were those related to the mass 

spectrometry measurement. As with other methods incorporating these basic compounds, only 

positive ionisation mode was tested, with the [M+H]+ used as the precursor ion for all compounds 

for both quantification and confirmation transitions. Initially, all analytes were injected as a mix, with 

optimisation of the cone voltage made concurrently, with the voltage being increased from 10V-50V 

at 10V steps (example of methedrone in Figure 4.4). If the cone voltage deemed to have the greatest 

sensitivity was at 50V, higher cone voltages were applied (as in the cases of methylone and naphyrone), 

to see whether greater sensitivity could be achieved. Once the optimal cone voltage had been found, 

the collision energy was optimised for each compound individually, using the optimised cone voltage 

and the collision energy being increased from 10eV-50eV at 10eV increments. All transitions (i.e. 

precursor ion > product ion) were noted, along with their optimal collision energy and areas (to 

determine the sensitivity).  

In general, the most sensitive transition was used for quantification. The only exception was 

methylone where it corresponded to the non-specific loss of water, thus the 178.1>145.2 transition 

was used for quantification instead. For confirmation, the next most sensitive transition was selected, 

with the loss of water again overlooked due to its low specificity. However, for mephedrone, a loss of 

water (178.1>160.0) was used for confirmation due to the low sensitivity of other transitions.  

The initial UHPLC optimisation was based on a previous method of our group (Bijlsma et al., 2014). 

A mobile phase of pure milli-Q water (H2O) and methanol (MeOH) was first used, together with a 

mixed solution of the analytes (100ppb). However, due to the sensitivity of the instrument, the column 

was overloaded at such a high concentration, so subsequent injections were made at 10ppb and 1ppb. 

Furthermore, without any additives, no clear chromatographic peaks could be observed. Formic acid 



 Chapter 4: Determination of NPS 

 

279 

(FA) and ammonium formate (NH4Ac) at differing concentrations were then added in an attempt to 

improve the chromatographic peaks (Figure 4.4). As seen, there is a massive improvement as soon 

as FA is added to the aqueous phase.  

 

Figure 4.4: Cone voltage and UHPLC Optimisation of Methedrone: a = 10ppb methedrone, mobile phase of H2O and MeOH only; b = 

10ppb methedrone, mobile phase of H2O + 0.01%FA and MeOH.  

Cone voltage is shown on the left. 

 

When tweaking the mobile phase additives, it was found that the compounds most susceptible to peak 

broadening were those eluting later: naphyrone and the NBOMe compounds. While the addition of 

FA and NH4Ac to the aqueous mobile phase did improve the peak shapes of all compounds, the 

addition of FA to the organic mobile phase improved the sensitivity of all compounds, with up to a 

two-fold increase (Figure 4.5). Thus, a mobile phase of water (with 0.01% formic acid and 5mM 

ammonium acetate) and methanol (with 0.01% formic acid) was selected.  

Methedrone (10ppb)

Time
1.00 1.50 2.00 2.50 3.00 3.50 4.00

%

12

1.00 1.50 2.00 2.50 3.00 3.50 4.00

%

10

1.00 1.50 2.00 2.50 3.00 3.50 4.00

%

9

1.00 1.50 2.00 2.50 3.00 3.50 4.00

%

10

1.00 1.50 2.00 2.50 3.00 3.50 4.00

%

9

NPS_opt_016 5: MS2 ES+ 
194 0.2000Da

1.05e8
2.81

2.47
2.18

1.17 1.38 1.88

NPS_opt_016 4: MS2 ES+ 
194 0.2000Da

1.25e8
2.50

2.25

2.88

NPS_opt_016 3: MS2 ES+ 
194 0.2000Da

1.43e8
2.87

2.45
2.24

NPS_opt_016 2: MS2 ES+ 
194 0.2000Da

1.41e8
2.86

2.45
2.24

NPS_opt_016 1: MS2 ES+ 
194 0.2000Da

1.20e8
2.48

2.271.681.431.10

2.86

Methedrone (10ppb)

Time
1.00 1.50 2.00 2.50 3.00 3.50 4.00

%

3

1.00 1.50 2.00 2.50 3.00 3.50 4.00

%

3

1.00 1.50 2.00 2.50 3.00 3.50 4.00

%

4

1.00 1.50 2.00 2.50 3.00 3.50 4.00

%

3

1.00 1.50 2.00 2.50 3.00 3.50 4.00

%

4

NPS_opt_047 5: MS2 ES+ 
194 0.2000Da

3.32e8
2.14

NPS_opt_047 4: MS2 ES+ 
194 0.2000Da

3.39e8
2.17

NPS_opt_047 3: MS2 ES+ 
194 0.2000Da

4.00e8
2.16

NPS_opt_047 2: MS2 ES+ 
194 0.2000Da

4.03e8
2.15

NPS_opt_047 1: MS2 ES+ 
194 0.2000Da

4.03e8
2.14

a b

50V

40V

30V

20V

10V



Discussion 

280 

 

Figure 4.5: UHPLC Optimisation: LEFT: H2O + 0.01% FA + 5mMol NH4Ac; MeOH,  

RIGHT: H2O + 0.01% FA + 5mMol NH4Ac; MeOH + 0.01% FA 

Compounds, from top to bottom: 25-I-NBOMe, 25-B-NBOMe, 25-C-NBOMe, naphyrone 

 

Two SPE cartridges were tested for both sample treatment purposes: Oasis HLB and Oasis MCX.  

Oasis HLB is a hydrophilic-lipophilic-balanced, water wettable, reversed phase material, commonly 

used as a generic cartridge as it is ideal for acidic, basic and neutral analytes. Oasis MCX is a mixed 

mode cation-exchange sorbent, which is selective for bases. Both consist of a copolymer synthesised 

from a polar divinylbenzene and polar N-vinylpyrrolidone. HLB is only synthesised from these two 

monomers and neutral. MCX has extra sulfonic acid functional groups (1.01mmol/g) implemented at 

a fixed location and contain permanently charged groups at any relevant pH (Bäuerlein et al., 2012). 

All of the compounds in this method were basic phenethylamine- and cathinone-derivatives, so the 

MCX was expected to be superior, or at least being more specific. In order to compare the two 

cartridges, recovery experiments were made, whereby the samples were spiked before and after 

extraction.  Figure 4.6 shows the comparison between the two procedures at 10ppb in IWW, with 

the MCX giving recoveries between 80-100% for all compounds, while, using HLB, both butylone 

and methedrone had recoveries less than 80%. This led to MCX being chosen as the preferred sample 

treatment method, and further optimisation of the elution and drying was made to improve the 
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recoveries. However, as shown in Figure 2 of Scientific Article 7, the recoveries for these alternative 

steps led to recoveries greater than 120%.  

 

Figure 4.6: Comparison of SPE recoveries of Oasis HLB and Oasis MCX 

 

Matrix effects, extraction efficiency (absolute recovery) and process efficiency (relative recovery) were 

also tested for the MCX cartridges, based on the work of Matuszewski et al. (Matuszewski et al., 2003), 

where three different sets of samples were prepared. Set 1 consisted of a mixed standard solution in 

solvent, including ILIS. Set 2 consisted of IWW samples, which had previously been extracted, and 

the SPE eluates spiked with the mixed standard and ILIS solutions. Finally, in set 3, IWW samples 

were first spiked at the same concentrations as the previous sets and then extracted. All sets were 

performed in triplicate and averaged to perform calculations. Extraction efficiency was calculated by 

comparing the peak areas of set 2 and set 3; matrix effects by comparing set 2 and set 1, and total 

process efficiency by comparing set 3 and set 1, as in the calculations below, with Table 4.1 showing 

the results of these experiments: 
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Corrected Extraction Efficiency/ Absolute Recovery (%) =  

average peak area (Set 2, ILIS) / average peak area (Set 3, ILIS)

average peak area (Set 2) / average peak area (Set 3)
 𝑥 100 

Matrix effects (%) = 
average peak area (Set 1) 

average peak area (Set 2)
 𝑥 100 ; Matrix effects (%) – 1 = matrix enhancement (i.e. 

all positive figures denote matrix enhancement, all negative figures matrix suppression) 

Corrected Matrix effects (%) = 
average peak area (Set 1,ILIS) / average peak area (Set 2,ILIS)

average peak area (Set 1,) / average peak area (Set 2)
 𝑥 100 

Process Efficiency/Relative Recovery (%): = 
average peak area (Set 3) 

average peak area (Set 1)
 𝑥 100 

Corrected Process Efficiency/Relative Recovery (%) = 

average peak area (Set 3, ILIS) / average peak area (Set 1, ILIS)

average peak area (Set 3) / average peak area (Set 1)
 𝑥 100 

  

Table 4.1: Absolute recovery, matrix effects and relative recovery (%) for all compounds after SPE with MCX cartridges 

Compound 
Absolute 
recovery 

Absolute 
recovery 

(correctedb) 

Matrix 
effectsa 

Matrix 
Effects 

(correctedb) 

Relative 
recovery 

Relative 
recovery 

(correctedb) 

       

N-

ethylcathinone 
83 102 73 3 23 101 

MDPV 91 102 52 -7 44 91 

Mephedrone 85 103 74 -9 22 88 

Methylone 84 104 70 -6 25 91 

Butylone 89 99 71 -6 26 95 

Methedrone 87 97 69 -10 27 94 

Naphyrone 87 99 38 -10 54 91 

25-B-NBoMe 89 96 40 -4 53 100 

25-I-NBoMe 86 97 34 -6 57 96 

25-C-NBoMe 90 103 50 -7 45 90 

a: for matrix effects, a negative value (-) denotes matrix suppression, while positive values indicate matrix enhancement.  
b: corrected with ILIS 
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The use ILIS was imperative, as they allowed the correction of both matrix effects and losses 

associated with the sample preparation. In this respect, a deuterated analogue of each individual 

analyte would be an ideal internal standard, as it should show an identical behaviour to the sample 

analyte in sample pretreatment, chromatography and ionisation. All but two analytes had a deuterated 

analyte as an internal standard, but alternative ILIS were used for N-ethylcathinone and methedrone 

(methylone-d3 and butylone-d3, respectively) owing to their ability to correct for matrix effects and 

their similar retention times.  

A direct injection method was also attempted, as a comparison to the applied SPE method. One clear 

advantage of direct injection is that SPE is not needed, thereby cutting sample pretreatment times 

considerably, and avoiding potential losses or contaminations that may occur during this step. 

However, without any preconcentration, there is a chance that the levels able to be reached by direct 

injection are not as low as those that incorporate SPE. Furthermore, there is also a high chance of 

matrix interferences, leading to signal suppression or enhancement, which can make validation and 

quantification difficult. Normally, direct injection in this field involves large volume injection (i.e. from 

50-900µL), generally for “cleaner” samples such as drinking water and surface water; however, an 

effort was made to use an even lower injection volume, of 3µL, to reduce matrix effects further. It 

was found that the matrix effects led to signal enhancement for all the compounds (Table 4.2), and 

were influenced by their retention time, with later eluting compounds having greater matrix effects 

(two- to three-fold higher) than the earlier eluting compounds. This could be as a result of the gradient 

and the “washing” of the column at the later stages of the chromatographic run. Acceptable matrix 

effects were observed for the first five eluting compounds (from Methylone to Mephedrone), while 

they lead up to 2.5-fold signal for the last eluting compound 25-B-NBoMe. More research is needed 

in this area in order to facilitate direct injection of samples in the future (see Future Perspectives). 
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Table 4.2: Matrix effects (%) of all compounds with direct injection method 

Compound 
Retention 

Time 

Matrix 

Effectsa 

   

Methylone 2.07 25 

N-ethylcathinone 2.14 4 

Methedrone 2.31 14 

Butylone 2.44 11 

Mephedrone 2.53 7 

MDPV 2.88 86 

25-C-NBoMe 3.50 196 

Naphyrone 3.51 212 

25-B-NBoMe 3.56 240 

aMatrix effects of 0% indicate no suppression or enhancement, while all positive values indicate enhancement 

Within the development of a  direct injection method, a study was made into the recoveries of the 

compounds after filtration, both using several syringe filters (for direct injection) and a vacuum filter 

normally used in our laboratory prior to both qualitative and quantitative methods of wastewater 

(Bijlsma et al., 2014; Hernández et al., 2015). Filtration experiments were performed using IWW at 

both natural pH and acidified to pH2, after centrifugation (Tables 4.3 and 4.4). Seven syringe filters 

were tested (0.2µm Nylon; 25mm (Sarorius, only at natural pH), 0.22 µm PTFE; 13mm (Membrane 

solutions (Mieron)), 0.45µm Nylon; 17mm (Nalgene), 0.45 µm Nylon; 13mm (Scharlau), 0.2 µm 

Polypropylene; 13mm (Whatman), 0.2µm PTFE ;13mm (Teknokroma) and 0.45µm PTFE; 13mm 

(Teknokroma)) and one vacuum filter (0.45μm mixed cellulose ester membrane filters (Whatman, 

Dassel, Germany). For all experiments, the wastewater sample was spiked at 2.5ppb with mixed 

standards prior to filtration, while 2ppb (final concentration) of the ILIS was added after, to correct 

for matrix effects. 1mL of IWW was collected after filtration, in triplicate.  

 Of all of the filters investigated, only one (0.45µm Nylon, 13mm) did not retain any compounds in 

the filtration of IWW at natural pH, while at pH2, all compounds passed all syringe filters. At natural 

pH, the NBOMe compounds (especially 25-I-NBOMe) were particularly retained on the filters, 

recording recoveries less than 50% for the majority of the filters (Table 4.3) 
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Table 4.3: Filtration recoveries (%) of all compounds at natural pH 

Compound 

Membrane 

0.45µm 

(vacuum) 

Nylon 

0.20 µm 

(25mm) 

PTFE 

0.22µm 

(13mm) 

Nylon 

0.45µm 

(17mm) 

Nylon 

0.45µm 

(13mm) 

Polypropylene 

0.2 µm 

(13mm) 

PTFE 

0.2µm 

(13mm) 

PTFE 

0.45µm 

(13mm) 

N-ethylcathinone 98 96 100 92 119 97 123 114 

MDPV 55 91 97 70 121 67 95 100 

Mephedrone 97 99 118 106 140 93 106 105 

Methylone 88 96 104 101 125 99 103 102 

Butylone 84 90 98 86 115 81 102 100 

Methedrone 90 82 10% 86 115 90 104 102 

Naphyrone 1 67 75 67 106 3 64 83 

25-B-NBoMe 1 26 28 39 101 2 33 64 

25-I-NBoMe 0 0 9 18 91 0 19 50 

25-C-NBoMe 1 39 42 55 110 2 40 69 

 

One interesting aspect of this experiment was the effectiveness of the vacuum filter that is 

commonplace in qualitative and quantitative studies in our laboratory. It was found that at both natural 

pH and pH2, four compounds (naphyrone and the three NBoMe compounds) were highly retained 

(less than 5% remaining), with MDPV also being somewhat retained (29-45%) on the filter. This result 

suggests that screening methods performed using this filter will always be missing these NPS, which 

could result in their being erroneously qualified as not detected. It must be noted that because of this 

result, none of the IWW samples for the SPE method were filtered, solely centrifuged. The filter finally 

chosen for direct injection was the Nylon 13mm, 0.45µm, which had recoveries of 98-105% for all 

compounds at pH2 and was the only filter to have respectable recoveries for all compounds at natural 

pH (91-140%).  
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Table 4.4: Filtration recovery (%) of all compounds at pH 2 

 

Tables 1 and 2 in Scientific Article 7 show the results of the final validation of the SPE method 

(n=5), with precision (RSD), recovery, LOD, LOQ and linearity. The limit of quantification objective 

(LOQ) was taken as the lowest level for which the method was fully validated using spiked samples 

with satisfactory recovery (between 70-120%) and precision (relative standard deviation (RSD) ≤20%). 

Two LOQ validations (1ng/L and 5ng/L) were made to provide a more accurate measure, with 

MDPV, naphyrone and the NBOMe compounds all having LOQs as low as 1ng/L.   Recoveries were 

acceptable for all compounds, ranging between 71-113% (at 5ng/L) and 85-122% (and 1ng/L), and 

the precision (in terms of RSD) was below 20% for all compounds. Linearity was studied for all 

compounds. Two calibration curves were made: 0.5-25ng/L (five points) and 1-100ng/L (6 points), 

the first for those compounds with a lower LOQ (1ng/L). Correlation coefficients were greater than 

0.99 for all compounds, except naphyrone and the NBOMe compounds, which had values greater 

than 0.96.      

A selection of samples from throughout Europe was investigated for NPS using this method. In total, 

17 samples were investigated from Bristol, United Kingdom (1 x weekday, 1 x weekend); Brussels, 

Belgium (1 x weekday, 1 x weekend); Castellon, Spain (1 x weekend) Oslo, Norway (1 x weekday, 1 x 

weekend); Copenhagen, Denmark (1 x weekday, 2 x weekend); Milan, Italy (1 x weekday); Utrecht, 

The Netherlands (1 x weekday, 2 x weekend); Zurich, Switzerland (1 x weekday, 2 x weekend).  As 

shown in Table 3 of Scientific Article 7, only MDPV, mephedrone and methylone were found. The 

highest concentration of any compound was for mephedrone, with a concentration of 106ng/L found 

Compound 

Membrane 

0.45µm 

(vacuum) 

PTFE 

0.22µm 

(13mm) 

Nylon 

0.45µm 

(17mm) 

Nylon 

0.45µm 

(13mm) 

Polypropylene 

0.2 µm 

(13mm) 

PTFE 

0.2µm 

(13mm) 

PTFE 

0.45µm 

(13mm) 

N-ethylcathinone 106 97 97 101 96 91 98 

MDPV 71 100 89 101 101 103 103 

Mephedrone 102 102 101 105 97 100 99 

Methylone 104 103 102 104 101 98 100 

Butylone 104 101 98 102 92 96 97 

Methedrone 102 100 97 103 97 100 101 

Naphyrone 4 85 89 95 92 99 102 

25-B-NBoMe 1 74 87 99 81 104 99 

25-I-NBoMe 1 53 82 98 64 102 83 

25-C-NBoMe 1 79 87 98 87 105 101 
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in South West UK, showing its popularity is far higher in the United Kingdom than in other cities of 

continental Europe, although it was also quantified in Copenhagen and detected in Oslo and Brussels, 

although at concentrations lower than LOQ. MDPV was found in Milan, Oslo and Zurich at low 

concentrations (2-6ng/L), while methylone was found in Utrecht and Copenhagen (5-12ng/L) and 

detected in Bristol at a concentration lower than LOQ.  
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6.1 Conclusions 

The general conclusion of this thesis is that advanced analytical techniques, based on liquid chromatography 

coupled to low and high-resolution mass spectrometry, and incorporating retention time prediction and target, 

suspect and non-target analyses are of great utility for the detection and identification of emerging 

contaminants in water. The use of (hyphenated) high resolution mass spectrometry such as triple quadrupole 

(QqQ), quadrupole time-of-flight (QTOF) and Linear ion Trap (LTQ) Orbitrap, allows comprehensive 

analysis of emerging contaminants in environmental waters, through the use of target (QqQ), suspect (QTOF 

and LTQ-Orbitrap)  and non-target (LTQ-Orbitrap) analyses. Furthermore, the complementary use of 

retention time prediction made the detection of compounds (especially for which standards were unavailable) 

much less tedious and enabled higher confidence in their tentative identification.  

From the work performed in this thesis, several specific conclusions can be garnered: 

1. High resolution mass spectrometry, especially QTOF and LTQ-Orbitrap are very powerful 

instruments for the qualitative suspect and non-target screening of emerging contaminants in aquatic 

samples. 

2. QTOF in MSE mode facilitates the detection and tentative identification of pharmaceuticals, illicit 

drugs (PIDs) and their metabolites, with high energy (corresponding to fragment ions) and low 

energy (corresponding primarily to the parent molecule) information gained in a single injection. 

3. It has been shown that there is a geographic difference in the detection of PIDs, with samples from 

Colombia, Italy and Spain having been analysed. While the samples from Italy and Spain were quite 

similar - Irbesartan (antihypertensive), valsartan (angiotensin II antagonist) and two antibiotics 

ofloxacin and sulfamethoxazole were the most commonly identified compounds – in the Colombian 

samples the beta-blocker metoprolol, the lipid regulator gemfibrozil, and the X-ray agent iopromide 

as well as metabolites of losartan and carbamazepine were found.  

4. The use of non-target analyses in a hidden target approach provides a lot of information. 

Furthermore, even without reference standards, numerous compounds can be tentatively identified.  

5. Retention time prediction has been shown as a great complementary technique in the detection and 

identification of PIDs and their metabolites. 

6. A retention time prediction approach based solely on logKOW is not only cheap and simple, but also 

led to between 70-80% of all compounds having a predicted retention time within 2 minutes of their 

experimental. 

7. A more complex retention time prediction approach, based on artificial neural networks, showed a 

greater predictive capacity, with up to 95% of all compounds having a predicted retention time 

within 2 minutes of their experimental. This allowed greater confidence in the tentative identification 

of compounds for which standards were unavailable. 
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8. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) with triple quadrupole 

mass analyser is a powerful analytical technique for the quantification of new psychoactive 

substances (NPS) in wastewater. The robustness, sensitivity and selectivity of this technique make it 

highly appropriate for the determination of these compounds at the low concentrations commonly 

found in complex-matrix samples such as urban wastewater.  

9. Additional studies of filtration are necessary to account for possible losses during sample treatment. 

Vacuum filtration (using membrane filters) was found to have under 5% recovery for the three 

NBOMe compounds as well as naphyrone. Syringe filters (of PTFE, polypropylene and nylon) were 

found to have better recoveries for all compounds, with the Nylon 13mm, 0.45µm proving to be the 

best, which had recoveries of 98-105% for all compounds 

10. Mobile phase additives, sample injection volume and desolvation and cone gas flow rates all 

contribute to optimising chromatographic peak shape and mass spectrometric optimisation. 

11. Stability is an important parameter for WBE of NPS, with acidification (to pH 2) necessary to reduce 

transformation and degradation for all NPS investigated at 20ºC, 4ºC and -20ºC for up to seven days. 

If left unacidified, samples should be analysed within 48 hours (if stored at -20ºC or 4ºC), while at 

20ºC, N-ethylcathinone and mephedrone showed low stability within 24 hours. 

12. The acquisition of two or three transitions allows the simultaneous quantification and confirmation 

of various NPS.  
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6.2 Conclusiones 

La conclusión general de esta tesis es que las técnicas analíticas avanzadas, basadas en la 

cromatografía líquida acoplada a espectrometría de masas de baja y de alta resolución, para el análisis 

“target”, “suspect” y “non-target”, incorporando la predicción del tiempo de la retención, son de 

gran utilidad para la detección e identificación de contaminantes emergentes en agua. El uso de 

espectrometría de masas de baja y alta resolución, como triple cuadrupolo (QqQ), cuadrupolo 

tiempo de vuelo (QTOF) y trampa de iones lineal (LTQ) Orbitrap, permite el análisis exhaustivo de 

los contaminantes emergentes en aguas ambientales, a través del uso del análisis “target” (QqQ), 

“suspect” (QTOF y LTQ-Orbitrap) y “non-target” (LTQ-Orbitrap). Además, el uso 

complementario de la predicción del tiempo de retención hizo la detección de compuestos 

(especialmente para los que no estaban disponibles los patrones) mucho menos tediosa y mejoró la 

confianza en su identificación tentativa. 

A partir del trabajo realizado en esta tesis, se pueden enumerar varias conclusiones específicas: 

1. La espectrometría de masas de alta resolución, especialmente QTOF y LTQ-Orbitrap, es 

una técnica muy poderosa para la detección cualitativa en análisis “suspect” y “non-target” 

de contaminantes emergente en muestras acuáticas. 

2. QTOF en el modo de MSE facilita la detección y la identificación tentativa de los productos 

farmacéuticos, drogas ilícitas (PIDs) y sus metabolitos, con la información de los espectros 

de alta energía (que corresponden a los iones fragmento) y de baja energía (que corresponde 

principalmente a la molécula intacta) obtenidos en una sola inyección. 

3. Se ha demostrado que hay una diferencia geográfica en la detección de PIDs, tras analizar 

muestras de Colombia, Italia y España. Mientras que las muestras procedentes de Italia y 

España eran bastante similares - irbesartán (antihipertensivo), valsartán (antagonista de 

angiotensina II) y dos antibióticos ofloxacina y sulfametoxazol fueron los compuestos más 

comúnmente identificadas - en las muestras colombianas se encontró el betabloqueante 

metoprolol, el regulador de lípidos gemfibrozilo, y el agente de rayos X iopromida, así como 

metabolitos de losartán y carbamazepina. 

4. El uso del análisis “non-target” (hidden target screening) proporciona mucha información. 

Por otra parte, sin los patrones de referencia, permitió que numerosos compuestos pudieran 

ser tentativamente identificados. 
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5. Se ha demostrado que la predicción del tiempo de retención es una gran técnica 

complementaria en la detección e identificación de los PIDs y sus metabolitos. 

6. Un método de predicción del tiempo de retención basado únicamente en logKow es no sólo 

barato y sencillo, sino que también condujo a que aproximadamente el 70-80% de todos los 

compuestos presentaban un tiempo de retención teórico con una tolerancia menor de 2 

minutos respecto a su valor experimental. 

7. Un método de predicción del tiempo de retención más complejo, basado en redes 

neuronales artificiales, mostró una mayor capacidad predictiva, con hasta el 95% de todos 

los compuestos con un tiempo de retención predicho dentro de 2 minutos respecto a su 

tiempo experimental. Esto permitió una mayor confianza en la identificación tentativa de los 

compuestos para los que los patrones no estaban disponibles. 

8. La cromatografía líquida acoplada a espectrometría de masas en tándem (LC-MS/MS) con 

analizador de masas de triple cuadrupolo es una técnica analítica poderosa para la 

cuantificación de las nuevas sustancias psicotrópicas (NPS) en diferentes tipos de agua. La 

robustez, la sensibilidad y la selectividad de esta técnica la hacen muy adecuada para la 

determinación de estos compuestos a las bajas concentraciones en que se encuentran 

comúnmente en las muestras de matriz compleja tales como las aguas residuales urbanas. 

9. Estudios adicionales de filtración son necesarios para tener en cuenta las posibles pérdidas 

durante el tratamiento de la muestra. Se encontró que la filtración a vacío (utilizando filtros 

de membrana) proporcionaba bjas recuperaciones (5%) para los tres compuestos NBOME 

así como la nafirona. Sin embargo, se observó que los filtros de jeringa (de PTFE, 

polipropileno y nylon) proporcionaban mejores recuperaciones para todos los compuestos, 

siendo el de Nylon de 0.45μm el mejor, ya que resultaba en recuperaciones de 98 a 105% 

para todos los compuestos. 

10. Se estudiaron los aditivos añadidos a la fase móvil, el volumen de inyección de muestra así 

como los flujos de gas de desolvatación y de cono, ya que todas estas variables contribuyen a 

la optimización tanto de la separación y forma del pico cromatográfico como al rendimiento 

de ionización en espectrometría de masas. 

11. La estabilidad es un parámetro importante a tener en cuenta para los estudios de 

epidemiología de aguas residuales en general, y para NPS en particular. La acidificación (a 

pH 2) fue necesaria para reducir la transformación y la degradación de todos los NPS 

investigados a 20ºC, 4ºC y -20ºC durante un máximo de siete días. Si no se acidifica, las 

muestras deben ser analizadas dentro de las 48 horas (si se almacenan a -20ºC o 4ºC), 
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mientras que a 20°C, la N-ethylcathinone y la mefedrona mostraron una baja estabilidad 

degradándose dentro de las primeras 24 horas. 

12. La adquisición de dos o tres transiciones SRM permite la cuantificación y la confirmación 

simultánea de diversas NPS. 
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6.3 Suggestions for Future Research 

Throughout this thesis, advanced analytical techniques including high resolution mass spectrometry, 

tandem mass spectrometry and the complementary use of retention time prediction have shown 

their potential in the detection and identification of emerging contaminants in environmental waters. 

Frustratingly, with every result come more questions and ideas for future research, which, due either 

being out of the scope of this thesis or lack of time could not be undertaken. Nevertheless, several 

suggestions for future research are outlined below: 

Screening approaches: 

More information is needed on metabolites, transformation products and NPS. While the in-house databases 

are always being added to, this needs to continue in the future, perhaps with more emphasis on metabolites 

and transformation products. 

To aid non-target approaches, collaboration is necessary. This could be in terms of uploading mass spectra to 

the online mass spectral database, MassBank, or through the sharing of in-house databases. These ideas have 

been floating around the NORMAN network, who have introduced a non-target specific working group for 

this reason, leaving the future looking bright.  

Retention time prediction: 

During the research stay at University of Antwerp, a retention time prediction method based on ANNs and 

incorporating three different columns (biphenyl, C8 and HILIC) was undertaken for 100 NPS and illicit drug 

reference standards. After optimizing the ANN, all three columns had a mean error within one minute:  0.51, 

0.68 and 0.81 respectively, however the HILIC results are skewed due to overfitting the training set. Further 

work is needed on the HILIC column, while future work could include the addition of more standards to the 

C8 and biphenyl methods as well as its use in suspect detection and identification. When future optimization 

is complete, it would be very interesting to test the retention time predictior for NPS, either in wastewater or, 

perhaps more curiously, in toxicological samples, where “new” NPS are first identified.  

A second approach could be the use of different software for retention time prediction, such as random 

forests or support vector machines. 

Furthermore, an investigation into different molecular descriptors could be carried out. More than one 

thousand descriptors are available on VCCLABS’ Parameter Client module. During the research stay at 

University of Antwerp, a brief study into the impact of different descriptors was made, but far more time is 

needed for a suitable and reliable study.  
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New Psychoactive Substances 

Further to the work done on the quantification of NPS, an investigation into their metabolism could be made. 

The parent compound is not necessarily the most abundant and appropriate biomarker, leading to a 

metabolite biomarker being more useful, and perhaps leading to more compounds being confirmed in the 

real samples.  

Further research into a direct injection approach could be made. As mentioned in Chapter 4, huge matrix 

effects were seen for the later eluting compounds in influent wastewater using direct injection. Alternative 

gradients could be investigated, perhaps performing a stepped gradient, so as to reduce the “flushing” of 

more non-polar contaminants at the end of the chromatographic run.   

Finally, an investigation into the environmental harm of NPS and their metabolites could be made. There is 

currently limited information related to the environmental harm of pharmaceuticals, with even less relating to 

NPS.  
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5.4 Sugerencias para Futuras Investigaciones  

A lo largo de esta tesis, se ha demostrado el potencial de las técnicas analíticas avanzadas, incluyendo 

la espectrometría de masas de alta resolución, espectrometría de masas tándem y el uso 

complementario de la predicción del tiempo de retención para la detección e identificación de 

contaminantes emergentes en aguas ambientales. Sin embargo, con cada nuevo resultado aparecen 

más preguntas e ideas para futuras investigaciones, las cuales, debido bien a estar fuera del alcance de 

esta tesis o por falta de tiempo no pudieron llevarse a cabo. Sin embargo, a continuación se resumen 

varias sugerencias para futuras investigaciones: 

Aproximaciones de Screening: 

Se necesita más información sobre metabolitos, productos de transformación y NPS. A pesar de que 

las bases de datos internas siempre están en continua actualización, en el futuro, tal vez se deba 

hacer más énfasis en los metabolitos y productos de transformación. 

Para avanzar en aproximaciones “non-target”, la colaboración con otros grupos es vital. Esta se 

podría llevar cabo mediante la compartición de espectros de masas en base de datos de espectros en 

línea, como MassBank, o incluso mediante el intercambio de las bases de datos internas de cada 

grupo. Estas ideas también han sido abordadas de manera recurrente en la red NORMAN, que 

finalmente han cristalizado en un grupo de trabajo específico, augurando un brillante futuro en este 

campo. 

Predicción del Tiempo de Retención: 

Durante la estancia de investigación en la Universidad de Amberes, un método de predicción del 

tiempo de retención basado en ANNs e incorporación hasta tres columnas diferentes (bifenilo, C8 y 

HILIC) se llevó a cabo empleando 100 NPS y patrones de referencia de drogas ilícitas. Después de 

la optimización de la ANN, las tres columnas tenían una media de error por debajo del minuto: 0,51, 

0,68 y 0,81, respectivamente; sin embargo, los resultados HILIC están sesgados debido a un 

“overfitting” en el conjunto de entrenamiento, por lo que es necesario seguir trabajando en la misma. 

Por otra parte, un trabajo futuro podría incluir la adición de más patrones para los métodos de C8 y 

bifenilo, así como su uso en la detección e identificación de sospechosos. Cuando se complete en un 

futuro la optimización de la ANN, sería muy interesante evaluar la predicción de tiempo de 
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retención para NPS, ya sea en las aguas residuales o, quizás más interesante, en las muestras 

toxicológicas, donde generalmente se identifican por primera vez las "nuevas" NPS. 

Una segunda aproximación podría ser el uso de diferentes software para la predicción de tiempo de 

retención, como “random forests” o “support vector machines”.  

Además, se podría llevar a cabo una investigación sobre diferentes descriptores moleculares. Más de 

un millar de descriptores están disponibles en los módulos de Parameter Client (VCC LABS). 

Durante la estancia de investigación en la University of Antwerp, se hizo un breve estudio sobre el 

impacto de los diferentes descriptores, pero se necesita mucho más tiempo para un estudio 

adecuado y fiable. 

Nuevas Sustancias Psicoactivas: 

En relación con el trabajo realizado en la cuantificación de NPS, se podría hacer una investigación 

sobre su metabolismo. El compuesto original no es necesariamente el biomarcador más abundante y 

adecuado, lo que puede llevar a que un metabolito sea el biomarcador más útil. Este hecho 

permitiría tal vez que más compuestos se confirmen en las muestras reales. 

También se podrían realizar investigaciones adicionales para implementar un método por inyección 

directa. Como se ha mencionado en el capítulo 4, se observaron grandes efectos matriz para los 

compuestos que eluían al final del gradiente para influente de aguas residuales al realizar la inyección 

directa. Se podrían investigar gradientes alternativos, p. ej. escalonados, con el fin de reducir el 

"lavado" de los contaminantes más apolares al final del cromatograma. 

Por último, se podría hacer una investigación sobre el impacto ambiental de las NPS y sus 

metabolitos. En la actualidad existe información limitada relacionada con el perjucio ambiental de 

los productos farmacéuticos,  mucho menor para el caso de los NPS. 
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