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i

Whenever I found out anything remarkable, I have thought it my duty to put

down my discovery on paper, so that all ingenious people might be informed

thereof.

Anthonie van Leeuwenhoek, (1632− 1723).
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Outline of the Thesis

The goal of this thesis is to study by numerical simulations, the collective behavior

of a model of micro-swimmers. In particular, the squirmer model, where the

fluid motion is axisymmetric. Coherent structures emerge from these systems,

therefore to try to understand whether coherent structures are generate by the

intrinsic hydrodynamic signature of the individual squirmers or by a finite size

effect is of paramount importance, we also study the influences of the geometry

in the emergence of coherent structures, the direct interaction among particles,

concentration, etc.

This thesis report new phases of squirmer suspensions that form a cluster

distribution o even suspensions where a macroscopic cluster emerge. An important

task of this thesis is to characterize these cluster phases and the morphology of the

clusters in order to understand the phenomenology of the system by analogy with

cluster distributions and morphological parameters of systems in equilibrium.

The Thesis is organized as follows. We first review in Chapter 1, what are the

active systems and the consequence to have a set of active particles. We shall find

some examples of active matter under several context. In this chapter we also

explain the micro-swimmers and in particular the squirmer motion in a detailed

way.

In Chapter 2 we explain the numerical methodology that we use to simulate

the fluid that interact with the micro-swimmers. A full review of the method is

depicted here.

The Chapter 3 shows that semi-dilute microorganism suspensions in 3D can

develop collective motions like polar alignment and giant number fluctuations. We

demonstrate that both collective motions depend on the hydrodynamic signature

of the particles and systems with giant number fluctuations generate a cluster

size distribution where a macroscopic cluster is formed. This striking phase sep-

aration emerges thanks to hydrodynamic interactions that re-orient and align the

particles. And not to the reduction of velocity when local density grows. Fur-

thermore, aligned suspension generates a long-time super-diffusive motion after

a cross-over from ballistic to diffusive motion generated by the re-orientation of

1



2 CONTENTS

the particles. It contains a complete computational study of squirmer suspensions

in 3D. We show global measures of the suspension, global parameteres like the

number fluctuations, density dependence speed or the mean square displacement

give us information of the general behavior of the suspension.

In Chapter 4 we simulate a dilute suspension of attractive self-propelled spher-

ical particles taking into account hydrodynamics interactions. Particles are re-

stricted to move only in a plane. To start with, we observe that depending on

the ratio between attraction and propulsion, particles aggregate forming clusters.

Next, we analyse their structure, comparing the case when active particles behave

either as pushers or pullers (always in the regime where inter-particles attractions

competes with self-propulsion). To conclude, we compare the obtained results with

a system consisting of self-propelled Brownian disk particles at the same condi-

tions. We have find that hydrodynamics drive the coherent swimming between

swimmers while the swimmer direct interactions, modeled by a Lennard-Jones

potential, contributes to the swimmersâTM cohesion.

In Chapter 5 we developed numerical simulations of squirmer suspensions

where particles were confined to move only in a plane but not the solvent. We

saw that global polar order of the suspension depend on the hydrodynamic signa-

ture and collisions of the particles as in the non-confined case, however due to the

geometrical restriction to move in a plane we saw that depending on the hydro-

dynamic signature particles can align either parallel or perpendicular to the swim

plane. When squirmers only are able to re-orient and they are fixed in the plane,

we found that polar order disappears for all cases of squirmers, but alignment is

still present parallel to the swim plane for pullers, while pusher suspensions are

more isotropically stable. This alignment that emerges due to the confinement

of fixed particles is studied more systematically by doing simulations of different

sizes, we found that this alignment emerges completely due to the confinement

restriction and the hydrodynamic interactions among particles and it is not a fi-

nite size effect. Due to this geometrical constriction, we also show the eigenvector

associated to the nematic order, to analyse if particles re-orient normal or parallel

to the confinement plane. Given rise to the fact that pullers with fixed position

align parallel to the plane. A systematic study of the cluster size distribution is

also showed for this system and contrasted with the case where particles can not

re-orient. We found that partial confinement plays a key role in the cluster sizes

as well as the hydrodynamic signature.

Finally in Chapter 6 the conclusions and future directions of the research.



Chapter 1

Introduction

In this chapter, we give a general definition of active matter and active particles,

we describe the wide range of applications and phenomena where active matter is

present. We describe particularly in detail, the theoretical background generated

in the recent years for active particles and specially the case of systems with

hydrodynamic interactions. Since particles interact with the fluid in order to

self-propel we call it micro-swimmers, such active particles and its applications

are widely discussed and the model that we used along the computational study

presented in this thesis.

1.1 Active systems

Active systems or active matter can be defined as materials which are made of

many interacting units, where each unit consume energy and generate motion or

mechanical stresses collectively. Given the intrinsic nature of these entities to

put/consume energy to/from the system, active matter or active systems are out

of equilibrium.

Active systems are found everywhere from the living and nonliving world and

they span in a wide range of length scales, from the cytoskeleton to individual

living cells, tissues and organisms, animal groups such as bird flocks, fish schools

and insect swarms., self-propelled colloids and artificial nanoswimmers. These dis-

parate systems exhibit a number of common mesoscopic to large-scale phenomena,

including swarming, non-equilibrium disorder-order transitions, mesoscopic pat-

terns, anomalous fluctuations and surprising mechanical properties. Experiments

in this field are now developing at a very rapid pace and new theoretical ideas

are needed to bring unity to the field and identify “universal” behavior in these

internally driven systems.

3



4 Chapter 1. Introduction

It is known that active matter can generate some interesting nonequilibrium

features, it gives rise for example to amazing emergent collective motion as swarm-

ing or formation of coherent structures [1–5].

Several researchers has been working in understand the fundamental mecha-

nisms that generate the collectivity between particles, like clustering, orientational

order or phase separation. They have found that aggregation depends crucially on

the particular shape of gliding bacteria or any elongated self-propelled particles

in general [6, 7]. But it has been found that spherical particles where nor steric

repulsion neither attractive interaction among particles are taking in count also

shown aggregation and even phase separation.

Experimentalist has been working with photoactive colloids [8, 9], active emul-

sion droplets [10] and with spherical swimming bacteria [11]. Motivated by these

experiments, people have performed simulations particularly using active brown-

ian particles [12–14].

1.2 Active particles

Simulations have shown a phase-separated liquid state that depend on the density

and the activity of the particles. Following this result theoretical advances has

been done to understand this phase separation in terms of the density dependent

motility [15–17]. Furthermore, they have even derived expressions for the pressure

in order to find the equation of state for active systems [18–21]. However, it

has been shown that despite that the mechanical pressure can be calculated, an

equation of state not necessarily exist [22].

Spherical swimmers is an important case, where an equation of state is less

likely to find, since hydrodynamics can cause torques, and torque needs to be

negligible under the theoretical framework [22]. Actually, extensions of this theory

shows that the interplay of activity and hydrodynamics is highly nontrivial [23].

Regardless of the difficulty to take in count hydrodynamic interactions, several

studies in 2D concerning the phase behaviour have been published recently, for ex-

ample in Ref. [24] simulates 2D swimmers and they found that phase separation is

suppressed by hydrodynamic interactions, while in Ref. [25] they simulate swim-

mers strongly confined by walls in a quasi-2D geometry where a phase separation

is found at high concentration. In Ref. [26] shows that squirmers swimming in a

plane without walls can indeed form aggregates and orientational order, which is

in accordance with a previous result of our group [27].

Ishikawa and Pedley also has carried out simulations in 3D where they have

studied the diffusion [28], dispersion [29], and the development of collective mo-

tion [30, 31]. Yamamoto’s group also studied the diffusion of swimmers [32] and
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very recently the swarming formed in 3D suspensions in confinement [33]. Our

group, also has contributed in understand the emergence of collective motion in

3D swimmer suspensions [34].

Aside from Ref. [27], swimmers were modelled as squirmers [35, 36] in all the

studies mentioned above, which is a standard model for study micro-swimmers.

1.3 Microswimmers

As we have seen in previous section, there are two general kinds of active matter:

Living and artificial active matter, and inside of both groups we also found differ-

ent systems in terms of their interaction with the media. In [4] called dry active

matter which are systems that can be described by models with no momentum

conservation, while when solvent-mediated hydrodynamic interactions are impor-

tant, the dynamics of the suspending fluid must be incorporated in the model

and one must develop a description of the suspension of active particles and fluid,

with conserved total momentum. We refer to systems described by models with

momentum conservation, where fluid flow is important, as “wet.” In this section,

we focus on the wet systems, where we can find several examples and applications

either with artificial or living particles suspensions.

In the living world, the main example is the micro-organisms who play a vital

role in many biological, medical and engineering phenomena. It has been shown

that one important aspect to understand micro-organism behaviours such as lo-

comotion and collective motions of cells are biomechanics. The development of

collective motions like the spatio-temporal coherent structures have been studied

over the last few years. Among all the research and analysis, one important con-

clusion about the macroscopic properties of a suspension, it is the strong influence

of the interactions between individual microbes on the mesoscale structures gen-

erated. Such conclusion were generated by measured macroscopic properties like

the rheology and diffusion in the suspension [37].

To study microrganism and biomechanics are key subjects in order to de-

sign and optimize micro-robots. Syntethic or artificial micro-swimmers have been

made, using a wide variety of materials, from polystyrene spheres coated with

platinum, which react with the hydrogen peroxide in the medium, leading to the

propulsion of the spheres [38]. Whereas, Thutupalli et al. in [39] have synthe-

sized liquid droplets moving in an oil “background” phase. Propulsion arises due

to the spontaneous bromination of mono-olein (racglycerol-1-mono-oleate) as the

surfactant.

Zhu et al. in [40] have collected a wide list of natural phenomena where

microorganism locomotion is involved:
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The physical mechanisms of microorganism locomotion accompany a variety of

natural phenomena, including human spermatozoa approaching the ovum in the

mammalian female reproductive tract,[41] algal blooms moving to nutrient rich

environment in maritime regions,[42, 43] biofilm formation,[44] and paramecia cells

escaping from their predators. [45] There are several studies in order to understand

the different physical mechanisms at play in the locomotion of microorganisms. In

particular, in this thesis we are interested in collective behavior, and hydrodynamic

interactions.

To understand the physics of swimming, in other words, the physical mech-

anism of micro-swimmer locomotion, it is important to take in count that the

size of microorganisms are around microns and move at around 102 microns per

second, thus we have that the Reynolds numbers is less than 10−2. Where the

Reynolds number Re is defined in terms of the swimming speed u, the radius of

the individual σ/2 and the kinematic viscosity of the solvent ν as

Re =
uσ

2ν
. (1.1)

Therefore, the flow field around a micro-organism is a Stokes flow and hence the

inertial force is negligible compared with the viscous force. In the Stokes flow

regime, Purcell showed that the reciprocal motion cannot lead to any locomotion;

(scallop theorem) [46]. However, for ciliated organisms , the motion of each in-

dividual cilium follows an asymmetric pattern. First applies an effective stroke

and then a recovery stroke, as we show in figure 1.1-a. The asymetry in the

strokes gives to the cilium, the ability to generate a net thrust on the cell body.

Cilia are typically short compared with the cell body, and the number of cilia per

cell is large. A ciliate swims by synchronizing ciliary motions with slight phase

differences, thus generating metachronal waves, as shown in figure 1.1-b. In the

next section we shall explain in detail a simple model to take in count the ciliary

motion, it is the most popular exact solution and originally due to Lighthill [35]

and Blake [36].

1.4 Squirmer Model

The Lighthill [35] and Blake [36] model sometimes is referred as the envelope

model, the motion of closely packed cilia tips are modeled as a continuously de-

forming surface (envelope) over the body of the organism. Basically, this model

consider a spherical particle with a fixed director that moves with the particle e1

and the internal activity of the particle generates an axysimmetric velocity at its

surface. This velocity can be written in terms of two independent terms, one ra-
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Figure 1.1: Schematic of the motion of an individual cilium and the collective
motion of cilia. (a) Effective stroke of an individual cilium. The numbers in the
figure indicate the order of the ciliary motion. The effective stroke is defined
from 1 to 3. (Reproduced images from Ishikawa in [37].) (b) Metachronal wave
generated by cilia (reproduced images from Blake and Sleigh in [47]).

dial vr and another polar vθ. Both components can be written in terms of special

functions:

ur|r=Rp =
∞∑
n=0

An (t)Pn

(
e1r

Rp

)
,

uθ|r=Rp =
∞∑
n=0

Bn (t)Vn

(
e1r

Rp

)
, (1.2)

where r represents the position vector with respect to the squirmer’s center, which

is always pointing the particle surface and thus |r| = Rp, while e1 describes

the intrinsic self-propelling direction, which moves rigidly with the particle and

determines the direction along which a single squirmer will displace. Pn stands
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for the n-th order Legendre polynomial and Vn is defined as

Vn (cos θ) =
2

n(n+ 1)
sin θ P ′n(cos θ). (1.3)

The amplitudes An(t) and Bn(t) determine the flow induced by the beating cilia

on the squirmer’s surface, both functions are periodic. Since the cilia wave stroke

is faster than the squirmer displacement, we can replace the time dependent am-

plitudes in the boundary conditions, eqn. (1.2), by their effective averaged am-

plitudes over a stroke period, Bn(t) = Bn. Moreover, we will disregard the radial

changes of the squirming motion, An(t) = 0, in this way the velocity field gen-

erated by a squirmer will depend only in the polar part of the slip velocity and

not in the size of the squirmer. Another feature in this squirmer model is that

squirmer swimms in a non inertial medium hence the velocity u and pressure p of

the fluid are given by the Stokes and continuity equations:

∇p = ν∇2u,

∇ · u = 0. (1.4)

Solving eqns. (1.4), one can then derive the average fluid flow induced by a

squirmer, [48, 49]. Taking in count the boundary conditions specified by the slip

velocity in the surface of its body, eqn. (1.2) and the constrains we specified above,

we have that the mean fluid flow induced by squirmer is

u (r) = B1e1

(
−1

3
1 +

rr

r2

)(
Rp

r

)3

+
∞∑
n=2

Bn

(
R

(n+2)
p

r(n+2)
− Rn

p

rn

)
Pn

(e1r

r

) r

r

+
∞∑
n=2

Bne1

(
1− rr

r2

)
×
(
nR

(n+2)
p

2r(n+2)
− (n− 2)Rn

p

2rn

)
Vn
(
e1r
r

)√
1− e1r

r

. (1.5)

This solution take in count also that squirming surface has a finite total energy,

given by the constrain vs = 2
3
B1 along e1 where vs is the velocity in which fluid is

moving, measured in the reference system of the squirmer center of mass. With

this velocity constrain we ensure that there is not net force acting on the squirmer.

We are interested in study a simplified squirmer model, hence we take Bn = 0,

n > 2, keeping only the first two terms in the general expression, eqn. (1.5).
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The two non-vanishing terms can model the dynamic effects associated to the

squirmers. The polarity is associated with squirmer self - propulsion, through

B1, and the active stresses induced by the apolar term B2. The active stress is

quantified in terms of the squirmer self-propulsion by β = B2/B1 [48], β sign

determines squirmer behaviour, if β > 0 squirmer behaves as puller or as a pusher

if β < 0. Hence, the average fluid flow generated by this simplified model of

squirmer can be written as

u (r) = −1

3

R3
p

r3
B1e1 +B1

R3
p

r3
e1 ·

rr

r2

− R2
p

r2
B2P2

(e1r

r

) r

r
. (1.6)

Squirmer model was originally developed to specifically model the swimming

of ciliates, but it can also be useful in the study of other types of swimming mi-

croorganisms, broadly categorized as “pushers” and “pullers” [50]. Pushers obtain

their thrust from the rear part of their body, such as E. coli. In contrast, for

pullers the thrust comes from their front part, lile algae genus Chlamydomonas.

The squirmer model can represent pushers and pullers by correspondingly chang-

ing the surface actuation (squirming profile), rendering it a general model for

investigating the locomotion of microorganisms [51].





Chapter 2

Lattice Boltzmann Method

In this chapter, we present the lattice Boltzmann method (LBM) which is a rel-

atively new method in computational fluid dynamics. In the last 20 years, LBM

has developed into an alternative and promising numerical scheme for simulating

fluid flows [52]. Its strength lies however in the ability to model complex phys-

ical phenomena, including single and multiphase flow in complex geometries or

chemical interactions between the fluid and the surroundings.

The chapter is divided in sections, where first we make an introduction of

different methods for simulate hydrodynamic interactions in soft matter, second

the Boltzman equation and its discretization, in section 2.3 the Lattice Boltzmann

method itself, next the boundary conditions in LBM, in section 2.5 we explain

how is plugged the squirmer model in the LBM scheme, finally we explain the

parallelization of our LB code and some features of it and some general conclusions.

2.1 Introduction

Microorganisms and active fluids in general, are systems where the coupling be-

tween the fluid and their mesoscopic components (bacteria, active colloids, etc.)

affects the dynamics of the system. The mesoscopic elements generate disturbance

in the neighboring fluid which changes the fluid flow at long distances, this effect

is called hydrodynamic interactions (HI).

Transport equations are used to study these kind of problems where fluid flows

are taking in count. On a macroscopic scale, partial differential equations (PDE)

like Navier-Stokes equation are used. Since these kind of equations are difficult to

solve analytically due to non-linearity, complicated geometry and boundary con-

ditions. A lot of numerical schemes such as finite difference method (FDM), finite

volume method (FVM), finite element method (FEM) or spectral element method

11



12 Chapter 2. Lattice Boltzmann Method

(SEM) are used to convert the PDE to a system of algebraic equations. These

macroscopic methodology is based on the discretization of the PDE. However, we

can lose details of the dynamic of the mesoscopic elements.

Another approach to the problem is to consider a microscopic scale where the

motion of all the particles of the system can be simulate (molecular dynamics

(MD)). But we deal with the fact of the large disparity between the time-length

scales of the solvent (10−10 s - 10−10 m ) and the mesoscopic components (10−3 s

- 10[− 3] m). It becomes technically impossible to reach time-length scales of the

mesoscopic components and to simulate complex fluids as a consequence.

To close the gap between macro-scale and micro-scale, coarse-grained models

have been developed. These methods reduce the degrees of freedom of the solvent

but capture the collective modes of the fluid. For example, in Brownian Dynamics

(BD), the solvent is represented implicitly by random forces and frictional terms.

It is a simplified version of Langevin dynamics where particle inertia is neglected.

BD not conserve momentum, so diffusion is present but not hydrodynamics [53].

However, another mesoscopic methods have been created, where the solvent dy-

namics is explicitly resolved, for example Dissipative Particle Dynamics (DPD)

[54, 55] where the fluid is described as N coarsened particles with continuous posi-

tions and velocities. The particles interact among them by a soft potentials which

leads to large time-steps and reach time scales orders of magnitude larger than the

time scales of a MD. DPD was reformulated and slightly modified by P. Español

[56] to add a Galilean invariant thermostat, which preserves the hydrodynamics.

As an alternative of these mesoscopic MD-like methods we can find mesoscopic

approaches based on kinetic theory. Lattice Boltzmann Method for example, it

is based on microscopic models and mesoscopic kinetic equations. The funda-

mental idea of the LBM is to construct simplified kinetic models that incorporate

the essential physics of microscopic processes so that the macroscopic averaged

properties obey the desired macroscopic equations [57].

Even though the LBM is based on a particle picture, its principal focus is

the averaged macroscopic behaviour. The kinetic equation provides many of the

advantages of molecular dynamics, including clear physical pictures, easy imple-

mentation of boundary conditions, and fully parallel algorithms. Because of the

availability of very fast and massively parallel machines, there is a current trend

to use codes that can exploit the intrinsic features of parallelism. The LBM fulfills

these requirements in a straightforward manner [57].

From the physical point of view, the lattice Boltzmann method can be interpo-

lated as a microscope for fluid mechanics while a telescope for molecular dynamics

[52].
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2.2 Lattice Gas Cellular Automata

The fundamental idea behind lattice gas automata is that microscopic interactions

of artificial particles living on the microscopic lattice can lead to the corresponding

macroscopic equations to describe the same fluid flows.

Historically, the lattice Boltzmann method originates from the lattice gas cellu-

lar automata (LGCA) which is a Cellular Automaton (CA)1 where fluid particles

are constrained to move on a regular lattice such that their collisions conserve

mass and momentum. It was originally created by Hardy, Pomeau and de Pazzis

in 1973 [59] known as HPP model. In this model, the lattice is square, and the

particles travel independently at a unit speed to the discrete time. The particles

can move to any of the four sites whose cells share a common edge. Particles can-

not move diagonally. The HPP model lacked rotational invariance, which made

the model highly anisotropic. This means for example, that the vortices produced

by the HPP model are square-shaped [52] and it does not reproduce macroscopic

hydrodynamics. Ten years after Frisch, Hasslacher and Pomeau [60] discovered

that a LGCA with hexagonal symmetry, leads to the Navier-Stokes equation in

the macroscopic limit (FHP model).

In general, a lattice gas automaton is a regular lattice with particles resid-

ing on the nodes, all particle velocities are also discrete. So we have particles

that can move around, but only within lattice nodes. The particle occupation is

characterized by the occupation number

ni(x, t) = {ni(x, t), i = 1...m} , (2.1)

ni is a Boolean array, such that

ni(x, t) = 0 site x with no particles at time t,

ni(x, t) = 1 site x with one particle at time t,
(2.2)

where M is the number of velocities at each node. For example, M = 4 for HPP

model, while M = 6 for FHP model.

This occupation numbers defines a MN -dimensional time dependent Boolean

field, where N is the number of lattice sites [52]. The evolution of this field take

place in a Boolean phase-space consisting in 2MN discrete states, and evolution

equation can be written as:

ni(x + ci, t+ 1) = ni(x, t) +Ωi [n(x, t)] , (2.3)

1Cellular automata are regular arrangements of single cells of the same kind, each cell holds
a finite number of discrete states that evolves through a number of discrete time steps according
to a set of rules based on the states of neighboring cells [58].
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where ci is the local particle velocity and Ωi [n(x, t)] is the collision operator. Ωi

contain all the possible collisions. Boolean nature is preserved and interactions

are completely local. Configuration of particles at each time step evolves in two

sequential sub-steps:

• Streaming: every particle moves to the neighbouring node according to its

velocity ci.

• Collision: when there are more than one particle at the same node, they

interact by changing their velocity directions according to scattering rules.

The collision process is chosen so that the number of particles and the total

momentum are conserved. The conservation of energy is not imposed.

Frisch et al. in [60], making use of a probabilistic approach, they considered

Ni defined as the average population at a node with velocity i. Since the average

is over a macroscopic space-time region, Ni can be written as

Ni(x, t) = 〈ni(x, t)〉, (2.4)

therefore the mean density as

ρ =
∑
i

Ni(x, t), (2.5)

and the mean velocity

u =
∑
i

Ni(x, t)ci/ρ. (2.6)

With this definitions, they have found a steady state equilibrium solution for

the mean population in function of the Fermi-Dirac distribution and then they

obtained a set of hydrodynamic equations that goes to imcompressible Navier-

Stokes equation in the limit where the Mach number M = u
√

2 → 0 and the

hydrodynamic scale L → ∞. However, some problems arise, like the lack of

Galilean invariance.

Another drawback is that this method is not efficient to study hydrodynam-

ics because of the statistical noise. In order to solve this problem, the Lattice

Boltzmann Method (LBM) was proposed as an independent numerical method

for hydrodynamic simulations. McNamara and Zanetti in [61] were the firsts to

replace the Boolean field to continuos distributions over the FHP lattice.
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2.3 Lattice Boltzmann

The formulation of the Lattice Boltzmann Method (LBM) lies in the replacement

of the Boolean occupation numbers, involved in the previous LGCA, with the

corresponding ensemble-averaged populations. In this way, the artificial micro-

dynamics of LGCA will be more close to the usual kinetic theory [58].

The property of the collection of particles is represented by a distribution

function. That means that the Boolean occupation number ni(x, t) in LGCA is

replaced for a single particle distribution function fi(x, t), which is the ensemble

average of ni,

fi(x, t) = 〈ni(x, t)〉. (2.7)

Occupation number ni can be 0 or 1 while fi now is a real functions with a range

0 ≤ fi ≤ 1. Therefore, a discrete kinetic equation for the particle distribution

function, which is similar to the kinetic equation in the LGCA (see eq. (2.3)):

fi(x + ci∆t, t+∆t) = fi(x, t) +Ωi [f(x, t)] , (i = 0, 1, ...,M), (2.8)

where Ωi = Ωi [f(x, t)] is the collision operator which represents the rate of change

of fi resulting from the collision. ∆t is the time increment. Discrete equations

like eqs: (2.8) are referred to as lattice Boltzmann equations.

Moreover, it can be shown that eq. (2.8) is a particular discretization of the

Boltzmann equation [62]. Since the continuous Boltzmann equation is

∂f

∂t
+ v∇f = Q (2.9)

where Q is the collision integral. We can expand the function fi(x + ci∆t, t+∆t)

as

fi(x + ci∆t, t+∆t) = fi(x, t) +∆t
∂fi
∂t

+ ci∆t∇fi +O ((∆t)) . (2.10)

Replacing in eq. (2.8) and neglecting higher order terms:

∂fi
∂t

+ ci∇fi =
Ωi [f(x, t)]

∆t
(2.11)

which is a correspondence to Boltzmann Equation (eq. (2.9)) where fi → f ,

ci → v and Ωi[f(x,t)]
∆t

→ Q.

According to Sterling and Chen in [62] LBM makes use of the following defi-

nitions and conditions:
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• The particle populations f may only move with velocities that are members

of the set of discrete velocity vectors ci. The corresponding populations are

denoted fi.

• A collision operator with a single relaxation time, τ , is used to redistribute

populations fi towards equilibrium values f eqi . This is also referred to as

a BGK collision operator where τ is inversely proportional to density [63].

For constant density flows τ is a constant.

• The equilibrium velocity distribution function is written as a truncated

power series in the macroscopic flow velocity.

Therefore, with the BGK approximation, the discrete Boltzmann equation

(2.11) becomes
∂fi
∂t

+ ci∇fi = −1

τ
(fi − f eqi ) , (2.12)

hence,

Ωi = −1

τ
(fi − f eqi ) (2.13)

and the average density, velocity and pressure tensor are given by

ρ(x, t) =
M∑
i=1

fi(x, t), (2.14)

ρ(x, t)vα(x, t) =
M∑
i=1

fi(x, t)ciα, (2.15)

pαβ(x, t) =
M∑
i=1

fi(x, t)ciαciβ, (2.16)

where M is the number of directions of the particle velocities at each node. Ωi

is a nonlinear collision operator, thus its evaluation is time consuming. Higuera

and Jiménez in [64] have shown that collision operator can be approximated by a

linear operator, such as

Ωi(f) = Mij (fi − f eqi ) (2.17)

where according to [64]

Mij ≡
∂Ωi(f

eq)

∂fj
, (2.18)

which determines the scattering rate between directions i and j. Since collisions
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conserve mass and momentum, Mij satisfy [65]:

M∑
i=1

Mij = 0
M∑
i=1

Ωici = 0. (2.19)

Furthermore, due to eq. (2.13),

Mij = −1

τ
δij (2.20)

Additionally, given the relaxation time τ , the shear and bulk viscosity under LBM

framework are

η = (2τ − 1)/6ξ = 2η/3 (2.21)

respectively [66], where we have chosen our units such that ρ = 1 for a quiescent

fluid, and choose the lattice parameter (LU) as the unit of length, and the time

step as the unit of time (∆t = 1), and the sound speed for the lattice in 3D that

we use, cs = 1/
√

3 in LU.

Different lattice geometries, in which the distribution functions move, can be

defined, specified by both the arrangement of nodes and the set of allowed ve-

locities. LB models can be operated on a number of different lattices in two or

three dimensions: cubic, triangular, rectangular, hexagonal, etc. A popular way

of classifying the different cubic lattices is the DnQm scheme [67]. Here Dn stands

for n dimensions while Qm stands for m speeds.

With this basic algorithm of the LBM by using the single-time relaxation

approximation and a particular Maxwell-type distribution for the equilibrium dis-

tribution (eq. (8) in [68]), one can recover the Navier-Stokes equations and model

single phase fluid with a variety of boundary conditions [52].

2.4 Boundary Conditions

In general, we have a great deal of temporal/spatial flexibility in applying bound-

ary conditions in LBM. In fact, the ability to easily incorporate complex solid

boundaries is one of the most exciting aspects of these models. LB is particularly

useful in complex fluids such as suspensions of solid colloidal particles [69].

For solid boundaries we separate solids into two types: boundary solids links

that lie at the solid-fluid interface and isolated solids links that do not contact

fluid. With this division it is possible to eliminate unnecessary computations at

inactive nodes [69].

Stationary solid objects were first introduced into lattice-gas simulations by
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replacing the normal collision rules at a specified set of boundary nodes by the

“bounce-back” collision rule [70]. This collision rule is used to model solid sta-

tionary or moving boundary condition, non-slip condition, or flow over obstacles.

Name implies that a particle coming towards the solid boundary bounces back

into the flow domain. If we want particles to bounce back from a solid, we have

to change certain values of distribution functions fi. For example, velocities f4,

f7 and f8 in a fluid node next to solid nodes (called boundary node velocity) will

pass the velocity value to the velocities f2, f5 and f6 respectively, this procedure

is schematically explained in Fig. 2.1.

Figure 2.1: Schematic illustration of bounce back rule for interaction with solids.
Figure extracted from reference [71], fi vectors in the figure are the ci velocities
in the nomenclature we used along this manuscript.

If the solid object is moving with a local boundary velocity U (like colloidal

particle), the bounceback condition has to be modified, and the velocity of the

boundary nodes are establish by the solid particle velocity U, its angular velocity
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Ω and center of mass R, hence, if ub is the velocity in a boundary node

ub = U + Ω×
(

r +
1

2
ci −R

)
. (2.22)

By exchanging population density between a fluid node and solid node the

local momentum density of the fluid can be modified to match the velocity of the

solid particle surface at the boundary, without affecting either the mass density or

the stress, which depend on the sum of both nodes distributions [72]. In addition

to the bounceback, population density is transferred across the boundary node

[72], in function of the velocity in a boundary node,

fi(x + ci, t+ 1) = fi′(x + ci, t
+) +

2ρub · ci
c2s

fi′(x, t+ 1) = fi(x, t
+)− 2ρub · ci

c2s
.

(2.23)

Figure 2.2: Location of the boundary nodes for a circular object of radius 2.5
lattice spacings. The velocities along links cutting the boundary surface are indi-
cated by arrows. The locations of the boundary nodes are shown by solid squares
and the lattice nodes by solid circles. Figure extracted from reference [72]
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Bounce-back involves changes in the velocity distribution functions which lead

to a force and torque acting locally on the fluid. The opposite force and torque

are exerted on the particle. Hence, the overall fluid momentum change through

bounceback determines the net force and torque acting on the rigid particle, which

are used to update the particle linear and angular velocities at each time step.

These velocities are then used to update the particle position and direction; the

motion of colloidal particles is, hence, determined by the force and torque exerted

on it by the fluid, and is resolved by a MD like algorithm [73]. With this method,

we ensure a correct description of the dynamic coupling between the collective

modes of the solvent and the suspended particles.

The size of the colloid is important, since due to the discretization the colloid

is not strictly a sphere (as we show in Fig. 2.2), which could be relevant for the

torque calculation. There are “magic” values of the particle radius, including 1.25,

2.3, 3.7, 4.77 which minimise discretisation effects [74]. Most of the results we

have shown here are done with simulations with radius of 2.3 lattice units.

Again following [74], mass conservation is enforced, since when particles are

near to contact they may not have a full set of boundary links with the fluid, this

leads to a potential non-conservation of mass associated with the particle motion.

2.5 Squirmer model coupled to LBM

First two terms of equation (1.6) represent a dipolar field, similar to the one

generated by an electric/magnetic dipole. The direction and strength of the fluid

flow is specified by the polarity term B1e1 in analogy with the electric/magnetic

moments. While the B2 term models a quadrupolar field. B2 is equivalent to the

strength of a quadrupole for a symmetric arrangment of electric/magnetic dipoles,

when the dipole moments vanish [75] (without polarity). Then, taking in count

that we have only two non-zero terms, the boundary conditions on the surface of

the squirmers depicted in equations (1.2) are written as

ur|r=Rp = 0,

uθ|r=Rp = B1V1(cos θ) +B2V2(cos θ). (2.24)

Thus, the velocity in the surface of the squirmer defined as the velocity u|r=Rp

u|r=Rp = [B1 sin θ +B2 sin θ cos θ] τ , (2.25)

where τ is a unit vector tangential to the surface of the particle.

In the LB scheme that we use, we added this surface velocity ub to U in
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equation (2.22), ub is discretized in terms of the velocities of the nodes and is

included in the bounceback rules.

2.6 Parallelization

Reason, why LBM is becoming more and more popular in the field of CFD, is the

fact that LBM is solved locally. It has high degree of parallelization, hence it is

ideal for parallel machines (computational clusters).

We have performed simulations using the Ludwig code, which is a LB code for

D3Q19 lattice [76]. It is a parallel lattice Boltzmann code which includes moving

particles via domain decomposition and message passing using the message passing

interface MPI, its parallelization has been tested [77]. A simulation of a fluid in

a cubic box with a edge length of L = 512 lattice units, needs a RAM memory of

almost 20 Gb and it the requirement of memory grows linearly with the grow of

the volume, as we see in Figure 2.3.
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Figure 2.3: RAM memory needed for Ludwig as the system size grows. System
size is a cubic box of edge length of Lbox lattice units.
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2.7 Conclusions

In this chapter we have described the LBM and the aplications for a squirmer

suspension. LBM is a very convenient method for complex system even for systems

out of equilibrium, in particular Ludwig code has been used for study systems of

binary fluids [78], colloidal suspensions [66] , colloidal jamming at interfaces [79],

fluid-fluid interfaces [80] and actually for squirmer suspensions [34, 49], like the

results showing here. In particular, thanks to the good scalability of the program

we were able to studied systems with ∼ 106 particles (see chapter 3 for example).



Chapter 3

Collective motion of a squirmer

suspension

3.1 Introduction

We characterize the collective motion that emerge from active particles like spher-

ical active colloids or microorganisms. We have taken in count hydrodynamic in-

teractions explicitly by using Lattice-Boltzmann numerical simulations explained

in Chapter 2, and active particles are modelled using a squirmer model where only

two parameters are necessary to model how a microorganism swims, as described

in chapter 1.

Here we study principally semi-dilute suspensions of squirmers with φ = 0.1,

where φ = πσ3N/6L3, σ = 2.3 and L = 120 both in lattice space units, thus

N = 3400 for φ = 0.1. To obtain different volume fractions N was changing. We

changed β systematically to observe the emergence of collective motion depending

on the hydrodynamic signature. We also show a systematic study in terms of the

system size, therefore N and L were tuned to observe the effects of finite size.

We set B1 = 0.01 and the viscosity ν = 0.5, therefore u∞ = 0.007 and Reynolds

number Re = 0.031.

We show that semi-dilute microorganism suspensions in 3D can develop col-

lective motion and display polar alignment and giant number fluctuations. We

demonstrate that both signatures of collective motion depend on the hydrody-

namic properties of the particles. In particular, the emergence of giant number

fluctuations is related with the formation of a macroscopic cluster. This striking

phase separation emerges thanks to hydrodynamic interactions that re-orient and

align the particles, and not to the reduction of velocity when local density grows.

Furthermore, aligned suspensions generate a long-time super-diffusive motion af-

23
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ter a cross-over from ballistic to diffusive motion generated by the re-orientation

of the particles.

3.2 Collective squirmer alignment

We consider a simplified squirmer model with a slip velocity at the squirmer

surface of the form

u|r=σ
2

= [B1 sin θ +B2 sin θ cos θ] τ , (3.1)

where τ is a unit vector tangential to the surface of the particle, θ is the angle

between the direction of self-propulsion defined by the unit vector e and the vector

perpendicular to τ . B1 defines the self-propulsion speed of an isolated squirmer,

u∞ = 2/3B1 and B2 is the apolar term of the velocity and is related with the

active stresses generated by the spheres. The active stress is quantified in terms

of the squirmer self-propulsion by β = B2/B1, when β < 0 squirmer it is called

pusher and puller with β > 0, while β = 0 correspond to a mover or neutral

squirmer. We define a characteristic time in terms of the particle size and u∞ as

t0 = σ/u∞, where σ is the particle diameter.

(To study squirmers, we used the Lattice-Boltzmann method (LBM), this

model simulates the hydrodynamics of a liquid and shows excellent scalability

on parallel computers [77], it has been successfully used to simulate squirmer

suspensions in Ref. [34, 49], where the slip velocity of the squirmer, defined in

Eq. (3.1), is plugged in the LBM scheme as boundary conditions (see chapter 2).

In this chapter we will concentrate on the study of semi-dilute suspensions of

squirmers with volume fraction of φ = 0.1, where φ = πσ3N/6L3, the diameter of

squirmers σ = 4.6 and the system size L = 120 both in lattice space units, thus

N = 3400 for φ = 0.1, where N the number of simulated squirmers. We have

changed β systematically to observe the emergence of collective motion depending

on the hydrodynamic signature. We also show a systematic study in terms of the

system size, therefore N and L were tuned to observe the effects of finite size. We

set B1 = 0.01 and the viscosity ν = 0.5, therefore u∞ = 0.007 and a characteristic

Reynolds number Re = 0.031.

Semi-dilute squirmer suspensions can develop alignment between particles, this

alignment has been measured [31, 34, 81] by the polar order parameter:

P (t) =
1

N
|
N∑
i=1

ei|, (3.2)



3.2. Collective squirmer alignment 25

where ei is the intrinsic orientation of the i-th squirmer. At long-times, the suspen-

sion reaches a steady state P (t >> 0) = P∞. If P∞ = 1 the system is completely

polarized (all squirmers pointing to the same direction), while P∞ ∼ 1/
√
N means

the system is isotropically oriented. In Fig. 3.1, the black circles show P∞ as a

function of β. Pusher swimmers with β < −1/10 are isotropically oriented since

P∞ ∼ 1/
√
N , for larger values of β P∞ change abruptly, reaching values close

to 1. The suspension becomes strongly polar around β = 0, where P∞ reaches

the maximum. For pullers, β > 0, P∞ decreases with β until β ∼= 3, where P∞
saturates to ∼ 1/

√
N , like pushers with β < −1/10.

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4

P
∞
,
λ
∞

β

P∞

λ∞
1/
√
N

(3−β)
4 + 1√

N

(3−β)2

16 + 1√
N

Figure 3.1: Long-time polar, P∞, and nematic order, λ∞, parameter for different
values of β, ranging from −5 to 5. P∞ correspond to black circles, while λ∞ is
represented by red squares. Particles with isotropic orientation will have P∞ ∼
1/
√
N hence we also show the blue dashed line for 1/

√
N . P∞ has a roughly linear

decay in the region 0 ≤ β ≤ 3, similarly λ∞ has a quadratic behaviour in the same
region of β. Pink curve is the linear fit for P∞ while cyan curve the parabolic fit
for λ∞.

The value of P∞ is very sensitive to the system size; this reason explains the

difference with respect to the results reported in ref. [34], where P∞ > 1/
√
N for

some pushers with β < −1/10 at the same φ = 0.1, but with N = 2000 particles.

We have verified that for an infinite system P∞ remains finite (We have done a

more detailed study on the finite size effects in section 3.7). The differences in the

P∞ here and the one shown in [34] comes from finite size effects, here the system

size is bigger. Here we took N = 3400, while in [34] .
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Since the system can have nematic order without polar order therefore, addi-

tionally to the polar order parameter, we have also computed the nematic order

tensor, defined as

Qhk(t) =
1

N

N∑
i=1

(
3

2
eih(t)eik(t)−

1

2
δhk

)
; (3.3)

for a 3D system [82], where h and k are x, y, z andN the total amount of squirmers.

The nematic order parameter λ(t) correspond to the largest eigenvalue of Qhk.

Similarly to the polar order, nematic order reaches a steady state λ(t >> 0) = λ∞
that we also plot in Fig. 3.1. Red squared symbols show us that nematic order is

presented for the same β range than polar order and for pullers with λ∞ decreases

quadratically with β until β = 3. We always find λ∞ ∼ P 2
∞, which means that we

can consider that in semi-dilute suspensions of squirmers a polar-nematic phase

emerges when −1/10 ≤ β ≤ 3, and an isotropic oriented phase develops otherwise.

3.3 Number fluctuations

As we pointed previously [34], squirmers can develop emerging flocking and display

highly dynamic, mobile flocks or clusters that can form and re-form continuously

in time. These structures generate fluctuations in the number of particles. To

measure these fluctuations more systematically, we calculate the number fluctu-

ations for different sub-system sizes for a given β, and analyze how fluctuations

〈∆N〉 grow with system size. We expect number fluctuations to grow as a power

law of

〈∆N〉 ∼ N
α
, (3.4)

where N is the mean of the number of particles in a given subsystem size. The fluc-

tuations are proportional to
√
N when fluctuations are essentially uncorrelated,

as is the case for systems in thermodynamic equilibrium, while active systems ei-

ther experiments [83] or numerical simulations [84] have shown anomalous density

fluctuations with α ≥ 0.75.

We have seen that α value depends on the β value as we show in Fig. 3.2 where

α is plotted for the range −5 ≤ β ≤ 10. Pushers with β ≤ −1 have an exponent

α = 0.5, then α starts to grow slowly as we increase β until β = −0.1 where

α = 0.56, then α increases abruptly in the region where pushers are partially

aligned (−0.1 < β < −0.01 see Fig. 3.1) in this region α can reach values up to

0.69 when β = −0.09. Close to β = 0 we observe a drop to a rather small value

of α, before it develops a maximum for β > 0. This sudden increase in α as the

system changes from pusher to puller indicates the effect that the character of the
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Figure 3.2: Black circles show the exponent α obtained by fitting the number
fluctuations as a power law function 〈∆N〉 ∼ 〈N〉α for different values of β. The
green solid line is for α = 1/2, which is the case of systems in equilibrium, while the
blue dashed line represent α = 0.7 which is the threshold we use to define whether
the system has giant density fluctuations or just anomalous density fluctuation
(1/2 < α < 0.7).

active stresses has on the global organization of the active squirmers. Similarly,

for β = 0 the order parameters are P∞ = 0.95 and α = 0.5. This abrupt change in

α is due to the fact that particles are stronger aligned P∞(β ∈ [−0.01, 0]) = 0.95.

Pullers on the contrary, exhibit giant density fluctuations when 0 < β ≤ 1 and α

decays with β as ∼ (4−β)1/2 up to β = 2. When β > 2, we observe a slower decay

to α = 0.5, we have reached β = 10 to get an exponent of α = 0.51. In general,

we can observe in Fig. 3.2 that exponent is not symmetric with respect to β,

thus pushers and pullers behave in different ways. Therefore, we observe a strong

sensitivity of the number fluctuations with the character of the active stress, while

pushers exhibit essentially uncorrelated fluctuations, except in a narrow region

close to β = 0 where a fast increase in α is observed, pullers show a very soft

transition from giant to anomalous number fluctuations up to β < 3, follow by a

regime where α slowly decays to 1/2.

The value of α = 0.7 is chosen as the crossover between giant to anomalous

number fluctuation because once α > 0.7, dynamic clusters are observed. Al-

though the theory states that exponent α = 1/2 + 1/d for cases that exhibit giant

density fluctuations [85], where d is the dimension of the system, recent results
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have shown that bacterial colonies exhibit anomalous fluctuations with an expo-

nent value α = 0.75± 0.03 [83], while simulations of self-propelled particles with

either alignment rule [86] or not [12] the scaling exponent is 0.8 for cases associated

with a phase separated state.

We have found that fluctuations on the density are not produced by finite size

effects, on the contrary, when suspensions exhibit giant fluctuations (α > 0.7), α

increases as the system size increases as we show in Fig. 3.7 reaching α ∼ 0.91

for larger systems when β = 0.5. Therefore, we found a range 0 < β ≤ 1 where

semi-dilute suspensions of pullers and even pushers with −0.1 < β < −0.01 can

generate giant number fluctuations, there is also a range where alignment is very

high such that all particles swim in the same direction uniformly (β = {−0.01, 0}),
thus swimmers are not able to form density differences, which give us an exponent

α = 0.5. As well as pushers with β < −0.1 where particles are not aligned but

the collisions between particles are uniform and the density of particles in the

suspension is also uniform. While pullers with β > 1 generate anomalous number

fluctuations and decay very slowly to α = 1/2 as β increases. From Figs. 3.1 and

Fig. 3.2, it is clear that the alignment produced by hydrodynamic interactions is

a key mechanism to have induced fluctuations.

3.4 Emergent clustering in squirmer suspension

In this section we discuss the cluster size distribution. Squirmers exhibit clustering

when they reach a steady state, this steady state is characterized by a constant

polar order parameter. During this interval of time we calculate the distribution

of the cluster sizes.

To identify the clusters we follow the methodology described in Appendix A.

Once the clusters are identified, we calculate the fraction of clusters of size s, called

f(s). We have followed the criterion elaborated by Chantal, et al. [87]: First, the

range of s-values are arbitrarily subdivided into intervals∆si = (si,max−si,min) and

estimate the total number of clusters within each interval ∆si, called nti. Secondly,

we assign the value of ni = nti/∆si to every s within∆si. Thus, the total fraction of

cluster is Nc =
∑

i ni∆si and the fraction of clusters of size s, f(s) = ni/Nc, where

s is the closest integer to the central value of ∆si = (si,max − si,min). The details

of the boundaries of the clusters size intervals are explicitly shown in Appendix A.

We have found that the cluster size distribution for squirmers behave in general

as:

fb(s) = f(1)
exp(−(s− 1)/s0)

sγ0
+B

exp(−(s− 1)/z0)

s−γ0
, (3.5)

with B, s0, z0 and γ0 constants that depend on β. When β ≤ −0.1, B = 0
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and distributions are completely unimodal, described by only one power law with

an exponential decay given by the fitted parameters s0 and γ0. For pushers, the

exponent γ0 = 1.9 and s0 does not change significantly as β changes. CSDs for

β = −3 up to −0.2 are plotted with symbols and fitted curves to the data are

plotted with lines in the top-left panel of Fig. 3.3. Similarly, B = 0 for pullers

when β ≥ 2 and for the special case of β = 0, but γ0 = 2.15 for β ≥ 2 and γ0 = 2

for β = 0. In the top-right panel of Fig. 3.3 we show the CSDs for β = 0, 2, 3.

CSDs in these cases are thicker than the CSDs for pushers showed in the top-left

panel.
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Figure 3.3: CSD of suspensions of squirmers for different β. All CSDs are fitting
with an analytical bimodal distribution function of eq. (3.5). Top-left: CSDs for
pushers. Top-Right: CSDs for β = 0, 2, 3. Bottom-left: CSDs for pullers in the
range 0 < β ≤ 2. Bottom-right: Parameter s0 as a function of β.

Cluster-size distributions of pullers with 0 < β < 2, exhibit a bimodal be-

haviour, like the eq. (3.5) with B 6= 0, when 0 < β ≤ 1 the exponent γ0 = 2.2

and prefactor B ∼ 10−13 with the exponential cutoff z0 ∼ 1000 (reddish curves

in bottom-left panel of Fig. 3.3) while the range 1 < β < 2 has an exponent

γ0 = 2.075 and prefactor B ∼ 10−10 with z0 ∼ 100 (blueish curves in bottom-left

panel of Fig. 3.3). The exponential cut-off s0 is plotted in the bottom-right panel

of Fig. 3.3 as a function of β, s0 is approximately constant for pushers with a
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value around 50, while for pullers s0 grows slowly when β < 1 and then it grows

faster, until a maximum of s0 = 266 at β = 1.8.

The bimodal cluster-size distributions observed for pullers with β ≤ 1 (reddish

curves in bottom-left panel of Fig. 3.3) reach cluster-sizes around s ∼ 1600 parti-

cles, which is approximately half of the total amount of particles in the suspension.

These clusters can be seen as macroscopic clusters.

3.5 Density-dependent speed

Although the macroscopic clusters, generated by some βs, can be understood as a

phase separated state, the nature of this phase differs from the MIPS scenario [16],

when macroscopic phase separation emerges as a result of a decrease of particle

motility with concentration. In order to identify if hydrodynamic interactions

can induce effective decrease in squirmer motility that can, indirectly, lead to

the appearance of the macroscopic clusters reported, we have computed the local

volume fraction for squirmers with β = −1/2, 0, 1/2.

The local volume fraction is calculated at the center of every particle in the

system. Where we estimate the number of particles around every particle inside of

a typical cut-off distance. The cut-off distance we have used is 3σ where σ is the

diameter of the particles. Although the choice of the cut-off distance is arbitrary,

from a systematic study, we have observed that either the probability distribution

of the volume fraction or the density dependent speed does not depend on the

cut-off distance, when the distance between 2σ and 4σ.

In Fig. 3.4a we show the probability distribution PDF (φ) of the local vol-

ume fraction for two types of squirmers, pullers with β = 0.5 (solid symbols) and

pushers β = −0.5 (hollow symbols). Green diamonds correspond to the probabil-

ity distributions for suspensions with a total volume fraction of φ0 = 0.05. For

pushers the probability distribution ranges from 0 to 0.1, while pullers spread up

to φ = 0.2. The increase in the range of local values of φ is due to the emergence

of large clusters in the system. Similarly, when the average volume fraction is

φ0 = 0.1 (black symbols) pushers have a narrow distribution center in φ = 0.1

while pullers have a wider distribution in which the local volume fraction fluctu-

ates from 0 to 0.35, pullers with β = 0.5 and φ0 = 0.05 or 0.1 are suspensions

where the macroscopic cluster emerges,

The pdf of the local volume of φ does not show a qualitative change when

increasing the average volume fraction. The scale of the pdf displaces at large

values of φ, as expected. However, we never observe that the pdf splits and

develops two maxima, as if corresponds in the normal scenario of macroscopic

phase separation.
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Figure 3.4: (a) Distribution profiles of the local densities for β = ±0.5 with
different values of global density. Solid symbols are for pullers with β = 0.5 while
hollow symbols for pushers with β = −0.5. (b) Density-dependent speed |v(φ)|
and velocity projected to the orientational vector vê(φ) for squirmers with β = 0.
Hollow triangles are vê(φ), stars are |v(φ)| and each color correspond to different
total density φ0. (c) Density-dependent velocity projected to the orientational
vector vê(φ) for β = ±0.5 . (d) Density-dependent speed |v(φ)| for β = ±0.5.
All velocities are normalized by the asymptotic swim speed of a single squirmer
u∞ = 2/3B1. Color and symbols maps are the same for (a),(c) and (d). Pullers
are solid symbols, while pushers are hollow symbols.

Active matter exhibits a range of non-trivial behaviours, like giant density

fluctuations [83, 88–90] and unexpected phase separations [8, 91–96] In particular

for both ABPs and run-and-tumble bacteria [97, 98], the swim speed depend on

the density and decreases with increasing density due to crowding. Hence, these
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particles accumulate in regions where they move slowly and it causes further ac-

cumulation of particles. This motility-induced phase separation occurs without

attractive interactions or orientational order and it has been confirmed in sim-

ulations [12, 13, 16], experiments [96] and by a continuum description for the

structural evolution [16]. Given this theoretical framework, they have found that

velocity dependent linearly with the density. In the cases of squirmers, where

hydrodynamic interactions are taking in count, we have found that the system

density affects the local particle motility, as we observe in Fig. 3.4b where the

density-dependent speed |v(φ)| and the velocity projected to the orientational

vector of squirmers vê(φ) changes as the concentration regime changes for β = 0.

For semi-dilute cases with φ0 = 0.05 and 0.1, both velocities do not depend on

the local density, since all the suspension is aligned, although all particles move in

the propulsion direction |v(φ)| = vê(φ) this speed is less than u∞ = 2/3B1, due to

the hydrodynamic field generated by neighbour particles. For a more concentrate

case where φ0 = 0.2 or 0.3, speed and projected velocity depend on the local

density and motility is reduced as local density increases. For φ0 = 0.2 |v(φ)| and

vê(φ) follow a linear behaviour in their range of local densities where values are

more relevant statistically. While φ0 = 0.3 case follows an asymptotic decay to

a non-zero value. Which tell us that particles always move even for concentrated

regimes where local density can reach values up to φ = 0.35. Another important

remark is the difference between the value of the speed and the projected velocity.

Speed is always greater than projected velocity for a given density. This contrast

correspond to the hydrodynamic flow around the particle that contributes to the

total speed of the particle.

For squirmers with β = ±0.5, the velocity along the self propelled direction

decays as a function of the local density as we observe in Fig. 3.4c, regardless of

the average volume fraction. For φ0 = 0.05 (green diamonds), for both pushers

and pullers vê(φ) decays linearly until φ = 0.15 according to the cyan curve in Fig.

3.4c, then both cases decay faster, where pushers decay even faster than pullers

due to the partial alignment of pullers. The same behaviour is found at higher

volume fraction φ0 = 0.1 (black circles). On the contrary, for denser systems with

total volume fraction of φ = 0.2 projected velocity for either pushers or pullers

decays almost in the same way, a tendency even more clearly seen at φ = 0.3.

|v(φ)| for β = ±0.5 plotted in Fig. 3.4d, follows the same pattern than pro-

jected velocity. But as in β = 0.0, the speed taking in count the velocity induced

to the particle by hydrodynamic flows around the particles. Thus, speed is greater

than projected velocity for a given local density.

Phase separation is observed for active particles like ABPs or Run-Tumble

bacteria even without attractive interaction or orientational order, and the dis-

tribution profile of the local densities in the phase separation region show a two
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well defined coexistence densities [16], while the PDF (φ) for squirmers has a uni-

modal shape, where the thickness of the distribution depend on the hydrodynamic

signature. When macroscopic clusters appears, the PDF (φ) is wider than other

cases, this cluster is very dynamic and form and re-form very fast, therefore this

loose cluster can not form a binodal state, like MIPS for active brownian particles

in [16].

On the other hand, swim speed is affected by hydrodynamic interactions, since

density-dependent speed changes as β changes. When squirmers are highly aligned

with β = 0 and φ ≤ 0.1 both velocities do not change as local density change,

otherwise velocities decay as density increases. This behaviour is due to the col-

lisions as in ABPs, however squirmers do not follow a linear behaviour. We have

also found that pullers with macroscopic clusters generate non-zero velocities, de-

caying very slow to zero at high density due to the orientational order, whereas

the velocities of pushers and squirmers with higher average density decay faster

to zero.

3.6 Mean Square Displacement

We want to analyse the squirmer dynamics as a function of their activity. In

particular, we want to understand the impact that the global polarization observed

for pullers has on squirmer motion. To this end, we concentrate first in the Mean

Square Displacement (MSD) defined as

〈
∆r2(t)

〉
=

1

N

N∑
i=1

[~ri(t)− ~ri(0)]2 , (3.6)

Where N is the total amount of squirmers in the suspension. In Fig. 3.5a we show

the MSD for squirmers such as orientational order is absent, MSDs evolve from a

initial ballistic regime to a linear one. Thus, we are able to determine the diffusion

coefficient, by calculating the slope of the MSD at long-times, since according to

the Eistein relation:
〈∆r2(t)〉

σ2
= 6D

t

t0
, (3.7)

where σ is the diameter of the squirmer, t0 the time that a squirmer needs to

travel one diameter at velocity u0 = 2/3B1 and D the diffusion coefficient. We

observe that diffusivity decreases as |β| increases, as we can see in the inset of Fig.

3.5a, consistent with other previews observations with a small system (N = 64) of

squirmers at the same concentration [28]. When a finite fraction of the squirmers

show orientational order, we see that the MSD behaves super-diffusively at long
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Figure 3.5: (a) Mean-squared displacement for squirmers without alignment, lines
correspond to a linear fitting at long t when diffusive regime (∆r2(t) ∼ t) is
present. Inset: Diffusion coefficient as a function of β. D is only defined when
suspension has a diffusive behaviour. (b) Mean-squared displacement for aligned
squirmers for β between −0.1 ≤ β ≤ 2. Orange solid line describe the ballistic
regime.

times (Fig. 3.5b), the evolution of the MSD to a super-diffusive regime is a

consequence of the hydrodynamic field generated by the squirmers.

In Fig. 3.5a MSDs evolve to a diffusive regime at t > 102t0 and remain in this

regime, whereas in Fig. 3.5b MSDs evolve to a transient diffusive regime follow

by a crossover to a steady super-diffusive regime.

The precise time where the crossover to diffusive regime occurs will depend on

β. The greater the value of |β| the shorter the time to diffusive regime. Similarly,

the time of crossover to super-diffusive regime also vary with β. The time that

squirmers spend in the transient diffusive regime coincides with the time that

polar order needs to reach the steady state where P (t) = P∞.

3.7 System size analysis

Given the proven accuracy of the Ludwig code [77] we are able to reach 3D periodic

systems with edge length up to 1280 node-node distance, thus we have studied

semi-dilute squirmer suspensions with a total number of particle up to ∼ 4× 106.

We show in this section how the polar order, exponent of the number fluctuations,

CSD and MSD depend on the system size. We found that orientational order,

giant number fluctuations, the emergence of a macroscopic cluster and the super-

diffusive regime at long-times are all intrinsic to the hydrodynamic signature and

not to the system size.
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3.7.1 Polar Order

We show that polar order decrease with the system size, but it reaches an asymp-

totic value at large N . When β = 0.5 (purple circles in Fig. 3.6) P∞ goes from

0.77 at N = 514 to an asymptotic value of 0.16 when N ≈ 106. Analogously, at

β = 1.6 P∞ drop from 0.47 to 0.17 when N = 263500, in this case we can not

conclude whether the polar order goes to zero or to a constant value as β = 0.5

(yellow squares in Fig. 3.6). But, for cases where P∞ ≈ 1/
√
N at N = 3400

like pushers with β = −0.5, or pullers with β = 3 they still have the 1/
√
N

dependency as the system grows, as we show in (blue circles and green squares

in Fig. 3.6). The general drop in the long-time polar order that we observe for

the different values of β as the system size grows, explain why Ishikawa et al.

in [30] and Evans et al in [31] have reported higher values of the polar order for

different values of β, since they have used systems with N = 64 particles, whereas

us in [34], we have used N = 2000 in which there is a higher value of P∞ in

comparison with Fig. 3.1 where we have used N = 3400. Additionally, Delmotte
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Figure 3.6: Long time polar order as a function of the system size for different βs.

et al. in [81] have examined how the system size affects to the polar order of a

semi-dilute suspension of pullers with β = 1, they were able to reach system sizes

of N = 37690 squirmers with L/a = 116, where a is the particle radius and L the

edge length of the simulation box, they found that long time polar order reaches

an asymptotic value of P∞ = 0.452. In particular, when N = 11158, L/a = 77
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the value of P∞ ≈ 0.46 while in our case, we have found that P∞ = 0.50 ± 0.03

for β = 0.5 and P∞ = 0.38± 0.01 for β = 1.6 at approximately, the same system

size of N = 13890, L/a = 83. Therefore both methodologies are in agreement for

the same system size.

However, since we are able to reach sizes of N ≈ 4×106, L/a = 556 we observe

that long-time polar order drops even further, and it reaches a constant value of

P∞ = 0.16 for β = 0.5, thus one can expect that pullers with β = 1 should has a

value of P∞ < 0.16.

3.7.2 Number fluctuations

In the same way we calculate the number fluctuations for different values of β in

section 3.3, here we calculate the number fluctuations for different system sizes.

Since ∆N ∼ Nα, we have found that the exponent α grows slowly with the system

size, reaching or approximately reaching a plateau, the value of α in the plateau

depend on β. For pullers with β = 0.5 we found that α grows from 0.78 for

N = 2000 to 0.92± 0.01 for N = 2× 106 (purple circles in Fig. 3.7), which means

that giant fluctuations are enhanced when the system grows. When β = 1.6

(yellow squares in Fig. 3.7) we also see that anomalous fluctuations observed for

N = 3400, where α = 0.657 ± 0.006 are enhanced, reaching α = 0.81 ± 0.01 for

N = 263500, the number fluctuations however are clearly smaller than for β = 0.5.

When β = 3 (green squares in Fig. 3.7), exponent α reaches a plateau very quickly

at α = 0.59 once N ≥ 13890, in the same way for pushers with β = −0.5 (blue

circles in Fig. 3.7), where α remains around 0.5 for all the system sizes.

The fluctuations in the density are not a finite size effect at all for squirmer

suspensions. In fact, anomalous and giant fluctuations are enhanced by the incre-

ment on the size of the system, as we observe in Fig. 3.7 for β = 0.5 and 1.6. This

effect tell us that giant number fluctuations are generated by correlations between

the squirmers at really long distance and these correlations emerge due to the

hydrodynamic signature, since only with two of four values of β are observed.

3.7.3 Clustering

As we show in section 3.4, when β ≤ 1 the CSDs have a local maximum for

clusters-sizes around s ≈ N/2 (reddish curves in bottom-left panel of Fig. 3.3).

The development of large clusters is very sensitive to the system size therefore,

we have had to carry a systematic analysis of the dependency of the CSD on

the system size to identify the intrinsic tendency of squirmer suspensions to form

clusters. In order to measure the size of the clusters, we have calculated the CSD,
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Figure 3.7: Exponent α as a function of the system size for different βs.

in in Fig. 3.8 we show the CSDs for various system sizes at a fixed volume fraction

of φ = 0.1, and fixed puller strength β = 0.5.

The CSD is the average fraction of clusters f(s) composed by s particles. When

the system has a number of particles N ∼ 103 (green diamonds in Fig. 3.8) the

maximum cluster size is 1600, the CSD follows a continuum function and it can

be approximated by the bi-modal function defined in Eq. (3.5) where γ0 = 2.5, s0
and z0 controls the exponential cut-off of the first and second peak of the bimodal

distribution respectively [6, 7].

If we increase the system size to N = 13890 (black hollow circles on Fig. 3.8)

the maximum cluster size also increases to 6000 particles. Moreover, although

CSD keeps the same bimodal shape it breaks in two sections, since cluster sizes

of 1500 to 3000 are not observed.

When the total number of particles grows one order of magnitude, with N =

263500 (red squares on Fig. 3.8), we observe that CSD has the same behaviour of

eq. (3.5) for cluster sizes up to 5000 and a range of big cluster sizes that emerge

around 105 but with a lack of clusters of sizes between 5000 and 3×104. If system

grows even further to N ∼ 8× 105 (blue triangles on Fig. 3.8) CSD behaves like

the previous smaller system with a larger lack of cluster-sizes from 5000 to 4×105

and for even larger system of N ∼ 2.1 × 106 the CSD remains with the same

behaviour as eq. (3.5) but the lack of cluster-sizes goes now from 6000 to 106.

This striking effect tell us that squirmer suspensions with β = 0.5 can generate

a phase with two coexistence states, one state made of microscopic clusters of sizes
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Figure 3.8: Normalized CSD of suspensions of squirmers with β = 0.5 for different
system sizes. For large enough systems, a macroscopic cluster of size compara-
ble to the system size emerges. All CSDs are fitted with an analytical bimodal
distribution function, Eq. (3.5). In all the CSDs, the values of the parameters
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fitted parameters are very similar, s0 ≈ 102, 10−18 ≤ B ≤ 10−14, z0 ≈ 103 and
γ0 = 2.5. Yellow solid line is the power law function fb(s) = 1/s2.5 depicted here
as a reference.

up to 6000 in which the size distribution does not change with the system size

and a macroscopic cluster made of N/2 particles.

The formation of this macroscopic cluster is driven by the competition between

the hydrodynamic signature and the global density. In other words, it is due to

the re-orientation of the particles given by the hydrodynamic field around them

and the number of collision between particles given by the amount of particles in

the suspension.

3.7.4 Mean Square Displacement

At β = 0.5 we observe giant number fluctuations and orientational order, there-

fore mean-squared displacement performs multi-crossover. But the striking effect

comes when we enlarge the system from N = 3400 to N = 2107000. As we show

in Fig. 3.9, the second crossover, from diffusive to super-diffusive motion depend

on the system system size. When the system is not so big N = 3400 diffusive time

is very short and and second crossover is around t/t0 = 500, this time increases
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with the system size, the black circles represents ∆r2(t) with N = 13890 where

the second crossover is at t/t0 = 600, the red squares where diffusive time is even

longer for N = 263500 and it last until t/t0 ∼ 1000, while N = 888850 last until

t/t0 ∼ 2500. For larger systems we are not able to see the second crossover.
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Figure 3.9: Mean-squared displacement for β = 0.5 and volume fraction φ = 0.1,
for different system sizes. Inset: Zoom-in of the MSD at long times, to observe
the cross-over of the MSD from ballistic to diffusive regime and ballistic again.
Orange solid line describe the ballistic regime, while gray dashed line the diffusive
regime.

Since first crossover from ballistic to diffusive motion occurs at the same time

for every size, we can say that this effect is driven mainly by the collisions among

the particles that only depend on the volume fraction, while the second crossover

is driven mainly by the long range hydrodynamic flows generated by the same

particles. Although the diffusive time vary with the system size, the emergence

of alignment and the macroscopic cluster in the suspension is generated indepen-

dently on the size.

3.8 Conclusions

In summary, we have used Lattice-Boltzmann methodology to carry out simula-

tions of semi-dilute squirmer suspensions, where hydrodynamic interactions are
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taking in count explicitly. A systematic study in terms of the hydrodynamic sig-

nature was developed, we found that polar order and number fluctuations depend

on β. Suspensions with Giant Number Fluctuations generate dynamic clusters

that it can consider as a macroscopic cluster after a systematic study in terms of

the system size, the mechanisms which driven to this phase separated phase are

totally different than the mechanisms for other active systems without hydrody-

namic interactions [15, 16].

Furthermore in general, aligned suspensions develop a multi-crossover Mean

Square Displacement, where suspensions reach a super-diffusive motion at long-

times. Ishikawa and Pedley [29] also found anomalous diffusion for small |β|,
they studied the spreading of squirmers in non-uniform suspensions and they said

that this ordering phenomenon may be interpreted as a taxis towards lower cell

concentration. Therefore, dynamic clusters could be related with the taxis towards

lower concentration of particles.
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Swimming and interacting in a

plane.

4.1 Introduction

In this chapter we present a systematic study of the phase behaviour of attrac-

tive particles swimming in 2D, but taking in count hydrodynamic interactions in

3D and we compare our results with active Brownian particles in 2D simulated

including both translational and rotational diffusion.

We have used various analysis tools, either static measures for morphologi-

cal studies like cluster-size distribution and radius of gyration or more dynamic

parameters as the translational and rotational velocity of the clusters.

There have been several recent studies in 2D evaluating the phase behaviour

such as Ref. [24] where the authors simulate 2D swimmers and found that phase

separation is suppressed by hydrodynamic interactions, or in Ref. [25] where the

authors simulate swimmers strongly confined by walls in a quasi-2D geometry and

observe a phase separation at high concentration. On the other side, the authors

of Ref. [26] show that squirmers swimming on a plane without walls can indeed

form aggregates with an orientational order, in accordance with a previous result

obtained by Llopis and Pagonabarraga [27].

Inspired by experiments with particles [9] and bacteria [99] which exhibit an

attractive interaction, numerical studies have been carried out using Brownian

dynamics simulations in three dimensions [100, 101] and two dimensions [95]:

more recently Matas-Navarro and Fielding studied the influence of hydrodynamic

interactions among self-propelled attractive disks, both on clustering and phase

behaviour. In their work, they also compared with the phase behaviour of active

Brownian particles without translational diffusion coefficient [102].

41
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Even though the authors of Ref. [102] performed a systematic study of Attrac-

tive Brownian particles and squirmers in 2D for several densities, here we focus

in the low densities regime, where it has been shown in Ref. [103] that the na-

ture of the instability is different for pushers and pullers and in Ref. [100] that a

dilute suspension of attractive Brownian particles form clusters when attraction

competes with activity.

According to the squirmer model, explained in chapter 2, the velocity on the

surface of the squirmer defined as the flow velocity in the particle surface u|r=Rp

u|r=Rp = [B1 sin θ +B2 sin θ cos θ] τ , (4.1)

where τ is a unit vector tangential to the surface of the particle.

To start with, we study a semi-dilute two-dimensional system of self-propelled

Lennard-Jones particles taking into account hydrodynamics interactions (with

Lattice Boltzmann). Next, we compare our results to numerical simulations of

Brownian self-propelled disk particles.

In a suspension of Lennard-Jones active colloids, each colloid experiences two

antagonist forces, i.e. attraction (FLJ , due to the Lennard-Jones interaction) and

self-propulsion (Fd):

ξ =
Fd
FLJ

, (4.2)

where Fd = 6πηRpvs, being η the system’s viscosity, Rp the radius of the

colloid, vs = 2
3
B1, vs is the asymptotic velocity reached for one single particle as

we explain above. Whereas FLJ is the attractive force due to the Lennard-Jones

interaction, at distance where attraction is maximum. Thus

FLJ = −∇V (rij)| d∇V (rij)

drij
=0

(4.3)

and

V (rij) = 4ε

[(
σ
rij

)12
−
(
σ
rij

)6]
; (4.4)

where σ is the particle’s diameter.

For every value of ξ, the active suspension was simulated for 106 LB time

steps, where the time unit is the time needed for an active particle to move a

distance of one diameter that corresponds to 106/t0, being t0 = σ
vs

where σ is the

particle diameter and vs = 2
3
B1 the asymptotic active particle’s velocity. Hence,

the total simulation time is 1450 (up to 3000 in few runs), to estimate the cluster

size distribution we used a time window between 1000 and 1400 (or between 2600

and 3000) depending on how fast the steady state is reached. Whereas for the
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Brownian case, we simulated the system from ξ = 0.7 up to ξ = 4. Active

particle suspensions are systems out of equilibrium where big correlations in size

emerge, therefore in numerical simulations, it is of paramount importance to model

big systems. With Lattice-Boltzmann method we are able to simulate systems

that are big enough that we can avoid finite size effects, we have used a Lattice

Boltzmann code which includes moving particles via domain decomposition and

parallelization (using MPI) [76]. Thanks to the efficiency that it has to run on high

performance hardware and the advantage at the level of the modelling approach.

In this paper the system consists of a quasi two-dimensional diluted suspen-

sion of N= 10 000 self-propelled particles interacting via a truncated and shifted

Lennard-Jones, like eq. (4.4), where the potential is shifted so that V (rij) = 0

at rcut = 2.5σ. We have set the particle diameter σ to 4.6 lattice node-to-node

distance [74].

The concentration is set to φ = 0.10 (where φ = π/4ρσ2, ρ = N/L2 and L the

simulation box edge). In order to simulate a quasi two-dimensional system, we

prepare a L × L × kσ box and impose to each particles that its contributions to

the translational velocity vz = 0 and to the rotational velocity ωx = ωy = 0. In

the simulations with hydrodynamics, the slab is thicker than a particle diameter

(k = 5). The main reason being the use of a cell list to compute the colloid-colloid

interactions 1. Whereas in the simulations without hydrodynamics, we model

2D active Brownian particles where k = 0. In either case, we did not take into

account the presence of confining walls like in Ref. [25]. The setting of k = 5 will

influence in the hydrodynamic effects over the suspensions, thus we avoid a strong

confinement which would screen hydrodynamics interactions. This slab system

is also different than the 2D case of attractive squirmers of Ref. [102]. Where

squirmer model is purely 2D.

To simulate the squirmers, we did not use any kind of thermal fluctuations:

velocity fluctuations were simply induced by the particles’ activity (with B2), even

in out of equilibrium, and acted as an effective temperature when competing with

conservative forces [102, 104].

To avoid finite size effects, we have used a box size L about 35 times rcut. (As

a double check, we have also run simulations for larger systems where we observed

the same behaviour).

For the Brownian dynamics simulations, the active disks are represented by

1When using Ludwig [77] to simulate hydrodynamically interacting particles, we should
stress that the program uses a cell list to compute particle-particle interactions (that scales as
O (N)). For efficiency purposes, one should set the size of the cell list as small as possible, always
making sure to capture all possible interactions. Since the maximum interaction distance is the
LJ cutoff (2.5σ), and the cell list size should be larger than the cutoff distance, we consider at
least two cells per processor domain, which corresponds to a slab’s thickness larger than 5σ.
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their positions and self-propulsion directions {ri, θi} for i = 1 up to N . These

positions and directions satisfy the coupled overdamped Langevin equations,

ṙi = Dβ [FLJ ({ri}) + Fpν̂i] +
√

2DηTi , (4.5)

θ̇i =
√

2Drη
R
i . (4.6)

Where FLJ is the force given by the Lennard-Jones potential in eq. (4.4). Fp is

the magnitude of the self-propulsion force which, in the absence of interactions,

will move a particle with speed vp = DβFp, ν̂i = (cos θi, sin θi) and β = 1
KBT

.

D and Dr are translational and rotational diffusion constants, which in the low-

Reynolds-number regime are related by Dr = 3D/σ2. The ηRi are Gaussian white

noise variables with 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = δijδ(t− t′).
One can represent a β-ξ state-diagram (being β = B2

B1
the active stress parame-

ter defined above) showing that the suspension’s collective behaviour dramatically

changes depending on the chosen value of ξ for a given β. For large values of ξ

either isotropic or aligned suspension can be found depending on the hydrody-

namic signature of the squirmers. When 0 < β < 1 an aligned state is more stable

whereas an isotropic state is stable otherwise. As a matter of fact, aligned state

tends to promote flocking in the semi-dilute suspension as we have commented in

previous chapter. When ξ is small enough so attraction and propulsion compete,

as observed in Ref. [100], particles can form a steady-state cluster distribution.

If the interaction strength is too strong, hence ξ is very small and the squirmers

coarsen into a macroscopic cluster.

Therefore we have basically three general scenarios, one when flocking emerges

due to the hydrodynamic interactions and attractive interactions are almost neg-

ligible, a second one when clustering emerges due to the competition between

activity and attractive interactions and finally a last scenario when attraction

between particles dominates and coarsening emerges. The last two scenarios are

observed in either micro-swimmer and self-propelled Brownian particles.

We prepare the system with ξ ranging from the purely hydrodynamic case

(ξ = ∞) to the cases where attraction dominates more and more (i.e. ξ = 6.03,

ξ = 1.8 and ξ = 0.6). Since ξ is directly proportional to B1 and inversely to ε,

changing the value of ξ corresponds to setting the value of B1 (B1 = 0.01) while

changing the depth of the attraction. The choice of B1 = 0.01 is motivated from

the need to have the same Reynolds number (Re) in all simulations, (since Re is

proportional to B1). Our choice of B1 is a compromise between considering a low

Re while reducing the computational time needed to reach “steady state”.

For every value of ξ we select different values of β ranging from −3 to 3. This
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chosen interval allows us to observe in the suspension different behaviours: one

where the long range polar order is practically zero, i.e. the system is isotropic,

and another (when 0 < β < 1 ) where the long range polar order of the system is

different from zero, i.e. the system is aligned [34].

In what follows, we will perform a cluster analysis, where we compare results

computed for 1 < ξ ≤ 6 and ξ =∞ analysed in the same time interval. To improve

the statistics, we group same-size clusters (identified over the entire time-window)

in bins (see Appendix A.1), as in Ref. [87] and compute the average values within

each bin of the following quantities: the cluster-size distribution, the clusters’

radius of gyration, the polar order within a cluster and particles’ orientation with

respect to their translation velocity within a cluster.

4.2 Mean Cluster size

Given that neither the mean cluster size nor the global polar order should change

when the system reaches a steady state, we could make use of them to know

whether the system is in a steady state or not. Mean cluster size and the global

polar order [34] should not change with time once the system reaches a steady

state. Having identified all clusters in the system (for every time step) by means

of the procedure described in the Appendix A, we start with calculating the mean

cluster size in each time frame.

We observe three possible scenarios. In the first one, identified when ξ < 1,

the suspension shows a coarsening behaviour (as shown in the Figure 4.1 top,

representing the mean cluster size for ξ = 0.6 and different values of β). Despite

of the hydrodynamic signature, we always identify coarsening, as shown by the fact

that the mean cluster size for ξ = 0.6 is monotonically increasing up to t/t0 = 10:

this implies that the competition between activity and attractive interaction

dominates coarsening leading to a dependence as t1/2 independently of β. For

longer times, the stress originated by the squirmers, competes with attractive

interactions, thus affecting coarsening, since a suspension with β = 3 coarsens

faster than a suspension with pushers with β = −3 (whereas for smaller values

of β the difference between pushers and pullers is negligible). It is important to

stress that B2 is the one responsible for the velocity of coarsening but not for the

coarsening mechanism.

This behavior is more evident when ξ = 0.7 (Fig. 4.1, bottom) where pullers

coarsen whereas pushers evolve towards a steady state.

It has been already shown [102] that coarsening for 2D squirmers with β = 0

follows t2/3, which corresponds to diffusive aggregation, whereas we have just
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Figure 4.1: (Top) Mean cluster size as a function of time for ξ = 0.6. Dashed
orange and solid cyan curves represent ∼ t3/4 and t2/3 respectively. (Bottom)
Mean cluster size for ξ = 0.7, with β between −3 and 3, the bluer the curve
the smaller the value of β. When squirmers coarsen (all cases except β = −3)
〈Nc(t)〉 ∼ t3/4 as in ξ = 0.6.

demonstrated that spherical squirmers on a plane show a crossovers at different

time scales.

The other two scenarios can be identified when activity dominates (for ξ > 1).

In this case suspensions either reach very quickly a steady state or the mean cluster

size has an oscillatory behavior, depending on the hydrodynamic signature.

In Figure 4.2 we represent the evolution in function of the time of the mean

cluster-size for different cases of squirmers with ξ = 1 and β from −3 to 3. On the

top side, we have the cases of Brownian particles at different interaction strength,

where coarsening is not presented. We can observe that mean cluster size evolve

to a steady value that range from 7 for ξ = 4 to a mean cluster size of 60 to

ξ = 1.6.

Next, we represent the mean cluster size for ξ = 1 when hydrodynamics inter-

actions are considered for several values of β (bottom panel in Figure 4.2). We

observe that pullers and β = 0 suspensions coarsen while pushers suspensions

reach a steady state. Within the chosen parameter space, we could not find mean

cluster sizes larger than 10 particles. This is in contrast to what happens in the

Brownian cases, where the mean cluster sizes are larger than 10 particles (when

attractive interaction strength competes with the activity).

We now focus on the suspension with hydrodynamics interactions and increas-

ing value of ξ. When ξ = 1.8 (top-left panel in Figure 4.3) coarsening disappear

even for pullers, and a steady state cluster sizes distribution is reached for all

squirmers. The stress activity dictates the magnitude of the average cluster size,

since pullers form larger clusters than pushers. If we now increase ξ even fur-

ther (top-right panel of Figure 4.3), once more we observe all systems reaching a
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Figure 4.2: Mean cluster size as a function of time for different cases. (Top)
Brownian particles at different values of interaction strength where coarsening is
not presented, from ξ = 1.6 to 4. (Bottom) Squirmers with ξ = 1 for various values
of β from −3 to 3. Pullers correspond to green curves while pushers correspond
to blue curves

steady state cluster size distribution independently on the value of β. The average

clusters size is now smaller than in the ξ = 1.8 case, and for β = 0.5 the system

passes through a metastable cluster-size before reaching the stable one.

To conclude, we also analyze the case when ξ = ∞ (bottom-left panel in

Figure 4.3). Once more, systems reach a steady-state clusters size distribution

for all values of β. However, when β = 0.5 and ξ is 6.03 or ∞, after a meta-

stable state < Nc(t) > oscillates at long time scales (having run these simuations

much longer than the others), the only difference between the two runs being how

quickly the steady state is reached (faster in the ξ =∞ case than in the ξ = 6.03

one).
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Figure 4.3: Mean cluster size as a function of time for different cases. (Top-Left)
Squirmers with ξ = 1.8. Circles correspond to β < 0 whereas squares to β > 0.
(Bottom-Left) Squirmers with ξ =∞. (Top-Right) ξ = 6.03 and (Bottom-Right)
It represents the mean cluster size for β = 0.5 and ξ = 6.03 and ξ =∞ but time
interval extended up to t/t0 = 3000.

This difference in the relaxation time is a consequence of the attractive poten-

tial being the same the specific active stress (β = 0.5), (which is the parameter

that produces these oscillations) being the only present when there are no attrac-

tive interactions at all (ξ = ∞): The stress generated by the squirmers induces

both alignment and clustering between them, resulting in oscillations of the mean

cluster size as shown in the bottom-right panel of Figure 4.3.

Figure 4.2 and 4.3 summarize all our results obtained both for the Brownian

system and for the squirmers one: on the former, cluster formation is due to the

competition between attraction and self-propulsion; in the latter, cluster formation

is due to the competition between attraction and active stress, and can result in

different behaviours depending on whether the squirmers behave like pushers or

pullers (when ξ = 1, pullers coarsen whereas pushers evolve towards a steady state

cluster size distribution).

When self-propel activity is greater than attractive interactions as in ξ = 6.03
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a clustering regime is also found. However, stress activity starts to compete with

attractive interactions, as can be observed in the long time behaviour of β = 0.5,

due to the fact that particles try to align when they swim thus forming bigger

clusters. In the purely hydrodynamic case when ξ = ∞ clustering regime with a

small mean cluster size is stable for all cases.

In Figure 4.2 snapshots for attractive brownian particles with ξ = 1 (Fig.

4.2-a) and ξ = 4 (Fig. 4.2-b) as well as several regimes of interactive squirmer

suspensions with |β = 0.5| are shown (Figures 4.2 c to h). For ξ = 1 ABPs’

coarsen, whereas for ξ = 4 a steady state clustering is observed. For squirmers a

more complex phenomenon occurs, since for ξ = 1 we observe either coarsening if

β = 0.5 (Fig. 4.2-c) or clustering if β = −0.5 (Fig. 4.2-d).

Increasing the value of ξ coarsening will disappear both for squirmers and for

ABP. But clusters will have smaller sizes, in mean, than their Brownian counter-

part. However, even though the value of ξ = 4 for ABP is similar to that of xi=5

for squirmers, distribution of the particles is clearly different among them (as one

could already guess from Figures 4.2-b versus 4.2-e and f).

Comparing figure 4.2-e and 4.2-g, one can observe how pullers form clusters

of particles moving in the same direction (figure 4.2-e) , that percolate when the

collective behaviour only depends on the stress activity. On the contrary, for

pushers the suspension is completely homogeneous, as we observe in Fig. 4.2-h).

4.3 Number fluctuations

In [84], Fily, et al. show the three different phases in their system by a color

map of the exponent of the density fluctuations (number fluctuations) in the area

fraction-activity plane, in a similar way we show here how the collective behaviour

of a suspension of active particles changes in a β-ξ state-diagram in terms of

the exponent of the density fluctuations. To calculate this exponent one has to

measure in each subsystem the fluctuations of the number of particles 〈∆N〉 as a

function of the mean value of particles in the same subsystem. This curve will have

a power law behaviour 〈∆N〉 ∼ Nα, where a value of α < 0.7 corresponds to the

presence of Giant Density Fluctuations (GDF) in the suspension, which is a typical

signature of systems of phase separation in suspensions of active particles. On the

contrary, an exponent of α = 0.5 corresponds to an homogeneously distributed

suspension. To calculate this exponent one has to make sure to have reached

the steady state, given that spurious giant density fluctuations for very strong

attractions due to an initial coarsening.

To quantify the large fluctuations found for large values of ξ, we compute

the mean number of particles N s and the standard deviation ∆N in subsystems
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Figure 4.4: Snapshots for different values of interaction strength for ABP’s and
squirmers supensions. The first column represent Brownian particles, whereas all
other columns are squirmers. a) Brownian particles with ξ = 1, b) Brownian
particles with ξ = 4, c) squirmers with ξ = 1 and β = 0.5, d) squirmers with
ξ = 1 and β = −0.5, e) squirmers with ξ = 5 and β = 0.5, f) squirmers with
ξ = 5 and β = −0.5, g) squirmers with ξ =∞ and β = 0.5 and h) squirmers with
ξ =∞ and β = −0.5. All snapshots for squirmers were taken at t/t0 = 1450.

of different sizes. For homogeneous suspensions ∆N ∼ N
1/2
s , while suspensions

with large density fluctuations follow ∆N ∼ N
4/5
s , also known as giant density

fluctuations [86, 88]. The scaling exponent of 4/5 has been observed either in ex-

periments with bacteria colonies [83] or in numerical simulations of self-propelled

polar particles [86]. Here we found a wide range of values for the scaling expo-

nent. The way the number of squirmers fluctuate in the suspension will depend

both on the interaction strength and on the hydrodynamic signature, Figure 4.5

shows the color map of the scaling exponent α in terms of (ξ−1, β). The scaling

exponent values are between (0.47, 0.85) and we can identify three regimes: one

with scaling exponent of ∼ 0.5 for homogeneous suspensions (in blue), another

one with intermediate values between 0.6 and 0.7 (yellow-orange). Suspensions in

this regime have an amount of large and loosely packed dynamic clusters, Giant

Density Fluctuations (GDF) is reached when α > 0.7, as in the case of squirmers

with ξ > 5.0 and 0 < β < 1 (red-orange).

On the one side pusher suspensions (β < 0) have a scaling exponent of around

0.5 that grows very slow as attraction strength increases (ξ−1 → 1), reaching

values of α = 0.64 for β = −0.5 and ξ = 1. and no GDF are present.

On the other side, pullers with β > 1 have an exponent around 0.6, despite of
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Figure 4.5: Color map of the scaling exponent α for values of ξ and β where
coarsening is absent. Red corresponds to GDF, yellow-orange to the anomalous
exponent, where partially large fluctuations are found and blue is for homogeneous
suspensions. The green area represents the values where coarsening is found.

the value of the interaction strength. When 0 ≤ β ≤ 1 stress activity makes that

anomalous number fluctuations emerge, from a maximum value of α at ξ =∞ to

a value typical for homogeneous suspensions (α→ 0.5) as ξ → 1.

In Fig. 4.5 shows two remarkable phase separations, one purely caused by

hydrodynamics when pushers form dynamic clusters that percolates and the sec-

ond one caused by interaction strength (coarsening), but modulated by the hy-

drodynamic interactions (green area). For example, when ξ−1 = 1 only pullers

coarsening, while pushers evolve to a steady state cluster distribution.

4.4 Cluster-size distribution

In Figure 4.6 we represent the cluster-size distribution (CSD) for different values

of ξ and several values of β between -3 and 3, calculated as the average fraction of

clusters f(s) of a given number of particles s. The top-left panel shows CSD for

ξ = 1.8: the CSD are wider as β increases without reaching the purely algebraic

function (orange dashed line), Brownian CSD at the same value of ξ correspond

to larger cluster sizes compared to the squirmers. For ξ = 6.03 (top right panel)

CSD with β < 0 have approximately the same shape. Then the distributions are
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wider for increasing values of β till β = 0.5 where distribution almost reaches an

algebraic shape. When β becomes larger than 0.5 the distribution width decreases

again. In the Brownian case, the CSD resembles that for pushers. If ξ = ∞
(bottom right panel) the CSD for pushers are the same as those for pushers when

ξ = 6.03 up to the value of β = 0.5 where the CSD has a purely algebraic shape.

If β > 0.5 then distribution width decreases again, as in ξ = 6.03.

Cluster size distribution can be expressed by

f(s) ∼ s−γ0 exp(−s/s0) (4.7)

where γ0 = 1.972 and s0 controls the exponential cut-off of the distribution [105].

s0 has been related with the clusters shape and velocity [6, 7]; more recently it has

been found that the divergence of the cluster size cut-off is related to the location

of the phase separation of a suspension of Brownian self-propelled repulsive disks

[84, 105]. In the case under study, i.e. a dilute suspension of interacting spherical

squirmers, the value of s0 should depend on the hydrodynamic signature tuned

by β and on the interaction strength modulate by ξ.

Fitting the CSD data to equation (4.7), we observe that s0 increases with β

when attractive interactions compete with activity (ξ = 1.8) (bottom-right side

of Figure 4.6). Whereas, when either self-propel activity is larger than attractions

(ξ = 6.03) or there is only activity (ξ = ∞), s0 increases with β till reaches a

maximum at β = 0.5. Distributions with large cluster size cut-off s0 behave like

a power law

f(s) ∼ s−γ0 (4.8)

with γ0 = 1.972. This value comes from hydrodynamic issues only, and it is

completely different on the one side from the percolation exponent [106] of equi-

librium systems (being far from equilibrium), on the other side from exponent

obtained for other active systems without hydrodynamic interactions [84, 105].

Where γ0 = {1.7, 1.0}.

Typically, suspensions of thermal particles in thermodynamic equilibrium have

a cluster size distribution as

f(s) ∼ exp(−s/s0) (4.9)

The difference between this expression and our results could be seen as a signature

of how far from equilibrium the active suspensions are.
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Figure 4.6: Cluster-size distribution f(s) for different values of ξ and β. Blue
symbols correspond to pushers β < 0 and green ones to pullers β > 0. Solid lines
correspond to f(s) ∼ exp(s/s0)/s

1.97 and the orange dashed line to f(s) ∼ s−1.97.
Top-left: ξ = 1.8. Top-right: ξ = 6.03. Bottom-left: ξ = ∞. Bottom-right:
Cluster size cut-off s0 as a function of β for three different values of ξ. s0 was
obtained by fitting f(s) to equation (4.7). f(s) for β = 0.5 and ξ = ∞ has been
fitted with an algebraic function of the form of equation (4.8).

4.5 Morphology of squirmer clusters

In order to study the properties of finite-size clusters, we first of all need to detect

them. We identify clusters in the system in the following way: two particles

belong to the same cluster whenever their distance is smaller than a given cutoff,

rij < rcl = 1.8σ (see Appendix A). The number of particles belonging to the same

cluster will be indicated as s (where s is the cluster size).

We first evaluate the fraction of clusters of size s, f(s) as a measure of the

cluster-size distribution. To calculate f(s) we apply the same criterion as in

Ref. [87]: (i) We arbitrarily subdivide the range of s-values into intervals ∆si =

(si,max− si,min), where we define the total number of clusters within each interval

∆s as nti; (ii) then we assign the value ni = nti/∆si to every s within ∆si, therefore
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the fraction of clusters of size s can be written as f(s) = ni/Nc where Nc is the

total number of clusters, computed as Nc =
∑

i ni∆si.

Next, we determine the radius of gyration for every cluster (averaging over

same-size clusters)

Rg =

√√√√ s∑
i,j=1

(~ri − ~rj)2

2s
(4.10)

where we divide by 2 to avoid double counting. To measure polar order within a

cluster, we estimate

P =

∣∣∣∣∑s
i=1 ~ei
s

∣∣∣∣ (4.11)

where ~ei is the orientation of each individual particle. The particles’ orientation

with respect to the cluster’s translation (~vCM) is estimated as

Ω =
s∑
i=1

~vCM · ~ei
s

(4.12)

where ~vCM is the center of mass’ velocity of the cluster.

4.5.1 Radius of gyration

In order to find structural differences among clusters, we start with analysing the

radius of gyration Rg(s) of clusters containing s particles. Rg(s) is calculated

using eq. (4.10). In FIG. 4.7 we represent the mean radius of gyration normalized

by the particle’s radius for different values of ξ and β. In the regime where

attraction competes with activity (ξ = 1.8 top-left side of FIG. 4.7), we can see

that Rg ∼ sγ with γ < 2/3 approximately, for all values of β > −3. Changes in

γ are very small however Rg(s) mildly decreases as β increases. When ξ = 6.03

(top-right in fig. 4.7), Rg(s) follows an exponent greater than 2/3 for pushers,

whereas blue curves are all above the reference orange curve. This means that

clusters of pushers with ξ = 6.03 are less compact in comparison with the ones of

pushers with ξ = 1.8. Another interesting feature is that the Rg(s) slope decreases

with β up to β = 0.5 where the minimum value for γ is reached, then γ increases

as β increases.

The morphology of the clusters with ξ = ∞ behaves in the same fashion as

squirmers with ξ = 6.03, with pusher clusters less compact than with ξ = 1.8

and a minimum slope for β = 0.5 followed by a re-expansion of the clusters for

β > 0.5.

In terms of the exponent values we can see that clusters with ξ = 1.8 are more

compact as β increases, since γ decreases, therefore clusters of pushers are less
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Figure 4.7: Radius of gyration Rg(s) (normalized by the particle’s radius) as a
function of the cluster-sizes for values of ξ ranging from 1.8 up to∞ and β between
3 and −3. Blue symbols correspond to pushers β < 0 and green ones to pullers
β > 0. Solid lines represent Rg(s) ∼ sγ and the orange dashed line Rg(s) ∼ s2/3.
Top-left ξ = 1.8, Top-right: ξ = 6.03, Bottom-left: ξ = ∞ and Bottom-right: γ
exponent as a function of β and ξ.

compact than clusters of pullers. On the contrary, when activity dominates as in

ξ = 6.03 or ξ = ∞ a phenomenon of clusters re-expansion occurs given by the

hydrodynamic signature.

In both cases as β goes to 0.5, clusters will be more compacted since γ value

decreases. For β = 0.5 clusters reach their more compact shape and after that

they start swelling again.

4.5.2 Polar order

In [34] we computed the global polar order of the squirmer suspensions, to evaluate

the degree of alignment of the suspension. Polar order close to one corresponds

to an aligned state while polar order close to 1/
√
s to an isotropic. Following

equation (4.11) we calculate the polar order for each cluster averaged over all
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clusters of the same size. In the top panel of Fig. 4.8 we observe that polar order

decreases with the cluster size: pushers (in red) have a faster decay than pullers

(in blue) with respect to the reference orange dashed curve (∼ s1/2). However,

both pushers and pullers present clusters without any alignment. When ξ = 6.03

(middle panel) pushers show a decay below the reference curve, whereas pullers

with β < 1 drastically change their behaviour compared to pullers at ξ = 1.8

showing big clusters with high polar order. When there is no attraction at all
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Figure 4.8: Polar order parameter P as a function of the cluster-size for values of
ξ ranging from 1.8 up to ∞ and β between −3 and 3. The orange dashed line
corresponds to P (s) ∼ s−1/2.

(bottom panel) pushers behave in the same way as in ξ = 6.03, polar order decays

fast to zero but pullers decays slower: as the smaller the value of β the slower the

decay of polar order parameter.

To see whether the clusters move in the same direction as their particles,

we compute the orientation of the particles within a cluster with respect to the

cluster’s center-of-mass velocity using equation (4.12). In FIG. 4.9 we show the

mean value of Ω as a function of the cluster size. The top-left panel shows Ω(s) for

ξ = 1.8, indicating that the orientation decays very fast for all β values. However,

when attraction is reduced (top-right panel FIG. 4.9) pullers with β < 1 have a

slow decay given that it is possible to find a partial orientation for big clusters
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(as shown in figure 4.8). For ξ = 6.03 pullers with β > 1 decay in the same

way as pullers with ξ = 1.8 however, pushers decays faster. The same holds for

pushers without attraction, where particles orientation decay very fast (bottom-

left panel FIG. 4.9). When β = 0 the clusters orientation decay is very slow,

almost independent of cluster size, given that in this case the global aligned state

is stable. Therefore, as the β value increases the decay velocity in the orientation

increases. If we fit Ω(s) with a power law s−ω what we have are all the fitted

curves depicted in FIG. 4.9 (bottom-right panel). This fitted exponent ω help us

to describe the behaviour of the orientation in clusters as a function of ξ and β.

A high ω value means fast decay in the orientation, while a low value means high

orientation in the clusters. When attractive interactions competes with activity at

ξ = 1.8, exponent values are between 1.06 and 0.71 which means that orientation

decays very fast and big clusters are not oriented at all.
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Figure 4.9: Ω as a function of the cluster-size for values of ξ ranging from 1.8 up
to ∞ and β between −3 and 3. Solid lines correspond to Ω(s) ∼ s−ω Top-left:
ξ = 1.8, Top-right: ξ = 6.03, Bottom-left: ξ = ∞. Bottom-right: ω exponent
value fitted as a function of β and ξ. Ω(s) is normalized by the overdamped
velocity reached by one squirmer (vs = 2/3B1).

However, despite the strong attractive interaction, active stress is also playing

a roll since clusters of pushers are less oriented than pullers. When ξ = 6.03
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pushers have a faster decay, since ω is higher than in ξ = 1.8 until β = 0, once

0 < β < 1 the exponent goes to 0.3. For β < 1 ω increases again to values around

0.8. A very similar behaviour in ω is found with ξ = ∞, where pushers and

pullers with β > 1 have the same exponent in comparison with the systems with

the same β for ξ = 6.03, the difference appears in the GDF range (0 6 β 6 1)

where ω almost reaches 0.06. These small values on ω are due to the alignment

that squirmers show for this range of β.

4.6 Dynamics of squirmer clusters

In order to evaluate the rotational and translational velocities of finite-size clusters,

we first of all need to detect them. To identify cluster we used the methodology

described in A. Here we focus the motility of these clusters. To detect translational

motion of the cluster, we compute the velocity of its center-of-mass as ~vCM =∑s
i=1 ~vi/s, whereas to detect the angular velocity we compute for every cluster

size and average over same size clusters the following quantity: LG = IG ·ω (being

LG is the angular momentum and IG is the inertia tensor of a rigid body relative

to the center of mass).

4.6.1 Translational velocity

In order to determine how clusters move, we first compute the mean translational

velocity with respect to their centre of mass of clusters of size s.

vcm(s) =
s∑
i=1

vi/s, (4.13)

In top-left side of FIG. 4.10 we observe the translational velocity for interactive

squirmers with an interaction strength of ξ = 1.8 all β cases has the same power

law shape, when clusters are small there is no difference among all the β cases, for

bigger cluster sizes (s > 50) we can see that velocity for pusher clusters (the bluest

data) is slightly below of velocity for puller clusters (the greenest data), however

due to the small difference we can say that squirmer clusters velocity decreases in

the same fashion independently of the value of β. The exponent is around −1/2.

When interaction is softer (ξ = 6.03) cluster velocities will change for some cases

of squirmers, in comparison with the later cases. In the top-right side of FIG. 4.10

we show the clusters’ velocity for several values of β and ξ = 6.03. Pusher clusters

velocity (the bluest data) remains with the same behaviour, vcm s−1/2. However,

when β ≤ 0 velocity will decay slower and the precise value will depend on the

hydrodynamic signature. Clusters with β = 0.25, 0.5 and 1 are faster than the
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rest of pullers since velocity decays very slow for small sizes (s < 20) however it is

important to notice that big clusters (s > 20) with β = 0.5 and 1 does not follow

the same power law decay than small clusters, this is because the emergency of this

big clusters is different. Big clusters at this stage swim coherently and they collide

with the small clusters that reduce the velocity of the big clusters. Naturally, as

bigger the cluster more chances to collide with other clusters will have. Then a

higher reduction on its velocity. Pullers in other range of β, will decay faster than

aligned case till they reach the general decay of pushers again.

When ξ =∞ the velocity of clusters with β < 0 decays like power law vCM(s) ∼
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Figure 4.10: Translational velocity vCM(s) normalized by u0 = 2/3B1 as a function
of the cluster-size s for values of ξ ranging from 1.8 up to ∞. With β between -3
and 3. The values of β are indicated in the legend. Solid lines are fitted curves
of vCM(s) ∼ s−γ. Top-left: vCM(s) for interactive squirmers with ξ = 1.8. Top-
right: vCM(s) for interactive squirmers with ξ = 6.03. Bottom-left: vCM(s) for
pure hydrodynamic squirmers with ξ = ∞. Bottom-right: Exponent value fitted
from vCM(s) in function of β. Black circles correspond to fitted exponent for
ξ = 1.8, red-circles to ξ = 6.03 and green squares to ξ =∞.

s−γ with γ ∼ 1/2 as the same way as pushers with ξ = 1.8 or 6.03. Therefore we

can say that velocity of pusher clusters is not affected by the attractive forces. On

the other hand, when β = 0 the velocity of clusters will be very similar between
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them no matter the size of the cluster due to the high alignment that exist and

then less collision between clusters in comparison with β = 0.25, 0.5 and 1 where

it is clear that big clusters have different behaviour than the power law that small

clusters follow. As well as in ξ = 6.03 due to the collisions of this big cluster that

emerges in this range of parameters. Therefore, if we plot the fitted exponent in

terms of β for each ξ value, what we have is the curves plotted in the bottom-right

side of FIG. 4.10. Black circles that correspond to ξ = 1.8 which basically follows

a horizontal line around 1/2, then for ξ = 6.03 we have the red circles that tell us

that pusher follows the same horizontal line at around 1/2 then β = 0 due to the

emergency of alignment at this point, increases the velocity of big clusters and

then a reduction in γ. When β = 0.25 we have more alignment suspension and

clusters swim faster then a value of γ = 0.15 if we increase β γ starts increase again

to γ = 1/2 when β reaches 3. Green curve correspond to ξ = ∞, pushers have

an exponent of around 1/2 but once β is not negative suspension align. Hence,

when β = 0 velocity of clusters is almost the same for all sizes since all particles

are swimming in the same direction therefore γ ∼ 0 for β > 0 clusters velocity

is reduced gradually as β increases hence γ value increase gradually till reach the

value of 1/2 again.

4.6.2 Angular velocity

We now estimate the angular velocity as a function of cluster size, we compute

the angular momentum IG and the inertia tensor IG, at each cluster knowing that

LG = IG · ω (4.14)

from this equation we obtain the angular velocity ω (see Appendix B). We can see

on top-left side of FIG. 4.11 angular velocity of clusters of size s for suspensions of

interactive squirmers with interaction strength of ξ = 1.8 with β ε [−3, 3]. Angular

velocity decays for all the β values as a power law, |ω(s)| decays faster to clusters

of pushers with β = −3 and −2 then for β = 0 angular velocity decays slower

than the other cases, after this value |ω(s)| decays gradually faster with β. When

activity is grater than attractive interactions as in ξ = 6.03, angular velocity

for pusher clusters will decay faster than pullers, as we see in top-right side of

FIG. 4.11, where bluest data are below of the greenest data. Another interesting

observation is that big clusters of pullers with β = {0.25, 0.5, 1} follows a different

functional form than a power law and as well as the translational velocity this is

due to the emergency of aligned clusters. Same behaviour it is found when ξ =∞
and β in the region where alignment emerges. In the bottom-left side of FIG. 4.11

we can see how data for big clusters of pullers with β ≤ 1 have a huge deviation

from the power law. While β = 0 due to the maximum alignment, it follows
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completely the power law |ω(s)| ∼ s. Angular velocity for pusher clusters decay

even faster than the aligned suspensions. If we fit the angular velocity data to a
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Figure 4.11: Angular velocity ωCM(s) normalized by u0/σ, where u0 = 2/3B1

and σ the diameter of squirmers, as a function of the cluster-size s for values of ξ
ranging from 1.8 up to∞. With β between -3 and 3. The values of β are indicated
in the legend. Solid lines are fitted curves of ωCM(s) ∼ s−γ. Top-left: |ωCM(s)| for
interactive squirmers with ξ = 1.8. Top-right: |ωCM(s)| for interactive squirmers
with ξ = 6.03. Bottom-left: |ωCM(s)| for pure hydrodynamic squirmers with
ξ = ∞. Bottom-right: Exponent value fitted from |ωCM(s)| in function of β.
Black circles correspond to fitted exponent for ξ = 1.8, red-circles to ξ = 6.03 and
green squares to ξ =∞.

power law function we can put the value of the exponent in terms of the β value

and interaction strength ξ. As we can see in the bottom-right side of FIG. 4.11,

where black circles correspond to the exponent value for ξ = 1.8 in function of the

hydrodynamic signature. Exponent for this case is between 1.25 and 0.8. It decays

with β from 1.25 in β = −3 till β = 0 where exponent reaches 0.8 once β > 0

exponent start to increase to 1 at β = 3. When hydrodynamics dominates against

direct interactions like in ξ = 6.03 or in ξ =∞ we can recognize a transition from

a exponent value of 1.3 for pushers to a exponent value of 1.1 for pullers. In the

case of ξ = 6.03 this transition is softer than in the purely hydrodynamic case.
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Here we have characterized the dynamic behaviour of interactive squirmer sus-

pensions in terms of the cluster distribution, calculating the translational velocity

and the angular velocity in function of the cluster size. Clusters in cases where in-

teraction competes with the activity (ξ = 1.8) have the same scaling exponent for

the translational velocity which means that the dynamic of the clusters is the same

no matter the value of β, however scaling exponent for angular velocity depends

on the value of β which means that clusters for different β are not rotating in the

same way, therefore stress activity works as a tune parameter to the way how the

clusters rotates. In the cases where activity dominates, like in ξ = 6.03 and ξ =∞
the clusters velocity behaviour is in function of the alignment of the suspension,

since clusters of suspensions where isotropic state is stable have the same scaling

exponent of ∼ 1/2 whereas clusters of suspensions where aligned state is stable,

the scaling exponent will decrease from 1/2 to 0 in the case of totally aligned state

as in β = 0 and ξ =∞. Another interesting feature of the clusters velocity is that

big clusters that generate the giant density fluctuations do not follow the power

law function, since these clusters collide with smaller clusters.

Angular velocity for cases where activity dominates, like in ξ = 6.03 and

ξ = ∞ we can distinguish two general scaling exponent values, one for pushers

that is around 1.3 while pullers have a scaling exponent of 1.1. However, big

clusters in the transition area do not follow the power law function which tell us

that the nature of this big clusters is not the same as the small ones.

4.7 Conclusions

We showed here a systematic study of semi-dilute suspensions of interactive squirm-

ers restricted to swim in a slab. Squirmers can see as active particles that self

propel and stress the fluid in function of the β parameter. In our case squirmers

can also interact isotropically among them by a Lennard-Jones force. The compe-

tition between this isotropic force and self-propulsion measured by the parameter

of interaction strength ξ and the active stress defined by β gives a huge variety

of cooperative or collective behaviours of interactive swimmers. From the system-

atic study of the (ξ, β) parameters that we developed, we can divide interactive

swimmers in three big regimes. One regime where squirmers aggregate in a one

single cluster called coarsening regime, another one with a constant mean cluster

size at the steady state and a regime where temporal mean cluster size have small

oscillations at the steady state. The last two regimes are more important in this

study, since we are more interested in the competition between interaction and

activity and coarsening regime is found only when ξ < 1, which means a clear

domination of attractive interactions to the activity. In this chapter we present
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a systematic study of semi-dilute suspensions of interactive squirmers restricted

to swim in a slab. Squirmers simulate active particles that self propel and stress

the fluid in function of the β parameter. Moreover, in our case squirmers also in-

teract isotropically via a short-range Lennard-Jones attraction. The competition

between this isotropic force and the self-propulsion (measured by the parameter

ξ) and the active stress β gives a huge variety of behaviours of the interactive

swimmers. From the systematic study in the (ξ, β) plane, we can divide inter-

active swimmers in three regimes. One regime where squirmers aggregate in a

one single cluster (coarsening regime), another with a steady-state mean cluster

size and a regime where mean cluster size have small oscillations with time. In

our study we will be focusing on the the last two regimes (obtained for ξ > 1),

since we are more interested in the competition between interaction and activity

whereas the coarsening regime is only found when ξ < 1, corresponding to a clear

domination of attractive interactions over activity. Analyzing the density fluctu-

ations exponents we could detect transitions from coarsening to clustering, when

the cluster distribution was showing a diverging cut-off.

To study the clusters’ morphology, we evaluated the radius of gyration : When

attractive interactions competes with activity we found that clusters shrink as β

grows, while in the case when activity dominates a contraction-expansion effect

occurs in function of the hydrodynamic signature. Another interesting feature

we found is that not only the morphology changes with ξ and β parameters, but

clusters alignment. Reason why clusters appear for different reasons. In one case

clusters are formed due to collisions between particles while when GDF appear

big clusters emerge because of the alignment enhanced for the stress activity of

squirmers.

Here we have characterized the dynamic behaviour of interactive squirmer sus-

pensions in terms of the cluster distribution, calculating the translational velocity

and the angular velocity in function of the cluster size. Clusters in cases where

interaction competes with the activity (ξ = 1.8) have the same scaling exponent

for the translational velocity which means that the dynamic of the clusters is the

same no matter the value of β, however scaling exponent for angular velocity de-

pends on the value of β which means that clusters for different β are not rotating

in the same way, therefore stress activity works as a tune parameter to the way

how the clusters rotates. In the cases where activity dominates, like in ξ = 6.03

and ξ = ∞ the clusters velocity behaviour is in function of the alignment of the

suspension, since clusters of suspensions where isotropic state is stable have the

same scaling exponent of ∼ 1/2 whereas clusters of suspensions where aligned

state is stable, the scaling exponent will decrease from 1/2 to 0 in the case of

totally aligned state as in β = 0 and ξ = ∞. Another interesting feature of the

clusters velocity is that big clusters that generate the giant density fluctuations
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[107] do not follow the power law function, since these clusters collide with smaller

clusters.

Angular velocity for cases where activity dominates, like in ξ = 6.03 and

ξ = ∞ we can distinguish two general scaling exponent values, one for pushers

that is around 1.3 while pullers have a scaling exponent of 1.1. However, big

clusters in the transition area do not follow the power law function which tell us

that the nature of this big clusters is not the same as the small ones.



Chapter 5

Dynamics of a squirmer

suspension at a liquid interface

5.1 Introduction

Following A. Dominguez idea [108, 109], we have carried out LB simulations of

a system of squirmers under partial confinement, the motion of squirmers are

restricted to move on a plane but their dynamics is influenced by hydrodynamic

interactions mediated by the unconfined, three-dimensional flow of the embedding

fluid. We have studied the geometric effect on the macroscopic behaviour of the

squirmer suspension, for different values of β and various densities.

Furthermore, since in [34], we have shown that semi-dilute squirmer suspen-

sions in 3D can develop collective motions like alignment and fluctuations on the

density, and both, clearly non-equilibrium phenomena are generated by two basic

mechanisms: the re-orientation of particles given by the hydrodynamics among

particles and the collision between particles due to the self-propulsion of them.

Hence, we have analysed numerically the effect of the re-orientation and the colli-

sion between squirmers due to the self-propulsion, to the global alignment and to

the clustering by cancelling either the self-propulsion or the re-orientation, respec-

tively. When squirmers only are able to re-orient and they are fixed in the plane,

we found that polar order disappears for all cases of squirmers, but alignment is

still present parallel to the swim plane for pullers, while pusher suspensions are

more isotropically stable. This alignment that emerges due to the confinement

of fixed particles is studied more systematically by doing simulations of different

sizes, we found that this alignment emerges completely due to the confinement

restriction and the hydrodynamic interactions among particles and it is not a fi-

nite size effect. Due to this geometrical constriction, we also show the eigenvector

associated to the nematic order, to analyse if particles re-orient normal or parallel

65



66 Chapter 5. Dynamics of a squirmer suspension at a liquid interface

to the confinement plane. Given rise to the fact that pullers with fixed position

align parallel to the plane. A systematic study of the cluster size distribution is

also showed for this system and contrasted with the case where particles can not

re-orient. We found that partial confinement plays a key role in the cluster sizes

as well as the hydrodynamic signature.

We investigate squirmer suspensions, where particles are confined to move in

a plane but solvent is everywhere in 3D. Both cases consist of a three-dimensional

fluid with particles embedded in it, these particles interact only hydrodynamically

by the squirmer model explained in chapter 1.

The particles can move only in a plane (2 dimensions), but particles can rotate

in all directions. Areal concentration was set to φA = 0.10, where φA = πσ2N/(2L)2.

In this case L ∼ 102 σ and N = 1336. Both systems are modelled under the nu-

merical frame described in 2 Lattice-Boltzmann.

Additionally, we carried out simulations with various concentrations, concen-

tration was defined through the global areal concentration φ0 = {0.10, 0.2, 0.4},
where φ0 = π/4ρAσ

2, being σ the particle’s diameter and ρA = N/L2. Where L

is the side of the box in the three directions. L ∼ 102 σ and for the three values

of φ0 the number of particles was N = {1336, 2672, 5344} correspondingly.

The squirmers are pointing out in random 3D directions initially as well as

their position in the plane.

5.2 Orientational parameters

We calculate the global polar order parameter in order to study the stability of

the either aligned or homogeneous-isotropic state. Here we show how this order

parameter evolve in the time, also we show the temporal polar order normal to the

surface where particles move and its standard deviation, Probability Distribution

Function of the Z component of the orientation vector of the squirmers is also

presented here to show when squirmers move parallel to the plane where they

are confined and when they point out in direction normal to the surface. Initially,

squirmers are isotropically oriented in the three directions. We calculated all these

parameters to three different concentrations and activity stress β range from −3

to 3. In this section we show results for squirmer suspensions where initially

squirmers are isotropically oriented in 3D.
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5.2.1 Global polar order of a squirmer suspension at an

interface

Global polar order is defined in terms of the fixed unitary orientation vector of

the squirmers as in equation (3.2)

In FIG. 5.1 we show the global polar order as a function of time for three

different concentrations. Time is normalized by a Stoke’s time, which is defined

as the time that a squirmer needs to move one diameter

τ ≡ σ
2
3
B1

(5.1)

For dilute regime (φ = 0.1) top-left plot in FIG. 5.1, polar order follows same

behaviour than squirmer suspensions swimming in 3D without any restriction [34].

Squirmer suspension with β = 0 evolve to a totally aligned state (yellow curve),

when −1.5 < β < 2 and β 6= 0 a partial aligned state is stable. Other value of β

out of this range will have an isotropic state. If we double the concentration of

squirmers top-right plot in FIG. 5.1, we found that aligned states are stable for the

same values of β than semi-dilute regime. However, if we increase concentration

even further to φ = 0.4 global polar order will be affected, and the alignment will

be reduced for all β. From Fig. 5.1 we see that polar order P (t) → 1 for β = 0

(yellow curves) for all the concentration regimes. Therefore alignment state for

β = 0 does not depend strongly on the density of squirmers. However when the

system is partially aligned at semi-dilute regime (φ = 0.1) polar order is reduced

by 0.2 in the concentrated regime (φ = 0.4).

5.2.2 Normal polar order

In order to calculate how many squirmers are pointing out perpendicular to the

plane where they are confined, we calculate the normal polar order which is de-

fined in terms of the Z component of the fixed unitary orientation vector of the

squirmers, since Z direction is normal to the surface where squirmers can move.

Similarly to global polar order, one can write normal polar order as

Pz(t) =
1

N

N∑
i=1

~ei(t) · k̂ (5.2)

which is the mean of the projection of the orientation vector in the direction of

k̂ vector over all the squirmers in the suspension. P (t) → 1 means that most of

the squirmers are pointing out to the positive side of the plane while P (t)→ −1

means that most of the squirmers are pointing out to the negative side of plane.
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Figure 5.1: Polar Order parameter P (t) as a function of time, for three different
densities, and β between −3 and 3. Time is normalized by a Stoke time, defined
in Eq. (5.1).

P (t) → 0 implies that either half of the total amount of squirmers are pointing

out to the positive side of the surface and half to the negative side or all squirmers

are pointing parallel to the swim plane. On FIG. 5.2.2 we show the normal

polar order parameter as a function of time for three different concentrations and

different values of β. Time is normalized by a Stoke’s time defined in equation

(5.1). For φ = 0.1 (top-left plot) normal polar order parameter is 0 for all β 6= 0.5,

for β = 0.5 we have a partial alignment and most of them are pointing out to the

negative side of the surface. If we double the concentration of squirmers to φ = 0.2

(top-right plot), we observe same results in β, but now for β = 0.5 most of them

point out to the positive side of the surface. Similarly, for φ = 0.4 (bottom

plot) we observe a normal order parameter P (t) around zero, but β = 0.5 have

a small positive normal order parameter 6= 0. We can see that all cases with

β = 0.5 normal polar order parameter evolve from the initial condition where all

particles are isotropically aligned which gives a normal order parameter equals to

zero, to a normal polar order value different to zero, the non-zero value emerges

approximately at the same time, independently of the squirmer concentration

∼ 200τ .
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Figure 5.2: Normal Polar Order parameter Pz(t) as a function of time, for three
different densities and β between −3 and 3.

5.2.3 Standard deviation of normal polar order

Since normal polar order could be zero for two different states, one it is when

particles point out normal to the surface either to the positive or negative side of

the plane with the same probability or the secon option is when particles swim

parallel to the surface. To differentiate both cases, we calculate the standard

deviation of de normal polar order, defined in terms of the second moment of the

normal polar order

σ (Pz(t)) =
1

N

√√√√ N∑
i=1

(
~ei(t) · k̂ − Pz(t)

)2
(5.3)

given this σ parameter and the normal order parameter, we have that if Pz(t)→ 0

and σ → 1 then particles point out normal to the surface either to the right or to

the left with the same probability, whereas if Pz(t)→ 0 and σ → 0 then it means

that squirmers like to swim parallel to the squirmers’ plane. When φ = 0.1 pushers

(violet, blue and green curves in top-left plot of FIG. 5.3) have a σ ∼ 0.7, since

Pz(t) ∼ 0 to these cases, therefore pushers are swimming pointing out either in

direction to z or −z with the same probability. For pullers with β > 0.5 Pz(t) ∼ 0
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also, but σ is 0.5 this means that squirmer have the same behaviour than pushers

but closer to the swim plane. When β = 0.5 σ decrease since particles start to

align partially in direction of −z. In the same way, when β = 0 σ decrease almost

to zero. In this case normal polar order is zero hence, particles are aligned parallel

to the plane XY . When concentration grows to φ = 0.2 we found the same

behaviour for σ (top-right plot) with a little increase in σ for puller cases. When

φ is even higher φ = 0.4, the difference in σ among pullers and pushers disappear

(bottom plot). However, when β = 0 standard deviation does not depend on the

concentration, therefore squirmers keep pointing parallel to the plane.
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Figure 5.3: Standard deviation of Normal Polar Order parameter σ(Pz) as a func-
tion of time, for three different densities and β between −3 and 3.

5.2.4 Probability Distribution Functions

Here we show distribution function of the orientation vector projected in the Z

direction PDF (~ei(t) · k̂ − Pz(t)) . Distribution functions are calculated at long-

time states from t0 ∼ 467τ till tf ∼ 500τ . This PDF complements the results

given by the normal polar order parameter and its standard deviation. For semi-

dilute regime with φ = 0.1 (top-left plot of FIG. 5.4) we show that pushers’

PDFs (β < 0) have a bimodal distribution with two maxima equally high in ±1

which means that squirmers are pointing either −z or z with the same probability,
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pushers with β > 0.5 on the contrary point out less to the direction normal to

the surface. As we can see in the red and brown PDFs where maximum is in

~ei(t) · k̂ = 0, however some squirmers still point out in the direction outside of

the surface, since tails of the PDF are non-zero (red and brown curves). When

β = 0.5 squirmers are partially aligned as we saw on FIG. 5.1, with FIG. 5.2.2 we

showed that this partial alignment is in the −z direction and in FIG. 5.4 (orange

curve) we can see that squirmers are indeed pointing out in −z direction. For

β = 0 (yellow curve) PDF is center at zero, with a narrow peak, and without tails

when −0.5 > ~ei(t) · k̂ > 0.5 this tell us that squirmers are aligned with the plane

where they swim and there are no squirmers pointing normal to the surface where

they swim. If we increase the concentration of squirmers to φ = 0.2 (top-right plot

FIG. 5.4) we found that PDF’s for pushers still have the bimodal distribution we

found for more dilute regime, as well as pullers with β < 0.5 where distributions

are center at zero, but in this case distributions are thicker in comparison with

more dilute cases. Distributions of squirmers with β = 0.5 and β = 0 show

that squirmer are aligned, PDF for β = 0.5 is center in 1 therefore squirmers are

pointing normal to the surface, while PDF for β = 0 is center in zero, these two

last distributions are narrower than similar cases with φ = 0.1.
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Figure 5.4: PDF of the projection on Z direction of the orientation vector of the
squirmers, for three different densities.
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If we increase concentration even further to φ = 0.4 distributions for pushers

lost their bimodality and we found that squirmers alignment is more isotropically

distributed, as well as in the puller cases with β > 0.5 where distributions center

at zero disappear for a more constant distribution like distributions for pushers.

PDF for β = 0.5 is also more like a constant distribution with a little maximum

at 1. It seems that concentrate regimes reduce alignment in the suspension when

β 6= 0 since PDF for β = 0 still has a big maximum center at zero and it is as

narrow as the distribution for φ = 0.2 with the same β.

All these results of the PDFs are in agreement with the results of the normal

polar order parameter and its standard deviation analysed in previous sections.

5.3 Orientational parameters. Competition be-

tween active stresses and self-propulsion

We show how polar and nematic order parameters will depend on the active stress

with and without the competition with the collisions due to the self-propel activity.

We also present the component normal to the plane of the eigenvector related to

the nematic order, which it is the largest positive eigenvalue.

5.3.1 Long-time polar order for trapped squirmers

In FIG. 5.5 we show the long time polar order parameter for two systems, one

where particles can move freely in the plane of confinement and another where

particles are set in fixed random positions but both systems can re-orient freely

in all directions. We calculated the polar order as in eqn. 3.2 and then took the

long-time period to calculate P∞. We can see that P∞ for free squirmers confined

in a plane has a similar behaviour than P∞ for free squirmers in bulk. With

a maximum polar order at β = 0 and an asymmetry between pushers (β < 0)

and pullers (β > 0) where pullers with β < 3 are more aligned than pushers

counterpart. Whereas fixed squirmers have not any polar order for all value of β.

The constrain that they have of not moving according to the self propulsion give

rise to an stability of the isotropic state for all cases of β.

5.3.2 Nematic order parameter

In FIG. 5.6 we show the long time nematic order parameter for the same two

systems described above. The black circles represent the nematic order for free

squirmers confined in a plane, as well as the polar order, nematic order has a
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Figure 5.5: The long time polar order P∞ as a function of β for free squirmers
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√
N = 0.027.

Inset shows a zoom in of same data to see P∞ for squirmers with fixed positions
in a more detailed way.

maximum on β = 0 and an asymmetry between pushers and pullers. However

in this case we have a non-zero nematic order order for β < 0.1 in contrast with

the free squirmers in bulk where nematic order is ∼ 1/
√
N . Green diamonds in

FIG. 5.6 represent the nematic order for fixed particles confined in a plane. We

found that nematic order is ∼ 1/
√
N when β < −1.5 which means that squirmers

are not aligned at all and the stable state of these suspensions are the isotropic

state where all particles are pointing out in all directions, once β = −1.5 nematic

order increase as β increase till nematic order reaches a value around λ∞ ∼ 1/5,

when β = 0 the nematic order does not change and keeps the value around 1/5.

This partial alignment of 1/5 for pullers emerges exclusively by the hydrodynamic

signature of the squirmers and the hydrodynamic interaction between them, since

particles do not move in the space and also for the geometrical constraint that

particles are confined in a plane, which generates a particular flow around the

particles that give rise to this collective motion of partial alignment. The full

alignment found it for free squirmers confined with β = 0, or even the semi-aligned

system with β = 0.5 are not recovered with fixed squirmers, which tell us that

such aligned states depend also in the collisions due to the intrinsic self-propulsion

of the particles. As well as the non-zero nematicity for β < −0.5.
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Given the unexpected results for fixed particles confined in a plane of zero polar

order but non-zero nematic order. We developed some systematic simulations

of confined particles and fixed random positions for β = {−3, 0, 3} where we

gradually change the system size, in order to see if this behaviour is finite size

effect [110]. In FIG. 5.7 we show the long-time nematic order parameter for four

different system sizes. We keep the same area fraction of particles of 0.1 for all

cases, hence number of particles and simulation box change at each system size,

L/σ = {25.6, 51.2, 102.4, 204.8}, N = {84, 336, 1336, 5376} respectively.

As we see in FIG. 5.7, the functional shape of the curves does not change as

we change the system size, when β = −3 nematic order is ∼ 1/
√
N then increase

to λ∞ ∼ 1/5 at β = 0 and it keeps at around this value when β = 3. Moreover,

if we focus on the inset of FIG. 5.7 we can see that change in the magnitude of

the long-time nematic order parameter is minimal as we increase the system size.

Therefore, the nematicity that emerge for pullers confined at fixed positions is

intrinsic to hydrodynamic effects and the geometrical constraint of confinement

and it is not a finite size effect.
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5.3.3 Eigenvectors squirmer orientation at an interface

As we said in previous sections, the nematic order parameter is related to the

largest positive eigenvalue of Q(t) tensor. This eigenvalue λ+(t) fulfils the eigen-

value equation

Q · v+ = λ+v+ (5.4)

where v+ is the eigenvector associated to the eigenvalue λ+(t). In order to quan-

tify whether particles are pointing out in the plane where they swimming or they

are swimming pointing out outside of the plane, we calculate the z-component of

the eigenvector defined in eqn. (5.4). Since z-direction is the normal direction of

the plane where particles are confined. Therefore, if the z-component (vλ+z(t))

is zero means that all particles are swimming pointing out parallel to the plane

of confinement. Conversely, if this value is non-zero it means that most of the

particles are pointing outside of the plane. In FIG. 5.8 we show vλ+z as a function

of time for different values of β, particles are initially pointing out in 3D random

directions then depending on their hydrodynamic signature will evolve to differ-

ent states. When β < 0 vλ+z(t) ∼ 1 which means that most of the particles are

partially aligned in a plane normal to the confinement plane, alignment is partial

since the eigenvalues associated to these eigenvectors are not 1 but around 0.2 as
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Figure 5.8: The z-component of the eigenvector vλ+z(t) of free squirmers confined
in a plane. Different curves represent different value of β.

it can be seen in FIG. 5.6. On the contrary, when β = 0 particles are completely

aligned since nematic order is almost 1 but alignment is on the plane of confine-

ment, since vλ+z(t) ∼ 0 as we can see on the yellow curve of FIG. 5.8. We can

observe a very fast transition from the initial isotropic state to completely aligned

state around t ∼ 300 τ . At β = 0.5 the z-component of the eigenvector evolve to

a state aligned perpendicular to the confinement plane (orange stars on FIG. 5.8),

but first particles evolve to a state where particles are not aligned with z-axis at

short times (t < 300 τ) once t > 300 τ , vλ+z(t) start to grow relatively fast to a

aligned state parallel to z-axis. Moreover, most of the particles that are aligned

are also pointing in the same direction, since polar order is also ∼ 0.7 as it can

be observed in FIG. 5.5, where P∞ = 0.7 for β = 0.5. In the same way as β = 0,

where P∞ ∼ 1. For pullers with β > 0.5 vλ+z(t) is around zero at all time, with

fluctuations from 0 to 0.2. If particles are fixed in random positions and they are

only allowed to re-orient we found that vλ+z(t) goes to zero dramatically fast as a

function of β when β > −3. As we show in the left side of FIG. 5.9, where we ob-

serve how the z-component of the eigenvector associated to the nematic order goes

to zero for all β ranged from −3 to 3, although all cases goes zero, the relaxation

time from initial isotropic state to the steady state it depends on the β value, in

the inset of left plot of FIG. 5.9 we show a zoom in of the z-component at short

times and it is possible to see the dependency in β of the relaxation time: the

greater the value of β the shorter the relaxation time. Another important remark

is when β = −3 vλ+z(t) has much more fluctuations in time than any other case
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with β > −3, this effect is due to the fact the eigenvalue for β = −3 is almost

zero, as we saw in FIG. 5.6, hence the equation for get the eigenvectors (eqn. 5.4)

has more numerical fluctuations. This effect is observed for all cases where eigen-

value is close to zero, as we present in the right plot of FIG. 5.9 where the same

z-component of the eigenvector vλ+z(t) is showed for cases with β < −3, pushers

in these cases have a eigenvalue close to zero and that is the reason why vλ+z(t)

fluctuates a lot, specially when β = −4 (green data). Special remark when β = −7

and −5, since fluctuations in both cases are very small despite that eigenvalues

are close to zero. It seems that this small nematicity (λ+ ∼ 0.048 ± 0.006 and

0.024± 0.004) correspond to a partial alignment in the z-direction. Similar to the

aligmnement normal to the confinement plane that we observed for pushers when

particles can move freely (FIG. 5.8). Additionally in this plot, we show vλ+z(t)
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Figure 5.9: The z-component of the eigenvector vλ+z(t) of fixed squirmers. Left
plot correspond to β values from −3 to 3. Inset: Zoom in of same plot, black
arrow represent the direction of growth of β, the greater the value of β the shorter
the relaxation time. Right plot correspond to greater values in magnitude of
β = {±4,±5,±7}.

for β > 3 and we observe that particles remain aligned to the confinement plane

like the other cases of pullers with β < 4, since z-component of the eigenvector is

zero and the eigenvalue associated to all cases of pullers is ∼ 0.2 as we showed in

FIG. 5.6.

5.4 Conclusions

We have analysed spherical squirmer suspensions with squirmers restricted to

move in one plane. Our analysis was focused on the global orientation of the sus-

pension measured by the global and normal order parameters and the probability
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distribution functions of the orientations. We found that at long times, suspen-

sions reach a steady state of alignment where depending on the hydrodynamic

signature (β) and concentration (φ) we can have either an aligned state or an

isotropic one. We were able to characterize all the cases in five general scenarios.

One with β = 0 where squirmers are aligned parallel to the plane where they

move. Squirmers are aligned and move in the same direction. This case depend

very weak on the concentration. Another one for pushers which alignment is nor-

mal to the plane where they can move, however they are not moving in the same

direction. If concentration increase pushers lose their alignment and suspension

becomes isotropic which can be seen as a third case. A fourth case for pullers

with β > 0.5 in the semi-dilute regime (φ = 0.1) where they are partially aligned

with the plane in which they can move but do not move in the same direction. If

concentration increase, suspension becomes isotropic like the third case described

before. Last case, when β = 0.5 suspension is aligned partially in the direction

normal to the plane and squirmers move in the same direction. The alignment

and polarity is not so much affected when concentration increases.

Striking results were found for the long-time polar order, since this parameter

behaves in the same way as the bulk system with a maximum in β = 0 and

polarity is vanish if particles are fixed. But Nematic order will depend on the β

value, despite that particles can not self-propel. We have a not negligible value

of nematic order when particles are pullers and it turns out that particles align

parallel to the plane of confinement.



Chapter 6

Conclusions and perspectives

Summary of results

As we mentioned in 1, active systems nowadays has become a hot topic in science,

specially active systems where hydrodynamic interactions are present. Several

interesting questions have been arise, from both sides. From the theoretical point

of view, questions like whether exist a equation of state for these systems or why

active matter exhibit giant density fluctuations, breaking the familiar
√
N equi-

librium scaling of number fluctuations in subregions with N particles on average

[4]. From a more technological point of view, we have that many systems like

micro-organisms play a vital role in many biological, medical and engineering

phenomena [37]. Therefore, to apply simulations to these kind of systems is of

paramount importance, since many of the analytical work turns to be very hard,

specially if hydrodynamic interactions are taking in count and shed some light to

understand systems that can bring us many benefits.

With all that as a motivation, during these years of research for this thesis,

we have carried out systematic LB simulations of micro-swimmers. We have used

a very well tested code [76] which follow the theoretical framework explained

through all the chapter 2. Ludwig is a coded that has been tested for use in

parallel environments, thus it can reach large enough systems in reasonable time.

Following the idea of Evans et al. in [31], we have done a first systematic study

using LB with squirmer suspensions in order to reproduce the previous results of

the polar ordering as a function of the active stress, we have found approximately,

the same functional shape of the long time polar order, but the aligned region

in their case was wider in β. Another interesting difference was the findings of

significant aggregates for pullers in 3D, which Evans et al. [31] did not mention,

probably because their system is very small (N = 64 particles) while our system

reached 2000 particles. With the results of the temporal correlation function of
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the density fluctuations and the pair correlation functions for the positions and

the orientations of the particles in [34], we were able to conclude that the flocking

observed for pullers with 0 < β < 1 leads to large elongated structures, like Vicsek

bands [111].

This striking macroscopic effect found in squirmers swimming in a semi-dilute

suspension, was deeply studied by us. The main results are depicted in chapter 3,

where have shown a complete characterization of the collective motion of squirmers

swimming freely with no constrains. We have found that not only the degree of

polar order but the value of the exponent of the number fluctuations depend

on the hydrodynamic signature of squirmers In particular we found GDF (giant

number fluctuations) for certain range where flocking is observed, which can be

related with a phase transition. To compare this transition with the very well

known transition for self-propels particles the MIPS [15] we calculate the density

dependence speed and the PDF of the local density and we show that behavior

is totally different, therefore the transition observed for squirmers is generated

by other parameters besides the density and the velocity of self-propulsion [16].

Mean square displacement was also calculated, and the cluster size distribution

(CSD), where we found anomalous diffusions for some cases. We also found a way

to characterize the macroscopic cluster generated by squirmers, via CSD. Finally

a complete finite size effect study is presented, where we have verified that the

emergent macroscopic cluster is completely generated by high correlations between

swimmers.

Another interesting system is whether the particles attracts each other, and

a competition between attractive interactions and activity strength is present.

Inspired in some real experiment [8, 99] we add an attractive force to the squirmers

and confined to move and rotate in a plane, where the fluid is also confined in

a slab with periodic boundary conditions. The goal here is to observe wether

the hydrodynamic interaction play a key roll in the generation of clusters and

their morphology in comparison with active particles simulated with Brownian

Dynamics, besides of the experiments. A complete study on the morphology and

the dynamic of the clusters formed by attractive squirmers is shown in chapter 4.

Finally, from both theoretical and experimental work, it has observed that

colloids partially confined in an interface, where their dynamics are influenced

by hydrodynamic interactions mediated by the unconfined fluid. Hence for the

same problem but with active particles instead of colloids, turns to be a very

interesting problem, A. Dominguez has investigated the linear stability of these

kind of systems, while us have been carried out a set of simulations at long times,

where we can observe the influence of the unconfined fluid in the formation of

coherent structures on the particles. We have shown in chapter 5 how both polar

and nematic order change depending on the 3D velocity fluid generated by the
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particles themself. For example, one striking result is that the long-time polar

order behaves in the same way as the bulk system with a maximum in β = 0 and

polarity is vanish if particles are fixed. But Nematic order will depend on the β

value, despite that particles can not self-propel. We have a not negligible value

of nematic order when particles are pullers and it turns out that particles align

parallel to the plane of confinement. Very important to remark that simulations

and in particular our computational scheme allow us to do such kind of exercise,

where we can cancel one of the parameters of the systems, therefore we are able

to have a more general understanding of the influence of the different parameters

of a real complex system.

Perspectives

Several lines and ideas have been generated along the realization of this project:

• The results presented in chapter 3 open the door to more questions, like

whether the macroscopic cluster observed independtly of the system size is

in fact a band under the vicsek model scheme or is a completelly different

new phase produce only by hydrodynamic interactions.

• From the interactive squirmers swiming in 2D we have a couple of ideas. i) To

change the potential between the particles an put a explicit Janus potential,

where a more direct comparison with both experiments and theory could

be reached. ii) We already calculate the morphology and the dynamics of

the clusters generated by experiments of photoactive colloids [112]. Now we

are going to compare with squirmer suspensions, in order to try to find a

correlation between the morphology and the dynamics of the clusters.

• We have identified singular coherent structures for squirmers under partial

confinement like the squirmers in chapter 5. To understand this system in a

more rigours way by the study of linear stability of a theoretical mean field

theory like in [109] would be very interesting.





Caṕıtulo 7

Resúmen en castellano

Los sistemas activos, se definen como materiales fuera del equilibrio termodinámi-

co compuestos por muchas unidades interactuantes que individualmente consumen

enerǵıa y colectivamente generan movimiento o estreses mecánicos. Ejemplos se

pueden encontrar en un enorme rango de escalas de longitud, desde el mundo bi-

ológico hasta artificial, incluyendo organismos unicelulares, tejidos y organismos

pluricelulares, grupos de animales, coloides auto-propulsados y nano-nadadores

artificiales. Actualmente se están desarrollando experimentos en este campo a un

ritmo muy veloz, en consecuencia son necesarias nuevas ideas teóricas para traer

unidad al campo de estudio e identificar comportamientos “universales” en estos

sistemas propulsados internamente.

El objetivo de esta tesis es el estudiar mediante simulaciones númericas, el

comportamiento colectivo de un modelo de micro-nadadores. En particular, el

modelo de squirmers, donde el movimiento del fluido es axi-simétrico. Existen

estructuras coherentes que emergen de estos sistemas aśı que, el entender si las

estructuras coherentes son generadas por la firma hidrodinámica intŕınseca de los

squirmers individuales o por un efecto de tamaño finito se vuelve algo de primordial

importancia. Nosotros también estudiamos la influencia que tiene la geometŕıa en

la aparición de estruturas coherentes, la interaction directa entre las part́ıculas, la

concentración, etc.

Esta tesis reporta nuevas fases de suspensiones de squirmers que se caracterizan

por forma una distribución de tamaños de clusters o incluso suspensiones donde un

cluster macroscopico emerge. Un objetivo importante en esta tesis es caracterizar

estas fases de clusters, además de estudiar su morfoloǵıa de cara a entender la

fenomenoloǵıa del sistema haciendo una analoǵıa con las distribuciones de clusters

y los parámetros morfológicos de los sistemas en equilibrio.

La tesis está organizada de la siguiente manera:
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Nosotros primero hacemos una revisión, en el Caṕıtulo 1, qué son los sistemas

activos y las consecuencias de tener un conjunto de particulas activas. También

en éste caṕıtulo nosotros encontramos algunos ejemplos de materia activa bajo

varios contextos. Aqúı tambié explicamos los micro-nadadores y en particular, el

movimiento de squirmer de una manera detallada.

En el Caṕıtulo 2 explicamos la metodoloǵıa numérica que usamos para simu-

lar el fluido que interactúa con los micro-nadadores. Una revisíıon completa del

método está puesta aqúı.

En el Caṕıtulo 3 mostramos que las suspensiones semi-dilúıdas de microorgan-

ismos en 3D pueden desarrollar movimientos colectivos tales como el alineamiento

polar y fluctuaciones gigante. Demostramos en éste caṕıtulo tambíıen que tanto

los movimientos colectivos como las fluctuaciones gigantes dependen de la señal

hidrodinámica de las particulas; además los sistemas con fluctuaciones gigantes

generan una distribución de tamaños de cluster donde el cluster macroscopico

aparece. Esta notable separación de fase emerge gracias a las interacciones hidro-

dinamicas que re-orientan y alinean a las particulas. NO es una separación de fase

debida a la reducción de velocidad cuando la densidad local crece.

Además, las suspensiones alineadas generan un movimiento super-difusivo a

tiempos largos. En éste caṕıtulo también contiene un estudio computacional com-

pleto de suspensiones de squirmers en 3D. Mostramos medidas globales de la

suspensión, parámetros globales como la fluctuación en la densidad, la velocidad

dependiente de la densidad o el desplazamiento cuadrático medio. Todas éstas

medidas nos dan información del comportamiento general de la suspensión.

En el Caṕıtulo 4 mostramos simulaciones de una suspension diluida de part́ıcu-

las esféricas auto-propulsadas atractivas, donde también se toma en cuenta la

hidrodinámica. Las part́ıculas están restringidas a moverse y orientarse parale-

las a un plano constante. Para empezar, observamos que dependiendo de la razón

entre atracción y propulsión, las part́ıculas se agregan formando clusters. En segui-

da, analizamos su estructura, comparando el caso cuando las particulas activas se

comportan como pushers o como pullers (siempre en la región donde las atrac-

ciones inter-part́ıcula compete con la autopropulsión). Finalmente, comparamos

los resultados obtenidos con un sistema que consiste de discos Brownianos auto-

propulsados en las mismas condiciones. Hemos encontrado que la hidrodinamica

controla el nado coherente entre los nadadores, mientras que los nadadores con

interacciones directas, modelados por un potencial Lennard-Jones, contribuye a

que los nadadores se cohesionen.

En el Caṕıtulo 5, desarrollamos simulaciones numéricas de suspensiones de

squirmers donde las particulas fueron confinadas a moverse solamente en un plano,

pero el solvente se mueve libremente en 3D. Vemos que el orden polar de la sus-
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pensión depende de la señal hidrodinámica y de las colisiones de las particulas

como en el caso no confinado, sin embargo debido a la restricción geometrica a

moverse en el plano, vemos que dependiendo de la forma de nado (pusher/puller)

estas se pueden alinear en paralelo o perpendicular al plano de nado. Cuando los

squirmers solamente se pueden re-orientar y están fijos en el plano encontramos

que el orden polar desaparece para todos los casos, pero el orden polar sigue pre-

sente en el plano de nado para pullers, mientras que los pushers son más estables

isotrópicamente.

Este alineamiento que emerge debido a el confinamiento de particulas fijas es

estudiado más sistematicamente, haciendo simulaciones para diferentes tamaños,

encontrando que el alineamiento emerge completamente debido a la restricción

de confinamiento y las interacciones hidrodinámicas entre particulas y no a un

efecto de tamaño finito. Debido a la constricción geométrica, nosotros también

mostramos el vector propio asociado a el orden nemático, para analizar si las

particulas se re-orientan normal o paralelas al plano de confinamiento. Dando

lugar al hecho de que pullers con posiciones fijas se alinean paralelamente al plano.

Finalmente en el Caṕıtulo 6 las conclusiones y las perspectivas a la continuación

del trabajo.





Appendix A

Identifying clusters

In order to detect the clusters in the suspension, we use the first minimum (rcl)

of the radial distribution function and identify particles within this distance as

neighbours belonging to the same cluster.

To start with, we compute the radial distribution function of a Lennard-Jones

fluid at the φ studied in the manuscript (for this purpose, we consider configura-

tions in the time interval when the system is in steady state.

In practice, two particles belong to the same cluster when they are closer than

a given distance rcl. Although the g(r) structure depend on the hydrodynamic

signature and the interaction strength, in figure A.1 we show that a value of

rcl = 1.8σ is compatible with all chosen values of ξ and β.

One important remark about the radial distribution function around rcl is that

g(r) is quite constant around rcl, the length of this valley in the g(r) relates the

distance between the first and the second shell of coordination. This bias in the

value of the first minimum does not affect in the identification of clusters. In

figure A.2, we show the cluster-size distribution functions for different values of β

at ξ = 1.8, using three different values of rcl = {1.3, 1.5, 1.8}σ. We can observe

that CSDs have in general the same power law with an exponential tail behaviour

for the three values of rcl. CSDs however, get a little bit wider as rcl increases.

But, as long as our choice of rcl is around the first minimum of the g(r), the cluster

size distribution does not depend on the exact value of rcl.

The figure A.2 also shown that the width of the distributions are more affected

for pushers than for pullers. Since pullers are more structured (longer peaks on

the g(r)) therefore the minimum is better defined.
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Figure A.1: Radial distribution functions g(r) for three different values of ξ =
{1.8, 6.03,∞}. The color of the curves is set as a function of β the greener the
curve, the more positive β value, whereas the bluer the curve, the more negative
the β value. Red line represents the value of r = rcl.

A.1 Values of ∆si used to compute f (s)

As mentioned in Chap 4, when computing the cluster-size distribution in order

to improve the statistics we group clusters with size within the interval ∆si =

(si,max− si,min), as in Ref. [87]. In Table A.1 we explicitly indicate all chosen ∆si
centred around s.



A.1. Values of ∆si used to compute f(s) 89

10−6

10−4

10−2

100
f
(s
)

β = −3.0, ξ = 1.8

10−6

10−4

10−2

100

100 101 102 103

f
(s
)

s

β = 3.0, ξ = 1.8

β = −0.5, ξ = 1.8

100 101 102 103
s

β = 0.5, ξ = 1.8

Figure A.2: Cluster-size distribution f(s) for values of ξ = 1.8. Black circles
correspond to rcl = 1.3σ, green triangles to rcl = 1.5σ, magenta stars to rcl = 1.8σ.
The chosen values for β and ξ are indicated in the legend.

Table A.1: Boundaries of the cluster-size intervals, [si,max, si,min], centred around
s.

[si,max, si,min] s [si,max, si,min] s [si,max, si,min] s
1 1 [36,45] 41 [451,600] 526
2 2 [46,55] 51 [601,1000] 801
3 3 [76,95] 81 [1001,1300] 1151

[4,7] 5 [96,120] 109 [1301,2000] 1651
[8,11] 9 [121,140] 131 [2001,3500] 2751
[12,15] 14 [141,200] 171 [3501,5000] 4251
[16,21] 17 [201,250] 226 [5001,7000] 6001
[22,27] 25 [251,300] 276 [7001,10000] 8501
[28,35] 32 [301,450] 376
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A.2 Size effects in attractive squirmer suspen-

sions swimming in a slab

Here we showed how size system affects to the morphology and to the cluster-size

distribution of interactive squirmers in a slab. The morphology is characterized

by the radius of gyration of the clusters while cluster-size distribution by the PDF

of the cluster-size. All the results are presented for four different βs and three

different interaction strengths.

A.2.1 Cluster-size distribution

In Figure A.3 we represent the cluster-size distribution for different values of ξs

and βs for two different sizes, N = 103 with solid symbols and N = 104 with

hollow symbols. Both systems with the same area fraction of φ = 0.1. There are

not finite size effects in the cluster-size distributions for ξ = 1.8 as we observe in

the top-left side of figure A.3 where the CSD’s for small systems matched with

the correspondent CSD for large systems, a similar behaviour can be found when

ξ = 6.03. However, for ξ = ∞ CSD’s match perfectly for small clusters but, for

big clusters CSDs for small systems are above the CSDs for big systems, as we

show in the bottom side of figure A.3. The mismatch at big clusters is clearly due

to finite size effects, since the formation of big clusters is mostly driven by the

hydrodynamic interactions, thus long range interactions.

A.2.2 Radius of gyration

In order to find structural differences among clusters for two different system

sizes, we start with analysing the radius of gyration. In figure A.4 we represent

the radius of gyration normalized by the particle’s radius for different values of

ξs and βs for two different sizes, N = 103 with solid symbols and N = 104 with

hollow symbols.

In general, there are not finite-size effects in the radius of gyration of the

clusters despite the value of ξ. All the curves of size dependence radius of gyration

match between small and large systems.
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Angular velocity

Angular velocity ω0 of a rigid body with respect to a set of axes with origin at O

is related with the inertia tensor I0 and the angular momentum L0 as [113]

L0 = I0 · ω0 (B.1)

where the inertia tensor is defined as:

I0 =

Np∑
k=1

(
mkr

2
k1−mkrkrk

)
. (B.2)

Let r and r′ be the position vectors of any particle P in the body relative to O

and the center of mass G respectively, and let R be the coordinate of G relative

to O, see Fig.B.1,

r′ = r−R. (B.3)

Thus we can define the inertia tensor of a rigid body relative to the center of

mass IG as:

IG =

Np∑
k=1

(
mkr

′2
k 1−mkr

′
kr
′
k

)
; (B.4)

and angular momentum Lg

LG =

Np∑
k=1

r′k ×mkv
′
k; (B.5)

where r′k is given by eqn.(B.3) and its temporal derivative is v′k.

Hence, we have that angular velocity with respect to the center of mass ω can
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� �

Figure B.1: Location of position P with respect to points O and G.

be written as:

LG = IG · ω (B.6)

We calculated |ω| for every cluster at each simulation. We diagonalized the

inertia tensor in eqn. (B.6) using the very well known method of Singular Value

Decomposition [114].

Angular velocity on fixed clusters

As a way of verification, we show in this note the angular velocity of a single cluster

for different cluster size, since we calculate the velocity of particles as vi = ω0×ri
at fixed ω0 = 0.001 k̂ (lattice units).

We construct clusters of different sizes N = {2, 3, 5, 6, 8, 80, 180} each clusters

is constructed as “polymer” where a particle i is putted randomly 2R + ε far

from particle i − 1 and all particles do not overlap each other. ε = 0.05(lattice

units) and R = 2.3(lattice units) The particles i = 0 is placed at the center of

the box, the box size is Lx = Ly = 400 and Lz = 26 as a way of simplicity we

fixed rz = Lz/2 for all the particles in all the cluster sizes. As we already said

vi = ω0 × ri with ω0 = 0.001 k̂. Hence, we expect as output an angular velocity

ω = 0.001 (lattice units), independently of the cluster size. The configuration of

the clusters is depicted in Fig.B.2. As we see, cluster polymer-like were used.

Angular velocity for different cluster sizes is depicted in Fig.B.3 where we can

see how ω = ω0 for all cluster size. Hence, the angular velocity that we expected

is accomplish.
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Figure B.2: Snpashots of clusters for N = {2, 8, 80, 180}.

Figure B.3: Angular velocity normalized by ω0 = 0.001 is shown here. Values are
exactly 1.
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