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Abstract

Chip multi-core processors (CMPs) are the preferred processing platform across different
domains such as data centers, real-time systems and mobile devices. In all those domains,
energy is arguably the most expensive resource in a computing system, in particular with
fastest growth. Therefore, measuring the energy usage draws vast attention. Current
studies mostly focus on obtaining finer-granularity energy measurement, such as measuring
power in smaller time intervals, distributing energy to hardware components or software
components. Such studies focus on scenarios where system energy is measured, and under
the assumption that only one program is running in the system. So far, there is no
hardware-level mechanism proposed to distribute the system energy to multiple running
programs in a resource sharing multi-core system in an exact way.

In this thesis, for the first time, we formalize the need for per-task energy measurement
in multicore by establishing a two-fold concept: per-task energy metering and sensible en-
ergy accounting. The former, for a task running in a multi-core system, provides estimates
on the actual energy consumption corresponding to its resource usage. The latter provides
estimates on the energy the task would have consumed running in isolation with a given
fraction of the shared resources.

Accurately determining the energy consumed by each task in a system will become
of prominent importance in future multi-core based systems as it offers several benefits
including (i) better application energy/performance optimizations, (ii) improved energy-
aware task scheduling and (iii) energy-aware billing in data centers.

We have shown how these two concepts can be applied to the main components of
a computing system: the processor and the memory system. In each, we have proposed
models to ideally meter and account the energy. And by trading off the hardware cost
with the estimation accuracy, we have obtained implementable and affordable mechanisms
with high accuracy. We have also shown how these techniques can be applied in different
scenarios, such as, to detect significant energy usage variations for any particular task and

to develop more energy efficient scheduling policy for the multi-core system.
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Introduction

Energy is becoming one of the most, if not the most, expensive resource in computing
systems. This trend will continue as the price of energy continues to rise, increasing in

recent years by up to 70% in several European countries [28].

e In a large-scale computing facility (LSCF), energy for computing already accounts for
20% of the total cost of ownership [8,39]. In addition, the Power Usage Effectiveness
(PUE) is still above 2.0 in most LSCF's in the year 2015 [24,38]. This metric compares

the energy used on the computing facilities with the total energy consumed including

total energy

other facilities such as power delivery and cooling system: PUE = Computing energy’

Thus, the energy cost doubles if we consider all the facilities in LSCFs, implying
that the total energy-related cost is already in the same order of magnitude as the
hardware-related cost (servers), which dominates the cost of ownership. Addition-
ally, while server cost has remained almost constant over successive generations,
energy cost is expected to rise [8]. In fact, in terms of power, current facilities con-
sume several megawatts, enough to power small towns [6]. Meanwhile, in terms of
energy, worldwide energy consumption attributable to servers and data centers is
estimated to be above 200 billion £Wh annually in 2010 [63].

e Energy demand is also an issue for home computers. A typical desktop computer
may use in the order of 100-200 Watts (the particular figure depends on the type
of computer and peripherals) whereas laptops fit in a lower range (60-100 Watts).

The energy cost of running a computer can be computed as WattSXHlOO%%S Of Use

Cost per kW h. Assuming that a computer runs for 15,000 hours during its lifetime
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(around 28 months nonstop) with a cost of 22.1 cents per kWh (household), the
energy cost of a 150W desktop is $497. This figure already represents a significant

fraction of the purchase cost of a computer.

e Energy is also critical for the mobile embedded systems, as the computing power
of hardware keeps growing whereas the energy densities of the battery technology
comparatively slowly grows. Estimating the battery duration of the device with a
set of applications running, based on the energy delivered by the battery for a given

size and weight is essential for device design.

The so called power wall and Instruction Level Parallelism (ILP) wall have been shown
to be the major obstacles to maintain the historical rate of performance growth in comput-
ing systems [15,41,79,85,112]. In this line, multi-core and many-core design paradigms
have enabled the growth of throughput performance despite the dramatic slowdown in
clock speed growth. Multi-core designs offer improved performance per Watt — for similar
single-core solutions — for workloads that can make use of multiple cores. However, its es-
tablishment as the de facto hardware paradigm across most computing domains, together
with increasing core counts in each new generation, makes energy consumption in such
complex system difficult to be measured at a fine granularity (e.g., per task). Thus, in the
current energy-sensitive environment, accurate attribution of energy contribution needs
more sensible understanding and study.

Take the scenario of LSCFs where energy already dominates the operational cost for
example: In the age of non-virtualized systems, service providers normally charge users
based on the time they have used the facility. In this case, as stated in [53], once a
user instance received some physical resources, no other user would be able to share those
resources. In such a situation, time is indeed money; so, even if the user instance isn’t
using the allocated resources, it would make sense to charge the user a flat, per-hour rental
rate, because once a set of resources is tied up, the owner can’t make rental income out of
those resources from any other waiting customer.

Today’s LSCFs providers, cloud-computing for example, serve the customers with ser-
vices based on different models, such as the Infrastructure as a Service (IaaS), Platform
as a Service (PaaS) and Software as a Service (SaaS). While in the basic IaaS model, the
physical machines are still offered along with virtual machines (more often). The trend is
to provide customers highly virtualized online service instead of direct hardware resources,
such as PaaS and SaaS. Current cloud-computing providers such as ElasticHost [26] and
CloudSigma [21] provide computing power in the form of IaaS. They use similar pricing

models, which has been concluded in [74] as follows:
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In this model, customers are offered with the flexibility to choose a specific CPU
frequency fcopy which stands for the demanding computing power of the processor, and
the memory size RAM;,.. they are For other resources, they can be priced using the
same methodology, but they are ignored in this formula to simplify the discussion. Based
on the customer’s selection, the corresponding price is calculated with fixed rates Pyyse,
Popy and Prapn. Prgse is the basic price when the minimum CPU capacity fpese and
RAM;;e,,.. are used. With the extra demand on computing capacity and memory size,
the price P,,, that customer has to pay also rises.

Note that in this case, the boundary between the physical machine and the virtual
machine is already unclear. For example, given that customer needs 10GHz CPU fre-
quency, and the per-processor computing power in the infrastructure is 3GHz. We can
either presume that the demanded 10GHz CPU frequency can be divided into 3 phys-
ical processors entirely, and the rest 1GHz falls into a virtual machine to be placed in
any shared processor. Besides, the whole demanded CPU frequency is placed into several
virtual machines that the operator can smartly schedule in the infrastructure to maxi-
mize the actual resource usage and optimize the overall power and energy consumption.
In most cases, the latter one is clearly the preferable choice. Providers benefit from the
virtualization of the hardware resources, since they can charge multiple users sharing the
hardware resources. As claimed in [53], in this new scenario, the owner has no reason
not to move to an energy-aware accounting system based on actual resource usage; [...] A
built-in energy-accounting system could guide the workload management system to make
scheduling decisions that result in safe, more efficient workload consolidation.

From the customer side, energy accounting is also beneficial. For example, if such a
system is presented, it can help them to demand proper services to satisfy their need and
budget. Most importantly, they will receive billing with higher fairness and accuracy for
running their applications. Nevertheless, the benefit of being energy-aware is not limited
to this LSCF case, and application can be easily found across all computing domains.

As energy already draws attention from the community, there have been abundant
energy-oriented studies. In these works, researchers focus on refining the energy measure-
ment in different perspectives, such as hardware and software based energy measurement
in each small time interval, energy and power profiling for programs and systems, energy

consumption breakdown in hardware components and program blocks, etc. [14,27,105].
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Figure 1.1: Power consumption of SPECCPU 2006 benchmarks on a PS701 system with
an IBM POWERT processor

However, despite the fact that multicore processors have been pervasively used in almost
all computing domains in which multiple tasks' can simultaneously run, to the best of our
knowledge, no mechanism has been proposed to accurately measure the energy consumed
by each task in multicore architectures.

Current approaches to measure tasks’ energy consumption assume computer system’s
energy is evenly distributed across all running tasks, as if all of them were using resources
homogeneously. However, different applications may easily incur vastly different resource
utilization in the shared resources. Such heterogeneous resource utilization translates into
heterogeneous power dissipation per application, and therefore, simply dividing energy
evenly across running tasks is neither fair nor accurate enough.

To elaborate on the need of accurate per-task energy measurement, Figure 1.1 shows
the average power dissipation when executing all the SPEC CPU2006 benchmarks on a
POWERT-based system [58]. As shown, different tasks incur different average power dis-
sipation, with the maximum variation being 16%, between 453.povray and 410.bwaves.
Hence, if a povray-like and a bwaves-like program execute undisturbed in a computing
system for a period of time, they will incur significantly different energy consumptions.
However, the same amount of energy would be attributed to each, which sum up to the

total energy consumption of the system. Note that workloads in this example are fairly

'In this thesis, we use the term task to refer to hardware threads belonging to a single-threaded
application. And the term workload refers to a set of co-running tasks.
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Figure 1.2: Memory power of some SPEC CPU 2006 benchmarks running alone on an Intel
Sandy Bridge server, with 8 cores and a 64GB DDR3-1600 memory running at 0.8GHz.
Power is obtained using the Running Average Power Limit (RAPL) interfaces [50]. FitPC
external multimeter is used to measure wall power. We correlate wall power data with
the data collected from the hardware energy counters using time stamps. Representative
benchmarks were selected based on previous characterization studies [51,94].

homogeneous given that they correspond to a single benchmark suite in this case. More
heterogeneous workloads including database processing, I/O-intensive applications as well

as high-performance ones will exhibit even higher power variations.

Similar trends can be observed on different platforms. We have also performed an
experiment with several representative SPEC CPU 2006 benchmarks running on an Intel
Sandy Bridge server. In this experiment, we focus on the average memory power during
their execution, which represents between 24.6% and 33.9% of the total systemrpower. It is
comparable to the entire processor power: on average, the memory system only consumes

6.3% less power than the processor.

Figure 1.2 shows the average memory power consumption of each benchmark when
executing in isolation on the system. Different tasks incur different power consumption,
with the maximum variation being 54%, between 482 . sphinx3 and 462.1libquantum (from
25.7TW to 40.4W). Hence, libquantum-like and sphinx3-like workloads executing for the

same amount of time would incur significantly different energy consumption.
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It is our position that accurately measuring the energy consumed by each task in a
computer, instead of considering only the whole energy consumed by the computer, will
have plenty of important applications. These applications will not only improve the energy
usage attribution in the multicore system, but also enable optimizations on the design
and management of computing systems. As a matter of example we list the following

applications:

e In LSCF, the energy cost is already dominating the billing. For example, consider
the cloud computing provider Cloudsigma [21]: the unit price is 2 cent per hour
for a CPU running at 2.5GHz. Assuming an average 50W power consumption and
12.8 cent per kWH electricity price (industry), the energy cost is 30% of the bill
without accounting the energy spent in other facilities (12.8-50/1000 = 0.6 cent per
hour). With such figure, users’ billing without considering energy cost cannot be
fair. Especially in multicore systems, according to our study in Chapter 4, the energy
that a task consumes when it co-runs with different tasks can vary in the range
of [-25%,40%)]. Despite this variability, it is our position that when a customer
requests the same computing power to run the same task using the same input,
the same energy cost should be accounted. Based on that, the provider should

consistently charge the customers with the same billing.

e During the design of multi-core and many-core architectures, the per-task perfor-
mance and system throughput have been mainly taken into account. However, the
impact on per-task energy has been somewhat ignore. If the energy consumption of
per-task can be measured, the energy efficiency of using multicore processor can be

quantified, and more energy efficient design can be devised.

e For computing systems in different domains that use multi-core and many-core pro-
cessors, collocating tasks with different power needs in the nodes must be done in
a way to maximize their performance while minimizing energy consumption. In a
given node, allocating appropriate resources to tasks and regulating the frequency/-
voltage level to reach the optimal tradeoff between their performance and energy

consumption has also prominent importance.

1.1 Thesis Contribution

In pursuance of building energy-aware multi-/many-core systems, numerous efforts are

needed in different perspectives. In this thesis, we focus on the per-task energy measure-
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ment, as needed by fair energy accounting and system optimization.

In particular, we divide this topic into two distinct concepts: for a particular task, 1)
measuring its actual energy consumption in a given workload; and 2) estimating its energy
consumption with a given allocation of resources.

Since modern computer components are implemented with diverse techniques and de-
signs, and thus have different structures and organizations, we propose techniques for the

on-chip resources and off-chip memory subsystem separately in this thesis.

1.1.1 Per-Task Energy Metering (PTEM)

First, we propose Per-Task Energy Metering (PTEM), which is a measurement of the
actual energy consumption one task has during its execution in a multi-core architecture
where the resources are shared with other tasks. We define this concept formally as follows:

Given a workload composed by n tasks T;,T5, ..., T, running in a processor with m
hardware threads (e.g., m single-threaded cores), Per-Task Energy Metering consists in
tracking the energy that a given task, T;, consumes during a given period of time. This
requires metering the energy a task 7; consumes in private hardware components (i.e.
components only used by the task at a given point in time) for instance, the single-threaded
cores in a multi-core CPU, and shared resources, such as Simultaneous Multi-Threaded
(SMT) core and shared L2 or Last Level Cache (LLC).

The difficulty with shared resources resides on the fact that they can serve requests
from different tasks concurrently, and each request type may generate different internal
activity in the resource with variable duration. This seriously challenges per-task energy
metering. Current methods for energy metering focus mostly on time-shared resources
(e.g. CPUs) and are based on usage time and allocated resources. This may be adequate
if static power dominate the total power consumption. However, this is no longer true
with the shift towards energy-proportional systems [5] where most of the energy consumed
by an application — and hence, its cost — is due to its activity. Hence, in an energy pro-
portional system two customers that incur different utilizations across similarly allocated
resources for similar usage time, will be accounted the same energy consumption while
in reality their energy consumption profiles can be quite different. In [53] authors run
several homogeneous programs in isolation on the same platform for a fixed period of
time. Results show that power dissipation across these homogeneous programs with simi-
lar resource and time allocation may vary more than 20%. More heterogeneous workloads
including database processing, I/O-intensive applications as well as high-performance ones

exhibit higher power variations.
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Our view is that, the energy metered to a given task should be proportional to its
resource usage. This includes the number and type of accesses to the different resources
and, for stateful resources (e.g., Branch Target Buffer, caches and Translation Look aside
Buffer (TLB)) the fraction of the space occupied by the task. The accuracy of per-task
energy metering depends on the characteristics of the hardware resources used and the
hardware support enabled for energy metering. Note that when we have per thread energy
metering, energy for multi-threaded applications simply consists in adding up the energy

consumed by each of its constituent threads.

1.1.2 Sensible Energy Accounting (SEA)

PTEM provides a way to measure the real energy a task consumes in the computer.
However, the energy metered to a task in a given system, despite it has the same input
set, varies depending on other tasks that are running at the same time (co-runners). Apart
from being able to measure the energy consumed by a task, we also aim at maintaining the
same Principle of Accounting that holds for execution time (a.k.a. CPU accounting) [76]:
the energy accounted to a task should be independent from the workload in which this
task runs. Several runs of the same task with the same input should — theoretically —
result in the same energy consumption and hence the same charge in a data center.

Therefore, we propose Sensible Energy Accounting (SEA) to fairly account a task a
constant amount of energy as if it has been assigned a fraction of resources to use in
the computer, regardless of the concurrently running tasks. We define SEA formally as
follows:

Let us assume a workload composed of n tasks T, 15, ..., T, running on a processor
with m hardware threads (e.g., m single-threaded cores), SEA consists of estimating, for
a given task T;, the energy that it would have consumed if it had run in isolation with a
given fraction of the hardware resources denoted fhr. Thus, SEA does not give the actual
energy consumption of a task, but rather an abstraction of the energy consumption that
the end-user can rely on to be fair and consistent.

The main challenge for SEA is how to compute the energy for any task and any valid
fraction of the resources, despite the fact that a particular task may incur different activ-
ities in different workloads due to interactions with co-runners, and such variation makes
its performance fluctuate. This effect makes energy consumption hard to account since
it cannot be extracted directly from the energy measured. Our view is that, accurately
accounting the energy to a task for a particular fraction of resources depends on precise

estimation of activities and execution time this task should have incurred.
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1.1.3 Future Impact of PTEM and SEA

We consider both concepts are key to provide clarifications on the per-task energy usage,
from the perspective of actual workloads and feasible allocations of resources. We consider
that PTEM and SEA can be separately used or combined, but in any case they will have
several important applications across different computing domains. We show some cases
where PTEM and SEA can apply to:

e Selection of appropriate co-runners. Task interaction in hardware shared resources
may negatively affect tasks hurting performance and increasing energy requirements.
PTEM and SEA can help the OS scheduler or a runtime-based scheduler to decide

which tasks must be run and when, thus reducing the total energy profile.

e Energy/Performance optimization. While allocating more resources to a program
may make it runs faster, it could also increase its power consumption, and vice versa.
Thus, the net effect on how the total energy profile relates to the resource allocation
is unclear. Accurately measuring the energy consumed in different processor (e.g.
number of cores) and software (e.g. scheduling) setups will justify their effectiveness
in energy-saving. Sensibly accounting the energy consumed per task would allow
finding the optimal setup that leads to the lowest per task energy consumption, and

thus the lowest system energy consumption (shown in Section 6.6.2).

e DBilling in data centers. Data centers charge users for the use of their resources.
The fact that costs will be dominated by energy, makes billing systems more and
more energy-centric, so that part of the bill is directly dependent on the energy
consumed by users’ running jobs. Measuring the energy each task consumes, rather
than evenly dividing the cost of energy among running tasks, would allow data
centers to accurately account the energy cost. Sensibly accounting the energy each
task consumes under a given fraction of resources would give a fair billing upon their
energy profile. Such methods can facilitate the energy cost integration in different
service models, even with higher abstraction levels such as SaaS and PaaS. Since
the execution of each virtual machine instance can be tracked, the energy in that

physical node can be metered and accounted using PTEM and SEA.

1.2 Thesis Structure

The structure of this thesis is organized as follows:
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Chapter 2 introduces the state of art of energy/power measuring and profiling tech-
niques in computing systems. We abstract several important concepts to show how
our work is different from them, and how we advance this topic from a new perspec-

tive.

Chapter 3 introduces the simulation framework we used in this thesis. We give a
detailed description of our architecture and power simulator. Also, we have also

introduced the benchmark suite and metrics to evaluate our proposals.

Chapter 4 has made a case of accurate PTEM for on-chip resources. We propose
an idealized reference model to perform accurate PTEM based on the resource uti-
lization of each task. A simple, yet accurate, implementation of such approach is
also proposed. The focus is the main shared hardware resources in current multicore

processors, including SMT core and LLC.

Chapter 5 introduces the PTEM model in DRAM memory system and an efficient
implementation of such method. A case study, in which the SPEC CPU 2006 bench-

marks have been characterized using the proposals is also presented.

Chapter 6 develops the concept of SEA from a theoretical point of view and dis-
cusses how it can contribute to different computing domains. Then, a low-overhead
hardware mechanism to obtain SEA for on-chip resources in a multicore architecture

is presented.

Chapter 7 makes a case of SEA model in the DRAM memory system when one task
has been assigned different fraction of resources on the chip. The interactions of
memory requests in the memory controller and DRAM devices have been analyzed.

A practical and low-overhead implementation is also proposed.
Chapter 8 concludes the work in this thesis and shows directions for future work.

Chapter 9 lists the publication related to this thesis and during the PhD study.



Related Work

Nowadays, modern microprocessors integrate in the order of billions of transistors on chip
and operate at a frequency of several gigahertz. The power wall has already become
a major obstacle in satisfying the growing computational needs. The multi-core/multi-
threaded design paradigms have enabled the growth of throughput performance despite
the slowdown in clock speed growth. Nevertheless, power dissipation and current delivery
limitation make it hard to keep scaling indefinitely along the dimension of on-chip thread
count. Therefore, accurate measurement and profiling of the energy/power consumption
is needed so that future systems can optimize the power dissipation to better convert the

electrical power into computing power.

In this chapter, we show the state of the art in the power/energy consumption mea-
surement and profiling in computing systems. First of all, we introduce the energy con-
sumption taxonomy, based on which, we elaborate the classification to better fit our needs.
Then, we review several studies on how to abstract the energy of the devices using dif-
ferent means. In the fields of energy or power profiling, we illustrate works on different
categories including: power characterization of computing systems, hardware components
power consumption breakdown, and software component energy breakdown. In the con-

text of these related works, we can see how our contributions advance the state of the art
in this field.

11
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2.1 Energy Consumption in Computing Systems, A

Taxonomy

Within a given computing system, energy stands for the source which powers the hardware
devices to operate. The standard measurement of energy is Joules, directly reflecting the
electricity cost. And power is the rate at which the energy is consumed, and is measured
in Waits which corresponds to Joules per second.

The distinction between energy and power is key to understand per-task energy mea-
surement in multi-core architectures. For instance, when several tasks run concurrently
in a multi-core system with abundant shared resources, the power dissipation of one task
is most probably reduced compared with the case when it runs alone in the system. How-
ever, the energy consumption incurred by its execution is undetermined because of the —
likely — prolonged execution time. In this thesis, we study the energy consumed by tasks
when running in resource-sharing multi-core systems, by analyzing the power each task
dissipated in time intervals during their execution.

In digital Complementary Metal-Oxide-Semiconductor (CMOS) technology, the energy
consumption mainly comes from three resources: a) The logic transition that makes the
current flow through the transistors. This occurs when the circuit transitions back and
forth between the two logic levels. The electrical energy is consumed by the parasitic
capacitances and resistance of transistors. b) The short circuit current that flows directly
from supply to ground when the n-subnetwork and the p-subnetwork of a CMOS gate
both conduct simultaneously. c) The leakage current between the source and drain of
transistors. In former studies, they have been commonly categorized into dynamic power
and static power [73,113]. Specifically, dynamic power includes power dissipated by the
logic transition and short circuit current, and static power refers to the power dissipated
by leakage current. However, such classification, although has been conventionally used
to study circuit and system power consumption, does not fit our need to attribute the
energy consumption to tasks since we need more precise categories. Therefore, for the sake
of clarity, we break down the energy consumed in a computing system into three main
components: dynamic active energy, dynamic maintenance energy and leakage energy.

These terms are consistently used in this thesis.

e Dynamic active energy corresponds to the energy consumed performing those actions
needed by the instructions executed, such as the energy used to read a register or
to issue an instruction. When considering the energy consumed during a given time

interval, we can also express as the dynamic active power, which may vary along



2.1. ENERGY CONSUMPTION IN COMPUTING SYSTEMS, A TAXONOMY 13

time.

e Dynamic maintenance energy corresponds to the energy wasted in useless activities
not triggered by any particular instruction, for instance, the significant clocking
power that is consumed in idle blocks. Similarly, many SRAM arrays such as cache
memories precharge some bitlines every cycle in order to speed up accesses. However,
such activity is useless if no access occurs [16]. Note that the energy consumed due
to an access corresponding to a useless instruction (e.g., a misspeculated instruction)
is considered as dynamic active energy despite such activity is useless because the
action has been triggered by the instruction under execution. Due to the fact that
these useless activities constantly consume energy during the whole system active
period, dynamic maintenance energy can also be expressed as dynamic maintenance

power in most cases.

e Leakage energy corresponds to the energy wasted due to imperfections of the tech-
nology used to implement the circuit. Thus, it includes all energy wasted due to
undesired leakage current and parasitic current from supply to ground. Leakage
energy persists whether a computer is active or idle, since the leakage and parasitic
current flow through transistors even when the transistors are turned off as long as
they are powered up. Thus, leakage energy consumed in a given time interval can

also be expressed as leakage power.

Bear in mind that dynamic active and maintenance power are both derived as a su-
perset of logic transition and short circuit current in the CMOS circuit, and they can be
summed up to dynamic power. In this sense, our study can be easily aligned with former
studies. Breaking down dynamic active and maintenance energy is useful in our context
since it avoids mixing the energy consumed due to the activity triggered by the instruc-
tions executed and the energy that cannot be attributed to any task, especially if several
of them are running. Dynamic maintenance power has been recognized as platform power

in some other works [102].

For the studies related to hardware analysis, the focus is mainly on power consump-
tion since it is a direct reflection of the device computation power and sensitive to the
thermal capacity. In contrast, for software related studies, the focus is instead on the total
energy consumed by the piece of software that is executed. In the following sections, these

terminologies are carefully distinguished.
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2.2 Computing System Power Measurement

Obtaining power figures of complex, highly-threaded multi-core system is a difficult chal-
lenge. The effort invested on this task is large. The most common approaches can be
classified as either direct power measurement or indirect power measurement, although

some studies have considered a hybrid approach to obtain improved results [43,48].

2.2.1 Direct Power Measurement

Direct hardware-based power measurement consists of measuring the current and supply
voltage level on a particular component, for instance, the processor and the memory
system. Then the measured values are used to compute the power. Such measurement
requires different types of meters, some specifically designed circuits embedded in the
platform, and power sensors inside the device.

Meters measure the power dissipation of the device in a straightforward way by con-
necting them between the power supply and the measured component. However, the
widely used digital multimeter [55] or AC power meter [109], sample the measured device
at a coarse granularity, normally at around 1 Hz.

Direct power measurement typically needs specialized device support, as explained
in [105]. Nowadays, most of the servers have the service processor designed inside, which is
a hardware and software integrated platform that works independently from the processor
and the operating system. The service processor uses the power sensors to monitor the
power, and voltage and temperature sensors to refine the measurements [43,48]. The
monitored results are read through an interface by the controller to provide the data
to the operating system. The information can be used by the software to optimize the
performance, power and energy efficiency. Furthermore, such hardware/software support

also allows promoting the sampling frequency up to 3kHz [27].

2.2.2 Indirect Power Measurement

Indirect power measurement can be performed on a simulation platform or at runtime
inside the operating system. Thus, measurements are less accurate. However indirect
power measurement does not need specific hardware support such as the service processor,

and can better correlate the power with the performance of the device.

Hardware-level power model. In the case of microarchitecture simulation, normally

a hardware-level power model is used [65,91]. As described in section 2.1, the classical
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breakdown of energy in CMOS circuits includes dynamic power and static power. For a
particular hardware device, or a component in the processor, the power can be derived

with the following two formulas:

denamic =C- VdZd 'Oé'f (21)

Pstatic = Ileakage : Vdd (2'2)

where C' stands for the load capacitance, Vy, stands for the supply voltage, a represents
the activity ratio on the hardware device, f is the clock frequency and Ijcqkage stands for
the leakage current of the circuit. Such low level models are arduous to use in architectural
studies since the low level details are hard to derive for all components, thus making the
estimation inefficient and costly. Wattch and CACTI tradeoff the estimation accuracy
with simulation time by flexibly modeling the structure of each component with a general
purpose model [16,87]. Such characteristic helps them being pervasively used in research
studies. In many cases, these models are compared against approaches using circuit-based

mechanisms.

Software-based power model. Although the hardware-level models can provide very
accurate but time-consuming power information, the online power estimation often relies
on the software-based models. Such models use performance statistics supplied by the
operating system, where multiple indicators are used to reflect the hardware states and
task execution. The selection of indicators is normally based on tuning the estimation by
comparing with real system power and the result of hardware-level models [7,11,12,14,36].
In general, these models rely on collecting data from a set of events counters, voltage and
temperature sensors, with coefficients derived from an empirical linear regression model.
Depending on the system under study and the purpose of the power estimation (e.g.,
analyzing a hardware component, a process in the operating system or a program phase)
different sets of events may be chosen. Note that in the software-based models, the term
event may not directly map to the Performance Monitoring Counters (PMCs), but may

also be a calculated metric, such as the Instruction Per Cycle (IPC).

Power model abstraction. In both cases, when estimating the runtime energy con-
sumption, the power models can be generalized as analytic functions of a set of parameters,
where the power consumption incurred by the execution of a program is derived based on
their correlations. Therefore, in a system with J major components, each with I events

count, the runtime power is computed as follows:
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J I;
Power:ZBjx SPjXTj—I-DPjXZJ:a;xe; (2.3)
j:l i=1
where SP; and DP; stand for the pre-calculated static power and dynamic power of
component j. T} is the activated time of component j and ez- is the event count obtained
for j. o and f3; stand for a set of coefficients derived through a linear regression model.
The same formula can be applied to software-based models, the difference is that, J
refers to a set of selected indicators in any particular use case, each with I as event count.
SP;, DP; are derived through a linear regression model as well as ozé and f3;.

Note that we have used the approach based on the hardware-level power model in our

simulation framework.

2.3 Energy and Power Profiling

2.3.1 Processor power consumption characterization

The power and thermal characteristics of a processor are essential for designing its power
delivery system, packaging, cooling, and power/thermal management schemes. For such
purposes, the maximum power and thermal profile of a processor need to be studied. In
the following works, a set of micro-benchmarks — known as power virus — are designed to
stress the processor to its peak power.

In [56], the concept of maximum power consumption has been refined into maximum
sustainable power and maximum single cycle power. The mazimum sustainable power is
the maximum power of the processor that lasts for a time interval that is adequately long.
Accurately characterizing it is important as it guides the design of the power delivery
system and the packaging requirements for the microprocessor. Similarly, the mazimum
single-cycle power is the maximum power that can be consumed by the processor during
one processor cycle. It holds an important key to estimate the maximum transient current
that can be drawn by the microprocessor. By taking into account the information on
instructions, input data and architecture details, this study generates micro-benchmarks
and tests the above characteristics of a particular processor setup with simulation.

In [10], Bertran et al. present a tool to generate micro-benchmarks to explore the maxi-
mum power consumption of a real machine. With configurable low-level micro-architecture
semantics knowledge of the machine, a taxonomy in terms of energy per instruction (EPI)

and processor activity characteristics has been developed. Using such information, authors
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use a compiler-like pass-based code generator to provide flexibility and full control of the
micro-benchmarks generation.

Using the same methodology, Kestor et al. [61] characterize the on-chip memory hier-
archy by designing a set of micro-benchmarks that move data through different levels of

cache.

2.3.2 Hardware component level power consumption breakdown

In recent years, there has been an increasing interest in breaking down the power con-
sumption to different hardware component levels in different environments from data cen-
ters [9,59] to smartphones [17,20,90,92]. Those detailed power measurements improve the
characterization of the hardware device, and thus the future designs and implementations
can improve the power/performance characteristics of the system.

Many proposals [14,17,82,90,92,95] estimate the overall system energy consumption
within the software using similar PMC-based approaches as introduced in 2.2.2, and then
break it down across the different hardware components at a coarse-granularity, such as
the processor, memory and screen. POWERT processor uses power proxy [32,48] where the
monitored power estimations divided among each core. Such model uses as a proxy around
50 dedicated hardware counters, along with voltage, frequency and temperature sensors.
Similar firmware is also implemented in Intel Sandy Bridge architectures power manage-
ment module to break down the power consumption of the system [99]. That firmware
uses 100 PMCs for active power distribution, and voltage and temperature sensors for

static power distribution.

2.3.3 Software component energy consumption breakdown

From the software side, refining the runtime energy measurement during program’s exe-
cution in a given platform is also a research hotspot. Several studies focus on attributing
energy to the execution phases or blocks of a running program.

Performance and power vary through the execution of a program. To better analyze the
program power behavior and optimize power usage, timing-based power behavior profile
is required. Similar to Simpoint [103], techniques based on the basic block vector compare
the similarities between different time intervals, to find the representative ones [44]. Based
on this, Hu et al. [45] proposed a technique to find the representative phases in a given
time interval by incorporating the control flow and runtime events profiles.

Systematic profiling tools characterize the program runtime behavior in different ways [54,

67,70,75,97] (e.g., sampling events like stack traces, hardware events, etc.). By cross-
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correlating this information with the executable binary, these tools can locate the hottest
process, routine, code regions, library/kernel calls, and measure the performance across
different compilations and/or platforms. By correlating with online power measurements,
such tools can also enable fine-granularity distribution of the energy.

Shen et al. [102] proposed a request-level OS mechanism to meter power consumption to
each server request based on PMCs [7]. The authors consider both active and maintenance
power and attribute it to the responsible server requests. However, the per-task energy
estimates obtained with this approach cannot be accurately obtained since, as stated by
the authors, “Request executions in a concurrent, multi-stage server contain fine-grained
activities with frequent context switches, and direct power measurements on such spatial
and temporal granularities are not available in today’s systems”.

In a given time interval during the execution of a program, its power consumption is
determined by the bunch of instructions that execute through the pipeline, which may
be of different types, exhibit data dependencies, incurred different activities, etc. Tools
like Linux perf [70] and oprofile [54] can identify an executed instruction periodically, and
thus allow locating a coarse code region where this instruction resides. By correlating
such techniques with the power consumption sampling, authors in [69] attribute power
consumption of each sample period to the basic block where the sampled instruction resides
in. Conversely, authors in [68] propose to estimate the instant power consumption at
runtime by pre-characterizing the power that could be consumed by each basic block. Their
estimation not only takes into account the instruction types and mixes, but also explores
the inter-block effects to recalibrate their estimates, which is enabled by fine-granularity
simulation. However, the power of the processor is determined by the activities of basic
blocks executed together in a time window, denoted as superblock [40,49]. Superblocks
has diverse combinations of basic blocks, thus, for an application with complicated control

flow, it is infeasible to pre-determine the power consumption in advance.

2.3.4 Current per-task energy measurement models

The above studies have shown to be very accurate in profiling per-component and overall
system’s energy consumption. However, the hardware-level approaches focus on breaking
down the energy to the main hardware components, in which only the activities in the
hardware have been taken into account. The task-level interactions, either from the op-
erating system or the Task-Level Parallelism (TLP) on the hardware, have been ignored.
Therefore, these approaches do not fit for per-task energy measurements. In contrast, the

software-component approaches can only be performed under an important assumption:
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the application is the only one scheduled on the processor and it is accounted all the en-
ergy consumed in the system, which allows performing the component-level breakdown. In
the scenarios where multiple tasks concurrently run, these approaches fail to abstract the
task energy from the energy consumed in the system. In summary, the former introduced
studies are denoted as Per-Component Energy Metering (PCEM).

Next, we analyze the mechanisms for per-task energy measurement that can be derived
from current multicore and multi-threaded systems. In modern multicores, the total energy
consumption of the system and its main components can be monitored or accurately
estimated during a long-enough time interval. In the scenarios where N tasks 77,...,Tx
are concurrently running, the goal of per-task energy measurement is to distribute the
energy among them. A simple and naive method is to evenly split the energy to the
running tasks, which we denote Fvenly Split (ES) model. Unfortunately, this is the most
commonly used method nowadays as task-level hardware activities are not easy to identify
in general and per-task energy measurement did not draw enough attention until recently.

Thus, for a given task in ES model, the energy assigned to it is calculated as follows:

J
ej _ Energyioal

E R - 2.4
nerqy; N N (2.4)

j=1
where e; stands for the energy consumed in each component, and the sum of all these
values corresponds to the total energy consumption of the system Energyiotai-

To take one step further, we can correlate some available task-level metrics with the
energy attributed to the running tasks, e.g., the committed instruction count of each task
and other PMC values. These task-level metrics roughly indicate the usage of the hardware
resources done by each task. We denote this approach Proportional To Access (PTA).

Note that we have to derive the PTA model separately in different hardware structures,
mainly the core, LLC and memory system. In the case of the LLC and memory, PTA
is a simple approach that distributes energy to tasks proportionally to the number of
accesses to each structure. In current processors, per-task LLC and memory accesses
can be monitored with performance counters [58]. In contrast, the core slices have many
components that can incur diverse activities. Thus, from the set of available PMCs, an
empirical linear regression model is used to correlate the energy consumption with tasks.

Thus, for the PTA model, the energy attributed to a task 4, can be formalized as

follows:

J i
a’

Energy; = Energyota X <ﬁj X J) + « (2.5)
Jj=1
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where Energiiorq stands for the energy consumed in the system, aé stands for the activity

N

count task i has in component j, and ) _; :

a

—; aj stands for the sum of activities in component

j.- Bj and a are a set of coefficients derived from the linear regression model. Note that
both ES and PTA models are closed-loop methods, since we perform the attribution of
energy based on accurately monitored system energy.

It is our position that existing methods in current systems will not go beyond the scope
of these two models. However, such models lack the capabilities to deliver accurate per-
task energy estimates. In order to obtain more accurate estimates in multicores systems,

we need support from the architecture level.

2.4 Summary

In this chapter, we have described the state of art on energy measurement in current com-
puting systems. Directly measuring the power of the computing system demands external
devices. This measurement represents the actual power consumption, but it does not pro-
vide enough information to estimate per-task energy measurement. To approximate this
measurement, indirect approaches have been proposed based on performance monitoring
counters. Such solutions have also inspired further studies on breaking down the energy
to different components, both in the hardware and software level. However, as multicore
processors have already become the reference platform in almost all computing domains,
to the best of our knowledge, no model has been reported to accurately provide per-task
energy measurement.

Per-task energy measurement can be easily distinguished from the former works, since
all these studies are focused on the energy consumption of the whole system. The propos-
als on per-task energy measurement in this thesis aim at providing much more accurate
information and concrete models to solve the ambiguities in distributing energy consump-
tion of a computing system to its multiple running tasks. We will show in the following
chapters that it is not trivial to achieve such goals. With simple and naive models that
can be plainly derived, such as ES and PTA, none of them can estimate per-task energy
consumption with satisfactory accuracy. In contrast, our proposals, PTEM and SEA,

significantly advance the state of art in this field through hardware approaches.



Experimental Framework

In this chapter, we describe the simulation framework we use to implement and validate
our PTEM and SEA proposals. To this end we build on a set of cycle-accurate architec-
ture performance simulators, power simulators, and benchmark suites. Combining those
elements we build our own experimental methodology, which we complement with the

approppriate metrics to evaluate PTEM and SEA.

3.1 Simulation Framework

Simulation has shown to be a powerful and efficient tool for research in the computer ar-
chitecture field. Simulation is used pervasively in both academic community and industry.
In particular, microarchitecture simulation has been widely deployed in the computer ar-
chitecture arena. The main advantages of microarchitecture simulation are as follows: a)
those simulators are capable of modeling different levels of architecture details and setups;
b) with reasonable tradeoffs between execution time and simulation detail, those simula-
tors can achieve highly accurate results compared with executions on actual hardware or
lower-level simulations (e.g. gate level or register transfer level [34,35]); ¢) those simulators
are flexible and so convenient for applying hardware changes that are needed to evaluate
novel ideas, such as PTEM and SEA. Such features make microarchitecture simulators —
just simulators from now onwards — the most suitable platforms to perform the research of
this thesis. Note that we have modeled a general-purpose processor and memory system,
not a particular real system. On the one hand, this is because cycle-accurate simulation
of a particular processor would require privileged access to its detailed design data. On

the other hand, our study focuses on the methodologies to measure the energy for each
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Simulation Framework

| ) PTEM, SEA
\ Proposals
Benchmarks — Energy T
Measurement
’ ‘ Energy
Profile
Chip
Core 0 Core N
1$ | DS Is | D$
Shared Cache
e ﬁ Execution
System
SEA Memory Controller States Power
Hardware Memory Request 0 Models
support Memory Request 1
S

M Memory System

DRAM Devices )

Figure 3.1: Diagram of the simulation framework

task in a generic way, which can be adapted to different processors and memory systems

as we have modeled all the main components in modern processors.

The target of this thesis is to explore PTEM and SEA in two main components of a
computer system: the processor (core slice!, shared caches, buses, etc.) and the memory
subsystem. To this end, we need concrete information on the dynamic behavior and energy
consumption of a program during its execution in a computing system. In addition, we
need efficient simulation, yet accurate, to allow a large amount of experiments to be
performed, so that we can come up with enough results to prove the advantages of our

solutions.

'In this thesis, we refer the processor pipeline units and the private caches as the core slice
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Our simulation framework builds upon two pillars: performance and power simulators.
A diagram of this framework is depicted in Figure 3.1. In this framework, we use the
performance simulator to emulate the timing behavior of benchmarks, which are reflected
into energy consumption by the power simulator. Based on the derived energy, our PTEM
and SEA proposals attribute it to the running benchmarks. Since our proposal may need
extra hardware support from the architecture, the feasible changes can be applied to the
simulator, thus allowing us to explore the design space. In this thesis, we have used
existing simulators instead of developing a brand new platform to avoid wasting efforts,
and because using these already well-designed and validated simulators lets us have high

confidence on the simulation efficiency and accuracy.

3.2 Performance Simulators

Most current performance simulators focus on the on-chip components, while the highly
complicated behaviors in memory system have been somewhat ignored. In such simula-
tors, some naive memory models have been applied assuming either fixed memory request
latency with infinite bandwidth or simply aggregating the latencies of consecutive memory
requests. This is problematic since processor and memory systems are highly dependent
on each other. As the processor in general operates at a higher clocking frequency than
memory, sometimes it is forced to be stalled a significant number of cycles waiting for
the memory requests to be served. Specially, consecutive memory requests could gener-
ate different levels of conflicts, e.g., when accessing the memory banks, buses, memory
controller resources, etc. Instead, it can also be the case that the latency of these mem-
ory requests gets totally or partially overlapped due to the large capacity of the memory
system. Analogously to the case of standalone processor simulation, standalone mem-
ory system simulation can neither reveal the whole picture. For this reason, we build
our performance simulator by interactively integrating a processor and a memory system
simulator.

On the processor side, we use MPsim [3], a trace-driven cycle-accurate simulator that
supports CMP and SMT architectures, which is an enhanced version of SMTSim [110].
This simulator is developed at UPC, and has been used in a large number of prior works [18,
77,78,86,114]. MPsim emulates the processor with a model of the processor pipeline,
on-chip cache hierarchy and buses. The simulated pipeline stages are as follows: fetch,
branch predict, decode, register rename, register read/write, cache read/write, execute
until commit. Since trace-driven simulation uses instruction traces that are recorded

during a previous execution of a program, MPsim is adapted to emulate the impact from
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Table 3.1: Summary of some DRAM device timing parameters used in DRAMSim2

Parameter | Description Cycles

trAS Time interval between a row access command and data 24
restoration in a DRAM array

tcas Time interval between a column access command and the 10
start of data return from the DRAM devices

trcD Time interval between row access and data ready in the sense 10
amplifiers

tRTP Time interval between a read and a precharge command 5

trp Time interval that it takes for a DRAM array to be prepared 18
for another row access

tRRD Minimum time interval between two row-activation com- 4
mands to the same DRAM device

trc Time interval between accesses to different rows in a bank 34

twr Minimum time interval between the end of a write data burst 10
and the start of a precharge command

twTR Minimum time interval between the end of a write data burst 5
and the start of a column read command

trRFC Time interval between refresh and activation commands 107

wrong path instructions by using a separated dictionary to provide information on all static
instructions to avoid compromising the accuracy of the simulation results. In addition, we
add several enhancements to it in this work to make it better fit with the memory system
simulator and power models. For instance, we have added an exact read/write port model
for each components to ensure the activities incurred on each component in every cycle
can be simulated precisely and power can be accounted conveniently.

For the memory system, we use DRAMSim2 [98], also a cycle-accurate simulator to
emulate the DDR2/3 memory system with a set of DRAM devices, a memory controller
and a standard memory bus. This simulator is either driven by a trace of memory requests
with their timing information, or connected to a processor simulator through a robust
interface. On the arrival of a memory request, the memory controller decomposes it
into the corresponding DRAM device internal commands and schedules them to perform
operations in the DRAM devices. And after the memory request finishes, DRAMSim2
returns the data to the processor. These internal procedures are modeled with circuit-level
details, such as memory bank activating, data read/write and precharge, etc. The latency
of each command follows a strict timing model, which is a generic abstraction of modern
DDR2/3 memory systems. It enables convenient configuration in the simulator, since
parameters from different technologies and designs of DRAM devices are largely different.
A brief description of some parameters used in this model is shown in Table 3.1, along
with example values obtained from the specification on DDR3_-64B_SG15 with 0.68nm
technology. A more detailed description of how DDR2/3 DRAM memory works can be

found in Section 5.2.1.
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Table 3.2: Configuration Summary

l Parameter ‘ Description ‘
l Chip details ‘
Cluster count 1,2, 4 and 8

Core count

4 cores per cluster; 1-, 2-thread SMT

Supply voltage

1.0V

Technology

65nm

Core details

Core type

out-of-order

Fetch, decode, issue,
commit bandwidth

2/4 instr/cycle

Branch Predictor

Hybrid 256B Gshare

Branch target buffer

32 entries, 4-way

Return address stack

32 entries

Reorder buffer size

96 entries

Issue queues size

48/48/48 entries for INT /FP /Load-store queues

Register file

164 INT, 164 FP

Functional Units

2 INT ALU (1 cyc), 1 mult (4 cyc), 1 div (7 cyc)
1 FP ALU (6 cyc), 1 mult (6 cyc), 1 div (17 cyc)

Instruction L1

32KB, 4-way, 32B/line (2 cycles hit)

Data L1 32KB, 4-way, 32B/line (2 cycles hit)

Instruction TLB 256 entries fully-associative (1 cycle hit)

Data TLB 256 entries fully-associative (1 cycle hit)
l Shared L2 Cache ‘
| Unified L2 | 2MB, 16-way, 64B/line (3 cycles hit, 300 cycles miss) |
l Main Memory ‘

Size 8GB

Frequency 1000MHz

Row-buffer policy

Close-page or open-page

Address mapping scheme

Shared bank

Power-down mode Fast
Supply voltage 1.35V
Technology 65nm

During the integration of two

25

simulators, the synchronization was relatively straight-

forward since both simulators are cycle-based. In modern computers, processors normally

work at a higher clock frequency than memory, commonly ranging from 1.5 GHz to 3 GHz.
The frequency of DRAM DDR2/3 memory normally ranges from 667 MHz to 1666 MHz.

In this thesis, as we assume a general purpose architecture, the processor frequency has

been set to 2 GHz, and the memory frequency to 1000 MHz, although our findings are

not specific to any particular clock frequencies. This particular setup has been chosen to

avoid extra synchronization complexity. Although the memory requests generated from

the processor in 2 cycles are dispatched together to the memory system, their order is

maintained by the memory controller.

Keeping track of instructions in the two simulators is also trivial. As for a load/store
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instruction, its memory address is used to search through the on-chip cache-hierarchy in
MPsim. If it incurs a Last Level Cache (LLC) miss, the same address is used for address-
ing in the memory system after its execution stalls in the pipeline. Also, the information
of this LLC miss is stored in a Last Level Miss Status Handling Register (LLMSHR) to
allow other concurrent misses. DRAMSim2 memory controller also preserves the infor-
mation of each memory request. When one request completes its operations, the memory
controller uses a callback mechanism to notify the processor of the returning data and the
information related to the memory request. After receiving the information and data, the
LLMSHR is iterated to find the matched entry. This entry points to the stalled instruction
which generated the memory request, and upon the reception of the memory answer, such
instruction is resumed to complete its execution. Note that from the memory side, there
is no hard limitation on the number of co-running tasks in the system, which simplifies
the integration process to connect DRAMSim2 with a regular multi-core architecture. In-
stead, the only limit is the number of pending memory requests that can be processed in
parallel, which in turn is limited by the number of commands that can be stored in the
memory controller command queue (128 entries in our case).

An overview of the configuration of the performance simulator used across this thesis
can be found in Table 3.2.

3.3 Power Simulators

To simulate the energy consumption of a program during its execution, with the runtime
information provided by the performance simulators, an infrastructure is needed to analyze
and quantify the power dissipation of the program on the hardware components. In this
thesis, we have used parameterized power modeling infrastructures on the processor and
memory system components of different hardware structures. A tradeoff is needed between
the low-level details of the hardware designs, the model accuracy and the simulation speed,
so that diverse configuration setups and workloads can be experimented efficiently.

The power models for the processor we used in this thesis are analogous to those
of Wattch [16]. Wattch-like power models provide a framework where the activity- and
time-based power consumption of the major units in the processor are parameterized and
quantified, which makes it suitable to be integrated into our performance simulator of the
processor. As the technology and configuration continuously change, the power of cache
and SRAM-based components in our setup are modeled on top of CACTI 6.5 simulation
tool [87]. CACTI is a flexible tool to model delay, energy (dynamic and leakage) and area

of cache memories and SRAM-based arrays. Power models for functional units have been
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Table 3.3: Summary of the power models on Major On-chip Components

Unit Parameters Energy Consumption
Size (B) | R/W Ports | Block (B) | Type | Per Access (nJ) | Leakage (mW)

TIALU 0.024 1.92
FALU 0.05 4.02
BTB 8192 2 8 cache 0.033 20.94
RAS 2048 2 8 cache 0.019 6.33
DCache 32768 2 64 cache 0.072 59.77
ICache 32768 2 64 cache 0.072 59.77
DTLB 2048 2 8 cache 0.013 5.74
ITLB 2048 2 8 cache 0.013 5.74
INT Register 1312 10/6 8 SRAM 0.016 5.06
FP Register 1312 6/4 8 SRAM 0.012 2.66
INT Issue queue 384 4/2 8 cache 0.013 1.01
FP Issue queue 384 2/2 8 cache 0.012 0.71
LS Issue queue 384 2/2 8 cache 0.012 0.71
Bus 0.004 0.21
ROB 2048 2/2 8 cache 0.021 8.35

LLC 2097152 1 64 cache 1.76 224.75

updated to use modern designs. Although in recent studies the power estimations made
from McPAT, a CACTI based power model, show a big gap with the real computer [117],
we still use it as our platform. On the one hand, McPAT/CACTI power models are
the current de facto standard in the computer architecture community, being extensively
used in research works for design space exploration. On the other hand, this thesis is
neither improving nor covering the gap of such models, but exploring the per-task energy
distribution mechanisms based on the estimates made by such models. Therefore, even if
power estimates cannot perfectly match with the real system, such analytical model helps
us to reveal the interaction between hardware resources and tasks in an analyzable way. In
this perspective, McPAT/CACTI power models provide the capabilities for analysis and
fast simulation speed to make our research feasible. In Table 3.3, we show an example
of the CACTI configurations and output that we have used for some major components

on-chip.

Unlike on-chip resources, the memory power is more sensitive to the timing and ad-
dresses of memory requests. Although CACTi can provide accurate estimation on the
memory power based on a given activity factor, which requires deep understanding of the
memory structure, the estimation is rather static and so misses important details. Micron
has published a set of data sheet specifications for system designers to estimate the power
consumption of DDR2/3 DRAM memory. We derive the power model from the data sheet
and integrate it to DRAMSim2 seamlessly since they come from the same source. The

power model provides the current profiles, which correspond to the state of the DRAM
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Table 3.4: Summary of DRAM device current parameters used in DRAMSim2 power
model

Current | Description Value (mA)
IDDy Operate one bank active-precharge current 100
IDDy Operate one bank active-read-precharge current 130
IDD>p Precharge power-down current 10
1D D>q Precharge quite standby current 70
IDDsN Precharge standby current 70
IDDsn Active standby current 90
IDDsw Operating burst write current 255
IDD4gr Operating burst read current 230
IDDs Burst auto refresh current 305
IDDg Self refresh current 9
IDD~, Operating bank interleave read current 415

devices and actions performed by those DRAM devices. The current profiles are moni-
tored on the real devices when memory requests are processed in the memory system. In
Table 3.4 we list some relevant current profiles in this power model. A detailed description

of this model can be found in Section 5.2.2.

3.4 Benchmarks

3.4.1 SPEC CPU 2006 Benchmarks

Most of the experiments in this thesis are performed with the SPEC CPU 2006 bench-
mark [108] suite. This suite is designed and released by The Standard Performance Eval-
uation Corporation, and aims to provide a standard of measurement or evaluation on the
speed and throughput of computer systems. The diverse benchmarks are developed from
real user applications, and include compute-intensive and memory-intensive ones. They
have been designed, therefore, to stress the processor and memory subsystems. Based on
the components they stress the most in the processor, these benchmarks have been cate-
gorized as SPECint for integer components and SPECfp for floating point components.
We have used traces from these benchmarks which have been obtained from their
execution on an AlphaServer DS25 with two Alpha 21264C processors running at 1 GHz
with the operating system Tru64 5.1b. As for the compiler, we have used DEC Alpha AXP-
21264 C/C++ compiler for the for those benchmarks programmed in C/C++, compiled
with the -02 -non_shared options, and the DIGITAL Fortran 90/Fortran 77 compilers
for the remaining benchmarks. All benchmarks have been compiled with the reference
input set. Although Alpha processors are not the state of the art processor nowadays,

its Reduced Instruction Set Computing (RISC) instruction set has been widely adopted
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Table 3.5: SPEC CPU INT 2006 benchmark description

Benchmark Description Language
400.perlbench Devired from Perl V5.8.7. The workload includes SpamAs- | C

sassin, MHonArc (an email indexer), and specdiff (SPEC’s
tool that checks benchmark outputs).

401.bzip2 Julian Seward’s bzip2 version 1.0.3, modified to do most | C
work in memory, rather than doing I/O

403.gcc Based on gce Version 3.2, generates code for Opteron C

429.mcf Vehicle scheduling. Uses a network simplex algorithm (which | C
is also used in commercial products) to schedule public trans-
port

445.gobmk Plays the game of Go, a simply described but deeply complex | C
game

456.hmmer Protein sequence analysis using profile hidden Markov mod- | C
els

458.sjeng A highly-ranked chess program that also plays several chess | C
variants

462.libquantum | Simulates a quantum computer, running Shor’s polynomial- | C
time factorization algorithm
464.h264ref A reference implementation of H.264/AVC, encodes a | C
videostream using 2 parameter sets. The H.264/AVC stan-
dard is expected to replace MPEG2

471.omnetpp Uses the OMNet++ discrete event simulator to model a large | C++
Ethernet campus network
473.astar Pathfinding library for 2D maps, including the well known | C++

A* algorithm
483.xalancbmk | Transforms XML documents to other docs using a modified | C++
Xalan-C++

and developed in the community. Thus, its microarchitecture is still fairly similar to
other RISC chips. Furthermore, we have simulated instruction traces obtained from this
platform, but we have implemented new features in our simulation framework based on
state of the art multi-core processors. As a result, we strongly believe that the conclusions
obtained in this thesis are valuable across different platforms, since we study the activities

triggered by the instructions, not the instruction set itself.

In Tables 3.5 and 3.6, we give a short description of each benchmark in SPECint and
SPECfp together with the language in which the source codes were written. In the case of
SPECint benchmarks, all the applications are written in C or C++, whereas in the case
of SPECfp benchmarks, some of them are written in Fortran, C, C++4, or a combination
of C and Fortran codes. For example, in 435.gromacs the only Fortran code is the inner

loops (innerf.f) which typically account for more than 95% of the runtime.
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Table 3.6: SPEC CPU FP 2006 benchmark description
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Benchmark

Description

Language

410.bwaves
416.gamess

433.milc

434.zeusmp

435.gromacs

436.cactusADM

437.1eslie3d

444 .namd

447 .dealll

450.soplex

453.povray

454.calculix
459.GemsFDTD

465.tonto

470.1bm
481.wrf

482.sphinx3

Computes 3D transonic transient laminar viscous flow
Gamess implements a wide range of quantum chemical
computations. For the SPEC workload, self-consistent field
calculations are performed using the Restricted Hartree
Fock method, Restricted open-shell Hartree-Fock, and
Multi-Configuration Self-Consistent Field

A gauge filed program: lattice gauge theory with dynamical
quarks

ZEUS-MP is a computational fluid dynamics code devel-
oped at the Laboratory for Computational Astrophysics
for the simulation of astrophysical phenomena

Molecular dynamics: simulate Newtonian equations of mo-
tion for hundreds to millions of particles. The test case
simulates protein Lysozyme in a solution

Solves the Einstein evolution equations using a staggered-
leapfrog numerical method

Computational Fluid Dynamics (CFD) using Large-Eddy
Simulations with Linear-Eddy Model in 3D. Uses the Mac-
Cormack Predictor-Corrector time integration scheme
Simulates large biomolecular systems. The test case has
92,224 atoms of apolipoprotein A-I

deal.IT is a C++ program library targeted at adaptive fi-
nite elements and error estimation. The testcase solves a
Helmholtz-type equation with non-constant coefficients
Solves a linear program using a simplex algorithm and
sparse linear algebra. Test cases include railroad planning
and military airlift models

Image rendering. The testcase is a 1280x1024 anti-aliased
image of a landscape with some abstract objects with tex-
tures using a Perlin noise function

Finite element code for linear and nonlinear 3D structural
applications. Uses the SPOOLES solver library

Solves the Maxwell equations in 3D using the finite-
difference time-domain (FDTD) method

An open source quantum chemistry package, using an
object-oriented design in Fortran 95. The test case places a
constraint on a molecular Hartree-Fock wavefunction calcu-
lation to better match experimental X-ray diffraction data
Implements the ”Lattice-Boltzmann Method” to simulate
incompressible fluids in 3D

Weather modeling. The test case is from a 30km area over
2 days

A widely-known speech recognition system from Carnegie
Mellon University

Fortran
Fortran

C

Fortran

C, Fortran

C, Fortran

Fortran

CH+

C++

C++

C++

C, Fortran
Fortran

Fortran

C
C, Fortran

C

3.4.1.1 Trace Extraction

In order to perform efficient simulations, we have to perform several optimizations on the

simulation time which is sensitive to the size of trace.
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Table 3.7: The input sets for SPEC CPU 2006 benchmarks and their simulation starting

point (in millions of instructions) using the SimPoint methodology [103]

l SPECint |
Benchmark Input Fast Forward
400.perlbench -1./lib checkspam.pl 2500 525 111501111 1439900
401.bzip2 input.program 280 107000
403.gcc 166.1 -0 166.s 25500
429.mcf inp.in 90700
445.gobmk —quiet —mode gtp -i trevord.tst 50300
456.hmmer —fixed 0 —mean 500 -num 500000 —sd 350 —seed 0 retro.hmm 14900
458.sjeng ref.txt 822100
462.libquantum 1397 8 237000
464.h264ref -d foreman_ref_encoder_main.cfg 382800
471.omnetpp omnetpp.ini 683400
473.astar rivers.cfg 220700
483.xalancbmk — -

SPECfp
Benchmark Input Fast Forward
410.bwaves — 1668800
416.gamess -i triazolium.config 2980700
433.milc — 897600
434.zeusmp — 17939
435.gromacs -silent -deffnm gromacs -nice 0 588700
436.cactusADM | — 18497
437 .leslie3d -i leslie3d.in 637200
444 namd —input namd.input —iterations 38 —output namd.out 1200
447 .dealll 23 41900
450.soplex -m3500 ref.mps 67400
453.povray SPEC-benchmark-ref.ini 168600
454.calculix -i hyperviscoplastic 1099500
459.GemsFDTD | — 31713
465.tonto — 11500
470.1bm 3000 reference.dat 0 0 100-100-130_ldc.of 17900
481.wrf 2749700
482.sphinx3 ctlfile . args.an4d 1740400

the reference test.

Some SPEC CPU 2006 benchmarks execute multiple times with different inputs

Those benchmarks are not convenient for us since they lead to

for

an

increased simulation time cost. In the study in [94], authors have pointed out that not

all input sets are necessary for SPEC CPU 2006 benchmarks. That work shows, for those

benchmarks that have multiple input sets, that running a subset of the input sets already

provides similar timing behavior to that of all the remaining input sets.

In the pro-

cess of obtaining instruction traces from benchmarks, we use this approach, by executing

these benchmarks with the input sets indicated in [94]. This optimization is applied for
the SPECint benchmarks, including 400.perlbench, 401.bzip2, 403.gcc, 445.gobmk,
456 .hmmer, 464.h264ref and 473.astar, as well as for 416.gamess and 450.soplex
from the SPECfp benchmarks.
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Still, simulating the whole instruction trace of a benchmark in a cycle-accurate sim-
ulator is unaffordably time consuming. To reduce simulation time, the most commonly
used approach is to select representative samples [116]. Random samples appear to be
inadequate, while just choosing the beginning of a program could be incorrect due to
initialization code. SimPoint methodology is proposed by Sherwood et al. [103], which
detects program’s phases by using the Basic Block Vector (BBV), which counts how many
times each basic block appears. Two phases are considered the same if Mannheim’s dis-
tance between their BBV is small. At the beginning, the execution of the program is
split into a set of intervals of fixed size (e.g., 10 million instructions). Using clustering
algorithms, such as random linear projection or k-means, the samples are joined. The first
algorithm is used to reduce the dimension of the BBV and, in that way, accelerate the
k-means algorithm. This last algorithm is run for values of k& between 1 and M (M is the
maximum number of phases to use) and the intervals are grouped into phases. SimPoint
chooses the representative of each phase that is closest to its centroid.

Our collection of instruction traces follows the same methodology, as a result, we take
100 million instructions from each benchmark. We list the fast forwards to apply to each
benchmark and its used input sets in table 3.7, respectively.

Due to limitations of our simulation infrastructure, we were not able to create the traces
from three benchmarks: 459.GermsFTDT, 483.xalancbmk, and 481 .wrf from SPEC CPU
2006.

3.4.2 High-Performance Computing Benchmarks

We have also used real traces from a parallel HPC application running on an actual super-
computer: wrf. The Weather Research and Forecasting (wrf) model [83] is a mesoscale
numerical weather prediction system designed to serve both operational forecasting and
atmospheric research needs. In this experiment, we use the non-hydrostatic mesoscale
model dynamical core.

Simulating all threads of the parallel MPI application implies a significant amount of
simulation time as these applications usually run for days or weeks on a supercomputer.
We use an automatic mechanism to choose the most representative computation regions
to be traced and simulated with a cycle-accurate simulator [37]. This simulation method-
ology uses non-linear filtering and spectral analysis techniques to determine the internal
structure of the trace and detect periodicity of applications. Afterwards, we use a cluster-
ing algorithm to determine the most representative computation bursts inside an iteration

of the application.
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Traces are obtained when wrf runs on the MareNostrum supercomputer at the Barcelona
Supercomputing Center (BSC-CNS). We obtain four representatives for the five compu-
tation phases that compose the 64-thread MPI application. We have used these reduced
trace files to feed the performance simulator. We simulate all threads sharing the LLC
cache (four threads in this case study) in a CMP architecture (single-threaded cores).

When a thread finishes executing, it waits until all other threads have also finished.

3.4.3 Workload Selection

In the experiments we perform in this thesis, the number of benchmarks in the workloads is
identical to the thread count of the processor. For example, in a 4-core CMP architecture,
we run four benchmarks in a workload; for a 4-core 2-way SMT architecture, we run eight
benchmarks workloads. For a wide variety of configurations, as shown in Section 3.2, we
need to generate workloads for each appropriately. Several issues have been taken into
account for the generation of the workloads: the characteristics of benchmark behavior,
the number of generated workloads and the type of the workloads.

As benchmarks with diverse characteristics co-running in a workload will generate very
different behaviors, a certain amount of workloads are needed to come up with compre-
hensive conclusions for our studies. However, given that we have generated traces for 26
benchmarks, to generate the N-task workloads, we could have N?6 possibilities, which is
way too much. Thus, we randomly picked benchmarks to generate a fixed set of workloads.
In order to facilitate the interpretation of results and understanding of the features pro-
posed, an appropriate way to generate the workloads is needed. Since the most relevant
parameter affecting the timing and power behavior in our environment is the time spent
accessing memory, we classify SPEC CPU 2006 benchmarks into two groups. Based on
metric Misses Per thousand Cycle (MPKC) in the LLC, we include in the M EM group
those benchmarks presenting a MPKC value higher than 3 under a 2MB 16-way LLC setup
when each benchmark runs alone. The remaining benchmarks fall in the ILP group. Al-
though the threshold to classify benchmarks can only be arbitrary, as shown later, it was
appropriate to segregate distinct timing and power behaviors.

In Table 3.8 we show the benchmarks we categorize into each group. Note that some
benchmarks are very sensitive to the LLC size, so they could be classified into the other
under a different LLC configuration. Especially when we study SEA, where we consider
different LLC sizes, this might be a concern. However, we stick to this classification along
all the thesis for the sake of consistency.

Then, from these two groups, we generate three workload types denoted as I, M and
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Table 3.8: The MPKC of SPEC CPU 2006 benchmarks under a 2MB 16-way LLC setup,
and the group they belong to.

| MEM | ILP |

Benchmark MPKC | Benchmark | MPKC
433.milc 15.90 | 435.gromacs 1.63
410.bwaves 15.47 | 473.astar 1.19
462.libquantum 15.08 | 401.bzip2 1.10
450.soplex 12.59 | 400.perlbench 0.96
470.1bm 10.34 | 456.hmmer 0.47
403.gcc 10.07 | 464.h264ref 0.45
437 leslie3d 5.93 | 447.dealll 0.43
434.zeusmp 4.80 | 458.sjeng 0.32
482.sphinx3 4.75 | 444.namd 0.29
429.mcf 4.54 | 416.gamess 0.29
436.cactusADM 4.50 | 445.gobmk 0.25
471.omnetpp 4.48 | 453.povray 0.02
454.calculix 3.04

X depending on whether all benchmarks in a cluster belong to group ILP, MEM or a
combination of both respectively. We generate 8 workloads per group for each processor
setup. Benchmarks in each workload are randomly picked out from all the benchmarks of
the corresponding type. In the case of X, half of the benchmarks belong to ILP and the
other half to M EM. We do not put any constraint on whether benchmarks can repeat in
a particular workload since the random selection of benchmarks is always performed out

of the corresponding (original) group of benchmarks.

3.5 Metrics

Reference model. Since there is no reference model presented to meter or account the
per-task energy, and due to the complexity of the hardware, there is not a direct way to
measure it in real hardware. Thus, in each of our proposals, we first present an oracle
model, which exhibits the best scenario where the energy can be measured with as much
information as needed. We implement such models in our simulator, despite the fact
that such models would incur unaffordable cost in practice, thus being infeasible to be
implemented. Therefore, we also present practical and implementable approaches, which
trade off the estimation accuracy with cost. We have also introduced several state of the
art approaches that our approaches can compare with to show the improvements brought
by our techniques.

In this thesis, we use several different metrics to evaluate our practical PTEM and
SEA proposals, based on the reference model. The methodology we use is to measure

the off estimation or prediction error of each model with respect to the reference model,
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which is computed as follows:

Energymodel
Energyideal

where Energy;qeq stands for the energy derived from the reference model, while Energymodel

PredictionError = |1 — (3.1)

stands for the energy derived from the other models. We use this metric to evaluate the
accuracy of our proposals on each task.

In some scenarios, we also measure the prediction error of the whole workload. In
which, we accumulate the estimation of all benchmarks in the workload using the reference

model as the baseline.

N
Zi:l |Ener9yideali - EnergymodelA
EneTgymeasured

where Energyideq, stands for the energy derived from the reference model for task ¢, while

WlildPredError =

(3.2)

Energymodel; stands for the energy derived from the other models. Energymeasurea stands
for the actual measured energy for the whole workload, which is eventually identical to
ZZ]\L 1 Energyigear;- Then, we take the average WldPredError across all benchmarks in

each workload analyzed in each setup.






Per-task Energy Metering for The

Processor

4.1 Introduction

Current computing systems lack a proper per-task energy measurement mechanism. Exist-
ing approaches to measure tasks’ energy consumption evenly distribute computer system’s
energy across all running tasks, as if all of them were using resources similarly. However,
different applications may easily incur vastly different resource utilization across similarly
allocated resources. Such heterogeneous resource utilization translates into heterogeneous
power dissipation per application, and therefore, simply dividing power across running
tasks is neither fair nor accurate enough.

In Figure 1.1 we have shown an example of the energy variation across several workloads
even if they are allocated the same amount of resources. These variations are already
significant, and they will most probably increase in the future, as system manufacturers
pay increasing attention to energy efficiency and energy-proportional computing [5].

A system is energy-proportional if (i) it presents the maximum energy consumption
when achieving the maximum performance, (ii) the energy consumption is close to zero
when the system is idle, and (iii) the energy increases between these two extremes as per-
formance increases as well. Although current systems are not fully energy-proportional
yet, the trend is to move towards this kind of systems. In the presence of more energy-
proportional systems, static (and likely leakage) energy will decrease to some extent and

dynamic energy will be the dominant source of energy consumption. Under this situa-

37
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tion, energy consumption will be more dependent on the application activity, and thus
considering per-task energy consumption will be even more necessary.

In this chapter, we make a case for accurate per-task energy metering (PTEM). In
particular we propose an idealized reference approach to perform accurate PTEM based
on the resource utilization of each task. We also present a simple, yet accurate, imple-
mentation of such approach. We focus on the main shared hardware resources in current
multicore processors: At chip level, we deal with the shared Last Level Cache (LLC)
and the network on chip; at core level, we consider simultaneous multi-threaded (SMT)
cores, which have a massive amount of shared hardware resources and represent the worst
scenario for achieving accurate energy predictions with PTEM.

The benefits of PTEM extend to different computing domains, such as data centers,
smartphones or desktop systems. In this chapter, we take a cross-domain approach, in
which, instead of focusing on a given target environment, we analyze how to perform
accurate per-task energy metering and what hardware/software support is required for an
efficient implementation.

Overall, the main contributions in this chapter are as follows:

e We propose an accurate (yet idealized) approach to perform per-task energy metering
based on per-task resource utilization. Our approach considers the utilization of each
hardware component in the chip (e.g., cores, caches, etc.) and its impact in dynamic
active, dynamic maintenance and leakage energy. Both single-threaded and SMT
cores are considered by our approach. To the best of our knowledge, it is the first
reference approach against which per-task energy measuring mechanisms can be

compared.

e We show how state-of-the-art approaches such as Evenly Split (ES) and Proportional
To Access (PTA), as introduced in Section 2.4, fail to provide accurate enough per-

task energy measurements.

e We propose efficient designs of our approach to perform per-task energy metering in
multicore processors. We illustrate how our designs allow to accurately estimate the
amount of energy each task consumes in the chip by means of lightweight hardware
mechanisms tracking activity and occupancy of the main resources in a per-task
basis. In particular, we show how different tradeoffs provide increasing accuracy at

the expense of higher hardware and energy cost.

e We show a use case where the proposed PTEM technique is applied to measure the

per-task energy consumption for a parallel application.
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Our results over a variety of multicore processor setups and workloads, including SPEC
CPU 2006 benchmarks and traces from a real High-Performance Computing(HPC) appli-
cation called wrf, show that a low-cost implementation of our PTEM mechanism achieves
tight per-task energy measurements with respect to an ideal non-implementable model.
For a 64-thread setup, 32 cores where each core is 2-way SMT, PTEM reduces the average
accuracy error from more than 12% when evenly splitting energy over running tasks, to
less than 4% when our low-cost hardware support is used. The maximum observed error
for any task in the workload we used reduces from 58% down to 9% when our hardware
support is used.

The rest of this chapter is organized as follows. Section 4.2 presents our idealized
approach to perform per-task energy metering and the efficient hardware implementa-
tion. The particular experimental setup used in this chapter, intra-cluster results and
full processor results are detailed in Sections 4.4. Next, Section 4.5 presents several case
studies, including the characterization of the significant differences in energy and perfor-
mance variability (Section 4.5.1), a large-scale parallel application study (Section 4.5.2),
and other issues related to energy metering (Section 4.5.3). Finally, Section 4.6 draws the

main findings of this work.

4.2 Ideal PTEM for the Multicore: LLC and Core

This section presents an idealized utilization-based model for per-task energy metering.
The result of this model is later used as a reference point for our models to measure per-task
energy at an affordable hardware cost. For the sake of clarity, we assume a single voltage
level and that energy consumption does not change with temperature. In Section 4.5.3 we
show how to extend our models to consider the impact in energy consumption of multiple
voltage levels and temperature ranges.

We assume a clustered multicore architecture where each cluster consists of a set of
cores, having each core private data and instruction first level caches, plus a shared on-chip
second level cache accessed through a shared bus, see Figure 4.1. We refer to such cache
as LLC. All clusters are connected to memory through a shared bus. We focus on the
shared L2 caches, the core slice and the shared buses. The rest of the on-chip resources
(e.g., I/O interface, etc.) have low contribution to total energy consumption [89], so we
simply assume an even distribution of their energy consumption over running tasks, which
has negligible impact on our estimation. If other components had significant contribution
to the total energy of the chip, energy metering should be extended accordingly following

the same principles as for the components analyzed in this work.
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Figure 4.1: Diagram of high core-count cluster architecture

4.2.1 Shared Cache

The active energy consumption in the shared LLC for a given task ¢ is proportional to the

number of accesses. It can be computed as follows:

K
B (th) =) #actiony™C (th;) x ELC (e (4.1)

act,total actiony
k=1

C

to be available in this idealized model. #actionﬁLC(tki) stands for the number of LLC

where E(f%gnL o stands for the energy per LLC access of type k, which is assumed
k

accesses of type k performed by the task i. Three main factors determine the access types
we consider: whether an access reads or writes; hits or misses in LLC; and in the latter
case whether it evicts a dirty line. The possible combinations are: read hit, write hit,
read miss replacing a dirty line, read miss replacing a non-dirty line, write miss replacing
a dirty line, and write miss replacing a non-dirty line. Under each combination of these
factors, the energy consumption of an access can change. Extending the model to consider
other access types (e.g., invalidations) is trivial since we only need to multiply the energy
consumed by each access type by the number of those accesses.

Maintenance energy is consumed when resources are idle. We use cache occupancy
as a proxy to measure maintenance energy: We assume that those cache regions (lines)

not occupied by a given task could be turned off so that they would not incur any energy
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consumption [2]. The total maintenance LLC energy consumption for a task is obtained

as follows:

ELEC ot (thi) = Occ"MC (th;) x IdleTime(LLC) x ELLS (4.2)
where OccPEC (tk;) stands for the average fraction of cache lines owned by task i, ELLC

corresponds to the maintenance energy per cycle consumed by the LLC when no access
is performed, and IdleTime(LLC) stands for the number of idle cycles for the LLC (no
access to LLC). ELLC is assumed to be provided under the ideal model.

Leakage energy is proportional to the cache occupancy and can be easily computed as

follows:

EEEC, i (thi) = Occ"MC (th;) x EwecTime(th;) x EfLf (4.3)

where ElLeach stands for the leakage energy per cycle consumed by the LLC. This value

is also an input parameter for the idealized model.

4.2.2 Core Slice

Ideal per-task core energy metering requires tracking per-task activity in all core hardware
blocks (e.g. Reorder Buffer, Issue Queues, etc) to count the number of accesses of each
type. This would provide detailed information to accurately compute active energy by
multiplying the per-type access counts by the active energy for each particular type of

access (action):

J K
block; block;
gggetowl Z Z Eactim]zk % #actzonk (tkl) (44)
J=1k=1
Ezgffjl is the energy per action of type k (e.g., read) in block j (e.g., register file),

which is assumed to be known. #actzonbloc 7(tk;) stands for the number of such actions
on such block performed by task . This applies to both single- and a multi-threaded (e.g.,
SMT) cores. J and K stand for the total number of blocks in the core and types of actions
(e.g., read, write, flush) respectively.

Maintenance energy is measured in all those blocks having non-negligible energy con-
sumption when no action is performed. Blocks can be classified into two categories de-
pending on whether they allocate entries to tasks. Occupancy Blocks or oblocks allocate
entries to tasks and hence their maintenance energy can be split based on the occupancy

(e.g., precharge energy of first level caches). Conversely, in resources without memory or
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eblocks no entries are allocated, and hence maintenance energy can be evenly distributed
(e.g., issue queue selection when there are no ready instructions). Maintenance energy is

then computed as follows:

ExecTime(tk;) Eeblock
main, totat(thi) =D Z #Tgf,;"ck +ZOcc0““’“<tk:> x Epeail(@) | (45)
=1 =1

where L stands for the number of oblocks, J for the eblocks, and Occ?t(tk;) for the
Eblockzl

i (x) stands for the maintenance energy

average occupancy of block [ by each task.
consumed by idle ports or in idle cycles of block I in cycle x. #Tk(Cy) stands for the
number of tasks in core Cf.

Leakage energy can be easily tracked because it will be roughly constant throughout
all the execution. If the core is single-threaded, then it is trivial to identify the owner of
such energy. However, if the core is multi-threaded the occupancy per task in each of the
blocks must be tracked to properly distribute leakage energy, as shown in the following

equation:

B oralt Z Oc¥s (th;) x EV°™ x ExecTime(th;) (4.6)

7j=1

where Occ?°%i (tk;) stands for the average occupancy of block j by task i and Elbelgzk

stands for the leakage per cycle of block j, which is assumed to be available.

4.2.3 Shared Bus

Ideal per-task bus energy metering requires tracking per-task accesses. Analogously to
the case of the LLC, there are different types of accesses with different active energy
consumption. For instance, if a cache line is sent over the bus, the energy consumed is
higher than if just an address is sent, either because the cache line communication sends
more bits simultaneously or because it requires several consecutive transactions to send
all data over a bus narrower than a cache line. This would provide detailed information to
accurately compute active energy by multiplying the per-type access counts by the active

energy for each particular type of access (action):

K

B torar(thi) = Baction, X #action(tk;) (4.7)
k=1
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Eqction,, 1s the energy per action of type k (e.g., cache line communication), which is
assumed to be known. #actiony(tk;) stands for the number of such actions performed by
task 7. K stands for the types of actions.

Note that different actions and energy per action values may be used for different
buses such as the intra-cluster bus connecting cores to their LLC and the inter-cluster bus
connecting cores to memory. Nevertheless, the same principle applies to compute active
energy.

Leakage energy cannot be attributed to any particular task in the cores (tasks do not
have any type of bus occupancy), so we evenly distribute it across all those tasks that
could use the particular bus: tasks in the cluster for intra-cluster buses and tasks in the

whole chip for the inter-cluster bus:

. Ebé‘; x ExecTime(tk;)
Elbeak, total(tki) == k#Tk(BUSk)

(4.8)

where Ef’gffk is the leakage energy per cycle of the bus, which is assumed to be known
and #Tk(BUS})) stands for the number of tasks in using bus BU S.

Note that, bus energy is dominated by active and leakage energy [66] due to wiring,
repeaters and latches while maintenance energy is negligible. We evenly distribute main-

tenance energy over tasks.

4.3 An Implementable PTEM Approach

4.3.1 PTEM with Practical Approaches for the LLC

The ideal model for the LLC tracks two main per-task parameters: access (activity)
counts per access type and cache occupancy. Our simplified PTEM model for the LLC
relies on the fact that LLC accesses are not frequent, so they can be tracked with full
accuracy. Conversely, tracking cache occupancy, which is required for maintenance and
leakage energy estimation, would require counting how many cache lines each task owns
every cycle, which is expensive. Tracking the ownership of cache lines requires: (1) tagging
each cache line with a task id, (2) keeping a counter per task with the number of owned
cache lines (instant counter), and (3) updating such counters on a replacement based on
the ownership of the evicted and fetched cache lines, increasing the counter of the owner
of the fetched line and decreasing the one of the owner of the evicted cache line.

In general, LLC access patterns and occupancy do not change abruptly. Similarly, the
occupancy per set is quite homogeneous for any particular program [86]. Therefore, we

propose sampling the LLC occupancy in two different ‘directions’. First, only some cache
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sets will be monitored, so they will be the only ones for whom cache line ownership will
be tracked. In order to avoid clustering effects due to contiguous allocation of data in
memory for any particular task, sampled sets are located at a particular stride (e.g. only
those sets whose z lowermost index bits are zero are monitored). How many z lowermost
bits are considered depends on the desired sampling granularity. Second, the counters
accumulating instant occupancy are not updated every cycle, but at a lower frequency.
For instance, for a LLC with 1,024 cache sets, 8 ways per set and a processor with
8 cores, cache sets can be sampled at a granularity of 1 out of 16, and time sampling
occurs once every 256 cycles. In this case, the overhead of the LLC mechanism would be

as follows:

e 8 instant counters (OcctLY) of 10 bits each for tracking instant occupancy (1,024

sets x 8 ways / 16 sample granularity = 512 lines sampled, so 10 bits are needed).

e 512 3-bit owner identifiers for the 512 tracked cache lines. Note that all cache lines
in the sampled sets always have an owner for energy metering purposes. Thus, on
a context switch, the task being scheduled in becomes the owner of the cache lines
used by the task being scheduled out (using the same hardware context, or CPU

index).

e 8 cumulated occupancy counters (OccLEC) of 48 bits able to track the occupancy

during 248 x 28 = 256 cycles (48-bit counters and 256 cycles sampling frequency).

We assume that the number of cycles that a program takes to run is measured by an
existing performance monitoring counter of the processor. Based on this hardware support
LLC occupancy is obtained as follows:

OccELC (tk;) x SmpFreq x SmpSets

LLC cum
0] tk;) =
cc™ ™ (thy) #SetsLLC x ExecTime(tk;)

where SmpF'req is the sampling frequency (256 cycles in the example), SmpSets is the set

(4.9)

sample granularity (16 in the example) and #Sets“C is the number of total cache sets
(1,024 in the example). The impact of sampling in both time and sets is later analyzed in

the evaluation section.

4.3.2 PTEM with Practical Approaches for the Core

Current processors, e.g. the IBM POWERT7 [32,48], can estimate the energy consumed
by each core (even for SMT cores) based on a model that uses as proxy different per-

formance monitoring counters, voltage, frequency and temperature. However, solutions
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to accurately distribute core energy across tasks in SMT cores have not been developed,
while, in fact, multicores with SMT cores are becoming quite common [32,104].

A real per-task core energy metering, cannot be done with the ideal model presented
before since this models tracks too many events and the occupancy of many blocks. Instead
of such a bottom-up model, PTEM builds a top-down model. Under this top-down model,
during the execution of a workload we first breakdown the energy consumed into its main
components, active, maintenance and leakage energy; and in a second step, we breakdown
the energy of each component per task.

Step 1: Deriving active, maintenance and leakage energy components. We start deter-
mining the maximum power (P5%¢) and minimum power (P7€¢) dissipation in a given
time interval.

The core maximum power dissipation, P:>¢, can be determined by running a high-

power benchmark, a.k.a. power virus [88]. PS¢ can be decomposed as follows:

P = MaxDynP" + Lea P (4.10)

max

MaxDyn P is the maximum dynamic power of the core and LeaP®"¢ the leakage
power of the core that can be obtained by measuring core power when the core is in halt
mode. In this formula, we assume that all blocks are fully used so no maintenance power
is dissipated. In reality, there will be still some maintenance power, but its relative weight
with respect to active power is negligible in a maximum power scenario, so the loss of
accuracy introduced by such an assumption is rather low.

ore

The core minimum power dissipation, P2"¢, can be obtained running a low-power

benchmark comprised, for instance of no-ops. PS¢ can be decomposed as follows, where

MaxMainP"¢ is the maximum maintenance power of the core:

core = MaxMainP®"® + Lea P (4.11)

min

In this formula we assume that all blocks are idle so that no active power is dissipated.
Under that scenario, all activity in the core incurred maintenance power dissipation as
these activities are not produced by tasks’ execution. This is the scenario in which the
maintenance power is the highest, MaxMainP“™. From Equations 4.10 and 4.11, we
can derive MaxDynP®"® and MaxM ainP"°.

Let’s assume that the energy consumed by a workload during an interval T is F"¢ =
(LeaPore+DynPeore+ MainPeore) X T'. In order to determine which fraction of E°"¢(T) is
active, maintenance and leakage we proceed as follows. Leakage power is roughly constant

in all runs, so we take the value derived above, LeaP®"¢ x T.



46 CHAPTER 4. PER-TASK ENERGY METERING FOR THE PROCESSOR

We assume that all idle blocks have the same maintenance energy consumption when
idle w.r.t. their active energy consumption. That is, for all blocks the relation between
active and maintenance power is obtained as MainDynRatio = %. Hence,
the maintenance energy for each block during a time interval is MainDynRatio of its
active energy.

During the execution of a workload in a given interval, a fraction of the resources will
perform useful activity, thus consuming active energy in the interval (DynE]C-O’"e). The
remaining resources do not perform any useful activity consuming maintenance energy.
The difference (MaxzDynP®™ — DynP{°"®) x T provides the amount of active energy not
consumed in the execution of the workload with respect to the scenario in which the active
energy is maximum. The maintenance energy MainEj™® is a fraction of that difference:
MainE§ = (MaxDynPcre — DynPjC‘”"e) x MainDynRatio x T.

Overall, E5°"¢ can be derived as follows:

ES™ = LeaE*® + DynES”" + MainES"* (4.12)
= LeaE“" + DynE;"" + (MaxDynE“"® — DynE;"") x MainDynRatio

where only DynEZ°"¢ is unknown and can, therefore, be derived.
Step 2: Breaking down active, maintenance and leakage energy components per task.

Per-task energy distribution is done as follows:

e Dynamic active energy. Since tracking all events in the core is unaffordable, we

use a simplified model based on the number of instructions fetched per task.

e Dynamic maintenance energy. Most maintenance energy in the core comes
from register files and issue queues due to their large number of ports and high
maintenance energy consumption per port. Such energy cannot be attributed to any

particular task, so we evenly split maintenance energy across tasks.

e Leakage energy. Leakage energy mainly comes from first level (L1) caches and their
occupancy correlates quite well with the occupancy of some other blocks (e.g., branch
predictor tables, translation lookaside buffers). Thus, we track task occupancy in
L1 caches. We need the same hardware support as in the LLC. We consider that L1

data and instruction cache occupancies have the same weight.

Therefore, task energy in the core is measured as follows for interval j:

DynE5™(tk;) = DynE5¢ x InstFetch;(tk;)/InstFetch,; (4.13)
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Table 4.1: PTEM hardware requirements
Block Energy figures Extra Logic
Elon, #action " (tks), Occlf (tks),
LLC OcclLC (thy), IdleTime(LLC),
ELLG  pLLC LLC Cache line owner’s table
InstFetch, InstFetch(tk;),
Bere e | Ocel, (thy), OcelCon (k).
Core OcchS, (th:), OcclS, (tky),
LeakE<"* 1C Cache line owner’s table,
DC Cache line owner’s table,
| | )
intra-cluster bus | EIm0us = pinbus #action™" (tk;)
inter-cluster bus | EC4bus = pputbus Haction2"% (th;)
MainEJC-m"e (tkl) = Mainch-ore/#Tk (4.14)
Occf© (tk;) + OcePC (tk;
LeaBS(th;) = LeaES™ x (tk:) (tk:) (4.15)

2

where InstFetch; and InstFetch;(tk;) are the total and task i fetched instructions in
interval j respectively. Occ!®(tk;) and OccPC (tk;) stand for the task i occupancy in the
data and instruction caches. Then, we only need to cumulate the energy of the task across

all intervals:

ExzecTime(tk;)
SmpFreq

i (the) = )

=0

(DynE5(th;) + MainE;*“(tk;) + LeaEj*“(tk;)) (4.16)

4.3.3 PTEM with Practical Approaches for the Buses

The ideal model for the buses only needs to track access (activity) counts per access type
per task. Our simplified PTEM model for the buses relies on the fact that, analogously
as for the LLC, bus accesses are not frequent, so they can be tracked with full accuracy.
Also, leakage energy is tracked trivially by considering how many cycles each thread runs

and how many threads share each bus.

4.3.4 Putting It All Together

The practical PTEM approaches require reduced hardware overhead. PTEM mostly re-
quires setting up some counters similar to the PMCs currently available in most high-
performance processors. PTEM support, analogously to PMCs, does not interfere the

execution of programs since it is not in any critical path.
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Table 4.1 summarizes those parameters required from the chip vendor and the extra
logic (counters, tables) that must be set up. The chip vendor is required to provide
only few parameters that can be either obtained by running appropriate benchmarks or
estimated using test chips or power models. Note that counters with the (tk;) suffix
must be replicated for each task. Analogously, action in the case of the LLC stands
for the 6 different LLC actions considered in this work: read/write hit, read/write miss
(no dirty line replaced), read/write miss (dirty line replaced), and for the 2 different bus
actions considered in this work in the case of the buses: address communication and cache
line communication. Inbus and outbus refer to the intra-cluster and inter-cluster buses
respectively in the table.

Regarding the interface with the software, the OS is responsible for keeping track of the
energy consumed by every task running in the system. PTEM exports a special register,
called Energy Metering Register (EMR), that acts as the interface between PTEM and
the OS. The OS can access that register for collecting the energy estimates made by
PTEM. This typically will happen when a context switch takes place. At that moment,
the OS will read the EMR using the hardware-thread index (or CPU index) for the task
that is being scheduled out (7,,;). Then, the OS will aggregate the energy consumption
value received in the task struct for T,,. Right after the new task (7j,) is scheduled
in, the LLC and L1 caches will continue to contain some lines belonging to T,,:. These
lines will be tagged with the same identifier as the one T}, is using. Although, PTEM
will attribute maintenance and leakage energy consumption to T;,, we have empirically
observed, that this occurs during less than 1 million cycles, since cache lines belonging to
Towr will be quickly replaced and thus, evicted from LLC. Under a processor frequency
of 2GHz, 1 million cycles are equivalent to 0.5us, while context switches occur at much

higher granularity, every 10-100us.

4.4 Evaluation

4.4.1 Experimental Setup

The general experimental setup used in this chapter is as introduced in Section 3.2, except
that we have also taken into account large core-count scenarios. For these setups, we
assume a clustered multicore architecture, as shown in Figure 4.1, where each cluster
consists of a set of cores, having each core private data and instruction first level caches,
plus a shared on-chip second level cache accessed through a shared bus. We refer to such

cache as LLC. All clusters are connected to memory through a shared bus. Several studies
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show that hierarchical bus configurations scale quite easily to large systems and provide
a good area-performance trade-off, while retaining many of the advantageous features
of simpler bus arrangements [100]. In the same line, other studies show that bus-based
networks can significantly lower energy consumption and simplify network protocol design
and verification, with no loss in performance [111].

In order to evaluate the accuracy of PTEM, we make use of the benchmark suite
and workload generation strategy introduced in Section 3.4. We also consider an HPC
application, wrf, as described in Section 3.4.2. To measure accuracy, the make use of the

metric described in Equation 3.1.

4.4.2 Intra-cluster evaluation

We evaluate the accuracy of our hardware support for per-task energy metering incremen-
tally by analyzing the accuracy at intra-cluster level. Once we analyze the accuracy of the
PTEM models for the cache and SMT core, in next section we show the results when we
scale the number of cluster to sum up a total of 16/32 cores (32/64 threads). Due to the
relatively low energy contribution of buses, intra-cluster bus energy is reported as part of
the LLC energy.

The key idea of our per-task energy metering approach is to make the energy attributed
to a task proportional to each resource wutilization. In particular, to its activity and the
occupancy of a given resource. If both activity and occupancy are accurately measured,
the energy consumption can be accurately attributed to each running task.

Figure 4.2 shows the fraction of LLC energy consumption attributed to each benchmark
in a 2-core workload (gcc+mecf), by using our ideal model presented in Section 4.2.

We observe that the activity does not necessarily reflect the occupancy of the LLC.
In the figure, we can see that gcc, with 63.5% accesses, occupies less than 46.2% of LLC
lines. That shows that a given workload may have very different consumption profiles in
terms of active energy versus maintenance and leakage energy. Therefore, it is important
to measure both activity and occupancy in order to improve the estimation accuracy. For
instance, let us look again at the gcc case. If we estimate the energy only proportionally
to the activity, LLC energy will be significantly overestimated for gcc and underestimated

for mcf.

4.4.3 PTEM Energy Estimation

In this section we show the accuracy of the models presented in Section 4.2 for the core

and the LLC at cluster level. In particular we measure the off estimation of each model
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Figure 4.2: Per-task LLC cache energy breakdown and access/occupancy rates when exe-
cuting mcf and gcc in a single-threaded 2-core configuration.

with respect to the idealized model. We include the ES model that uniformly splits the
energy among all running tasks regardless of their occupancy and activity in the processor
resources. This is indeed the common approach in current methods only considering
execution time.

Core Energy Consumption Prediction: Figure 4.3 shows the prediction accuracy
for the core under the setup C4S2. Each bar shows the average error of all 8 benchmarks
in the workload.

In general, PTEM clearly outperforms ES providing tighter energy predictions. In
particular, PTEM incurs a prediction error of up to 6.9% across workloads, while for the
ES model it is higher than 13%. Predictions are more accurate for I workloads due to the
highly homogeneous behavior of programs. Irregular workloads in X and M groups (some
benchmarks are more memory-bound than others in the M group) lead to slightly higher
error for PTEM and larger error for the £ES model. This can be also seen when comparing
the maximum error across individual tasks in the workloads (see Table 4.2). PTEM
maximum error is highly constant across workload types (9-10%) whereas ES model error
is particularly high for X and M workloads (28% and 22% respectively).

LLC Energy Consumption Prediction. Figure 4.4 shows the effect of sampling
sets and period on the average LLC energy prediction accuracy for a 4-core configuration.
The y-axis represents the sample period measured in processor cycles (e.g., 10K stands

for 10,000 cycles). The x-axis is the sampling set configuration. For instance, 1e8 means
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Figure 4.4: Per-task LLC cache energy prediction with sample set and period in a 4-core
configuration.

that we sample 1 set every 8 sets.
We observe that the curve has a higher slope in the x-axis (set sampling). For instance,
for a sampling distance of 10K cycles, the prediction error rate raises from less than 1% to

almost 8% as the sample set reduces from lel to 1e512 sets. Instead, the sample period
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Figure 4.5: Per-task LLC cache energy prediction error rate (C4S2)

(y-axis) has limited effect on accuracy. With 1e8 sampled sets, the prediction error only

raises 0.2% as the period increases from 1K to 10M cycles.

Considering that the hardware cost of set sampling varies significantly, we choose a
moderate-cost configuration in which we use 1e2 and 10K cycle sampling period. This
is the configuration we use to measure the energy per-task in the LLC in the following

sections.

Figure 4.5 shows the LLC prediction error of each model under the C4S2 setup. Pre-
diction error corresponds to the average error across benchmarks in each workload. We
observe that PTEM largely outperforms ES model in terms of accuracy for all workloads

and processor setups.

The ES model is highly inaccurate in general, more than 103% on average. The ES
model accuracy is worse for I and X workloads due to the highly heterogeneous memory
behavior of the tasks. In fact, even in I workloads behavior is highly heterogeneous because
the relative LLC access frequencies and occupancies are very different across tasks. ES
accuracy improves for M workloads where LLC occupancy and access frequency are more
homogeneous. Our PTEM model, in contrast, has a considerably low prediction error,
less than 2% on average. Further, as shown in Table 4.2, maximum error across all tasks
for PTEM is 25.6% for I workloads because their low LLC utilization may make spatial

sampling to experience some error. However, as long as M tasks are in place (X and M
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Figure 4.6: Cluster per-task energy prediction error (C4S2)

workloads), PTEM accuracy is very high (maximum error is always below 4.5%). On the
other hand ES model error is huge (more than 3000%), especially for I and X workloads
due to the highly heterogeneous memory behavior of the tasks in the workloads.

Cluster Energy Consumption Prediction. Next, we show per-task energy meter-
ing accuracy at cluster level, including core and LLC energy.

Figure 4.6 shows the average prediction error in each workload for a cluster consisting
of 4 2-way SMT cores. First, we observe that prediction error for the whole cluster is
very similar to that of the cores only (see Figure 4.3). This is so because the LLC energy
contribution is typically in the range 15-20% due to the high activity of the cores (8
threads running). Therefore, core prediction error dominates the overall prediction error.
As expected, the ES model obtains worse results than PTEM in all workload groups, with
an average above 10%. The prediction error for PTEM is less than 3% on average across
all workloads. Furthermore, we observe that the ES model error grows for X workloads
since different threads perform highly heterogeneous activities. ES model average error
is above 17% for one of the workloads. Instead, PTEM error remains quite stable across
workloads and never exceeds 4.5%.

Per-benchmark data in each workload show that the maximum off-estimation that

PTEM produces is 9.2% for one of the benchmarks in the X workloads, see Table 4.2
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Table 4.2: Maximum per-task prediction error.

Core
I X M
PTEM 8.8% 9.6% 10.2%
ES 11.9% 28.3% 21.9%
LLC
I X M

PTEM 25.6% 4.0% 4.4%
ES 1112.6% | 3593.8% | 62.0%

Cluster
I X M
PTEM 6.6% 9.2% 7.5%
ES 25.8% 58.5% 23.6%

(recall that we use 8-benchmarks workloads and evaluate 24 different workloads, counting
192 benchmarks in total). For homogeneous workloads (I and M), the maximum error
observed is 7.5% only. Instead, the maximum error for the ES model is 58.5%. Maximum
error is lower for homogeneous workloads, but still in the order of 3-4x that of our PTEM

model.

4.4.4 PTEM Energy and Area Overhead

PTEM requires few hardware counters to track LLC, core and bus activity, together with
small arrays tracking the ownership of some cache sets in the LLLC and L1 caches. For the
sake of consistency, the energy of those components has been modeled using CACTI. In
order to model counters, components such as internal cache buffers have been used, since
they are comparable to latches in the pipeline.

Results for the 4-core 2-way SMT configuration show that the total energy overhead for
PTEM is below 0.3%. Most of the overhead is due to the active energy of the ownership id
arrays in LLC and L1 caches. Relative overheads do not change noticeably for different core
counts. In fact, the relative overhead slightly decreases as the number of cores increases,
which proves that PTEM scales well.

We have obtained the area overhead using CACTIT with the following assumptions:
LLC cache occupies 50% of the area in a 8-core configuration, counter bitcells have the
same size as input/output buffers in caches (so they are large) and ALUs performing
power computations use low-cost designs such as iterative multipliers and dividers (their
latency is not critical as they are used seldom). We consider SMT cores, as they require
more bits to track ownership and more counters to track per-task activity. Overall, we
obtained that total area overhead is 0.49% (4 cores), 0.63% (8 cores), 0.75% (16 cores) and
0.82% (32 cores), proving that PTEM area cost is rather low. The area breakdown for the
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32-core configuration is 0.20% LLC, 0.48% DL1+IL1, 0.09% core without DL1/IL1 and
0.05% bus. Similarly, the breakdown for the 4-core configuration is 0.22% LLC, 0.20%
DL1+4IL1, 0.04% core without DL1/IL1 and 0.03% bus. Thus, those arrays tracking the
cache line ownership and counters tracking per-task activities in caches account for most
of the area overhead, which anyway is rather low.

Overall, PTEM imposes neither limitations on the number of threads that can be run
simultaneously in the processor (low and scalable hardware overheads), nor limitations
on the number of tasks the OS can keep active simultaneously (a single counter per task
needs to be tracked by the OS).

4.4.5 PTA Model Justification

Since PTA models have been widely used to estimate core and system-level energy [7,
14,102}, we also include PTA in our discussion. While these models typically rely on
existing PMCs, so no extra hardware support is needed, their accuracy is limited and
highly dependent on whether training workloads are similar to those at deployment.

Coefficients of the PTA model are obtained using our idealized model as the reference
model, since no other reference model exists. We provide the linear regression with all per-
task event counters in our simulator including number and type of instructions fetched,
executed, committed, data and instruction cache hits and misses, etc. despite PMCs may
not exist for many of those events.

We have used a 4-core 2-thread SMT setup. The training set consists of a workload
with eight benchmarks randomly chosen from the SPEC CPU 2006 for each of the three
categories described before: I, X and M. The evaluation workload consists of eight
workloads generated analogously for each category.

As shown in Figure 4.7, the PTA model performs worse than PTEM. Linear regression
is less accurate than ES for I workloads, and slightly more accurate for X and M ones.
The average error for the PTA model is 7.8%, similar to ES one. Furthermore, we have
observed that maximum estimation error is higher for the PTA model than for PTEM
and ES. The reason for those large estimation errors for the PTA model is twofold: (i)
its dependence on the training set and (ii) the fact that PMCs do not take into account
occupancy, which is the parameter determining per-task leakage and maintenance energy
in many components.

Finally, although not shown, results for other components (e.g., LLC) show similar
trends because of the same limitations pointed out for the core. For instance, Figure 4.2

shows the dependence of LLC leakage and maintenance energy on occupancy rather than
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