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Abstract

Chip multi-core processors (CMPs) are the preferred processing platform across different

domains such as data centers, real-time systems and mobile devices. In all those domains,

energy is arguably the most expensive resource in a computing system, in particular with

fastest growth. Therefore, measuring the energy usage draws vast attention. Current

studies mostly focus on obtaining finer-granularity energy measurement, such as measuring

power in smaller time intervals, distributing energy to hardware components or software

components. Such studies focus on scenarios where system energy is measured, and under

the assumption that only one program is running in the system. So far, there is no

hardware-level mechanism proposed to distribute the system energy to multiple running

programs in a resource sharing multi-core system in an exact way.

In this thesis, for the first time, we formalize the need for per-task energy measurement

in multicore by establishing a two-fold concept: per-task energy metering and sensible en-

ergy accounting. The former, for a task running in a multi-core system, provides estimates

on the actual energy consumption corresponding to its resource usage. The latter provides

estimates on the energy the task would have consumed running in isolation with a given

fraction of the shared resources.

Accurately determining the energy consumed by each task in a system will become

of prominent importance in future multi-core based systems as it offers several benefits

including (i) better application energy/performance optimizations, (ii) improved energy-

aware task scheduling and (iii) energy-aware billing in data centers.

We have shown how these two concepts can be applied to the main components of

a computing system: the processor and the memory system. In each, we have proposed

models to ideally meter and account the energy. And by trading off the hardware cost

with the estimation accuracy, we have obtained implementable and affordable mechanisms

with high accuracy. We have also shown how these techniques can be applied in different

scenarios, such as, to detect significant energy usage variations for any particular task and

to develop more energy efficient scheduling policy for the multi-core system.
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1

Introduction

Energy is becoming one of the most, if not the most, expensive resource in computing

systems. This trend will continue as the price of energy continues to rise, increasing in

recent years by up to 70% in several European countries [28].

• In a large-scale computing facility (LSCF), energy for computing already accounts for

20% of the total cost of ownership [8,39]. In addition, the Power Usage Effectiveness

(PUE) is still above 2.0 in most LSCFs in the year 2015 [24,38]. This metric compares

the energy used on the computing facilities with the total energy consumed including

other facilities such as power delivery and cooling system: PUE = total energy
computing energy .

Thus, the energy cost doubles if we consider all the facilities in LSCFs, implying

that the total energy-related cost is already in the same order of magnitude as the

hardware-related cost (servers), which dominates the cost of ownership. Addition-

ally, while server cost has remained almost constant over successive generations,

energy cost is expected to rise [8]. In fact, in terms of power, current facilities con-

sume several megawatts, enough to power small towns [6]. Meanwhile, in terms of

energy, worldwide energy consumption attributable to servers and data centers is

estimated to be above 200 billion kWh annually in 2010 [63].

• Energy demand is also an issue for home computers. A typical desktop computer

may use in the order of 100–200 Watts (the particular figure depends on the type

of computer and peripherals) whereas laptops fit in a lower range (60–100 Watts).

The energy cost of running a computer can be computed as Watts×Hours Of Use
1000 ×

Cost per kWh. Assuming that a computer runs for 15,000 hours during its lifetime

1
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(around 28 months nonstop) with a cost of 22.1 cents per kWh (household), the

energy cost of a 150W desktop is $497. This figure already represents a significant

fraction of the purchase cost of a computer.

• Energy is also critical for the mobile embedded systems, as the computing power

of hardware keeps growing whereas the energy densities of the battery technology

comparatively slowly grows. Estimating the battery duration of the device with a

set of applications running, based on the energy delivered by the battery for a given

size and weight is essential for device design.

The so called power wall and Instruction Level Parallelism (ILP) wall have been shown

to be the major obstacles to maintain the historical rate of performance growth in comput-

ing systems [15, 41, 79, 85, 112]. In this line, multi-core and many-core design paradigms

have enabled the growth of throughput performance despite the dramatic slowdown in

clock speed growth. Multi-core designs offer improved performance per Watt – for similar

single-core solutions – for workloads that can make use of multiple cores. However, its es-

tablishment as the de facto hardware paradigm across most computing domains, together

with increasing core counts in each new generation, makes energy consumption in such

complex system difficult to be measured at a fine granularity (e.g., per task). Thus, in the

current energy-sensitive environment, accurate attribution of energy contribution needs

more sensible understanding and study.

Take the scenario of LSCFs where energy already dominates the operational cost for

example: In the age of non-virtualized systems, service providers normally charge users

based on the time they have used the facility. In this case, as stated in [53], once a

user instance received some physical resources, no other user would be able to share those

resources. In such a situation, time is indeed money; so, even if the user instance isn’t

using the allocated resources, it would make sense to charge the user a flat, per-hour rental

rate, because once a set of resources is tied up, the owner can’t make rental income out of

those resources from any other waiting customer.

Today’s LSCFs providers, cloud-computing for example, serve the customers with ser-

vices based on different models, such as the Infrastructure as a Service (IaaS), Platform

as a Service (PaaS) and Software as a Service (SaaS). While in the basic IaaS model, the

physical machines are still offered along with virtual machines (more often). The trend is

to provide customers highly virtualized online service instead of direct hardware resources,

such as PaaS and SaaS. Current cloud-computing providers such as ElasticHost [26] and

CloudSigma [21] provide computing power in the form of IaaS. They use similar pricing

models, which has been concluded in [74] as follows:
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Pvm = Pbase + PCPU

(
fCPU − fCPUbase

fCPUbase

)
+ PRAM

RAMsize

RAMsizebase

(1.1)

In this model, customers are offered with the flexibility to choose a specific CPU

frequency fCPU which stands for the demanding computing power of the processor, and

the memory size RAMsize. they are For other resources, they can be priced using the

same methodology, but they are ignored in this formula to simplify the discussion. Based

on the customer’s selection, the corresponding price is calculated with fixed rates Pbase,

PCPU and PRAM . Pbase is the basic price when the minimum CPU capacity fbase and

RAMsizebase are used. With the extra demand on computing capacity and memory size,

the price Pvm that customer has to pay also rises.

Note that in this case, the boundary between the physical machine and the virtual

machine is already unclear. For example, given that customer needs 10GHz CPU fre-

quency, and the per-processor computing power in the infrastructure is 3GHz. We can

either presume that the demanded 10GHz CPU frequency can be divided into 3 phys-

ical processors entirely, and the rest 1GHz falls into a virtual machine to be placed in

any shared processor. Besides, the whole demanded CPU frequency is placed into several

virtual machines that the operator can smartly schedule in the infrastructure to maxi-

mize the actual resource usage and optimize the overall power and energy consumption.

In most cases, the latter one is clearly the preferable choice. Providers benefit from the

virtualization of the hardware resources, since they can charge multiple users sharing the

hardware resources. As claimed in [53], in this new scenario, the owner has no reason

not to move to an energy-aware accounting system based on actual resource usage; [...] A

built-in energy-accounting system could guide the workload management system to make

scheduling decisions that result in safe, more efficient workload consolidation.

From the customer side, energy accounting is also beneficial. For example, if such a

system is presented, it can help them to demand proper services to satisfy their need and

budget. Most importantly, they will receive billing with higher fairness and accuracy for

running their applications. Nevertheless, the benefit of being energy-aware is not limited

to this LSCF case, and application can be easily found across all computing domains.

As energy already draws attention from the community, there have been abundant

energy-oriented studies. In these works, researchers focus on refining the energy measure-

ment in different perspectives, such as hardware and software based energy measurement

in each small time interval, energy and power profiling for programs and systems, energy

consumption breakdown in hardware components and program blocks, etc. [14, 27, 105].
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Figure 1.1: Power consumption of SPECCPU 2006 benchmarks on a PS701 system with
an IBM POWER7 processor

However, despite the fact that multicore processors have been pervasively used in almost

all computing domains in which multiple tasks1 can simultaneously run, to the best of our

knowledge, no mechanism has been proposed to accurately measure the energy consumed

by each task in multicore architectures.

Current approaches to measure tasks’ energy consumption assume computer system’s

energy is evenly distributed across all running tasks, as if all of them were using resources

homogeneously. However, different applications may easily incur vastly different resource

utilization in the shared resources. Such heterogeneous resource utilization translates into

heterogeneous power dissipation per application, and therefore, simply dividing energy

evenly across running tasks is neither fair nor accurate enough.

To elaborate on the need of accurate per-task energy measurement, Figure 1.1 shows

the average power dissipation when executing all the SPEC CPU2006 benchmarks on a

POWER7-based system [58]. As shown, different tasks incur different average power dis-

sipation, with the maximum variation being 16%, between 453.povray and 410.bwaves.

Hence, if a povray-like and a bwaves-like program execute undisturbed in a computing

system for a period of time, they will incur significantly different energy consumptions.

However, the same amount of energy would be attributed to each, which sum up to the

total energy consumption of the system. Note that workloads in this example are fairly

1In this thesis, we use the term task to refer to hardware threads belonging to a single-threaded
application. And the term workload refers to a set of co-running tasks.
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Figure 1.2: Memory power of some SPEC CPU 2006 benchmarks running alone on an Intel
Sandy Bridge server, with 8 cores and a 64GB DDR3-1600 memory running at 0.8GHz.
Power is obtained using the Running Average Power Limit (RAPL) interfaces [50]. FitPC
external multimeter is used to measure wall power. We correlate wall power data with
the data collected from the hardware energy counters using time stamps. Representative
benchmarks were selected based on previous characterization studies [51,94].

homogeneous given that they correspond to a single benchmark suite in this case. More

heterogeneous workloads including database processing, I/O-intensive applications as well

as high-performance ones will exhibit even higher power variations.

Similar trends can be observed on different platforms. We have also performed an

experiment with several representative SPEC CPU 2006 benchmarks running on an Intel

Sandy Bridge server. In this experiment, we focus on the average memory power during

their execution, which represents between 24.6% and 33.9% of the total systemrpower. It is

comparable to the entire processor power: on average, the memory system only consumes

6.3% less power than the processor.

Figure 1.2 shows the average memory power consumption of each benchmark when

executing in isolation on the system. Different tasks incur different power consumption,

with the maximum variation being 54%, between 482.sphinx3 and 462.libquantum (from

25.7W to 40.4W). Hence, libquantum-like and sphinx3-like workloads executing for the

same amount of time would incur significantly different energy consumption.
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It is our position that accurately measuring the energy consumed by each task in a

computer, instead of considering only the whole energy consumed by the computer, will

have plenty of important applications. These applications will not only improve the energy

usage attribution in the multicore system, but also enable optimizations on the design

and management of computing systems. As a matter of example we list the following

applications:

• In LSCF, the energy cost is already dominating the billing. For example, consider

the cloud computing provider Cloudsigma [21]: the unit price is 2 cent per hour

for a CPU running at 2.5GHz. Assuming an average 50W power consumption and

12.8 cent per kWH electricity price (industry), the energy cost is 30% of the bill

without accounting the energy spent in other facilities (12.8 · 50/1000 = 0.6 cent per

hour). With such figure, users’ billing without considering energy cost cannot be

fair. Especially in multicore systems, according to our study in Chapter 4, the energy

that a task consumes when it co-runs with different tasks can vary in the range

of [−25%, 40%]. Despite this variability, it is our position that when a customer

requests the same computing power to run the same task using the same input,

the same energy cost should be accounted. Based on that, the provider should

consistently charge the customers with the same billing.

• During the design of multi-core and many-core architectures, the per-task perfor-

mance and system throughput have been mainly taken into account. However, the

impact on per-task energy has been somewhat ignore. If the energy consumption of

per-task can be measured, the energy efficiency of using multicore processor can be

quantified, and more energy efficient design can be devised.

• For computing systems in different domains that use multi-core and many-core pro-

cessors, collocating tasks with different power needs in the nodes must be done in

a way to maximize their performance while minimizing energy consumption. In a

given node, allocating appropriate resources to tasks and regulating the frequency/-

voltage level to reach the optimal tradeoff between their performance and energy

consumption has also prominent importance.

1.1 Thesis Contribution

In pursuance of building energy-aware multi-/many-core systems, numerous efforts are

needed in different perspectives. In this thesis, we focus on the per-task energy measure-
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ment, as needed by fair energy accounting and system optimization.

In particular, we divide this topic into two distinct concepts: for a particular task, 1)

measuring its actual energy consumption in a given workload; and 2) estimating its energy

consumption with a given allocation of resources.

Since modern computer components are implemented with diverse techniques and de-

signs, and thus have different structures and organizations, we propose techniques for the

on-chip resources and off-chip memory subsystem separately in this thesis.

1.1.1 Per-Task Energy Metering (PTEM)

First, we propose Per-Task Energy Metering (PTEM), which is a measurement of the

actual energy consumption one task has during its execution in a multi-core architecture

where the resources are shared with other tasks. We define this concept formally as follows:

Given a workload composed by n tasks Ti, T2, ..., Tn running in a processor with m

hardware threads (e.g., m single-threaded cores), Per-Task Energy Metering consists in

tracking the energy that a given task, Ti, consumes during a given period of time. This

requires metering the energy a task Ti consumes in private hardware components (i.e.

components only used by the task at a given point in time) for instance, the single-threaded

cores in a multi-core CPU, and shared resources, such as Simultaneous Multi-Threaded

(SMT) core and shared L2 or Last Level Cache (LLC).

The difficulty with shared resources resides on the fact that they can serve requests

from different tasks concurrently, and each request type may generate different internal

activity in the resource with variable duration. This seriously challenges per-task energy

metering. Current methods for energy metering focus mostly on time-shared resources

(e.g. CPUs) and are based on usage time and allocated resources. This may be adequate

if static power dominate the total power consumption. However, this is no longer true

with the shift towards energy-proportional systems [5] where most of the energy consumed

by an application – and hence, its cost – is due to its activity. Hence, in an energy pro-

portional system two customers that incur different utilizations across similarly allocated

resources for similar usage time, will be accounted the same energy consumption while

in reality their energy consumption profiles can be quite different. In [53] authors run

several homogeneous programs in isolation on the same platform for a fixed period of

time. Results show that power dissipation across these homogeneous programs with simi-

lar resource and time allocation may vary more than 20%. More heterogeneous workloads

including database processing, I/O-intensive applications as well as high-performance ones

exhibit higher power variations.
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Our view is that, the energy metered to a given task should be proportional to its

resource usage. This includes the number and type of accesses to the different resources

and, for stateful resources (e.g., Branch Target Buffer, caches and Translation Look aside

Buffer (TLB)) the fraction of the space occupied by the task. The accuracy of per-task

energy metering depends on the characteristics of the hardware resources used and the

hardware support enabled for energy metering. Note that when we have per thread energy

metering, energy for multi-threaded applications simply consists in adding up the energy

consumed by each of its constituent threads.

1.1.2 Sensible Energy Accounting (SEA)

PTEM provides a way to measure the real energy a task consumes in the computer.

However, the energy metered to a task in a given system, despite it has the same input

set, varies depending on other tasks that are running at the same time (co-runners). Apart

from being able to measure the energy consumed by a task, we also aim at maintaining the

same Principle of Accounting that holds for execution time (a.k.a. CPU accounting) [76]:

the energy accounted to a task should be independent from the workload in which this

task runs. Several runs of the same task with the same input should – theoretically –

result in the same energy consumption and hence the same charge in a data center.

Therefore, we propose Sensible Energy Accounting (SEA) to fairly account a task a

constant amount of energy as if it has been assigned a fraction of resources to use in

the computer, regardless of the concurrently running tasks. We define SEA formally as

follows:

Let us assume a workload composed of n tasks T1, T2, . . . , Tn running on a processor

with m hardware threads (e.g., m single-threaded cores), SEA consists of estimating, for

a given task Ti, the energy that it would have consumed if it had run in isolation with a

given fraction of the hardware resources denoted fhr. Thus, SEA does not give the actual

energy consumption of a task, but rather an abstraction of the energy consumption that

the end-user can rely on to be fair and consistent.

The main challenge for SEA is how to compute the energy for any task and any valid

fraction of the resources, despite the fact that a particular task may incur different activ-

ities in different workloads due to interactions with co-runners, and such variation makes

its performance fluctuate. This effect makes energy consumption hard to account since

it cannot be extracted directly from the energy measured. Our view is that, accurately

accounting the energy to a task for a particular fraction of resources depends on precise

estimation of activities and execution time this task should have incurred.
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1.1.3 Future Impact of PTEM and SEA

We consider both concepts are key to provide clarifications on the per-task energy usage,

from the perspective of actual workloads and feasible allocations of resources. We consider

that PTEM and SEA can be separately used or combined, but in any case they will have

several important applications across different computing domains. We show some cases

where PTEM and SEA can apply to:

• Selection of appropriate co-runners. Task interaction in hardware shared resources

may negatively affect tasks hurting performance and increasing energy requirements.

PTEM and SEA can help the OS scheduler or a runtime-based scheduler to decide

which tasks must be run and when, thus reducing the total energy profile.

• Energy/Performance optimization. While allocating more resources to a program

may make it runs faster, it could also increase its power consumption, and vice versa.

Thus, the net effect on how the total energy profile relates to the resource allocation

is unclear. Accurately measuring the energy consumed in different processor (e.g.

number of cores) and software (e.g. scheduling) setups will justify their effectiveness

in energy-saving. Sensibly accounting the energy consumed per task would allow

finding the optimal setup that leads to the lowest per task energy consumption, and

thus the lowest system energy consumption (shown in Section 6.6.2).

• Billing in data centers. Data centers charge users for the use of their resources.

The fact that costs will be dominated by energy, makes billing systems more and

more energy-centric, so that part of the bill is directly dependent on the energy

consumed by users’ running jobs. Measuring the energy each task consumes, rather

than evenly dividing the cost of energy among running tasks, would allow data

centers to accurately account the energy cost. Sensibly accounting the energy each

task consumes under a given fraction of resources would give a fair billing upon their

energy profile. Such methods can facilitate the energy cost integration in different

service models, even with higher abstraction levels such as SaaS and PaaS. Since

the execution of each virtual machine instance can be tracked, the energy in that

physical node can be metered and accounted using PTEM and SEA.

1.2 Thesis Structure

The structure of this thesis is organized as follows:
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• Chapter 2 introduces the state of art of energy/power measuring and profiling tech-

niques in computing systems. We abstract several important concepts to show how

our work is different from them, and how we advance this topic from a new perspec-

tive.

• Chapter 3 introduces the simulation framework we used in this thesis. We give a

detailed description of our architecture and power simulator. Also, we have also

introduced the benchmark suite and metrics to evaluate our proposals.

• Chapter 4 has made a case of accurate PTEM for on-chip resources. We propose

an idealized reference model to perform accurate PTEM based on the resource uti-

lization of each task. A simple, yet accurate, implementation of such approach is

also proposed. The focus is the main shared hardware resources in current multicore

processors, including SMT core and LLC.

• Chapter 5 introduces the PTEM model in DRAM memory system and an efficient

implementation of such method. A case study, in which the SPEC CPU 2006 bench-

marks have been characterized using the proposals is also presented.

• Chapter 6 develops the concept of SEA from a theoretical point of view and dis-

cusses how it can contribute to different computing domains. Then, a low-overhead

hardware mechanism to obtain SEA for on-chip resources in a multicore architecture

is presented.

• Chapter 7 makes a case of SEA model in the DRAM memory system when one task

has been assigned different fraction of resources on the chip. The interactions of

memory requests in the memory controller and DRAM devices have been analyzed.

A practical and low-overhead implementation is also proposed.

• Chapter 8 concludes the work in this thesis and shows directions for future work.

• Chapter 9 lists the publication related to this thesis and during the PhD study.



2

Related Work

Nowadays, modern microprocessors integrate in the order of billions of transistors on chip

and operate at a frequency of several gigahertz. The power wall has already become

a major obstacle in satisfying the growing computational needs. The multi-core/multi-

threaded design paradigms have enabled the growth of throughput performance despite

the slowdown in clock speed growth. Nevertheless, power dissipation and current delivery

limitation make it hard to keep scaling indefinitely along the dimension of on-chip thread

count. Therefore, accurate measurement and profiling of the energy/power consumption

is needed so that future systems can optimize the power dissipation to better convert the

electrical power into computing power.

In this chapter, we show the state of the art in the power/energy consumption mea-

surement and profiling in computing systems. First of all, we introduce the energy con-

sumption taxonomy, based on which, we elaborate the classification to better fit our needs.

Then, we review several studies on how to abstract the energy of the devices using dif-

ferent means. In the fields of energy or power profiling, we illustrate works on different

categories including: power characterization of computing systems, hardware components

power consumption breakdown, and software component energy breakdown. In the con-

text of these related works, we can see how our contributions advance the state of the art

in this field.

11
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2.1 Energy Consumption in Computing Systems, A

Taxonomy

Within a given computing system, energy stands for the source which powers the hardware

devices to operate. The standard measurement of energy is Joules, directly reflecting the

electricity cost. And power is the rate at which the energy is consumed, and is measured

in Watts which corresponds to Joules per second.

The distinction between energy and power is key to understand per-task energy mea-

surement in multi-core architectures. For instance, when several tasks run concurrently

in a multi-core system with abundant shared resources, the power dissipation of one task

is most probably reduced compared with the case when it runs alone in the system. How-

ever, the energy consumption incurred by its execution is undetermined because of the –

likely – prolonged execution time. In this thesis, we study the energy consumed by tasks

when running in resource-sharing multi-core systems, by analyzing the power each task

dissipated in time intervals during their execution.

In digital Complementary Metal-Oxide-Semiconductor (CMOS) technology, the energy

consumption mainly comes from three resources: a) The logic transition that makes the

current flow through the transistors. This occurs when the circuit transitions back and

forth between the two logic levels. The electrical energy is consumed by the parasitic

capacitances and resistance of transistors. b) The short circuit current that flows directly

from supply to ground when the n-subnetwork and the p-subnetwork of a CMOS gate

both conduct simultaneously. c) The leakage current between the source and drain of

transistors. In former studies, they have been commonly categorized into dynamic power

and static power [73, 113]. Specifically, dynamic power includes power dissipated by the

logic transition and short circuit current, and static power refers to the power dissipated

by leakage current. However, such classification, although has been conventionally used

to study circuit and system power consumption, does not fit our need to attribute the

energy consumption to tasks since we need more precise categories. Therefore, for the sake

of clarity, we break down the energy consumed in a computing system into three main

components: dynamic active energy, dynamic maintenance energy and leakage energy.

These terms are consistently used in this thesis.

• Dynamic active energy corresponds to the energy consumed performing those actions

needed by the instructions executed, such as the energy used to read a register or

to issue an instruction. When considering the energy consumed during a given time

interval, we can also express as the dynamic active power, which may vary along
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time.

• Dynamic maintenance energy corresponds to the energy wasted in useless activities

not triggered by any particular instruction, for instance, the significant clocking

power that is consumed in idle blocks. Similarly, many SRAM arrays such as cache

memories precharge some bitlines every cycle in order to speed up accesses. However,

such activity is useless if no access occurs [16]. Note that the energy consumed due

to an access corresponding to a useless instruction (e.g., a misspeculated instruction)

is considered as dynamic active energy despite such activity is useless because the

action has been triggered by the instruction under execution. Due to the fact that

these useless activities constantly consume energy during the whole system active

period, dynamic maintenance energy can also be expressed as dynamic maintenance

power in most cases.

• Leakage energy corresponds to the energy wasted due to imperfections of the tech-

nology used to implement the circuit. Thus, it includes all energy wasted due to

undesired leakage current and parasitic current from supply to ground. Leakage

energy persists whether a computer is active or idle, since the leakage and parasitic

current flow through transistors even when the transistors are turned off as long as

they are powered up. Thus, leakage energy consumed in a given time interval can

also be expressed as leakage power.

Bear in mind that dynamic active and maintenance power are both derived as a su-

perset of logic transition and short circuit current in the CMOS circuit, and they can be

summed up to dynamic power. In this sense, our study can be easily aligned with former

studies. Breaking down dynamic active and maintenance energy is useful in our context

since it avoids mixing the energy consumed due to the activity triggered by the instruc-

tions executed and the energy that cannot be attributed to any task, especially if several

of them are running. Dynamic maintenance power has been recognized as platform power

in some other works [102].

For the studies related to hardware analysis, the focus is mainly on power consump-

tion since it is a direct reflection of the device computation power and sensitive to the

thermal capacity. In contrast, for software related studies, the focus is instead on the total

energy consumed by the piece of software that is executed. In the following sections, these

terminologies are carefully distinguished.
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2.2 Computing System Power Measurement

Obtaining power figures of complex, highly-threaded multi-core system is a difficult chal-

lenge. The effort invested on this task is large. The most common approaches can be

classified as either direct power measurement or indirect power measurement, although

some studies have considered a hybrid approach to obtain improved results [43,48].

2.2.1 Direct Power Measurement

Direct hardware-based power measurement consists of measuring the current and supply

voltage level on a particular component, for instance, the processor and the memory

system. Then the measured values are used to compute the power. Such measurement

requires different types of meters, some specifically designed circuits embedded in the

platform, and power sensors inside the device.

Meters measure the power dissipation of the device in a straightforward way by con-

necting them between the power supply and the measured component. However, the

widely used digital multimeter [55] or AC power meter [109], sample the measured device

at a coarse granularity, normally at around 1 Hz.

Direct power measurement typically needs specialized device support, as explained

in [105]. Nowadays, most of the servers have the service processor designed inside, which is

a hardware and software integrated platform that works independently from the processor

and the operating system. The service processor uses the power sensors to monitor the

power, and voltage and temperature sensors to refine the measurements [43, 48]. The

monitored results are read through an interface by the controller to provide the data

to the operating system. The information can be used by the software to optimize the

performance, power and energy efficiency. Furthermore, such hardware/software support

also allows promoting the sampling frequency up to 3kHz [27].

2.2.2 Indirect Power Measurement

Indirect power measurement can be performed on a simulation platform or at runtime

inside the operating system. Thus, measurements are less accurate. However indirect

power measurement does not need specific hardware support such as the service processor,

and can better correlate the power with the performance of the device.

Hardware-level power model. In the case of microarchitecture simulation, normally

a hardware-level power model is used [65, 91]. As described in section 2.1, the classical
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breakdown of energy in CMOS circuits includes dynamic power and static power. For a

particular hardware device, or a component in the processor, the power can be derived

with the following two formulas:

Pdynamic = C · V 2
dd · α · f (2.1)

Pstatic = Ileakage · Vdd (2.2)

where C stands for the load capacitance, Vdd stands for the supply voltage, α represents

the activity ratio on the hardware device, f is the clock frequency and Ileakage stands for

the leakage current of the circuit. Such low level models are arduous to use in architectural

studies since the low level details are hard to derive for all components, thus making the

estimation inefficient and costly. Wattch and CACTI tradeoff the estimation accuracy

with simulation time by flexibly modeling the structure of each component with a general

purpose model [16, 87]. Such characteristic helps them being pervasively used in research

studies. In many cases, these models are compared against approaches using circuit-based

mechanisms.

Software-based power model. Although the hardware-level models can provide very

accurate but time-consuming power information, the online power estimation often relies

on the software-based models. Such models use performance statistics supplied by the

operating system, where multiple indicators are used to reflect the hardware states and

task execution. The selection of indicators is normally based on tuning the estimation by

comparing with real system power and the result of hardware-level models [7,11,12,14,36].

In general, these models rely on collecting data from a set of events counters, voltage and

temperature sensors, with coefficients derived from an empirical linear regression model.

Depending on the system under study and the purpose of the power estimation (e.g.,

analyzing a hardware component, a process in the operating system or a program phase)

different sets of events may be chosen. Note that in the software-based models, the term

event may not directly map to the Performance Monitoring Counters (PMCs), but may

also be a calculated metric, such as the Instruction Per Cycle (IPC).

Power model abstraction. In both cases, when estimating the runtime energy con-

sumption, the power models can be generalized as analytic functions of a set of parameters,

where the power consumption incurred by the execution of a program is derived based on

their correlations. Therefore, in a system with J major components, each with I events

count, the runtime power is computed as follows:
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Power =
J∑
j=1

βj ×

SPj × Tj +DPj ×
Ij∑
i=1

αij × eij

 (2.3)

where SPj and DPj stand for the pre-calculated static power and dynamic power of

component j. Tj is the activated time of component j and eij is the event count obtained

for j. αij and βj stand for a set of coefficients derived through a linear regression model.

The same formula can be applied to software-based models, the difference is that, J

refers to a set of selected indicators in any particular use case, each with I as event count.

SPj , DPj are derived through a linear regression model as well as αij and βj .

Note that we have used the approach based on the hardware-level power model in our

simulation framework.

2.3 Energy and Power Profiling

2.3.1 Processor power consumption characterization

The power and thermal characteristics of a processor are essential for designing its power

delivery system, packaging, cooling, and power/thermal management schemes. For such

purposes, the maximum power and thermal profile of a processor need to be studied. In

the following works, a set of micro-benchmarks – known as power virus – are designed to

stress the processor to its peak power.

In [56], the concept of maximum power consumption has been refined into maximum

sustainable power and maximum single cycle power. The maximum sustainable power is

the maximum power of the processor that lasts for a time interval that is adequately long.

Accurately characterizing it is important as it guides the design of the power delivery

system and the packaging requirements for the microprocessor. Similarly, the maximum

single-cycle power is the maximum power that can be consumed by the processor during

one processor cycle. It holds an important key to estimate the maximum transient current

that can be drawn by the microprocessor. By taking into account the information on

instructions, input data and architecture details, this study generates micro-benchmarks

and tests the above characteristics of a particular processor setup with simulation.

In [10], Bertran et al. present a tool to generate micro-benchmarks to explore the maxi-

mum power consumption of a real machine. With configurable low-level micro-architecture

semantics knowledge of the machine, a taxonomy in terms of energy per instruction (EPI)

and processor activity characteristics has been developed. Using such information, authors
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use a compiler-like pass-based code generator to provide flexibility and full control of the

micro-benchmarks generation.

Using the same methodology, Kestor et al. [61] characterize the on-chip memory hier-

archy by designing a set of micro-benchmarks that move data through different levels of

cache.

2.3.2 Hardware component level power consumption breakdown

In recent years, there has been an increasing interest in breaking down the power con-

sumption to different hardware component levels in different environments from data cen-

ters [9,59] to smartphones [17,20,90,92]. Those detailed power measurements improve the

characterization of the hardware device, and thus the future designs and implementations

can improve the power/performance characteristics of the system.

Many proposals [14, 17, 82, 90, 92, 95] estimate the overall system energy consumption

within the software using similar PMC-based approaches as introduced in 2.2.2, and then

break it down across the different hardware components at a coarse-granularity, such as

the processor, memory and screen. POWER7 processor uses power proxy [32,48] where the

monitored power estimations divided among each core. Such model uses as a proxy around

50 dedicated hardware counters, along with voltage, frequency and temperature sensors.

Similar firmware is also implemented in Intel Sandy Bridge architectures power manage-

ment module to break down the power consumption of the system [99]. That firmware

uses 100 PMCs for active power distribution, and voltage and temperature sensors for

static power distribution.

2.3.3 Software component energy consumption breakdown

From the software side, refining the runtime energy measurement during program’s exe-

cution in a given platform is also a research hotspot. Several studies focus on attributing

energy to the execution phases or blocks of a running program.

Performance and power vary through the execution of a program. To better analyze the

program power behavior and optimize power usage, timing-based power behavior profile

is required. Similar to Simpoint [103], techniques based on the basic block vector compare

the similarities between different time intervals, to find the representative ones [44]. Based

on this, Hu et al. [45] proposed a technique to find the representative phases in a given

time interval by incorporating the control flow and runtime events profiles.

Systematic profiling tools characterize the program runtime behavior in different ways [54,

67, 70, 75, 97] (e.g., sampling events like stack traces, hardware events, etc.). By cross-
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correlating this information with the executable binary, these tools can locate the hottest

process, routine, code regions, library/kernel calls, and measure the performance across

different compilations and/or platforms. By correlating with online power measurements,

such tools can also enable fine-granularity distribution of the energy.

Shen et al. [102] proposed a request-level OS mechanism to meter power consumption to

each server request based on PMCs [7]. The authors consider both active and maintenance

power and attribute it to the responsible server requests. However, the per-task energy

estimates obtained with this approach cannot be accurately obtained since, as stated by

the authors, “Request executions in a concurrent, multi-stage server contain fine-grained

activities with frequent context switches, and direct power measurements on such spatial

and temporal granularities are not available in today’s systems”.

In a given time interval during the execution of a program, its power consumption is

determined by the bunch of instructions that execute through the pipeline, which may

be of different types, exhibit data dependencies, incurred different activities, etc. Tools

like Linux perf [70] and oprofile [54] can identify an executed instruction periodically, and

thus allow locating a coarse code region where this instruction resides. By correlating

such techniques with the power consumption sampling, authors in [69] attribute power

consumption of each sample period to the basic block where the sampled instruction resides

in. Conversely, authors in [68] propose to estimate the instant power consumption at

runtime by pre-characterizing the power that could be consumed by each basic block. Their

estimation not only takes into account the instruction types and mixes, but also explores

the inter-block effects to recalibrate their estimates, which is enabled by fine-granularity

simulation. However, the power of the processor is determined by the activities of basic

blocks executed together in a time window, denoted as superblock [40, 49]. Superblocks

has diverse combinations of basic blocks, thus, for an application with complicated control

flow, it is infeasible to pre-determine the power consumption in advance.

2.3.4 Current per-task energy measurement models

The above studies have shown to be very accurate in profiling per-component and overall

system’s energy consumption. However, the hardware-level approaches focus on breaking

down the energy to the main hardware components, in which only the activities in the

hardware have been taken into account. The task-level interactions, either from the op-

erating system or the Task-Level Parallelism (TLP) on the hardware, have been ignored.

Therefore, these approaches do not fit for per-task energy measurements. In contrast, the

software-component approaches can only be performed under an important assumption:
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the application is the only one scheduled on the processor and it is accounted all the en-

ergy consumed in the system, which allows performing the component-level breakdown. In

the scenarios where multiple tasks concurrently run, these approaches fail to abstract the

task energy from the energy consumed in the system. In summary, the former introduced

studies are denoted as Per-Component Energy Metering (PCEM).

Next, we analyze the mechanisms for per-task energy measurement that can be derived

from current multicore and multi-threaded systems. In modern multicores, the total energy

consumption of the system and its main components can be monitored or accurately

estimated during a long-enough time interval. In the scenarios where N tasks T1, . . . , TN

are concurrently running, the goal of per-task energy measurement is to distribute the

energy among them. A simple and naive method is to evenly split the energy to the

running tasks, which we denote Evenly Split (ES) model. Unfortunately, this is the most

commonly used method nowadays as task-level hardware activities are not easy to identify

in general and per-task energy measurement did not draw enough attention until recently.

Thus, for a given task in ES model, the energy assigned to it is calculated as follows:

Energyi =

J∑
j=1

ej
N

=
Energytotal

N
(2.4)

where ej stands for the energy consumed in each component, and the sum of all these

values corresponds to the total energy consumption of the system Energytotal.

To take one step further, we can correlate some available task-level metrics with the

energy attributed to the running tasks, e.g., the committed instruction count of each task

and other PMC values. These task-level metrics roughly indicate the usage of the hardware

resources done by each task. We denote this approach Proportional To Access (PTA).

Note that we have to derive the PTA model separately in different hardware structures,

mainly the core, LLC and memory system. In the case of the LLC and memory, PTA

is a simple approach that distributes energy to tasks proportionally to the number of

accesses to each structure. In current processors, per-task LLC and memory accesses

can be monitored with performance counters [58]. In contrast, the core slices have many

components that can incur diverse activities. Thus, from the set of available PMCs, an

empirical linear regression model is used to correlate the energy consumption with tasks.

Thus, for the PTA model, the energy attributed to a task i, can be formalized as

follows:

Energyi = Energytotal ×

 J∑
j=1

(
βj ×

aij∑N
i=1 a

i
j

)
+ α

 (2.5)
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where Energytotal stands for the energy consumed in the system, aij stands for the activity

count task i has in component j, and
∑N

i=1 a
i
j stands for the sum of activities in component

j. βj and α are a set of coefficients derived from the linear regression model. Note that

both ES and PTA models are closed-loop methods, since we perform the attribution of

energy based on accurately monitored system energy.

It is our position that existing methods in current systems will not go beyond the scope

of these two models. However, such models lack the capabilities to deliver accurate per-

task energy estimates. In order to obtain more accurate estimates in multicores systems,

we need support from the architecture level.

2.4 Summary

In this chapter, we have described the state of art on energy measurement in current com-

puting systems. Directly measuring the power of the computing system demands external

devices. This measurement represents the actual power consumption, but it does not pro-

vide enough information to estimate per-task energy measurement. To approximate this

measurement, indirect approaches have been proposed based on performance monitoring

counters. Such solutions have also inspired further studies on breaking down the energy

to different components, both in the hardware and software level. However, as multicore

processors have already become the reference platform in almost all computing domains,

to the best of our knowledge, no model has been reported to accurately provide per-task

energy measurement.

Per-task energy measurement can be easily distinguished from the former works, since

all these studies are focused on the energy consumption of the whole system. The propos-

als on per-task energy measurement in this thesis aim at providing much more accurate

information and concrete models to solve the ambiguities in distributing energy consump-

tion of a computing system to its multiple running tasks. We will show in the following

chapters that it is not trivial to achieve such goals. With simple and naive models that

can be plainly derived, such as ES and PTA, none of them can estimate per-task energy

consumption with satisfactory accuracy. In contrast, our proposals, PTEM and SEA,

significantly advance the state of art in this field through hardware approaches.
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Experimental Framework

In this chapter, we describe the simulation framework we use to implement and validate

our PTEM and SEA proposals. To this end we build on a set of cycle-accurate architec-

ture performance simulators, power simulators, and benchmark suites. Combining those

elements we build our own experimental methodology, which we complement with the

approppriate metrics to evaluate PTEM and SEA.

3.1 Simulation Framework

Simulation has shown to be a powerful and efficient tool for research in the computer ar-

chitecture field. Simulation is used pervasively in both academic community and industry.

In particular, microarchitecture simulation has been widely deployed in the computer ar-

chitecture arena. The main advantages of microarchitecture simulation are as follows: a)

those simulators are capable of modeling different levels of architecture details and setups;

b) with reasonable tradeoffs between execution time and simulation detail, those simula-

tors can achieve highly accurate results compared with executions on actual hardware or

lower-level simulations (e.g. gate level or register transfer level [34,35]); c) those simulators

are flexible and so convenient for applying hardware changes that are needed to evaluate

novel ideas, such as PTEM and SEA. Such features make microarchitecture simulators –

just simulators from now onwards – the most suitable platforms to perform the research of

this thesis. Note that we have modeled a general-purpose processor and memory system,

not a particular real system. On the one hand, this is because cycle-accurate simulation

of a particular processor would require privileged access to its detailed design data. On

the other hand, our study focuses on the methodologies to measure the energy for each

21
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Figure 3.1: Diagram of the simulation framework

task in a generic way, which can be adapted to different processors and memory systems

as we have modeled all the main components in modern processors.

The target of this thesis is to explore PTEM and SEA in two main components of a

computer system: the processor (core slice1, shared caches, buses, etc.) and the memory

subsystem. To this end, we need concrete information on the dynamic behavior and energy

consumption of a program during its execution in a computing system. In addition, we

need efficient simulation, yet accurate, to allow a large amount of experiments to be

performed, so that we can come up with enough results to prove the advantages of our

solutions.

1In this thesis, we refer the processor pipeline units and the private caches as the core slice
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Our simulation framework builds upon two pillars: performance and power simulators.

A diagram of this framework is depicted in Figure 3.1. In this framework, we use the

performance simulator to emulate the timing behavior of benchmarks, which are reflected

into energy consumption by the power simulator. Based on the derived energy, our PTEM

and SEA proposals attribute it to the running benchmarks. Since our proposal may need

extra hardware support from the architecture, the feasible changes can be applied to the

simulator, thus allowing us to explore the design space. In this thesis, we have used

existing simulators instead of developing a brand new platform to avoid wasting efforts,

and because using these already well-designed and validated simulators lets us have high

confidence on the simulation efficiency and accuracy.

3.2 Performance Simulators

Most current performance simulators focus on the on-chip components, while the highly

complicated behaviors in memory system have been somewhat ignored. In such simula-

tors, some naive memory models have been applied assuming either fixed memory request

latency with infinite bandwidth or simply aggregating the latencies of consecutive memory

requests. This is problematic since processor and memory systems are highly dependent

on each other. As the processor in general operates at a higher clocking frequency than

memory, sometimes it is forced to be stalled a significant number of cycles waiting for

the memory requests to be served. Specially, consecutive memory requests could gener-

ate different levels of conflicts, e.g., when accessing the memory banks, buses, memory

controller resources, etc. Instead, it can also be the case that the latency of these mem-

ory requests gets totally or partially overlapped due to the large capacity of the memory

system. Analogously to the case of standalone processor simulation, standalone mem-

ory system simulation can neither reveal the whole picture. For this reason, we build

our performance simulator by interactively integrating a processor and a memory system

simulator.

On the processor side, we use MPsim [3], a trace-driven cycle-accurate simulator that

supports CMP and SMT architectures, which is an enhanced version of SMTSim [110].

This simulator is developed at UPC, and has been used in a large number of prior works [18,

77, 78, 86, 114]. MPsim emulates the processor with a model of the processor pipeline,

on-chip cache hierarchy and buses. The simulated pipeline stages are as follows: fetch,

branch predict, decode, register rename, register read/write, cache read/write, execute

until commit. Since trace-driven simulation uses instruction traces that are recorded

during a previous execution of a program, MPsim is adapted to emulate the impact from
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Table 3.1: Summary of some DRAM device timing parameters used in DRAMSim2

Parameter Description Cycles

tRAS Time interval between a row access command and data
restoration in a DRAM array

24

tCAS Time interval between a column access command and the
start of data return from the DRAM devices

10

tRCD Time interval between row access and data ready in the sense
amplifiers

10

tRTP Time interval between a read and a precharge command 5
tRP Time interval that it takes for a DRAM array to be prepared

for another row access
18

tRRD Minimum time interval between two row-activation com-
mands to the same DRAM device

4

tRC Time interval between accesses to different rows in a bank 34
tWR Minimum time interval between the end of a write data burst

and the start of a precharge command
10

tWTR Minimum time interval between the end of a write data burst
and the start of a column read command

5

tRFC Time interval between refresh and activation commands 107

wrong path instructions by using a separated dictionary to provide information on all static

instructions to avoid compromising the accuracy of the simulation results. In addition, we

add several enhancements to it in this work to make it better fit with the memory system

simulator and power models. For instance, we have added an exact read/write port model

for each components to ensure the activities incurred on each component in every cycle

can be simulated precisely and power can be accounted conveniently.

For the memory system, we use DRAMSim2 [98], also a cycle-accurate simulator to

emulate the DDR2/3 memory system with a set of DRAM devices, a memory controller

and a standard memory bus. This simulator is either driven by a trace of memory requests

with their timing information, or connected to a processor simulator through a robust

interface. On the arrival of a memory request, the memory controller decomposes it

into the corresponding DRAM device internal commands and schedules them to perform

operations in the DRAM devices. And after the memory request finishes, DRAMSim2

returns the data to the processor. These internal procedures are modeled with circuit-level

details, such as memory bank activating, data read/write and precharge, etc. The latency

of each command follows a strict timing model, which is a generic abstraction of modern

DDR2/3 memory systems. It enables convenient configuration in the simulator, since

parameters from different technologies and designs of DRAM devices are largely different.

A brief description of some parameters used in this model is shown in Table 3.1, along

with example values obtained from the specification on DDR3 64B SG15 with 0.68nm

technology. A more detailed description of how DDR2/3 DRAM memory works can be

found in Section 5.2.1.
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Table 3.2: Configuration Summary

Parameter Description

Chip details

Cluster count 1, 2, 4 and 8
Core count 4 cores per cluster; 1-, 2-thread SMT

Supply voltage 1.0V

Technology 65nm

Core details

Core type out-of-order

Fetch, decode, issue, 2/4 instr/cycle
commit bandwidth

Branch Predictor Hybrid 256B Gshare

Branch target buffer 32 entries, 4-way

Return address stack 32 entries

Reorder buffer size 96 entries

Issue queues size 48/48/48 entries for INT/FP/Load-store queues

Register file 164 INT, 164 FP

Functional Units 2 INT ALU (1 cyc), 1 mult (4 cyc), 1 div (7 cyc)
1 FP ALU (6 cyc), 1 mult (6 cyc), 1 div (17 cyc)

Instruction L1 32KB, 4-way, 32B/line (2 cycles hit)

Data L1 32KB, 4-way, 32B/line (2 cycles hit)

Instruction TLB 256 entries fully-associative (1 cycle hit)

Data TLB 256 entries fully-associative (1 cycle hit)

Shared L2 Cache

Unified L2 2MB, 16-way, 64B/line (3 cycles hit, 300 cycles miss)

Main Memory

Size 8GB

Frequency 1000MHz

Row-buffer policy Close-page or open-page

Address mapping scheme Shared bank

Power-down mode Fast

Supply voltage 1.35V

Technology 65nm

During the integration of two simulators, the synchronization was relatively straight-

forward since both simulators are cycle-based. In modern computers, processors normally

work at a higher clock frequency than memory, commonly ranging from 1.5 GHz to 3 GHz.

The frequency of DRAM DDR2/3 memory normally ranges from 667 MHz to 1666 MHz.

In this thesis, as we assume a general purpose architecture, the processor frequency has

been set to 2 GHz, and the memory frequency to 1000 MHz, although our findings are

not specific to any particular clock frequencies. This particular setup has been chosen to

avoid extra synchronization complexity. Although the memory requests generated from

the processor in 2 cycles are dispatched together to the memory system, their order is

maintained by the memory controller.

Keeping track of instructions in the two simulators is also trivial. As for a load/store
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instruction, its memory address is used to search through the on-chip cache-hierarchy in

MPsim. If it incurs a Last Level Cache (LLC) miss, the same address is used for address-

ing in the memory system after its execution stalls in the pipeline. Also, the information

of this LLC miss is stored in a Last Level Miss Status Handling Register (LLMSHR) to

allow other concurrent misses. DRAMSim2 memory controller also preserves the infor-

mation of each memory request. When one request completes its operations, the memory

controller uses a callback mechanism to notify the processor of the returning data and the

information related to the memory request. After receiving the information and data, the

LLMSHR is iterated to find the matched entry. This entry points to the stalled instruction

which generated the memory request, and upon the reception of the memory answer, such

instruction is resumed to complete its execution. Note that from the memory side, there

is no hard limitation on the number of co-running tasks in the system, which simplifies

the integration process to connect DRAMSim2 with a regular multi-core architecture. In-

stead, the only limit is the number of pending memory requests that can be processed in

parallel, which in turn is limited by the number of commands that can be stored in the

memory controller command queue (128 entries in our case).

An overview of the configuration of the performance simulator used across this thesis

can be found in Table 3.2.

3.3 Power Simulators

To simulate the energy consumption of a program during its execution, with the runtime

information provided by the performance simulators, an infrastructure is needed to analyze

and quantify the power dissipation of the program on the hardware components. In this

thesis, we have used parameterized power modeling infrastructures on the processor and

memory system components of different hardware structures. A tradeoff is needed between

the low-level details of the hardware designs, the model accuracy and the simulation speed,

so that diverse configuration setups and workloads can be experimented efficiently.

The power models for the processor we used in this thesis are analogous to those

of Wattch [16]. Wattch-like power models provide a framework where the activity- and

time-based power consumption of the major units in the processor are parameterized and

quantified, which makes it suitable to be integrated into our performance simulator of the

processor. As the technology and configuration continuously change, the power of cache

and SRAM-based components in our setup are modeled on top of CACTI 6.5 simulation

tool [87]. CACTI is a flexible tool to model delay, energy (dynamic and leakage) and area

of cache memories and SRAM-based arrays. Power models for functional units have been
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Table 3.3: Summary of the power models on Major On-chip Components

Unit
Parameters Energy Consumption

Size (B) R/W Ports Block (B) Type Per Access (nJ) Leakage (mW)

IALU 0.024 1.92

FALU 0.05 4.02

BTB 8192 2 8 cache 0.033 20.94

RAS 2048 2 8 cache 0.019 6.33

DCache 32768 2 64 cache 0.072 59.77

ICache 32768 2 64 cache 0.072 59.77

DTLB 2048 2 8 cache 0.013 5.74

ITLB 2048 2 8 cache 0.013 5.74

INT Register 1312 10/6 8 SRAM 0.016 5.06

FP Register 1312 6/4 8 SRAM 0.012 2.66

INT Issue queue 384 4/2 8 cache 0.013 1.01

FP Issue queue 384 2/2 8 cache 0.012 0.71

LS Issue queue 384 2/2 8 cache 0.012 0.71

Bus 0.004 0.21

ROB 2048 2/2 8 cache 0.021 8.35

LLC 2097152 1 64 cache 1.76 224.75

updated to use modern designs. Although in recent studies the power estimations made

from McPAT, a CACTI based power model, show a big gap with the real computer [117],

we still use it as our platform. On the one hand, McPAT/CACTI power models are

the current de facto standard in the computer architecture community, being extensively

used in research works for design space exploration. On the other hand, this thesis is

neither improving nor covering the gap of such models, but exploring the per-task energy

distribution mechanisms based on the estimates made by such models. Therefore, even if

power estimates cannot perfectly match with the real system, such analytical model helps

us to reveal the interaction between hardware resources and tasks in an analyzable way. In

this perspective, McPAT/CACTI power models provide the capabilities for analysis and

fast simulation speed to make our research feasible. In Table 3.3, we show an example

of the CACTI configurations and output that we have used for some major components

on-chip.

Unlike on-chip resources, the memory power is more sensitive to the timing and ad-

dresses of memory requests. Although CACTi can provide accurate estimation on the

memory power based on a given activity factor, which requires deep understanding of the

memory structure, the estimation is rather static and so misses important details. Micron

has published a set of data sheet specifications for system designers to estimate the power

consumption of DDR2/3 DRAM memory. We derive the power model from the data sheet

and integrate it to DRAMSim2 seamlessly since they come from the same source. The

power model provides the current profiles, which correspond to the state of the DRAM
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Table 3.4: Summary of DRAM device current parameters used in DRAMSim2 power
model

Current Description Value (mA)

IDD0 Operate one bank active-precharge current 100

IDD1 Operate one bank active-read-precharge current 130

IDD2P Precharge power-down current 10

IDD2Q Precharge quite standby current 70

IDD2N Precharge standby current 70

IDD3N Active standby current 90

IDD4W Operating burst write current 255

IDD4R Operating burst read current 230

IDD5 Burst auto refresh current 305

IDD6 Self refresh current 9

IDD7 Operating bank interleave read current 415

devices and actions performed by those DRAM devices. The current profiles are moni-

tored on the real devices when memory requests are processed in the memory system. In

Table 3.4 we list some relevant current profiles in this power model. A detailed description

of this model can be found in Section 5.2.2.

3.4 Benchmarks

3.4.1 SPEC CPU 2006 Benchmarks

Most of the experiments in this thesis are performed with the SPEC CPU 2006 bench-

mark [108] suite. This suite is designed and released by The Standard Performance Eval-

uation Corporation, and aims to provide a standard of measurement or evaluation on the

speed and throughput of computer systems. The diverse benchmarks are developed from

real user applications, and include compute-intensive and memory-intensive ones. They

have been designed, therefore, to stress the processor and memory subsystems. Based on

the components they stress the most in the processor, these benchmarks have been cate-

gorized as SPECint for integer components and SPECfp for floating point components.

We have used traces from these benchmarks which have been obtained from their

execution on an AlphaServer DS25 with two Alpha 21264C processors running at 1 GHz

with the operating system Tru64 5.1b. As for the compiler, we have used DEC Alpha AXP-

21264 C/C++ compiler for the for those benchmarks programmed in C/C++, compiled

with the -O2 -non shared options, and the DIGITAL Fortran 90/Fortran 77 compilers

for the remaining benchmarks. All benchmarks have been compiled with the reference

input set. Although Alpha processors are not the state of the art processor nowadays,

its Reduced Instruction Set Computing (RISC) instruction set has been widely adopted
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Table 3.5: SPEC CPU INT 2006 benchmark description

Benchmark Description Language

400.perlbench Devired from Perl V5.8.7. The workload includes SpamAs-
sassin, MHonArc (an email indexer), and specdiff (SPEC’s
tool that checks benchmark outputs).

C

401.bzip2 Julian Seward’s bzip2 version 1.0.3, modified to do most
work in memory, rather than doing I/O

C

403.gcc Based on gcc Version 3.2, generates code for Opteron C
429.mcf Vehicle scheduling. Uses a network simplex algorithm (which

is also used in commercial products) to schedule public trans-
port

C

445.gobmk Plays the game of Go, a simply described but deeply complex
game

C

456.hmmer Protein sequence analysis using profile hidden Markov mod-
els

C

458.sjeng A highly-ranked chess program that also plays several chess
variants

C

462.libquantum Simulates a quantum computer, running Shor’s polynomial-
time factorization algorithm

C

464.h264ref A reference implementation of H.264/AVC, encodes a
videostream using 2 parameter sets. The H.264/AVC stan-
dard is expected to replace MPEG2

C

471.omnetpp Uses the OMNet++ discrete event simulator to model a large
Ethernet campus network

C++

473.astar Pathfinding library for 2D maps, including the well known
A* algorithm

C++

483.xalancbmk Transforms XML documents to other docs using a modified
Xalan-C++

C++

and developed in the community. Thus, its microarchitecture is still fairly similar to

other RISC chips. Furthermore, we have simulated instruction traces obtained from this

platform, but we have implemented new features in our simulation framework based on

state of the art multi-core processors. As a result, we strongly believe that the conclusions

obtained in this thesis are valuable across different platforms, since we study the activities

triggered by the instructions, not the instruction set itself.

In Tables 3.5 and 3.6, we give a short description of each benchmark in SPECint and

SPECfp together with the language in which the source codes were written. In the case of

SPECint benchmarks, all the applications are written in C or C++, whereas in the case

of SPECfp benchmarks, some of them are written in Fortran, C, C++, or a combination

of C and Fortran codes. For example, in 435.gromacs the only Fortran code is the inner

loops (innerf.f) which typically account for more than 95% of the runtime.
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Table 3.6: SPEC CPU FP 2006 benchmark description

Benchmark Description Language

410.bwaves Computes 3D transonic transient laminar viscous flow Fortran
416.gamess Gamess implements a wide range of quantum chemical

computations. For the SPEC workload, self-consistent field
calculations are performed using the Restricted Hartree
Fock method, Restricted open-shell Hartree-Fock, and
Multi-Configuration Self-Consistent Field

Fortran

433.milc A gauge filed program: lattice gauge theory with dynamical
quarks

C

434.zeusmp ZEUS-MP is a computational fluid dynamics code devel-
oped at the Laboratory for Computational Astrophysics
for the simulation of astrophysical phenomena

Fortran

435.gromacs Molecular dynamics: simulate Newtonian equations of mo-
tion for hundreds to millions of particles. The test case
simulates protein Lysozyme in a solution

C, Fortran

436.cactusADM Solves the Einstein evolution equations using a staggered-
leapfrog numerical method

C, Fortran

437.leslie3d Computational Fluid Dynamics (CFD) using Large-Eddy
Simulations with Linear-Eddy Model in 3D. Uses the Mac-
Cormack Predictor-Corrector time integration scheme

Fortran

444.namd Simulates large biomolecular systems. The test case has
92,224 atoms of apolipoprotein A-I

C++

447.dealII deal.II is a C++ program library targeted at adaptive fi-
nite elements and error estimation. The testcase solves a
Helmholtz-type equation with non-constant coefficients

C++

450.soplex Solves a linear program using a simplex algorithm and
sparse linear algebra. Test cases include railroad planning
and military airlift models

C++

453.povray Image rendering. The testcase is a 1280x1024 anti-aliased
image of a landscape with some abstract objects with tex-
tures using a Perlin noise function

C++

454.calculix Finite element code for linear and nonlinear 3D structural
applications. Uses the SPOOLES solver library

C, Fortran

459.GemsFDTD Solves the Maxwell equations in 3D using the finite-
difference time-domain (FDTD) method

Fortran

465.tonto An open source quantum chemistry package, using an
object-oriented design in Fortran 95. The test case places a
constraint on a molecular Hartree-Fock wavefunction calcu-
lation to better match experimental X-ray diffraction data

Fortran

470.lbm Implements the ”Lattice-Boltzmann Method” to simulate
incompressible fluids in 3D

C

481.wrf Weather modeling. The test case is from a 30km area over
2 days

C, Fortran

482.sphinx3 A widely-known speech recognition system from Carnegie
Mellon University

C

3.4.1.1 Trace Extraction

In order to perform efficient simulations, we have to perform several optimizations on the

simulation time which is sensitive to the size of trace.
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Table 3.7: The input sets for SPEC CPU 2006 benchmarks and their simulation starting
point (in millions of instructions) using the SimPoint methodology [103]

SPECint

Benchmark Input Fast Forward

400.perlbench -I./lib checkspam.pl 2500 5 25 11 150 1 1 1 1 1439900
401.bzip2 input.program 280 107000
403.gcc 166.i -o 166.s 25500
429.mcf inp.in 90700
445.gobmk –quiet –mode gtp -i trevord.tst 50300
456.hmmer –fixed 0 –mean 500 –num 500000 –sd 350 –seed 0 retro.hmm 14900
458.sjeng ref.txt 822100
462.libquantum 1397 8 237000
464.h264ref -d foreman ref encoder main.cfg 382800
471.omnetpp omnetpp.ini 683400
473.astar rivers.cfg 220700
483.xalancbmk − −

SPECfp

Benchmark Input Fast Forward

410.bwaves − 1668800
416.gamess -i triazolium.config 2980700
433.milc − 897600
434.zeusmp − 17939
435.gromacs -silent -deffnm gromacs -nice 0 588700
436.cactusADM − 18497
437.leslie3d -i leslie3d.in 637200
444.namd –input namd.input –iterations 38 –output namd.out 1200
447.dealII 23 41900
450.soplex -m3500 ref.mps 67400
453.povray SPEC-benchmark-ref.ini 168600
454.calculix -i hyperviscoplastic 1099500
459.GemsFDTD − 31713
465.tonto − 11500
470.lbm 3000 reference.dat 0 0 100 100 130 ldc.of 17900
481.wrf 2749700
482.sphinx3 ctlfile . args.an4 1740400

Some SPEC CPU 2006 benchmarks execute multiple times with different inputs for

the reference test. Those benchmarks are not convenient for us since they lead to an

increased simulation time cost. In the study in [94], authors have pointed out that not

all input sets are necessary for SPEC CPU 2006 benchmarks. That work shows, for those

benchmarks that have multiple input sets, that running a subset of the input sets already

provides similar timing behavior to that of all the remaining input sets. In the pro-

cess of obtaining instruction traces from benchmarks, we use this approach, by executing

these benchmarks with the input sets indicated in [94]. This optimization is applied for

the SPECint benchmarks, including 400.perlbench, 401.bzip2, 403.gcc, 445.gobmk,

456.hmmer, 464.h264ref and 473.astar, as well as for 416.gamess and 450.soplex

from the SPECfp benchmarks.
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Still, simulating the whole instruction trace of a benchmark in a cycle-accurate sim-

ulator is unaffordably time consuming. To reduce simulation time, the most commonly

used approach is to select representative samples [116]. Random samples appear to be

inadequate, while just choosing the beginning of a program could be incorrect due to

initialization code. SimPoint methodology is proposed by Sherwood et al. [103], which

detects program’s phases by using the Basic Block Vector (BBV), which counts how many

times each basic block appears. Two phases are considered the same if Mannheim’s dis-

tance between their BBV is small. At the beginning, the execution of the program is

split into a set of intervals of fixed size (e.g., 10 million instructions). Using clustering

algorithms, such as random linear projection or k-means, the samples are joined. The first

algorithm is used to reduce the dimension of the BBV and, in that way, accelerate the

k-means algorithm. This last algorithm is run for values of k between 1 and M (M is the

maximum number of phases to use) and the intervals are grouped into phases. SimPoint

chooses the representative of each phase that is closest to its centroid.

Our collection of instruction traces follows the same methodology, as a result, we take

100 million instructions from each benchmark. We list the fast forwards to apply to each

benchmark and its used input sets in table 3.7, respectively.

Due to limitations of our simulation infrastructure, we were not able to create the traces

from three benchmarks: 459.GermsFTDT, 483.xalancbmk, and 481.wrf from SPEC CPU

2006.

3.4.2 High-Performance Computing Benchmarks

We have also used real traces from a parallel HPC application running on an actual super-

computer: wrf. The Weather Research and Forecasting (wrf) model [83] is a mesoscale

numerical weather prediction system designed to serve both operational forecasting and

atmospheric research needs. In this experiment, we use the non-hydrostatic mesoscale

model dynamical core.

Simulating all threads of the parallel MPI application implies a significant amount of

simulation time as these applications usually run for days or weeks on a supercomputer.

We use an automatic mechanism to choose the most representative computation regions

to be traced and simulated with a cycle-accurate simulator [37]. This simulation method-

ology uses non-linear filtering and spectral analysis techniques to determine the internal

structure of the trace and detect periodicity of applications. Afterwards, we use a cluster-

ing algorithm to determine the most representative computation bursts inside an iteration

of the application.
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Traces are obtained when wrf runs on the MareNostrum supercomputer at the Barcelona

Supercomputing Center (BSC-CNS). We obtain four representatives for the five compu-

tation phases that compose the 64-thread MPI application. We have used these reduced

trace files to feed the performance simulator. We simulate all threads sharing the LLC

cache (four threads in this case study) in a CMP architecture (single-threaded cores).

When a thread finishes executing, it waits until all other threads have also finished.

3.4.3 Workload Selection

In the experiments we perform in this thesis, the number of benchmarks in the workloads is

identical to the thread count of the processor. For example, in a 4-core CMP architecture,

we run four benchmarks in a workload; for a 4-core 2-way SMT architecture, we run eight

benchmarks workloads. For a wide variety of configurations, as shown in Section 3.2, we

need to generate workloads for each appropriately. Several issues have been taken into

account for the generation of the workloads: the characteristics of benchmark behavior,

the number of generated workloads and the type of the workloads.

As benchmarks with diverse characteristics co-running in a workload will generate very

different behaviors, a certain amount of workloads are needed to come up with compre-

hensive conclusions for our studies. However, given that we have generated traces for 26

benchmarks, to generate the N-task workloads, we could have N26 possibilities, which is

way too much. Thus, we randomly picked benchmarks to generate a fixed set of workloads.

In order to facilitate the interpretation of results and understanding of the features pro-

posed, an appropriate way to generate the workloads is needed. Since the most relevant

parameter affecting the timing and power behavior in our environment is the time spent

accessing memory, we classify SPEC CPU 2006 benchmarks into two groups. Based on

metric Misses Per thousand Cycle (MPKC) in the LLC, we include in the MEM group

those benchmarks presenting a MPKC value higher than 3 under a 2MB 16-way LLC setup

when each benchmark runs alone. The remaining benchmarks fall in the ILP group. Al-

though the threshold to classify benchmarks can only be arbitrary, as shown later, it was

appropriate to segregate distinct timing and power behaviors.

In Table 3.8 we show the benchmarks we categorize into each group. Note that some

benchmarks are very sensitive to the LLC size, so they could be classified into the other

under a different LLC configuration. Especially when we study SEA, where we consider

different LLC sizes, this might be a concern. However, we stick to this classification along

all the thesis for the sake of consistency.

Then, from these two groups, we generate three workload types denoted as I, M and
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Table 3.8: The MPKC of SPEC CPU 2006 benchmarks under a 2MB 16-way LLC setup,
and the group they belong to.

MEM ILP

Benchmark MPKC Benchmark MPKC

433.milc 15.90 435.gromacs 1.63
410.bwaves 15.47 473.astar 1.19
462.libquantum 15.08 401.bzip2 1.10
450.soplex 12.59 400.perlbench 0.96
470.lbm 10.34 456.hmmer 0.47
403.gcc 10.07 464.h264ref 0.45
437.leslie3d 5.93 447.dealII 0.43
434.zeusmp 4.80 458.sjeng 0.32
482.sphinx3 4.75 444.namd 0.29
429.mcf 4.54 416.gamess 0.29
436.cactusADM 4.50 445.gobmk 0.25
471.omnetpp 4.48 453.povray 0.02
454.calculix 3.04

X depending on whether all benchmarks in a cluster belong to group ILP , MEM or a

combination of both respectively. We generate 8 workloads per group for each processor

setup. Benchmarks in each workload are randomly picked out from all the benchmarks of

the corresponding type. In the case of X, half of the benchmarks belong to ILP and the

other half to MEM . We do not put any constraint on whether benchmarks can repeat in

a particular workload since the random selection of benchmarks is always performed out

of the corresponding (original) group of benchmarks.

3.5 Metrics

Reference model. Since there is no reference model presented to meter or account the

per-task energy, and due to the complexity of the hardware, there is not a direct way to

measure it in real hardware. Thus, in each of our proposals, we first present an oracle

model, which exhibits the best scenario where the energy can be measured with as much

information as needed. We implement such models in our simulator, despite the fact

that such models would incur unaffordable cost in practice, thus being infeasible to be

implemented. Therefore, we also present practical and implementable approaches, which

trade off the estimation accuracy with cost. We have also introduced several state of the

art approaches that our approaches can compare with to show the improvements brought

by our techniques.

In this thesis, we use several different metrics to evaluate our practical PTEM and

SEA proposals, based on the reference model. The methodology we use is to measure

the off estimation or prediction error of each model with respect to the reference model,
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which is computed as follows:

PredictionError =

∣∣∣∣1− Energymodel
Energyideal

∣∣∣∣ (3.1)

where Energyideal stands for the energy derived from the reference model, while Energymodel

stands for the energy derived from the other models. We use this metric to evaluate the

accuracy of our proposals on each task.

In some scenarios, we also measure the prediction error of the whole workload. In

which, we accumulate the estimation of all benchmarks in the workload using the reference

model as the baseline.

WldPredError =

∑N
i=1 |Energyideali − Energymodeli |

Energymeasured
(3.2)

where Energyideali stands for the energy derived from the reference model for task i, while

Energymodeli stands for the energy derived from the other models. Energymeasured stands

for the actual measured energy for the whole workload, which is eventually identical to∑N
i=1Energyideali . Then, we take the average WldPredError across all benchmarks in

each workload analyzed in each setup.





4

Per-task Energy Metering for The

Processor

4.1 Introduction

Current computing systems lack a proper per-task energy measurement mechanism. Exist-

ing approaches to measure tasks’ energy consumption evenly distribute computer system’s

energy across all running tasks, as if all of them were using resources similarly. However,

different applications may easily incur vastly different resource utilization across similarly

allocated resources. Such heterogeneous resource utilization translates into heterogeneous

power dissipation per application, and therefore, simply dividing power across running

tasks is neither fair nor accurate enough.

In Figure 1.1 we have shown an example of the energy variation across several workloads

even if they are allocated the same amount of resources. These variations are already

significant, and they will most probably increase in the future, as system manufacturers

pay increasing attention to energy efficiency and energy-proportional computing [5].

A system is energy-proportional if (i) it presents the maximum energy consumption

when achieving the maximum performance, (ii) the energy consumption is close to zero

when the system is idle, and (iii) the energy increases between these two extremes as per-

formance increases as well. Although current systems are not fully energy-proportional

yet, the trend is to move towards this kind of systems. In the presence of more energy-

proportional systems, static (and likely leakage) energy will decrease to some extent and

dynamic energy will be the dominant source of energy consumption. Under this situa-

37
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tion, energy consumption will be more dependent on the application activity, and thus

considering per-task energy consumption will be even more necessary.

In this chapter, we make a case for accurate per-task energy metering (PTEM). In

particular we propose an idealized reference approach to perform accurate PTEM based

on the resource utilization of each task. We also present a simple, yet accurate, imple-

mentation of such approach. We focus on the main shared hardware resources in current

multicore processors: At chip level, we deal with the shared Last Level Cache (LLC)

and the network on chip; at core level, we consider simultaneous multi-threaded (SMT)

cores, which have a massive amount of shared hardware resources and represent the worst

scenario for achieving accurate energy predictions with PTEM.

The benefits of PTEM extend to different computing domains, such as data centers,

smartphones or desktop systems. In this chapter, we take a cross-domain approach, in

which, instead of focusing on a given target environment, we analyze how to perform

accurate per-task energy metering and what hardware/software support is required for an

efficient implementation.

Overall, the main contributions in this chapter are as follows:

• We propose an accurate (yet idealized) approach to perform per-task energy metering

based on per-task resource utilization. Our approach considers the utilization of each

hardware component in the chip (e.g., cores, caches, etc.) and its impact in dynamic

active, dynamic maintenance and leakage energy. Both single-threaded and SMT

cores are considered by our approach. To the best of our knowledge, it is the first

reference approach against which per-task energy measuring mechanisms can be

compared.

• We show how state-of-the-art approaches such as Evenly Split (ES) and Proportional

To Access (PTA), as introduced in Section 2.4, fail to provide accurate enough per-

task energy measurements.

• We propose efficient designs of our approach to perform per-task energy metering in

multicore processors. We illustrate how our designs allow to accurately estimate the

amount of energy each task consumes in the chip by means of lightweight hardware

mechanisms tracking activity and occupancy of the main resources in a per-task

basis. In particular, we show how different tradeoffs provide increasing accuracy at

the expense of higher hardware and energy cost.

• We show a use case where the proposed PTEM technique is applied to measure the

per-task energy consumption for a parallel application.
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Our results over a variety of multicore processor setups and workloads, including SPEC

CPU 2006 benchmarks and traces from a real High-Performance Computing(HPC) appli-

cation called wrf, show that a low-cost implementation of our PTEM mechanism achieves

tight per-task energy measurements with respect to an ideal non-implementable model.

For a 64-thread setup, 32 cores where each core is 2-way SMT, PTEM reduces the average

accuracy error from more than 12% when evenly splitting energy over running tasks, to

less than 4% when our low-cost hardware support is used. The maximum observed error

for any task in the workload we used reduces from 58% down to 9% when our hardware

support is used.

The rest of this chapter is organized as follows. Section 4.2 presents our idealized

approach to perform per-task energy metering and the efficient hardware implementa-

tion. The particular experimental setup used in this chapter, intra-cluster results and

full processor results are detailed in Sections 4.4. Next, Section 4.5 presents several case

studies, including the characterization of the significant differences in energy and perfor-

mance variability (Section 4.5.1), a large-scale parallel application study (Section 4.5.2),

and other issues related to energy metering (Section 4.5.3). Finally, Section 4.6 draws the

main findings of this work.

4.2 Ideal PTEM for the Multicore: LLC and Core

This section presents an idealized utilization-based model for per-task energy metering.

The result of this model is later used as a reference point for our models to measure per-task

energy at an affordable hardware cost. For the sake of clarity, we assume a single voltage

level and that energy consumption does not change with temperature. In Section 4.5.3 we

show how to extend our models to consider the impact in energy consumption of multiple

voltage levels and temperature ranges.

We assume a clustered multicore architecture where each cluster consists of a set of

cores, having each core private data and instruction first level caches, plus a shared on-chip

second level cache accessed through a shared bus, see Figure 4.1. We refer to such cache

as LLC. All clusters are connected to memory through a shared bus. We focus on the

shared L2 caches, the core slice and the shared buses. The rest of the on-chip resources

(e.g., I/O interface, etc.) have low contribution to total energy consumption [89], so we

simply assume an even distribution of their energy consumption over running tasks, which

has negligible impact on our estimation. If other components had significant contribution

to the total energy of the chip, energy metering should be extended accordingly following

the same principles as for the components analyzed in this work.
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Figure 4.1: Diagram of high core-count cluster architecture

4.2.1 Shared Cache

The active energy consumption in the shared LLC for a given task i is proportional to the

number of accesses. It can be computed as follows:

ELLCact,total(tki) =

K∑
k=1

#actionLLCk (tki)× ELLCactionLLC
k

(4.1)

where ELLC
actionLLC

k
stands for the energy per LLC access of type k, which is assumed

to be available in this idealized model. #actionLLCk (tki) stands for the number of LLC

accesses of type k performed by the task i. Three main factors determine the access types

we consider: whether an access reads or writes; hits or misses in LLC; and in the latter

case whether it evicts a dirty line. The possible combinations are: read hit, write hit,

read miss replacing a dirty line, read miss replacing a non-dirty line, write miss replacing

a dirty line, and write miss replacing a non-dirty line. Under each combination of these

factors, the energy consumption of an access can change. Extending the model to consider

other access types (e.g., invalidations) is trivial since we only need to multiply the energy

consumed by each access type by the number of those accesses.

Maintenance energy is consumed when resources are idle. We use cache occupancy

as a proxy to measure maintenance energy: We assume that those cache regions (lines)

not occupied by a given task could be turned off so that they would not incur any energy
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consumption [2]. The total maintenance LLC energy consumption for a task is obtained

as follows:

ELLCmain, total(tki) = OccLLC(tki)× IdleT ime(LLC)× ELLCmain (4.2)

where OccLLC(tki) stands for the average fraction of cache lines owned by task i, ELLCmain

corresponds to the maintenance energy per cycle consumed by the LLC when no access

is performed, and IdleT ime(LLC) stands for the number of idle cycles for the LLC (no

access to LLC). ELLCmain is assumed to be provided under the ideal model.

Leakage energy is proportional to the cache occupancy and can be easily computed as

follows:

ELLCleak,total(tki) = OccLLC(tki)× ExecT ime(tki)× ELLCleak (4.3)

where ELLCleak stands for the leakage energy per cycle consumed by the LLC. This value

is also an input parameter for the idealized model.

4.2.2 Core Slice

Ideal per-task core energy metering requires tracking per-task activity in all core hardware

blocks (e.g. Reorder Buffer, Issue Queues, etc) to count the number of accesses of each

type. This would provide detailed information to accurately compute active energy by

multiplying the per-type access counts by the active energy for each particular type of

access (action):

Ecoreact, total(tki) =
J∑
j=1

K∑
k=1

E
blockj
actionk

×#action
blockj
k (tki) (4.4)

E
blockj
actionk

is the energy per action of type k (e.g., read) in block j (e.g., register file),

which is assumed to be known. #action
blockj
k (tki) stands for the number of such actions

on such block performed by task i. This applies to both single- and a multi-threaded (e.g.,

SMT) cores. J and K stand for the total number of blocks in the core and types of actions

(e.g., read, write, flush) respectively.

Maintenance energy is measured in all those blocks having non-negligible energy con-

sumption when no action is performed. Blocks can be classified into two categories de-

pending on whether they allocate entries to tasks. Occupancy Blocks or oblocks allocate

entries to tasks and hence their maintenance energy can be split based on the occupancy

(e.g., precharge energy of first level caches). Conversely, in resources without memory or
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eblocks no entries are allocated, and hence maintenance energy can be evenly distributed

(e.g., issue queue selection when there are no ready instructions). Maintenance energy is

then computed as follows:

Ecoremain, total(tki) =

ExecT ime(tki)∑
x=1

 J∑
j=1

Eeblockmain (x)

#Tk(Ck)
+

L∑
l=1

Occoblock(tki)× Eblocklmain (x)

 (4.5)

where L stands for the number of oblocks, J for the eblocks, and Occblockl(tki) for the

average occupancy of block l by each task. Eblocklmain (x) stands for the maintenance energy

consumed by idle ports or in idle cycles of block l in cycle x. #Tk(Ck) stands for the

number of tasks in core Ck.

Leakage energy can be easily tracked because it will be roughly constant throughout

all the execution. If the core is single-threaded, then it is trivial to identify the owner of

such energy. However, if the core is multi-threaded the occupancy per task in each of the

blocks must be tracked to properly distribute leakage energy, as shown in the following

equation:

Ecoreleak, total(tki) =

J∑
j=1

Occblockj (tki)× E
blockj
leak × ExecT ime(tki) (4.6)

where Occblockj (tki) stands for the average occupancy of block j by task i and E
blockj
leak

stands for the leakage per cycle of block j, which is assumed to be available.

4.2.3 Shared Bus

Ideal per-task bus energy metering requires tracking per-task accesses. Analogously to

the case of the LLC, there are different types of accesses with different active energy

consumption. For instance, if a cache line is sent over the bus, the energy consumed is

higher than if just an address is sent, either because the cache line communication sends

more bits simultaneously or because it requires several consecutive transactions to send

all data over a bus narrower than a cache line. This would provide detailed information to

accurately compute active energy by multiplying the per-type access counts by the active

energy for each particular type of access (action):

Ebusact, total(tki) =

K∑
k=1

Eactionk
×#actionk(tki) (4.7)
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Eactionk
is the energy per action of type k (e.g., cache line communication), which is

assumed to be known. #actionk(tki) stands for the number of such actions performed by

task i. K stands for the types of actions.

Note that different actions and energy per action values may be used for different

buses such as the intra-cluster bus connecting cores to their LLC and the inter-cluster bus

connecting cores to memory. Nevertheless, the same principle applies to compute active

energy.

Leakage energy cannot be attributed to any particular task in the cores (tasks do not

have any type of bus occupancy), so we evenly distribute it across all those tasks that

could use the particular bus: tasks in the cluster for intra-cluster buses and tasks in the

whole chip for the inter-cluster bus:

Ebusleak, total(tki) =
Ebusleak × ExecT ime(tki)

#Tk(BUSk)
(4.8)

where Ebusleak is the leakage energy per cycle of the bus, which is assumed to be known

and #Tk(BUSk) stands for the number of tasks in using bus BUSk.

Note that, bus energy is dominated by active and leakage energy [66] due to wiring,

repeaters and latches while maintenance energy is negligible. We evenly distribute main-

tenance energy over tasks.

4.3 An Implementable PTEM Approach

4.3.1 PTEM with Practical Approaches for the LLC

The ideal model for the LLC tracks two main per-task parameters: access (activity)

counts per access type and cache occupancy. Our simplified PTEM model for the LLC

relies on the fact that LLC accesses are not frequent, so they can be tracked with full

accuracy. Conversely, tracking cache occupancy, which is required for maintenance and

leakage energy estimation, would require counting how many cache lines each task owns

every cycle, which is expensive. Tracking the ownership of cache lines requires: (1) tagging

each cache line with a task id, (2) keeping a counter per task with the number of owned

cache lines (instant counter), and (3) updating such counters on a replacement based on

the ownership of the evicted and fetched cache lines, increasing the counter of the owner

of the fetched line and decreasing the one of the owner of the evicted cache line.

In general, LLC access patterns and occupancy do not change abruptly. Similarly, the

occupancy per set is quite homogeneous for any particular program [86]. Therefore, we

propose sampling the LLC occupancy in two different ‘directions’. First, only some cache
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sets will be monitored, so they will be the only ones for whom cache line ownership will

be tracked. In order to avoid clustering effects due to contiguous allocation of data in

memory for any particular task, sampled sets are located at a particular stride (e.g. only

those sets whose x lowermost index bits are zero are monitored). How many x lowermost

bits are considered depends on the desired sampling granularity. Second, the counters

accumulating instant occupancy are not updated every cycle, but at a lower frequency.

For instance, for a LLC with 1,024 cache sets, 8 ways per set and a processor with

8 cores, cache sets can be sampled at a granularity of 1 out of 16, and time sampling

occurs once every 256 cycles. In this case, the overhead of the LLC mechanism would be

as follows:

• 8 instant counters (OccLLCinst ) of 10 bits each for tracking instant occupancy (1,024

sets x 8 ways / 16 sample granularity = 512 lines sampled, so 10 bits are needed).

• 512 3-bit owner identifiers for the 512 tracked cache lines. Note that all cache lines

in the sampled sets always have an owner for energy metering purposes. Thus, on

a context switch, the task being scheduled in becomes the owner of the cache lines

used by the task being scheduled out (using the same hardware context, or CPU

index).

• 8 cumulated occupancy counters (OccLLCcum ) of 48 bits able to track the occupancy

during 248 × 28 = 256 cycles (48-bit counters and 256 cycles sampling frequency).

We assume that the number of cycles that a program takes to run is measured by an

existing performance monitoring counter of the processor. Based on this hardware support

LLC occupancy is obtained as follows:

OccLLC(tki) =
OccLLCcum (tki)× SmpFreq × SmpSets

#SetsLLC × ExecT ime(tki)
(4.9)

where SmpFreq is the sampling frequency (256 cycles in the example), SmpSets is the set

sample granularity (16 in the example) and #SetsLLC is the number of total cache sets

(1,024 in the example). The impact of sampling in both time and sets is later analyzed in

the evaluation section.

4.3.2 PTEM with Practical Approaches for the Core

Current processors, e.g. the IBM POWER7 [32, 48], can estimate the energy consumed

by each core (even for SMT cores) based on a model that uses as proxy different per-

formance monitoring counters, voltage, frequency and temperature. However, solutions
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to accurately distribute core energy across tasks in SMT cores have not been developed,

while, in fact, multicores with SMT cores are becoming quite common [32,104].

A real per-task core energy metering, cannot be done with the ideal model presented

before since this models tracks too many events and the occupancy of many blocks. Instead

of such a bottom-up model, PTEM builds a top-down model. Under this top-down model,

during the execution of a workload we first breakdown the energy consumed into its main

components, active, maintenance and leakage energy; and in a second step, we breakdown

the energy of each component per task.

Step 1: Deriving active, maintenance and leakage energy components. We start deter-

mining the maximum power (P coremax) and minimum power (P coremin ) dissipation in a given

time interval.

The core maximum power dissipation, P coremax , can be determined by running a high-

power benchmark, a.k.a. power virus [88]. P coremax can be decomposed as follows:

P coremax = MaxDynP core + LeaP core (4.10)

MaxDynP core is the maximum dynamic power of the core and LeaP core the leakage

power of the core that can be obtained by measuring core power when the core is in halt

mode. In this formula, we assume that all blocks are fully used so no maintenance power

is dissipated. In reality, there will be still some maintenance power, but its relative weight

with respect to active power is negligible in a maximum power scenario, so the loss of

accuracy introduced by such an assumption is rather low.

The core minimum power dissipation, P coremin , can be obtained running a low-power

benchmark comprised, for instance of no-ops. P coremin can be decomposed as follows, where

MaxMainP core is the maximum maintenance power of the core:

P coremin = MaxMainP core + LeaP core (4.11)

In this formula we assume that all blocks are idle so that no active power is dissipated.

Under that scenario, all activity in the core incurred maintenance power dissipation as

these activities are not produced by tasks’ execution. This is the scenario in which the

maintenance power is the highest, MaxMainP core. From Equations 4.10 and 4.11, we

can derive MaxDynP core and MaxMainP core.

Let’s assume that the energy consumed by a workload during an interval T is Ecore =

(LeaPcore+DynPcore+MainPcore)×T . In order to determine which fraction of Ecore(T ) is

active, maintenance and leakage we proceed as follows. Leakage power is roughly constant

in all runs, so we take the value derived above, LeaP core × T .
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We assume that all idle blocks have the same maintenance energy consumption when

idle w.r.t. their active energy consumption. That is, for all blocks the relation between

active and maintenance power is obtained as MainDynRatio = MaxMainP core

MaxDynP core . Hence,

the maintenance energy for each block during a time interval is MainDynRatio of its

active energy.

During the execution of a workload in a given interval, a fraction of the resources will

perform useful activity, thus consuming active energy in the interval (DynEcorej ). The

remaining resources do not perform any useful activity consuming maintenance energy.

The difference (MaxDynP core−DynP corej )×T provides the amount of active energy not

consumed in the execution of the workload with respect to the scenario in which the active

energy is maximum. The maintenance energy MainEcorej is a fraction of that difference:

MainEcorej = (MaxDynP core −DynP corej )×MainDynRatio× T .

Overall, Ecorej can be derived as follows:

Ecorej = LeaEcore +DynEcorej +MainEcorej (4.12)

= LeaEcore +DynEcorej + (MaxDynEcore −DynEcorej )×MainDynRatio

where only DynEcorej is unknown and can, therefore, be derived.

Step 2: Breaking down active, maintenance and leakage energy components per task.

Per-task energy distribution is done as follows:

• Dynamic active energy. Since tracking all events in the core is unaffordable, we

use a simplified model based on the number of instructions fetched per task.

• Dynamic maintenance energy. Most maintenance energy in the core comes

from register files and issue queues due to their large number of ports and high

maintenance energy consumption per port. Such energy cannot be attributed to any

particular task, so we evenly split maintenance energy across tasks.

• Leakage energy. Leakage energy mainly comes from first level (L1) caches and their

occupancy correlates quite well with the occupancy of some other blocks (e.g., branch

predictor tables, translation lookaside buffers). Thus, we track task occupancy in

L1 caches. We need the same hardware support as in the LLC. We consider that L1

data and instruction cache occupancies have the same weight.

Therefore, task energy in the core is measured as follows for interval j:

DynEcorej (tki) = DynEcorej × InstFetchj(tki)/InstFetchj (4.13)
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Table 4.1: PTEM hardware requirements

Block Energy figures Extra Logic

ELLC
action, #actionLLC

k (tki), OccLLC
inst (tki),

LLC OccLLC
cum (tki), IdleT ime(LLC),

ELLC
main, ELLC

leak , LLC Cache line owner’s table

InstFetch, InstFetch(tki),
Ecore

max, Ecore
min , OccICinst(tki), OccICcum(tki),

Core OccDC
inst(tki), OccDC

cum(tki),
LeakEcore IC Cache line owner’s table,

DC Cache line owner’s table,
Ecore

total(tki)

intra-cluster bus Einbus
action, Einbus

leak #actioninbus
k (tki)

inter-cluster bus Eoutbus
action , Eoutbus

leak #actionoutbus
k (tki)

MainEcorej (tki) = MainEcorej /#Tk (4.14)

LeaEcorej (tki) = LeaEcorej × OccIC(tki) +OccDC(tki)

2
(4.15)

where InstFetchj and InstFetchj(tki) are the total and task i fetched instructions in

interval j respectively. OccIC(tki) and OccDC(tki) stand for the task i occupancy in the

data and instruction caches. Then, we only need to cumulate the energy of the task across

all intervals:

Ecoretotal(tki) =

ExecTime(tki)

SmpFreq∑
j=0

(DynEcorej (tki) +MainEcorej (tki) + LeaEcorej (tki)) (4.16)

4.3.3 PTEM with Practical Approaches for the Buses

The ideal model for the buses only needs to track access (activity) counts per access type

per task. Our simplified PTEM model for the buses relies on the fact that, analogously

as for the LLC, bus accesses are not frequent, so they can be tracked with full accuracy.

Also, leakage energy is tracked trivially by considering how many cycles each thread runs

and how many threads share each bus.

4.3.4 Putting It All Together

The practical PTEM approaches require reduced hardware overhead. PTEM mostly re-

quires setting up some counters similar to the PMCs currently available in most high-

performance processors. PTEM support, analogously to PMCs, does not interfere the

execution of programs since it is not in any critical path.
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Table 4.1 summarizes those parameters required from the chip vendor and the extra

logic (counters, tables) that must be set up. The chip vendor is required to provide

only few parameters that can be either obtained by running appropriate benchmarks or

estimated using test chips or power models. Note that counters with the (tki) suffix

must be replicated for each task. Analogously, action in the case of the LLC stands

for the 6 different LLC actions considered in this work: read/write hit, read/write miss

(no dirty line replaced), read/write miss (dirty line replaced), and for the 2 different bus

actions considered in this work in the case of the buses: address communication and cache

line communication. Inbus and outbus refer to the intra-cluster and inter-cluster buses

respectively in the table.

Regarding the interface with the software, the OS is responsible for keeping track of the

energy consumed by every task running in the system. PTEM exports a special register,

called Energy Metering Register (EMR), that acts as the interface between PTEM and

the OS. The OS can access that register for collecting the energy estimates made by

PTEM. This typically will happen when a context switch takes place. At that moment,

the OS will read the EMR using the hardware-thread index (or CPU index) for the task

that is being scheduled out (Tout). Then, the OS will aggregate the energy consumption

value received in the task struct for Tout. Right after the new task (Tin) is scheduled

in, the LLC and L1 caches will continue to contain some lines belonging to Tout. These

lines will be tagged with the same identifier as the one Tin is using. Although, PTEM

will attribute maintenance and leakage energy consumption to Tin, we have empirically

observed, that this occurs during less than 1 million cycles, since cache lines belonging to

Tout will be quickly replaced and thus, evicted from LLC. Under a processor frequency

of 2GHz, 1 million cycles are equivalent to 0.5µs, while context switches occur at much

higher granularity, every 10-100µs.

4.4 Evaluation

4.4.1 Experimental Setup

The general experimental setup used in this chapter is as introduced in Section 3.2, except

that we have also taken into account large core-count scenarios. For these setups, we

assume a clustered multicore architecture, as shown in Figure 4.1, where each cluster

consists of a set of cores, having each core private data and instruction first level caches,

plus a shared on-chip second level cache accessed through a shared bus. We refer to such

cache as LLC. All clusters are connected to memory through a shared bus. Several studies
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show that hierarchical bus configurations scale quite easily to large systems and provide

a good area-performance trade-off, while retaining many of the advantageous features

of simpler bus arrangements [100]. In the same line, other studies show that bus-based

networks can significantly lower energy consumption and simplify network protocol design

and verification, with no loss in performance [111].

In order to evaluate the accuracy of PTEM, we make use of the benchmark suite

and workload generation strategy introduced in Section 3.4. We also consider an HPC

application, wrf, as described in Section 3.4.2. To measure accuracy, the make use of the

metric described in Equation 3.1.

4.4.2 Intra-cluster evaluation

We evaluate the accuracy of our hardware support for per-task energy metering incremen-

tally by analyzing the accuracy at intra-cluster level. Once we analyze the accuracy of the

PTEM models for the cache and SMT core, in next section we show the results when we

scale the number of cluster to sum up a total of 16/32 cores (32/64 threads). Due to the

relatively low energy contribution of buses, intra-cluster bus energy is reported as part of

the LLC energy.

The key idea of our per-task energy metering approach is to make the energy attributed

to a task proportional to each resource utilization. In particular, to its activity and the

occupancy of a given resource. If both activity and occupancy are accurately measured,

the energy consumption can be accurately attributed to each running task.

Figure 4.2 shows the fraction of LLC energy consumption attributed to each benchmark

in a 2-core workload (gcc+mcf ), by using our ideal model presented in Section 4.2.

We observe that the activity does not necessarily reflect the occupancy of the LLC.

In the figure, we can see that gcc, with 63.5% accesses, occupies less than 46.2% of LLC

lines. That shows that a given workload may have very different consumption profiles in

terms of active energy versus maintenance and leakage energy. Therefore, it is important

to measure both activity and occupancy in order to improve the estimation accuracy. For

instance, let us look again at the gcc case. If we estimate the energy only proportionally

to the activity, LLC energy will be significantly overestimated for gcc and underestimated

for mcf.

4.4.3 PTEM Energy Estimation

In this section we show the accuracy of the models presented in Section 4.2 for the core

and the LLC at cluster level. In particular we measure the off estimation of each model
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Figure 4.2: Per-task LLC cache energy breakdown and access/occupancy rates when exe-
cuting mcf and gcc in a single-threaded 2-core configuration.

with respect to the idealized model. We include the ES model that uniformly splits the

energy among all running tasks regardless of their occupancy and activity in the processor

resources. This is indeed the common approach in current methods only considering

execution time.

Core Energy Consumption Prediction: Figure 4.3 shows the prediction accuracy

for the core under the setup C4S2. Each bar shows the average error of all 8 benchmarks

in the workload.

In general, PTEM clearly outperforms ES providing tighter energy predictions. In

particular, PTEM incurs a prediction error of up to 6.9% across workloads, while for the

ES model it is higher than 13%. Predictions are more accurate for I workloads due to the

highly homogeneous behavior of programs. Irregular workloads in X and M groups (some

benchmarks are more memory-bound than others in the M group) lead to slightly higher

error for PTEM and larger error for the ES model. This can be also seen when comparing

the maximum error across individual tasks in the workloads (see Table 4.2). PTEM

maximum error is highly constant across workload types (9-10%) whereas ES model error

is particularly high for X and M workloads (28% and 22% respectively).

LLC Energy Consumption Prediction. Figure 4.4 shows the effect of sampling

sets and period on the average LLC energy prediction accuracy for a 4-core configuration.

The y-axis represents the sample period measured in processor cycles (e.g., 10K stands

for 10,000 cycles). The x-axis is the sampling set configuration. For instance, 1e8 means
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Figure 4.3: Per-task core energy prediction error rate (C4S2)

Figure 4.4: Per-task LLC cache energy prediction with sample set and period in a 4-core
configuration.

that we sample 1 set every 8 sets.

We observe that the curve has a higher slope in the x-axis (set sampling). For instance,

for a sampling distance of 10K cycles, the prediction error rate raises from less than 1% to

almost 8% as the sample set reduces from 1e1 to 1e512 sets. Instead, the sample period
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Figure 4.5: Per-task LLC cache energy prediction error rate (C4S2)

(y-axis) has limited effect on accuracy. With 1e8 sampled sets, the prediction error only

raises 0.2% as the period increases from 1K to 10M cycles.

Considering that the hardware cost of set sampling varies significantly, we choose a

moderate-cost configuration in which we use 1e2 and 10K cycle sampling period. This

is the configuration we use to measure the energy per-task in the LLC in the following

sections.

Figure 4.5 shows the LLC prediction error of each model under the C4S2 setup. Pre-

diction error corresponds to the average error across benchmarks in each workload. We

observe that PTEM largely outperforms ES model in terms of accuracy for all workloads

and processor setups.

The ES model is highly inaccurate in general, more than 103% on average. The ES

model accuracy is worse for I and X workloads due to the highly heterogeneous memory

behavior of the tasks. In fact, even in I workloads behavior is highly heterogeneous because

the relative LLC access frequencies and occupancies are very different across tasks. ES

accuracy improves for M workloads where LLC occupancy and access frequency are more

homogeneous. Our PTEM model, in contrast, has a considerably low prediction error,

less than 2% on average. Further, as shown in Table 4.2, maximum error across all tasks

for PTEM is 25.6% for I workloads because their low LLC utilization may make spatial

sampling to experience some error. However, as long as M tasks are in place (X and M
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Figure 4.6: Cluster per-task energy prediction error (C4S2)

workloads), PTEM accuracy is very high (maximum error is always below 4.5%). On the

other hand ES model error is huge (more than 3000%), especially for I and X workloads

due to the highly heterogeneous memory behavior of the tasks in the workloads.

Cluster Energy Consumption Prediction. Next, we show per-task energy meter-

ing accuracy at cluster level, including core and LLC energy.

Figure 4.6 shows the average prediction error in each workload for a cluster consisting

of 4 2-way SMT cores. First, we observe that prediction error for the whole cluster is

very similar to that of the cores only (see Figure 4.3). This is so because the LLC energy

contribution is typically in the range 15-20% due to the high activity of the cores (8

threads running). Therefore, core prediction error dominates the overall prediction error.

As expected, the ES model obtains worse results than PTEM in all workload groups, with

an average above 10%. The prediction error for PTEM is less than 3% on average across

all workloads. Furthermore, we observe that the ES model error grows for X workloads

since different threads perform highly heterogeneous activities. ES model average error

is above 17% for one of the workloads. Instead, PTEM error remains quite stable across

workloads and never exceeds 4.5%.

Per-benchmark data in each workload show that the maximum off-estimation that

PTEM produces is 9.2% for one of the benchmarks in the X workloads, see Table 4.2
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Table 4.2: Maximum per-task prediction error.

Core

I X M

PTEM 8.8% 9.6% 10.2%

ES 11.9% 28.3% 21.9%

LLC

I X M

PTEM 25.6% 4.0% 4.4%

ES 1112.6% 3593.8% 62.0%

Cluster

I X M

PTEM 6.6% 9.2% 7.5%

ES 25.8% 58.5% 23.6%

(recall that we use 8-benchmarks workloads and evaluate 24 different workloads, counting

192 benchmarks in total). For homogeneous workloads (I and M), the maximum error

observed is 7.5% only. Instead, the maximum error for the ES model is 58.5%. Maximum

error is lower for homogeneous workloads, but still in the order of 3-4x that of our PTEM

model.

4.4.4 PTEM Energy and Area Overhead

PTEM requires few hardware counters to track LLC, core and bus activity, together with

small arrays tracking the ownership of some cache sets in the LLC and L1 caches. For the

sake of consistency, the energy of those components has been modeled using CACTI. In

order to model counters, components such as internal cache buffers have been used, since

they are comparable to latches in the pipeline.

Results for the 4-core 2-way SMT configuration show that the total energy overhead for

PTEM is below 0.3%. Most of the overhead is due to the active energy of the ownership id

arrays in LLC and L1 caches. Relative overheads do not change noticeably for different core

counts. In fact, the relative overhead slightly decreases as the number of cores increases,

which proves that PTEM scales well.

We have obtained the area overhead using CACTI with the following assumptions:

LLC cache occupies 50% of the area in a 8-core configuration, counter bitcells have the

same size as input/output buffers in caches (so they are large) and ALUs performing

power computations use low-cost designs such as iterative multipliers and dividers (their

latency is not critical as they are used seldom). We consider SMT cores, as they require

more bits to track ownership and more counters to track per-task activity. Overall, we

obtained that total area overhead is 0.49% (4 cores), 0.63% (8 cores), 0.75% (16 cores) and

0.82% (32 cores), proving that PTEM area cost is rather low. The area breakdown for the



4.4. EVALUATION 55

32-core configuration is 0.20% LLC, 0.48% DL1+IL1, 0.09% core without DL1/IL1 and

0.05% bus. Similarly, the breakdown for the 4-core configuration is 0.22% LLC, 0.20%

DL1+IL1, 0.04% core without DL1/IL1 and 0.03% bus. Thus, those arrays tracking the

cache line ownership and counters tracking per-task activities in caches account for most

of the area overhead, which anyway is rather low.

Overall, PTEM imposes neither limitations on the number of threads that can be run

simultaneously in the processor (low and scalable hardware overheads), nor limitations

on the number of tasks the OS can keep active simultaneously (a single counter per task

needs to be tracked by the OS).

4.4.5 PTA Model Justification

Since PTA models have been widely used to estimate core and system-level energy [7,

14, 102], we also include PTA in our discussion. While these models typically rely on

existing PMCs, so no extra hardware support is needed, their accuracy is limited and

highly dependent on whether training workloads are similar to those at deployment.

Coefficients of the PTA model are obtained using our idealized model as the reference

model, since no other reference model exists. We provide the linear regression with all per-

task event counters in our simulator including number and type of instructions fetched,

executed, committed, data and instruction cache hits and misses, etc. despite PMCs may

not exist for many of those events.

We have used a 4-core 2-thread SMT setup. The training set consists of a workload

with eight benchmarks randomly chosen from the SPEC CPU 2006 for each of the three

categories described before: I, X and M . The evaluation workload consists of eight

workloads generated analogously for each category.

As shown in Figure 4.7, the PTA model performs worse than PTEM. Linear regression

is less accurate than ES for I workloads, and slightly more accurate for X and M ones.

The average error for the PTA model is 7.8%, similar to ES one. Furthermore, we have

observed that maximum estimation error is higher for the PTA model than for PTEM

and ES. The reason for those large estimation errors for the PTA model is twofold: (i)

its dependence on the training set and (ii) the fact that PMCs do not take into account

occupancy, which is the parameter determining per-task leakage and maintenance energy

in many components.

Finally, although not shown, results for other components (e.g., LLC) show similar

trends because of the same limitations pointed out for the core. For instance, Figure 4.2

shows the dependence of LLC leakage and maintenance energy on occupancy rather than
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Figure 4.7: Core per-task energy prediction (C4S2) with ES, PTA and PTEM model,
including the average error and maximum error.

on accesses.

4.4.6 PTEM for High Core-Counts

In this section we evaluate the accuracy of our PTEM model for large multicores with

4 and 8 clusters, counting 16 and 32 2-way SMT cores respectively. For that purpose,

we have run experiments with 4 different types of workloads: pure I workloads, pure M

workloads, X workloads (with 4 I and 4 M tasks per cluster) and hybrid workloads where

half of the clusters run pure I workloads and the other half runs pure M workloads.

Memory bandwidth for the 8-cluster configuration has been increased by setting up 2

memory controllers instead of one able to issue memory commands in parallel as long as

they do not conflict in any particular bank. This has been done in order not to overdesign

memory bandwidth for the 4-core setup and not to underdesign memory bandwidth for the

8-core setup. The behavior of the different workloads is such that the relative execution

time increase is low with respect to the single cluster setup since little memory contention

is suffered in I tasks, and the higher contention paid by M tasks is still low in relative

numbers.

Results in Figure 4.8 show that PTEM achieves higher accuracy for pure I workloads

and hybrid I-M workloads. This is so because, as shown before, PTEM achieves higher
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Figure 4.8: System per-task energy prediction error

accuracy for pure I clusters than for X or M ones. Instead, pure M and X configurations

show slightly higher prediction error. Nevertheless, the average error is low and, in the case

with the largest core count (8 clusters), the average error is below 3.5% regardless of the

workload type. In the case of the ES model, prediction error is significantly higher than

that of PTEM, being above 12% on average for X workloads. Other configurations show

lower error since they mitigate the per-core prediction error. Nevertheless, PTEM largely

improves accuracy with respect to the ES model across cluster counts and workload types,

and opposed to the ES model, PTEM error decreases as the cluster count increases.

4.5 Case Study

4.5.1 Characterization of Energy and Performance Variation

Interferences among co-running tasks when accessing shared hardware resources in a mul-

ticore (a.k.a. inter-task interferences) result in different per-task performance depending

on its co-runners [31]. In this section, we use our proposed PTEM model to show how

the energy consumption of each task also significantly varies due to inter-task interfer-

ences, and prove that such energy consumption variation cannot be directly inferred from

performance variation.
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We focus on 2-task workloads, which we run in a 2-way SMT core setup of our baseline

configuration. We construct all possible pairs of benchmarks from SPEC CPU 2006 suite,

recording for each benchmark its energy consumption in each of the 2-task workloads in

which it runs. The variation that each benchmark suffers across each 2-task workload is

illustrated in terms of Cycles Per Instruction (CPI) in Figure 4.9 and in terms of Energy

Per Instruction (EPI) in Figure 4.10. Results have been normalized with respect to the

average CPI and EPI respectively for the sake of readability since CPI ranges between

1.03 and 11.36 cycles/instr, and EPI between 0.29 and 2.99 nJ/instr. Benchmarks are

sorted from lowest to highest CPI.

We observe that CPI variation mostly concentrates in the range [+20%,-40%] w.r.t.

their average for most of the benchmarks, whereas EPI concentrates in the range [+30%,-

20%]. Hence, in both cases variations are significant and, therefore, we can conclude that

performance and energy consumption strongly depends on the co-runners. In terms of

performance variation, MEM benchmarks (mcf, milc, lbm, libquantum, soplex, gcc, bwaves

and omnetpp) are among those with the lowest performance variation. For instance, lbm

and omnetpp, both in MEM category, are the ones exhibiting the lowest performance

variation across all benchmarks.

However, in terms of EPI this is not the case: Typically, EPI variation for ILP bench-

marks decreases while MEM benchmarks have higher EPI variation than CPI variation.

For instance, libquantum, which falls in the MEM category, is the benchmark exhibiting

highest EPI variation. Analogously, mcf, soplex, gcc and omnetpp also experience a sig-

nificantly higher variation increase in terms of EPI than CPI. In contrast, astar has a

a significant variation in CPI, but reduced variation in EPI. Thus, the relation between

performance and energy variation is non-obvious. We note that the two benchmarks in

the middle of x-axis, astar and perlbench, both of them being ILP , have opposite trends

across metrics: EPI variation for astar is much lower than its CPI variation. Conversely,

EPI variation for perlbench is much higher than its CPI variation

We have also studied absolute EPI and CPI values, shown in Table 4.3. Values are

sorted based on their CPI. We observe that MEM benchmarks have higher CPI than

ILP ones, since they access memory more often and thus, experience higher latencies.

Few ILP benchmarks have higher CPI than some of the MEM ones. Such higher CPI

for MEM benchmarks translates into higher average EPI. In fact, only zeusmp (ILP )

has slightly higher EPI than one of the MEM benchmarks (bwaves). The main reason

for the increased EPI of MEM programs is the fact that they execute longer and occupy

more resource space, which translates into higher static and leakage energy. However,
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Figure 4.9: Per-benchmark CPI variation across all 2-task workloads in which the bench-
mark runs. Benchmarks sorted in increasing average CPI. Chart shows max, min, higher-
quartile and lower-quartile values.

Figure 4.10: Per-benchmark EPI variation across all 2-task workloads in which the bench-
mark runs.

the particular interaction across different programs in shared resources leads to different

behavior in terms of performance and energy, as it has been shown in Figures 4.9 and 4.10

in terms of CPI and EPI variability. Therefore, performance cannot be used as a suitable

metric to derive per-task energy consumption, quite the opposite, these results confirm that

our proposed energy metering technique, PTEM, is required to achieve accurate per-task

energy metering.
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Table 4.3: Average CPI (cycles/instr) and EPI (nJ/instr) for all benchmarks, sorted
from lowest to highest average CPI from left to right and from top to bottom. MEM
benchmarks in bold font.

416.gamess 444.namd 436.cactusADM 447.dealll 454.calculix
CPI 1.03 1.03 1.05 1.05 1.10
EPI 0.35 0.29 0.40 0.36 0.32

456.hmmer 464.h264ref 458.sjeng 401.bzip2 435.gromacs
CPI 1.22 1.23 1.24 1.28 1.30
EPI 0.40 0.48 0.37 0.46 0.41

453.povray 473.astar 400.perlbench 437.leslie3d 410.bwaves
CPI 1.34 1.34 1.41 1.42 1.46
EPI 0.41 0.50 0.44 0.50 0.55

445.gobmk 482.sphinx3 434.zeusmp 470.lbm 403.gcc
CPI 1.51 1.51 1.60 2.19 2.58
EPI 0.49 0.50 0.56 0.92 0.89

471.omnetpp 433.milc 450.soplex 462.libquantum 429.mcf
CPI 2.83 3.22 3.88 4.90 11.36
EPI 0.95 0.89 1.14 1.26 2.99

4.5.2 Large-Scale Parallel Applications

4.5.2.1 Adapting PTEM to Multithreaded Applications

In our per-task energy measuring approach, the energy accounted to each thread is saved

into a special purpose register per thread, denoted EMR. Section 4.3.4 shows how the OS

handles the EMR of each task.

The support required for PTEM in the case of multithreaded applications is simple.

In fact, no hardware changes in the PTEM logic are actually required, but only on how

the OS handles the EMR: The OS or the parallel runtime, simply needs to aggregate

the energy consumption estimates stored for all the threads belonging to the same multi-

threaded application. EmeterApp =
∑N

i=1EMRi where N is the number of threads of the

application. When a cache line is shared in the LLC across different threads, its energy

(static and leakage) must be accounted once, either by splitting it across the threads

sharing it or by attributing it to one of those threads. In particular, we identify as owner

the thread fetching the cache line to the LLC. Whether this energy is attributed to one

thread or another of the parallel application is irrelevant since the energy of all threads will

be finally aggregated to provide a single figure for the whole application. However, per-task

energy can also be monitored individually and periodically during the execution, so that

such information can be later used to optimize the energy profile of the application. This

is better illustrated in the next subsection through a particular example. The information

provided helps understanding the effects in terms of energy of unbalanced thread execution

times.
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Figure 4.11: Stacked power consumption evolution for wrf between two barriers

4.5.2.2 WRF

In this section, we evaluate our energy metering mechanism with real traces from a parallel

HPC application running on an actual supercomputer: wrf, as introduced in Section 3.4.2

Figure 4.11 shows the evolution of the per-task energy breakdown in the multicore

between two barrier communications. Note that energy components are stacked in the

plot. At the beginning thread 0 (Th0) consumes more energy than the other threads due

to its higher activity (it behaves as an I task). Conversely, Th1, Th2 and Th3 behave as M

tasks and therefore, their energy consumption is dominated by static and leakage energy.

Eventually, Th3 reaches the barrier and stops consuming dynamic energy. Th3 quickly

loses its LLC lines, which decreases its leakage energy. Hence, Th3 energy consumption

from this point onwards corresponds to its core static and leakage energy. Behavior for

Th1 and Th2 is analogous to that of Th3, but it takes longer for them to lose their LLC

cache lines since they reach the barrier before 40ms and lose their LLC cache lines after

50ms. Th0, however, behaves as a I task for 52ms. Then it enters into an M phase, thus

decreasing its dynamic energy. At this point Th0 starts increasing its LLC occupancy

evicting Th1 and Th2 lines until it occupies the whole LLC after 57ms. This makes

leakage energy contribution of Th0 to grow noticeably.

Notice that our energy metering mechanism does not need to be aware of the synchro-

nization among threads of a multithreaded task. For example, if a thread is busy waiting

on a lock, even if it is not progressing during that time, the thread is using the processor

and it will be metered accordingly. In contrast, if the thread goes to sleep until the lock is

released, the core will go to low power mode and less energy will be metered to the thread.
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4.5.3 Voltage and Temperature Aware Energy Metering

Voltage and temperature influence energy consumption so they cannot be neglected in

general. IBM POWER7 [32,48] power proxy is already aware of voltage and temperature,

which are obtained through sensors. The power proxy scales dynamic, static and leakage

energy with constant factors associated to different voltage/temperature combinations.

However, such proxy does not discriminate energy in a per-task basis, so it cannot be

directly used for PTEM.

Instead, a potential implementation for PTEM could track activities in a per-voltage

and per-temperature basis, in such a way that the number of counters required matches

the number of combinations of voltage and temperature ranges. For instance, if our chip

can operate at 0.8V, 0.9V and 1.0V, and temperature ranges considered are 320K-330K,

330K-340K and 340K-350K degrees, then 9 counters are required for each event to consider

all combinations. Owner id tags in caches and occupancy counters will not need to be

replicated (note that those arrays are responsible for most of the PTEM overheads).

While voltage and temperature parameters may impact energy consumption of PTEM,

their variability is expected to decrease with technology scaling and the increasing number

of cores per chip. In particular, smaller geometries suffer from process variations, which

limit the minimum voltage that can be used [13]. On the other hand, power efficiency and

heat dissipation push for lower operating voltages. Thus, although dynamic voltage scal-

ing techniques may still exist in the future, the range of voltages is expected to decrease,

thus leading to fewer voltage levels. Temperature variation may be significant across the

chip, but cores will become smaller with technology scaling, thus exhibiting lower in-core

temperature variation due to the fact that meaningful temperature gradients occur at a

nearly-constant minimum distance [25]. For instance, a difference of 1 degree can only

be observed at distances above 0.2mm and cores may occupy less than 1mm2 in the near

future. Similarly, LLC will remain in a narrow range of temperatures due to its rela-

tively low activity. Moreover, maximum allowed temperature decreases due to technology

scaling because smaller devices age faster and aging has an exponential dependence on

temperature.

4.6 Summary

In this chapter we have addressed the main challenges and opportunities associated with

accurate per-task energy metering. As shown in this chapter, existing approaches based

on an even distribution of energy across tasks are highly inaccurate. Therefore, we pro-
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pose (i) a fair reference approach to distribute energy across tasks and (ii) an affordable

implementation, PTEM, that tracks task activity and resource utilization at very low cost

(below 0.3% energy overhead and 0.85% area overhead).

PTEM is shown to provide highly accurate per-task energy estimates with an average

error of 3.1% for SMT multicore configurations and 2.1% for single-threaded multicore

ones. We further discuss the required changes, both at hardware and software level,

to provide such an accurate, yet implementable, per-task energy metering mechanism.

Finally, we show how to use PTEM in the context of parallel applications and a use case

where PTEM provides per-task energy measurement in a multicore system showing that

the energy consumed by a task when it runs with different co-runners could be huge.





5

Per-task Energy Metering for the

DRAM Memory System

5.1 Introduction

The energy demand and cost of computing systems have grown during the last years, and

the trend is expected to hold in the coming future [8]. Conversely, computing hardware-

related costs (e.g., servers) remain constant or even lower in data centers, desktops and

laptops. This leads to scenarios where energy costs are as significant as hardware-related

costs. In that respect, despite memory power keeps increasing, reaching 30–50W in high-

performance computers [14], there is a lack of understanding on per-task energy consump-

tion in memory. This is aggravated by the fact that memory power profiles across tasks

may vary significantly. For instance, a variation of up to 36% in memory power consump-

tion is observed across different SPEC CPU 2000 workloads (from 33.9W to 46.4W) when

running four instances of the same benchmark in each workload [14].

As we have seen in Figure 1.2, the average memory power consumption of each bench-

mark when executing in isolation on the system significantly varies. Different tasks

incur different power consumption, with the maximum variation being 57%, between

482.sphinx3 and 462.libquantum (from 25.7W to 40.4W). Hence, libquantum-like and

sphinx3-like workloads executing for the same amount of time would incur significantly

different energy consumption. However, to the best of our knowledge, no mechanism

has been proposed to measure accurately the memory energy consumed by each task in

multicore architectures.

65



66
CHAPTER 5. PER-TASK ENERGY METERING FOR THE DRAM MEMORY

SYSTEM

In this chapter we propose, for the first time, an ideal method to fairly distribute

the energy consumed in DRAM memories to concurrent running tasks and an efficient

implementation of such method. Our approach relies on tracking both the activity incurred

by running tasks and the memory bank states they induce. Then energy is attributed

fairly to tasks based on their utilization of memory. We show that a low cost and accurate

implementation of the ideal model is feasible. Overall, the contributions of this chapter

are as follows:

• We propose an ideal per-task energy metering model for DRAM memories, including

those based on close-page and open-page policies, as needed for performance/energy

optimization, task scheduling and billing in multicore systems. To the best of our

knowledge, it is the first reference model against which per-task energy metering

mechanisms in DRAM memories can be compared to.

• We devise DReAM, an accurate, yet low cost, implementation of the ideal model.

DReAM requires few counters and registers to be set up in the memory controller

to gather the required information. Our results show that such implementation is

within a 5% average error with respect to the ideal model.

• We compare DReAM with two other energy metering approaches: ES and PTA. In this

scenario, PTA is actually a simplified DReAM method that further trades accuracy

and cost. Our results show that DReAM is far more accurate than ES and PTA with

negligible hardware overhead.

• We characterize the SPEC CPU 2006 benchmark suite in terms of DRAM energy

consumption. Our characterization allows identifying those properties of the applica-

tions that impact DRAM energy consumption the most, so that suitable scheduling

algorithms can be devised.

In particular, we make the first proposal of (i) an ideal per-task DRAM memory energy

metering model and (ii) the hardware support to accurately measure per-task memory

energy consumption in multicores with multiple tasks executing concurrently.

The rest of this chapter is organized as follows. Section 5.2 provides background on

memory energy consumption and existing approaches for energy metering. Section 5.3

presents our approach to perform ideal per-task memory energy metering. DReAM, our

efficient hardware implementation of the ideal model, is described in Section 5.4. DReAM

accuracy is evaluated in Section 5.5. Next, energy consumption of multi-programmed
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workloads is analyzed in Section 5.6. Finally, Section 5.7 draws the main findings of this

chapter.

5.2 DRAM Memory System Fundamentals

5.2.1 DRAM Memory Organization

We focus on DDRx SDRAM as it is one of the most common memory technologies. A

DDRx SDRAM memory system is composed by a memory controller and one or more

DRAM devices. The memory controller controls the off-chip memory system acting as the

interface between the processor and DRAM devices.

A memory rank consists of multiple devices (DRAM chips), which in turn consist

of multiple banks that can be accessed independently. Each bank comprises rows and

columns of DRAM cells (organized in arrays) and a row-buffer to store the most recently

accessed rows in the bank. Rows are loaded into the row-buffer using a row activate

command (ACT). Such command opens the row, by moving the data from the DRAM

cells to the row-buffer sense amplifiers. Once a bank is open, any read/write operation

(R/W) can be issued. Finally, a precharge command (PRE) closes the row-buffer, storing

the data back into the row. The memory controller can use two different policies to manage

the row-buffer: close-page that precharges the rows immediately after every access, and

open-page that leaves the rows in the row-buffer open for potential future accesses to the

same rows.

Different models can be adopted to access memory. Those models determine which

ranks, devices, banks and arrays are accessed on each operation. We adopt the same

model as DRAMSim2, which in turn models Micron DDR2/3 memories [98]. In this

model, all devices in a rank are accessed upon every access. In each device, only one bank

is accessed, in which all arrays are accessed. Each array provides the specified row to the

sense amplifier on every access, where a number of contiguous columns are accessed over

successive cycles to serve an incoming access. In our model, we use a single rank, 8 devices

per rank, 8 banks per device and 8 arrays per bank configuration. In one cycle, one bank

per device is accessed, thus providing 64 bits in total for the rank. A burst of 8 cycles

provides 64 bytes on every access to memory, therefore matching the cache line size for

the last level cache (LLC) in the processor.

Under this configuration, all devices are always in the same power state, which is

equivalent to consider the power state at rank level. In each device, banks can be in

different states. Note, however, that our approach can be easily adapted to other models.
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They are not detailed in this thesis due to their similarity for the purpose of PTEM.

5.2.2 DRAM Memory Power Model

Micron has provided a power model based on an abstraction of the internal commands

and states of DRAM devices [84]. With the supply voltage known, for a given command

or bank state, this model calculates the power consumption through empirical electric

current profiles. The electric current profiles are obtained by invoking the DRAM devices

non-stop performing a particular command or by staying in one state as long as reliable

measurements can be performed. The description and the example values of relevant

currents of a particular specification are listed in Table 3.4.

This model provides formulas to calculate the power for each command and each device

state. However, as pointed out by Chandrasekar et al. [19], such methodology has several

limitations: i) does not consider for DRAM device states transition; ii) uses minimum

timing constraints between consecutive commands instead of the actual time interval that

the memory controller requires to arbitrate both commands; iii) inflexibility to adapt to

other row-buffer management policies.

In our infrastructure, we make use of the power model from Micron and integrate it in

a cycle-accurate memory system simulator, DRAMsim2, as introduced in Section 3.2. By

doing so, we can easily overcome the limitations of the Micron model by refining the power

profiles to the energy per cycle and per command. For example, the power dissipated in a

particular DRAM device state can be expressed as the power consumption in one memory

cycle. In this way, since DRAMsim2 emulates the bank-level operations in every cycle,

we can map the energy to the state transitions accurately. Analogously, since DRAMsim2

manages the timing constraints, the command power can be converted to count-based

energy consumption with timing parameters. This is analogous to the methodology used

by Deng et al. [22], where the same data from Micron is used as input.

Next, we show the details on the main components of this power/energy model. DRAM

devices can be in three different states: Power Down (P), Standby (S ), and Active (A).

In each state, the power dissipation in one cycle is PP , PS and PA, respectively. P state

is the one with the lowest power dissipation.

PP = IDD2P × VDD × tck (5.1)

PS = IDD2N × VDD × tck (5.2)

PA = IDD3N × VDD × tck (5.3)
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where tck stands for the cycle time corresponding to the operating clocking frequency of

the memory system, and VDD stands for the supply voltage.

In the case of memory commands, since their electric current profiles are monitored

when they execute with minimum timing constraints in DRAM devices, we normalize

them with the same timing [84]. We calculate the energy consumed by the ACT and PRE

commands as follows:

EACT = (IDD0 − IDD3N×tRAS+IDD2N×(tRC−tRAS)
tRC

)× VDD ×
tRAS
tRC
× tRC

tRRD
× tRAS × tck (5.4)

EPRE = (IDD0 − IDD3N×tRAS+IDD2N×(tRC−tRAS)
tRC

)× VDD ×
tRC−tRAS

tRC
× tRC

tRRD
× (tRC − tRAS)× tck (5.5)

Since the set of ACT and PRE commands are recursively operated, the measured current

IDD0 includes the current that is incurred by the A and S states. The remaining current

is split evenly among ACT and PRE commands, since the activities incurred by these

commands are comparable. Note that the minimum timing constraint between two ACT

commands during the current measurement is actually tRRD, which is scaled down with

tRC . This is similar to the approach introduced by Chandrasekar et al. [19]. Separating the

energy of the ACT and PRE commands pair is necessary, for example, under open-page

policy. In close-page policy, they can be combined not to loss integrity.

In the case of READ and WRITE commands, consumed energy is computed as follows:

EREAD = (IDD4R − IDD3N )× VDD × BL
2 × tck (5.6)

EWRITE = (IDD4W − IDD3N )× VDD × BL
2 × tck (5.7)

where BL stands for the burst length of the data being transferred on the bus. In DDR

memories, this value is shortened to BL
2 .

Unlike SRAM memory cells, DRAM cells are unable to retain contents indefinitely. In-

stead, DRAM cells discharge over time and eventually, they lose their contents. Therefore,

they must be read and written back at a given minimum frequency to keep their contents.

Although this has some implications in energy consumption (to read/write memory con-

tents) and bandwidth (refresh operations may delay program’s accesses), DRAM cells

are smaller and less power-hungry than SRAM ones, so they are used to implement main

memory. Thus, all memory contents need to be refreshed periodically. A refresh command

is normally accompanied with several PRE commands, but the PRE command consumed



70
CHAPTER 5. PER-TASK ENERGY METERING FOR THE DRAM MEMORY

SYSTEM

energy can be computed with Equation 5.4. Then, the refresh energy is calculated as:

EREF = (IDD5 − IDD3N )× VDD ×
tRFC
tREFI

× tck (5.8)

Then, we break DRAM memory energy consumption down into three components:

active, refresh and background energy.

• Active energy corresponds to the energy spent to perform those useful activities, such

as READ/WRITE, their related ACT/PRE commands and the termination energy

due to terminating signals of other ranks on the same channel. The definition of it

is aligned with Section 2.1

• Background energy includes the maintenance and leakage energy. Maintenance en-

ergy corresponds to the energy consumed due to useless activities not triggered by

the program(s) being run. For instance, DRAM memory may stay in a higher en-

ergy consumption state during idle cycles so that it can quickly react and serve a

new access. Alternatively, it may remain in a much lower power mode with lower

maintenance power dissipation, but it may take longer to serve a new access due

to the time required to transition to an active mode. Leakage energy corresponds

to the energy wasted due to imperfections of the technology used to implement the

circuit. Note that if circuits are implemented with perfect technology, no leakage

power would be dissipated. This energy is referred to as maintenance or leakage

energy indistinctly in other works [115]. For the sake of clarity, we make use of the

term background energy to refer to all consumed energy except active and refresh

energy.

• Refresh energy corresponds to the energy consumed to refresh periodically all mem-

ory contents. Although refresh energy somewhat belongs to maintenance energy, its

incurred power is consistent overtime unlike the fluctuating maintenance power. We

separate it out to better distribute the energy consumption to tasks.

5.3 Idealized PTEM for DRAM Memory

In this section we present an idealized model for per-task DRAM energy metering without

considering hardware cost. The result of this model is later used as the reference for

DReAM model to meter per-task energy with a low-cost implementation. We assume a

multicore architecture where an on-chip memory controller serves as the bridge to the off-

chip memory. Next we describe the memory model considered in this work, how energy is
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Table 5.1: Memory commands, timing, device states and background energy breakdown
for a read operation in close-page mode.

Command
T0 − ACT READ PRE −
T1 −

Timing T0 − tXP tRCD tRTP tRP −

State

Bank0

PD S

A

S PD
Bank1

SBank2

Bank3

Rank EPD ES EA ES EPD
Power T0

EPD
2 ES − EPD

2 EA − EPD
2 ES − EPD

2
EPD

2

T1
EPD

2

consumed in the different memory blocks, and our models to split energy among different

tasks.

5.3.1 A Case of Energy Consumption in DRAM Memory

In this section, we introduce how the energy is consumed by internal activities in DRAM

devices in the scenario when one memory read request is served in memory.

Table 5.1 shows the effect on memory of a read command. We observe that the device

is in PD state when the memory controller is not processing any request. Note that in

our configuration all devices in the rank are in the same state and therefore, rank and

device states match. When the memory controller receives a memory access request from

task 0 (T0), it sends a clock enable (CKE ) signal to transition the rank from PD to S

state. The device stays in S state as long as all banks are powered up and idle. This

includes the time the device is waiting for the memory controller to send those commands

corresponding to the requests in the memory controller’s queues. During the S state,

background power is higher than in PD state (PS > PPD). S state lasts tXP , as depicted

in Table 5.1. Eventually, some banks are activated so that the device as well as some

banks transition to A state. Note that in this model, when the ACT command is issued

the device (and so the rank) switches to S state, and whenever the corresponding bank has

been activated, the device switches to A state. The device and the accessed banks (Bank0

in the example) are in A state during part of the activation period (tRCD) and while the

read/write command is served (tRTP in the example for a read command). Note that there

is another timing constraint: each bank can only be precharged after tRAS . Therefore,

in the case when tRAS > (tRCD + tRTP ), the bank stays in A state at least for tRAS

after being activated. While in A state, the device incurs the highest power dissipation,
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PA, with PA > PS . Once the only command being processed is the PRE command, the

device and accessed banks transition to S state. When no command is executed and no

memory access request exists in the memory controller buffer for a certain time interval,

the memory controller returns the device to PD state.

Most modern memory controllers implement open-page and/or close-page policies.

They differ on how the data array row-buffer is managed (for how long the row-buffer

keeps open). Next, we present how per-task energy is metered under both policies.

5.3.2 Per-Task Energy Metering for Close-Page

Our idealized model relies on the fact that background energy consumption of a device de-

pends solely on its current state, which can be induced by different, concurrent accesses.

Therefore, our model attributes background energy to each task based on the state it

imposes on memory. Memory occupancy is discarded as input for the model since back-

ground energy does not depend on it. As reported in [22] background energy accounts for

over 50% of the memory energy consumed by programs. Memory occupancy is discarded

as input for the model since background energy does not depend on it. Thus, distributing

background energy according to resource utilization is crucial to meter per-task memory

energy accurately.

1. During PD, only background power is consumed. Such energy cannot be attributed

to any task since no task has any memory activity during PD. Hence, we divide

background power evenly across all tasks running in the system.

2. Whenever a DRAM device switches from PD to S state, the extra background power

incurred due to S state, i.e. PS −PPD is distributed uniformly across all tasks with

inflight commands that force the DRAM devices to stay in S state.

3. When a DRAM device is in A state (active), the extra power incurred (i.e. PA−PS)

is distributed evenly across all tasks enforcing A state.

For instance, Table 5.1 shows the case where one task, T0, issues a read command (first

row) while another task, T1, issues no command. Next, let us assume that those are the

only tasks using the memory system. During the whole period, T1 is responsible only for

half of the PPD power (last row), while T0 is responsible for half of the PPD and all PS

and PA extra power (penultimate row).

When multiple commands are processed in parallel, we follow the same principle of

attributing power to those tasks that impose the memory chip to be on a given state. In
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Table 5.2: Memory commands, timing, device states and background energy breakdown
for several operations in close-page mode.

Comm.
T0 − ACT READ PRE −
T1 − ACT READ PRE −

Timing
T0 − tXP tRCD tRTP tRP −
T1 − tRRD tRCD tRTP tRP . . .

State

Bank0

PD S

A S

S PD
Bank1

S
A

Bank2 S
Bank3

Rank EPD ES EA ES EPD
Power T0

EPD
2 ES−EPD

2 EA−ES
2

EA
2

ES
2

EPD
2

T1
EPD

2
ES
2

EA
2 EA−ES

2
ES
2 ES−EPD

2
EPD

2

the example in Table 5.2, we show a particular case where both T0 and T1 issue commands

in parallel. First, the device is in PD state. Eventually, T0 makes the device transition to

S, so T0 is responsible for the extra background power. Then, devices transition to A state

and T1 starts its activate command. Both tasks are equally responsible for PPD and PS

power, but only T0 is responsible for PA power. Later, T1 also enforces memory to be in A

state so that the total power must be uniformly distributed across both tasks. Finally, as

commands finish, tasks T0 and T1 stop enforcing high-power states and power dissipation

is attributed only to those tasks imposing each particular state.

Regarding the refresh operations, according to the JEDEC standard of DDR2/3 SDRAM

memory [52], it is required to issue eight refresh commands during a given time window.

Thus, the memory controller has some flexibility to schedule those refresh commands, so

that the execution of commands from tasks can avoid interruption. The refresh energy is

guaranteed to be constant in the memory system during a given period of time, regardless

of the activities of running tasks. Given that refresh commands occur in all banks simul-

taneously, they cannot happen in parallel with any other command. Thus, both dynamic

and background energy incurred during refresh is accounted as refresh energy. Although

refresh energy is not triggered by the execution of tasks, it is consumed as long as the

system is powered up. Thus, tasks running in the system are assumed to be responsible

for the system being up, and so refresh energy is evenly split across those tasks.

5.3.3 Per-Task Energy Metering for Open-Page

As opposed to the close-page policy, in open-page, ACT/PRE commands may not be

needed by a memory access, since banks remain open after being accessed. However,
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Table 5.3: Memory commands, timing, power states and background energy breakdown
when hit in row buffer in open-page mode.

Comm.
T0 − ACT READ − −
T1 − − READ −

Timing
T0 − tXP tRCD tRTP −
T1 − tRTP −

State

Bank0

PD

S A

Bank1

SBank2

Bank3

Rank PPD PS PA
Power T0

PPD
2 PS− PPD

2 PA − PPD
2

PPD
2

T1
PPD

2 PA − PPD
2

energy consumed by open banks is still attributed to those tasks that opened the banks.

Regarding background energy, the same principle as for close-page is followed: attributing

the energy to tasks based on the state they impose to memory.

As in the close-page policy, devices are powered up and activated (A state) to execute

commands. However, once the corresponding read/write operation finishes, those devices

remain open in A state. This is illustrated in the example in Table 5.3 that reflects the

case of a row-buffer hit. The task that opened the bank (T0 in the example) is responsible

for the extra background energy of the activated devices (after the first tRTP ). Eventually,

another access to the open banks can occur. If this is the case, no precharge command is

needed. Since T1 read access is a row-buffer hit, it can directly read data from the row

buffer. Consequently, T1 becomes responsible for the extra background energy, while T0

is only responsible for half of the PD energy.

Analogously, the same principle also applies when multiple accesses are interleaved, as

shown in Table 5.4. In this particular case, T0 has already opened one bank (Bank0), which

imposes the A state to the rank and the corresponding bank. Eventually, T1 accesses the

same rows which incurs a row-buffer hit. During this process, the extra background energy

attribution switches like in the previous example. Then, after T1 finishes its operation,

T0 accesses the same rows which incurs another row-buffer hit. Thus, the attribution of

extra background energy switches back to T0 again. Whenever the page is closed, T0 is

also responsible for the precharging dynamic energy, which should have been attributed

to T1 if T0 had not accessed the open bank. The main reason why we distribute the

extra background energy this way is that, when the bank is firstly opened, it is impossible
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Table 5.4: Memory commands, timing, power states and background energy breakdown
when multiple interleaved accesses from two tasks accessing the same bank in open-page
mode.

Comm.
T0 READ − READ − PRE
T1 − READ −

Timing
T0 tRTP − tRTP − tRP
T1 − tRTP −

State

Bank0 A S
Bank1 S
Bank2 S
Bank3 S

Rank PA PS
Power T0 PA − PPD

2
PPD

2 PA − PPD
2 PS − PPD

2

T1
PPD

2 PA − PPD
2

PPD
2

to predict its future accesses, thus the activation energy is attributed to the first user.

Similarly, the precharging energy is attributed to the last user, who triggered the PRE

command. Regarding background energy, we also assume that the last task imposing a

particular device state accounts for the extra energy. Although our choice is, to some

extent, arbitrary, we regard it as fair.

In summary, activate and read/write dynamic energy is attributed to the task perform-

ing the access, whereas precharge energy is attributed to the last task accessing such row.

Note that on a refresh command all banks need to be closed, and so precharge energy for

open pages is attributed to the last task accessing each of them. Other than that, energy

distribution is analogous for close-page and open-page policies.

5.3.4 Ideally Formalized Per-Task Energy Metering in Memory

We generalize the memory energy consumed by each task as follows.

1) The background (bg) energy attributed to a task can be generalized as follows for

both open- and close-page policies:

Emembg (Ti) = EPD × ExecT ime(Ti)/NT

+
ExecT ime(Ti)∑

j=0

(
(ES − EPD)× δSi,j

NT
S,j

)
+
ExecT ime(Ti)∑

j=0

(
(EA − ES)× δAi,j

NT
A,j

)
(5.9)
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In the first addend each running task is metered an even part of EPD, where ExecT ime(Ti)

stands for the execution time of task i in cycles and NT for the number of tasks running in

the processor – not necessarily the maximum number of tasks allowed in the processor. The

second and third addends meter ES −EPD and EA −ES for tasks enforcing those states.

NT
S,j and NT

A,j correspond to the number of tasks imposing S and A states respectively

in cycle j; and δSi,j and δAi,j indicate if the task i makes memory be in S and A state

respectively, in cycle j. In other words, δAi,j is 1 if task i is executing a read, write or

activate (last tRCD cycles) command in cycle j, and 0 otherwise; and δSi,j is 1 if task

i is executing a precharge or activate (first tXP cycles) command or if it has pending

commands in the memory controller while all banks are idle in cycle j, and 0 otherwise.

Note that, as stated before, memory occupancy is not considered for metering energy to

tasks since the memory regions not used by the task under consideration cannot be turned

off when idle. Hence, background energy remains the same regardless of the memory space

used.

2) Active energy for a task depends on the number of commands it performs, as shown

in the following equation:

Ememdyn (Ti) = Ememread ×NRD(Ti) + Ememwrite ×NWR(Ti)

+ EmemACT ×NACT (Ti) + EmemPRE ×NPRE(Ti)
(5.10)

where Ememread , Ememwrite, E
mem
ACT and EmemPRE stand for the energy of each command, and

NRD(Ti), NWR(Ti), NACT (Ti) and NPRE(Ti) stand for the number of memory internal

commands executed by task i.

3) Refresh operations may have some side effects such as delaying some commands

issued by running tasks. However, this fact does not alter the energy model. Also, refresh

commands consume some energy to access the corresponding rows. Since refresh opera-

tions are distributed evenly over time at a fixed rate and they are not originated by any

particular task, their energy is split evenly across all running tasks. Thus, refresh energy

per task is as follows:

Ememrefr (Ti) = Ememrefr ×NRef × ExecT ime(Ti)/NT (5.11)

Ememrefr corresponds to the active energy of a refresh command. NRef corresponds to

the average number of refresh operations performed per cycle.
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5.4 DReAM, an Implementable Approach

Implementing the exact computation of the idealized energy model is expensive — if at all

feasible — due to the large number of events to be tracked, the frequency at which they

must be tracked, and the lack of information that the processor has about the memory

state. On the other end, metering memory energy evenly among running tasks or propor-

tionally to the number of accesses that they perform requires minor changes to current

architectures. However, these approaches exhibit low estimation accuracy as shown later

in Section 5.5.2. Therefore, we propose DReAM, our per-task energy metering approach

that trades off energy metering accuracy and implementation complexity.

In DReAM memory model, active and refresh energy can be easily tracked as in the ideal-

ized model. This requires the memory vendor to provide the active energy per access type,

namely Ememread , Ememwrite, E
mem
ACT and EmemPRE for tracking active energy and Ememrefr for tracking

refresh energy, as well as the average number of refresh operations per cycle (NRef ). These

parameters are already provided by chip vendors like Micron for DDR2/3 memories [84],

so our model imposes no change to current DDR2/3 memories. In the memory controller,

we only require per-task activity counters, namely NRD(Ti), NWR(Ti), NACT (Ti) and

NPRE(Ti). Total background energy, Emembg,total can be obtained by metering memory en-

ergy consumption [43] and subtracting active and refresh energy. The PD background

energy is constant and hence easy to track. Meanwhile, the remaining background energy,

Ememrem , is due to active and standby periods (i.e. Emembg,total = EmemPD + Ememrem ).

Our model distributes EmemPD uniformly across all tasks, while Ememrem is distributed

based on access frequencies per task. To that end, we divide the execution into intervals

of IntMem processor cycles and track the number of memory accesses sent to the memory

controller (in a per-task basis) in the current interval. Thus, background energy is obtained

as follows:

Emembg, total(Ti) =
PmemPD × ExecT ime(Ti)

NT
+

ExecTime(Ti)

IntMem∑
j=0

NTi
acc,j

NTOTacc
j

× Ememrem,j (5.12)

where PmemPD is the PD background energy, NTi
acc,j tracks the number of memory accesses

of task i during interval j, and NTOTacc
j tracks the total number of memory accesses in

interval j. Ememrem,j is the non-power-down background energy in interval j, obtained by

subtracting all other sources of energy consumption from the total energy measured in

the interval. Sensitivity to the sampling interval (IntMem) is studied in the evaluation

section.
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Table 5.5: DReAM hardware requirements.

Block Memory Vendor Extra Logic

Memory Emem
read , Emem

write, NRD, NWR, NACT , NPRE ,
Emem

ACT , Emem
PRE , NRD(Ti), NWR(Ti),

Emem
PD , Emem

refr , NACT (Ti), NPRE(Ti),
NRef IntMem cycle counter

Putting it All Together

DReAM requires little hardware overhead. DReAM mostly requires setting up some counters

similar to the PMCs currently available in most high-performance processors. DReAM

support does not interfere the execution of programs since it is not in any critical path.

Table 5.5 summarizes those parameters required from the memory vendor and the extra

logic (i.e. counters) that must be set up. Counters with the “(Ti)” suffix must be replicated

for each task. Thus, how many of them are needed is dictated by the number of tasks that

may run simultaneously in the chip.

Regarding the interface with the software, the OS is responsible for keeping track of the

energy consumed by every task running in the system. DReAM exports a special register,

called Memory Energy Metering Register (MEMR), that acts as the interface between

DReAM and the OS. The OS can access that register to collect the energy estimates made

by DReAM. This typically will happen when a context switch takes place. At that moment,

the OS reads the MEMR using the hardware-thread index (or CPU index) for the task

that is being scheduled out (Tout). Then, the OS aggregates the energy consumption value

read in the task struct for Tout. Right after the new task (Tin) is scheduled in, the memory

state may remain at a particular state due to an access triggered by the task that has been

scheduled out. Although, DReAM attributes background energy consumption to Tin, this

occurs during few cycles (in the order of tens or hundreds of cycles). Under a processor

frequency of 2GHz, 500 cycles are equivalent to 0.25µs, while context switches occur at

much higher granularity, every 10-100ms.

As in chapter 4, the time the OS spends working on behalf of a given task is attributed

to the calling task. The remaining energy consumed by the OS can be evenly attributed to

all running tasks. In any case, DReAM provides the hardware support needed to attribute

OS energy to tasks as required.
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5.5 Evaluation

5.5.1 Experimental Setup

The main experimental setup is introduced in Section 3.4. In particular in this chapter, we

consider three CMP processor configurations with 1, 4 and 16 single-threaded cores. The

LLC is partitioned with 256KB 16-way per core. Therefore, the LLC size is 256KB, 1MB,

and 4MB for 1, 4, and 16 cores, respectively. These configurations have been chosen to

discount the effect of on-chip inter-task interferences due to shared resources (e.g., shared

LLC cache), thus allowing to consider memory effects only.

For the DRAM memory we model an 8GB memory as it is large enough to support

the workloads used in this work. DRAM memory is single-rank with 8 devices per rank,

8 banks per device and 8 arrays per bank. We evaluate close-page and open-page DRAM

memory row-buffer management policies, but differences were negligible: Since many cur-

rent DRAM memories have a low-power mode, the open banks under open-page policy

quickly transition to power down state when there is no incoming request. In this case,

open-page policy performs similarly to close-page in most of the cases. Thus, we only

report results for one of the policies: close-page.

Average power consumption for the 8GB setup is 5.4W, 8.6W and 18.8W for 1-thread,

4-thread and 16-thread workloads respectively. For a setup of 64GB (results not shown

in this work) power increases by a 2x-3x factor (e.g., 14.7W for 1-thread workloads).

Note that this is around half the power consumption reported in Section 5.1, which is

consistent since our setup is less aggressive than that of the particular server used in

the real experiment. In particular, we assume a processor operating at 2GHz and DRAM

operating at 1GHz, whereas the CPU of the server used operates at 3.2GHz and its memory

at 1.6GHz. Nevertheless, our proposal is orthogonal to those parameters.

The benchmarks and workload generation strategy are introduced in Section 3.4.3. To

measure accuracy in the energy estimations, we make use of the metrics in Equations 3.1

and 3.2.

5.5.2 DReAM Energy Estimation

In this section we show the accuracy of DReAM with respect to the ideal model presented in

Section 5.3. We also include the ES model that uniformly splits energy across all running

tasks regardless of their activity and memory behavior, together with a simple PTA model

that splits energy across tasks proportionally to their memory accesses.
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Figure 5.1: Per-task DRAM memory energy prediction of a 4-core workload so-
plex+sjeng+gcc+namd with different sampling intervals.

5.5.2.1 DReAM Sampling Interval (IntMem)

The memory energy consumption prediction of DReAM varies with different sample period

(interval) lengths. When choosing the interval length, we seek for a reasonable tradeoff

between accuracy and hardware cost. Figure 5.1 shows the average WldPredError for each

task in a particular workload. This workload belongs to group X and runs in a 4-core

configuration. We explore sampling periods from 128 to 500K processor cycles. Trends for

most workloads are similar, so we have used this particular one to illustrate the sensitivity

of DReAM to the particular sampling period.

As expected, higher sampling frequency increases accuracy. However, discrepancy

between short and long sampling periods is not huge (from 4.6% to 7.4% average Wld-

PredError). Some meaningful average WldPredError increase is observed when moving

from a 512-cycles sampling interval to a 1024-cycles interval. Further increasing the in-

terval size until reaching half million cycles has little impact on accuracy since deviation

from the ideal model quickly flattens1. Thus, we have chosen two different interval sizes

with different accuracy/cost tradeoff: 512 and 500K cycles sampling intervals.

1Longer sampling period is also applicable, however, DReAM aims to provide the estimation in a finer
granularity than the operating system quantum to be of more flexible use.
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5.5.3 DReAM Energy Consumption Prediction

Next we evaluate the off estimation for 4-core and 16-core processor setups with respect

to the ideal model. Note that the ideal model is the only reference model as no existing

hardware provides accurate per-task DRAM energy metering.

Figure 5.2 shows the result for the 24 workloads (8 of each type) for the 4-core setup.

We observe that, in general, the ES model is highly inaccurate averaging over 45% pre-

diction error across all workloads. Prediction is more accurate for L and H workloads

than for X ones. This is expected since benchmarks in L and H workloads are more

homogeneous, so their individual power consumption is also more homogeneous than in

X workloads. In some particular workloads, the prediction error is even below 10%. Nev-

ertheless, ES model prediction error is very high in general, ranging from 30% to 85% for

most workloads. For X workloads, the prediction error is always above 58%. PTA model

improves the estimation accuracy, with an average prediction error around 23%. PTA

accuracy is high for H workloads (the errors are all under 10%) since the large number

of accesses of H benchmarks makes energy more proportional to the number of accesses

(dynamic energy becomes dominant). However, benchmarks in L group infrequently ac-

cess memory, so their memory energy is mainly background energy, which PTA fails to

predict accurately. This fact is particularly noticeable for workload w4 where, although

all tasks have few memory accesses and so, their energy is dominated by PD background

energy, the fact that one task has a number of access relatively much higher than the

others makes it account for most of the energy, thus producing very high error prediction.

Conversely, in this workload the ES model is far more accurate than PTA since energy is

quite homogeneous across tasks in the workload. Our DReAM model improves prediction

accuracy significantly over both ES and PTA. When the sample period granularity is 512

cycles, the prediction error is always below 10%, and 3.9% on average. If the sampling

period increases to 500K cycles, the prediction error may reach 14.0% at most for one par-

ticular workload, and 6.1% on average. As shown, DReAM successfully predicts the energy

consumed by each task consistently across workloads. In particular, this holds (i) when

PTA works well and ES not (e.g., workload w12), (ii) when ES works well and PTA not

(e.g., workload w4), and (iii) when both PTA and ES work badly (e.g., workload w5).

Figure 5.3 shows results for the 16-core setup. First, we observe that ES and DReAM

accuracy remains similar to that of the 4-core setup. In contrast, PTA accuracy slightly

improves.

The average prediction error across all workloads for the ES model rises to 53%. The

increase is particularly noticeable for L workloads. Since total energy for L workloads
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Figure 5.2: Per-task DRAM energy prediction error for 4-core workloads.

Figure 5.3: Per-task DRAM energy prediction error for 16-core workloads.

is relatively low, low deviations (in absolute numbers) become high in relative numbers.

A similar effect occurs for DReAM, thus making L workloads to exhibit the lowest predic-

tion accuracy, followed by X workloads, where half of the benchmarks are L benchmarks.
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Conversely, H workloads consume higher energy and relative deviations become less sig-

nificant for all models. Trends for PTA are similar to those for the 4-core setup, thus

exhibiting higher accuracy for H workloads, although accuracy for the 16-core setup is

higher. This is due to the fact that, with 4 cores, a large deviation for one benchmark

has significant impact in average results, but such average impact becomes lower across 16

tasks. However, maximum error for individual benchmarks in each workload still remains

high.

Nevertheless, PTA has an average prediction error above 10%, and around 23% for a

particular workload. Opposedly, DReAM error is below 5% on average (512-cycles interval)

and always below 8% across all workloads. Note that the gap between 512 and 500K cycles

sampling intervals for DReAM is still around 2%, as in the 4-core case. Our results prove

that DReAM is far more accurate than ES and PTA models across all workload types, and

average prediction error remains nearly the same for 4 and 16 cores, thus proving that

DReAM scales well.

In conclusion, DReAM model greatly improves per-task DRAM energy estimation over

ES and PTA at low cost.

5.5.4 DReAM Area and Energy Overhead

DReAM requires some hardware support in the form of counters to track memory activity.

Those counters are in the memory controller, which in general is on-chip, so the DRAM

devices remain unchanged.

As shown in Table 5.5, DReAM needs few counters (5 shared counters and 4 extra

counters per thread). 32-bit counters suffice to track the corresponding events. Further,

few of those counters are accessed on a memory access and at the end of a sampling

interval. Although computing the energy consumed by each thread in a particular interval

involves few arithmetic operations, low-area and low-power arithmetic units (e.g., iterative

multipliers [101] and dividers [57] operating at low frequency) can be set up for that

purpose. We have considered the energy consumption for two different sampling intervals:

512 and 500K cycles. Area and power/energy overheads have been estimated with power

models analogous to those of Wattch [16] built on top of CACTI 6.5 simulation tool [87].

CACTI is a flexible tool modeling delay, energy (active and leakage) and area of cache

memories and SRAM-based arrays.

Results for 4-core and 16-core configurations show that the total energy and area

overhead for DReAM is largely below 0.1% of the entire chip. If we compare DReAM energy

overhead with DRAM energy consumption, it is also largely below 0.1% of total DRAM
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Figure 5.4: All workloads power consumption comparison in a 4-core setup.

energy consumption. Furthermore, relative overheads do not change noticeably if the core

count is increased, which proves that DReAM scales well. Energy overheads for 512 cycles

sampling intervals are higher than for 500K intervals, but still under 0.1% for the whole

chip. Due to its higher accuracy and still low overheads, the sampling interval considered

for the characterization presented in the next section is 512 cycles.

5.6 Case Study

In this section, we analyze how programs with different memory access profiles interact

in terms of memory power consumption. For that purpose, we use DReAM, our proposed

method for accurate per-task memory energy metering.

5.6.1 Workload as a Whole

We first analyze the different workloads with attentions on the power consumption of the

different benchmark types rather than individual benchmarks.

Figure 5.4 shows the average2 memory power consumption of benchmarks in L, H and

X workloads under a 4-core setup, and the average memory power they would consume if

they ran in isolation. The figure has 4 sets of columns. From left to right: L workloads,

2In fact, we use the harmonic mean for power in Figure 5.4 and 5.5 to take into account that slower
(and lower power) programs run longer. Otherwise, we could not compare power and memory energy per
instruction values fairly.
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Figure 5.5: All workloads power consumption comparison in a 16-core setup.

L benchmarks in X workloads, H benchmarks in X workloads, and H workloads. For

each set of columns, there are two columns labeled as ISO and WL. WL data shows the

average per benchmark data in the corresponding category. For instance, the WL column

in the L category shows the average memory power consumption per benchmark for the 32

benchmarks in those workloads (8 workloads with 4 benchmarks each). The ISO column

corresponds to the average power of those 32 benchmarks when run in isolation. Note that

separating results across benchmarks in workloads would not be possible without DReAM.

The first observation is that simultaneously running benchmarks in a multicore system

decreases their individual memory power consumption. This fact is particularly noticeable

for L benchmarks, whose average memory power has been decreased to less than half.

Power consumption of H benchmarks decreases as well, but less than for L benchmarks.

We also observe that those trends for L and H benchmarks hold independently of whether

they run with benchmarks with similar or different characteristics in terms of memory

access frequency.

The second observation is that, as expected, active power (activate, precharge, read

and write) remains roughly constant regardless of whether benchmarks run in isolation or

simultaneously with other programs. However, background and refresh power decreases

remarkably since it is shared across benchmarks in the workload. In particular, L programs

observe a significant reduction in terms of background power when running with other

programs since they keep memory in PD state most of the time, and PD power is shared
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Figure 5.6: Average benchmark MEPI comparison in a 4-core setup.

homogeneously across running tasks. Conversely, H programs experience a lower reduction

in terms of background power because background power during A and S states is the main

source. This is so because accesses from different programs do not overlap often in time,

and when they do, it is often the case that they need the same bank and thus, occur serially.

Therefore, background energy due to A and S states is very similar in the workloads and

in isolation.

Results for the 16-core setup, shown in Figure 5.5, resemble those for the 4-core setup

with two main differences: (1) average memory power per program further decreases for the

16-core setup since power sources are shared across a larger number of programs; And (2)

active power (activate, precharge, read, write) decreases for H benchmarks because energy

for those operations remains constant, but since memory contention increases execution

time, power decreases.

This second effect can be better observed in Figure 5.7, where the Memory Energy Per

Instruction (MEPI) across workloads is shown. The MEPI of each benchmark for multi-

programmed workloads is lower than for executions in isolation, but the ratio is not as

favorable as in terms of power for H benchmarks. This is due to the longer execution time

produced by banks conflicts, memory access contention and limitations on the number of

simultaneously opened banks [52], which increases overall background and refresh energy,

thus increasing the MEPI.

Figures 5.6 and 5.7 show the MEPI for 4-core and 16-core setups respectively. We
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Figure 5.7: Average benchmark MEPI comparison in a 16-core setup.

observe that MEPI ratios between WL and ISO remain the same as for power for all

workload types in the 4-core setup and L workloads in the 16-core setup. This is so

because the impact in execution time due to memory contention is negligible. However,

H workloads and H benchmarks in X workloads in the 16-core setup experience some

MEPI increment due to contention with concurrent memory requests, which increased

execution time, and so background and refresh energy. Note that power and energy for H

(L) workloads and H (L) benchmarks in X workloads differ simply because benchmarks

have been picked randomly and therefore, those sets contain different benchmarks (still

of the same type). The same happens when comparing the MEPI in isolation in different

processor setups.

5.6.2 Per-Benchmark Analysis

In this section we dig into the behavior of individual benchmarks in different workloads.

DReAM enables this study, which could not be done otherwise. For that purpose, we picked

the workload with the most varying behavior with respect to the average for each of the

workload types (L, X and H) and core count (4 and 16), for a total of 6 workloads. In

many cases, the most-varying behavior workload does not show big discrepancies with the

average behavior for most of the benchmarks.
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Figure 5.8: L type workload power consumption comparison in a 4-core setup.

Figure 5.9: L type workload power consumption comparison in a 16-core setup.

L Type Workloads Figure 5.8 shows the power consumption in an L type workload

with 4 cores. As shown before, power is reduced to less than half on average for L workloads

in comparison with the ISO case. However, when we analyze benchmarks individually, we

observe that those benchmarks with higher memory access frequency (gromacs and dealII )

have higher WL case power consumption. This is so because workloads are not fully ho-

mogeneous and discrepancies in the memory access frequency lead to higher background

power for those programs keeping the memory in a higher power consuming state longer.
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Figure 5.10: H type workload power consumption comparison in a 4-core setup.

The fact that PD state background power is very low makes programs with a relatively

higher memory accessing frequency increase their background power noticeably in relative

numbers. Therefore, they are responsible for a larger fraction of the total energy con-

sumption (and so of the power consumption). Active power remains basically the same

for ISO and WL since energy per access is constant and execution time barely changes.

Results for an L workload in a 16-core setup are shown in Figure 5.9. Trends are anal-

ogous to those reported for the 4-core setup with the only difference that power reductions

are larger as already pointed out for the average results across all workloads.

H Type Workloads Figure 5.10 shows the power consumption in an H type workload

on a 4-core setup. We can observe that, as on average, power decreases moderately in

the WL case with respect to the ISO case. Analogously to the trends in L workloads,

the higher the memory access frequency, the lower the power reduction in the WL case

since access frequency strongly correlates with background power. This is the case for

benchmark lbm, whose power consumption decreases only by around 40% instead of the

average 55% for the whole workload. In a 16-core workload in Figure 5.11 we also observe

similar trends as those in the average case. This is expected because H workloads are

much more homogeneous than the others (L and X) since relative variations in accessing

frequency across benchmarks is low (all of them access memory at least 5 times every 1000

cycles in isolation). Again, we observe that power in WL is much lower than in ISO, and

such power decrease is much higher than for the 4-core case.
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Figure 5.11: H type workload power consumption comparison in a 16-core setup.

X Type Workloads Figure 5.12 shows a 4-core X workload. In this workload, bzip

and soplex are H programs whereas gromacs and gamess are L programs. Notably, the

same trends observed in pure H and L workloads still hold for each H and L benchmark

in X workloads. As expected, soplex is the program experiencing a lower power reduction

when moving from ISO to WL due to its high access frequency. In the 16-core setup (see

Figure 5.13), those trends still hold. Only T11 behaves differently since its power reduction

in WL is not as significant as for the other benchmarks with similar access frequency. The

reason is that this program accesses memory frequently (therefore its active power is high),

but it does it in bursts, so that the amount of time that DRAM devices are imposed to be

at high power states (active or standby) is relatively low, and it makes its ISO background

power low (e.g., compared to that of T10 or T12 ). Therefore, its relative background

power reduction in the WL case cannot be as significant as for other benchmarks with

similar average access frequency but with different access patterns.

We do not further discuss the MEPI for those particular workloads since the conclusions

are similar as those for the power.

We have shown that multicore architectures help reducing per-task memory power

and energy. Energy savings are more significant for those programs with lower memory

access frequency on higher core count setups, and trends do not change across workloads.

Furthermore, exceptions do not deviate much from the average case, and when they do,

it is because of their access patterns (burst versus scattered).

We have also shown that the impact of memory contention highly correlates with the
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Figure 5.12: X type workload power consumption comparison in a 4-core setup.

Figure 5.13: X type workload power consumption comparison in a 16-core setup.

accessing frequency of benchmarks. Our results show that high-access-frequency programs

decrease their power at the expense of increasing the energy. Our study proves that

memory energy profiles are quite stable for applications despite the programs running

simultaneously. Besides, it is preferable to run H programs with L programs to reduce the

negative impact of memory contention in terms of energy consumption (once discounted

LLC interferences). This information is very useful to perform task scheduling on multicore

setups.
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5.7 Summary

Per-task energy metering is needed in multicores to enable a number of performance/en-

ergy optimizations. In this chapter, we propose the PTEM models in DRAM memory

system. Including ideal models for both close-page and open-page policies and devise

DReAM, an efficient and accurate implementation of such ideal model. We show how DReAM

achieves a prediction error between 3.9% and 4.7% with respect to the ideal model with

negligible overhead for 4- and 16-core setups respectively. The error is largely below the

error introduced by approaches such as distributing energy evenly or proportionally to

memory accesses.

Next, we have shown that multicore architectures help reducing per-task memory power

and energy. Energy savings are more significant for those programs with lower memory

access frequency on higher core count setups, and trends do not change across workloads.

Furthermore, exceptions do not deviate much from the average case, and when they do,

it is because of their access patterns (burst versus scattered).

Finally, we have proved that the impact of memory contention highly correlates with

the accessing frequency of benchmarks. Our results show that high-access-frequency pro-

grams decrease their power at the expense of increasing the energy. Our case study proves

that memory energy profiles are quite stable for applications despite the programs running

simultaneously. Besides, it is preferable to run H programs with L programs to reduce the

negative impact of memory contention in terms of energy consumption (once discounted

LLC interferences). This information can be very useful to perform energy-efficient task

scheduling on multicore setups.
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Sensible Energy Accounting for the

Processor

6.1 Introduction

Energy is becoming the most expensive resource in computing systems and this trend will

continue as the price of energy continues to rise (increasing in recent years by up to 70% in

several European countries [28]). Under these circumstances, metering energy consump-

tion of a computing system enables energy optimizations and hence ultimately helps to

reduce system operation costs. In a datacenter or supercomputing setting, charging users

for energy rather than time makes sense because energy usage is more proportional to the

cost of operations. The establishment of multicore and manycore as the de facto hard-

ware paradigm across most computing domains, together with increasing core counts in

each new generation, highlights the need for energy metering. Furthermore, applications

are increasingly diverse, with many different providers and quite different energy profiles.

Thus, accurate energy metering and optimization techniques are essential.

In this chapter, we make the case for Sensible Energy Accounting(SEA), as introduced

in Section 1.1.2. In contrast to PTEM, SEA does not give the actual energy consumption

of a task, but rather an abstraction of the energy consumption that the end-user can rely

on to be fair and consistent.

Let us illustrate the concept of SEA and how it differs from PTEM with an example.

We simulate several SPEC CPU 2006 benchmarks on a 4-core multicore architecture com-

93
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Figure 6.1: Energy usage of namd, astar, and libquantum in different workloads w.r.t their
energy usage when executed in isolation with a fair share of resources.

prising a shared last-level cache1 and the PTEM technique is introduced in chapter 4. We

choose namd, astar and libquantum benchmarks since they have different LLC utilization

levels. We run each benchmark as part of 4 different 4-task workloads. The other 3 tasks

in the workloads are only considered as co-runners, affecting the LLC behavior of the

target benchmark. For instance, workload 1 comprises 3 copies of namd, which will cause

almost no conflict to the target benchmark in the LLC. In contrast, workload 4 comprises

3 copies of libquantum, which makes the most intensive LLC use across those benchmarks.

Workloads 2 and 3 have a mix of benchmarks to show some intermediate points in terms

of LLC contention. Figure 6.1 shows the energy metered to the target benchmark in the

workload, which is normalized to the energy the benchmark consumes when it runs in

isolation with a fair-share of the cache (i.e. 1/4 in our case). We observe that, despite the

fact that each benchmark executes exactly the same instructions in each run, the energy

it consumes significantly varies depending on the co-running applications. Sometimes the

benchmark consumes much more energy, up to 2.2x, than when it runs in isolation with

1/4 of the cache, and other times it consumes as little as 11% of that.

This inconsistency is particularly problematic in environments where users are charged

for the usage of resources including energy. Users running the same applications with the

same inputs would observe different energy profiles for their applications and hence would

1The experimental setup is described in Section 3.2.
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unfairly receive different amounts billed. SEA helps by providing, for every task in a

workload, the energy it would have consumed if run in isolation with a fair share of the

shared resources.

The energy charged is not exactly the energy consumed, but it is far more fair for end

users (their billing solely depends on their own tasks) and still appropriate for the data

center operator since typically actual energy consumed is lower than energy accounted due

to using non-partitioned shared resources. Note that those energy savings for the operator

can be shared with end users by applying discounts for a mutual benefit. In this case, we

assume that fhr = 1/N , where N is the number of hardware threads (cores in this case)

in the system. The best value of fhr may vary across domains as shown in the following

sections.

In this chapter, we develop the concept of SEA from a theoretical point of view and

discuss how it can contribute to different computing domains. Secondly, focusing on the

on-chip resources, we present a low-overhead hardware mechanism to obtain SEA for a

shared last-level cache in a multicore architecture. Our results show that SEA allows saving

up to 39% of energy if used for scheduling purposes. Finally, we present a SEA mechanism

for on-core resources taking into account SMT. Our results show that prediction error is

only 5% on average for the core and between 4% and 8% on average for the whole chip

when using SMT cores and a shared last-level cache. We also show how SEA attains much

higher accuracy than other state-of-the-art mechanisms such as evenly splitting the energy

across tasks or distributing it based on several metrics (number and type of instructions,

etc.).

The rest of this chapter is organized as follows. Section 6.2 provides background on

performance accounting and reconfigurable computing. Section 6.3 explains our theoretical

approach towards SEA. Section 6.4 presents SEA for a shared on-chip cache and the core

resources, while Section 6.5 presents an evaluation of SEA shared cache and cores resources

and integrates them to cover the whole chip. Section 6.6 describes a case study and, finally,

Section 6.7 draws the main conclusions of this chapter.

6.2 Background

SEA comprises two main building blocks: PTEM techniques and performance (CPU)

accounting techniques. In this section we elaborate on the state of the art for both.
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Table 6.1: PTEM and performance accounting in two workloads

h264ref calculix povray namd

PTEM, EPI(nJ) 0.41 0.25 0.39 0.27

CPU utilization 68% 83% 75% 64%

h264ref milc sjeng gcc

PTEM, EPI(nJ) 0.73 0.70 0.43 0.82

CPU utilization 24% 86% 45% 75%

6.2.1 Per-Task Energy Metering

As energy costs rise, interest in energy metering continues to increase in different com-

puting domains from datacenters to smartphones [17, 90, 92]. PCEM techniques that we

introduced in section 2 focus on single-core architectures or multicores in which only one

application is executed at one time and provide per-component energy estimations. How-

ever, processors incorporate an increasing numbers of cores, each implementing SMT, and

running several applications with different energy profiles.

In this scenario it is essential to determine energy consumption for each task. Shen et

al. [102] proposed a request-level OS mechanism to meter power consumption of each server

request based on PMCs [7]. The authors consider both active and maintenance power

and attribute it to the responsible server requests. However, per-task energy estimates

obtained with this approach cannot be validated since, as stated by the authors, “Request

executions in a concurrent, multi-stage server contain fine-grained activities with frequent

context switches, and direct power measurements on such spatial and temporal granularities

are not available in today’s systems”.

PTEM cover this gap by proposing new hardware support to measure the real per-task

energy in multicores systems by tracking utilization of hardware resources for each task,

including activities they have incurred and the fraction of resources they have used, to

determine their fraction of energy used. Results show that under different workloads, the

variation of metered energy to some particular tasks can vary up [−25%,40%] with respect

to their average energy.

6.2.2 Performance Accounting in Multicores

The concept of SEA is inspired by CPU accounting [76] developed for multicores [77]

and for SMT cores [29, 30, 78]. CPU accounting measures the CPU utilization of a given

task during a period of time when it runs on a multithreaded processor. CPU utilization

depends on both the time the task is scheduled on the CPU and the progress (or slowdown)
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the task experiences with the multicore. The latter is computed by determining which

accesses to shared resources of a given task are delayed due to conflicts with other running

tasks. For instance, if a task runs for a period of 1,000 cycles in which it suffers a slowdown

of 30%, its progress is 70% of what it would be w.r.t. its execution with a fair share of

the resources. Thus, it is only accounted 1, 000× 0.7 = 700 cycles.

Performance accounting has been shown to be a powerful tool for performance opti-

mization. For instance, it can be used to predict the performance with different degrees

of contention to co-locate applications within the system. Results show that individual

application’s performance can be improved by up to 22% and system utilization can be

increased by 50% to 90% [80,81,107].

Using CPU accounting to scale energy estimated by PTEM as a way to achieve sensible

energy accounting leads to inaccurate results. For instance, instruction mix and data

locality have large impact on energy that cannot be distinguished with CPU utilization.

To illustrate this point consider the execution of benchmark h264ref under two different

4-task workloads as shown in Table 6.1. In the first workload h264ref incurs an Energy-

Per-Instruction (EPI) of 0.41 nanojoules (nJ) and it is accounted 68% of CPU utilization,

while in the second workload, h264ref incurs 0.73 nJ EPI and accounts for 24% CPU

utilization. One intuitive way to scale energy is to map CPU utilization to resource

utilization. In this case, this method estimates that under any resource utilization ru and

EPI h264ref would incur SEAru = Nins ∗ ru∗EPI (where Nins stands for the instruction

count). So in the first workload SEA0.68 = Nins ∗ 0.279 (0.41 ∗ 0.68) and in the second

SEA0.24 = Nins ∗ 0.175 (0.73 ∗ 0.24). As shown, the discrepancy across energy estimates

in different workloads is huge across workloads (around 60%) if only CPU accounting is

used and thus, sensible energy accounting is needed.

6.3 Theoretical SEA

In this section we introduce our theoretical approach towards SEA showing some cross-

domain applications of SEA and present the scenario considered in the rest of the chapter.

6.3.1 Theoretical Approach to SEA

SEA estimates an accounting for each task Ti while it runs with other tasks (i.e. as a

part of a workload), the energy it would have consumed, EfhrTi
, if it had run in isolation

with a certain fraction of hardware resources, fhr. Note that, in this abstract model,
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when running in isolation, Ti would be granted access to that fraction of resources, but is

prevented from using more, although with shared resources Ti’s usage may be more.

Interestingly EfhrTi
has to be estimated while Ti runs simultaneously with other tasks.

In varied workloads, Ti can receive more or fewer resources than fhr, depending on co-

runners. SEA must provide an accurate EfhrTi
, regardless of the particular usage of hard-

ware resources that other tasks have2.

Note that SEA’s accounting model is conservative. It is possible that a given task

may negatively affect co-running tasks by e.g. thrashing the cache. In this case SEA’s

abstract metering model would assign an overall energy cost to the tasks that is less than

the actual cost to the provider. For this work, we assume that such situations would be

dealt with by other means, e.g. migrating cache-thrashing or other misbehaving tasks to

cores where they can do less damage.

Problem Statement. Let’s define W as a set of workloads composed of N tasks, in

which a given task Ti is always present. Further defineWj ∈ W asWj =< T
Wj

i , T
Wj

j1
, . . . , T

Wj

jN−1
>,

where T
Wj

i corresponds to the actual execution of Ti in the workload Wj , and T
Wj

jk
are

any other tasks executing in the workload.

In this scenario, the energy accounted to task Ti in a workload Wj , E
fhr(T

Wj

i ), has to

be as close as possible to the energy consumed in isolation with the same resource usage

fhr by this task, EfhrTi
. This means that with SEA, for any workload Wj ∈ W, we expect

that EfhrTi
= Efhr(T

Wj

i ).

Next we illustrate two concrete applications of SEA, one of them particularly suitable

for environments in which users are charged by the use of resources they incur and a

second suitable across multiple domains.

Billing. When billing users for their use of resources, it is desirable to ensure that the

same execution of the same application with the same input data result in the same charge.

However, as shown in Figure 6.1, the energy consumed by a task can vary drastically

depending on the co-runners. In this scenario, SEA can be deployed with fhr = 1
N , where

N is the number of hardware threads (i.e. the number of cores in a multicore processor)

so that fhr corresponds to a fair share of the resources. Each task Ti is always charged

E
1/N
Ti

which is independent of the actual energy consumed by the task, since the latter

depends on Ti co-runners. If the actual energy consumed when running a workload Ewld

is smaller than the energy accounted
∑N

i=1E
1
N
Ti

the owner of the data center benefits from

the

(∑N
i=1E

1
N
Ti
− Ewld

)
energy not actually consumed. This encourages the datacenter

2The SEA hardware support proposed in this work is able to estimate the energy a task should be
accounted under several values of fhr at once, not just one. For the sake of clarity we will be talking about
a single fhr value without loss of generality.
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Table 6.2: Synthetic example of energy consumption (in arbitrary units) under different
fractions of resources

E1/4(Ti) E2/4(Ti) E3/4(Ti) E4/4(Ti)

T1 1.7 1.4 1.0 1.3

T2 1.1 1.0 1.1 1.3

owner to apply SEA, while the user enjoys workload-independent accounting. In our

view, if Ewld >
∑N

i=1E
1
N
Ti

it should be the data center owner taking this extra cost, since

assigning it to any task or proportionally to all tasks will break the principle of workload-

independent energy accounting. As mentioned before these situations can be prevented

by for instance properly allocating cache trashing tasks.

Energy optimization. Energy efficiency is pursued in all computing domains. Pre-

dicting the energy consumed by each task (or the system as a whole) under an arbi-

trary workload a priori is complex due to the many different ways the tasks composing

the workload can interfere with each other. SEA can help in this respect. As we show

later, SEA hardware support allows predicting the energy consumed by each task with

an arbitrary fraction of the resources (fhr). For a discretized number of m valid values

F = {fhr1, ..., fhrm} for fhr, SEA can predict the energy consumed by any task with

any of those fractions of resources, resulting in m estimations. If this is done for every

task in the workload we can identify the resource partition that minimizes the total energy

consumed by all tasks: FHRmin = min
∑

iE
fhrij
Ti

with
∑

i fhrij = 13, and ij ∈ [1, N ].

Note that partitioning of shared resources is not needed by SEA. This example assumes

it as a way to implement this optimization.

For instance, let assume a 2-core processor with single-threaded (i.e. non-SMT) cores

comprising a shared 4-way last-level cache implementing way partitioning. Further assume

two tasks T1 and T2 so that energy consumption under each different fraction of LLC is

as shown in Table 6.2. We can see that total energy is minimized when FHRmin =<

3/4, 1/4 >, as this leads to a total energy of 2.1 units. Any other partition leads to higher

energy consumption. Also, if tasks are given the whole LLC space and executed serially,

energy would also be higher (2.6 units) than for FHRmin.

6.3.2 SEA for On-Chip Resources in Multicores

SEA can be applied to any component of a computing system. In this chapter we focus

on on-chip resources in multicore processors, since the CPU is one of the major energy-

3Note that we could distribute less than 100% of the resources, but for the sake of simplicity we assume
that all resources are used by running tasks.
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consuming hardware blocks. In particular we focus on a homogeneous multicore architec-

ture deploying a shared last-level cache as the one described in section 6.5.

SEA, as shown later, incurs some hardware overheads. As a result SEA must be applied

judiciously, taking into account the tradeoff between accuracy in the energy predictions and

hardware cost. With that goal, on the one hand, we only apply SEA to those resources that

account for most of the energy consumed on-chip. We first consider the LLC of multicores.

In a second step, we consider SMT cores whose resources are shared (i.e. the core itself,

L1 data and instruction caches). On the other hand, accounting the energy for all possible

fractions of resources would be infeasible. Hence, we focus on a set of predefined fractions.

We consider each resource as a separate entity with a set of predefined granularities that

represent the relative amount of resources assigned. In general, we will have granularities

g = M
N , where M ≤ N .

For the LLC, we consider only set-associative caches in this work, and define cache

ways as the atomic granularity unit. For instance, in a 4-way LLC, N is 4, then, M is a

integer in the range of (0, 4]. 1
4 LLC for task Ti means Ti can use 1 way in each set of the

LLC. Note that, although SEA partitions the resources for accounting purposes, this is

applied only to an abstract model to estimate energy consumption. SEA can target either

shared or partitioned resources.

For the core, we use the fetch bandwidth as N , so that fetch bandwidth determines

the partition granularity. Then, all other resources in the core, including all hardware

blocks and bandwidths, are partitioned with the same degree. For instance, in an SMT

core fetching up to 4 instructions per cycle, if Ti is given 1
4 of the core, it receives 1

4 fetch

bandwidth, 1
4 registers, 1

4 issue queues entries, 1
4 L1 ways, etc. By doing so we have a

limited number of possible partitions for each hardware resource and their granularities

facilitate the hardware implementation of such partitions.

The main challenge for SEA is how to compute EfhrTi
for any task and any valid

fraction of the resources. In the next sections we present our approaches in steps, first for

a multicore processor where only the LLC is shared, and then for a processor where both

core slices and LLC are shared. In both cases, we first propose an ideal SEA mechanism,

and then we propose a efficient solution with hardware support that approximates such

ideal values, assessing how our implementation of SEA performs in comparison with the

ideal scenario.
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6.4 SEA for Multicores: LLC and Core

This section presents our approach for SEA in the presence of a shared LLC and SMT

cores. First, we describe an ideal SEA model for each. Then we propose the accurate, yet

low-cost, implementations.

6.4.1 Ideal SEA for the LLC

As explained in Section 2.1, dynamic active energy is proportional to the number of LLC

accesses performed by Ti. Maintenance energy and leakage energy are proportional to the

time and the fraction of the LLC used by Ti.

Sensible LLC active energy accounting. The key insight to accurately account

for active energy, Eact, is that each action type in the cache incurs different energy con-

sumption. For instance, a write operation requires more energy than a read. Hence, in

the ideal case, we should collect the number of events of each action type that a task

experiences with a given fraction M
N of the LLC space, denoted M

N LLC:

E
M
N
LLC

act (Ti) =

ActionTypes∑
j=1

Num
M
N
LLC

actionj
(Ti)× ELLCactionj

(6.1)

where ELLCactionj
stands for the energy per access to LLC of type actionj (e.g., read-hit,

write-miss, etc.). Num
M
N
LLC

actionj
(Ti) is the number of LLC accesses of type actionj performed

by the task Ti if it is given M out of the N LLC ways.

The difficulty lies in estimating Num
M
N
LLC

actionj
(Ti) for any valid value of M (number

of cache ways) when Ti runs as part of a workload using a fully-shared LLC. This is so,

because under each workload Ti may receive a variable number of cache space which affects

the number of events of each action it has.

Sensible LLC maintenance energy accounting. The dynamic maintenance en-

ergy of the LLC is the energy consumed during idle periods due to useless activities such

as, for instance, clocking and precharging bitlines when no access occurs. Potentially, LLC

maintenance energy consumption could be avoided if we turn off unused LLC parts (e.g.,

banks, lines, etc.). The fact that they are used by tasks prevents us from turning them off,

so we account maintenance energy proportionately to the cache space each task is entitled

to use. Thus, maintenance energy to be accounted to Ti given a fraction M
N of the LLC

space is the same fraction of the total maintenance energy. Such total maintenance energy

is the one that would be consumed assuming that the LLC is idle when Ti does not use

it. Thus, maintenance energy is accounted as follows:
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E
M
N
LLC

main (Ti) = M
N × P

LLC
main ×

(
ExecT ime

M
N
LLC(Ti)−∑ActionTypes

j=1 Num
M
N
LLC

actionj
(Ti)× LatencyLLCactionj

)
(6.2)

PLLCmain is the LLC maintenance power, ExecT ime
M
N
LLC(Ti) is the total time task Ti

when executed with M
N LLC ways, and LatencyLLCactionj

stands for the latency of an action

of type actionj . P
LLC
main and LatencyLLCactionj

can be provided by the chip vendor. However,

some parameters still need to be determined such as Num
M
N
LLC

actionj
(Ti), which is also needed

to account active energy, and the execution time that would be had with exactly M
N LLC

ways, ExecT ime
M
N
LLC(Ti). Note that such execution time cannot be easily estimated

from the actual execution time when running as part of a workload sharing the LLC given

that inter-task interferences in the LLC may increase execution time, and Ti may use more

than M
N cache space, thus decreasing its execution time.

Sensible LLC leakage energy accounting. Finally, accounting leakage energy to

Ti for a given fraction M
N of the LLC space can be done based on the leakage energy per

time unit, the fraction of cache space used and the execution time of Ti as follows:

ELLCleak (Ti) =
M

N
× PLLCleak × ExecT ime

M
N
LLC(Ti) (6.3)

PLLCleak is the LLC leakage power. As for the maintenance energy, we need to determine

ExecT ime
M
N
LLC(Ti).

6.4.2 Ideal SEA for an SMT Core

Active, maintenance and leakage energy are accounted separately, as in the case of the

LLC.

Sensible SMT core active energy accounting. Active energy depends on the

number of actions performed in each hardware component by a task Ti. Therefore, ide-

ally we would like to track the number of actions that would be performed by Ti in each

resource if it was allowed to use M
N of this resource exclusively. While defining M

N of the

resources is relatively easy for storage resources (e.g., caches, register files, issue queues,

etc.), bandwidth resources (e.g., fetch bandwidth, issue bandwidth, etc.) can be split by

allowing different tasks to use a fraction of the bandwidth [47]. However, other resources

such as functional units may need to be split in a different way. Given a partition gran-

ularity of N , if a task is allocated M
N of the resources, this bandwidth splitting can be

achieved exactly by allowing this task to use all resources during M out of N cycles. Still,
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in order to provide homogeneous behavior, we do so by providing the closest fraction to
M
N every cycle. For instance, if we have 4 adders and a task is allocated 1

2 of the resources,

it will get 2 adders every cycle. Similarly, if there are 2 adders and a task is allocated 1
4

of the resources, it will get 1 adder every two cycles.

Active energy is, therefore, accounted as follows:

E
M
N
LLC

act (Ti) =
Res∑
k=1

Actions(k)∑
j=1

Num
M
N
k

action(k)j
(Ti)× E(k)actionj

 (6.4)

Res stands for the number of different resources in the SMT cores, Actions(k) for the

number of action types in resource k, Num
M
N
k

action(k)j
(Ti) for the number of actions of type

j performed by task Ti in resource k when given M
N of this resource, and E(k)actionj for

the energy of one action of type j in resource k.

Sensible SMT core maintenance energy accounting. In order to determine the

maintenance energy to be accounted to one task Ti when given M
N of the core resources, we

use the same approach as in [72]. First, we classify resources into two different categories:

occupancy-based (oRes) and non-occupancy-based (nRes). Maintenance energy for oRes

is accounted exactly as for the case of the LLC. Conversely, nRes maintenance energy (e.g.,

selection logic in the issue queue when no instruction is ready) is simply split proportionally

to the fraction of resources allocated. Thus, maintenance energy is accounted as following:

E
M
N
core

main (Ti) =
∑oRes

k=1 E
M
N
k

main(Ti) +

M
N ×

∑nRes
k=1

(∑ExecT ime
M
N

core(Ti)
x=1 E

M
N
k

main(x)

)
(6.5)

E
M
N
k

main(Ti) for oRes is obtained as for the LLC (see Equation 6.2). ExecT ime
M
N
core(Ti)

stands for the execution time of Ti when given M
N of the core resources and E

M
N
k

main(x) is

the maintenance energy consumed by resource k in cycle x when Ti executes with M
N of

the resources.

Sensible SMT core leakage energy accounting. Leakage energy can be accounted

using the same methodology as in the LLC. Given a fraction M
N of the core resources,

leakage energy accounted to task Ti derives from the core leakage power per time unit

(P coreleak ) and the execution time of Ti with M
N of the core:

E
M
N
core

leak (Ti) =
M

N
× P coreleak × ExecT ime

M
N
core(Ti) (6.6)
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6.4.3 Implementation of SEA for the LLC

The accounting mechanism introduced in Section 6.4.1 is based on the estimation of the

number of LLC accesses of each type (for active and maintenance energy accounting) and

execution time task of Ti (for maintenance and leakage energy accounting) with M
N ways

of the LLC. Next we describe affordable ways to approximate accurately those values.

Estimating access counts. Our approach to estimate the number of LLC accesses

of each type when M
N ways of the LLC are used relies on the Auxiliary Tag Directory

(ATD) proposed by Qureshi and Patt [96], which focuses on a least recently used (LRU)

replacement policy. The LLC is shared among all tasks each of which keep a local copy of

the tag directory, the ATD, that is only updated with the accesses of the owner task.

If the LLC implements LRU, one can predict whether an access would hit in the LLC

for any number of cache ways M lower or equal to the actual number of LLC ways (N).

This is so because LRU keeps in each set the position in the LRU stack of each address,

and so the order in which they will be evicted if they are not reused. For instance, if in

a 4-way LLC we access addresses A,B,C,D such that they are placed into the same set,

the LRU stack, from the most recently used (MRU) entry to the LRU entry is as follows:

< D,C,B,A >, thus meaning that if a new cache line is fetched into this set A will be

evicted.

Based on the LRU stack one can determine whether a given access would hit or miss

with M ways (where M ≤ N) by simply checking if it hits any of the M MRU entries.

For instance, in our example, if we want to know whether accesses would hit in a 2-way

cache given the LRU stack of the 4-way cache, we only need to check whether it hits in

the 2 most recently accessed entries. In our example, only accesses to D and C would be

hits. In general, we can set up N + 1 counters, C1, ...CN+1 so that Ci where 1 ≤ i ≤ N is

incremented every time there is a hit in the wayi of any cache set, and CN+1 is incremented

if X misses in all cache ways. Then, the number of hits and misses for M
N ways of the LLC

is obtained as:

Num
M
N
LLC

hit (Ti) =

M∑
j=1

Cj (6.7)

Num
M
N
LLC

miss (Ti) =
N+1∑

j=M+1

Cj (6.8)

If different types of accesses have different energy consumptions (e.g., read and write

operations), then N+1 counters need to be kept by each operation type so that each access

updates the counter corresponding to its type. In practice, pseudo-LRU replacement is
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commonly used for LLCs. Although the ATD has been devised originally for LRU caches,

it has been shown to be highly accurate if pseudo-LRU is used instead [60]. Adapting

the ATD to other replacement policies is left as future work and beyond the scope of this

work.

Therefore, the ATD allows computing the number of accesses of each type (Num
M
N
LLC

actionj
(Ti)).

However, keeping one ATD per thread may be over costly. Thus, the authors in [96] pro-

pose the Sampled ATD (SATD), which relies on keeping the tags only for a reduced

number of the cache sets. For those sets it is also computed the overall hit probability for

the different number of ways, h1, ..., hN , so that on an access to a set not present in the

SATD, which will likely be the case of most accesses, can be predicted to be a hit or a miss.

For that purpose, we use a Monte Carlo approach, that offers a high degree of accuracy

and can be applied to each access at runtime. In particular, a random number RN is

generated in the range [0, 1]. This random number, RN and the actual hit probabilities

for each number of ways, h1, ..., hN , are used to decide whether the current access should

be a hit or a miss under each number of ways. Given that increasing the number of cache

ways can only increase the hit rate4, we have that hi ≤ hi+1 for 1 ≤ i < N . In order to

mimic a given hit probability h (e.g., h = 0.7), we use RN such that the access is a hit if

RN ≤ h and a miss otherwise. Thus, we have to find the value of k where 1 ≤ k ≤ N + 1

so that hk−1 < RN ≤ hk. Such k value indicates that the access is a hit for caches with

M ≥ k. For instance, in our example of a 4-way cache we could have hit probabilities

0.2, 0.3, 0.7, 0.9. If RN = 0.6 then k = 3 as RN is between h2 and h3, thus meaning that

the access is assumed to be a hit if M ≥ 3, so if the thread is given 3 or 4 LLC ways.

Similarly, if RN = 0.95 then k = 5, thus meaning that the access is a miss for any number

of ways in the LLC.

The SATD trades hardware cost for accuracy: the lower the number of sets sampled,

the lower the cost but the lower the accuracy. The particular degree of sampling used for

the SATD is indicated later in the results section.

Estimating the execution time with a given cache fraction. CPU accounting

for multicores, introduced in [76], relies on using the ATD to decide whether each cache

miss for a task Ti would hit or miss with a given fraction of the cache (typically a fair

share of the cache space). A miss is caused by inter-task interferences if the access hits in

the task’s local ATD and misses in the LLC. In that case, if the processor stalls, the cycles

4Given a cache with X ways, increasing its size by any number of ways (Y ) so that its total number of
ways becomes X + Y , can only have a hit rate higher or equal than with X ways only. This is so because
the LRU stack for the X ways closer to the MRU position in the X + Y cache is identical to the LRU
stack of the X-way cache. Thus, all accesses hitting in the X-way cache will hit in the X ways closer to
the MRU position in the X + Y -way cache. Then, the remaining Y ways may provide some more hits.
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needed to serve the miss are not ‘accounted’ to the task, meaning that the task would not

suffer that miss, and hence the associated penalty, if it had run a given share of the cache.

Similarly, this CPU accounting mechanism accounts extra cycles to Ti in case of an LLC

hit that would have been a miss if Ti had run with a given fraction of the cache space .

This CPU accounting mechanism can be used to estimate the execution time that a

task would have used to run with a given fraction of the resources, ExecT ime
M
N
LLC(Ti).

This helps estimating the maintenance and leakage energy for a task since they are affected

by the time the task would run with a given fraction of the resources. Hence, we extend the

CPU accounting mechanism for an N -way LLC to estimates the execution time of the task

under any fraction of cache ways (MN where 1 ≤M ≤ N). CPU accounting uses the ATD

as if the full cache is allocated to the task Ti. Cache accesses are considered to hit if they

hit in the ATD, and to miss otherwise. In our case, we want to retrieve such information

for different numbers of cache ways. The ATD provides such information by considering

only those M entries closer to the MRU position. Thus, given a cache access we can

determine whether it would hit in any cache with 1 ≤ M ≤ N cache ways by checking

the M ATD entries closer to the MRU position. Then, we can use such information to

perform CPU accounting simultaneously for all different cache sizes. For each task we

need N cycle accounting (CA) registers, CA1, ..., CAN , which are updated as described

in [77], but where the decision on whether an access should be a hit or a miss – and so how

CPU cycles need to be accounted – for CAM is done assuming M
N cache ways. Finally,

note that CPU accounting can be implemented on top of the SATD with the same pros

and cons as for counting the number of events of each type.

Overall, hardware requirements of the SEA for the LLC approach include a SATD

for each task, the minimal logic and registers for accounting the CPU cycles per task

introduced by Luque et al. [77], and N+1 counters per task to obtain access counts for

different numbers of LLC ways at once.

6.4.4 Implementation of SEA for an SMT Core

Tracking the activities of a given task Ti in all resources in the core is unaffordable. Instead,

we propose periodically running a task Ti in isolation with a given fraction of the core

resources and directly measure the energy, based on which we account the energy sensibly.

Thus, we make use of the Micro Interval Based Time Accounting (MIBTA) approach

introduced in [77], which has been used for performance accounting, and PTEM for per-

task energy measuring to derive the accounting energy to Ti. MIBTA divides execution

time into time intervals in which the execution of running tasks are sampled alone in turn.
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During these sample phases, while one task has been granted the use of all resources in

the core, the other running tasks are stalled temporarily. In our case, we need to carry

out such sampling, but only allowing Ti to use M
N of the core resources.

The purpose of using these approaches is to sample Ti’s energy consumption periodi-

cally when it uses M
N of the core resources alone. During the sampling phases, PTEM can

be used to measure Ti’s actual energy consumed in the core. PTEM provides accurate

measurements of the active, maintenance and leakage energy consumption in the core, so

their addition during the sampling intervals provides an accurate estimate of the energy

accounting to Ti.

In the case to account active energy, the metered energy is nearly the energy that needs

to be accounted. However, maintenance and leakage energy to account are corresponded

to the fraction of maintenance and leakage energy of the whole core. Thus, SEAcore is

estimated as follows:

E
M
N
core

act (Ti) = P
M
N
core

act,PTEM (Ti)× ExecT ime
M
N
core

MIBTA(Ti) (6.9)

E
M
N
core

main (Ti) =M
N×P

M
N
core

main,PTEM (Ti)×ExecT ime
M
N
core

MIBTA(Ti) (6.10)

E
M
N
core

leak (Ti) = M
N×P

M
N
core

leak,PTEM (Ti)×ExecT ime
M
N
core

MIBTA(Ti) (6.11)

P
M
N
core

act,PTEM (Ti), P
M
N
core

main,PTEM (Ti) and P
M
N
core

leak,PTEM (Ti) stand for the active, maintenance

and leakage power respectively estimated by PTEM mechanism when running Ti during

sampling periods. ExecT ime
M
N
core

MIBTA(Ti) stands for the execution time predicted during

the MIBTA phases when Ti is running with M
N of the core resources.

Before entering the MIBTA phases (every 2.6 million cycles [78]), the execution of all

tasks is stalled. Then, a controller restores the execution of a particular task to allow it

run alone in the core for 50,000 cycles to warm up. When time is up, controller grants

it another 50,000 cycles, during which some specified events are monitored to predict its

execution time and energy consumed in such condition. The state of the other tasks is

stored in the LLC when they get stalled, and their execution is restored after each MIBTA

phase. In order to provide SEAcore capability, right after stalling the execution of the other

tasks, the core is reconfigured to use M
N resources. Adaptive processors (or reconfigurable

processors) have already been studied in the past to reduce power consumption [4,23,47].

In each component, such as the branch predictors and the buffers [46], register files [1,42],

issue queues [18, 33, 93], caches [4, 96, 106], functional units, and fetch, decode and issue

bandwidth [4,23,47], power gating techniques have also been proposed with minimal area

and energy overheads to power down different sections, with negligible impact on the delay.
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With these techniques that are already in place, in the cache-like blocks, SEAcore can

assign M
N of the ways to Ti during the MIBTA phases with the remaining ways power

gated. Similarly, during the sample phases, Ti is only allowed to use M
N entries in the

SRAM-like components, such as the issue queues and renaming registers, etc. In contrast,

non-occupancy-based blocks are reconfigured in a way that M
N of the bandwidth and the

resources can be used in every cycle. If this fraction cannot be applied exactly, it is

enforced the closest value while still allowing Ti to progress. For instance, if Ti is entitled

to use 1
2 of the resources and there are 3 adders, it will be allowed to use either 1 or 2. In

this case we break the tie providing the lowest value (1 adder) given that for some resource

fractions can only be rounded up (e.g., if there is just 1 integer multiplier). SEAcore has

considered ALUs, on-chip network bandwidth, as well as fetch, decode, issue and commit

bandwidth. Note that during each MIBTA phase, some instructions may be squashed (i.e.

when tasks are stalled to run one of them in isolation). They are reexecuted when the

corresponding task is resumed since the program state (register contents) has been saved.

In addition, the stalled task may have their used cache lines evicted by the running task,

and thus incur extra cache misses. The result performance loss is detailed in [78] and

described in later sections.

6.4.5 Putting It All Together

We have introduced the SEA proposals in LLC and SMT core separately, the correlation

must be taken into account when integrate them. In general, there is no conflict on the

configurations of SEALLC and SEAcore, in the sense that one can use any fraction of its

resource. Note that SEAcore needs to account energy of each task in the core sequentially

by sampling them one after another in a particular order. However, the SEALLC does

not impose any constraint on how tasks must run to account their energy. Therefore,

while MIBTA, needed by SEAcore, sample one task at a time in any particular core, this

can occur while other tasks run in other cores. Thus, the overhead of serializing tasks

execution for sampling is limited by the degree of multi-threading in one core, but not

by the number of tasks in the whole processor chip. Therefore, one can sample tasks

in different cores simultaneously in a way that scalability is not challenged when a large

number of cores is in place.

Tasks interacting in the L1 cache have an impact on the number of LLC accesses,

potentially causing inaccuracy in SEAchip. To eliminate this effect, we monitor the number

of LLC accesses per instruction during MIBTA phases when tasks run in isolation and thus

have exclusive access to the L1 cache. The resulting LLC access frequency is assumed
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Table 6.3: SEA hardware requirements

Description HW overhead (8 core)

(S)ATD ATD with sampled sets Total of 1920B per task,
e.g.

LRU stack distance
counter

0.7% of the LLC space

ITCA logic to determine IT
misses

Negligible

logic to account CPU cy-
cles

Reconfig.
core

Branch predictor and
buffers [46], regis-
ter file [42], issue
queue [18, 33, 93], ALU,
and fetch, decode and
issue bandwidth [4].

Negligible

MIBTA CycleAccountMIBTA 2B per task
InstCommitMIBTA 2B per task

PTEM Energy Metering Registers 0.63% chip area overhead,
Occupancy Counters 0.3% energy overhead [72]

SEA Energy Accounting
Registers

2 counters of 4B per
task

Target core and LLC
resources

2 counters of 4B per
task

constant until the next MIBTA phase.

SEA hardware support and overhead. Regarding the hardware support incurred

overheads, SEA mostly inherits them from PTEM and MIBTA, as shown in Table 6.3.

Such overhead has been proved low, as can be seen in the same table with a 8-core configu-

ration. Both PTEM and MIBTA require the SATD, whose area overhead is around 0.7% of

the LLC [77,78,96]. Few extra registers are needed by PTEM and MIBTA with negligible

area overhead. In terms of energy, overheads are largely below 1%, which have been re-

ported for PTEM in Section 4.4.4, and they have been shown not to grow with the number

of cores. MIBTA also introduces some performance overhead, which ranges between 1.0%

and 3.2% [78]. Given that we have enhanced the MIBTA approach by allowing sampling

tasks in all cores simultaneously instead of serializing task samplings across cores, the over-

head is mildly reduced and does not grow with the number of cores. Our results show that

MIBTA performance overhead remains around 2% on average regardless of the number of

cores. In terms of energy, reconfiguring components in the core needs little extra logic to

perform clock (or power) gating of unused parts during MIBTA monitoring periods. Such

logic has been proven to have negligible area and power overhead and, in fact, it has been

used to implement low power mechanisms sharing the costs [4, 18, 33, 42, 46, 93]. Finally,

SEA incurs very low overhead on its own due to those registers to store the accounted

energy per task for the target core and LLC resources. Which we call Energy Accounting

Register (EAR), that acts as the interface between PTEM and the OS.
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Other considerations SEA may require considering temperature and voltage changes

due to DVFS. We note that the LLC typically operates in a separate voltage domain as its

voltage cannot be easily decreased. Memory cells are sized to maximize integration, thus

small transistors are used which are highly susceptible to process variations requiring high

voltage operation to read/write cells. Still, this is not a concern given that LLC active

energy is low and idle banks are typically kept at lower voltages. Temperature variation

is negligible in the LLC as its low activity keeps it at a mostly constant temperature.

Regarding the core, we note that DVFS becomes harder to use due to the need for

decreased voltage for energy savings and increased minimum operating voltage to tolerate

process variations [13]. As a consequence, the acceptable voltage range narrows down in

each technology generation.

On the other hand, temperature variations in the core can occur. SEA can deal with

voltage and temperature variations in both the core and the LLC by having as many energy

constants (those that need to be provided by the chip vendor) as valid combinations of

voltage and temperature ranges are allowed for the corresponding hardware block. For

instance, if the processor can operate at 0.8V, 0.9V and 1.0V, and temperature ranges are

discretized as 320K-330K, 330K-340K and 340K-350K degrees, then 9 sets of constants are

required to update the energy accounted to the tasks depending on the current voltage and

temperature. Conversely, the ATD (or SATD) and the logic to predict whether accesses

would hit in cache do not need to be changed given that such information is voltage and

temperature independent. Overall, the overhead of this approach is low as few hardwired

constants need to be replicated.

Some Operating System (OS) support is needed to read energy accounting registers

on a context switch. This issue is analogous to the case of PTEM. In particular, we must

expose to software the EARs for each hardware thread so that on a context switch the OS

can reset it when a task is scheduled in and read it when it is switched out, its value is

aggregated to the corresponding task. On a context switch, the contents of the ATD (or

SATD) will likely differ from those that would be had if the task was run to completion

without being scheduled out. This might have some impact on SEA accuracy. However, we

have verified empirically that tasks typically fetch their working set to different cache levels

in less than 200,000 cycles, which is less than 0.1 ms in a processor operating at 2GHz.

On the other hand, OS quanta vary from 4ms to 100ms for common Linux and Windows

implementations, thus making context switch inaccuracy negligible – such inaccuracy falls

below the inaccuracy of SEA method itself –. Moreover, many tasks are not scheduled out

on a context switch, thus further reducing such inaccuracy.
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The actions performed by the OS working on behalf of a given task (e.g., on a system

call) are assumed to be part of such task, so the OS accounts such energy to that task.

The energy accounted to other OS activities (i.e. ‘housekeeping’ activities) can be evenly

distributed across all running tasks, although any other policy can be followed to distribute

OS energy based on the EAR registers exported by SEA.

With such OS support, applying SEA to multi-threaded applications is simple since no

additional hardware change is required. In fact, the OS can implement different mecha-

nisms to account the energy to multi-threaded applications by reading EARs and interpret

the values in different ways. We illustrate some of these choices with a simple example:

let us assume a N-thread multi-threaded application running on a N-core CMP, where

only the LLC is shared. In this case, we account each thread E
1
N
LLC(ti) as if the LLC is

fairly shared across threads (cores) so that each one is given 1
N of the LLC. Upon the

completion of one thread, the OS can choose to read EAR of that thread and add its value

to the total energy accounted to the application. Then, the OS can keep accounting the

remaining threads in the same way until they all finish. Alternatively, the OS can read

the EAR values of all active threads upon the completion of one thread, and add those

values to the application’s accounted energy. Then, the OS can account the remaining

threads until another one finishes by assuming that they have extra LLC space to use. For

instance, when the first thread finishes each of the remaining threads will be accounted

for E
1

N−1

LLC (ti) of the LLC space until another one finishes. The later approach is feasible

as long as the thread completion and populating frequency do not exceed the OS quanta.

6.5 Evaluation

In this section we assess the accuracy of SEA estimations for the shared LLC and SMT

cores. We also compare SEA with other intuitive methods that could be used to account

LLC energy consumption, such as ES and PTA as introduced in Section 2.4, and PTEM

in Chapter 4. The experimental setup is introduced in Section 3.4, while the benchmark

suite and workload generation strategy is introduced in Section 3.4.3.

Metrics In order to evaluate the accuracy of SEA, we use as a reference the actual

energy consumption of a benchmark when it runs alone with the corresponding resource

fraction. For instance, if we aim to estimate the LLC energy of a benchmark when it has

only half of the LLC ways, the reference is a single-core processor setup with an LLC with

half of the cache ways where the benchmark runs alone. Hence, in each experiment, we

measure the prediction error of each model with respect to the actual energy consumed
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Figure 6.2: SEALLC prediction error for a workload consisting of benchmarks astar,
libquantum, namd, and sphinx3 in a 16-way associative LLC

when one task runs with the specified fraction(MN ) of resources alone, which is computed

with Equation 3.1.

6.5.1 SEALLC Accuracy Evaluation

In our multicore architecture with single-threaded cores the main sources of inter-task

interferences are the LLC and the shared bus. Our results show that the latter has

negligible consumption in our architecture so we do not consider it for SEA as it does not

pay off the extra hardware requirements.

We start analyzing SEA results for a given 4-task workload consisting of the following

benchmarks: namd that has few LLC accesses regardless of the space available; astar that

accesses LLC often and whose LLC misses increase sharply when LLC space is decreased;

sphinx3 that also has frequent accesses to LLC, but its LLC misses mildly increase when

LLC space decreases; and libquantum has large amount of LLC accesses but barely reuses

the data in LLC , so it is highly insensitive to the available LLC space and produces

constant evictions.

From a single run of these benchmarks, SEA is able to obtain predictions of the energy

that each benchmark would consume running in isolation under any partition of the cache.
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Figure 6.3: LLC energy accounting accuracy, under CMP 4, 8 cores setup, using I, X, M
types workloads

Table 6.4: LLC SEA-SATD prediction error standard deviation.

I X M

4 cores 3.5% 4.3% 3.7%

8 cores 4.8% 4.2% 6.1%

We evaluate SEA accuracy by comparing those predictions with the actual consumption

each task has under each cache partition setup, see Figure 6.2. We can see that the error

of SEA, which is computed as shown in Equation 3.1, is low for all cache partitions with a

deviation of up to 4% and an average error always below 1.8%. In general, the prediction

inaccuracy of SEA mainly comes from two sources: the estimation of the number of

cache accesses by sampling the ATD and performance accounting based on estimating

the number of extra cache misses with a given cache size and conflict misses incurred

by co-runners. Some benchmarks show higher accuracy for a different cache partition.

For instance, namd and libquantum, whose miss counts barely change with their varied

given cache size, obtain highly accurate estimations across all cache sizes. Somewhat,

higher variations are observed for those benchmarks that are more sensitive to the space

available, such as astar and sphinx3 with no particular trend w.r.t. the number of cache

ways. Oscillations for different numbers of cache ways are mainly caused due to the

fact that active, maintenance and leakage energy are estimated separately, which may

compensate or aggregate estimation errors depending on whether each source of energy

consumption is overestimated or underestimated for a given number of cache ways. Still,
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Figure 6.4: SEAcore prediction accuracy, under 2, 4 SMT cores setup, using I, X, M types
workloads

prediction error is rather low.

For the next experiment we focus on the case in which fhr = 1/N , i.e. SEA predicts

when each benchmark receives a fair share of the LLC. Figure 6.3 shows the prediction

error of the different models under 4-core and 8-core CMP setups: ES, PTA and PTEM.

Two versions of SEA are evaluated: with full ATD and with SATD.

As we can observe from the figure, ES, PTA and PTEM fail to accurately predict

the energy to account to each task. This is expected as those models do not capture

inter-task interferences that impact energy consumed and how energy consumption for a

task deviates from the reference. ES, PTA and PTEM have prediction errors above 25%

across all workload types and core counts and, on average, all of them produce deviations

above 70% on average. On the other hand, SEA has consistent prediction accuracy which

has error below 3% across all workload types and core counts, thus showing the excellent

improvement of the method. When using SEA-SATD, whose hardware cost is lower,

the error only grows to 4%. For the sake of completeness Table 6.4 shows the standard

deviation for SEA-SATD. As shown, the variation of the prediction error across the whole

set of workloads is moderate. Overall, SEA-SATD is highly accurate and far more better

than any state-of-the-art method.

6.5.2 SEAcore Accuracy Evaluation

In this section, we evaluate the accuracy of SEA approach in SMT cores. In order to

account for the error of the core model, we discount the effect of the shared LLC in this
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Figure 6.5: SEAchip prediction error for a 4 SMT core setup and 16-way LLC

experiment. In particular, the LLC energy accounted to a given tasks is obtained assuming

that the full LLC space has been allocated to it. Therefore, energy variations can only

come from the error of the core energy model.

We consider 2- and 4-way SMT core setups. Analogously to the LLC, the ES and

PTEM models lack of the flexibility and adequate accuracy to predict the energy one task

has with a fraction of the core, so we do not show them in the chart. On average, ES

model has over 38% prediction error, while PTEM has over 27% prediction error, when

comparing their output with the energy one task should have consumed with the full core.

The prediction error for SEA is shown in Figure 6.4. We observe that, across all setups

and types of workloads, SEA has stable prediction accuracy. For X type workloads, the

average prediction error is rather higher than the others. We have also shown the standard

deviation of SEA prediction error in the figure. While X type workloads have also higher

variation than the others, such variation remains rather low for all workloads and setups.

Nevertheless, SEA accuracy is still very high.

6.5.3 SEAchip Accuracy Evaluation

In this section, we combine the SEA in LLC and in core. Actually SEAchip is flexible with

different combinations of SEALLC for M
N of LLC and SEAcore for M̂

N̂
of core.

We analyze all configurations where each task is accounted for half (1/2 core) or all

(1 core) core resources, and for any number of cache ways between 1 and 16. Average

off-estimation is shown in Figure 6.5 across the different configurations. The x-axis corre-

sponds to the different number of cache ways (from 1 to 16). It can be seen that error is
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Figure 6.6: The deviation of mispredicted energy account to tasks running in 8-task work-
loads under 4-core SMT setup and 16-way LLC

in the range 4%-8% on average. In general, higher accuracy is attained when accounting

energy for 1/2 core given that accuracy for the LLC is higher than for the SMT core, and

the total energy to be accounted to the core under the 1/2 core setup is lower. We also

observe that higher accuracy is achieved for lower cache ways counts. This occurs because

miss rates are normally higher when fewer LLC ways are allocated, and thus, increase

the portion of active energy. Although the extra misses lead to more inaccuracies to the

execution time prediction, fewer LLC ways contribute low maintenance and leakage power

so less impact when compared with the increased but accurately estimated active energy.

Overall, SEA achieves very high accuracy estimating energy consumption under a

given fraction of resources despite the fact that it is estimated under workloads where

many resources are shared in many different ways.

6.6 Case Study

6.6.1 Energy Accounting Using ES, PTEM and SEA

In order to illustrate the main conceptual differences between ES, PTEM and SEA, in this

section we analyze the variation in terms of energy consumed and in terms of misprediction

w.r.t. the energy that should be accounted. As for the actual energy, we make use of the

ideal per-task energy metering model proposed in Chapter 4, which stands as a oracle ver-

sion of PTEM that disregards the cost to measure energy. We consider that the per-task

energy measured by this model is the best approximation to the actual energy consumed
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by tasks, thus, labeled as ACTUAL in the plot. Since all solutions compared (ES, PTEM

and SEA) have negligible energy impact in practice, the actual energy consumed is essen-

tially the same, so we just plot one column for ACTUAL. Note that accounting for an

homogeneous share of the resources across tasks is the only case where ACTUAL, ES and

PTEM can attain some degree of accuracy. In contrast, SEA is able to account energy for

arbitrary fractions of the shared resources. Therefore, for comparison purposes here we

only consider an homogeneous share of the resources for each task.

In particular we analyze the energy accounted to task Ti running in an SMT core of a

4-core 16-way LLC, when half of the core resources and 2 ways of the LLC are accounted

to it. In other words, Ti is accounted for exactly 1/8 of the resources of the processor, as

it is able to run up to 8 tasks simultaneously. Figure 6.6 shows the average and maximum

energy prediction errors. In particular, we obtain for each benchmark its range of variation

(maximum minus minimum energy) w.r.t. to its energy consumption when running alone

with 1/8 resources, and then we report in the figure the average and maximum value

across benchmarks.

We observe that the actual consumed energy has an average 15% prediction error

across benchmarks and the maximum error reaches 83%. When using ES model for energy

accounting, we observe that variations are significant. On average prediction error is 22%,

while the maximum for one benchmark reaches 130%. This would mean that users would

get 22% variations in the bills on average and those variations could reach 130% for the

very same task. In the case of using PTEM, results of the actual implementation are very

similar to those of the ideal PTEM model. On average the prediction error is around

14% and in some cases it may be as high as 84%. This reflects the fact that many tasks

may significantly overuse/underuse the resources w.r.t. a fair share of them. This affects

their own energy consumption and co-runners consumption. In contrast, SEA reduces the

average error down to 4%, and maximum is 19% for one benchmark. These prediction

errors are far lower than those of ES and PTEM and can be hidden from end users to

some extent by the fact that the cost per Watt also varies along time. SEA is able to

accurately predict the energy consumed with a fair share of the resources with negligible

cost, as shown before, and allowing tasks to freely share resources.

In addition, when we account one workload with the energy accounted to fhr = 1/8

resources of all its tasks, comparing with its actual energy consumption, we found the

actual energy saves on average 7.7% across all workloads because of resources sharing.

Thus, on one hand, datacenter operators can leverage the use of SEA to further reduce

the actually consumed energy by finding an optimal point to co-locate tasks like we show
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in Section 6.6.2. On the other hand, SEA can qualitatively applying the energy saving as

discount to end users as mutual benefits.

6.6.2 Energy Oriented LLC Allocation Using SEA

In this section we present a case study that shows how to use SEA as a powerful mechanism

enabling energy savings. Similar approaches have been proved effective for performance

optimizations [80, 81, 107]. Those approaches show that the performance gain could be

significant when performance can be accurately accounted. By tracking the tasks running

in a workload, SEA accurately estimates the energy consumed by each task under each

number of allocated LLC ways, thus enabling efficient LLC space allocation algorithms

with no need to run all programs under all configurations. In this section, we use a

simplified scenario to show the potential on energy saving if we can choose the most optimal

resource allocation scheme for tasks in a multi-benchmark workload regardless of the

system throughput and per-task performance. In this case, we assume a CMP architecture

with non-shared LLC, in which each task accesses its allocated LLC space exclusively. In

this experiment, we have included the energy consumption of the memory. The memory

system is simulated using DRAMsim2 [98], which is connected to our processor simulator.

The power model in it is obtained from MICRON data sheets [84]. Memory energy

accounting is not in place and decisions regarding the most convenient cache partition

are performed only based on core and LLC energy accounting. Thus, if memory energy

accounting was in place there would be potential for identifying better cache way partitions

to further increase the energy saving. Sensible memory energy accounting would need a

specific technique, which is part of our future work. Based on the fact that per-task

memory energy metering has already been proposed [71] and SMT core and LLC energy

accounting has been proved doable on top of energy metering, we do not expect any

impediment in devising accurate memory energy accounting techniques.

At first, based on PTEM measurements, we can observe that benchmarks have various

energy profiles with different number of allocated LLC ways. For some benchmarks, their

consumed energy increases with more LLC ways. This is due to the correspondingly

increased LLC power overlaps the reduction on execution time benefit from more LLC

space. In contrast, the energy consumption of some benchmarks decreases with more

allocated LLC ways. Analogously, this happens because their LLC misses reduce sharply

with more cache space allocated, which significantly improves their performance. Also,

there are several benchmarks with varying behavior. For those benchmarks, till a given

point, allocating more LLC ways pays off because the energy saved due to the reduction
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Figure 6.7: Energy saving with varied LLC space allocation, comparing with fair allocation

in misses is higher than the extra energy consumed by those ways. Beyond that point,

their LLC misses do not further significantly decrease and then, the energy consumed is

increased.

Therefore, in this section we classify benchmarks differently from what we showed

in Section 3.4.3, since this helps to better understand the different characteristics across

benchmarks. In particular we divide programs into 3 categories: those whose energy

increases as LLC space increases (i), those whose energy decreases as space increases (d),

and the remaining ones that have a U-shape trend (u). i programs do not make efficient

use of the cache space, so increasing LLC space will simply increase their maintenance

and leakage energy. They all have minimized energy consumption when only 1 LLC way

is allocated. In contrast, d programs exploit LLC space efficiently, so they minimize their

energy consumed when they are allocated all LLC ways. Finally, u programs minimize

their energy consumption with a number of ways larger than 1 and smaller than the whole

cache space.

We compare the energy savings with the best LLC allocation with a fair share allocation

where each task gets the same number of cache ways. In Figure 6.7, bars show average

energy saving across workloads in a particular category while the lines on top of them
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show the maximum savings. Workloads are built by combining half of the benchmarks of

one type and half of them of another type.

As shown, the lowest average energy savings correspond to the cases where all bench-

marks are of type i (ii case) or of type u (uu case). This is expected as i type benchmarks

have a near constant active energy consumption, and the optimal maintenance and leakage

energy remain roughly constant regardless of how space is split. In the case of uu work-

loads, the baseline space distribution is already close to the optimal one as each program

needs a fraction of cache space somehow in the central part of the distribution. In other

cases it is easy to find some benchmarks with different sensitivities to the amount of cache

space, so there are workloads with energy savings between 10% and 40%. This results

confirm how SEA can be used to enable other energy saving techniques.

6.7 Summary

The advent of CMPs allows running many tasks simultaneously, thus allowing resources to

be shared and, generally, optimizing energy efficiency. Unfortunately, the energy consumed

by a given task strongly depends on the set of co-runners, which create different inter-task

interferences. Therefore, energy consumption of a given task with a given set of inputs

can change noticeably across different executions. If energy is used for billing, it is hard

to defend charging end users largely different energy costs for the very same service.

This chapter develops the concept of Sensible Energy Accounting (SEA) from theoret-

ical point of view. SEA allows accurate estimation of the energy that would be consumed

by a given task if it was running with a given fraction of the resources, despite the fact

that the task shares resources in a multi-task workload. SEA, thus, opens the door to sta-

ble billing as well as energy optimizations in CMPs. Our results show that SEA provides

highly accurate estimations for on-chip resources – as needed for billing – and can be used

for scheduling purposes achieving up to 39% energy savings.
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Sensible Energy Accounting for the

DRAM Memory System

7.1 Introduction

The memory wall still limits performance, so many techniques have been devised to hide

the long memory latency by allowing multiple memory requests access the memory system

in parallel, such as the non-blocking cache, out-of-order instruction issue, speculative

execution, etc. Furthermore, the pervasive use of the multi-core and many-core design

paradigms puts more pressure on the memory system because multiple tasks can send in

parallel their memory requests. In this scenario, the execution of one task can be severely

interfered by other co-running tasks due to memory access contention. Thus, in order

to efficiently use memory resources, modern DRAM controllers implement complicated

scheduling policies to issue the memory requests from the processor to the memory system.

However, while the overall performance has been generally improved, the energy usage of

each task in memory has not been deeply analyzed. This fact is highly relevant given that

in modern computing systems the power of the memory system is already as significant

as the processor socket [14].

In Chapter 5, we have introduced our techniques to meter the memory energy that is

actually consumed by each task during their execution in a workload running in a multi-

core system. However, that mechanism cannot tackle the issue of sensibly accounting for

a task the energy it would consume in the DRAM DDR2/3 memory system when it has

an arbitrary fraction of processor resources to use alone, as formalized in Section 1.1.2.

121
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(a) 453.povray

(b) 473.astar

(c) 433.milc

Figure 7.1: The number of memory requests, the average latency of these requests and
the incurred energy of SPEC CPU 2006 benchmarks 453.povray, 473.astar and 433.milc,
when they run alone with different LLC ways and in the workload, are shown respectively
in 7.1a, 7.1b and 7.1c

This is a difficult challenge since heterogeneous applications nowadays run simultaneously

in the same computing system, and their consumed energy varies when they run with

different co-runners. In order to fairly account for their energy usage, it is needed to

have a consistent energy profile. The outcome of this work will be beneficial for several

applications, such as datacenter billing, scheduling policy, resource partitioning, tasks

co-location, etc.

To elaborate on this need, we ran three SPEC CPU 2006 benchmarks 453.povray,
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473.astar and 433.milc, alone in a single core system, connected to 16-way 4MB LLC

and 8GB DRAM memory system, the detailed setup can be found in Section 3.2. Each

benchmark has been run for 16 times, each time with a different number of LLC cache

ways (from 1 to 16), while the rest of resources remain the same. During the execution,

we monitor the number of memory requests generated, the average latency of the memory

requests from their generation till their completion, and the memory energy consumed by

the task. In addition, we ran each of these three benchmarks individually in 4 different

4-task workloads that have been randomly generated. Each workload has other three

benchmarks, running on a 4-core multicore system with the same but shared 16-way LLC

and memory setup, during which, we obtain the same runtime statistics. In particular, the

energy of each task is derived through the ideal model we have introduced in 5, known as

the actual energy. The results are shown in Figure 7.1 for the 3 benchmarks respectively.

For the sake of clarity, we consider the case when only 1-way of LLC is used as the baseline

and all results are normalized w.r.t. this case.

We observe that the 3 benchmarks exhibit heterogeneous behavior. In 7.1a, we can

see for 453.povray, which is an ILP bound benchmark, its generated memory requests are

few and stable as long as it has at least 4 LLC ways. With just 1 way its data do not fit

in the LLC and the number of memory requests is much higher. On the other hand, the

average latency of each request and the energy consumed only decrease slightly. For 4 or

more ways the number of memory requests decreases down to 1% of those with 1 way, the

average latency is 90%, and the energy around 75%. Conversely, when this benchmark

runs with other tasks in the workloads, the average request latency increases to 140% due

to the contention in accessing memory resources, but the energy drops to 20% because

the (high) background energy is shared with other benchmarks. In the case of 473.astar

in Figure 7.1b, its number of memory requests is more sensitive to different number of

LLC ways allocated. When it has 4 ways, its generated memory requests decrease to

50% compared to the 1 way baseline. After further increase to 8 ways, the number drops

to around 8%. Its average memory latency and energy variation follow the same but

decreasing less. When this benchmark runs in the workloads, although it only generates

10% of the memory requests, the average latency stays over 75%, but the energy is around

15%. Benchmark 433.milc has a completely different behavior since its generated memory

requests remains roughly constant across all scenarios. Due to contention, its average

memory latency rises to almost 180% in the workloads. However, its metered energy is

around 90% that of the cases when it uses the memory system alone.

From these results, we can conclude that neither the number of accesses nor access
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latency directly reflect the energy consumption. In order to sensibly account the energy a

task would have consumed in a particular configuration, some specific information needs

to be correlated to deliver accurate estimates.

In this chapter, we introduce our approach for SEA in the memory system. Our

proposed techniques accurately estimate, during runtime, the energy consumption each

task would have in the DRAM DDR2/3 memory system when they run alone with an

arbitrary fraction of resources on the processor, with efficient implementations. The energy

is accounted sensibly to tasks with their predicted behavior depending on the particular

fraction of the resources allocated. This is done by analyzing their runtime behavior when

they run within an arbitrary workload. Overall, the contributions of this work are as

follows:

• We propose an ideal sensible energy accounting model for DRAM memories, based

on the assumption that the memory behavior a task has when it run with a particular

fraction of resources in isolation can be fully known during the runtime in a workload.

To the best of our knowledge, it is the first reference model against which energy

accounting mechanisms in the DRAM memories can be compared to.

• We propose techniques to predict for the task the activities, the time invoking the

memory system and execution time when it runs with a fraction of the processor re-

sources in isolation. Based on which, we devise SADEA, a practical implementation

of the ideal model.

• We compare SADEA with existing energy measurement techniques, such as ES,

PTA and DReAM. We show that SADEA extends the concept of energy accounting

in computing systems, in which SADEA provides consistent and accurate estimates

for the fraction of processor resources allocated.

The rest of this chapter is organized as follows. Section 7.2 provides background on

memory controller scheduling policies and memory interference delay analysis. Section 7.3

presents our approach to perform ideal SEA in DRAM memory systems. SADEA, our

efficient hardware implementation of the ideal model, is described in Section 7.4. SADEA

accuracy is evaluated in Section 7.5. Section 7.6 draws the main conclusions of this chapter.
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7.2 Background

7.2.1 Performance Accounting

As introduced in Section 6.2, SEA comprises two main blocks: PTEM techniques and

performance accounting techniques. In this respect, in order to build the SEA for the

memory system, we need a PTEM for the DRAM memory system, such as DReAM – see

Chapter 5 – and a mechanism for performance accounting in the memory system.

Due to the significant amount of techniques used to hide memory latency, the latency of

memory requests will impact the execution of the task in a non-obvious way. For example,

let us assume a scenario where a task has many memory requests during a particular

time interval when running in isolation. If it runs as part of a workload and due to LLC

interferences it has an extra LLC miss, such extra memory request may be overlapped

with other requests, thus leading to null or negligible performance impact. However, if the

task performs roughly no requests during such time interval, the extra request is unlikely

to be overlapped and it may easily impact performance.

Therefore, in order to sensibly account the memory energy, we need to accurately

account performance based on the varying memory behavior. However, it is difficult to do

it in today’s sophisticated memory controllers and DRAM devices.

7.2.2 DRAM Memory Controller Scheduling Policies

In a modern DRAM memory system, operations strictly follow the JEDEC DDR stan-

dard [52]. In the DRAM memory organization that has been detailed in Section 5.2.2,

memory requests from the chip are dispatched to the memory system by the memory

controller. During this process, several specifications have been considered, such as the

I/O timing parameters of the DRAM devices, address mapping scheme, row-buffer man-

agement policies, etc. Therefore, the memory controller needs the scheduler issuing the

internal commands according to their time constraints, so that each operation can be per-

formed correctly. In addition, different policies can be used to optimize the performance

and energy efficiency of the memory system. We have inherited the memory controller

model from DRAMsim2, which uses a typical scheduling policy, known as first-ready first-

come-first-serve (FR-FCFS), which prioritizes the ready commands over the non-ready

commands, the old commands over the newly arrived commands, and the column access

commands over the row access commands when open-page buffer management policy is

used. Note that the ready commands can be sent to the DRAM devices immediately with

no constraint. By applying such policy, the commands issuing order will not follow their
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arriving order exactly.

7.2.3 Memory Interference Delay Analysis

Recently, there has been an increasing interest in analyzing the delay caused by memory

interferences, mainly in real-time system domain [62,118]. These works focus on estimating

the Worst Case Execution Time (WCET) of a task, which is an upper-bound of the memory

interferences that come from the other co-running tasks. For this purpose, based on the

memory behavior a task has during a single run, authors create high synthetic interference

by generating memory requests from the other cores, and estimate the WCET each task has

under such extreme conditions. In that respect, authors have made several simplifications,

such as: any increase in memory latency is additive to the task’s execution time; all

the commands generated from a memory request suffer contention due to interference

disregarding the bank-level accessing parallelism in DRAM devices.

Conversely, in our work we cannot follow these principles. Instead, we monitor the

memory behavior of a task during runtime when it co-runs with many other arbitrary

tasks, based on which we analyze the memory behavior each task should have when it

runs alone with an arbitrary fraction of the processor resources. As far as we know of,

such a model does not exist.

7.3 Ideal SEA for DRAM Memory System

In this section, first of all, based on the SEA definition we have in Section 1.1.2, we

introduce how SEA can be ideally applied in a DRAM DDR2/3 memory system. Although

the core resource partition cause variations in terms of LLC accesses, and in turn LLC

misses, its influence does not fall outside the scope of LLC space variation. Thus, in the

main line of this work we ignore the different core resources allocation, since memory

behavior mainly depends on the LLC space allocated. Nevertheless, we comment how to

extend the proposal to cover core resources variation in Section 7.4.1.

Our target is to account to a given task Ti, when running in a workload in a multicore,

the energy it would consume with a given (arbitrary) fraction of the LLC space. Given

that the LLC has N ways, the possible number of ways of the LLC that Ti could use

ranges from 1 . . . N , and we use n to refer to the particular number of ways in the LLC

used by Ti for its accounting.

Following the classifications we have introduced in Section 5.2.2, the energy consump-

tion in the DRAM memory system is broken down into three components: active, refresh
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and background. We show how different components of the energy should be ideally

accounted to a task.

Active Energy

Active energy in the DRAM memory system corresponds to the energy spent to perform

task activities, such as the energy incurred by the commands that relate to the memory

request sent by a task. Therefore, in order to account the active energy in the memory

to a task for a particular LLC allocation, n ways, it is needed to account the activities it

would have incurred under that condition.

When the bank buffer management chooses close-page policy, this is relatively easy be-

cause every request will have the following activities: first, a row activate command (ACT)

is sent from the memory controller to load a specific row of data in the data arrays to the

row-buffer sense amplifiers; upon its completion, a column read/write (READ/WRITE)

command arrives to read/write the data from/to the row-buffer; finally, a precharge (PRE)

command is triggered to restore the data from the row-buffer to the arrays on the row

where they were stored. In this case, the activities performed by a task are directly

correlated to its generated memory requests.

For the open-page policy, the activities cannot be directly mapped to the memory

requests, since ACT and PRE commands are not always needed for memory requests in

this case. When this policy applies, the row-buffer will remain open after the former

READ/WRITE command is done, without sending a PRE command to restore the data.

This occurs because, if there are pending requests on the row that is already in the row-

buffer, the memory controller can send them immediately. Therefore, the response speed

of the row-buffer hit requests is increased, since they only have to pay the READ/WRITE

latency, thus avoiding the delay due to the PRE command of the former request and the

ACT command of its own request.

The selection of the row-buffer management policy is beyond the scope of this thesis.

For both policies, the active energy should account following the same principle: to account

Ti the useful activities it would incur with its own generated memory request. Thereby,

in this ideal model, we assume that the number of internal commands from each task is

known, so that we can directly account the active energy based on the command counts.

Thus, given a task Ti that uses n ways in the LLC, the active energy accounted to it is

calculated as follows:
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EAdynn (Ti) = NumACT
n (Ti)× EACT +NumREAD

n (Ti)× EREAD

+NumWRITE
n (Ti)× EWRITE +NumPRE

n (Ti)× EPRE
(7.1)

where NumACT
n (Ti), Num

READ
n (Ti), Num

WRITE
n (Ti) and NumPRE

n (Ti) stand for the

number of commands of each type that belong to task Ti when it uses n LLC ways. EACT ,

EREAD, EWRITE and EPRE stand for the energy consumed by each command.

Background Energy

Background energy includes the maintenance and leakage energy, which correspond to the

energy consumed due to useless activities not triggered by the programs being run and

the energy wasted due to the imperfection of the technology used to implement the circuit

that is detailed in Section 2.1. Note that the background power of the memory system has

different levels corresponding to different states of the DRAM device: power down (P),

standby (S) and active (A). The power in P state is the lowest across all states and it is

incurred when the memory system clock is disabled. After enabling clocking, the DRAM

device enters S state, which largely rises the background power but can quickly respond

to the requests. When executing the ACT command, the background power rises to A

state. Such A state is also needed to perform READ/WRITE commands. After the PRE

command precharging the open row in the DRAM device, the background power returns

to S state. Therefore, the background energy that should be accounted to task Ti when

it uses n ways in LLC, is determined by the time DRAM devices spend in each state.

Given that in an ideal model the time information can be known, we can calculate the

background energy to account to task Ti as follows:

EABGn (Ti) = TAn (Ti)× PA + TSn (Ti)× PS + TPn (Ti)× PP (7.2)

where TAn (Ti), T
S
n (Ti) and TPn (Ti) stand for the time task Ti induced the DRAM device

to remain in A, S and P states respectively when it has been allocated n ways in LLC.

PA, PS and PP stand for the background power under A, S and P states respectively.

Refresh Energy

Refresh energy corresponds to the energy consumed to refresh periodically all memory

contents, which is consistent in a time interval that is adequately long according to the

JEDEC standard [52], for example, 40 µs in our used configuration. Therefore, accounting
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refresh energy to one task based on its execution time with n ways of the LLC, is done as

follows:

EAREFn (Ti) = TExen (Ti)× PREF (7.3)

where TExen (Ti) stands for the execution time of Ti with n ways LLC and PREF stands

for the refresh power.

7.4 SADEA, an Implementable Approach of SEA

Due to the increasing core count and the sophisticated modern memory controller design,

tracking all the profiles that are needed by the ideal SEA is virtually impossible. Therefore,

we propose SADEA, a simple to implement yet accurate model that follows the same

methodology of the ideal model.

Ti has different behaviors in the DRAM memory system when it runs alone with a fixed

number of LLC ways, and when it runs as part of a workload with several co-runners. This

occurs because in the workload: 1) other tasks may evict some cache lines of Ti, which

will probably cause Ti suffering from extra cache misses, known as inter-task misses; 2) in

a particular n way configuration where n < N , Ti may suffer some cache misses due to the

limited capacity, but those accesses may be hits when running as part of a workload; 3)

the memory controller receives more memory requests due to co-runners, and they have

to be scheduled, thus causing potentially significant delays on Ti memory requests.

Active Energy

In order to account the active energy, the main difficulty lies in estimating the number of

memory requests for task Ti running in isolation with n LLC ways. Therefore, accurately

estimating the inter-task misses and the capacity misses due to using n ways in LLC holds

the key.

To this end, we use a similar technique to those used by SEA in the LLC as detailed

in Section 6.4.3. In SEA we have used the Auxiliary Tag Directory (ATD) proposed by

Qureshi and Patt [96], which focuses on a least recently used (LRU) replacement policy,

and it is used to estimate the LLC accesses for Ti when n ways of LLC are allocated. The

ATD is used to keep a local copy of the tag directory for each task, which keeps track

of what would be the LLC contents of a task with any arbitrary number of LLC ways in

the case of LRU. In this way, if the LLC implements LRU, one can predict whether an
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access would hit in the LLC for any number of cache ways n lower or equal to the total

number of LLC ways (N) as explained in Section 6.4.3. Also, as explained before, we use

the Sampled ATD (SATD) instead of the ATD to keep overheads low. And the SATD

can also be used for pseudo-LRU caches with negligible impact on accuracy, so the same

reasoning applies to SADEA.

Given that LLC misses are directly mapped to memory requests, we can rely on the

access count estimation derived with the SATD to estimate the active energy in the mem-

ory system. In close-page policy, the number of memory requests can be mapped exactly

into the number of commands in the memory system. For open-page policy, instead, the

estimate needs to correlate with the timing and data locality information of the memory

requests. However, in existing memory controller designs, the implementation of open-

page policy is different from the theory. In practice, since the background power in state

A is very high (comparable with the commands power), the banks are only allowed to stay

open for a short time interval to lower power consumption. Therefore, the hit-in-page rate

reduces significantly w.r.t. that expected hit rate in theory. In our case we have found

that the difference between open-page and close-page is negligible in practice, so we use

the close-page model in both cases:

EAdynn (Ti) = (EACT + EPRE +
EREAD + EWRITE

2
)×NumMemAcc

n (Ti) (7.4)

where NumMemAcc
n (Ti) stands for the estimated LLC misses of task Ti under LLC

fraction n derived with the SATD. EACT , EPRE , EREAD and EWRITE represent the

energy needed by each command that is provided by the hardware manufacturer, such as

in [84]. In our case we average the energy of read and write operations since it is typically

very similar and allows us not having to track each type of event individually. If different

types of accesses have different energy consumptions (e.g., read and write operations), then

different counters need to be kept for each operation type per task so that each access

updates the counter corresponding to its type. With current DRAM technology, read and

write operation in general have less than 10% difference [84].

Background Energy

In order to sensibly account the background energy, the number of memory requests and

their impact on the execution time and the time invoking the memory system need to be

correlated. Following Chapter 5, we split the background energy into 2 parts: 1) the energy

consumed under P state would always be consumed; 2) the extra background energy is

only consumed when the power state of DRAM devices is raised to S or A states.
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Table 7.1: A synthetic case of two tasks T0 and Ti accessing 2 banks in parallel

Requests(T0) R0 R1 R2 R3

Requests(T1) R0 R1 R2 R3

Bank0 R0(T0) R1(T0) R2(T0) R3(T0) . . .
Bank1 R0(T1) R1(T1) R2(T1) R3(T1) . . .
Cycles 20 20 20 20 20 20 20 20 20 20 20 20 . . .

Table 7.2: A synthetic case of two tasks T2 and T3 accessing 2 banks in an intervealed
fashion

Requests(T2) R0 R1 R2 R3

Requests(T3) R0 R1 R2 R3

Bank0 R0(T2) R1(T3) R2(T2) R3(T3) . . .
Bank1 R0(T3) R1(T2) R2(T3) R3(T2) . . .
Cycles 20 20 20 20 20 20 20 20 20 20 20 20 . . .

Table 7.3: Task T0 with multiple read requests accessing 1 bank

Requests(T0) R0 R1 R2 R3

Bank0 R0(T0) R1(T0) R2(T0) R3(T0) . . .
Cycles 20 20 20 20 20 20 20 20 20 20 20 20 . . .

To open up the analysis on such effects, we use the following three metrics: 1) given a

memory request that experiences no contention when it is served, its latency will be a fixed

value that is specified by the JEDEC standard [52] and hardware vendor implementations,

namely DL (Default Latency). 2) The second metric we use corresponds to the count of

all cycles that a task spends with at least one memory request inflight in the memory

system, which we name as MC (Memory Cycles). MC represents the time a task induces

the memory system to be in a high power-consuming state. 3) For each memory request,

we monitor from the cycle it is dispatched to the memory controller, till the cycle its data

is returned to the LLC. This metric represents the whole penalty this particular LLC miss

suffers, denoted as LLCMP. During the period of the LLCMP, the execution of the task

in the processor pipeline may stall for a certain time till the miss is handled.

We use some synthetic examples to illustrate how we account background energy based

on those metrics. We assume that tasks T0 . . . T3 all have 4 memory request bursts. In

Table 7.1, only T0 and T1 are active, and each one accesses a different bank. Conversely,

in Table 7.2, only T2 and T3 are active and access two banks in an interleaved manner.

In both cases, regardless of the data and command bus conflicts, although the tasks

have very different bank access patterns, their timing behavior is very similar. All tasks

spend 240 cycles invoking the memory system as MC. Their LLCMPs is also the same,
60+120+180+240

4 = 150 cycles. Thus, their performance and metered energy are identical.

However, they behave differently when they access the full memory system alone.

Table 7.3 shows the case when T0 runs with the full memory system alone. All its
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Table 7.4: Task T2 with multiple read requests accessing 2 banks

Requests(T2) R0 R1 R2 R3

Bank0 R0 R2 . . .
Bank1 R1 R3 . . .
Cycles 20 20 20 20 20 20 20 20

memory requests access sequentially bank 0, which leads to the same performance as

when it runs with T1. Conversely, in Table 7.4, T2 has its memory requests scheduled

accessing 2 banks in parallel, and its MC reduces down to 120 cycles. Therefore, in order

to estimate the extra background energy in the memory, which is determined by MC,

an efficient approach is to detect the Bank Level Parallelism (BLP) of a task’s memory

requests. This basically translates into measuring how long a task has inflight requests

in memory. For this purpose, we setup a counter for each task in the memory controller.

It increments when a command belonging to task Ti is sent to the memory system, and

decrements when one command completes. This counter is sampled every 1,000 cycles, so

that we can obtain the average BLPi for Ti. We use such BLPi estimation to compute

the MC with following formula:

MCi =
NumMemAcc

n (Ti)

BLPi
× (DLREAD +DLWRITE)

2
(7.5)

In essence, we multiply the number of accesses by the average minimum accessing

latency, which would give the minimum latency experienced if all accesses occurred se-

quentially. Then we divide the value obtained by the bank level parallelism to account for

the fact that accesses may happen in parallel. As a result, we estimate the background

energy of a task in A and S states as follows:

EAExBGn (Ti) = (PA × (LACT + LREAD/WRITE) + PS × LPRE)×MCi (7.6)

where LACT , LREAD/WRITE and LPRE stand for the latency of each command.

Note that, although a task may generate different amount of memory requests when

it has different ways of the LLC allocated, the memory space it is allocated will be the

same, thus BLPi is still an accurate estimate of the range of banks Ti can access in the

memory system.

To carry out the estimation on the P state background energy, we need to estimate

Ti execution time when it uses n ways of the LLC. For that purpose, we rely on the

performance accounting techniques (ITCA) proposed by Luque et al. [77]. ITCA uses the

SATD to infer the number of LLC hits and misses that the task would experience when

running alone with all LLC cache ways. For an access that hits in the SATD but misses
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in the LLC, ITCA defines it as an inter-task miss. Such miss will be a hit if Ti has the

full LLC. Authors use specific logic to estimate the miss penalties due to those misses to

obtain the cycles that need to be truly accounted to a task. For that purpose, the events

considered include rename register stalls, reorder buffer full, etc. Analogously, for accesses

that miss in the SATD, but hit in the LLC, the same logic is used to add the corresponding

miss penalties to the task. In our work, we use this technique to calculate the execution

time Ti has when it runs with n ways of LLC alone in the system, with several extensions.

For one access to the LLC, we predict if it is a hit or a miss when n ways of the LLC

are used. For either case, we account the cycles caused by the hit or miss following the

methodology used in ITCA. However, ITCA uses a fixed memory latency to estimate the

miss penalty. Instead, we rely on both the LLCMP estimation when Ti runs with n ways

of the LLC alone and the LLCMP Ti has in the workload, and also the BLPi. Note that

the average LLCMP in Table 7.3 and 7.4, are 150 and 90 cycles. Thus, we derive the

formula to calculate it as follows:

LLCMP ISO = LLCMPWL
i − (DLREAD +DLWRITE)

2
× (BLPi − 1) (7.7)

where LLCMPWL stands for the LLCMP task Ti has when it runs in a workload. There-

fore, the execution time of Ti in isolation with n ways of the LLC, ExeT imen(Ti), obtained

with our adapted version of ITCA, increases the estimated execution time in isolation us-

ing LLCMP ISO latency to account for the cost of the spatial misses, and decreases the

estimation using LLCMPWL
i to account for the cost of the inter-task misses in the work-

load.

For the power-down state background energy, which is proportional to the execution

time Ti would have when it runs with n ways of LLC alone, thus, we calculate it with

the execution time estimation ExeT imen(Ti) made from our extended ITCA mechanism

using following formula:

EAPBGn (Ti) = PP × ExeT imen(Ti) (7.8)

Refresh Energy

For refresh energy, since it is directly correlated with the execution time and refresh power,

we calculate it in the same way as in Equation 7.3, but with the estimated execution time

ExeT imen(Ti).
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7.4.1 Putting it All Together

Integrating SEAchip presented in Chapter 6 and SADEA is mostly straightforward. In

general, there is no conflict from the mechanisms of SEAchip and SADEA since both

approaches rely on the same input: the fraction of the processor resources that need to

be accounted. In these works, we focus on the fractions of two resources to perform SEA:

the core and the LLC.

Both on chip and memory SEA relies on the fraction of LLC allocated to the task

under analysis. Thus, both approaches require the same hardware support to account for

the execution time, LLC accesses and LLC misses when one task has n ways of the LLC

in isolation. Thus, they can be integrated seamlessly. In the context of single-threaded

cores, no further integration is needed.

In contrary, SEAcore uses MIBTA [77] to sample one task at a time per core periodi-

cally if cores are multi-threaded. During MIBTA phases, the information collected related

to memory accounting with SADEA needs to be aware of MIBTA behavior. In principle,

we inherit the methodology that is used to integrate SEALLC and SEAcore as introduced

in Section 6.4.5: during the running of a workload in a multi-core multi-threaded sys-

tem, the tasks on each core are concurrently sampled in separate MIBTA phases (one

in each core invoking at the same frequency) in a round-robin process. MIBTA phases,

as explained before, allow estimating accurately L1 cache behavior, and so LLC access

and miss frequency of each task. The resulting LLC access and miss frequency obtained

during the corresponding MIBTA phase is, therefore, assumed constant until the next

MIBTA phase. During MIBTA phases, the LLC is still shared across cores, so SEALLC

and SADEA need to remain working since the interactions in LLC exist across cores.

SADEA hardware support and overhead. SADEA builds upon the SATD that is

already used in SEAchip. Details on the overheads incurred have already been introduced

in Section 6.4.5 (around 0.7% area overhead for the LLC [77, 78, 96]). In addition to

that, few registers and little logic are needed by DReAM and ITCA with negligible area

overhead also due to SEAchip. Additionally, for SADEA itself, a 6-bits counter is needed

for each task to record the number of their inflight memory requests, as well as a register

to sample access counts every 1,000 processor cycles. The estimated energy is stored in

a register for each task, called Memory Energy Accounting Register (MEAR). Thus, the

incurred area and energy overheads are little.
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Figure 7.2: Prediction error to account DRAM memory energy to benchmarks 473.astar,
444.namd, 433.milc and 437.leslie3d in a workload running in 4-core CMP system.

7.5 Evaluation

In this section we assess the SADEA prediction accuracy. We also compare SADEA with

other intuitive methods that could be used to account DRAM energy consumption, such

as ES and PTA as introduced in section 2.4, and DReAM in Chapter 5. The experimental

setup is introduced in section 3.4. The benchmark suite and workload generation strategy

are introduced in section 3.4.3.

Metrics . To evaluate the prediction accuracy of SADEA, we use as a reference the

actual memory energy consumption of a benchmark when it runs alone with the corre-

sponding processor resource fraction. For instance, if we aim to estimate the memory

energy of a benchmark when it has only half of the LLC ways, the reference is a single-

core processor setup with half of the cache ways in the LLC where the benchmark runs

alone. Hence, in each experiment, we measure the prediction error of each model with

respect to the actual energy consumed when one task runs with the specified fraction (MN )

of the resources alone, which is computed as in Equation 3.1:

SADEA prediction accuracy in a particular 4-task workload

Figure 7.2 shows the results in terms of prediction error for SADEA for a 4-task workload

running on a 4-core CMP architecture, including the following SPEC CPU 2006 bench-
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Figure 7.3: Prediction error to account DRAM memory energy to benchmarks for different
LLC ways allocated running in 4-core CMP system.

marks: astar, namd, milc and leslie3d. The prediction error is mainly generated from (1)

the prediction of the activities, (2) the execution time and (3) the time a task uses the

memory system. Thus, as benchmark astar is sensitive to the LLC space, the number of

its memory requests varies significantly with different LLC ways allocated. In particular,

as the number of LLC ways allocated decreases, the prediction error increases due to the

pathological combination of the 3 sources of error indicated before. The prediction error

can be up to 15.7% since its memory behavior is hard to predict with the discrepancy

between the actual number of memory requests and the number of accounted ones. The

prediction is, instead, very accurate for the cases when it has more than 8 ways to use,

since its behavior in the workload is not that different to the behavior that needs to be

accounted for. Still, the average prediction error for astar is low (4.1%).

Conversely, the number of memory requests barely changes with different LLC ways

allocated for namd. Thus, prediction accuracy is stable across all configurations. Bench-

mark milc has highly frequent memory request in all scenarios, so its prediction accuracy

depends on the interferences it suffers from its co-runners and the speed at which mem-

ory requests are dispatched when it uses different number of LLC ways. On average, the

prediction error is low (3.2%). For leslie3d with moderate number of memory request and

moderate variation across different LLC way allocations, the prediction error is within

3-7%, and on average is 4.2%.
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Figure 7.4: Prediction error to account DRAM memory energy for workloads running in
a 4-core CMP system using models: ES, PTA, DReAM and SADEA.

SADEA evaluation in CMP systems

Next, we evaluate SADEA in a 4-core CMP architecture, with 24 randomly composed

workloads using benchmarks of different LLC miss frequency level as classified in Table 3.8.

We can observe in Figure 7.3 that SADEA delivers stable prediction across all 1-16 ways

of the LLC. The average prediction error across all benchmarks is relatively low, generally

under 7%, with their standard deviation under 13%, except for the case of 1-way. The

reason that the deviation for 1-way is higher than others is because many benchmarks

experience a drastically different number of LLC misses when only 1 LLC way is allocated.

This huge variation in the number of LLC misses translates into a significantly different

memory energy profile that is, in turn, very hard to predict. Nevertheless, the overall

prediction is sufficiently accurate, 6.5% on average. Still, we believe there is room for

improvement in the future.

Then, we compare SADEA in 4-core and 8-core scenarios, with ES, PTA and DReAM.

The results are shown in Figure 7.4, where workloads are categorized into I, X and M ,

as described in 3.4.3. Note that in this figure, the outcome of ES, PTA and DReAM are

compared with the cases where a task runs in isolation with a given fair share of the LLC,

and this is the only case they can be compared with. For example, for N tasks running

in a M ways LLC, each task is given M
N ways of cache. We can observe from the figure

that ES, PTA and DReAM fail for the purpose to sensibly account the memory energy

to a task. This is expected since, at first, they lack of support for capturing inter-task
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Figure 7.5: Prediction error to account DRAM memory energy to benchmarks for different
LLC ways allocated running in a 2-way 2-core SMT/CMP system.

interferences, and secondly, lack of support for acknowledging the deviations of behaviors

a task has in different scenarios. On average, ES, PTA and DReAM have prediction error

over 38% across all workloads and setups. On the other hand, SADEA achieves an average

7.8% prediction error. In general, the predictions for M workloads and higher core-count

scenarios are less accurate due to the higher interferences from co-running tasks, which are

harder to eliminate in terms of energy accounting. In general, SADEA, while not being

ideal, keeps inaccuracy low enough to make it usable in practice.

SADEA evaluation in SMT/CMP systems

In the CMP architecture, SADEA collects statistics during the whole execution time.

Conversely, applying SADEA for a given fraction of processor resources including the core,

one can only use the information collected from the separated MIBTA phases. Thus, we

show the SADEA prediction error for a 2-way 2-core SMT architecture case in Figure 7.5,

for configurations where each task has exactly 1
2 of the core resources and in the range

1 − 16 ways of the LLC. We observe that the prediction error in such scenario is higher

than in CMP architectures. The average error exceeds 10% and the standard deviation

reaches 15%. As for the CMP case, the prediction error for the 1-way LLC case is higher

than for other LLC way allocations. Still, the average prediction error remains under 12%,

making SADEA still a reasonable choice.
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7.6 Summary

A number of mechanisms are in place to hide the (long) memory latency. Thus, when mul-

tiple tasks share the memory system, interferences can impact significantly their memory

behavior, and in turn their performance and energy consumption. In this chapter we focus

on sensibly accounting the memory energy to a task, which corresponds to the energy it

consumes when it runs with a fraction of the processor resources in isolation. This re-

quires discounting the effect of interference from co-runners and its own when it generates

a different number of memory requests when its given resources vary.

As part of SADEA we have devised several mechanisms to predict the number of

memory request, the execution time and the time using the memory system that a task

should have when running in isolation with a given fraction of the processor resources.

Our results show that SEA provides sufficiently accurate estimates for memory energy,

yet with low-cost. Still, we see room for improvement given that SADEA accuracy is not

as high as for the other mechanisms proposed in this thesis.
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Conclusion and Future Directions

8.1 Thesis Conclusion

With the price keep growing, energy has arguably became the most expensive resource in

computing systems across different computing domains. In the meantime, with processor

chip integrating billions of transistors, providing several gigaflop computing power and

several gigabytes of memory capacity to use, power wall has became a major stumbling

block for the performance growth of computing systems. The establishment of multi-

core architectures offers improved performance per Watt, by allowing many tasks to run

simultaneously sharing the resources in the system. Unfortunately, in this scenario, the

energy consumed by a given task becomes non-obvious, since it strongly depends on the set

of co-runners which create inter-task interferences. Obtaining the power profiles of such

a complex, highly-threaded system is a difficult challenge. There has already been large

efforts invested on this topic. Different directions have been explored, such as refining the

power measurement of the system, energy and power profiling in hardware and software,

energy breakdown in hardware components and software blocks, etc.. However, these

studies have all consider the hardware resources as a whole. Ignoring the fact that in

current reference platform, the multicore processors, most of the hardware resource are

shared by multiple tasks running in parallel. As far as we know of, no study or proposals

have been made to support per-task energy measurement in the multicores.

In this Thesis, for the first time, we formalize the need for per-task energy measurement

in multi-core systems by establishing a two-fold concept: per-task energy metering(PTEM)

and sensible energy accounting(SEA). In the scenario where many tasks running in parallel

141
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in a multicore system. For each task, the target of PTEM is to provide estimate of the

actual energy consumption at runtime based on its resource usage during execution; and

SEA aims at providing estimates on the energy it would have consumed when running in

isolation with a particular fraction of system’s resources.

The differences between the technology and design of different components in the

computer are large. For this reason, we separately apply PTEM and SEA to two main

functional components of a computing system: the processor and memory system. In

summary, the main contributions of this thesis are listed following:

PTEM for the Processor

First we make a case of PTEM for the processor. The model distributes the energy of the

chip to the running tasks in an arbitrary workload based on the utilization of the on-chip

components (e.g., cores, caches, etc.). By analyzing the impact of resources utilization

on active, maintenance and leakage energy, we first propose an ideal PTEM model in the

processor by means of tracking the activity and occupancy of all the resources in a per-task

basis. This ideal model is complex and too expensive to implement. Thus, we propose an

implementable and efficient design to perform PTEM in multicore processors by trading

off the cost with accuracy. We illustrate how this method can accurately approach the

ideal model, and thus obtain estimates of the actual energy each task consumes in the

chip. State of the art models, such as Evenly Split (ES) and Proportional To Accesses

(PTA) detailed in Section 2.3.4, are also evaluated and compared against the ideal model.

PTEM achieves highly accurate estimates that greatly improve the state of the art.

In this thesis, we have shown how to apply PTEM to sequential and parallel applica-

tions. By deploying the proposed PTEM technique in a 2-way SMT core processor, we

have seen that the metered energy for any SPEC CPU 2006 benchmark within different

workloads can vary in the range of [−25%, 40%], which sets the motivation for SEA.

PTEM for the DRAM Memory System

Similarly in the memory system, the energy used by a task is correlated with its utilization

of the DRAM devices. This includes the memory activities, the states of the memory

banks, the execution time of the task, and in particular, the interaction with other tasks.

We propose an ideal PTEM model for the DRAM memory system that tracks all the

memory resources utilized by a task in every cycle. Based on such an ideal but complex

model, we have proposed a practical model with low-cost, which relies on few counters

and registers to be set up in the memory controller to estimate the memory energy. Such
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implementation can achieve accurate predictions with respect to the ideal model, largely

improving the estimations obtained with ES and PTA models.

Next, we have shown that PTEM can help significantly improving the power efficiency

in a multicore processor. Energy savings may depend on the tasks’ memory access fre-

quency and access patterns (i.e. bursty versus scattered behaviors). Also, we have proven

that the energy impact of memory contention highly depends on the frequency of memory

accesses: programs with frequent memory accesses decrease their power at the expense of

increasing their energy.

SEA for the Processor

From the PTEM outcomes, we observe that the actual energy consumed by a task heavily

depends on its co-running tasks due to their interaction in shared resources. The energy

variation is huge for most benchmarks, even though the same benchmark always runs

with the same input in the very same platform. Then, the principle of energy accounting

suggests to consistently account a fixed amount of energy to a task independently of

its dynamic behavior in the workload. This principle is inherited from the performance

accounting principle defined by Luque et al. [76]. Thus, the energy consumed by a task

depends on itself and the resources it uses to execute. In this thesis, we propose Sensible

Energy Accounting (SEA), which accounts a task the energy it would consume when it

runs in isolation with a certain fraction of the resources.

To make SEA feasible, we devise a low-cost hardware mechanism to obtain at runtime

an estimate of the processor energy to account to a task when it co-runs with several other

tasks in a multicore system. Our proposal achieves high prediction accuracy with regards

to the reference model. When compared with other state of the art models such as ES,

PTA and PTEM, SEA accounts a much more consistent and fair energy cost to a task. We

have also proven that, by using SEA for scheduling purposes, significant energy savings

can be obtained.

SEA for the DRAM Memory System

In this thesis, the concepts introduced by SEA are also applied to the DRAM memory

system using SADEA. Thus, we propose to account the memory energy a task would

consume when it runs in isolation with a certain fraction of processor resources. Since

various techniques have been used to hide long memory latencies, the interferences from

co-running tasks in the DRAM memory system are not obvious to identify. The key to

achieve SADEA consists in predicting the memory behavior a task would have in isolation.
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To attain this goal, we have to separately analyze several key metrics, such as the amount

of activities, the time invoking the memory system and execution time. We have shown

that, with few extra registers and logic to detect the bank level accessing parallelism,

SADEA provides tight estimates on the memory energy to account. Finally, we have also

shown that SADEA can be combined with SEA in the processor to build an integral energy

accounting system for multicore processors.

8.2 Future Works and Impact

This thesis is the first attempt showing that per-task energy in resource-sharing multicore

system can be quantified in an exact way. The work done in this thesis can become

fundamental for several research lines, and they can impact different computing domains

where multicores are used as the reference computing platform. Based on the proposals

in this thesis, it is possible to enhance the understanding of energy savings in multicore

system, and therefore, inspiring energy efficient studies from different perspectives.

Implementation in Real Systems

The fact that this thesis has been performed on simulators infers a long way for it to

impact real systems available in the market. Therefore, implementing PTEM and SEA

proposals in real systems would be the primary focus of the future work. Although the lack

of hardware support in existing computing systems limits the applicability of PTEM and

SEA, these proposals have shown that a reasonable tradeoff between predictions accuracy

and hardware cost can be reached. Furthermore, the implementation of such models in

existing systems can directly lead to energy-aware computing, so shifting processor designs

towards energy-aware architectures.

Multicore Architecture Design

Current multicore processors are usually designed to have high throughput, with good

tradeoff with per-task performance degradation. PTEM and SEA proposals not only

can quantify the net effect on energy consumption of a particular design, but also can

enable optional energy efficient designs to better deploy the multicore processors in energy

sensitive environments.
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Datacenter Billing

Nowadays, cloud-computing providers tend to provide services of virtualization, such as

IaaS, PaaS and SaaS. As depicted in Section 6.3.1, SEA can be used by the datacenter

owner to optimize the task co-location in order to reduce the operationl cost of their

infrastructure. And clients can also benefit from the consistent and fair billing. That

is, when they request the same computing power to run the same tasks with the same

input, the same energy cost is accounted. Of course, in addition to the energy cost, the

hardware and operational cost are also needed to be correlated. Nonetheless, maintaining

this principle for billing is key to keep the bills consistent.

Energy Aware Scheduling

Linux kernel developers already start to research the appropriate scheduler for heteroge-

neous architectures, such as the big.LITTLE architecture by ARM [64]. In such scenario,

scheduler is the best place to collect information on the past, current and future infor-

mation on the energy profile of a task since it controls where to place various tasks. In

this line, authors in [102] present a request-level OS mechanism to meter power consump-

tion of requests in the servers. However, in this work, per-task energy estimates cannot

be accurately obtained, this is why authors of this work call for finer hardware support.

PTEM and SEA cover this gap, as PTEM provides information of the past and current

information on the actual energy consumed by a task, and SEA predicts the future energy

consumption of a task with different resources allocation(for example, running in big and

LITTLE cores). The use of PTEM and SEA can enhance the energy aware scheduler

designs, instead of using current limited information obtained from CPU frequency and

idle state.

Resource Allocation

As we have illustrated in Chapters 6 and 7, when different fractions of resources are

allocated to a task, the impact on its energy consumption could be huge. Thus, with

the outcome of PTEM and SEA, one can choose for a task an optimal viable allocation

of resources to minimize its energy usage. For this purpose, we have illustrated with a

simple example in Section 6.6.2. Of course, to apply this in real systems it is needed more

dedicated studies.
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[60] K. Kedzierski, M. Moretó, F. J. Cazorla, and M. Valero. Adapting cache parti-

tioning algorithms to pseudo-lru replacement policies. In 2010 IEEE International

Symposium on Parallel and Distributed Processing, pages 1–12, 2010.

[61] G. Kestor, R. Gioiosa, D. Kerbyson, and A. Hoisie. Quantifying the energy cost

of data movement in scientific applications. In IEEE International Symposium on

Workload Characterization (IISWC), Sept 2013.

[62] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bound-

ing memory interference delay in cots-based multi-core systems. In Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2014 IEEE 20th, pages

145–154, April 2014.

[63] J. Koomey. Growth in data center electricity use 2005 to 2010. Analytics Press,

Aug. 2011.

[64] A. Kucheria. Linux support for ARM big.LITTLE. http://lwn.net/Articles/

481055/, 2012. Accessed: 2016-02-05.

[65] C. Kumar, B. Madhavi, and K. Kishore. Optimal designing approach to recursive

coding in vlsi design. In Advances in Mobile Network, Communication and its Ap-

plications (MNCAPPS), 2012 International Conference on, pages 29–33, Aug 2012.

[66] R. Kumar, V. Zyuban, and D. Tullsen. Interconnections in multi-core architectures:

Understanding mechanisms, overheads and scaling. In Proceedings of the Interna-

tional Symposium on Computer Architecture, pages 408–419, 2005.

[67] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program

analysis & transformation. In Proceedings of the International Symposium on Code



156 BIBLIOGRAPHY

Generation and Optimization: Feedback-directed and Runtime Optimization, CGO

’04, pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.

[68] C.-M. Lee, C.-K. Chen, and R.-S. Tsay. A basic-block power annotation approach

for fast and accurate embedded software power estimation. In Very Large Scale

Integration (VLSI-SoC), 2013 IFIP/IEEE 21st International Conference on, pages

118–123, Oct 2013.

[69] D. N. Lev Mukhanov and B. D. Supinski. Alea: Fine-grain energy profiling with

basic block sampling. In Proceedings of the 2015 24th International Conference on

Parallel Architectures and Compilation Techniques, 2015.

[70] Perf: Linux profiling with performance counters. https://perf.wiki.kernel.org/

index.php/Main_Page, 2015. Url date: 2015-09-28.

[71] Q. Liu, M. Moreto, J. Abella, F. Cazorla, and M. Valero. Dream: Per-task dram

energy metering in multicore systems. In Euro-Par 2014 Parallel Processing, volume

8632 of Lecture Notes in Computer Science, pages 111–123. Springer International

Publishing, 2014.

[72] Q. Liu, M. Moreto, V. Jimenez, J. Abella, F. J. Cazorla, and M. Valero. Hardware

support for accurate per-task energy metering in multicore systems. ACM Trans.

Archit. Code Optim., 10(4):34:1–34:27, Dec. 2013.

[73] Y. Liu and H. Zhu. A survey of the research on power management techniques for

high-performance systems. Softw. Pract. Exper., 40(11):943–964, Oct. 2010.

[74] D. Lucanin, I. Pietri, I. Brandic, and R. Sakellariou. A cloud controller for

performance-based pricing. In Cloud Computing (CLOUD), 2015 IEEE 8th In-

ternational Conference on, pages 155–162, June 2015.

[75] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood. Pin: Building customized program analysis tools with

dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’05, pages 190–200,

New York, NY, USA, 2005. ACM.

[76] C. Luque, M. Moreto, F. J. Cazorla, R. G. A. Buyuktosunoglu, and M. Valero. CPU

accounting in cmp processors. In IEEE Comput. Archit. Lett. (CAL), volume 9, 2009.



BIBLIOGRAPHY 157

[77] C. Luque, M. Moreto, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu, and M. Valero.

Cpu accounting for multicore processors. IEEE Trans. Comput., 161, 2012.

[78] C. Luque, M. Moreto, F. J. Cazorla, and M. Valero. Fair cpu time accounting in

cmp&plus;smt processors. ACM Trans. Archit. Code Optim., 9(4):50:1–50:25, Jan.

2013.

[79] J. L. Manferdelli. The many-core inflection point for mass market com-

puter systems. http://www.ctwatch.org/quarterly/articles/2007/02/

the-many-core-inflection-point-for-mass-market-computer-systems/,

2007. Accessed: 2016-02-05.

[80] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up: Increas-

ing utilization in modern warehouse scale computers via sensible co-locations. In

Proceedings of the 44th Annual IEEE/ACM International Symposium on Microar-

chitecture, pages 248–259, 2011.

[81] J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. Contention aware execu-

tion: Online contention detection and response. In Proceedings of the 8th Annual

IEEE/ACM International Symposium on Code Generation and Optimization, pages

257–265, 2010.

[82] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. C. Snoeren,

and R. K. Gupta. Evaluating the effectiveness of model-based power characteriza-

tion. In USENIX annual technical conference, pages 12–12, 2011.

[83] J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and

W. Wang. The weather research and forecast model: software architecture and

performance. In 11th Workshop on the Use of High Performance Computing in

Meteorology, Reading, 2004.

[84] Micron. Calculating memory system power for DDR3. Micron Technical Notes,

2007.

[85] M. Monchiero, R. Canal, and A. Gonzalez. Power/performance/thermal design-

space exploration for multicore architectures. Parallel and Distributed Systems,

IEEE Transactions on, 19(5):666–681, May 2008.

[86] M. Moreto, F. Cazorla, A. Ramirez, and M. Valero. MLP-aware dynamic cache par-

titioning. In Proceedings of the 3rd International Conference on High Performance

Embedded Architectures and Compilers, pages 337–352, 2008.



158 BIBLIOGRAPHY

[87] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTi 6.0: A tool to

understand large caches. HP Tech Report HPL-2009-85, 2009.

[88] S. Naffziger, B. Stackhouse, T. Grutkowski, D. Josephson, J. Desai, E. Alon, and

M. Horowitz. The implementation of a 2-core multi-threaded itanium family pro-

cessor. IEEE Journal of Solid-State Circuits, pages 182–183, 2005.

[89] U. Nawathe, M. Hassan, L. Warriner, K. Yen, D. Greenhill, A. Kumar, and H. Park.

Implementation of an 8-core, 64-thread, power-efficient sparc server on a chip. IEEE

Journal of Solid-State Circuits,, 43(1):6–20, 2008.

[90] Nokia. Energy profiler. http://nokia-energy-profiler.en.softonic.com/

symbian, 2012. Accessed: 2016-02-05.

[91] P. R. Panda, S. Roy, S. Chandrasekaran, N. Sharma, J. Kaur, S. K. Kandalam, and

N. N. High level energy modeling of controller logic in data caches. In Proceedings

of the 24th Edition of the Great Lakes Symposium on VLSI, GLSVLSI ’14, pages

45–50, New York, NY, USA, 2014. ACM.

[92] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang. Fine-grained power

modeling for smartphones using system call tracing. In EuroSys, pages 153–168,

2011.

[93] P. Petoumenos, G. Psychou, S. Kaxiras, J. Cebrian Gonzalez, and J. Aragon.

MLP-aware instruction queue resizing: The key to power-efficient performance. In

C. Meller-Schloer, W. Karl, and S. Yehia, editors, Architecture of Computing Systems

- ARCS 2010, volume 5974 of Lecture Notes in Computer Science, pages 113–125.

Springer Berlin Heidelberg, 2010.

[94] A. Phansalkar, A. Joshi, and L. K. John. Analysis of redundancy and applica-

tion balance in the SPEC CPU2006 benchmark suite. In ACM/IEEE International

Symposium on Computer Architecture (ISCA), 2007.

[95] K. K. Pusukuri, D. Vengerov, and A. Fedorova. A methodology for developing simple

and robust power models using performance monitoring events. In Annual Workshop

on the Interaction between Operating Systems and Computer Architecture, 2009.

[96] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-overhead,

high-performance, runtime mechanism to partition shared caches. In 39th Interna-

tional Symposium on Microarchitecture., pages 423–432, 2006.



BIBLIOGRAPHY 159

[97] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt. Google-wide profiling:

A continuous profiling infrastructure for data centers. IEEE Micro, 30(4):65–79,

July 2010.

[98] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A cycle accurate memory

system simulator. Computer Architecture Letters, 10(1):16–19, Jan 2011.

[99] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann. Power

management architecture of the 2nd generation intel core microarchitecture, formerly

codenamed sandy bridge. In Hot Chip 23rd symposium, 2011.

[100] E. Salminen, T. Kangas, V. Lahtinen, J. Riihimäki, K. Kuusilinna, and
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