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Abstract

Managementof security inmajor events hasbecomecrucial in an increasingly pop-

ulated world. Disasters have incremented in crowd events over the last hundred

years and therefore the safety management of the attendees has become a key is-

sue. To understand and assess the risks involved in these situations, models and

simulators that allow understand the situation andmake decisions accordingly are

necessary. But crowd simulation has high computational requirements when we

consider thousands of people. Moreover, the same initial situation can vary on the

results depending on the non deterministic behavior of the population; for this we

also need a significant amount of statistical reliable simulations. In this thesis we

have proposed crowdmodels and focused on providing aDSS (Decisions Support

System). The proposed models can reproduce the complexity of agents, psycho-

logical factors, intelligence to find the exit and avoid obstacles ormove through the

crowd, and recreate internal events of the crowd in case of high pressures or den-

sities. In order to model these aspects we use agent-based models and numerical

methods. To focus on the applicability of themodelwehavedeveloped aworkflow

that allows you to run in the Cloud DSS to simplify the complexity of the systems

to the experts and only left to the them the configuration. Finally, to test the op-

eration and to validate the simulator we used real scenarios and synthetic in order

to evaluate the performance of the models.
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Resum

La gestió de la seguretat en grans esdeveniments s’ha convertit en clau en un món

cada vegada més poblat. Els desastres multitudinaris han augmentat en els últims

cent anys, demanera que la gestió de la seguretat dels assistents és una qüestió clau.

Per comprendre i avaluar els riscos involucrats en aquestes situacions els models

i simuladors permeten comprendre la situació i prendre decisions en conseqüèn-

cia. Però la simulació de multituds te alts requeriments computacionals si tenim

en comptemilers de persones. Amés, la mateixa situació inicial pot donar resultat

diferents degut a comportaments no deterministes de la població; per això neces-

sitem una quantitat significativa de simulacions. En aquesta tesi s’han proposat

models multitudinaris i ens hem centrat en crear un DSS (Sistema de Suport a

les Decisions). Els models proposats poden reproduir algunes de les complexitats

dels agents, factors psicològics, la intel·ligència per trobar la sortida, evitar obsta-

cles o moure a través de la multitud, i reproduir esdeveniments interns de la mul-

titud en cas d’altes pressions o densitats. Per modelar aquests aspectes fem servir

models basats en agents i mètodes numèrics. Per centrar-nos en l’aplicabilitat del

model hem desenvolupat un flux de treball que li permet executar el DSS en el

núvol per simplificar la complexitat del sistema als experts. Finalment, per provar

el funcionament i per validar el simulador es van utilitzar escenaris reals i sintètics

que ens han permès avaluar el rendiment dels models.
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Resumen

La gestión de la seguridad en grandes eventos se ha convertido en clave en un

mundo cada vez más poblado. Las tragedias multitudinarias han aumentado en

los últimos cien años, por lo que la gestión de la seguridad de los asistentes es

una cuestión crucial. Para comprender y evaluar los riesgos involucrados en estas

situaciones los modelos y simuladores permiten comprender la situación y tomar

decisiones en consecuencia. Pero la simulación de multitudes tiene grandes re-

querimientos computacionales si tenemos en cuentamiles de personas. Además la

misma situación inicial puede variar en sus resultados debido a los comportamien-

tos no deterministas de la población; para esto necesitamos también una cantidad

significativa de simulaciones. En esta tesis se han propuesto modelos de multi-

tudes centrados en ser DSS (Sistema de Apoyo a las Decisiones). Los modelos

propuestos pueden reproducir algunas de las complejidades de los agentes, fac-

tores psicológicos, la inteligencia para encontrar la salida, evitar obstáculos o mo-

verse a través de la multitud, y reproducir eventos internos de la multitud en caso

de altas presiones o densidades. Para modelar estos aspectos se utilizan modelos

basados en agentes y métodos numéricos. Para centrarnos en la aplicabilidad del

modelo hemos desarrollado un workflow que permite ejecutar el DSS en la nube

para simplificar la complejidad del sistema a los expertos. Finalmente, para pro-

bar el funcionamiento y para validar el simulador se utilizaron escenarios reales y

sintéticos que nos han permitido evaluar el rendimiento de los modelos.
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1
Introduction

In this chapter, we introduce our problem, crowd evacuations, as well as the
problems that will be discussed along the thesis. The motivation to this topic is
described as well as related issues. A proposed methodology is described and its
parts are introduced. We propose a list of objectives for this thesis, and how we
aim to contribute to the research field.
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1.1 Motivation

Since the industrial revolution the world population has been growing in an re-
markable way over the years. In Fig. 1.1.1 the population growth can be seen, and
how it raised over six billion people the last two hundred years. Cities are rapidly
increasing their population in such a fast and bigmanner that a new term has been
invented for cities withmore than 10million people: mega-cities. Thenumber has
been increasing in the following years due to expansion of the populace and emi-
gration from villages to big cities. Nowadays there are 35 mega-cities around the
world. Therefore, crowds, which are a potentially dangerous situations, are getting
more usual and they have become part of our reality. There is a need for the safety
of the crowd and try to reduce any possible injury.
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Figure 1.1.1: Population growth according to ourworldindata.org

In the last century, disasters in evacuation situations have increased. Cases as
theHillsborough Stadiumdisaster (Sheffield, England in 1989) causing 96 deaths,
the Love Parade disaster (Duisburg, Germany in 2010) causing 21 deaths or the
Madrid Arena disaster (Spain in 2012) leading to 5 deaths show us how bad de-
cisions and planning can lead to human harm. These disasters have taught us that
a good understanding and prevention is necessary in order to prevent and be pre-
pared for any situation. Wehave to consider that disasters are unpredictable butwe
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need to know as much as possible andmaximize the understanding of crowd situ-
ations and know what may happen to the assistants. When talking about crowd
evacuations we will assume an order of hundreds or thousands of persons in a
closed space.

Knowing the problematic areas, exits or conflict situations where the disas-
ter may occur can be crucial in emergency planning. Moreover, understanding
crowds is, and will be, a key factor of security and building and event design. Exer-
cises such as fire drills have been an historical way to know the evacuation time of
buildings and to train the population inside the building. But it is not possible to
perform certain crowddrills where the people could be in a risky situation for their
life. When coming to the reproduction of potentially dangerous situations such as
high pressure crowds, or events with thousands of people this cannot be done. In
the case of crowd evacuations, the complexity and uncertainty of the system in-
creases. How to handle them and predict the behavior requires models, to under-
stand and reproduce the behavior of the crowds. That way, the experts will have
the knowledge to carry out what is thought appropriate in evacuation planning:
the safest and fastest evacuation possible. In this thesis we work on this direction,
proposing crowds models and contributing to the understanding of crowd events
and phenomena through simulation.

There has been a historical human desire to understand the laws of the nature
and model them. Modeling has allowed the humanity to advance its knowledge
and improve its day living. In the particular case of evacuations and crowd dynam-
ics there has been an increasing interest in the reproductionof evacuations through
several approaches during the last years such as discrete time or continuous time
models. These approaches differ on the focus of how to extract the natural char-
acteristics of the reality and how to implement them. Each approach has pros and
cons, and choosing one or another is always a trade-off.

Simulators implement the ideas designed by the models. Simulation allows us
to interact with the model and generate results without interacting with the real
system. This abstraction has been useful along history, to predict, explain the fu-
ture, andalso to reproduce andunderstand thepast. This abstractionhasbeenused

3



in weather forecasting, engineering design, drug design, evacuations, etc. Com-
puter simulation allows us to run crowd dynamicsmodels and extract information
from these emergency situations. In our case models and simulator have mainly
the purpose of provide knowledge of potential problems and also analyze theories
and simulate them. Moreover, one of the main final goals is to provide a decision
support systemwhere the complexity of themodel and the performance is hidden
to the final user. Because we will be working with thousands of agents interacting
between them and with the environment, and also reproducing different scenar-
ios, the simulationwill have high computational needs needingHigh Performance
Computing (HPC).

When finding tools that describe the evacuation of a building or even an evacu-
ationwith fire, there are plenty of tools andmodels. But in the casewhere there are
thousands of people there is more uncertainty and the number of people impacts
on the unpredictability there are not simulators and there research is also pushing
in this way. The different consequences from the same configuration and scenario,
the psychological and sociological factors or the size of the problems makes it dif-
ficult to solve. Because of this we focused on this problem: crowd evacuations. We
tackled it from several perspectives: from the model, analyzing the dynamics and
proposing theories to understand those; from the computing point of view, where
themodel are thought from their parallelism and the efficiency; and from theDSS
thinking on the transfer of knowledge and usage.

When using conventional tools for the simulation of crowds the computational
time can augment linearly with the increment of the population. Because of this,
there is a need to minimize the time without changing the models. The efficient
usage of the resources or the usage of parallel architecture can decrease the time
of the computing time. But this is not a free gain, models need to be thought in
parallel and programmed in parallel. There has been an effort in crowd dynamics,
particularly, in the area of crowds and evacuations it has been more related with
computer graphic and realistic visualization of thousands of bots. Thinking about
the applicability of thework the goal needs to be the applicability of the knowledge
through DSS and workflows and through the analysis of the state of the art and

4



analyzing the lack in the modern crowd tools.

1.2 Objectives

The present work is focused on the crowd evacuation modeling problem, crowd
simulators, and their performance. Crowd models aim to understand the behav-
ior of big populations of people in a closed space. The main goal of this work is
to present models and study their implementation on a HPC simulator. The pro-
posedmodels andmethodologies assume that the agents are simplified versions of
a person that moves through the space. Fig. 1.2.1 depicts the methodology that
proposed in this thesis. The image describes the flow of the simulation process we
proposed in our methodology, starting with the input and the configuration until
we have the simulation results. This thesis worked on all the parts of the process.
We will briefly introduce the methodology.

  

HPC system
(cluster/cloud)

Simulation results

Scheduler
(division of 

simulations)Post-analysis

Simulator

Agent model

Navigation modelScenario

Configuration

Input

Figure 1.2.1: Evacuation simulation methodology.

In this thesis we will describe two different crowd models that have been im-
plemented inside the simulator. One has been focused on time efficiency and the
second has included physical aspects, sociological aspects and psychological as-
pects that modify the force that the population involved in a high density crowd
situation. We will select an HPC system to run our simulation. HPC will allow
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us to decrease the total computing time by parallelizing the workload of the sim-
ulation. It can be a simulator which runs our model and we can also have another
level of abstraction and select the cloud to run the simulation and provide a simple
interface for the experts.

We claim that one simulation is not enough to represent the wide range of re-
sults. The scheduler divides independent simulation which may have the same or
different configuration than the other simulation. The simulation will not have
dependency between them and it will produce independent simulation results.
Finally, the last step of the process refers to post analysis of the results which is
performed by the experts, analyzing the results of the simulation and evaluating.
This methodology will be explained with more detail in this thesis and every part
of the process will be described.

1.3 Contribution

From the previous introduced issues these are the main contributions proposed
by this work focusing on the parallelism and the realism of the model.

• A discrete time model has been proposed, able to handle thousands of
agents. For the model was analyzed also a model to evaluate a statistical
significant amount of simulations.

• A workflow for crowd evacuations and the execution of cluster in cloud has
been proposed. Thisworkflow allows to provide aDSS tool as SaaS running
on cloud MPI clusters.

• A parallelization model has been proposed. This continuous model allows
to run agents in a decentralized way and move then in a stable free way
through the space.

• A model has been proposed to reproduce internal phenomena of crowd
events; in particular, crowd turbulence. The model is based on the analy-
sis of high pressure crowds with a high interaction level. It is a parallelizable
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model suitable for many core architecture allowing to increase the number
of agents avoiding a big performance penalty.

Besides the previously mentioned contributions the tool can be used to several
purposes. We list some of them.

• Calculate evacuation time of a scenario for the discrete model.

• Evaluate easily several combinations of configurations of the evacuation.

• Use the decentralized model as basis for new parallel models.

• Test crowds under high pressure conditions.

• Setup a cloud DSS for crowd evacuations.

1.4 Thesis organization

The work presented in this thesis is divided into the following chapters.
Chapter 2, Modeling crowds and evacuations: shows the existing models in the

state of the art and explains them. Some basic concepts needed to understand the
present thesis are explained. The difference and the similarities with the present
work are described.

Chapter 3, Simulation: Introduces simulation theory, high performance com-
puting architectures and programming models and the application of parallelism
to simulation.

Chapter 4, Crowd modeling: Introduces the models developed through this
work, shows the algorithmic description and describes the parallelism problems.

Chapter 5, Crowd simulation: The implementation of the model is introduced,
as well as the parallelism issues, DSS workflow and the model to execute a sta-
tistical significant amount of simulations. The validation experimentation is also
presented.

Chapter 6, Experimental evaluation: Evaluated the computational performance
of the simulator in several scenarios and configurations.
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Chapter 7, Conclusions and future work: Presents general conclusions for this
work, it makes a summary of the main contributions and opens new line for this
work.
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2
Modeling crowds and evacuations

This chapter introduces important concepts to understand evacuation and
crowd models as well as the ways of representing them. Relevant models for the
modeling of these are presented and described as well as methods of representing
them, and also specific situations of crowds, crowd disasters and crowd turbulence
are explained.
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2.1 Introduction

In the last years there has been a growing effort in solving the evacuation safety
problem. The research areas interested on the problem vary from engineering,
computer science, psychology, architecture or sociology, and each one has been
tackling different aspects of it. Inside the evacuation problem lay several sub-
problems such as: the person model, the psychological components, free naviga-
tion through the space, path planning to reach the exit, simulation techniques, per-
formance issues of the simulator, etc. The aim of all these areas and components
have common goals: provide a better understanding of the model and have a im-
proved way to implement them with simulators. For this common purpose most
of the research considers the same starting premise: evacuate a certain number of
agents inside a specific space.

In this chapter several models and approaches to the evacuations and crowd
modeling problem will be introduced, varying from complex systems, computer
graphics or mathematical modeling. We will first create distinctions among sev-
eral approaches to modeling crowds and evacuations and later we will extend the
considerations also to: parallel problems that need to be solved as path planning,
collision avoidance or numerical methods.

2.2 Classification of evacuation and dynamics models

In modeling the problem of representing the reality can be tackled from different
perspectives. Each view will have its own pros and cons based in terms such as:
complexity, performance, simplifications, aim, etc. First, we focus on the different
general classifications of the models and their characteristics.

2.2.1 Macroscopic and microscopic

Macroscopicmodels use data of the scenario such as flow rate, widths, population,
etc., and calculate the results of the scenario globally using a group of mathemati-
cal formulas. The navigation of the agents is considered as a continuous flow and
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assumes that the behavior of the flow has large scale and that there is no significant
change in the decision making process of the individuals which can be simplified.
Macroscopic models do not allow to analyze deeply the causes of the phenomena
in crowds. To analyze this microscopic models are used, but on the other hand
they can be computationally more efficient since the small scale is simplified to a
larger scale.

Microscopicmodels consider the individual interactionsof thepedestrianswith
the environment and theother agentswhilemoving towards thedesiredgoal. They
use individual agents with rules, able to interact and make decisions in space and
time. These models give a more realistic approach in terms of navigation, move-
ment and decision making in comparison to macroscopic models, but in this in-
crease of realism there is a decrease in performance due to the more detailed con-
figuration and therefore becomes a complex system.

2.2.2 Continuous and discrete

Inside microscopic evacuations models we can differentiate between discrete and
continuous. Discrete system are those which state variables change in countable
time instants. Continuous systems are those in which the state is changing contin-
uously over time. One of themain approaches in discrete time is cellular automata
(CA), which were first proposed by Von Neumann. CA[77][70] are models that
evolve in discrete time phases and are characterized by a set of states. The space is
divided typically in a grid space and each automata interacts with its neighbors in
the grid. The transitions between time steps are done by all the automatas in a step,
and will take into account the local state and the neighbour automatas surround-
ing the target automata. In CAwewill consider homogeneous and heterogeneous
models depending on the definition of agents. This model has been widely used
in evacuation simulation.

Continuousmodels describe systemswith continuumvariables. While discrete
model can only represent a limited number of positions in the space, continuous
model can describe the positions of its components in any coordinate. Therefore
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the simulation time and the time step can be modified while in discrete are fixed
because the discrete evolution of the simulation. Continuous models gain realism
in front of discrete models but they add overhead in the computation.

2.2.3 Behavioral

In some application there is no need to reproduce evacuations that are intended
to be validated. Instead of this, the aim of the model is to reproduce behavior of
the crowd that will be perceived as realistic. This kind of models are behavioral
models that try to reproduce in a realistic way the behavior of the agents which are
named ”boids” in this case. It has been usedwidely in animation graphics to repro-
duce thebehavior of boids. One example is the flockingmodel fromReynolds[60]
whichmodels the behavior of birds in a realistic way. Even that these models were
not initially intended to act as tools for the evacuation community, they have been
widely contributing to the area.

2.3 Social Force

Social Force[29] is, without question, the most influential model on the evacua-
tions research area. It was proposed by Helbing and is a microscopic continuous
model. It proposed an explanation for the dynamics of pedestrian under the influ-
ence of other people and walls. The model was based on the study of videos and
proposed a list of characteristics that emerge from evacuation situations. The list
of characteristics described by Helbing is the following:

1. People move or try to move faster than normal.

2. Individuals start pushing, and interactions among people become physical
in nature.

3. Moving, and particularly passing a bottleneck becomes uncoordinated.

4. At exits, arching and clogging are observed.
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5. Jams build up.

6. Physical interactions cause dangerous pressures.

7. People show a tendency towards a mass behavior.

8. Alternative exits are often overlooked.

This list has been important because it summarized the aspects that are ex-
pected for evacuation models involving crowds, physical forces and psychologi-
cal forces affecting the evacuated pedestrians. After these observations, the Social
Forcemodel was proposed. Thismodel describes a set of forces acting on an agent
with mass m who wants to move at a desired speed v0i to the exit e0i . The interac-
tion forces fij and fiW define how the other agents and walls affect the movement
through the space and the trajectory.

mi
dvi
dt

= mi
v0i (t)e0

i (t)− vi(t)
τ i

+
∑
j(̸=i)

fij +
∑
W

fiW

Force fij defines the interactions of agents between them. In the definition of the
formula can be seen two components added. The first one declares the interaction
with other agents taking into account the distance and several constants (A, B and
k) contributing to the body force component. The second part does not allow the
tangential movement which will be zero if agents do not touch.

fij =
{
Aiexp

[
rij − dij
Bi

]
kg(rij − dij)

}
nij + κg(rij − dij)Δvtijtij

The interaction with wall is described by the force fiW. It uses a similar nota-
tion to the body interacting force, but with walls as components, keeping also an
exponential repulsion using the distance to the wall to avoid overlapping.

fiW =

{
Aiexp

[
riW − diW

Bi

]
kg(ri − diW)

}
niW + κg(ri − diW)(vi · tiW)tiW
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This model explained self-organized phenomena such as group formation or
bottlenecks, and the previous listed characteristics in a clean way. Moreover, is a
widely extended and validatedmodel used by a considerable part of the evacuation
research community.

After the Social Force was published, there were new contributions based on
this work. The Social Force model was parallelized by Quinn[58] for real time
simulation of 10.000 agents using space partitioning distributing the space with
MPI on a parallel architecture. Apart, the Social Force model has been constantly
reviewed by several researchers. One of the most extended revision of the So-
cial Force model is Pelechano’s work onHiDAC andMACES[57][56]. Her work
is based on virtual crowds and is oriented to computer graphics and it also con-
tributes to evacuation modeling. The model is related to obstacle avoidance, path
planning and high densities. She proposed a rich model with a realistic behavior
for 3D simulations.

2.4 Crowds

Crowd analysis has been important in buildings construction, public transporta-
tion, airports, shopping malls, theaters, etc[10]. There have been disasters along
the history, increasing the analysis of the crowds during the last century. Fig. 2.4.1
shows some of these disasters that have happened in different scenarios. The im-
ages give an idea of what crowds mean in terms of size and complexity and how
it affect to different parts of the world. Crowd evacuations is a special case inside
pedestrian evacuations. Besides the amount of agents involved in the simulation
there are other important factors that impact on the model: crowd special phe-
nomena. When there are hundreds or thousands of persons in a dense mass the
events that happen there are different from a low density evacuation. These phe-
nomena con vary from stop and go waves, laminar behavior, crowd turbulence,
stampedes, etc.
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Figure 2.4.1: Crowd events and places where people resulted death and in-
jured: (a) Mahamaham Festival, Kumbakonam [69]. (b) Hillsborough disaster
in the newspapers[53] . (c) Love Parade in 2010[1]. (d) The way to Jamarat
bridge [78].

2.4.1 Crowd disasters

Crowd disasters are a historical problem in crowd situations. They have been
caused by stampedes, high dense situations, bad planning, etc., and they injured
people and some cases were the cause of death. We list in table 2.4.1 historical
crowd disasters[13][30]. They are divided in historical disasters and disasters in
the last 10 years. Those show how in the last century the crowd disasters did not
stop occurring with hundreds and in the worst cases thousands of deaths. In real
complex and crowded places such as Mina in Saudi Arabia where millions of pil-
grims travel, there have been several disasters over the years due to the complexity
of the situation and the big amount of people who attends. The second part of
the table demonstrates how in the 21st century disasters did not stop occurring.
The number of deaths in the list varies from a units to thousands. Also, normally
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in these situations there is a big number of injured people. The table shows how
these cases happen all around the world and are not restricted to a unique pattern
or region.

2.4.2 Continuous crowds

The term ”continuous crowds” is usually referred to the continuous movement of
pedestrians. There have been several models representing the navigation of big
populations of boids through the space. Treuille[72] presented a real time crowd
modelwith collisionavoidanceunderdynamic conditionsbasedon limitedknowl-
edge of the boids and dynamic paths based on potential fields driving to an effi-
cient algorithm for continuous crowds. Although pedestrian models have been
focused on the optimal real time simulation of boids, these have found represen-
tation of real phenomena such as line formation and have based part of their work
in contributions of evacuation models. These models are focused on the graphics
and rendering process, where thousands of agents aremoving in an intelligentway,
avoiding obstacles and agents optimized to reduce the computational complexity.
They are able to handle thousands of boids moving in a space. This technology is
also used in video games to simulate population in cities, an army, etc.

2.4.3 Crowd turbulence

Crowd turbulence is a special phenomenon that had turned events into disasters,
such as Love Parade (2010) or Hajj (2006). Helbing wrote an empirical study of
theHajj disaster[31] where he analyzed the videos of the Jamarat bridge were 345
people died a day more than 3 million people assisted. He extracted conclusions
from the video analysis such as how the turbulence happened and the he proposed
the formula of ”pressure” to define the behavior of the mass. Posterior research
proposed a model to reproduce crowd turbulence and using the ”pressure” for-
mula to validate it. The ”pressure” formula will be described in section 5.4.3.1 and
used to explain crowd turbulence of our model. The Social Force was extended by
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Table 2.4.1: Major crowd catastrophes.

Year Place Venue Deaths Comment
1863 Santiago, Chile Church 2000 Emergency egress
1881 Vienna, Austria Theatre 570 Emergency egress
1903 Chicago, USA Theatre 602 Emergency egress
1943 London, UK Tube station 173 Ingress
1961 Rio de Janeiro, Brazil Circus 250 Emergency egress
1964 Lima, Peru Stadium 318 Riot
1968 Buenos Aires, Argentina Stadium 73 Egress
1971 Glasgow, UK Stadium 66 Egress
1974 Cairo, Egypt Stadium 48 During event
1982 Moscow, USSR Stadium 340 Egress
1989 Sheffield, UK Stadium 96 During event
1989 Mina, Saudi Arabia Pedestrian tunnel 1425 Ingress/Egress
1992 Kumbakonam, India Outdoor Festival 50 During ceremony
1994 Mina, Saudi Arabia Holy site 250 During ceremony
2006 Mina, Saudi Arabia Jamarat Bridge 345 During event
2006 Pasig City, Philippines Stadium 78 Ingress
2007 Chongqing, China Supermarket 3 Offer
2007 Sunchon, North Korea Stadium 6 Egress
2008 Mexico City, Mexico Nightclub 12 Riot
2008 Himachal Pradesh, India Temple 146 Egress
2008 Jodhpur, India Temple 224 Bomb rumor
2009 Abidjan, Côte d’Ivoire Stadium 19 Egress
2009 Xiangxiang, China School 8 Egress
2010 Duisburg, Germany Tunnel 21 Ingress/Egress
2010 Kunda, India Temple 71 Egress
2011 Haridwar, India Holy site 16 Ingress
2011 Kerala, India Holy site 102 Egress
2012 Cairo, Egypt Square 3 During event
2012 Madrid, Spain Stadium 5 Egress
2013 Abidjan, Ivory Coast Stadium 60 Egress
2013 Santa Maria, Brazil Nightclub 242 Egress
2013 Uttar Pradesh, India Railway station 36 Egress
2014 Shanghai, China Outdoor event 36 During event
2015 Cairo, Egipt Stadium 28 During event
2015 Mina, Saudi Arabia Holy site 2262 During ceremony
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Yu and Johansson[82] to model turbulent flows. It extends the repulsive force of
the agents. They added extra terms to the repulsive force improving the previous
Social Forcemodel. This new approach considers the following formulas tomodel
the repulsion creating amore complexway to solve theoverlappingbetweenagents
and the ”Social Force”. Thenew constants used are based on the distances between
agents and the interaction angles.

f⃗ij = FΘ(φij)exp[−dij/D0 + (D1/dij)k]e⃗ij

Θ(φ) = (λ + (1− λ)
1 + cos(φ)

2
)

Further studies such as the analysis of Love Parade by Helbing [28] also de-
tected crowd turbulence producing high pressures that crushed the chest of several
assistants. Anothermodelwas proposed byGolas[25]which is based onFluid Im-
plicit Particle, a PIC code. The goal is to represent the crowd as a continuum with
collision avoidance and computes friction stress.

2.5 Navigation and collision avoidance

While pedestrians walk through the street they need to move in different direc-
tions, cross other pedestrians, stop if there others are stopped, avoid bins, posts,
and other obstacles. Therefore agents need to have the intelligence to avoid other
agents and obstacles while they are following their path. To solve these problems
we use navigation and collision avoidance algorithms, especially in pedestrian dy-
namics. These algorithms are specially used in computer graphics and robotics.
One of themore important algorithm in this area is Velocity Obstacles (VO)[21].
VO is a behavioralmodel based on the prevision of the future position of the agent
and correcting the trajectory when two or more agents share this trajectory. It
has been one important navigation algorithm used[26], reviewed and extended
by algorithms as Reciprocal Velocity Obstacles[75] or Hybrid Reciprocal Veloc-
ity Obstacles[65]. VO is expressed usingMinkowski notation to denote the inter-
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sections of the areas of the navigation boids. The main idea is: each agent has a
cone defining the possible future positions; the agents try to move to areas where
their future positions do not conflict with others, moving always to free areas or
stopping if they cannot.

VOA
B(vB) = {vA|λ(pA, vA − vB) ∩ B⊕−A ̸= ∅}

In more detail we can consider two agents named A and B. We use Minkowski
notation to express the cones defining the possible areas where B ⊕ −A ̸= ∅
denotes that there is no intersection between both areas. The algorithm checks if
there will be a collision in future time steps and then correct the navigation for the
next step providing free collision navigation.

2.6 Modeling human psychology

Even though somemacroscopic approaches thatmodel the crowdhaveminimized
the impact of sociological components and individual attributes of the occupants,
these can have a direct impact on the final results of an egress situation. We de-
scribe some psychological and sociological aspects in risk situations and how peo-
ple had behaved in those.

2.6.1 Sociological components

Mass panic, selfish behavior and self-preservation has been considered the normal
response to potentially dangerous situations. Current literature has demystified
this belief, showing how aid and non-selfish behavior is more dominant[50]. Also
social contexts such as being close to family or people with any emotional attach-
ment calms down the person and leads to a gregarious behavior in a potentially
stressful situation[50]. Moreover, distance from this emotionally attach people is
a greater stress factor than any physical danger.

The reaction from different countries and societies differs and can have a direct
impact on the results of a potential risk situation. An example to illustrate the re-
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action of different societies to panic situations are the ”War of the Worlds” Orson
Welles broadcast and a Swedish broadcast of a radioactive leak. In October 1938
OrsonWelles described on the radio howMartianswere invading theEarth during
prime time reporting it in the news. Between 6-12 million people heard the pro-
gram and 28% believed it[7]. And of these, the 70% were ”excited” or afraid[46].
On the other hand, a radio broadcast informing of a radioactive leak in Sweden
from a nuclear plant, had different results. Of the interviewed, only 1% of them
confessed to react behaviorally to it[62]. No one felt panic as opposite to what
newspapers said. This is a sample of how under similar conditions react differently
to its sociological components. Therefore this behavior needs an analysis of the
population and the society. The evacuation will be different in different countries
and in different ages. Also, population will behave differently in a known space
such a residential evacuation than in a stadium evacuation.

2.6.2 Psychology and panic

Even in events that are considered by media as panic and stampedes, such as the
Who concert stampede (11 deaths), people tried to help each other and posterior
research concluded that these situations were not stampedes[39]. To clarify what
is panic we will cite its definition as described by Mawson[50]: The term ”panic”
refers to inappropriate (or excessive) fear and/or flight and highly intense fear and/or
flight. instances of panic are difficult to identify in practice. The judgment of panic is
usually made retrospectively, especially if serious loss of life occurred. Therefore, we
assume that panic situations will make people to put themselves as priority over
the other and act in ways that may harm others.

Current research rejects the term of mass panic[2][37] which is historically re-
lated to uncontrolled emotion, and selfish behavior. These are now considered
as irrationals theories of the crowd which assume the loss of individual person-
ality. In Hillsborough disaster with 96 deaths, testimonies related that there was
co-operation and order behavior even when the threat of death was present[8].
Thus, humans do not always act selfishly[76].
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The fact that these studies demonstrate that panic and irrational behavior is sel-
dom makes changes the approach of some evacuation models as they are consid-
ered as ”panic situations”. It would be an easier explanation for selfish behavior,
panic and stampedes to disasters but the posterior analysis of these situations show
that it is rare. There are factors such as social identity which mitigates the effect f
crowd risk such as social identification [3]. Psychological membership to a com-
munity can have benefits while other people identify themselves with the crowd
reducing the risk acts and moderating their behavior. Pro-social behavior in evac-
uation is often found[16][15]

2.7 Mass forces

In theHillsbrough disaster, the barriers collapsed due the force of the crowd. Pos-
terior analysis showed that the barrier was able to hold up to 6kN/m [27][54].
This forcewas the result of all the force acting in one direction. This range of forces
can be dangerous and drive to a potentially pernicious situation. These forces have
been studied and particularly Henein[33] proposed four general principles to de-
scribe and model them:

1. Force is directed. It is applied by one agent to another in a particular direc-
tion. Forces in models must be implemented as vectors rather than scalars.

2. Force carries consequences. Force is not an invisible field that guides cog-
nitive decision making; rather, once exerted it has measurable effects that
are outside an agent’s control.

3. Force is propagated. Force in a crowd model must be transmitted through
the crowd in the direction of the force, and that it is additive (vector-wise)
when encountering other forces

4. Force is generated purposefully. Force is not simply an emergent property
of masses of people. People exert force in some circumstances and not in
others.
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2.7.1 High density

High density crowds are a special kind of crowdwhere pressuremay be higher and
the consequences can be different than in other crowds. There is more pressure in
the agents and the risk of crush is high. In the analysis of crowd turbulence byHel-
bing, greater than 10persons/m2 personswereobservedwhen thenormal condition
should be 4 in average[31]. It also analyzed thatwhen local density of 6persons/m2

was exceeded, the local flow decreased by a factor of 3 or more. This pressures are
dangerous and the densitymay propagate the forces of the bodies and harm the as-
sistants. For example, in the case of theMadridArena disaster, survivors described
how they were not able to walk. They were dragged by the force of the mass and
some bodies felt and crushed bodies that were at the bottom of the pile. In these
cases the will and forces of the agents can be not significant. But the addition of
all the forces becomes critical. An analysis andmodelling of pressure[23] showed
how the pressure affected the survival of the people. Ibrox Park soccer stadium in-
cident produced asphyxia, with a 3meters pile of bodies supporting 3600-4000N.
The addition of forces causes enough pressure to compress the chest and produce
asphyxia or in worst cases, ”chest crush”. These forces are dynamics since all the
affected persons try to gain space to breath. Analysis from videos such as the love
parade disaster[9] show that people tend to gain free space as it was previously
concluded in the first Social Force paper presented by Helbing[29].

2.8 ModelingwithDE

Amodel emulates the behavior of the realworld, and the behavior of reality ismost
of the times expressedor it canbe expressed in differential equations (DE)or it can
be expressed. For this reason they are important tools used in scientific simulation.
In science and engineering mathematical models and physical models are often
expressed in form of equation with derivatives on its declaration.

Partial Differential Equations (or PDE) are differential equations with more
than one independent variable and its derivatives. PDEs are widely used in sci-
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entific simulation and the description of processes particularly in physical process
to define a model set in space how evolves in time. In the case of evacuation there
have been approaches to the usage of PDE to solve the movement of the popu-
lation. It has been applied in population dynamics[40] with gas-kinetic or fluid
dynamics approaches. There is an important branch of crowd dynamics theory
which creates an analogy between the flow of the crowd and the Navier-Stokes
equations[32]. Navier-Stokes are a set of PDEs used tomodel computational fluid
dynamics. These equations have high computational demands but in the case of
crowds they have been used for 2D problems. Hughes made contributions on the
modeling of the flow of pedestrians as PDE[35][34] focusing on the dynamics
of the mass as a global behavior using a macroscopic approach. Moreover, Social
Force used the differential formofNewton’s second lawofmotion as starting point
for his model.

Ordinary differential equations (orODE) are differential equations with one or
more functionswith one independent variable and its derivatives. These equations
are easier to solve since the number of independent variables used is lower than in
PDE. Even though the usage is lower in scientific computing they are also widely
used. ODEwill be used in the presentwork to define the continuous crowdmodel.

There are several numerical methods to represent ODE and PDE. In the finite
differencesmethod, it is based on a differential formulation of theDE.The space is
divided in neighbor points and it is used an expansion of theTaylor series between
two points. Other methods are the finite element method and the finite volume
method which allow to solve PDE for unstructured grids.

2.9 Conclusions

In this chapter we introduced a range of approaches to modeling crowd evacua-
tions as well as some problems related to it. We saw that there is not a unique
way to represent them (discrete, continuous, microscopic, and macroscopic) and
choosing between one and another is a trade-off. Crowd are complex situations
and have led to several disasters through the history and there are some events

23



that only occur in this situations. One of the most important models in evacua-
tions is the Social Force model which is based on the forces that agents and walls
interact on every agent. The psychology of the crowd can modify the results of an
evacuation process and panic should not be considered as the obvious reason to
crowd disasters.
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3
Simulation

This chapter, introduces concepts on computer simulation as well as their ap-
proaches on the computational models. Also high performance architecture and
computing models that allow to implement time demanding simulations are dis-
cussed. HPC simulators and techniques to reduce the computing time of those
are introduced.
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3.1 Introduction

Most real world problems cannot be solved analytically. To solve themwe usema-
chines that allow to achieve an approximated solution. Computer simulation is the
technique used to emulate the behavior of a system using the power of computers.
To perform this action we need a computer program which will be called simu-
lator, and a computer or set of computers where the simulator will be executed.
Moreover, one computer cannot be enough to solve some kind of problem which
may demandmore computing time. In these cases we need to parallelize the com-
puting process in order to reduce the total execution time. For this we will use
parallel simulators.

3.2 Computer simulation

Simulation modeling is the process of creating a computerized model from the
description of a theoretical model. Therefore is the process of translating the
model to the interface that provides a computer: a discretemachine that performs
arithmetic-logical operations, input/output interactions and conditional and un-
conditional jumps. Simulation has been growing the last years with scientific re-
search. At the beginning of its history, computer simulation was strongly related
to military research. For instance, in the Manhattan project (1942-46) a simula-
tor was built in order to simulate a model of a nuclear detonation and understand
what could happen[59]. Simulation permits to understand complex interaction
within the system and allows to go forward and back in time, analyzing the be-
havior as well as trying new concepts and answering question of the type of ”what
if...?”. Allows to simulate high complex system that otherwise we will not be able
to understand. We use it to predict the future, to understand the pass or even to
emulate an existing system. Simulators are also used for training users in complex
systems as in the case of flight simulators, where the simulation cost is very small
in comparison of interacting with the real system. Nevertheless the simulator will
be as good as the model and the configuration. Simulation will not solve all kind
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of complex problems and will not provide easy answers. They need to implement
realistic models, be properly coded and also have accurate configuration and data.

3.2.1 Simulation classification

There is not a unique way to implement a simulator. Its scheme will depend on
several factors as the problem, approaches to the problem, design decisions, per-
formance, etc. Simulation can be classified depending on several attributes. Fig.
3.2.1 depicts the taxonomy of the categorization based on determinist/stochastic,
static/dynamic, continuous/discrete properties.

  

system model

dynamicstatic

stochasticdeterministic

discretecontinuous

dynamicstatic

discretecontinuous

Figure 3.2.1: Simulation model taxonomy.

Deterministic and stochastic

A stochastic systemhas randompatterns determined by probabilistic components
of themodel. Small variations in the system can cause big variations over time. For
example stockmarkets aremodeled as stochastic with randompatternsmodifying
its behavior, the movement of cars in traffic, or the probabilities that a cancer cell
will reproduce. Therefore even knowing the range of possibilities, there is an un-
predictable output of the simulation because it will vary. In this we can findMonte
Carlo simulationwhich is basedon an iterative simulationwith randomness on the
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behavior. Deterministic systems do not have arbitrary patterns and will not have
random behavior. Due this, the output of the system will always be the same for a
given input. Therefore it will be more predictable than a stochastic system.

Static and dynamic

A static systemdoes no evolve in functionof time. In some caseswe could consider
that is a simulation which is done in steady state, only for one simulation step or in
other systems, time is even not a parameter. On the other hand, a dynamic system
evolves in function of time. Hence, the state of the simulation will vary and evolve
between simulation time steps.

Continuous and discrete

A simulation is continuous if its definition is expressed in function of continuous
time and the state is constantly changing. On the other hand discrete simulation
are those that advance in discrete periods of time and the change is only produced
on these discrete steps.

3.2.2 Scientific simulation categories

Here we describe some approaches tomodeling physical system using simulation.
The categories vary on their approach to model the problem. The described cate-
gories are considered important in the area of evacuations and simulation.

Continuous dynamic simulation

This is one of the biggest areas inside scientific simulation. Its description is based
typically on differential equations and algebraic equations. As described previ-
ously a large amount of physical systems can be modeled as a set of differential
equations that evolve in time and they are implemented using methods such as fi-
nite volumes, finite elements or finite differences. The equations will define state
variables, boundary conditions, how the system changes between time steps, etc.
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Even that continuous simulation represents continuous system, the solution will
always be approximate. The complexity of continuous simulation is normally high
with high computer performance needs. In the case of fluids, which have been
compared to themovement of the crowd[32], we have PDE that define themacro-
scopic behavior of the crowdand all the set of equations need tobe solved for every
time step and for every point in a determined space defined by a set of points.

Discrete event simulation (DES)

Discrete event simulation (DES) describes a model using a discrete sequence of
events that determine the evolution of the system. Transition between states are
triggeredby events andnoupdateof the system is done inbetween. The systemhas
a set of variables which are updated at every event. Due to their discrete nature are
easily adaptable to computing systems and there is a considerable amount of for-
malism on this area. DES is a very important and extended category in scientific
simulation. It allows to model finite state machines, Petri diagram, queues, net-
works, etc. For example, in the case of Petri diagrams we will tokens, transitions,
places and arcs. The token, which are the representation of item move between
places according to the event list. Therefore, there will not be a simulation time
that determines the evolution of the system, but they will have events that will set
transitions between simulation states.

ABM, IoM

Agent based modeling (ABM) is an approach to modeling systems composed of
individual, autonomous, interacting agents which are declared by behavioral rules
and attributes. ABM is based on the representation of global behavior from the
rules given to individuals and it enables us to see the consequences on a macro
level of the interactions on a micro level. In ABM, behavioral rules are the set of
rules that define how the agent act at every time step. The behavior will depend on
the environment and the attributes. Attributes are state variables of every agent
and independent from others which are updated by behavioral rules. In the par-
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ticular case of evacuations these attributes may be, size, age, exit, vmax, etc. These
attributes make different and particular every agent by having different attributes.
The environment of the person are the elements which interact with the agent.
For example in the case of evacuations the environment can be defined by walls,
obstacles, signals, etc. There will be a set of individuals with their behavior and
attributes and the environment. We can have a vision of how the individuals inter-
act (homogeneous or heterogeneous agents) with the environment and the other
individuals, in discrete times. Every agent is ruled by the same laws. ABM allows
us to analyze how the system evolves from the rules of the individuals and their
interaction with others and the environment. From the beginning, the output of
the system is unknown, even with a model and a known configuration. We can-
not know the output of the system analytically, and because of that we will need
to simulate it. In the case of crowd evacuations it has been used previously. This
approach can be consideredmore realistic than a system of equations solved. This
approach is then closer to the reality. ABM as good aspect, offers more flexibility
and the availability of setting different behaviors depending on the environment
and allowing heterogeneous agents and environments. Agent’s attributes do not
depend on others and agent’s state variable are updated every time step. It allows
to analyze and evaluate the internal evolution of the system and have more infor-
mation from the state update of the agents. In the case of ecology, these models
are known as IoM (Individual oriented Models). Are applied in herding, flocking
or other natural system.

3.2.3 Simulation time

Simulation time is a synthetic time used by the computer to have an internal way
to approach a measure of the time of the real system. It is also different from wall
time which is the total execution time of the simulator. Simulation time advances
on time steps, which are the discrete way in how the simulation time advances.
Choosing the adequate time step impacts directly on the total execution time of
the simulation. A small time step will give more information but the simulation
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will take longer. A big time step can make the simulation run faster but may lose
information. For problemswhere there is awide variance in a short period of time,
such as combustion simulation, a short time step is needed. In cases such as N-
body collision if the collision time can be calculated there can be used dynamic
simulation time, optimizing the total execution time.

3.3 High Performance Computing

Some problems cannot be solved in computationally conventional ways because
the total execution time will be too long. Therefore there is a need to reduce the
total executing time and make it faster. The aim is to conserve the problem and
speedup the execution. For this we have High Performance Computing (HPC)
which maximizes the usage of modern hardware and software using parallelism.
Parallelism consists on dividing a part o the problem in pieces of work in an ideal
way that dividing it into N parts will take total_time/N.

3.3.1 Parallel architectures

Parallel architectures can be divided by their properties. A well known taxonomy
used to classify the computing architecture is the Flynn taxonomywhich uses two
dimensions (instructions and data) to classify four architectures types.

• SISD (Single Instruction Single Data). Is the most conventional architecture
where there is one flux of data computed with one flux of instructions

• SIMD(Single instructionMultipleData). In the case ofGPUs the termSIMT
(Single InstructionMultipleThread) is used because all threads are execut-
ing the same timewith a shared program counter with different data. A clas-
sical example of this are vector processors.

• MISD (Multiple Instruction Single Data). The same data is computed differ-
ently from the processing units. This architectural is only theoretical and
has no commercial usage event that there have been built prototypes.
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• MIMD(Multiple InstructionMultipleData). There is a parallelismof thepro-
cess and the data.

3.3.1.1 Shared memory

Sharedmemory architectures consist on a set of processors that communicate be-
tween them using a common memory. Fig. 3.3.1 shows how independent cores
with a cache share a memory that is accessed by a memory bus. Inside shared
memory architectures we can divide them depending on the access to memory:
NUMA (Non Uniform Memory Access): the time to access the memory is not
constant and the latency will vary; UMA (Uniform Memory Access): constant
latency to access memory.
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Figure 3.3.1: Shared memory architecture overview.

An example would be a multicore architecture where independent processors
with different processing contexts sharememory addressing and canmodify com-
mon variables by having a shared space using threads instead of process. Other
architectures such as GPUs follow a SIMD architecture where there is a common
context inside a same set of cores known as SM(StreamingMultiprocessor)which
share program counter, and all the cores have a commonmemory space which can
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be accessed by all the threads. Coprocessors such as XEON Phi are a set of low-
energy processors with Intel ISA that solve vectorized problems.

3.3.1.2 Distributed memory

Distributed memory architectures are based on independent processors with pri-
vate memory which use an interconnection network to communicate. Typically
the units of distributedmemory are nodes. Every node has processors, whichmay
have shared memory as well. Fig. 3.3.2 shows a system of nodes with one core
which own an input/output device to access the interconnection network to com-
municate with others.
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Figure 3.3.2: Distributed memory architecture overview.

3.3.2 Parallel programming models

Programming languages allow to give instructions to parallel hardware on how to
coordinate all the computing devices in order to solve a commonproblem. Parallel
programming models have also a difficulty added which is providing an interface
with complex hardware in a simple way but without losing performance on the
compute.
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3.3.2.1 Shared memory

OpenMP is an application programming interface (API) for multi-thread pro-
gramming. It is used in multicore architectures, and also, more recently, in Xeon
Phi. It is called using the format of precompiler directives, so if OpenMP is not
processed, the API directives will be ignored. The executionmodel of OpenMP is
fork-join where the task is divided into n children threads to finish collecting the
solution. Syncing and passing values is done through sharing a set of addresses in
memory. POSIX threads (pthreds) also provide a library for thread programming
to create and control their flow.

3.3.2.2 Coprocessors and accelerators

CUDA is a parallel computing platform and API created by Nvidia. It allows to
program a parallel kernel which runs onNvidia GPUs. CUDA parallel regions are
named kernels, which are functions callable from the host and run on the GPU.
The kernel will use threads, which is the basic unit of work of the GPU. All threads
will run at the same time in the GPU and this usage is called thread-level paral-
lelism. CUDA is widely used in supercomputers and it provides an easier pro-
gramming interface compared to otherAPIs such asOpenCLwhichmakes a faster
development, but, on theother hand, itwill only by supportedbyNvidia hardware.

OpenCL (OpenComputing Language) is an open standard for general parallel
processing aimed to support different platforms, ranging from multicore, GPU or
even FPGAs. As opposite to CUDA which is intended for Nvidia platforms, the
same code in OpenCL can be ported to different platforms. The standard defines
an API which is implemented by the hardware developers providing a homoge-
neous view of the resources. When programming in OpenCL there is a code for
the host (CPU) and a code for the device in the format an OpenCL kernel, which
is loaded in execution time. The host code allocates the memory, configures the
OpenCL environment and calls the kernel which runs in parallel on the device.
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3.3.2.3 Distributed memory

Programming model based on distributed memory architectures specify how
nodes process communicate with others usingmessages. Variables are only shared
through the network using messages. The programmer needs to build the archi-
tecture of the execution, the master and slaves, synchronization, etc. Event that
there are other specifications for distributed memory as MPI (Message Passing
interface) became a de facto standard in the community. MPI is a portable and
flexible specification based on the efficient use of architectures and high perfor-
mance systems. There are libraries that implement these specifications such as
OpenMPI, MPICH, Intel MPI, etc. MPI has been used in most supercomputers
of the Top500 list[71] from middle 90’s, and it is still one of the most extended in
HPC.

3.3.3 Hybrid computing

The present and future of HPC goes toward the hybrid computing, mixing archi-
tectures and programming models. In a modern node of a supercomputer of the
top500 listwe canfind several cores, in severalCPUs,which insidehaveparallelism
in the data and instruction access, superscalar execution, vector SIMDoperations,
a GPU or vector processors with Xeon Phi that may be connected via an inter-
connection network to nodes with different hardware characteristic to their own.
Programming models are now mixed in modern HPC applications and the hard-
ware usage is optimized.

3.3.4 Parallelization techinques

Once the region that can be parallelized has been located inside the model, a par-
alellization techniquewill be chosen. The techniquewill dependon thedependen-
cies and properties of the algorithm, design decisions and the architecture. When
parallelizing the problemat times there are dependencies and some simplifications
aremade to extract asmuch parallelism as possible. At times there are hard depen-
dencies but simplifications are made in order to have a parallel problem. In other
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cases such asmatrixmultiplication the problem is implicitly parallel. There are sev-
eral standard techniques on how to divide the work in pieces and distribute those.

• SPMD (Single Program,Multiple Data) is a technique that consists on run-
ning different inputs of the system in different processors to achieve results
faster.

• Master worker is a communication model where a master divides the work
among slaves and once they have finishedwill communicate it to themaster
to deliver more work.

• Fork-join is a parallel design pattern which divides the work in several in-
dependent branches to create independent solutions that are computing in
parallel and later merge these solutions into one. Fork-join model follows a
divide and conquer pattern.

• Pipeline is a technique used to overlap the execution of tasks that depend
on each other, but which execution can be overlapped and the output of
one will be the input of another. It is commonly used by instruction level
parallelism to speed up the processor execution.

3.3.5 Cloud

Cloud allows to provide services on demand by accessing to them through an
Internet connection. It allows to have complex architectures and setups paying
for the infrastructure providing IaaS (Infrastructure as a Service). Cloud has be-
come a new service in simulation and HPC. An HPC cloud provides dynami-
cally scalable resources which allows to have HPC on demand. Platforms such
as StarCluster[51] developed by MIT allow to run HPC simulation on the cloud
in a simplified way for the scientists. Several simulation projects have researched
on the performance of this new approach to provide simulation services, such
as biomedical HPC applications or the Flame ABM framework [24][43]. Even
though these advantages are good to consider, it has some disadvantages such as
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the irregular access to the file system and non-uniform behavior of the network
which may penalize the applications and computing time which will end up in-
creasing the price of the computing.

3.4 HPC simulation

Simulation has been related toHPC since the beginning of computational simula-
tion. Lewis Fry Richardson imagined on 1922 a ”forecast factory”[48] with more
than 64.000 human using their calculators at the same time to forecast the weather
of the planet on real time. That could be considered an early approach to super-
computing simulation and shows how the computing needs have been needed
from an early stage. Also, in non-deterministic models we may need a big set of
simulations to have a significant amount of results.

3.4.1 HPC in scientific simulation

Almost all applications that run on supercomputers are simulators. The goal of
scientific simulation in supercomputers is to predict, analyze processed that oth-
erwise could not be understood, analyze big amounts of data, reproduce complex
experiments, etc. To have a better understanding of the applications that are used
in supercomputing simulation we list some of them separated in areas.

• Bioscience: drug design and applications such as genetic alignment or pro-
tein folding.

• Chemical engineering: combustion, chemical reactions, etc.

• Economics: risk analysis of markets, automated training

• Geoscience: oil and gas exploration. For example big oil companies use su-
percomputer to analyze data of the bottomof the ocean explored previously
using waves.

• Mechanics: solid state physics, computational fluid dynamics, etc.
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• Weather and climate forecasting. Climate change analysis, volcano dust.

• Physics: plasma physics, cosmology or astrophysics models.

3.4.2 HPC in agent dynamics

The literature on computational crowd dynamics has been improved by the game
industry, aiming to find realistic behavior of boid agents moving through the
space[26][66]. These approaches allow to parallelize more easily because they
break dependencies. Another important field making contributions has been
robotics, where independent robots have to move freely through the space avoid-
ing collisions and being independent from any centralized decision in a similar
way that evacuation agents[42][81][14]. In the area of evacuations, free naviga-
tion andHPC there are several approaches withGPUs. The approaches have been
more related to realistic behavior of boid agents moving freely among the space
that trying to provide a model for crowd evacuations and also has been addressed
as a rendering problem. For instance the Bleiweiss[5] of GPU works on free nav-
igation including models such as path planning. Richmond[61] proposed Flame
GPU template where he creates a GPU tool able to produce templates for SIMD
problems and visualization. Other approaches in the case of ABMmodel show the
performance of the free navigation of independent agents through the space[18].

3.5 Simulators and commercial software in evacuations

In the case of evacuations, crowds and pedestrians there are several academic and
commercial simulators published. They differ on their approach to implement and
solve the crowd and evacuations problems. We analyze the models and also make
use of a review made by NIST[45] to categorize and describe them.

• Simulex[64] allows to simulate crowds in complex 3D structures. It is a par-
tial behavioral model, considering distance between persons to set agents
speed. The goal of the simulator is to allow to set up occupants inside a
building and simulate the movement during an emergency.
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• STEPS[68] permits complex 3D spaces. It is an ABM tool, microscopic
model, where the individual movement is modeled, aimed for evacuation
situation and for normal situations. It allows to create groups usemore com-
plex elements such as elevators.

• Oasys MassMotion[67] is a 3D tool compatible with 3D software such as
3DStudioMax, able to configure and build complex scenarios and simulate
navigation of pedestrians.

• JuPedSim[41] is a public simulator developed by Jülich Research Center. It
allows 2D scenarios and agent move following Voronoi distance and a de-
fined path. Provides data sets for validation, calibration and it is composed
by a set of packages for the analysis of the simulation: JPScore, JPSvis, JPSed
and JPSreport.

• PathFinder[17] provides egress analysis in complex 3D structures. Agent’s
positions are tracked by the simulator. The occupants move to the exits fol-
lowing certain constraints. It is compatible with fire simulators.

• Myriad II[36] manages 3D complex buildings. Calculates congestion and
its severity and gives an overview of movement of the occupants. Its pur-
pose is to assess security, calculate times, number of interactions and deter-
mine exit capacity.

• Exodus[20] is a behavioral model used for evacuation analysis and pedes-
trian dynamics. It considers people-people, people-structure and people-
fire interactions. The model consists on submodels: occupant, movement,
behavior, toxicity, hazard and geometry. I allows to simulate toxic gases,
smoke and temperature.

• Legion Evac[19] is a behavioral model able to handle CAD structures, and
planned to optimize crowd behavior and interaction between individuals
to study evacuations. It is aimed as a consultancy tool. It calculates counter

39



flow, and evacuation times. It is compatible with Fire Dynamics Simulation
software to simulate evacuation under fire conditions

3.6 Conclusions

Wediscussed how computer simulation helps to understand real systems and con-
tributes to take decision and improve the existing knowledge. Simulation is used
in a wide range of areas, and in some of them there are specific computational re-
quirements that demand to decrease the total execution time of the simulator to
have a feasible total computing time. For this we described how the parallelism is
used on HPC architectures using parallel programming models. In the particular
case of evacuations and crowds some approaches have been developed for the op-
timizationof the simulationbut theyhave beenmore related to computer graphics.
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4
Crowdmodeling

This chapter, presents the two models developed during this thesis: a discrete
timemodel and a continuous timemodel. The internal behavior and the pros and
cons of both are discussed. Moreoverwedescribe the algorithms that defined their
behavior as well as the internal aspects.
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4.1 Introduction

Models allow us to interact and test the systemwithout using it. During this thesis
wedeveloped two crowdmodels both usingABMapproaches. Thefirstmodelwas
focused on the representation and simulation of crowds and the collision avoid-
ance of scenarios and agents in an efficient way using a discrete time model. The
second model aims to reproduce internal behavior of the crowd and increase the
realism using a continuous time model. We lost performance, but, on the other
hand we won realism. These models were proposed with the aim of having mod-
els able to handle thousands of agents managed in an efficiently.In the following
sections both models will be described and detailed.

4.2 Discrete time model

The first model to be developed was the discrete time model which is based on
some concepts of CA and implements a crowd model based on a grid space and
agents of a fixed size which are moved from cell to cell using intelligence based on
their knowledge. These techniques have been also used in previous studies such
as hybrid models with fire[70] which named to these agents as Intelligent Agents
dividing between the agent sub-model and the environmental sub-model. Our
model is computationally efficient and is able to handle tens of thousands of agents
which was the purpose of the model. We will divide the explanation of the model
between the agent behavior and the path planning and collision avoidance model
which will be the navigation sub-model where the intelligence of the agent will
remain. Both models together allow the representation of crowd dynamics.

4.2.1 Agent sub-model

The computational model of the agent is described by a set of states and variables.
Fig. 4.2.1 describes decision between states and the flow diagram and Tab. 4.2.1
the meaning of the states and variables. The graph illustrates the behavior for one
agent in one simulation step. The movement of the agent is described by the will
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of approaching the exit and moving to free spaces, which is the condition of the
movement. Once the agent has reached the exit, it is released and not considered
again by the simulation process, decreasing the total active population of the sim-
ulation. In the case that we cannot approach the exit, then the individual will wait
for the people that are between them and the exit to move. This logic is applied
in every simulation step in the time-driven simulation. All the states are internals
of every individual. As seen previously, the rules given to the ABM are what de-
termine the behavior of the group. The goal of the individual is the exit and the
minimum distance determines, by default, where the person is going. The simula-
tion process will finish when the state of all the agents has been set toQ3.

Figure 4.2.1: Model’s state diagram.

Table 4.2.1: Discrete model state diagram description.

Type Attribute Description
State Q1 Stopped
State Q2 Moving
State Q3 Evacuated

Variable a Approaching the exit
Variable e exit reached
Variable f free patch

In the discrete time model the space is divided in grids. These grids represent a
space of 40x40cm assuming that the space used by a person is this. Locally the in-
dividuals will move to another path that fills their objective function: approaching
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the exit. In this case we will only consider single-story spaces. There are two kinds
of neighborhoods 4-connected (Moore Neighborhood) and 8 connected (Von
Neumann neighborhood). In our model we use 8 connected cells. The three cells
that are in front of the agent will be evaluated and there will be random patterns
of diagonal movement spreading agents and not concentrating them in a vertical
line. The cells cannot be evaluated in a certain order, otherwise all the population
will move to one side.

The model presents phenomena such as bottlenecks, clogging or arching close
to the exits. Mass behavior emerges fromacommonobjective and is not an explicit
functionality. Nevertheless the velocity of all the individuals will be a variable at-
tribute. Thismeans that the crowdwill be slower or faster depending on the speed
modeled. We describe our crowd model as follows:

Table 4.2.2: Model attributes description.

Attribute Description
T time, divided in discretized steps
C global space
Q set of states
N neighbourhood space
β information related to the grid space N
δ functions of state transition

CM = ⟨T,C,Q,N, β, δ⟩

Where the crowd is advancing in discrete times T through a global spaceC.The
movement in the global space C is deterined by the agent states Q, which were de-
fined in Fig. 4.2.1 and Tab. 4.2.1. The space of C considered to take decision by
every agent is the neighbourhoodNwhich are 8 cells surrounding the agent’s cell.
The environmental sub-model will be considering the information of the its inde-
pendent grid β which implements the intelligence of the agent and the function
which will make the agent to move from one state Qi to Qj considering the state
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variables is δ.

Figure 4.2.2: Discrete model agents navigating.

Fig. 4.2.2 shows the discrete model for a simple scenario. The scenario is the
main input of the simulator. It is dependent on the chosen individual model. In
our case we have a grid dividing the space that will represent our scenario in a bi-
dimensional space. We will name every position of the grid as ”patch”. Patches
occupy a space of 40x40 cm, which is approximately the mean space occupied by
a person. The individual analyses the 8 neighbors in random order. As seen in the
figure, the agents distribute occupying the space. It tests if the patch has a ”free
space” type and if there is an individual inside it. Every individual fits a space of
the grid, so wewill assume the space necessary to hold one person is constant. Be-
cause the rules that determine the behavior of the individuals are the same, and
also their sizes, the velocity will be the same for all of them. In the space we will
find different kinds of patches. They are divided as follows: walls and obstacles:
they are the boundaries and the patches that cannot be crossed (even though they
are conceptually different in our model, they have the same behavior); free space:
available patch where the persons can move (it can be occupied if there is no in-
dividual there); exit: objective function of the people (the exit is achieved getting
the shortest path).

Algorithm 1 determines the movement of the individuals and the transition of
simulation time Δ→ Δ+ 1. It implements the preciously describedmodel. First,
the scenario and space C is loaded in the program. Then, all the agents will be
checked in a sequential way, evaluating their neighbourhood and evaluating if it
has arrived to the agent and it needs to be released, or if it is approaching the exit
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Algorithm 1 Simulation algorithm

1: readMap()
2: readExits()
3: generatePotentialField()
4: procedure SimulationStep
5: e← targetExit()
6: for all p ∈ People do
7: for all n ∈ neighbours(p) do
8: if n = EXIT then
9: releaseAgent(p)

10: if n = FREE ∧ range(n, e) < range(p, e) then
11: p← n

and can move.

4.2.2 Environmental sub-model

To get to the exit, we used a minimum distance approach with obstacle avoidance
which is based on the gradient of the distance through the goal. We implemented
an algorithm to knowwhat theminimumdistance which is the ”potential field” al-
gorithm. Potential field allows us to provide individuals with a way to be informed
if they are approaching the exit. Thepotential field is basedon the idea of the short-
est path. Potential field algorithm includes obstacle avoidance and allows to pro-
vide us a way to have information about if the agents are approaching the exits. In
Fig. 4.2.3 there is shown a map with obstacles and a exit at the top middle of the
image. This image shows a color representation of the potential field. Ignoring the
dark red colors, which are obstacles. Theblue color indicates that the exit is getting
closer and the red color that the exit is the farthest. Notice that the obstacles and
walls have the darkest red because the agents will avoid these spaces as these are
not approaching the exit.

Because the potential field is dependent on the exit, there are as many potential
fields as exits. Every agent needs to have assigned one exit, and, therefore, one
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Figure 4.2.3: Potential field colormap.

potential field. The data structure is a list of matrices where every matrix is the
flood fill values that are precalculated at the begging and stored inmainmemory. It
is formulated in a discretemanner and the data structure is a list of matrices where
everymatrix is the flood fill values. There are several potential field algorithms and
we chose a mix of the Manhattan and Chessboard potential field calculation[44].
Every individual will have knowledge of the potential field of their exit andwill use
it to take decisions between steps.

Algorithm 2 Potential field algorithm
1: procedure PotentialField
2: unvisitedTotal← 1
3: pushUnvisited(exit)
4: while unvisitedTotal ̸= 0 do
5: for all n ∈ neighbours(p) do
6: if n /∈ unvisited then
7: pushUnvisited(n)
8: unvisitedTotal← unvisitedTotal+ 1
9: if m ∈ unvisited then

10: calculateFlood(m)

The algorithm 2 implements the potential field algorithm. The implementation
is recursive, using the implicit stack of recursion to explore the nodes in breadth
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way. There is a global structure accessed by all the function calls that tracks the
visited nodes and the values are updated with the current value which is updated
for every level of the recursion until it fills all the structure. Variablesm and n are
temporary variables referring to positions in the map which are being visited.
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Figure 4.2.4: Continuous time model steps. (1) Acceleration and inertia. (2)
Collision. (3) Pushing.

4.3 Continuous time model

In order to reproduce internal behavior of the crowdwe had to create a newmodel
which was also based on the simplicity. In our particular case, the continuous
model was chosen as an evolution of the discrete model, looking for the ability
of reproducing internal of the crowd besides all the functionality that was already
implemented. Continuous models can have any position in space and any time
because the time step can be adapted as opposite to CA and gain realism in front
of discrete models, but the disadvantages in front of discrete models is the com-
putational performance. The neighbors and the environment needs to be checked
in every time step. Other approaches are based on stress and panic. We think that
psychological and sociological analysis should be included in themodel. Our pro-
posal is amodel basedonpsychological andphysical factors. Thealgorithm is com-
posed of three steps that are showed in Fig. 4.2.4. These phases are: acceleration
and inertia, collision and pushing, and are detailed in the coming sections.
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4.3.1 Agent model

Every agent will contain the attributes that will define it. Tab 4.3.1 describes the
attributes used be every agent. Because it is a continuous model there will be an
independent position for every agent, and also previous position will be saved and
used to calculate the inertia. The radius determines the size of the agent and the
vital space and this size will vary depending on the agent which will also have a
force to push others. The node coordinates allows to navigate until it reaches this
point and then update the

Table 4.3.1: Continuous model attributes description.

Attribute Description
r Position of the agent
rn Position of the neighbour
v Current velocity of the agent
r Pedestrian radius
n Node coordinates

vmax Maximum velocity of the agent
a Agent’s acceleration
s Stress threshold

s_interval Time between push
ff Voluntary force factor used by the agent to push
fb Backward motion factor after the voluntary push
fi Involuntary force factor used by the agent to push
m Agent’s mass

Fig. 4.3.1 shows our model evacuating a closed space. As observed in the fig-
ure the agents keep a coherent state preserving the area of their bodies. The fig-
ure shows the exiting process is uncoordinated and it produces jams on the areas
close to the gate and how they form a clogging. The wall keeps the agents inside
the space, stopping their movement and limiting the space. Normally when con-
sidering the problem of an evacuation models consider the movement towards a
determined point in the space. Moving agents through a complex space involves
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Figure 4.3.1: Continuous model clogging.

knowledgeon the agent. Pathplanningmodels themovementof the agent through
the scenario in interaction with other agents. The agents moves to a certain ar-
eas, which are nodes of a graph, and can move in different directions. These areas
(nodes) represent the decision points of the agentwhere there are two ormore op-
tionsonhow tocontinuenavigating through the space. Once the agenthas reached
one of these nodes there is another node assigned to the agent.

4.3.2 Crowd turbulence model

At the beginning of the history of evacuationmodeling, some numerical methods
where proposed to solve analytically the evacuation problem. Further there was
seen they are part of complex system. A numerical method used in game physics
and widely extended in computing physics is Verlet integration[38], which imple-
ments Newton’s equations of motion. The method provides a relatively simple
model with good stability.

Collisionmodels allow to propagate forces, which is useful in our case, since the
crowd turbulence is the propagation of the interaction between the agents. Fig.
4.3.2 shows our model with the agents accelerating, and therefore, pushing in one
direction, the right. It shows how the agents in the wall in the right are more com-
pressed and therefore with more force acting on their bodies, than agents in the
left part.
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Figure 4.3.2: 441 agents acting in one direction.

4.3.2.1 Inertia and acceleration

Newton’s second law ofmotion describes how the force is produced by an acceler-
ation applied to amass. Wewill use this formula as basis to describe themovement
of the agents in the space and their behavior as physical bodies. The acceleration
allows a stopped body to start movement and reach a determined velocity. Once
the desired velocity has been reached we want to keep this velocity and if we stop,
we will need to accelerate again.

F = m
d2x
dt2

= ma

To discretize the equation in differential form we use the representation in fi-
nite differences. To transform it we apply the second order central method which
defines the division in spaces and neighbors spaces n − 1 and n + 1 for different
times T.

T1 + T2 ⇒
∂2u
∂x2 =

un+1 − 2un + un−1

(Δx)2
+ O(Δx)2

Applying it to the law of motion we get to the method we get the acceleration.

a =
xn+1 − 2xn + xn−1

Δt2
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Isolating the n + 1 component we get the calculation of the new x component
andwealso apply it for the y coordinate getting them in theVerlet Integration form.

xn+1 = −xn−1 + 2xn + aΔt2

yn+1 = −yn−1 + 2yn + aΔt2

These formulas express two phases, the acceleration which is defined by the
aΔt2, and the inertia which is defined by the first part. We will use this formulas
restricting the acceleration to control a maximum speed and keeping always the
inertia phase. The acceleration will always create a vector towards the destination
node, and the vector will be upgraded once the node has been reached.

4.3.2.2 Collision

Thecollision is basic to propagate the force of the crowd turbulence. It is necessary
to create the wave, move forces trough themass and accumulate forces. As first in-
stance we considered the formula of elastic collision in a bidimensional space to
calculate the physical collision between two bodies. The good part of this formula
is that it represents more accurately the conservation of energy and kinetic energy
of rigid bodies. But on the other hand, considering people as pure rigid bodies
that collide has some disadvantages. This method is applied every time agents in-
tersect and will always keep the vital space and in our case, which is high density
situations if the system is consistent agents will not overlap. Also the method in
high densities produces jittering which can be solved by reducing the timestep or
using techniques to solve this issue. Therefore we could not use this formula. We
used the following formula which allows us to have a consistent state in the crowd,
have overlapping and produce crowd turbulence.

r1 = r1 −
m2

m1
dij(dij − rij)fi
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r2 = r2 +
m1

m2
dij(dij − rij)fi

This collision solving procedure will allow to propagate the force providing
more realismon the crowd turbulence. It is based on the idea that the force applied
is due to an invasion of the personal space, but this can be kept in high density sit-
uations. The factors are dij (distance between agents) and rij (addition of radius).
The distance between two and the radius of agents which will use the distance and
invasion of the vital space as factor to reject and collie with other agents. There is
a factor applied which will be less than 1, that will make the collision lose energy
and reduce the forces. We will use the overlapping as a representation of the pres-
sure applied to the bodies. Also the collision will depend on the mass and lighter
bodies will be pushed withmore force than heavier bodies. Boundaries define the
behavior of the model in the extreme areas of the problem. In the case of evacu-
ation we will consider walls. When colliding with the wall during the simulation,
the agent will be returned to a consistent state and it will not bounce against the
wall, it will keep the position in the limiting area with the boundaries.

4.3.2.3 Pushing

Pushing is a fundamental part of the model. Other crowd turbulence models do
not consider pushing as a specific part but we consider it as important. Pushing is
also people losing the equilibrium and falling on others. If there were not people
pushing and trying to gain free space, it will mean that agents are passive in high
density situations, but this is not what happens. If agents did not push others, it
will become stable and stop. Neither are agents constantly pushing, otherwise it
will be an unstable system. There is a period of time between two pushes of the
same person. As seen in Fig. 4.2.4 (3), one agents push another when it invades
its personal space. The agent who is pushing will also have a have a vector force in
opposite direction of the way were it is pushing. There is a threshold in the density
of the agent where the agent starts pushing. As well as the force of the agent it is
a parameter of the model and it is not the same for all. Every time the threshold
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is reached the agent will be pushing in time intervals to gain space. Therefore we
have the property s_interval which is a simulation time interval and a push factor
and backwards factor applied when agents push each other to gain free space.

r1 = r1 −
m2

m1
dij(dij − rij)fb

r2 = r2 +
m1

m2
dij(dij − rij)ff

Algorithm 3Continuous simulation main procedure
1: procedure Simulation
2: for all n ∈ NEIGHBOURS do
3: if dij < VITAL_SPACE then
4: collide(ri, rj)
5: if isAgentOutside(r) then
6: r← calculateValidPosition(r)
7: ri ← inertia(ri)
8: for all n ∈ NEIGHBOURS do
9: if isAgentStressed() ∧ stress_timei then

10: push(ri, rj)
11: if hasReachedNode(n) then
12: n← updateNode()

4.3.3 Algorithm

The power of the model is its simplicity and that it is able to reproduce crowd
turbulence being easy to parallelize. As opposite to other algorithms it has been
thought from the beginning as parallel algorithm. Algorithm 3 describes the be-
havior of one agent. Because the model is decentralized all the actions can be per-
formed in parallel and the system will keep stable. The algorithm implements the
three steps described in the previous section. First, the agent checks its neighbors
and detects if there is a collision. If there is, it runs the collision procedure. Then, it
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implements the acceleration and the inertia phase moving forward. Finally, if the
agent is still not free, and is being compressed, it analyses the threshold and the
time from the last push, and it pushes again if they time interval has passed.

4.4 Conclusions

Wepresented twomodels in this section. Adiscretemodel basedon thedivisionof
the space and a secondone is an evolutionof the first, looking for themoredetailed
aspects and internal behavior evolving to adefinitionof a continuousmodels. Both
models correspond to different ways of representing crowd models which have
advantages and disadvantages. The discrete model will be computationally more
efficient and the continuous model will allow to reproduce internal events of the
crowd.
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5
Crowd simulation

In this chapter, we introduce the internal aspects of the simulation process as
well as the computing model. The simulator has been parallelized and the tech-
niques used are described. The validation and internal analysis of the model are
detailed.
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5.1 Introduction

The simulator and the implementation of the problem and the application of the
theory has some issues related. Considering that it is at the end a piece of soft-
ware that follows a work flow it needs to have an architecture and design. In our
particular case where there is a key importance of the parallelism, this also needs
to be described an analyzed. Also the applicability and the implicit needs of the
simulator as DSS and the data structures needed for the process.

5.2 Validation

Models are representations of the real system, but we need to prove somehow that
ourmodel imitates the reality andwe developed a simulator representative and ac-
curate. Validation is concerned with the problem of reproducing models that rep-
resent the real system. It is necessary for probing that themodel and the simulator
are useful for their purpose. In the case of evacuations there are several validation
categories with different approaches.

• Validation against fire drills or people movement. If the purpose of our simula-
tor is to reproduce the simulation process as a whole system aiming to give
information on the total evacuation time we can use real data from experi-
ments with humans and compare the evaluated factors.

• Validation against validated simulators. If a simulator has been validated we
can use the simulator to compare our results with its results and crosscheck
the simulator.

• Validation for code requirements. Validation used if a simulator is intended to
fit requirements in term of results and is accomplishes this purpose.

• Validation against evacuation experiments. Preparing and configuring evacu-
ation experiments helps to understand the flow of the people and internal

57



phenomena. This is one of themethods that simulators such as as JuPedSim
used to be validated[6].

5.3 Discrete time simulator

In the implementation of the discrete time simulator all the information is stored
in the data structures. For the discrete time simulator we set up several data struc-
ture containing the environment and the agents state variables. The simulator was
executed, evaluated lately validated against peoplemovement using an experiment
carried out in the Tampere theater (Finland). We also analyse the internal behav-
ior of the crowd in terms of movement and speed.

5.3.1 Data structures

Every agent has a set of state variables that define the transition between the inter-
nal states. These variables will define the function to be applied and the transition
between time steps.

• Exit id: defines the coordinates of the exit and the index to access it will also
define the potential field used.

• Agent id: defines in a unique way every agent.

• Coordinates: position in bidimensional space coordinates (x,y).

• Released: boolean variable that tells if the agent has reached the goal and is
considered free.

There are twomain global data structures which are used to define the environ-
ment and the agents.

• fields: Array of matrix containing all the potential fields (one per exit). The
map data structure will be used at the begginig to create these fields.

• agents: Array of structure containing the state variables of all the agents.
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There is no data structure that holds the boundaries and obstacles, these are
implicit inside the flood structure. An agent will never move to a position with
higher higher value in the potential field and move more far from the goal.

5.3.2 Tampere theater

In the particular case of the discrete time model we were interested on the calcu-
lation of total evacuation time. There are few public data of crowd evacuation and
scenarios with hundreds or thousands of agents. For the functional validation of
the discrete timemodelweused an experiment carriedout in 1995, in theTampere
theater[4][79], Finland[74], where 612 peoplewhere evacuated. In Fig. 5.3.1 can
be seen a the simulation with our model and the agents evacuating using the two
existing exits. The black pixels represent the obstacles which in this case are the
benches and walls. The stage is located at the bottom of the image and the agents
(in blue) move to the green and red pixels which represent the exit of the theater.

Figure 5.3.1: Evacuation of the Tampere theater.

Themeanwalking speed for an average person is 1,4m/s[52], but in evacuation
cases the crowd speed depends on the density. As described in section 5.3.3 the
speed of the mass is slowed down, and to calculate the equivalence of time in our
model we used the velocity/density relation based on a linear model to validate
our model [47]. To calculate the speed based on the density of the crowd we use
the following formulas.

vcrowd = freePatches ∗ 1, 2 + 0, 2 (5.1)
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Δt =
dpatch
vcrowd

(5.2)

WherefreePatches is themean of the percentage of free patches surrounding the
agents, and Δt is the elapsed time in the current simulation time. We selected the
linear model being 1.4 m/s themaximum and 0,2 m/s the minimum speed, based
on previous studies[47]. Because every agent needs a space of 40x40 cm in our
model the maximum density is 6, 25persons/m2. The value of a simulation steps
varies over the time, where et is evacuation time. We get the mean number of
neighbours and then divide by 8 to get the percentage. For the simulation the
agents where distributed uniformly among all the chairs of the theater.

The evacuation time of the theater was 3 minutes 37 seconds (217 sec) and the
people started the evacuation in a timebetween25 and47 seconds after theywhere
informed. The results of the simulator are an evacuation timewithin the range 205-
220 secs using the previous formulas. The simulator assumes that the evacuations
starts at time 0. Therefore we can say that the real evacuation time (217 sec) is
inside the range given by the simulator (205-220 sec).

5.3.3 Agents speed

The speed of the agents vary all long the evacuation process. In the discrete model
even having discrete increases of the position there is a speed of the mass which
slows down when nearing the exits. Because of this there can be considered two
phases in a evacuation process.

1. Navigation phase: agents move from their initial position through the space
until they approach the exit.

2. Clogging phase: themass is slowed down due the bottle neck that represents
passing a door.

Fig. 5.3.2 shows the agents move in blue color and the evacuated in red. This
particular evacuation has 15.000 agents and all of them have been evacuated when
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Figure 5.3.2: Evacuated individuals and individuals moved per time

the evacuation finishes. From the graphic can be seen how all the agents startmov-
ing when the evacuation starts and we assume this knowledge of them. At simula-
tion time 80, clogging occurs and the people slows down because they are waiting
near to the exits. At simulation time 200 the amount of people evacuated per time
unit decreases and the evacuation losses intensity, until all of them are evacuated
at time 480. This shows how the behavior of the mass is not constant and how the
internal phenomenas of the crowd affect to the global behavior of the evacuation.

5.4 Continuous time simulator

The continuous time model represent an improvement and evolution respect the
discrete time model including densities, interactions, pressures, propagation of
forces, etc. In this section we describe how the algorithm can be optimized, ho
crowd turbulence is reproduced and how the data layout is set up. Later the be-
havior of the model is analysed.

5.4.1 Space partitioning

We recover the idea from the discrete model to optimize: the direct access to the
agents. In the discrete time model agents were accessed directly to one position
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and also their neighbourhood but in the continuousmodel there is not such struc-
ture todo so. Ifwewant to access the positions of the agentswemust iterate over all
positions. In the algorithm definition we described how the agent iterates over the
neighbourhood, and what we consider by neighbourhood will modify the com-
plexity. If we consider that our neighbourhood is the total number of agents, the
computational complexity for the collision phase will be O(n2). But if we reduce
the neighbourhood to a number of agents m, then the complexity will be O(nm)
where n is the list of agents andm is the bigger neighbourhood possible.

The elements are inserted always in the first position of the linked list and the
rest is moves. So the complexity of insertion is O(1) because the position of the
matrix is accessed directly and the insertion is in the first position. Also all the
agents in a cell will be accessed in a time O(1) since the position is direct. The
data structure is a matrix of linked lists. The matrix is composed by structs which
contain an integer variable containing the index and a pointer to a structure. Mem-
ory is allocated dynamically in the linked list every time an agent is inserted. We
considering other approaches such as KD-tree, but the search and insertion com-
plexity is O(log(n)) if the tree is balanced. If the case was not high density, then
options such as BSP-trees or KD-trees could be discussed in order to have a better
balancing, but not for high density crowds where agents will be concentrated in in
the space.

For the size of the cells we have to consider that we have several parts inside of
the time step that may modify the position of the agents, so must choose higher
value for the cell, considering that the average agent has a diameter of 40cm. Thus,
we considered a space of one meter per cell. We can create a smaller size and then
have a smaller neighbourhood but we may have inconsistencies, since the data
structure is created at the beginning of the simulation step.

Fig. 5.4.1 shows an example of the creation of the data structure. At the left we
have agents with their own identifier. The space is divided in a grid of 1meter cells.
Agents may overlap and be even in four cells at the same time but the important
variable is the position r. In the example we are considering the agent with id 0,
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Figure 5.4.1: Example of space partitioning in the continuous model.

in red in the example. The agents are passed to the data structure creating a linked
list in every position of the matrix. If there is no agent in one position such as in
position (i, j+ 1), the value of the agent id will be -1, meaning that the list is empty.
Agent 0will iterate over all the agents of all the 9 cells except itself andwill compute
the collision or the pushing phase of the algorithm.

5.4.2 Simulator structure

The architecture of the simulator is dived by different logical parts. Each part is in
charge, and implements a different concept. Dividing the simulator allows us to
have a perspective of all the different tasks and concepts that interact during the
simulation process.

• Model: defines the behavior for every agent and contains the necessary data
structures.

• Simulator: composes themodel and executes themodel iterating over time.

• Environment: declares the boundaries and the elements that interact with
the agents.

• Logger: saves the time steps and generates simulation statistics.
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5.4.3 Crowd turbulence analysis

Thecrowd turbulence is complex to analyzedue to the existenceof only fewstudies
of it. We use the definition of pressure based on previous analysis of real cases to
study our continuous simulator.

5.4.3.1 Pressure

There is a lack of data on the case of crowd turbulence. Carrying out experiments
to reproduce this event cannot be done due to obvious ethical reasons. It is hard
to reproduce by video analysis or other techniques and exact turbulence, but on
the other hand the approach has been done reproducing the global behavior of the
mass. To validate the ability of reproducing crowd turbulence we use the defini-
tion of ”pressure” proposed byHelbing. The formula has been used in the study of
the crowd turbulence in the Hajj, Mina, carried out by Helbing[31]. It was based
on the video analysis of theHajj disasterwith 3million pilgrims inMina. Later, the
formula proposed was used to validate an extension of the social force model[82]
which reproduced the turbulence as well as the internal movements and velocities
of the agents inside the crowd. It was also used by Golas[25] to validate its pro-
posed continuummodel. The formula for ”pressure” that depends on the variance
of velocity and the density. When the values for a certain region is higher than 0.02
it assumes that there is a crowd turbulence happening in a local area. The formula
is described below.

p = ρiVar(v⃗i)

ρi =
∑
j

1
πR2 exp

(
−∥r⃗j − ri(t)∥2

R2

)
This formula reflects the main aspects affecting the creation of the crowd tur-

bulence which are the density of the agents, the distance to a local agent and also
the sudden change of velocity of the mass. The value p is calculated for an agent i
in a region and all the neighbours j are evaluated. R is declared as a parameter and
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we will use as value the mean diameter of an agent. We used the diameter of the
local agent we are considering as parameter of R. Image 5.4.2 shows the evolution
of the ”pressure” for a certain area as simulation time evolves using ourmodel. We
can see how at time 8 the pressure starts increasing, and at time 10 the ”pressure”
exceeds the threshold of 0.02 continuing with the increase. At the beginning the
crowd is stoppedand then it starts increasing themovementof the turbulence lead-
ing to a higher compression. Due this abrupt behavior, some descriptions made
an analogy with earthquake[31].

Figure 5.4.2: Reproduction of a crowd turbulence.

On the other hand we also wanted to visualize the evolution of the pressure of
a crowd turbulence. For this we created a heat map representing the pressure in a
certain region of a high density area. Fig. 5.4.3 represents this timeline where the
pressure evolves every frame. This image shows how the agents in the center of the
wave are the ones supporting higher pressure.
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Figure 5.4.3: Frames representing the evolution of pressure of a crowd turbu-
lence from left to right and from up to down.

Figure 5.4.4: Agent’s velocity evolving in a high dense crowd.

5.4.3.2 Agent movement

When an agent is inside a high density crowd themovement is not linear. At times
it moves to the exit, other times it is slowed down and stopped, others is moved
backwards due the movement of the mass. Fig. 5.4.4 depicts the velocity over vx
and vy of a pedestrian using our simulator. The velocity evolves going from com-
pletely stopped tomovements against its desiredwill, where the agent ismoved by
the mass. This shows a random pattern determined by the crowd.
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5.5 Statistical reliable results

In evacuations, and particularly in crowd evacuations there are random patterns
among the public. This will mean variance and difference on the results. Our per-
spective is that a lot of stochastic factors impact on the model. Reproducing an
accident with one simulation can be hard. But that that is because a lot of factors
impact on the simulation. That is why we need a statistical significant amount of
simulations, in order to have a set of data that will allow us to have enough results,
and more reliable. We will use statistical methods to calculate the number or runs
based on the statistical reliability of the results or the variance. For our work we
proposed two methods: Diaz-Emparanza and Chebyshev’s inequality.

Also there can be several configurations. For example if there are two exits we
can test how the scenario will behave with 50% of the people going to each exit,
or testing how it will be to make all the people go only to one. The simulator aims
to provide knowledge about the possibilities and the configurations. Because of
this, the combinations of configurations of the scenario are necessary to provide
information.

5.5.1 Diaz-Emparanza

Diaz-Emparanza[12] proposed amethod based on probability intervals and accu-
racy to determine theminimumnumber of runs necessary. Considering the simu-
lation total execution time, we can separate simulations between terminating and
non-terminating, which depends on convergence and if there is a final condition
for the simulation process. In evacuation the simulation is terminating because in
general the condition is that all the agents have been evacuated. Once focused this
point, the formula of the method can be used.

T =
t2α

2
pH(1− pH)

A2 (5.3)

Where T is the number of simulations, in our case we use the following values
with which we get the minimum number of simulations. Our probability interval
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is [0.045 0.055]. As example we selected the following values:probability interval
(pH): 0.05; and accuracy (A): 0.002; level of confidence (1 − α) where we get
Student’s t-distribution value.

T ≤ 2.320.05(1− 0.05)
0.0022 = 62, 818.75

Before we analysed the simulation execution time for 1,000 independent runs
and the results approach a normal distribution testing with chi2 and Kolmogorov-
Smirnovmethod. Thenwe canuse the previously calculated value as theminimum
number of runs that we need to meet the previous criteria.

5.5.2 Chebyshev’s inequality

As compliment to Diaz-Emparanza method we also use Chebyshev method. It al-
lows us to calculate the number of runs in function of the variance. We use the for-
mula of Chebyshev’s inequality generatingN simulations, calculating the standard
deviation, and then calculating the % of the data values of the data distribution.
The Chebyshev formula is the described as follows.

Pr(|X− μ| ≥ kσ) ≤ 1
k2

WhereX is a randomvariable, μ the expected value, k any real number, and σ the
variance. Within the given percentage it needs to be manually calculated which is
the amount of data necessary. Meanwhile Diaz-Emparanza is used for the calcu-
lation of the total number of runs, this method is used to calculate the number of
simulations for different parameters of the configuration of the simulation. In that
way we can launch different simulations with different configurations and know
the total amount of them that we should do.

5.6 Scheduler and configuration

The scheduler aims to distribute the independent simulation among the nodes of
the cluster. It communicates using the network with other nodes initializing the
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simulation with a determined configuration. Fig. 5.6.1 depicts the scheduler and
how the master is giving configuration to nodes than can be composed by multi-
core architectures and GPUs.
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Figure 5.6.1: Scheduler scheme.

The configuration of the simulation is known by the master. It will receive the
configuration of the model (discrete or continuous) and the attributes configura-
tion, scenario, number of agents, etc. The number of simulations is divided among
the total number of nodes and then distributed using Diaz-Emparanza based on
the total number of simulation or Chebyshev based on the variance of the input
parameters of the simulation and calculating which percentage of the results is
within a mean and standard deviation. The result of every simulation is unique
and different. Because of this, all experiments are independents and a scheduler is
responsible to run the compute on idle nodes. This is embarrassingly parallelism,
which allows to run experiments on isolated nodes. We used the MPI simulator
developed for the discrete model. The simulation will be stored with unique IDs
in a parallel file system in order to be analysed in a post analysis process.
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5.7 Conclusions

We have seen the internal aspects and design of the discrete and continuous sim-
ulator. When developing it there are some theoretical decisions than need to be
taken and a posterior analysis to check if the results that the simulation is produc-
ing are correct. Moreover we have validated that our continuous model is able to
reproduce crowd turbulence by using the ”pressure” formula which was generated
by visualization of crowd turbulence disasters. A computational optimization for
the continuous algorithm has been discussed, where the idea of efficiency of the
discrete model is reused to optimize the performance.
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6
Experimental evaluation

This chapter shows, the experiments prepared and developed for the discrete
and continuous models for different scenarios and configurations. It also dis-
cusses the performance and parallelization results for different parallel program-
ming models.
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6.1 Introduction

During the evolution of themodels, we wanted to evaluate several aspects and test
these against real cases and synthetic scenarios. First of all we evaluate the discrete
time computational needs with an extended ABM simulation tool, and then we
evaluate our model with HPC architectures. Once it has been tested in a cluster
we evaluate how it behaves as a DSS on a Cloud server to provide a tools to the ex-
perts and our workflow. We also test the continuous model on GPU architectures
using synthetic scenarios comparing it with the same algorithm for a sequential
algorithm.

6.2 Discrete time simulation

We present performance results for the discrete time simulator. To evaluate the
performance we used several real scenarios that could handle thousands of agents.
After that we digitalized the scenario and then we configured and ran the simula-
tions dividing the simulation with the scheduler.

6.2.1 Manga festival

The event Salo delManga[63] is an annualmeeting taking place in Barcelona since
1995. It hosted 105.000 visitors in 2013 and this big attendance motivated the
election of this space for our testing. We chose the building 2 of Fira de Barcelona
[22] to test in first instance our discrete time simulator. This space receives in-
ternational conferences and fairs with thousands of attendants. The aim of this
experiment is to first evaluate the performance needs of current simulation tools
and later, evaluate the performance of our scheduler and simulator.

6.2.1.1 Scenary

In the Fig. 6.2.1 can be seen the original map. We did simplifications in the map
digitization involved chairs, platform, importance of exits and the bar exit. We
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Figure 6.2.1: Map of Fira de Barcelona[49]

simulated the space Fira de Barcelonawith populations of 3,000, 6,000, 12,000 and
15,000 individuals which were randomly distributed among the space before the
evacuation started. Because we wanted to evaluate the performance needs of cur-
rent tools we implemented the model in the tool NetLogo and later in the simula-
tor able to distribute the simulation with OpenMPI in a MPI cluster.

Figure 6.2.2: Fira del manga scenario simulated with NetLogo

6.2.1.2 Performance NetLogo

We developed the model described in section 4 using NetLogo[80], a widely ap-
plied modeling tool for ABM programming and an integrated modeling environ-
ment. NetLogo is commonly used in research and academia allowing the analysis
of emergent behavior for different areas. We wanted to study the behavior of the
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model and also analyze the response time of the simulator as a widely used tool
in ABM simulation. We digitalized the scenario which can be seen in Fig.6.2.2 us-
ing as reference image 6.2.1. We used the same exits and maintained the stands
as obstacles. In the simulation agents were distributed randomly at the beginning
of the simulation. In NetLogo we implemented the behavior using Logo language
andwe create a breed of people to define persons. The space inNetLogo is divided
by patches and we use a path to host one agent defining procedures to define the
behavior of the agent. Fig.6.2.2 shows how agents are moving towards the exit oc-
cupying one path per agent and avoiding obstacles. Clogging is observed on exits
and how the mass slows down waiting for other people to evacuate.

Table 6.2.1: Node NetLogo characteristics.

Component Characteristics
CPU Intel Core i5-2400 CPU 3.10GHz
Cache 6MB L2 (2x2)
RAM 8GB
Java Version 1.6.0_35

We run the NetLogo simulator with the configuration described at Tab. 6.2.1.
In Fig. 6.2.3 can be seen the execution times of the NetLogomodel which are the
means of 100 runs. This shows how the the simulation time grow as the number of
individuals increase in NetLogo. In the figure, the tendency of execution time in a
tool such asNetLogo shows how time is increasing in a tendency above the linear-
ity for a linear increase of the number of agents for a discrete timemodel. In more
complexmodels such as continuous time, the tendencywill raise with the increase
of agents. If we follow the tendency, for a case where we want to simulate 150,000
agents it will take near to 1,740 sec, around 30 minutes for only one simulation.
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Figure 6.2.3: NetLogo computing time for different number of agents.

6.2.1.3 Performance MPI

Once we evaluated the performance of the NetLogo simulator we implemented a
version for the samediscrete timemodel but implementedwithCdistributedwith
MPI. There is no multithread parallelization, the batch system maps one process
per core to increase the usage of the machine. We used the same digitalization of
the scenario which is showed in Fig. 6.2.4. The simulation time selected to plot
the evacuation instant is similar to the selected in NetLogo Fig. 6.2.2 to evaluate
visually that the behavior is similar.

Figure 6.2.4: Fira del manga scenario simulated with MPI

The characteristics of the cluster used are specified in Tab 6.2.2, the number of
executions selected is 62,820 runs, which is the number of simulations calculated
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Table 6.2.2: Dell cluster characteristics.

Cluster Characteristics
Nodes 32 IBM x3550
CPU architecture 2 x Dual-Core Intel(R) Xeon(R)
CPU CPU 5160 @ 3GHz 4MB L2 (2x2)
Memory 12 GB Fully Buffered DIMM 667 MHz
Disk Hot-swap SAS Controller 160GB SATA Disk
IO Integrated dual Gigabit Ethernet
Compiler GCC 4.4.7
MPI library OpenMPI 1.6.4
Parallel FS NFS
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Figure 6.2.5: Distributed simulator execution times

with Diaz-Emparanza for an accuracy of 0.002 and a probability interval of 0.05.
This number of runs is a parameter of the scheduler which will automaticallyman-
age the simulation among all the workers. Because in the scenario there are a total
of seven exits, there are seven potential field maps, one per exit. The other data
structures are stored in arrays or array of structures. In the Fig. 6.2.5 can be seen
the execution times of this simulator for 4, 8, 12 and 16 MPI. The time decreases
significantly due to the increase of nodes thanks to theMPI distribution of the ex-
ecutions. We also executed the serial version for 62,820 simulations and compared
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Figure 6.2.6: Speedup Manga scenario.

the result time with the parallel versions. In the graphics seen in the Fig. 6.2.6 the
speedup showed becomes linear. As the efficiency is close to 1 it can be said that
the scheduler scales and is efficient. The differences in the scalability remains in
the variances of the simulations with a stochastic component.

6.2.2 Palio di Siena

The second scenario we selected to test our discrete time simulator was Palio di
Siena[73]a, where around twenty thousand personsmeet to see an event[55]: the
horse race. The aim of this experiment was to test an outdoor event with a higher
number of population on a cloud architecture and test our DSS workflow.

6.2.2.1 Scenario

As shown in Fig. 6.2.7 (a) the Piazza del campo is a closed space with several
exists and during the event Palio di Siena which is a historical horse race that has
its origins on the XV century, where the people concentrates in the center of the
square to assist the show. In this case we did not select a random position for the
crowd, instead we set up the agents in the center as seen in the Fig. 6.2.7 (b) with
the scenario digitalized because is where the agents stand observing the race. The
amount of agents used for the simulation are 28,378 persons filling the center of
the square. In the figure can be seen how there is a black space representing an ob-
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stacles in the top center of the blue area, which is Fonte di Gaia; the white spaces,
which represent the free space; and the blue patches, which are free spaces filled
by people.

Figure 6.2.7: (a) Aerial view of the Palio di Siena[11]. (b)Siena scenario in-
put map.

6.2.2.2 Performance

For the simulation we used cluster described in Tab. 6.2.3. To select the appro-
priate Amazon instance we first analyzed the computational requirements of our
simulator. We used the perf tool to analyze the memory usage with the case that
will beused in the experimental part. Theexecution iswaiting27.1% frontend idle,
12.04% back-end idle. In the Siena case, the program mallocs dynamically 6.6MB
of data. In this case, we have a mean of 1,950 page faults, where every memory
page is 4 KB. This means an average access of 8MB to main memory and that our
problem may be limited by memory. Choosing a more powerful CPU instance
will waste resources and money. Also, the memory described in Tab. 6.2.3 is nec-
essary to store the data structures, the software dependencies for our simulator
and the operating system. That is why we are working with the previous instances.
We selected several instances and numbers of nodes (4, 8 and 12) to test the per-
formance of this parallelization. In this case, we use the local drive to store the
partial results. We use the local file system to store temporary results. As we see in
Fig. 6.2.8 the speed-up show to be almost linear for all kinds of instances, and this
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Table 6.2.3: Instance m1.small cluster characteristics.

Cluster Characteristics
Nodes 1-12 EC2 instances
CPU 1.2 GHz
Cache 4MB L3
Memory 613MB
Compiler GCC 4.7
MPI library OpenMPI 1.6.4
Parallel FS NFS
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Figure 6.2.8: Siena scenario speedup

means the application scales in the infrastructure. This is due to our parallelism.

6.2.2.3 DSS and Cloud

The aim of a simulator is to provide knowledge and contribute to the analysis of
crowds for experts and use the simulator as a DSS (Decision Support system). To
hide all this complexity we will move the simulator to the cloud, and particularly
to the Amazon infrastructure. Under the need of having an MPI cluster on de-
mand we used the project named StarCluster[51]. StarCluster is an open source
cluster-computing toolkit for Amazon’s Elastic Compute Cloud. To execute it on
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the cloud andmake it SaaS, we create a system execution flow from aweb interface
until the output of the system. The cloud resources intercommunication is hided
by StarCluster. It establishes SSH connections between nodes and creates anMPI
cluster.

In order to execute the simulator using a web interface from the cloud, we cre-
ated a whole execution flow to run the simulator on the cloud. The web page is
responsible for collecting the input data and returning the output as it is showed
in Fig. 6.2.9. The necessary input for the system will be: bi-dimensional map
which may optionally include the assistants. We created a web page that uploads
themap and the rest are introduced using a online formwhich transfers the data to
amazon. Once all this information considered mandatory to run the model is set,
then we assert all the input is correct. As input of the simulator, a loss-less image
compression format should be used because every pixel will contain information
about one part of themap. In our casewe chose thePNG format. The image canbe
created using satellite images, city/building maps, etc. Every pixel represents in-
formation about the bidimensional space and the scale of every pixel is 40x40 cm2.
An example of input image would be the Sienamap input showed in Fig. 6.2.7 (b)
where the information of the pixels what we described previously.

The StarCluster toolkit[51] automatically configures the cluster but it must be
configuredbeforehand. Once the simulation is prepared to start running, aPython
script launches the OpenMPI job to the queue system. To distribute the simula-
tions among all the nodes, a static scheduler is used. All the nodes get a fixed num-
ber of simulations. The nodes save the information locally in a NFS file system.
This minimizes the communication among nodes and makes an independent ap-
proachwhere there is nodependency. Once the simulations havefinished, the user
will have feedback with a report that will be sent to its personal e-mail. There will
be a report showing information such as: mean, minimum and maximum evac-
uation time, people evacuated per gate, and a 3D visualization of the evacuation.
This interface will be a tridimensional interaction with the bidimensional execu-
tion, allowing another axe to navigate. The output and interaction of the system
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Figure 6.2.9: Cloud workflow.

are crucial. The user experience can determine if a system is used as well as any
technical quality. For the visualization, we used WebGL and we reproduce a sim-
ulation on the web browser. The user can browse time and space, going backwards
and forward. To implement the workflow, we implemented the front-end using
the Apache web server with a Python module to program the web scripts.

Figure 6.2.10: Siena scenario output

The performance of the tool is one of the most important factors, due the fact
that the results of the simulator is the aim of the present research. We also calcu-
lated the heatmap in order to analyze the zoneswhere there ismore concentration
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of the public, and alsomore possibilities of accidents. In Fig. 6.2.10 (a) we can see
an example of a heat map with the viewer of the system. In the Fig. 6.2.10 we can
see an example of the crowd simulation viewer. In this case we have a simulation
step where we can analyze agent’s positions and the distribution among the space.

6.3 Continuous time simulator

We implemented the continuous timemodel into a simulator and we evaluated its
performance using several scenarios. We performed two experiments: one in the
GPU simulator using agent division; another using space partitioning in a CPU.
The GPU version was compared with the performance of a sequential version to
compare the results and the partitioned version with the original.

6.3.1 GPU parallelization

To first test our model we created a synthetic scenario. We selected this option,
because using a synthetic scenario allows to adapt our simulator and test differ-
ent number of agents in order to test the performance over the number of agents
maintaining the same density, in our case 6. Therefore, the size of the boundaries
are changed as the populations to be tested vary. The area, shown in Fig.6.3.1 is a
closed rectangular space with two doors where the agents are evacuated.

In the continuous model the simulation had to be distributed among the com-
puting threads. To parallelize for SIMD architectures we did not divide by space
because this could lead to load unbalancing and thread divergence in the GPU.
Some cells could be empty will other could be overcrowded. Instead of this we
parallelized by agent. Every thread owns an agent and performs its behavior for a
time step. Every agent executes the kernel described in section 4.3.3. The thread
will read the position fromother agents using a common structure stored in shared
memory.

The data layout wants to find an good configuration of the data structures in
memory in order to improve the performance taking into account the computer
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Figure 6.3.1: Rectangular area continuous model evacuation.

architecture and the memory access pattern of the algorithm. The data structure
to parallelize in the GPU is a SoA (Structure of Arrays). This is due the way the
GPUaccess the threads and thememory access pattern. Oneof themainproblems
is threads divergence. The SM share the program counter, and the GPU is good
when all the cores are doing the same inside the same SM.The problem is that the
collision phase is not applied to all the agents at the same time, it is only calculated
with intersecting agents.

6.3.1.1 Performance

We executed the simulator on the GPU and we also executed a sequential version
on aCPU to compare the performancewith the parallel version. Theexperimenta-
tion platform is described in Tab. 6.3.1. The space geometry is saved in memory.
They are created in the host and transferred to the GPU at the beginning. During
the simulation, every simulation step, coordinates are transferred from the device
to the host in order to observe or save the evolution of the crowd.

GPU performance was compared with the sequential version executed in a
CPU. In Fig.6.3.2 we display the results of our experiment. We compare 1.000
simulation steps for different numbers of agents on the GPU version. The per-
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Table 6.3.1: Node GPU GTX 750 characteristcs.

Component Characteristics
CPU Intel CPU with 2.1 GHz
Cache 12MB L2
RAM 8GB
GPU Nvidia 750 GTX, 1.1GHz 2GB memory
Compiler GCC 4.4.7
OpenCL Version 1.2
GCC flags O3

formance of both versions doubling the population between 512 and 4096 agent.
The time is scaled in logarithmic scale. Increasing the number of agents the per-
formance is comparatively improved in the GPU versionmaking usage of idle SM
and making a more efficient usage of the resources. In the GPU case, the running
time includesmemory transaction from theGPU to the host with the coordinates
of all the agents in order to save the step. The data movements using the PCI con-
nection penalizes theGPU version, where it stores locally the data. As we increase
the number of agents in a logarithmic fashion, there is no significant performance
penalty. This means that it is efficiently scaling. The data parallelization and the
total independence on write operation are showed in these results. Each agent is
working and manipulating only their own positions and reading everybody else
position.

Fig. 6.3.3 shows the simulator executing for 8 iterations of the algorithm exe-
cuted in a M2090 NVIDIA GPU card. The image shows how there is a transfer of
the positions in every iteration from theGPU to the host. This data transfer is then
stored in the local file system.

6.3.2 Space partitioning

As second test we implemented the space partitioning algorithm described previ-
ously to evaluate its performance. In the simulation all agents have different goals
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Figure 6.3.2: Execution time continuous model GPU and sequential for 1,000
iterations.

Figure 6.3.3: Analysis of the OpenCL actions. (a) Memory, scheduling and
CPU operations. (b) OpenCL calls in host.

and move through the space in different directions. The space is a square room
which keeps an average density of around 6 agents perm2. Fig. 6.3.4 shows an ex-
ample of the scenario for 15,000 agents. The size of the cell in the grid division is 1
meter. There are two parts with quadratic complexity: the collision phase and the
pushing phase. We apply the technique to both. Table 6.3.2 describes the system
used to evaluate our algorithms.
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Figure 6.3.4: Scenario with 15,000 agents.

Table 6.3.2: CPU characteristics for partitioned version.

Component Characteristics
CPU Intel i7-4600U CPU 2.10GHz 4-cores
Cache L1 (64KB), L2 (256KB), L3(4MB)
RAM 8GB
Compiler GCC 4.9.2
GCC flags O3

6.3.2.1 Performance

We performed several experiments for populations from 10,000 to 40,000 agents
adapting the size of the scenario, and therefore, modifying the size of both data
structures: agents and space partitioning structure. In Fig. 6.3.5 we show the ex-
ecution times for the original version and the partitioned version in logarithmic
scale for 1,000 simulation steps. As seen in the graphic, reducing the complexity
has a direct impact on the performance of the algorithm. There is an overhead cre-
ated every iteration by the creation f the data structure, and that there is a bigger
amount of data accessed, increasing the total amount of memory consumed, and
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Figure 6.3.5: Execution time original and parted version 1,000 iterations.

the reduction of memory accesses improves the performance.
In Tables 6.3.3 and 6.3.4 we analysed the computational metrics to analyze

the results of the optimization. When analyzing the instruction per cycle (IPC),
we see how in the original version it was more efficient and there was a higher
instruction level parallelism. The memory hierarchy was used in an efficient way,
due that the data was accessed in a stride-1 because the outer and inner loop of the
comparison phase were incrementing the ids sequentially. On the other hand the
number of cache misses in the partitioned space version is higher because there
is more space used in memory due to the creation of the grid structure, and also
the access pattern is stride-1 for the outer loop, but the inner loop accesses only to
the neighbors of the current id. Nevertheless the usage of thememory hierarchy in
the partitioned version is quite efficient, even that for higher number of agents and
spaces the cache misses decreases. The most important and determinant factor in
the performance of the algorithm are the total reference to cache. The quadratic
complexity version is accessing in big ranges that penalize the global performance
of the algorithm. In the second version, where the behavior of the simulator is
not penalized, the number of accesses is dramatically reduced, where even in the
case of 40,000 agents in the partitioned version it has less cache references than the
original version with 10,000 agents.
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Table 6.3.3: Original version performance.

Agents Scenario IPC Cache misses Cache ref
40,000 8,200x8,200m 2.93 0.26% 106,200M
30,000 7,100x7,100m 3.05 0.16% 59,025M
20,000 5,800x5,800m 3.06 0.16% 24,606M
10,000 4,100x4,100m 3.05 0.38% 3,796M

Table 6.3.4: Partitioned space performance.

Agents Scenario IPC Cache misses Cache ref
40,000 8,200x8,200m 1.33 3.71% 2,674M
30,000 7,100x7,100m 1.34 3.1% 1,975M
20,000 5,800x5,800m 1.36 2.5% 1,218M
10,000 4,100x4,100m 1.39 1.34% 460M

6.4 Conclusions

We described several experiments using the discrete and continuous time simu-
lators using different scenarios to evaluate their performance. The parallelism and
performancewere evaluated on different architectures and discussed. Thediscrete
model was implemented and distributed in a cluster, dividing the total number of
simulations. We also created a workflow for evacuation simulators to provide an
easy interface to executeHPCevacuation simulation on the cloud, andwedemon-
strated how the system scales in these architectures and the simplicity of our work-
flow. Later, the continuous model was implemented in a GPU and divided by
agent parallelization, increasing the average performance over the sequential ver-
sion. The division by agent and the lack of dependency makes it suitable for this
kind or architectures. Then, a space partitioning techniquewas applied to the algo-
rithm demonstrating how it speedups the average performance of the simulation.
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7
Conclusions and future work

This chapter exposes, several concluding thoughts on the work exposed show-
ing the contributions of this thesis listing the research papers developed. Finally it
opens new research lines analyzing the future of this work.
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7.1 Concluding remarks

Crowd evacuation simulations can take advantage of high performance architec-
tures. These simulations are complex, involving thousands of occupants in a de-
termined space. Also non deterministic behavior produces a variance in the result
and also there is a variance in the setup of the sociological and psychological com-
ponents of the population of the evacuation. These executions will have a big cost
in sequential environments, and it will be penalized as we increase the population
of the crowd. Moreover, modeling human behavior is a complex task, handling
thousands of agents can be a demanding task. When reproducing internal phe-
nomena that happens inside the crowd which are internal aspects of the reality
the system becomes more complex and more factors and variables are involved in
this complicate the model. A crowdmodel need to show stability and needs to re-
produce the behavior. In the particular case of crowd there is few data and crowd
turbulence is analyzed and validated through formulas extracted from the analysis
of real disaster. Once the model and the simulator have been created it needs to
be prepared to allow the usage to final users using a DSSwhich can take advantage
of the cloud. We have developed these ideas and the contributions developed can
be summarized as follows:

• A discrete time model has been developed and implemented. First it was
implemented in a ABM simulator (NetLogo) to evaluate its performance
on this kind of tools and the computational needs.

• We performed several experiment using the discrete time simulator with
several real scenarios, evaluating the performance of the simulation.

• Thediscrete timemodel results have been compared to experimental results
carried out in the Tampere theater to validate the egress time performance
for this case.

• We developed an evacuationDSS that runs on the cloud, and follows a sim-
ple workflow, making transparent the model, the performance and the in-

90



frastructure to users of evacuation simulators.

• A crowd turbulence model has been developed based on Newton’s second
lawofmotion anddiscretizedusing the finite differencemethod. Themodel
was complemented with collision algorithm and psychological factors in-
duced by the pressure.

• The crowd turbulence has been parallelized for SIMD architectures and it
has been designed from scratch to follow this pattern. It has been executed
onGPUsand its performancehasbeenevaluated showinga speedup respect
to sequential versions.

• A data layout has been set up to allow agents parallelize, and increase per-
formance on GPU architecture.

• A scheduler has been developed following a configuration determined by
the Chebyshev’s inequality and also for Diaz-Emparanza method. This
scheduler follows a master worker paradigm allowing to have statistical sig-
nificant results, as a approach to the problem that its difficult to reproduce
an evacuation situation.

• It has been showed experimentally how the crowd turbulence model has
been able to reproduce turbulence using the definition of ”pressure” to
demonstrate it and also the movement of agents and displacement of the
mass.

7.2 Future directions

This work has been the first approach to evacuations and crowds in our research
group. Future researchmay take advantage of the work done by this thesis and ex-
pand it with new ideas and contributions focusing on the crowd internal phenom-
ena and performance of the simulator. Here we propose several possible future
directions that can be opened.
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• There is still a lack of existing data in the case of crowd turbulence. New re-
search and data can help to improve the presented research and to calibrate
the model.

• The evacuation process is rich and complex. The models can be extended
and reviewed constantly including new concepts such as leaders, fire, dy-
namic environments, harmed people becoming obstacles, etc.

• New architectures and parallel programming models may be evaluated if
they suit efficiently the model of evacuations proposed. Evaluate their per-
formance and the advantages and disadvantages as well as their perfor-
mance.

• Explore new data structures and representations of the space and their suit-
ability for the final usage as DSS. Consider formats such as Building Infor-
mationModeling (BIM) formats and evaluate its performance, or CAD 3D
models which design complex geometries. Also consider GIS localization
and OpenStreet or other platforms as input of the scenario.

• Although the simulator has been validated, it would be interesting to use an-
other methods and tools to validate with more strength the tool to increase
its accuracy.

• The current application has not been used by experts. One of themain con-
tributions will be porting the current system to experts who will use it and
evaluate their needs, implement them and improve themodel, themethods
and the performance.

• Introduce new crowd phenomena andwork towards a complete crowd sim-
ulator.
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7.3 List of contributions

Here there is a list of all the papers published or accepted carried out during this
research including its description and abstract. The last paper include the descrip-
tion of the journal paper written for this thesis which has not been finally accepted
at date of submission of this thesis.

1. AlbertGutierrez-Milla, FranciscoBorges, RemoSuppi, EmilioLuque, (2014)
”Individual-oriented Model Crowd Evacuations Distributed Simulation”,
(International Conference on Computational Science, Procedia Computer
Science), 29, pp. 1600-1609.

Abstract: Emergency plan preparation is an important problem in building de-
sign to evacuate people as fast as possible. Simulation exercises as fire drills are
not a realistic situation to understand people behaviour. In the case of crowd
evacuations the complexity and uncertainty of the systems increases. Computer
simulation allows us to run crowd dynamics models and extract information
from emergency situations. Several models solve the emergency evacuation prob-
lem. Individual oriented modelling allows to give behaviour rules to the indi-
vidual and simulate interactions between them. Due to variation on the emer-
gency situations results have to be statistically reliable. This reliability increases
the computing demand. Distributed and parallel paradigms solve the perfor-
mance problem. In the present work we present a crowd evacuations distributed
simulator. We implemented two versions of the model. One using NetLogo and
another using C with MPI. We chose a real environment to test the simulator:
pavilion 2 of Fira de Barcelona building, able to hold thousands of persons. The
distributed simulator was tested with 62,820 runs in a distributed environment
with 15,000 individuals. In this work we show how the distributed simulator has
a linear speedup and scales efficiently.

2. AlbertGutierrez-Milla, FranciscoBorges, RemoSuppi, EmilioLuque, (2015)
”Crowd Evacuations SaaS: An ABM Approach”, (International Conference
on Computational Science, Procedia Computer Science), 51, pp. 473-482.
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Abstract: Crowd evacuations involve thousands of persons in closed spaces. Hav-
ing knowledge aboutwhere the problematic exitswill be orwhere the disastermay
occur can be crucial in emergency planning. We implemented a simulator using
Agent BasedModelling able to model the behaviour of people in evacuation situ-
ations and a workflow able to run it in the cloud. The input is just a PNG image
and the output are statistical results of the simulation executed on the cloud. This
allows to provide the user with a system abstraction and only a map of the sce-
nario is needed. Many events are held in main city squares, so to test our system
we chose Siena and we fit about 28,000 individuals in the centre of the square.
The software has special computational requirements because the results need to
be statistically reliable. Because these needs we use distributed computing. In this
paper we show how the simulator scales efficiently on the cloud.

3. AlbertGutierrez-Milla, FranciscoBorges, RemoSuppi, EmilioLuque, (2015)
”Crowd dynamics modeling and collision avoidance with OpenMP”, (Pro-
ceedings of the 2015 Winter Simulation Conference), pp. 3128-3129.

Abstract: This paper deals with the problem of simulating crowd evacuations in
multicore architectures. Manage evacuations is an important issue that involves
lives, and in the case of crowds, thousands of lives. We present our model, able
to hold thousands of agents walking through the scenario avoiding dynamic and
static obstacles. We test how the model behaves with agents falling down, becom-
ing an obstacle. In the present work we introduce a crowd model and a HPC
simulation tool. We used OpenMP to program a multicore architecture.

4. AlbertGutierrez-Milla, FranciscoBorges, RemoSuppi, EmilioLuque, (2016)
”Crowd Turbulence with ABM And Verlet Integration On GPU Cards”,
(International Conference on Computational Science, Procedia Computer
Science), (accepted).

Abstract: Managing crowds is a key problem in a world with a growing popula-
tion. Being able to predict andmanage possible disasters directly affects the safety
of crowd events. Current simulations focusmostly on navigation, but crowds have
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their own special characteristics and phenomena. Under specific conditions, a
mass can turn into a crowd turbulence which may lead to a possible disaster.
Understanding the internal phenomena is an important issue in order to model
behavior. In the particular case of crowd turbulence, agents are moved by the
crowd by a series of pushes, an involuntary movement that can be hard to re-
produce. We propose a simple model to implement this complex problem based
on intentional and involuntary interactions among the agents. The implementa-
tion is a hybrid model between the Verlet integration method and Agent Based
Modeling. We implemented the proposed model using C and OpenCL and we
evaluated its performance on a Nvidia GPU.

7.4 List of related publications

1. FranciscoBorges, AlbertGutierrez-Milla, RemoSuppi, EmilioLuque, (2014)
”Optimal Run Length for Discrete-event Distributed Cluster-based Sim-
ulations” (International Conference on Computational Science, Procedia
Computer Science), 29, pp. 73-83.

In scientific simulations the results generated usually come from a stochastic pro-
cess. New solutions with the aim of improving these simulations have been pro-
posed, but the problem is how to compare these solutions since the results are not
deterministic. Consequently how to guarantee that the output results are statis-
tically trusted. In this work we apply a statistical approach in order to define
the transient and steady state in discrete event distributed simulation. We used
linear regression and batchmethod to find the optimal simulation size. As contri-
butions of our work we can enumerate: we have applied and adapted the simple
statistical approach in order to define the optimal simulation length; we propose
the approximate approach to normal distribution instead of generate replications
sufficiently large; and the method can be used in other kind of non-terminating
science simulations where the data either have a normal distribution or can be
approximated by a normal distribution.

95



2. FranciscoBorges, AlbertGutierrez-Milla, RemoSuppi, EmilioLuque, (2014)
”A Hybrid MPI+ OpenMP Solution of the Distributed Cluster-based Fish
Schooling Simulator” (International Conference on Computational Sci-
ence, Procedia Computer Science), 29, pp. 2111-2120.

Exploring themulti-core architecture is an important issue to obtaining high per-
formance in parallel and distributed discrete-event simulations. However, the
simulation features must fit on parallel programming model in order to increase
the performance. In this paper we show our experience developing a hybrid
MPI+OpenMP version of our parallel and distributed discrete- event individual-
oriented fish schooling simulator. In the hybrid approach developed, we fit our
simulation features in the following manner: the communication between the
Logical Processes happens via message passing whereas the computing of the in-
dividuals by OpenMP threads. In addition, we propose a new data structure for
partitioning the fish clusters which avoid the critical section in OpenMP code.
As a result, the hybrid version significantly improves the total execution time for
huge quantity of individuals, because it decreases both the communication and
management of processes overhead, whereas it increases the utilization of cores
with sharing of resources.

3. FranciscoBorges, AlbertGutierrez-Milla, RemoSuppi, EmilioLuque, (2015)
”Strip Partitioning for Ant Colony Parallel and Distributed Discrete-event
Simulation” (International Conference on Computational Science, Proce-
dia Computer Science), 51, pp. 483-492.

Data partitioning is one of the main problems in parallel and distributed sim-
ulation. Distribution of data over the architecture directly influences the effi-
ciency of the simulation. The partitioning strategy becomes a complex problem
because it depends on several factors. In an Individual-oriented Model, for ex-
ample, the partitioning is related to interactions between the individual and the
environment. Therefore, parallel and distributed simulation should dynamically
enable the interchange of the partitioning strategy in order to choose the most
appropriate partitioning strategy for a specific context. In this paper, we pro-
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pose a strip partitioning strategy to a spatially dependent problem in Individual-
oriented Model applications. This strategy avoids sharing resources, and, as a
result, it decreases communication volume among the processes. In addition, we
develop an objective function that calculates the best partitioning for a specific
configuration and gives the computing cost of each partition, allowing for a com-
puting balance through a mapping policy. The results obtained are supported by
statistical analysis and experimentation with an Ant Colony application. As a
main contribution, we developed a solution where the partitioning strategy can
be chosen dynamically and always returns the lowest total execution time.

4. FranciscoBorges, AlbertGutierrez-Milla, RemoSuppi, EmilioLuque,Mary-
lene de Brito Arduino, (2015) ”An agent-based model for assessment of
aedes aegypti pupal productivity” (Proceedings of the 2015Winter Simula-
tion Conference), pp. 159-170.

Thedengue is a febrile disease whosemain vector transmitter is the Aedes Aegypti
mosquito. This disease has an annual register of 50 million infections worldwide.
Simulations are an important tool in helping to combat and prevent the epidemic
and, consequently, save lives and resources. Therefore, in this paper, we propose
an agent-based model for assessment of the pupal productivity of the Aedes Ae-
gypti mosquito. In this model, the reproduction of the mosquito takes into ac-
count the productivity of each type of container. The preliminary results show
the effects of considering the pupal productivity for the control and prevention of
dengue. As a result, we observed that the preventionmethodsmust consider pupal
productivity and that the distance between containers might leverage productiv-
ity and increase transmission risk. We verify the completeness and functionality
of the model through experimentation using NetLogo.
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