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Summary 

Nowadays, market trends have made companies modify the way of doing 

business. The current context of globalization, economic crisis, political conditions and 

competence among enterprises involves a continuous challenge for achieving their Key 

Performance Indicators. This wide range of indexes include profitability, cost reduction, 

satisfaction of market demand, environmental and impacts or development of new 

products, among other factors that improve the customer service. The successful 

achievement of these indicators depends on the supply chain efficiency. Thus, companies 

work towards the optimization of their overall supply chain in response to the competition 

from other companies as well as to take advantage of the flexibility in the world market 

restrictions. This is done by the exploration of any resource flow (including raw materials 

and intermediates and final products, or energy), as well as any echelon of the supply chain 

network (such as suppliers, production plants, distribution centres and final markets). In 

this point, the Supply Chain Management addresses the process of planning, implementing 

and controlling the supply chain operations in an efficient way, throughout the management 

of material, information and financial flows across a network of entities within a supply 

chain. This includes the coordination and collaboration of processes and activities involved 

in this network. However, the complexity of considering the overall supply chain as well as 

the presence of uncertainty (i.e., demand, prices, process parameters) introduce more 

complexity in the coordination of all the activities or processes which take place through 

the supply chain. 

The aim of this thesis is to develop techniques to enhance the decision making 

process in industrial processes, by the development of new mathematical models to better 

coordinate all available information and to improve the synchronization production and 

demand, considering different time scales. 
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Hence, this thesis presents a general overview of production process 

requirements within a supply chain and a review of the current state of the art, which has 

allowed to identify the open issues in the area in the context of Process Systems 

Engineering. Moreover, the first part of the thesis also presents an analysis of existing 

approaches, methods and tools used through this thesis. 

The second part of this work deals with the integrated management of production 

and demand constraints. This part first explores how the profitability of the supply chain 

can be improved by considering simultaneously production side and demand side 

management under deterministic conditions. Thus, discrete and hybrid time formulations 

have been presented to study the performance of the time representation. Furthermore, 

the discrete time formulation has been extended to deal with the external and internal 

uncertainty, through the implementation of a reactive approach, which allows to update 

input parameters in case of variation from the initial and/or previous conditions. This part is 

also addresses the coordinated management of production and demand as well as the use 

of external and internal resources. Therefore, a new generalized mathematical formulation 

which integrates all resources involved in the production process within a supply chain is 

presented. 

The third part of this thesis is focused on the integrated supply chain optimization. 

Particularly, this part concerns the integration of hierarchical decision levels, by the 

exploitation of mathematical models that assess the consequences of considering 

simultaneously scheduling and planning decisions when designing a supply chain network. 

The Synthesis State Task Network concept is introduced to extend its typical representation 

of a process to incorporate information associated to the synthesis problem by the 

implementation of synthesis blocks. Finally, an integrated information management system 

based on an ontological framework is presented. The aim of this information platform is to 

coordinate all available information for decision making. This integrated platform will allow 

monitoring the real-time evolution of industrial processes within a supply chain. Moreover, 

this system may be used as an Operator Training System. 

Finally, the last part of this thesis provides the final conclusions and further work 

to be developed.  
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Resumen 

A día de hoy, las tendencias del mercado han hecho que las empresas modifiquen 

su manera de hacer negocios. El contexto actual de globalización, crisis económica, 

condiciones políticas y la competencia entre las empresas implica un continuo desafío para 

conseguir los indicadores clave de rendimiento. Existe un amplio rango de indicadores, 

que incluyen rentabilidad, reducción de costes, satisfacción de la demanda del mercado, 

impacto medioambiental o la rapidez en el desarrollo de nuevos productos, entre otros 

factores que mejoran el servicio al cliente. El éxito en el logro de estos indicadores 

depende de la cadena de suministro. Por lo tanto, las empresas trabajan para la 

optimización de su cadena de suministro en respuesta a la competencia de otras 

empresas, así como también para tomar ventaja de la flexibilidad en las restricciones del 

comercio mundial. Esto se hace mediante al análisis del flujo de materiales (incluyendo 

materias primas y productos intermedios y finales), así como cualquier escalón de la red 

de la cadena de suministro (por ejemplo, proveedores, plantas de producción, centros de 

distribución y mercados finales). Llegados a este punto, la gestión de la cadena de 

suministro aborda el proceso de planificación, ejecución y control de las operaciones de la 

cadena de suministro de forma eficiente, a través de la gestión de los materiales, la 

información y los flujos financieros a través de la red que conforma la cadena de 

suministro. Esto incluye la coordinación de los diferentes procesos y actividades que 

participan en esta red. Sin embargo, la complejidad de considerar toda la cadena de 

suministro en su conjunto, así como la presencia de incertidumbre (como por ejemplo, 

demanda, precios, parámetros de proceso) introducen un grado de complejidad en la 

coordinación de todas las actividades o procesos que tienen lugar en la cadena de 

suministro. 

El objetivo de esta tesis consiste en desarrollar técnicas que permitan la mejora 

del proceso de toma de decisiones en procesos industriales, y especialmente el desarrollo 

de nuevos modelos matemáticos que contemplen la coordinación de toda la información 
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disponible y la sincronización de la producción y la demanda, teniendo en cuenta diferentes 

horizontes temporales. 

Por lo tanto, inicialmente esta tesis presenta una visión general de los procesos 

de producción, así como también una revisión del estado del arte, lo que ha permitido 

identificar las cuestiones abiertas en el área de la Ingeniería de Sistemas de Proceso. 

Además, en la primera parte de la tesis se presenta un análisis de los diferentes enfoques, 

metodologías y herramientas que se utilizan a lo largo de esta tesis. 

La segunda parte de este trabajo se ocupa de la gestión integrada de la 

producción y la demanda. Esta parte explora cómo la rentabilidad de la cadena de 

suministro se puede mejorar teniendo en cuenta de manera simultánea le gestión de la 

producción y la demanda en condiciones determinísticas. Se ha desarrollado un modelo 

matemático que utiliza una formulación de tiempo discreto y una formulación híbrida, con 

el objetivo de evaluar el impacto de la representación temporal. Esta formulación se ha 

extendido para hacer frente a la incertidumbre tanto externa como interna, a través de la 

aplicación de un enfoque reactivo, que permite actualizar parámetros de entrada en el caso 

de variación sobre las condiciones iniciales y/o anteriores. Esta parte también trata la 

gestión coordinada de la producción y la demanda teniendo en cuenta la gestión de los 

recursos externos e internos. Para ello, se presenta una nueva formulación matemática 

generalizada que integra todos los recursos que intervienen en el proceso de producción. 

La tercera parte de esta tesis se centra en la optimización integrada de la cadena 

de suministro. Particularmente, esta parte se refiere a la integración de los diferentes 

niveles jerárquicos de decisión, mediante la explotación de modelos matemáticos que 

evalúan las consecuencias de considerar simultáneamente decisiones a nivel operacional 

y táctico y el diseño de una red de cadena de suministro. Se presenta la representación 

gráfica consistente en la red de síntesis y tareas-estados para incorporar la información 

asociada al problema de síntesis. Por último, se presenta un sistema de gestión integrado 

de información en un entorno ontológico, cuyo objetivo es coordinar toda la información 

disponible para la toma de decisiones. Esta plataforma integrada permite seguir la 

evolución en tiempo real de diferentes procesos industriales, así como también puede ser 

usada como un sistema de entrenamiento de operarios. 

Finalmente, la última parte de esta tesis ofrece las conclusiones finales y el 

trabajo futuro a desarrollar.
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Chapter 1. Introduction 

1.1. Introductory perspective 

According to the European Chemical Industry Council (2014), the European Union 

(EU) is the second largest chemicals producing area in the world. Whereas world chemical 

sales in 2013 were valued at €3,156 billion, the EU accounts for 16.7% of the total, worth 

€527 billion, and employing directly 1.16 million workers. The vast majority of European 

Union chemical sales (83.6%) are generated in seven EU members, which are Germany, 

France, Italy, Netherlands, Spain, Belgium and United Kingdom  

Moreover, the EU is the world’s top exporter and importer of chemicals, 

accounting the 42.5% (€430 billion) of total global trade in 2013. Of the thirty largest 

chemical companies in the world, twelve are headquartered in Europe (e.g., BASF, Bayer, 

Shell, Ineos, Total) representing around 10% of world chemical sales. Pharmaceuticals and 

chemicals form the first- and second-leading EU manufacturing sector in terms of value-

added per employee in 2006, respectively. It is also noteworthy that food and beverages 

industry hold the seventh place in this list. 

The significant role of the process industry in the EU’s economic status is evident. 

However, in order to maintain its leading position in the world’s highly competitive market, 

EU’s process industry must remain active and improve its operational and functional 

performance through its entire supply chain (SC) network. The faster growth rhythm of 

Asian countries, especially China and Japan, has created a strong competitor for EU 

process industries, thus making indispensable the enhancement of the production 

management through an improved overall SC network management. 

Furthermore, nowadays, due to the rapidly changing economic and political 

conditions, as well as the current context of economic crisis, global companies face a 

continuous challenge to constantly re-evaluate and optimally configure the operations of 

their SC for achieving their own Key Performance Indicators, such as profitability, cost 

reduction, satisfaction of market demand, environmental and impacts, development of new 

products, product satisfaction, among other factors. Companies seek to optimize their 

global SCs in response to competitive pressures or to acquire advantage of new flexibility 

in the restrictions on world trade.  
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Process industries also follow this trend. Thus, companies need the use and 

exploitation of mathematical models to predict the behaviour of the overall system, to 

control the progression of processes, to design any issue involved in the process, to detect 

any eventual failure, as well as to optimise the system under study. The Process Systems 

Engineering (PSE) community is aware of this change and today is playing a key role in 

expanding the system boundaries from chemical process systems to business process 

systems. PSE is based on processes knowledge and mathematical and experimental 

techniques to formulate computer models of all units (i.e., equipment, chemical recipe, 

logistics) that constitute the overall process (i.e., chemical plant, supply chain). The 

obtained models can be integrated in order to manage the overall system in a coordinated 

way. 

  

1.2. Supply Chain and Supply Chain Management 

The concept of a chemical SC refers to the network of interdependent entities 

(including retailers, distributors, transporters, production facilities and storage centres and 

suppliers) that constitutes the processing and distribution channels of products, from the 

sourcing of its raw materials to its delivery to the end consumer (Beamon,1998). This 

network of facilities and distribution options performs the following functions (Laínez et al., 

2007): 

 Procurement of raw materials and services (e.g. water and electricity).  

 Transformation of these raw materials into intermediate and specified final 

products. 

 Distribution and delivery of finished products to retailers. 

 Treatment of pollutants and residues. 

Figure 1.1 represents a typical SC network configuration, based on a production 

process. The main elements of this particular SC are: 

 Suppliers, responsible to provide raw material. 

 Production plants, where raw materials are transformed into intermediate 

and final products. 

 Distribution centres, where products are stored and distributed. 

 Markets, where products are consumed. 
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Figure 1.1. Supply chain representation. 

Moreover, there are other types of supply chains, which may not be related to the 

transformation and distribution of materials. In the area of energy, microgrids constitute an 

example of decentralised supply chain, since involve energy production, storage and 

consumption (Figure 1.2). 

Power grid

Energy 

generators

Energy 

storage 

systems

Energy

consumers
Power grid

 
Figure 1.2. Energy supply chain. 

On another note, Supply Chain Management (SCM) is the process of planning, 

implementing and controlling the SC operations in an efficient way. Its concept is related to 

the management of material, information and financial flows through a network of entities 

within a SC (including suppliers, manufacturers, logistics, distributors and retailers) that 

aims at producing and delivering goods or services for the consumers (Tang, 2006). This 

includes the coordination and collaboration of processes and activities across different 

functions, including marketing, sales, production, product design, procurement, logistics, 

finance, and information technology within the network of organizations. 

The main objectives of the SCM are (Christopher, 2005): 

 To achieve the desired consumer satisfaction levels. 

Suppliers
Production

sites

Distribution

centres
Markets
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 The maximum financial returns by synchronizing and coordinating the SC 

members activities. 

Figure 1.3 shows the materials, information and cash flows through the SCM: 

Suppliers   Procurement   Operations   Distribution   Customers

Materials flow

Information flow

Cash flow
  

Figure 1.3. Materials, information and cash flows. 

The necessity for such coordination grows out of several trends in the 

marketplace, such as the globalization of market economies. This fact expands the SCM 

scope in order to consider international issues. In addition, customers’ changing 

expectations regarding value of goods and services, combined with advances in 

technology and the availability of data, have driven the formation of these international 

networks (Handfield and Nichols, 1999). 

In this context, it is necessary to incorporate a mechanism in order to represent 

the interconnection and precedence of the several tasks assigned to the overall control 

system, using data flow graphs. One of these representations was developed by Williams 

(1989) at the University of Purdue (see Figure 1.4). These representations symbolise the 

interconnections between influencing external entities on the factory and also identify the 

interfaces between staff departments which provide services to the factory or express 

managements’ policies in sets of requirements to be fulfilled by the factory. 
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Figure 1.4. Purdue Reference Model. 

These representations also define a system of standardized data and functional 

models to organize information flows and the decision making process, in order to create 

a set of standard interfaces which allows information exchange between the overall SC 

with operation management systems. These models provide a set of data flows and 

function hierarchies for a generic manufacturing facility, and are addressed to automatable 

operations including production control, procurement, process support engineering, 

maintenance management, and other functions directly associated with manufacturing.  

 

1.3. Integrated Supply Chain Management 

In order to address the SC management, over the last twenty years most 

companies, and indeed researchers, tend to use a company-centric view of the SC, where 

the SC is seen as consisting of the plant in question as a central entity, possibly together 

with some peripheral partners, typically suppliers and customers. This view involves the 

integration of production and logistics planning across the enterprise, value-chain 

management, global network planning and investment appraisal.  
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Moreover, the trend towards globalization has significantly increased the scale 

and complexity of current businesses. In this context, corporations have become global 

networks that are made up of a number of business units and functions.  

The SC modelling problem is an extremely complex task. For this reason, it is 

usually helpful to use the time dimension to establish a hierarchical order so as to facilitate 

SC coordination (inter and intra enterprise coordination), including: 

 Strategic level or long-term planning, which affects decisions related to the 

structure of the SC and is carried out over a long-term horizon. These 

decisions include location of production sites and warehouses, the capacity 

of these facilities, and transportation methods and routes. 

 Tactical level or medium-term planning seeks to most efficiently fulfil 

customer demand over a medium-term horizon. Decisions involve the 

assignment of production targets to production sites, transportation 

amounts, and inventory profiles. 

 Finally, in an operational level, short-term planning or scheduling is carried 

out for each individual site within the supply chain upon receiving targets 

from master planning obtained in the tactical level. The scheduling horizon 

is in days or weeks, and scheduling decisions include batch-sizing, 

assignment of tasks to equipment units, and sequencing of tasks. 

There are interconnections between these different hierarchical levels of the SC 

which affects the decision making process. For this reason, SC decisions should be 

coordinated via integration. Figure 1.5 represents these 3 hierarchical levels and its 

decisions through a SC network. 

 

Figure 1.5. Supply chain hierarchical levels. 
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Operational functions include research and development (R&D), production plants 

(continuous, discontinuous and discrete) and supply networks. The business departments 

control their operations through the decisions that enterprises must take about their capital 

expenditure, the financing of the company, growth strategies and operations. Strategic 

decisions about capital expenditure and planning include the technology used, the choice 

of R&D projects and decisions about infrastructure and SCM. Financial decisions are made 

by identifying the assets and liabilities required from the working capital for larger projects 

and operations, and by assessing and protecting the company from the risk of change. 

Current studies and solutions on these problems, proposed in the fields of PSE 

and Operations Research, tend only to consider subsets of such decisions, even though a 

business must act as a cohesive body in which its various functions are coordinated to a 

certain extent. 

Therefore, from a company’s viewpoint, overall performance will be below 

optimum if strategic and tactical decisions are taken separately, as has been the practice 

to date. However, it is significantly more complex for a company to make decisions that 

involve its overall interests than to make decisions about specific functions. This explains 

why integral modelling that reflects the overall running of companies has been virtually 

unprecedented. 

The PSE community faces an increasing number of challenges, while enterprise 

and SCM remain subjects of major interest that offer multiple opportunities. Further 

progress in this area is thought to bring with it a unique opportunity to demonstrate the 

potential of the PSE approach to enhance a company’s value. One of the key components 

of SCM and enterprise-wide modelling and optimization (EWMO) is decision making 

coordination and integration at all levels (Grossmann, 2004). Most of the recent 

contributions offer models that separately address problems arising in the three hierarchical 

decision levels within a standard SC (i.e., strategic, tactical aggregate planning and short-

term scheduling). 

The nature of the SC planning problem is quite similar to the plant production 

scheduling problem. Both problems usually search answers to the questions of in what 

amount, when and where to produce each product comprising the business portfolio so as 

to obtain financial returns. However, planning brings into play a broader, aggregated view 

of the problem. 

The time scale in planning problems is usually longer than the time scale in 

product processing. In this way, the sequencing/timing decisions in a scheduling problem 

are transformed into decisions in a rough capacity problem. In fact, equipment capacity 

modelling is a highly sensitive aspect that must be taken into account in order to assure 



Chapter 1  

 

10 

 

consistency and feasibility when problems are being integrated across SC hierarchical 

decision levels. 

Furthermore, at the strategic level, designing a SC network does not only involve 

selecting the type and size of the equipment, but also allocating this equipment to the 

different potential SC echelons. Therefore, it is required a SC modelling approach that: 

 Considers equipment capacity similarly at strategic and operational levels, 

so that this capacity can be aggregated and disaggregated in a 

straightforward and transparent manner; 

 Is able to handle strategic decisions associated with technology allocation 

to sites and not merely site locations; 

 Easily represents the transport material and financial flows among SC sites 

at the scheduling level. 

One very significant element to be also considered during the decision making 

process within a SC is the information availability and reliability. Businesses are subject to 

internal and external uncertainties. Examples of internal uncertainties include the success 

rate of R&D projects, given the technological risks involved, and disruptions to production, 

such as production failures and unforeseen stoppages, among other factors. External 

uncertainties include those related to the cost of raw materials and products (unless they 

are subject to monopoly conditions), fluctuations in the exchange rate, and uncertainties in 

market size and demand, due to competition and macroeconomic factors. 

However, the external and internal dynamics of real businesses have not been 

represented by current models in a way that achieves desired consumer satisfaction levels 

and acceptable financial returns. Fluctuating demand patterns, increasing customer 

expectations and competitive markets, coupled with internal disturbances, mean that 

today’s supply networks are not reliable in such an environment unless their external and 

internal dynamics are appropriately incorporated into the SC model, but nowadays this is 

not always possible or practical. 

For these reasons, the integration of decision making in businesses at various 

levels will lead significant added value. This requires the coordination of a problem’s 

multiple planning facets in non-conventional manufacturing networks and in multi-site 

systems. Furthermore, the challenge of solving large multi-scale optimization problems 

becomes evident when the integration of different decision levels is considered. 

Finally, the scheduling details about production equipment will enable the 

dynamics of SC to be tracked. By considering information from the equipment supervisory 

module, which can be incorporated into the scheduling formulation, it will be possible to 

handle the incidents that may arise in the SC in low-level decisions. 
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1.4. External resources 

Different resources are used in the operation of a SC. The need to improve the 

management of the overall SC has led to the consideration of external resources in the 

decision making process. In the area of production processes, the most common used 

resources are water and energy. Thus, a simultaneous management of production and the 

use of resources is required to take into account environmental and social issues in the 

industrial processes, in order to reduce their impacts. 

One of the main common resources is water. Its use is essential for humanity. 

However, the availability of this source is limited and decreasing in many areas of the world 

(Figure 1.6, UNESCO, 2012). Water is used for human necessities as well as in industrial 

processes. Factories use large amounts of water in industrial processes, which can be 

used, for example as mass separating agent, reactant, utility or cleaning agent. The scarcity 

and the strict discharge policies related to the use of water, motivated by the concern 

associated to the limitation of this natural source, are significant forces to investigate ways 

to reduce the use of water. This reduction in the use of freshwater and the reduction of 

wastewater generation is possible by reusing and recycling water. 

 
Figure 1.6. Global physical and economic water scarcity. 

Regarding the energy, its use of energy at domestic and industrial levels is 

essential. However, as global population and standard of life increases, the energy demand 

also increases. It is expected that global demand will be increasing at an average of 1.5% 

every year to 2035 (Figure 1.7, Orr, 2013), which can involve a failure to meet this growing 

energy demand if the energy supply is not sufficient and sustainable. In this area, Energy 

Systems Engineering involves all the decision making procedures associated to an energy 

supply chain from the primary energy source to the final energy delivery to the 
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customer. The main objectives of managing energy systems are to reduce costs, to reduce 

the environmental impact and to satisfy energy demand. 

 
Figure 1.7. World energy demand forecast. 

1.5. Main objectives 

In the current context of economic crisis, improving the efficiency of the industrial 

processes is essential to ensure the viability of the companies, such as the coordination of 

the management of the entire SC, new market trends, uncertain conditions and market 

diversification. 

This thesis aims to enhance the decision making of industrial processes, facing 

nowadays open issues. In order to achieve this main goal, the key objectives of this thesis 

are next detailed: 

 The modelling and optimization of Supply Chain Management problems using 

rigorous mathematical optimization approaches and also to propose alternative 

robust and efficient methods. Thus, the development of robust dynamic mathematical 

models will be applied for: 

 The simultaneous management of production and demand under different time 

representations (Chapter 4). 

 The integration of external and internal uncertain sources (Chapter 5). 

 The management of resources within the production process (Chapter 6). 

 The coordination of production and environmental aspects (Chapter 6). 

 Real-time scheduling (Chapter 8). 

 The development of decision making models in order to improve the Supply Chain 

Management, by integrating the SC hierarchical levels and reflecting external and 

internal dynamics of real processes or enterprises (Chapter 7). 
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 The integration and characterization of all information related to a supply chain (at 

strategic, tactical and operational level) in a unique information management 

structure, in order to coordinate the decision making process between the different 

hierarchical levels and also between the different echelons involved in the SC 

(Chapter 8). 

 The development an open software prototype for the implementation of these 

methodologies and algorithms (Chapter 8). 

 

1.6. Thesis outline 

This thesis has been structured in order to introduce progressively the 

contributions to the coordinated management of production and demand. Figure 1.8 

illustrates the outline of the thesis, which has been divided in four main parts. 

Part I, in addition to this introductory chapter, describes, in Chapter 2, a state of 

the art of the applications and the techniques used to address specific problems in SC 

decision making, and finally allows identifying some trends and challenges. Also, Chapter 

3 provides the different methods and tools and techniques to optimize complex optimization 

problems. 

Part II analyses the integrated management of production and demand 

constraints. Chapter 4 aims to analyse different time representation alternatives within a 

mathematical formulation, considering simultaneously not only production, but also 

demand management, in deterministic conditions. Chapter 5 considers this coordinated 

decision making process taking into account uncertain conditions, through the use of 

reactive procedures (i.e., rolling horizon approach) and proactive procedures (i.e., 

stochastic programming). To complete this part, Chapter 6 extends the approach to include 

the use of resources, such as water and energy, in the decision making. 

Part III studies the integration of different hierarchical levels and all available data 

within the decision making process associated to the SC. Particularly, Chapter 7 aims to 

improve process productivity by the coordination of different decision making levels and 

developing mathematical models able to integrate the features of more than one decision 

level in the SCM. Moreover, Chapter 8 presents an open communication system in order 

to integrate all available information associated to a chemical/industrial process, as well as 

to automate the decision making process. 

Finally, Chapter 9 in Part IV summarizes the main contribution of this thesis and 

draws up concluding remarks for future work. 
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Chapter 2. State of the art 

The intrinsic complexity of the decision making processes within a SC has brought 

forth the development of a wide variety of problem models and solution algorithms. The 

selection and adoption of a given approach depends on the characteristics of each problem 

and in many situations, case specific adaptations seem to be applicable. 

In this area, PSE is a branch of chemical engineering which covers a set of 

methods and tools to support decision making for the creation and operation of a SC, 

including modelling, simulation, optimization, planning and control tasks. PSE manages 

knowledge and mathematical tools in order to develop complex mathematical models to 

represent a unit process, a production facility or an overall SC.  

This chapter includes a summary of the major contributions made so far of the 

topics covered throughout this thesis. The problems that are still open or have special 

interest will be illustrated for the development of this Thesis. Particularly, this chapter is 

focused on reviewing the most important works related to the optimization of SCs. In 

addition, previous works addressed to optimize decision making at different hierarchical 

levels will be reviewed, as well as decision making based on the integration of these 

hierarchical levels, the consideration of utilities in the decision making and the 

consideration of uncertainty in the process.  

 

2.1. Hierarchical decision making 

The decision making process within a SC usually can be decomposed in 3 

hierarchical levels, according to the time horizon: strategic, tactical and operational 

(Chapter 1.3). The main decision associated to each decision levels as well as its time 

horizon are shown in Figure 2.1. 
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Strategical level

Tactical level

Operational level

Design decisions

- Location

- Design of the supply chain

- Manufacturing recipe

Planning decisions

- Production

- Inventory level

- Distribution level

- Demand amounts

- Order due dates

- Raw materials amounts

- Prices

Scheduling decisions

- Production amount

- Assignment

- Sequencing

- Batch size

- Timing

Control and monitoring

- Actual plant state

- Availability of resources

Time horizon

> 2 years

Time horizon

weeks, months

Time horizon

days, hours

 

Figure 2.1. Decision making levels.  

 

2.1.1. Strategical level 

The SC strategical level (long-term planning) is used in order to synthesize and 

design the network related to the production and distribution of a set of products. The 

associated decision making which are involved in this hierarchical level includes the optimal 

sourcing, manufacturing and distribution network for the new and existing products of a SC, 

which includes the location of the production plants, warehouses, the production capacities 

of each plant, technology installed, and the selection of vendors and suppliers all 

considering several available locations for each plant, market, supplier and warehouse. All 

these variables can be optimized under an established criteria (i.e., annual profit, total 

capital cost, net present value, network flexibility, environmental damage, customer 

service, etc.).  
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The most common approaches are to formulate a Mixed Integer Linear 

Programming (MILP), considering fixed costs (investments) and variable costs 

(manufacturing, procurement, distribution and taxes, among other costs). This kind of 

problems is usually solved for a time horizon of two to five years. Moreover, these problems 

have been mainly tackled with operations research approaches at a global level of detail.  

The SC synthesis and design problem has its origins in the location and planning 

problem, which has been a subject of study in Operations Research since the mid-1950s. 

However, it was first mathematically structured in a MILP form by Balinski (1965). 

Posteriorly, Brown et al. (1987) developed a mathematical model related to a distribution 

and distribution industrial network optimization for the biscuit company of NabiscoTM, 

involving opening and closing of plants and its assignment of production. 

Several approaches are addressed to exploit the flexibility of the SC network. 

Ferrio and Wassick (2008), proposed a MILP problem formulation destined to the redesign 

of existing networks. In this new approach, direct shipping is taken into account, although 

potential linkages must be predefined. Also, Naraharisetti et al. (2008) developed a MILP 

redesign formulation, which considers the alternative of investments and disinvestments, 

as well as decisions including technology upgrade, production, allocation and distribution. 

More recently, Laínez et al. (2009), proposed an approach based on a flexible SC that 

allows material flows of any raw material, intermediate material and final product between 

each facility in order to maximize the net present value. Longinidis and Georgiadis (2014) 

incorporates the leasing within a new MILP formulation, which combines the SC design 

and sales and leaseback techniques. 

More recently, Kalaitzidou et al. (2014) presented a general MILP formulation for 

the design of SC networks, considering flexibility on facilities’ location and operation. This 

work addresses the design of a multiproduct and multiechelon network consisting of 

generalized production/warehousing nodes that can receive any material from any potential 

supplier or any other generalized production or warehousing node and deliver any material 

to any market or any other generalized production or warehousing node. 

Additionally, the management of the use of utilities (such as water and energy) 

plays and important role in the SC design. Some works related to this issue can be found 

in Yang et al. (2014) and Gao et al. (2015). Chapter 2.6 explains the current state of the 

art related to the management of production process and use of utilities at operational level. 
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Furthermore, there are several approaches focused on the simultaneous 

consideration of multiple key performance indicators. As examples, Laínez et al. (2010) 

have developed a Mixed Integer Non-Linear Programming (MINLP) formulation that 

optimizes the SC and marketing strategic decisions, evaluating the trade-off between 

marketing and SC decisions. Pérez-Fortes et al. (2012) introduced the environmental and 

social criteria within a multi-objective MILP, in order to design a regional and sustainable 

SC. A complete review of the design of sustainable SC can be found in Eskandarpour et 

al. (2015) and García et al. (2015), where research opportunities and challenges in the field 

of SC design, including energy and sustainability issues, are analysed. 

Although the traditional approaches consider demand uncertainty, there is a 

challenge to study the incorporation of uncertainty associated to environmental impacts or 

the acquisition of raw materials in flexible SC design (see Chapter 2.2). Also, one future 

extension related to the strategic level is the integration of other indicators, such as the 

capacity risk in the design of SC in order to optimize the safety stock level (see Chapter 

2.3).  

 

2.1.2. Tactical level 

The tactical level comprises the mid-term planning, for a time horizon of several 

months. The mid-term production planning in the industry (SC planning) is typically used in 

order to determine production levels, inventory levels, distribution of final and intermediate 

products in a network of product sites, distribution centres and final consumers, including 

a set of constraints associated with the availability of raw materials acquisition and capacity 

constraints in production facilities and warehouses. In other words, this kind of problems is 

addressed to optimize the production, storage and distribution sources to satisfy market 

requirements, considering a fixed infrastructure within a SC. The constraints associated 

with the tactical decision making level mainly consider the availability of raw materials, and 

maximum/minimum production, distribution and storage capacities. The problem can be 

formulated as a linear programming model (since the production, storage and distribution 

can be continuous variables), but, in order to be more realistic in most of the cases the 

formulation corresponds to a MILP model, due to the constraints associated to discrete 

decision making (i.e., produce or not). 

The tactical level formulations address the problem of chemical SC production 

planning for multi-product, multi-site production networks including production-distribution 

options, which can be applied to different kind of processes. For example, Wilkinson et al. 

(1996) presented an optimal production and distribution planning of a wide case study, 

which takes into account different products, production plants and distribution centres. t is 

found that the ability of the model to capture effects such as multipurpose operation, 
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intermediate storage and changeovers give rise to counter-intuitive results, such as 

producing materials further away from demand than expected. 

McDonald and Karimi (1997) have developed deterministic models formulated as 

mixed-integer linear programs. This work deals with multi-period midterm planning models 

for multiproduct processes. The main goal is to determine the optimal allocation of 

resources. 

More recently, Tsiakis and Papageorgiou (2008) also considered production and 

distribution networks with special emphasis on product site allocation among sites and 

outsourcing possibility.  

SC planning techniques have also been applied also for pharmaceutical 

(Papageorgiou et al., 2001, Sousa et al., 2011; Susarla et al., 2012), agrochemical (Sousa 

et al., 2008), clinical applications (Chen et al., 2012) and to refineries. As examples, Neiro 

and Pinto (2004) proposed a multi-period large scale MINLP for modelling petroleum SCs, 

by considering refineries, terminals and pipeline networks. The non-linearities are included 

in the model in order to characterize the properties of each product. More recently, 

Santibañez-Aguilar et al. (2015) presented a dynamic optimization model for the optimal 

planning of a distributed biorefinery, which incorporates a Model Predictive Control (see 

Chapter 3.5.2) in order to predict the behaviour of the storage levels and orders of the SC. 

Some works proposes decomposition techniques, such as two-level optimization 

or Lagrangean decomposition. Jackson and Grossman (2003) developed a multi-period 

MINLP for the production planning and product distribution optimization of several 

continuous multiproduct plants which are located in different sites and supply different 

markets. The model related to each production facility is represented using nonlinear 

process models, solving the problem by using Lagrangean decomposition. This 

decomposition technique was used in order to solve large-scale instances of the problem. 

Moreover, Ryu and Pistikopoulos (2007) proposed a MILP model for multi-period SC 

planning problems, transforming the problem into two-level optimization problems. In order 

to solve this problem, firstly, demands in disjunctive geographical locations are aggregated, 

as proposed in a previous work (Ryu and Pistikopoulos, 2005). Secondly, individual single-

site multi-period planning problems are constructed based on their allocated demands. 

Also, Verderame and Floudas (2008) developed a model which relates the operation 

planning and the mid-term of a multipurpose and multiproduct batch chemical, taking into 

account transportation tasks and multiple sites. Furthermore, Camacho-Vallejo et al. (2015) 

presented a two-level mathematical formulation addressed to the problem of planning the 

production and distribution in a SC. In this proposed formulation, the problem is solved in 

order to determine the production levels to be sent from the distribution centres to the 
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retailers trying to minimize the transportation costs. Posteriorly, the second level consists 

in minimizing the operational costs.  

The consideration of multiple criteria in the decision making process has been 

addressed in recent works. Fahimnia et al. (2015) presented a MINLP model to evaluate 

the trade-off between economic aspects and environmental impact, by introducing carbon 

emissions, energy consumption and waste generation in the proposed model. Also, 

Boukherroub et al. (2015) proposed a multi-objective model, which takes into account 

economic, environmental and social impacts.  

Finally, Papageorgiou (2009), Mula et al. (2010) and Díaz-Madroñero et al. (2014) 

presented reviews of mathematical models in planning. According the mentioned reviews, 

the main challenges in planning are related to water and energy SC, in order to establish a 

water network which includes water supply and waste water treatment, and energy 

network, including new decentralized grids. In addition, it is significant to remark the future 

study of optimizing transport and production planning in a coordinated way, including forms 

of transport, routes, environmental restrictions, and integration of the suppliers’ nodes into 

the supply chain’s optimization models. Also, typical and new sources of uncertainty must 

be studied taking into account that multiple SCs cooperation and competition for the market 

demand has not been yet analysed. 

 

2.1.3. Operational level 

The scheduling or operational level is a critical issue in both batch and continuous 

processes. Mathematical models developed to support this activity include decisions of 

what, where, how and when to operate. In summary, the decision making problem aims to 

obtain the best possible scheduling: lot-sizing (assignment of equipment and resources to 

tasks), production allocation (resources utilization profiles), sequencing and timing (start 

and end times). But scheduling decisions also affect other factors, including process 

feasibility, sustainability or safety, and so other objectives can be considered, related to 

production, environmental impact, etc. In the last decades, there have been significant 

advances in the application of short-term scheduling methodologies, especially to solve 

industrial problems. One of the main issue in scheduling formulation is the time 

representation (see Chapter 2.5). 

Traditional approaches are based on detailed scheduling related to a production 

plant, without taking into account its incorporation into a SC. Recent works are related to 

the integration of the operational level within the SC (see Chapter 2.3). 
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Scheduling reviews have been presented during the last decades. Shah (1998) 

reviewed the single and multisite detailed scheduling. In a recent review of scheduling 

problems, the modelling of representative optimization approaches for the different problem 

types can be found in Méndez et al. (2006) and Harjunkoski et al. (2014). According to the 

last review, although there are very significant progresses in the field of short-term 

scheduling, systematic solution of large-scale problems, concerning to complex enterprise, 

using mathematical programming remains a challenge to solve. 

Several works have been published in order to improve the operational decision 

making at the plant level. For example, Pinto and Grossmann (1995) developed a MILP 

formulation of short-term scheduling of batch plants with multiple stages which may contain 

equipment in parallel. The operational level is also used in order to predict the starting point 

and end times for each operation, as presented by Pekny and Reklaitis (1998). Some works 

are focused on multi-tasks and multi-product plants (Méndez and Cerdá, 2007; Marques 

de Souza Filho et al., 2013; MirHassani and BeheshtiAsl, 2013), multiperiod optimization 

models (Kabra et al., 2013), discrete scheduling models under multi-objective optimization 

(Capón-García et al., 2014), and focused on the sequence-dependent issues (Cóccola et 

al., 2014). 

 Moreover, operational applications for multi-product, multi-task and batch 

processes have been studied for single-stage production plants (Castro et al., 2008, Castro 

and Grossmann, 2012) and multi-stage (Prasad and Maravelias, 2008). 

Furthermore, several works include material storage policies. For example, 

Aguirre et al. (2011 and 2014) solve a short-term scheduling of a semiconductor industry 

problem, developing an MILP-based tool to synchronize detailed schedule of production 

activities and transfer operations following strict intermediate storage policies, including 

zero wait restriction. This model is quite remarkable because proofs the adaptability of the 

scheduling model across all kind of industries.  

In order to represent the production sequences of the chemical processes, two 

general graph frameworks are available, namely the State-Task Network (STN) and the 

Resource-Task Network (RTN). The STN was initially proposed by Kondili et al. (1993), 

and consists of a direct graph which includes two nodes: the state node and the task node. 

Posteriorly, Pantelides (1994) extended such framework to the RTN representation in order 

to describe processing equipment, storage, material transfer and utilities as resources in a 

unified way. 

With regard to the STN representation, which allows handling many complexities 

in this kind of processes. In addition, they formulated a MILP based on a discrete time 

representation in order to solve short-term scheduling, taking into account equipment 
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allocation, storage levels, the availability of raw materials, and the batch size and 

production deliveries in order to maximize the profit of the process. In addition, this work 

proposed a detailed scheduling model in order to optimize multiple products and multiple 

tasks plants. In this work, it was defined the STN to represent the process information, 

separating the process in nodes linked to the task nodes, where each connection 

represents the precedence of the task. Recipe networks are then adequate for serial 

processing structures, and better represent the information of the process, and the 

complexity associated to different information becomes a challenge to manage. 

Furthermore, several authors use the STN representation for discrete time 

formulations, such as Maravelias and Grossmann (2003b and 2006), who developed an 

algorithm to minimize the makespan of multipurpose batch plants and where the 

relationship between discrete and continuous time MILP formulation was studied, 

respectively. In addition, the STN representation is also used for continuous time 

formulations in several works. For example, Maravelias and Grossmann (2003a) proposed 

a continuous time MILP model for short-term scheduling of multipurpose batch plants, 

including resource constraints, variable batch sizes and processing times, storage policies, 

batch mixing/splitting and sequence-dependent changeover times. Posteriorly, Bose and 

Bhattacharya (2009) developed a MILP formulation in order to generate an optimal 

schedule for a sequence of several continuous processing units for processing products 

using the STN representation. 

The main challenges related to operational level are focused on the integration 

under uncertainty of this hierarchical level within a SC (see Chapters 2.2 and 2.3), and the 

development of strategies to reduce the computational effort required to find optimal 

solutions still remain as open issues to be studied. 

 

2.2. Uncertainty 

In general, process are dynamic and therefore, different kinds of unexpected 

events may occur quite frequently. These disturbances may affect the nominal operating 

conditions (i.e., schedule of the production facility). Different uncertainty management 

techniques are briefly described in Chapter 3.5. Also, more details regarding optimization 

under uncertainty in process industries can be found in Sahinidis (2004). This section 

focuses the state-of-the-art related to the presence of uncertainty in the different 

hierarchical levels of a SC. 

The consideration of uncertainty can be crucial to ensure the generation of 

feasible solutions of good quality and practical interest. Different sources of uncertainty 
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affect each hierarchical level of the SC (Figure 2.2). Because of the interactions between 

the different levels of decision making, uncertainties from one level will affect decisions 

made in other levels. For instance, variable demands do not only alter tactical planning 

decisions, but also the process scheduling in the operational level (Bonfill et al., 2008). The 

most frequently adopted approach in the literature is the stochastic programming, which is 

a proactive approach where a solution with the maximum expected performance is 

obtained by including estimated scenarios in the model. 

In the literature, it is possible to find several works related to two-stage or multi-

stage stochastic formulations. In a strategic framework, Tsiakis et al. (2001) proposed a 

MILP model for the SC design problem under uncertainty, in order to minimize the total 

annualized cost of a multiproduct, multi-echelon SC network, considering different demand 

scenarios. The decision making included the number, location of distribution centres to be 

introduced and its capacity, transportation routes and production rates. Guillén-Gonsálbez 

et al. (2005b) proposed the multi-objective stochastic MILP model in order to optimize the 

SC design problem taking into account economic profit, customer satisfaction and financial 

risk. The decisions to be determined are number, locations and capacities of production 

plants and distributions centres, production rates and flows of materials. The resulting 

strategy combines genetic algorithms and mathematical programming tools by Guillén-

Gonsálbez et al. (2006b). Also, a stochastic model was introduced by Lin and Wang (2011) 

in order to design a SC under supply and demand uncertainty with embedded supply chain 

disruption mitigation strategies. 

Furthermore, there are several approaches focused on the consideration of 

multiple objectives. As example, You and Grossmann (2008) have extended the SC design 

problem in order to consider responsiveness and economic Key Performance Indicators 

(KPIs) as the objectives to be maximized under demand uncertainty. 
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Strategical level

Tactical level

Operational level

Design - uncertainty sources

- Technology changes

- Market trends

- International aspects

- Governmental regulations

- Financial issues

- Competitors

- Region features

- Environmental conditions

- R&D

Planning - uncertainty sources

- Market demand

- Raw material availability

- Information flows

- Due dates

- Misjudgements

- Cancelled/rush orders

Scheduling  - uncertainty sources

- Material availability

- Utilities

- Manpower

- Resources quality

- Processing time

- Transport time

- Control systems

- Model parameters

- Misjudgements

Time horizon

> 2 years

Time horizon

weeks, months

Time horizon

days, hours

 

Figure 2.2. Sources of uncertainty.  

In a SC planning framework, Ierapetritou and Pistikopoulos (1996) developed a 

two-stage stochastic formulation that includes uncertainty in model/process parameters 

and product demands at the design stage of multiproduct/multipurpose batch plants. 

Petkov and Maranas (1997) proposed a MINLP stochastic model, including uncertain 

product demand, for multi-period planning and scheduling of multiproduct plants. In 

addition, Gupta and Maranas (2000 and 2003) developed a two-stage stochastic 

programming approach, using the framework of multisite mid-term SC planning under 

demand uncertainty. In this work, the production decisions are solved using linear 

programming, while SC decisions are postponed to be solved posteriorly using a MINLP 

formulation. The main characteristic of the proposed model is the identification of optimal 

supply policies under low, intermediate and high demand. More recently, Rodríguez and 

Vecchetti (2012) developed a stochastic model to deal with the uncertain demand including 

the selection of price levels. Moreover, Lakkhanawat and Bagajewicz (2008) developed a 

stochastic programming for refinery planning which integrates pricing decisions. The two-

stage stochastic program with fixed recourse considers the demand and client budget 
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uncertainties. More recently, Felfel et al. (2015) proposed a multi-stage stochastic MILP 

formulation focused on a multi-product, multi-period and multi-site SC under demand 

uncertainty. The aim of this work was to maximize the profit. Another proactive approach 

is the use of game theory formulation, which is a technique for analysing situations in which 

there are different elements affected by the decision making process. Zamarripa et al. 

(2011a) developed a multi-objective MILP formulation in order to optimize the SC planning 

by introducing the use of game theory for decision making in cooperative and competitive 

scenarios. Moreover, Ryu et al. (2004) proposed a multi-parametric framework to capture 

conflicting interests of multiple elements in the context of SC planning problems, where 

operation strategies under varying demand are obtained by using parametric optimization 

techniques. Furthermore, Chu et al. (2015) developed a new simulation-base optimization 

framework for optimizing distribution inventory systems, where the objective is to minimize 

the storage cost. 

In the SC scheduling level, Guillén-Gosálbez et al. (2006a) developed a 

multistage stochastic MILP optimization model to address the scheduling of SCs with 

embedded multipurpose batch chemical plants under demand uncertainty. Moreover, 

Adhitya et al. (2007a) report a heuristic based re-scheduling for refinery operations. They 

broke a schedule into operation blocks. Re-scheduling is performed by modifying these 

blocks in the original schedule using simple heuristics to generate a new schedule that is 

feasible for the new problem data. In a posterior work, Adhitya et al. (2007b) developed a 

model-based approach for rescheduling SC operations in response to disruptions. More 

recently, Kopanos et al. (2008) developed a MILP formulation for the rescheduling of 

programmed tasks, by applying a penalty cost in case of deviations from the established 

target, to preserve schedule stability. Also, the rolling-horizon approach has been used for 

scheduling problems (Kopanos and Pistikopoulos, 2014), in order to optimize the problem 

according to the current available information. 

The majority of presented works are focused on an element of uncertainty, 

typically the demand uncertainty. A challenge is the study of a unified view of all the 

elements that create uncertainty in a SC, and its consequences in all the elements within 

a SC. 

Previous works are related to a partial view of the SC, usually associated with the 

production function, which allows the incorporation of low-level decisions. However, the 

coordination or integration of a set of interlinked SCs has become a challenge. Particularly, 

some studies have developed approaches that focus on limiting a phenomenon known as 

the "bullwhip effect", which is the increase in fluctuation of demand upstream in the SC, 

studied by Perea-López et al. (2003) and Mestan et al. (2006). More recently, Hwarng and 

Xie (2008) investigated the effect of variability in a multi-level SC under the influence of 

several factors. However, incorporating low-level decisions (local scheduling, supervisory 
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control and diagnosis, incident handling) and the implications of incorporating these 

decisions for the dynamics of the entire SC (production switching between plants, dynamic 

product portfolios) have not yet been fully studied, due to the high computational effort of 

the incorporation of low-level decisions data. 

 

2.3. Integration of decision levels 

Chapters 2.1 and 2.2 were focused on the study of each hierarchical level under 

deterministic and uncertain conditions. However, a current important challenge is the 

integration of the decision making process and the optimization of different decision levels 

within a SC (strategic, tactical and operational level), in order to ensure coherence among 

different decisions, usually associated to different time and economic scales. The necessity 

of coordinating these decision levels has led to the development of several hierarchical 

modelling approaches, in order to improve the decision making process. 

 

2.3.1. Integration in deterministic conditions 

Several authors enhance the importance of integrating planning and scheduling 

levels, due to the fact that operational plans must be in accordance with planning plans, 

including production, distribution and other related activities related to each enterprise or 

SC. The interest in integrating scheduling and planning is increasing, due to the fact that it 

is essential to guarantee a quick and rational respond to demand fluctuations, to optimize 

the existing resources, and due to economic benefits for this integration are substantial. In 

this context, Kallrath (2002a) provided an overview of planning and scheduling in industrial 

processes of batch and continuous processes. Guillén-Gonsálbez et al. (2005a) developed 

an integrated planning and scheduling model including financial risks. Sung and Maravelias 

(2007) and posteriorly Maravelias and Sung (2009) have developed a hybrid planning-

scheduling optimization technique, where the optimal schedule is obtained in off-line 

optimization and then integrated to the planning model as a convex approximation of the 

production levels. More recently, Muñoz et al. (2015) presented a Lagrangian 

decomposition approach in an ontological framework (see Chapter 3.8.1), in order to 

improve information sharing and communication between all elements/partners of the 

overall SC. 

According to the review presented by Verderame et al. (2010), future challenges 

could be addressed in the formulation, within the field of integrating planning and 

scheduling, of accurate mathematical models and, at the same time, resolvable in a 

manageable time, or with an appropriate computational effort, using commercial solvers. 
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In addition, this kind of models are usually formulated by aggregating scheduling models 

where the production capacity of the plant is approximated, although this method guides to 

the planning model overestimating the production capacity of the plant. Next steps could 

be addressed to formulate planning models, providing very tight upper bounds on the 

production capacity for different plants. 

In addition, there are numerous works describing methodologies for solving 

simultaneously strategic and planning operations. It should be noted that, in most of 

developed mathematical approaches, these models are based on information of previous 

decision making models, typically associated to design and planning tasks, as can be found 

in the literature. Kallrath (2002b) described a methodology for strategic and operational 

planning in a multi-site production network. The objective was to optimize the total net profit 

of a global network, including operating modes of equipment in each time period, 

production and supply of products, minor changes in the infrastructure and raw material 

purchases. More recently, Mota el al. (2015) developed a multi-objective formulation for 

supply chain design and planning, introducing economic issues as well as environmental 

and social impacts. 

Furthermore, the integration of strategic and operational levels has received 

recent attention. The objective of this integration is to determine the requirements to install 

or to invest with the detailed consideration of plant processes. In this field, Corsano et al. 

(2014) developed a MILP formulation to deal with the integration of these two hierarchical 

levels, using three solution strategies, which are a bi-level algorithm, a Lagrangian 

decomposition and a hybrid approach that combines the previous two methods. 

It is important to mention that complex enterprises require not only the use of 

computer simulation, optimization and control techniques but also to automate the decision 

making process. Muñoz et al. (2011) presented an ontological framework for integration of 

all available information in a coordinated information platform to coordinate all decision 

making within the overall SC. Ontologies provide structures for the integration of 

information sources (Muñoz et al., 2010). Thus, they can be used in order to integrate 

different decision levels, including communication and knowledge, and helping to 

knowledge reuse and sharing, with the aim of increasing the efficiency of cost, time and 

resources (Fensel, 2010). It is worthy to mention that ontologies are considered as a tool 

to reduce or eliminate conceptual and terminological confusion and come to a shared 

understanding. The use of ontologies to integrate and organise all information will be 

discussed in Chapter 3.8.1. 

Finally, it is remarkable the significant interest to integrate different objectives, for 

example financial aspects, environmental impacts, or time changeovers, among other 

parameters. In this point, it is worthy to mention that SCM is focused in solving the problem 
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as a whole, providing solutions to the problem of integration and coordination of the 

different decisions in the different hierarchical levels. As example, Laínez et al. (2009) 

integrated process operations and financial issues to improve the decision making in 

chemical processes, developing a SC design-planning model.  

According to the literature review, one important challenge is to coordinate the 

integration of financial, environmental, uncertainty, risks and production aspects to explore 

their synergistic benefits. Moreover, another open issue consist of ensuring consistency, 

feasibility and optimality across models that are applied over large changes in time scales. 

 

2.3.2. Integration under uncertain conditions 

The integration of different hierarchical levels within the decision making process 

under uncertain conditions has received attention in the last years. Regarding the 

integration of tactical and operational levels, Yue and You (2013) presented a stochastic 

MINLP formulation to tackle the presence of uncertainty in the suppliers. The main 

decisions to be taken include the optimal selection of production schemes, purchase 

amounts of raw materials, sales of final products as well as production levels. 

The integration of strategic and tactical levels has been also studied. In this area, 

Cardoso et al. (2013) developed a stochastic MILP formulation for the design and planning 

of SC with reverse flows under demand uncertainty, in order to maximize the net present 

value. The main decisions are focused on sizing and location of production plants, 

distribution centres and retailers, definition of equipment units to install and inventory levels. 

Posteriorly, Zeballos et al. (2014) presented a stochastic MILP formulation for the 

integration of design and planning of a multi-period and multi-product SC under demand 

and supply uncertainty, considering multiple scenarios. 

In the field of integration of strategic and operational levels under uncertain 

conditions, Lee (2014) developed a two-stage stochastic program formulation that 

addresses optimization of an energy supply chain in the presence of uncertainties, such as 

market, politics and technology changes. The case under study considers the energy 

production through renewable sources as well as the use of energy storage systems. 

Although the integration of hierarchical levels under uncertain conditions has been 

studied, it is foreseen the need to dedicate further research efforts in order to extend the 

developed formulations to the introduction of more uncertainty sources as well as the 

integration of production and demand within the overall production process.  
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2.4. Management of production and demand 

This section concerns the simultaneous management of production and demand 

within a supply chain. In particular, this section is focused on the energy supply chains, 

since the proposed formulations will be applied to a case study based on an energy network 

in Chapters 4 and 5. After an explanation to contextualize the necessity to manage energy 

supply chains, a review of the production side and the demand side management is 

presented. 

Traditional power grids are based on centralized supply chains where large power 

plants generate electricity to be used posteriorly at industrial or domestic level (Wang and 

Singh, 2009). The optimization of the associated large-scale centralized production 

management problem is complicated by the need to include in the model the elements 

required to solve the transmission problems arising from the physical distance between the 

energy generation plant and the consumer, although usually, the flexibility in this classical 

energy supply chain is very limited, due to the need to match energy production and 

demand in the framework of an uncertain scenario. Furthermore, the generation of energy 

in centralized networks usually exploits non-renewable sources (i.e., fossil fuels), which 

has a negative environmental impact (i.e., climate change, pollution).  

On the other hand, most of renewable energy producers (i.e., photovoltaic panels, 

wind turbines) have relatively less capacity but are installed in a more distributed manner 

at different locations, potentially near the energy consumers, which reduces energy 

transmission losses in comparison with traditional power grids. These infrastructures may 

be locally interconnected in order to achieve the higher degree of flexibility required to 

match generation and demand. In this sense, the resulting supply chains, known as 

microgrids, usually include an extensive number of measuring devices as energy meters, 

to obtain prompt and reliable information on energy consumptions, since the access to real-

time information becomes essential to exploit the above mentioned flexibility, to improve 

the efficiency and reliability of the grid (reducing the incidence of adverse events, as 

blackouts), the proactive maintenance schedule, and finally the customer savings.  

A major drawback of renewable energy systems is the apparent mismatch of the 

volatility of energy production from renewable sources and energy demand. This fact 

means that although the of renewable energy sources use represents a big opportunity 

(e.g., reduce the dependence from non-renewable sources), these generators have the 

disadvantage that the natural source can be intermittent and unpredictable, and forecast 

techniques are not completely reliable. Thus, the simultaneous consideration of energy 

production and demand is essential to manage appropriately a microgrid, in order to match 

energy production and demand. 
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The growing interest in energy microgrids has led to the development of several 

mathematical management models and representation schemes related to their 

management, as well as to their design, including the energy production management, the 

energy demand side management and the simultaneous management of energy 

production and demand. 

Regarding the energy production management, different mathematical models 

were developed in order to minimize the operational cost of a given network. In this field, 

Zamarripa et al. (2011b) have developed a mathematical model to determine the 

production and storage levels to satisfy a deterministic energy demand, by minimizing the 

operational cost. More recently, a MILP model for the energy production planning related 

to an energy supply chain network based on a residential microgrid, which consists of a 

number of interconnected combined heat and power systems, under the objective of 

minimizing the total operational cost, has been presented by Kopanos et al. (2013). These 

mathematical formulations take into account energy generation constraints, such as 

production limits, ramping limits and minimum up and down times, which involve the 

presence of non-linear constraints. The aim of these approaches is to find how a given set 

of energy generators should satisfy a given demand in order to minimize the total 

operational costs. This is a very challenging optimization problem in the area of Energy 

Systems Engineering because of the huge number of possible combinations of the status 

of the generating units in the network (Bhardwaj et al., 2012). Several works were focused 

on the management of energy production of fixed and given demand. Carrión and Arroyo 

(2006) presented a discrete time MILP formulation which minimizes the energy cost of a 

given network. More recently, Zondervan et al. (2010) developed a Mixed Integer Non-

Linear Programming (MINLP) formulation for process industries, in which the objective was 

to minimize the operational cost according to the availability and price of energy, by 

determining the optimal schedule of process tasks. 

The energy demand side management of industrial process represents an 

emerging challenge. In this area, Della Vedova and Facchinetti (2012) developed a real-

time scheduling approach to model and control the electrical availability. The aim was to 

reduce the presence of peaks of power consumption, which are negative for energy 

providers, for the grid and for the users, due to the fact that the presence of peaks reduces 

the grid efficiency and also because energy prices are based in peaks. 

Furthermore, the management of both energy production and demand has been 

studied in a sequential way, by adapting the process schedule to the energy availability 

from an external power grid. Regarding industrial processes, Nolde and Morari (2010) have 

developed a continuous time MILP in order to minimize the total energy cost, by managing 

the energy consumption. The aim of the proposed formulation was to adapt the schedule 

of a steel plant, introducing a penalization for any variation from the contracted energy 
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consumption from the plant to the energy supplier. Other works related to the simultaneous 

management of production and demand were focused on adapting the scheduling of the 

industrial process to the price of the energy in each period of time. Mitra et al. (2012) 

developed a discrete time MILP in order to adjust production planning according to time-

dependent electricity pricing schemes for a continuous process. Also, the demand 

response has been studied by Hadera et al. (2014) for a steel plant, in order to reduce 

energy costs. Moreover, Mohsenian-Rad and León-García (2010) developed an offline 

residential energy consumption scheduling approach based in electricity pricing models. 

But, although energy production management has been studied in the last years, 

the overall scheduling of a microgrid taking into account the simultaneous management of 

energy production and energy demand (including the possibility to shift energy 

consumptions) under uncertainty has not been reported and still represents an open 

challenge to the research community. The development of a new mathematical model to 

manage a microgrid can be applied to obtain the optimal schedule of energy consumptions, 

producing several benefits such as the reduction of energy peaks and the reduction of non-

renewable energy requirements. Along this line, a discrete time MILP formulation for the 

integrated management of energy production and demand was developed by Silvente et 

al. (2012a). More recently, Silvente et al. (2015a) presented a comparison between discrete 

time and hybrid time MILP formulations related to a microgrid in order to maximize its profit. 

Also, a first MILP hybrid approach was presented by Silvente et al. (2013) with the aim of 

minimizing the operational cost of the overall system, and very recently Marietta et al. 

(2014) and Silvente et al. (2014 and 2015b) have presented a discrete time MILP 

formulation with flexible time windows for the allocation of energy loads into a rolling horizon 

framework. 

 

2.5. Time representation 

Different alternatives can be used for the time representation in a mathematical 

formulation, including discrete, continuous and hybrid time representations. Discrete and 

continuous time representations have been reviewed and discussed in several works 

(Floudas and Lin, 2004; Maravelias and Grossmann, 2006 and Stefansson et al., 2011). 

 

2.5.1. Discrete time representation 

The discrete time representation is based on dividing the scheduling horizon into 

a finite number of time intervals, forcing all activities to start/finish at the boundaries of these 

time intervals. Discrete time representation is widely applied in industrial processes 
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(Méndez et al., 2006). Although this a simplified version of the original problem, this time 

formulation is efficient in cases in which a reasonable number of time intervals is sufficient 

to represent appropriately the problem under study. The size of the mathematical model 

and the computational time required to solve it depend, among other factors, on the length 

of the time interval (i.e., the number of time intervals), and the appropriate length of the 

time interval depends on the characteristics of each problem, such as the duration of the 

events involved in the problem and the accuracy needed in the solution. Furthermore, the 

inappropriate length of the time interval may cause the solution to be suboptimal or even 

unfeasible, since the discrete formulation is an adaptation of the real times to a discrete 

modelling framework. This drawback can be afforded by introducing variable interval size 

within the discrete time formulation, in order to obtain a better approximation and to improve 

the accuracy of the mathematical model (Lee et al., 2001). 

 

2.5.2. Continuous time representation 

On the other hand, in continuous time formulations, variables representing the 

initial and final times of all tasks are really representing the exact times in which each event 

will take place (Harjunkoski et al., 2014), leading to decisions more accurate and sensitive 

to small task durations. However, the use of this formulation for large size problems 

becomes unaffordable in terms of computational time (Méndez et al., 2006). 

 

2.5.3. Hybrid time representation 

The limitation to solve large size problems by using the continuous time 

formulation and the possibility to obtain a suboptimal solution by using the discrete time 

formulation have led to the development of intermediate formulations between discrete and 

continuous time representations, classified as hybrid formulations, which combine the 

presence of discrete and continuous variables under the presence of time intervals. The 

hybrid time representation takes advantage of the flexibility of the continuous time 

representation and the management of events that can take place in fixed points, although 

this formulation requires more computational time than the discrete time formulation. 

Castro et al. (2012) developed a hybrid time grid sequencing model in order to determine 

the optimal schedule for a chemical process, incorporating the concept of general 

precedence instead of the use of sequence variables. Also, Neiro et al. (2014) proposed a 

hybrid time formulation to minimize the total cost for diesel and distribution blending and 

distribution scheduling, using time slots of variable length. This work proposes the 

combination of both discrete and continuous time representations within a new hybrid time 
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formulation, in order to manage appropriately different elements with different time grid in 

the decision making process. 

 

2.6. Management of scheduling and resources 

External sources are essential in industrial processes. This section is focused on 

the state of the art related to the integration of utilities within the production process, 

especially the use of water and energy. 

The interest related to minimize the use of water has led to the development of 

several mathematical models to manage the use of water in chemical processes. This work 

considers the presence of water in the chemical processes for cleaning purposes. This 

means that wastewater is generated during the cleaning of the equipment units involved in 

the process. Also, this works takes into account the direct water reuse, which considers 

recycle and reuse of water. Whereas the recycle is related to the use of and outlet 

wastewater from a processing unit in the same unit, the concept of reuse is associated to 

the use of an outlet wastewater from a processing unit in another processing unit (Seid and 

Majozi, 2014). 

Gouws et al. (2010) reviewed water minimization techniques for batch processes 

based on graphical and mathematical techniques. The main disadvantage of using 

graphical techniques is that their application is limited to single contaminant cases, whereas 

mathematical techniques can be applied to multiple contaminant problems (Foo et al., 

2005). However, first mathematical optimization-based approaches were focused on 

optimizing the schedule of water reuse of a single contaminant, considering fixed and 

variable schedules (Gouws et al., 2008). This kind of formulations usually involves the 

presence of non-linearities, which introduces more complexity in the decision making 

processes. Majozi and Gouws (2009) proposed a continuous time MINLP that was solved 

by linearizing the original problem to a MILP, in order to minimize the wastewater 

generation for single and multiple contaminants, determining simultaneously process 

schedule and water minimization. Posteriorly, Adekola and Gouws (2011) extended the 

work of Majozi and Gouws (2009) by introducing wastewater regenerator for further 

improvement of the use of water.  

Methodologies for heat integration in batch processes can be classified into 

sequential and simultaneous approaches. Sequential approaches are based on 

determining the process schedule and posteriorly the heat integration synthesis. The main 

drawback of this procedure is that the solution may become suboptimal (Adonyi et al., 

2003). Wang et al. (1995) developed a sequential graphical-based pinch analysis for batch 
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processes. Foo et al. (2008) developed a sequential approach for the heat exchange 

network synthesis for batch processes, in order to minimize the heat exchange units 

involved in the process. Halim and Srinivasan (2009) proposed a sequential MILP 

approach using direct heat integration in batch process scheduling. 

More recent works are focused on the simultaneous optimization of heat 

integration and process schedule. The main advantages of this methodology is that 

scheduling and heat integration are taken into account at the same time, which leads to a 

global optima. However, the complexity of this kind of problem can be unaffordable. In this 

field, Papageorgiou et al. (1994) developed a simultaneous approach by extended the 

previous work developed by Kondili et al. (1993), introducing the heat integration within the 

scheduling problem. Also, a discrete time MILP was formulated by Pinto et al. (2003), in 

order to design a multipurpose plant with direct heat integration. Posteriorly, Majozi (2006) 

presented a continuous time MILP approach for the simultaneous management of process 

schedule and heat integration, which was extended by Majozi (2009), in order to 

incorporate the presence of heat storage, which introduce more flexibility in the model. A 

recent review related to energy recovery for batch processes can be found in Fernández 

et al. (2012). 

The simultaneous heat integration and water reuse has been usually studied 

separately, due to its complexity. Halim and Srinivasan (2011) presented a MINLP 

approach that solves sequentially the process schedule, water reuse and heat integration. 

Initially, the optimal production schedule is obtained, and posteriorly, the minimum water 

and energy necessities are determined. The main drawback of this formulation is that the 

solution may become suboptimal, since the problem is solved sequentially and not 

simultaneously. 

Posteriorly, Adekola et al. (2013) developed a simultaneous MINLP approach for 

the management of scheduling, water reuse and heat integration of a multipurpose batch 

plant. The objective of this approach was to improve the profitability of the production plant 

by minimizing the wastewater generation and utility usage. The optimization problem was 

solved by the linearizing the original MINLP problem into a MILP formulation. Furthermore, 

Seid and Majozi (2012 and 2014) presented a MINLP approach for the simultaneous 

process schedule and use of water and energy, using a non-global optimizer, such as 

DICOPT. 
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2.7. Open issues 

Based on the literature review, it is foreseen the need to devote further research 

efforts in order to solve the main troubles found on tackling the SCM problem, which 

constitutes future research challenges and are enumerated in the next list: 

 Novel optimization strategies should emerge in order to deal with real sized 

problems. Therefore, methods which may improve the computational performance of 

the solution process and facilitate the integration function should be studied (Chapter 

4). 

 The integration of different hierarchical levels represents a big opportunity to solve 

design and operational planning problems, or strategic and operational planning 

problems simultaneously in one model (Chapter 7). 

 Also, the integration of supply and demand represents a challenge, in order to 

improve the decision making process, due to the coordination of production and 

consumption (Chapter 4). Moreover, the integration of all resources within the 

production process is not fully studied (Chapter 6). 

 Another major issue is the handling of internal and external uncertainty associated to 

industrial processes. A major challenge here is how to best formulate a stochastic 

optimization model that is meaningful and whose results are easy to interpret and 

implement. 

 The consideration of uncertainty is one of the major challenges in this research 

area. Several works have been exposed integrating demand uncertainty while 

the analysis of different sources of uncertainty (i.e., resource variability) still 

remains open. The majority of previous works study product demand and prices. 

However, the uncertainty associated to suppliers’ performance, production 

processes and financial markets has not been studied enough. Regarding 

inclusion of third actors involving the SC decision making should be subjected 

to important improvements focusing on the systematic consideration. It is a fact 

that the SC of interest should face a global market (Chapter 7). 

 One of the main considerations to be studied is the development of the dynamics 

of the SC for enhanced production. In this context, it is important to research and 

implement dynamic models, incorporating low-level decisions, and the 

implications of this incorporation for the dynamics of the entire SC (Chapter 8). 

 Integration of all data and information associated to an industrial process within a 

coordinated information technology platform to improve and automate the decision 

making process: 

 One important area to be researched is the real time monitoring and diagnosis 

in integrated SCM to timely provide and update the SC state information needed 

by the different decision making hierarchical levels, through a data 
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communication platform. This fact will contribute to improve the efficiency of SC 

planning (Chapter 8). 

 In order to achieve the integration among the different decision levels through a 

SC, it is essential the coordination of a common modelling system using, in this 

particular case, an ontological framework (Chapter 8). 
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Chapter 3. Methods and tools 

3.1. Optimization 

The optimization of a chemical process consists in selecting, among all possible 

alternatives, the most favourable alternative, fulfilling several objectives. Optimization can 

be applied to numerous areas, including production facilities, processes, transportation, 

management, and human resources (Edgar et al., 2001). For example, optimization 

techniques could be used in order to improve profit or production and also to decrease 

operational costs, energy consumption or generation of pollutants. 

In order to perform an optimization, it is first required to identify Key Performance 

Indicators (KPIs) to build an objective function, which is a measure that indicates the fitness 

of a particular decision. Different measures of the quality of the solution can be used for 

optimization problems. Thus, each feasible solution of the problem is any choice of decision 

variables that satisfies the set of constraints. Moreover, the optimal solution is a feasible 

solution that optimizes the objective function (Biegler et al., 1997).  

The selection of the optimization goal directly affects the quality of the solution as 

well as the model computational performance. Typical objective functions include the 

optimization of profit, costs, revenues, makespan, weighted lateness, production costs, 

inventory costs, social impact or environmental impact. Notice that some objective 

functions can be very hard to implement for some event representations, requiring 

additional variables and complex constraints. Moreover, the optimization procedure can 

take into account one objective, or the consideration of multiple criteria in the decision 

making process. 

The basic steps to execute an optimization process are: 

 Analyse all available information. 

 Identify an objective function. 

 Identify the decision variables. 

 Formulate a mathematical model. 
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3.2. Mathematical models 

A mathematical model is a representation or approximation of the reality that 

allows predicting the behaviour of a system based on the variables of the system. This 

mathematical model usually includes: 

 Balances, including not only mass and energy balances, but also 

momentum, integral/differential and dynamic/stationary state, and other 

relevant information. 

 Constitutive equations, like chemical properties, transport speed, 

thermodynamic relations and kinetic expressions. 

 Other equations, such as design specifications, incomes and costs, 

functional relationships and boundary conditions. 

The formulation of a mathematical model generally involves discrete and 

continuous variables. The general formulation of an optimization problem has the following 

form (Grossmann et al., 2000): 

𝑚𝑖𝑛 𝑜𝑟 𝑚𝑎𝑥 𝑓(𝑥) Objective function 

(3.1) 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

ℎ(𝑥)  =  0 Equality constraints (e.g. process equations) 

𝑔(𝑥)  ≤  0 Inequality constraints (e.g. specifications) 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 ℝ𝑛 Decision variables 

According to this formulation, 𝑓(𝑥), ℎ(𝑥) and 𝑔(𝑥) are scalar functions of vector 𝑥. 

The function 𝑓(𝑥) corresponds to the objective function (to be minimized or maximized), 

and represents the quantitative measue of the performance of the system under study. The 

components of vector 𝑥 are the decision variables, which can be both continuous and 

discrete variables. The values of these variables are determined in the optimization 

procedure. Additionally, the mathematical formulation can include different constraints, 

which represents all restrictions that the decision variables must satisfy. Particularly, ℎ(𝑥) 

are constraints of equalities, whereas 𝑔(𝑥) represents the inequalities of the model. 

According to the characteristics of the model, the mathematical problem is classified into:  

 Linear: if vector 𝑥 is continuous and the functions 𝑓(𝑥), ℎ(𝑥) and 𝑔(𝑥) are 

linear. 

 Non-linear: if vector 𝑥 is continuous and at least one of the functions 𝑓(𝑥), 

ℎ(𝑥) or 𝑔(𝑥) is non-linear. 

 Mixed integer linear: if vector 𝑥 requires at least some of the 𝑥𝑖 elements to 

be integer (or binary) and the functions 𝑓(𝑥), ℎ(𝑥) and 𝑔(𝑥) are linear. 

 Mixed integer non-linear: if vector 𝑥 requires at least some of the 𝑥𝑖 

elements to be integer (or binary) and at least one of the functions 𝑓(𝑥), 

ℎ(𝑥) or 𝑔(𝑥) is non-linear. 
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Furthermore, mathematical models can be classified in dynamic or static models, 

depending on whether the variable values change over time or not. 

 

3.2.1. Optimality criteria 

A point 𝑥 which satisfies all the constraints is called a feasible point and therefore 

is a feasible solution to the problem. The set of all feasible points is called the feasible 

region. A point 𝑥∗ is called a strong local maximum of the optimization problem if 𝑓(𝑥) is 

defined in a -neighbourhood 𝑁(𝑥∗, 𝛿) and satisfies 𝑓(𝑥∗) > 𝑓(𝑢) for ∀𝑢 ∈ 𝑁(𝑥∗, 𝛿) where 

𝛿 > 0 and 𝑢 ≠ 𝑥∗. If 𝑥∗ is not a strong local maximum, the inclusion of equality in the 

condition 𝑓(𝑥∗) ≥ 𝑓(𝑢) for ∀𝑢 ∈ 𝑁(𝑥∗, 𝛿) defines the point 𝑥∗ as a weak local maximum (see 

Figure 3.1). The local minima can be defined in the similar manner when 𝑓(𝑥∗) > 𝑓(𝑢) and 

𝑓(𝑥∗) ≥ 𝑓(𝑢) are replaced by 𝑓(𝑥∗) < 𝑓(𝑢) and 𝑓(𝑥∗) ≤ 𝑓(𝑢), respectively. Figure 3.1 

illustrates several local maxima and minima. Point A is a strong local maximum, and point 

B is a weak local maximum since there exist many different values of 𝑥 which will lead to 

the same value of 𝑓(𝑥∗). Finally, point C is a global maximum. 
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Figure 3.1. Illustrative example for strong and weak maxima and minima. 
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3.2.2. Convexity 

Let 𝜗 be a set in a real or complex vector space. Set 𝜗 is convex if, for every pair 

of points x and y belonging within the set, every point on the straight line segment that 

connects them is also within the set 𝜗, as illustrated in Figure 3.2. This definition is can be 

mathematically expressed as: 

𝜗 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥 ⟺  ∀(𝑥, 𝑦) ∈ 𝜗 ∧ 𝜃 ∈ {0,1}, [(1 − 𝜃) ∙ 𝑥 + 𝜃 ∙ 𝑦] ∈ 𝜗 (3.2) 

A function 𝑓(𝑥) is convex if its epigraph (i.e., the set of points lying on or above its 

graph) is a convex set, as shown in Figure 3.3. Convexity plays a significant role in 

mathematical programming due to the following Theorem 3.1: 

Theorem 3.1. If a mathematical program is convex then any local (i.e., relative) 

minimum represents a global minimum. 

x

x

y y

(a) Convex set (b) Non-convex set

 
Figure 3.2. Graphical representation of convexity. 
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Figure 3.3. Graphical representation of a convex function. 
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The research subfield that deals with non-convex programs is referred to as global 

optimization, which aims finding the globally best solution of models in the potential 

presence of multiple local optima. 

 

3.2.3. Duality 

Duality is one of the most fundamental concepts in mathematical programming 

and establishes a connection between two symmetric programs, namely, the primal and 

dual problem. Duality is a powerful and widely employed tool in applied mathematics 

because: 

 The dual program is always convex even if the primal is not. 

 The number of variables in the dual is equal to the number of constraints in 

the primal which is often less than the number of variables in the primal 

program. 

 The maximum value achieved by the dual problem is often equal to the 

minimum of the primal. 

Although dual problem usually refers to the Lagrangian dual problem, other dual 

problems are used, such as the Wolfe dual problem and the Fenchel dual problem. Notice 

that this section is focused in the Lagrangian dual problem. The dual function is introduced 

as: 

ξ(𝜆, 𝜇) =  𝐼𝑛𝑓𝑖𝑚𝑢𝑚𝑥{𝑓(𝑥) + 𝜆𝑇ℎ(𝑥) + 𝜇𝑇𝑔(𝑥)} (3.3) 

Then, the dual problem of the primal problem is defined as follows: 

min
𝜆,𝜇

ξ(𝜆, 𝜇) 

𝜇 ≥ 0 

(3.4) 

Hence, using the Lagrangian function, the dual problem can also be rewritten as: 

max
𝜆,𝜇

{𝐼𝑛𝑓𝑖𝑚𝑢𝑚𝑥 ℒ(𝑥, 𝜆, 𝜇)} 

𝜇 ≥ 0 

(3.5) 

where vectors 𝜆 and 𝜇 are called Lagrangian multipliers, and the Lagrangian 

function is defined by: 

ℒ(𝑥, 𝜆, 𝜇) = 𝑓(𝑥) + 𝜆𝑇 ∙ ℎ(𝑥) + 𝜇𝑇 ∙ 𝑔(𝑥) (3.6) 
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Theorem 3.2 establishes an important relationship between the dual and primal 

problems. 

Theorem 3.2 (weak duality). For any feasible solution 𝑥 of the primal problem 

(3.1) and for any feasible solution (𝜆, 𝜇) of the dual problem, the following holds 

𝑓(𝑥) ≥ ξ(𝜆, 𝜇) (3.7) 

In addition, Theorem 3.3 is of relevant importance in mathematical programming. 

It shows that for convex programs the primal problem solution can be obtained by solving 

the dual problem. 

Theorem 3.3. If the primal problem is convex, then 𝑓(𝑥∗) = ξ(𝜆∗, 𝜇𝑥). Otherwise, 

one or both of the two sets of feasible solutions is empty. 

Note that 𝑥∗ represents the optimal solution of the primal problem, and (𝜆∗, 𝜇𝑥) are 

the optimal solutions of the dual problem. 

𝑓(𝑥) ≥ ξ(𝜆, 𝜇) (3.8) 

In non-convex programs, there is a difference between the optimal objective 

function values of the dual and primal problems (ξ(𝜆∗, 𝜇𝑥) − 𝑓(𝑥∗)) which is called duality 

gap. In convex programs duality gap is zero. According to Conejo et al. (2002), for 

nonconvex programs of engineering applications, the duality gap is usually relatively small. 

With regard to the Lagrangean function, the Karush, Kuhn and Tucker conditions 

(KKT conditions, also known as the Kuhn-Tucker conditions) have been one of the most 

important theoretical results in optimization, since they establish the first order necessary 

conditions for a solution in a non-linear constrained programming to be optimal. The KKT 

optimality conditions for a constrained minimum (where vectors 𝜆 and 𝜇 are the Lagrangian 

multipliers) are: 

 Lagrangean conditions: 

∇𝐿(𝑥∗, 𝜆, 𝜇) = ∇𝑓(𝑥∗) + ∇ℎ(𝑥∗)𝜆 + ∇𝑔(𝑥∗)𝜇 
(3.9) 

 Complementary conditions: 

𝜇𝑇𝑔(𝑥∗) = 0 

𝜇 ≥ 0 
(3.10) 

 Feasibility conditions: 

𝑔(𝑥∗) ≤ 0 

ℎ(𝑥∗) = 0 
(3.11) 
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Theorem 3.4. If 𝑓(𝑥) is convex and feasible region is convex, then if there exists 

a local minimum at 𝑥∗, 

 𝑥∗ is a global minimum. 

 The KKT conditions are both necessary and sufficient. 

 

3.3. Optimization techniques 

The solution technique to solve an optimization problem depends on the 

characteristics of each problem. Grossmann and Biegler (2004) summarize the application 

areas in PSE of different optimization methods. Thus, there have been several 

contributions to review optimization methods in general and in the area of PSE (Kallrath, 

2002a; Biegler and Grossmann, 2004; Kallrath, 2005; Méndez et al., 2006; Li and 

Ierapetritou, 2007; Barbosa-Povoa, 2007). 

The application of mathematical programming approaches implies the 

development of a mathematical framework and the use of an optimization algorithm. 

Although this thesis has been focused on solution approaches based on mathematical 

programming techniques (which include both continuous and mixed integer optimization), 

it is important to note that there are other solution methods for dealing with optimization 

problems, such as logic-based optimization (e.g., constraint programming), heuristics, 

meta-heuristics, artificial intelligence and hybrid methods, among other techniques. 

Moreover, if the optimization procedure involves the presence of more than one objective, 

multi-criteria optimization can be applied. 

 

3.3.1. Continuous optimization 

Continuous optimization is used in order to solve linear and nonlinear problems. 

The most common methods to solve linear programming (LP) are simplex and interior 

points. This kind of optimization is used in order to solve linear problems involving only 

continuous variables and linear constrains and objective function. 

In addition, the introduction of any nonlinearity in any equality and inequality 

constraint or in the objective function transform the LP into a non-linear programming 

(NLP). The most common algorithms designed for NLP optimization include Newton-

Raphon methods, conjugate gradient methods or quasi-Newton methods (Biegler, 2010). 

For the specific case of quadratic optimization problems, the most useful algorithm is the 

successive quadratic programming (Alkaya, 2001). 
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3.3.1.1. Linear programming 

LP is a technique used to optimize a linear objective function subject to the 

presence of linear equality and/or linear inequality constraints. Given a polytope and a real-

valued affine function defined on this polytope, a LP method will find a point on the polytope 

where this function has the optimal value if such point exists, by searching through the 

polytope vertices. The feasible region of the problem corresponds to the intersection of the 

hyperplanes and halfspaces of the constraints (Figure 3.4). This is a basic characteristic of 

a convex polytope. 
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Figure 3.4. Linear programming scheme. 

LP problems can be mathematically expressed as follows: 

𝑚𝑎𝑥 𝑓(𝑥) = 𝑐𝑇𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝐴𝑥 ≤ 𝑏 

𝑥 ≥ 0 

(3.12) 

In this mathematical formulation, 𝑥 represents the vector of decision variables to 

be taken, whereas 𝑐 and 𝑏 are vectors of known coefficients and 𝐴 is a matrix of known 

coefficients (i.e., input parameters). The expression to be optimized 𝑓(𝑥), is called the 

objective function. The expression 𝐴𝑥 ≤ 𝑏 includes the constraints which identify a convex 

polytope in which the objective function must be optimized. 

LP and the algorithms proposed for solving this kind of problems, such as the 

simplex method and interior point methods, are based on Theorem 3.5: 

Theorem 3.5. If an LP has an optimal solution; there is a vertex of the feasible 

polytope that is optimal. 



Methods and tools 

 

45 
 

3.3.1.1.1. The simplex method 

The simplex method is the most used algorithm for solving LP problems. This 

methodology was first developed by Dantzig (1963), and posteriorly extended by Dantzig 

and Orchard-Hays. The simplex method algorithm is based in solving linear programs by 

moving along the boundaries from one vertex of the feasible region to the next.  

The algorithm starts with an initial vertex basic feasible solution and tests its 

optimality. The algorithm terminates, if some optimality condition is verified, otherwise, the 

algorithm identifies an adjacent vertex, with a better objective value, in which the optimality 

of this new solution is tested again, and the entire scheme is repeated, until an optimal 

vertex is finally found (Figure 3.5). It is conditional that the simplex method starts from some 

initial extreme point, and follows a path along the edges of the feasible region towards an 

optimal extreme point, such that all the intermediate extreme points visited are not 

worsening the objective function. 

starting vertex

optimal solution

 

Figure 3.5. Graphical interpretation of the simplex method. 

3.3.1.1.2. Interior-points methods 

An interior-point algorithm is based on improving a feasible interior solution point 

of the linear program by steps through the interior feasible region (Wright, 1997). A 

theoretical breakthrough for interior point methods came in 1979, when L.G. Khachian 

discovered an ellipsoid algorithm whose running time in its worst case was significantly 

lower than that of the simplex algorithm. Other theoretical results quickly followed, notably 

that of N. Karmarkar who discovered an interior-point algorithm whose running time 

performance in its worst case was significantly lower than that of Kachiyan’s (Dantzig and 

Thapa, 1997 and 2003). While the simplex method looks at the vertex of the feasible region, 

the interior point methods assume an initial feasible interior point and moves through the 

feasible region moving in one direction. The stopping rule typically followed is to finish with 
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an approximate optimal solution when the difference between two iterations is sufficiently 

small in the original space (Figure 3.6). 

optimal solution

initial interior point
 

Figure 3.6. Graphical interpretation of the initial interior point. 

 

3.3.1.2. Non-linear programming 

NLP corresponds to mathematical models in which all variables are defined as 

continuous and contains any nonlinearity in the objective function and/or the constraints. 

Unconstrained and constrained optimization algorithms have been developed to solve this 

kind of programs. 

 

3.3.1.2.1. Unconstrained optimization 

Unconstrained optimization can be mathematically represented as follows: 

min 𝑓(𝑥) 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 ℝ𝑛 
(3.13) 

The objective function 𝑓(𝑥) is a non-linear function. Algorithms to solve 

unconstrained non-linear problems can be classified into direct and indirect methods. On 

the one hand, direct methods do not require the use of derivatives and rely solely on 

function evaluation. The main advantage of these methods is the simplicity to understand 

and to execute, whereas the disadvantage is that they are inefficient and not robust 

enough. This methodology is useful for simple two-variable problems. Some direct methods 

are random search, grid search, univariate search, conjugate search direction and Powell’s 

method. 
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On the other hand, indirect methods use derivatives in determining the search 

solution to move towards and improves solution for optimization. These methods can be 

classified into: 

 First-order indirect methods, which use first derivatives (i.e., steepest 

descent). 

 Second-order indirect methods, which also use second derivatives (i.e., 

Newton method). 

The steepest descent (or gradient) methods is based in the idea in which the 

gradient of a function 𝑓(𝑥) is a vector at a point 𝑥 that gives the local direction of the greatest 

increase in 𝑓(𝑥) and is orthogonal to the contour of 𝑓(𝑥) at 𝑥. First of all, it is necessary to 

establish an initial feasible point 𝑥0. Thereafter at point 𝑥𝑘. In steepest descent, at k-th 

iteration, the transition from point 𝑥𝑘 to another point 𝑥𝑘+1 can be calculated according to 

this expression: 

𝑥𝑘+1 = 𝑥𝑘 − 𝜆𝑘∇𝑓(𝑥𝑘) (3.14) 

Where 𝜆𝑘 is a scalar that determines the step length in the direction of steepest 

descent ∇𝑓(𝑥𝑘). Notice that the negative of the gradient gives the direction for minization, 

not the magnitude, which depends on the choice of 𝜆𝑘. This procedure must be interatively 

repeated until the difference between 𝑓(𝑥𝑘+1) and 𝑓(𝑥𝑘) will be smaller than some 

tolerance. Termination can occur at any type of stationary point; (i.e., a point where the 

elements of the gradient are zero) either a local minimum or a saddle point. If a saddle 

point is obtained, to move away employ a non gradient method, then the minimization may 

continue as before. Also, this methodology is very scale dependent, and the convergence 

of this method can be very slow. 

Newton’s method is based on the idea in which the necessary conditions for 

stationary point 𝑥∗ is ∇𝑓(𝑥∗) = 0. This methodology involves the use of the Jacobian matrix 

of the system. Here, the Jacobian of the above system is the Hessian matrix. Note also, 

that the Hessian is positive definite at the solution. In this case: 

𝑥𝑘+1 = 𝑥𝑘 − ∆𝑥𝑘 = 𝑥𝑘 − [H(𝑥𝑘)]−1∇𝑓(𝑥𝑘) (3.15) 

Then, finish the iteration procedure according to a desired tolerance. This 

methodology involves quadratic convergence. If an approximated matrix 𝐻̅ is used instead 

of Hessian Matrix 𝐻, the method is called Quasi-Newton method, and involves superlinear 

convergence.  

Finally, notice that all methods can be reviewed as evolving from Newton’s method 

𝐻(𝑥𝑘)∆𝑥𝑘 = −∇𝑓(𝑥𝑘): 
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 If 𝐻 is used, the model corresponds to the Newton method. 

 If 𝐻−1 = 𝐻, the model is the steepest descent. 

 If 𝐻 is modified, the model is based on the Quasi-Newton method. 

 

3.3.1.2.2. Constrained optimization 

Methods to solve constrained programs are methods seeks an approximate 

solution by replacing the original constrained problem by a sequence of unconstrained sub-

problems. Constrained non-linear problems can be represented as follows: 

min 𝑓(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

ℎ(𝑥) = 0 

𝑔(𝑥) ≤ 0 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 ℝ𝑛 

(3.16) 

Hence, the underlying idea is to construct a closely related, unconstrained 

problem and apply the algorithms proposed for the unconstrained optimization problems. 

The main methods to solve constrained non-linear problems are Lagrange multipliers 

method and Kunh-Tucker optimality conditions. 

Lagrange multipliers methodology is used for equality constrained problems, and 

based on the Theorem 3.6. 

Theorem 3.6. Given a non-linear objective function 𝑓(𝑥) subject to a set of 

equality constraint ℎ(𝑥), if 𝑓(𝑥) has a constrained extremum at 𝑥∗, such that ℎ𝑖(𝑥∗) = 0, 

𝑖 = 1, … , 𝑚, then the gradients of ∇𝑓(𝑥∗) and ∇ℎ𝑖(𝑥∗) are linearly dependent: 

∇𝑓(𝑥∗) + ∑ 𝜆𝑖ℎ𝑖(𝑥∗)

𝑚

𝑖=1

= 0 

ℎ𝑖(𝑥) = 0 

𝑖 = 1, … , 𝑚 

(3.17) 

Hence, let define the Lagrangian function 𝐿(𝑥, 𝜆) as follows: 

𝐿(𝑥, 𝜆) = 𝑓(𝑥) + ∑ 𝜆𝑖ℎ𝑖(𝑥∗)

𝑚

𝑖=1

 (3.18) 

Consider the stationary conditions of this function, ∇𝐿(𝑥, 𝜆) = 0, or: 
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𝜕𝐿

𝜕𝑥
= 0 ⟹ ∇𝑓(𝑥∗) + ∑ 𝜆𝑖ℎ𝑖(𝑥∗)

𝑚

𝑖=1

= 0 

(3.19) 
𝜕𝐿

𝜕𝜆𝑖
= 0 ⟹ ℎ𝑖(𝑥) = 0 

These conditions are exactly the necessary optimality conditions for the non-linear 

equality constrained problem. Therefore, the Langrangian function 𝐿(𝑥, 𝜆) has a stationary 

point at the minimum of the constrained problem. Notice that 𝜆𝑖 is called the Lagrange 

multiplier for constant 𝑖. 

KKT optimality conditions are used when the mathematical formulation includes 

inequality constraints. In this case, active inequality constraints are treated just like equality 

constraints with the additional restriction that their Lagrange multipliers must be non-

negative. The Lagrange conditions are: 

𝜕𝑓(𝑥)

𝜕𝑥𝑗
+ ∑ 𝜆𝑖

𝜕ℎ𝑖(𝑥)

𝜕𝑥𝑗

𝑚

𝑖=1

+ ∑ 𝜇𝑖

𝜕𝑔𝑖(𝑥)

𝜕𝑥𝑗

𝑝

𝑖=1

= 0 

𝑗 = 1, … , 𝑛 

𝜇𝑖 ≥ 0 

(3.20) 

Thus, the KKT optimality conditions for a constrained minimum are (see Chapter 

3.2.3): 

∇𝐿(𝑥∗, 𝜆, 𝜇) = ∇𝑓(𝑥∗) + ∇𝑔(𝑥∗)𝜆 + ∇𝑔(𝑥∗)𝜇 

𝜇𝑇𝑔(𝑥∗) = 0 

𝜇 ≥ 0 

𝑔(𝑥∗) ≤ 0 

ℎ(𝑥∗) = 0 

(3.21) 

 

3.3.2. Mixed integer optimization 

Discrete optimization or mixed-integer optimization offers a powerful framework 

for mathematically modelling many optimization problems that include discrete/integer and 

continuous variables. This kind of optimization is commonly used in process system 

engineering in order to model discrete decision, such as selection of units in a flowsheet or 

sequences in scheduling and batch size (Grossmann, 2002). The majority of discrete 

variables are restricted to the two values 0 and 1 (binary variables), which represents 

yes/no decisions.  
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In this context, Mixed Integer Linear Programming (MILP) problems are LP 

problems which also include integer and/or binary variables. MILP is one of the most 

extensively explored methods for process scheduling problems due to its rigorousness, 

flexibility and extensive modelling capability. In a scheduling framework, MILP methods are 

applied in order to solve from the simplest stage single-unit multiproduct process to the 

most general multipurpose processes (Floudas and Lin, 2005). 

On the other hand, Mixed Integer Non-Linear Programming (MINLP) problems are 

MILP problems that incorporate nonlinearities in the objective function or in any of the 

constraints involved. MINLP are widely applied in synthesis and design problems, and in 

planning and scheduling problems.  

A general Mixed Integer Programming (MIP) problem can be expressed as 

follows: 

min 𝑓(𝑥, 𝑦) = 𝑐𝑇𝑥 + ℎ𝑦 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝐴𝑥 + 𝐺𝑦 ≤ 𝑏 

𝑥 ≥ 0 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 ℝ𝑛 

𝑦 ∈ {0,1} 

(3.22) 

According to this formulation, 𝑓(𝑥, 𝑦) represents the objective function, 𝑥 

corresponds to the vector of positive decision variables, 𝑦 represents the vector of binary 

variables, 𝑐 and 𝑏 are vectors of known coefficients, and 𝐴 and 𝐺 are matrices of known 

coefficients. 

Several algorithms have been developed to solve MIP problems. The main 

methodologies include the branch-and-bound, the cutting-plane, and the branch-and-cut 

methods. A brief explanation of those methods are next described. Also, disjunctive 

programs can be applied to solve this kind of problems (Raman and Grossmann, 1994; 

Lee and Grossmann, 2000). Finally, decomposition techniques can be applied for solving 

MINLP problems, including the outer-approximation algorithm (Duran and Grossmann, 

1986) and the Generalized Benders Decomposition (Biegler and Grossmann, 2004). 

 

3.3.2.1. Branch-and-bound methods 

The branch-and-bound method is the basic workhorse technique for solving 

integer and discrete programming problems. The main idea of branch-and-bound was 

introduced by Land and Doig (1960), and actually is based on the observation that the 
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enumeration of integer solutions has a tree structure. More specifically, the solution of a 

problem with a branch-and-bound algorithm is described as a search through a tree (Figure 

3.7), wherein the root node corresponds to the relaxed original problem, and each other 

node corresponds to a subproblem of the original problem. In MIP problems, the branch-

and-bound algorithm only branches on the integer variables, therefore the discussion can 

be restricted to a purely integer problem without loss of generality.  

This algorithm consists in generating a sequence of continuous sub-problems, 

solving them, and analysing and comparing the different solutions until the optimal solution 

is reached. The algorithm searches the complete space of solutions. The use of bounds for 

the function to be optimized combined with the value of the current best solution enables 

the algorithm to implicitly search parts of the solution space. 

The main idea in branch-and-bound method is to avoid growing the whole tree as 

much as possible, because the entire tree is just too big in any real problem. Instead 

branch-and-bound grows the tree in stages, and grows only the most promising nodes (i.e., 

partial or complete solutions) at any stage. It determines which node is the most promising 

by estimating a bound on the best value of the objective function that can be obtained by 

growing that node to later stages. The name of the method comes from the branching that 

happens when a bud node (i.e., partial solution, either feasible or infeasible) is selected for 

further growth and the next generation of children of that node is created. The bounding 

comes in when the bound on the best value attained by growing a node is estimated. Hope-

fully, in the end branch-and-bound will have grown only a very small fraction of the full 

enumeration tree. 

Level 3

Level 2

Level 1

Level 0root node

yi=0 yi=1

yj=0 yj=1 yj=0 yj=1

yk=0

yj=1

yk=1 yk=0 yk=1 yk=0 yk=1 yk=0 yk=1

 

Figure 3.7. An illustrative example of branch-and-bound enumeration tree. 

The reduction of the amount of branches can be achieve by following these steps: 

 A branch can be eliminated if it can be shown to contain no integer feasible 

solutions with a better value than the incumbent solution. 
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 A lower bound for the integer solutions, on any branch, is always the relaxed 

LP solution for the minimization problem, which ignores the integer 

requirements. 

The end nodes establishes the upper bound for the integer solutions. The optimal 

(minimum) solution is given by the minimum of the upper bounds. The algorithm terminates 

when the incumbent solution’s objective function value is better than or equal to the 

bounding function value associated with all of the bud nodes. This means that none of the 

bud nodes could possibly develop into a better solution than the complete feasible solution 

already have in hand, so there is no point in expanding the tree any further. All bud nodes 

in this condition will already have been eliminated, so this terminating rule amounts to 

saying that branch-and-bound stops when there are no more bud nodes left to consider for 

further growth. This also proves that the incumbent solution is optimum. 

 

3.3.2.2. Cutting-plane methods 

There is an alternative to branch-and-bound methods called cutting planes which 

can be used to solve mixed integer programs. This methodology was introduced by R.E. 

Gomory at the end of 1950s. The main idea of cutting-plane methods is to alter the convex 

set of solutions to the related continuous LP problem (i.e., the LP problem that results by 

dropping the integer constraints) so that the optimal extreme point to the changed 

continuous problem is integer-valued. This is accomplished by systematically introducing 

additional constraints (called cutting planes) that cut off parts of the convex set that do not 

contain any feasible integer points and solving the resultant problems by the simplex 

algorithm. Note that an adding cut or constraint to a current fractional solution must assure 

that every feasible integer solution of the actual program is feasible for the cut, and the 

current fractional solution is not feasible for the cut. Some techniques to generate these 

cuts are the Gomory cut methods, the Kelleys method, and the Kelley, Cheney, Goldstein 

method.  

Although initially this methodology was considered as instable and ineffective, it 

can be effective in combination with branch-and-cut methods and ways to overcome 

numerical instabilities. Nowadays, all commercial MIP solvers use Gomory cuts in one way 

or another. 

 

3.3.2.3. Branch-and-cut methods 

Branch-and-cut method is a hybrid methods that combines branch-and-bound and 

cutting-plane methods. The method solves the LP without the integer constraint using the 
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regular simplex algorithm. When an optimal solution is obtained, and this solution has a 

non-integer value for a variable that is supposed to be integer, a cutting-plane algorithm is 

used to find further linear constraints which are satisfied by all feasible integer points but 

violated by the current fractional solution. If such an inequality is found, it is added to the 

LP, such that resolving it will yield a different solution which is hopefully "less fractional". 

This process is repeated until either an integer solution is found (which is then known to be 

optimal) or until no more cutting planes are found. 

At this point, the branch-and-bound part of the algorithm begins. The problem is 

split into two versions, one with the additional constraint that the variable is greater than or 

equal to the next integer greater than the intermediate result, and another where this 

variable is less than or equal to the next lesser integer. In this way, new variables are 

introduced in the basis according to the number of basic variables that are non-integers in 

the intermediate solution but which are integers according to the original constraints. The 

new LPs are then solved using the simplex method and the process repeats until a solution 

satisfying all the integer constraints is found. During the branch-and-bound process, further 

cutting planes can be separated, which may be either global cuts (i.e., valid for all feasible 

integer solutions) or local cuts (i.e., satisfied by all solutions fulfilling the side constraints 

from the currently considered branch-and-bound subtree). 

 

3.3.3. Logic-based optimization techniques 

The difficulties to model and to scale mixed integer problems has led to the 

development of logic-based techniques. The motivations for these logic-based modelling 

has been to facilitate the modelling, reduce the combinatorial search effort, and improve 

the handling the non-linearities. A general review of logic-based optimization can be found 

in Hooker (2000). The most typical logic-based optimization techniques are:  

 Generalized Disjunctive Programming (Raman and Grossmann, 1994). 

 Mixed Logic Linear Programming (Hooker and Osorio, 1999). 

 Constraint Programming. 

 

3.3.3.1. Constraint programming 

Constraint programming (CP) is a logic-based approach to discrete and 

continuous problem solving. It has proved to be successful in several applications, 

particularly in scheduling problems. The solution of CP models is based on performing 

constraint propagation at each node by reducing the domains of discrete or continuous 

variables. Whenever a solution is found, or when a domain of a variable is reduced, new 
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constraints are added. This search finishes when no further nodes must be tested (Kotecha 

et al., 2010). 

Constraint programming is a programming paradigm that was originally developed 

to solve feasibility problems (Van Hentenryck, 1989 and 2002), but it has been extended 

to solve optimization problems, particularly scheduling problems. Constraint programming 

is very expressive since continuous, integer, and Boolean variables are permitted; 

moreover, variables can be indexed by other variables. 

Furthermore, a number of constructs and global constraints have also been 

developed to efficiently model and solve specific problems, and constraints need neither 

be linear nor convex. The solution of constraint programming models is based on 

performing constraint propagation at each node by reducing the domains of the variables. 

If an empty domain is found the node is pruned. Branching is performed whenever a 

domain of an integer, binary or Boolean variable has more than one element, or when the 

bounds of the domain of a continuous variable do not lie within a tolerance. Whenever a 

solution is found, or a domain of a variable is reduced, new constraints are added. The 

search terminates when no further nodes must be examined. The effectiveness of 

constraint programming depends on the propagation mechanism behind constraints. Thus, 

even though many constructs and constraints are available, not all of them have efficient 

propagation mechanisms. 

For some problems, such as scheduling, propagation mechanisms have been 

proven to be very effective in solving certain types of scheduling problems, especially those 

that involve sequencing and resource constraints. However, they are not always effective 

for solving more general optimal scheduling problems that involve assignments (Méndez 

et al., 2006). 

Some of the most common propagation rules for scheduling are the "timetable" 

constraint (Le Pape, 1998), the "disjunctive constraint" propagation, the "edge-finding", and 

the "not-first, not-last" (Baptiste et al., 2001). Finally, Laborie (2003) summarized the main 

approaches to propagate resource constraints in constraint-based scheduling and 

identified some of their limitations for using them in an integrated planning and scheduling 

framework. 

 

3.3.4. Heuristics methods 

Heuristics methods are rules or algorithms used in order to obtain good feasible 

solutions of a given problem, although they do not guarantee optimality. In the area of the 

short-term planning, these rules use certain empirical criteria to prioritize all the batches 
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that are waiting for processing on a unit. This methodology has demonstrated to have very 

good performance, although their efficiency is usually evaluated empirically and their 

applicability is usually very case specific. The main advantage of heuristics is that fact that 

are considered fast and easy to implement. However, the use of heuristics methods is 

reduced to limited scheduling problems, because optimality can be proved only in some 

special cases since these methods cannot guarantee the quality of the solution. 

In this field, Lagrangian heuristics consist in iterative methods that try to build 

feasible solutions from the solution provided by the Lagrangian relaxation of an optimization 

problem. This process is usually repeated until the gap between the best upper bound and 

the best lower bound stands below a certain value. The Lagrangian relaxation consists in 

a relaxation method which converts a constrained optimization problem into a simpler one. 

The relaxed problem can be usually solved more easily in comparison with the original 

problem. This method applies penalties in the objective function in case of violation of any 

constraint, by using Lagrange multipliers (see Chapter 3.2.3). The obtained solution for the 

relaxed problem will be an approximate solution of the original one, providing useful 

information to obtain the solution of the original problem. 

 

3.3.5. Metaheuristics methods 

Metaheuristics are often inspired by moves arising in natural phenomena. 

Metaheuristics optimize a problem by iteratively trying to improve a candidate solution with 

regard to a given measure of quality. This techniques is based on an iterative generation 

process which guides a subordinate heuristic by combining intelligently different concepts 

for exploring and exploiting the search space (Blum and Roli, 2003). 

While metaheuristics have proved to be very effective in combinatorial problems, 

their optimality and convergence are not certified; there is no systematic procedure for 

obtaining good bounds on the attainable optimum values of the objective function (Pekny 

& Reklaitis, 1998). This means that the use of meta-heuristics do not provide any guarantee 

on the quality of the solution obtained, and it is often impossible to tell how far the current 

solution is from optimality. Furthermore, these methods do not formulate the problem as a 

mathematical program, since they involve procedural search techniques that in turn require 

some type of discretization or graph representation, and the violation of constraints is 

handled through ad hoc penalty functions. For this reason, the use of metaheuristics might 

be problematic for problems involving general processes, complex inequality constraints 

and continuous decision variables. In this case, the set of feasible solutions might lack nice 

properties and it might even be difficult to find a feasible solution (Burkard et al., 1998). 
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Significant research in this field is devoted to incorporate meta-heuristics within 

mathematical programming techniques. Some of the meta-heuristics methods are genetic 

algorithms, simulated annealing, tabu search, scatter search and ants colony. 

 

3.3.5.1. Genetic algorithms 

Genetic algorithms (GA) are computational models inspired by biological evolution 

process. These algorithms determine the solution of a problem on a simple chromosome-

like data structure and apply recombination, selection and mutation operators to these 

structures so as to preserve critical information. GAs have increasingly been applied in 

engineering in the past decade, typically to discrete optimization, since it is considered as 

a tool for optimization in engineering design. Although these algorithms are not sensitive to 

local minima, which confers robustness, these methods do not calculate the exact solution 

of the problem, but make good estimations of the optimal solution. 

The genetic algorithm is based on the analogy of improving a population of 

solutions through modifying their gene pool. Two forms of genetic modification, crossover 

or mutation, are used and the elements of the optimization vector are represented as binary 

strings. Crossover deals with random swapping of vector elements (among parents with 

highest objective function values or other rankings of population) or any linear combinations 

of two parents. Mutation deals with the addition of a random variable to elements of the 

vector. In addition, GAs have seen widespread use in process engineering and a wide 

number of codes are available. 

In general, metaheuristics are widely applied in industrial scheduling (Xhafa and 

Abraham, 2008) for complex problems under deterministic and uncertain conditions 

(Zamarripa et al., 2012b). For example, He and Hui (2007) present a heuristic approach 

based on GA for solving large-size multi-stage multi-product scheduling problem in batch 

plants. Méndez et al. (2006) cite several works related to the application of the 

aforementioned techniques to the scheduling problem. 

 

3.3.5.2. Simulated annealing 

The simulated annealing derives from a class of heuristics with analogies to the 

motion of molecules in the cooling and solidification of metals. Here, a temperature 

parameter, can be raised or lowered to influence the probability of accepting points that do 

not improve the objective function. The method starts with a base point, and objective 

value. The next point is chosen at random from a distribution. If the objective function 
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improves, the move is accepted with the initial point as the new point. Otherwise, the point 

is accepted with certain probability. 

 

3.3.6. Artificial Intelligence 

Artificial Intelligence techniques have been widely applied to scheduling problems 

(Metaxiotis et al., 2002). In order to use more efficiently the process information as well as 

the essential knowledge provided by human schedulers, artificial intelligence mimics 

human thought and cognitive processes to solve complex problems automatically. 

Artificial Intelligence uses techniques for writing computer code to represent and 

manipulate knowledge. There are different techniques that mimic the different ways that 

people think and reason. The main artificial intelligence techniques are: rule-based 

methods, agent-based methods, and expert systems. Rule-based methods can be 

distinguished into case-based reasoning and model-based reasoning techniques, case-

based reasoning is based on previous experiences and patterns of previous or similar 

experiences to meet the current needs and model-based reasoning concentrates on 

reasoning about a system’s behaviour from an explicit model of the mechanisms underlying 

that behaviour. Agent-based approaches are software programs that are capable of 

autonomous, flexible, purposeful and reasoning action in pursuit of one or more goals. They 

are designed to take timely action in response to external stimulus from their environment 

on behalf of a human. Expert systems, also known as knowledge-based approaches, 

encapsulate the specialist knowledge gained from a human expert and apply that 

knowledge automatically to make decisions. Some interesting implementations of artificial 

intelligence technologies into real-world scheduling problems can be found in Zweben and 

Fox (1994), Sauer and Bruns (1997), Henning and Cerdá (2000) and Strojny et al. (2006). 

 

3.3.7. Hybrid methods 

Hybrid methods are based on the combination of different optimization methods, 

in order to take profit of the advantage of each one of the considered methods. As example 

of combination of heuristics and MILP methods, Blomer and Gunther (2000) presented a 

MILP model for scheduling chemical batch processes with a two-stage solution procedure. 

In the first stage, an initial solution is derived by use of a linear programming-based 

heuristic. The proposed heuristic relies on a time grid that includes only a limited number 

of feasible periods in which a processing task is allowed to start. Thus, the size of the 

original multi-period mixed integer linear programming model is reduced in a controlled 

manner and optimal solutions to the relaxed model are obtained within reasonable 

computational time. The second stage consists of an improvement step that aims to 
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compress the initial schedule by left-shifting operations over the time-axis. Burkard and 

Hatzl (2006) developed a heuristic for batch processing problems occurring in the chemical 

industry, aiming at makespan minimization, proposing an iterative construction algorithm 

which alternates between construction and deconstruction phases. 

Also, the combination of CP and MILP has received increased attention for their 

complementarity. Maravelias and Grossmann (2004) developed a hybrid MILP/CP method 

for the continuous time model and in which different objectives such as profit maximization, 

cost minimization and makespan minimization can be handled. The proposed method 

relies on an MILP model that represents an aggregate of the original MILP model. The main 

advantage of combining both methodologies is to produce order of magnitude reductions 

in CPU times compared to standalone MILP or CP models (Harjunkoski & Grossmann, 

2002; Zeballos et al., 2011). 

 

3.4. Multi-criteria optimization 

In chemical engineering problems, it is usual the consideration of multiple criteria 

decision making, in order to involve multiple considerations in a competitive framework. 

Multicriteria decision making is a discipline that deals with the methodology and theory to 

treat complex problems entailing conflicting objectives, such as cost, performance, 

reliability, safety, sustainability and productivity among others (Wiecek et al., 2008). In 

presence of multiple criteria, a large number of solutions may be suitable, obtaining a set 

of solutions (Capón-García et al., 2011 and Zamarripa et al., 2012a).  

This kind of problems can be addressed through the use of a priori, interactive 

and posteriori approaches. Priori approaches are based on establishing initially the 

objectives, and solving them iteratively. This approach consists on optimizing the first 

objective, and to use this value as a constraint when solving the next objective. This 

procedure is repeated iteratively for all the objectives. The main drawback of priori 

approaches is that the final solution depends on the selected order for optimizing each 

objective. The iterative approach focuses on directing the search using the information 

obtained in the optimization process. Finally, posterior approaches consists of producing a 

set of solutions which covers the trade-off region comprising the best compromise 

solutions. As a result of the multi-objective optimization problem, a set of solutions are 

obtained. This thesis applies the latter approach to deal with multi-objective decision 

problems. A general mathematical representation of multi-objective optimization (MOO) is 

as follows: 

min
𝑥

{𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥)} , 𝑛 ≥ 2 

(3.23) 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

ℎ(𝑥) =  0 

𝑔(𝑥) ≤ 0 

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 

𝑥 ∈ 𝑋 ⊂ ℝ𝑛 

The set of solutions of a MOO problem are known as Pareto solutions. Each 

Pareto solution is one for which any improvement in one objective can only take place if at 

least one other objective worsens (Messac et al., 2003).  

Considering that 𝑍𝑝 is a scalar that shall be associated to the objective function 

value 𝑓𝑝(𝑥), a solution 𝑥𝑎, associated to the objective function values {𝑍1𝑎, 𝑍2𝑎 , … , 𝑍𝑝𝑎
} 

dominates other solution 𝑥𝑏, with its corresponding point {𝑍1𝑏
, 𝑍2𝑏

, … , 𝑍𝑝𝑏
}, if and only if: 

[𝑍𝑝𝑎
≤ 𝑍𝑝𝑏

 ∀ 𝑝 ∈ {1 … 𝑃}] ∧ [∃ 𝑝 ∈
{1 … 𝑃}

𝑍𝑝𝑎

≤ 𝑍𝑝𝑏
] 

𝑍𝑝𝑎
= 𝑓𝑝(𝑥𝑎), ∀𝑝 ∈ {1 … 𝑃} 

𝑍𝑝𝑏
= 𝑓𝑝(𝑥𝑏), ∀𝑝 ∈ {1 … 𝑃} 

(3.24) 

 

Also, one solution does not dominate another if at least one of the objective criteria 

of the former is equal or worse than the values for the second solution. Thereby, if a solution 

𝑥∗ is Pareto solution, then it does not exist a different solution 𝑥 ∈ 𝑋 that dominates it. 

Given two solutions, if none of them dominates the other, then both of them are 

non-dominated solutions with respect to one another. In fact, the Pareto optimal solutions 

are a set of non-dominated solutions. Figure 3.8 presents a set of solutions and the Pareto 

frontier for a biobjective minimization problem. The set of solutions that are dominated by 

the solutions are located in the Pareto frontier. Moreover, the anchor points, located at 

(𝑓1
∗, 𝑓2

1∗) and (𝑓1
2∗, 𝑓2

∗), are the result from the optimization problems considering one single 

criteria at a time. Also, the utopia point 𝑓𝑢 = (𝑓1
∗, 𝑓2

∗) is defined by the optimal values for 

each objective function, whereas the nadir point 𝑓𝑛 = (𝑓1
2∗, 𝑓2

1∗) is given by the worse 

values of the objective functions. 
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Figure 3.8. Pareto frontier and dominated solutions for a biobjective minimization problem. 

There are several approaches to obtain Pareto solutions, which are based on the 

conversion of the MOO problem into one single objective problem; solving it several times 

at the same time that each solution represents one feasible point; all the solutions represent 

the Pareto frontier. These approaches include these methods: 

 Physical programming. 

 Normal boundary intersection. 

 𝜺-constraint. 

 Normal constraint. 

 Weighted sum. 

 Compromise programming. 

 

3.5. Uncertainty approaches 

Although there have been important advances in optimization techniques, 

decision making in the supply chain management scenario become more complex when 

the consideration of different sources of uncertainty in the models is essential to ensure 

solution quality or even its practical feasibility. So, one of the main current challenges 

consists in integrating the presence of variability in process parameters, including: 

 Uncertainty in demand, prices and availability of resources. 

 Variability in process parameters (manufacturing time, reaction conditions). 

 External uncertainty (errors, strikes…). 
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The approaches addressed to problems under uncertainty can be classified into 

reactive and preventive procedures. Reactive approaches are focused on modifying a 

nominal plan obtained by a deterministic formulation in order to adjust it to different 

alterations, modifications or updated system data. Some reactive approaches are the multi-

parametric programming, the Model Predictive Control (MPC) and the rolling-horizon 

approach. On the other hand, preventive approaches are based on the consideration of all 

possible cases, and finding a good solution for all these cases. This approach has the 

advantage that a feasible solution is found for all considered scenarios. However, the 

obtained solutions may be too conservative, since the model must take into account all the 

possibilities. The most frequently adopted approaches as preventive procedure are the 

stochastic programming, the robust optimization and the fuzzy programming. 

 

3.5.1. Multi-parametric programming 

Parametric programming can be used as an analytic tool in order to map the 

uncertainty in the optimization problem to optimal alternatives. The output of the parametric 

optimization provides a complete set of profiles of all the optimal inputs to the system as a 

function of uncertain parameters, and the regions in the space of uncertain parameters 

where these functions remain optimal. As a result, as the operating conditions fluctuate, 

one does not have to re-optimize for the new set of conditions since the optimal solution as 

a function of parameters (or the new set of conditions) is already available (Pistikopoulos 

et al., 2002). Parametric programming techniques have been developed and proposed as 

a means of reducing computational effort associated to optimization problems regarding 

uncertainty. 

The general multiparametric programming problem can be written in the following 

standard form: 

min
𝑥

𝑓(𝑥, 𝜃) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

ℎ(𝑥, 𝜃) = 0 

𝑔(𝑥, 𝜃) ≤ 0 

𝑥 ∈ ℝ𝑛 

𝜃 ∈ Θ ∈ ℝ𝑞 𝜃𝑙
𝑚𝑖𝑛⁄ ≤ 𝜃𝑙 ≤ 𝜃𝑙

𝑚𝑎𝑥 , 𝑙 = 1, … , 𝑞 

(3.25) 

where 𝑥 represents the decisions variables (continuous and binary), while 𝜃 

denotes the vector of uncertain parameters.  

The typical multiparametric programming problem is described in terms of the 

following items: 
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 A given planning horizon. 

 A given performance criterion. 

 A set of constraints which cannot be violated. 

 A set of parameters. 

In an optimization framework with an objective function to minimize, a set of 

constraints to satisfy and a number of bounded parameters affecting the solution, multi-

parametric programming obtains: 

 The objective function and the optimization variables as functions of the 

parameters 

 The space of parameters (known as critical regions, CR) where these 

functions are valid (Figure 3.9). 

q2

q1

CR2

CR3  

  CR1

 
Figure 3.9. Multi-parametric programming: critical regions 

 

𝑥(𝜃) = {

𝑥1(𝜃), 𝑖𝑓 𝜃𝜖𝐶𝑅1 

𝑥2(𝜃), 𝑖𝑓 𝜃𝜖𝐶𝑅2

𝑥3(𝜃), 𝑖𝑓 𝜃𝜖𝐶𝑅3

 (3.26) 

Multi-parametric optimization approach is used to generate a complete map of the 

optimal solutions in the space of the varying internal and external parameters (uncertainty). 

So, the optimal solution comprises a set of regions, in which there is an optimal and feasible 

solution, given by analytical expressions. This reactive approach can be used to upload a 

nominal schedule, which can be continuously updated according to the variations in the 

parameters and constraints related to internal and external uncertainty sources. 
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The multiparametric problems can be classified according to the type of 

mathematical model functions involved in the optimisation problem, including linear, 

quadratic, nonlinear, dynamic optimisation, global optimisation, MILP and MINLP. 

 

3.5.2. Model Predictive Control 

Model Predictive Control (MPC) is a widely academic and industrial technique for 

advanced multivariable process control, which appeared in the late 1970s (Pistikopoulos, 

2009). Although typically this methodology has been applied for production processes, in 

which empirical models based on experimentation are used, MPC can also be applied to 

other echelons of the SC (Rivotti et al., 2012).  

The objective of MPC is to provide a sequence of control actions over a limited 

future time horizon, in order to predict the behaviour of the system. Basically, once future 

behaviour of the process output is predicted, future inputs can be calculated, through 

manipulated or controlled variables (Figure 3.10, Pistikopoulos, 2009). The basic idea of 

the MPC implementation is based on the minimization of the difference between the state 

and control deviation from the set point, by the use control variables. This control method 

is able to handle multi-variable and constrained systems. 

t t+1 t+m

control/input horizon

t+p

prediction/output horizon

control/maniputaled variables

past future

predicted/state/output variables

set point

Time

 
Figure 3.10. Model Predictive Control implementation. 

Although control actions are taken in the current time interval taking into account 

the predicted behaviour, this control sequence is repeated at every sampling instant, 
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including uploaded information (measurements or estimates). The time horizon selected 

for these predictions must include all significant dynamics related to the process under 

study, in order to predict appropriately future events. 

The main advantage of MPC is that it is model-based, so output predictions are 

computed using a process model. This means that the model can take into account the 

constraints on the state and control variables. This model must be accurate to guarantee a 

good performance of the results (the success of this methodology depends on the precision 

of the process model), but at the same time, the simplest model that offers precise enough 

predictions to be solved in a reasonable time.  

On the other hand, the most important disadvantage is the computational time 

required, which means that MPC implementation maybe difficult or even not applicable if 

sampling time is not large enough to allow for the optimisation problem to be solved in time 

or if the system includes a large number of process variables. 

MPC is usually implemented in discrete time representations. The chosen model 

depends on the process to be controlled. The most typical models are state-space models, 

transfer models, finite impulse response models and independent models. All processes 

inherently include sources of uncertainty, which must be considered in the process control. 

Therefore, the modelling of MPC includes the presence of disturbances or uncertainty. 

Hence, the desired output is the set point but the corresponding value of the input variable 

depends on the unknown disturbance. 

 

3.5.3. Rolling-horizon approach 

The rolling-horizon approach is a reactive scheduling method that solves 

iteratively the deterministic problem by moving forward the optimization horizon in every 

iteration; assuming that the status of the system cis updated as soon as the different 

uncertain or not accurate enough parameters became to be known, the optimal schedule 

for the new resulting scenario (and optimization horizon) may be found. This approach 

considers: a prediction horizon, in which all the uncertain parameters related to this time 

horizon are assumed to be known with certainty, due to the fact that the system under study 

receives feedback related to the unknown parameters, and a control horizon, where the 

decisions of the optimization for the prediction horizon are applied (Figure 3.11, Kopanos 

and Pistikopoulos, 2014). Rolling-horizon has been applied to several scheduling problems 

under uncertainty, and the interested reader can be referred to Kopanos and Pistikopoulos 

(2014) for a brief review. 
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Figure 3.11. Reactive scheduling via a rolling horizon framework. 

The rolling horizon algorithm can be applied as follows (Figure 3.12): 

 Initially, set the initial conditions of the system, as well as the length of the 

scheduling, prediction and control horizons. 

 Next, establish the first planning period and solve the scheduling problem 

for the prediction horizon considered. 

 Update uncertain parameters and solve again the scheduling problem using 

data from the last optimization, by the use of linking. 

 Then stop, if this new schedule corresponds to the last period of time. 

Otherwise, fix the values obtained in the optimization problem for that 

iteration, re-schedule and update the period of time until the last planning 

period has been reached. 

 



Chapter 3 

66 

 

Initialization step

Define the initial state of the system, the total scheduling horizon length 

(SH), the control horizon (CH). For the given prediction horizon (PH), 

calculate the total number of iterations (tot).

Update step

Update the uncertain parameters (e.g. energy 

demands), and the current state of the system.

Calculate solution step

Calculate the variable values by solving the 

deterministic problem for the PH.

Save solution step

Save the values of the variables for the predefined 

CH.

END

iter < tot

yes

no
iter = iter + 1

 

Figure 3.12. Algorithm for the rolling horizon approach. 

This reactive approach allows to upload or modify the different uncertain 

parameters. Note that although the solution obtained in each prediction horizon is expected 

to be optimal for this period of time, the solution of the overall problem could be suboptimal 

in practice, since future information outside the current prediction horizon is not taken into 

account. So, the length of the prediction horizon must be appropriate in order to guarantee 

the quality of the obtained results. The length of the prediction horizon depends on the 

characteristics of the problem. 

 

3.5.4. Stochastic programming 

Stochastic-based approaches is the most commonly used approach in the 

literature (Straub and Grossmann, 1992; Terrazas-Moreno et al., 2011). The original 

deterministic mathematical model is transformed into a stochastic model treating the 

uncertainties as random variables (Shapiro, 2012 and Shapiro et al, 2013). In a general 
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stochastic optimization problem, it is relevant to distinguish among two set of decision 

variables: 

 On the one hand, first stage decisions are related to those decisions that 

must be taken before any uncertain parameter is unrevealed. They are also 

known as “here and now” decisions. 

 On the other hand, resource are determined after some or all the uncertain 

data is revealed. This kind of decisions are also known as the second and 

so forth stage or “wait and see” decisions. 

The most widely used and simplest stochastic program is the two-stage stochastic 

formulation. Here, the first stage decisions are represented by the vector 𝑥, while second 

stage decisions are represented by the vector 𝑦, and the uncertain parameters are 

represented by the vector 𝜉. It is worthy to mention that the second stage decisions 𝑦 are 

a function of the first stage decisions 𝑥 and the uncertain events. In order to simplify the 

problem representation, the recourse function 𝑄 is introduced next. 

𝑄(𝑥, 𝜉) =  min
𝑥

𝑓2(𝑦, ξ) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

ℎ2(𝑥, 𝑦, ξ)  =  0 

𝑔2(𝑥, 𝑦, ξ)  ≤ 0 

𝑦 ∈ 𝑌 ⊂ ℝ𝑛2 

𝑓2 ∶ ℝ𝑛2 → ℝ 

ℎ2: ℝ𝑛2 →  ℝ𝑙2 

𝑔2: ℝ𝑛2 → ℝ𝑚2 

(3.27) 

All equations involving recourse decisions 𝑦 are considered in 𝑄. As it can be 

seen, 𝑄 is a mathematical program that minimizes the second-stage variable for a given 

value of the uncertain parameter 𝝃. Then, the expected recourse function 𝑄, is defined by 

the expression (3.28): 

𝑄(𝑥) = 𝐸𝜉[𝑄(𝑥, 𝜉)] (3.28) 

Finally, the mathematical representation of a two-stage stochastic formulation can 

be represented as follows: 

min
𝑥

[𝑓1(𝑥) + 𝑄(𝑥)] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

ℎ1(𝑥)  =  0 

𝑔1(𝑥)  ≤ 0 

𝑥 ∈ 𝑋 ⊂ ℝ𝑛1 

(3.29) 
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𝑓1: ℝ𝑛1 → ℝ 

ℎ1: ℝ𝑛1 →  ℝ𝑙1 

𝑔1: ℝ𝑛1 → ℝ𝑚1 

Moreover, this formulation is extended to solve complex and real engineering 

applications to a multistage recourse program. The recursive programming applied to 

process engineering becomes the most used technique to consider uncertainty in the 

decision making process. Meanwhile allow to the decision makers to know the expected 

performance of the system at the same time they are using a robust decision making tool. 

In the case that continuous probability function is utilized to represent the 

uncertain parameter 𝜉, program (3.29) can be analytically solved just for a few simple 

problems. However, approximations can be obtained by constructing a discrete number of 

scenarios which represent the continuous distribution behaviour. In this case, sampling 

techniques can be used to approximate to discrete functions the continuous probability 

functions in a stochastic program. The combinatory if the different scenarios that can take 

place can be represented by using a scenario tree representation (Figure 3.13). 

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Scenario 9
 

Figure 3.13. Scenario tree representation for a stochastic programming. 

 

3.5.5. Robust optimization 

The robust optimization is focused on building the proactive approach to minimize 

the effects of disruptions on the performance measure. They also try to ensure that the 

predictive and realized schedule and/or planning do not differ drastically, while maintaining 

a high level of schedule and/or performance. In mathematics, robust optimization is an 

approach in optimization to deal with uncertainty. It is similar to the recourse model of 
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stochastic programming, in that some of the parameters are random variables, except that 

feasibility for all possible realizations (called scenarios) is replaced by a penalty function in 

the objective. As such, the approach integrates goal programming with a scenario-based 

description of problem data (Al-Qahtani et al, 2008). 

 

3.5.6. Fuzzy programming methods 

The main difference between the stochastic programming and the robust 

optimization respect to fuzzy optimization approaches is in the way in which uncertainty is 

modelled. This proactive approach considers random parameters as fuzzy numbers and 

constraints are treated as fuzzy sets. Some constraint violation is allowed and the degree 

of satisfaction of a constraint is defined as the membership function of the constraint. 

Objective functions in fuzzy mathematical programming are treated as constraints with the 

lower and upper bounds of these constraints defining the decision-makers expectations. 

Fuzzy logic and probability are different ways of expressing uncertainty. While both fuzzy 

logic and probability theory can be used to represent subjective belief, fuzzy set theory 

uses the concept of fuzzy set membership (i.e., how much a variable is in a set), probability 

theory uses the concept of subjective probability (i.e., how probable do I think that a variable 

is in a set). 

 

3.6. Modelling frameworks 

There are some commercial tools for general optimization purposes, including 

GAMS (General Algebraic Modeling System, Rosenthal et al., 2012), AMPL (A 

Mathematical Programming Language, Fourer et al. 2002), AIMMS (Advanced Interactive 

Multidimensional Modeling System, Roelofs, 2010) or Matlab. All of them render very 

similar characteristics (general mathematical language, use different solvers to solve the 

modelled problems, etc.).  

 

3.6.1. GAMS – General Algebraic Modeling System 

Optimization problems in this Thesis have been solved using GAMS, which is the 

most used optimization software in PSE field. GAMS is a programming language that 

allows modelling and solving optimization problems. Castillo et al. (2001) point out some 

important characteristics, such as:  
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 Modelling and solving procedure are completely separated. Once the model 

is developed; several solvers are available to optimize the problem. 

 The model representation in GAMS is analogous to the mathematical 

description of the problem. 

 Models are described in compact and concise algebraic statements which 

are easy for both humans and machines to read. 

 Allows changes to be made in model specifications simply and safely. 

 Allows unambiguous statements of algebraic relationships. 

 The ability to model small size problems and afterwards transform them into 

large-scale problems without significantly varying the code. 

 GAMS allows to import and export data from/to Microsoft Excel files. 

Additionally, MATLAB and GAMS could be easily connected. 

Moreover, it is worthy to mention that optimization algorithms mentioned above 

are embedded in some of the different GAMS solvers. Each solver is usually developed to 

tackle a specific type of program (i.e., LP, NLP, MILP, MINLP, etc.). 

 

3.7. Solvers 

3.7.1. CPLEX solver 

IBM ILOG CPLEX, often informally referred to simply as CPLEX, is an optimization 

solver package. GAMS/CPLEX is a GAMS solver that allows to combine the high level 

modelling capabilities of GAMS with the power of CPLEX optimizers. CPLEX optimizers 

are designed to solve large, difficult problems quickly. Access is provided (subject to proper 

licensing) to CPLEX solution algorithms for linear, quadratically constrained and mixed 

integer programming problems. While numerous solving options are available, 

GAMS/CPLEX automatically calculates and sets most options at the best values for specific 

problems. It is worth mentioning that for problems with integer variables CPLEX uses a 

branch-and-cut algorithm which solves a series of LP subproblems. Because a single 

mixed integer problem generates many subproblems, even small MIP problems can be 

very compute intensive and require significant amounts of physical memory. 

3.7.2. GloMIQO solver 

The Global Mixed-Integer Quadratic Optimizer, GloMIQO (Misener and Floudas, 

2013), is a numerical global solver addressed to mixed-integer quadratically-constrained 

quadratic programs to 𝜀-global optimality. The algorithmic components to solve this kind of 

MINLP problems are the problem reformulation (by variable elimination and bilinear term 

disaggregation, which may significantly increase the number of nonlinear terms in the 
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model but may also tighten the linear relaxation), the detection of special structure including 

convexity and edge-concavity, the generation of tight convex relaxations (by generation 

MILP relaxations), the partition of the search space through variable branching and finally 

the reduction of the search space through variable bounding and finding good feasible 

solutions. 

 

3.8. Information management software 

Recent trends in process industries are shifting the focus from controlling the 

process plant as a stand-alone entity toward managing it as an integral part of a larger 

system (Klatt & Marquardt, 2009). Such approach aims at exploiting the process and 

environment dynamics in order to maximize the plant economic indicators. A holistic 

management of the different elements composing a SC and, in many cases, the relations 

among them, are necessary to improve resource use, minimize production costs and 

inventory, enhance economic benefits, increase customer satisfaction or improve process 

control, among other objectives usually associated to process profitability. 

Obviously, such understanding of process management entails the integration of 

the different decision level functions. The complexity of simultaneously considering the 

whole decision making process involved, lead to the traditional division of such process in 

different hierarchical levels (strategic, tactical and operational, as usually recognised even 

by the ISA standards). Therefore, a current important challenge lies on the coordination of 

the decision making and the optimization of different decision levels, both vertically across 

a single process plant, and horizontally along the different geographically distributed 

subsystems of the SC in a given time horizon. 

The process engineer is also frequently responsible for the continuous 

improvement of the production processes, the products and the associated techniques. 

(Noakes et al., 2011). Currently, tasks related to management, research and development 

involves the generation of huge amount of data that must be analysed, interpreted and 

stored throughout the decision making process, using computer simulation and computer 

control techniques. In chemical companies, these data are related to design issues, 

planning and production, coordination, cooperation and attention to customer demands, as 

well as constraints related to economy, environmental impacts, social policy, ethical topics, 

health, safety and sustainability (Accreditation Board for Engineering and Technology, 

ABET, 2008). 

One first step toward such integration consists of the sharing of information, which 

is nowadays being achieved with modern information technology tools, such as SAP and 
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Oracle, that allow the instantaneous flow of information along the various organizations in 

a company (Grossmann et al., 2008). The implementation and use of information 

technology tools involve a huge number of data to handle. For this reason, standardizing 

information structures and tools to improve the availability and communication of data is 

essential to integrate these data and use the previously mentioned tools efficiently for 

Chemical SCs management (Bessiris et al., 2011). 

 

3.8.1. Ontologies 

Among the different types of knowledge-based systems which can be applied in 

complex scenarios to help decision making, ontologies provide structures for the 

coordination of information sources (Muñoz et al., 2010), and so, they can be used in the 

process engineering area to coordinate the development of new products, to identify new 

manufacturing recipes (Singh et al., 2010) and also to integrate different decision levels 

within a SC (Muñoz et al., 2011). This includes facilitating communication and knowledge, 

which allow the information exchange among the different modelling paradigms used for 

the enterprise-wide optimization, and also helps the acquisition, maintenance, access, 

reuse and sharing of information related to processes, with the aim of increasing the 

efficiency of cost, time and resources (Fensel, 2003). The use of such systems allows the 

establishment of common standards and enables the full exploitation of the stored 

relationships among all available data. 

Ontologies are considered a key semantic tool to reduce or eliminate conceptual 

and terminological confusion and come to a shared understanding of all available 

information, specifying the structure of a domain of knowledge in a generic way that can 

be read by a computer and presented in a human readable form (Figure 3.14). Moreover, 

ontologies incorporate knowledge of processes, incorporating the relationship between 

different processes into a logical structure. The main advantages of using ontologies are 

the communication in a shared framework among people and across application systems 

as well as the conceptualization that describes the semantics of all data in a standard way, 

using a common language.  
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Figure 3.14. Ontology system, representing the relationship between different hierarchies within a 

supply chain. 

3.9. Final remarks 

In this chapter, different optimization techniques have been outlined. The main 

ideas behind each technique have been briefly introduced with the purpose of providing 

the reader a general understanding of the theory involved into the solution techniques 

applied in this thesis. In order to implement mathematical formulation in optimization 

software (i.e., GAMS), one requires to have a good understanding of their principles, to 

interpret results as well as to debug skills. For that reason, special emphasis has been 

made to these topics. Particularly in this Thesis, MIP models have been developed using 

discrete time and hybrid time representations, in order to characterize the system under 

study, considering both deterministic and uncertain conditions. 
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Chapter 4. Time representation 

One of the key points of the scheduling problem of a supply chain concerns the 

time representation. All existing scheduling formulations can be classified into discrete time 

models, hybrid time models and continuous time models (see Chapter 2.5). 

This second part of this thesis analyses the operational decision making 

procedures required to address the simultaneous management of supplies and requests, 

in order to best accommodate arbitrary resource availability profiles, and to extensively 

exploit the eventual flexibility of the production requirements to be fulfilled. In this Chapter, 

the optimization of the resulting short term scheduling problem in deterministic scenarios 

is addressed through a Mixed-Integer Linear Programming (MILP) mathematical model, 

which includes a new hybrid time formulation developed to take profit of the advantages of 

the procedures based on discrete time representations, while maintaining the ability to 

identify solutions requiring a continuous time representation, which might be qualitatively 

different to the ones constrained to consider a fixed time grid for decision making. The 

performance of this new time representation has been studied, taking into account the 

granularity of the model and analysing the associated trade-offs in front of other 

alternatives.  

 

4.1. Introduction 

The simultaneous management of production and demand would introduce an 

additional degree of freedom to the supply chain management problem, which would permit 

achieving further benefits. As mentioned in Chapter 2.4 this additional flexibility can be 

greatly potentiated by storage systems, which may be used to decouple production and 

demand peaks, and to cope with the uncertain (fluctuating) availability of renewable 

resources. 

For these previous reasons, the development of an efficient production planning 

and scheduling model is necessary to coordinate generation, storage and use of 

resources/materials to maximize efficiency by optimally adjusting production and demand. 

This chapter proposes a general model to solve the operational decision making problem 

for a supply chain, considering the simultaneous management of production and 
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consumption. Two particular models using discrete and hybrid time representations have 

been implemented to study the trade-off between both approaches, taking into account the 

granularity of the problem. The assessment of their performance is presented through a 

case study addressing the optimal management of the energy generation, storage and 

consumption of several appliances within a single household served by a simple microgrid. 

 

4.2. Problem statement 

The system under study consists of a set of interconnected elements (i.e., 

producers/generators, storages, consumptions) as well as a set of decisions (when, where, 

who, how much) that define a typical managerial problem (resource allocation and timing). 

The specific problem in this case is to determine the production and storage levels 

to be established in the supply chain along a given time horizon, as well as to manage the 

consumption profiles in order to maximize some economic indicators, considering incomes 

associated to production sales as well as the costs related to production, storage and 

deviation in the consumptions from the initial targets. In the discrete time representation, 

decisions in terms of production, storage and consumptions are taken every given time 

interval. However, in order to represent a continuous demand profile, a hybrid time 

formulation has been developed, which incorporates the possibility of starting any 

consumption at any time. This time formulation was chosen in order to represent the 

different time scales related to production and consumption. 

The problem under study is described in the following terms: 

(i) A scheduling horizon which is divided into a set of time intervals 𝑡𝑇. 

(ii) A set of production sources 𝑖𝐼, which are characterized by a minimum and 

maximum production capacity and a given operational cost. 

(iii) A set of storage systems 𝑘𝐾 in order to accumulate resources/materials, 

featuring a minimum and maximum storage capacity and a storage cost. 

(iv) A set of products, materials, resources or utilities 𝑚𝑀. Notice that although 

this term can be referred to different items, in order to abbreviate the 

explanation, only the term product will be used for this set. 

(v) A set of consumptions which define the overall demand. A desirable starting 

time of each consumption and its duration are established, but every 

consumption is bounded within a time window delimited by a starting time 

and a maximum completion time, which cannot be exceeded. So, delays in 

the nominal demands are allowed under associated penalty costs. This 
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flexibility allows the integration or coordination of production and demand. 

Then, each consumption can be moved assuming a certain penalty cost.  

The mathematical model presented contemplates two main aspects: the 

material/resource balances describing flows, production, storage, consumption and loses, 

and the capacity constraints associated to the equipment and technologies involved in the 

considered SC.  

The decisions to be made, so as to maximize the profit of the SC, are related to:  

(i) The materials/resources to be produced/purchased from source 𝑖 at time 

interval 𝑡.  

(ii) The storage level to be maintained at the end of each time interval 𝑡.  

(iii) The specific time to execute a demand. 

(iv) The materials/resources to be sold to the external market 𝑟 at time interval 

𝑡. 

The need to introduce these elements, when applied to real size cases using a 

continuous time representation, lead to mathematical model sizes which are out of the 

capacities of currently available optimization solvers (see Chapter 2.5), so only discrete 

and hybrid time based formulations are considered in this chapter. In the discrete time 

based model next presented, decisions related to production and consumption are taken 

at the beginning of each time interval 𝑡. However, when the hybrid time representation is 

used, decisions related to production are taken at the beginning of each time interval 𝑡, 

whereas decisions related to consumption can be taken continuously. This means that both 

models differ only in the equations related to consumption. 

 

4.3. Mathematical formulation 

The constraints associated to sequencing, allocating of consumptions and 

resources, and distribution of a multi-product supply chain are next presented in the 

following discrete time and hybrid time MILP formulations. The major part of the model is 

identical for both formulations, since only equation (4.19) used for discrete time 

formulations and equations (4.20), (4.21), (4.22), (4.23) and (4.24) differ. 

Eq. (4.1) establishes a material balance, considering the raw material and its 

transformation to products 𝑚, by considering a conversion degree between raw materials 

and products. Although the transformation of raw material are considered, the remaining 

equations are formulated for situations in which their transformation takes place or not, in 

order to generalise the proposed formulation. Also, eq. (4.2) restricts the minimum and 
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maximum production level in each source 𝑖 can supply product 𝑚. This value will be zero 

in case it is not used and it is bounded in case it is active. Thus, the overall production for 

each product 𝑚 at each interval 𝑡 is calculated in eq. (4.3) as the summation of the 

production in each of the active sources. Notice that these equations can be applied for 

both production and purchases of product 𝑚, since they consider the amount of material to 

be produced (or purchased) and its production or acquisition cost. 

∑ 𝑃𝑖,𝑚,𝑡−𝑇𝑝𝑚

𝑚∈𝑅𝑀

= 𝜌𝑚 ∙ ∑ 𝑃𝑖,𝑚,𝑡

𝑚∈𝑃𝑅

 ∀𝑖, 𝑡 (4.1) 

𝑃𝑖,𝑚,𝑡
𝑚𝑖𝑛 · 𝑋𝑖,𝑚,𝑡 ≤ 𝑃𝑖,𝑚,𝑡 ≤ 𝑃𝑖,𝑚,𝑡

𝑚𝑎𝑥 · 𝑋𝑖,𝑚,𝑡 ∀𝑖, 𝑚, 𝑡 (4.2) 

𝑃𝑇𝑚,𝑡 = ∑ 𝑃𝑖,𝑚,𝑡

𝑖∈𝐼

 ∀𝑚, 𝑡 (4.3) 

The storage level of product 𝑚 in each storage 𝑘 at each time interval 𝑡 is bounded 

within a minimum value and a maximum value. In addition, the balance for each storage 

system 𝑘 at each interval 𝑡 is given by the variation of storage level and eventual loses (i.e., 

product or energy loses) in eq. (4.5), assuming a maximum level of load, given by eq. (4.6). 

Thus, eq. (4.7) indicates that the storage level variation in each storage 𝑘 at each time 

interval 𝑡 is delimited by a maximum variation level. 

𝑆𝐸𝑘,𝑚,𝑡
𝑚𝑖𝑛 ≤ 𝑆𝐸𝑘,𝑚,𝑡 ≤ 𝑆𝐸𝑘,𝑚,𝑡

𝑚𝑎𝑥  ∀𝑘, 𝑚, 𝑡 (4.4) 

𝑆𝐸𝑘,𝑚,𝑡 = 𝑆𝐸𝑘,𝑚,𝑡−1 + 
𝑘,𝑚
𝑖𝑛 ∙ 𝐿𝑑𝑘,𝑚,𝑡 −

𝑆𝑃𝑘,𝑚,𝑡


𝑘,𝑚
𝑜𝑢𝑡

 ∀𝑘, 𝑚, 𝑡 (4.5) 

0 ≤ ∑ 𝐿𝑑𝑘,𝑚,𝑡

𝑘∈𝐾

≤ 𝑃𝑇𝑚,𝑡 ∙ 𝐷𝑇 ∀𝑚, 𝑡 (4.6) 

−𝛼𝑘,𝑚 ∙ 𝑆𝐸𝑘,𝑚,𝑡
𝑚𝑎𝑥 ≤ 𝑆𝐸𝑘,𝑚,𝑡 − 𝑆𝐸𝑘,𝑚,𝑡−1 ≤ 𝛼𝑘,𝑚 ∙ 𝑆𝐸𝑘,𝑚,𝑡

𝑚𝑎𝑥  ∀𝑘, 𝑚, 𝑡 (4.7) 

Constraints are also required for the demand-side management, in order to 

determine the initial time of each consumption 𝑗𝑓 of each product 𝑚. The starting time, 

𝑇𝑠𝑗,𝑓,𝑚, bounded by eq. (4.8), is required to be greater or equal than minimum starting time 

𝑇𝑠𝑗,𝑓,𝑚
𝑚𝑖𝑛 , and less or equal to the time allowing due completion. Moreover, eq. (4.9) 

determines the final time of each consumption 𝑗𝑓, which is given by the starting time and 

its duration. For the hybrid time representation model, 𝑇𝑠𝑗,𝑓,𝑚 corresponds to the real time 

in which consumption 𝑗𝑓 begins, whereas for the discrete time model representation, this 

term is related to the time interval in which each consumption starts. The same concept is 

applied to 𝑇𝑓𝑗,𝑓,𝑚. 
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𝑇𝑠𝑗,𝑓,𝑚
𝑚𝑖𝑛 ≤  𝑇𝑠𝑗,𝑓,𝑚 ≤ 𝑇𝑓𝑗,𝑓,𝑚

𝑚𝑎𝑥 − 𝐷𝑢𝑟𝑗,𝑓,𝑚 ∀𝑗, 𝑓 ∈ 𝐹𝑗 , 𝑚 (4.8) 

𝑇𝑓𝑗,𝑓,𝑚 = 𝑇𝑠𝑗,𝑓,𝑚 + 𝐷𝑢𝑟𝑗,𝑓,𝑚 ∀𝑗, 𝑓 ∈ 𝐹𝑗 , 𝑚 (4.9) 

In order to locate the initial and final time of each consumption 𝑗𝑓 of each product 

𝑚 (𝑇𝑠𝑗,𝑓,𝑚 and 𝑇𝑓𝑗,𝑓,𝑚), the binary variables 𝑌𝑗,𝑓,𝑚,𝑡 and 𝑍𝑗,𝑓,𝑚,𝑡 are defined as active when 

consumptions starts and finishes, respectively, at time period 𝑡. These logical restrictions 

can be reformulated as a set of big-M constraints, where 𝑇𝑡 corresponds to time: 

𝑇𝑠𝑗,𝑓,𝑚 ≥ 𝑇𝑡     − 𝑀 ∙ (1 − 𝑌𝑗,𝑓,𝑚,𝑡) ∀𝑗, 𝑓 ∈ 𝐹𝑗 , 𝑚, 𝑡 (4.10) 

𝑇𝑠𝑗,𝑓,𝑚 ≤ 𝑇𝑡+1 + 𝑀 ∙ (1 − 𝑌𝑗,𝑓,𝑚,𝑡) ∀𝑗, 𝑓 ∈ 𝐹𝑗 , 𝑚, 𝑡 (4.11) 

𝑇𝑓𝑗,𝑓,𝑚 ≥ 𝑇𝑡     − 𝑀 ∙ (1 − 𝑍𝑗,𝑓,𝑚,𝑡) ∀𝑗, 𝑓 ∈ 𝐹𝑗 , 𝑚, 𝑡 (4.12) 

𝑇𝑓𝑗,𝑓,𝑚 ≤ 𝑇𝑡+1 + 𝑀 ∙ (1 − 𝑍𝑗,𝑓,𝑚,𝑡) ∀𝑗, 𝑓 ∈ 𝐹𝑗 , 𝑚, 𝑡 (4.13) 

Big-M constraints are methodologies applied to solve mixed integer programming 

problems. This kind of formulations are used to convert a logic or nonconvex constraint to 

a set of constraints describing the same feasible set, using auxiliary binary variables and 

additional constraints. Furthermore, eq. (4.14) forces that a consumption 𝑗𝑓 cannot start 

since the previous one in the same consumer unit 𝑗 has finished, not allowing neither an 

overlap nor a change in the established consumption sequence in consumer 𝑗. 

𝑇𝑓𝑗,𝑓,𝑚 ≤ 𝑇𝑠𝑗,𝑓′,𝑚 ∀𝑗, 𝑓 ∈ 𝐹𝑗 , ∀𝑓′ ∈ 𝐹𝑗 , 𝑓 < 𝑓′, 𝑚 (4.14) 

Moreover, assignment constraints are implemented to enforce unique starting and 

finishing times for each consumption 𝑗𝑓 of product 𝑚, according to eq. (4.15) and (4.16), 

respectively. Since values of 𝑌𝑗,𝑓,𝑚,𝑡 and 𝑍𝑗,𝑓,𝑚,𝑡 are equal to zero outside the time window, 

the summation of these binary variables is only considered within such window, in order to 

improve the efficiency in terms of computational effort. Eq. (4.17) determines when each 

consumption 𝑗𝑓 is active. In this equation, 𝑡′ ∈ 𝑇 indicates other elements of the same set 

𝑇. In the term ∑ 𝑌𝑗,𝑓,𝑚,𝑡′
𝑡´∈𝑇
𝑡´≤𝑡

, 𝑡′ ∈ 𝑇 must be greater or equal than the element 𝑡 ∈ 𝑇. 

Moreover, in the term ∑ 𝑍𝑗,𝑓,𝑚,𝑡′
𝑡´∈𝑇
𝑡´<𝑡

, 𝑡′ ∈ 𝑇 must be greater than the element 𝑡 ∈ 𝑇. Notice 

that both 𝑡 and 𝑡’ are elements of the same set 𝑇.Finally, eq. (4.18) is used to enforce the 

condition that all consumptions that start must finish. 
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∑ 𝑌𝑗,𝑓,𝑚,𝑡

𝑡∈𝑇
𝑇𝑡≤𝑇𝑓𝑗,𝑓,𝑚

𝑚𝑎𝑥−𝐷𝑢𝑟𝑗,𝑓,𝑚

= 1 
∀𝑗, 𝑓 ∈ 𝐹𝑗 , 𝑚 (4.15) 

∑ 𝑍𝑗,𝑓,𝑚,𝑡

𝑡∈𝑇
𝑇𝑡≤𝑇𝑓𝑗,𝑓,𝑚

𝑚𝑎𝑥

= 1 
∀𝑗, 𝑓 ∈ 𝐹𝑗 , 𝑚 (4.16) 

𝑊𝑗,𝑓,𝑚,𝑡 = ∑ 𝑌𝑗,𝑓,𝑚,𝑡′

𝑡´∈𝑇
𝑡´≤𝑡

− ∑ 𝑍𝑗,𝑓,𝑚,𝑡′

𝑡´∈𝑇
𝑡´<𝑡

 
∀𝑗, 𝑓 ∈ 𝐹𝑗 , 𝑚, 𝑡 (4.17) 

∑ 𝑌𝑗,𝑓,𝑚,𝑡

𝑡∈𝑇

=  ∑ 𝑍𝑗,𝑓,𝑚,𝑡

𝑡∈𝑇

 ∀𝑗, 𝑓 ∈ 𝐹𝑗 , 𝑚 (4.18) 

Using the discrete time representation, the total demand at time interval 𝑡 is given 

by all the active consumptions at this time and determined by eq. (4.19). The second term 

of this equation determines the exact consumption for those time intervals in which the 

consumption of a consumer will not take place in the overall time interval. Also, this allows 

to enforce the overall balance of the network. 

𝐷𝑒𝑚𝑚,𝑡 = ∑ ∑ 𝐶𝑜𝑛𝑠𝑗,𝑓,𝑚 · 𝐷𝑇 ∙ [𝑊𝑗,𝑓,𝑚,𝑡 − 𝑍𝑗,𝑓,𝑚,𝑡 ∙ (𝐷𝑢𝑟̅̅ ̅̅
𝑗̅,𝑓,𝑚 − 𝐷𝑢𝑟𝑗,𝑓,𝑚)]

𝑓∈𝐹𝑗𝑗∈𝐽

 ∀𝑚, 𝑡 (4.19) 

However, eq. (4.19) is not valid for the hybrid time representation, since it does 

not take into account that the consumption can start at any time during the time interval, 

not only at the beginning. Also, one of the characteristics of this hybrid time formulation is 

that any consumption can take place in more than one time interval. Therefore, the 

consumption in the hybrid time representation requires a more complex mathematical 

model, as the one composed by eq. (4.20), (4.21), (4.22), (4.23) and (4.24). The 

consumption at each period of time is given by eq. (4.20), where 𝑋𝐷𝑒𝑚𝑗,𝑓,𝑚,𝑡 indicates the 

time period in which consumption 𝑗𝑓 of product 𝑚 is active at time interval 𝑡. In order to 

calculate this term, four different situations have to be taken into account (Figure 4.1): 

(i) is produced in the overall interval 𝑡, given by eq. (4.21), 

(ii) starts during this interval 𝑡, indicated by eq. (4.22), 

(iii) finishes during interval 𝑡, according to eq. (4.23), 

(iv) and starts and finishes during interval 𝑡, given by eq. (4.24). 

𝐷𝑒𝑚𝑚,𝑡 = ∑ ∑ 𝐶𝑜𝑛𝑠𝑗,𝑓,𝑚 · 𝐷𝑇 · 𝑋𝐷𝑒𝑚𝑗,𝑓𝑚,,𝑡

𝑓∈𝐹𝑗𝑗∈𝐽

 ∀𝑚, 𝑡 (4.20) 
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𝑋𝐷𝑒𝑚𝑗,𝑓,𝑚,𝑡 ≥  (𝑇𝑡+1 − 𝑇𝑡)      − 𝑀 ∙ (1 − 𝑊𝑗,𝑓,𝑚,𝑡 + 𝑌𝑗,𝑓,𝑚,𝑡 + 𝑍𝑗,𝑓,𝑚,𝑡) ∀𝑗, 𝑓 ∈ 𝐹𝑗 , 𝑚, 𝑡 (4.21) 

𝑋𝐷𝑒𝑚𝑗,𝑓,𝑚,𝑡 ≥  (𝑇𝑡+1 − 𝑇𝑠𝑗,𝑓,𝑚) − 𝑀 ∙ (2 − 𝑊𝑗,𝑓,𝑚,𝑡 − 𝑌𝑗,𝑓,𝑚,𝑡 + 𝑍𝑗,𝑓,𝑚,𝑡) ∀𝑗, 𝑓 ∈ 𝐹𝑗 , 𝑚, 𝑡 (4.22) 

𝑋𝐷𝑒𝑚𝑗,𝑓,𝑚,𝑡 ≥  (𝑇𝑓𝑗,𝑓,𝑚 − 𝑇𝑡)      − 𝑀 ∙ (2 − 𝑊𝑗,𝑓,𝑚,𝑡 + 𝑌𝑗,𝑓,𝑚,𝑡 − 𝑍𝑗,𝑓,𝑚,𝑡) ∀𝑗, 𝑓 ∈ 𝐹𝑗 , 𝑚, 𝑡 (4.23) 

𝑋𝐷𝑒𝑚𝑗,𝑓,𝑚,𝑡 ≥  (𝑇𝑓𝑗,𝑓,𝑚 − 𝑇𝑠𝑗,𝑓,𝑚) − 𝑀 ∙ (3 − 𝑊𝑗,𝑓,𝑚,𝑡 − 𝑌𝑗,𝑓,𝑚,𝑡 − 𝑍𝑗,𝑓,𝑚,𝑡) ∀𝑗, 𝑓 ∈ 𝐹𝑗 , 𝑚, 𝑡 (4.24) 

interval t

Tt-1 Time

(4.19)

(4.20)

(4.21)

(4.22)

DT

Tt Tt+1 Tt+2

interval 
t+1

interval t-1
 

Figure 4.1. Time consumption within a time interval. 

Obviously, the use of different time representations does not affect to the global 

balance, which in any case should include production, charge and discharge of the storage 

system, consumption and sales, is enforced by eq. (4.25): 

∑ 𝑆𝑃𝑘,𝑚,𝑡

𝑘∈𝐾

+ 𝑃𝑇𝑚,𝑡 ∙ 𝐷𝑇 − 𝐷𝑒𝑚𝑚,𝑡 − ∑ 𝐿𝑑𝑘,𝑚,𝑡

𝑘∈𝐾

− ∑ 𝑃𝑔𝑟,𝑚,𝑡 ∙ 𝐷𝑇

𝑟∈𝑅

= 0 ∀𝑚, 𝑡 (4.25) 

Furthermore, the economic aspects related to the management are introduced, 

considering production, storage and penalty costs in case of deviation from the initial target. 

The production cost is assumed to be proportional to the real amount of production, and 

according to the different production sources, eq. (4.26). In the same way, the storage cost 

is calculated as proportional to the real storage expected for each time period, according 

to eq. (4.27). Finally, the flexibility in the demand profile is tuned through the introduction 

of an additional term in the usual cost-based objective function penalizing the deviation 
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from given initial consumption targets, eq. (4.28). The introduction of this penalty term and 

the flexibility to consider any arbitrarily availability profile in the generation systems 

previously described in eq. (4.1), (4.2) and (4.3) are the basic elements to allow the 

simultaneous management of production and consumption. The value selected for the 

penalty coefficient of each requirement depends on the specific characteristics of this 

requirement: small values are associated to high flexibility, while high values will lead to 

very strict requirements. Hence, it is important to choose appropriate values for each one 

of the penalty coefficients to guarantee the adequate management of the demand. Also, 

eq. (4.29) establishes the transport cost, taking into account the amount of material and 

the distance between production and markets. 

𝐶𝑜𝑠𝑡𝑃𝑟𝑜 =  ∑ ∑ ∑ 𝑐𝑝𝑟𝑜𝑖,𝑚,𝑡 · 𝑃𝑖,𝑚,𝑡 ∙ 𝐷𝑇

𝑖∈𝐼𝑚∈𝑀𝑡∈𝑇

  (4.26) 

𝐶𝑜𝑠𝑡𝑆𝑡𝑜 = ∑ ∑ ∑ 𝑐𝑠𝑡𝑜𝑘,𝑚,𝑡 · 𝑆𝐸𝑘,𝑚,𝑡

𝑘∈𝐾𝑚∈𝑀𝑡∈𝑇

  (4.27) 

𝐶𝑜𝑠𝑡𝑃𝑒𝑛 = ∑ ∑ ∑ 𝑐𝑝𝑒𝑛𝑗,𝑓,𝑚 · (𝑇𝑠𝑗,𝑓,𝑚 − 𝑇𝑠𝑗,𝑓,𝑚
𝑚𝑖𝑛 )

𝑓∈𝐹𝑗𝑗∈𝐽𝑚∈𝑀

  (4.28) 

𝐶𝑜𝑠𝑡𝑇𝑟𝑝 = ∑ ∑ ∑ 𝑐𝑡𝑟𝑝𝑖,𝑗,𝑚 · 𝑃𝑖,𝑚,𝑡 ∙ 𝑑𝑖,𝑗

𝑖∈𝐼𝑗∈𝐽𝑚∈𝑀

+ ∑ ∑ ∑ 𝑐𝑡𝑟𝑝𝑖,𝑟,𝑚 · 𝑃𝑖,𝑚,𝑡 ∙ 𝑑𝑖,𝑟

𝑖∈𝐼𝑟∈𝑅𝑚∈𝑀

  (4.29) 

Also, sales from external markets 𝑟 have been taken into account. No maximum 

limits on the products 𝑚 that can be sold to external markets 𝑟 have been considered. Thus, 

incomes are computed as linear from the materials/resources sold and its selling price to 

the external market eq. (4.30), although this term may be modified according to applicable 

the market regulations. 

𝐼𝑛𝑐𝑜𝑚𝑒𝑠 = ∑ ∑ ∑ 𝑃𝑟𝑖𝑐𝑒𝑟,𝑚,𝑡 · 𝑃𝑔𝑟,𝑚,𝑡 ∙ 𝐷𝑇

𝑟∈𝑅𝑚∈𝑀𝑡∈𝑇

  (4.30) 

The profit of the network, which corresponds to the objective function to be 

maximized, is calculated considering incomes and costs in eq. (4.31).  

𝑃𝑟𝑜𝑓𝑖𝑡 =  𝐼𝑛𝑐𝑜𝑚𝑒𝑠 − (𝐶𝑜𝑠𝑡𝑃𝑟𝑜 + 𝐶𝑜𝑠𝑡𝑆𝑡𝑜 + 𝐶𝑜𝑠𝑡𝑃𝑒𝑛)  (4.31) 

To sum up, two models are defined based on the presented formulation, namely: 

 Discrete time model 

 Objective function: equation (4.31) 

 Subject to constraints (4.1) to (4.19) and constraints (4.25) to (4.30) 
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 Hybrid time model 

 Objective function: equation (4.31) 

 Subject to constraints (4.1) to (4.18) and constraints (4.20) to (4.30) 

Only linear constraints are included in the present formulation, since one of the 

objectives of this chapter is to study the difference between the discrete and the hybrid time 

formulations, in terms of results and computational effort. The presented formulations can 

be extended by introducing more complex constraints associated to the features of the 

scheduling problems, which can lead to the introduction of non-linear constraints. Also, the 

model does not consider the presence of fixed costs associated to the investment and 

installation of production sources, since the design of the network has not been taken into 

account and only short-term decisions are contemplated. 

 

4.4. Case study 

Both proposed MILP formulations have been applied to a case study based on a 

microgrid, in which the objective is the simultaneous management of energy supply and 

demand. Although the proposed formulations can be used to consider simultaneously 

multi-products, only one product (energy) is going to be taken into account. Additionally, 

the considered value of the conversion degree is 1, without considering a high degree of 

detail in the energy production process. This microgrid includes a photovoltaic panel (𝑖1) 

and a micro-wind turbine (𝑖2) as renewable energy sources, as well as a bidirectional 

connection to the power grid (𝑖3) to purchase and to sell energy. The possibility to purchase 

energy to the power grid ensures the feasibility of the optimization problem, disregarding 

weather conditions and abnormal demand requirements. Also, an energy storage system 

𝑘 has been considered. The distances between all elements are neglected, so transport 

costs are not taken into account. 

Moreover, 30 different appliances or consumers 𝑗 have been taken into account, 

with different energy requirements 𝐶𝑜𝑛𝑠𝑗,𝑓, which are assumed to admit a certain degree of 

flexibility in their respective targets, in terms of accepting some delay from their expected 

schedule. Each consumption has associated a penalty cost, to be applied in case of that 

such deviations from their respective targets are introduced. The power required by each 

consumer is assumed to be constant during each consumption. Data related to 

minimum/maximum initial time, duration and penalty cost associated to each energy 

consumption can be found in Table 4.5 (see the Appendix of this chapter). A penalty cost 

has been assigned according to the characteristics of each energy consumption. A 

schematic representation of the considered microgrid can be found in Figure 4.2. 
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Wind turbine

Power grid
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ENERGY PRODUCTION ENERGY STORAGE ENERGY CONSUMPTION

Consumers

Power grid

 

Figure 4.2. Schematic representation of the case study. 

The results of the optimization procedure includes energy production, storage and 

consumption patterns. Decisions related to energy production are given every 15 minutes, 

according to the expected energy demand requirements and the anticipated energy 

availability resulting from the specific weather forecast. The considered time horizon 

extents to 24 hours, thus resulting in 96 time slots. According to the described discrete time 

model, decisions related to the consumption schedule are considered to be taken 

according to the indicated time grid (i.e., every 15 minutes), whereas in the hybrid time 

model, these decisions can be scheduled at any moment along the continuous time 

horizon.  

Data related to energy production cost for each generator and energy storage cost 

are presented in Table 4.1. Also, the same table displays the minimum/maximum values 

for power supply and energy storage as well as other economic data. Variable production 

costs related to the energy production through solar panels and wind turbines are 

considered to be zero.  

Table 4.1. Economic data and capacity constraints. 

Unit Description 
𝑐𝑝𝑟𝑜𝑖,𝑡 or 𝑐𝑠𝑡𝑜𝑘,𝑡 

(m.u. / kWh) 

𝑃𝑖
𝑚𝑖𝑛 

(kW) 

𝑆𝐸𝑘
𝑚𝑖𝑛 

(kWh) 

𝑆𝐸𝑘
𝑚𝑎𝑥 

(kWh) 

α𝑘 

(-) 

i1 Photovoltaic panel 0 0 - - - 

i2 Wind turbine 0 0 - - - 

i3 Power grid 0.153 0 - - - 

k1 Energy storage system 1·10-4 - 13.44 16.80 0.0 
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4.5. Results 

Different scenarios and solution approaches have been considered in order to 

compare, analyse and highlight the characteristics of the proposed models, including: 

(i) the absence of demand management opportunities (energy demands cannot 

be shifted),  

(ii) demand management using the discrete time model and,  

(iii) demand management using the hybrid time model. 

The resulting MILP models have been implemented in GAMS 24.1 (Rosenthal, 

2012) and solved using CPLEX 12, in a Pentium Intel® Core™ i7 CPU 2600 @ 3.40 GHz, 

with 8.00 GB of installed memory (RAM). 

The same power availability (Figure 4.3) has been assumed for the three solution 

approaches. Also, the energy storage level has been forced to be equal at the beginning 

and at the end of the scheduling horizon in order to ensure a fair comparison among the 

different obtained solutions. 
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Figure 4.3. Power availability. 

In the first situation (i), only production management is considered. The energy 

storage system is the only resource to be used in order to optimize the match between 

production and demand, since energy requirements do not match energy availability. The 

resulting energy storage level profile is represented in Figure 4.5. The solution in this case 
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shows that the generation (and storage) of energy from renewable sources is insufficient 

to timely satisfy the set of fixed energy consumptions, so the purchase of energy from the 

power grid is required (Figure 4.4a). Figure 4.7a shows the optimum energy consumptions 

schedule obtained with this model. 

The characteristics of the model proposed for the second situation (ii) allows to 

consider the possibility of delaying energy consumptions at the expense of a penalty cost 

for each delay. The optimum decisions in this case would lead to the independence from 

the power grid, so external energy purchases are not required to satisfy the energy demand 

(Figure 4.4b and Table 4.3). In this case, some energy consumptions have been delayed 

one or more complete time intervals (15 minutes). The total accumulate delay is up to 19.35 

hours (Table 4.2). These are delays are due to: 

 The granularity of the model: The discrete time model forces all consumptions 

to start at the beginning of one time interval. Thus, all consumptions have been 

delayed to start in the boundary of the corresponding time interval, involving 

solutions qualitatively different. In this particular case study, this represents 

almost 40 % of the total accumulated delay. 

 The decision making process itself which, in order to optimize the matching 

between production and demand, and the associated penalties, introduces 

additional changes. These quantitative differences results in about 60 % of the 

total accumulated time delay in this case study.  

 

The third approach (iii) corresponds to the proposed hybrid time representation. 

Also with this model, the simultaneous management allows to satisfy the overall energy 

demand without acquiring energy from the grid, at the expense of introducing consumption 

delays. Actually, the same energy production profile from the renewable (cheap) sources 

is obtained in all cases (Figure 4.4b and Table 4.3), since the microgrid should use all the 

available energy from renewable sources at their maximum capacity, and to sell the excess 

to the power grid (Figure 4.6). Although energy purchases from the power grid are shown 

in Figure 3, this acquisition takes place only in the case with non demand-side 

management, but not in the cases with demand- side management, which do not require 

external purchases. But in this case the value of the objective function is improved since 

the delays in the consumptions may be better adjusted (Figure 4.7c), and the penalty cost 

may be reduced accordingly. Now the total delay in the optimum case was 11.97 hours 

(Table 4.2). Obviously, and unlike the discrete model, only delays due to the decision 

making process are introduced. 
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Figure 4.4. Power source in each time period  

a) no-demand side management, b) demand side management using both the discrete and the 

hybrid time model.  
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Figure 4.5. Energy storage level. 
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Figure 4.6. Power to the external power grid.  
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Table 4.2. Delays produced in each energy consumption. 

Energy 
consumer j 

Energy 
demand f 

Delay using discrete time formulation 

with time interval of 15 minutes (h) 

Delay using hybrid 

time formulation (h) 

Granularity Decision Decision 

j5 f10 0.075 0.00 0.004 

j5 f12 0.125 0.00 0.035 

j6 f1 0.075 0.00 0.184 

j7 f1 0.225 0.50 0.785 

j7 f2 0.125 0.00 0.125 

j7 f6 0.000 0.00 0.012 

j7 f9 0.050 0.00 0.118 

j7 f10 0.125 0.00 0.070 

j11 f1 0.125 0.50 0.576 

j14 f1 0.000 0.25 0.000 

j15 f1 0.075 1.75 1.797 

j16 f1 0.050 0.50 0.484 

j19 f1 0.225 0.50 0.475 

j19 f2 0.025 0.00 0.030 

j20 f3 0.225 0.25 0.000 

j21 f1 0.150 0.25 0.475 

j22 f1 0.200 1.25 1.346 

j22 f2 0.125 1.00 1.024 

j23 f1 0.150 1.00 0.964 

j24 f1 0.225 0.25 0.090 

j24 f2 0.000 0.25 0.130 

j25 f1 0.125 0.25 0.400 

j27 f1 0.175 0.25 0.000 

j28 f1 0.025 0.25 0.000 

j29 f1 0.075 1.50 1.575 

j29 f2 0.000 0.50 0.356 

j30 f1 0.075 0.25 0.239 

j31 f1 0.175 0.50 0.675 

Other  4.575 0.00 0.000 

Total delay (h) 7.600 11.750 11.696 

19.350 
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The absence of energy demand management involves energy purchases in order 

to satisfy power peaks which can be avoided by the non-shifted demand. However, in this 

particular case study (Table 4.3), the simultaneous energy production and demand 

management would allow the independence of the microgrid from the power grid, since 

energy purchases are not required to satisfy the global energy demand. Not surprisingly, 

all renewable sources (photovoltaic panel and wind turbine) are always switched on, in 

order to satisfy the energy demand, to store energy or to sell energy to the power grid. This 

management will lead to purchase energy only if using renewable sources (which involve 

less production cost) and the energy storage system are not enough. Delays are introduced 

in the demand side management models as much as costs related to the production 

through renewable and the penalty associated to the initial target are below energy 

purchase costs. 

Table 4.3. Comparison of the obtained results through the different solution approaches. 

Unit 
No demand 

management 
Discrete 

time model 
Hybrid time 

model 

Profit (m.u.) 2.63 3.08 3.51 

Incomes (m.u.) 6.60 3.41 3.66 

Production cost (m.u.) 3.97 0.00 0.00 

Penalty cost (m.u.) 0.00 0.33 0.15 

Consumed energy (kWh) 359.0 359.0 359.0 

Energy produced or purchased (kWh) 417.9 391.9 391.9 

Energy from photovoltaic panels (kWh) 112.7 112.7 112.7 

Energy from wind turbines (kWh) 279.2 279.2 279.2 

Energy from power grid (kWh) 26.0 0.0 0.0 

Energy from storage systems (kWh) 17.1 19.3 10.7 

Energy sold to the power grid (kWh) 55.0 28.5 30.5 

Energy loses and load the energy storage 
system (kWh) 

21.0 23.7 13.1 

Figure 4.7 summarizes the main optimum decisions obtained using each one of 

the 3 presented solution approaches. In general, the introduction of delays is proposed in 

those energy requirements expected to start in the time slots in which the energy from less 

expensive sources is not enough, but the need to match decisions with a pre-stablished 

time grid (discrete time formulation) may introduce some unexpected behaviour.  

Some of these cases can be analysed and compared in more detail in Figure 4.8: 

As an example, using the discrete time formulation a significant deviation from its initial 

target was proposed to consumer 𝑗27 since the consumption cannot start until the 

beginning of the next time interval (due to the granularity of the model) and at this boundary 

of the time interval the optimal decision is to delay the consumption again because the lack 
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of availability in the energy generation system. On the contrary, using the hybrid time model 

the possibility to satisfy this particular consumption according to its target is recognized so 

no delay was proposed at all.  

Table 4.4 shows that, although the two time-representations involve the same 

number of discrete variables, the hybrid time representation model requires more equations 

and more continuous variables, as well as a substantial increase in the computational effort 

in order to determine the optimal solution. Moreover, in order to study how the length of the 

time interval affects the solution and the computational time, the same problem has been 

solved using different time interval sizes (Table 4.4). The solution using the discrete time 

formulation is improved when the length of the time interval decreases, since the model 

becomes more sensitive and delays due to the granularity of the model are reduced. But 

obviously, the computational effort increases when the duration of the time interval is 

reduced, since more binary variables are required in order to define the model. It is worthy 

to mention that the solution for the discrete time model using a time interval of 1 minute 

could not be obtained because the memory requirements exceeded that capacity of the 

computational system used for these tests. This was also the case of the hybrid model with 

time intervals of 5 and 3 minutes. 

 



Chapter 4 

94 

 

j31

j28

j25

j22

j19

j16

j13

j10

j7

j4

j1

0 2 4 6 8 10 12 14 16 18 20 22 24

 

 

Time [h]

E
n

e
rg

y
 c

o
n

s
u

m
e

rs

j31

j28

j25

j22

j19

j16

j13

j10

j7

j4

j1

0 2 4 6 8 10 12 14 16 18 20 22 24

 

 

Time [h]

E
n

e
rg

y
 c

o
n

s
u

m
e

rs

j31

j28

j25

j22

j19

j16

j13

j10

j7

j4

j1

0 2 4 6 8 10 12 14 16 18 20 22 24

 

 

Time [h]

E
n

e
rg

y
 c

o
n

s
u

m
e

rs

a)

b)

c)

 
Figure 4.7. Active energy consumers in each time period  

a) no-demand side management and the demand side management using b) discrete model and c) 

hybrid model. 
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Figure 4.8. Comparison of the consumption schedule for some energy consumptions.  

 

Table 4.4. Comparison of optimal solution and model statistics. 

Key performance 
indicator 

dt = 15 min dt = 5 min dt = 3 min 

Discrete 
time model 

Hybrid time 
model 

Discrete 
time model 

Discrete 
time model 

Profit (economic units) 3.30 3.51 3.42 3.50 

Equations 93,606 312,978 582,726 1,477,350 

Continuous variables 54,615 76,626 328,599 823,767 

Binary variables 33,468 33,468 210,554 535,034 

Generation time (CPU, s) 4.1 6.1 71.5 302.5 

Resource time (CPU, s) 0.8 242.7 10.5 31.8 

Total computational time 
(CPU, s) 

4.9 248.8 82.0 334.3 

Memory required (Mb) 128 176 2,086 8,581 

Relative gap (%) 0 < 1 0 0 

Requirements 
GAMS 24.1 / CPLEX 12 

Pentium Intel® Core™ i7 CPU 2600 @ 3.40 GHz 
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4.6. Concluding remarks 

This chapter addresses the short-term scheduling problem of a supply chain in 

order to determine optimal decisions in terms of both energy production and demand. This 

is achieved by maximizing an economic objective function including penalties for the 

delayed fulfilment of the demand requirements. In order to solve the inconveniences shown 

by traditional discrete and continuous time representations to manage the decision making 

process at both the production and at the demand sides simultaneously, a new hybrid time 

formulation, combining elements from both discrete and continuous time representations, 

is presented, and the resulting discrete and hybrid MILP formulations have been presented 

and discussed. 

The obtained results demonstrate that the proposed model is able to address, with 

high level of confidence, the short-term daily scheduling problem of a supply chain for a 

given horizon using both time representations, and to take profit of the advantages of the 

potential flexibility in the energy demand-side, which would allow enhancing the efficiency 

and autonomy of the supply chain. In the proposed case-study, the obtained results show 

how the introduction of flexibility in the demand-side allows an improvement in the value of 

the objective up to 17% and 33% through the use of the discrete and hybrid time 

formulations, respectively, when a time interval of 15 minutes are considered to solve its 

daily horizon. In addition, the hybrid time representation proposed improves the results due 

to a better adjust of the required starting time of consumptions, which improves the 

robustness of the model and the value of the optimal solution. This improvement is 

achieved at the expense of an increase in the complexity of the model, which results in an 

affordable increase in the required computational effort. Furthermore, as the length of the 

time interval in the discrete time formulation decreases, the value of the objective function 

is improved and closes the gap from the hybrid time representation. 

The presented formulations can be extended by incorporating uncertainty related 

to weather conditions effects in energy suppliers and energy demand variations, through 

the implementation of the rolling horizon approach and the stochastic programming (see 

Chapter 5). 
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4.7. Nomenclature 

Indexes and sets 
𝑖  𝐼 Production sources 

𝑗  𝐽 Consumers 

𝑓  𝐹 Demands 

𝑗𝑓  𝐹𝑗 Subset of demands associated to a consumer 𝑗 

𝑘  𝐾 Storage systems 

𝑚  𝑀 Products, materials, utilities or resources (product) 

𝑚  𝑃𝑅 Subset of manufactured products 𝑚 

𝑚  𝑅𝑀 Subset of raw material products 𝑚 
𝑟  𝑅 External market 

𝑡  𝑇 Time intervals included in the overall scheduling horizon 

  
Parameters 
𝐶𝑜𝑛𝑠𝑗,𝑓,𝑚 Individual consumption 𝑗𝑓 of product 𝑚 

𝑐𝑝𝑒𝑛𝑗,𝑓,𝑚 Penalty cost associated to consumption 𝑗𝑓 of product 𝑚 

𝑐𝑝𝑟𝑜𝑖,𝑚,𝑡 Production (or purchase) cost of product 𝑚 in source 𝑖 at time 𝑡 

𝑐𝑠𝑡𝑜𝑘,𝑚,𝑡 Storage cost of product 𝑚 in storage system 𝑘 at time 𝑡 

𝑐𝑡𝑟𝑝𝑖,𝑗,𝑚 Transport cost of product 𝑚 from production location 𝑖 to consumer 𝑗 

𝑐𝑡𝑟𝑝𝑖,𝑟,𝑚 Transport cost of product 𝑚 from production location 𝑖 to market 𝑟 

𝐷𝑇 Duration of the time interval 

𝐷𝑢𝑟𝑗,𝑓,𝑚 Duration of consumption 𝑗𝑓 of product 𝑚 

𝐷𝑢𝑟̅̅ ̅̅
𝑗̅,𝑓,𝑚 Round up value of the duration of consumption 𝑗𝑓 of product 𝑚 

𝑃𝑖,𝑚,𝑡
𝑚𝑖𝑛  Minimum supply of product 𝑚 from source 𝑖 at interval 𝑡 

𝑃𝑖,𝑚,𝑡
𝑚𝑎𝑥 Maximum supply of product 𝑚 from source 𝑖 at interval 𝑡 

𝑃𝑟𝑖𝑐𝑒𝑟,𝑚,𝑡 Price to be sold product 𝑚 to the external market 𝑟 at interval 𝑡 

𝑆𝐸𝑘,𝑚,𝑡
𝑚𝑖𝑛  Minimum storage level of product 𝑚 in storage system 𝑘 at interval 𝑡 

𝑆𝐸𝑘,𝑚,𝑡
𝑚𝑎𝑥  Maximum storage level of product 𝑚 in storage system 𝑘 at interval 𝑡 

𝑆𝐸0𝑘,𝑚,𝑡 Initial storage level of product 𝑚 in system 𝑘 at interval 𝑡 

𝑇𝑝𝑚 Processing time to obtain product 𝑚 

𝑇𝑠𝑗,𝑓,𝑚
𝑚𝑎𝑥  Maximum initial time of consumption 𝑗𝑓 of product 𝑚 

𝑇𝑠𝑗,𝑓,𝑚
𝑚𝑖𝑛  Target initial time of consumption 𝑗𝑓 of product 𝑚 

𝜌𝑚 Conversion degree of product 𝑚 


𝑘,𝑚
𝑖𝑛  Charging efficiency of storage system 𝑘 of product 𝑚 


𝑘,𝑚
𝑜𝑢𝑡  Discharging efficiency of storage system 𝑘 of product 𝑚 

  
Continuous and positive variables 

𝐵𝑒𝑛𝑒𝑓𝑖𝑡 Supply chain benefit 

𝐶𝑜𝑠𝑡𝑃𝑒𝑛 Supply chain penalty cost 

𝐶𝑜𝑠𝑡𝑃𝑟𝑜 Supply chain production cost 

𝐶𝑜𝑠𝑡𝑆𝑡𝑜 Supply chain storage cost 

𝐶𝑜𝑠𝑡𝑇𝑟𝑝 Supply chain transport cost 

𝐷𝑒𝑚𝑚,𝑡 Total consumption at interval 𝑡 of product 𝑚 

𝐼𝑛𝑐𝑜𝑚𝑒𝑠 Supply chain incomes 

𝐿𝑑𝑘,𝑚,𝑡 Amount of product 𝑚 supplied to load system 𝑘 during interval 𝑡 

𝑃𝑖,𝑚,𝑡 Amount of product 𝑚 supplied from source 𝑖 at interval 𝑡 

𝑃𝑔𝑟,𝑚,𝑡 Amount of product 𝑚 supplied to external market 𝑟 at interval t 

𝑃𝑟𝑜𝑓𝑖𝑡 Total profit along the scheduling horizon (objective function) 



Chapter 4 

98 

 

𝑃𝑇𝑚,𝑡 Amount of product 𝑚 supplied at interval 𝑡 

𝑆𝐸𝑘,𝑚,𝑡 Storage level of product 𝑚 in system 𝑘 at the end of the interval 𝑡 

𝑆𝑃𝑘,𝑚,𝑡 Amount of product 𝑚 supplied by storage system 𝑘 during interval 𝑡 

𝑇𝑓𝑗,𝑓,𝑚 Finishing time of consumption 𝑗𝑓 of product 𝑚 

𝑇𝑠𝑗,𝑓,𝑚 Starting time of consumption 𝑗𝑓 of product 𝑚 

𝑇𝑡 Time corresponding to time interval 𝑡 

𝑋𝐷𝑒𝑚𝑗,𝑓,𝑚,𝑡 Period of time in which consumption 𝑗𝑓 of product 𝑚 is active at interval 𝑡 

 
 

 

Binary variables 
𝑋𝑖,𝑚,𝑡 = 1, if production source 𝑖 is used at interval 𝑡 to supply product 𝑚 

𝑌𝑗,𝑓,𝑚,𝑡 = 1, if consumption 𝑗𝑓 of product 𝑚 starts at interval 𝑡 

𝑍𝑗,𝑓,𝑚,𝑡 = 1, if consumption 𝑗𝑓 of product 𝑚 finishes at interval 𝑡 

𝑊𝑗,𝑓,𝑚,𝑡 = 1, if consumption 𝑗𝑓 of product 𝑚 is active at interval 𝑡 

 

4.8. Appendix 

Table 4.5. Input parameters. 

Energy 
consumer j 

Energy 
demand f 

𝐶𝑜𝑛𝑠𝑗,𝑓 

 (kW) 

𝑇𝑠𝑗.𝑓
𝑚𝑖𝑛 

(h) 

Durj,f 
(h) 

𝑇𝑓𝑗.𝑓
𝑚𝑎𝑥 

(h) 

Penalty cost 
(m.u./h) 

j1 f1 2.557 0.000 0.250 0.250 40 
j1 f2 1.012 0.250 0.250 0.500 40 
j1 f3 0.957 0.500 0.250 0.750 40 
j1 f4 0.916 0.750 0.250 1.000 40 
j1 f5 0.955 1.000 0.250 1.250 40 
j1 f6 1.693 1.250 0.250 1.500 40 
j1 f7 1.705 1.500 0.250 1.750 40 
j1 f8 0.520 1.750 0.250 2.000 40 
j1 f9 0.605 2.000 0.250 2.250 40 
j1 f10 0.728 2.250 0.250 2.500 40 
j1 f11 0.683 2.500 0.250 2.750 40 
j1 f12 0.174 2.750 0.250 3.000 40 
j1 f13 0.157 3.000 0.250 3.250 40 
j1 f14 1.187 3.250 0.250 3.500 40 
j1 f15 1.341 3.500 0.250 3.750 40 
j1 f16 1.606 3.750 0.250 4.000 40 
j1 f17 1.143 4.000 0.250 4.250 40 
j1 f18 1.843 4.250 0.250 4.500 40 
j1 f19 1.684 4.500 0.250 4.750 40 
j1 f20 1.719 4.750 0.250 5.000 40 
j1 f21 1.776 5.000 0.250 5.250 40 
j1 f22 1.686 5.250 0.250 5.500 40 
j1 f23 1.672 5.500 0.250 5.750 40 
j1 f24 1.070 5.750 0.250 6.000 40 
j1 f25 1.008 6.000 0.250 6.250 40 
j1 f26 0.565 6.250 0.250 6.500 40 
j1 f27 0.565 6.500 0.250 6.750 40 
j1 f28 0.945 6.750 0.250 7.000 40 
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Energy 
consumer j 

Energy 
demand f 

𝐶𝑜𝑛𝑠𝑗,𝑓 

 (kW) 

𝑇𝑠𝑗.𝑓
𝑚𝑖𝑛 

(h) 

Durj,f 
(h) 

𝑇𝑓𝑗.𝑓
𝑚𝑎𝑥 

(h) 

Penalty cost 
(m.u./h) 

j1 f29 0.335 7.000 0.250 7.250 40 
j1 f30 0.492 7.250 0.250 7.500 40 
j1 f31 0.560 7.500 0.250 7.750 40 
j1 f32 0.233 7.750 0.250 8.000 40 
j1 f33 0.288 8.000 0.250 8.250 40 
j1 f34 0.260 8.250 0.250 8.500 40 
j1 f35 0.230 8.500 0.250 8.750 40 
j1 f36 0.348 8.750 0.250 9.000 40 
j1 f37 0.386 9.000 0.250 9.250 40 
j1 f38 0.163 9.250 0.250 9.500 40 
j1 f39 0.481 9.500 0.250 9.750 40 
j1 f40 0.168 9.750 0.250 10.000 40 
j1 f41 0.600 10.000 0.250 10.250 40 
j1 f42 1.129 10.250 0.250 10.500 40 
j1 f43 1.311 10.500 0.250 10.750 40 
j1 f44 0.400 10.750 0.250 11.000 40 
j1 f45 0.200 11.000 0.250 11.250 40 
j1 f46 0.655 11.250 0.250 11.500 40 
j1 f47 0.694 11.500 0.250 11.750 40 
j1 f48 0.494 11.750 0.250 12.000 40 
j1 f49 0.681 12.000 0.250 12.250 40 
j1 f50 0.436 12.250 0.250 12.500 40 
j1 f51 0.723 12.500 0.250 12.750 40 
j1 f52 1.195 12.750 0.250 13.000 40 
j1 f53 0.212 13.000 0.250 13.250 40 
j1 f54 0.295 13.250 0.250 13.500 40 
j1 f55 0.342 13.500 0.250 13.750 40 
j1 f56 0.209 13.750 0.250 14.000 40 
j1 f57 0.421 14.000 0.250 14.250 40 
j1 f58 0.179 14.250 0.250 14.500 40 
j1 f59 0.296 14.500 0.250 14.750 40 
j1 f60 0.236 14.750 0.250 15.000 40 
j1 f61 0.174 15.000 0.250 15.250 40 
j1 f62 0.155 15.250 0.250 15.500 40 
j1 f63 0.423 15.500 0.250 15.750 40 
j1 f64 0.734 15.750 0.250 16.000 40 
j1 f65 0.075 16.000 0.250 16.250 40 
j1 f66 0.680 16.250 0.250 16.500 40 
j1 f67 0.573 16.500 0.250 16.750 40 
j1 f68 0.171 16.750 0.250 17.000 40 
j1 f69 0.465 17.000 0.250 17.250 40 
j1 f70 0.461 17.250 0.250 17.500 40 
j1 f71 0.479 17.500 0.250 17.750 40 
j1 f72 0.010 17.750 0.250 18.000 40 
j1 f73 0.457 18.000 0.250 18.250 40 
j1 f74 0.077 18.250 0.250 18.500 40 
j1 f75 0.224 18.500 0.250 18.750 40 
j1 f76 0.632 18.750 0.250 19.000 40 
j1 f77 0.441 19.000 0.250 19.250 40 
j1 f78 0.028 19.250 0.250 19.500 40 
j1 f79 0.088 19.500 0.250 19.750 40 
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Energy 
consumer j 

Energy 
demand f 

𝐶𝑜𝑛𝑠𝑗,𝑓 

 (kW) 

𝑇𝑠𝑗.𝑓
𝑚𝑖𝑛 

(h) 

Durj,f 
(h) 

𝑇𝑓𝑗.𝑓
𝑚𝑎𝑥 

(h) 

Penalty cost 
(m.u./h) 

j1 f80 0.743 19.750 0.250 20.000 40 
j1 f81 0.931 20.000 0.250 20.250 40 
j1 f82 0.792 20.250 0.250 20.500 40 
j1 f83 0.906 20.500 0.250 20.750 40 
j1 f84 1.299 20.750 0.250 21.000 40 
j1 f85 0.918 21.000 0.250 21.250 40 
j1 f86 0.894 21.250 0.250 21.500 40 
j1 f87 0.572 21.500 0.250 21.750 40 
j1 f88 0.193 21.750 0.250 22.000 40 
j1 f89 0.725 22.000 0.250 22.250 40 
j1 f90 0.187 22.250 0.250 22.500 40 
j1 f91 0.443 22.500 0.250 22.750 40 
j1 f92 0.259 22.750 0.250 23.000 40 
j1 f93 0.689 23.000 0.250 23.250 40 
j1 f94 0.631 23.250 0.250 23.500 40 
j1 f95 0.862 23.500 0.250 23.750 40 
j1 f96 0.312 23.750 0.250 24.000 40 
j2 f1 1.500 16.675 3.375 20.250 0.4 
j3 f1 1.500 17.725 3.550 21.500 0.4 
j4 f1 0.350 6.675 0.200 7.000 0.04 
j4 f2 0.350 7.250 0.275 7.750 0.04 
j4 f3 0.350 12.575 0.213 13.000 0.04 
j4 f4 0.350 13.750 0.375 14.250 0.04 
j4 f5 0.350 20.525 0.198 21.000 0.04 
j4 f6 0.350 21.750 0.250 22.000 0.04 
j5 f1 2.000 0.525 0.175 1.000 0.04 
j5 f2 2.000 3.925 0.250 4.250 0.04 
j5 f3 2.000 5.000 0.300 5.500 0.04 
j5 f4 2.000 7.625 0.300 8.250 0.04 
j5 f5 2.000 8.725 0.350 9.250 0.04 
j5 f6 2.000 10.825 0.250 11.250 0.04 
j5 f7 2.000 11.950 0.375 12.500 0.04 
j5 f8 2.000 13.575 0.375 14.250 0.04 
j5 f9 2.000 17.000 0.175 17.250 0.04 
j5 f10 2.000 19.925 0.125 20.250 0.04 
j5 f11 2.000 20.750 0.375 21.250 0.04 
j5 f12 2.000 22.875 0.175 23.250 0.04 
j6 f1 2.640 11.675 1.025 13.000 0.04 
j7 f1 8.000 0.025 1.925 2.750 0.04 
j7 f2 8.000 2.625 1.875 5.000 0.04 
j7 f3 8.000 4.675 2.200 7.250 0.04 
j7 f4 8.000 6.900 0.275 7.500 0.04 
j7 f5 8.000 8.875 0.275 9.500 0.04 
j7 f6 8.000 9.750 0.300 10.250 0.04 
j7 f7 8.000 11.925 0.350 12.500 0.04 
j7 f8 8.000 14.525 0.125 15.000 0.04 
j7 f9 8.000 16.700 0.313 17.250 0.04 
j7 f10 8.000 18.625 0.188 19.000 0.04 
j7 f11 8.000 20.675 0.313 21.250 0.04 
j7 f12 8.000 21.800 0.088 22.750 0.04 
j8 f1 0.400 12.650 1.100 14.250 0.02 
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Energy 
consumer j 

Energy 
demand f 

𝐶𝑜𝑛𝑠𝑗,𝑓 

 (kW) 

𝑇𝑠𝑗.𝑓
𝑚𝑖𝑛 

(h) 

Durj,f 
(h) 

𝑇𝑓𝑗.𝑓
𝑚𝑎𝑥 

(h) 

Penalty cost 
(m.u./h) 

j8 f2 0.400 16.250 1.525 18.250 0.02 
j8 f3 0.400 20.700 1.375 22.750 0.02 
j9 f1 0.240 16.725 1.400 18.500 0.02 
j9 f2 0.240 20.525 1.575 23.000 0.02 

j10 f1 0.240 16.700 1.525 18.750 0.02 
j10 f2 0.240 20.650 1.400 22.750 0.02 
j11 f1 12.000 16.625 1.425 19.250 0.02 
j12 f1 2.000 20.625 1.125 22.250 0.02 
j13 f1 8.000 16.125 1.375 18.000 0.02 
j14 f1 7.000 7.250 8.900 16.750 0.02 
j15 f1 7.000 7.425 6.000 15.750 0.02 
j16 f1 7.000 7.700 7.600 16.250 0.02 
j17 f1 2.000 7.225 0.250 7.750 0.02 
j17 f2 2.000 7.750 0.300 8.250 0.02 
j17 f3 2.000 8.225 0.600 9.250 0.02 
j17 f4 2.000 13.550 0.250 14.500 0.02 
j17 f5 2.000 16.550 0.438 17.500 0.02 
j17 f6 2.000 20.700 0.250 21.000 0.02 
j17 f7 2.000 21.000 0.175 21.750 0.02 
j17 f8 2.000 22.200 0.125 22.750 0.02 
j17 f9 2.000 23.225 0.188 23.500 0.02 
j18 f1 7.500 0.100 0.750 1.500 0.02 
j19 f1 1.500 13.525 1.550 16.250 0.02 
j19 f2 1.500 18.725 1.975 21.000 0.02 
j20 f1 0.240 7.025 0.150 7.750 0.004 
j20 f2 0.240 13.000 0.250 13.500 0.004 
j20 f3 0.240 16.525 0.250 17.250 0.004 
j20 f4 0.240 19.325 0.175 19.750 0.004 
j21 f1 0.350 16.600 0.925 18.000 0.004 
j21 f2 0.350 19.375 1.000 20.500 0.004 
j22 f1 5.000 18.050 1.200 20.750 0.004 
j22 f2 5.000 20.625 2.000 23.750 0.004 
j23 f1 10.000 14.850 0.350 16.750 0.004 
j24 f1 20.000 6.775 0.200 7.500 0.004 
j24 f2 20.000 7.750 0.250 10.000 0.004 
j25 f1 4.000 18.125 0.975 19.750 0.004 
j26 f1 0.192 17.775 0.375 18.750 0.004 
j27 f1 0.440 16.575 0.313 17.500 0.004 
j28 f1 0.660 16.725 0.300 17.500 0.004 
j29 f1 4.000 13.675 1.400 17.000 0.004 
j29 f2 4.000 20.750 1.850 23.500 0.004 
j30 f1 0.200 18.425 1.000 19.750 0.004 
j31 f1 1.500 20.575 2.050 23.750 0.004 
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Chapter 5. Reactive scheduling for 
uncertainty management 

Chapter 4 describes a methodology to manage simultaneously production and 

demand under deterministic conditions. However, the decision making process associated 

becomes more complex as the model considers eventual variabilities within the process. 

This fact involves that the complexity in the decision making process arises by the need to 

consider a certain degree of uncertainty in the models used to forecast the events that 

should be considered. Many published works in this area explicitly addressed the problem 

associated with uncertainty in the available data.  

This chapter continues the development of optimization-based scheduling 

strategies for the coordination of production networks started in the previous section. The 

main novelty there (the simultaneous management of production and demand) is now 

integrated within a reactive and/or proactive scheduling approach to deal with the presence 

of uncertainty associated to production and consumption. Delays in the nominal demands 

are still accepted under associated penalty costs to tackle flexible and fluctuating demand 

profiles. 

This methodology is again applied to a case study based on a microgrid structure 

studied consists of renewable energy generators and energy storage units that alleviate 

the main drawback of such systems which is the mismatch between energy production and 

demand. Consequently, a MILP formulation is presented and used in a stochastic rolling 

horizon scheme that periodically updates input data information. 

5.1. Introduction 

The operations management of production processes is affected by several types 

of uncertainty, such as demand variations. Therefore, the uncertainty must be consider in 

order to ensure the generation of feasible solutions of good quality and practical interest. 

The decision making process become more complex when the consideration of different 

sources of uncertainty in the models is essential to ensure the quality of the solution or 

even its practical feasibility. Different types of uncertainty sources can be found, including: 
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(i) External sources, including uncertainty in demand, prices and availability of 

resources. 

(ii) Internal sources, like fluctuations in process parameters. 

(iii) Other sources, such as measurements errors or strikes. 

The approaches to address scheduling problems under uncertainty could be 

classified into reactive and proactive. On one hand, reactive approaches focus on 

modifying a nominal schedule obtained by a deterministic formulation in order to adjust it 

to different alterations, modifications or updated system data. On the other hand, 

proactive approaches are based on the consideration of all possible cases, and finding a 

good solution for all these cases. These approaches have the advantage that a feasible 

solution is found for all considered scenarios. However, this solution may be too 

conservative, since the model must take into account all the possibilities even the ones that 

do not occur eventually. The most broadly used proactive approaches are stochastic 

programming (Shapiro et al., 2013) and robust optimization (Li et al., 2011). 

In this chapter, a discrete time MILP mathematical formulation is presented to 

cope with the underlying uncertainty through a rolling horizon approach with the purpose 

to optimally manage a SC (i.e., schedule the production and consumption). This approach 

will allow to update all input parameters and to react to any variation from the nominal or 

expected conditions. One of the main elements for the optimization of the SC operation 

problem is scheduling. But the term scheduling actually embraces several decisions 

(degrees of freedom), as unit assignment or timing decisions. The resulting optimization 

models may be different in terms of their capacity to manage a generalized SC network 

structure, their capacity to manage several technical constraints, and also the way in which 

the different types of uncertainty are addressed in the problem of interest. This 

chapter focuses on this last point. This approach considers: a prediction horizon, in which 

all the uncertain parameters related to this time horizon are assumed to be known with 

certainty, due to the fact that the system under study receives feedback related to the 

unknown parameters, and a control horizon, where the decisions of the optimization for the 

prediction horizon are applied. Although the use of rolling horizon strategies to scheduling 

problems in uncertain scenarios is well-known, its application to SCs and also the 

exploitation of the demand side flexibility to improve the matching between production and 

demand constitute a challenge in this area. For this reason, this chapter emphasizes on 

the simultaneous optimization of production and demand side management as a means for 

improved decision making of scheduling problems in supply chains. 
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5.2. Problem statement 

As in Chapter 4, the system under study consists of a set of interconnected 

elements (i.e., producers/generators, storages, consumptions) as well as a set of decisions 

(when, where, who, how much) that define a managerial problem (resource allocation and 

timing). Unlike the Chapter 4, the problem is formulated under uncertain conditions. 

The proposed formulation takes into account not only the production and storage 

levels to be managed by the supply chain, but also the possibility to modify the timing of 

any consumption within a certain time window, if this is considered acceptable. The 

proposed formulation contemplates that the consumption can take place within the supply 

chain as well as sales to external markets. Costs involved in the process are considered, 

including production and storage costs, as well as penalty costs in case of deviations from 

the consumers’ target, in order to maximize the profit. The mathematical model includes 

both the balance constraints required to describe the flows (generation, storage and 

consumption), and the constraints associated to the equipment and technologies involved 

in the supply chain. Consequently, the problem under study is described in terms of the 

following items: 

(i) A given scheduling horizon 𝑆𝐻, which is divided into a number of equal-size 

time intervals 𝑡𝑇. Also, a given Prediction Horizon 𝑃𝐻 and a Control 

Horizon 𝐶𝐻. 

(ii) A set of producers/generators 𝑖𝐼, characterized by a minimum and 

maximum production capacity, 𝑃𝑖,𝑡
𝑚𝑖𝑛 and 𝑃𝑖,𝑡

𝑚𝑎𝑥, and a given operational cost 

𝑐𝑝𝑟𝑜𝑖,𝑡. 

(iii) A set of storage systems 𝑘𝐾, having a minimum and a maximum storage 

capacity, 𝑆𝐸𝑘,𝑡
𝑚𝑖𝑛 and 𝑆𝐸𝑘,𝑡

𝑚𝑎𝑥, and cost 𝑐𝑠𝑡𝑜𝑘,𝑡. 

(iv) A set of products, materials, resources or utilities 𝑚𝑀. Notice that although 

this term can be referred to different items, in order to abbreviate the 

explanation, only the term product will be used for this set. 

(v) A set of demands, given by the amount of requirements related to different 

consumption tasks 𝑗𝑓, where 𝑓𝐹𝑗 denotes the number of times that a 

consumer 𝑗 can be active. For any consumption, its duration 𝐷𝑢𝑟0,𝑗,𝑓 and a 

target starting time 𝑇𝑠𝑗,𝑓
𝑚𝑖𝑛 are provided, although consumption tasks can be 

delayed within certain time limits generating a penalty cost 𝑐𝑝𝑒𝑛𝑗,𝑓.  

(vi) All consumption tasks which might be active during each iteration of the 

rolling horizon approach are included in the dynamic set 𝐹𝑗𝑅𝐻. 

(vii) A given set of external markets 𝑟𝑅, to sell the produced 

materials/resources. 
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The proposed reactive scheduling problem has been introduced into an iterative 

approach based on a rolling horizon framework (see Chapter 3.5.3), which allows to upload 

or modify the different parameters related to the uncertainty, including both internal and 

external variability. As previously mentioned (Chapter 3.5.3), the solution obtained in each 

prediction horizon is expected to be optimal for this period of time. However, this solution 

can be suboptimal since future information outside the current prediction horizon is not 

considered. Hence, the length of the prediction horizon, which depends on the 

characteristics of each problem, must be adequate to guarantee high quality in the results. 

Thus, the main decisions to be made in order to maximize the profit of the supply 

chain, are: 

(i) The production level 𝑃𝑡 to be produced (or purchased) in each time interval 

𝑡. 

(ii) The producers/generators that are in operation 𝑋𝑖,𝑡 in each time interval 𝑡. 

(iii) The storage level 𝑆𝐸𝑘,𝑡 during time interval 𝑡. 

(iv) The specific (nominal) time to execute a consumption. 

(v) The amount of materials/resources 𝑃𝑔𝑟,𝑡 to be sold to the external market 𝑟 

in each time interval 𝑡. 

It is worth noting that the presented formulation is based on a discrete time 

representation, in which the scheduling horizon is divided in a finite number of identical 

time intervals. This representation of time forces the tasks to start at the beginning of each 

time interval. The computational time to solve discrete time models depends on the size of 

the problem, which strongly depends on the number of time intervals of the prediction 

horizon 𝑃𝐻. The length of the time interval depends on the characteristics of the problem 

under consideration, since long time intervals could lead to suboptimal solutions, and short 

time intervals could imply an unaffordable computational effort to reach the optimal 

solution. 

 

5.3. Mathematical formulation 

The discrete time mathematical formulation proposed in Chapter 4 is extended to 

incorporate the rolling horizon approach within the formulation, which introduces equations 

that allow to solve the problem iteratively. Despite the similarities with the mathematical 

model explained in Chapter 4, the full mathematical formulation is detailed, in order to avoid 

any misunderstood. 
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The constraints associated to sequencing, allocating of consumptions and 

resources, and distribution of a multi-product supply chain are next presented in the 

following discrete time and hybrid time MILP formulations.  

Eq. (5.1) establishes a material balance, considering the raw material and its 

transformation to products 𝑚, by considering a conversion degree 𝜌𝑚 between raw 

materials and products. Although the transformation of raw material are considered, the 

remaining equations are formulated for situations in which their transformation takes place 

or not, in order to generalise the proposed formulation. One of the limitations of this 

formulation is that the duration of the processing time 𝑇𝑝𝑚 must be lower to the duration of 

the prediction horizon, which is the common situation, since the duration of the production 

horizon must be long enough to guarantee quality solutions. Production bounds for every 

producer/generator 𝑖 (including material/resource purchases) are specified by eq. (5.2). For 

each source 𝑖 of product 𝑚 and time interval 𝑡 included in the prediction horizon the binary 

variable 𝑋𝑖,𝑚,𝑡 indicates if this source is being used or not. Thus, the total amount of product 

𝑚 produced (or purchased) at each interval 𝑡 is given by eq. (5.3):  

∑ 𝑃𝑖,𝑚,𝑡−𝑇𝑝𝑚

𝑚∈𝑅𝑀

= 𝜌𝑚 ∙ ∑ 𝑃𝑖,𝑚,𝑡

𝑚∈𝑃𝑅

 ∀𝑖, 𝑡 𝜖 𝑇𝑅𝐻 (5.1) 

𝑃𝑖,𝑚,𝑡
𝑚𝑖𝑛 · 𝑋𝑖,𝑚,𝑡 ≤ 𝑃𝑖,𝑚,𝑡 ≤ 𝑃𝑖,𝑚,𝑡

𝑚𝑎𝑥 · 𝑋𝑖,𝑚,𝑡 ∀𝑖, 𝑚, 𝑡 𝜖 𝑇𝑅𝐻 (5.2) 

𝑃𝑇𝑚,𝑡 = ∑ 𝑃𝑖,𝑚,𝑡

𝑖∈𝐼

 ∀𝑚, 𝑡 𝜖 𝑇𝑅𝐻 (5.3) 

The amount of product 𝑚 in each storage 𝑘 at each time interval 𝑡 is bounded 

within a minimum value and a maximum value, which corresponds to the full storage level, 

as given by eq. (5.4). Eq. (5.5) represents the balance at a specific storage system and 

time for each product 𝑚. This equation considers the storage level 𝑆𝐸𝑘,𝑚,𝑡, the requirements 

covered by the storage 𝑆𝑃𝑘,𝑡, the supply flows arriving to the storage 𝐿𝑑𝑘,𝑚,𝑡 and the input 

and output efficiency of the storage system . The maximum level of flow arriving to the 

storage system 𝑘 is bounded by eq. (5.6). Also, material/resource constraints related to the 

charge and discharge of the storage systems must be considered. Thus, eq. (5.7) indicates 

that the storage level variation in each storage 𝑘 at each time interval 𝑡 is bounded by a 

maximum variation level. 

𝑆𝐸𝑘,𝑚,𝑡
𝑚𝑖𝑛 ≤ 𝑆𝐸𝑘,𝑚,𝑡 ≤ 𝑆𝐸𝑘,𝑚,𝑡

𝑚𝑎𝑥  ∀𝑘, 𝑚, 𝑡 𝜖 𝑇𝑅𝐻 (5.4) 

𝑆𝐸𝑘,𝑚,𝑡 = 𝑆𝐸𝑘,𝑚,𝑡−1 + 
𝑘,𝑚
𝑖𝑛 ∙ 𝐿𝑑𝑘,𝑚,𝑡 −

𝑆𝑃𝑘,𝑚,𝑡


𝑘,𝑚
𝑜𝑢𝑡

 
∀𝑘, 𝑚, 𝑡 𝜖 𝑇𝑅𝐻 (5.5) 
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0 ≤ ∑ 𝐿𝑑𝑘,𝑚,𝑡

𝑘∈𝐾

≤ 𝑃𝑇𝑚,𝑡 ∙ 𝐷𝑇 ∀𝑚, 𝑡 𝜖 𝑇𝑅𝐻 (5.6) 

−𝛼𝑘,𝑚 ∙ 𝑆𝐸𝑘,𝑚,𝑡
𝑚𝑎𝑥 ≤ 𝑆𝐸𝑘,𝑚,𝑡 − 𝑆𝐸𝑘,𝑚,𝑡−1 ≤ 𝛼𝑘,𝑚 ∙ 𝑆𝐸𝑘,𝑚,𝑡

𝑚𝑎𝑥  ∀𝑘, 𝑚, 𝑡 𝜖 𝑇𝑅𝐻 (5.7) 

The proposed mathematical formulation allows to start the consumption tasks 

within a time window. Thus, the demand side management involves the determination of 

the starting time of each consumption 𝑗𝑓 of product 𝑚. Hence, some constraints are 

required regarding the time window within consumers 𝑗 are allowed to consume for the 𝑓-

th time. According to eq. (5.8), the starting time is bounded by a minimum (target) and a 

maximum initial time. Moreover, the final time of each consumption task 𝑗𝑓 is given by the 

starting time plus its duration, according to eq. (5.9). 

𝑇𝑠𝑗,𝑓,𝑚
𝑚𝑖𝑛 ≤ 𝑇𝑠𝑗,𝑓,𝑚 ≤ 𝑇𝑠𝑗,𝑓,𝑚

𝑚𝑎𝑥  ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑚 (5.8) 

𝑇𝑓𝑗,𝑓,𝑚 = 𝑇𝑠𝑗,𝑓,𝑚 + 𝐷𝑢𝑟𝑗,𝑓,𝑚 ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑚 (5.9) 

The binary variable 𝑌𝑗,𝑓,𝑚,𝑡 is active (i.e., equal to 1) when the consumption 𝑗𝑓 of 

product 𝑚 starts at time interval 𝑡. Accordingly, 𝑍𝑗,𝑓,𝑚,𝑡 is active if its consumption finishes 

its consumption at time interval 𝑡. These logical restrictions can be reformulated as a set of 

Big-M constraints, given by eq. (5.10)-(5.13): 

𝑇𝑠𝑗,𝑓,𝑚 ≥ 𝑇𝑡     − 𝑀 ∙ (1 − 𝑌𝑗,𝑓,𝑚,𝑡) ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑚, 𝑡 𝜖 𝑇𝑅𝐻 (5.10) 

𝑇𝑠𝑗,𝑓,𝑚 ≤ 𝑇𝑡+1 − 𝑀 ∙ (1 − 𝑌𝑗,𝑓,𝑚,𝑡) ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑚, 𝑡 𝜖 𝑇𝑅𝐻 (5.11) 

𝑇𝑓𝑗,𝑓,𝑚 ≥ 𝑇𝑡     − 𝑀 ∙ (1 − 𝑍𝑗,𝑓,𝑚,𝑡) ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑚, 𝑡 𝜖 𝑇𝑅𝐻 (5.12) 

𝑇𝑓𝑗,𝑓,𝑚 ≤ 𝑇𝑡+1 − 𝑀 ∙ (1 − 𝑍𝑗,𝑓,𝑚,𝑡) ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑚, 𝑡 𝜖 𝑇𝑅𝐻 (5.13) 

Furthermore, any consumption of a given consumer cannot overlap in the same 

unit time: 

𝑇𝑓𝑗,𝑓,𝑚 ≤ 𝑇𝑠𝑗,𝑓′,𝑚 ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑓′ ∈ 𝐹𝑗𝑅𝐻, 𝑓 < 𝑓 ′, 𝑚 (5.14) 

Moreover, eq. (5.15) and (5.16) ensure a unique starting time for consumption 𝑗𝑓. 

The binary variable 𝑌𝑗,𝑓,𝑚,𝑡 determines if consumption task 𝑗𝑓 starts during the current time 

interval included in the prediction horizon, and 𝑌̂𝑗,𝑓,𝑚 determines if this consumption starts 

outside this time interval, forcing that all consumptions must start in the scheduling horizon. 
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In the same way, eq. (5.17) and (5.18) determine the final time for consumption task 𝑗𝑓. 

Also, eq. (5.19) establishes when each consumption task 𝑗𝑓 is active at time 𝑡. 

∑ 𝑌𝑗,𝑓,𝑚,𝑡

𝑡∈𝑇
𝑇𝑡≤𝑇𝑠𝑗,𝑓

𝑚𝑎𝑥

≤ 1 ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑚 (5.15) 

𝑌̂𝑗,𝑓,𝑚 + ∑ 𝑌𝑗,𝑓,𝑚,𝑡

𝑡∈𝑇𝑅𝐻

= 1 ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑚 (5.16) 

∑ 𝑍𝑗,𝑓,𝑚,𝑡

𝑡∈𝑇
𝑇𝑡≤𝑇𝑓𝑗,𝑓,𝑚

𝑚𝑎𝑥

≤ 1 ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑚 (5.17) 

𝑍̂𝑗,𝑓,𝑚 + ∑ 𝑍𝑗,𝑓,𝑚,𝑡

𝑡∈𝑇𝑅𝐻

= 1 ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑚 (5.18) 

𝑊𝑗,𝑓,𝑚,𝑡 = 𝑌̂𝑗,𝑓,𝑚 + ∑ 𝑌𝑗,𝑓,𝑚,𝑡 ′

𝑡´∈𝑇𝑅𝐻
𝑡≥𝑡´

− 𝑍̂𝑗,𝑓,𝑚 − ∑ 𝑍𝑗,𝑓,𝑚,𝑡 ′

𝑡´∈𝑇𝑅𝐻
𝑡>𝑡´

 ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑚, 𝑡 ∈ 𝑇𝑅𝐻 (5.19) 

The total demand of the supply chain at time interval 𝑡, determined by all the active 

consumption tasks 𝑗𝑓 of at this time interval 𝑡, is given by eq. (5.20). The second term of 

this equation determines the exact consumption for those time intervals in which the 

consumption will not take place during the overall time interval. 

𝐷𝑒𝑚𝑚,𝑡 = ∑ ∑ 𝐶𝑜𝑛𝑠𝑗,𝑓,𝑚 ∙ 𝐷𝑇 · [𝑊𝑗,𝑓,𝑚,𝑡 − 𝑍𝑗,𝑓,𝑚,𝑡 ∙ (𝐷𝑢𝑟̅̅ ̅̅
𝑗̅,𝑓,𝑚 − 𝐷𝑢𝑟𝑗,𝑓,𝑚)]

𝑓∈𝐹𝑗𝑗∈𝐽

 ∀𝑚, 𝑡 ∈ 𝑇𝑅𝐻 (5.20) 

Eq. (5.21) establishes the overall balance of the supply chain, considering the 

production, the consumption, the charge and discharge of the storage unit and the sales to 

external markets 𝑟. 

∑ 𝑆𝑃𝑘,𝑚,𝑡

𝑘∈𝐾

+ 𝑃𝑇𝑚,𝑡 ∙ 𝐷𝑇 − 𝐷𝑒𝑚𝑚,𝑡 − ∑ 𝐿𝑑𝑘,𝑚,𝑡

𝑘∈𝐾

− ∑ 𝑃𝑔𝑟,𝑚,𝑡 ∙ 𝐷𝑇

𝑟∈𝑅

= 0 ∀𝑚, 𝑡 ∈ 𝑇𝑅𝐻 (5.21) 

Hence, economic aspects related to the management of the supply chain are 

studied, taking into account production, storage and penalty costs. The production cost is 

calculated in eq. (5.22) as the amount of the costs associated to each producer/generator, 

given by the unitary production cost multiplied by the units produced. The storage cost for 

each interval 𝑡 is the amount of costs associated to each period, which are the same as 

the unitary storage cost multiplied by the storage, according to eq. (5.23). The penalty cost 

is determined as a function of the delay in satisfying each demand, and given by eq. (5.24). 
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Also, eq. (5.25) determines the transport cost, taking into account the amount of material 

and the distance between production and markets. 

The total operating cost of the supply chain is given by eq. (5.26), which takes into 

account the previous costs. 

𝐶𝑜𝑠𝑡𝑃𝑟𝑜 =  ∑ ∑ ∑ 𝑐𝑝𝑟𝑜𝑖,𝑚,𝑡 · 𝑃𝑖,𝑚,𝑡 ∙ 𝐷𝑇

𝑖∈𝐼𝑚∈𝑀𝑡∈𝑇𝑅𝐻

  (5.22) 

𝐶𝑜𝑠𝑡𝑆𝑡𝑜 = ∑ ∑ ∑ 𝑐𝑠𝑡𝑜𝑘,𝑚,𝑡 · 𝑆𝐸𝑘,𝑚,𝑡

𝑘∈𝐾𝑚∈𝑀𝑡∈𝑇𝑅𝐻

  (5.23) 

𝐶𝑜𝑠𝑡𝑃𝑒𝑛 = ∑ ∑ ∑ 𝑐𝑝𝑒𝑛𝑗,𝑓,𝑚 · (𝑇𝑠𝑗,𝑓,𝑚 − 𝑇𝑖𝑛𝑗,𝑓,𝑚)

𝑓∈𝐹𝑗𝑅𝐻𝑚∈𝑀𝑗∈𝐽

  (5.24) 

𝐶𝑜𝑠𝑡𝑇𝑟𝑝 = ∑ ∑ ∑ 𝑐𝑡𝑟𝑝𝑖,𝑗,𝑚 · 𝑃𝑖,𝑚,𝑡 ∙ 𝑑𝑖,𝑗

𝑖∈𝐼𝑗∈𝐽𝑚∈𝑀

+ ∑ ∑ ∑ 𝑐𝑡𝑟𝑝𝑖,𝑟,𝑚 · 𝑃𝑖,𝑚,𝑡 ∙ 𝑑𝑖,𝑟

𝑖∈𝐼𝑟∈𝑅𝑚∈𝑀

  (5.25) 

𝐶𝑜𝑠𝑡𝑠 = 𝐶𝑜𝑠𝑡𝑃𝑟𝑜 + 𝐶𝑜𝑠𝑡𝑆𝑡𝑜 + 𝐶𝑜𝑠𝑡𝑃𝑒𝑛 + 𝐶𝑜𝑠𝑡𝑇𝑟𝑝  (5.26) 

Also, revenues to external markets 𝑟 have been taken into account. Thus, incomes 

are given by eq. (5.27) considering the product 𝑚 sold and its selling price to each external 

market. 

𝐼𝑛𝑐𝑜𝑚𝑒𝑠 =  ∑ ∑ ∑ 𝑃𝑟𝑖𝑐𝑒𝑟,𝑚,𝑡 · 𝑃𝑔𝑟,𝑚,𝑡 ∙ 𝐷𝑇

𝑟∈𝑅𝑚∈𝑀𝑡∈𝑇𝑅𝐻

  (5.27) 

The profit of the supply chain (which is the objective function), subject to the 

previous constraints, is calculated considering incomes and costs in eq. (5.28).  

𝑃𝑟𝑜𝑓𝑖𝑡 =  𝐼𝑛𝑐𝑜𝑚𝑒𝑠 − 𝐶𝑜𝑠𝑡𝑠  (5.28) 

In order to use the proposed model in a rolling horizon scheme, the following set 

of variables and equations are used to link past decisions with the current prediction 

horizon. Minimum and maximum starting times for these consumptions at each iteration 

are given by eq. (5.29) and (5.30), considering the minimum/maximum starting time of the 

previous iteration and the duration of the control horizon (𝐶𝐻). The duration of the 

consumptions is also updated at each iteration, as indicated by eq. (5.31). And finally, the 

storage level of the previous control horizon is linked to the initial storage level of the current 

prediction horizon by eq. (5.32). The optimization problem will be iteratively solved 

according to the rolling horizon approach. As previously mentioned, the introduction of this 
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reactive approach will be used to adjust all input parameters to the current available 

information.  

𝑇𝑠𝑗,𝑓,𝑚
𝑚𝑖𝑛  = 𝑇𝑠0,𝑗,𝑓,𝑚

𝑚𝑖𝑛 − 𝐶𝐻 ∙ 𝑖𝑡 ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑚 (5.29) 

𝑇𝑠𝑗,𝑓,𝑚
𝑚𝑎𝑥 = 𝑇𝑠0,𝑗,𝑓,𝑚

𝑚𝑎𝑥 − 𝐶𝐻 ∙ 𝑖𝑡 ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑚 (5.30) 

𝐷𝑢𝑟𝑗,𝑓,𝑚 = 𝐷𝑢𝑟0,𝑗,𝑓,𝑚 −  (𝐶𝐻 ∙ 𝑖𝑡 − 𝑇𝑠𝑗,𝑓,𝑚) ∙ 𝑌̂𝑗,𝑓 ∀𝑗, 𝑓 ∈ 𝐹𝑗𝑅𝐻, 𝑚 (5.31) 

𝑆𝐸𝑘,𝑚,𝑡−1 = 𝑆𝐸̂𝑘,𝑚,𝑡 ′ ∀𝑘, 𝑚, 𝑡 ∈ 𝑇𝑅𝐻, 𝑡′ = 𝑇𝑡 ∙ 𝐷𝑇 (5.32) 

This mathematical formulation involves a MILP model. Moreover, the discrete time 

representation has been chosen instead of the hybrid or the continuous time formulation. 

Although the optimal solution could be improved by the use of hybrid or continuous time 

representations, the resulting models involve more computational time. Also, the proposed 

model does not consider the presence of fixed costs associated to the investment and 

installation of producers/generators, since the design of the supply chain has not been 

taken into account and only short-term decisions are addressed. 

 

5.4. Case study 

The proposed MILP formulation have been applied to a case study, based on a 

microgrid. The same values of the input parameters considered in Chapter 4 have been 

taken into account. The only difference is the value of the starting time of each 

consumption, since only discrete values are considered. Thus, only delays associated to 

the decision making process are going to be obtained. In other words, there are no delays 

associated to the granularity of the model. The values of the staring times of each 

consumption are detailed in Table 5.1. 

The underlying scheduling problem includes energy production, storage and 

consumption tasks to be optimized. Data and decisions related to energy production are 

given for every 15 min, according to energy demand and the current weather forecast. Also, 

decisions related to energy demand are considered for every 15 min, as well as production 

decisions. The total scheduling horizon considered is 24 h, and the duration of each time 

interval is 15 min (i.e., 96 time intervals in total). Prediction Horizons (𝑃𝐻𝑠) of 5, 10, 20 and 

30 time intervals have been considered. It has been considered that input data (e.g., energy 

demands, weather conditions, etc.) are updated at the beginning of each time interval, so 

the control horizon has been set also equal to 15 min (i.e., one time interval). 
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Table 5.1. Starting times. 

Energy consumer j Energy demand f 𝑇𝑠𝑗.𝑓
𝑚𝑖𝑛 (h) 

j1 f1 0.000 
j1 f2 0.250 
j1 f3 0.500 
j1 f4 0.750 
j1 f5 1.000 
j1 f6 1.250 
j1 f7 1.500 
j1 f8 1.750 
j1 f9 2.000 
j1 f10 2.250 
j1 f11 2.500 
j1 f12 2.750 
j1 f13 3.000 
j1 f14 3.250 
j1 f15 3.500 
j1 f16 3.750 
j1 f17 4.000 
j1 f18 4.250 
j1 f19 4.500 
j1 f20 4.750 
j1 f21 5.000 
j1 f22 5.250 
j1 f23 5.500 
j1 f24 5.750 
j1 f25 6.000 
j1 f26 6.250 
j1 f27 6.500 
j1 f28 6.750 
j1 f29 7.000 
j1 f30 7.250 
j1 f31 7.500 
j1 f32 7.750 
j1 f33 8.000 
j1 f34 8.250 
j1 f35 8.500 
j1 f36 8.750 
j1 f37 9.000 
j1 f38 9.250 
j1 f39 9.500 
j1 f40 9.750 
j1 f41 10.000 
j1 f42 10.250 
j1 f43 10.500 
j1 f44 10.750 
j1 f45 11.000 
j1 f46 11.250 
j1 f47 11.500 
j1 f48 11.750 
j1 f49 12.000 
j1 f50 12.250 
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Energy consumer j Energy demand f 𝑇𝑠𝑗.𝑓
𝑚𝑖𝑛 (h) 

j1 f51 12.500 
j1 f52 12.750 
j1 f53 13.000 
j1 f54 13.250 
j1 f55 13.500 
j1 f56 13.750 
j1 f57 14.000 
j1 f58 14.250 
j1 f59 14.500 
j1 f60 14.750 
j1 f61 15.000 
j1 f62 15.250 
j1 f63 15.500 
j1 f64 15.750 
j1 f65 16.000 
j1 f66 16.250 
j1 f67 16.500 
j1 f68 16.750 
j1 f69 17.000 
j1 f70 17.250 
j1 f71 17.500 
j1 f72 17.750 
j1 f73 18.000 
j1 f74 18.250 
j1 f75 18.500 
j1 f76 18.750 
j1 f77 19.000 
j1 f78 19.250 
j1 f79 19.500 
j1 f80 19.750 
j1 f81 20.000 
j1 f82 20.250 
j1 f83 20.500 
j1 f84 20.750 
j1 f85 21.000 
j1 f86 21.250 
j1 f87 21.500 
j1 f88 21.750 
j1 f89 22.000 
j1 f90 22.250 
j1 f91 22.500 
j1 f92 22.750 
j1 f93 23.000 
j1 f94 23.250 
j1 f95 23.500 
j1 f96 23.750 
j2 f1 16.675 
j3 f1 17.725 
j4 f1 6.675 
j4 f2 7.250 
j4 f3 12.575 
j4 f4 13.750 
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Energy consumer j Energy demand f 𝑇𝑠𝑗.𝑓
𝑚𝑖𝑛 (h) 

j4 f5 20.525 
j4 f6 21.750 
j5 f1 0.525 
j5 f2 3.925 
j5 f3 5.000 
j5 f4 7.625 
j5 f5 8.725 
j5 f6 10.825 
j5 f7 11.950 
j5 f8 13.575 
j5 f9 17.000 
j5 f10 19.925 
j5 f11 20.750 
j5 f12 22.875 
j6 f1 11.675 
j7 f1 0.025 
j7 f2 2.625 
j7 f3 4.675 
j7 f4 6.900 
j7 f5 8.875 
j7 f6 9.750 
j7 f7 11.925 
j7 f8 14.525 
j7 f9 16.700 
j7 f10 18.625 
j7 f11 20.675 
j7 f12 21.800 
j8 f1 12.650 
j8 f2 16.250 
j8 f3 20.700 
j9 f1 16.725 
j9 f2 20.525 
j10 f1 16.700 
j10 f2 20.650 
j11 f1 16.625 
j12 f1 20.625 
j13 f1 16.125 
j14 f1 7.250 
j15 f1 7.425 
j16 f1 7.700 
j17 f1 7.225 
j17 f2 7.750 
j17 f3 8.225 
j17 f4 13.550 
j17 f5 16.550 
j17 f6 20.700 
j17 f7 21.000 
j17 f8 22.200 
j17 f9 23.225 
j18 f1 0.100 
j19 f1 13.525 
j19 f2 18.725 
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Energy consumer j Energy demand f 𝑇𝑠𝑗.𝑓
𝑚𝑖𝑛 (h) 

j20 f1 7.025 
j20 f2 13.000 
j20 f3 16.525 
j20 f4 19.325 
j21 f1 16.600 
j21 f2 19.375 
j22 f1 18.050 
j22 f2 20.625 
j23 f1 14.850 
j24 f1 6.775 
j24 f2 7.750 
j25 f1 18.125 
j26 f1 17.775 
j27 f1 16.575 
j28 f1 16.725 
j29 f1 13.675 
j29 f2 20.750 
j30 f1 18.425 
j31 f1 20.575 

 

5.5. Results 

The resulting MILP model has been implemented in GAMS 24.1 and solved using 

CPLEX 12, to zero optimality in a Pentium Intel® Core™ i7 CPU 2600 @ 3.40 GHz. The 

resolution of the model provides the daily optimal schedule for energy generation and 

consumption in order to maximize the profit of the given microgrid. The rolling horizon 

approach, used to address the presence of uncertainty, has allowed to update input 

information related to weather conditions and consumption durations. Figure 5.1 displays 

the daily schedule for energy production and energy consumptions for a prediction horizon 

of 20 time intervals. Some energy consumption tasks have been delayed (i.e., energy 

demand has right-shifted). According to this figure, the microgrid produce the maximum 

energy capacity from energy renewable sources, in order to satisfy the energy demand and 

to sell this energy to the power grid. The purchases of energy from the power grid are 

required if the use of both renewable energy systems and the energy storage system is not 

enough to meet the energy demand. 

The application of the rolling horizon, in which the problem formulation is solved 

iteratively, can produce constant changes in the expected schedule (Figure 5.2). This is 

caused because the input information is updated and future information is introduced in the 

system. To highlight these changes, only some consumption tasks have been plotted. At 

the beginning, some consumption tasks do not appear in the plot because in the current 

time there is no information related to the mentioned consumptions. 
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Figure 5.1. Daily schedule for energy production, consumption and storage (𝑃𝐻=20). 
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Figure 5.2. Evolution of the energy consumption scheduling for 𝑃𝐻=20 in iterations 54, 55, 56, 57 

and final iteration. 
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Different lengths of the prediction horizon have been considered, in order to 

compare, analyse and highlight the characteristics of the proposed rolling horizon and the 

simultaneous management of energy production and demand. Thus, prediction horizons of 

5, 10, 20 and 30 time intervals has been taken into account. Moreover, the perfect 

information case (𝑃𝐻=96), which corresponds to the situation in which the length of the 

prediction horizon is equal to the length of the scheduling horizon, has been considered. 

In all these situations, the control horizon is equal to one time interval. According 

to the obtained results, longer prediction horizons involve a significant reduction in the use 

of the power grid to satisfy the demand (Figure 5.3), since more future information is 

received to solve the optimization problem. As a consequence, the profit increases for 

longer prediction horizons (Figure 5.4 and Table 5.2). In order to compare how the 

simultaneous energy production and demand management affects the final solution, Table 

5.3 shows the obtained results in the case of managing only the energy production, in which 

energy consumptions cannot be shifted. As expected, the obtained profit decreases in 

comparison with that of the simultaneous management. Also, notice that the values of the 

decision variables are the same for the 𝑃𝐻=96 in comparison with the discrete time model 

formulated in Chapter 4. The difference in the value of the profit is due to the fact that input 

parameters related to the desired staring times are located in the boundaries of time 

intervals. In the previous chapter, this times could be located inside the time interval. 

Table 5.2. Comparison of the obtained results for the scenario 1 (demand side management). 

Unit 𝑃𝐻=5 𝑃𝐻=10 𝑃𝐻=20 𝑃𝐻=30 𝑃𝐻=96 

Profit (m.u.) 3.12 3.17 3.19 3.27 3.30 

Consumed energy (kWh) 359.0 359.0 359.0 359.0 359.0 

Total delays (h) 18.25 12.75 12.75 12.50 11.75 

Energy produced or purchased (kWh) 401.6 398.0 397.8 394.5 391.9 

Energy from photovoltaic panels (kWh) 112.7 112.7 112.7 112.7 112.7 

Energy from wind turbines (kWh) 279.2 279.2 279.2 279.2 279.2 

Energy from power grid (kWh) 9.7 6.1 5.9 2.6 0.0 

Energy from energy storage systems 
(kWh) 

15.4 17.5 16.9 18.0 19.3 

Energy sold to the power grid (kWh) 40.4 35.3 35.3 31.7 28.5 

Energy to load the storage system (kWh) 33.9 21.6 20.8 22.2 24.1 

Energy loses (kWh) 16.2 0.3 0.3 0.3 0.3 
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a) 𝑃𝐻=5

0 2 4 6 8 10 12 14 16 18 20 22 24

0

4

8

12

16

20

24

 

 

P
o
w

e
r 

p
ro

d
u
c
e
d
 [
k
W

]

Time [h]

 Photovoltaic panel

 Wind turbine

 Power grid

 

b) 𝑃𝐻=10 
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c) 𝑃𝐻=20
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d) 𝑃𝐻=30 
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e) 𝑃𝐻=96 (perfect information) 
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f) 𝑃𝐻=96 (perfect information and no 
demand side management) 
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Figure 5.3. Power source in each time period for different 𝑃𝐻 lengths. 
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Figure 5.4. Profit for different 𝑃𝐻𝑠, perfect information and no demand management case. 

Table 5.3. Comparison of the obtained results for the scenario 2 (non-demand side management). 

Unit 𝑃𝐻=5 𝑃𝐻=10 𝑃𝐻=20 𝑃𝐻=30 𝑃𝐻=96 

Profit (m.u.) 2.61 2.62 2.62 2.62 2.62 

Consumed energy (kWh) 359.0 359.0 359.0 359.0 359.0 

Total delays (h) 0.00 0.00 0.00 0.00 0.00 

Energy produced or purchased (kWh) 422.1 420.8 420.8 420.8 420.8 

Energy from photovoltaic panels (kWh) 112.7 112.7 112.7 112.7 112.7 

Energy from wind turbines (kWh) 279.2 279.2 279.2 279.2 279.2 

Energy from power grid (kWh) 30.3 28.9 28.9 28.9 28.9 

Energy from energy storage systems 
(kWh) 

18.2 19.5 19.5 19.5 19.5 

Energy sold to the power grid (kWh) 60.2 58.5 58.5 58.5 58.5 

Energy to load the storage system (kWh) 21.1 22.8 22.8 22.8 22.8 

Energy loses (kWh) 0.1 0.1 0.1 0.1 0.1 

 

-5.5% -3.9% -3.1% -0.8% 

-23.3% 



Reactive scheduling for uncertainty management 

121 
 

Figure 5.5 shows the aggregated objective value for the rolling horizon approach 

under different prediction horizons in comparison with the perfect information case. Not 

surprisingly, as the length of the prediction horizon increases, the total objective is improved 

and closes the gap from the perfect information solution. Shorter prediction horizon involve 

more energy sales to the power grid (Figure 5.6), because there is no information about 

future energy demand, requiring energy purchases from the power grid and more delays 

in the energy consumptions. Model statistics for the proposed model using different lengths 

for the prediction horizon can be found in Table 5.4. 

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

3

4

5

6

 

 

A
g

g
re

g
a

te
d

 p
ro

fi
t 

[m
.u

.]

Time [h]

 Perfect information (PH = 96)

 PH = 30

 PH = 20

 PH = 10

 No demand management (PH = 96)

 

Figure 5.5. Aggregated profit for different 𝑃𝐻s, perfect information and no demand management 

case. 

Table 5.4. Comparison of optimal solution and model statistics. 

Unit 𝑃𝐻=5 𝑃𝐻=10 𝑃𝐻=20 𝑃𝐻=30 𝑃𝐻=96 

Number of iterations 92 87 77 67 1 

Equations per iteration 481 1,216 3,726 8,016 93,604 

Continuous variables per iteration 360 855 2,424 5,004 54,615 

Discrete variables per iteration 80 260 1,001 2,411 33,468 

Computational time per iteration 0.1 0.3 0.3 0.4 0.8 

Relative gap (%) 0.0 0.0 0.0 0.0 0.0 
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Figure 5.6. Energy sales for different 𝑃𝐻s, perfect information and no demand management case. 

Finally, in order to show how the energy production is managed, a variation from 

the initial model was solved. This model variation minimizes the total cost of the microgrid, 

without taking into account possible energy sales. Thus, the objective function will be to 

minimize eq. (5.26) subject to constraints (5.1) to (5.24). This fact explains that in specific 

time intervals, all energy generators can be switched off, in order to match energy 

production and consumption. However, if the energy generator cannot be controlled (i.e., 

if produces, the production corresponds to the maximum power availability for this source), 

the excess of energy will be dissipated to an external load. For example, Figure 5.7 shows 

the schedule of energy production that will be used to satisfy all energy consumptions for 

a prediction horizon equal to 20 time intervals. However, this figure indicates just the power 

used from each energy generator to perform all energy consumption tasks, without taking 

into account energy dissipations. Notice that in this case in contrast to the previous solution 

approach, the energy production does not reach the maximum energy production 

capacity, since only the energy to be consumed or stored is produced. In this case, 

365.8 kWh were produced (30.3% produced from the photovoltaic panel and 69.7% from 

the wind turbine), reducing the energy requirements by 8.0%. 
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Figure 5.7. Schedule of power produced where no sales to the power grid are allowed (𝑃𝐻=20). 

Moreover, the reactive scheduling approach allows updating input parameters to 

react to variations from the nominal/initial plan, including alterations in the power availability 

or in the duration of energy consumptions. This means that this approach is able to 

handle the types of uncertainty associated to the microgrid (i.e., prediction in the wind 

turbine and photovoltaic panel forecasts and energy consumption predictions). For 

instance, Figure 5.8 shows an unexpected scenario in which there is a reduction in the 

power availability as well as an increased duration of some duration consumptions, with 

the objective of maximizing the profit of the microgrid. This variation is due to the 

uncertainty to predict accurately the weather forecast which directly affects the power 

availability. 

The rolling horizon approach allows to react to any eventual alteration from the 

initial conditions. Table 5.5 compares the results for the simultaneous energy production 

and demand management, for 𝑃𝐻=20 and the perfect information case. According to the 

results, energy purchases are required in both cases to satisfy the energy demand. 

However, the use of the rolling horizon approach allows the benefit to be more than 

3% higher compared with the perfect information case. 
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a) Nominal conditions 
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b) Unexpected scenario 
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Figure 5.8. Power availability and target schedule for the nominal conditions scenario and the 

unexpected scenario.  

Table 5.5. Comparison of the obtained results for the demand side management for the unexpected 

scenario. 

Unit 𝑃𝐻=20 𝑃𝐻=96 

Profit (m.u.) 0.47 0.45 

Consumed energy (kWh) 368.6 368.6 

Total delays (h) 12.25 11.75 

Energy produced or purchased (kWh) 405.0 399.4 

Energy from photovoltaic panels (kWh) 112.7 112.7 

Energy from wind turbines (kWh) 269.2 269.2 

Energy from power grid (kWh) 23.0 17.5 

Energy from energy storage systems (kWh) 16.9 19.3 

Energy sold to the power grid (kWh) 34.2 27.0 

Energy to load the storage system and energy loses (kWh) 19.0 23.1 
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5.6. Concluding remarks 

In this chapter, a discrete time MILP formulation applicable to the simultaneous 

optimization of production and demand within a supply chain under uncertain conditions 

has been presented, with the objective of maximizing the profit. The modelling approach 

proves the advantages of managing the demand, by optimizing the management of the 

supply chain, which allows enhancing its flexibility and autonomy. 

A rolling horizon approach has been introduced in the formulation to address the 

presence of uncertainty. As expected, longer prediction horizons favour the generation of 

better solutions, under the assumption of accurate demand predictions. This approach 

allows updating input parameters, in order to react to variations from the nominal schedule, 

which allows to adapt energy production and energy demand to update parameters. 

The proposed approach has been used to solve a case study based on a microgrid 

and also it could be used as the basis for solving further problems with higher complexity 

(i.e., scheduling of an industrial process), by combining a reactive and proactive treatment 

to take into account the presence of uncertainty, as well as the simultaneous consideration 

of different factors (i.e., costs, environmental impact) through the implementation of multi-

objective optimization approaches. Finally, rescheduling actions penalties could be 

included to the proposed optimization framework to avoid major changes in the initial 

schedule after the occurrence of an unexpected event. 

 

5.7. Nomenclature 

Indices and sets 
𝑖  𝐼 Production sources 

𝑗  𝐽 Consumers 

𝑓  𝐹𝑗 Demand included in the overall scheduling horizon 

𝑓  𝐹𝑗𝑅𝐻 Demand included in the current prediction horizon 

𝑘  𝐾 Storage systems 

𝑚  𝑀 Products, materials, utilities or resources (product) 

𝑚  𝑃𝑅 Subset of manufactured products 𝑚 

𝑚  𝑅𝑀 Subset of raw material products 𝑚 

𝑟  𝑅 External markets 

𝑡  𝑇 Time intervals included in the overall scheduling horizon 

𝑡  𝑇𝑅𝐻 Time intervals included in the current prediction horizon 

  
Parameters 

𝐶𝐻 Length of the control horizon 

𝐶𝑜𝑛𝑠𝑗,𝑓,𝑚 Individual consumption 𝑗𝑓 of product 𝑚 

𝑐𝑝𝑒𝑛𝑗,𝑓,𝑚 Penalty cost associated to consumption 𝑗𝑓 of product 𝑚 

𝑐𝑝𝑟𝑜𝑖,𝑚,𝑡 Production (or purchase) cost of product 𝑚 in source 𝑖 at time 𝑡 



Chapter 5 

126 

 

𝑐𝑠𝑡𝑜𝑘,𝑚,𝑡 Storage cost of product 𝑚 in storage system 𝑘 at time 𝑡 

𝑐𝑡𝑟𝑝𝑖,𝑗,𝑚 Transport cost of product 𝑚 from production location 𝑖 to consumer 𝑗 

𝑐𝑡𝑟𝑝𝑖,𝑟,𝑚 Transport cost of product 𝑚 from production location 𝑖 to market 𝑟 

𝐷𝑇 Duration of the time interval 

𝐷𝑢𝑟𝑗,𝑓,𝑚 Remaining time consumption of task 𝑗𝑓 of product 𝑚 in the current prediction 
horizon 

𝐷𝑢𝑟̅̅ ̅̅
𝑗̅,𝑓,𝑚 Round up value of the remaining time consumption of task 𝑗𝑓 of product 𝑚 in 

the current prediction horizon 
𝐷𝑢𝑟0,𝑗,𝑓,𝑚 Duration of consumption 𝑗𝑓 of product 𝑚 in the overall scheduling horizon 

𝑖𝑡 Iteration 

𝑃𝑖,𝑚,𝑡
𝑚𝑖𝑛  Minimum supply of product 𝑚 from source 𝑖 at interval 𝑡 

𝑃𝑖,𝑚,𝑡
𝑚𝑎𝑥 Maximum supply of product 𝑚 from source 𝑖 at interval 𝑡 

𝑃𝐻 Length of the prediction horizon 

𝑃𝑟𝑖𝑐𝑒𝑟,𝑚,𝑡 Price to be sold product 𝑚 to the external market 𝑟 at interval 𝑡 

𝑆𝐸𝑘,𝑚,𝑡
𝑚𝑖𝑛  Minimum storage level of product 𝑚 in storage system 𝑘 at interval 𝑡 

𝑆𝐸𝑘,𝑚,𝑡
𝑚𝑎𝑥  Maximum storage level of product 𝑚 in storage system 𝑘 at interval 𝑡 

𝑆𝐸0𝑘,𝑚,𝑡 Initial storage level of product 𝑚 in system 𝑘 at interval 𝑡 

𝑆𝐻 Length of the scheduling horizon 

𝑇𝑝𝑚 Processing time to obtain product 𝑚 

𝑇𝑠𝑗,𝑓,𝑚
𝑚𝑎𝑥  Maximum initial time of consumption 𝑗𝑓 of product 𝑚 in the current prediction 

horizon 

𝑇𝑠𝑗,𝑓,𝑚
𝑚𝑖𝑛  Target initial time of consumption 𝑗𝑓 of product 𝑚 in the current prediction 

horizon 
𝑇𝑠0,𝑗,𝑓,𝑚

𝑚𝑎𝑥  Maximum initial time of consumption 𝑗𝑓 of product 𝑚 in the overall scheduling 
horizon 

𝑇𝑠0.𝑗,𝑓,𝑚
𝑚𝑖𝑛  Target initial time of consumption 𝑗𝑓 of product 𝑚 in the overall scheduling 

horizon 
𝛼𝑘,𝑚 Percentage of variation of product 𝑚 in storage system 𝑘 

𝜌𝑚 Conversion degree of product 𝑚 


𝑘,𝑚
𝑖𝑛  Charging efficiency of storage system 𝑘 of product 𝑚 


𝑘,𝑚
𝑜𝑢𝑡  Discharging efficiency of storage system 𝑘 of product 𝑚 

  
Continuous and positive variables 

𝐶𝑜𝑠𝑡𝑃𝑒𝑛 Supply chain penalty cost 

𝐶𝑜𝑠𝑡𝑃𝑟𝑜 Supply chain production cost 

𝐶𝑜𝑠𝑡𝑆𝑡𝑜 Supply chain storage cost 

𝐶𝑜𝑠𝑡𝑇𝑟𝑝 Supply chain transport cost 

𝐶𝑜𝑠𝑡𝑠 Supply chain operating cost of the supply chain 

𝐷𝑒𝑚𝑚,𝑡 Total consumption at interval 𝑡 of product 𝑚 

𝐼𝑛𝑐𝑜𝑚𝑒𝑠 Supply chain incomes 

𝐿𝑑𝑘,𝑚,𝑡 Amount of product 𝑚 supplied to load system 𝑘 during interval 𝑡 

𝑃𝑖,𝑚,𝑡 Amount of product 𝑚 supplied from source 𝑖 at interval 𝑡 

𝑃𝑔𝑟,𝑚,𝑡 Amount of product 𝑚 supplied to external market 𝑟 at interval t 

𝑃𝑟𝑜𝑓𝑖𝑡 Total profit along the scheduling horizon (objective function) 

𝑃𝑇𝑚,𝑡 Amount of product 𝑚 supplied at interval 𝑡 

𝑆𝐸𝑘,𝑚,𝑡 Storage level of product 𝑚 in system 𝑘 at the end of the interval 𝑡 

𝑆𝐸̂𝑘,𝑚,𝑡 Linking variable determining the storage level of product 𝑚 in storage system 𝑘 

at the end of interval 𝑡 in the current prediction horizon 
𝑆𝑃𝑘,𝑚,𝑡 Amount of product 𝑚 supplied by storage system 𝑘 during interval 𝑡 

𝑇𝑓𝑗,𝑓,𝑚 Finishing time of consumption 𝑗𝑓 of product 𝑚 
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𝑇𝑠𝑗,𝑓,𝑚 Starting time of consumption 𝑗𝑓 of product 𝑚 

𝑇𝑡 Time corresponding to time interval 𝑡 
  
Binary variables 
𝑋𝑖,𝑚,𝑡 = 1, if production source 𝑖 is used at interval 𝑡 to supply product 𝑚 

𝑌𝑗,𝑓,𝑚,𝑡 = 1, if consumption 𝑗𝑓 of product 𝑚 starts at interval 𝑡 during the current 
prediction horizon 

𝑌̂𝑗,𝑓,𝑚 = 1, if consumption 𝑗𝑓 of product 𝑚 starts outside the current prediction horizon 

𝑍𝑗,𝑓,𝑚,𝑡 = 1, if consumption 𝑗𝑓 of product 𝑚 finishes at interval 𝑡 during the current 
prediction horizon 

𝑍̂𝑗,𝑓,𝑚 = 1, if consumption 𝑗𝑓 of product 𝑚 finishes outside the current prediction 
horizon 

𝑊𝑗,𝑓,𝑚,𝑡 = 1, if consumption 𝑗𝑓 of product 𝑚 is active at interval 𝑡 during the current 
prediction horizon 
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Chapter 6. Integrated management of 
resources in the decision making process 

Chapters 4 and 5 describe the simultaneous management of production and 

demand using different time representations under deterministic and uncertain conditions. 

This chapter extends this holistic point of view in order to consider the management of 

common production resources, which can be external (i.e., materials, energy consumption, 

water management) or internal (i.e., process equipment units). Hence, this chapter 

presents a MINLP formulation to globally address the optimization of the short term use of 

common production resources, either dedicated or shared. This approach considers all 

constraints associated to the production as well as the limitations in the use of resources 

in a general way in a common formulation, instead of using different mathematical 

formulation for each considered resource. Moreover, delays in the nominal demand are 

allowed under associated penalty costs to tackle flexible demand profiles, which provides 

a better adaptation of production and use of resources. A well-known case study is 

presented to test this methodology, which considers the production schedule and the use 

of water and energy as utilities. The obtained results show that this formulation allows to 

determine the global optimum operating conditions in an affordable computational time.  

 

6.1. Introduction 

The need to improve process management efficiency has led to the formulation of 

different mathematical models to solve process scheduling problems. Usually, these 

models consider limitations in common resources availability (Castro et al., 2009). More 

recently, these models have been expanded to take into account broader scopes through 

the supply chain in which the process of interest is embedded, but nowadays the proposed 

solution approaches tackle either the availability or the integration of resources (Seid and 

Majozi, 2013).  

Thus, this chapter addresses the integrated management of production resources, 

either external (i.e., materials, energy consumption, water management) and internal (i.e., 

process equipment units, manpower), within the operation of a production plant, to 

determine the overall production strategy to best fit a specified demand, optimizing the use 
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of these resources through their integration and through the adaptation of their 

consumption to their availability. Some of the most common production resources are water 

and energy. However, the proposed formulation can be applied to manage the use of all 

resources, not only to water or energy. 

The main objectives of managing water and energy systems are to reduce costs, 

to reduce the environmental impact and to better satisfy the water and energy demand in 

terms of time, quality and quantity. For instance, factories use large amounts of process 

water, for example as mass separating agent, reactant, utility or cleaning agent. The 

scarcity, the diverse quality requirements, and the strict discharge policies related to the 

use of water in the industry, motivated by the concern associated to the limitation of this 

natural source, are significant forces to investigate ways to reduce the use of water. This 

reduction in the use of freshwater and the reduction of wastewater generation is possible 

by reusing and recycling water. In the same context, the rational use of energy is essential. 

Energy Systems Engineering involves all the decision making procedures associated to 

energy supply chain from the primary energy source to the final energy delivery to the 

process.  

Regarding these two particular resources, in the framework of production plants, 

the reduction of water and energy consumption is given by the reuse of water and energy 

(i.e., heat integration). Whereas in continuous process the water reuse and heat integration 

are limited by concentration and temperature constraints, the difficulty associated to batch 

process is that also time constraints must be considered. This means that, for example, 

direct water reuse associated to batch cleaning operations requires that all the operations 

involved in the integration must follow very strict time constraints: each one must start just 

immediately after a previous cleaning operations finishes. In the case of semi-continuous 

operations this can be performed only in periods of time in which the cleaning operations 

are simultaneously required.  

Moreover, flexibility in the resources demand is considered, by applying a penalty 

term in the economic objective function. The consideration of this kind of flexibility in the 

product demand would introduce an additional degree of freedom to the management 

problem.  

This objective is met using an extended mathematical formulation of the traditional 

integration approach (pinch analysis) to consider a generic view of common resources, and 

to integrate the availability point of view. The proposed approach is illustrated through its 

application to optimize the batch-size and the sequence of operations of an extended 

version of a multipurpose batch chemical process case study. The results are analysed in 

order to show the main benefits of the proposed approach in front of a less integrated 

management in the use of common resources. 
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Although this chapter is focused on one echelon of the supply chain (i.e., 

production plant), the proposed formulation can be extended to enlarge the scope of the 

problem, taking into account the overall supply chain. 

 

6.2. Problem statement 

The development of a mathematical model to manage this multipurpose batch 

production plant will allow us to optimize its profit. One feature of the presented 

mathematical model is the management of the product demand, by the introduction of a 

flexible profile in the demand, which allows to delay the delivery of final products to the 

customer, as well as the reduction of the environmental impact, since the integrated 

management of all resources (for example, water or energy) may lead to decrease its use. 

The mathematical formulation is described in terms of the following items: 

(i) A given scheduling horizon, which is divided into a number of equal-size time 

intervals 𝑡𝑇. 

(ii) A set of operations 𝑖𝐼. 

(iii) A set of equipment units 𝑗𝐽 to perform operations 𝑖. 

(iv) A set of resources 𝑘𝐾 to perform all operations. 

(v) A set of states 𝑚𝑀, including raw materials, intermediate products and final 

products. 

(vi) A set of quality parameters 𝑐𝐶, which characterize each resource 𝑘. 

(vii) The initial amount of all states 𝑚 and resources 𝑘. 

(viii) The production recipes. 

(ix) The process unit configuration. 

(x) The operation processing times. 

(xi) The characteristics of the stored materials. 

(xii) The required time to use any resource 𝑘. 

(xiii) The variation of the quality of each resource 𝑘 in each operation 𝑖. 

(xiv) The input and output quality limits of each resource 𝑘 in each operation 𝑖. 

(xv) The costs and prices of all states 𝑚 and resources 𝑘. 

The main decisions to be made in order to maximize the profit are: 

(i) The production schedule, including allocation of operations, timing and 

sequence, production level and batch size. 

(ii) The use of resources (i.e., fresh utilities). 

(iii) The reuse of resources. 
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The following assumptions are considered: 

(i) All states 𝑚 and resources 𝑘 can be stored in the production facility. 

(ii) Intermediate materials can be stored in finite capacity units with unlimited 

waiting time. 

(iii) Product delivery to the customer can be delayed incurring into a penalty cost. 

(iv) Transfer times between process units are considered negligible. 

(v) Time to use each resource is assumed to be constant. 

(vi) The quantity of each resource 𝑘  used in each in each equipment unit 𝑗 is 

proportional to the batch size. 

(vii) Only direct reuse without intermediate storage of any resource is considered. 

(viii) No limitation on fresh resources (not used previously) that can be supplied 

to the system are considered. 

(ix) Resource losses are negligible. 

 

6.3. Mathematical formulation 

The constraints associated to the sequencing and the allocation of operations to 

dedicated resources and utilities are next presented in the following discrete time 

formulation. According to the stated objectives, the main constraints of this mathematical 

formulation take into account: 

 The production schedule. 

 The use of resources. 

 The demand side management. 

Regarding the scheduling constraints, the main relations are associated to 

allocation constraints, capacity constraints and material balances. Eq. (6.1) forces that, at 

most, one operation can start at equipment unit 𝑗 at any time 𝑡, which avoids any overlap 

in any equipment unit. Eq. (6.2) are used to force that an operation 𝑖 cannot start in an 

equipment unit 𝑗 until the previous operation is finished. This equation implies the use of 

the big-M formulation, where 𝑀 is a sufficient large positive number. Also, eq. (6.3) and 

(6.4) are used to limit the minimum and maximum batch size in each operation 𝐵𝑖,𝑡 and 

amount of material stored 𝑆𝑚,𝑡 of all states in each period of time 𝑡. Moreover, eq. (6.5) 

establishes the material balance of raw material, intermediate and final products. This 

balance is given by the stoichiometry of the chemical process as well as sales of final 

products and purchases of raw material. 
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∑ 𝑋𝑖,𝑡

𝑖𝜖𝐽𝐼𝑗

≤ 1 ∀𝑗, 𝑡 (6.1) 

∑ ∑ 𝑋𝑖′,𝑡′

𝑖′𝜖𝐽𝐼𝑗𝑡≤𝑡′𝜖𝑇
𝑡′<𝑡+𝑓𝑑𝑖+𝑈𝑇𝑖−1

− 1 ≤ 𝑀 ∙ (1 − 𝑋𝑖,𝑡) 
∀𝑖, 𝑗, 𝑡 (6.2) 

𝑋𝑖,𝑡 ∙ 𝐵𝑖
𝑚𝑖𝑛 ≤ 𝐵𝑖,𝑡 ≤ 𝑋𝑖,𝑡 ∙ 𝐵𝑖

𝑚𝑎𝑥 ∀𝑖, 𝑡 (6.3) 

𝑆𝑚
𝑚𝑖𝑛 ≤ 𝑆𝑚,𝑡 ≤ 𝑆𝑚

𝑚𝑎𝑥 ∀𝑚, 𝑡 (6.4) 

𝑆𝑚,𝑡 + 𝑆𝑆𝑚,𝑡 = 𝑆0𝑚|𝑡=1 + 𝑆𝑚,𝑡−1|
𝑡>1

+ ∑ 𝜌𝑖,𝑚 ∙ 𝐵𝑖,𝑡−𝑓𝑑𝑖

𝑖𝜖𝐼𝑂𝑚

− ∑ 𝜌𝑖,𝑚 ∙ 𝐵𝑖,𝑡

𝑖𝜖𝐼𝐼𝑚

+ 𝑃𝑚,𝑡 ∀𝑚, 𝑡 (6.5) 

The use of resources in discontinuous operations is modelled according to the 

following equations. Eq. (6.6) corresponds to the inlet resource balance in operation 𝑖. The 

total inlet resource 𝑘 at time 𝑡 is given by the summation of all the reuses from previous 

operations and the requirement of fresh resource (resource which has not been used 

previously in the process). In the same manner, eq. (6.7) establishes the outlet resource 

balance for operation 𝑖, where the total outlet at time 𝑡 is given by the amount of resource 

𝑘 to be reused and the resource discarded to be treated/removed posteriorly. Also, eq. 

(6.8) forces the overall resource balance of an operation, which considers that the outlet 

resource 𝑘 at time t in operation 𝑖 corresponds to the amount of inlet resource 𝑘 in this 

operation plus the generated resource during this operation. 

𝑈𝑖𝑘,𝑖,𝑡 = 𝑈𝑘,𝑖,𝑡 + ∑ 𝑈𝑟𝑘,𝑖′,𝑖,𝑡

𝑖′𝜖𝐼

 ∀𝑖, 𝑘𝜖𝐷𝑈𝑘 , 𝑡 (6.6) 

𝑈𝑜𝑘,𝑖,𝑡 = 𝑈𝑒𝑘,𝑖,𝑡 + ∑ 𝑈𝑟𝑘,𝑖,𝑖′,𝑡

𝑖′𝜖𝐼

 ∀𝑖, 𝑘𝜖𝐷𝑈𝑘 , 𝑡 (6.7) 

𝑈𝑖𝑘,𝑖,𝑡−𝑈𝑇𝑖
+ 𝑈𝑔𝑘,𝑖,𝑡 = 𝑈𝑜𝑘,𝑖,𝑡 ∀𝑖, 𝑘𝜖𝐷𝑈𝑘 , 𝑡 (6.8) 

Next equations introduce the quality parameters of each resource used in 

discontinuous operations. These parameters are modelled to manage the use of each 

resource according to availability or environmental limitations. Some examples of quality 

parameters can be the concentration of a contaminant, in terms of water consumption, or 

the temperature, in terms of use of energy. Regarding the quality parameters, eq. (6.9) 

corresponds to the each quality parameter 𝑐 balance over each operation in the equipment 

unit in which operation 𝑖 is carried out. This equation establishes the value of the quality 
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parameter at the end of each operation, which is given by the inlet value of the above 

mentioned quality parameter and its generation/consumption during operation 𝑖. Moreover, 

eq. (6.10) establishes the value of the quality parameter 𝑐 in an operation, which is given 

by the value of this quality parameter from previous operations.  

𝑈𝑜𝑘,𝑖,𝑡 ∙ 𝐶𝑜𝑐,𝑘,𝑖,𝑡 = 𝑈𝑖𝑘,𝑖,𝑡−𝑈𝑇𝑖
∙ 𝐶𝑖𝑐,𝑘,𝑖,𝑡−𝑈𝑇𝑖

+ 𝐶𝐿𝑐,𝑘,𝑖 ∙ 𝑊𝑖𝑘,𝑖, 𝑡−𝑈𝑇𝑖
 ∀𝑖, 𝑐, 𝑘𝜖𝐷𝑈𝑘 , 𝑡 (6.9) 

𝑈𝑖𝑘,𝑖,𝑡 ∙ 𝐶𝑖𝑐,𝑘,𝑖,𝑡 = ∑ 𝑈𝑟𝑘,𝑖′,𝑖,𝑡 ∙ 𝐶𝑜𝑐,𝑘,𝑖′,𝑡

𝑖′𝜖𝐼

 ∀𝑖, 𝑐, 𝑘𝜖𝐷𝑈𝑘 , 𝑡 (6.10) 

Eq. (6.11) establishes the initial time to use a discontinuous resource. This allows 

to use the resource a specific period of time (i.e., at the beginning of an operation/reaction, 

just immediately the previous chemical reaction will be finished), as a function of the starting 

time 𝑡 of an operation 𝑖 and a period of time 𝐷𝑖. Notice that if the resource is used at the 

beginning of operation 𝑖, the value of 𝐷𝑖 corresponds to 0. This formulation requires the use 

of the binary variable 𝑊𝑖𝑘,𝑖,𝑡, which determines if each resource is being used at time 𝑡 or 

not. Also, eq. (6.12) and (6.13) restricts the minimum/maximum inlet and outlet quality 

parameter 𝑐 for each operation. Furthermore, eq. (6.14) and (6.15) constricts the 

minimum/maximum inlet and reused quality parameter of each resource 𝑘 in each 

operation 𝑖, respectively. Hence, binary variable determines if the reuse of resource 𝑘 can 

take place. According to eq. (6.16), the reuse of each resource 𝑘 can be possible only if 

this resource is used in an operation 𝑖. 

𝑊𝑖𝑘,𝑖,𝑡 = 𝑋𝑖,𝑡−𝐷𝑖
 ∀𝑖, 𝑘𝜖𝐷𝑈𝑘 , 𝑡 (6.11) 

𝐶𝑖𝑐,𝑘,𝑖
𝑚𝑖𝑛 ∙ 𝑊𝑖𝑘,𝑖,𝑡 ≤ 𝐶𝑖𝑐,𝑘,𝑖,𝑡 ≤ 𝐶𝑖𝑐,𝑘,𝑖

𝑚𝑎𝑥 ∙ 𝑊𝑖𝑘,𝑖,𝑡 ∀𝑖, 𝑐, 𝑘𝜖𝐷𝑈𝑘 , 𝑡 (6.12) 

𝐶𝑜𝑐,𝑘,𝑖
𝑚𝑖𝑛 ∙ 𝑊𝑖𝑘,𝑖,𝑡+𝑈𝑇𝑖

≤ 𝐶𝑜𝑐,𝑘,𝑖,𝑡 ≤ 𝐶𝑜𝑐,𝑘,𝑖
𝑚𝑎𝑥 ∙ 𝑊𝑖𝑘,𝑖,𝑡+𝑈𝑇𝑖

 ∀𝑖, 𝑐, 𝑘𝜖𝐷𝑈𝑘 , 𝑡 (6.13) 

𝑈𝑖𝑘,𝑖
𝑚𝑖𝑛 ∙ 𝑊𝑖𝑘,𝑖,𝑡 ≤ 𝑈𝑖𝑘,𝑖,𝑡 ≤ 𝑈𝑖𝑘,𝑖

𝑚𝑎𝑥 ∙ 𝑊𝑖𝑘,𝑖,𝑡 ∀𝑖, 𝑘𝜖𝐷𝑈𝑘 , 𝑡 (6.14) 

𝑈𝑟𝑘,𝑖′,𝑖
𝑚𝑖𝑛 ∙ 𝑊𝑟𝑘,𝑖′,𝑖,𝑡 ≤ 𝑈𝑟𝑘,𝑖′,𝑖,𝑡 ≤ 𝑈𝑟𝑘,𝑖′,𝑖

𝑚𝑎𝑥 ∙ 𝑊𝑟𝑘,𝑖′,𝑖,𝑡 ∀𝑖, 𝑖′, 𝑘𝜖𝐷𝑈𝑘 , 𝑡 (6.15) 

𝑊𝑟𝑘,𝑖′,𝑖,𝑡 ≤ 𝑊𝑖𝑘,𝑖,𝑡 ∀𝑖, 𝑖′, 𝑘𝜖𝐷𝑈𝑘 , 𝑡 (6.16) 

Moreover, the use of resources in continuous (or semi-continuous) operations is 

modelled according to the following equations (i.e., heat integration of continuous 

processes). This kind of resources are used in a continuous way if a given operation is 

performed. Whereas the use of discontinuous resources is delimited by the initial and final 

conditions, the limitations in the flow of the continuous resources are analysed in each 
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period of time. Hence, eq. (6.17) establishes the value of the any characteristic of a given 

operation 𝑖 (i.e., pressure, temperature, flow) at beginning of each time interval 𝑡. This 

equation takes into account the initial conditions of the system, given by the term 𝑇𝑖𝑖 or the 

conditions of the previous period of time, given by 𝑇𝑟𝑖,𝑡−1|
𝑡>1

. It is assumed that the 

evolution of this term is given by a linear temperature ramp in the overall operation 𝑖. If the 

process associated to operation 𝑖 is active, the value will be given by the term 

∑
(𝑇𝑖𝑖−𝑇𝑜𝑖)

𝑑𝑢𝑟𝑖
𝐷𝑇

𝑡′𝜖𝑇
𝑡′<𝑡

𝑡≤𝑡′+𝑑𝑢𝑟𝑖

, whereas final conditions will be given by ∑ 𝑇𝑜𝑖𝑡′𝜖𝑇
𝑡′<𝑡

𝑡≤𝑡′+𝑑𝑢𝑟𝑖

. The evolution of 

the process will determine the necessity of resources in each period of time. 

𝑇𝑟𝑖,𝑡 = 𝑇𝑖𝑖 ∙ 𝑋𝑖,𝑡 + 𝑇𝑟𝑖,𝑡−1|
𝑡>1

+ ∑
(𝑇𝑖𝑖 − 𝑇𝑜𝑖)

𝑑𝑢𝑟𝑖
𝐷𝑇

∙ 𝑋𝑖,𝑡′

𝑡′𝜖𝑇
𝑡′<𝑡

𝑡≤𝑡′+𝑑𝑢𝑟𝑖

+ ∑ 𝑇𝑜𝑖 ∙ 𝑋𝑖,𝑡′

𝑡′𝜖𝑇
𝑡′<𝑡

𝑡≤𝑡′+𝑑𝑢𝑟𝑖

 
∀𝑖, 𝑡 (6.17) 

Also, in eq. (6.18) the big-M formulation is proposed to determine if the flow of the 

continuous (or semi-continuous) resource can take place or not, according to the value of 

the quality parameter. This formulation involves the presence of the binary variable 𝑊𝑒𝑖,𝑡, 

which determines/evaluates if the above resource can be used. This is very useful, for 

example, in heat integration processes, where this binary variable would indicate if the heat 

integration can take place or not, according to the temperature of each process.  Eq. (6.19) 

restricts the value of the reused flow of the resource. Eq. (6.20) is implemented to 

determine the necessity of resource 𝑘 to perform operation 𝑖. The term 𝐶𝑝𝑖 represents a 

characteristic parameter of operation 𝑖 (regarding the heat integration example, this term 

would represent the heat capacity). Moreover, eq. (6.21) establishes the resource balance 

in each operation 𝑖, taking into account the necessity of the resource in each process, and 

the reused resource from other operations 𝑈𝑟𝑘,𝑖′,𝑖,𝑡 or to other operations 𝑈𝑟𝑘,𝑖,𝑖′,𝑡. 

𝑇𝑟𝑖′,𝑡 − 𝑇𝑟𝑖,𝑡 − (𝑊𝑒𝑘,𝑖,𝑖′,𝑡 − 1) ∙ 𝑀 ≥ 0 ∀𝑖, 𝑖′, 𝑘𝜖𝐶𝑈𝑘 , 𝑡 (6.18) 

𝑈𝑟𝑘,𝑖′,𝑖
𝑚𝑖𝑛 ∙ 𝑊𝑒𝑘,𝑖′,𝑖,𝑡 ≤ 𝑈𝑟𝑘,𝑖′,𝑖,𝑡 ≤ 𝑈𝑟𝑘,𝑖′,𝑖

𝑚𝑎𝑥 ∙ 𝑊𝑒𝑘,𝑖′,𝑖,𝑡 ∀𝑖, 𝑖′, 𝑘𝜖𝐶𝑈𝑘 , 𝑡 (6.19) 

𝑈𝑛𝑘,𝑖,𝑡 = ∑ 𝐵𝑖,𝑡′ ∙ 𝐶𝑝𝑖 ∙ (𝑇𝑟𝑖,𝑡 − 𝑇𝑟𝑖,𝑡+1)

𝑡′𝜖𝑇
𝑡′≤𝑡

𝑡≤𝑡′+𝑑𝑢𝑟𝑖

 

∀𝑖, 𝑘𝜖𝐶𝑈𝑘, 𝑡 (6.20) 

𝑈𝑘,𝑖,𝑡 = 𝑈𝑛𝑘,𝑖,𝑡 − ∑ 𝑈𝑟𝑘,𝑖′,𝑖,𝑡

𝑖′𝜖𝐼
𝑖′≠𝑖

+ ∑ 𝑈𝑟𝑘,𝑖,𝑖′,𝑡

𝑖′𝜖𝐼
𝑖′≠𝑖

 
∀𝑖, 𝑘𝜖𝐶𝑈𝑘, 𝑡 (6.21) 
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The proposed approach may also consider the exploitation of the eventual 

flexibility in the demand duedates, which might be delayed from their initial targets, but at 

a cost associated to a penalty term in case of not satisfying a given demand. This is useful 

to alleviate the apparent mismatch between production and demand. For this purpose, the 

total demand takes into account not only the current demand but also the unsatisfied 

demand from previous periods of time, which can be calculated from eq. (6.22). Eq. (6.23) 

establishes that sales of final products are delimited by the total demand, and eq. (6.24) 

determines that the unsatisfied demand is given by the difference between the demand 

and the product sales. 

𝑇𝐷𝑒𝑚𝑚,𝑡 = 𝐷𝑒𝑚𝑚,𝑡 + 𝑈𝐷𝑒𝑚𝑚,𝑡−1|
𝑡>1

 ∀𝑚, 𝑡 (6.22) 

𝑆𝑆𝑚,𝑡 ≤ 𝑇𝐷𝑒𝑚𝑚,𝑡 ∀𝑚, 𝑡 (6.23) 

𝑈𝐷𝑒𝑚𝑚,𝑡 = 𝑇𝐷𝑒𝑚𝑚,𝑡 − 𝑆𝑆𝑚,𝑡 ∀𝑚, 𝑡 (6.24) 

The profit of the production plant, which is the objective function, is given by eq. 

(6.25). The profit takes into account incomes related to the final products, as well as costs 

associated to raw material, storage material cost, penalties due to unsatisfied demand, 

freshwater consumption, wastewater generation and use of energy. 

𝑃𝑟𝑜𝑓𝑖𝑡 = ∑ ∑ 𝑆𝑆𝑚,𝑡 ∙ 𝑝𝑟𝑚𝑚,𝑡

𝑡𝜖𝑇𝑚𝜖𝐹𝑚

− ∑ ∑ 𝑃𝑚,𝑡 ∙ 𝑟𝑚𝑐𝑚,𝑡

𝑡𝜖𝑇𝑚𝜖𝑅𝑚

− ∑ ∑ 𝑆𝑚,𝑡 ∙ 𝑠𝑡𝑐𝑚,𝑡

𝑡𝜖𝑇𝑚𝜖𝑀

− ∑ ∑ 𝑈𝐷𝑒𝑚𝑚,𝑡 ∙ 𝑝𝑛𝑐𝑚

𝑡𝜖𝑇𝑚𝜖𝑀

− ∑ ∑ ∑ 𝑈𝑘,𝑖,𝑡 ∙ 𝑐𝑢𝑘

𝑡𝜖𝑇𝑖𝜖𝐼𝑘𝜖𝐾

 

(6.25) 

 

Two significant characteristics of this mathematical formulations are the presence 

of both discrete and continuous variables, and the presence of non-linearities in the model, 

which lead to a MINLP problem. Particularly, eq. (6.9) and (6.10) contain bilinear terms, 

requiring the use of non-convex non-linear programming procedures, and introducing more 

complexity in the optimization procedure. This kind of non-linearity can be solved by the 

linearization of bilinear terms (Quesada and Grossmann, 1995; Majozi and Gouws, 2009). 

Linear approximations lead to optimal solution for the approximation, but not necessarily to 

the optimum of the non-linear problem. However, close solutions can be found with better 

approximations. Nevertheless, this approach proposes the solution of the problem by using 

a non-linear solver. 
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6.4. Case study 

The underlying scheduling problem includes production, use of water and heat 

integration to be optimized. Different utilities have been considered, which are freshwater 

for cleaning purposes, steam to heat the required chemical reactions and refrigerant fluid 

to cool some processes. Also, in the considered case study, no constraints on the number 

of heat exchangers that can operate are considered. Furthermore, only direct heat 

integration with co-current scheme is considered without heat storage. 

Particularly, the proposed case study considers the presence of water in the 

chemical processes for cleaning purposes. This means that wastewater is generated 

during the cleaning of the equipment units involved in the process. Also, this work takes 

into account the direct water reuse.  

The proposed MINLP formulation has been applied to a case study based on the 

widely used scheduling example originally proposed by Kondili et al. (1993), which has 

been extended in different research works in order to study the use of utilities, such as 

water and energy (Halim and Srinivasan, 2011). This case study involves 5 operations 

(heating, reaction 1, reaction 2, reaction 3 and separation), 9 states, which corresponds to 

three raw material (Feed A, Feed B, Feed C), four intermediate products (Hot A, Int AB, Int 

BC, Imp E) and two final products (Prod 1 and Prod 2) and 4 equipment units (heater, 

reactor 1, reactor 2 and distiller). The production of the two final products from feedstocks 

FeedA, FeedB and FeedC is given as follows: 

 Heating: Raw material Feed A is heated from 50 ºC to 70 ºC for 1 hour, forming the 

intermediate product Hot A. This task requires the use of steam. This task is 

performed in the heater. 

 Reaction 1: A mixture of 50% Feed B and 50% Feed C reacts for 2 hours, forming the 

intermediate product Int BC. This reaction can take place in reactor 1 or in reactor 2. 

Cooling water is required to decrease the temperature from 100 ºC to 70 ºC. Also, 

water is needed for washing. 

 Reaction 2: A mixture of 40% Hot A and 60% Int BC reacts for 2 hours, forming Int 

AB (60%) and Prod 1 (40%). This reaction, which can be performed in reactor 1 and 

reactor 2, requires steam to be heated from 70 ºC to 100 ºC. Washing water is also 

needed for washing purposes. 

 Reaction 3: A mixture of 20% Feed C and 80% Int AB reacts for 2 hours in order to 

produce intermediate product Imp E. This task is performed in both reactor 1 and 

reactor 2. This reaction requires the use of steam in order to heat the mixture from 

100 ºC to 130 ºC. 
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 Separation: Imp E is distil in order to separate Prod 2 (90%) and Int AB (10%), which 

is recycled, after 2 hours. The separation takes place in the distiller, and the 

temperature decrease from 130 ºC to 100 ºC. 

The model has been discretized in equal time intervals of 15 minutes, considering 

a scheduling horizon of 10 hours (40 time intervals). Figure 6.1 shows the flowsheet of the 

chemical process. Table 6.1 shows information related to processing times of all operations 

as well as information related to process units, Table 6.2 and Table 6.3 show all processing 

constraints related to water utility management (i.e., maximum inlet and outlet contaminant 

concentration, contaminant loading). Table 6.4 shows equivalent information for energy 

management, whereas Table 6.5 contains data related to the initial, minimum and 

maximum storage, price of final products and raw material and storage costs. Table 6.6 

indicates the cost of each utility. Notice that water utility includes freshwater consumption 

as well as wastewater treatment and finally Table 6.7 shows the demand of each final 

product. 

 

Figure 6.1. Flowsheet of the chemical process. 
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Table 6.1. Production data. 

Task 𝑖 Unit 𝑗 
Minimum 

batch size, 

𝐵𝑖
𝑚𝑖𝑛 (kg) 

Maximum 
batch size, 
𝐵𝑖

𝑚𝑎𝑥 (kg) 

Processing 

time, 𝑑𝑢𝑟𝑖 
(h) 

Washing 

time, 𝑊𝑇𝑖 
(h) 

Heating Heater 10 100 1.00 0.00 

Reaction 1 Reactor 1 10 50 2.00 0.50 

 Reactor 2 10 80 2.00 0.25 

Reaction 2 Reactor 1 10 50 2.00 0.25 

 Reactor 2 10 80 2.00 0.50 

Reaction 3 Reactor 1 10 50 1.00 0.25 

 Reactor 2 10 80 1.00 0.50 

Separation Distiller 10 200 2.00 0.00 

Table 6.2. Inlet and outlet concentration limitations. 

Task 𝑖 Unit 𝑗 

Maximum inlet concentration,  
𝐶𝑖𝑖,𝑐

𝑚𝑎𝑥 (mg/L) 

Maximum outlet concentration,  
𝐶𝑜𝑖,𝑐

𝑚𝑎𝑥 (mg/L) 

Cont A Cont B Cont C Cont A Cont B Cont C 

Heating Heater 0.00 0.00 0.00 0.00 0.00 0.00 

Reaction 1 Reactor 1 0.50 0.50 2.30 1.00 0.90 3.00 

 Reactor 2 0.05 0.20 0.15 0.20 0.40 12.00 

Reaction 2 Reactor 1 0.01 0.05 0.30 0.30 0.10 1.20 

 Reactor 2 0.18 0.10 0.95 0.40 1.20 1.15 

Reaction 3 Reactor 1 0.15 0.20 0.35 0.30 1.00 1.20 

 Reactor 2 0.30 0.60 1.50 2.00 1.50 2.50 

Separation Distiller 0.00 0.00 0.00 0.00 0.00 0.00 

Table 6.3. Contaminants loading. 

Task 𝑖 Unit 𝑗 

Contaminants loading,  
𝐶𝐿𝑜𝑎𝑑𝑖,𝑐 (mg contaminant/kg batch) 

Cont A Cont B Cont C 

Heating Heater 0.00 0.00 0.00 

Reaction 1 Reactor 1 4.00 80.00 10.00 

 Reactor 2 15.00 24.00 358.00 

Reaction 2 Reactor 1 28.50 7.50 135.00 

 Reactor 2 9.00 2.00 16.00 

Reaction 3 Reactor 1 15.00 80.00 85.00 

 Reactor 2 22.50 45.00 36.50 

Separation Distiller 0.00 0.00 0.00 
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Table 6.4. Data for heat integration. 

Task 𝑖 Unit 𝑗 
Inlet 

temperature, 

𝑇𝑖𝑖 [ºC] 

Outlet 
temperature, 

𝑇𝑜𝑖 [ºC] 

Heat capacity, 

𝐶𝑝𝑖 [kJ·kg-1·K-1] 

Heating Heater 50 70 2.5 

Reaction 1 Reactor 1 100 70 3.5 

 Reactor 2 100 70 3.5 

Reaction 2 Reactor 1 70 100 3.2 

 Reactor 2 70 100 3.2 

Reaction 3 Reactor 1 100 130 2.6 

 Reactor 2 100 130 2.6 

Separation Distiller 130 100 2.8 

Table 6.5. Scheduling data. 

Material state 𝑚 
Initial inventory,  

𝑆0𝑚 [kg] 

Minimum storage,  
𝑆𝑚

𝑚𝑖𝑛 [kg] 

Maximum storage,  
𝑆𝑚

𝑚𝑎𝑥 [kg] 

Feed A 100 0 1000 

Feed B 100 0 1000 

Feed C 100 0 1000 

Hot A 0 0 100 

Int AB 0 0 200 

Int BC 0 0 150 

Imp E 0 0 200 

Prod 1 0 0 1000 

Prod 2 0 0 1000 

Table 6.6. Revenues and costs. 

Material 

state 𝑚 

Revenue, 
𝑃𝑟𝑚,𝑡 

[m.u.·kg-1] 

Raw material 
cost, 𝑟𝑚𝑐𝑚,𝑡 

[m.u.·kg-1] 

Storage cost, 𝑠𝑡𝑐𝑚,𝑡 

[m.u.·kg-1·h-1] 

Penalty cost 
[m.u.·kg-1·h-1] 

Feed A 0 10 0.10 0.0 

Feed B 0 10 0.10 0.0 

Feed C 0 10 0.10 0.0 

Hot A 0 0 0.01 0.0 

Int AB 0 0 0.01 0.0 

Int BC 0 0 0.01 0.0 

Imp E 0 0 0.50 0.0 

Prod 1 20 0 1.00 2.0 

Prod 2 20 0 0.20 0.5 



Integrated management of resources in the decision making process 

141 
 

Table 6.7. Demand. 

Time interval Demand of product 1 [kg] Demand of product 2 [kg] 

t18 20 0 

t20 32 0 

t31 0 46 

t36 30 0 

t39 0 40 

t40 2 0 

 

6.5. Results 

The resulting MINLP model has been implemented in GAMS 24.1 (Rosenthal, 

2012) and solved using GloMIQO 2.1 (Misener and Floudas, 2013), to optimality (gap of 

0.1%) in a Pentium Intel® Core™ i7 CPU 2600 @ 3.40 GHz. The resolution of the proposed 

mathematical model provides the optimal schedule for production and use of utilities in 

order to maximize the profit of the given production plant. 

In order to study how this integrated methodology improves the profit, the problem 

was solved for different situations, considering: 

(i) The production scheduling, without considering the use of utilities (situation 1). 

(ii) The production scheduling, without taking into account neither water reuse nor 

heat integration (situation 2). 

(iii) The simultaneous production scheduling and the water reuse (situation 3). 

(iv) The simultaneous production scheduling and the heat integration (situation 4). 

(v) The simultaneous production scheduling, water reuse and heat integration 

(situation 5). 

The proposed formulation has allowed the integration of all resources involved in 

the production process. Particularly, the obtained results shows how the simultaneous 

management of production, use of water and energy consumption (Table 6.8) allows to: 

 Improve the objective function, in particular, the profit of the production plant. 

 Reduce the freshwater consumption and the generation of wastewater. 

 Reduce the energy consumption. 
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Table 6.8. Comparison of the obtained results through the different solution approaches. 

Key 
performance 

indicator 

Only 
scheduling 

No water 
reuse and 
no heat 

integration 

Water 
reuse 

Heat 
integration 

Simultaneous 
water reuse 

and heat 
integration 

Profit [m.u.] - 1,803.7 1,846.8 1,811.7 1,854.2 

Improvement 
rate [%] 

- - +2.4% +0.4% +2.8% 

Traditional 
scheduling 
profit [m.u.] 

3,045.2 3,038.2 3038.2 3,025.7 3025.7 

Water cost 
[m.u.] 

- 539.2 465.2 539.2 465.2 

Energy cost 
[m.u.] 

- 695.6 695.6 674.8 674.8 

Freshwater 
consumption 

[L] 
- 431.4 396.9 431.4 396.9 

Reused water 
[L] 

 0.0 54.5 0.0 54.5 

Heating 
energy 

consumption 
[MJ] 

- 32.6 32.6 31.4 31.4 

 

Hence, Table 6.8 compares different solutions approaches associated to the 

same case study. In the first situation, the objective is to optimize the profit but considering 

only eq. (6.1) to eq. (6.5), without considering use of utilities nor demand management 

constraints. Other proposed situations consider the use of utilities as well as the demand 

management. The traditional scheduling profit (which takes into account incomes 

associated to sales and costs related to raw material purchases, storage and unsatisfied 

demand) decreases when constraints associated to the use of water and energy are 

introduced in the mathematical formulation, because the feasible domain where the 

constraints are satisfied is reduced in comparison with the traditional problem. However, 

the profit increases if water and energy management is considered, because this 

consideration reduces the use of this two sources, improving the value of the objective 

function. 

Moreover, the impact of flexibility in the demand has been analysed. The 

possibility to postpone the shipment of final products introduces an extra degree of 

freedom, which allows to adapt the production to a better management and availability of 

resources. Particularly, in the simultaneous management of resources and production 
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without demand side management situation (Table 6.8), the value of the objective function 

decreases, since without the consideration of flexibility in the demand side management, 

purchases of final products cannot take place in the pre-established duedates. In this case, 

the production is not carried out, since the final production will not be sold. This involves 

the reduction in the production rate, reducing the sales as well as the overall profit. 

The optimal schedule without taking into account water and energy costs is shown 

in Figure 6.2, whereas Figure 6.3a determines this optimal schedule considering water and 

energy costs too. Moreover, Figure 6.3b shows the optimal schedule for the simultaneous 

management of production and water reuse. The water reuse can be carried out when a 

cleaning operation has been finished, and immediately, another cleaning operation starts. 

However, according to the explained constraints, the input contaminant concentration is 

delimited by a maximum, which can avoid the water reuse or which can require to mix 

reused water with freshwater, in order to reduce the contaminant concentration to satisfy 

the maximum inlet concentration. This explains why in time intervals 10 and 20, the water 

reuse must be mixed with freshwater, in order to satisfy this set of constraints. 

Also, the heat integration is produced when a heating operation and a cooling 

operations run simultaneously. The optimal schedule for the simultaneous management of 

production and heat integration is observed in Figure 6.3c. In comparison with Figure 6.2, 

reaction 1 in reactor 1 has been advanced, in order to take profit of the heat exchange and 

save energy. Finally, Figure 6.4 shows the optimal schedule for the simultaneous 

management of production, water reuse and heat integration. This schedule allows the 

water reuse, as in situation 3, and the same heat integration obtained in situation 4. 
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Figure 6.2. Optimal schedule for the production without considering neither water nor energy costs. 
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Figure 6.3. Optimal schedule for the production 

a) taking into account water and energy costs, b) considering the water reuse and c) considering the 
heat integration. 

 

a) 

b) 
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Figure 6.4. Optimal schedule for the simultaneous production scheduling, water reuse and heat 

integration. 

So, this proposed mathematical formulation has allowed the integration of the 

management of resources within the production process, which has been used for the 

coordinated organisation of all procedures involved in the process. In contrast with previous 

formulations, this paper has presented a generalized procedure for this integrated 

management. However, the presence of non-linearities in the model constraints its size, 

due to the required computational time to obtain the optimal solution. If the size of the 

problem is huge, different techniques can be applied to relax the non-linearities (i.e., 

piecewise linearization). 

This proposed approach requires more equations and more binary variables in 

comparison with the approaches in which the simultaneous management of production, 

water and energy is not taken into account (Table 6.9). This extra complexity in the model 

involves more computational effort to solve the problem.  

Furthermore, this proves has been solved by using GloMIQO as optimizer, 

because this solver can be used to resolve mixed integer quadratic problems, which is the 

proposed case. This solver is a global optimizer, able to find the optimal solution. Moreover, 

other solvers were used to solve this mathematical formulation (i.e., BARON). However, 

the optimization procedure was not able to give the optimal solution in less than 3600 CPU 

s. 
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Table 6.9. Model statistics. 

Key 
performance 

indicator 

Only 
scheduling 

No water 
reuse and 
no heat 

integration 

Water 
reuse 

Heat 
integration 

Simultaneous 
water reuse 

and heat 
integration 

Number of 
equations 

5,205 10,012 15,047 18,607 23,617 

Number of 
continuous 
variables 

2,845 7,241 10,121 12,681 15,561 

Number of 
binary 

variables 
320 495 1,935 3,016 4,456 

Solver CPLEX GloMIQO GloMIQO GloMIQO GloMIQO 

Computational 
time, CPU [s] 

1.373 15.848 299.082 35.102 920.199 

Gap 0.0 % < 0.1 % < 0.1 % < 0.1 % < 0.1 % 

 

6.6. Concluding remarks 

This chapter has developed a short-term scheduling of a production plant for the 

management of production and utilities. This is achieved by maximizing the profit of a given 

production plant. This objective function includes penalties for the delayed fulfilment of the 

product demand. The proposed formulation integrates all resource usage models and 

scheduling production models within a new generalized mathematical formulation, which 

manage all resources in a coordinated way, by integrating production and the use of 

resources.  

The proposed mathematical model has been applied to solve simultaneously the 

management of production and use of resources, in order to obtain the optimal scheduling 

that maximizes the overall profit and manages different utilities working under different 

usage policies. The need to introduce terms related to both quality and quantity of the 

production resources has led to the development of a MINLP model. A global non-linear 

solver has been used to solve this non-linear problem, which has allowed to solve this 

management problem simultaneously, instead of in a sequential way or partially. Also, this 

formulation can be applied to reduce the generation of wastewater reduction and the heat 

integration in the scheduling framework. The obtained results reveal how the simultaneous 

management of production and resources will lead to enhancements in the efficiency of the 

production plant. 
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However, the obtained results shows that this formulation can be used to solve 

future industrial problems with higher complexity. Moreover, the current and further work is 

focused on the introduction of uncertainty in the model (i.e., the presence of variability in 

the product demand) by using the stochastic programming, as well as the consideration of 

multi criteria decision making, in order to involve multiple considerations (i.e., economy, 

sustainability), through the use of multi-objective optimization techniques. Furthermore, this 

mathematical formulation can be extended in order to incorporate the recycle of the utilities. 

 

6.7. Nomenclature 

Indices, sets and subsets 

𝑐  𝐶 Set of quality parameters 

𝑖  𝐼 Set of production operations 

𝑗  𝐽 Set of equipment units 

𝑘  𝐾 Set of resources 

𝑚  𝑀 Set of states 

𝑡  𝑇 Set of time intervals 

𝑖  𝐼𝐼𝑚 Subset of operations 𝑖 requiring material from state 𝑚 

𝑖  𝐼𝑂𝑚 Subset of operations 𝑖 producing material from state 𝑚 

𝑖  𝐽𝐼𝑗 Subset of operations 𝑖 that can be assigned in equipment unit 𝑗 

𝑘  𝐶𝑈𝑘 Subset of resources 𝑘 used in continuous (or semi-continuous) operations 

𝑘  𝐷𝑈𝑘 Subset of resources 𝑘 used in discontinuous operations 

𝑚  𝐹𝑚 Subset of states 𝑚 corresponding to final products 

𝑚  𝑅𝑚 Subset of states 𝑚 corresponding to raw materials 
  
Parameters 

𝐵𝑖
𝑚𝑖𝑛 Minimum batch size of operation 𝑖 

𝐵𝑖
𝑚𝑎𝑥 Maximum batch size of operation 𝑖 

𝐶𝑖𝑐,𝑘,𝑖
𝑚𝑖𝑛 Minimum value for the inlet quality parameter 𝑐 of resource 𝑘 in operation 𝑖 

𝐶𝑖𝑐,𝑘,𝑖
𝑚𝑎𝑥 Maximum value for the inlet quality parameter 𝑐 of resource 𝑘 in operation 𝑖 

𝐶𝐿𝑐,𝑘,𝑖 Variation of quality parameter 𝑐 of resource 𝑘 in operation 𝑖 

𝐶𝑜𝑐,𝑘,𝑖
𝑚𝑖𝑛 Minimum outlet quality parameter 𝑐 of resource 𝑘 in operation 𝑖 

𝐶𝑜𝑐,𝑘,𝑖
𝑚𝑎𝑥 Maximum outlet quality parameter 𝑐 of resource 𝑘 in operation 𝑖 

𝐶𝑝𝑖 Characteristic parameter of operation 𝑖 
𝑐𝑢𝑘 Resource cost 

𝐷𝑖 Period of time defined as deviation from the starting time of operation 𝑖   
𝐷𝑒𝑚𝑚,𝑡 Demand of material state 𝑚 at time interval 𝑡 

𝑓𝑑𝑖 Fixed duration of operation 𝑖  
𝑝𝑛𝑐𝑚 Penalty cost for unsatisfied demand of material state 𝑚 
𝑝𝑟𝑚𝑚,𝑡 Price of material state 𝑚 at time interval 𝑡  

𝑟𝑚𝑐𝑚,𝑡 Raw material cost of material state 𝑚 at time interval 𝑡  

𝑆𝑚
𝑚𝑖𝑛 Minimum amount of stored material of all states 𝑚  

𝑆𝑚
𝑚𝑎𝑥 Maximum amount of stored material of all states 𝑚  

𝑆0𝑚 Initial amount of stored material of all states 𝑚  
𝑠𝑡𝑐𝑚,𝑡 Storage cost of material state 𝑚 at time interval 𝑡  

𝑇𝑖𝑖 Inlet characteristic of a process variable of operation 𝑖 
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𝑇𝑜𝑖 Outlet characteristic of a process variable of operation 𝑖 

𝑈𝑖𝑘,𝑖
𝑚𝑖𝑛 Minimum amount of resource 𝑘 in operation 𝑖 

𝑈𝑖𝑘,𝑖
𝑚𝑎𝑥 Maximum amount of resource 𝑘 in operation 𝑖 

𝑈𝑟𝑘,𝑖′,𝑖
𝑚𝑖𝑛  Minimum reuse of resource 𝑘 from operation 𝑖’ to operation 𝑖 

𝑈𝑟𝑘,𝑖′,𝑖
𝑚𝑎𝑥 Maximum reuse of resource 𝑘 from operation 𝑖’ to operation 𝑖 

𝑈𝑇𝑖 Time of use resource in operation 𝑖 
𝜌𝑖,𝑚 Stoichiometry of material 𝑚 to perform operation 𝑖 
  
Continuous and positive variables 
𝐵𝑖,𝑡 Batch size of operation 𝑖 at time interval 𝑡 

𝐶𝑖𝑐,𝑘,𝑖,𝑡 Inlet value for the quality parameter 𝑐 of resource 𝑘 in operation 𝑖 at time 

interval 𝑡 
𝐶𝑜𝑐,𝑘,𝑖,𝑡 Outlet quality parameter of resource 𝑘 in operation 𝑖 at time interval 𝑡 

𝑃𝑚,𝑡 Amount of raw material purchases of all states 𝑚 at time interval 𝑡 

𝑆𝑚,𝑡 Amount of stored material of all states 𝑚 at time interval 𝑡 

𝑆𝑆𝑚,𝑡 Amount of sold material of all states 𝑚 at time interval 𝑡 

𝑇𝐷𝑒𝑚𝑚,𝑡 Total product demand of material state 𝑚 at time interval 𝑡 

𝑇𝑟𝑖,𝑡 Characteristic value of a process variable operation 𝑖 at the beginning of time 

interval 𝑡 
𝑈𝐷𝑒𝑚𝑚,𝑡 Unsatisfied product demand of material state 𝑚 at time interval 𝑡 

𝑈𝑘,𝑖,𝑡 Amount/flow of fresh resource 𝑘 in operation 𝑖 at time interval 𝑡 

𝑈𝑒𝑘,𝑖,𝑡 Amount/flow of effluent resource 𝑘 from operation 𝑖 at time interval 𝑡 

𝑈𝑔𝑘,𝑖,𝑡 Amount/flow of produced/generated resource 𝑘 in operation 𝑖 at time interval 𝑡 

𝑈𝑖𝑘,𝑖,𝑡 Amount/flow of inlet resource 𝑘 in operation 𝑖 at time interval 𝑡 

𝑈𝑛𝑘,𝑖,𝑡 Necessity of amount/flow of resource 𝑘 in operation 𝑖 at time interval 𝑡 

𝑈𝑜𝑘,𝑖,𝑡 Amount/flow of outlet resource 𝑘 in operation 𝑖 at time interval 𝑡 

𝑈𝑟𝑘,𝑖,𝑖’,𝑡 Amount/flow of resource 𝑘 from unit operation 𝑖 to unit 𝑖’ at time interval 𝑡 

 
Continuous variables 
𝑃𝑟𝑜𝑓𝑖𝑡 Overall profit  

  
Binary variables 
𝑋𝑖,𝑡 = 1, if task 𝑖 is produced at time interval 𝑡 

𝑊𝑒𝑘,𝑖,𝑖’,𝑡 = 1, if resource 𝑘 can be used from operation 𝑖’ to operation 𝑖 at time interval 𝑡 

𝑊𝑖𝑘,𝑖,𝑡 = 1, if resource 𝑘 is used in operation 𝑖 at time interval 𝑡 

𝑊𝑟𝑘,𝑖,𝑖’,𝑡 = 1, if resource 𝑘 is reused after operation 𝑖 to operation 𝑖’ at time interval 𝑡 
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Chapter 7. Integration of different levels in the 
decision making hierarchy 

Chapters 4, 5 and 6 were focused on the simultaneous management of production 

and resources in the short-term planning. This chapter analyses the integration of different 

time scales within the decision making process. Particularly, this chapter is focused on the 

integration of synthesis, planning and scheduling of a supply chain under uncertain 

conditions. The simultaneous consideration of integrated formulations provides flexibility to 

the production processes and plants. The typical state task network has been extended to 

consider the synthesis problem, in which both synthesis and process recipe information 

have been merged, evolving into a synthesis state task network representation. Thus, a 

MILP formulation has been developed. Plant and process operations have been described 

considering the characteristics of synthesis, planning and scheduling problems. The results 

show the flexibility introduced when considering design decisions while solving the 

scheduling problem and state/highlight the impact of future operating conditions (demand 

fluctuations, market trends, etc.) in today’s decision. The model provides decision makers 

with tools to re-optimize existing plants, design new plants and include operating issues 

into design problems. 

 

7.1. Introduction 

Process recipe is the basic information required to be managed to run process 

(batch or continuous). The representation of such information is usually based on the 

flowsheet view of the plant as a basic schema to describe the process itself (units, 

operations, etc.). In the context of supply chain management Kondili et al. (1993) defined 

the state task network (STN) representation as a way to organize the information. This 

representation consists of a direct graph which includes two nodes: the state node and the 

task node. The STN is based on the identification of the process as a set of operations 

leading to different states, defining the links among them on the basis of the precedence 

rules and recipe information. Moreover, different details can be incorporated to such 

networks, in order to adapt the resulting information structure to the specific objectives of 

the analysis to be performed. This representation can be extended to represent all 

operations throughout the overall SC.  
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Hence, an extended version of the STN representation is proposed, in order to 

introduce information related to the synthesis problem. The resulting representation, 

Synthesis State Task Network (SSTN) extends the states and tasks nodes information 

(materials and resources, as well as operations within the SC), in such a way that the states 

are now also connected to synthesis blocks incorporating the information associated to the 

synthesis problem. Each synthesis block includes complementary information related to: 

(i) The equipment costs (i.e., fixed, operational and installation costs), 

(ii) The equipment unit performance (i.e., conversion rates, processing time).  

Figure 7.1 summarizes the evolution of such network representations. Particularly, 

Figure 7.1a shows the flowsheet-based network representation (simple tasks and flows 

information). The STN representation (Figure 7.1b) introduces state nodes representing 

the flows, and tasks representing the process operations, which transform the material 

(input flow) to one or more output flows (state and task nodes are denoted by circles and 

rectangles, respectively). The proposed SSTN (Figure 7.1c) incorporates information 

related to the synthesis problem (i.e., equipment units’ flexibility to be installed in different 

configurations, SC structure, process recipe), obtaining a superstructure which 

contemplates all configurations taken into account within the scheduling problem. 

Particularly, the solution obtained in the proposed case study considers different equipment 

options to solve the same process recipe. Hence, the information is extended by including 

different costs (fixed and variable) and conversion rates for each equipment unit. 

This chapter address the integration of strategic, tactical and operational levels, 

through the coordination of the design of the production plant taking into account the short-

term planning of the production plant and the overall SC. Tactical information is represented 

through market demands and the plant must be designed in order to satisfy the demand 

forecast. Once, the demand forecast is obtained, it is considered as an uncertain parameter 

with several scenarios to be considered. The corresponding formulation is implemented as 

a two stage stochastic programming model, considering the demand in each scenario and 

the possibility that this scenario will take place.   
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Figure 7.1. Evolution of network representations. 

 

7.2. Problem statement 

The new two-stage stochastic programming (TSSP) approach is presented as a 

MILP (Kondili et al., 1993), based on a discrete time representation. The goal is to obtain 

the optimal plant design (i.e., equipment unit installation) and the proposed working plan 

(i.e., allocation, storage levels, and the batch size) under uncertainty in order to maximize 

the profit of the SC. The proposed formulation incorporates the integration of operational 

decisions (scheduling) with process synthesis (design). The synthesis problem relates 

different equipment unit technologies available to be installed with their own characteristics, 

such as conversion rates, fixed cost, variable cost and installation cost.  
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Consequently, the problem under study is described in the following terms: 

(i) A scheduling horizon which is divided into a set of time intervals 𝑡𝑇. 

(ii) A set of operations 𝑖𝐼. 

(iii) A set of equipment units 𝑗𝐽 to perform the involved operations 𝑖. 

(iv) A set of production plants 𝑝𝑃. 

(v) A set of distribution centres 𝑑𝐷. 

(vi) A set of markets 𝑘𝐾. 

(vii) A set of scenarios 𝑛𝑁. 

(viii) A set of material states, including raw material, and intermediate and final 

products 𝑚𝑀. 

(ix) The investment cost of each equipment unit 𝑗. 

(x) The capacity of production plants 𝑝 and distribution centres 𝑑. 

(xi) The demand of final products. 

(xii) The dimension of a given production plant, which constraints the number 

of equipment units 𝑗 to be install. 

(xiii) The initial amount of each material. 

(xiv) The production recipe (stoichiometric data). 

(xv) The process unit configuration. 

(xvi) The operation processing times. 

(xvii) The costs and prices of raw materials, intermediate products and final 

products. 

The proposed approach is implemented as a two-stage stochastic formulation 

(see Chapter 3.5.4). The TSSP problem is divided into first and second stage variables. 

First-stage variables consist on variables that must be decided before the uncertainty has 

been revealed (also known here-and-now variables), which does not depend on the 

scenario. Otherwise, second-stage variables are considered as the recourse actions in the 

feasibility problem and they are scenario dependent variables. Thus, the expected profit is 

then obtained after the realization of all the scenarios, both first and second stage variables 

are described below: 

(i) First stage variables (does not depend on the scenario): 

a. The equipment technology to install in each production plant 𝑝, 𝑦𝑗,𝑝. 

(ii) Second stage variables (depends on the scenario): 

a. The equipment unit 𝑗 to be used to perform operation 𝑖 in scenario 𝑛 at time 

𝑡, 𝑊𝑖,𝑗,𝑝,𝑛,𝑡. 

b. The amount of material 𝐵𝑖,𝑗,𝑝,𝑛,𝑡 processed according to operation 𝑖 at 

equipment unit 𝑗 in each scenario 𝑛 at time 𝑡. 

c. The amount of material 𝑆𝑚,𝑝,𝑛,𝑡 stored at state 𝑚 in scenario 𝑛 at time 𝑡. 
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d. The amount of raw material 𝑚 acquired in scenario 𝑛 at time 𝑡, 𝑅𝑚𝑚,𝑝,𝑛,𝑡. 

The uncertain sources in the developed mathematical model are: 

(i) Product demand uncertainty. 

(ii) Initial storage level uncertainty. 

The following assumptions have been considered: 

(i) Each material is stored the production plant. 

(ii) Intermediate materials can be stored in finite capacity with unlimited waiting 

time. 

(iii) Product delivery to the customer can be delayed according to a penalty cost. 

(iv) Transfer times between process units within the production plant 𝑝 are 

considered negligible. 

The proposed mathematical formulation can be extended by introducing the 

management of resources in the production process (i.e., water and energy), which 

incorporates non-linearities in the model, leading to a MINLP model. This fact introduces 

more complexity in the optimization procedure. Moreover, the consideration of uncertainty 

through the stochastic programming involves more computational time to obtain the optimal 

solution in comparison with deterministic conditions. Both factors simultaneously involves 

that the computational effort to solve the problem is unaffordable. Thus, the management 

of resources is not going to be taken into account, because the objective of this chapter is 

to integrate different hierarchical levels under uncertain conditions, and high degree of 

details associated to the production process can be considered posteriorly in the short-term 

planning. 

This model is based on a discrete time formulation, since the simultaneous 

introduction of hybrid and continuous time representation and uncertainty may increase the 

computational time to solve it, making unaffordable its resolution.  

 

7.3. Mathematical formulation 

The MILP-based mathematical model integrates operational, tactical and strategic 

decisions. The mathematical formulation takes into account the production plant synthesis 

(Grossmann and Daichendt, 1996), the production plant schedule and the management of 

the SC. 
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The scheduling constraints takes into account allocation constraints, capacity 

constraints and material balances. Eq. (7.1) forces that, at most, one operation can start at 

equipment unit 𝑗 at any time 𝑡, which avoids any overlap in the production plant 𝑝 in any 

equipment unit in each scenario 𝑛. Eq. (7.2) determines the allocation of equipment units 𝑗 

along the scheduling horizon in production plant 𝑝 for each scenario 𝑛, taking into account 

residence time of the operations in the equipment unit 𝑗. The amount of material 𝐵𝑖,𝑗,𝑝,𝑛,𝑡 

processed at equipment unit 𝑗 at time 𝑡 in production plant 𝑝 is limited in eq. (7.3) by the 

consideration of maximum and minimum capacity of the equipment units. Also, eq. (7.4) 

constraints the amount of material stored 𝑆𝑚,𝑝,𝑛,𝑡 of all states in each scenario 𝑛 in each 

period of time 𝑡, by maximum and minimum storage limits of the states. Furthermore, the 

material balances in production plant 𝑝 along the processing network are controlled through 

Eq. (7.5) where, given an initial storage, the storage at the state 𝑚 at time 𝑡 is computed 

adding the input of material that arrives from the previous operations and subtracting the 

material that feeds the following operations, as well as shipments to distribution centres. 

This balance is given by the stoichiometry and the conversion degree of the chemical 

process as well as sales of final products and purchases of raw material, the possibility of 

receiving quantities of raw materials 𝑅𝑚𝑚,𝑛,𝑡 at feed states 𝑚 at any time 𝑡 during the 

schedule, rather than having all the required feedstock stored locally at the start of 

processing. Notice that the initial amount of stored material 𝑚 depends on the scenario 𝑛. 

This is because this parameter is defined as uncertain, since the initial storage of each 

short-term planning problem may depend on each scenario. 

∑ 𝑋𝑖,𝑗,𝑝,𝑛,𝑡 ≤ 1

𝑖𝜖𝐽𝐼𝑗

  ∀𝑗, 𝑝, 𝑛, 𝑡 (7.1) 

∑ ∑ 𝑋𝑖′,𝑗,𝑝,𝑛,𝑡′ − 1

𝑖′∈𝐽𝐼𝑗𝑡≤𝑡′𝜖𝑇
𝑡′<𝑡+𝑓𝑑𝑖,𝑗−1

≤  𝑀 ∙ (1 − 𝑋𝑖,𝑗,𝑝,𝑛,𝑡) 
∀𝑖, 𝑗, 𝑝, 𝑛, 𝑡 (7.2) 

𝑋𝑖,𝑗,𝑝,𝑛,𝑡 ∙ 𝐵𝑖,𝑗
𝑚𝑖𝑛 ≤ 𝐵𝑖,𝑗,𝑝,𝑛,𝑡 ≤ 𝑋𝑖,𝑗,𝑝,𝑛,𝑡 ∙ 𝐵𝑖,𝑗

𝑚𝑎𝑥 ∀𝑖𝐽𝐼𝑗 , 𝑗, 𝑝, 𝑛, 𝑡 (7.3) 

𝑆𝑚,𝑝
𝑚𝑖𝑛 ≤ 𝑆𝑚,𝑝,𝑛,𝑡 ≤ 𝑆𝑚,𝑝

𝑚𝑎𝑥 ∀𝑚, 𝑝, 𝑛, 𝑡 (7.4) 

𝑆𝑚,𝑝,𝑛,𝑡 = 𝑆0𝑚,𝑝,𝑛|
𝑡=1

+ 𝑆𝑚,𝑝,𝑛,𝑡−1|
𝑡>1

+ ∑ ∑ 𝜌𝑖,𝑚 ∙ 𝛼𝑗 ∙ 𝐵𝑖,𝑗,𝑝,𝑛,𝑡−𝑓𝑑𝑖,𝑗

𝑗𝑖𝜖𝐼𝑂𝑚

− ∑ ∑ 𝜌𝑖,𝑚 ∙ 𝐵𝑖,𝑗,𝑝,𝑛,𝑡

𝑗𝑖𝜖𝐼𝐼𝑚

+ 𝑅𝑚𝑚,𝑝,𝑛,𝑡

− ∑ 𝑆𝑇𝐷𝑚,𝑝,𝑑,𝑛,𝑡−𝑇𝑟1𝑝,𝑑

𝑑𝜖𝐷

 

∀𝑚, 𝑝, 𝑛, 𝑡 (7.5) 
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Regarding the specific synthesis decisions, the binary variable 𝑦𝑗,𝑝 in eq. (7.6) 

establishes the equipment technologies to be installed in each production plant 𝑝. If this 

binary variable takes value 1, this means that the optimal solution is to install this equipment 

unit in the corresponding production plant 𝑝. If the equipment unit 𝑗 to perform operation 𝑖 

in production plant 𝑝 and in scenario 𝑛 is used at any time 𝑡, then 𝑦𝑗 will take value 1. In 

addition, the equipment installation is constrained in eq. (7.7) by a maximum number of 

equipment units in each production plant 𝑝, which cannot be exceeded. 

𝑋𝑖,𝑗,𝑝,𝑛,𝑡 ≤ 𝑦𝑗,𝑝  ∀𝑖, 𝑗, 𝑝, 𝑛, 𝑡 (7.6) 

∑ 𝑦𝑗,𝑝

𝑗∈𝐽

≤ 𝑌𝑝̅ ∀𝑝 (7.7) 

The following equations are focused on the management of the supply chain. The 

tactical-synthesis integration has been done through the transportation of the products to 

the distribution centres and the final markets, the demand satisfaction and the backlogged 

demand (time window). Eq. (7.8) constraints the amount of final products 𝑚 to be 

transported from each production plant 𝑝 to each distribution centre 𝑑 by a minimum and 

maximum value. Also, eq. (7.9) establishes the material balance in each distribution centre, 

considering the storage level in the previous period of time and shipments from production 

plants 𝑝 and to markets 𝑘. Notice that the initial amount of stored final product 𝑚 in each 

distribution centre 𝑑 depends on the scenario 𝑛. This is because this parameter is defined 

as uncertain, since the initial storage of each short-term planning problem may depend on 

each scenario. Moreover, eq. (7.10) constraints the storage level of distribution centre d, 

delimited by a minimum a maximum level for each product. Eq. (7.11) restricts the amount 

of final products 𝑚 to be transported from each distribution centre 𝑑 to each market 𝑘 by a 

minimum and maximum value. Furthermore, eq. (7.12) determines that the overall amount 

of shipments corresponds to the sales of products 𝑚 to markets 𝑘. 

𝑆𝑇𝐷𝑚,𝑝,𝑑,𝑛,𝑡
𝑚𝑖𝑛 ≤ 𝑆𝑇𝐷𝑚,𝑝,𝑑,𝑛,𝑡 ≤ 𝑆𝑇𝐷𝑚,𝑝,𝑑,𝑛,𝑡

𝑚𝑎𝑥  ∀𝑚  𝐹, 𝑝, 𝑑, 𝑛, 𝑡 (7.8) 

𝑆𝑆𝐷𝑚,𝑑,𝑛,𝑡 = 𝑆𝑆0𝑚,𝑑,𝑛|
𝑡=1

+ 𝑆𝑆𝐷𝑚,𝑑,𝑛,𝑡−1|
𝑡>1

+ ∑ 𝑆𝑇𝐷𝑚,𝑝,𝑑,𝑛,𝑡

𝑝𝜖𝑃

− ∑ 𝑆𝑇𝑀𝑚,𝑑,𝑘,𝑛,𝑡

𝑘𝜖𝐾

 

∀𝑚  𝐹, 𝑑, 𝑛, 𝑡 (7.9) 

𝑆𝑆𝐷𝑚,𝑑,𝑛
𝑚𝑖𝑛 ≤ 𝑆𝑆𝐷𝑚,𝑑,𝑛,𝑡 ≤ 𝑆𝑆𝐷𝑚,𝑑,𝑛

𝑚𝑎𝑥  ∀𝑚  𝐹, 𝑑, 𝑛, 𝑡 (7.10) 

𝑆𝑇𝑀𝑚,𝑑,𝑘,𝑛,𝑡
𝑚𝑖𝑛 ≤ 𝑆𝑇𝑀𝑚,𝑑,𝑘,𝑛,𝑡 ≤ 𝑆𝑇𝑀𝑚,𝑑,𝑘,𝑛,𝑡

𝑚𝑎𝑥  ∀𝑚  𝐹, 𝑑, 𝑘, 𝑛, 𝑡 (7.11) 
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∑ 𝑆𝑇𝑀𝑚,𝑑,𝑘,𝑛,𝑡

𝑑𝜖𝐷

= 𝑆𝑆𝑚,𝑘,𝑛,𝑡+𝑇𝑟2𝑑,𝑘
 ∀𝑚  𝐹, 𝑘, 𝑛, 𝑡 (7.12) 

The proposed approach may also consider the exploitation of the eventual 

flexibility in the demand duedates, which might be delayed from their initial targets, but at 

a cost associated to a penalty term in case of not satisfying a given demand. Flexible 

demand is useful to alleviate any mismatch between production capacity and demand. Eq. 

(7.13) establishes that sales of final products are limited by the total demand, and eq. (7.14) 

determines that the unsatisfied demand is given by the difference between the demand 

and the product sales. 

𝑆𝑆𝑚,𝑘,𝑛,𝑡 ≤ 𝐷𝑒𝑚𝑚,𝑘,𝑛,𝑡 ∀𝑚  𝐹, 𝑘, 𝑛, 𝑡 (7.13) 

𝑈𝐷𝑒𝑚𝑚,𝑘,𝑛,𝑡 = 𝐷𝑒𝑚𝑚,𝑘,𝑛,𝑡 − 𝑆𝑆𝑚,𝑘,𝑛,𝑡 ∀𝑚  𝐹, 𝑘, 𝑛, 𝑡 (7.14) 

The economic analysis of different alternatives associated to this problem has 

been taken into account. The overall installation cost for the overall horizon is given by Eq. 

(7.15) which considers the acquisition cost associated to each equipment unit 𝑗 of each 

technology. Next equations are focused on the daily costs. Eq. (7.16) determines the 

variable cost, given by the start-up cost of each equipment unit 𝑗 at period time 𝑡 and the 

batch size 𝐵𝑖,𝑗,𝑝,𝑛,𝑡. Eq. (7.17) calculates the raw material cost through the required 

purchases to perform the production process. Additionally, a penalty cost in case of 

deviation between the initial quantity demanded and the production reached has been 

determined in Eq. (7.18). Also, eq. (7.19) determines the storage cost in distribution 

centres, considering the amount of stored products and its individual inventory cost. 

Transport costs are calculated throughout eq. (7.20), taking into account the amount of 

transported products, the distance between different elements within the supply chain and 

the individual shipment cost of each product. Total operational costs for the overall horizon 

are calculated through the summation of previous costs in Eq. (7.21), taking into account 

the number of operating days. Incomes are determined in Eq. (7.22), considering 

production sales and its selling price. Finally, the goal is to maximize the expected profit, 

given by Eq. (7.23) as the difference between incomes and costs, taking into account the 

probability in which scenario 𝑛 can occur. 

𝐼𝐶 = ∑ ∑ 𝐶𝑖𝑛𝑠𝑗 ∙ 𝑦𝑗,𝑝

𝑝∈𝑃𝑗∈𝐽

  (7.15) 

𝑉𝐶𝑛 = ∑ ∑ ∑ ∑ 𝐶𝑠𝑢𝑝𝑗 ∙ 𝑋𝑖,𝑗,𝑝,𝑛,𝑡

𝑡∈𝑇𝑝∈𝑃𝑗∈𝐽𝑖∈𝐼

+ ∑ ∑ ∑ ∑ 𝐶𝑣𝑎𝑟𝑖,𝑗 ∙ 𝐵𝑖,𝑗,𝑝,𝑛,𝑡

𝑡∈𝑇𝑝∈𝑃𝑗∈𝐽𝑖∈𝐼

 ∀𝑛 (7.16) 
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𝑅𝑀𝐶𝑛 = ∑ ∑ ∑ 𝐶𝑟𝑚𝑚,𝑡 ∙ 𝑅𝑚𝑚,𝑝,𝑛,𝑡

𝑡∈𝑇𝑝∈𝑃𝑚∈𝑅𝑚

 ∀𝑛 (7.17) 

𝑃𝐶𝑛 = ∑ ∑ ∑ 𝐶𝑝𝑒𝑛𝑚,𝑘 · 𝑈𝐷𝑒𝑚𝑚,𝑘,𝑛,𝑡

𝑡∈𝑇𝑘∈𝐾𝑚∈𝐹𝑚

  ∀𝑛 (7.18) 

𝑆𝐶𝑛 = ∑ ∑ ∑ 𝐶𝑠𝑡𝑜𝑚,𝑑,𝑡 ∙

𝑡∈𝑇𝑑∈𝐷𝑚∈𝐹𝑚

𝑆𝑆𝐷𝑚,𝑑,𝑛,𝑡 ∀𝑛 (7.19) 

𝑇𝐶𝑛 = ∑ 𝐶𝑡𝑟𝑎𝑚 ∙ (∑ ∑ ∑ 𝑆𝑇𝐷𝑚,𝑝,𝑑,𝑛,𝑡 ∙ 𝑑1𝑝,𝑑

𝑡∈𝑇𝑑∈𝐷𝑝∈𝑃𝑚∈𝐹𝑚

+ ∑ ∑ ∑ 𝑆𝑇𝑀𝑚,𝑑,𝑘,𝑛,𝑡 ∙ 𝑑2𝑑,𝑘

𝑡∈𝑇𝑘∈𝐾𝑑∈𝐷

) 

∀𝑛 (7.20) 

𝐶𝑜𝑠𝑡𝑛 = 𝑁𝐷 ∙ (𝐹𝐶𝑛 + 𝑉𝐶𝑛 + 𝑅𝑀𝐶𝑛 + 𝑈𝐶𝑛 + 𝑃𝐶𝑛 + 𝑆𝐶𝑛 + 𝑇𝐶𝑛) ∀𝑛 (7.21) 

𝐼𝑛𝑐𝑜𝑚𝑒𝑠𝑛 = 𝑁𝐷 ∙ ∑ ∑ ∑ 𝑝𝑟𝑚𝑚,𝑘 ∙ 𝑆𝑆𝑚,𝑘,𝑛,𝑡

𝑡∈𝑇𝑘∈𝐾𝑚∈𝐹𝑚

 ∀𝑛 (7.22) 

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝐼𝐶 + ∑ 𝑝𝑟𝑛 ∙ (𝐼𝑛𝑐𝑜𝑚𝑒𝑠𝑛 − 𝐶𝑜𝑠𝑡𝑛)

𝑛𝜖𝑁

  (7.23) 

The proposed model takes the advantage of the flexibility of the process definition, 

by considering several alternatives to be installed determining the plant superstructure. 

Also states that the design decision making is very important at the operational level. In 

addition, the model allows to the decision makers to reformulate the plant and process 

superstructure, by re-optimizing the existing plant and/or design the plant.  

 

7.4. Case study 

The proposed MILP formulation has been applied to a case study based on the 

widely used scheduling example initially proposed by Kondili et al. (1993). The problem to 

be solved involves 5 operations (heating, reaction 1, reaction 2, reaction 3 and separation), 

9 states, which corresponds to three raw material (Feed A, Feed B, Feed C), four 

intermediate products (Hot A, Int AB, Int BC, Imp E) and two final products (Prod 1 and 

Prod 2). The production recipe of the two final products from feedstocks FeedA, FeedB and 

FeedC is given as follows: 
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 Heating: Raw material Feed A is heated for 1 hour, forming the intermediate 

product Hot A. This operation is performed in a heater. 

 Reaction 1: A mixture of 50% Feed B and 50% Feed C reacts for 2 hours, 

forming the intermediate product Int BC. This reaction must take place in 

reactor.  

 Reaction 2: A mixture of 40% Hot A and 60% Int BC reacts for 2 hours, 

forming Int AB (60%) and Prod 1 (40%). This reaction is performed in a 

reactor.  

 Reaction 3: A mixture of 20% Feed C and 80% Int AB reacts for 1 hour in 

order to produce intermediate product Imp E. This operation is performed a 

reactor.  

 Separation: Imp E is distil in order to separate Prod 2 (90%) and Int AB 

(10%), which is recycled, after 1 hour. The separation takes place in the 

distiller. 

Seven potential equipment units have been considered for the production plant 

(heater 1, heater 2, reactor 1, reactor 2, reactor 3, reactor 4 and distiller). All reactions can 

take place in all considered reactors. All equipment units can be installed simultaneously.  

Table 7.1 presents the economic and production information of each equipment unit 𝑗. 

Table 7.1. Equipment units, conversion degrees and costs. 

Equipment 
Conversion degree 

𝛼𝑗 
Variable cost  

𝐶𝑣𝑎𝑟𝑖,𝑗 
Fixed cost  

𝐶𝑓𝑖𝑥𝑗 
Investment cost  

𝐶𝑖𝑛𝑠𝑗 

Heater 1 - 0.4 800 125,000 

Heater 2 - 0.6 500 115,000 

Reactor 1 1.00 1.5 1,500 500,000 

Reactor 2 1.00 1.0 1,000 150,000 

Reactor 3 0.90 0.9 800 125,000 

Reactor 4 0.90 0.8 750 112,500 

Distiller - 0.5 1,000 250,000 

Figure 7.2a represents the typical synthesis problem that considers different 

equipment units able to perform the same operation in the process flowsheet. Moreover, 

Figure 7.2b shows the STN representation for the scheduling problem that considers the 

recipe of the process, including states, equipment units and operations. Finally, Figure 7.2c 

shows the proposed SSTN representation introducing the synthesis considerations into the 

STN. Additional aggregated data to be considered include, for example, the different 

conversions which can be achieved when using different reactors or the equipment costs 

(fixed and variable costs). 
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Figure 7.2. Description of the Synthesis State Task Network. 

The model has been discretized in equal time intervals for the scheduling problem 

considering 15 time periods per day and considering 250 working days in one year as the 

overall time horizon. Table 7.2 shows information related to process units as well as to 

processing times of all operations. Also, Table 7.3 contains data related to the initial, 

minimum and maximum storage.  
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Table 7.2. Production data. 

Operation 𝑖 Unit 𝑗 
Minimum batch 

size, 𝐵𝑖,𝑗
𝑚𝑖𝑛 

Maximum batch 

size, 𝐵𝑖,𝑗
𝑚𝑎𝑥 

Processing 

time, 𝑓𝑑𝑖,𝑗 

Heating Heater 1 10 100 1.00 

 Heater 2 10 100 1.00 

Reaction 1 Reactor 1 10 100 2.00 

 Reactor 2 10 80 2.00 

 Reactor 3 10 60 2.00 

 Reactor 4 10 20 2.00 

Reaction 2 Reactor 1 10 100 2.00 

 Reactor 2 10 80 2.00 

 Reactor 3 10 60 2.00 

 Reactor 4 10 20 2.00 

Reaction 3 Reactor 1 10 100 1.00 

 Reactor 2 10 80 1.00 

 Reactor 3 10 60 1.00 

 Reactor 4 10 20 1.00 

Separation Distiller 40 200 2.00 

 

Table 7.3. Scheduling data. 

Material state 𝑚 
Initial inventory,  

𝑆0𝑚,𝑝,𝑛 [kg] 

Minimum storage,  
𝑆𝑚,𝑝

𝑚𝑖𝑛 [kg] 

Maximum storage,  
𝑆𝑚,𝑝

𝑚𝑎𝑥 [kg] 

Feed A 0 0 500 

Feed B 0 0 1000 

Feed C 0 0 500 

Hot A 0 0 0 

Int AB 0 0 200 

Int BC 0 0 150 

Imp E 0 0 100 

Prod 1 0 0 500 

Prod 2 0 0 500 
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The supply chain consists on a set of suppliers that provide raw materials to one 

production plant, which produce two products that can be stored in two distribution centres, 

and finally the products are delivered to three markets. Figure 7.3 represents the supply 

chain under study. 

The production plant remains opened during 10 time intervals each day. Also, the 

demand is referred to the last time interval of each day. 

Suppliers Markets
Production 

sites

Distribution 

centres
 

Figure 7.3. Supply chain case study. 
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Table 7.4 shows the demand of final products in each market and scenario. Notice 

that the demand may include the unsatisfied demand of previous periods of time (i.e., 

previous day). Note that this value corresponds to the demand at the end of the scheduling 

horizon. 

Table 7.4. Demand. 

Scenario 

𝑛 

Product 1 Product 2 

Market 1 Market 2 Market 3 Market 1 Market 2 Market 3 

1 27.0 27.0 45.0 58.5 45.0 49.5 

2 27.0 27.0 45.0 58.5 45.0 49.5 

3 27.0 27.0 45.0 58.5 45.0 49.5 

4 27.0 27.0 45.0 65.0 50.0 55.0 

5 27.0 27.0 45.0 65.0 50.0 55.0 

6 27.0 27.0 45.0 65.0 50.0 55.0 

7 27.0 27.0 45.0 71.5 55.0 60.5 

8 27.0 27.0 45.0 71.5 55.0 60.5 

9 27.0 27.0 45.0 71.5 55.0 60.5 

10 30.0 30.0 50.0 58.5 45.0 49.5 

11 30.0 30.0 50.0 58.5 45.0 49.5 

12 30.0 30.0 50.0 58.5 45.0 49.5 

13 30.0 30.0 50.0 65.0 50.0 55.0 

14 30.0 30.0 50.0 65.0 50.0 55.0 

15 30.0 30.0 50.0 65.0 50.0 55.0 

16 30.0 30.0 50.0 71.5 55.0 60.5 

17 30.0 30.0 50.0 71.5 55.0 60.5 

18 30.0 30.0 50.0 71.5 55.0 60.5 

19 33.0 33.0 55.0 58.5 45.0 49.5 

20 33.0 33.0 55.0 58.5 45.0 49.5 

21 33.0 33.0 55.0 58.5 45.0 49.5 

22 33.0 33.0 55.0 65.0 50.0 55.0 

23 33.0 33.0 55.0 65.0 50.0 55.0 

24 33.0 33.0 55.0 65.0 50.0 55.0 

25 33.0 33.0 55.0 71.5 55.0 60.5 

26 33.0 33.0 55.0 71.5 55.0 60.5 

27 33.0 33.0 55.0 71.5 55.0 60.5 
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Table 7.5 contains the initial storage level of final products in each distribution 

centre. Since the initial storage level is considered as uncertain, this value depends on the 

scenario. This fact allows to solve the problem once, instead of solving it again if this value 

changes. 

Table 7.5. Initial storage level in distribution centres. 

Scenario 

𝑛 

Product 1 Product 2 

Distribution 
centre 1 

Distribution 
centre 2 

Distribution 
centre 1 

Distribution 
centre 2 

1 24 24 24 24 

2 30 30 30 30 

3 33 33 33 33 

4 24 24 24 24 

5 30 30 30 30 

6 33 33 33 33 

7 24 24 24 24 

8 30 30 30 30 

9 33 33 33 33 

10 24 24 24 24 

11 30 30 30 30 

12 33 33 33 33 

13 24 24 24 24 

14 30 30 30 30 

15 33 33 33 33 

16 24 24 24 24 

17 30 30 30 30 

18 33 33 33 33 

19 24 24 24 24 

20 30 30 30 30 

21 33 33 33 33 

22 24 24 24 24 

23 30 30 30 30 

24 33 33 33 33 

25 24 24 24 24 

26 30 30 30 30 

27 33 33 33 33 
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Table 7.6 and Table 7.7 shows, respectively, the distances and the transportation 

times between the production site, distribution centres and markets. Moreover, Table 7.8 

and Table 7.9 include the transportation capacities (i.e., minimum and maximum transport 

levels) between production site, distribution centres and markets. Also, Table 7.10 

establishes the minimum and maximum storage levels in each distribution centre. 

Table 7.6. Distances [km]. 

𝑑1𝑝,𝑑 or 

𝑑2𝑑,𝑘 

Distribution 
centre 1 

Distribution 
centre 2 

Market 1 Market 2 Market 3 

Production 
site 

20 25    

Distribution 
centre 1 

  100 250 150 

Distribution 
centre 2 

  70 200 180 

 

Table 7.7. Transport time [h]. 

𝑇𝑟1𝑝,𝑑 or 

𝑇𝑟2𝑑,𝑘 

Distribution 
centre 1 

Distribution 
centre 2 

Market 1 Market 2 Market 3 

Production 
site 

1 1    

Distribution 
centre 1 

  1 2 1 

Distribution 
centre 2 

  1 2 2 

 

Table 7.8. Transport capacity constraints between production sites and distribution centres. 

Final product 

𝑚 

Production site 

𝑝 
𝑆𝑇𝐷𝑚,𝑝,𝑑,𝑛,𝑡

𝑚𝑖𝑛  

𝑆𝑇𝐷𝑚,𝑝,𝑑,𝑛,𝑡
𝑚𝑎𝑥  

Distribution 
centre 1 

Distribution 
centre 2 

Prod 1 Production site 1 0 100 100 

Prod 2 Production site 1 0 100 100 
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Table 7.9. Transport capacity constraints between distribution centres and markets. 

Final 
product 

𝑚 
Distribution centre 𝑑 𝑆𝑇𝑀𝑚,𝑑,𝑘,𝑛,𝑡

𝑚𝑖𝑛  
𝑆𝑇𝑀𝑚,𝑑,𝑘,𝑛,𝑡

𝑚𝑎𝑥  

Market 1 Market 2 Market 3 

Prod 1 Distribution centre 1 0 30 20 20 

Prod 1 Distribution centre 2 0 30 20 20 

Prod 2 Distribution centre 1 0 40 40 40 

Prod 2 Distribution centre 2 0 40 40 40 

 

Table 7.10. Storage capacity constraints distribution centres. 

Final product 𝑚 𝑆𝑆𝐷𝑚,𝑑,𝑛
𝑚𝑖𝑛  

𝑆𝑆𝐷𝑚,𝑑,𝑛
𝑚𝑎𝑥  

Distribution centre 1 Distribution centre 2 

Prod 1 0 40 60 

Prod 2 0 80 100 

 

Table 7.11 contains data related to the price of final products, and costs 

associated to raw material purchases, storage cost in the distribution centres, transport 

cost between the production site, distribution centres and markets, and penalty cost in case 

of deviation from the established demand. 

Table 7.11. Revenues and costs [m.u.]. 

Material 

state 𝑚 
Price, 

𝑝𝑟𝑚𝑚,𝑘 

Raw material 
cost,  𝐶𝑟𝑚𝑚,𝑡  

Storage 
cost, 

𝐶𝑠𝑡𝑜𝑚,𝑑,𝑡 

Transport 

cost, 𝐶𝑡𝑟𝑎𝑚 

Penalty 
cost 

𝐶𝑝𝑒𝑛𝑚,𝑘  

Feed A  80    

Feed B  80    

Feed C  80    

Prod 1 137.5  1.2 0.01375 15 

Prod 2 112.5  1.1 0.01250 15 
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Furthermore, Table 7.12 includes the probability of each scenario occurs. 

Table 7.12. Probability of scenario 𝑛. 

Scenario 𝑛 Probability 

1 0.003 

2 0.005 

3 0.004 

4 0.010 

5 0.040 

6 0.010 

7 0.004 

8 0.005 

9 0.003 

10 0.030 

11 0.040 

12 0.050 

13 0.100 

14 0.400 

15 0.100 

16 0.050 

17 0.040 

18 0.030 

19 0.001 

20 0.005 

21 0.002 

22 0.010 

23 0.040 

24 0.010 

25 0.002 

26 0.005 

27 0.001 
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7.5. Results 

The resolution of the model provides the daily optimal schedule of the supply 

chain, as well as the decision associated to the equipment unit installation. Given the 

problem definition and parameters the optimal solution is not expected, since only 3 

equipment units have been installed, which are: 

 Heater 2 

 Reactor 2 

 Distiller 

 

Figure 7.4 shows the optimal scheduling of the production plant for a scenario, 

particularly for scenario number 14, where the demand of both products are in a medium 

level. Moreover, the production level in each operation and in each equipment unit can be 

found in Table 7.13: 
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Figure 7.4. Production plant scheduling for scenario 14. 

Table 7.13. Batch size. 

Operation 𝑖 Unit 𝑗 Batch size, 𝐵𝑖,𝑗,𝑝=1,𝑛=14,𝑡 

Heating Heater 2 32 

Reaction 1 Reactor 2 48 

Reaction 2 Reactor 2 80 

Reaction 3 Reactor 2 60 

Separation Distiller 60 



Chapter 7 

170 

 

As expected, one of the selected equipment units is the distiller, since it is 

essential to complete the overall process. In the same way, another of the selected 

equipment units is one of the heaters, particularly the heater number 2. Although its variable 

cost is higher in comparison with the other two heaters, its investment cost and its fixed 

cost is lower than the mentioned heaters, and with the production level, the installation and 

use of heater 2 is more economic that the installation and use of heater 1. Furthermore, 

reactor number 2 is selected to be installed. This reactor is selected due to its capacity, 

which allows to reach the product demand, as well as its investment cost. Although reactor 

1 has more production capacity than reactor 2, its investment cost makes unaffordable its 

installation. The investment cost of reactors 3 and 4 is quite similar to the reactor 2, however 

they offer less production capacity. Only one reactor is installed, since the range of the 

production demand can be satisfied by installing reactor 2.  

The main results of this case study can be found in Table 7.14. Moreover, in order 

to study the influence of the number of equipment units installed in the production plant, 

different situations have been considered: 

 Situation 1: installation of 3 equipment units. 

 Situation 2: installation of 4 equipment units. 

 Situation 3: installation of 5 equipment units. 

 Situation 4: installation of 6 equipment units. 

 Situation 5: installation of 7 equipment units. 

According to the results of Table 7.14, the profit of the supply chain decreases as 

the number of equipment installed increases. This is because the installation of one heater, 

one reactor and one distiller can reach the product demand. Although more equipment 

units may alleviate any eventual increase in demand, their investment cost involves a 

significant reduction in the expected profit.  

The integration of different hierarchical levels in the same mathematical model 

allows to obtain a global optimum. On another hand, the procedure where the decisions 

are taken sequentially in each decision level may lead to a suboptimal solution, or may 

involve that the obtain solution in one hierarchical level becomes unfeasible when this 

solution is applied to another hierarchical level. 
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Table 7.14. Results. 

Key 
Performance 

Indicator 
Situation 1 Situation 2 Situation 3 Situation 4 Situation 5 

Expected 
profit 

(m.u./year) 
1,014,307.7 965,842.9 921,967.9 873,217.9 679,208.1 

Number of 
required 

equipment 
installation 

3 4 5 6 7 

Equipment 
installed 

Heater 2 

Reactor 2 

 

Still 

Heater 2 

Reactor 2,3 

 

Still 

Heater 2 

Reactor 
2,3,4 

Still 

Heater 1,2 

Reactor 
2,3,4 

Still 

Heater 1,2 

Reactor 
1,2,3,4 

Still 

Expected 
incomes 

(m.u./year) 
8,442,731.3 8,442,731.3 8,442,731.3 8,442,731.3 8,468,184.4 

Expected 
overall cost 
(m.u./year) 

5,841,942.3 5,966,211.0 6,078,711.0 6,203,711.0 6,726,625.3 

Installation 
cost (m.u.) 

512,500.0 637,500.0 750.000.0 875,000.0 1,375,000.0 

Expected raw 
material 

acquisition 
cost 

(m.u./year) 

1,721,836.5 1,726,002.8 1,726,002.8 1,726,002.8 1,739,064.5 

Expected 
fixed cost 

(m.u./year) 
2,128,500.0 2,123,600.0 2,123,600.0 2,123,600.0 2,131,100.0 

Expected 
variable cost 
(m.u./year) 

55,483.4 55,486.7 55,486.7 55,486.7 56,278.7 

Expected 
penalty cost 
(m.u./year) 

90,525.0 90,525.0 90,525.0 90,525.0 87,356.3 

Expected 
storage cost 
(m.u./year) 

394,072.8 394,072.8 394,072.8 394,072.8 394,072.8 

Expected 
transport cost 

(m.u./year) 
939,024.6 939,023.7 939,023.7 939,023.7 943,753.0 
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The resulting MILP model has been implemented in GAMS 24.1 and solved using 

CPLEX 12 in a Pentium Intel® Core™ i7 CPU 2600 @ 3.40 GHz. The statistics associated 

to the resolution of this mathematical model can be found in Table 7.15. The 

implementation of the stochastic programming involves a high increase in the 

computational to reach the optimal solution. 

Table 7.15. Model statistics. 

Key Performance Indicator Value 

Equations 61,160 

Continuous variables 38,351 

Binary variables 9,396 

Generation time (CPU, s) 0.422 

Resource time (CPU, s) 1,544.969 

Memory required (Mb) 19 

Relative gap (%) < 3 

Requirements 
GAMS 24.1 / CPLEX 12 

Pentium Intel® Core™ i7 CPU 2600 @ 3.40 GHz 

 

7.6. Concluding remarks 

This chapter addresses the integration of different hierarchical decision levels, 

determining the optimal equipment allocation (task assignment and timing), tactical 

decisions (i.e., distribution tasks, storage levels) and strategic decisions (i.e., installation of 

equipment units). Plant and process flexibility has been improved by considering elements 

typically distributed in different hierarchical decision making levels. The resulting combined 

problem has been modelled using a MILP-based approach, obtaining improved solutions 

in strategic, planning and scheduling problems.  

The integration of different hierarchical decision levels (i.e., strategic, tactical and 

operational decisions) has been addressed. The proposed two-stage stochastic MILP 

formulation has allowed to design new production facilities, taking into account different 

production scenarios and the overall supply chain planning. One challenge of this 

integration was to combine the consideration of multiple scenarios and the high degree of 

detail in the production process and in the planning of the supply chain. 

The proposed approach may be also used as the basis for solving problems with 

higher complexity, such as industrial cases. The time representation can be improved by 

the introduction of a continuous time formulation. However, the current techniques to solve 
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this formulation may be unaffordable in terms of computational effort. The proposed 

formulation can be extended to consider the use and management of internal and external 

resources. Moreover, this mathematical model can be reformulated to consider more 

entities in the supply chain, such as the management of several suppliers. Another 

challenge of this problem is to reduce the computational time to achieve the optimal 

solution, since the consideration of multiple scenarios increases the computational burden. 

This fact is linked with the final challenge, which is the consideration of multiple sources of 

uncertainty (i.e., prices, availability of sources, production times). 

7.7. Nomenclature 

Indices, sets and subsets 

𝑑  𝐷 Set of distribution centres 

𝑖  𝐼 Set of operations 

𝑗  𝐽 Set of equipment units 

𝑘  𝐾 Set of markets 

𝑚  𝑀 Set of states 

𝑛  𝑁 Set of scenarios 

𝑝  𝑃 Set of production plants 

𝑡  𝑇  Set of time periods 

𝑖  𝐼𝐼𝑚 Subset of operations 𝑖 requiring material from state 𝑚 

𝑖  𝐼𝑂𝑚 Subset of operations 𝑖 producing material from state 𝑚 

𝑖  𝐽𝐼𝑗 Subset of operations 𝑖 that can be assigned in equipment unit 𝑗 

𝑚  𝐹𝑚 Subset of states 𝑚 corresponding to final products 

𝑚  𝑅𝑚 Subset of states 𝑚 corresponding to raw materials 
  
Parameters 

𝐵𝑖,𝑗
𝑚𝑖𝑛 Minimum equipment capacity for the operation 𝑖 processed in equipment unit 𝑗 

𝐵𝑖,𝑗
𝑚𝑎𝑥 Maximum equipment capacity for the operation 𝑖 processed in equipment unit 𝑗 

𝐶𝑖𝑛𝑠𝑗 Installation/investment cost of equipment unit 𝑗 

𝐶𝑝𝑒𝑛𝑚,𝑘 Penalty cost for unsatisfied demand of final product 𝑚 in market 𝑘 

𝐶𝑟𝑚𝑚,𝑡 Raw material cost of state 𝑚 at time 𝑡 

𝐶𝑠𝑡𝑜𝑚,𝑑 Storage cost of final product 𝑚 in distribution centre 𝑑 

𝐶𝑠𝑢𝑝𝑗 Start-up cost of equipment unit 𝑗 

𝐶𝑡𝑟𝑎𝑚 Transportation cost of final product 𝑚 

𝐶𝑣𝑎𝑟𝑖,𝑗 Variable cost of operation 𝑖 produced in equipment unit 𝑗 

𝑑1𝑝,𝑑 Distance between production plant 𝑝 and distribution centre 𝑑 

𝑑2𝑑,𝑘 Distance between distribution centre 𝑑 and market 𝑘 

𝐷𝑒𝑚𝑚,𝑘,𝑛,𝑡 Demand of the state 𝑚 in scenario 𝑛 at time t 

𝑓𝑑𝑖,𝑗 Fixed duration of operation 𝑖 in equipment unit 𝑗 

𝑁𝐷 Number of days 

𝑝𝑟𝑛 Probability of scenario 𝑛 

𝑝𝑟𝑚𝑚 Price of final product 𝑚 
𝑟𝑚𝑐𝑚,𝑡 Raw material cost of material state 𝑚 at time interval 𝑡  

𝑆𝑚,𝑝
𝑚𝑖𝑛 Minimum amount of stored material of all states 𝑚 in production plant 𝑝 

𝑆𝑚,𝑝
𝑚𝑎𝑥 Maximum amount of stored material of all states 𝑚 in production plant 𝑝 

𝑆0𝑚,𝑝,𝑛 Initial amount of stored material 𝑚 in production plant 𝑝 in scenario 𝑛 
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𝑆𝑆𝐷𝑚,𝑑,𝑛
𝑚𝑖𝑛  Minimum amount of stored final products 𝑚 in distribution centre 𝑑 in 

scenario 𝑛 
𝑆𝑆𝐷𝑚,𝑑,𝑛

𝑚𝑎𝑥  Maximum amount of stored final products 𝑚 in distribution centre 𝑑 in 

scenario 𝑛 
𝑠𝑡𝑐𝑚,𝑡 Storage cost of material state 𝑚 at time interval 𝑡  

𝑆𝑇𝐷𝑚,𝑝,𝑑,𝑛,𝑡
𝑚𝑖𝑛  Minimum amount of transported material 𝑚 from production plant 𝑝 to 

distribution centre 𝑑 in scenario 𝑛 at time 𝑡 

𝑆𝑇𝐷𝑚,𝑝,𝑑,𝑛,𝑡
𝑚𝑖𝑛  Maximum amount of transported material 𝑚 from production plant 𝑝 to 

distribution centre 𝑑 in scenario 𝑛 at time 𝑡 
𝑇𝑟1𝑝,𝑑 Transportation time between production plant 𝑝 and distribution centre 𝑑 

𝑇𝑟2𝑑,𝑘 Transportation time between distribution centre 𝑑 and market 𝑘 

𝑌𝑝̅ Maximum number of equipment units to be installed in production plant 𝑝 

𝛼𝑗 Conversion degree of the chemical reaction performed in equipment unit 𝑗 

𝜌𝑖,𝑚 Stoichiometry of material 𝑚 to perform operation 𝑖  
  
Continuous and positive variables 

𝐵𝑖,𝑗,𝑝,𝑛,𝑡 Amount of material processed according to operation 𝑖 in equipment unit 𝑗 
in production plant 𝑝 in scenario 𝑛 at time 𝑡 

𝐶𝑜𝑠𝑡𝑛 Overall operational costs in scenario 𝑛 

𝐼𝐶 Installation cost 

𝐼𝑛𝑐𝑜𝑚𝑒𝑠𝑛 Overall incomes in scenario 𝑛 

𝑃𝐶𝑛 Overall penalty cost in scenario 𝑛 
𝑅𝑚𝑚,𝑝,𝑛,𝑡 Amount of raw material 𝑚 in scenario 𝑛 acquired in production plant 𝑝 at 

time 𝑡 
𝑅𝑀𝐶𝑛 Expected raw material cost in scenario 𝑛 
𝑆𝑚,𝑝,𝑛,𝑡 Amount of material stored of state 𝑚 in production plant 𝑝 in scenario 𝑛 at 

time 𝑡 

𝑆𝐶𝑛 Overall storage cost in scenario 𝑛 
𝑆𝑆𝑚,𝑘,𝑛,𝑡 Amount of sold material of all states 𝑚 in market 𝑘 in scenario 𝑛 at time 

interval 𝑡 
𝑆𝑆𝐷𝑚,𝑑,𝑛,𝑡 Amount of stored final products 𝑚 in distribution centre 𝑑 in scenario 𝑛 at 

time interval 𝑡 
𝑆𝑇𝐷𝑚,𝑝,𝑑,𝑛,𝑡 Amount of transported material 𝑚 from production plant 𝑝 to distribution 

centre 𝑑 in scenario 𝑛 at time 𝑡 
𝑆𝑇𝑀𝑚,𝑑,𝑘,𝑛,𝑡 Amount of transported material 𝑚 from distribution centre 𝑑 to market 𝑘 in 

scenario 𝑛 at time 𝑡 

𝑇𝐶𝑛 Overall transportation cost in scenario 𝑛 
𝑈𝐷𝑒𝑚𝑚,𝑘,𝑛,𝑡 Unsatisfied product demand of material state 𝑚 in market 𝑘 in scenario 𝑛 at 

time interval 𝑡 

𝑉𝐶𝑛 Overall variable cost in scenario 𝑛 
  
Continuous variables 
𝑃𝑟𝑜𝑓𝑖𝑡 Expected profit 
  
Binary variables 

𝑋𝑖,𝑗,𝑝,𝑛,𝑡 = 1 if equipment unit 𝑗 is being used and processing operation 𝑖 in production 

plant 𝑝 in scenario 𝑛 at time 𝑡  

𝑦𝑗,𝑝 = 1 if equipment unit 𝑗 is installed in production plant 𝑝 
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Chapter 8. Use of communication systems for 
the decision making 

The integration of the different hierarchical decision making levels involved within 

a Chemical supply chain is essential for its adequate management in dynamic and 

competitive markets. Any approach encompassing design issues, planning, coordination 

and responses to customer demands, requires the consideration of huge amounts of data, 

which are a valuable source of information only if properly managed. But these data could 

also cause a lack of coordination if not stored and interpreted appropriately, so 

standardizing information structures and tools to improve the availability and 

communication of data information between different hierarchical decision levels is 

essential. Thus, this work addresses the problem of making the best use of the information 

systems associated to a supply chain, in order to improve the knowledge and the 

information comprehension capabilities in the area of Process Systems Engineering. 

8.1. Introduction 

In the current context of economic crisis, improving the efficiency of the industrial 

processes is essential to ensure the viability of the companies. Therefore, a holistic 

management of the different elements composing a SC and, in many cases, the relations 

among them, are necessary to improve resource use, minimize production costs and 

inventory, enhance economic benefits, increase customer satisfaction or improve process 

control, among other objectives usually associated to process profitability. The complexity 

of simultaneously considering the whole decision making process involved, lead to the 

traditional division of such process in different hierarchical levels (strategic, tactical and 

operational, as usually recognised even by the ISA standards). The process engineer is 

also frequently responsible for the continuous improvement of the production processes, 

the products and the associated techniques. Currently, tasks related to management, 

research and development involves the generation of huge amount of data that must be 

analysed, interpreted and stored throughout the decision making process, using computer 

simulation and computer control techniques. In chemical companies, these data are related 

to design issues, planning and production, coordination, cooperation and attention to 

customer demands, as well as constraints related to economy, environmental impacts, 
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social policy, ethical topics, health, safety and sustainability (Noakes et al., 2011; 

Accreditation Board for Engineering and Technology, ABET, 2008). 

Nowadays, factories often use industrial control systems in order to acquire data 

to supervise processes. The most common tools are classified in: 

 Management information systems, including databases, Programmable Logic 

Controllers (PLC) or Supervisory Control And Data Acquisition (SCADA). 

 Modelling systems able to explain and/or complement process information, based on 

the knowledge of the process, like plant/process simulators. 

 Decision making systems (selection among alternatives), including procedural tools 

like Material Requirements Planning (MRP) systems, model based mathematical 

optimization, etc. 

The implementation and use of this set of control systems involve a huge number 

of data to handle. For this reason, standardizing information structures and tools to improve 

the availability and communication of data is essential to integrate these data and use the 

previously mentioned tools efficiently for Chemical SCs management (Bessiris et al., 2011). 

 

8.1.1. Open communication systems 

In order to organize all the information available about the process, it has been 

proposed a system that consists of the following components: a data generator (real or 

virtual plants), an information repository, a customer interface and a diagnosis module, all 

of them following a basic model prescribed by ISA standards specification. Figure 8.1 

shows a scheme of the proposed system.  

Plant data

Plant data

Plant data

OPC server

OPC server

OPC server

Repository

Decision making 

models

ONTOLOGY

Database

User

interfaces

 
Figure 8.1. Proposed communication platform. 

First of all, the system includes the acquisition of real-time data from industrial 

processes, in order to provide operational conditions to the system. All these data can be 

generated in real systems or through simulation techniques. The simulation system 

provides real-time information (simulated measurements) that is written and read through 

the different user interfaces, including all the variables required to describe the process. In 
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case of simulation of real processes, through the use specific tools (i.e., ASPEN Hysys, 

Matlab, Simulink). 

The Object Linking and Embedding for Process Control (OPC) standard is used 

to communicate and distribute the data generated by the simulators. This selection is based 

on current and commercial practice and tools, permitting the definition of a standard set of 

objects, interfaces and methods to be used in process control and automated 

manufacturing applications in order to facilitate interoperability (Soudani et al., 2002). 

 A platform for real-time management and decision making support at the different 

production levels has been also designed. This platform is based on an information 

repository, acts as a database of all information of the different processes and plays an 

important role by sending the appropriate information to the different information clients, 

where it will be filtered by the customer interface. 

Furthermore, graphical user interfaces have been designed and run as Web 

applications to monitor, visualize and understand the evolution of the process and also to 

understand the decision making consequences, through the extensive use of the different 

Key Performance Indicators (KPIs) incorporated in the ontological model to assess not only 

the economic performance of the process (Figure 8.2) but also the performance of the 

information system (data availability and reliability) associated the different processes. This 

interface allows users to on-line supervise and diagnose of processes, taking corrective 

actions and evaluating the success of the given activity. Finally, decision making models 

have been developed to be applied in different scenarios. 

This integrated information management system improves competences in the 

area of exploitation of on-line available data for decision making, as discussed in 

previously. This integration facilitates the storage and sharing of knowledge in a specific 

domain, and allows improve the effectiveness of decision support systems. Thus, it is 

important the training and the exploitation of an integrated framework to integrate all 

decision levels within a common structure, in order to reduce the gap between optimization 

approaches and task processing data. The implementation of this application is not only 

academic but also industrial, through the use of this open source software applied to real 

case studies. 
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Figure 8.2. Example of user interface associated to the overall supply chain, where real time and 

target data related to raw material acquisition, production level, storage level and sales are 

visualized, in order to achieve the stipulated Key Performance Indicators. 

 

One example of its application is the implementation of Operator Training 

Simulators (OTS), which are computer-based training techniques that use dynamic 

simulations of real processes, usually integrated with an emulator of the system under 

study. The OTS uses the dynamic simulation of the process to generate the appropriate 

data to feed the emulation of the process control and safety system (Feliu et al., 2015). The 

use of OTS systems allows the establishment of expertise and best practices among 

operators, enhancing process understanding. Some applications of the use of OTS are 

(Naranjo et al., 2013): 

 Training of new operators and refresher training (including start-up, shutdown, and 

emergency procedures), which increase operator awareness and skills and reduce 

the risks of operational incidents and start-time times. 

 Verify DCS. 

 Verify SIS. 

 Provide a test-bed system for scenario analysis. 

 Validate and improve plant operating procedures such as detection of bottleneck 

units and processes. 
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 Reduce Environmental concerns. 

 Development and test of new control strategies and production procedures. 

In addition, this open information platform can be used for training in the overall 

SC decision making (Silvente et al., 2012b) as well as for the fault diagnosis (Silvente et 

al., 2012c). 

 

8.1.2. Ontologies 

Among the different types of knowledge-based systems which can be applied in 

complex scenarios to help decision making, ontologies provide structures for the 

coordination of information sources (Muñoz et al., 2010), and so, they can be used in the 

process engineering area to coordinate the development of new products, to identify new 

manufacturing recipes (Singh et al., 2010) and also to integrate different decision levels 

within a SC (Muñoz et al., 2011). This includes facilitating communication and knowledge, 

which allow the information exchange among the different modelling paradigms used for 

the enterprise-wide optimization, and also helps the acquisition, maintenance, access, 

reuse and sharing of information related to processes, with the aim of increasing the 

efficiency of cost, time and resources (Fensel, 2010). The use of such systems allows the 

establishment of common standards and enables the full exploitation of the stored 

relationships among all available data. 

Ontologies (Figure 8.3) are considered a key semantic tool to reduce or eliminate 

conceptual and terminological confusion and come to a shared understanding of all 

available information, specifying the structure of a domain of knowledge in a generic way 

that can be read by a computer and presented in a human readable form. Moreover, 

ontologies incorporate knowledge of processes, incorporating the relationship between 

different processes into a logical structure. The main advantages of using ontologies are 

the communication in a shared framework among people and across application systems 

as well as the conceptualization that describes the semantics of all data in a standard way, 

using a common language.  
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Figure 8.3. Ontology system, representing the relationship between different hierarchies within a SC. 

 

8.2. Methodology 

The main objective of this chapter is to coordinate all accessible and available 

data in an integrated information system to manage the decision making process in an 

overall and unique model, establishing common standards in the data structure, following 

ISA specifications, and linking the relationships between data in different hierarchical levels 

associated to a complete SC. Hence, a coordinated information system, which includes 

data generators, an information repository, a user interface and decision making models, 

has been integrated with an ontological framework in order to organize the decision making 

process. The use of this organized structure allows increasing the knowledge in Process 

Systems Engineering tools for modelling, simulation, planning, control and optimization of 

a variety of process under several constraints and objectives, with the purpose of applying 

this methodology in a realistic environment and integrating the individual knowledge of 

different modules in a coordinated way. This methodology provides new views of the 

Chemical Engineer management roles in real industrial environments. 

Thus, this chapter proposes and describes the use of this integrated system to 

automatize the decision making process through a Chemical SC network (including several 
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production plants, raw materials, final products, storage centres, markets) using the SCM 

techniques at tactical and operational decisions levels, by obtaining integrated information 

in real time, using dynamic simulation and optimization models and tools, including issues 

like objective function decisions, the different ways of introducing practical constraints and 

the way of using this support tools to face fluctuations in the demand.  

Regarding the proposed methodology, all information related to different 

processes can be obtained through databases or on-line systems, from data sources 

available on-line. Hence, an information management system has been designed and 

implemented in order to integrate and organize all this available data to coordinate the 

decision making process through the three historical hierarchical levels in a SCM. This 

information flow system is integrated in an ontological framework, in order to organise all 

data in a common structure. This information system could be understood through Figure 

8.4, which represents a SCM problem. 

Plant dynamic 
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First optimization
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Master Planning
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PlantsNew constraints
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Figure 8.4. Information flow system related to a Supply Chain Management problem. 

On the top of the decision making hierarchy, a SCM model should be incorporated 

in order to attain the optimization of the SC control decisions. Below it, plant dynamic 

models associated to the different processes in the different manufacturing centres will 

emulate, from their respective input and control information, all involved outputs, allowing 

the dynamic assessment of the different control decisions obtained from the SCM model 

optimization. This information may be also used to readjust the SCM model parameters 

and constraints, leading to a comprehensive view of both plant operating conditions at the 

detailed level, as well as the coordination of the production levels at the different elements 

of the SC in order to maintain the flow material through the SC while keeping adequate 

product inventories (master planning). 

This proposed architecture and the use of standard modelling and information 

exchange protocols is compatible with the joint use of different simulation and optimization 

tools, like GAMSTM based models and optimization algorithms, MATLABTM and Microsoft 
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ExcelTM based applications and many other. Depending on the characteristics of each 

problem, the models are implemented in order to develop decision making modules, 

develop simulations and model dynamic processes. 

The incorporation of the ontology in this integrated information management 

system has the purpose of enforcing the use of common standards (i.e., terminology, 

communication, data management), maintaining the coherence among the different 

sources of information (and/or detect eventual inconsistencies), ensuring the consistency 

on the use of the available decision support systems and specially of helping users to obtain 

and understand data in a systematic way, using a common language. 

 

8.3. Supply Chain Management application 

In the area of process decision making and optimization, numerous applications 

can be used for decision making management and business productivity improvement. The 

application developed around the decisions associated to a SCM is described. 

A SC related to the production and distribution of a polymer (i.e., polystyrene) has 

been proposed as a case study. This specific SC consists of suppliers, production sites, 

distribution centres and markets. The decision variables of this SC problem include raw 

material necessities, production level and distribution to warehouses, stock level and 

distribution to markets. This case study includes the dynamic simulation of the 

polymerization process at industrial level. The aim of these simulated plants is to generate 

data in order to obtain on-line information in real time, such as energy cost, conversion 

degree, reaction time and generation of pollutants. The purpose of this information 

management system is to conduct the optimization of a SC using SCM techniques by 

acquiring integrated information in real time, using dynamics optimization models and tools, 

including modelling issues like objective or multi-objective function decisions, the different 

ways of introducing practical constraints and also the manner of using this support tools to 

face uncertainty in the SC. 

The proposed integrated communication platform allows its users to exploit the 

use of optimization and simulation tools to enhance the decision making problems, solving 

production planning problems (SC planning, which takes the decisions of the optimal 

production, stock and distribution levels, given production plants, warehouses, distribution 

centres and customers). In most cases, the resulting optimization problems can be 

considered as a hybrid optimizations because the solution approach should be solved as 

follows: 
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 First of all, the planning problem is to be solved, for a time horizon of months. This 

time horizon is too high compared with the simulation time, which is about hours, 

minutes or seconds, but this is the time indicated in the literature (Sung et al., 2007) 

to solve the problem of production planning (2-12 months). 

 The optimal master recipe is introduced into the simulation. In other words, taking 

the decisions made in the previous problem, these data are introduced as set points 

for the simulation of the plant. 

 In the simulation of a production plant, data from master recipe are introduced into 

the system, and the problem is optimized in the lowest level (scheduling level), 

controlling different variables of the plant to reach production levels proposed by the 

planning problem. This optimization is performed by adjusting the parameters of the 

dynamic model, optimizing different criteria (such as environmental impact and 

energetic costs). Figure 8.5 shows processing variables for the given production 

process. 

 

 
Figure 8.5. Example of graphical user interface associated to the production process. 

 

 In addition, the system generates faults and external events that should be detected 

and solved. In some cases, these events should be propagated event to the master 

plan. 



Chapter 8 

184 

 

 With the availability to get data using the proposed methodology, the simulator will 

compile all available data to validate the optimization problem. 

Figure 8.6 shows the connection between the master planning and the simulator 

block: 

Master Planning

Simulator

Model validator

Proposed integrated 

system

 
Figure 8.6. Connection between the master planning and the simulator. 

 

The use of this and other case studies not only helps trainees to understand the 

operational conditions of the production plant, but also to understand the dynamics 

associated to external fluctuations. One of these fluctuations is associated to the changes 

in the expected, which determine, for example, the production and the acquisition of raw 

material and resources. Moreover, trainees will become familiar the presence of several 

supply chains in a competitive environment, understanding the market situation. 
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8.4. Results 

The development and implementation of an ontological model allows the 

integration of all available data into a specific and unique information system/model, which 

allows improving the decision making process. Specific advantages of using ontologies 

are: 

 To improve the information management, since all information related to a process 

is integrated in a generic platform, eliminating inconsistencies and ensuring 

completeness. Particularly: 

 To understand the global behaviour of the model, and to evaluate how a change 

impacts at different levels, due to the connection between all data. 

 To evaluate KPIs at different levels, related through ontology, which contains the 

global model. 

 To restrict a phenomenon known as the "bullwhip effect", which is the increase 

in fluctuation of demand upstream in the SC, due to a better data control. 

 To reduce or eliminate conceptual and terminological confusion and come to a 

shared understanding, following the ISA standard specifications. 

 To extract information in an uncomplicated way, allowing the development of global 

models using the mentioned above specifications, due to the fact that all information 

is integrated and the relationships between categories and hierarchies are stipulated. 

 To increase the possibilities of determining the global optimum of the overall system, 

not just a local optimum, reducing the inefficiencies and improving the solution, 

because of data integration. 

 

8.5. Concluding remarks 

The use of an integrated information management system based on an ontological 

framework is introduced in order to facilitate the exploitation of on-line available data for 

decision making. The use of open communication systems, a platform for real-time 

management and a Web-based user interface with different view layers, allow monitoring 

the evolution of the process and facilitate the introduction of corrective actions using similar 

patterns in very different scenarios, and also standardizing the communication between 

different hierarchical levels.  

This system may be also helpful for operator training, improving transversal 

competences in Process System Engineering techniques, including modelling, planning, 

simulation, optimization and process control in real-time. This system may be also helpful 

for operator training, throughout the implementation of Operator Training Systems. The use 

of this methodology will help trainees to understand and to integrate the concepts of 
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production processes. Moreover, these tools are useful to understand current technology 

in process and planning operations, in order to contextualize trainees on his current/future 

work as Chemical Engineers, offering additional chances to improve their knowledge. 
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Part IV  – Final remarks 
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Chapter 9. Final remarks 

9.1. Conclusions 

The objective of this thesis has been to establish mathematical programming 

techniques and approaches for the efficient solution of complex decision making problems. 

Specifically, different new mathematical formulations have been developed to tackle supply 

chain management problems in deterministic and uncertain conditions. Hence, several 

case studies has been addressed and solved by the new mathematical programming 

frameworks devised in this thesis. 

According to the thesis outline, Part I introduces an overview related to the overall 

Supply Chain Management and describes the main Process Systems Engineering 

challenges in the area of optimization. Thus, Chapter 2 analyses the major open issues to 

be addressed through an extensive state of the art review. Although the decision making 

process within a supply chain has become the subject of intensive research, an attentive 

review reveals the areas where new contributions are needed for a major impact in real-

world applications. From these areas, this thesis has been focused on the integration of 

hierarchical levels, the coordination of supply and demand and the consideration of 

different sources of uncertainty. The theory and concepts behind the most used methods, 

techniques and tools to solve the Supply Chain Management problems has been described 

in Chapter 3. 

Part II addresses the simultaneous management of production and demand. 

This coordinated view, in comparison with the production side management, introduces an 

additional degree of freedom to the supply chain problem. Thus, delays in the nominal 

demands are allowed under associated penalty costs. This new potential flexibility 

enhances the management and the efficiency and autonomy of the supply chain and on 

the use of resources. The case study presented in Chapter 4 demonstrates that the profit 

of the supply chain increases when production and demand are considered in a 

simultaneous way. 

Related to this simultaneous management, in this thesis it has been also studied 

the role of the time representation in a mathematical model, which affects the optimal 

solution of a problem. In particular, Chapter 4 compares two time representations, which 

are the discrete and hybrid time formulations, applied to the short-term daily scheduling 
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problem of a supply chain. According to the obtained results, the hybrid time representation 

improves the results in comparison to the discrete time formulation, due to a better adjust 

of times using the hybrid time formulation. However, this formulation involves an increase 

in the required computational effort. Moreover, the length of the time interval in the discrete 

time formulation influences the optimal solution. As the length of the time interval 

decreases, the value of the objective function is improved and closes the gap from the 

hybrid time representation. 

On another note, the consideration of uncertainty is essential to ensure the 

generation of good quality and practical interest management decisions. Thus, a rolling 

horizon approach has been presented to deal with continuous variations in input 

parameters, by solving iteratively the managerial problem once the mentioned parameters 

are updated or modified (see Chapter 5). This formulation has allowed to react to variations 

from the nominal schedule, adapting production and demand to update parameters. In this 

kind of formulations, the length of the prediction horizon affects the optimal solutions, since 

longer prediction horizons favour the generation of better solutions.  

Other approaches to deal with the uncertainty are focused on the consideration of 

different scenarios, such as stochastic programming. In this line, Chapter 7 has presented 

a stochastic programming for the integration of strategic, tactical and operational levels. 

The consideration of multiple scenarios has allowed to improve the design specifications 

to better satisfy the potential necessities of the supply chain. The best methodology to deal 

with uncertainty will depend on the characteristics of the problem. For example, the high 

complexity related to estimate all scenarios with a high degree of precision may make 

unaffordable the consideration of all possible external scenarios. 

Moreover, Chapter 6 has analysed the integration of production and resources 

within the decision making process in a production plant. A new mathematical model has 

been developed to embrace different resource usage models and scheduling production 

models within a coordinated model that integrates production and the use of all resources. 

The need to introduce terms related to both quality and quantity of the production resources 

may lead to the introduction of additional non-linearities, which requires more 

computational effort to obtain the optimal solution or may become unaffordable. The 

obtained results demonstrate how the simultaneous management of production and 

resources will lead to improvements in the efficiency of the production plant. 

Part III deals with the integrated supply chain optimization. More specifically, the 

integration of different hierarchical decision levels (i.e., strategic, tactical and 

operational decisions) has been addressed (see Chapter 7), exploiting the process and the 

plant flexibility by integrating synthesis, planning and scheduling models. This 

mathematical formulation has allowed to design new production facilities, taking into 
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account different production scenarios and the overall supply chain planning. One 

challenge of this integration was to combine the consideration of multiple scenarios 

(stochastic programming) and the high degree of detail in the production process and in 

the planning of the supply chain. 

 Finally, the use of an integrated information management system based on 

an ontological framework has been presented. This platform facilitates the exploitation of 

historical and on-line available data for decision making. This platform has allowed to 

monitor the evolution of processes and has facilitated the introduction of corrective actions 

using similar patterns in very different scenarios, and also standardizing the communication 

between different hierarchical levels. This system may be also helpful for operator training, 

through the implementation of Operator Training Systems.  

 

9.2. Future work 

A range of issues requiring further investigation has been revealed in the course 

of this work. Therefore, this section suggests some of the potential research lines. 

Particularly, further study and improvement of the mathematical-based solution 

techniques. For instance, the results obtained through the case studies demonstrate that 

the proposed approach may be also used as the basis for solving problems with higher 

complexity, such as industrial cases. Furthermore, the formulations presented in Chapter 

4, Chapter 5 and Chapter 6 can be prolonged by the simultaneous consideration of 

coordinated production and demand as well as different factors (i.e., environmental impact, 

social aspects) through the implementation of multi-objective optimization approaches. 

Moreover, the presented mathematical models can be reformulated to consider more 

entities in the supply chain, such as the management of several suppliers. 

With regard to the time representation, the presented mathematical models in 

Chapter 4 were based on discrete and hybrid time representations. The formulation of a 

continuous time model represents a challenge, due to the high computational time to solve 

this kind of problems. Moreover, the integrated synthesis, planning and scheduling 

framework presented in Chapter 7 has been modelled using a discrete time representation. 

However, this proposed approach may be also used as the basis for solving problems with 

higher complexity and using more accurate time representations. 

Regarding the uncertainty, Chapter 5 presents a rolling horizon approach to deal 

with variability. However, this formulation can be extended by combining reactive and 

proactive approaches (i.e., rolling horizon approach and stochastic programming) to take 

advantage of both techniques. The implementation of the rolling horizon approach may 
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involve changes in the obtained schedule, since all parameters are updated in each 

iteration. Hence, rescheduling actions penalties could be included to the proposed 

optimization framework to avoid major changes in the initial schedule after the occurrence 

of an unexpected event. Regarding the integration of resources in the decision making 

system developed in Chapter 6, the further work can be focused on the introduction of 

uncertainty in the model. Furthermore, another challenge of this problem is to reduce the 

computational effort to achieve the optimal solution, since the consideration of multiple 

scenarios increases significantly this effort. Additionally, the presented mathematical 

formulations can be extended to consider multiple sources of uncertainty (i.e., prices, 

availability of sources, production times). 

On another note, the mathematical formulation presented in Chapter 6 considers 

the reuse of resources. This formulation can be extended in order to incorporate the 

treatment and recycle of these resources. Also, the proposed formulation in Chapter 7 can 

be extended by considering the use and management of internal and external resources.  

The integrated information management system can be improved by reducing the 

time to update available data as well as creating user interfaces in a friendly framework. 
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