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Abstract 

In the current energy conjunction, with an expected growth of energy consumption in a context 

of fossil fuel depletion, more focus is being placed on renewable energy sources (RES) for 

electricity generation. To enhance their deployment worldwide, hybrid renewable energy 

systems (HRES) are a trendy alternative, because they can effectively take advantage of 

scalability and flexibility of these energy sources, since combining two or more allows 

counteracting the weaknesses of a stochastic renewable energy source with the strengths of 

another or with the predictability of a non-renewable energy source. 

This work presents an optimization methodology that was developed for life cycle cost 

optimization and multi-objective cost and environmental impact optimization of a grid-

connected HRES based on solar photovoltaic, wind and biomass power. In such a system, 

biomass power seeks to take advantage of locally available forest wood biomass in the form of 

wood chips to provide energy in periods when the photovoltaic (PV) and wind power generated 

are not enough to match the existing demand and, additionally, produce thermal energy when a 

combined heat and power (CHP) scheme is adopted. The developed model was tested in a 

sample township in central Catalonia using real wind, solar irradiation and electricity demand 

data from a certain location on an hourly basis. 

To assess different situations and system layouts, four different case studies were carried out 

and the model was adapted to each of the situations analyzed. Sensitivity analyses that allowed 

detecting to which variables the system was more sensitive in each situation were performed. In 

all cases, the model responds well to changes in the input parameters and variables while 

providing trustworthy sizing solutions. 

When looking to a grid-connected HRES consisting of PV and wind power technologies, the 

results of its cost optimization show that it would be economically profitable in the studied rural 

township in the Mediterranean climate region of central Catalonia (Spain), being the system 

paid off after 18 years of operation out of 25 years of system lifetime. 

Placing the focus into a grid-connected PV-wind-biomass HRES, the results show that such a 

system could be installed with smaller upfront investments than the previous case, counteracted 

by higher life-cycle costs. However, such a system would have benefits in terms of energy 

autonomy and environment quality improvement, as well as in term of job opportunity creation 

as biomass is the RES with greater impact on local job opportunities creation. 

The same system was also analyzed under a multi-objective perspective, considering not only 

its life-cycle cost, but also its life-cycle environmental impact. In that case, the results show that 

they are contradicting criteria. Low environmental impact layouts highly dependent on RES 
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have higher costs than the ones more reliant on the electricity from the public grid, which 

present high environmental impact. Results also show that improving the rate of return on 

investment in HRES would be a very beneficial measure to encourage the use of renewable 

energies for electricity production, as it has significant positive outcomes in terms of both cost 

and environmental impact reduction. 

The last hypothesis analyzed was the possibility of adopting a CHP scheme. In that case, the 

system showed lower return on investment rates, making it profitable after around 10 years that 

are required to pay back the initial investment. That is a result of the usage of thermal energy 

produced through biomass conversion, which makes more efficient the whole system as that 

energy is, otherwise, thrown away. The trade-offs between cost and environmental impact show 

again that small investments on renewable energies (RE) have great returns in terms of 

environmental impact reduction, especially when the starting point is the current grid situation 

with more than 50% of energy sources being fossil fuel-based with their associated 

environmental impact. 
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1. Introduction 

The present research is found in the current context of fluctuating energy prices, fossil fuel 

depletion and global climate change as a path to effectively close some research gaps in the field 

of hybrid renewable energy systems for electricity generation. 

A hybrid renewable energy system (HRES) is an electricity generation system that, 

appropriately used as a substitute for conventional non-renewable and centralized electricity 

production plants, will help to move from a centralized generation scheme towards a distributed 

generation structure while reducing the carbon footprint of electricity generated and 

empowering consumers as self-generators of their own electricity consumed. 

In this introduction it is sought to introduce (see §0 and 1.2) and formulate (see §1.4) the 

problem that has been identified and that will be tried to address with the current research, as 

well as to set out the objectives, including the main purpose and the specific and secondary 

objectives, and the hypotheses of this research. 

 

1.1. Statement of the Problem 

Current world energy price are trending towards a generalized increase in price as a result of the 

volatility and growth of fossil fuels price in the global market. Moreover, in the recent decades 

there has been a growing concern about the climate change and its causes, among which 

highlight the emissions caused by the industrial activity and, especially, by fossil fuels 

combustion. 

Spain, as an industrialized country, is not exempt of these problems and in the case of energy 

usage, it has a very high-emitting electricity production system due to the usage of fossil fuels 

for more than fifty percent of the production of electricity [1]. In addition to the emissions 

derived from such circumstance, there is also a high energy dependency from external countries 

[2], as Spain does not have indigenous fossil fuel resources. 

Conversely, renewable energy sources (RESs) are a more clean form of energy production with 

very low carbon emission patterns. REs have the advantage of being widely available all over 

the world. The usage of this form of energy is a goal worth pursuing from the environmental, 

social and economic points of view. REs systems would also reduce the energy dependency of 

the country as they are indigenous energy sources. 

Among all the regions of Spain, Catalonia is one of the autonomous communities with more 

forest biomass availability [3]. In addition, it also has great wind resource availability due to its 
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strategic situation near the Mediterranean Sea and mostly plane orography, and a high solar 

irradiation thanks to its privileged Mediterranean climate. However, there is a missed latent 

potential for generating electricity from these renewable resources. 

One mechanism to enhance the development of renewable energy usage is the transition to a 

distributed generation scheme because one of the main drawbacks of renewable energies is their 

low spatial density. Another of the disadvantages of RESs is their inherent variability caused by 

their weather-dependency. 

HRES would be effective means to face these disadvantages of RES that complicate their 

deployment. A HRES effectively combine two or more energy sources, being at least one of 

them renewable, to produce electricity with higher reliability than a single RES-based system 

would do. Therefore, the weakness of availability of one energy source can be counteracted by a 

strength of another as the availability patterns of solar and wind resources have been proven to 

do [4–6]. However, little work has been done in the field of HRES design and optimization that 

would help to reduce the high capital investments required for a HRES installation or to reduce 

their payback periods in order to achieve an earlier capital recovery and profit-making. 

Moreover, the environmental impact and reliability of HRES could also be improved thanks to 

optimization procedures, improving the global performance of such kind of electricity 

production systems. 

 

1.2. Significance of the Problem 

The transition to a distributed electricity generation scheme based on renewable energy 

production is an important goal of many industrialized countries because of the advantages that 

would derive from such change. Not only CO2 emissions and costs associated to energy 

production and electricity transport losses would fall, but also the transition to the Smart Grid in 

a context of increased energy independency would be enhanced, enabling also the creation of 

own-production units for consumers [7]. 

In addition, renewable energy production is a key industrial sector in Spain, and more 

employment could be created, especially in rural areas where the availability of forest biomass 

would make it possible to strengthen the industrial activity in biomass harvesting, transport and 

pre-processing steps. 

Moreover, the expected transition from a fossil fuel-driven fleet into an electricity-driven fleet, 

especially among industrialized countries, will add up a significant number of loads into the grid 

(the EU target for Spain is 2,500,000 electric vehicles by 2020 [8]) requiring grid improvement 
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and installed generation power increase. In this context, the installation of HRESs would 

improve grid resilience to such expected demand increase while also assuring that electricity 

generation patterns are more sustainable and environmentally-friendly. 

Optimization of HRES is an effective means for the pursuit of the aforementioned goals, and 

would reduce the drawbacks that these systems have for their deployment. 

 

1.3. Objectives 

To effectively deal with the stated problem (see §1.1 and §1.2), the objectives detailed in the 

following subsections have been set. They have been divided into a main objective that 

corresponds to the general purpose of the research (see §3.1), and a number of specific and 

particular objectives (see §3.2). Some complimentary and secondary objectives that will be 

indirectly addressed throughout the research have been also set (see §3.3). 

Additionally, a number of tasks have been also laid out (see §3.4), tasks that will be addressed 

through the methodology explained in the following section (see §4) and that will serve as 

research path milestones. 

 

1.3.1. Main objective/Statement of purpose 

The main purpose of this research was to develop a model of energy production for HRES and 

to optimize system sizing according to a minimum life-cycle cost and/or minimum 

environmental impact criteria, provided that it fulfilled some constraints such as supplying a 

certain power demand or combined heat and power demand or using forest biomass at a 

sustainable rate, to name but a few. 

The model of HRES combined the renewable energy sources of solar irradiation, wind and 

forest biomass, together with a grid connection that increases flexibility of the system. 

 

1.3.2. Specific and particular objectives 

With aim to address the aforementioned purpose, the researcher addressed the following 

specific objectives: 

• Definition of which is, among the currently available optimization methodologies, the 

most appropriate one for economic cost and/or environmental impact minimization. 
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• Development of an algorithm based on the selected optimization methodology to 

optimize the following HRES parameters for an electricity generation system: 

o Cost of the system throughout lifetime. 

o Multi-objective optimization of both cost and environmental impact of the 

system throughout lifetime. 

• Development of an algorithm based on the selected optimization methodology to 

optimize the following HRES parameters for a combined heat and power system: 

o Multi-objective optimization of both cost and environmental impact of the 

system throughout lifetime. 

• Although the developed systematic approach is expected to be of general application, a 

validation of the procedure through a case study at a township scale will be done as 

follows:  

o Optimization of a grid-connected HRES designed to meet the electricity 

demand of a certain location from the following points of view: 

 Cost minimization 

 Cost and environmental impact minimization (multi-objective 

optimization) 

o Optimization of a grid-connected HRES designed to meet both the electricity 

and heat demand of a certain location from the following point of view: 

 Cost and environmental impact minimization (multi-objective 

optimization) 

 

1.3.3. Complementary objectives and Secondary objectives 

Aside from the specific objectives described above, this research also entails addressing some 

additional objectives. These include the following ones: 

• Establish cooperation and collaboration relationships with local governmental 

authorities to make realistic and feasible suggestions about HRES for electricity or 

combined heat and power production at a township scale. 

• Encourage the transition from a centralized generation scheme towards a distributed 

generation scheme through the minimization of costs and environmental impact of 

HRESs implementable at regional level. 

• Enhance the creation of employment opportunities in rural areas of Catalonia through 

the development of economically, environmentally and socially sustainable economic 

activities in the field of electricity production using RESs. 
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• Improve the level of awareness of local population about the importance and benefits of 

adopting a decentralized electricity generation scheme as well as to inform them about 

what does it take to make such transition and how they contribute to it. 

 

1.4. Hypotheses 

The present research will be made upon the following hypotheses: 

- The best obtained weather data for wind speed and solar irradiation are reliable and 

consistent since they come from public Meteorological services. 

- The best obtained demand data are reliable and consistent since they come from 

utilities. 

- The electricity demand of a single town can be extrapolated from aggregated data of 

similar regions in terms of population distribution and economic activity, if necessary. 

- The environmental impact of an electricity production system can be assessed using the 

CO2 emissions associated to its entire life time. 

- The life cycle environmental impact can be quantified using life cycle assessment 

(LCA) data from available literature for all the technologies. 

- The thermal energy demand can be estimated by means of a thermal balance of standard 

households in the township under study. 

- Based on the above-mentioned hypotheses, a HRES based on solar photovoltaic power, 

wind power and forest biomass power can be designed, modelled and optimized in 

terms of minimum cost and/or environmental impact based on the renewable energy 

production patterns and the electricity demand of a certain region. 
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2. State of the art 

The literature review is a very important research stage aimed to achieve a good and deep 

understanding of the current state of the art in the field of study. It is important to do a thorough 

search and review process in order to be aware of the stage at which the scientific knowledge is 

and to better set up the goals of the research and to identify the novelty and relevance of it. 

The main topics covered were renewable energy production from solar PV, wind and forest 

wood biomass modelling and optimization of sizing of renewable energy production systems. 

In the following sections, the methodology of the literature review performed, as well as the 

main information obtained are synthesized and explained. 

 

2.1. Methodology for the review of the literature  

This state of the art assessment process has been based on the use of several scientific sources, 

mainly through the thorough and comprehensive search in electronic databases among which 

highlight: 

• ScienceDirect 

• IEEEXplore 

• Google Scholar 

• Thomson Reuters Web of Knowledge (WOK) 

After an initial screening of the main journals dedicated to the topics under study, i.e. renewable 

energy production, hybrid renewable energy systems and optimization, the following ones have 

been selected as journals of interest for both basing the research and publishing the useful 

outcomes of it: 

• Applied Energy 

• Applied Thermal Energy 

• Energy Conversion and Management 

• Energy Conversion, IEEE transactions on 

• Renewable Energy 

• Renewable and Sustainable Energy Reviews 

• Solar Energy 

• Energy Policy 
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The most used keywords have been: optimization, hybrid (renewable) energy system, solar PV, 

wind, biomass, biomass gasification, CHP, genetic algorithm and multi-objective optimization, 

among many more. 

The accessed papers can be classified in four wide categories: those related with renewable 

energy power production with special emphasis on those related with biomass combined heat 

and power production and the calculation of thermal demand, those related with life-cycle 

environmental impact of renewable energy production, those related with optimization 

methodologies and those related hybrid renewable energy systems. 

 

2.2. Renewable energy sources (RES) – General description 

This section summarizes the main findings that the literature review has led to. First, a short 

introduction with a general description of the importance that RES have gained over past 

decades and the reasons behind that are presented. Then, a description of the most widely used 

RES, namely wind, solar and biomass energy sources is presented. It is important to highlight 

that the performed literature review was focused on the local context of the study, central 

Catalonia. This is why the literature review was extensively done on biomass resource and why 

also wind and solar power are presented, whereas other relevant sources such as hydro or other 

less relevant are not presented here. 

 

2.2.1. Justification of RES usage 

Over the past decades, the levels of greenhouse gases (GHG) in the atmosphere and, 

specifically, of the most prevalent one, carbon dioxide (CO2), have raised way over safe limits 

of Earth's boundaries [9]. Particularly, CO2 levels have risen from around 280 ppm of pre-

industrial era [9,10] to near-400 ppm at present time [11] continuing to grow at increasing rates 

[12]. Among the identified causes of worldwide GHG emissions, energy production and 

consumption is claimed to be the main one. In particular, CO2 emitted from the combustion of 

fossil fuels for transportation, industry, electricity and heat production is the major contributor 

to the greenhouse effect [13]. Energy production is expected to have continuous growth during 

next decades [14], shaping a context of current and future global environmental issues, namely 

sea-level rise, weather pattern changes [15], worsening agriculture production [16] and 

producing water shortages in some places and intense flooding in some others [17,18]. Such 

changes will likely have significant implications in ecology, economics and public conflicts and 

policy [19]. In addition to these environmental concerns, fossil fuels have another important 
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drawback: despite the fact that they are the main energy source throughout the world, they 

entered in a depletion process over the last decades, a concern to be added to the environmental 

degradation that they contribute to [14,20]. In a free-market economy, this means increasing 

prices and thus decreasing competitiveness. Moreover, in countries with low or even no 

indigenous fossil fuel availability, their usage results in energy dependency on foreign 

countries. 

REs are an appealing alternative for tackling the climate change global issue, which is widely 

recognized as the major challenge that is going to be faced in the upcoming future due to the 

major implications in terms of water resources stress increases [17,18] or global air and ocean 

temperature increases [15], among others. These major changes in climate patterns are already 

being observed and there is scientific consensus on being particularly affected by the 

anthropogenic global GHG emissions increase [15], including CO2, methane (CH4) and nitrous 

oxide (N2O). In particular, the current anthropogenic GHG emissions could already be beyond 

planet boundaries [9], hence being of critical importance to deal with such issue in a quick and 

effective manner. 

In this context, REs are an alternative worth exploring, as they are effective means for climate 

change prevention and mitigation [21], with undeniable external benefits in terms of 

environment quality and economic value, especially in the case of PV power, wind power and 

biomass power [22], which are the focus of the present work. 

These sources of energy are often indigenous sources of virtually perpetual energy, scalable and 

carbon neutral [23], helping  to reduce the energy dependency of countries that implement them 

at mid-scale. 

These technologies will help to implement the distributed generation model which consists in 

energy production close to both renewable energy sources (RES) and consumption. In fact, they 

are currently considered viable and even the best available solution in certain conditions for 

microgrid implementation [24] thanks to the easy scalability of small modular units in which the 

generation from these source rely on [25]. Consequently, large production plants could be 

partially substituted by small- and micro-scale plants [7]. Distributed generation, in turn, has 

been labeled as a key tool to address the problems of security of supply, CO2 emissions and to 

improve the efficiency of energy systems [26], as well as to overcome the problem of rising 

electricity costs and shortages [23]. Distributed generation has social benefits in terms of 

encouragement of development in rural areas by providing electricity at those places where the 

grid transmission is not reliable [23,27] and by generating new income opportunities through 

revaluation of local resources [28]. Therefore, several public policies have been set up in many 

countries in order to increase the share of RESs to the electricity supply, including the goal of 
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reaching 33% of electricity share in the European Union (EU) and the United States (US) or the 

goal of 35% share in Asian countries such as China or India by 2020. 

Hence, RESs could address several issues, highlighting an improvement of security of supply, 

reduction of CO2 emissions as these sources are carbon-free (PV or wind power) or carbon 

neutral (biomass), being thus a viable alternative to de-carbonize the energy generation, and 

improve energy systems’ efficiency [26] as a result of energy transport requirements reductions. 

RESs would also help to develop rural areas with the creation of job opportunities, especially in 

the case of forest wood biomass resource, which requires labor force in the fields of forest 

management and harvesting [29] and helps preventing landscape quality and biodiversity [30]; 

and revaluation of local resources currently misused [28]. Besides, in isolated regions or 

communities, they could help to reduce electricity generation costs because they are currently 

economically competitive [31,32]. 

However, REs have an inherent stochastic nature, which is their main drawback. Whereas fossil 

fuel-based energy production is predictable and fully controllable, RE-based electricity 

generation is highly dependent on weather conditions which are not predictable with the 

accuracy required for electricity supply. To overcome this issue, HRES combining two or more 

energy sources can partially counteract the weaknesses of one source with the strengths of 

another [14]. For example, wind and solar irradiation daily and even seasonal patterns 

complement each other. In addition, they can be combined with a more predictable energy 

source such as biomass power that can be dispatched on demand [15]. 

 

2.2.2. Biomass power production and CHP 

This section is aimed to review the current performance of the available technological 

alternatives to convert biomass into electricity with or without heat production. The focus is 

placed on those technologies suitable for the usage of local forest wood chips to lower the 

transportation requirements and thus the environmental impact of the entire electricity supply 

chain. In the context of the Mediterranean basin, due to the relatively low growth rates of 

indigenous tree species, this means that only small-scale and micro-scale technologies are 

suitable because at greater scales the available feedstock would be insufficient to meet the 

demand of a stand-alone biomass large-scale power plant. 

The review does not only consider electricity generation technologies but also CHP 

technologies that take advantage of the excess heat from combustion of solid or gasified 

biomass. Therefore, the analysis of performance includes both the electrical efficiency, which 

accounts for the performance of a technology when producing electricity, and the total 
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efficiency, which accounts for electrical and thermal efficiencies. The usage of CHP 

applications improve the efficiency of a power plant by a factor between 2 and 3 because of the 

easiness to harness the thermal energy compared with the electrical energy. The main drawback, 

however, is that it is required a heat demand close to the production plant due to the difficulty to 

transport and distribute this kind of energy, especially in the Mediterranean region where 

district heating systems (DHS) are not generalized. 

It is widely claimed that among all the RES, biomass is one of the most promising options. 

Particularly, the fact of being based on proven technologies, its flexibility of operation and 

installation [23], easy and efficient scalability and low and stable price because of being often a 

waste product [27] are strong reasons for its use. Moreover, biomass is the only renewable 

source that can be used in solid, liquid or gaseous form [33,34], which allows using it for 

industrial purposes in the case of solid biomass, for electricity and heat production when it is in 

both gaseous and solid phases, and for transportation purposes for liquid biofuels [35]. It also 

offers the possibility of having the plants near the resource, thus minimizing transportation costs 

[36] that lead to environmental impact reduction due to a more efficient utilization [37]. In 

addition, biomass is, together with hydro, the unique RES that can be stored and continuously 

used to have a predictable output not dependent of weather [3], so it would reduce the 

requirement of storage systems mentioned above. Finally, another important advantage of 

biomass is its flexibility to be converted to several forms of energy. Therefore, combined heat 

and power (CHP) technologies or combined cooling heat and power (CCHP) [38], which have 

better efficiencies [39], lower consumption [40] and CO2 emissions [26] than heat and 

electricity production individually, can be used. Biomass-fueled CHP systems have low 

operating and maintenance costs, high total efficiencies and low noise, vibration and emissions 

levels [26]. Moreover, heat pumps can be integrated with CHP plants to relocate the excess heat 

produced from the production site to a consumption node or to a storage facility [41]. CHP 

technologies reach the highest efficiencies if woody biomass is used rather than non-woody 

biomass [42], so it is interesting to use primary forest biomass and sub-products from sawmills 

for these purposes. Another important aspect to be considered is the quality of the wood chips, 

since current technologies require specific quality standards according to the end-user needs 

[43]. 

In Europe, nowadays, about one half of the forests are privately owned, and most of these 

ownerships are small-scale holdings. These holdings average between two and four hectares in 

Western Europe countries such as Spain and apply different management styles related to 

livelihood systems rather than to economic purposes [44]. In particular, in Spain most of the 

forest owners are retired foresters (46%) or absentee owners (41%) [44], which means that few 

or null proper forest management should be expected. This entails a high risk of wild fires with 
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ecological and also economic and social implications [45], especially during the dry summer 

season in the Mediterranean area [46,47]. This risk has increased over the past decades in both 

number and severity due to increased drought conditions together with both inappropriate 

management practices and abandonment of forests and agricultural lands that facilitate an over-

accumulation of dead fuels [48]. This lack of programmed management leads to increased 

homogeneity of landscape that facilitates fire continuity and propagation [49]. Hence, improved 

management strategies adapted to the new paradigm of warmer and drier climates and focused 

on fuel load reduction would reduce the risk of forest fires  [48]. Otherwise, fire reduction 

capacity will be overwhelmed in the future due to increased dryness and droughts triggered by 

climate change [50]. 

Through the promotion of forest biomass usage as a RES in the Mediterranean basin, which is a 

region with high potential [51], it may be given economic value to forest resources currently 

untapped, sawmill operators could increase their income by converting hardwood sawmill 

residues to woodchips [52], rural employment in the energy sector could be created [44,53] and 

the national energy industry could be supported whereas partial energy independency would be 

achieved in rural areas. Moreover, forest management would be improved [54], but it is 

important to stress that new management strategies should be sustainable, preserving primary 

production, carbon storage capacity and biological diversity [47] while also minimizing wild 

fire risk and increasing their biomass productivity rates [55]. Otherwise, human pressure 

historically borne by Mediterranean forests, especially in the Northern rim [47], would 

jeopardize the continuity of those forests. 

Biomass is characterized by having low energy density and by being spread, problems that 

increase harvesting and transportation costs [56,57]. This is the case of Mediterranean forests, 

where biomass availability is especially low when compared with other forested areas with less 

importance of dry periods and better ownership schemes. Considering this particularity of low 

biomass production together with the disaggregated ownership in small portions of land, it can 

be concluded that energy production from wood forest biomass in Mediterranean forests is, 

regardless of the available technology, limited to small-scale projects that would take advantage 

of the limited available biomass within a single or a few properties found in the vicinities of the 

power plant [36]. 

Among the forest woody biomass useful for electricity and heat generation, wood chips are one 

of the trendiest options. This is so because wood chips can be easily obtained and do not require 

additional treatment such as densification processes which are necessary for pellets production 

[57] nor require additional energy input in the drying process as they can be dried by only 

leaving them covered. Therefore less energy consumption and associated environmental impacts 
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are involved in the wood chips process. Moreover, they are low ash-content biomass fuels [58] 

that do not generate co-products, and burn better than entire logs because wood chips have more 

contact surface with the air flow. However, pellets still dominate the wood biomass market [59] 

but wood chips are starting to gain importance. Nowadays, wood chips are mainly obtained 

from forest harvesting (from stem and whole tree wood) and remnants of forest operations, from 

sawmills residues and from lignocellulose energy crops [60], but their harvesting is expected to 

grow as they will likely be obtained from stumps and round wood as well [54]. 

Biomass can be converted into other forms of energy by means of biological conversion, 

chemical conversion and thermochemical conversion. The former, known as bio-digestion, is 

suitable for moist biomass as it uses microorganisms to produce gas from biomass. Chemical 

conversion produces biofuels such as ethanol or other chemical products such as furfural by 

using enzymes [61]. The latter is appropriate for dry biomass [62] as it is based on the 

application of heat and pressure, and is more efficient for electricity and heat generation than 

digestion [63,64]. Chemical conversion mechanisms are left out of this research because they 

are not focused on electricity generation but on biofuels production. Between biological and 

thermochemical conversion mechanisms, the latter are reviewed in this study because wood 

chips are quite dry, or can be dried without using additional amounts of energy, so these 

technologies are well-suited for these applications. 

Thermochemical conversion of wood chips into another form of usable energy for electricity 

and heat production can be done essentially in two ways (primary conversion technologies): 

through direct combustion or gasification. It could be added pyrolysis as the third primary 

conversion technology, but since this process is directed to transportation fuels production 

[34,65] due to the maximization of liquid fraction in the process [66], and since nowadays there 

are no commercial plants for electricity production based on this process [67], pyrolysis is 

omitted in this analysis. 

These primary conversion technologies are coupled with secondary conversion technologies 

responsible for the electricity production and, additionally, heat production. Direct combustion 

converts the chemical energy stored within the wood chips in thermal energy that can later be 

harnessed using steam engines or steam turbines and their variation of organic Rankine cycles 

(ORC) and with external combustion engines, also called Stirling engines. On the other hand, 

gasification converts the chemical energy of biomass into a low-heating value gaseous fuel, also 

known as syngas, which makes this process more polyvalent than direct combustion [68]. The 

chemical energy of this gas can be utilized by means of gas turbines, internal combustion 

engines (ICE) or Stirling engines as well. All mentioned conversion paths accept the use of both 

electricity production and CHP, depending on the exploitation or not of the excess heat 
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available after electricity generation. Some CHP layouts combine two different secondary 

technologies, for example, gas turbine for electricity production and steam turbine for heat 

retrieval. 

The different alternatives for electricity and heat production using wood chips as a fuel source 

are represented in Fig. 1. 

 

Fig. 1. Wood chips conversion paths to electricity and heat 

 

It is noteworthy to mention that these conversion paths are nowadays at different development 

stages. For example, direct combustion coupled with steam turbine and gasification coupled 

with ICE are the most deployed options due to more commercial viability and maturity [23,69]. 

GTs are also appealing, while other technologies are still at demonstration, development or 

research stage. Therefore, the only biomass-to-electricity conversion paths currently feasible at 

a commercial level are the ones summarized in the figure below: 

Wood chips

Gasification

Combustion

Combustion of 
produced gas

Turbine + 
Generator

Turbine and/or 
Engine + Generator

Power Output

 

Fig. 2. Block diagram of biomass-based power generation systems 

 

2.2.2.1. Primary conversion technologies 
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Direct combustion 

This thermochemical process consists in the complete oxidation of biomass in an aerobic 

environment [66], releasing heat at the level of 800-1000 ºC, typically. Despite the fact that 

direct combustion applications are the most mature technologies [58] and account for more than 

90% of the biomass-based worldwide capacity installed [70], they have in average higher 

emissions due to smaller efficiencies than gasification applications [65]. Although the heat 

released in the combustion process can be harnessed using several conversion technologies, 

steam production to then generate electricity in a steam turbine is the most common conversion 

path [71]. 

Direct combustion can be performed in different combustors, among which highlight pile 

burners, stoker grates, bubbling or circulating fluidized beds and suspension burners [71]. Each 

one has its own particularities, for example, fluidized beds are suitable for large-scale plants 

(>10 MWth) while stoker grates are more appropriate for small-scale layouts (<6 MWth) with 

higher moisture content [58]. In addition to these combustors, there are some non-conventional 

alternatives such as suspension burners or WholeTree®. In general terms, it can be asserted that 

fixed-bed grates are preferable for micro-scale applications and that increasing boiler sizes 

result in the usage of moving grates but the kind of fuel is also influential and hence chip boilers 

are more suitable for moving grates layouts [59]. 

Table I summarizes the different types of combustors currently available. 

Table I Direct combustion technologies summary. Personal compilation based on [71] 

Combustor Principle of operation 
Pile burner Fuel is fed forming a pile and then combusted in a two-stage combustion 

chamber. Limited to cyclic operation 

Stoker grate Improved version of the pile burner by moving the grate and thus 

improving ash collection and spreading of the fuel. It can have continuous 

operation 

Bubbling 

fluidized bed 

Fuel has free movement in the combustor while an air or oxygen stream 

passes through it, creating equilibrium between fuel and fluid 

Circulating 

fluidized bed 

Same as bubbling fluidized bed with increased fluid velocities thus the 

fluid entrains the fuel 

Suspension 

burners 

Fuel is burnt suspended within the fluid 

WholeTree® 

energy 

Integrated wood conversion process including growing, harvesting, 

transportation and combustion of whole trees as wood fuel 
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Gasification 

This process consists in the partial oxidation of biomass in a low-oxygen content environment 

[68,72,73]. The main product of this process is a low-heating value gas, called syngas, that can 

be used for heating and cooking purposes as well as for electricity generation [64,74]. This 

process also generates hydrogen, methanol or other biobased products such as alcohols or 

polyesters [75]. It is worth distinguishing between syngas obtained from thermochemical 

gasification and biogas obtained from anaerobic or aerobic digestion. Although the main 

components of both gases are the same, the processes and their conversion efficiencies are 

completely different: electricity is produced through gasification at efficiencies about 30-35% 

for dry biomass, dropping with higher moisture contents down to 15% for moisture contents 

about 70% in weight, matching the efficiency of electricity production from anaerobic digestion 

which do not depend of moisture content [76]. 

The main driving factors of the gasification reaction are the temperature, time of residence and 

particle size. In general, it can be asserted that higher particle sizes and times of residence lead 

to higher gasification rates of the fuel and the temperature increase results in an increase in 

hydrogen content and yield of syngas but also in a decrease in methane content and thus in 

lower heating value (LHV) [77]. 

The gasification process has several advantages, among which highlight its versatility and 

flexibility to be combined with different secondary conversion technologies [71]. In addition, 

this process allows to use biomass fuels at a wider range of moisture content than direct 

combustion does; and, thanks to the different gasification technologies available, i.e., the 

different kinds of gasifier commercially available, it can be used from as low as kilowatt-scale 

to as high as hundred megawatt-scale [23], which makes it highly adaptive to different niches 

[70]. 

Gasification can be performed in different reactors, called gasifiers, that may be classified 

according to the gasification agent (air, steam, oxygen), the operating pressure (atmospheric, 

pressurized), the source of heat (indirectly or directly heated) or according to the fluid-biomass 

contact interface [78], which is the most common one. There are, accordingly, fixed bed, 

fluidized bed and entrained flow reactors following the latter criterion [23,64,71,79,80]. 

Fixed bed reactors are characterized by having biomass fuel in an almost static position while 

the gasification agent flows through it. The direction in which the fluid passes through the fuel 

establishes where the different reaction zones are located [81] and distinguish, in turn, three 

different subtypes of fixed-bed reactors: updraft, downdraft and cross-flow. The first has a 
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counter-current flow of gasification agent, the second has a co-current flow, and in the third 

case the fluid is introduced by one side, exiting by the opposite. 

Fluidized bed reactors are characterized by introducing a third agent, the fluidizing material into 

the equation and thus reducing the slagging of the reaction [82] and improving the uniformity 

and adjustability of the temperature distribution [64,80] increasing the biomass conversion rate 

up to 100% [83]. According to the velocity of the gasification agent flow, two different types 

exist: bubbling fluidized bed and circulating fluidized bed. In the former, equilibrium is reached 

between the fluidizing material and the fuel, while in the latter higher velocities are achieved, so 

the fuel is entrained by the fluidizing material. Fast internal circulating fluidized bed is a recent 

improvement that includes a combustion zone in addition to the gasification zone increasing the 

velocity of the reaction due to increased temperature in the reactor [84]. 

Last type of gasifier is the entrained flow reactor, in which the fuel is introduced in powdered 

form together with the gasification fluid [78]. 

Table II summarizes the different types of gasification reactors currently available. 

Table II Gasification technologies summary. Personal compilation based on [79] 

Gasifier Principle of operation 
Fixed bed reactors 
Direct current Gasification fluid flows in the same direction as biomass fuel 

Counter current Gasification fluid flows in the opposite direction to biomass fuel 

Cross-flow Gasification fluid is introduced from one side exiting from the opposite 

while biomass fuel moves up-down 

Fluidized bed reactors 
Bubbling 

fluidized bed 

Frictional forces of fluidizing material in movement and biomass fuel 

weight reach equilibrium 

Circulating fluidized 

bed 

Frictional forces of fluidizing material in movement are higher than 

biomass fuel weight so the biomass particles are entrained by the fluid 

Entrained flow reactors 

Suspension flow or 

dust cloud 

Small particles of fuel are entrained by the gasification fluid before being 

introduced into the reactor 

 

2.2.2.2. Secondary conversion technologies 

There are many secondary conversion technologies, some of them more appropriate for direct 

combustion technology and others for gasification technologies (see Fig. 1). The conversion 

efficiencies of these technologies vary depending on the technology used and the output scale 
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[85]. In general, however, it can be asserted that the bigger is the output, the higher is the 

efficiency regardless of the technology. 

Internal combustion engine (ICE) 

The internal combustion engine is a well-known and well-proven technology, widely used for 

transportation vehicles but also of relevance in the field of electricity generation, CHP and 

CCHP. ICEs comprise the Otto engine that works with spark-ignition and the Diesel engine, 

both requiring a liquid or gaseous fuel which is combusted in an internal combustion chamber. 

The former is more suitable for small-scale applications while the latter is more appropriate for 

large-scale ones [86]. ICEs are widely used thanks to their durability, affordability and good 

performance [87]. 

Due to their mode of operation, they have better performances with smooth consumption 

profiles [88]. Otherwise, some storage system can be added to the system to smoothen the 

consumption profile [89]. In any case, they have been labeled as an efficient solution for small- 

and micro-scale applications [84] due to low upfront costs and good part-load performance 

[38,90] so better return on investment rates are achieved at such scales of electricity generation 

[87]. 

External combustion engine (Stirling engine) 

The Stirling engine is a proven technology that historically did not enjoy the significance that 

acquired recently. This engine is named after Robert Stirling, the inventor of the Stirling cycle 

in which are based the two versions of this engine, free-piston and kinematic. In this 

thermodynamic cycle, combustion takes place in an external combustion chamber so the 

technology is suitable for fuels in all phases, solid, liquid or gaseous. 

Stirling engines have low maintenance requirements [26] and noise levels [7], especially when 

compared with the ICE [91]. These benefits, together with their good performance and high 

thermal efficiency and output [92], especially compared with that of its main competitor Diesel 

engine [93], at very low output scales make Stirling engines a suitable option for residential 

dwellings and other micro-scale applications. Their main drawback, however, is precisely their 

novelty and lack of proven operation for biomass conversion to electricity [94]. 

Steam engine 

The steam engine is a well-known technology based on the use of steam produced through 

thermal evaporation of water or another working fluid to drive an engine. Its mode of operation 

enables it to be fueled with all kinds of fuels, although historically it has been mainly used with 

solid fuels. 
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Steam engines are well-proven technologies, with a high level of maturity. However, their 

relatively low performance and inability to take advantage of excess heat is driving their current 

replacement by steam turbines [90]. 

Steam turbine (ST) 

Steam turbines are based on the thermodynamic Rankine cycle, a technology that, as the similar 

technology of the steam engine, is well-proven and mature with a high level of deployment. 

As the combustion takes place in a boiler before transferring the heat through a heat exchanger 

to evaporate the working fluid, steam turbines accept all kinds of fuels. In the case of biomass, 

bark, sawdust, wood chips and pellets can be used [95]. A pre-drying stage is recommendable 

before the combustion in order to increase the efficiency. Otherwise, the efficiency drop may 

have great impact [96]. The main advantage of STs is their high time availability [87]. 

Organic Rankine cycle (ORC) 

ORCs are a slight variation of steam turbines in which water is replaced as a working fluid by 

“organic” fluids. Toluene or n-pentane are used as working fluids for high-temperature ORCs 

with more than 200 kWe of output, thus obtaining high efficiencies and allowing the production 

of heat. On the other hand, for low-temperature ORCs, those with less than 200-250 kWe of 

output, lower efficiencies and the impossibility of setting up CHP layouts, the working fluids 

used are hydrocarbons [94,97]. The low vaporization temperature of these organic fluids make it 

possible to set up Rankine cycles with lower temperature than that of the conventional ones, 

thus enabling the use of low-heating value fuels like biomass, without lowering the efficiency 

[98–100]. As they are based on the Rankine cycle, ORCs are appropriate for combustion of 

solid fuels although the low working temperature make them suitable even for geothermal or 

solar applications [100,101]. 

In addition to increased efficiency of the thermodynamic cycle, ORC applications also offer the 

advantage of reduced blade damage risk [102], good part-load operation [103] and lack of 

requirement of a pre-heating stage [100], mainly due to decreased vaporization temperature of 

organic fluids compared with water. 

Gas turbine (GT) – Biomass integrated gasification combined cycle (BIGCC) 

GT technology consists in the combustion of previously compressed gaseous fuels in an internal 

combustion chamber and the subsequent expansion of the combustion gases in a turbine. When 

a gasification unit, gas cleaning unit and a heat recovery steam generator (HRSG) are integrated 

together with the GT, the system is called BIGCC [104–106]. BIGCC can also be laid out with a 

gas engine [107], but the alternative of the GT is the most deployed due to its high exhaust 
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temperatures [87]. Inside the designation of BIGCC, there are many possible combinations 

depending on the gasification technology or including or not the HRSG [108]. All these 

conversion pathways require a gaseous fuel to operate. 

BIGCC is a high-efficient process [109], especially for large-scale applications, in which 

BIGCC beats equivalent-size steam turbine [106] and gas engine [110] layouts. Their main 

drawback is that, since they are based on existing natural gas-based technology, modifications 

in the fuel handling system are required because syngas yields higher mass flows than natural 

gas due to its lower heating value. This modification can be an increase in gas pressure or a 

decrease in gas temperature or de-rating, the most usual alternative, at the turbine inlet [111]. In 

addition, such GTs are limited to large-scale applications (>1 MWe). Hence, this technology is 

not considered in the efficiency comparison section performed in this study. 

Microturbine 

Microturbines are down-scaled versions of GT, being more suitable for small-scale applications. 

Accordingly, microturbines can be used in places with low biomass production rates such as 

Mediterranean forests. The electric output of these devices ranges from a few kWe up to 500 

kWe [101] although some authors limit this output to 250 kWe [26]. 

In microturbines, the compressor and the turbine have a solidary shaft, so less maintenance 

requirements are necessary due to their simplicity [7]. Their performance is quite good even 

with biomass-based fuels, with which better efficiencies can be achieved than with diesel fuel 

[86] or than with ICE technology, although being less commercially proven [83]. 

Other GT-based designs 

Besides microturbines, other GT-based designs exist or are under development. Among them, it 

is worth mention externally-fired GT, evaporative GT, bottoming cycles or co-firing of GT. 

The externally-fired GT is a modified version of GT in which the combustion chamber is 

replaced by a heat exchanger. Therefore, the combustion can take place outside the turbine 

[112] and thus a cleaner fluid operates the thermodynamic cycle and solid fuels are accepted for 

the operation besides the gaseous ones [113]. It is usual to add an auxiliary burner of high-LHV 

fuel, e.g. methane, to raise the temperature up to the design point of the turbine inlet [87] 

operating in a co-firing mode. The turbine cycle can be an open cycle with working fluid 

discharge or a closed loop with re-usage of the working fluid, thus reducing the maintenance 

requirements [114]. 

The evaporative GT consists in a GT layout in which water is vaporized in the air stream before 

combustion [115] to increase the mass flow [116] and thus the efficiency [117]. 
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Another option is the bottoming cycle, based on the usage of the excess heat to produce more 

electricity through another steam cycle placed at the exhaust of the GT [101,118], providing an 

alternative to those situations where heat has no demand. 

Finally, another appealing option, especially in terms of efficiency, is the co-firing of biomass 

fuels with fossil fuels [119–121]. This alternative provides a cost-effective electricity generation 

process even using biomass with high-moisture content [122]. In particular, biomass has a 

higher cost on a unit energy basis than coal, meaning that co-firing with coal is worth pursuing 

from an economic point of view [123]. The co-firing can be done essentially in two ways: with 

two cycles, the topping one fueled with fossil fuel and the bottoming one fueled with biomass; 

or, conversely, with a single generation cycle fueled with a mix of fossil and biomass fuels. 

R&D alternatives 

In addition to the above mentioned commercialized layouts, there are other layouts currently 

under development. Salomón, Savola [90] mention pulverized-fired GTs and powdered-fueled 

ICEs. 

Wood-fired ICEs are also studied by [124] who claim that particulates of less than 30 microns 

can be used to fire a conventional Diesel engine. They state that the process is feasible but the 

fuel injection system should be improved to overcome the issue of matching powder feeding 

and dust cleaning in a continuous operation engine. 

Table III summarizes the available secondary conversion technologies with a brief summary of 

their principles of operation. 

Table III Summary of biomass conversion secondary technologies suitable for wood chips 
conversion. Personal compilation based on [7,23,67,69,101,106,119] 

Secondary 
technology Primary technology Principle of operation 

ICE 
(Otto, Diesel) 

Gasification, 
Pyrolisis 

Heat from combustion in an internal combustion 
chamber drives a piston through gas expansion 

Stirling engine Combustion 
Gasification 
Pyrolysis 

Heat from combustion in an external combustion 
chamber drives a piston through gas expansion 

Steam engine Combustion Steam generated through thermal evaporation of a 
fluid drives an engine 

Steam turbine Combustion 
Gasification 

Steam generated through thermal evaporation of a 
fluid is expanded in a turbine 

ORC Combustion 
Gasification 

Same as steam turbine with organic fluid as 
working fluid 
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Secondary 
technology Primary technology Principle of operation 

GT / BIGCC Gasification 
Pyrolysis 

Clean gas is compressed, then is burnt in a 
combustion chamber by then be expanded in a 
turbine 
Gasification cycle is attached to a GT-based CHP 
cycle 

Microturbine Gasification Same as GT with power output < 500 kWe 

Externally-fired GT Combustion  

Gasification 

Same as GT with combustion chamber replaced 
by a heat exchanger 

Evaporative GT Gasification GT in which water is vaporized on the air stream 
before combustion to increase mass flow 

Bottoming cycles Gasification Bottoming cycle of a CHP replaced by a steam 
turbine to increase electricity generated 

Co-firing Combustion  

Gasification 

(1) Mix of biomass and fossil fuels 
(2) Topping cycle fueled with a fossil fuel and 
bottoming cycle fueled with biomass 

Pulverized wood-fired 
GT, ICE or Stirling 

Combustion GT, Diesel or Stirling engine fired with micro-
particulates of pulverized wood 

 

2.2.2.3. Technology efficiencies comparison 

This section is aimed to describe the electrical and total efficiencies of actual and simulated 

power plants found in the literature. The efficiencies account for the entire process at the power 

plant, and are calculated using the LHV of the fuel, except otherwise indicated. The choice of 

LHV is justified because the moisture content of biomass fuels is not homogeneous among 

different types of biomass, sites and applications, thereby, since LHV accounts for the moisture 

content, it provides a better estimate of the actual conditions at which the power plant is 

operating. 

The electrical efficiency of a certain power plant can be defined as the electrical power output 

(Pout) divided by the chemical energy stored within the fuel at the entrance of the power plant, 

which can be obtained, in turn, multiplying the LHV of the fuel by the amount of fuel required 

for the generation of electricity. 

𝜂𝜂𝑒𝑒 =
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘𝑘𝑘𝑘𝑘)

𝐿𝐿𝐿𝐿𝐿𝐿 (𝑀𝑀𝑀𝑀/𝑘𝑘𝑘𝑘) · 𝑚𝑚(𝑘𝑘𝑘𝑘)
 (1) 

The total efficiency includes the thermal output of CHP plants (Hout). Thereby, it can be 

calculated as follows: 
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𝜂𝜂𝑒𝑒 =
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘𝑘𝑘𝑘𝑘) +𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘𝑘𝑘𝑘𝑘ℎ)
𝐿𝐿𝐿𝐿𝐿𝐿 (𝑀𝑀𝑀𝑀/𝑘𝑘𝑘𝑘) · 𝑚𝑚(𝑘𝑘𝑘𝑘)

 (2) 

When looking at the efficiencies of the different available alternatives, it is important to 

distinguish between the different scales of energy production. Hence, micro-scale technologies, 

those with less than 50 kWe of output; small-scale technologies, with output between 50 kWe 

and 1 MWe; and large-scale technologies, with an electrical output greater than 1 MWe, exist 

[125]. 

ICEs are usually coupled with gasification in biomass-based plants since they are based on 

natural gas technology. 

In the literature, it can be found efficiencies and other technical characteristics for natural gas 

fueled ICE micro-CHP systems, which range between 20% and 31% for electricity generation 

and between 50% and 90% for cogeneration [7,86,126,127]. Small-scale devices reach a slightly 

higher efficiencies of 25% and 90% at 100 kWe of power output [92]. 

Data of actual power generation or CHP plants fueled with wood chips or similar biomass fuels 

are of more interest for the present review. Electrical efficiencies of micro-scale plants are 

between 13% and 25% [81,84,128–133] and total efficiencies between 60% and 74% [130,132]. 

At small-scale level, slight increases are found: electrical efficiencies are 12.5-28% 

[62,107,128,129,134,135] and total efficiencies can reach 96% [128]. As expected, large-scale 

plants perform better. In particular, electrical efficiencies of 25-30% have been proven 

[107,128] with total efficiencies around 81% [128]. 

Stirling engines are deployed for smaller applications, namely for micro-and small-scale CHP 

systems due to their high thermal efficiency even with low electrical efficiencies. In particular, 

micro-CHP Stirling-based units have electrical efficiencies of 9.2-33% while the total 

efficiencies range between 65% and 92% [7,26,86,126,136–141]. At small-scale, Stirling 

engines reach 12-35% of electrical efficiency and 85-90% of total efficiency [92,94]. These 

figures are supported by Simbolotti [80], who claim that efficiencies are around 11-20% for 

Stirling engines with less than 100 kWe of electric output. Alanne and Saari [88] provide data 

for natural gas-fueled Stirling engines, which reach electrical efficiencies around 25-35% 

compared with the 15% obtained using syngas at similar scale. Large-scale data is not available 

for Stirling engines since these devices are only suitable for micro- and small-scale applications 

whereas they are rapidly beaten at greater sizes. 

Data found for steam engines show low efficiencies: at micro-scale, 16% of electrical efficiency 

is reached [27] and a small-scale CHP system has been proven to reach 10% and 80% of 

electrical and total efficiencies [37]. 
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More data can be found for STs. In addition, this technology coupled to a combustor is 

especially suitable for excess heat usage and, together with the high maturity degree have made 

it the most deployed biomass conversion solution for the last decades. At large-scale, electrical 

efficiencies can be as low as 15% reaching up to 44% as the output power increases 

[85,95,96,119,142,143] while total efficiencies are always over 60% [23,95,143]. With micro-

scale systems, the electrical efficiency drops to 6-8% [144]. 

STs are also used with gasification layouts, the efficiencies of such power plants are reported to 

be 19-36.4% and 80-94%, increasing with the power output [79,82,145] 

A better solution for small-scale Rankine cycles is the ORC. With this variation of conventional 

ST cycle, electrical and total efficiencies of 7.5-13.5% and 60-80% are obtained at micro-scale 

[94,99], efficiencies that grow up to 7.5-23% and 56-90% for small-scale plants 

[94,98,99,102,103] and up to 15% and 82-89% for the large-scale ones [146,147]. 

GTs offer good performance at large scale. In particular, electrical efficiencies between 22% 

and 50% have been reported for cogeneration plants by several authors [85,95,96,109,148–154]. 

Total efficiencies are claimed to be about 76-90% also at large scale [95,109,152–154]. 

Microturbines, the small version of GTs, reach electrical efficiencies between 12.3% and 26% 

for micro-scale units [7,86,155,156] and total efficiencies in the range 62-73% [7,86]. Small-

scale microturbines perform slightly better, with electrical efficiencies of 25.2-33% 

[7,69,86,101,112,155,157–159] and total efficiencies of 62-89% [7,86,159], decreasing with the 

pressure ratio at levels greater than the optimum and increasing with the temperature at the 

turbine inlet [158]. 

The efficiency of externally-fired GTs is claimed to be around 30% for large-scale layouts of 

several MWe [95,119]. In addition, there are several experiences of externally-fired GTs at 

micro-scale fueled with biomass. For example, electrical efficiencies of 15-17% and total 

efficiencies around 80% have been obtained for a 30 kWe externally-fired micro gas turbine fed 

with pellets [144,160]. At even smaller sizes, the efficiency drops down to 7.8% as 

demonstrated for a 5 kWe externally-fired micro gas turbine [108]. Conversely, at small-scale, 

the electrical efficiencies obtained are 14.6% using pulverized biomass alone and 18.4% using 

pulverized biomass along with natural gas [112]. 

Evaporative gas turbines have not been deeply tested nor are found in commercial plants. 

However, simulations yield electrical efficiencies as great as 45% due to the increased mass 

flow, so it is a promising technology [115]. 
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With co-firing of biomass, better efficiencies can be obtained. However, the two proposed 

layouts perform different: in a small-scale plant, with the co-firing of biomass and natural gas in 

a topping cycle electrical efficiencies between 46% and 49.6% are obtained while with a natural 

gas-fired topping cycle and a biomass-fired bottoming cycle the electrical efficiency is around 

38-41%. Nevertheless, it still performs better than a stand-alone biomass plant equivalent in 

size, which only reaches 35.5% or 38% of electrical efficiency depending of the type of turbine 

used, ST or GT [120]. The same pattern is also shown in Domenichini, Gasparini [123]. 

Efficiency data and comparison 

Biomass conversion efficiencies have been continuously improving over the past years due to 

the learning curve effects and upscaling required for advanced applications [70]. However, and 

especially in recent years, significant efforts have also been made on R&D of small-scale 

applications that have improved their performance [88] as a result of the growing involvement 

of governments, mainly in the EU [26]. 

With aim to summarize and understand the current state of the art of biomass conversion 

efficiencies and how they vary with regards to scale and type of conversion technology, a 

comprehensive review of data published in the literature was performed. 

Electrical and total efficiencies of biomass conversion technologies, along with type of fuel, 

accessed source and power plant output and location, are summarized in Table IV and plotted in 

Fig. 3 and Fig. 4. As previously mentioned, large-scale plants are not considered in this analysis 

due to the unsuitability to use these technologies in Mediterranean forests using only locally 

available resources. This approach leaves out of scope BIGCC layouts, co-firing layouts based 

on both ST or GT technologies, and most of ST-based plants. 

Table IV Biomass conversion technologies’ efficiencies. Personal compilation based on indicated 
sources 

Power Plant Loc. Po1 

(kWe) 

ηe
2 

(%) 

ηtot
3 

(%) 

Tech. Fuel Ref. 

Honda EP 5500 

GX340 

Brazil 5.5 12.82 N/A ICE Wood chips 

(eucalyptus) 

[76] 

Naresuan University Thailand 10 10 N/A ICE Wood chips [123] 

GM Corsa Engine Brazil 15 21.42 51.42 ICE Wood [125] 

Viking Gasification 

Plant, Tech 

University of 

Denmark 

Denmark 18.55 25.1 93 ICE Wood chips [79,122] 

CTFC Spain 20 25 74 ICE Forest 

residues 

[124] 
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Power Plant Loc. Po1 

(kWe) 

ηe
2 

(%) 

ηtot
3 

(%) 

Tech. Fuel Ref. 

Ford DSG423 USA 28 20.6 N/A ICE Red oak wood [127] 

Ford DSG423 USA 28 23 N/A ICE Pine wood [127] 

        

Long Ashton 

Research Station 

UK 30 20 60 ICE Wood chips [126] 

Suranaree 

University of 

Technology 

Thailand 100 17.72 N/A ICE Wood chips [123] 

BERI project India 120 18 81 ICE Wood chips [155] 

Not specified China 200 12.5 N/A ICE Agricultural 

residues 

[128] 

Tianyan Ltd China 200 15 N/A ICE Forest and 

agricultural 

residues 

[101] 

Tervola Finland 470 24 82 ICE Wood residues [63] 

Harboøre  Denmark 700 28 96 ICE Wood chips [122] 
Tianyan Ltd China 1000 16 N/A ICE Forest and 

agricultural 

residues 

[101] 

Putian Huaguang 

Miye Ltd, Fujian 

Province 

China 1000 17 N/A ICE Sawdust, rice 

husk or straw 

[129] 

Guangzhou Institute 

of Energy 

Conversion 

China 1000 17 N/A ICE Rice husk [128] 

Experimental 

system 

Performance 

test 

2.7 12.3 N/A Microturbine Biogas [150] 

University of 

Science Malaysia 

(USM) 

Malaysia 5 7.82 30.5 Microturbine Wood [108] 

Capstone 330 (30 

kWe) 

Performance 

test 

30 26 N/A Microturbine Biogas [81] 

ETSU 

B/U1/00679/00/REP 

UK 30 17 80 Microturbine Wood pellets [138] 

Chinese village 

trigeneration system 

China 75 28 86 Microturbine Agricultural 

residues 

[64] 

Viking Gasification 

Plant, Tech 

University of 

Denmark 

Denmark 140 28.1 N/A Microturbine Wood chips [152] 

National Technical 

University of 

Greece 225 26.1 70.7 Microturbine Dry biomass [153] 
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Power Plant Loc. Po1 

(kWe) 

ηe
2 

(%) 

ηtot
3 

(%) 

Tech. Fuel Ref. 

Athens 

Notthingham UK 1.5 7.5 80 ORC  [93] 

Notthingham UK 2.71 13.5 80 ORC  [93] 

Admont, Styria Austria 400 7.4 48.2 ORC Wood chips, 

sawdust 

[96] 

Lienz CHP plant Austria 1000 15 104 ORC Wood chips [96] 

Australian Nat 

University rural 

electricity supply 

syst 

Fiji Islands 25 22 N/A Steam 

Engine 

Sawmill, crop 

wastes 

[17] 

Hartberg, Styria Austria 730 10 80 Steam 

Engine 

Wood chips, 

bark, sawdust 

[30] 

Lion Powerblock manufacturer 2 10.4 94 Steam 

Turbine 

Wood pellets, 

Natural Gas, 

Oil 

[121] 

Kiuruvesi Finland 900 11 85 Steam 

Turbine 

Bark, sawdust, 

wood chips 

[63] 

Karstula Finland 1000 8 85 Steam 

Turbine 

Bark, sawdust [63] 

Harboøre 

Varmeværk 

Denmark 1000 28 94 Steam 

Turbine 

Wood chips [74] 

Älvkarleby Sweden 0.8 20 80 Stirling 

Engine 

Wood pellets [63] 

Sunmachine pellet 

test 

manufacturer 1.38 14.3 72.1 Stirling 

Engine 

Wood pellets [134] 

Sunmachine pellet manufacturer 1.5 20 90 Stirling 

Engine 

Wood pellets [134] 

Sunmachine pellet manufacturer 3 25 90 Stirling 

Engine 

Wood pellets [134] 

Sunmachine manufacturer 3 20.1 90.6 Stirling 

Engine 

Wood pellets [121] 

Sunmachine manufacturer 3 20 90 Stirling 

Engine 

Wood pellets [120] 

DISENCO N/A 3 18.4 92 Stirling 

Engine 

Wood pellets [121] 

Joanneum Research 

(Institute of Energy 

Research) 

Austria 3.2 23.5 - Stirling 

Engine 

Wood chips [133] 

Joanneum Research 

(Institute of Energy 

Research) 

Austria 30 26 - Stirling 

Engine 

Wood chips [135] 

Technical Denmark 31 9.2 90 Stirling Wood chips [131] 
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Power Plant Loc. Po1 

(kWe) 

ηe
2 

(%) 

ηtot
3 

(%) 

Tech. Fuel Ref. 

University of 

Denmark 

Engine 

Technical 

University of 

Denmark 

Denmark 75 11.7 85.9 Stirling 

Engine 

Wood chips [130] 

SOLO161 Stirling Germany 2 22 92 Stirling 

Engine 

Wood chips [16] 

BAXI Ecogen manufacturer 6 13.5 94.6 Stirling 

Engine 

Wood chips [120] 

SOLO161 Stirling Italy 9 24 96 Stirling 

Engine 

Wood chips [132] 

SOLO161 Stirling manufacturer 9 25 97.2 Stirling 

Engine 

Wood chips [120] 

1 Power output 
2 Electrical efficiency 
3 Total efficiency 
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Fig. 3 Electrical efficiencies of biomass conversion technologies. Personal compilation based on 
indicated sources. 

 

Fig. 4 Total efficiencies of biomass conversion technologies. Personal compilation based on 
indicated sources. 

 

The data accessed from the literature show that there are many technology combinations, that is, 

primary conversion technology coupled with a secondary conversion technology, available. The 

appropriateness of each one depends on several factors, among which highlight the scale of 
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electricity generation, the demanded amount of heat or the type and availability of biomass 

resource. For example, Stirling engines prove very good performance with outputs of a few 

kWe, especially when there is a heat demand due to their high thermal efficiency. However, as 

the scale of electricity generation increases, they are surpassed by ICEs which show the greatest 

efficiencies at small-scale for electricity generation. ORCs are suitable for power outputs in the 

order of hundreds of kWe and at higher sizes they are overtaken by conventional Rankine cycles 

(STs) which are a very efficient technology for a few MWe of installed power, both having high 

thermal efficiencies. The bigger electrical power generation facilities have outputs as great as 

100–120 MWe, for which BIGCC is the best option in terms of electrical efficiency. However, 

such large-scale technologies are not suitable to use local wood chips in the Mediterranean 

forests because the amount of feedstock required to fuel these plants would jeopardize the 

survival and health of the forests. The high thermal efficiency of all technologies, increasing 

total efficiencies up to 80–100% suggest that looking for a heat demand would be a goal worth 

pursuing even when a facility is designed and sized for electricity generation purposes. 

It is also important to remark that the efficiency increases with the power output, showing an 

asymptotic behavior especially for biomass-to-electricity conversion. At micro-scale, 25–26% is 

the current technological limit of biomass conversion to electricity efficiency; at small-scale, it 

increases a bit reaching values close to 30% and at large-scale, efficiencies as great as 45–47% 

can be obtained for electricity generation. These values are obviously greater when the thermal 

efficiency is considered: total efficiencies can be greater than 100% at large-scale and even at 

micro-scale due to the good behavior of Stirling engines and STs at their respective scales and 

provided that flue-gas condensation is used [90] to cool the working fluid down below its dew 

point. With this process, heat from the atmospheric air can be recovered thus enhancing the 

efficiency to values greater than 100% because the efficiency is calculated in relation to energy 

input from biomass not including the energy stored within the atmospheric air in form of heat. 

 

2.2.2.4. Costs of technologies 

Other important factors that drive the selection of technology in current power plants are 

investment, operation and maintenance (O&M) costs. Regarding the investment costs, it is 

worth mentioning that these conversion technologies are at different developmental and 

commercial stages, so different cost structures should be expected. Regarding the O&M costs, 

those technologies involving less moving parts or, in the case of gasification, those that have 

low tar production rates, require less maintenance than those with rotating components or high 

tar production rates. Accordingly, those technologies based on direct combustion use to require 

less investment costs as gasification and gas pre-cleaning stages are not required [113]. 
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This is the reason underlying the fact that the most usual biomass conversion to electricity path 

is through direct combustion and steam turbine [67]. Although it is not the most efficient 

technology for electricity production, it requires less investment and O&M costs [66] due to its 

high maturity and commercial viability [23]. In addition, their high time availability also results 

in lower costs of electricity produced [161]. 

In an analogous way, there are differences between the gasification technologies: fixed bed 

reactors, in particular the downdraft ones due to their low tar content of the produced gas [79] 

and [81], require lower investments [80] and engine cleaning operations [23] than fluidized bed 

reactors. Therefore, fixed bed reactors are the most suitable alternative for small-scale 

gasification applications [64,107] that are constrained to have low O&M costs [69,162] while 

fluidized beds have been claimed to be more appropriate for mid- and large-scale applications 

[64,70,86,107]. However, fixed bed reactors have two major drawbacks: they require a fuel with 

low-moisture content at the inlet and they drop the gas at high temperature at the outlet [23,79]. 

In addition, fixed bed reactors produce a low-heating value gas [163], which is only a minor 

problem in small-scale plants. On the other hand, fluidized bed reactors are constrained to be 

fueled with low-size and low-density fuels such as sawdust [64,80], especially in the case of 

circulating fluidized bed reactors [135]. 

It is not surprising that ICEs using syngas obtained from biomass gasification are also a 

commercially viable alternative for biomass conversion to electricity [23] due to the high level 

of maturity of ICE’s technology that lower the investment costs. 

This asymmetrical deployment of technologies shows that the cost of the conversion 

technologies is a driving factor when it comes to the choice of a technology combination and 

energy source. However, even though biomass conversion technologies are more expensive than 

those for fossil fuel conversion, the lower price of the fuel may counteract the difference in 

capital investment [59]. Hence, it is of paramount importance to work in distributed generation 

schemes that take advantage of local resources to produce electricity and heat, thus reducing the 

costs associated to transportation of the energy source. For such purpose, wood chips are an 

interesting alternative because they can be easily obtained on-site, transported and processed 

with low energy requirements in the entire process. Moreover, it is worth mention that such 

usage of local wood chips could also have the economic and social benefits associated to 

wildfires׳ avoidance, particularly relevant in the context of Catalonia [164], and environmental 

preservation. The consequences of such wildfires are important economic costs and losses to 

society comparable with those of big catastrophes such as hurricanes derived from fire 

extinction and damage relief, property losses and tourism affectations [165]; as well 

environmental damages such as CO2 release and increased risk of erosion in hilly areas [45], 
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particulates emissions [165] or ecosystems services affectations [166]. Including these avoided 

costs of wildfires into the economic study of biomass-based conversion technologies, these 

technologies would have lower electricity generation costs thus being more competitive than 

they are at present. 

 

2.2.3. Wind power 

Wind power is currently the major renewable energy source for electricity production all over 

the world thanks to its current competitiveness in terms of costs and resource availability. This 

type of energy is characterized by its lack of pollutant emissions and fossil fuel usage [167] as 

well as by its low land-use requirements. Therefore, it can be considered one of the best 

renewable energy sources. The main drawback of this technology is that its moving parts 

require periodical maintenance operations. 

A block diagram of the working principle of wind power can be represented as follows: 

Wind Turbine 
blades

Generator
Power 

Electronics 
Module

Control Unit

Power Output

Wind

Batteries
(if any)

 

Fig. 5 Block diagram of wind power generation systems 

Currently, the most usual wind turbines are large-scale generators (about 1 to 5 MW of installed 

capacity), typically installed in farm layouts; but small-scale grid-connected wind turbines are 

enjoying a growing popularity [168]. Thanks to the wide availability of this renewable resource, 

wind power has a great potential for being used as a renewable source in a distributed energy 

scheme, although it requires a backup technology if a high-reliability system is pursued. 

Electricity production of wind turbines is directly linked to the wind speed distribution, usually 

similar to a Weibull probabilistic distribution [5]. 

 

2.2.4. Solar PV power 

PV power is a growing renewable energy source with a promising future. It shows flexibility 

and scalability of installation and easiness of operation. Due to its lack of moving parts, solar 

PV has low operational costs whereas also shows a lack of pollutant emissions during its use 
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phase [169]. The main drawback is the necessity of high capital investment at the installation 

stage [169] which has been drastically reduced during the last decade, a reason for pursuing an 

optimal size that will avoid overcapacity installation, thus reducing unnecessary costs. 

A standard solar photovoltaic power generation installation can be represented as follows: 

Solar PV panels Regulator

Batteries
(if any)

Inverter

Solar 
Irradiation

Power Output

 

Fig. 6 Block diagram of solar PV power generation systems 

The rate of electricity produced by solar PV panels is dependent on the solar irradiation which 

is, in turn, linked with the clearness index that follows the Holland and Huget probabilistic 

distribution [5] besides other factors such as the apparent motion of the sun and the 

geographical location. Besides, the type of PV modules’ efficiency also affects the performance. 

For instance, there are several c-Si and thin-film PV technologies that are currently being 

commercialized with efficiencies ranging between 10% and 30% of ideal conversion efficiency 

[170]. 

Solar PV power generation has a great potential to enable the transition to a distributed 

generation scheme thanks to its easy scalability and the fact that the resource is virtually 

available all over the world. However, the intermittency of this resource makes it necessary to 

lay out power systems that not only rely on solar PV, but also on other sources, renewable or 

non-renewable, and/or storage systems that could serve as a backup for solar PV power [171]. 

In addition, the deployment of solar PV generation would trigger and support new direct and 

indirect jobs for the PV supply chain [170]. 

 

2.3. Hybrid renewable energy systems (HRES) 

2.3.1. Definition 

Hybrid renewable energy system (HRES) stands for a power or a combined heat and power 

production system based on the hybridization of two or more energy sources, being a RES. 

These systems can be adapted to the RESs available on-site, therefore, they might combine 

different energy sources based on the available sources [3,5]. 



45 
 

An important reason for the interest attracted recently by HRESs is their remarkable ability to 

foster the deployment of renewable energies, currently the better alternative for CO2 emissions 

reduction given the numerous hurdles to be overcome by nuclear energy [172] for electricity 

production worldwide, as they are systems that can be replicated at many different scales [25], 

thus enhancing the transition from a centralized production–distribution scheme to a more 

distributed model, such as interlinked microgrids, for which renewable energies have been 

pointed to as an efficient solution [24]. In addition, the use of such energy sources would 

improve the development of rural areas, creating job opportunities, as well as revaluating local 

resources not currently used [28]. This is especially significant in the case of forest wood 

biomass, a RES that, not only stimulates socio-economic progress of rural areas preserving 

landscape quality and biodiversity [30], but also would help to create wealth and job 

opportunities in the fields of forest management and harvesting [29]. 

 

2.3.1. Characteristics 

It is a common practice to complement the production pattern of one source with the pattern of 

another [173], usually that happens when combining solar PV, with its high energy production 

during daytime and summer, and wind power, with its high energy production during nighttime 

and winter. This kind of HRES are usually complemented with a fossil-fuel based energy source 

such as a diesel engine [24,174–191], with or without an storage device, to take advantage of its 

ability to be dispatched on demand [3]. Another alternative, regardless of the presence of a 

diesel engine, is to combine one or more of the aforementioned RES with a storage system, the 

most common options are battery storage [6,31,32,192–204] and pumped hydro storage (PHS) 

[205–210]. The storage alternative is highly necessary in those cases when a stand-alone, i.e. 

islanding scheme is adopted to counteract the lack of an electricity grid that can back up the 

electricity generation whenever RES are not available. However, despite this requirement that 

may increase the whole system cost, stand-alone systems might be worth installing in rural and 

remote areas without access to the grid as the storage system cost would overtake the cost of 

extending the grid. On the other hand, if a grid-connected scheme is feasible to implement, the 

grid carries out the storage function of the system [211–213] and hence, storage is not strictly 

required. 

 

2.4. Storage technologies / Reliability of supply 

Despite the undeniable benefits of RES, they also have an undeniably important drawback: from 

the three most exploited sources, hydroelectric, wind and PV power, two of them, namely wind 
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and PV, are weather-or climatic-dependent [214], meaning that it cannot be assured their 

dispatch on demand because they only can be produced when the natural resource is available. 

To face and overcome this issue, more flexibility has to be achieved to ensure permanent 

meeting of demand by the supply side. Among the available grid-scale flexibility achievement 

techniques, which include demand-side management, over capacity installation and large-scale 

storage systems, the latter are the best option because they allow maximizing the usage of 

generation without impacting the consumers' habits of use of electrical power [215]. Large-scale 

storage systems include conventional batteries (Li-ion, sodium sulfur or lead-acid batteries), 

flow batteries (vanadium redox or zinc-bromine), compressed air electricity storage (CAES) and 

PHS. Carrasco and Franquelo [216] also consider flywheels, hydrogen fuel cells, 

supercapacitors and superconducting magnetic energy storage (SMES) as feasible alternatives. 

If small-scale solutions, namely micro-wind turbines or stand-alone photovoltaic systems are 

chosen, battery energy storage systems (BESS) to be used as a backup are even more necessary 

due to their scalability and low cost [217]. Hence, additional costs should be attributed to the 

installation of these RESs if the requirement of storage is taken into account when designing a 

so-called hybrid system that includes renewable energy production technologies and storage 

systems [214]. Moreover, the small size of these systems adds another potential issue: the 

integration of many small power sources instead of a few large ones requires additional control 

measures to ensure stability, prevent failures and make mid- and long-term electricity 

production estimations [218,219]. According to some sources [220], the setup of large energy 

farms, both wind and photovoltaic that supply power as a single power unit is also required in 

order to ease their integration into the electric grid. 

 

2.5. Optimization of HRES 

Optimization is a research field that is currently attracting interest for its usability in the design 

of systems or components in which many variables are involved. That is the case of HRES 

design, because to effectively size a HRES it is required to assess the main constraints, 

including the load demand profile that restricts the demand of the system, as well as the wind 

speed and solar irradiation that restrict the supply. When performing such assessment, 

optimization technologies are a useful tool that support and inform decision-makers providing 

optimal designs according to pre-established criteria. 

In the thorough literature review that was performed to properly assess the current state of the 

art on the topic of HRES optimization, it was observed that most of the accessed HRES design 

and optimization papers are focused on stand-alone HRESs [24–26,28,31,32,178,200,201,206–

208,221] rather than grid-connected ones because the formers show better economic feasibility 
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than the latter as they are intended to substitute small grids fueled with non-indigenous fossil 

fuels [24,31,32,207]. Some of these researches rely on existent optimization software usage, 

such as HOMER [25,32,187,192,205] while others develop some optimization methodologies 

based on different optimization methodologies such as genetic algorithms (GA) 

[24,178,201,207,208,222,223] or dynamic programming methods [184], such as the mixed 

integer linear programming (MILP) [31]; whereas others only model and simulate the problem 

with different input values to analyze the results [213,221,224]. 

One of the key aspects of HRES optimization problems is the input data. For HRES 

optimization, both the atmospheric data related with RE generation, that is, solar irradiation and 

wind speed, and the load demand data are of critical importance. From the performed literature 

survey, it was observed that some works do not use actual data sets and instead, estimate 

weather-related variables [31,184,192,205] and/or the electricity demand 

[32,192,200,205,207,208]; whereas others use full year actual data sets for these variables 

[24,25,178,187,223]. 

Many of the accessed papers do not include real on-time data in the analysis, a circumstance 

that we believe that weakens the analysis due to the lack of accuracy when capturing both daily 

and seasonal patterns. We also observed a scarcity of grid-connected HRES optimization 

researches and, particularly, none that introduced on-time electricity sale and purchase 

according to actual market prices and depending on rather the system has a surplus or a lack of 

electricity production compared with the electricity demand. 

 

2.6. Summary 

Among the RES, forest wood biomass is one alternative with great potential for electricity and 

heat production due to being an indigenous source in many countries and being based on well-

known technologies with good performance. In particular, wood chips are an appealing 

alternative because they are a cheap fuel with low energy requirements for their production and 

with very stable burning or gasification performance due to their higher contact surface 

compared with other solid biofuels. The usage of such resource would have undeniable benefits, 

among which highlight the reduction of greenhouse gas emissions and the proper management 

of forests, leading to more efficient environmental preservation, the creation of green jobs in 

rural areas and wildfires׳ risk reduction. In addition, if the available feedstock is locally used, 

the energy requirements and associated CO2 emissions would be minimized. However, in the 

Mediterranean region, this circumstance thresholds the usage of biomass at the micro- and 

small-scale levels. 
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This study has reviewed the different technologies for wood chips conversion to electricity and 

heat, with especial focus on the performance of micro- and small-scale technologies. The 

comparison between the different available alternatives show that the most suitable technology 

depends on many factors, highlighting the scale of electricity production, the existence of heat 

demand or the associated costs among others. The overall data analyzed shows that electricity 

production performance of those technologies that use wood chips as fuel is quite good, 

improving with greater outputs, and that taking advantage of additional heat produced is a very 

important goal because it increases the total efficiency up to values close to 90–100% even at 

very small scales of energy production. 

From the literature survey, it has been noticed a scarcity of papers focused on grid-connected 

HRES, and, aside from the work published by the authors [225,226], none of the accessed 

papers is focused on the hybridization of PV, wind and biomass power sources – being the latter 

the one that provides backup to the formers – or uses real on-time electricity sale and purchase 

prices according to actual market pool and hourly discrimination tariff prices. This work also 

proposes to use the forest wood biomass in a sustainable way, i.e. without surpassing the self-

growth rate of local forests so the locally available resource can be used avoiding resource 

depletion or scarcity at mid- or long-term. This is introduced in the work through the inclusion 

of the price of sustainably-harvested forest wood biomass as well as estimating the forested area 

required to feed the system. The novelty of this work can be, therefore, justified from these 

characteristics, as well as from a multi-objective analysis that allows decision-makers not only 

to perform informed decisions but also to understand the trade-offs between system cost and 

environmental impact. 

In the present research, solar PV, wind and biomass have been hybridized in different 

combinations (see Chapter 4 for further detail on system layout) to take advantage from the 

complementary seasonal and daily patterns of wind and solar resources and to incorporate the 

flexibility provided by the biomass, since it is an energy source that can be dispatched on 

demand [3]. The layout includes grid connection, from which the system would take the 

advantage of having more flexibility and adaptability to actual demand at those cases when the 

indigenous energy sources are not enough to cover the demand. 
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3. Framework and methodology 

This chapter is aimed to describe the methodology designed to optimize HRES system sizing 

according to a minimum cost criterion or to a multi-objective cost and environmental impact 

criteria. In the first section a short introduction and summary of the methodology is presented, 

in the second section it is analyzed the choice of the sample township where the optimization 

methodology was tested and the reasons behind such choice. Third and fourth sections are the 

description of the methodology itself. 

 

3.1. Introduction 

The methodology here described is thought to provide decision-makers an optimal solution once 

the performance and economic variables and the solar irradiation, wind and electricity demand 

patterns are known, provided that natural tree growth rate thresholds are not exceeded. The 

optimization is performed by means of a GA. 

For the sake of easiness of development, improvement and validation as well as flexibility of 

the optimization model designed the research was divided in different stages, i.e. the 

optimization model was developed and tested under different conditions of RES availability or 

optimization criteria. However, in all cases the system shares a certain core characteristics, such 

as its grid connection, the hybridization of solar PV and wind power subsystems and the 

introduction of life-cycle cost as an optimization criterion. 

The first stage of the research was focused on life-cycle cost optimization of a grid-connected 

PV-wind HRES for electricity production. 

The second stage of the research was focused on the life-cycle cost optimization of a HRES 

improved with respect the previous one. This improvement consisted in adding a certain degree 

of autonomy given by forest wood biomass, which is a controllable source of energy [3] since it 

can be stored in wood chip or pellet form reducing storage requirements [227], together with the 

reliability assurance mechanism of grid connection [223,226]. In addition, these three sources of 

energy are recognized to be the RESs with higher social, economic, and environmental benefits 

[22]. 

After that, the multi-objective optimization was incorporated by adding the life-cycle 

environmental impact as the second optimization criterion. By doing so, a set of optimal 

solutions was obtained, i.e. a Pareto front, to analyze the trade-offs between life-cycle cost and 

environmental impact minimizations. 
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The fourth last step was to introduce the thermal demand of a neighborhood of the sample 

population that fitted the scale of the HRES being studied for electricity production alone. 

Hence, the PV-wind-biomass HRES required to supply the township’s demand would not waste 

the thermal energy produced by the biomass electricity generation system. 

It is also important to remark the willingness of this research to carry out a comprehensive cost 

and environmental impact assessment. In the case of life-cycle cost, it means that the assessment 

is characterized by performing an analysis that not only includes the initial investment and the 

expected incomes of the system, but also all the expected costs and revenues throughout lifetime 

of the system [228]. Thus, the developed methodology intends to optimize the life cycle cost 

focusing on all the expected costs of a certain system during its lifetime as well as the expected 

revenues. In the case of life-cycle environmental impact, it means that the assessment is 

characterized by accounting for CO2 emissions, which was chosen as a representative metric of 

environmental impact, from cradle to grave of the electricity generation equipment, so solar PV 

and wind energy technologies do have environmental impact due to their manufacturing, 

transport and installation processes. 

In addition to the cost and environmental impact treatment from a life cycle perspective, this 

work intends to be an original approach to HRES cost optimization through the use of hourly 

data for both weather variables and electricity demand; the utilization of genetic algorithm 

methodology that allows to fully control the modeling and input parameters; and through the 

calculation at each hour of the day of cost and revenues derived from electricity sale and 

purchase at market and retail prices respectively thus not seeing the electricity production as 

steady profits but looking at it as a dynamic cost term, strongly linked to actual market 

conditions. Moreover, the methodology was tested by means of a case study with real on-site 

data. 

Another important aspect is the system scale. The methodology here described was designed to 

be usable in a range of different scales because the model allows changing system size easily by 

increasing or decreasing the number of PV modules and/or wind turbines. Hence, the proposed 

HRES optimization model can be used in many different places and at many different scales of 

generation by only adapting the weather, electricity demand, components’ performance and cost 

variables to the new constraints. 

 

In the following subsections there are explained the context of the study undertaken, the system 

layout for the different stages of the research and main characteristics of the employed 

methodology are detailed. 
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3.2. Sample choice 

The focus of this research was to hybridize RES found in central Catalonia rural villages, being 

this context applicable to other Mediterranean climate areas such as other Iberia peninsula 

regions, Italy, southern France or Greece and the Balkans. 

With the purpose of testing the designed methodology, a particular location was chosen as a 

case study sample. Such location is Santa Coloma de Queralt, a rural township in central 

Catalonia, a region characterized by having a Mediterranean climate with moderately high solar 

irradiation averaging around 1650 kWh/(m2year) [229], throughout the year and also by having 

a medium wind potential of 3.7 m/s at 35 m above ground level [229] as there are no big 

orographic obstacles. Furthermore, Central Catalonia is also a region with high on-site forest 

wood biomass availability [51,230], facilitating the exploitation of such a resource in a 

sustainable way, i.e., with minimum transportation requirements and allowing the use of locally 

available resources below the rate of growth of indigenous tree species. 

The sample township has 2931 inhabitants and a population density of 86.6 inhabitants/km2, 

thus meeting the OECD criteria for rural population [231] since it is below 150 inhabitants/km2. 

The system sizing is done for the entire township with 1271 residential dwellings [232]. 

Regarding the third renewable energy source considered in the study, the availability should be 

measured in terms of available tons per year. Given the vocation of this study of preserving the 

sustainability of resource use, the annual growth rate of forest trees was used instead of the 

amount of biomass readily available in the forest. In this manner, the available biomass resource 

will be always a similar amount, depending of the rain and solar irradiation of the year, and the 

forest survival will not be jeopardized by an abusive use of it. Consequently, the growth rate of 

Mediterranean pine and oak forests of 1.6 metric tons of dry wood per hectare and year 

[230,233]  was used to estimate the amount of available biomass. To obtain the total mass of 

available resource to be used for the system, this value was multiplied by the area of forested 

area in the township under study and surrounding area, which equals 2200 hectares. The 

resulting figure was corrected to tons of wood at 15% of moisture content, the value at which 

the biomass usually enters the gasifier after a pre-drying process [234]: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
1.6 𝑡𝑡𝑛𝑛0%
ℎ · 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

·
1.15 𝑡𝑡𝑛𝑛15%

1 𝑡𝑡𝑛𝑛0%
· 2200 ℎ = 4048

𝑡𝑡𝑡𝑡
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

 (3) 

 

3.3. Methodology 
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The methodology here described was designed to be a useful and innovative mechanism that 

could help to improve PV–wind–biomass grid-connected HRES design, according to a 

minimum cost criterion. Such optimization is performed by means of a genetic algorithm-based 

model, by applying an approach from a life-cycle perspective when addressing the system cost. 

From such a point of view, all costs and revenues throughout the lifetime of the system should 

be considered, that is, initial investment, expected incomes, and costs from electricity sale or 

purchase, operation, and maintenance costs, component replacement (if required) and 

component sale at the end of the lifetime [223,228]. 

Another aspect worth highlighting is the use of real data with an hourly accuracy, allowing the 

model to compute the hourly discrimination electricity tariffs and market price, as well as the 

daily and seasonal patterns of involved stochastic RESs, solar irradiation, and wind speed. 

When looking at that in the literature, it has been observed that some works, rather than using 

real hourly data, they rely on estimated weather-related variables [31,184,192,205] and/or 

electricity demand data [32,200,205,207,208]. The present work would be included in the group 

of papers that rely on actual data with hourly accuracy [24,25,178,186,187,223], being able to 

capture both hourly and seasonal weather and demand pattern changes. 

Moreover, the inclusion of forest wood chips as biomass fuel has been made, considering 

environmental criteria, which is a novel perspective. For example, instead of considering that 

the biomass-based fuel is acquired at current market cost, the acquisition cost of fuel obtained 

from sustainable harvesting and processing practices has been considered. Such insight means a 

higher fuel cost compared with current market prices, but it helps in reducing the current 

mismanagement of Mediterranean forests, which leads to increased forest wildfires risk 

[46,235]. To compensate for such an economic handicap, the authors have also proposed a 

novel biomass unit pattern of operation, based on the maximization of unit efficiency by always 

working at full load and selling the excess of electricity, if any, to the grid. Such an operation 

pattern, not only increases the entire system efficiency, but also ensures that biomass is used in 

an optimum way so the scarce indigenously available resource is not wasted. 

Another important aspect of the methodology presented in this article is the fact that it is based 

on the use of real on-time data for a sample location, used to validate the results and behavior of 

the developed optimization model. 

Besides, the methodology is also thought to be applicable at different scales of energy 

generation. Considering the typology of the different renewable power subsystems, the 

proposed HRES cost-optimization methodology can be used in a wide range of different scales 

and locations. To do so, the user only has to change the input variables related to the system 
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scale, such as biomass or wind subsystems’ installed capacities and efficiencies, and related to 

location, such as solar irradiation and wind speed data series. 

 

In the following subsections the optimization methodology is thoroughly described. First of all, 

the location where the system is to be installed is selected for validation purposes, a sample 

rural township in Central Catalonia. Then, the input data required is described and presented for 

the validation sample. The third step of the methodology consists in the optimization model 

design and application, and it is detailed including the physics that support it. 

 

3.3.1. Input data gathering 

In order to ensure the reliability of the results provided by the algorithm, all the data was 

gathered from several trustworthy sources. For the single objective optimization models, these 

data are classified into three groups, i.e. stochastic variables as weather-related variables and 

electricity demand, equipment costs and financial variables, and equipment efficiency and 

performance data. In the multi-objective optimization analysis, the life-cycle environmental 

impact was measured through life-cycle CO2 emissions, the fourth group of input data. All data 

come from trustworthy sources which are indicted. 

 

3.3.1.1. Renewable energy availability data collection 

The stochastic variables relevant for this model are the weather-related variables required to 

model the production of renewable energy as well as the electricity demand that is sought to be 

supplied. The selected accuracy is one datum per hour during an entire year, which allows 

capturing the seasonal and daily variability of these magnitudes without forcing the algorithm to 

manage a huge amount of data. The selected period of analysis is year 2011 because that is the 

last year with all the data readily available from the accessed sources. 

Table V lists the hourly series of these variables, and Fig. 7 show the patterns of them for a 

random labor day, April 19th. 
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Table V Hourly Series of Stochastic Variables 

Data Value Source 
Solar irradiation (W/m2) Vector of 8760 points corresponding to 24 hours per 365 days [229] 

Wind speed at 6 m (m/s) Vector of 8760 points corresponding to 24 hours per 365 days [229] 

Electricity demand profile 

(kWh) 
Vector of 8760 points corresponding to 24 hours per 365 days [236][237] 

 

 

Fig. 7 Hourly series of a random day for solar irradiation (a) and wind speed measured at 6m 
above ground (b) 

Regarding to the wind speed data, the measured data corresponds to an anemometer placed at 6 

m of altitude. The chosen wind turbine can be installed with a layout of 30, 36 and 40 m of rotor 

altitude [238] so an extrapolation of wind speed has been performed using the power law 

equation that is a robust method to model the boundary layer [239]: 

𝑉𝑉𝐻𝐻,𝑡𝑡 = 𝑉𝑉𝐻𝐻0,𝑡𝑡 �
𝐻𝐻
𝐻𝐻0
�
1/7

  (4) 

where 𝑉𝑉𝐻𝐻,𝑡𝑡 and 𝑉𝑉𝐻𝐻0,𝑡𝑡 are, respectively, the estimated wind speed at height H and the measured 

one at height 𝐻𝐻0 = 6 𝑚𝑚 at time interval t. 

The solar irradiation data series provided by [229] is measured on a horizontal surface, so a 

horizontal-to-tilted plane conversion (Eq (5)–(7)) was performed to obtain the solar irradiation 

SI on a plane tilted 37º, which is the optimum angle for the latitude of the sample. This can be 

done as follows [240]: 

𝑆𝑆𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑆𝑆𝐼𝐼ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ·
sin(𝛼𝛼 + 𝛽𝛽) 

sin(𝛼𝛼)  (5) 

where α is the elevation angle and is the tilt angle measured from the horizontal, in the sample 

selected β= 37º. The elevation angle can be calculated as follows: 



55 
 

𝛼𝛼 = 90 − 𝜙𝜙 + 𝛿𝛿 (6) 

𝛿𝛿 = 23.45 · sin�
360
365

· (284 + 𝑑𝑑)� (7) 

Φ being the latitude and the day of the year and dϵ(1,365) the day of the year. 

 

3.3.1.2. Electricity demand data collection and Thermal energy demand 
calculation 

The electricity demand data series were provided by the local utility companies of Santa 

Coloma de Queralt [236] and Caldes de Montbui [237], which provided a measure of the entire 

township electricity consumption in an hourly basis. It is worth noting that these households 

have an annual electricity consumption close to the average household electricity consumption 

for the Mediterranean region of  [241], although the total demand also included all the 

consumers of the township, including services, industry, streetlight, to name but a few. 

An example for a random day of [237] is shown in Fig. 8: 

 

Fig. 8 Hourly series of a random day for electricity demand 

In addition, Spain has electricity prices close to the Euro area electricity average price [242] so 

the results derived from this case study will be significantly representative for any other 

European country in the Mediterranean area, for instance Greece, Southern France or Italy. 

Despite the applicability of the results of the proposed case study to similar climate regions, the 

methodology is designed to be as universal as possible allowing to be applied wherever is 

desired provided that the location-dependent input variables, that is solar irradiation, wind speed 

and electricity demand hourly patterns, are known. The methodology proposed is not only 

intended to be useful for Mediterranean regions, and changes in the input variables, including 
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weather-related, load demand, and economic data, would lead to trustworthy results in regions 

with other idiosyncrasies. 

 

The thermal demand for each type of household included in the DH network was obtained using 

the procedure from the Spanish Institute for energy diversification and saving (IDAE in its 

Spanish acronym) [243], which establishes that the thermal demand for heating purposes can be 

calculated as follows: 

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜙𝜙 + 𝑄𝑄𝑣𝑣 + 𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 (8) 

where 𝜙𝜙 is the heat transfer flow in Watts, 𝑄𝑄𝑣𝑣 the ventilation heat losses and 𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 the thermal 

demand for sanitary hot water. These terms were calculated for each type of household with an 

hourly accuracy for heat transfer and ventilation heat losses and with homogenous demand 

throughout the year for sanitary hot water. 

The annual heat transfer needs are calculated as 

𝜙𝜙 =  𝑈𝑈 · 𝐴𝐴 · �𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖� (9) 

where 𝑈𝑈 is the thermal transmittance of the contact surface of each household type, in W/(m2K), 

𝐴𝐴 is the contact area in m2 and 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 are the temperature setting inside households and 

the outside temperature. The thermal transmittances for each type were obtained using the 

building energy certification software CE3X [244], which provides their values according to the 

type of contact surface (façade, party wall, window, roof, ground), the materials used and year 

of construction. 

𝑄𝑄𝑣𝑣 = � 𝑐𝑐𝑝𝑝,𝑎𝑎 · 𝜌𝜌𝑎𝑎 · 𝑞𝑞𝑣𝑣 · �𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�
8760

𝑖𝑖=1
 (10) 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = 365 · 𝑐𝑐𝑝𝑝,𝑤𝑤 · 𝜌𝜌𝑤𝑤 · 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 · �𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑐𝑐𝑐𝑐�/(𝐴𝐴 · 𝜂𝜂𝑆𝑆𝑆𝑆𝑆𝑆) (11) 

where 𝑐𝑐𝑝𝑝,𝑎𝑎 = 1.005 𝑘𝑘𝑘𝑘/𝑘𝑘𝑘𝑘𝑘𝑘  and 𝜌𝜌𝑎𝑎 = 1.2 𝑘𝑘𝑘𝑘/𝑚𝑚3 are the specific heat and the density of air, 

𝑐𝑐𝑝𝑝,𝑤𝑤 = 4.18 𝑘𝑘𝑘𝑘/𝑘𝑘𝑘𝑘𝑘𝑘  and 𝜌𝜌𝑤𝑤 = 1000 𝑘𝑘𝑘𝑘/𝑚𝑚3 are the specific heat and the density of water, 𝐴𝐴 

is the household area, 𝜂𝜂𝑆𝑆𝑆𝑆𝑆𝑆 is the efficiency of sanitary hot water distribution inside the house 

of 0.75 according to [243]; and 𝑞𝑞𝑣𝑣 and 𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 are the ventilation air flow in m3/s and the sanitary 

hot water volumetric demand, obtained according to: 

𝑞𝑞𝑣𝑣 =
𝑚𝑚𝑣𝑣̇ · 𝐴𝐴 · ℎ

3.6
 (12) 
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𝑞𝑞𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑐𝑐 · 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖ℎ.

3.6
 (13) 

where 𝑚𝑚𝑣𝑣̇  is the ventilation flow of 0.8 renovations per hour, A is the household area in m2, ℎ is 

the average floor height, set at 2.7 m, 𝑐𝑐 is the water consumption per inhabitant of 30 liters per 

day and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖ℎ is the average number of inhabitants per household, of 2.6340 according 

to 2011 housing census [232]. 

For the temperature setting inside households, a daily pattern similar to electricity demand 

pattern was established, with two temperature settings, 16 ºC at night and no-occupancy periods 

and 20.5 ºC during occupancy hours (see Fig. 9). 
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Fig. 9 Hourly temperature setting of winter days 

 

In addition, the DH was supposed to work only in winter days, from November, 15th to April 

15th, as presented in Fig. 10: 
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Winter - Summer days setting
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Fig. 10 Annual setting of central heating: winter days (1) with temperature setting shown in Fig. 9 
and summer days (0) without temperature setting 

With all these parameters set, the last step was to multiply the unitary household thermal 

demand by the number of households of each type. A vector of 8760 points, as in the case of 

electricity demand, was obtained as input data for the optimization model. Again, as it happened 

with the electricity demand, the average thermal demand of a household obtained for the 

proposed DH neighborhood of 17.54 MWh/year is close to average consumption for a Spanish 

continental climate household of 15.53 MWh/year, according to [241]. 

This thermal demand, however, has to be increased to account for the distribution losses, i.e. the 

energy losses due to dissipation throughout the ducts of hot water distribution system. 

According to technical manuals from DH pipe manufacturer Danfoss [245], the distribution 

losses, expressed in Watts per meter of pipe, are 18.08 W/m for a circular twin pipe and 26.53 

W/m for a pair of single duct pipes. Similar values are given by the pipe manufacturer Rehau 

[246]: with working temperatures of 80ºC for heat flow and 60ºC for return circuit losses are 

24.6 W/m with a pair of single duct pipes of 90 mm; whereas for smaller pipelines of 75mm and 

slightly lower working temperatures for heat and return flow of 75ºC and 55ºC respectively, the 

losses equal 16.2 W/m. 

Taking the most limitative value of 26.53 W/m, and multiplying this value by the total length of 

the DH system of 1100m approximately, total heat losses due to distribution equal: 

𝐷𝐷𝐷𝐷 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 26.53 𝑊𝑊/𝑚𝑚 · 1100𝑚𝑚 = 29183𝑊𝑊 ≈ 30𝑘𝑘𝑘𝑘 (14) 
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When considering a system of 500 kWe and 1014.6 kWth (see conversion efficiencies in the 

following section), (14) represent approximately 3% power losses. However, since the township 

under study has not severe cold weather, it was assumed that working temperatures are not 

required to be particularly high, and distribution losses were calculated taking the heat losses 

per meter of pipeline of 16.2 W/m, obtaining the following total distribution losses: 

𝐷𝐷𝐷𝐷 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 16.2 𝑊𝑊/𝑚𝑚 · 1100𝑚𝑚 = 17820𝑊𝑊 ≈ 20𝑘𝑘𝑘𝑘 (15) 

which represents 1.9% of thermal energy produced by a gasifier – ICE group of 500 kWe. 

Therefore, the distribution losses were assumed to be a 2% of thermal energy produced, and 

thermal demand was increased by this factor. 

 

3.3.1.3. Efficiency and performance data collection 

This set of data includes all the variables required to implement the performance calculation into 

the model. That includes all the efficiencies of a solar PV installation, of a wind turbine 

installation and a biomass gasification – ICE installation. For solar PV power, these data include 

the module efficiency itself but also the ancillary equipment including the wiring, converter and 

de-rating efficiencies among others [247]; whereas for wind power that is acquired in the form 

of the characteristic curve of the wind turbine provided by the manufacturer that includes all the 

efficiencies of the entire wind turbine [248]. The biomass heating value has also been classified 

in this group. 

Table VI shows the values used in the algorithm for all the variables that take a fixed value. 

Table VI Efficiency and performance variables 

Data Value Source 
Module reference efficiency 15.0% [249] 

Model nameplate de-rate 95.0% [250] 

Inverter efficiency 92.0% [250] 

Module mismatch factor 98.0% [250] 

Connections efficiency 99.5% [250] 

DC wiring losses factor 98.0% [250] 

AC wiring losses factor 99.0% [250] 

Soiling de-rate factor 95.0% [250] 

System availability O&M 98.0% [250] 

Gasifier ideal efficiency 71.0% [251] 

Gasifier operation efficiency 95.0% [234] 

Biomass syngas-fired ICE 37.0% [227,234] 
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Biomass lower heating value (LHV) 15.5 GJ/t [234,252] 

 

In addition to such information, it is also important to introduce the PV power warranted by the 

manufacturer curve, obtained from [249,253] depending on the modules used, which diminishes 

over time as a result of aging (see Fig. 12) and the wind power characteristic curve [238] (see 

Fig. 11) that shows the output of the wind turbine, including the wiring, generator, transformer 

and power and control cabinet efficiencies. 
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Fig. 11 SUT200 characteristic curve, representing output power (kW) over wind speed (m/s). 
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Fig. 12 Warranted power (%) over lifetime of UP-M265M PV module 

 

The warranted power refers to the module reference efficiency, so the manufacturer warrants 

97% of the reference efficiency for the first two years and then the warranted power experiences 

a linear decline until reaching 80% of the reference efficiency by the 30th year of module usage. 

The entire biomass-to-electricity conversion system efficiency is calculated by multiplying all 

the involved efficiencies (see Equation (16)) 

𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 · 𝜂𝜂𝑔𝑔𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑜𝑜𝑜𝑜 · 𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 24.9 (16) 

A conservative value of 25% was selected. 
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The LHV of biomass can be calculated from the higher heating value (HHV) of biomass, as 

follows [252]: 

𝐿𝐿𝐿𝐿𝑉𝑉𝑤𝑤 = �𝐻𝐻𝐻𝐻𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 − 20.3 · 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑� · (1 − 𝐴𝐴𝐶𝐶𝑤𝑤 −𝑀𝑀𝐶𝐶𝑤𝑤) (17) 

where 𝐻𝐻𝐻𝐻𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 is the higher heating value of dry ash free biomass, 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 is hydrogen ash free 

content, 𝐴𝐴𝐶𝐶𝑤𝑤 is the ash content and 𝑀𝑀𝐶𝐶𝑤𝑤 is the moisture content. They are 20.4 GJ/t, 6.2%, and 

3% according to [254], respectively. 

Regarding the moisture content, according to a manufacturer of the biomass gasification 

equipment [234], biomass is usually supplied at 30% of moisture content, however, after an 

atmospheric pre-drying over four to six months, it easily reaches a moisture content of 15%. 

Hence, the expected LHV of biomass at intake of the gasifier is calculated with Equation (18): 

𝐿𝐿𝐿𝐿𝑉𝑉15% = (20.4− 20.3 · 0.062) · (1 − 0.03 − 0.15) = 15.70 𝐺𝐺𝐺𝐺/𝑡𝑡 (18) 

In this case, a value of 15.5 GJ/t was selected, corresponding to 16% moisture content. 

Considering that the selected biomass-to-electricity system efficiency was a conservative value, 

it seemed a reasonable value to choose. 

 

3.3.1.4. Cost and financial data collection 

The cost variables to be considered range from the equipment acquisition costs to the operation 

and maintenance (O&M) expenditures, including the equipment replacement costs whenever 

required throughout the lifetime of the system. 

There are also some financial variables that are important to be considered to effectively 

perform the cost optimization under the perspective of the lifecycle analysis. For instance, the 

lifetime of the entire system and the different components of it, whenever different, must be 

included to account for inflation of electricity and obsolete equipment selling prices. The 

interest rate must also be included because it is necessary to discount all the future costs and 

revenues as if they took place at the moment of initial investment, according to the Net Present 

Value metric. 

The values of all these variables are listed in Table VII. 

Table VII Cost and financial variables 

Data Variable name Value Source 
System lifetime  𝑁𝑁 25 years [180,255,256] 

Wind turbine lifetime 𝑌𝑌𝑤𝑤𝑤𝑤  20 years [256] 
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Solar PV DC – DC inverter lifetime 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 15 years [223,256] 

Interest rate 𝐼𝐼𝐼𝐼 3.5% [257] 

Spain’s Value Added Tax (VAT) rate 𝑇𝑇𝑇𝑇 21% [258] 

General inflation rate 𝑔𝑔 3% [256] 

Electricity selling price inflation rate 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  3% [256] 

Wind turbines selling price inflation rate 𝑔𝑔𝑤𝑤𝑤𝑤  -5% [256] 

Inverter selling price inflation rate 𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖 -5% [256] 

Cost reduction limit due to technological 

maturity for wind turbines 
𝐿𝐿𝑔𝑔_𝑤𝑤𝑤𝑤 -25% [256] 

Cost reduction limit due to technological 

maturity for inverters 
𝐿𝐿𝑔𝑔_𝑖𝑖𝑖𝑖𝑖𝑖 -25% [256] 

PV capital cost 𝐶𝐶𝑃𝑃𝑃𝑃 
3800 $/kW (2011) 

2930 $/kW (2014) 

[247] 

[259] 

Wind capital cost 𝐶𝐶𝑊𝑊𝑊𝑊 2700 $/kW [248] 

Inverter capital cost 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼 250 $/kWPV [256] 

PV fixed O&M costs 𝐶𝐶𝑃𝑃𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑂𝑂&𝑀𝑀 32.64 $/kW [260] 

Wind fixed O&M costs 𝐶𝐶𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑂𝑂&𝑀𝑀 32.15 $/kW [260] 

PV variable O&M costs  𝐶𝐶𝑃𝑃𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑂𝑂&𝑀𝑀 0 $/kW [260] 

Wind variable O&M costs 𝐶𝐶𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑣𝑣𝑂𝑂&𝑀𝑀 0.01475 $/kW [260] 

Electricity market price 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Vector of 8760 points; 24 hours per 365 days [261] 

    

Electricity retail price 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Peak – 0.101406 €/kWh 

Flat – 0.078289 €/kWh 

Off-peak – 0.052683 €/kWh 

[262] 

    

Time periods  

Peak: 17-23 winter/10-16 summer 

Flat: 8-17, 23-24 winter /8-10,16-24 summer 

Off-peak: 0-8 winter time / summer time 

[263] 

 
According to [247,259], PV system costs decrease exponentially as the size of installation 

increases, reaching an average value of $3.8 per Watt for utility-scale installations in 2011 [247] 

that are those relevant for the scale of the proposed case study. Such price decreased to $2.93 

per Watt in 2014 [259]. The values provided account for the cost of all the components of an 

installed system: PV modules, converter, installation materials, labor costs, supply chain and 

even land acquisition and taxes, commissioning and permitting costs. For residential or 

commercial scale equipment this value should be changed to take into account the higher costs 

of the technology. In the first three stages of the research (single objective PV-wind HRES 

optimization, single objective PV-wind-biomass HRES optimization and multi-objective PV-

wind-biomass HRES optimization) the price of 2011 [247] was used as it was the most recent 
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one available. In the last stage of the research (multi-objective PV-wind-biomass CHP HRES 

optimization) the PV price was updated to the price of 2014 [259], as a new PV prices report 

was available. 

Regarding the wind power systems price, the data given in [248] also show an exponential 

decrease in price with increasing project size. In this case, the entire cost of the system is also 

provided. 

Furthermore, the electricity retail prices [262] were introduced only taking into account the 

price of the energy consumed, i.e. the cost of the kWh, and considering the different prices at 

different time discrimination periods that the electrical bill has. The fixed costs derived from the 

contract like the cost of the power contracted, are not introduced as the system is designed as 

grid-connected so they will be paid regardless of the consumption that is what is expected to be 

reduced. For the market price of electricity, the data of a whole year has been retrieved from the 

Iberian market operator OMIE [261], which provides the clearing price in the pool of electricity 

with hourly accuracy that is the time period at which the auctions take place. With these two 

datasets, it is possible to account for the benefits of selling electricity and costs of purchasing 

according to the positive production (surplus) or negative production (lack) of electricity at each 

hour of the day. 

These prices were considered to suffer an annual inflation of 3%, a conservative value 

according to last years’ price change that doubled that value [264]. 

The last renewable energy generation subsystem to be considered is the biomass-to-electricity 

conversion technology. In this case, equipment cost data have been obtained from 

Environmental Protection Agency (EPA) [251] and from the Swedish Linnaeus University 

[265], which are in accordance with a validation made through a personal communication with a 

professional engaged in the manufacturing of this type of equipment at a small scale (up to 1 

MWe) [234]. The cost of wood chips that serve as fuel of the biomass subsystem has been 

calculated according to data provided in [30], of 12.8 €/GJ for wood chips obtained in a 

scenario of sustainable forest management based on cow grazing, a representative value among 

those provided in the article: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 12.8 €/𝐺𝐺𝐺𝐺 · 13.5𝐺𝐺𝐺𝐺/𝑡𝑡30% = 173€/𝑡𝑡30% (19) 

It is worth mentioning that such a result is far above the current market price of wood chips, 

reported between 56 €/t and 136 €/t in different European countries [266]. Such a difference is 

due to the fact that wood chips currently found in market are not collected and processed using 

sustainable practices, as the authors suggest doing. 



64 
 

 

3.3.1.5. Environmental impact data collection 

The last group of input variables, and only required in the third and fourth stage of the research, 

namely the multi-objective optimization, includes the life-cycle CO2 emissions for all electricity 

supply alternatives, that is PV modules, wind turbines, forest wood biomass gasification and the 

Spanish electricity grid. The values are presented in Table VIII. 

Table VIII Life-cycle CO2 emissions values 

Data Value Source 
PV life-cycle CO2 emissions (kgCO2/kWp) 439.9 [267] 

Wind turbine life-cycle CO2 emissions (gCO2/kWh) 30 [268] 

Forest wood biomass-based life-cycle CO2 emissions (gCO2/kWh) 60 [269] 

Spanish grid electricity supply CO2 emissions (gCO2/kWh) 428.6 [270] 

 

In the case of PV system life-cycle CO2 emissions, it was chosen as representative the impact of 

a system by UPSolar with 439.9 kgCO2/kWp [267]. This datum corresponds to about 48 

gCO2/kWh in a region with an average solar irradiation of 1650 kWh/(m2·year) as the one under 

study, a figure in accordance with other accessed sources, such as 40-45 gCO2/kWh reported by 

the NREL [271] and 46 gCO2/kWh reported as median value by the IPCC and Eurelectric 

[272,273]: 

439.9 𝑔𝑔𝑔𝑔𝑂𝑂2
𝑊𝑊𝑊𝑊 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

·
𝑚𝑚2𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

1650 𝑘𝑘𝑘𝑘ℎ
·

265 𝑊𝑊𝑊𝑊
1.46 𝑚𝑚2 = 48.4 

𝑔𝑔𝑔𝑔𝑂𝑂2
𝑘𝑘𝑘𝑘ℎ

 (20) 

For wind power, the value of 30 gCO2/kWh for an average 300 kW wind turbine [268] was 

used as representative of life-cycle CO2 emissions. 

With biomass gasification and combustion in a gas engine – generator group, the chosen value 

was 60 gCO2/kWh, obtained from [269], a value in accordance with the range of 40-60 

gCO2/kWh given by NREL [274]. In this case, the value accounts for the logging, chipping, 

transport and other processes associated with biomass gathering and preparation. The emissions 

from syngas combustion were not accounted since biomass has a carbon neutral balance due to 

its carbon capture throughout lifetime before logging. It is claimed that this neutral balance is 

not accurate because the logging of forest wood biomass means a decrease in carbon stock that 

is equivalent to carbon emissions [275]. However, in this study this effect can be dodged 

because its impact is small compared with the environmental impact from logging, chipping and 

transport of forest wood biomass [230]. 
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3.3.2. Optimization algorithm(s) design 

The first important step performed when designing the optimization model was to choose the 

most suitable optimization algorithm for the problem at hand. 

For HRESs optimization, as a result of the inherently non-linear variables found in this kind of 

problems involving stochastic variables such as weather patterns [4,207] or electricity demand 

patterns, the most preferred methodologies are genetic algorithms (GAs) and particle swarm 

optimization (PSO) algorithms [222], both heuristic approaches. Among the advantages of 

iterative algorithms highlight their low computational requirements that allow them to obtain 

the desired solutions without requiring huge amounts of computational resources [176]. In 

particular, GAs have been identified and used as one of the best alternatives for those cases 

where non-linear systems are involved as HRES cost optimization problems are [199] even in 

cases with only few variables involved because this method is very good attaining optimal 

solutions with non-linear relationships between variables [207]. 

According to [276], the concept of GA dates back to 1960s, and it is named after its use of the 

evolutionist theory of the survival of the most suitable individuals [277]. As in nature occurs, 

the weak and unfit species become extinct by natural selection, whereas the strongest ones 

reproduce themselves by crossing over between them. Therefore, the GA is based on the idea 

that the species carrying the better combination become dominant in their population, and this 

concept is extrapolated to a population of possible solutions in which the best-fit individuals are 

selected and crossed over in successive populations of individuals [276] so the least fitted 

solutions have small probability of reproduction whereas the best fitted solutions have high 

probability of reproduction [277]. 

This evolutionary process is usually started randomly, and the mechanism of elite individuals’ 

selection gradually adjusts the population to the optimum solutions in successive iterations to 

eventually converge [276] into a single solution or a set of solutions, depending on whether the 

problem is single objective or multi-objective. GAs imitate genetic reproduction through the 

usage of mathematical operations that imitate best individuals’ selection, crossover between the 

individuals and mutations. 

The parameters that are usually analyzed for HRES optimization include not only the cost, 

which is the topic at hand, but also the lifetime environmental impact of the system, the 

reliability of supply or a combination of two or more of these parameters [168,176,180,199], 

obtaining in such multi-objective case a set of possible solutions called Pareto front. 
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The software used to run the optimization procedure is MATLAB R2013b and R2014a, in 

which GAs are already implemented in the ‘‘Optimization Toolbox’’. 

 

3.3.2.1. Variables 

The variables chosen to represent the different potential alternative systems are the area covered 

by PV modules pvArea, which is proportional to the number of PV modules pvNumber, and the 

number of wind turbines wtNumber. With these variables, the GA will treat the objective 

function as dependent of the system sizing and will provide as outputs the minimum Net Present 

Value and the values of both variables that lead to an optimal HRES sizing with a minimum 

NPV. 

Wind turbine number variable is treated as an integer by the optimization algorithm for single 

objective optimization, whereas for multi-objective could not be done. Conversely, the PV area 

allows using decimal values thus reducing the computational requirements to run the GA. That 

is why the area is selected as the variable rather than the number of PV modules. 

 

3.3.2.2. Fitness functions 

The parameters that were sought to optimize in are the cost of the system in all four case studies 

and environmental impact in the 3rd and 4th case studies of multi-objective optimization. 

Therefore, two fitness functions have been defined, that is the Net Present Value (NPV), a cost 

metric obtained by adding and subtracting the discounted present values of all lifetime incomes 

and expenses (see Eq. (21)), respectively; and the life-cycle system CO2 emissions, an 

environmental impact metric that accounts for all life-cycle greenhouse gas (see Eq. (34)). 

Cost fitness function 

Considering that lifecycle perspective is currently gaining importance in HRES’ optimization 

methodologies [223], the lifecycle cost has been chosen as the metric to optimize for cost. To do 

so, the chosen objective function is the Net Present Value (NPV) cost metric that is calculated 

by adding the discounted present values of all lifetime incomes and subtracting the discounted 

present costs along lifetime of the system, i.e. considering the expenses and revenues 25 years 

ahead. Therefore, this cost metric is accounting for the future cash-flows’ present value by 

converting them to the value of money at the time of investment after applying inflation and 

discount rate to all of them. Hence, the system lifetime costs can be analyzed discounting 
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external effects like the financial volatility or oscillations inherent to the free market economy 

that affect the value of money. 

To appropriately compute all the costs throughout the entire lifetime of the system, the initial 

investment, operation and maintenance, equipment replacement and electricity purchase costs 

have been taken into account, similarly as done in [223]. On the other hand, the benefits from 

selling the electricity to the grid and the profit from equipment sale at the end of the lifetime 

have been considered on the benefits side: 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑁𝑁𝑉𝑉𝑂𝑂&𝑀𝑀 + 𝑁𝑁𝑁𝑁𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑁𝑁𝑁𝑁𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑁𝑁𝑁𝑁𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
− 𝑁𝑁𝑁𝑁𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑓𝑓(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) 

(21) 

 (21) being the fitness function. In the following paragraphs, the five terms in (21), namely cost 

of initial investment 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, NPV of Operation and Maintenance of equipment 𝑁𝑁𝑁𝑁𝑉𝑉𝑂𝑂&𝑀𝑀, 

NPV of biofuel purchase 𝑁𝑁𝑁𝑁𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, only included whenever required, NPV of components’ 

replacement throughout lifetime 𝑁𝑁𝑁𝑁𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, NPV of electricity acquisition and sale 𝑁𝑁𝑁𝑁𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

and NPV of equipment sale at system end of life 𝑁𝑁𝑁𝑁𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, are detailed. 

The initial investment cost refers to the initial expense required for equipment purchase. It has 

been implemented as a function of the number of modules and the number of wind turbines 

installed: 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶𝑃𝑃𝑃𝑃 · 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 · 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐶𝐶𝑊𝑊𝑊𝑊 · 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 · 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵
· 𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼 

(22) 

where CPV is the capital cost of PV panels in $/kW, Pmodule is the nominal power of each 

module; CWT is the capital cost of wind turbines in $/kW and Pturbine is the wind turbine nominal 

power; CBIO is the capital cost of biomass conversion equipment in $/kW – including gasifier, 

syngas cooling and cleaning system and ICE-generator group – and PICE is the nominal power 

of the ICE. As the input variable is pvArea, the number of PV modules is expressed as follows: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (23) 

where pvArea is the independent variable and panelArea is the area covered by a single PV 

module, in the first three case studies 1.277 m2 and in the fourth one 1.460 m2. 

The second term of the NPV definition are the discounted operation and maintenance (O&M) 

costs, which are calculated taking into account the annual inflation rate [256]: 

𝑁𝑁𝑁𝑁𝑉𝑉𝑂𝑂&𝑀𝑀 = �𝐶𝐶𝑂𝑂&𝑀𝑀,𝑘𝑘
(1 + 𝑔𝑔)𝑖𝑖

(1 + 𝐼𝐼𝐼𝐼)𝑖𝑖 
𝑁𝑁

𝑖𝑖=1

 
(24) 
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where CO&M_k refers to the cost of operation and maintenance of component k, g is the general 

inflation rate, IR is the interest rate, and N is the system lifetime. 

NPVbiofuel term refers to the cost of biomass fuel acquisition. Such a term is obtained by 

multiplying the amount of biomass burnt in kg by its cost, adjusted for inflation: 

𝑁𝑁𝑁𝑁𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �
𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵

𝐿𝐿𝐿𝐿𝐿𝐿 · 𝜂𝜂𝐵𝐵𝐵𝐵𝐵𝐵
𝐶𝐶𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

(1 + 𝑔𝑔)𝑖𝑖

(1 + 𝐼𝐼𝐼𝐼)𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (25) 

where PBIO is the power produced at each hour of the 365 days of a year by the biomass unit, 

LHV is the lower heating value of the biofuel used, 𝐶𝐶𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 is the cost of wood fuel, and ηBIO is 

the total efficiency of the gasifier-ICE equipment. 

The next term in the NPV definition are the discounted present costs of equipment replacement 

that are also calculated considering the annual inflation rate [256]: 

𝑁𝑁𝑁𝑁𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑘𝑘 = � 𝐶𝐶𝑘𝑘
(1 + 𝑔𝑔𝑘𝑘)𝑖𝑖·𝑁𝑁𝑘𝑘
(1 + 𝐼𝐼𝐼𝐼)𝑖𝑖·𝑁𝑁𝑘𝑘

𝑁𝑁_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑘𝑘

𝑖𝑖=1

+ � 𝐶𝐶𝑘𝑘
(1 + 𝑔𝑔𝑘𝑘)𝑌𝑌𝑘𝑘(1 + 𝑔𝑔)𝑖𝑖·𝑁𝑁𝑘𝑘−𝑌𝑌𝑘𝑘

(1 + 𝐼𝐼𝐼𝐼)𝑖𝑖·𝑁𝑁𝑘𝑘

𝑁𝑁_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑘𝑘

𝑖𝑖=𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟+1

 (26) 

where Ck is the acquisition cost of component k, gk is the expected inflation rate of the 

acquisition cost of component k and Nk is the lifetime of such a component. Nrepl_ k and 

Nfirstrepl_k are the total number of replacements during the system lifetime and during the years 

that the price of the component is changing at gk inflation rate, respectively, and are calculated 

as follows [256]: 

𝑁𝑁_𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙_𝑘𝑘 = 𝑖𝑖𝑖𝑖𝑖𝑖 �
𝑁𝑁
𝑌𝑌𝑘𝑘
� (27) 

𝑁𝑁_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑘𝑘 = 𝑖𝑖𝑖𝑖𝑖𝑖 �
𝑌𝑌𝑌𝑌_𝑘𝑘
𝑌𝑌𝑘𝑘

� (28) 

where Yg_k is the number of years required for technology k to reach the technological maturity 

with a cost reduction of Lg_k [256]: 

𝑌𝑌𝑔𝑔_𝑘𝑘 =
log�1 + 𝐿𝐿𝑔𝑔_𝑘𝑘�
log(1 + 𝑔𝑔𝑘𝑘)  (29) 

The only components of the system that have to be replaced during the system lifetime, which is 

25 years, are wind turbines and solar PV converters. PV modules’ performance is warranted up 

to 25 years, which has been selected as the system lifetime. Regarding the biomass-to-electricity 

equipment, it is expected to last 25 years or more with appropriate maintenance [234]. 
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On the revenue side of the equation, there are benefits or cost of electricity sale or purchase. To 

effectively account for this, the hourly net power production has been calculated for each hour: 

𝑁𝑁𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑊𝑊𝑊𝑊 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

where PPV and PWT are the PV and wind power produced at each hour of the 365 days of a year, 

and demand is the electricity demand of the location under study. 

Whenever Equation (30) yields a negative value, the PV-wind system is not producing enough 

power to match the demand. In these cases, the system is designed to turn on the biomass engine 

at a full load. If the result of doing so still yields a negative net power production, then 

electricity is purchased from the grid at retail price. Conversely, if it yields a positive value, the 

surplus is sold to the electricity pool at market price. The same is done whenever Equation (30) 

yields a positive value, meaning that more power is produced than demanded. 

The benefits of electricity sale are calculated as follows: 

𝑁𝑁𝑁𝑁𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = � � 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑗𝑗 · 𝑁𝑁𝑁𝑁𝑃𝑃𝑗𝑗 ·
�1 + 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�

𝑖𝑖

(1 + 𝐼𝐼𝐼𝐼)𝑖𝑖

8760

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 (31) 

Additionally, for positive net power production, the discounted present incomes from 

purchasing the electricity are: 

𝑁𝑁𝑁𝑁𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = � � 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑗𝑗 · 𝑁𝑁𝑁𝑁𝑃𝑃𝑗𝑗 ·
�1 + 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�

𝑖𝑖

(1 + 𝐼𝐼𝐼𝐼)𝑖𝑖

8760

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 (32) 

It should be pointed out that, in the first case, NPP < 0 or lack of electricity, the NPVelectricity will 

take negative values, whereas, in the second case, NPP > 0 or surplus of electricity, the 

NPVelectricity will take positive values. As a result, this term of NPVelectricity is computed in the 

benefits side, as previously mentioned. 

Additionally on the revenue side of the NPV Equation (X), the discounted present values of 

income derived from equipment sale at the end of system lifetime are found. They are calculated 

as follows [234]: 

𝑁𝑁𝑁𝑁𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑘𝑘 = 𝐶𝐶𝑘𝑘 �1 −
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑘𝑘𝑌𝑌𝑘𝑘

𝑁𝑁 ��
(1 + 𝑔𝑔𝑘𝑘)𝑌𝑌𝑔𝑔_𝑘𝑘(1 + 𝑔𝑔)𝑁𝑁−𝑌𝑌𝑔𝑔_𝑘𝑘

(1 + 𝐼𝐼𝐼𝐼)𝑁𝑁 � (33) 

 

Environmental Impact fitness function 
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Regarding the measure of environmental impact, the life-cycle CO2 emissions have been 

selected as a representative metric. It is important to highlight the relevance of the life-cycle 

perspective, accounting the entire life-cycle emissions rather than the use-phase emissions 

alone. It is calculated as follows: 

𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐼𝐼𝑃𝑃𝑃𝑃 + 𝐸𝐸𝐼𝐼𝑊𝑊 + 𝐸𝐸𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐸𝐸𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑓𝑓(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) (34) 

(34) being the fitness function. 𝐸𝐸𝐼𝐼𝑃𝑃𝑃𝑃, 𝐸𝐸𝐼𝐼𝑊𝑊 and 𝐸𝐸𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵 are the environmental impact of the 

electricity produced by the PV, wind and biomass subsystems, respectively; and 𝐸𝐸𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is the 

environmental impact of the electricity purchased to the electricity grid, calculated with the 

actual grid emissions. 

The environmental impact of the PV subsystem is proportional to the size of the installation, as 

given in [267], whereas the impact of wind and biomass subsystems are proportional to the 

amount of electricity generated with these technologies [268,269], similarly as calculated for the 

grid using the data in [270]. 

 

3.4. Summary (methodology overview) 

With the described methodology, it was sought to obtain a useful HRES sizing tool that 

provides the minimum cost solution or a set of optimal solutions given the electricity demand or 

the combined electricity and thermal demand of a particular location. 

The methodology described in this section and further developed in the following section 

detailing the particularities of the different case studies can be summarized with the following 

flow chart (see Fig. 13): 
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Fig. 13 Flow chart summarizing the designed methodology 

 

  

Sample 
Selection

• Population: Spain
• Stratum: Catalonia (high potential for biomass-based electricity 

production)
• Sample: Township (readily available and quality of data)

Input data 
gathering

• Available PV, wind and biomass resource: MeteoCat, CREAF, 
CTFC and literature review

• Electricity and thermal demand: local utilities, IDAE
• Efficiency and performance: NREL or similar, literature review
• Cost and financial: literature review
• Environmental impact: literature review, manufacturers

RE production 
modeling

• Case studies definition: PV-wind cost opt., PV-wind-bio cost opt., 
PV-wind-bio multi-obj. opt. & PV-wind-bio CHP multi-obj. opt.

• RE production modelling, priorization and operation strategy:
design and modelling using MATLAB R2013-2014

Single or 
multi-obj. 

optimization

• Optimization methodology choice: Genetic Algorithm
• Single objective optimization: parameters' setting and algorithm 

running for case studies 1 & 2.
• Multi-objective optimization: parameters' setting and algorithm 

running for case studies 3 & 4.
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4. Case studies 

As previously claimed, the system layout has been continuously modified during the 

development of the research, in order to assess different alternatives or to optimize the system 

sizing according to different criteria. To do so, four case studies were performed in order to 

assess different possibilities. However, all the case studies share certain characteristics: the grid 

connection and the hybridization of, at least, solar PV and wind power technologies. 

Throughout the following subsections, these different case studies are deeply detailed. 

There are also presented the main findings of the research. To provide a useful interpretation of 

the results, a sensitivity analysis has been performed in all the four case studies. For the single 

objective optimization, they are referenced to a base case which is the one obtained by 

implementing the described methodology with the values for the input variables provided in the 

previous chapters. For the multi-objective optimization, no single solution is obtained, but a set 

of optimums are presented in the so-called Pareto front. The sensitivity analysis was done with 

respect to a base case, and comparing the optimum that is obtained when giving the same 

relative importance to both criteria, although multiple other solutions could be also optimal with 

different weighing of the criteria. 

Many conclusions can be extracted from the gathered results and findings detailed in the 

previous chapter. These have been classified according to each case study in the following 

sections. 

 

4.1. Grid-connected solar PV-wind HRES 

This case study consisted in a cost optimization of a grid-connected PV-wind HRES to supply 

the electricity demand of the township under study under a supply condition of net balance, 

meaning that the total amount of electricity produced equals or surpasses the total amount of 

electricity demanded during an entire year, regardless of the supply – demand matching hour to 

hour. 

 

4.1.1. System description 

The first system layout consisted in a grid-connected PV – wind system without any kind of 

storage units as represented in Fig. 14. Therefore, the system is more flexible than a stand-alone 

one due to its ability to supply the surplus of energy produced in low-demand and/or high-

generation periods and to consume the lack of energy when the demand is higher than the 
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production of the system. In addition, a grid-connected system requires a lower initial 

investment as a result of its fewer components because it does not require battery banks that 

otherwise would be necessary [206] and that can mean as much as 50% of the total life cycle 

cost of the installation [32]. The system was designed as modular since it allows obtaining 

appropriate installed capacity by only increasing or decreasing the number of PV modules or 

wind turbines installed. 

Converter DC – DC
Maximum Power Point 

Tracker (MPPT)

DC Bus
Inverter
DC – AC

SUT200 wind 
turbines

AM-5S PV modules

Electricity 
grid

Electricity load
Proposed HRES layout  

Fig. 14 Grid-connected PV-wind HRES for cost optimization 

The chosen components were the AmeriSolar AS-5M PV module with a nominal power of 

210W and 1.277 m2 per module [249] and the SUT200 wind turbine with a nominal power of 

200 kW [238]. The power supply-related variables used to optimize the system were the area 

covered by the PV modules, which is proportional to the number of PV modules, and the 

number of wind turbines installed. 

The design condition of net annual balance was selected as the constraint for supply – demand 

match. By annual net balance it is understood a design constraint that stablishes that the total 

amount of electricity generated by the HRES matches the total demand of the location under 

study throughout the year, but not necessarily hour by hour, but in global terms. Therefore, the 

lack of electricity generation at those hours with low availability of solar and wind resources 

can be counteracted by the excess of electricity production at other times when the system can 

produce more electricity that is being demanded. 

The entire methodology of the proposed grid-connected HRES power balance approach is 

detailed in Fig. 15: 
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Renewable Energy Sources (RES)
Solar Irradiation data

Wind speed data

Load profile (demand)

MATLAB R2013 RES model 
simulation

PV power production (PPV)
Wind power production (PWT)

Cost parameters
Technology cost

O&M cost
Electricity market and retail price

RES models and parameters
Solar PV model (global efficiency)
Wind turbine model (characterisc 

curve)
MATLAB R2013 optimization

Controlled elitist genetic 
algorithm (see Fig. 16)

Other NPV terms 
calculation

From Eq.(22)-(24), (33)

Point-to-point electricity production/consumption 
balance

.

Optimal system 
sizing

pvArea
wtNumber

Minimum NPV?

NO
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Eq.(32) from  If

Eq.(31) from  If

yelectricitWTPV

yelectricitWTPV

NPVdemandPP

NPVdemandPP

→>+
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Fig. 15 Proposed HRES cost optimization approach for grid-connected PV-wind HRES 

 

4.1.2. Optimization process 

Once the objective function is properly defined (see 3.3.2.2) and all the input variables 

introduced, the optimization algorithm can be run. From all the available alternatives, the GA 

optimization methodology has been selected for its easiness to tackle multiple solution problems 

using a random population of potential solutions and evolutionary methods to narrow down the 

possibilities according to the fitness of each possible solution until finding the optimum. The 

methodology starts with the generation of a random population with a size of: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = max (min(10 · 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 100), 40) (34) 

From this population the best individuals are selected according to the fitness function that is 

sought to optimize. The individuals are scaled by a ‘‘Rank’’ criterion meaning that the top 

individuals are selected; in this case, 5% is selected: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0.05 · max(min(10 · 𝑛𝑛𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 100), 40) (35) 

Once they are selected, a new generation of ‘‘offspring’’ individuals is created via the crossover 

operation, that is the creation of a new individual or child from two existent individuals or 

parents, of existent specimens. The crossover fraction is set to 80% and the method to 

‘‘Scattered’’. Mutation does not occur when one or more variables are integer variables. 

Migration is another process that allows movement of individuals within the space of solutions. 

In this case, 20% of individuals migrate in ‘‘forward’’ direction every 20 generations. 
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From the old set of individuals, the ‘‘least-fit’’ individuals are rejected and replaced by the new 

generation and this process is repeated many times until the minimum value of the fitness 

function is found. The stopping criterion is the condition of having an average change in the 

fitness function value below the function tolerance, in this case 1·106 once the stall generation, 

in this case 50, is reached. 

Input variables upper and lower bounds are used to introduce restrictions in the potential 

solutions, so the lower bounds are 0 m2 of area covered by PV modules and 0 wind turbines, the 

case of no system installed. The upper bounds set are the maximum allowable installed capacity 

of each renewable energy source. They have been assumed to be higher enough to not introduce 

any limitation but they could be set to a certain value if there were limitations in terms of 

maximum initial investment or available land useful to install the equipment, for instance. 

Fig. 16 schematizes the single objective optimization process by means of GA and specifies the 

selected parameters, also shown in Table IX. 
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Random generation of a population with a size 
PopulationSize (Eq.(34))

of 2-variables (pvArea, wtNumber) individuals

Net power production (NPP) calculation (Eq.(30))
for all the individuals

Objective function evaluation
         

From Eq. (22)-(24), (31)-(33)

Yes

No

Input Variables
Electricity demand and weather-related variables

Cost and financial variables
Efficiency and performance variables

Bounds and GA parameters

Tolerance error < 𝜉 ?

Crossover
Scattered, 80%

No

Selection of best-fit 
individuals

Rank selection, Elite = 5%

Optimum HRES 
sizing

Yes

?0
8760

1

8760

1
=∑∑

== i
i

i
i demandNPP

Eq.(21) from   ),( wtNumberpvAreafNPV =

 

Fig. 16 Optimization model and parameters for single objective HRES cost optimization 
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Table IX GA parameters for single objective HRES cost optimization 

Data Value 
Population size Eq. (34) 
Elite count 5% best individuals 
Crossover fraction and method 80%, scattered 
Tolerance function value 106 
Stopping criteria 50 generations or tolerance function 
Lower bounds [0 m2; 0 WTs] 
Upper bounds [25000 m2; 25 WTs] 

 

4.1.3. Results and findings 

With this first case study, and with aim to contextualize the values obtained, all the simulated 

cases were compared with the no-HRES case, i.e. the case of a system with no solar nor wind 

renewable sources. This is a reduction of the general case used to estimate the cost of supplying 

the demand according to the actual situation in which the electricity is purchased from the local 

utility at the market retail price. 

 

4.1.3.1. No-HRES scenario 

The no-HRES case was obtained by running the algorithm with zero solar PV power and zero 

wind power production. The total electricity demand in one year, obtained from the data in 

[237], equals 4657.97 MWh. The cost of supplying this demand during the 25 years that a 

HRES would last, and considering the actual demand at each hour is purchased at the price 

established in the tariff with hourly discrimination is: 

𝑛𝑛𝑛𝑛 − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑁𝑁𝑁𝑁𝑁𝑁 = $2.3446 · 107 = $23.446𝑀𝑀 (36) 

That would be the total cost of supplying the present demand considering that electricity price 

suffers an annual inflation of 3% (see Table VII). 

 

4.1.3.2. HRES base case scenario 

The base-case is the case simulated using all the variables as previously defined in Table V, 

Table VI and Table VII. The wind data used were extrapolated to 35 m of rotor height, found at 

the middle between 30 and 40 m, the minimum and maximum values provided by the 

manufacturer [238]. The optimization procedure provides the following result: 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑁𝑁𝑁𝑁𝑁𝑁 = $1.5353 · 107 = $15.353𝑀𝑀 (37) 
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This result is reached with a system with 621.61 m2 of PV installation and 18 wind turbines, 

equivalent to 102.22 kW of PV power and 3.6MW of wind power, a HRES that would require 

an initial investment of $1.0108 · 107 = $10.108𝑀𝑀. 

For comparison purposes, the evolution of NPV of No-HRES and base case scenarios during the 

system lifetime are shown in Fig. 17. 
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Fig. 17 Comparison of NPV evolution throughout 25 years of system lifetime for No-HRES and 
HRES base case scenarios in the first case study 

 

4.1.3.3. Sensitivity analysis 

The sensitivity analysis was performed introducing percent variations in the most relevant 

parameters of the system to observer how these variations vary the output of the system. 

The variables chosen to be studied in this sensitivity analysis were: PV technology capital cost, 

wind technology capital cost, electricity price, general inflation rate, module and wind turbine 

reference efficiencies and interest rate. The change introduced in the values of these variables 

induces variations in the result of different magnitude. The results are shown in Table X. 
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Table X Sensitivity analysis of Grid-connected PV-wind HRES for cost optimization 

Variable Variation NPV change 
PV capital cost +10% +0.2606% 
Wind capital cost +10% +9.3811% 
Electricity price +10% +0.0000% 
General inflation rate (g) +10% +1.2378% 
Interest rate +10% -2.0020% 
Module reference efficiency +10% -0.2606% 
Wind turbine reference efficiency +10% -8.5993% 

 

4.1.4. Conclusions 

In this first case study, the HRES combined solar PV and wind power technologies at the most 

appropriate scales to supply the existent demand with a minimum life cycle cost that was 

measured using the Net Present Value, an economic metric that discounts the future costs and 

revenues at the time of investment. The designed optimization algorithm performs an analysis 

with one hour accuracy in order to capture the daily and seasonal patterns of both weather-

dependent renewable energies and electricity demand. Moreover, it performs a meticulous 

calculation of the renewable electricity generation patterns and thus the profits and revenues 

derived from it, not only because of the different amount of energy produced at each hour but 

also because of the consideration of the different market and retail prices at each hour of the 

day. A sensitivity analysis was performed through the simulation of slight variations of a base 

case that served to understand the behavior of the results given by the algorithm in front of 

changes in the most important input variables. Such analysis also included a comparison with 

the no-HRES scenario that helps understanding how significant are the cost savings compared 

with the present situation costs. 

Another aspect to highlight is that the algorithm responds well to positive and negative changes 

in the analyzed variables. For instance, the NPV obtained from the algorithm increases when 

cost variables increase, whereas decreases when efficiency of RE technologies improves. Again, 

wind turbine efficiency improvements have greater impacts on the result than PV panel 

efficiency improvements due to the greater importance of wind installation in the case under 

study. 

The results, therefore, showed that in the location under study wind power is the renewable 

resource with greater impact but that it is well complemented by solar resource. Such HRES 

also proves its appropriateness to replace the present scenario in which electricity consumption 

is only supplied by the electrical grid, with potential savings amounting up to 40% of present 

cost structure throughout the next 25 years. 
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4.2. Grid-connected solar PV-wind-biomass HRES single objective 
optimization 

This second case study consisted in a cost minimization of a grid-connected PV-wind-biomass 

HRES under a supply condition in which PV and wind are the first RES to supply, followed by 

the biomass working at full load to maximize the efficiency. Only at those times when PV, nor 

wind nor biomass are enough to supply the demand the system takes advantage of the grid. 

 

4.2.1. System description 

In this case, the layout of the system consisted in a grid-connected PV–wind–forest wood 

biomass hybrid energy system. Therefore, the system allows limiting or reducing initial 

investments as both grid connection and biomass energy, which has a short response time so it 

can be used to backup stochastic renewable energy sources whenever required, provide 

flexibility and the possibility of dispatching energy on demand instead of requiring a battery as 

with stand-alone systems [206]. In contrast, grid-connection allows the supplying of surplus 

energy generated in low-demand or high-renewable energy generation periods, while 

consuming the electricity required when demand exceeds production. The layout of the 

analyzed HRES is represented in Fig. 18. 
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Fig. 18 Grid-connected PV-wind-biomass HRES for cost optimization 
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The proposed model deals with PV and wind systems as modular systems, thus allowing to 

obtain the appropriate installed capacity by increasing or decreasing the number of PV modules 

and wind turbines installed. As in the previous layout, PV modules were AmeriSolar AS-5Ms, a 

module with 210 W and 1.277 m2 [249], and wind turbines are SUT200 turbines with a nominal 

power of 200 kW [238]. The system size is optimized through the determination of the optimum 

area covered by the PV modules and the number of wind turbines. 

On the other hand, the considered biomass subsystem includes an installed single gasifier 

coupled with an ICE – generator of 500 kWe. The choice of scale comes from the average value 

of hourly demand in the location under study. In order to have the best commercially available 

efficiency, the option of a single ICE has been selected. In biomass-based electricity generation 

equipment, unlike in the previously mentioned PV and wind subsystems, system scale has 

significant impact on the efficiency, being preferable to select a single ICE. The conversion 

technology consists in forest wood chip gasification in a downdraft gasifier, with subsequent 

combustion of the obtained syngas in a gas engine after gas cleaning and cooling. This is the 

most efficient conversion path at the scale of 100-1000 kW [84,227] and it also beneficial in 

terms of maintenance and equipment lifetime [87]. The biomass subsystem is thought to work 

always at full load in order to maximize generator efficiency that otherwise would rapidly decay 

[88]. 

Another important aspect of the system layout is how to establish the priorities of using one 

source of another whenever there are one or more available, and the design condition of supply-

demand match. For environmental reasons, this work proposes prioritizing PV and wind power 

usage ahead of biomass power generation, which is used at its full load to backup PV and wind 

whenever they are not available. Therefore, when demand exceeds the available supply from 

solar PV and wind power sources, the biomass engine is turned on at its full load, and the 

surplus energy—if any—is supplied to the grid and sold to the market. Only in those cases when 

PV, wind, and biomass power are not enough to match existent demand, the system will 

purchase electricity from the grid. 

Furthermore, it is important to stress the importance of using forest wood biomass as a source of 

energy to back up the stochastic renewable energy sources. Its exploitation would not only 

stimulate the socio-economic progress of rural areas, as previously mentioned, but it also would 

encourage the improvement of forest management [235], thus counteracting the current 

tendency towards the abandonment of many forests in Mediterranean regions [30]. Evidence 

shows that, in those places where the overall fuel load is reduced, the risk of forest fires is also 

reduced [48]. Therefore, active forest management seems to be a goal worth pursuing, 

considering its potential to reduce wildfire’s risk [164] at which that Mediterranean forests are 



82 
 

exposed to [45], Spain being one of the most vulnerable countries [166], and the negative 

economic and environmental impacts that they cause [165]. However, it is important to use the 

forest wood biomass at a rate that does not exceed the self-growth rate of the forest to not put 

the available resource at stake, thus ensuring long-term ecosystem functionality [50] and 

increasing forest productivity as the forest age is decreased [30]. 

The entire methodology of the proposed grid-connected HRES power balance approach is 

detailed in Fig. 19. 
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Fig. 19 Proposed HRES cost optimization approach for grid-connected PV-wind-biomass HRES 

 

4.2.2. Optimization process 

The optimization process was performed according to the same strategy and GA parameters as 

the first case study. Please refer to 4.1.2, specifically to Fig. 16 and Table IX for further detail 

regarding the operations performed by the algorithm and the driving parameters of such process. 

4.2.3. Results and findings 

In this second case study, the same outputs as in the 1st one were sought. The scenario obtained 

using the suggested values for all the input variables and in the sample location has been taken 

as the base-case scenario. The electricity demand data in this case was provided by [236]. 

Additionally, a sensitivity analysis was performed to better acknowledge the influence of the 

most important variables of the model in the result. 
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4.2.3.1. HRES base case scenario 

Under the assumptions presented in the previous sections, the following result was provided by 

the optimization model: 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑁𝑁𝑁𝑁𝑁𝑁 = $3.0697 · 107 = $30.697𝑀𝑀 (38) 

As shown in Fig. 20, the result was reached by convergence of results in less than 60 iterations. 

 

Fig. 20 MATLAB iterations penalty values 

This NPV is the life-cycle cost of a HRES consisting of 6044.23 m2 of PV installation, three 

wind turbines, and the biomass subsystem of 500 kWe. These values mean an installation of 

993.96 kW of PV power, 600 kW of wind power, and 500 kW of biomass electrical power from 

forest wood chips. 

The upfront investment required to install such a HRES is $7.3971 · 106 = $7.397𝑀𝑀. This 

figure is significantly lower, approximately 25% less than the one obtained in [226], with a PV-

wind HRES backed up only with a grid. However, the NPV approximately doubles the one 

obtained in [226] due to fuel consumption costs, which are around $220,000–230,000 per year, 

and electricity purchasing costs, because, in this case, the system does not produce the same 

amount of electricity that is demanded on an annual basis. 

The fuel consumption ranges from 1017 metric tons per year at year one to 1050 metric tons per 

year at year 25. The consumption increase is due to the PV power decrease, caused by the aging 

of modules. At this point, the authors considered it relevant to compare such values with 

biomass availability—given that the available biomass is limited by forest self-growth rate—

from local forests to ensure that the system can run autonomously only using local resources. 

According to [230,233] the growth rate of Mediterranean pine and oak forests is 1.6 metric tons 
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of dry wood, per hectare, each year. This means two metric tons of wood at 20% of moisture 

content per hectare. 

Considering that the region where the sample location is found has approximately 2200 hectares 

of forested area, the available amount of wood chips, without putting the survival of local 

forests at stake, is 4400 metric tons of wood at 20% moisture content each year. Therefore, the 

proposed HRES would require only one fourth of available sustainable forest wood chips. 

For comparison purposes, Fig. 21 summarizes the annual accumulated costs of the system 

against the current annual costs from electricity purchase to the utility. 
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Fig. 21 Comparison of NPV evolution throughout 25 years of system life time for No-HRES and 
HRES base case scenarios in the second case study 

 

4.2.3.2. Sensitivity Analysis 

The sensitivity analysis was done setting a 10% variation in the values of the following 

variables: PV technology capital cost, wind technology capital cost, biomass gasifier-ICE 

technology cost, wood chips (fuel) cost, electricity price, general inflation rate, interest rate, PV 

modules, wind turbines, and biomass equipment reference efficiencies and wood chip LHV, 

which is inversely proportional to moisture content. These changes induce variations in the 

results of the optimization process, the NPV. The results are shown in Table XI. 
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In some cases, changes in system sizing were observed. Particularly, increases in PV capital 

cost lead to readjustments of system sizing, decreasing the PV subsystem size and increasing the 

number of wind turbines from three to four. Similar behavior is shown for fuel cost increases, 

resizing the system to a similar PV subsystem size and four wind turbines as well. The same 

occurs if electricity prices increase, in which case an additional wind turbine is desirable. 

Regarding technology efficiencies, PV efficiency improvement does not lead to system size 

changes, but, on the other hand, biomass and wind turbine efficiency improvements imply 

relevant HRES size changes. Under the hypothesis of improved wind turbine efficiency, a 

system with one more wind turbine and 600 m2 of solar installation less proves to be the best 

alternative, whereas under the hypothesis of biomass conversion efficiency and LHV 

improvements a reduction of 300 m2 of PV subsystem leads to the minimum NPV system, with 

more biomass capacity factor. 

Table XI Sensitivity analysis of Grid-connected PV-wind-biomass HRES for cost optimization 

Variable Variation NPV change 
PV capital cost +10% +1.055% 
Wind capital cost +10% +0.773% 
Fuel cost +10% +1.629% 
Biomass capital cost +10% +0.652% 
Electricity price +10% +3.808% 
General inflation rate (g) +10% +0.764% 
Interest rate +10% -3.264% 
Module reference efficiency +10% -1.457% 
Wind turbine reference efficiency +10% -1.075% 
Biomass gasifier – ICE efficiency +10% -1.557% 
Biomass LHV +10% -1.531% 

 

4.2.4. Conclusions 

The work performed in this second case study consisted on the design and validation of an 

optimization methodology for minimum life-cycle cost grid-connected HRES, based on the 

usage of solar, wind, and forest wood chips energy sources. The methodology has proved to be 

effective and helpful for decision-makers, as it provides a system sizing that minimizes life-

cycle costs, expressed as Net Present Value (NPV). The results provided are based on the 

treatment of data with an accuracy of one hour, for both renewable energy generation and 

electricity demand patterns, thus, giving a trustworthy result. 

The proposed HRES prioritizes solar PV and wind power technologies and uses biomass power 

in cases where solar and wind resources are not enough to fulfill the load demand. Biomass 

power is used at a full load to maximize the technology efficiency, and, if this leads to excess 

energy production, the surplus is sold in the electricity pool. Conversely, if the sum of biomass, 
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solar and wind power is still not enough to fulfill the demand, electricity is purchased from the 

utility company. 

The results obtained for the proposed validation case show that a system consisting of 6044 m2 

(994 kW) of PV power, three wind turbines (600 kW) of wind power, and 500 kW of biomass 

power with a yearly consumption of 1000–1050 metric tons would be the best option in terms of 

life-cycle cost. Such system would require an initial investment of 7.4 million US Dollars, and 

would suppose a 30.7 million US Dollar cost throughout its lifetime. From the comparison with 

the life time costs of electricity purchase from the utility company, it can be seen that the system 

would have similar annual costs to electricity purchase, but that the difference in life-cycle cost 

is roughly the initial investment required to install the system (see Fig. 21). 

 

4.3. Grid-connected solar PV-wind-biomass HRES multi-objective 
optimization 

This third case study consisted in a multi-objective optimization of a grid-connected PV-wind-

biomass HRES according to both environmental impact and cost criteria. The strategy of 

operation was the same as in the previous case, prioritizing the usage of PV and wind sources of 

energy, then biomass and finally the grid. 

 

4.3.1. System description 

This third case study consists in the same layout as the second case study, described in the 

previous section. The difference is found in the optimization methodology, in which a second 

criterion was introduced to perform a multi-objective optimization. Hence, the reader is referred 

to Fig. 19 for a system layout and mode of operation description.  In this multi-objective 

optimization case, however, the PV modules were substituted by the UP-M265M, a model with 

a peak power of 265 Wp and 1.46 m2 [253], to improve the accuracy of PV subsystem life-cycle 

environmental impact, which is provided by the manufacturer [267]. 

The resulting layout of the analyzed HRES is represented in Fig. 22. 
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Fig. 22 Grid-connected PV-wind-biomass HRES for multi-objective life-cycle cost and 
environmental impact optimization 

 

4.3.2. Optimization process 

With multi-objective optimization, the affecting parameters are slightly different with respect to 

single objective optimization. The ones worth highlighting for their influence on algorithm 

performance and its ability to tackle the set of optimum solutions in the Pareto front are 

presented in Table XII and shown in Fig. 23 together with the optimization model. 

Table XII GA parameters for multi-objective HRES cost-EI optimization 

Data Value 
Population size 100 individuals 
Pareto fraction 35% 
Maximum number of generations 500 generations 
Tolerance function value 1·10-4 
Lower bounds [0 m2; 0 WTs] 
Upper bounds [25000 m2; 25 WTs] 

 

The population size has been set to 100, 50 times the number of variables, to ensure a diverse 

potential of solutions when running the GA. 

The Pareto fraction is the percentage of possible solutions that are forced to be maintained as 

optimums, the rest would be object of reproductions, migrations and mutations, which were 

established at their default rates, 80% for reproduction with an intermediate cross-over function 
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that gives the same weight to both “parents” and 20% for forward migration. Mutation was set 

to be “constraint dependent” so slight changes in the individuals do not lead to a constraint 

violation. 

The stopping criterion was set through the maximum number of generations and the tolerance 

function value. The latter is set to 10-4, and the former is set to 500. The maximum number of 

generations is required because in some cases the algorithm may reach a point where it starts 

fluctuating in a region of optimums within the space solutions, but without stopping if the 

tolerance function value is too small, as it was set in this case. 

The last settings are the bounds, which define the thresholds of the space of solutions. In this 

case, the lower bounds were set to 0 for both variables, meaning inexistent installation of each 

subsystem, and the upper bounds were set to values corresponding to a huge installation size, 

thus considering it not to be limited by available area. If there were constraints in terms of 

available area to be covered by PV panels it could be introduced in this part of the model. 
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Fig. 23 Optimization model and parameters for multi-objective HRES cost-EI optimization 

 

4.3.3. Results and findings 

In this case study, the multi-objective perspective was added, so instead of obtaining a single 

optimal solution, a Pareto front is presented. Again, a base case with all the variables set at the 
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values provided in the previous sections is presented by then analyze the behavior of the model 

through a sensitivity analysis. The electricity demand was provided by [236]. 

 

4.3.3.1. HRES base case scenario 

Under the assumptions presented in Table V, Table VI, Table VII and Table VIII, the base-case 

scenario is defined. The model provides the Pareto front as a solution (see Fig. 24a), from which 

a range of different solutions can be chosen by applying different weights to the two criteria 

analyzed, that is cost and environmental impact. 

As can be seen, when applying contradicting criteria, there is not a single optimum solution. 

Instead, there are multiple optimum solutions, and the choice of one or another depends on the 

weighing of these criteria that the decision-maker does. 

However, the scale of the values and the variation of them observed in the Pareto front makes it 

difficult to analyze de results in terms of weighing the two criteria. For instance, the life-cycle 

NPV of the system varies within the range of 54 to 64 million US dollars whereas the life-cycle 

CO2 emissions vary between 1 million tons and ten million tons CO2 emitted. To overcome this 

issue, results were normalized according to [278], so relative variations were observed instead 

of magnitude variations: 

𝑥𝑥𝚤𝚤� =
(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)

𝑠𝑠
 (39) 

where 𝑥𝑥𝚤𝚤�  is the normalized value and 𝑥̅𝑥 and 𝑠𝑠 are the average and standard deviation of the set of 

values, calculated as follows 

𝑥̅𝑥 =
∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1
𝑁𝑁

 (40) 

𝑠𝑠 = �∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (41) 

With aim to provide an insight on the required system size for the scale of generation of the 

sample township, a compromise solution giving equal importance to both criteria, i.e. weighing 

each criterion 50%, has been selected (see Fig. 24a and Fig. 24b the highlighted dot): 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑁𝑁𝑁𝑁𝑁𝑁 = 58.645𝑀𝑀$ (42) 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐸𝐸𝐸𝐸 = 0.3515𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂2 (43) 
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These results are reached with an installation of 3900 square meters of UP-M265M PV panels 

and 9 SUT200 wind turbines. 
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Fig. 24 Base-case Pareto front: (a) raw data and (b) normalized data obtained in the third case of 
study 

 

4.3.3.2. Sensitivity analysis 

To facilitate results interpretation as well as the behavior of the proposed model to changes in 

input variables, a sensitivity analysis was conducted. Such analysis consists in creating 10% 

increase changes in the input variables identified as relevant and to observe the difference in the 

result yielded by the algorithm. The results are shown in Table XIII. 

Table XIII Sensitivity analysis of Grid-connected PV-wind-biomass HRES for multi-objective life-
cycle cost and environmental impact optimization 

 Variable Variation NPV change EI 
change 

C
O

ST
 PV capital cost +10% +0.60% -13.66% 

Wind capital cost +10% +0.48% +6.77% 
Biomass capital cost +10% +0.22% -3.33% 
Fuel cost +10% +0.78% -0.94% 

FI
N

. Electricity price +10% +6.40% -2.85% 
General inflation rate (g) +10% +0.37% -2.71% 
Interest rate +10% -3.69% -5.83% 

EF
FI

C
IE

N
C

Y
 Module reference efficiency +10% -1.01% +0.17% 

Wind turbine reference 
efficiency +10% -1.10% -3.58% 

Biomass gasifier – ICE 
efficiency +10% -0.97% -1.31% 

Biomass LHV +10% -0.83% -3.07% 

EN
V

. I
M

PA
CT

 

PV life-cycle CO2 emissions +10% -0.13% +0.12% 
Wind life-cycle CO2 
emissions +10% -0.10% +1.14% 

Biomass life-cycle CO2 
emissions +10% -0.06% -1.31% 

Grid life-cycle CO2 
emissions +10% -0.06% -2.13% 
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The results show that the technology with higher impact on the results is wind power. Increases 

in wind turbine cost lead to increases in both cost and environmental impact and efficiency 

improvements also have significant cost and environmental impact reductions. It is also 

noteworthy to mention that efficiency improvements lead to both cost and environmental impact 

reductions, aside from PV efficiency improvements that only have the positive outcome of cost 

reduction but with environmental impact increase. That is due to the higher environmental 

impact of this RE source compared with wind power which share is reduced under the 

assumption of PV efficiency increases. 

Regarding RE environmental impact variations, it can be observed that increases in these 

variables lead to lower costs because the share of electricity grid, which is the energy source 

with lower cost but higher environmental impact. However, when looking at how environmental 

impact increases affect system global environmental impact, it is observed that increases in PV 

and wind power lead to system increases whereas with biomass and grid power the global 

environmental impact is reduced. This could be expected because the formers are the two 

energy sources with less impact, so increases in their impact lead to global system impact 

increases; while the latter are the two sources with higher impact so the system can shift to less 

harmful energy sources when their impact is increased. 

Regarding cost variations, the sensitivity analysis show that increases in all energy sources’ 

costs lead to higher system life-cycle costs, without exceptions. However, the outcomes in terms 

of system environmental impact show different behavior. On the one hand, when PV, biomass 

capital investment and forest biomass fuel costs increase, the entire system EI decrease, as a 

result of wind power share increase, which is the most harmless of the RE sources. On the other 

hand, wind power cost increases lead to system EI increases as there is no alternative with less 

life-cycle CO2 emissions. 

Regarding financial variables, the greatest impacts are observed with the interest rate, which 

dramatically changes the life-cycle cost as an increase makes capital investments more 

profitable, which is the most important weakness of RE-based electricity generation systems. 

Electricity price has also a remarkable impact on system outcomes, increasing life-cycle costs as 

well as reducing life-cycle environmental impact. This is because as the cost of electricity from 

the grid increases, it is more profitable to install renewable energy systems with less 

environmental impact. 
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4.3.4. Conclusions 

The work carried out in this third case study proposes an optimization of a grid-connected PV-

wind-biomass HRES methodology based on economic and environmental criteria, in a so-called 

multi-objective optimization based on the use of genetic algorithm. This methodology, instead 

of providing a single optimum result, which, on the other hand, does not exist because of the 

contradicting criteria chosen, provides a set of optimum results. The results are plotted in a 

Pareto front, a useful tool for decision-makers because it shows the trade-off between the 

contradicting criteria. 

The proposed HRES layout combines the advantages of using the low-carbon energy sources 

PV, wind and biomass with the reliability of supply of grid. The system is thought to prioritize 

RE sources over grid supply. In particular, it prioritizes solar PV and wind power over biomass 

which, in turn, is used when the formers cannot match the existent demand. Only when the three 

sources of energy are not able to supply the load, electricity is purchased from the grid. 

 

4.4. Grid-connected solar PV-wind-biomass combined heat and power 
HRES 

The fourth case study consisted in the multi-objective optimization of a grid-connected PV-

wind-biomass HRES for combined heat and power (CHP) production. In this case, the system 

prioritizes the use of biomass during winter days to supply the existent thermal demand so PV 

and wind RES are only used if the excess electricity produced is not enough to supply the 

electricity demand. Conversely, during summer days, the system mode of operation is the same 

as in the second and third case studies. 

 

4.4.1. System description 

At this last stage of the research, the system was improved to include the exploitation of the 

thermal energy produced in the forest biomass gasification – ICE subsystem for electricity 

production, using a so-called combined heat and power (CHP) layout. 

In this case, the system consisted in a grid-connected PV – wind – biomass HRES. Similarly as 

the system described in the previous section, the system takes advantage of the flexibility and 

availability of biomass power and its short response time that allows it to behave as a backup of 

the stochastic renewable energy sources, namely wind and solar PV power. Besides, the 

biomass subsystem is also used to supply a certain heating demand during winter days. The 

HRES layout is shown in Fig. 25. 
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Fig. 25 Grid-connected PV-wind-biomass CHP HRES for multi-objective life-cycle cost and 
environmental impact optimization 

 

The proposed layout consisted in UpSolar modules UP265M, PV modules with 265 Wp of 

nominal power and 1.629 m2 of area [253], and wind turbines are SUT200 turbines with a 

nominal power of 200 kW [238]. As had been done in the previous cases, the system size was 

optimized through the variation of area covered by PV modules and the number of wind 

turbines installed. These two subsystems were combined with a CHP biomass gasification 

equipment of 500 kWe. Such equipment produces a surplus of approximately 1000 kWth. 

Again, the choice of scale come from the average value of hourly demand in the location under 

study, and the thermal demand associated has been escalated to a number of households that can 

be supplied, provided that the district heating (DH) installation is viable. 

To determine the number of households that can be included in the DH network, a first 

estimation of the thermal demand of the different typologies of household in the township (see 

Table XIV) under study was performed according to the methodology proposed by the Spanish 

Institute for energy diversification and saving (IDAE in its Spanish acronym) [243]. After that, 

it was estimated the number of households that could be supplied respecting by considering a 

diversity factor of 60% and choosing a neighborhood in which it would be technically feasible 

to install a DH network without exceeding installation lengths of 500 meters in order to keep the 

distribution network efficient and, consequently, reduce losses. The resulting DH proposal is 

shown in Fig. 26 and Table XV. The procedure used to calculate the thermal energy demand 
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and the ratio of coverage is shown in the methodology section for this HRES layout, and the 

results obtained are presented in the results Chapter. 

Table XIV Types of households in the sample township 

Type # of 
households 

Year of 
construction Typology Area 

(m2) 
# of 

floors 
Doors and 
Windows 

Old town 250 Prev. s.XVI Single family, 
attached 70 3 5 of 1 m2 (wood, 

old) 
Suburbs 

and walls 350 s.XVIII-XX Single family, 
attached 90 3 9 of 1.5 

m2 (wood) 

Out of 
walls 1 150 1950 

Single family, 
attached 120 2 

9 of 1.5 
m2 (wood, 
aluminum) 

Out of 
walls 2 50 1990 or 

later 

Single family, 
attached 90 2 

7 of 1.5 
m2 (aluminum, 

PVC) 

Apartment 
building 100 1980 or 

later 

Multi-family 
housing unit 80 4 

5 of 2 m2 
(aluminum, 

PVC) 

Detached 
house 100 1980 or 

later 

Single family, 
detached 

180 2 10 of 2 m2 
(aluminum, 

PVC) 
 

 
Fig. 26 Households included in the DH 

 

Table XV Households included in the DH 

Type # of households 
Out of walls 1 135 
Out of walls 2 45 

Detached house 40 
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Regarding the prioritization of energy sources, the following strategy was set up: on the one 

hand, the PV and wind power systems are the first option for electricity generation, whereas the 

biomass subsystem supplies electricity working at engine full load whenever those stochastic 

RES are insufficient to match the existent demand. On the other hand, the biomass gasification 

– ICE system is the only provider of thermal energy, so whenever exists a thermal demand, the 

system produces at full load. The generated electricity is used if there is enough electricity 

demand, otherwise, it is sold to the grid at market price. By operating in this way, the system 

sometimes produces excess electricity, which is sold to the grid, and sometimes produces excess 

heat, which is evacuated by the refrigeration system. The overall performance is better than 

when the system was only oriented to electricity generation, because in winter days the 

equipment is operating at efficiencies around 75% from the addition of both electricity and heat 

exploitation. Besides, the system is completely independent almost year-round, being only 

required to purchase electricity from the grid at those times when the combination of PV, wind 

and biomass power systems are not enough to supply the electric demand; and being only 

required to use gas oil or natural gas (current sources of thermal energy) during days specially 

cold. 

 

4.4.2. Optimization process 

The optimization process was performed according to the same strategy and GA parameters as 

the third case study. Please refer to 4.3.2, specifically to Fig. 23 and Table XII for further detail 

regarding the operations performed by the algorithm and the driving parameters of such process. 

 

4.4.3. Results and findings 

This fourth and last case study was again a multi-objective optimization approach to understand 

the tradeoffs between cost and environmental impact. Therefore, the solution obtained was a 

Pareto front. 

 

4.4.3.1. HRES base case scenario 

The base-case scenario is obtained by setting the variables to the values presented in Table V, 

Table VI, Table VII and Table VIII. The result provided by the optimization model is a Pareto 

front (see Fig. 27a). 
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Because of the nonexistence of a single optimal solution, the normalization process performed 

in the case study above (see Eq. (39)–(41)) was also used in this case to then calculate the 

compromise solution obtained by equally weighing both criteria (see highlighted solution in Fig. 

27a-b). 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑁𝑁𝑁𝑁𝑁𝑁 = 55.459𝑀𝑀$ (44) 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐸𝐸𝐸𝐸 = 1.3672𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂2 (45) 

These results are reached with an installation of 8421 square meters of UP-M265M PV panels 
and 1 SUT200 wind turbine. 

Base case Pareto front

Net Present Value (M$)

52 54 56 58 60 62 64

Li
fe

-c
yc

le
 C

O
2 

em
is

si
on

s 
(M

 to
ns

 C
O

2)

0,0

0,5

1,0

1,5

2,0

2,5

3,0
Normalized base-case

Normalized Life-cycle Cost

-1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5

N
or

m
al

iz
ed

 E
nv

iro
nm

en
ta

l Im
pa

ct

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

 

Fig. 27 Base-case Pareto front: (a) raw data and (b) normalized data obtained in the fourth case of 
study 

 

To contextualize these results, a comparison with the current costs of supplying the entire 

township electricity demand and the DH neighborhood thermal demand was made. It is 

graphically represented in Fig. 28. 
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Fig. 28 Comparison of NPV evolution throughout 25 years of system life time for No-HRES and 
HRES base case scenarios in the fourth case study 

 

4.4.3.2. Sensitivity analysis 

To perform the sensitivity analysis that helps interpreting the results provided by the model, 

10% increases in relevant input parameters were made to observe the variations induced in the 

results provided by the model. The observed changes are presented in Table XVI. 

Table XVI Sensitivity analysis of Grid-connected PV-wind-biomass CHP HRES for multi-objective 
life-cycle cost and environmental impact optimization 

 Variable Variation NPV change EI change 

C
O

ST
 PV capital cost +10% 1.63% -10.04% 

Wind capital cost +10% 0.92% -13.60% 
Fuel cost +10% 1.32% 4.50% 

FI
N

. Electricity price +10% 7.31% -10.46% 
General inflation rate (g) +10% 1.79% -19.69% 
Interest rate +10% -3.11% -8.33% 

EF
FI

C
IE

N
C

Y
 

Module reference efficiency +10% 0.31% -18.91% 
Wind turbine reference efficiency +10% 0.82% -7.84% 
Biomass gasifier – ICE efficiency +10% -0.41% -14.43% 
Biomass LHV +10% -2.34% 13.67% 

EN
V

. 

IM
PA

C
T PV life-cycle CO2 emissions +10% 1.38% -9.27% 

Wind life-cycle CO2 emissions +10% 0.12% -2.08% 
Biomass life-cycle CO2 emissions +10% 1.47% -17.72% 
Grid life-cycle CO2 emissions +10% 0.86% -4.42% 
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The results show that the technology with higher impact on the results is solar power, followed 

by biomass. This is because their importance in the system sizing. Focusing on cost changes, all 

of them except in the case of fuel cost, lead to increased life-cycle costs and decreased life-cycle 

environmental impact as a result of system sizing changes. 

Looking at the efficiency improvements, they lead to increases in NPV and decreases of EI 

aside from the biomass efficiency increases. This can be explained because this RES is the one 

with higher environmental impact so efficiency improvements reduce PV and wind power 

shares thus increasing the use of biomass. 

Regarding the EI increases, for each of energy production technologies ceteris paribus, they lead 

to NPV increases and EI decreases. This, which appears as a contradiction, is due to system 

sizing changes. 

 

4.4.4. Conclusions 

The work carried out in the fourth case study consisted in the design and validation of an 

optimization model for life-cycle cost and environmental impact assessment of a grid-connected 

CHP HRES. Such system has two different modes of operation depending on whether exists a 

thermal demand, i.e. in winter days, or does not exist such thermal demand, as occurs in 

summer days. 

During winter days, the system uses the biomass subsystem to produce thermal energy for a 

neighborhood in a DH scheme. During this period, the additional electricity produced is used to 

supply the existent demand in the township and, if necessary, sells the surplus to market. In 

those cases when additional electricity generated is not enough, the system uses solar PV and 

wind energy sources. Only whenever all the three RES are not enough to supply the electricity 

demand, the system would purchase it from the grid. Conversely, during summer days the 

system is electricity demand driven, which means that PV and wind energy sources are the first 

to produce electricity and biomass operates as a backup for these sources. Analogously to 

previous case studies, only whenever PV, wind and biomass power sources are not enough to 

supply the electricity demand the system would purchase electricity from the grid. 

The results obtained are a so-called Pareto front, a set of optimal solutions that has the ability to 

show the trade-offs between the contradicting criteria analyzed. Specifically, it showed cost 

increases with environmental impact decreases and vice versa, meaning that RES that have 

lower environmental impacts are more expensive than current grid mix with fossil fuel 

prevalence. 
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Focusing the attention to a compromise solution consisting on equal weighing of both criteria, it 

was observed that the system would have a life-cycle cost of more than 55 million dollars with a 

life-cycle environmental impact of 1.37 million tons of CO2 emitted, a result reached with a 

system of 8421 square meters of 265 Wp PV panels and one 200 kW wind turbine. 

It is also important to highlight that the addition of thermal energy exploitation to the system 

reduces the payback time, being profitable the HRES at 10th year of lifetime. 
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5. Discussion 

The main purpose of this research was to provide a grid-connected hybrid renewable energy 

system sizing tool. For cost optimization cases, this tool is a model that, given the electricity 

demand and the renewable energy sources availability patterns, provides the minimum cost 

layout. Such model was developed for a PV-wind HRES and for a PV-wind-biomass HRES. 

For multi-objective optimization cases, this tool is a model that, given the electricity demand or 

the combined electricity and thermal demand of a particular location and knowing the solar, 

wind and biomass availability of such location, provides a set of possible layouts to better 

inform the tradeoffs between life-cycle cost and life-cycle EI when performing a decision 

making process. This process was carried out in the form of four different case studies that 

served as model development and validation stages. 

In the first case study [226], it could be observed that the main hurdle to be overcome by 

renewable energy technologies is the significant upfront investment required. For example, 

although the Net Present Value of the HRES base case is $15.535, 65.26% of the no-HRES 

NPV, the system requires an initial investment of $10.108 M, a very important amount that 

makes difficult to engage in investing most of the small companies or particular investors. 

However, when the evolution of NPV during system lifetime for both base case and no-HRES 

scenarios are compared, it emerges that the installation of a HRES implies higher accumulated 

costs during first years, a tendency that is inverted approximately after two thirds of system life 

time. In particular, with the proposed case study the system would imply less accumulated costs 

from 18th year onwards (see Fig. 17). Therefore, even though the required investment is a 

significant amount that is never paid off, the system proves to be worthwhile once the current 

situation costs are taken into consideration. Besides, the NPV evolution throughout system 

lifetime also shows that policies that would improve RES profitability could act either on the 

slope of the curve or in the huge jump that is observed in the first year. To influence on the 

former, one could subsidize the renewable electricity sale, for instance introducing a feed-in 

tariff that would increase the electricity selling price and thus invert the slope of the curve; 

whereas to influence on the latter, one should subsidize the installation of renewable energy 

systems. The first solution has been adopted in countries like Germany, Spain or Australia, 

whereas the second is the alternative proposed in some US States like California. 

From the sensitivity analysis results, it is shown that the most significant parameter analyzed 

was the wind capital cost. That is because the optimal sizing found by the algorithm consists on 

a 3.6MW wind installation for the 0.1MW of solar PV power, so changes in the cost of the 

component that represents more than 95% of the total installation are expected to affect more 
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the final NPV than changes in the cost of the component that represents less than 5% of 

installation size. 

Furthermore, it was also observed that the electricity price did not significantly affect the result, 

so the installation was expected to have the reported profitability regardless of the inflation of 

electricity price. This effect is caused by the low impact of electricity purchasing prices on the 

system as it is based on the reduction of electricity consumption from the grid. Conversely, the 

inflation in the retail electricity prices would affect the break-even point as the no-HRES 

scenario would see its costs surge, making the installation of the HRES system more worthwhile 

compared with the business-as-usual alternative. 

The last analyzed variable was the interest rate. Increases in this variable result in decreases in 

the NPV as they mean more monetary value discount in future years. That is why in the NPV 

definition itself the interest rate is dividing several terms (see (2)–(26), (31)–(33)). This 

behavior shows the effect of time value of money, which means that a certain amount of money 

is worth more at present time that in the future, and that this discounted present value is lower as 

higher is the discount rate. The chosen value in the base case of 3.5% is a reasonable approach 

considering the current interest rates for loans to non-financial corporations in Spain that 

averaged 3.5% in the last 10 years [257]. 

It is also worth mentioning that the system sizing did not suffer changes with the first five cases, 

PV and wind capital cost, electricity price, general inflation rate and interest rate; but with the 

other two cases, PV module and wind turbine efficiency improvements, the system sizing is 

changed. On the one hand, with 10% improvement in the PV module reference efficiency, the 

new HRES consisted of 18 wind turbines and 565.13 m2 of PV installation, being the total 

installed capacity the same as in the base case scenario but with 10% less land usage for the PV 

installation. On the other hand, with 10% improvement in the wind turbine reference efficiency, 

the new HRES consisted of 17 wind turbines and PV installation reduced to a marginal size, the 

total installed capacity remaining again unchanged at roughly 3.7MW but with different share of 

each RE technology. 

 

In the second case study [225], it is of interest to compare the results with those shown in the 

first case study [226] for a grid-connected PV-wind HRES, designed under the condition of 

annual electricity net balance. It is worth noting that less initial investment is required when a 

biomass subsystem is added, but that it leads to a greater life-cycle cost than that obtained for a 

PV solar-wind HRES, as a result of using biomass power at full load when PV and wind power 

do not match the existent demand, even if such a difference is only a few kilowatts. 
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At this point, it is relevant to highlight that forest wood chip costs have been computed under 

the assumption of sustainable forest management, i.e., using less biomass than the self-growth 

rate of local forests and sustainable clearing and harvesting practices, as proposed in [30]. Such 

a hypothesis not only ensures that the proposed system is realistic and effectively deployable, 

but also makes the proposed model generally applicable in other townships and regions with a 

similar latitude and climate, e.g., Southern France, Italy, or the Balkans Peninsula, including 

Greece. The proposed methodology is suitable to design a small-scale system that would not 

have high biomass resource requirements and, therefore, could be easily replicable in other rural 

locations. 

It is also worth mentioning that the use of this source of energy would also have environmental 

benefits compared to the current fossil fuel intensive electricity production pattern, and in terms 

of job opportunity creation. These benefits would also induce economic earnings. For instance, 

forest resources would be revaluated as a result of active and sustainable management and 

unemployment could be reduced with jobs in the fields of O&M of the system and wood chip 

harvesting and processing. Another important benefit that has not been accounted for is the 

potential sale of heat power produced. Biomass Combined Heat and Power (CHP) produces 

twice the thermal energy compared to electricity, an aspect that was evaluated later on the fourth 

case study [279]. Although thermal energy is sold at slightly lower prices, taking advantage of it 

could improve system efficiency up to 70%–80% [227] from the actual value of 24%. 

Therefore, there is still a great deal of potential for the improvement of economic results. 

In addition, such a system adds energy autonomy and also lays the groundwork for the expected 

transition from a centralized electricity generation scheme to a distributed energy model, also 

known as “Smart Grid”. 

From the sensitivity analysis, it was observed that the proposed model responded well to 

positive and negative changes in the most important input variables, for instance, showing 

increases in the NPV for technology cost increases, and showing decreases in the NPV when 

technology efficiencies are improved. 

 

With the third case study [280], the results showed that the system with a lower cost is the one 

with higher CO2 emissions whereas the most expensive layout is the one that would have less 

environmental impact. This explains why, at present time, REs are not the preferred alternative 

for massive electricity generation. However, the results also showed that relatively small 

investment increases could have a high impact on CO2 emissions reduction, especially in the 

lower range of cost. Taking as a reference the solution with higher environmental impact and 
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minimum cost, it is shown that a slight increase in investment in the magnitude of 5%, leads 

important savings in emissions, close to 50% reduction. On the contrary, after reaching this 50% 

of emissions savings, further emission reductions require increasing amounts of investment, 

thus being less attractive. 

From the sensitivity analysis performed, it was proven that wind power is the RE source with 

higher impact on the system, as it is the cheapest of the RE sources and the energy source with 

less environmental impact. Cost reductions or performance increases from this source would 

lead also to positive outcomes for the system. It also was observed that interest rate increases 

has significant positive outcomes in both life-cycle cost and life-cycle environmental impact. 

Hence, considering that interest rate expresses the rate of return on the analyzed investment, it 

seems that improving this financial issue in HRES seems to be an interesting measure to 

encourage RE implementation. 

 

With the fourth and last case study [279], the results show, analogously as the previous case 

study did, that the system with a lower cost is the one with higher CO2 emissions whereas the 

most expensive layout is the one that would have less environmental impact. Again, it should be 

noted that these results support the justification of the small prevalence of RES in electricity 

mixes throughout the world. However, the results also showed that relatively small investment 

increases could have a big impact on CO2 emissions reduction, especially in the lower range of 

cost. 

It is worth noting that the compromise solution reached with equal weighing of both criteria is 

close to the compromise solution obtained in the previous case study, despite the fact that the 

PV system cost was reduced from $3800 per kilowatt installed in 2011 [247] to $2930 per 

kilowatt installed in 2014 [259] with its subsequent increase in PV share that should 

significantly reduce total system cost. Although this result may appear to be extremely 

disproportionate next to previous case studies, it cannot be compared since the system is 

supplying the entire winter thermal demand of a neighborhood of 180 attached houses and 40 

detached houses. Therefore, the cost of thermal energy purchase at current energy costs must be 

added when calculating the return on investment. When doing so, it is proven that system 

amortization is significantly reduced, being the installation of the proposed CHP HRES from 

10th year onwards. Compared with previous cases, with payback periods of 17 or even more 

years, it is well proven the suitability of CHP layouts so greater shares of biomass energy 

potential are taken advantage of. 
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What is comparable is the system sizing obtained. Whereas in the three previous case studies 

wind power was the prevalent RES, in the fourth case study the system sizing shifts to a system 

chiefly based on solar PV power. There are two reasons behind this change. On the one hand, 

PV system cost was decreased by almost 23%, making its installation much more worth it 

compared with wind power with systems costs stabilized that do not suffer relevant decreases. 

On the other hand, the new operation strategy dramatically affects the system layout. Since 

biomass is mandatorily used in winter days due to the heat-driven strategy, the rest of 

subsystems are scarcely required during this period. Conversely, in summer days, the operation 

strategy is electricity-driven and is in these days when other sources of energy are prioritized 

over the biomass. Therefore, PV power has greater impact since its energy generation pattern 

precisely peaks during summer days whereas wind power has an opposite seasonal energy 

generation pattern that peaks during winter days. 

The sensitivity analysis showed that PV power is the RES with higher relevance in the system 

due to an increased installation sizing with regards to previous cases. 
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6. List of papers and other publications from the author in this 
field 

In this chapter the journal and conference papers that this research has led to are presented. 
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be submitted to Energy Conversion and Management. 

 

6.1. Papers from the author published 

González A, Riba J-R, Puig R, Navarro P. Review of micro- and small-scale technologies to 

produce electricity and heat from Mediterranean forests׳ wood chips. Renew Sustain Energy 
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2014.    
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7. Recommendations for future work 

Some areas to be explored in future work include, but are not limited to the topics detailed 

below. 

7.1. Recommendations for practice 

An important area of future work is to use this decision-making support tool developed to better 

inform HRES sizing and to implement the installation of this kind of systems. Since the 

required upfront investments for a HRES in a small township scale are considerable, it would be 

interesting and advantageous to test the developed methodology at different scales of generation 

and consumption. For instance, the use of the developed tool to size systems at a neighborhood, 

industrial parks or household’s scales would be also beneficial and the required initial 

investments would result much more affordable. In addition, it would help to inform decision-

makers about the suitability and feasibility to install micro-grid schemes in rural areas where the 

renewable energy availability is high relative to existent energy demand. 

This usage of the proposed methodology at different scales is also in line with the testing in 

other locations with different RES availability pattern and energy needs. For example, rural 

villages in the Pyrenees could benefit from adopting the installation of HRES since these 

townships have significant forest wood biomass resource available and higher wind patterns 

that, combined with the greater slopes of the mountains could make interesting to explore the 

possibility of adding hydro energy source to the system. This is a possibility that would require 

further research as explained in the section below. 

 

7.2. Recommendations for further research 

Future research expanding the work performed during the development of this thesis includes 

the usage of different optimization algorithms. In this work, GA was used for its ability to tackle 

non-linear problems and multi-objective optimizations without requiring much computing 

power. However, there are other optimization algorithms that could be successfully used for the 

purpose of HRES single and multi-objective optimization. For instance, particle swarm 

optimization (PSO) [281] and fuzzy logic methodologies [282] from the field of artificial 

intelligence methodologies are proven to be useful as well. Placing the focus on another 

methodologies family, those based on iterative approaches, hill climbing or dynamic and linear 

programming have also been used in other HRES optimization researches [282]. 

Another important research area to be explored is the inclusion of storage technologies to the 

proposed layout of the system. Although biomass gasification – ICE group and grid-connection 
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provide flexibility and increase demand coverage up to a hundred percent, the inclusion of 

storage technologies would increase system autonomy and would make feasible the design of 

stand-alone systems that can be useful in remote locations. Even though the proposed 

optimization methodology was developed in the context of an industrialized region, namely 

central Catalonia in Spain, the model could be used in other contexts, for example small islands 

without grid connection, i.e. Greek islands, small islands in the Balearic or Canary archipelagos; 

or in rural villages in developing countries that currently lack grid connection. Some of the 

storage technologies that could be explored, without limitation to, are battery storage for 

household-scale HRES or pumped hydro storage (PHS) for township or greater scales. 

Finally, another interesting field to be explored in further research is the inclusion of other RES 

to the analysis. This last future research path proposed is in line with the storage technologies as 

long as one of the technologies to explore should be clearly hydro power because of its good 

energy return on investment, efficiency and available resource. Other RE technologies to 

introduce could be the use of solar thermal energy for heating purposes, which could be 

hybridized with the proposed biomass CHP system to provide thermal energy in a DH scheme. 
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