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ABSTRACT 

 

The environmental and economic benefits related to the reduction of both carbon dioxide 

emission and transmission losses have made distributed renewable generation systems became a 

competitive solution for future power systems. In this context, Microgrids (MG) are considered 

as the key building blocks of smart grids and have aroused great attention in the last decade for 

their potential and the impact they may have in the coming future. The MG concept has 

captured great attention in the last years since it can be considered one of the most suitable 

alternatives for integration of distributed generation units in the utility grid. However, this 

integration involves some challenges to deal with especially when penetration of Renewable 

Energy Sources (RES) into the distribution network is increased. Therefore, an effective Energy 

Management System (EMS) is required to ensure optimal energy utilization within the MG, 

consequently, facilitating both the grid integration and operator control. In this regard, the EMS 

strategy design depends on the application, MG power architecture, and the power management 

capability of the MG elements. 

This dissertation research focuses on the design of different EMS strategies based on Fuzzy 

Logic Control (FLC) for a residential grid-connected electro-thermal MG including renewable 

power generation (i.e. photovoltaic and wind turbine generators) and storage capability (i.e. 

battery bank and water storage tank). The main goal of the FLC-based EMS strategies is to 

minimize the grid power fluctuations while keeping the battery State-of-Charge (SOC) within 

secure limits. In order to accomplish this goal, the controller design parameters, such as 

membership functions and rule-base, of the FLC-based EMS strategies, are adjusted to optimize 

a pre-defined set of quality criteria of the MG behavior. 

The analysis and design of the FLC-based EMS strategies for electrical and electro-thermal MG 

power architectures are developed considering two different scenarios. A first scenario where 

the MG power forecasting is not provided and a second scenario where the forecast of 

generation power and load demand are considered. A comparison with the different EMS 

strategies is presented in simulation level, whereas the features of the enhanced FLC-based 

EMS strategies are experimentally tested on a real residential microgrid implemented at the 

Public University of Pamplona. 





 

xi 
 

RESUMEN 

 

Este estudio presenta el diseño de diferentes estrategias de gestión energética basadas en un 

controlador difuso para una microrred electro-térmica residencial conectada a la red eléctrica 

compuesta por generadores de energía renovable (solar y eólico) y elementos de 

almacenamiento de energía (banco de baterías y tanque de almacenamiento de agua). El 

objetivo principal de las estrategias de gestión es reducir los picos y fluctuaciones de potencia 

en el perfil de potencia intercambiado con la red eléctrica y preservar la vida útil del sistema de 

almacenamiento.  

Se presenta una revisión del estado del arte de estudios anteriores que buscan este objetivo. Se 

muestra el análisis de dos arquitecturas de microrred. La primera arquitectura consiste en una 

microrred eléctrica compuesta fuentes de energía renovables, sistema de almacenamiento de 

energía y el consumo eléctrico de una vivienda. La segunda arquitectura consiste en una 

microrred electro-térmica que contiene los elementos de la microrred eléctrica e incluye 

adicionalmente generadores térmicos y el consumo térmico de la vivienda.  

Con el objetivo de medir la eficiencia de las diferentes estrategias de gestión, se presenta un 

conjunto de criterios de evaluación que analizan la calidad del perfil de potencia intercambiado 

con la red eléctrica obtenido mediante las diferentes estrategias de gestión energética. Estos 

criterios de calidad son utilizados adicionalmente para la optimización de parámetros de los 

controladores difusos, lo cual se realiza mediante un proceso de aprendizaje fuera de línea que 

considera los datos históricos del comportamiento de la microrred.  

La comparación entre las diferentes estrategias de gestión energética se realiza mediante 

simulación, utilizando los datos reales de generación y consumo adquiridos en la Universidad 

Pública de Navarra durante el período comprendido entre Julio 2013 y Julio 2014. El diseño de 

las estrategias de gestión energética para la arquitectura de microrred eléctrica supone dos 

posibles escenarios, el primer escenario no considera la previsión de consumo y generación de 

la microrred, y el segundo escenario si considera esta previsión.  

Las prestaciones de las estrategias basadas en control difuso para cada uno de estos escenarios 

son validadas experimentalmente en condiciones reales en la microrred de la Universidad 

Pública de Navarra. Finalmente, se presenta el análisis de las estrategias de gestión basadas en 

control difuso empleadas a la arquitectura de microrred electro-térmica. La comparación, 

mediante simulación, con otras estrategias de gestión aplicadas a la misma arquitectura ha 

demostrado el correcto desempeño de las estrategias desarrolladas basadas en control difuso. 
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Constants 

A  WT rotor swept area 

DOD  Maximum battery Depth of Discharge 

∆T  Integration period 

fi, ff  Initial and final frequency limits for computing PPV criterion 

GSTC  Incident irradiance under STC 

γ Power temperature coefficient 

k Maximum power assigned by the controller output of the fuzzy ERoC strategy 

kB Maximum power assigned by the controller output of the fuzzy NPT strategy 

ke  Proportional gain of the battery control loop 

kT  Thermal conductivity of the water storage tank 

L  Length of the water storage tank 

M  Number of samples in one day 

M3  Number of samples in 3-hours 

M12  Number of samples in 12-hours 

m  Molar mass of the air 

N  Number of samples in a year 

p  Atmospheric pressure 

Pe  Maximum forecast error 

PSTC  Output power of PV array under STC 

R  Universal gas constant 

R1  Inner radius of the water storage tank 

R2  Outer radius of the water storage tank 

ρ Air density 

SOCMIN  Minimum battery SOC allowed 
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SOCREF  Battery SOC reference value 
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Z  WT hub-height 
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CBAT  Rated battery capacity 

CP  Specific heat capacity of water 

Cp,WT  Power coefficient of the WT 

∆Ei  Energy evolution of a power variable Pi 

∆SOC  Battery SOC variation during Ts 

∆TWD  Water temperature variation during Ts 

e  Battery capacity status respect to its half-rated capacity. 

ƞ  Battery efficiency 

ƞC, ƞD  Battery charge, discharge efficiencies   
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G
WHE   Annual energy supplied by the mains to the EWH 

B
WHE   Annual energy supplied by the ESS to the EWH 

G(β,α)  Incident irradiance on an inclined surface 

n, (n-1)  Current and previous samples 

AP− , AP+  Minimum and maximum value of the MG net power trend 

PAVG  Average net power profile 

ṖAVG  Microgrid energy rate-of-change over time 

ṖAVG,MAX Maximum value of ṖAVG 

ṖAVG,MIN  Minimum value of ṖAVG  

PBAT  Battery power  

PBAT,FLC  Low-frequency component of the battery power 
MG

BATP   Battery power resulting from the EMS strategy 

PCTR  Average net power of the MG through a CMA filter 

PDC  Yearly grid power profile average value 

PE  Forecast error 
3H

EP   Power forecast error of the previous 3-hours 

PFLC Output power of the FLC for the fuzzy ERoC and the fuzzy EMS-FC strategies 

PG,LF  Low-frequency component of PG 
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H
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PN, PP Minimum and maximum power assigned by the controller output of the fuzzy 

EMS-FC strategy 

POUT  Output power 

PPV  Photovoltaic power 

PPV,FC  Photovoltaic power forecast 

PSC,T  Solar thermal collector power 

PSOC  Battery power used to keep the battery SOC centered close to the 75% of the 

rated battery capacity  

PWH,E  Electric power consumed by the EWH 
B

WHP   Power supplied by the battery to the EWH     

PWT  Wind power 

PWT,FC  Wind turbine power forecast 

QDHW  Domestic hot water consumption 

QLOSS,T  Rate of energy loss from the storage tank 
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QST,T  Capacity of the water storage tank 

QWH,T  Rate of energy transferred from the EWH 

ρW  Density of water 

SOC  Battery State-of-Charge 

SOCAVG  Average value of the battery SOC 
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Chapter 1  
Introduction and objectives 

1.1. Introduction 

The growing demand of energy, derived from worldwide economic growth and development, 

has caused the increase of energy in the last 40 years, as it can be seen in Fig. 1.1. Moreover, as 

shown in Fig. 1.2, according to the International Energy Agency (IEA), the world Total Primary 

Energy Supply (TPES) has increased form 6100 Mtoe (i.e. million tons of oil equivalent) in the 

year 1973 to 13541 Mtoe in the year 2013 [1], which represents an increase of 122% in this 

period. 

 
Fig. 1.1. World total primary energy supply from 1971 to 2013 by fuel (Mtoe), [1] © OECD/IEA, 2015 

 
Fig. 1.2. 1973 and 2013 fuel shares of TPES, [1] © OECD/IEA, 2015 

In addition, the increasing demand of energy has led to the increase of the use of fossil fuels 

accounting the 82% of the global TPES in the year 2013 [2], which has caused the global 

concern, due to the increased greenhouse gases (GHG) resulting from this combustion (i.e. 
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carbon dioxide CO2). According to IEA the use of energy represents by far the largest source of 

GHG emissions [2]. Therefore, countries all over the world are implementing targets for GHG 

emission reduction, improved energy efficiency, and increased clean energy production [3]. 

As a result of these initiatives, the use of Renewable Energy Sources (RES) has increased in the 

last decades, being Photovoltaic (PV) and Wind power the kind of RES that has had the greatest 

growth with average annual rates of 46.6% and 24.8%, respectively, since the year 1990 [4], as 

shown in Fig. 1.3. In this regard, the IEA reports that the Organisation for Economic Co-

operation and Development (OECD) countries account for most of the world production and 

growth of PV and wind energy [4].  

 
Fig. 1.3. Annual growth rates of world renewable supply from 1990 to 2013, [4] © OECD/IEA, 2015 

In this concern, the benefits that RES (e.g. photovoltaic, wind turbines…) have exhibited in the 

last years, such as reducing the fuel consumption and the GHG emissions [5], have contributed 

with the Distributed Generation (DG) systems to become a competitive solution for the future 

power systems (i.e. Smart Grids) [6], since they can produce electrical power with less 

environmental impacts, they are easy to install, and they are highly efficient with increased 

reliability [7], [8]. However, the adaptation of the utility grid to integrate them in a distributed, 

efficient and reliable manner without excessive investment still remains a challenge [9]. 

The Microgrid (MG) concept is a quite appealing alternative for overcoming the challenges of 

integrating Distributed Energy Resources (DER) units, including RES, into power systems [10], 

[11]. In this context, MGs are emerging as an integral feature of the upcoming power systems 

shaped by the various smart grid initiatives [12].  

The concept of MG was first defined in the literature in [13] and [14] as the cluster of 

micro-sources, loads and storage systems operating as a single controllable system that can 

respond to central control signals. However, this concept has been discussed by several authors 
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[3], [11], [15]–[17]. At the present, the MG concept follows a similar philosophy that of smart 

grid one and their research will benefit the smart grid technology development [18]. 

In general, MGs are defined as low-voltage distribution network comprising loads, DG units 

and Energy Storage System (ESS) (e.g. batteries, flywheels, ultra-capacitors…), that are 

connected to the mains at a single Point of Common Coupling (PCC) [15], [19], and that 

include an Energy Management System (EMS) associated, which is responsible for the reliable, 

secure and economic operation of the MG [10], [20]. MGs are capable to operate in both grid-

connected and stand-alone modes [14], [16]. According to [21], in grid-connected mode, the 

MG adjusts power balance of supply and demand by purchasing or selling power to the main 

grid in order to maximize operational benefits [22], [23]. Conversely, in stand-alone mode, 

where the MG is separated from the distribution network, the MG is in charge of keeping a 

reliable power supply to customers [24].      

The EMS is in charge of controlling the power fluxes among the MG elements to reach a set of 

predefined objectives such as minimizing the MG operating costs [25], [26] or maximizing the 

revenues according to DG’ bids and electricity market price [21]. Additionally, the EMS design 

should take into account the MG power architecture and, in particular, the power management 

capability of the elements within the MG (i.e. which sources, loads and storage elements can be 

controlled). Once the power architecture and the predefined objectives are known, the EMS 

design can be undertaken by applying different methods [8], [10], [12], [20], [27]–[30].  

In this regard, there is a wide variety of works handling different scenarios in terms of power 

architectures, objectives and methods. For instance in [31] an EMS strategy is designed by 

using local prediction and local forecasting as well as Stochastic Dynamic Programming (SDP) 

to control and extend the lifetime of an ESS included in a grid-connected MG with diesel an 

renewable generation. Moreover, in [32] the design of the EMS strategy focuses on controlling 

through a predictive control technique the ESS to compensate the hourly deviations of a 

forecasted energy plan in a grid-connected MG. 

Other studies consider scenarios with more degrees of freedom where the EMS drives different 

storage elements (e.g. batteries, fuel cells…), controllable loads (e.g. electrical load 

management, heat pumps…) or a combination of both as in [22], [33]–[37], to carry out 

Demand Side Management (DSM) and Demand Response (DR) strategies. The control methods 

used in this case are usually sophisticated as Model Predictive Control (MPC) and, include both 

generation and demand forecasting as in [38], [39]. 

In addition, Fuzzy Logic Control (FLC) has also been applied to the design of EMS for both 

stand-alone and grid-connected modes. For instance, [40]–[42] presents a fuzzy-based EMS 
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applied to stand-alone MG, whereas [43] presents an EMS with fuzzy control for a DC MG, 

where the FLC is designed for both prioritizing selling additional electricity generated by 

Renewable Energy Sources (RES) and maintaining the battery State of Charge (SOC) above 

50% to extend its life. Moreover, [44] presents an EMS where the FLC considers the evolution 

of the prices during one day, the energy demand, the production and the time of the day in order 

to ensure an affordable grid. 

It can be noticed form the literature that smoothing the power exchanged with the grid is 

generally not addressed as the main objective of the EMS strategy, since most of the studies 

focus on the economic achievement of the MG. However, new regulations for grid-connected 

systems with RES [45] require the control of the ramp-rates of the power generation and the 

quality support of the mains [46]. Thus, smoothing the grid power profile becomes an additional 

challenge for the EMS. 

This new challenge, i.e., smoothing the grid power profile, can be considered a suitable solution 

in a residential MG scenario facilitating the grid operators control and consequently the 

penetration of RES into the distribution network. In addition, the grid power profile control 

allows residential consumers generate their own energy causing the minimization of the amount 

of energy consumed from the utility grid, thus, reducing their electricity bill [47]. In this 

concern, the studies developed in [36], [37], [48]–[57] focus on minimizing the power peaks 

and fluctuations of the power exchanged with the grid. 

The first approach to smooth the power profile exchanged with the grid is performed by the 

Simple Moving Average (SMA) strategy [49]. This strategy uses a Low Pass Filter (LPF) to 

separate the low- and high-frequency components of the grid power profile via a simple moving 

average filter with a window size of one day [36]. Thus, the high-frequency component is 

handled by the ESS and the low-frequency component is exchanged with the grid. However, 

this strategy does not consider the state-of-Charge (SOC) of the ESS, causing the operation of 

the ESS outside secure limits compromising its lifetime.  

Alternatively, [50] suggests an EMS strategy design based on an heuristic knowledge of the 

desired behavior of the MG, where the amount of power assigned to the grid and to the storage 

system is computed by means of heuristically adjustable analytical expressions involving the 

power balance between consumption and generation as well as the battery SOC as main 

variables. This strategy reduces the fluctuations of the power exchange with the grid with 

respect the SMA strategy. However, it leads to a highly fluctuating grid power profile. 

This heuristic knowledge suggests the use of FLC for the design of the EMS strategy in a 

residential grid-connected scenario. In this regard, fuzzy logic provides a formal methodology 
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for representing, manipulating, computing, and implementing a human’s heuristic knowledge 

about how to control a system [58], [59]. In addition, it is a powerful control technique capable 

of dealing with the imprecisions and nonlinearity of complex systems, that can be based on 

experience of the user about the system behavior rather than the mathematical model of the 

system as in the traditional control theory [60], [61].  

In this concern, considering the same inputs variables as in [50], the author presented in [51] an 

EMS strategy based on FLC, which includes the design of a two-input one-output FLC and 

25-rules, which slightly improves the battery SOC and the grid power profile obtained in [50]. 

This study presented a detailed description for the design of the Membership Functions (MF) 

and rule-base, which parameters such as number of MFs per input, mapping, and dynamic range 

were adjusted to optimize a set of quality criteria of the MG behavior through an off-line 

learning-process simulation [54]. 

Furthermore, using the same design methodology, a new EMS based on FLC is presented in 

[52], this design improves the results obtained in [51] through the inclusion of supplementary 

information into the FLC. This new design was considering the MG Net Power Trend (NPT) as 

an additional input of the FLC, resulting in a 50-rules FLC. Even though the results evidence a 

low-frequency grid power profile with minimum fluctuations, the new input increases the 

controller complexity [54]. 

Therefore, with the aim of improving the aforementioned designs as well as simplifying the 

FLC complexity (i.e. to reduce the controller inputs number and its rule-base), an enhanced 

EMS strategy based on FLC of two inputs, one output and 25 rules is presented by the author in  

[53] and an extended version including experimental validation results is presented in [54]. The 

key factor of the improved design is to consider the MG Energy Rate-of-Change (ERoC) as a 

FLC input in order to anticipate the system behavior. This design allows quick reaction of the 

EMS against the MG energy changes in order to set the battery SOC close to the 75% of the 

rated battery capacity and smoothing the grid power profile. 

As aforementioned, the increase of both number of controllable elements within the MG and the 

information handled by the EMS strategy leads to the increase of the available degrees of 

freedom for the MG control, which facilitates the improvement of the grid power profile [50]. 

For instance, [37] develops a DR coordination control algorithm that uses controllable resources 

and ESS to compensate power fluctuations produced by RES to provide tie-line services.  

In addition, [50] presents an EMS strategy for an electro-thermal MG comprising of RES, ESS 

and thermal elements such as solar thermal collectors and Electric Water Heater (EWH). 

Moreover, following the same procedure than [51], the author presents in [55], [56] a 
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fuzzy-based EMS strategy for an electro-thermal MG, where results slightly improve to those 

presented in [50]. Furthermore, an improved strategy for that seen in [50], [51] is designed in 

[36] which improves significantly the power profile exchanged with the grid by the use of both 

DSM and a variable battery SOC with the purpose of compensating seasonal fluctuations of the 

MG net power. Finally, to directly address the problems produced by previous strategies, [57] 

presents an enhanced EMS strategy, which uses a Central Moving Average (CMA) filter, the 

cumulative forecast error, and the battery SOC to minimize the fluctuation in the grid power 

profile. 

This dissertation presents the analysis, design, and comparison of the research work carried out 

by the author and partly referred in the publications cited above for smoothing the power profile 

exchanged with the grid of a residential grid-connected MG. Moreover, presents an enhanced 

EMS design based on FLC and microgrid power forecasting for conducting the same objective. 

In addition, this dissertation presents the experimental results achieved by the fuzzy-based EMS 

strategies, which were obtained in the MG installed at the Public University of Navarre (UPNa). 

Finally, presents the analysis and design of the improved fuzzy EMS strategies applied to an 

electro-thermal MG scenario. 

1.2. Dissertation aim and objectives 

1.2.1. Aim  

The aim of this research is the design of energy management strategies based on Fuzzy Logic 

Control for smoothing the grid power profile of a residential grid-connected microgrid including 

renewable energy sources, energy storage system, and electrical and thermal load demand. 

1.2.2. Objectives  

The following objectives have been defined in order to achieve the aim cited above: 

• Definition of a set of quality criteria for quantifying the improvement of the grid power 

profile achieved through an EMS strategy. 

• Inclusion of the information related with the power fluctuations within the MG into the 

EMS strategy. 

• Analysis of the effect of using generation and demand forecasts on the power profile 

exchanged with the grid. 

• Simulation comparison according to the defined quality criteria of the grid power 

profile resulting from the fuzzy-based EMS designed strategies. 
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• Experimental validation in a real MG of several fuzzy-based EMS designed strategies. 

• Analysis of the extension of the FLC EMS strategies to an electro-thermal MG scenario. 

1.3. Dissertation outline 

This dissertation research work is organized as follows: 

Chapter 2 describes the residential microgrid architectures under study. It also presents the 

complete description the elements of the MG installed at UPNa. In addition, it presents the 

mathematical models of the main elements of the MG such as RES and ESS. Finally, it includes 

the recorded data of power generation and load demand for the year under analysis. 

Chapter 3 presents on the one hand the problem formulation to solve and defines a set of energy 

management quality criteria, which are used to quantify the improvement of an EMS strategy. 

On the other hand it presents the analysis and design of Net Power Trend-based (NPT) and 

Energy Rate of Change (ERoC) FLC-based strategies. Subsequently, the chapter includes a 

simulation comparison among the features of SMA, NPT and ERoC strategies. The 

experimental validation of the improved fuzzy-based EMS ERoC strategy is presented at the 

end of this chapter. 

Chapter 4 presents the analysis and design of an enhanced fuzzy-based EMS strategy based on 

MG power forecasting (i.e. fuzzy EMS-FC). It describes the forecasting method used to 

estimate the power generation and load demand, which are based on weather forecasting and 

persistence method, respectively. It also presents the simulation results and comparison with the 

EMS strategies described in Chapter 3. Finally, the chapter concludes with the experimental 

validation of the fuzzy-based EMS strategy based on MG power forecasting. 

Chapter 5 presents the design extension of the fuzzy EMS strategies applied to an 

electro-thermal MG scenario. Simulation results and comparison of the fuzzy ERoC and fuzzy 

EMS-FC strategies in an electro-thermal MG are included at the end of the chapter. 

Finally, Chapter 6 summarizes the main conclusions of this study. It also suggests possible 

future lines to pursue this research. 
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Chapter 2  
Residential grid-connected microgrid description 

This Chapter describes the electrical and electro-thermal microgrids of a residential 

grid-connected MG under study installed at UPNa. This description includes both, the 

architectures and the information of each physical element of the microgrid, which will be 

further used in the experimental validations of the several of the EMS strategies designed in 

Chapter 3 and 4. 

In addition, this Chapter presents the mathematical models of renewable generators and ESS 

which are respectively used to calculate the power generation forecast and the state-of-charge of 

the storage elements resulting from the EMS. 

Finally, the Chapter presents the records of MG power generation and load demand for the year 

under study, which were measured and recorded at UPNa. These data will be used to compare 

the different energy management strategies described in Chapters 3 and 4. 

2.1. Electric and Electro-thermal microgrid configuration 

2.1.1. Electric microgrid description  

The first architecture under study is a residential grid-connected MG [52], [54], [53], [62], [63], 

[51], [50], [57], which includes an Hybrid Renewable Energy System (HRES), a domestic 

demand and an ESS. The MG configuration is shown in Fig. 2.1 and includes the following 

elements: 

• An HRES, which includes a Photovoltaic Generator (PV) of 6 kWp and a small Wind 

Turbine (WT) of 6 kW. 

• An ESS, which consists of a lead-acid battery bank with a rated capacity of 72 kWh. 

• A domestic load demand, which involves typical electrical loads (e.g. electrical 

appliances, lighting…) with a rated power of 7 kW. 
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Fig. 2.1. First architecture, residential grid-connected microgrid  

From Fig. 2.1, on the supply side, PPV and PWT represent the photovoltaic and wind power 

generation, respectively, PBAT represents the power delivered/absorbed by the battery, and PGRID 

represents the power delivered/injected by/to the mains. On the demand side, PLOAD stands for 

the load power demand required by the electric loads. 

Note that the power variables involved in Fig. 2.1 are considered positive when the power flows 

according to the direction of the corresponding arrows. Therefore, the power generated by both 

renewable generators, PPV and PWT, and the power consumed by the electric loads, PLOAD, are 

always positive. Additionally, PBAT is considered positive when the battery injects power to the 

MG (i.e. discharging process) and it is considered negative when the battery absorbs power 

from the MG (i.e. charging process). Finally, PGRID is considered positive when the grid delivers 

power to the MG and it is negative when the grid absorbs power from the MG. A complete 

description of the elements belonging to the MG is presented in section 2.2. 

Given the configuration shown in Fig. 2.1, the power exchanged with the mains, PGRID, could be 

defined as follows: 

 ,GRID LOAD GEN BATP P P P= − −   (2.1) 

 ,GEN PV WTP P P= +   (2.2) 

being PGEN the total renewable power generation in the MG. 

In addition, defining the MG net power (i.e. PLG) as the difference between consumption and 

generation power, the grid power profile for the first architecture expressed in (2.1) can be 

rewritten as: 
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 ,LG LOAD GENP P P= −   (2.3) 

 .GRID LG BATP P P= −   (2.4) 

2.1.2. Electro-thermal microgrid description  

The second architecture under study is a residential grid-connected electro-thermal MG [50], 

[55], [56], [36], which comprises the elements described in the first architecture and includes a 

Domestic Hot Water (DHW) system consisting of an Electric Water Heater (EWH) of 2 kW, a 

flat plate solar thermal collector array of 2 kW, and a thermal storage system represented by a 

water storage tank with a capacity of 800 liters. The electro-thermal MG configuration is shown 

in Fig. 2.2. 

 

Fig. 2.2. Second architecture, residential grid-connected electro-thermal microgrid  

where PWH,E is the power required by the EWH to maintain the water temperature in the storage 

tank between 45 °C and 65 °C, QWH,T is the rate of energy transferred from the EWH, QSC is the 

rate of energy collected from the solar thermal collectors, and QDHW is the domestic hot water 

consumption.  
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Similarly to the first architecture, the power variables involved in Fig. 2.2 are considered 

positive when the power flows according to the direction of the corresponding arrows. Note that 

the analysis of an electro-thermal MG implies the analysis of all thermal variables involved in 

the process of water heating to supply the DHW demand. Therefore, besides the thermal 

variables depicted in Fig. 2.2 (i.e. QWH,T, QSC, and QDHW) the complete analysis should consider 

the thermal losses, QLOSS,T. The description of the thermal variables used in this architecture is 

presented in section 2.3. 

Finally, according to the configuration shown in Fig. 2.2, the power exchanged with the mains, 

PGRID, and the MG net power for the second architecture are defined as follows: 

 , ,GRID LOAD GEN BAT WH EP P P P P= − − +   (2.5) 

 , ,LG LOAD GEN WH EP P P P= − +   (2.6) 

 .GRID LG BATP P P= −   (2.7) 

2.2. UPNa microgrid configuration 

The configuration of the UPNa MG is shown in Fig. 2.3 and includes a renewable generation 

system, a programmable load, an energy storage system, a power converter, a weather station, 

and a supervisory and control station [54], [57], [36], [46].  Each component is described below: 

 
Fig. 2.3. UPNa microgrid configuration, component description and bus connections, © 2016, IEEE 
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2.2.1. Renewable generation system  

The RES consists of a photovoltaic and wind generators shown in Fig. 2.4. The photovoltaic 

generator is composed by 48 BP585 [64] solar panels coupled in four strings of 12 panels 

connected in series. It has a rated power of 4080 W, and is mounted facing south and tilted 30º 

on the roof of the Renewable Energy Laboratory at UPNa. 

The wind generator used in the MG at UPNa is a Bornay INCLIN6000 [65] small wind turbine 

with a rated power of 6 kW located next to the UPNa Renewable Energy Laboratory. 

  

Fig. 2.4. Photovoltaic generator and wind turbine at UPNa 

2.2.2. Programmable load  

The load demand profile is physically emulated through an electronic load 

AMREL PLA7.5K-600-400 [66], which uses the sequence of load consumption provided in real 

time by the simulation station. This electronic load is physically connected to the supervisory 

and control station through the RS-485 communication bus. The programmable load and the 

simulation station are shown in Fig. 2.5. 

 

Fig. 2.5. Programmable load AMREL PLA7.5K-600-400 and simulation station 
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2.2.3. Energy storage system 

The ESS includes 120 FIAMM SMG300 [67] stationary lead-acid cells connected in series, as 

shown in Fig. 2.6. Each cell has a rated voltage of 2 V and a C10 capacity of 300 Ah resulting in 

a total capacity of 72 kWh. 

 

Fig. 2.6. Lead-acid battery bank 

2.2.4. Power converter and switch cabinet 

The MG at UPNa uses a modified INGECON® HYBRID MS30 [68] power converter, shown 

in Fig. 2.7, which includes a wind turbine power conversion module, a battery charger and 

photovoltaic power conversion module, and an inverter module. The switch cabinet includes the 

interconnection relays used for the critical loads and for connection to the grid, and the power 

analyzers used for monitoring the main electrical variables (e.g. voltage, current, and frequency) 

of the renewable generators, the load, the inverter output, the battery and the mains.  

 

Fig. 2.7. Hybrid power converter INGECON® HYBRID MS30 and switch cabinet which includes the control 
relays, power analyzers and digital indicators. 
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2.2.5. Weather station 

The weather station is used to measure the environmental conditions of the different elements of 

the MG. The weather station is distributed along the MG and is composed by an irradiance 

calibrated cell shown in Fig. 2.8(a), three anemometer, as the one shown in Fig. 2.8(b), two of 

them located at the wind turbine and the other one located next to the photovoltaic array, four 

Pt-100 sensors, as shown in Fig. 2.8(c), used for measuring the outdoor, the PV panel, the 

battery and the battery room temperatures [54]. 

 

(a) 

 

(b) 

 

(c) 

Fig. 2.8. Components of the weather station (a) irradiance calibrated cell, (b) anemometer, and (c) Pt-100 
temperature sensors. 

2.2.6. Supervisory and control station 

The supervisory and control station includes the National Instruments PCI eXtensions for 

Instrumentation (NI-PXI) [69], and a general purpose PC.  

The NI-PXI, shown in Fig. 2.9(a), uses four modules to control and acquire data, in real time 

(i.e. every second), from the power analyzers of each element of the MG. The modules used by 

the NI-PXI are the following: NI PXI-8102 Embedded Controller, NI PXI-8433/4 Serial 

Interface (RS-485 Communication), NI PXI-8231 Gigabit Ethernet Interface, and NI PXI-6238 

Analog I/O data acquisition board [54]. 

The general purpose PC is used as the MG user interface and to display the historic data of the 

variables acquired through the NI-PXI as shown in Fig. 2.9(b), (c) and (d). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2.9. Supervisory and control station (a) NI-PXI frontal view, (b) monitoring and control station, (c) user 
interface, and (d) historic data acquired. 

2.3. Microgrid components models 

2.3.1. Photovoltaic model 

Photovoltaic energy is based on the direct conversion of light into electricity. This process 

consists in the use of different materials, which absorb photons of light to generate electron 

charges [70], [71].  

Irradiance is defined as the density of power radiation from the sun incident on the surface. It is 

given in W/m2. Despite the solar radiation density at the outer atmosphere is 1373 kW/m2 only a 

peak density of 1000 W/m2 is the final incident sunlight on the earth surface, which is known as 

standard irradiance (GSTC). Irradiation or insolation is defined as the solar radiation energy 

received on a given surface area in a given time (i.e. the time integral of the irradiance) [70]. It 

is given in Wh/m2. Both definitions are shown in Fig. 2.10. 
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Fig. 2.10. Solar irradiance and solar irradiation 

The basic element of a photovoltaic system is the solar cell, which consists of a PN junction 

molded in a semiconductor material. The solar cells convert the sunlight energy in DC current. 

The typical semiconductor used to build PV cells is Silicon (Si). There are numerous types of 

solar material cells, for instance, monocrystalline silicon, polycrystalline cells, thin films and 

organic cells, whose give different efficiencies and has different cost. 

A PV module consists of several solar cells circuits sealed in an environmentally protective 

laminate. A PV panel includes one or more PV modules, connected in series and/or in parallel, 

grouped together on a common support structure. A PV array is a complete power generation 

system comprising some number of PV modules and panels as shown in Fig. 2.11.  

 

Fig. 2.11. Solar cell, PV module, PV panel and PV array 

In this concern, the power supplied by a PV generator depends on different variables including 

the type of material, temperature and solar radiation incident on the surface of the modules. The 

output power of the PV array can be expressed as follows [71]–[73]: 
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where PSTC is the output power of the PV array under Standard Test Conditions (STC), G(β,α) 

is the incident irradiance in the plane of the panels, GSTC is incident irradiance under STC, γ is 

the power temperature coefficient, TSTC is the temperature under STC, and TC is the cell 

temperature in ºC, which can be evaluated using as follows [71], [74]: 

 ( ) ( ) ( ),
273 20 ,

800C a

G
T T NOCT

β a
= − + ⋅ −   (2.9) 

where Ta is the ambient temperature in K, and NOCT is the Nominal Operating Cell 

Temperature in °C.  

Note that the values of PSTC, γ and NOCT are provided by the panel manufacturer. In contrast, 

the local observatories usually provide the weather report of incident solar irradiance on a 

horizontal plane G0. Thus, in order to obtain the photovoltaic power generation by means of 

(2.8) and (2.9) it is necessary to transform the solar irradiance on a horizontal plane, G0, into the 

solar irradiance on an tilted surface, G(β,α). In his regard, the process described in [75] can be 

used to perform this transformation. 

2.3.2. Wind turbine model 

The energy available in wind is essentially the kinetic energy of large masses of air moving over 

the earth’s surface [76]. The kinetic energy is transformed by the blades of the wind turbine into 

mechanical or electrical energy, depending on the end use. Therefore, for electrical applications 

the output power of a wind turbine can be estimated as follows [77], [78]:  

 3
, ( )

1 ,
2WT p WT ZP A C v= ⋅ρ⋅ ⋅ ⋅   (2.10) 

where PWT is the output power of the wind turbine, ρ is the air density, v(Z) is the wind speed at 

the wind turbine hub-height, A is the rotor swept area and, CP,WT is the power coefficient of the 

wind turbine. Note that A and CP,WT are provided by the WT manufacturer. 

Equation (2.10) evidences that the available power of a wind turbine could be affected by the 

wind speed, which is most prominent given its cubic relationship with the power, the rotor 

swept area, the power coefficient of the wind turbine and the air density. In this regard, factors 

such as the temperature and the atmospheric pressure affect the air density. Therefore, the air 

density ρ can be written as [76]:  

 ,
a

m p
T R

⋅
ρ =

⋅
  (2.11) 
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where m is the molar mass of the air, p is the atmospheric pressure and, R is the universal gas 

constant. 

Moreover, wind speeds provided by the local observatories are usually measured at a height of 

10 m above the ground. Therefore, the measured wind speed has to be extrapolated to the wind 

turbine hub-height, thus, wind turbines usually operate at a hub-height greater than 10 m. For 

this purpose, the relationship for the frictional terrain resistances, the height of the measured 

data and the wind turbine hub-height is expressed as follows [76], [78], [79]: 

 
( )

( )
0

( ) ( )
0

ln
,

lnREFZ Z
REF

Z Z
v v

Z Z
= ⋅   (2.12) 

where v(ZREF) is the wind speed at ZREF height, ZREF is the height at the measured data, Z is the 

turbine hub-height, and Z0 is the roughness index of the terrain [80]. 

2.3.3. Battery bank model  

The ESS is one of the principal components to be considered for a successful operation of the 

MG. The ESS is used to balance out the irregularities and to improve the grid power quality. 

The ESS acts as a buffer or back-up storing the energy that can then be used to provide 

electricity during the period of high demand [71], [12]. 

The Battery Energy Storage System (BEES) stores energy as a charge in electrochemical cells, 

where the desired capacity and voltage can be achieved through the connection of them in series 

or parallel or both [71]. In this context, lead-acid batteries are eminently suitable for medium- 

and large-scale energy storage operations, because they offer an acceptable combination of 

performance parameters at a cost that is substantially below of those of an alternative system 

[81].  

Typically lead-acid batteries have columbic (Ah) efficiencies around 85% and energy (Wh) 

efficiencies of around 70% over most of the SOC range, and they exhibit a self-discharge of 

between 1% and 5% per month at a temperature of 20 °C. The practical operational life of 

lead-acid battery depends on the Depth of Discharge (DOD) range and temperature to which is 

exposed. In addition, the batteries operation over a reduced range of DOD generally leads to a 

longer cycle-life than service over a wide range [81]. 

The battery SOC gives the estimation about the amount of energy stored in the BESS with 

respect to the rated battery capacity. In this concern, the current battery SOC can be estimated as 

follows [52], [54], [53], [62], [63], [51], [82]: 
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 ( ) ( 1) ( ),SOC n SOC n SOC n= − − ∆   (2.13) 

where the indices n and (n-1) represent the current and the previous samples, respectively, and 

ΔSOC refers to the battery SOC variation during the sampling period Ts.  

Moreover, ΔSOC can be estimated using the general definition of energy evolution ΔEi of a 

power variable Pi during a period time ΔT. Therefore, for sampled variables and assuming equal 

integration and sampling periods (i.e. ΔT = Ts), ΔSOC can be estimated as follows [54]: 

 ( ) ( ) ,
t T

i i
t

E t P d
+∆

∆ = t t∫   (2.14) 

 
( 1)

( ) ( ) ( 1) ,
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nT
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BAT BATn T

SOC n P d P n T
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η η
∆ = ττ  = ⋅ − ⋅∫   (2.15) 

where CBAT is the rated battery capacity, and η is the battery efficiency. In general, the 

efficiency of the ESS considers different efficiencies for charging and discharging 

processes [54], [53], [83]. Therefore η is expressed as follows:  

 
1 , 0

,
, 0
D BAT

C BAT

P
P

η ∀ >
η = η ∀ <

  (2.16) 

where ηD and ηC are the battery discharge and charge efficiencies, respectively.  

The block diagram of the battery SOC estimator is shown in Fig. 2.12 [54], [53], [62], [63]. 

 
Fig. 2.12. Battery SOC estimator block diagram 

In addition, the available battery bank capacity must not be less than the minimum allowable 

capacity, SOCMIN, and must not be higher than the maximum allowable capacity, SOCMAX, [62], 

[63], [72], [82], [84]. Thus, the limitations for the SOC of lead-acid battery can be expressed as 

follows:  

 ( ) ,MIN MAXSOC SOC n SOC≤ ≤   (2.17) 

 ( )1 .MIN MAXSOC DOD SOC= − ⋅   (2.18) 

  
– + 
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This study considers a maximum DOD of 50% in order to not compromise the ESS 

lifetime [85].  

2.3.4. Solar thermal collectors model 

The solar thermal collector is a special type kind of heat exchanger that transforms solar radiant 

energy into heat, which is transfer to a fluid (i.e. usually air, water or oil) flowing through the 

collector [86], [87]. The advantages of flat-plate collectors are that they are inexpensive to 

manufacture, they collect booth beam and diffuse radiation, and they are permanently fixed in a 

position [86]. 

Since the solar collector array is not physically available in the MG at UPNa, its operation has 

been simulated by combining the meteorological data obtained through the MG weather station 

with the actual characteristics of the solar thermal collector DIUM-CL4 and assuming that the 

solar thermal collector array is facing south and tilted 30° as the PV array. In this regard, the 

rate of useful energy collected from a solar thermal collector, QSC, derived from the technical 

characteristics sheet of the solar collector is expressed as follows [55], [46]: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ]

6 5 49 7 5

3 2

,
2 10 6 10 7 10 ...

... 0, 003 0,07 8,6968 1735,5

SC WD a WD a WD a
STC

WD a WD a WD a

G
Q T T T T T T

G

T T T T T T

− − −β a
= − ⋅ ⋅ − + ⋅ ⋅ − − ⋅ ⋅ − +

+ ⋅ − − ⋅ − − ⋅ − +

   (2.19) 

being TWD the fluid temperature. 

2.3.5. Thermal storage and water storage tank temperature 

Thermal storage is one of the main parts of a solar heating, cooling, and power generating 

system, since it has several functions. For instance, it improves the use of collected solar energy 

by providing thermal capacitance to alleviate the solar availability and load mismatch, and 

improve the system response to sudden peak loads or loss of solar input [87]. 

The solar energy is usually stored in liquids, being water the most frequently used as a storage 

medium, due to is inexpensive and non-toxic [87]. In addition, this fluid can be used in 

residential MG scenarios, where the DHW demand is required. 

In the second architecture under study, the control of the temperature of the fluid should be the 

appropriate, in order to satisfy the user requirements. Therefore, the model of water temperature 

in the storage tank should consider the rate of energy produced by the solar thermal collectors, 

QSC, the capacity of the water storage tank, QSC, the rate of energy transferred from the EWH, 

QWH,T, and the rate of energy loss of the storage tank as mentioned in Chapter 2.1.2. 
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In this regard, the rate of energy loss of the storage tank can be expressed as follows [87], [88]: 

 
( ) ( ),

1 2

2( ) ,
ln

T
LOSS T WD EXT

L kQ n T T
R R

π⋅ ⋅
= ⋅ −   (2.20) 

where L is the water storage tank length (i.e. L = 2.14 m), kT is the thermal conductivity of the 

water storage tank, which is 2.4∙10-6 kW/m∙°C for a polyurethane insolation, R1 is the inner 

radius of the storage tank (i.e. R1 = 0.375 m), R2 is the outer radius of the storage tank 

(i.e. R2 = 0.475 m considering an insolation thickness of 0.1 m) [46], and TEXT is the temperature 

of the environment where the storage tank is located (i.e. TEXT = 25°C). 

Moreover, the capacity of the water storage tank can be expressed as [87], [89], [90]: 

 , ( ) ( ),ST T W P WDQ n C V T n= ρ ⋅ ⋅ ⋅D   (2.21) 

where Wρ  is the density of water (i.e. Wρ = 985.65 kg/m3), CP is the specific heat capacity of 

water (i.e. CP = 4.18 kJ/kg∙°C), V is the water storage tank volume (i.e. V = 0.8 m3), and ∆TWD is 

the water temperature variation during the sampling period Ts, which is defined as follows: 

 
( ) ( 1)( ) ,WD WD WD

WD
s

dT T n T nT n
dt T

− −
D = =   (2.22) 

where TWD (n) is the new tank temperature after time interval Ts and TWD (n-1) is the water 

temperature before the time interval Ts. 

In this concern, the energy balance of the water storage tank is given by: 

 ( ) , ,
( ) ( 1) .WD WD

W P SC WH T LOSS T DHW
s

T n T nC V Q Q Q Q
T

 − −
ρ ⋅ ⋅ ⋅ = + − − 

 
  (2.23) 

Consequently, the new temperature of the water in the storage tank could be expressed as 

follows: 

 , , ,( ) ( 1) ( ) ( ) ( ) ( ) .s
WD WD WH T SC T DHW LOSS T

W P

TT n T n Q n Q n Q n Q n
C V

 = − + ⋅ + − − ρ ⋅ ⋅
 (2.24) 

Note that the last expression assumes that the heat losses are constant in the period Ts. 



Residential grid-connected microgrid description                                                                                     23 
 
 

 
 

2.4. Generation and demand profiles 

2.4.1. Photovoltaic generation 

As mentioned in section 2.1, this study considers a PV generator of 6 kW located at the city of 

Pamplona-Spain (42°49’06”N 1°38’39”O) facing south and tilted 30°. The PV generation 

profile is obtained by means of measuring the output power from PV array every 15 minutes 

(i.e. Ts = 900 s) at the UPNa microgrid. Furthermore, for simulation purposes a scaling factor of 

5/3 is considered for PV power generation, due to the PV generator at UPNa has a peak power 

of 3.6 kWp [46]. The power generation produced by the PV array during the year under study 

ranging from July 2013 to July 2014 is presented in Fig. 2.13. 

 
Fig. 2.13. Photovoltaic power measured at UPNa microgrid 

2.4.2. Wind turbine generation 

This study considers a small WT of 6 kW located at UPNa microgrid. As well as the PV 

generator, the generation profile of the WT, shown in Fig. 2.14, is obtained by means of 

measuring the output power of the WT every 15 minutes during the year under study. 

 
Fig. 2.14. Wind turbine power measured at UPNa microgrid 
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2.4.3. Thermal generation 

The thermal generation of the residential MG is produced by a flat-plate solar collector with a 

rated power of 2 kW. The thermal generation profile, shown in Fig. 2.15, is simulated taking 

into account the meteorological data provided by the weather station of the MG at UPNa and 

considering that the solar collectors are installed with the same orientation and inclination than 

the PV array [46].  Similarly to PV and WT generators, the sampling period used to obtain the 

thermal generation profile is 15 minutes. 

 
Fig. 2.15. Rate of energy collected from the solar thermal collectors 

2.4.4. Electric load power demand 

The electrical load shown in Fig. 2.1 contemplates typical domestic loads (e.g. electrical 

appliances, lighting) and a Heating, Ventilation and Air Conditioning (HVAC) system 

comprising of a heating pump and the EWH, where the EWH supplies the thermal energy to 

cover the DHW consumption of the house. In this regard, two possible scenarios are considered 

in this study. 

The first scenario considers the first MG architecture and takes into account the load demand 

profile of the domestic loads excluding the EWH consumption. The load demand profile shown 

in Fig. 2.16(a) is obtained by means of measuring the output power of the load every 15 minutes 

during a year under study [50].  

The second scenario considers the second MG architecture and takes into account the load 

demand profile of the domestic loads including the EWH consumption (i.e. DHW 

consumption). In this scenario, the EWH operates as a passive load and it will beyond the 

control of the energy management strategy. In this context, the EWH consumption was obtained 

through a hysteresis control in order to keep mater temperature in the storage tank between 45 

°C and 65 °C [46]. The load demand profile in this scenario is shown in Fig. 2.16(b). 
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   (a)      (b) 

Fig. 2.16. Electric load demand profile (a) excluding the EWH consumption, and (b) including the EWH 
consumption 

2.4.5. Thermal load demand  

The thermal load demand (i.e. DHW) consumption profile is taken from [50], where the data 

was obtained by simulation assuming that the daily DHW demand is the same for each day 

during the year under study, as shown in Fig. 2.17. 

 

Fig. 2.17. Domestic hot water demand
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Chapter 3  
FLC-based Energy management strategies for a residential 
grid-connected electric microgrid  

This chapter presents the analysis and comparison of different energy management strategies, 

which have been developed with the purpose of smoothing the power profile exchanged with 

the grid. In order to help the comparison process, the Chapter begins by stating the problem and 

presenting a set of quality criteria to quantitatively evaluate the degree of grid power profile 

“smoothnes” resulting from the different energy management strategies. 

Then, the analysis and design of two previous approaches seeking the same goal are evaluated 

(i.e. SMA and fuzzy NPT strategies). From the conclusions of the behavior of these strategies, a 

complete design of an improved fuzzy EMS strategy based on a FLC and the MG Energy 

Rate-of-Change (ERoC) over time is presented in this Chapter. The new design includes the 

description of the optimization procedure developed in order to adjust all the parameters 

involved in the FLC design. 

The behavior of all these previous strategies is compared by means of Matlab® numerical 

simulation taking into account the real data recorded from July 2013 to July 2014 on the 

microgrid available at the UPNa described in Chapter 2. 

Finally, the experimental results of the improved fuzzy EMS strategy based on MG ERoC are 

presented at the end of the Chapter in order to confirm the feasibility of the strategy.  

3.1. Problem formulation, quality criteria and baseline values 

3.1.1. Problem formulation 

In a residential MG scenario, where RES can be easily integrated and allow residential 

consumers to generate their own energy, the grid  power profile control facilitates reducing both 

the electricity bill and the mains overload [47]. However, this integration could bring certain 

challenges to handle when penetration of RES into the distribution network increases, due to the 

stochastic nature of solar and wind generation as well as the load demand which may cause 

significant fluctuations in the grid power profile [37].  

This behavior can be seen in Fig. 3.1, which shows the grid power profile when the MG 

includes neither an ESS nor an energy management strategy [53], [57], [36]. In a MG without 

ESS (i.e. PBAT = 0), the utility grid should compensate all fluctuations produced by the RES and 
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the load demand. Hence, under this condition according to (2.4) the grid power profile is 

expressed as: 

 .GRID LGP P=   (3.1) 

  
   (a)      (b) 

Fig. 3.1. Net power profile (a) excluding the EWH consumption, and (b) including the EWH consumption 

As it can be seen, the power exchanged with the grid is highly fluctuating with significant 

power peaks, which causes the mains overload and affects the user since it will need to contract 

a higher power in order to satisfy the load demand power peaks. Therefore, the integration of an 

ESS (e.g. batteries, flywheels, ultra-capacitors…) and an efficient energy management strategy 

are required in order to minimize the overload in the distribution lines and to improve the 

system stability and its performance [91], [11].  

In this regard, the ESS is used for balancing the power demand with generation as well as to 

store energy during high generation periods to be used in the future to supply electricity during 

a period of high demand. However, the ESS cannot compensate all fluctuations produced by the 

RES (i.e. daily and seasonal fluctuations); since it would require a huge amount of storage 

capability, thus, it would be unsuitable for a residential MG scenario. Note that the BESS used 

in this study is sized to attenuate up to daily fluctuations. Therefore, the EMS strategies are 

focused on reducing the daily fluctuations produced in the MG.   

In addition, the EMS strategies should try to manage the power produced by both RES and the 

ESS in order to minimize the power injected/absorbed to/from the grid while keeping the ESS 

between secure limits. Moreover, the EMS strategies should satisfy the battery constraints at 

any time in order to preserve the battery lifetime. Therefore, in situations where the renewable 

power generation is not enough to supply the load demand and the amount of energy stored in 

the battery is very low (i.e. SOC = SOCMIN), the EMS strategies should cut off the power 

delivered by the battery to avoid deep discharges below secure limit and to preserve its lifetime. 
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Consequently, in such situations, the mains should supply the remaining power to satisfy the 

load demand causing an undesirable fluctuation in the grid power profile. The same principle 

should be considered when the battery is reaching its maximum charge to not overcharge the 

storage system (i.e. SOC = SOCMAX). Note that in residential MG scenarios reducing the grid 

power profile becomes the main goal at the moment of designing the energy management 

strategy, thus, facilitating the grid operators control, and the penetration of RES into the 

distribution network. 

In this concern, the main goal of the EMS strategy is the suitable control of the power 

delivered/injected by the mains in order to smooth the power exchanged with the grid 

(i.e. minimizing grid power fluctuations and power peaks) while keeping the battery SOC 

between secure limits.  

In order to numerically compute the degree of achievement of the aforementioned goal, a set of 

quality criteria is defined to compare the behavior of the grid power profile accomplished by the 

different EMS strategies that are described in this study. 

3.1.2. Energy management quality criteria 

The energy management quality criteria are defined in order to assess and compare the grid 

power profile behavior of an EMS strategy. In this regard, a better performance of an energy 

management strategy is considered when the resulting values of the quality criteria are 

minimized. On the basis of the evaluation criteria that have been defined in [52], [54], [53], 

[51], [50], [57], [55], [36], [46], this study considers a set of six quality criteria, which are 

considered the most representative of those presented in previous studies. These quality criteria 

are described next. 

3.1.2.1. Positive grid power peak  

The positive grid power peak, PGRID,MAX, is defined as the maximum power delivered by the 

mains during one year. 

 ( ), max .GRID MAX GRIDP P=   (3.2) 

3.1.2.2. Negative grid power peak 

The negative grid power peak, PGRID,MIN, is defined as the maximum power fed into the mains 

during one year. 

 ( ), min .GRID MIN GRIDP P=   (3.3) 
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3.1.2.3. Power Variation Range 

The Power Variation Range (PVR) criterion quantifies the effectiveness of an energy 

management strategy. It is defined as follows: 

 , ,

, ,

,GRID MAX GRID MIN

LG MAX LG MIN

P P
PVR

P P
−

=
−

  (3.4) 

where PLG,MAX and PLG,MIN are the maximum and minimum fluctuations of the MG net power.  

3.1.2.4. Maximum Power Derivative 

The Maximum Power Derivative (MPD) represents the maximum rate-of-change (i.e. the slope 

of two consecutive samples, being the sampling period Ts = 900 s) of the grid power profile in 

the year under study. The MPD criterion is expressed in W/h and it is defined as the maximum 

absolute value of the grid power slopes during one year, as follows [54]: 

 ( )max ,GRIDMPD P=    (3.5) 

 
( ) ( 1)( ) ,GRID GRID

GRID
s

P n P nP n
T

− −
=   (3.6) 

where ṖGRID is the grid power profile ramp-rate over a year and Ts is the sampling period. 

3.1.2.5. Average Power Derivative 

The Average Power Derivative (APD) criterion is defined as the absolute value, expressed in 

W/h, of the annual average value of the slopes of two consecutive samples of the grid power 

profile. It is defined as follows [54]: 

 
1

1 ( ) ,
N

GRID
n

APD P n
N =

= ∑    (3.7) 

being N the number of samples in one year. 

3.1.2.6. Power Profile Variability 

The Power Profile Variability (PPV) measures the steadiness of the grid power profile. It is 

defined as follows: 

 

2
,

,

f

i

f

GRID f
f f

DC

P
PPV

P
==
∑

  (3.8) 
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1

1 ( ),
N

DC GRID
n

P P n
N =

= ∑   (3.9) 

where PGRID,f is grid power harmonic at frequency f, fi and ff are the initial and final frequencies, 

respectively, and PDC is the yearly grid power average value.  

Note that this criterion only evaluates frequencies with variations periods of one week or less 

(i.e. Tweek = 7 days), since the energy management strategy seeks to compensate daily variations. 

Additionally, the maximum frequency of half of the sampling frequency (i.e. Nyquist 

frequency) is considered. Therefore, given the sampling period of 15 minutes, fi and ff are 

computed as: 

 61 1
1.65 10

7 24 3600i
week

f
T

−= = = ×
⋅ ⋅

 Hz (3.10) 

 41 1 900
5.56 10

2 2 2
s s

f

f T
f −= = = = ×  Hz (3.11) 

3.1.3. Reference values for comparison purposes 

In order to compare the behavior of different energy management strategies, it is necessary to 

establish a set of reference values, which are used as the baseline of comparison for the energy 

management strategies. The reference values are obtained by means of computing the quality 

criteria for the grid power profile corresponding to a MG which includes neither ESS nor an 

energy management strategy. The results are summarized in Table 3-1. 

Table 3-1 Evaluation quality criteria values (baseline values)  

EMS Strategy PG,MAX 
(kW) 

PG,MIN           
(kW) PVR MPD    

(W/h) 
APD     

(W/h) PPV 

No EMS & ESS 
excluding the EWH 

consumption 
5.75 -6.45 1.00 18468 1121 13.3 

No EMS & ESS 
Including the EWH 

consumption 
6.53 -6.45 1.00 18468 1221 5.99 

Additionally, Fig. 3.2 shows the corresponding grid power profile ramp-rates. As it will be 

evidenced in the following Chapters, the grid power profile ramp-rates are minimized by the 

energy management strategy. 
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      (a)         (b) 

Fig. 3.2. Grid power profile ramp-rates for a MG when PGRID = PLG (a) excluding the EWH consumption, and 
(b) including the EWH consumption 

3.2. Simple Moving Average Strategy 

3.2.1. Introduction 

An easy way to reduce the power fluctuations in the grid power profile is to apply a low-pass 

filter to the MG net power profile [92], [49] in order to obtain an average grid power profile 

(i.e. low-frequency grid power). A first approach to achieve this goal is the Simple Moving 

Average (SMA) strategy, which uses a simple moving average filter with a window size of 24-

hours to remove the high-frequency component of the MG net power . 

3.2.2. SMA control design 

The SMA strategy is described in [53], [57], [36]. However, for the sake of completeness and 

for comparison purposes this strategy is resumed below. 

As mentioned above, in order to smoothing the grid power profile, the SMA strategy uses a 

simple moving average filter to separate the low- and high-frequencies of the MG net power. 

Thus, the high-frequency component is exchanged with the battery, and the low-frequency 

component is exchanged with the grid according to the following expressions: 

 ,
1

1( ) ( ) ( ),
M

LG LF AVG LG
k

P n P n P n k
M =

= = −∑   (3.12) 

 , ,( ) ( ) ( ),LG HF LG LG HFP n P n P n= −   (3.13) 

 ,( ) ( ),BAT LG HFP n P n=   (3.14) 

 ,( ) ( ),GRID LG LFP n P n=   (3.15) 
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where M is the number of samples in one day (i.e. window size), PLG,LF and PLG,HF are the 

low- and high-frequency components of the MG net power PLG. Note that in this strategy PAVG is 

the average value of the last 24-hours of the MG net power. Additionally, if PBAT < 0, PLG,HF is 

absorbed the battery, if PBAT > 0, PLG,HF is delivered by the battery, if PGRID < 0, PLG,LF is injected 

to the grid, and if PGRID > 0, PLG,LF is delivered by the grid.  

The block diagram of SMA strategy is shown in Fig. 3.3 and includes a LPF used to obtain the 

low-frequency component of PLG according to (3.12) and the battery SOC estimator presented in 

Fig. 2.12, which is used to estimate the current battery SOC according to the battery bank model 

described in Chapter 2.3.3. 

 
Fig. 3.3. Simple moving average strategy (SMA) block diagram 

3.2.3. Simulation results and comparison 

The simulation results for the SMA strategy excluding the EWH consumption are shown in 

Fig. 3.4. As it can be seen, the grid power profile shown in Fig. 3.4(a), has strong power 

fluctuations, since the SMA strategy leads the battery to reach the secure limits during several 

time intervals, thus, the SOC constraints are breached (i.e. SOC < SOCMIN or SOC > SOCMAX), 

as shown in Fig. 3.4(b). As a result of the grid power fluctuations, the power exchanged with the 

grid exhibits high ramp-rates as depicted in Fig. 3.4(c). 

The behavior of SMA strategy is further reflected through the analysis of the resulting values of 

the quality criteria defined in section 3.1.2. These results are summarized in Table 3-2. As it can 

be appreciated, the SMA strategy minimizes the quality criteria values with respect to the 

baseline ones. For instance, the positive and negative grid power peaks are reduced in 18.09% 

and 64.79%, respectively. In addition, PVR, APD and PPV criteria are significantly reduced in 

42.00%, 96.04% and 81.13%, respectively. However, the power peaks in the grid power profile 

leads to the reduction of the MPD criterion of only 30.48%. 

    LPF 

– + SOC 
Estimator   
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(a) (b) 

 
           (c) 

Fig. 3.4. Simulation results of the SMA strategy excluding the EWH consumption (a) grid power profile, (b) battery 
SOC, and (c) grid power profile ramp-rates 

Table 3-2 Quality criteria comparison between SMA strategy and baseline values excluding the EWH consumption  

EMS Strategy PG,MAX 
(kW) 

PG,MIN           
(kW) PVR MPD    

(W/h) 
APD     

(W/h) PPV 

No EMS & ESS 
excluding the EWH 

consumption 
5.75 -6.45 1.00 18468 1121 13.3 

SMA strategy 4.71 -2.40 0.58 12839 44.42 2.51 

Note that the SMA strategy exhibit a suitable behavior as long as no abrupt changes affect the 

MG net power from one day to the next one. However, in a real environment, the stochastic 

nature of the renewable energy sources and the load may significantly change the MG net power 

from one day to another. Consequently, the SMA strategy is not adequate under these 

conditions. 

Similarly, the same drawbacks are present when performing the simulation of the SMA strategy 

including the EWH consumption. As it can be seen in Fig. 3.5(a) and (b), the increase of the 

load demand leads to the increase the time intervals where the battery SOC reaches the secure 
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limits. Consequently, the fluctuations and power peaks in the grid power profile and the grid 

power profile ramp-rates increase as shown in Fig. 3.5(c). Finally, Table 3-3 summarizes the 

resulting values of the quality criteria through the SMA strategy including the EWH 

consumption. 

  
(a) (b) 

 
           (c) 

Fig. 3.5. Simulation results of the SMA strategy including the EWH consumption (a) grid power profile, (b) battery 
SOC, and (c) grid power profile ramp-rates. 

Table 3-3 Quality criteria comparison between SMA strategy and the baseline values including the EWH 
consumption  

EMS Strategy PG,MAX 
(kW) 

PG,MIN           
(kW) PVR MPD    

(W/h) 
APD     

(W/h) PPV 

No EMS & ESS  
including the EWH 

consumption 
6.53 -6.45 1.00 18468 1221 5.99 

SMA strategy 6.25 -3.98 0.79 20006 57.41 1.23 
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3.3. Fuzzy energy management strategy based on MG Net Power 
Trend (NPT)  

3.3.1. Introduction 

A first approach to solve the drawbacks of the SMA strategy was developed and presented 

in [52]. This approach was designed with the aim of improving the performance of the battery 

energy management strategy of a grid connected MG presented in [51] by means of including 

the information about the Net Power Trend (NPT) of the MG into the FLC. According to the 

information provided by the MG net power trend, this approach increases/decreases the power 

delivered/absorbed by the battery in order to smooth the grid power profile. The control strategy 

and the FLC design are presented in the next paragraphs. 

3.3.2. Control strategy and FLC design 

The fuzzy NPT approach focuses on the direct control of the power delivered/absorbed by the 

battery with the purpose of minimizing the fluctuations in the grid power profile. This approach 

uses the MG NPT to quantify the trend of the net power fluctuations in the MG 

(i.e. consumption and generation trend). In this regard, PAVG is considered as the trend of the 

MG net power and is defined by (3.12) as one-day average of the MG net power. 

The block diagram of this approach is illustrated in Fig. 3.6 [52], [54] and includes a LPF used 

for smoothing the grid power, a battery SOC estimator shown in Fig. 2.12, and a 

Mamdani-based  FLC [58] of three inputs PLG (n), PAVG (n), e (n), one output PBAT (n), and 

25-rules. 

 
Fig. 3.6. Block diagram of the fuzzy energy management strategy based on MG NPT 

In Fig. 3.6, e (n) represents for the battery capacity status respect to its half-rated capacity, i.e.:  

 ( ) ( ) 2.BATe n SOC n C= −   (3.16) 
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Note that the FLC provides the desired evolution of the low-frequency battery power PBAT,FLC. 

Therefore, assuming that the battery follows this power evolution, the corresponding grid power 

profile would be given by [54]: 

 ,( ) ( ) ( ).G LG BAT FLCP n P n P n= −   (3.17) 

However, PG (n) also includes the high-frequency components of PLG (n), which can be removed 

by means of a LPF as suggested in [93]. This results in smoothing the grid power which now is 

given by [54]: 

 ,( ) ( ),GRID G LFP n P n=   (3.18) 

where PG,LF is the low-frequency content of PG (n). As a consequence, the power handled by the 

battery is expressed as follows: 

 , ,( ) ( ) ( ),BAT BAT FLC G HFP n P n P n= +   (3.19) 

 , ( ) ( ) ( ),G HF G GRIDP n P n P n= −   (3.20) 

where PG,HF the high-frequency content of PG (n). 

Regarding the FLC design, the adjustment of all parameters involved in the FLC, for instance, 

number of Membership Functions (MF), type, mapping and rule-base, is performed following 

the process described in [51], which will be further detailed in section 3.4.4. The main goal of 

this process is to find the FLC parameters which minimize the quality criteria defined in 

section 3.1.2. 

In short, for each controller input, PLG (n), SOC (n), 5 triangular MFs are defined. These MFs 

correspond to five fuzzy sets noted as NB, NS, ZE, PS and PB, where B represents “Big”, 

S “Small”, ZE “Zero”, P “Positive” and N “Negative”, as shown in Fig. 3.7(a) and Fig. 3.7(b). 

In addition, 2 trapezoidal MFs are defined for the input PAVG (n), which correspond to two fuzzy 

sets noted as NB and PB, as shown in Fig. 3.7(c). The MFs for the controller inputs are 

distributed along the variation range defined for each input variable expressed as follows: 

 , ,( ) ,LG MIN LG LG MAXP P n P≤ ≤   (3.21) 

 2 ( ) 2,BAT BATC e n C− ≤ ≤   (3.22) 

 ( ) ,A AVG AP P n P− +≤ ≤   (3.23) 
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where AP−  and AP+ are the maximum and minimum value of the MG net power trend. 

 
 (a) 

 
   (b) 

 
   (c) 

Fig. 3.7. Membership functions for the FLC inputs of the fuzzy NPT strategy (a) MFs for the input PLG (n), (b) MFs 
for the input SOC (n), and (c) MFs for the input PAVG (n), © 2014, IEEE 
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Note that the input PAVG uses the MF “NB” to indicate that the MG exhibits a generation trend. 

On the contrary, it uses the MF “PB” to indicate a consumption trend. 

The assignment of the MFs for the inputs variables allows the definition of at most 50 MFs for 

the output variable. Therefore, after applying the optimization procedure [51], 7 trapezoidal 

MFs are defined for the controller output PBAT,FLC (n), as shown in Fig. 3.8. These MFs are 

associated with seven fuzzy sets noted as NB, NM, NS, ZE, PS, PM and PB, where besides of 

N, P, B, S and ZE previously defined, M represents “Medium”. The output MFs are distributed 

along the variation range defined by: 

 , ( ) ,B BAT FLC Bk P n k− ≤ ≤   (3.24) 

being kB the maximum power assigned at the controller output PBAT,FLC. 

 

 

Fig. 3.8. MFs for the FLC output of the fuzzy NPT strategy, © 2014, IEEE 

Finally, according to the MFs of the inputs and the output, the FLC rule-base is composed by 

50-rules which establish the control policy of the output PBAT. The rule-base is set taking into 

account the control polices described in [52], [51]. In short, the controller rule-base assigns 

25-rules when the MG exhibits a consumption trend and other 25-rules for generation trend. For 
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instance, one of the rules is formulated as: “IF the MG net power PLG (n) is slightly negative 

[i.e. PLG (n) < 0, there is more generation than consumption] AND the battery is slightly charged 

[i.e. e (n) > 0, or equivalently SOC (n) > CBAT /2] AND the MG exhibits high consumption trend 

[i.e. PAVG (n) >> 0] THEN strongly charge the battery for covering this consumption trend in a 

near future [i.e. PBAT,FLC (n) << 0]”. 

IF PLG IS NS AND e IS PS AND PAVG IS PB THEN PBAT,FLC IS NB 

As for the inputs and output MFs, the FLC rule-base is optimized following the procedure 

detailed in [51] with the purpose of  minimizing the quality criteria defined in section 3.1.2. The 

resulting rule-base is presented in Table 3-4. 

Table 3-4 FLC rule-base for the fuzzy NPT strategy 

PBAT,FLC (n) 
PLG (n) 

NB NS ZE PS PB 

e (n) 

NB NB / NB NS / NB NB / NB NB / NM NB / NB 

NS PM / NS NB / NM ZE / NS NS / PM PS / NM 

ZE NM / NB PS / ZE ZE / ZE NS / PM NS / NS 

PS PS / NS PS / NB PM / ZE PM / ZE PM / NB 

PB PB / PB PB / PB PB / PB PB / PB PB / PB 

PAVG (n) NB / PB 

 

3.3.3. Simulation results and comparison 

The simulation results of the fuzzy NPT strategy excluding the EWH consumption are shown in 

Fig. 3.9. As it can be seen in Fig. 3.9(a), this approach achieves a reduction of the grid power 

fluctuations and power peaks. However, the grid power profile still exhibits some power peaks, 

since the SOC of battery occasionally reaches the secure limits, as shown in Fig. 3.9(b). 

Although, these time intervals are reduced with respect to the SMA strategy, which leads to a 

minimum reduction of the ramp-rates in the grid power profile as it can be seen in Fig. 3.9(c) 

and Fig. 3.9 (d). 
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                                          (a)                       (b) 

  
  (c)          (d) 

Fig. 3.9. Simulation results of the fuzzy NPT strategy excluding the EWH consumption (a) grid power profile, 
(b) battery SOC, (c) grid power profile ramp-rates comparison, and (d) maximum grid power profile ramp-rate. 

Despite the aforementioned drawbacks, the fuzzy NPT strategy improves the behavior with 

respect to the SMA strategy, this being verified through the analysis of the resulting values of 

the quality criteria defined in section 3.1.2. The results are summarized in Table 3-5. In short, 

the PG,MAX, PG,MIN, PVR, MPD and APD criteria are reduced in 16.56%, 11.67%, 15.52%, 9.34% 

and 19.74%, respectively. On the contrary, PPV criterion is slightly increased in 3.98%. Note 

that the value of the MPD criterion is high due to the power peaks in the grid power profile. 

Table 3-5 Quality criteria comparison for the fuzzy NPT strategy, the SMA strategy and the baseline values 
excluding the EWH consumption  

EMS Strategy PG,MAX 
(kW) 

PG,MIN           
(kW) PVR MPD    

(W/h) 
APD     

(W/h) PPV 

No EMS & ESS 
excluding the EWH 

consumption 
5.75 -6.45 1.00 18468 1121 13.3 

SMA strategy 4.71 -2.40 0.58 12839 44.42 2.51 

Fuzzy EMS based on MG net 
power trend 3.93 -2.12 0.49 11640 35.65 2.61 
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Finally, for comparison purposes, the analysis of the fuzzy NPT strategy is carried out including 

the EWH consumption. The simulation results are shown in Fig. 3.10, where it can be seen that 

some strong the fluctuations in the grid power are removed with respect to SMA strategy. 

Consequently, the grid power profile ramp-rates are reduced with respect to the SMA strategy, 

as confirmed in Table 3-6 through the reduction of the values of the quality criteria. 

  
                                          (a)                      (b) 

  
  (c)          (d) 

Fig. 3.10. Simulation results of the fuzzy NPT strategy including the EWH consumption (a) grid power profile, 
(b) battery SOC, (c) grid power profile ramp-rates comparison, and (d) maximum grid power profile ramp-rate. 

Table 3-6 Quality criteria comparison for the fuzzy NPT strategy, the SMA strategy and the baseline values 
including the EWH consumption  

EMS Strategy PG,MAX 
(kW) 

PG,MIN           
(kW) PVR MPD    

(W/h) 
APD     

(W/h) PPV 

No EMS & ESS including the 
EWH consumption 6.53 -6.45 1.00 18468 1221 5.99 

SMA strategy 6.25 -3.98 0.79 20006 57.41 1.23 

Fuzzy EMS based on MG net 
power trend 5.80 -3.28 0.70 18119 50.81 1.31 
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From the simulation results, it can be concluded that the information provided through the MG 

net power trend is not the most appropriate to identify the fluctuations in the MG net power. In 

addition, the use of a new variable at the FLC input results in the increase of the fuzzy controller 

rule-base (i.e. fifty rules), which increases the controller complexity. In this regard, given the 

benefits exposed by using a FLC for the EMS design, a new energy management strategy based 

on FLC is described in the next section with the objective of improving the performance and 

simplifying the FLC complexity of the EMS strategies described so far. 

3.4. Fuzzy energy management strategy based on MG energy 
Rate-of-Change 

3.4.1. Introduction 

An improved fuzzy-based design is presented in this section with the aim of minimizing the 

power peaks and fluctuations in the grid power profile while keeping the battery SOC evolution 

within secure limits as well as reducing the FLC complexity. This design was presented in [53] 

and an extended version including experimental validation results was described in [54]. The 

new fuzzy-based design uses the MG Energy Rate-of-Change (ERoC) over time to quantify the 

magnitude of the energy changes in the MG; according to this value and the battery SOC, the 

new EMS design increases, decreases or maintains the power delivered/absorbed by the mains 

in order to concurrently satisfy the load power demand and the battery constraints defined in 

Chapter 2.3.3. 

3.4.2. Control strategy 

The improved fuzzy EMS based on MG ERoC suggests calculating the grid power as the sum 

of the average net power of the MG, PAVG (n) defined in (3.12) and an additional component, 

PFLC (n), used to modify the power exchanged with the grid to keep the battery SOC within 

secure limits at any time. Thus, the grid power profile is defined as [54], [53]: 

 ( ) ( ) ( ).GRID AVG FLCP n P n P n= +   (3.25) 

where PFLC (n) is computing by means of a FLC that uses the battery SOC, SOC (n), and the 

MG ERoC over time , ṖAVG (n), as inputs variables. 

In this regard, the FLC uses the battery SOC, SOC (n), as an input to check its value at any time 

in order to satisfy the battery constraints established in Chapter 2.3.3 and to preserve the battery 

life. In addition, the FLC uses ṖAVG (n) as another input to obtain the information of the 

magnitude of the MG energy change of two consecutive samples (i.e. the slopes produced by 
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two consecutive samples). In this approach ṖAVG (n) is defined as first backward difference as 

follows [94]: 

 [ ]( ) ( ) ( 1)AVG AVG AVG sP n P n P n T= − −   (3.26) 

For instance, Fig. 3.11 shows the MG energy change in two consecutive samples [54] where 

according to (3.26) a positive slope (e.g. m1, m4, m5, m6 and m8) means a MG energy change 

due to a reduction of the renewable power generation or an increase of the load demand. On the 

contrary, a negative slope (e.g. m2, m3 and m7) corresponds to a MG energy change due to an 

increase of the renewable power generation or a decrease in the load demand. 

 
Fig. 3.11. Slopes by two consecutive samples (red solid line) of the average net power profile (blue solid line). 

© 2016, IEEE. 

It should be noted that ṖAVG (n) can be understood as the local prediction of the battery SOC 

future behavior if the grid power is not modified. Therefore, from the information of the 

SOC (n) and ṖAVG (n) the FLC will modify its output, PFLC (n), to increase, decrease or maintain 

the power delivered/absorbed by the mains, according to (3.25), to concurrently satisfy the load 

power demand and to keep the battery SOC within secure limits. In this way, the output of the 

FLC allows the interaction between the MG and the mains. A complete description of this 

interaction is presented in Table 3-7 [54]. 

The block diagram of the fuzzy ERoC strategy is shown in Fig. 3.12 and includes the following 

blocks: 

1. A Low-Pass filter block (LPF), used for computing the average net power of the MG 

according to (3.12), 

2. A digital Derivative and Filter block (DF), used for concurrently obtaining ṖAVG (n), 

according to (3.26), and limiting the high-frequency gain and noise associated with the 

derivative term [95], 

3. A battery SOC Estimator block, used to estimate the SOC of the battery according to 

(2.4) and the battery model described in Chapter 2.3.3, and 
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4. A Fuzzy Logic Controller block (FLC), used for computing the second component, 

PFLC (n), of the grid power profile defined in (3.25). The design of this block is 

described in the following section. 

Table 3-7 Impact of the FLC output on the grid power profile, © 2016, IEEE  

Condition Grid power Description 

If PAVG ≥ 0 and PFLC > 0 ⇒  PGRID > 0 
PFLC increases the power delivered by 
the mains 

If PAVG ≥ 0 and PFLC < 0 

If PAVG > |PFLC| ⇒  PGRID > 0 
PFLC decreases the power delivered 
by the mains 

If PAVG < | PFLC | ⇒  PGRID < 0 
PFLC increases the power absorbed by 
the mains 

If PAVG = | PFLC | ⇒  PGRID = 0 
PFLC indicates that use extra power 
from the mains is not necessary 

If PAVG < 0 and PFLC > 0 

If | PAVG | > PFLC ⇒  PGRID < 0 
PFLC decreases the power absorbed by 
the mains 

If | PAVG | < PFLC ⇒  PGRID > 0 
PFLC increases the power delivered by 
the mains 

If | PAVG | = PFLC ⇒  PGRID = 0 
PFLC indicates that use extra power 
from the mains is not necessary 

If PAVG < 0 and PFLC < 0 ⇒  PGRID < 0 
PFLC increases the power absorbed by 
the mains 

If PAVG ≥ 0 and PFLC = 0 PGRID = PAVG ⇒  PGRID ≥ 0 
PFLC maintains the power delivered 
by the mains according to PAVG 

If PAVG < 0 and PFLC = 0 PGRID = PAVG ⇒  PGRID < 0 
PFLC maintains the power absorbed by 
the mains according to PAVG 

 

 

Fig. 3.12. Fuzzy ERoC strategy block diagram, © 2016, IEEE 

3.4.3. Fuzzy logic controller design 

The FLC block assumes a Mamdani-based inference and defuzzyfication of Centre of Gravity 

[58] with two-inputs, SOC (n) and ṖAVG (n), and one-output  PFLC (n). The variation range of 

each variable is expressed as follows [54]: 
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 ( ) ,MIN MAXSOC SOC n SOC≤ ≤   (3.27) 

 , ,( ) ,AVG MIN AVG AVG MAXP P n P≤ ≤     (3.28) 

 ( ) ,FLCk P n k− ≤ ≤   (3.29) 

where SOCMIN and SOCMAX are the boundaries of the battery SOC defined in Chapter 2.3.3, 

ṖAVG,MIN and ṖAVG,MAX are the maximum and minimum variation of the derivative term, 

respectively, and k is the maximum power assigned by the controller output, which from the 

optimization process k is defined as k = ±1 kW. In addition, ṖAVG,MAX and ṖAVG,MIN are expressed 

in W/s and have been calculated using the approximation developed in [96] assuming a time 

window TW of one day, as follows [54]: 

 ( ) ( ), 9 10AVG MAX LOAD WP P T= ⋅   (3.30) 

 ( ) ( ), 9 10AVG MIN WT WP P T= − ⋅   (3.31) 

Regarding the FLC design, the adjustment of all parameters involved in the FLC (e.g. number 

of MFs per input, type, mapping, rule-base), was performed by an off-line optimization process 

using the real recorded data of the renewable power generation and the load demand described 

in Chapter 2.4 with the objective of minimizing the energy management quality criteria defined 

in section 3.1.2. The optimization procedure consists in the next steps [51], [54]: 

Step 1. Initial setting of the FLC parameters 

a. Initial assignment of the MFs for the inputs and outputs variables: number, 

type and mapping. 

b. Initial FLC rule-base setting. 

Step 2. Adjustment of the inputs and outputs MFs. 

Step 3. Optimization of the initial FLC rule-base 

For better understanding and completeness of the study, the optimization procedure presented in 

[51] is described in the next paragraphs. 

3.4.4. Fuzzy controller optimization process   

The optimization process consists on the definition of all parameters involved in the FLC 

design, for instance, number of MFs, type, mapping and rule-base. This process is developed in 

three steps which are described below: 
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STEP 1: Initial setting of the FLC parameters: 

This step involves the initial FLC design through the assignment of an arbitrary number of MFs 

to the inputs and output of the FLC. In addition this step sets the initial rule-base, which is built 

according to the linguistic knowledge about the desired behavior of the MG.  

Initially, five triangular MFs, uniformly distributed, are assigned to the FLC inputs ṖAVG (n) and 

SOC (n). According to (3.27) - (3.31), these MFs are distributed along the variation range 

defined for each variable and correspond to five fuzzy sets noted as NB, NS, ZE, PS and PB 

where B represents “BIG”, S “Small”, ZE “Zero”, P “Positive” and N “Negative”. The initial 

MFs for both input variables are shown in Fig. 3.13 and Fig. 3.14.  

 
Fig. 3.13. Initial MFs for the FLC input variable ṖAVG  

 
Fig. 3.14. Initial MFs for the FLC input variable battery SOC  

The initial assumption of 5 MFs per input leads to the definition of a FLC rule-base up to 

25-rules. Hence, allowing the definition of at most 25 MFs for the output variable. 
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As aforementioned, this step also defines the initial rule-base for the FLC. The initial rule-base 

is built taking into account the linguistic knowledge about the MG behavior considering the 

following assumptions: 

• Input ṖAVG (n): 

o A “Negative” MF (i.e. NB and NS) denotes a decrease in the MG 

consumption-generation balance (i.e. “B” specifies a big energy change and “S” 

specifies a small energy change), which is associated with an increase of the power 

generation or a decrease of the load demand. 

o A “Positive” MF (i.e. PB and PS) denotes an increase in the MG 

consumption-generation balance, which is associated with an increase of the load 

demand or a decrease of the power generation. 

o A “Zero” MF (i.e. ZE) indicates that there has not been an energy change in the MG. 

• Input SOC (n): 

o A “Negative” MF (i.e. NB and NS) specifies that the storage system is being 

discharged. The NB membership function indicates that the charge level of the storage 

system is reaching the discharging limit allowed. 

o A “Positive” MF (i.e. PB and PS) indicates that the storage system is being charged. 

The PB membership function indicates that the storage system is almost fully charged. 

o A “Zero” membership function (i.e. ZE) indicates that the storage system is close to the 

half of the battery useful capacity (i.e. close to 75% of the rated battery capacity). 

From the aforementioned assumptions, the initial rule-base is built as follows: 

• First, the output of the FLC should specify that besides PAVG component, the use of 

additional power coming from the grid is not required (i.e. PFLC  ZE)  under the following 

conditions: 

o When ṖAVG is NB and SOC is NB, given that the big energy change in the MG would be 

absorbed by the ESS, since the battery is discharged at this time. 

RULE 1: IF ṖAVG IS NB AND SOC IS NB THEN PFLC IS ZE 

o When ṖAVG is NS and SOC is NS, given that the small energy change in the MG would 

be absorbed by the ESS, since the amount of energy stored in the battery is lower than 

the half of the battery useful capacity. 

RULE 7: IF ṖAVG IS NS AND SOC IS NS THEN PFLC IS ZE 
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o When ṖAVG is ZE and SOC is ZE, given the amount of energy stored in close to the half 

of the rated battery capacity. 

RULE 13: IF ṖAVG IS ZE AND SOC IS ZE THEN PFLC IS ZE 

o When ṖAVG is PS and SOC is PS, given that the small energy change in the MG would 

be handled by the ESS, since the battery lifetime is not compromised. 

RULE 19: IF ṖAVG IS PS AND SOC IS PS THEN PFLC IS ZE 

o When ṖAVG is PB and SOC is PB, given that the big energy change in the MG would be 

handled by the ESS, since the battery at this time is almost fully charged. 

RULE 25: IF ṖAVG IS PB AND SOC IS PB THEN PFLC IS ZE 

According to the conditions mentioned above, the ZE (i.e. Zero) MF for the FLC output is 

initially defined as shown in Fig. 3.15. Given this initial definition, the FLC rule-base 

presents rules corresponding to ZE fuzzy subset in its diagonal, as shown in Fig. 3.16, 

which states that under those conditions, besides the component PAVG, the use of extra 

power coming from the grid is not required.  

 
Fig. 3.15. Initial definition and distribution of the ZE fuzzy subset of the FLC output 
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Fig. 3.16. Initial fuzzy rule-base and grid power variation with respect to the FLC inputs  

• Then, the rules over the diagonal are defined to establish that the evolution of the variable 

ṖAVG from a X value to a Y value involves the following statements: 

o If X < Y implies the increase of the power delivered by the grid. For instance, when 

SOC is NB, if ṖAVG is NS the power assigned to the FLC output should be higher than 

the one assigned when ṖAVG is NB (i.e. PFLC will be positive). In short, when the battery 

is almost discharged (i.e. SOC is NB) and the MG energy ERoC indicates a reduction of 

power generation or an increase of the load demand (e.g. when ṖAVG changes from NB 

to NS), besides PAVG component it will be necessary the use of extra power coming from 

the grid in order to charge the batteries (i.e. PFLC  PSS).   

o On the contrary, if X > Y implies the decrease of the power delivered by the grid. 

Following these statements, the rules over the diagonal are defined as: 

RULE 6: IF ṖAVG IS NS AND SOC IS NB THEN PFLC IS PSS 

RULE 11: IF ṖAVG IS ZE AND SOC IS NB THEN PFLC IS PS 

RULE 12: IF ṖAVG IS ZE AND SOC IS NS THEN PFLC IS PSS 

RULE 16: IF ṖAVG IS PS AND SOC IS NB THEN PFLC IS PM 

RULE 17: IF ṖAVG IS PS AND SOC IS NS THEN PFLC IS PS 

RULE 18: IF ṖAVG IS PS AND SOC IS ZE THEN PFLC IS PSS 

RULE 21: IF ṖAVG IS PB AND SOC IS NB THEN PFLC IS PB 

RULE 22: IF ṖAVG IS PB AND SOC IS NS THEN PFLC IS PM 

RULE 23: IF ṖAVG IS PB AND SOC IS ZE THEN PFLC IS PS 

RULE 24: IF ṖAVG IS PB AND SOC IS PS THEN PFLC IS PSS 

As shown in Fig. 3.16, the rules over the diagonal indicate the increase of the power 

delivered by the grid. In addition, this analysis leads to the definition of another four MFs 

for the FLC output. These MFs are uniformly distributed along the positive range of the 

output PFLC, as shown in Fig. 3.17, and correspond to four fuzzy sets noted as PSS, PS, PM 

and PB where besides of P, B, and S previously defined, SS represents “Smallest” and M 

represents “Medium”. 



FLC-Based energy management strategies for a residential grid-connected electric microgrid                 51 
 
 

 
 

 
Fig. 3.17. Initial definition and distribution of the positive MFs for the FLC output 

• After that, the rules below the diagonal are defined in order to preserve the battery lifetime. 

In this concern, these rules consider the amount of energy stored in the battery  (i.e. SOC 

input) to increase the power absorbed by the grid according to the following statements: 

o An increase of the amount of energy stored in the ESS implies an increase of the power 

absorbed by the grid in order to not overcharge the battery. For instance, when ṖAVG is 

NB, if SOC is NS the power assigned to the FLC output should be lower than the one 

assigned when SOC is NB (i.e. PFLC will be negative, PFLC  NSS).  

o Conversely, a decrease of the energy stored in the ESS implies a decrease of the power 

absorbed by the grid in order to avoid discharge the battery out the security limit.  

Accordingly, the rules below the diagonal are defined as follows: 

RULE 2: IF ṖAVG IS NB AND SOC IS NS THEN PFLC IS NSS 

RULE 3: IF ṖAVG IS NB AND SOC IS ZE THEN PFLC IS NS 

RULE 4: IF ṖAVG IS NB AND SOC IS PS THEN PFLC IS NM 

RULE 5: IF ṖAVG IS NB AND SOC IS PB THEN PFLC IS NB 

RULE 8: IF ṖAVG IS NS AND SOC IS ZE THEN PFLC IS NSS 

RULE 9: IF ṖAVG IS NS AND SOC IS PS THEN PFLC IS NS 

RULE 10: IF ṖAVG IS NS AND SOC IS PB THEN PFLC IS NM 

RULE 14: IF ṖAVG IS ZE AND SOC IS PS THEN PFLC IS NSS 

RULE 15: IF ṖAVG IS ZE AND SOC IS PB THEN PFLC IS NS 

RULE 20: IF ṖAVG IS PS AND SOC IS PB THEN PFLC IS NSS 
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This previous analysis leads to the definition of extra four MFs for the FLC output, which 

correspond to four fuzzy sets noted as NSS, NS, NM and NB. These MFs are uniformly 

distributed along the negative range of the output PFLC. Fig. 3.18 illustrates the complete 

initial definition of the MFs for the FLC output. 

 
Fig. 3.18. Initial definition and distribution of the MFs for the FLC output 

• Finally, the initial rule-base is presented in Table 3-8. The initial rule-base includes 25-rules 

which establish the evolution of the FLC output [54], [53]. 

Table 3-8 Initial FLC rule-base of the fuzzy ERoC strategy, © 2015, IEEE 

PFLC (n) 
ṖAVG (n) 

NB NS ZE PS PB 

SOC (n) 

NB ZE PSS PS PM PB 

NS NSS ZE PSS PS PM 

ZE NS NSS ZE PSS PS 

PS NM NS NSS ZE PSS 

PB NB NM NS NSS ZE 

 

STEP 2: MF adjustment of the FLC inputs and outputs 

The second step consists in the adjustment of the inputs and output MFs. This process is carried 

out through numerical simulations using Matlab®. The procedure for the adjustment of 

trapezoidal MF, is described in [51]. For instance, the optimization procedure for the SOC input 

is described below: 

• First, each triangular MF shown in Fig. 3.14 is parametrically defined according to: 
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Fig. 3.19. Triangular membership function parameters 

The mapping parameters X1, X2 and X3 assume that the pairs of MFs (NB, PB), (NS, PS) 

are mapped symmetrically with respect to the origin (i.e. 3/4 SOCMAX for the SOC input), as 

shown in Fig. 3.20. Note that for input ṖAVG and output PFLC, X1 = -X3 for the particular case 

of the MF ZE. 

 
Fig. 3.20. Mapping parameters for the MFs of the SOC input 

• Then, the mapping adjustment assumes the initial rule-base shown in Table 3-8 and is carried 

out for each pair of MFs and for ZE MF as follows: 

o Finding X1: the parameters X2 and X3 are fixed to the values shown in Fig. 3.14. Then, 

the optimum value of the parameter X1, noted as X1opt, is obtained through numerical 

simulations as the value which minimizes the set of defined quality criteria. 

o Finding X2: the parameter X3 is fixed to the value shown in Fig. 3.14 and X1 is set to 

X1opt. Then, the optimum value of the parameter X2, noted as X2opt, is obtained through 

numerical simulations as the value which minimizes the set of defined quality criteria. 

o Finding X3: the parameters X1 and X2 are set to X1 = X1opt and X2 = X2opt, 

respectively. Then, the optimum value of the parameter X3, noted as X3opt, is obtained 
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through numerical simulations as the value which minimizes the set of defined quality 

criteria. 

o Finally, there is a verification procedure where the parameters X3 and X2 are set to 

X3 = X3opt and X2 = X2opt, respectively. Then, by numerical simulations the value of 

X1opt which minimizes the set of defined quality criteria is verified. If not, the 

adjustment procedure is repeated. 

• Finally, after this process, the optimized MFs for both inputs and the output are shown in 

Fig. 3.21, Fig. 3.22, and Fig. 3.23, respectively [54], [53].  

 
Fig. 3.21. Optimized MFs for the input variable ṖAVG, © 2016, IEEE 

 
Fig. 3.22. Optimized MFs for the input variable SOC, © 2016, IEEE 
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Fig. 3.23. Optimized MFs for the FLC output PFLC, © 2016, IEEE 

STEP 3: Optimization of the initial FLC rule-base 

The final step involves the adjustment of the initial rule-base presented in table 3-8. Similarly to 

Step 2, the optimized rule-base is obtained by modifying the rules of the initial rule-base in 

order to find a set of rules which minimize the quality criteria defined in section 3.1.2. For 

instance, the optimization of the rules 7, 8 and 9 according to MPD criterion is shown in 

Fig. 3.24.  As it can be seen, the lowest MPD value is obtained when rule 7 is ZE, rule 8 is NSS 

and rule 9 is NS.  

Note that in Fig. 3.24, the number 9 represents the MF “PB”, the number 8 represents “PM”, 

then successively, PS=7, PSS=6, ZE=5, NSS=4, NS=3, NM=2 and NB=1. 

 
Fig. 3.24. Optimization of the rules 7, 8 and 9 
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Finally, this process is performed for each rule, which leads to the definition of the optimized 

rule-base presented in Table 3-9 [54]. 

Table 3-9 Optimized rule-base for the FLC of the fuzzy ERoC strategy, © 2016, IEEE 

PFLC (n) 
ṖAVG (n) 

NB NS ZE PS PB 

SOC (n) 

NB PSS PSS PS PM PB 

NS PSS ZE PSS PSS PM 

ZE NS NSS ZE PSS PS 

PS NSS NS NSS PM PSS 

PB NB NM NSS NSS NSS 

 

3.4.5. Simulation results and analysis 

The simulation results of the fuzzy ERoC strategy excluding the EWH consumption are shown 

from Fig. 3.25 to Fig. 3.29. 

Fig. 3.25(a) compares the grid power profile achieved with the SMA, the fuzzy NPT, and the 

fuzzy ERoC strategies. The results highlight the improved behavior of the fuzzy ERoC strategy, 

since the power peaks and the strong fluctuations in the grid power profile are minimized. 

Moreover, Fig. 3.25(b) confirms the correct evolution of the battery SOC, which is kept within 

the secure bounds. As it can be seen, the battery SOC evolution achieved through the SMA 

strategy and the fuzzy NPT strategy reaches low values, which may cause the battery SOC falls 

below the secure limit, thus, compromising the battery lifetime. In contrast, the fuzzy ERoC 

strategy evidences a battery SOC evolution, during the year under study, close to the 75% of the 

rated battery capacity, which means that the ESS could further compensate net power 

fluctuations that may exist in the MG at any time while preserving the battery lifetime [54].  

The improved behavior of the battery SOC evolution can be further appreciated in Fig. 3.26, 

where it can be seen that the fuzzy ERoC strategy keeps the battery SOC in a range between the 

60% and 80% of the rated battery capacity during the 77% of the year under study. In contrast, 

the SMA strategy and the fuzzy NPT strategy keep this range in the 66% and 68% of the year 

under study, respectively. 
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                                             (a)                        (b) 

Fig. 3.25. Simulation results and comparison for the SMA strategy (top), the fuzzy NPT strategy (middle), and the 
fuzzy ERoC strategy (bottom), (a) grid power profile, and (b) battery SOC 

 
Fig. 3.26. Annual frequency of the battery SOC ranges established from the SMA, fuzzy NPT, and fuzzy ERoC 

strategies including the EWH consumption  

Moreover, the analysis of specific days which highlights the improved grid profile of the fuzzy 

EMS based on the MG ERoC is presented in Fig. 3.27 and Fig. 3.28. As it can be appreciated in 

Fig. 3.27, the energy stored in the battery through the fuzzy EMS ERoC (green solid line) is 

higher than the one obtained through the SMA strategy (pink dot line) and the fuzzy NPT 

strategy (brown dashed line), which allows compensate the net power fluctuations. Therefore, 

the proper control of the battery SOC evolution is ensured at every time, and consequently, the 

undesirable fluctuations in the grid power profile are removed. 
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Fig. 3.27. Improved behavior of the fuzzy ERoC strategy with respect to the SMA and fuzzy NPT strategies 

Furthermore, Fig. 3.28 highlights the advantage of adding the derivative input to the FLC. As it 

can be seen, in front of an abrupt consumption change in the MG, the fuzzy ERoC strategy 

rapidly increases the power delivered by the grid (blue solid line), preventing the discharge of 

the battery below the secure limit. On the contrary, the slow evolution of the power delivered by 

the grid provided through the SMA strategy (red dot line) and the fuzzy ERoC strategy 

(mustard-colored dashed line), leads to the battery to reach the secure limits, thus, breaking the 

battery SOC constraints [54]. 

 

Fig. 3.28. Influence of the derivative input in the grid power profile, © 2016, IEEE  

In addition, Fig. 3.29 shows the ramp-rates of the grid power profile achieved through the fuzzy 

ERoC strategy during the year under study.  As it can be seen in Fig. 3.29(a), the grid power 

ramp-rates are reduced with respect to previous strategies. This result confirms the reduction of 
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the MPD criterion that reaches a maximum value of 817.9 W/h, as shown in Fig. 3.29(b), which 

leads to improve the quality of the grid power profile. 

  
                                            (a)                        (b) 

Fig. 3.29. Simulation results for the fuzzy ERoC strategy excluding the EWH consumption (a) grid power profile 
ramp-rates comparison, and (b) maximum grid power profile ramp-rate. 

The enhanced behavior of the fuzzy ERoC strategy with respect to the strategies described so 

far is also verified through the analysis of the resulting values of the quality criteria defined in 

section 3.1.2. The results are summarized in Table 3-10 [54]. 

Table 3-10 Quality criteria comparison for the fuzzy ERoC strategy, the fuzzy NPT strategy, the SMA strategy and 
the baseline values excluding the EWH consumption  

EMS Strategy PG,MAX 
(kW) 

PG,MIN           
(kW) PVR MPD    

(W/h) 
APD     

(W/h) PPV 

No EMS & ESS 
excluding the EWH 

consumption 
5.75 -6.45 1.00 18468 1121 13.3 

SMA strategy 4.71 -2.40 0.58 12839 44.42 2.51 

Fuzzy NPT strategy 3.93 -2.12 0.49 11640 35.65 2.61 

Fuzzy ERoC strategy 1.83 -2.04 0.32 817 56.15 2.79 

As it can be seen, the fuzzy ERoC strategy achieves an important reduction in four of the 

defined quality criteria. With respect to the SMA strategy PG,MAX, PG,MIN, and PVR are reduced in 

61% , 15%, and 45% , respectively, and 53%, 4%, and 35%, respectively, with respect to the 

fuzzy NPT strategy. Moreover, the main improvement of the fuzzy ERoC strategy is the high 

reduction of the MPD criterion, achieving a reduction up to 94% and 93% with respect to the 

SMA and the fuzzy NPT strategies, respectively. It can be noted that the improved behavior of 

the fuzzy ERoC strategy comes mainly from the strong reduction of the MPD criterion, even 

though the APD and PPV values are slightly higher than the other strategies [54]. 
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Finally, for comparison purposes the analysis of the fuzzy ERoC strategy is conducted including 

the EWH consumption. The simulation results are shown in Fig. 3.30, where it can be 

appreciated a similar behavior of the grid power profile achieved through the fuzzy ERoC 

strategy including the EWH. In short, the grid power fluctuations are reduced as shown in 

Fig. 3.30(a). Moreover, the energy stored in the battery is kept between secure limits as shown 

in Fig. 3.30(b), with a charge of 70% to 80% during the 40.72% of the year under study as 

illustrated in Fig. 3.30(c). Furthermore, the grid power ramp-rates are reduced with respect to 

previous strategies as shown in Fig. 3.30(d) and Fig. 3.30(e). Finally, the improved behavior is 

reflected in the reduction of the defined quality criteria, which is summarized in Table 3-11. 

Table 3-11 Quality criteria comparison for the fuzzy ERoC strategy, the fuzzy NPT strategy, the SMA strategy and 
the baseline values including the EWH consumption 

EMS Strategy PG,MAX 
(kW) 

PG,MIN           
(kW) PVR MPD    

(W/h) 
APD     

(W/h) PPV 

No EMS & ESS  
including the EWH 

consumption 
6.53 -6.45 1.00 18468 1221 5.99 

SMA strategy 6.25 -3.98 0.79 20006 57.41 1.23 

Fuzzy EMS based on MG net 
power trend 5.80 -3.28 0.70 18119 50.81 1.31 

Fuzzy ERoC strategy 2.94 -2.52 0.42 1252 79.93 1.51 
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(c) 

  
                                                (d)                         (e) 

Fig. 3.30. Simulation results for the fuzzy ERoC strategy including the EWH consumption (a) grid power profile, 
(b) battery SOC, (c) annual frequency of the battery SOC ranges established from the defined EMS strategies, (d) 

grid power profile ramp-rates comparison, and (e) maximum grid power profile ramp-rate. 

3.5. Experimental validation of the Fuzzy ERoC strategy 

The fuzzy ERoC strategy is programmed and compiled through LabVIEW® platform using the 

Fuzzy System Designer toolbox [97], as shown from Fig. 3.31 to Fig. 3.33. Subsequently it is 

sent to the NI-PXI where the EMS algorithm runs in real-time. Note that the optimization 

process used in the FLC design sets the maximum and minimum boundaries for each input as 

shown in Fig. 3.32. Therefore, an additional signal conditioning is required in order to 

normalize the measured physical values within those bounds; otherwise, the FLC would deliver 

an unknown value causing an EMS failure [54]. In addition, Fig. 3.33(a) and Fig. 3.33(b) show 

the FLC rule-base and the testing screenshot of the FLC created in this platform. 
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Fig. 3.31. Fuzzy logic controller design through LabVIEW® platform and the Fuzzy System Designer toolbox  

  
                                                (a)                         (b) 

 
(c) 

Fig. 3.32. MFs number, type, name, mapping and variation range assignment (a) MFs for the input variable ṖAVG, 
(b) MFs for the input variable SOC, and (c) MFs for the output variable PFLC 

  
(a)                                       (b) 

Fig. 3.33. Final FLC design (a) rule-base definition and, (b) FLC testing and surface 
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3.5.1. Experimental results and analysis  

In order to experimentally validate the fuzzy EMS strategy based on MG ERoC, the system has 

been tested in real conditions from Feb. 4th to Feb. 28th, 2015 [54]. Fig. 3.34 presents the real 

data of renewable generation and load demand, whose were recorded every second through the 

NI-PXI at UPNa. 

  
  (c)          (d) 

  
  (c)          (d) 

 
   (d) 

Fig. 3.34. Experimental results obtained from UPNa MG (a) photovoltaic power, (b) wind turbine power, (c) 
renewable power generation, (d) load power, and (d) MG net power. 

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 01
0

1

2

3

4

Po
w

er
 (k

W
)

February 2015

 

 
P

FV

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 01
0

1

2

3

4

Po
w

er
 (k

W
)

February 2015

 

 

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 01
0

1

2

3

4

Po
w

er
 (k

W
)

February 2015

 

 
P

WT

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 01
0

1

2

3

4

Po
w

er
 (k

W
)

February 2015

 

 

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 01
0

1

2

3

4

5

6

Po
w

er
 (k

W
)

February 2015

 

 
P

GEN

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 01
0

1

2

3

4

5

6

Po
w

er
 (k

W
)

February 2015

 

 

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 01
0

1

2

3

4

5

6

Po
w

er
 (k

W
)

February 2015

 

 
P

LOAD

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 01
0

1

2

3

4

5

6

Po
w

er
 (k

W
)

February 2015

 

 

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 01
-4

-3

-2

-1

0

1

2

3

4

Po
w

er
 (k

W
)

February 2015

 

 

P
LG

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 01
-4

-3

-2

-1

0

1

2

3

4

Po
w

er
 (k

W
)

February 2015

 

 



64                                                                                                                     Chapter 3  
 

 
 

In addition, Fig. 3.35 illustrates the grid power profile achieved through simulation (gray dot 

line) and in real conditions (red solid line). As it can be seen, the experimental grid power 

profile follows the evolution obtained in simulations, which confirms the correct behavior of the 

fuzzy ERoC strategy [54]. 

 
Fig. 3.35. Simulated and experimental grid power profile comparison, © 2016, IEEE 

Moreover, the experimental results of the principal variables of the MG are shown in Fig. 3.36.  

As it can be seen, the grid power profile achieved through the fuzzy ERoC strategy (red solid 

line) shows minimum fluctuations despite the high fluctuations in the MG net power (black dot 

line). Additionally, Fig. 3.36 highlights the proper evolution of the battery SOC and also 

confirms the simulation results. As it can be noted the battery SOC (green solid line) oscillates 

around the 75% of the rated battery capacity, as expected from simulation results, thus, the 

improved fuzzy EMS design keeps the battery SOC evolution between secure bounds [54].  

 
Fig. 3.36. Experimental validation of the fuzzy ERoC strategy, © 2016, IEEE 
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Finally, a detailed analysis of one specific day is presented in Fig. 3.37 in order to describe the 

behavior of the most relevant variables of the MG (i.e. MG net power, battery power, grid 

power and battery SOC) [54].  

 
Fig. 3.37. Real power variables and battery SOC measured at UPNa MG on February 10th, 2015, © 2016, IEEE 

As it can be seen, at the beginning of the day, the MG has a constant consumption (black dot 

line), therefore, the proposed EMS controls the grid power in order to absorb a constant power 

from the mains (red solid line) to supply the MG consumption and to recharge the battery (green 

solid line) (i.e. the battery is charging at a constant power, pink dashed line). Later, the MG 

presents a sudden energy change close to 6:00 AM. The proposed fuzzy EMS increases the 

power delivered by the grid, as expected, helping the storage system to supplying the demand 

required by the MG. After that, the MG presents another important energy change close to 

12:00 PM. This time, the proposed fuzzy EMS increases even more the power delivered by the 

grid in order to recharge the battery and preserve its lifetime due to the battery SOC has dropped 

at the end of the previous action. Subsequently, once the battery charging process starts, the 

proposed fuzzy EMS design decreases the power delivered by the grid, since the MG exhibits a 

generation state at this time (i.e. PLG < 0). Finally, the battery charging continues up to a range 

of time close to 18:00, when the EMS keeps almost constant the power delivered by the grid 

with the purpose of using the energy stored in the battery to supply the load demand. By this 

way the EMS preserves the grid power profile and avoids a battery overcharge. Note that this 

process is repeated for each energy change in the MG [54].  
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Chapter 4  
FLC-based energy management strategy based on Microgrid 
power forecasting 

This Chapter presents an enhanced FLC-based energy management strategy based on MG 

power forecasting (EMS-FC), for smoothing the power profile exchanged with the grid. The 

new design includes generation and demand forecasting to predict the future behavior of the 

MG so that the power forecast error will be used by the FLC to modify the grid power profile 

according to the battery SOC.  

Moreover, this Chapter describes the forecasting of power generation and load demand, and 

presents the comparison between the forecasted and measured data. Moreover, in order to verify 

the enhanced behavior of the fuzzy energy management strategy based on MG power 

forecasting (EMS-FC), the Chapter presents the simulation results and the comparison with 

previous strategies described in Chapter 3. 

Finally, this Chapter also presents the experimental results of the enhanced FLC-based strategy 

based on MG power forecasting carried out in a real MG at the UPNa. The results highlight the 

effectiveness of the proposed design, which concurrently smooths the grid power profile and 

keeps the battery SOC evolution between secure limits.  

4.1. Microgrid power forecasting 

Conversely to previous designs described in Chapter 3, the fuzzy EMS-FC strategy uses a 

Central Moving Average (CMA) filter to compute the average of the MG net power. Therefore, 

the fuzzy EMS-FC strategy removes the problem of making decisions based on the MG data of 

the previous 24-hours. In this regard, with the purpose of computing the central average of the 

MG net power, this strategy requires the forecast of both the energy production and the load 

demand of the MG, as addressed in the following paragraphs.  

4.1.1. Power generation forecasting  

The MG power generation of wind and solar RES is predicted using the weather forecast data 

provided by Meteogalicia THREDDS Server [98], which consists in a set of weather data 

acquired through the Weather Research and Forecasting (WRF) model for the Iberian Peninsula. 

The weather data provided by Meteogalicia THREDDS Server is updated every 12-hours with a 

prediction horizon of three days and includes among others the ambient temperature, the wind 

speed at 10 m of height above the ground, the horizontal irradiance, and the atmospheric 
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pressure for the following 12-hours. In addition, the server provides the weather forecast data 

with a resolution of 1-hour and 12x12 km grid resolution [63], [57], [46]. 

In this regard, the power generation forecasting is carried out by means of the Numerical 

Weather Prediction (NWP) [99], [100] data provided by Meteogalicia THREDDS Server and 

the photovoltaic and wind turbine models described in Chapter 2.2. 

As mentioned in Chapter 2.3.1, the estimation of the PV power forecast, PPV,FC, requires the 

transformation of the incident solar irradiance on an horizontal surface provided by 

Meteogalicia server, shown in Fig. 4.1(a), into the incident solar irradiance on a tilted plane. 

This transformation was carried out following the procedure described in [75]. The resulting 

incident solar irradiance on an inclined surface is shown in Fig. 4.1(b). As it can be seen, the 

prediction of the solar irradiance incident on a tilted plane obtained through this method follows 

the evolution of the real data measured in the MG at UPNa, as shown in Fig. 4.2.  

   
       (a)                        (b) 

Fig. 4.1. Solar irradiance of the year under study (a) forecast of the incident solar irradiance on a horizontal surface 
provided by Meteogalicia, and (b) forecast of the incident solar irradiance on an inclined surface at UPNa,  

 
Fig. 4.2. Comparison between the forecasted and measured data of the incident solar irradiance on an inclined 

surface at UPNa  

The forecast of the PV power is therefore obtained using the estimated solar irradiance on an 

inclined surface, the forecast of the ambient temperature at UPNa, and the PV model described 
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in Chapter 2.3.1. The forecast of the PV power generation for the year under study is presented 

in Fig. 4.3(a), whereas a comparison of six days between the PV generation power forecasted 

and measured at UPNa is presented in Fig. 4.3(b). 

 
   (a) 

 
   (b) 

Fig. 4.3. Forecast of photovoltaic power (a) during the year under study, and (b) comparison between forecasted and 
measured data 

Furthermore, the wind power forecasting uses the estimation of wind speed, atmospheric 

pressure, and temperature at UPNa. In this regard, the forecast data of wind speed provided by 

Meteogalicia server (i.e. measured at a height of 10 m above the ground) has to be extrapolated 

to the wind turbine hub-height at UPNa (i.e. 20 m above the ground). In addition, the wind 

speed taking into account the air density at UPNa is computed using WT model described in 

Chapter 2.3.2 and the forecast data provided by Meteogalicia server. 

The resulting prediction of the WT power during the year under study, PWT,FC, is displayed in 

Fig. 4.4(a), whereas the comparison of six days between the WT power forecasted and 

measured is presented in Fig. 4.4(b). 
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   (a) 

 
   (b) 

Fig. 4.4. Forecast of wind turbine power (a) during the year under study, and (b) comparison between forecasted and 
measured data 

Finally, the forecast of power generation, PGEN,FC, is expressed as follows: 

 , , ,( ) ( ) ( ),GEN FC PV FC WT FCP n P n P n= +   (4.1) 

where PPV,FC and PWT,FC are the forecast of the photovoltaic and wind turbine power, 

respectively. The prediction of power generation during the year under study is shown in 

Fig. 4.5(a). Similarly, Fig. 4.5(b) shows the comparison between the forecasted and measured 

data for six specific days. 
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   (a) 

 
   (b) 

Fig. 4.5. Forecast of power generation (a) during the year under study, and (b) comparison between forecasted and 
measured data 

4.1.2. Load demand forecasting  

The load forecast is estimated through the persistence forecast model assuming that the daily 

consumption pattern is not very distinct and steady from one day to another. In this regard, 

persistence model uses past data as the forecast for the next time period [62], [63], [48], [101], 

[102].  Thus, the load demand profile for the next day will be similar as the previous day, 

namely:  

 , ( ) ( ),LOAD FC LOADP n M P n+ =   (4.2) 

being PLOAD,FC the load forecast. Note that in this study the differences of load demand between 

weekdays and weekends or holydays are not considered. 

The load forecast and the load power demand measured in six days on winter and summer 

seasons at UPNa are shown in Fig. 4.6(a) and Fig. 4.6(b), respectively. As it can be seen, the 

behavior of the persistence model could be considered acceptable. 
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(a) 

 
   (b) 

Fig. 4.6. Comparison between the predicted load power demand and the load power demand measured at UPNa 
microgrid (a) winter season data, and (b) summer season data 

4.1.3. Net power forecasting  

According to (2.3) the forecast of the MG net power, PLG,FC, is expressed as follows [62], [63]: 

 , , ,( ) ( ) ( ).LG FC LOAD FC GEN FCP n P n P n= −   (4.3) 

Fig. 4.7 shows the comparison between the forecast of the MG net power and the MG net power 

measured at UNPa microgrid. As it can be seen, there is an error between the measured and the 

expected values (i.e. forecast error PE), therefore, the EMS design should consider this error to 

take the appropriate control decision in order to concurrently improve the grid power profile and 

to protect the battery bank from a deep discharge [62]. The MG forecast error is defined as 

follows [62], [63]: 

 ,( ) ( ) ( ),E LG LG FCP n P n P n= −   (4.4) 
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Fig. 4.7. Comparison between the prediction of the MG net power and the MG net power measured at UPNa 
microgrid 

4.2. Fuzzy EMS design based on MG power forecasting 

The block diagram of the fuzzy EMS strategy based on MG power forecasting is shown in 

Fig. 4.8 and includes the following blocks [62], [63]: 

 
Fig. 4.8. Fuzzy EMS based on MG power forecasting block diagram 

1. A Central Moving Average (CMA) filter block, used for computing the MG average net 

power PCTR (n), 

2. A 3H filter block, used for both computing the average forecast error of the previous 

3-hours, 3H
EP (n), and reducing the high variability associated with the forecast error PE, 

3. A LPF block, used for computing the average battery SOC of the previous 24-hours, 

SOCAVG (n),  

4. A battery SOC Estimator block, used to estimate the SOC of the battery according to 

the battery model described in Chapter 2.3.3, and 
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5. A Fuzzy Logic Control block, used for improving the grid power profile according to 

the battery SOC and the MG forecast error of the previous 3-hours. 

As shown in Fig. 4.8 the grid power profile of the fuzzy EMS-FC strategy is defined as the sum 

of three variables PCTR, PSOC and PFLC, where each variable plays a particular role in the energy 

management strategy. The grid power profile is expressed as follows [62], [63]: 

 ( ) ( ) ( ) ( ),GRID CTR SOC FLCP n P n P n P n= + +   (4.5) 

The first variable, PCTR (n), is computed by means of a Central Moving Average (CMA) filter 

[103], which uses the past and the future data of the MG net power to estimate the central 

average of the MG net power. The CMA filter uses a window size of 24-hours, which contains 

the MG net power of the previous 12-hours and the forecast of the MG net power for the 

following 12-hours. The central average of the MG net power, PCTR, is expressed as 

follows [62], [63]:   

 12 12
,

1( ) ( ) ( ) ,
2

H H
CTR LG LG FCP n P n P n− + = ⋅ +    (4.6) 
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M
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= −∑   (4.7) 
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1( ) ( ),
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k
P n P n k

M
+

=

= +∑   (4.8) 

where 12H
LGP− is the average value of MG net power of the previous 12-hours, 12

,
H

LG FCP+  is the 

average value of the MG net power forecast for the next 12-hours, and M12 is the number of 

samples in 12-hours. 

The second variable of the grid power profile, PSOC (n), is used to keep the battery SOC centered 

close to the 75% of the rated battery capacity [57]. In this regard, PSOC (n) is proportional to the 

error between the reference value of the battery SOC and the average value of the battery SOC 

of the previous 24-hours. This component is expressed as follows [62], [63]: 

 [ ]( ) ( ) ,SOC e REF AVGP n k SOC SOC n= ⋅ −   (4.9) 
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where SOCREF is the reference value of the battery SOC which is set to 75% for the case under 

study, SOCAVG is the average value of the battery SOC of the previous 24-hours, and ke is the 

proportional gain constant which is set to 0.05 kW/% in order to obtain a high enough phase 

margin in the battery SOC control loop [57]. 

The third variable, PFLC, is used to improve the grid power profile according to both the battery 

SOC and the forecast error of the MG of the previous 3-hours. This component is computed by 

a FLC that assumes a Mamdani-based inference and defuzzyfication of Center of Gravity of 

two-input, one-output and 25 rules. The inputs of the FLC are the current battery state-of-charge 

SOC (n) and the power forecast error of the previous 3-hours, 3H
EP (n), which is defined as 

follows [62], [63]: 

 
3

3

13

1( ) ( ),
M

H
E E

k
P n P n k

M =

= −∑   (4.11) 

being M3 the number of samples in the previous 3-hours. 

Finally, according to (2.4) the battery power is defined as follows: 

 ( ) ( ) ( ).BAT LG GRIDP n P n P n= −   (4.12) 

Regarding the FLC design, similarly to the previous fuzzy EMS strategies, the adjustment of all 

parameters involved in the fuzzy controller design was performed by an off-line optimization 

process [51] considering the real recorded data and the forecasted data of the renewable 

electricity production and load demand with the purpose of minimizing the energy management 

quality criteria defined in Chapter 3.1.2. The optimization procedure was described in 

Chapter 3.4.4. Therefore, only the results from this procedure are presented in this Chapter. 

As a result, five triangular MFs are defined for the input variables 3H
EP (n) and SOC (n). As 

illustrated in Fig. 4.9, these MFs are associated with five fuzzy sets noted as NB, NS, ZE, PS 

and PB, and are distributed along the variation range defined for each input. In this regard, the 

variation range for the input SOC (n) has to satisfy the battery constraints defined in 

Chapter 2.3.3, whereas the variation range for the input 3H
EP is defined as follows [62], [63]: 

 3 ( ) ,H
e E eP P n P− ≤ ≤ +   (4.13) 

being Pe the maximum forecast error. Note that the case under study assumes a maximum 

forecast error of 6 kW. 
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(a) 

 
(b) 

Fig. 4.9. Optimized MFs for the FLC inputs of the fuzzy EMS-FC strategy (a) MG forecast error, and (b) battery 
SOC 

Moreover, nine triangular MFs are defined for the controller output PFLC, which are associated 

with nine fuzzy sets noted as NB, NM, NS, NSS, ZE, PSS, PS, PM and PB, as illustrated in 

Fig. 4.10 [62], [63]. The MFs of the FLC output are distributed along the variation range 

defined as follows: 

 ( ) ,N FLC PP P n P≤ ≤   (4.14) 
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Fig. 4.10. MFs for the FLC output of the fuzzy EMS-FC strategy 

where PN and PP are the minimum and maximum power assigned through the controller output, 

respectively. From the optimization process, the variation range of the FLC output is established 

between PN = -0.3 kW and PP = 0.45 kW [62], [63]. 

Finally, the optimized fuzzy rule-base consists in 25-rules which are presented in Table 4-1 

[63]. Note that the optimized rule-base is built in order to concurrently smooth the grid power 

profile and to minimize the energy management quality criteria defined in Chapter 3.1.2. 

Table 4-1 Optimized rule-base for the fuzzy EMS based on MG power forecasting  

PFLC (n) 
3 H

EP (n) 

NB NS ZE PS PB 

SOC (n) 

NB PB PB PSS PS PB 

NS PM NS PSS PS PS 

ZE PSS ZE ZE PSS PM 

PS NS PM NSS NS NSS 

PB NS NSS NSS NM NB 

Note that 3H
EP (n) is negative when the measured load demand is lower than the forecasted one 

or when the measured power generation is higher than the forecasted one. Conversely, 3H
EP (n) 

is positive when the measured load demand is higher than forecasted or when the measured 

power generation is lower than forecasted. 

  
      

0 
  

    

0

0.2

0.4

0.6

0.8

1
NB NM NS NSS ZE PSS PS PM PB

  



78                                                                                                                     Chapter 4  
 

 
 

4.3. Simulation results and analysis 

The simulation results of the fuzzy EMS-FC strategy excluding the EWH consumption are 

presented from Fig. 4.11 to Fig. 4.16. 

 

Fig. 4.11. Grid power profile comparison for the SMA, the fuzzy NPT, the fuzzy ERoC and the fuzzy EMS-FC 
strategies 

Fig. 4.11 shows the grid power profile achieved with the energy management strategies 

described so far. As it can be seen, the fuzzy EMS-FC strategy minimizes the grid power 

fluctuations with respect to previous strategies described in Chapter 3. In addition, although the 

results achieved through the fuzzy ERoC strategy are positive, the fuzzy EMS-FC strategy 

minimizes the negative power peaks in the grid power profile, since the control decisions are 
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made according to the forecast power of the MG. This improved behavior can be appreciated in 

Fig. 4.12. 

 
(a) 

 
(b) 

Fig. 4.12. Improved grid power profile evolution of the fuzzy EMS-FC strategy with respect to the fuzzy ERoC 
strategy 

As shown in Fig. 4.12, the use of the forecast power allows the controller to anticipate to the 

events occurring in the MG. As it can be appreciated in Fig. 4.12(a) [62], [63], the lack of RES 

for the next day is predicted hence increasing the amount of power delivered by the grid during 

the night in order to prepare the batteries for the next day. Conversely, for a previous design, 

where power forecasting is not included, the grid power is kept constant, which produces the 

battery discharge. Similarly, at point #2, an increase in generation is predicted for the next day 

in the MG. Hence, the proposed fuzzy strategy decreases the grid power, which permits the 
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battery discharge in order to prepare the ESS for absorbing the future power generation. Finally, 

a similar behavior than that at point #2 occurs at point #3, as even more generation is predicted 

for the following day. In addition, this improved behavior leads to minimize the grid power 

fluctuations, which is evidenced in Fig. 4.12(b) where the negative peaks in the grid power 

profile are reduced [62], [63]. 

Moreover, Fig. 4.13 confirms the improved evolution of the battery SOC accomplished through 

the fuzzy EMS-FC strategy, resulting in a battery SOC further centered close to the 75% of the 

rated battery capacity. 

 
       (a)                        (b) 

 
       (c)                        (d) 

Fig. 4.13. Battery SOC evolution during the year under study (a) SMA strategy, (b) fuzzy NPT strategy, (c) fuzzy 
ERoC strategy, and (d) fuzzy EMS-FC strategy 

In addition, Fig. 4.14 displays the daily average profile of the battery SOC during the year under 

study obtained with the EMS strategies described so far. 
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       (a)                        (b) 

 
       (c)                        (d) 

Fig. 4.14. Daily average profile of the battery SOC during the year under study (a) SMA strategy, (b) fuzzy NPT 
strategy, (c) fuzzy ERoC strategy, and (d) fuzzy EMS-FC strategy 

As it can be seen, the daily average profile of the battery SOC achieved with the SMA strategy, 

shown in Fig. 4.14(a), and the fuzzy NPT strategy, shown in Fig. 4.14(b), reaches low values, 

which may cause the battery SOC falls below the secure limit, thus compromising the battery 

lifetime. In contrast, the fuzzy ERoC strategy, shown in Fig. 4.14(c), and the fuzzy EMS-FC 

strategy, shown in Fig. 4.14(d), evidences a daily average profile close to the 75% of the rated 

battery capacity during the year under study. However, the daily average SOC achieved through 

the fuzzy EMS-FC strategy is further centered close to the 75% of the rated battery capacity, 

which means that the fuzzy EMS-FC strategy allows the storage system to further compensate 

the MG net power fluctuations while preserving the battery lifetime.  

Furthermore, the improved evolution of the battery SOC achieved through the fuzzy EMS-FC 

strategy is verified through the analysis of the SOC interval where the battery is located the 

most of the year under study. The intervals for the EMSs described so far is shown in 

Fig. 4.15 [63]. 
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Fig. 4.15. Annual frequency of the battery SOC ranges established from the SMA, fuzzy NPT, fuzzy ERoC, and 

fuzzy EMS-FC strategies including the EWH consumption 

As it can be seen, the fuzzy EMS-FC strategy leads to keep the battery SOC in a range between 

the 70% and 80% of the rated battery capacity during the 45% of the year under study. In 

contrast, the SMA, the fuzzy NPT, and the fuzzy ERoC strategies keep the battery SOC in this 

range the 24%, 26% and 33% of the year under study, respectively. 

In addition, the improved behavior of the fuzzy EMS-FC strategy with respect to the strategies 

described so far is verified by computing the energy management quality criteria defined in 

Chapter 3.1.2. The results are reported in Table 4-2. 

Table 4-2 Quality criteria comparison for the fuzzy EMS-FC strategy, the fuzzy ERoC strategy, the fuzzy NPT 
strategy, the SMA strategy and the baseline values excluding the EWH consumption 

EMS Strategy PG,MAX 
(kW) 

PG,MIN           
(kW) PVR MPD    

(W/h) 
APD     

(W/h) PPV 

No EMS & ESS 
excluding the EWH 

consumption 
5.75 -6.45 1.00 18468 1121 13.3 

SMA strategy 4.71 -2.40 0.58 12839 44.42 2.51 

Fuzzy NPT strategy 3.93 -2.12 0.49 11640 35.65 2.61 

Fuzzy ERoC strategy 1.83 -2.04 0.32 817 56.15 2.79 

Fuzzy EMS-FC strategy 1.89 -1.48 0.28 480 51.79 2.76 

As it can be seen in Table 4-2, the fuzzy EMS-FC strategy achieves an important reduction in 

the performance indicators with respect to previous strategies. In short, the maximum power fed 

into the grid PG,MIN, PVR, MPD, APD and PPV  quality criteria have been reduced in 27.4%, 

12.5%, 41.2%, 7.8%, and 1.1%, respectively, with respect to the fuzzy ERoC strategy. 

Therefore, the slightly increase of the PG,MAX criterion can be considered irrelevant. 
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Finally, Fig. 4.16 compares the grid power ramp-rates achieved through the EMS strategies 

described so far.  As it can be seen in Fig. 4.16(a) and Fig. 4.16(b), the grid power ramp-rates 

are reduced through the fuzzy EMS-FC strategy, which confirms the reduction of the MPD 

criterion reaching a maximum value of 480.5 W/h, as shown in Fig. 4.16(c). 

  
       (a)                        (b) 

          
 (c) 

Fig. 4.16. Simulation results for the fuzzy EMS-FC strategy excluding the EWH consumption (a) grid power 
ramp-rates comparison, (b) grid power ramp-rates comparison with respect to the fuzzy ERoC strategy, and (c) 

maximum grid power profile ramp-rate 

In the same manner of previous strategies, for comparison purposes the analysis of the fuzzy 

EMS-FC strategy is conducted including the EWH consumption. The simulation results are 

illustrated in Fig. 4.17 and Fig. 4.18, where it can be appreciated the enhanced behavior of the 

fuzzy EMS-FC strategy. In short, with respect to previous strategies, the grid power fluctuations 

are reduced, as shown in Fig. 4.17(a), while the energy stored in the battery is kept between 

secure limits, as illustrated in Fig. 4.17(b). In addition, the energy stored in the battery is kept in 

a range between the 70% and 80% of the rated battery capacity during the 47% of the year 

under study, as it can be seen in Fig. 4.17(c). Furthermore, the grid power ramp-rates are 

reduced with respect to previous strategies, as shown in Fig. 4.18(a) and Fig. 4.18(b), reaching a 

maximum grid power ramp-rate of 983.1 W/h, as is depicted in Fig. 4.18(c). Finally, this 
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improved behavior is reflected in the reduction of the defined quality criteria summarized in 

Table 4-3. 

  
                                               (a)                        (b) 

 
(c) 

Fig. 4.17. Simulation results accomplished through the defined EMS strategies including the EWH (a) grid power 
comparison, (b) battery SOC comparison, and (c) annual frequency of the battery SOC ranges 
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    (a)                         (b) 

        
(c) 

Fig. 4.18. Simulation results for the fuzzy EMS-FC strategy including the EWH consumption (a) grid power 
ramp-rates comparison with respect to the designed EMSs, (b) grid power ramp-rates comparison with respect to the 

fuzzy ERoC strategy, and (c) maximum grid power profile ramp-rate 

Table 4-3 Quality criteria comparison for the fuzzy EMS-FC strategy, the fuzzy ERoC strategy, the fuzzy NPT 
strategy, the SMA strategy and the baseline values including the EWH consumption 

EMS Strategy PG,MAX 
(kW) 

PG,MIN           
(kW) PVR MPD    

(W/h) 
APD     

(W/h) PPV 

No EMS & ESS 
including the EWH 

consumption 
6.53 -6.45 1.00 18468 1221 5.99 

SMA strategy 6.25 -3.98 0.79 20006 57.41 1.23 

Fuzzy NPT strategy 5.80 -3.28 0.70 18119 50.81 1.31 

Fuzzy ERoC strategy 2.94 -2.52 0.42 1252 79.93 1.51 

Fuzzy EMS-FC strategy 2.46 -1.92 0.33 1016 75.93 1.42 
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4.4. Experimental validation and analysis 

In the same manner that the fuzzy ERoC strategy, the fuzzy EMS strategy based on MG power 

forecasting is accomplished and compiled through LabVIEW® platform. The fuzzy EMS-FC 

strategy is experimentally tested from Sep. 1st to Oct. 25th, 2015. The experimental results for 

different months are presented from Fig. 4.19 to Fig. 4.22 [63]. 

Fig. 4.19 presents the forecasted and measured data from Sep. 8th to Sep. 14th, 2015 obtained by 

the MG at UPNa. As it can be seen, excluding the WT power generation shown in Fig. 4.19(b), 

the magnitude and evolution of the forecast data is similar than measured [63]. Although, these 

differences (i.e. forecast error) are compensated by the fuzzy EMS-FC strategy as shown in 

Fig. 4.20.  

 
(a)                            (b) 

  
(c)                           (d) 

Fig. 4.19. Forecasted and measured data obtained at UPNa MG from Sep. 08th to Sep.14th, 2015. (a) Photovoltaic 
power, (b) wind turbine power, (c) load power, and (d) MG net power 
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Fig. 4.20. Experimental results through the fuzzy EMS-FC strategy from Sep. 8th to Sep. 14, 2015 at UPNa MG 

As it can be seen in Fig. 4.20, the fuzzy EMS-FC strategy manages the battery power in order to 

absorb the MG net power fluctuations, consequently smoothing the grid power profile.  

Similarly, Fig. 4.21 illustrates the forecasted and measured data from Oct. 10th to Oct. 25th, 2015 

obtained by the MG at UPNa [63]. 
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(c) 

 
(d) 

Fig. 4.21. Forecasted and measured data obtained at UPNa MG from Oct. 10th to Oct. 25th, 2015 (a) PV power 
generation, (b) WT power generation, (c) load demand, and (d) MG net power and resulting grid power profile 

Finally, Fig. 4.22 shows the resulting behavior featured by the fuzzy EMS-FC strategy, which 

validates the fuzzy EMS-FC strategy that concurrently minimizes the power profile exchanged 

with the grid and keeps the battery SOC between secure limits [63]. 

 
Fig. 4.22. Experimental results achieved through the fuzzy EMS based on MG power forecasting from Oct. 10th to 

Oct. 25th, 2015 at UPNa MG 
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Chapter 5  
FLC-based Energy management strategies for a residential 
grid-connected electro-thermal microgrid 

This Chapter presents the design and comparison of a fuzzy EMS strategies applied to an 

electro-thermal MG scenario. The electro-thermal MG scenario under study, shown in Fig. 5.1, 

includes renewable generation system (i.e. photovoltaic and wind generation), electric storage 

system (i.e. lead-acid battery bank), thermal generation system (i.e. electric water heater and 

solar thermal collectors), thermal storage system (i.e. water storage tank), and electric and  

thermal load demand (i.e. electrical appliances and domestic hot water consumption). In this 

new scenario, the main goal of the EMS strategy is to use the surplus power of the MG to 

supply the power required by the EWH in order to keep the water temperature in the storage 

tank between specific ranges. 

  
Fig. 5.1. Residential grid-connected electro-thermal microgrid 

In this regard, given the positive results achieved through the fuzzy EMS strategies described in 

Chapter 3.4 and Chapter 4 (i.e. fuzzy ERoC and fuzzy EMS-FC strategies), this Chapter 
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proposes the use of the fuzzy-based EMS strategies in an electro-thermal MG scenario. 

Therefore, some variations in the control algorithms of the previous strategies are introduced 

with the purpose of using the energy stored in the ESS to supply part of the energy required by 

the EWH. In this manner, the EMS strategies minimize both the grid power profile and the 

amount of energy supplied by the mains to satisfy the EWH demand. 

5.1. Fuzzy EMS strategy based on MG energy rate-of-change applied to 
an electro-thermal microgrid 

5.1.1. Introduction 

The EMS strategy developed in Chapter 3.4 (i.e. fuzzy ERoC strategy) is now applied for an 

electro-thermal MG scenario, now referred as fuzzy ERoC ETH-MG strategy. In this scenario, 

the appropriate control of the EWH leads to concurrently minimize both the grid power 

consumption and the fluctuations in the power exchanged to the grid [55], [56]. The goal of the 

EMS strategy is the suitable use of the energy stored in the ESS to meet the load demand 

required by the EWH in order to keep the water temperature in the storage tank between the 

established limits. According to the configuration shown in Fig. 5.1 the grid power profile and 

the MG net power are defined as follows: 

 ,GRID LG BATP P P= −   (5.1) 

 , .LG LOAD GEN WH EP P P P= − +   (5.2) 

5.1.2. Controller design  

The design follows the control policies described in Chapter 3.4 and includes some additional 

policies for the EWH control. The design includes an electric water heater (EWH) control block, 

which is used to calculate the amount of energy that the ESS supplies to the EHW, B
WHP (n).  By 

this way, the power required by the EWH is handled by the ESS and the mains, thus, reducing 

the MG net power (5.2) since now part of the energy is provided by the ESS instead by the 

mains. In this regard, the MG net power is modified as follows:  

 * ( ) ( ) ( ),B
LG LG WHP n P n P n= −   (5.3) 

where B
WHP (n) is the amount of power delivered by the battery for the EWH consumption, 

which is assigned as follows: 
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 , 1 ,( ), if ( ) ( ) 0
( ) ,

0, otherwise
WH E R WH EB

WH

P n SOC n SOC P n
P n

> ∧ >
= 


  (5.4) 

where SOCR1 is the threshold which allows the power injection from the ESS. 

Equation (5.4) highlights that the ESS will provide the EWH power as long as the battery has 

enough energy at the time that the EWH requires it. Therefore, according to (5.3) the amount of 

energy supplied by the mains is reduced. On the contrary, B
WHP (n) is null for other cases, which 

implies that the energy supplied by the mains is maintained.  

As presented in Chapter 3.4, the grid power profile of the fuzzy ERoC strategy is defined as 

follows: 

 *( ) ( ) ( ),GRID AVG FLCP n P n P n= +   (5.5) 

being *
AVGP (n) the average net power of *

LGP (n), which is computed as follows: 

 * *

1

1( ) ( ),
M

AVG LG
k

P n P n k
M =

= −∑   (5.6) 

In addition, the PFLC (n) component is computed by means of a FLC, which uses as input 

variables the battery SOC and the modified MG ERoC over time, *
AVGP (n). In this concern, the 

modified energy rate-of-change of the MG is defined as follows: 

 * * *( ) ( ) ( 1) .AVG AVG AVG sP n P n P n T = − − 
   (5.7) 

In contrast to the EMS strategy described in Chapter 3.4, the battery power PBAT (n), is now 

defined as the sum of two components as follows: 

 ( ) ( ) ( ),MG B
BAT BAT WHP n P n P n= +   (5.8) 

 ( ) ( ) ( ),MG
BAT GRID LGP n P n P n= +   (5.9) 

where MG
BATP (n) is computed through (5.1) and B

WHP (n) is the power supplied by the ESS for the 

EWH consumption according to the conditions defined in (5.4).  

In this regard, the use of the energy stored in the ESS to supply part of the energy required by 

the EWH leads to the reduction of the energy supplied by the mains, which reduces the 
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operation cost of the MG. The amount of energy saved in a year, Esaved, through the fuzzy ERoC 

strategy for an electro-thermal can be quantified as follows: 

 , ,G
saved WH E WHE E E= −   (5.10) 

 , ,G B
WH WH E WHE E E= −   (5.11) 

 , ,
1

1 ( ),
N

WH E WH E
ns

E P n
T =

= ⋅∑   (5.12) 

 
1

1 ( ),
N

B B
WH WH

ns

E P n
T =

= ⋅∑   (5.13) 

where EWH,E is the annual energy required by the EWH, B
WHE  is the annual energy supplied by 

the mains for the EWH consumption, and B
WHE is the annual energy supplied by the ESS for the 

EWH consumption. 

The new block diagram of the fuzzy ERoC strategy applied to an electro-thermal MG is 

depicted in Fig. 5.2 and includes the following blocks: 

 
Fig. 5.2. Block diagram of the Fuzzy ERoC strategy applied to an electro-thermal microgrid 
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1. A Low-Pass filter block (LPF), used for computing the MG average net power 

according to (5.6), 

2. A digital Derivative and Filter block (DF), used for concurrently obtaining *
AVGP (n), 

according to (5.7), and limiting the high-frequency gain and noise associated with the 

derivative term [95], 

3. A battery SOC Estimator block, used to estimate the SOC of the battery according to 

the battery model described in Chapter 2.3.3, 

4. A Fuzzy Logic Controller block (FLC), used for computing the second component, 

PFLC (n), of the grid power profile defined in (5.5), and 

5. A EWH Control block, used for computing the amount of energy supplied by the ESS 

for the EWH consumption, B
WHP (n). 

5.1.3. Fuzzy logic controller design 

The FLC block used for this strategy is similar as the one presented in Chapter 3.4.3. In short, 

the FLC assumes a Mamdani-based inference and defuzzyfication of Center of Gravity with two 

inputs, SOC (n) and *
AVGP (n), and one output PFLC (n), where the variation range of each 

variable is defined as follows: 

 ( ) ,MIN MAXSOC SOC n SOC≤ ≤   (5.14) 

 * ( ) ,AVG AVG AVGP P n P− ≤ ≤     (5.15) 

 ( ) ,N FLC PP P n P− ≤ ≤   (5.16) 

where SOCMIN and SOCMAX are the boundaries of the battery SOC defined in Chapter 2.3.3, ṖAVG 

is maximum variation of the derivative term defined through (3.30), and PN and PP are the 

minimum and maximum power assigned through the controller output, respectively. Note that 

this approach considers only the maximum variation of the derivative term. In addition, from 

the optimization process, the variation range of the FLC output is established between PN = -1.4 

kW and PP = 1.5 kW. 

As in Chapter 3.4.3, the adjustment of all parameters involved in the FLC design is performed 

by an off-line optimization procedure described in [51] with the purpose of minimizing the 

energy management quality criteria defined in Chapter 3.1.2. As a result, five triangular MFs are 

defined for each input variable and nine triangular MFS are defined for the output variable. The 

MFs are illustrated in Fig. 5.3. 
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(a) 

 
(b) 

 
(c) 

Fig. 5.3. MFs of the FLC for the fuzzy ERoC strategy applied to an electro-thermal MG (a) MFs for the input 
variable Ṗ*

AVG, (b) MFs for the input variable SOC, and (c) MFs for the output variable PFLC 

0

0.2

0.4

0.6

0.8

1
NB NS ZE PS PB

    
  

    

  

0

0.2

0.4

0.6

0.8

1
NB NS ZE PS PB

  
    

  

  
  

  
      

0 
  

    

0

0.2

0.4

0.6

0.8

1
NB NM NS NSS ZE PSS PS PM PB

  



FLC-Based energy management strategies for a residential grid-connected electro-thermal microgrid 95 
 
 

 
 

Finally, the optimized rule-base of the fuzzy ERoC strategy applied to an electro-thermal 

microgrid is presented in Table 5-1. 

Table 5-1 Optimized fuzzy rule-base of the FLC for the fuzzy ERoC strategy applied to an electro-thermal 
microgrid 

PFLC (n) 
Ṗ*

AVG (n) 

NB NS ZE PS PB 

SOC (n) 

NB PB PM PSS PM PB 

NS PM PS PSS PS PM 

ZE ZE NSS ZE NSS NSS 

PS NM NSS NS NM NM 

PB NB NB NSS NM NB 

 

5.1.4. Simulation results and analysis  

The simulation results of the fuzzy ERoC strategy applied to an electro-thermal microgrid are 

shown in Fig. 5.4 to Fig. 5.10. 

As mentioned in the controller design, the energy management strategy for an electro-thermal 

MG uses the energy stored in the ESS to supply part of the power required by the EWH. 

Therefore, as it can be seen in Fig. 5.4, the amount of power supplied by the mains required for 

the EWH consumption is reduced so is the MG net power.  

  
(a)                           (b) 

Fig. 5.4. MG net power profile (a) comparison between the MG net power including the EWH consumption and the 
modified MG net power achieved through the fuzzy ERoC strategy applied to an electro-thermal MG, (b) reduction 

of the MG net power profile 
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As a consequence of this behavior and according to (5.8) the energy management strategy 

increases the battery power in order to supply the remaining power required by the EWH. The 

increase of the battery power with respect to the fuzzy ERoC strategy is illustrated in Fig. 5.5. 

 
Fig. 5.5. Battery power comparison between the fuzzy ERoC strategy including the EWH consumption and the 

fuzzy ERoC strategy applied to an electro-thermal MG 

In addition, Fig. 5.6 presents the distribution of the energy supplied by the mains and the ESS 

for the EWH consumption. As it can be seen, the ESS contributes significantly to the 

consumption needed by the EWH to keep the water temperature in the deposit tank between 45 

°C and 65 °C. The ESS supplies an energy of B
WHE = 936 kWh during the year under study, 

which is equivalent to 54.40 % of the total energy required by the EWH. It is worth noting that 

the energy provided by the ESS represents the energy saved Esaved by the MG. 

  
Fig. 5.6. Distribution of the energy required for the EWH in two different periods of the year under study 
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Moreover, Fig. 5.9(a) compares the grid power profile achieved through the energy 

management strategies including the EWH consumption described in Chapter 3 and the fuzzy 

ERoC strategy applied to an electro-thermal MG. As it can be appreciated, the grid power 

fluctuations are minimized through the use of the electro-thermal MG (i.e. PGRID fuzzy ERoC 

ETH-MG).  

  
(a)                           (b) 

Fig. 5.7. Grid power profile (a) and battery SOC comparison (b) for the SMA, fuzzy NPT, and fuzzy ERoC 
strategies including the EWH consumption and the fuzzy ERoC strategy applied to an electro-thermal MG 

Conversely, as displayed in Fig. 5.9(b), the use of the energy stored in the battery to supply part 

of the power required by the EWH leads to a reduction of the battery SOC evolution during the 

year under study. In this regard, the energy stored in the battery is kept in a range between the 

70% and 80% of the rated battery capacity during the 36.96% of the year under study. This 

result is higher than the 27% obtained through both the SMA and fuzzy NPT strategies 

including the EWH consumption, but is lower than the 40.72% reached through the fuzzy ERoC 

strategy including the EWH consumption as can be appreciated in Fig. 5.8. However, analyzing 

the range interval between the 60% and 80% of the rated battery capacity, both strategies (i.e. 

fuzzy ERoC including EWH consumption and fuzzy ERoC ETH-MG) have similar results 

keeping the battery SOC in this range the 77% of the year under study. 
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Fig. 5.8. Annual frequency of the battery SOC ranges established through the SMA, fuzzy NPT, fuzzy ERoC 

strategies including the EWH consumption and the fuzzy ERoC strategy applied to an electro-thermal MG 

Furthermore, in order to highlight the effectiveness of the fuzzy ERoC strategy applied to an 

electro-thermal MG, Fig. 5.9 presents the comparison of the principal variables of the MG 

during three consecutive days between the fuzzy ERoC strategy including the EWH 

consumption and the fuzzy ERoC ETH-MG strategy.  

 
Fig. 5.9. Grid power profile and battery SOC comparison between the fuzzy ERoC strategy including the EWH 

consumption and the fuzzy ERoC strategy applied to an electro-thermal MG 
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As it can be seen in Fig. 5.9(top), part of the power required by the EWH is supplied by the 

ESS; therefore, the MG net power (pink dot line) is reduced (mustard-colored solid line). 

Accordingly, the battery discharges reducing the energy stored in the ESS (green solid line) as 

shown in Fig. 5.9 (bottom). In addition, as shown in Fig. 5.9 (bottom), this behavior minimizes 

the grid power fluctuations (blue solid line) with respect to the fuzzy ERoC strategy including 

the EWH consumption (red dashed-line), since the ESS can absorb the future power generation 

produced by both RES, as it can be appreciated on Nov. 9th and 10th close to 13:00 PM.  

The proper behavior of the fuzzy ERoC strategy applied to an electro-thermal MG is verified 

through the analysis of the energy management quality criteria defined in Chapter 3.1.2, which 

are summarized in Table 5-2. 

Table 5-2 Quality criteria comparison for the fuzzy ERoC strategy applied to an electro-thermal microgrid, the fuzzy 
ERoC, the fuzzy NPT strategy, the SMA strategy and the baseline values including the EWH consumption 

EMS Strategy PG,MAX 
(kW) 

PG,MIN           
(kW) PVR MPD    

(W/h) 
APD     

(W/h) PPV 

No EMS & ESS  
including the EWH 

consumption 
6.53 -6.45 1.00 18468 1221 5.99 

SMA strategy 6.25 -3.98 0.79 20006 57.41 1.23 

Fuzzy EMS based on MG net 
power trend 5.80 -3.28 0.70 18119 50.81 1.31 

Fuzzy ERoC strategy 
including the EWH 

consumption 
2.94 -2.52 0.42 1252 79.93 1.51 

Fuzzy ERoC strategy 
applied to an 

electro-thermal MG 
2.95 -2.31 0.41 1052 75.67 1.26 

 

As it can be noticed, the fuzzy ERoC strategy applied to an electro-thermal MG achieves a 

reduction in five of the energy management quality criteria. In short, PG,MIN, PVR, MPD, APD, 

and PPV criteria are reduced in 8.3%, 2.4%, 16%, 5.3%, and16.6% with respect to the fuzzy 

ERoC strategy including the EWH consumption. Conversely, PG,MAX criterion exhibits a 

negligible increase that has not a negative impact on the global strategy features.  

Finally, the comparison of the grid power profile ramp-rates through the EMS strategies 

including the EWH consumption described in Chapter 3 and the fuzzy ERoC strategy applied to 

an electro-thermal MG is presented in Fig. 5.10. 
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(a)                           (b) 

 
(c) 

Fig. 5.10. Grid power profile ramp-rates analysis (a) grid power ramp-rates comparison for the described EMS 
strategies, (b) grid power ramp-rates comparison with respect to the fuzzy ERoC strategy including the EWH 

consumption, and (c) maximum grid power profile ramp-rate achieved through the fuzzy ERoC ETH-MG strategy 

As it can be seen in Fig. 5.10(a) and Fig. 5.10(b), the grid power ramp-rates are reduced through 

the use of the electro-thermal MG, which confirms the reduction of the MPD criterion reaching 

a maximum value of 1052 W/h, as shown in Fig. 5.10(c). 

5.2. Fuzzy EMS strategy based on MG power forecasting applied to an 
electro-thermal microgrid 

5.2.1. Introduction 

Similarly to the previous design, the energy management strategy based on MG power 

forecasting is applied to an electro-thermal MG scenario. Similarly, the goal of the strategy is to 

control the ESS power to supply part of the power required by the EWH to keep the water 

temperature in the storage tank between the established limits.  
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5.2.2. Controller design  

The block diagram of the fuzzy EMS-FC strategy presented in Chapter 4.2 is modified to 

include the EWH control block. In this regard, the new block diagram is illustrated in Fig. 5.11 

and includes the blocks described in Chapter 4.2 as well as the EWH Control block presented in 

section 5.1.2. 

 

Fig. 5.11. Block diagram of the Fuzzy EMS-FC strategy applied to an electro-thermal microgrid 

In this regard, the control strategy developed in Chapter 4 is adapted in order to use the energy 

stored in the ESS to supply, as much as possible, the power required by the EWH. Similarly to 

the previous design, the use of the battery power, B
WHP (n), to supply part of the power required 

by the EWH implies the reduction of the MG load demand. Thus, the load demand is modified 

as follows: 

 * ( ) ( ) ( ).B
LOAD LOAD WHP n P n P n= −   (5.17) 
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Consequently, the load forecast is affected, thus, is necessary to recalculate the load forecast 

considering the modified load demand, *
LOADP (n). Hence, PLOAD,FC is changed into *

,LOAD FCP (n). 

In addition, according to (4.3) the forecast of the MG net power is modified as follows: 

 * *
, , ,( ) ( ) ( ).LG FC LOAD FC GEN FCP n P n P n= −   (5.18) 

The block diagram to calculate the forecast of the modified MG net power, *
,LG FCP (n) is 

displayed in Fig. 5.12. Note that the renewable generation power is not affected by the use of 

the EWH, thus, the forecast of power generation is maintained. 

 

Fig. 5.12. Net power forecasting block diagram 

Since a part of the power required by the EWH is supplied by the ESS the MG net power is 

modified as follows: 

 * ( ) ( ) ( ).B
LG LG WHP n P n P n= −   (5.19) 

According to (4.5) the grid power for the fuzzy EMS-FC applied to an electro-thermal MG 

scenario (fuzzy EMS-FC ETH-MG) is defined as follows: 

 *( ) ( ) ( ) ( ),GRID CTR SOC FLCP n P n P n P n= + +   (5.20) 

where *
CTRP (n) is the modified average net power of the MG, which is calculated at each sample 

by means of both the modified MG net power *
LGP (n) and the modified forecast of the MG net 

power *
,LG FCP (n). Note that for computing the modified average of the MG net power it is 

necessary to use the expressions from (4.6) to (4.8), which are defined in Chapter 4.2 by means 

of replacing PLG and PLG,FC for *
LGP (n) and *

,LG FCP (n), respectively. Additionally, in order to 

compute the PFLC (n) component it is necessary to determine the modified forecast error of the 

MG for the previous 3-hours 3 *H
EP (n), which now is calculated as follows: 

 * * *
,( ) ( ) ( ),E LG LG FCP n P n P n= −   (5.21) 

Load 
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Finally, the battery power and the energy saved during the year under study through the fuzzy 

EMS-FC strategy applied to an electro-thermal MG scenario are computed using from (5.8) 

to (5.13) 

5.2.3. Fuzzy logic controller design 

The FLC design follows the procedure described in Chapter 4.2, but considering the modified 

power forecast error of the MG. In short, the FLC uses the same configuration 

(i.e. Mamdani-based inference and defuzzyfication of Center of Gravity), inputs [i.e. 3 *H
EP (n) 

and SOC (n)], output [i.e. PFLC (n)], and MFs number (i.e. 5 MFs for each input and 9 MFs for 

the output), type (i.e. triangular), and mapping (see Fig. 4.9) of the fuzzy EMS-FC strategy 

described in Chapter 4.2. However, due to the reduction of the MG net power, the reassignment 

of the limits of the FLC output is needed. Consequently, the optimization process will deliver a 

new set of rules to minimize the energy management quality criteria defined in Chapter 3.1.2 

according to the new MG conditions. 

In this regard, the variation range for the output variable is established between PN = -0.8 kW 

and PP = 1.35 kW by the optimization procedure. The resulting rule-base is presented in 

Table 5-3. 

Table 5-3 Optimized fuzzy rule-base for the FLC of the fuzzy EMS-FC strategy applied to an electro-thermal 
microgrid 

PFLC (n) 
3 *H

EP (n) 

NB NS ZE PS PB 

SOC (n) 

NB PB PM PS PM PB 

NS PM PS PSS PS PM 

ZE NS ZE ZE PSS NSS 

PS NM NS NSS NS NM 

PB NB NSS NM NM NB 

 

Finally, the block diagram of the FLC is shown in Fig. 5.13. Similarly to previous designs, the 

FLC assumes a Mamdani-based inference and defuzzyfication of Center of Gravity with two 

inputs, 3 *H
EP (n) and SOC (n), one output PFLC (n) and 25-rules. 
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Fig. 5.13. Fuzzy logic system: 2 inputs, 1 output, and 25-rules 

5.2.4. Simulation results and analysis  

The simulations results of the fuzzy EMS-FC strategy applied to an electro-thermal MG 

scenario are presented from Fig. 5.14 to Fig. 5.18. As aforementioned in section 5.2.2, the main 

objective of the strategy is to use the energy stored in the ESS to supply part of the energy 

required by the EWH, which results in minimizing the total load required by the MG, as can be 

seen in Fig. 5.14(a). Consequently, the EMS strategy should recalculate the load demand 

forecast considering its reduced value, this leading to decrease the load forecast, as can be 

appreciated in Fig. 5.14(b). Hence, the MG net power and its forecasts are modified, as 

displayed in Fig. 5.14(c) and Fig. 5.14(d). 

In the same manner, this behavior modifies the average net power profile of the MG, which now 

is lower than the initial value due to the reduction of the load demand, as can be illustrated in 

Fig. 5.15(a). Consequently, the new strategy reduces the grid power profile with respect to the 

fuzzy EMS-FC strategy, as can be seen in Fig. 5.15(b). 

In addition, Fig. 5.16 shows the grid power profile and the battery SOC comparison for the 

EMS strategies including the EWH consumption described in Chapter 3 and Chapter 4, and the 

fuzzy EMS-FC strategy applied to an electro-thermal MG scenario. As it can be seen, the use of 

the energy stored in battery to supply part of the energy required by the EWH leads to the 

reduction of the grid power profile, as shown in Fig. 5.16(a), since the discharge of the battery 

allows the ESS to absorb greater amount of energy produced by the RES. Additionally, 

Fig. 5.15(b) shows the battery SOC evolution during the year under study. As it can be seen, the 

fuzzy EMS-FC ETH-MG strategy satisfies the ESS constraints defined in Chapter 2.3.3.  

 

 

       

P3H*
E (n) (5)
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FLC
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(a)                           (b) 

  
(c)                           (d) 

Fig. 5.14. Comparison between the initial and the modified variables of the MG (a) load demand comparison, (b) 
load demand forecast comparison, (c) MG net power comparison, and (d) forecast of the MG net power comparison 

  
(a)                           (b) 

Fig. 5.15. (a) Initial and modified average net power of the MG, (b) Grid power profile comparison between the 
fuzzy EMS-FC strategy including the EWH consumption and the fuzzy EMS-FC strategy applied to an 

electro-thermal MG 
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(a)                           (b) 

Fig. 5.16. Grid power profile and battery SOC comparison for the SMA, the fuzzy NPT, the fuzzy ERoC, and the 
fuzzy EMS-FC strategies including the EWH consumption and the fuzzy EMS-FC strategy applied to an 

electro-thermal MG 

Moreover, Fig. 5.17(a) depicts the distribution of the energy required by the EWH between the 

ESS and the mains. As it can be seen, the grid has a major contribution for the EWH 

consumption. Conversely, the ESS supplies an energy of only B
WHE = 318.5 kWh during the year 

under study, which represents an 18.5% savings in the EWH consumption. 

Furthermore, Fig. 5.17(b) illustrates the SOC intervals where the battery is located the most of 

the year under study. As it can be seen, the results obtained through the fuzzy EMS-FC 

ETH-MG are similar than those obtained through the fuzzy EMS-FC including the EWH 

consumption. In short, the battery SOC is kept in the 70%-80% range of the rated battery 

capacity over the 45% of the year under study, which means that the ESS could further 

compensate the MG net power fluctuations while preserving the battery lifetime. 
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(a)                           (b) 

Fig. 5.17. (a) Contribution of the energy required by the EWH achieved through the fuzzy EMS-FC ETH-MG 
strategy, (b) Annual frequency of the battery SOC ranges achieved through the SMA, fuzzy NPT, fuzzy ERoC, the 

fuzzy EMS-FC strategies including the EWH consumption and the fuzzy EMS-FC strategy applied to an 
electro-thermal MG 

Moreover, the resulting values for the energy management quality criteria defined in Chapter 

3.1.2 are summarized in Table 5-4 and confirm the proper behavior of the fuzzy EMS-FC 

strategy applied to an electro-thermal MG. 

Table 5-4 Quality criteria comparison for the fuzzy EMS-FC strategy applied to an electro-thermal microgrid, the 
fuzzy EMS-FC strategy, the fuzzy ERoC strategy, the fuzzy NPT strategy, the SMA strategy and the baseline values 

including the EWH consumption 

EMS Strategy PG,MAX 
(kW) 

PG,MIN           
(kW) PVR MPD    

(W/h) 
APD     

(W/h) PPV 

No EMS & ESS  
including the EWH 

consumption 
6.53 -6.45 1.00 18468 1221 5.99 

SMA strategy 6.25 -3.98 0.79 20006 57.41 1.23 

Fuzzy EMS based on MG net 
power trend 5.80 -3.28 0.70 18119 50.81 1.31 

Fuzzy ERoC strategy 
including the EWH 

consumption 
2.94 -2.52 0.42 1252 79.93 1.51 

Fuzzy EMS-FC strategy 
including the EWH 

consumption 
2.46 -1.92 0.33 1016 75.93 1.42 

Fuzzy EMS-FC strategy 
applied to an 

electro-thermal MG 
2.56 -1.89 0.34 846 75.13 1.26 

 

It can be noticed that the fuzzy EMS-FC strategy applied to an electro-thermal MG minimizes 

four of the defined quality criteria. MPD and PPV criteria are reduced in 16.7% and 11.2% with 

respect to the fuzzy EMS-FC strategy including the EWH consumption. Conversely, PG,MIN and 

APD criteria reach a minimum reduction, whereas PG,MAX and PVR criteria present an slightly 

increase, which do not represent a significant influence in the overall strategy performance.  
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Finally, the comparison of the grid power profile ramp-rates is presented in Fig. 5.18. As it can 

be seen, the grid power ramp-rates are reduced through the fuzzy EMS-FC strategy applied to 

an electro-thermal MG reaching a maximum value of 846 W/h. 

  
(a)                           (b) 

  
(c)                           (d) 

Fig. 5.18. Grid power profile ramp-rates analysis (a) grid power ramp-rates comparison for the described EMS 
strategies, (b) grid power ramp-rates comparison for the fuzzy ERoC, the fuzzy EMS-FC strategies including the 

EWH consumption and the fuzzy EMS-FC ETH-MG strategy, (c) comparison of the grid power profile ramp-rates 
between the fuzzy EMS-FC including the EWH consumption and the fuzzy EMS-FC ETH-MG strategy, and 

(d) maximum grid power profile ramp-rate achieved through the fuzzy EMS-FC strategy applied to an 
electro-thermal MG 
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Chapter 6  
Conclusions and future works 

6.1. Conclusions 

This study has addressed the design of different energy management strategies based on Fuzzy 

Logic Control for a grid-connected residential microgrid with solar and wind renewable sources. 

The analysis of two different power architectures namely, only electrical and electro-thermal 

residential microgrids has been addressed. The first architecture only includes the renewable 

generation and domestic load demand of the residence. Conversely, the electro-thermal 

microgrid has considered, beside all the elements of the electrical microgrid, the thermal 

requirements, i.e., electric water heater, solar thermal collectors, water storage tank, and 

domestic hot water consumption of the residence. The designs presented in this work have been 

using real recorded data of electrical power generation and consumption from July 2013 to July 

2014 of the residential microgrid under study. 

The main objective selected for the design of the energy management strategy of these 

architectures has been the reduction of the power fluctuations in the power exchanged with the 

grid, while keeping the energy storage system within secure limits to preserve its life. Reaching 

this objective will facilitate the integration of the RES into the mains and contribute to the 

reduction of both the electricity bill and the mains overload. 

First of all, a set of quality criteria was defined in order to quantify the behavior of the grid 

power profile resulting from an EMS design. The enhanced behavior of an EMS strategy is 

reflected by the minimization of the resulting value of each quality criterion. These quality 

criteria were additionally used to adjust the parameters of the FLC presented in this work by an 

off-line learning process using the real recorded data referred above. 

For further comparison purposes, the analysis started with the study of the classical strategy to 

smooth the grid power profile namely, the Simple Moving Average (SMA) approach. The 

simulation results evidenced that this strategy works properly as long as no significant energy 

changes occur in the MG from one day to the next one but leads the Energy Storage System 

(EES) to exceed the secure limits during several time intervals when these changes are 

noticeable.  This preliminary study also concluded that this undesirable ESS behavior comes 

from the fact that the net power fluctuations in the MG have not been taken into account in the 

strategy design. Based on this conclusion, a first fuzzy-based strategy referred as Net Power 

Trend (NPT) was suggested.  This strategy uses the MG net power, the battery capacity status 
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respect to its half-rated capacity and the MG Net Power Trend as a controller inputs to quantify 

the MG net power fluctuations. As a result, a 3 inputs one output FLC of 50 rules was designed 

and tested. Even if the simulation results evidenced an improved behavior of the fuzzy NPT 

strategy with respect to the SMA one, the battery SOC evolution still exceeded secure limits. 

In a second step, an improved fuzzy EMS design is carried out by means of a two-input, 

one-output, and 25-rules FLC, which uses the MG energy Rate-of-Change (ERoC) as a 

controller input to quantify the magnitude of the energy changes in the MG, and the battery 

SOC to increase, decrease or maintain the power delivered/absorbed by the mains. A set of 

numerical simulations has shown that this design allows the EMS to react quickly against the 

MG energy changes to set the battery SOC close to the 75% of the rated battery capacity, so that 

the available dynamic range of the battery can compensate the MG net power fluctuations, thus 

smoothing the grid power profile while keeping the SOC between secure limits. This new 

design has evidenced the importance of a correct selection of the fuzzy logic controller inputs 

since they have a major influence on the effectiveness of the energy management strategy. 

This study has also faced the FLC design when power forecast data are available. A new FLC 

design referred as fuzzy-based energy management strategy based on MG power forecasting 

(EMS-FC) includes the MG power forecasting to predict the future behavior of the MG so that 

the power forecast error is used by the FLC to modify the grid power profile according to the 

battery SOC. The fuzzy EMS-FC strategy computes the grid power as the sum of three 

components: the first component is used to obtain the average of the MG net power through a 

CMA filter; the second component is used to maintain the battery SOC close to the 75% of the 

rated battery capacity, and the third component, which is computed by means of a two-input, 

one-output and 25-rules FLC, is used for smoothing the grid power profile according to the 

forecast error and the battery SOC. The simulation results and further comparison proved the 

feasibility of this strategy which concurrently holds the SOC of the battery close to the 75% of 

the rated battery capacity and minimizes the grid power fluctuations with respect to previous 

strategies. 

The experimental validation of the enhanced fuzzy-based EMS strategies, i.e., fuzzy ERoC and 

fuzzy EMS-FC strategies, were executed in a real residential microgrid implemented at Public 

University of Navarre. The experimental validation results confirmed the robustness and the 

effectiveness of the fuzzy-based EMSs designs.   

The enhanced fuzzy-based EMS strategies were also applied to electro-thermal MG 

architecture. The results demonstrated that an additional degree of freedom in the MG (i.e., the 

thermal elements of the MG) facilitates the control of the grid power profile. In this regard, the 

use of the Electric Water Heater (EWH) and the water storage tank allowed the improvement of 



Conclusions and future works                                                                                                                   111 
 
 

 
 

the power exchanged with the grid. In addition, the thermal elements also allowed the reduction 

of the amount of power supplied by the mains required to meet the domestic hot water 

consumption, which implies a cost reduction for the user. 

Finally, this work has evidenced the feasibility of using a FLC for the EMS strategy in electric 

and electro-thermal MG scenarios, since it simplifies the strategy design. FLC allows 

transforming the linguistic knowledge about the MG behavior in the form of linguistic rules, 

making easier their understanding and implementation in a real environment. The results of this 

work have demonstrated the effectiveness of the fuzzy logic control approach in a MG scenario 

which improves the grid power profile quality with respect to previous control techniques 

described in the literature. 

6.2. Future works 

Despite the progress made in this study, the energy management o for a grid-connected 

microgrid is still a topic of ongoing research. Therefore, several aspects for improving both the 

reliability of the microgrid and the energy management strategy design can be recommended for 

future consideration:  

• The analysis of the EMS strategy under a microgrid scenario including more freedom 

degrees, such as, controllable loads, would allow the integration of a Demand Side 

Management (DSM) or Demand Respond (DR) techniques, which improve the system 

performance. 

• The addition of multiple storage elements in the microgrid scheme would allow the 

integration of a multi-agent based management to perform a cooperative control of the 

microgrid.  

• The expansion of the EMS strategy design for the case of multiple interconnected 

microgrids would allow sharing the energy requirements of each microgrid so that they 

can be supplied for another microgrid, with the aim of improving the performance of 

the microgrids at the local and global level. 

• Additional technical aspects could be considered for the estimation of the state-of-

charge of the energy storage system, for instance, number of charge-discharge cycles, 

and charging/discharging power rates and limits, which would help to preserve the 

storage system lifetime.  
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• The parameter optimization of the fuzzy logic controller developed in this study could 

be compared with the optimization accomplished through sophisticated algorithms, for 

instance, Particle Swarm Optimization (PSO) and Cuckoo optimization algorithms.  

• The feasibility of this study could be further improved by means of including a cost 

function, which involves all the benefits of the defined quality criteria and additionally 

considers the electricity market price with the purpose of minimizing the operational 

cost of the microgrid.  

• The formulation of the cost function allows the use of complex control techniques for 

the EMS strategy design. For instance a Model Predictive Control (MPC) approach can 

be envisaged for the EMS design for a residential grid-connected microgrid scenario. 
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Accepted Journal papers 
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Microgrids,” IEEE Trans. Smart Grid, vol., no., pp. 1–14, Apr. 2016. 

• D. Arcos-Aviles, F. Guinjoan, L. Marroyo, “Estrategia de gestión energética mediante 
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Sep. 2014.  

Journal papers under review: 

• D. Arcos-Aviles, J. Pascual, L. Marroyo, P. Sanchis, and F. Guinjoan, “Fuzzy logic 

controller design for energy management in a grid-connected residential microgrid with 

generation and demand forecasting,” Energy Conversion and Management. 

Accepted Conference papers: 

• D. Arcos-Aviles, J. Pascual, L. Marroyo, P. Sanchis, F. Guinjoan, and M. P. Marietta, 

“Optimal Fuzzy Logic EMS design for residential grid-connected microgrid with hybrid 

renewable generation and storage,” in Proc. IEEE 24th Int. Symp. Ind. Electron. (ISIE), 

Armação dos Búzios, Brazil, Jun. 2015, pp. 742–747. 



Conclusions and future works                                                                                                                   113 
 
 

 
 

• D. Arcos-Aviles, N. Espinosa, F. Guinjoan, L. Marroyo, and P. Sanchis, “Improved 

Fuzzy Controller Design for Battery Energy Management in a Grid Connected 

Microgrid,” in Proc. IECON 40th Annu. Conf. IEEE Ind. Electron. Soc., Dallas, TX, 

USA, Oct. 2014, pp. 2128–2133. 

• D. Arcos-Aviles, C. Vega, F. Guinjoan, L. Marroyo, and P. Sanchis, “Fuzzy logic 

controller design for battery energy management in a grid connected electro-thermal 

microgrid,” in Proc. IEEE 23th Int. Symp. Ind. Electron. (ISIE), Istambul, Turkey, 

Jun. 2014, pp. 2014–2019 

• D. A. Avilés, F. Guinjoan, J. Barricarte, L. Marroyo, P. Sanchis, and H. Valderrama, 

“Battery management fuzzy control for a grid-tied microgrid with renewable 

generation,” in Proc. IECON 38th Annu. Conf. IEEE Ind. Electron. Soc., Montreal, QC, 

Canada, Oct. 2012, pp. 5607–5612. 

Conference papers under review: 

• D. Arcos-Aviles, J. Pascual, L. Marroyo, P. Sanchis, and F. Guinjoan, “Energy 

management strategy for a grid-tied residential microgrid based on fuzzy logic and 

power forecasting,” IECON 2016 – 42th Annual Conference on IEEE Industrial 

Electronics Society, submitted Apr. 2016. 





 

115 
 

References 

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any 
of UPC’s products or services. Internal or personal use of this material is permitted. If interested in 
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new 
collective works for resale or redistribution, please go to http://www.ieee.org/publications standards/publications/ 
rights/rights link.html to learn how to obtain a License from RightsLink. 

 

[1] International Energy Agency, “Key World Energy Statistics 2015,” pp. 1–81, 2015. 

[2] International Energy Agency, “CO2 Emissions from Fuel Combustion Highlights,” IEA 
Stat., no. IEA - STATISTICS, pp. 1–15, 2015. 

[3] M. Soshinskaya, W. H. J. Crijns-Graus, J. M. Guerrero, and J. C. Vasquez, “Microgrids: 
Experiences, barriers and success factors,” Renew. Sustain. Energy Rev., vol. 40, pp. 
659–672, Dec. 2014. 

[4] International Energy Agency, “Excerpt from Renewables Information (2015 Edition),” 
pp. 1–8, 2015. 

[5] H. Kanchev, D. Lu, F. Colas, V. Lazarov, and B. Francois, “Energy Management and 
Operational Planning of a Microgrid With a PV-Based Active Generator for Smart Grid 
Applications,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4583–4592, Oct. 2011. 

[6] K. Rahbar, J. Xu, and R. Zhang, “Real-Time Energy Storage Management for 
Renewable Integration in Microgrid: An Off-Line Optimization Approach,” IEEE Trans. 
Smart Grid, vol. 6, no. 1, pp. 124–134, Jan. 2015. 

[7] P. Basak, S. Chowdhury, S. Halder nee Dey, and S. P. Chowdhury, “A literature review 
on integration of distributed energy resources in the perspective of control, protection 
and stability of microgrid,” Renew. Sustain. Energy Rev., vol. 16, no. 8, pp. 5545–5556, 
Oct. 2012. 

[8] W. Huang, M. Lu, and L. Zhang, “Survey on Microgrid Control Strategies,” Energy 
Procedia, vol. 12, pp. 206–212, 2011. 

[9] E. Unamuno and J. A. Barrena, “Hybrid ac/dc microgrids—Part I: Review and 
classification of topologies,” Renew. Sustain. Energy Rev., vol. 52, pp. 1251–1259, Dec. 
2015. 

[10] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. a. Cañizares, R. Iravani, M. 
Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. 
a. Jiménez-Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE 
Trans. Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014. 

[11] F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, “Microgrids management,” 
IEEE Power Energy Mag., vol. 6, no. 3, pp. 54–65, May 2008. 

[12] A. M. Bouzid, J. M. Guerrero, A. Cheriti, M. Bouhamida, P. Sicard, and M. Benghanem, 
“A survey on control of electric power distributed generation systems for microgrid 
applications,” Renew. Sustain. Energy Rev., vol. 44, pp. 751–766, Apr. 2015. 

[13] B. Lasseter, “Microgrids [distributed power generation],” in Proc. IEEE Power 
Engineering Society Winter Meeting, 2001, vol. 1, pp. 146–149. 



116                                                                                                                     References 
 

 
 

[14] R. H. Lasseter, “MicroGrids,” in IEEE Power Engineering Society Winter Meeting, 
2002, vol. 1, pp. 305–308. 

[15] N. Hatziargyriou, Microgrids: Architectures and Control. Chichester, UK: Wiley, 2014. 

[16] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,” IEEE Power 
Energy Mag., vol. 5, no. 4, pp. 78–94, Jul. 2007. 

[17] H. Laaksonen, “Technical Solutions for Low-Voltage Microgrid Concept,” Aalto 
University, 2011. 

[18] B. Liu, F. Zhuo, Y. Zhu, and H. Yi, “System Operation and Energy Management of a 
Renewable Energy-Based DC Micro-Grid for High Penetration Depth Application,” 
IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1147–1155, May 2015. 

[19] W. Su and J. Wang, “Energy Management Systems in Microgrid Operations,” Electr. J., 
vol. 25, no. 8, pp. 45–60, Oct. 2012. 

[20] M. Yazdanian and A. Mehrizi-Sani, “Distributed Control Techniques in Microgrids,” 
IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2901–2909, Nov. 2014. 

[21] Q. Jiang, M. Xue, and G. Geng, “Energy Management of Microgrid in Grid-Connected 
and Stand-Alone Modes,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3380–3389, Aug. 
2013. 

[22] A. Tascikaraoglu, A. R. Boynuegri, and M. Uzunoglu, “A demand side management 
strategy based on forecasting of residential renewable sources: A smart home system in 
Turkey,” Energy Build., vol. 80, pp. 309–320, 2014. 

[23] Y.-H. Chen, S.-Y. Lu, Y.-R. Chang, T.-T. Lee, and M.-C. Hu, “Economic analysis and 
optimal energy management models for microgrid systems: A case study in Taiwan,” 
Appl. Energy, vol. 103, pp. 145–154, Mar. 2013. 

[24] M. Marzband, A. Sumper, J. L. Domínguez-García, and R. Gumara-Ferret, 
“Experimental validation of a real time energy management system for microgrids in 
islanded mode using a local day-ahead electricity market and MINLP,” Energy Convers. 
Manag., vol. 76, pp. 314–322, Dec. 2013. 

[25] R. Palma-Behnke, C. Benavides, F. Lanas, B. Severino, L. Reyes, J. Llanos, and D. 
Saez, “A Microgrid Energy Management System Based on the Rolling Horizon 
Strategy,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 996–1006, Jun. 2013. 

[26] P. Malysz, S. Sirouspour, and A. Emadi, “An Optimal Energy Storage Control Strategy 
for Grid-connected Microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1785–1796, 
Jul. 2014. 

[27] P. G. Arul, V. K. Ramachandaramurthy, and R. K. Rajkumar, “Control strategies for a 
hybrid renewable energy system: A review,” Renew. Sustain. Energy Rev., vol. 42, pp. 
597–608, Feb. 2015. 

[28] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, “Hierarchical 
Control of Droop-Controlled AC and DC Microgrids-A General Approach Toward 
Standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158–172, Jan. 2011. 

[29] O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network 
management—Part I: Hierarchical control, energy storage, virtual power plants, and 
market participation,” Renew. Sustain. Energy Rev., vol. 36, pp. 428–439, Aug. 2014. 



References                                                                                                                                                 117 
 
 

 
 

[30] E. Unamuno and J. A. Barrena, “Hybrid ac/dc microgrids—Part II: Review and 
classification of control strategies,” Renew. Sustain. Energy Rev., vol. 52, pp. 1123–
1134, Dec. 2015. 

[31] D. Tran and A. M. Khambadkone, “Energy Management for Lifetime Extension of 
Energy Storage System in Micro-Grid Applications,” IEEE Trans. Smart Grid, vol. 4, 
no. 3, pp. 1289–1296, Sep. 2013. 

[32] M. Marinelli, F. Sossan, G. T. Costanzo, and H. W. Bindner, “Testing of a Predictive 
Control Strategy for Balancing Renewable Sources in a Microgrid,” IEEE Trans. 
Sustain. Energy, vol. 5, no. 4, pp. 1426–1433, Oct. 2014. 

[33] A. Anvari-Moghaddam, H. Monsef, and A. Rahimi-Kian, “Optimal Smart Home Energy 
Management Considering Energy Saving and a Comfortable Lifestyle,” IEEE Trans. 
Smart Grid, vol. 6, no. 1, pp. 324–332, Jan. 2015. 

[34] A. Anvari-Moghaddam, H. Monsef, A. Rahimi-Kian, J. M. Guerrero, and J. C. Vasquez, 
“Optimized energy management of a single-house residential micro-grid with automated 
demand response,” in 2015 IEEE Eindhoven PowerTech, 2015, pp. 1–6. 

[35] A. Anvari-Moghaddam, J. C. Vasquez, and J. M. Guerrero, “Load shifting control and 
management of domestic microgeneration systems for improved energy efficiency and 
comfort,” in Proc. IECON 41st Annu. Conf. IEEE Ind. Electron. Soc., 2015, pp. 000096 
– 000101. 

[36] J. Pascual, P. Sanchis, and L. Marroyo, “Implementation and Control of a Residential 
Electrothermal Microgrid Based on Renewable Energies, a Hybrid Storage System and 
Demand Side Management,” Energies, vol. 7, no. 1, pp. 210–237, Jan. 2014. 

[37] D. Wang, S. Ge, H. Jia, C. Wang, Y. Zhou, N. Lu, and X. Kong, “A Demand Response 
and Battery Storage Coordination Algorithm for Providing Microgrid Tie-Line 
Smoothing Services,” IEEE Trans. Sustain. Energy, vol. 5, no. 2, pp. 476–486, Apr. 
2014. 

[38] I. Prodan and E. Zio, “A model predictive control framework for reliable microgrid 
energy management,” Int. J. Electr. Power Energy Syst., vol. 61, pp. 399–409, 2014. 

[39] G. Bruni, S. Cordiner, V. Mulone, V. Rocco, and F. Spagnolo, “A study on the energy 
management in domestic micro-grids based on Model Predictive Control strategies,” 
Energy Convers. Manag., vol. 102, pp. 50–58, 2015. 

[40] P. García, J. P. Torreglosa, L. M. Fernández, and F. Jurado, “Optimal energy 
management system for stand-alone wind turbine/photovoltaic/hydrogen/battery hybrid 
system with supervisory control based on fuzzy logic,” Int. J. Hydrogen Energy, vol. 38, 
no. 33, pp. 14146–14158, Nov. 2013. 

[41] J. Lagorse, M. G. Simoes, and A. Miraoui, “A Multiagent Fuzzy-Logic-Based Energy 
Management of Hybrid Systems,” IEEE Trans. Ind. Appl., vol. 45, no. 6, pp. 2123–2129, 
2009. 

[42] G. Kyriakarakos, A. I. Dounis, K. G. Arvanitis, and G. Papadakis, “A fuzzy logic energy 
management system for polygeneration microgrids,” Renew. Energy, vol. 41, pp. 315–
327, May 2012. 

[43] Y.-K. Chen, Y.-C. Wu, C.-C. Song, and Y.-S. Chen, “Design and Implementation of 
Energy Management System With Fuzzy Control for DC Microgrid Systems,” IEEE 
Trans. Power Electron., vol. 28, no. 4, pp. 1563–1570, Apr. 2013. 



118                                                                                                                     References 
 

 
 

[44] L. Roine, K. Therani, Y. S. Manjili, and M. Jamshidi, “Microgrid energy management 
system using fuzzy logic control,” in 2014 World Automation Congress (WAC), 2014, 
pp. 462–467. 

[45] R. G. C. Secretariat, “Grid connection code for renewable power plants (RPPs) 
connected to the Electricity Transmission System (TS) or the Distribution System (DS) 
in South Africa,” 2012. 

[46] J. Pascual, “Estrategias avanzadas de gestión energética basadas en prediccion para 
microrredes electrotérmicas,” Universidad Pública de Navarra, Pamplona, España, 2015. 

[47] W. A. Bisschoff and R. Gouws, “Energy management system for a residential grid-tied 
micro-grid,” in 2015 International Conference on the Domestic Use of Energy (DUE), 
2015, pp. 85–91. 

[48] R. Hanna, J. Kleissl, A. Nottrott, and M. Ferry, “Energy dispatch schedule optimization 
for demand charge reduction using a photovoltaic-battery storage system with solar 
forecasting,” Sol. Energy, vol. 103, pp. 269–287, May 2014. 

[49] H. Zhou, T. Bhattacharya, D. Tran, T. S. T. Siew, and A. M. Khambadkone, “Composite 
Energy Storage System Involving Battery and Ultracapacitor With Dynamic Energy 
Management in Microgrid Applications,” IEEE Trans. Power Electron., vol. 26, no. 3, 
pp. 923–930, Mar. 2011. 

[50] J. Barricarte, “Integración en la red eléctrica de microrredes electrotérmicas: 
dimensionado, estrategias de gestión energética e implementación experimental,” 
Universidad Pública de Navarra, Pamplona, España, 2011. 

[51] D. A. Aviles, F. Guinjoan, J. Barricarte, L. Marroyo, P. Sanchis, and H. Valderrama, 
“Battery management fuzzy control for a grid-tied microgrid with renewable 
generation,” in Proc. IECON 38th Annu. Conf. IEEE Ind. Electron. Soc., 2012, pp. 
5607–5612. 

[52] D. Arcos-Aviles, N. Espinosa, F. Guinjoan, L. Marroyo, and P. Sanchis, “Improved 
Fuzzy Controller Design for Battery Energy Management in a Grid Connected 
Microgrid,” in Proc. IECON 40th Annu. Conf. IEEE Ind. Electron. Soc., 2014, pp. 2128–
2133. 

[53] D. Arcos-Aviles, J. Pascual, L. Marroyo, P. Sanchis, F. Guinjoan, and M. P. Marietta, 
“Optimal Fuzzy Logic EMS design for residential grid-connected microgrid with hybrid 
renewable generation and storage,” in Proc. IEEE 24th Int. Symp. Ind. Electron. (ISIE), 
2015, pp. 742–747. 

[54] D. Arcos-Aviles, J. Pascual, L. Marroyo, P. Sanchis, and F. Guinjoan, “Fuzzy Logic-
Based Energy Management System Design for Residential Grid-Connected Microgrids,” 
IEEE Trans. Smart Grid, pp. 1–14, Apr. 2016. 

[55] D. Arcos-Aviles, C. Vega, F. Guinjoan, L. Marroyo, and P. Sanchis, “Fuzzy logic 
controller design for battery energy management in a grid connected electro-thermal 
microgrid,” in Proc. IEEE 23th Int. Symp. Ind. Electron. (ISIE), 2014, pp. 2014–2019. 

[56] D. Arcos-Aviles, F. Guinjoan, and L. Marroyo, “Estrategia de gestión energética 
mediante controladores fuzzy logic para sistemas de almacenamiento de una microrred 
electro-térmica con conexión a red,” Rev. Cienc., vol. 16, no. 2, pp. 193–207, Sep. 2014. 

[57] J. Pascual, J. Barricarte, P. Sanchis, and L. Marroyo, “Energy management strategy for a 
renewable-based residential microgrid with generation and demand forecasting,” Appl. 
Energy, vol. 158, pp. 12–25, Nov. 2015. 



References                                                                                                                                                 119 
 
 

 
 

[58] K. Passino and S. Yurkovich, Fuzzy Control. Menlo Park, CA: Addisson-Wesley, 1998. 

[59] M. Serraji, J. Boumhidi, and E. H. Nfaoui, “MAS energy management of a microgrid 
based on fuzzy logic control,” in 2015 Intelligent Systems and Computer Vision (ISCV), 
2015, pp. 1–7. 

[60] A. Mohamed and O. Mohammed, “Real-time energy management scheme for hybrid 
renewable energy systems in smart grid applications,” Electr. Power Syst. Res., vol. 96, 
pp. 133–143, Mar. 2013. 

[61] J. P. Fossati, A. Galarza, A. Martín-Villate, J. M. Echeverría, and L. Fontán, “Optimal 
scheduling of a microgrid with a fuzzy logic controlled storage system,” Int. J. Electr. 
Power Energy Syst., vol. 68, pp. 61–70, Jun. 2015. 

[62] D. Arcos-Aviles, F. Guinjoan, P. M. Marietta, J. Pascual, L. Marroyo, and P. Sanchis, 
“Energy management strategy for a grid-tied residential microgrid based on fuzzy logic 
and power forecasting,” submitted paper, 2016. 

[63] D. Arcos-Aviles, J. Pascual, L. Marroyo, P. Sanchis, and Francesc Guinjoan, “Fuzzy 
Logic Controller Design for Energy Management in a Grid Connected Residential 
Microgrid with Generation and Demand Forecasting,” working paper, 2016. 

[64] B. Solar, “BP585,” 2002. [Online]. Available: 
http://www.comel.gr/pdf/bpsolar/BP585.pdf. [Accessed: 08-Mar-2016]. 

[65] Bornay, “Aerogenerador Bornay 6000,” 2010. [Online]. Available: 
http://www.bornay.com/userfiles/descargas/bornay_6000_rev_6.pdf. [Accessed: 08-
Mar-2016]. 

[66] AMETEK, “AMREL eLoad PLA Series,” 2014. [Online]. Available: 
http://www.programmablepower.com/electronic-
load/PLA/downloads/PLA_Datasheet.pdf. [Accessed: 08-Mar-2016]. 

[67] FIAMM, “SMG (OPzV).” [Online]. Available: 
http://www.interstatebatteries.com/powercare/stationary/pdf/SMG_OPzV_VRLA.pdf. 
[Accessed: 08-Mar-2016]. 

[68] Ingeteam Energy S.A., “Manual de Instalación Ingecon Hybrid MS,” 2010. [Online]. 
Available: 
http://www.ingeteam.com/Portals/0/Catalogo/Producto/Documento/PRD_128_Archivo_
ptd22-manual-de-instalacion-ingecon-hybrid-ms.pdf. [Accessed: 08-Mar-2016]. 

[69] National Instruments, “PXI Platform,” 2016. [Online]. Available: 
http://www.ni.com/pxi/#. [Accessed: 08-Mar-2016]. 

[70] D. Rekioua and E. Matagne, Optimization of Photovoltaic Power Systems. London: 
Springer London, 2012. 

[71] A. H. Fathima and K. Palanisamy, “Optimization in microgrids with hybrid energy 
systems – A review,” Renew. Sustain. Energy Rev., vol. 45, pp. 431–446, May 2015. 

[72] B. Zhao, X. Zhang, J. Chen, C. Wang, and L. Guo, “Operation Optimization of 
Standalone Microgrids Considering Lifetime Characteristics of Battery Energy Storage 
System,” IEEE Trans. Sustain. Energy, vol. 4, no. 4, pp. 934–943, Oct. 2013. 

[73] J. Yoo, B. Park, K. An, E. A. Al-Ammar, Y. Khan, K. Hur, and J. H. Kim, “Look-Ahead 
Energy Management of a Grid-Connected Residential PV System with Energy Storage 
under Time-Based Rate Programs,” Energies, vol. 5, no. 12, pp. 1116–1134, Apr. 2012. 



120                                                                                                                     References 
 

 
 

[74] F. Bizzarri, M. Bongiorno, A. Brambilla, G. Gruosso, and G. S. Gajani, “Model of 
Photovoltaic Power Plants for Performance Analysis and Production Forecast,” IEEE 
Trans. Sustain. Energy, vol. 4, no. 2, pp. 278–285, Apr. 2013. 

[75] E. Lorenzo, “Energy Collected and Delivered by PV Modules,” in Handbook of 
Photovoltaic Science and Engineering, A. Luque and S. Hegedus, Eds. Chichester, UK, 
UK: John Wiley & Sons, Ltd, 2011, pp. 984–1042. 

[76] S. Mathew, “Wind energy : fundamentals, resource analysis and economics,” Berlin: 
Springer, 2006, pp. 11–88. 

[77] W. T. Chong, W. P. Hew, S. Y. Yip, A. Fazlizan, S. C. Poh, C. J. Tan, and H. C. Ong, 
“The experimental study on the wind turbine’s guide-vanes and diffuser of an exhaust air 
energy recovery system integrated with the cooling tower,” Energy Convers. Manag., 
vol. 87, pp. 145–155, Nov. 2014. 

[78] J. F. Manwell, J. G. McGowan, and A. L. Rogers, “Wind Energy Explained: Theory, 
Design and Application,” Chichester, UK: John Wiley & Sons, Ltd, 2009, pp. 23–87. 

[79] C. Ally, S. Bahadoorsingh, A. Singh, and C. Sharma, “A review and technical 
assessment integrating wind energy into an island power system,” Renew. Sustain. 
Energy Rev., vol. 51, pp. 863–874, Nov. 2015. 

[80] Danish wind industry Association, “Wind Energy Reference Manual Part 1: Wind 
Energy Concepts.” [Online]. Available: http://drømstørre.dk/wp-
content/wind/miller/windpower web/en/stat/unitsw.htm#roughness. 

[81] D. A. J. Rand and P. T. Moseley, “Energy Storage with Lead–Acid Batteries,” in 
Electrochemical Energy Storage for Renewable Sources and Grid Balancing, P. T. 
Moseley and G. Jürgen, Eds. Kidlington: Elsevier, 2015, pp. 201–222. 

[82] H. Tazvinga, B. Zhu, and X. Xia, “Optimal power flow management for distributed 
energy resources with batteries,” Energy Convers. Manag., vol. 102, pp. 104–110, Sep. 
2015. 

[83] J. P. Fossati, A. Galarza, A. Martín-Villate, and L. Fontán, “A method for optimal sizing 
energy storage systems for microgrids,” Renew. Energy, vol. 77, pp. 539–549, 2015. 

[84] F. Guo, H. Li, C. Yao, M. Alsolami, A. Lang, X. Lu, and J. Wang, “Residential usage 
profile optimization and experimental implementation of the retired HEV battery with a 
hybrid microgrid testbed,” in 2014 IEEE Energy Conversion Congress and Exposition 
(ECCE), 2014, pp. 428–435. 

[85] S. Anuphappharadorn, S. Sukchai, C. Sirisamphanwong, and N. Ketjoy, “Comparison 
the Economic Analysis of the Battery between Lithium-ion and Lead-acid in PV Stand-
alone Application,” Energy Procedia, vol. 56, pp. 352–358, 2014. 

[86] J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, 4th ed. 
Hoboken, NJ, EEUU: John Wiley & Sons, Inc., 2014. 

[87] S. A. Kalogirou, Solar Energy Engineering Processes and Systems. Burlington, MA, 
EEUU: Elsevier, 2009. 

[88] T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Fundamentals of Heat 
and Mass Transfer, 7th ed. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. 

[89] F. H. Fahmy, D. M. Atia, N. M. A. El-Rahman, and H. T. Dorrah, “Optimal sizing of 
solar water heating system based on genetic algorithm for aquaculture system,” in 2010 



References                                                                                                                                                 121 
 
 

 
 

International Conference on Chemistry and Chemical Engineering, 2010, pp. 221–226. 

[90] D. Wang and Y. Liu, “Study on Heat Storage Tank of Solar Heating System,” in 2010 
International Conference on Digital Manufacturing & Automation, 2010, vol. 2, pp. 
493–497. 

[91] L. Zhang, N. Gari, and L. V. Hmurcik, “Energy management in a microgrid with 
distributed energy resources,” Energy Convers. Manag., vol. 78, pp. 297–305, Feb. 
2014. 

[92] Seul-Ki Kim, Jin-Hong Jeon, Chang-Hee Cho, Jong-Bo Ahn, and Sae-Hyuk Kwon, 
“Dynamic Modeling and Control of a Grid-Connected Hybrid Generation System With 
Versatile Power Transfer,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1677–1688, 
Apr. 2008. 

[93] J. Pascual, I. S. Martín, A. Ursúa, P. Sanchis, and L. Marroyo, “Implementation and 
control of a residential microgrid based on renewable energy sources , hybrid storage 
systems and thermal controllable loads,” in 2013 IEEE Energy Conversion Congress and 
Exposition (ECCE), 2013, pp. 2304–2309. 

[94] T. Butz, Fourier Transformation for Pedestrians, Second. Cham, Switzerland: Springer 
International Publishing, 2015. 

[95] Kiam Heong Ang, G. Chong, and Yun Li, “PID control system analysis, design, and 
technology,” IEEE Trans. Control Syst. Technol., vol. 13, no. 4, pp. 559–576, Jul. 2005. 

[96] J. Marcos, I. de la Parra, M. García, and L. Marroyo, “Control Strategies to Smooth 
Short-Term Power Fluctuations in Large Photovoltaic Plants Using Battery Storage 
Systems,” Energies, vol. 7, no. 10, pp. 6593–6619, Oct. 2014. 

[97] National Instruments, “Fuzzy System Designer,” 2011. [Online]. Available: 
http://zone.ni.com/reference/en-XX/help/370401H-01/lvpid/fuzzy_system_designer_db/. 
[Accessed: 08-Mar-2016]. 

[98] Meteogalicia, “Servidor THREDDS de MeteoGalicia.” [Online]. Available: 
http://www.meteogalicia.es/web/index.action. [Accessed: 10-Mar-2016]. 

[99] A. M. Foley, P. G. Leahy, A. Marvuglia, and E. J. McKeogh, “Current methods and 
advances in forecasting of wind power generation,” Renew. Energy, vol. 37, no. 1, pp. 1–
8, Jan. 2012. 

[100] C. Yang, A. A. Thatte, and L. Xie, “Multitime-Scale Data-Driven Spatio-Temporal 
Forecast of Photovoltaic Generation,” IEEE Trans. Sustain. Energy, vol. 6, no. 1, pp. 
104–112, Jan. 2015. 

[101] X. Lü, T. Lu, C. J. Kibert, and M. Viljanen, “A novel dynamic modeling approach for 
predicting building energy performance,” Appl. Energy, vol. 114, pp. 91–103, Feb. 2014. 

[102] H. Madsen, P. Pinson, G. Kariniotakis, H. A. Nielsen, and T. Nielsen, “Standardizing the 
Performance Evaluation of ShortTerm Wind Power Prediction Models,” Wind Eng., vol. 
29, no. 6, pp. 475–489, Dec. 2005. 

[103] C. Vamos and M. Craciun, “Noise Smoothing,” in Automatic Trend Estimation, C. 
Vamos and M. Craciun, Eds. Dordrecht: Springer Netherlands, 2012, pp. 43–59. 

  


	CONTENTS
	FIGURE INDEX
	TABLE INDEX
	NOMENCLATURE
	ACRONYMS
	Chapter 1  Introduction and objectives
	1.1. Introduction
	1.2. Dissertation aim and objectives
	1.2.1. Aim
	1.2.2. Objectives

	1.3. Dissertation outline

	Chapter 2  Residential grid-connected microgrid description
	2.
	2.1. Electric and Electro-thermal microgrid configuration
	2.1.1. Electric microgrid description
	2.1.2. Electro-thermal microgrid description

	2.2. UPNa microgrid configuration
	2.2.1. Renewable generation system
	2.2.2. Programmable load
	2.2.3. Energy storage system
	2.2.4. Power converter and switch cabinet
	2.2.5. Weather station
	2.2.6. Supervisory and control station

	2.3. Microgrid components models
	2.3.1. Photovoltaic model
	2.3.2. Wind turbine model
	2.3.3. Battery bank model
	2.3.4. Solar thermal collectors model
	2.3.5. Thermal storage and water storage tank temperature

	2.4. Generation and demand profiles
	2.4.1. Photovoltaic generation
	2.4.2. Wind turbine generation
	2.4.3. Thermal generation
	2.4.4. Electric load power demand
	2.4.5. Thermal load demand


	Chapter 3  FLC-based Energy management strategies for a residential grid-connected electric microgrid
	3.
	3.1. Problem formulation, quality criteria and baseline values
	3.1.1. Problem formulation
	3.1.2. Energy management quality criteria
	3.1.2.1. Positive grid power peak
	3.1.2.2. Negative grid power peak
	3.1.2.3. Power Variation Range
	3.1.2.4. Maximum Power Derivative
	3.1.2.5. Average Power Derivative
	3.1.2.6. Power Profile Variability
	3.1.3. Reference values for comparison purposes

	3.2. Simple Moving Average Strategy
	3.2.1. Introduction
	3.2.2. SMA control design
	3.2.3. Simulation results and comparison

	3.3. Fuzzy energy management strategy based on MG Net Power Trend (NPT)
	3.3.1. Introduction
	3.3.2. Control strategy and FLC design
	3.3.3. Simulation results and comparison

	3.4. Fuzzy energy management strategy based on MG energy Rate-of-Change
	3.4.1. Introduction
	3.4.2. Control strategy
	3.4.3. Fuzzy logic controller design
	3.4.4. Fuzzy controller optimization process
	3.4.5. Simulation results and analysis

	3.5. Experimental validation of the Fuzzy ERoC strategy
	3.5.1. Experimental results and analysis


	Chapter 4  FLC-based energy management strategy based on Microgrid power forecasting
	4.
	4.1. Microgrid power forecasting
	4.1.1. Power generation forecasting
	4.1.2. Load demand forecasting
	4.1.3. Net power forecasting

	4.2. Fuzzy EMS design based on MG power forecasting
	4.3. Simulation results and analysis
	4.4. Experimental validation and analysis
	5.

	Chapter 5  FLC-based Energy management strategies for a residential grid-connected electro-thermal microgrid
	5.1. Fuzzy EMS strategy based on MG energy rate-of-change applied to an electro-thermal microgrid
	5.1.1. Introduction
	5.1.2. Controller design
	5.1.3. Fuzzy logic controller design
	5.1.4. Simulation results and analysis

	5.2. Fuzzy EMS strategy based on MG power forecasting applied to an electro-thermal microgrid
	5.2.1. Introduction
	5.2.2. Controller design
	5.2.3. Fuzzy logic controller design
	5.2.4. Simulation results and analysis


	Chapter 6  Conclusions and future works
	6.
	6.1. Conclusions
	6.2. Future works
	6.3. Contributions

	References

