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ABSTRACT 

Dynamically typed languages are ubiquitous in today’s applications. These languages ease the 

task of programmers but introduce significant runtime overheads since variables are neither 

declared nor bound to a particular type. For efficiency reasons, the code generated at runtime 

is specialized for certain data types, so the types of variables require to be constantly validated. 

However, these specialization techniques still carry important overheads, which can adopt 

different forms depending on the kind of applications. This thesis proposes three hybrid 

HW/SW mechanisms that reduce these different forms of overhead. 

The first two mechanisms target the overhead produced during the execution of the 

specialized code, which is characterized by the frequent execution of checking operations that 

are used to verify some assumptions about the object types. The first technique improves the 

performance by reducing the number of instructions used to perform these checks. The second 

technique is based on a novel dynamic type-profiling scheme that removes most of these 

checks. 

The third technique targets the overhead due to the execution of the non-optimized 

code, which performs an important amount of profiling for future optimizations. We present a 

hybrid HW/SW mechanism that reduces the cost of computing the addresses of object 

properties in a very efficient manner. This is an innovative approach that significantly 

improves the speculative strategy currently adopted by state-of-the-art dynamic compilers. 
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Chapter 1 
 

 

 

Introduction 

 

Scripting languages have become very popular in the recent years [56]. These languages are 

often dynamically typed languages, which provide a higher flexibility and allow a faster 

application development compared to other traditional statically typed languages, such as C, 

C++ or Java. JavaScript [18] is the most popular one; Python, PHP, Ruby, Smalltalk and Self 

are other commonly used dynamically typed languages. Initially, these languages were 

designed for connecting different system components, which were written in traditional 

languages [35][57]. The reason for this is the higher flexibility that the dynamic typing 

provides for gluing tasks, which would require a more complex and longer-term task in 

statically typed languages. However, in the last years, scripting languages have gained 

popularity and have also been used to construct entire applications from scratch [35]. This is 

due to different factors:  

 The increasing demand of web applications, where these languages require 

different components to work together.  

 The importance of graphical user interfaces, which are used to connect graphical 

controls and the internal program functionality. 

 Modern scripting languages are executed in complex virtual machines, which make 

use of Just-In-Time (JIT) compilation techniques to improve the performance of 

the code. 

 Scripting languages are easier to learn for non-professional programmers than 

traditional static typed languages, due to their lower complexity. Non-professional 

programmers represent an important percentage in today’s programmer 

community. 
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On the other hand, applications written in dynamically typed languages are less 

efficient than applications written in statically typed languages. The reason for this is because 

the types of variables in these applications are not known at compile time and therefore, these 

types need to be checked at run-time. This thesis focuses on proposing new dynamic 

compilation techniques for dynamically typed languages based on hybrid HW/SW support. 

1.1 Dynamically Typed Languages 

In dynamically typed programming languages, types are checked at run-time since variables 

are neither declared nor bound to a particular type, and their types change during the execution. 

In addition, the most popular dynamically typed programming languages are also object-

oriented languages. In these cases, objects can change their class dynamically and therefore, 

the lookup of their methods and attributes (i.e. the properties of an object) are performed at 

run-time. This is also known as late binding.  

Traditionally, dynamically typed languages used to be interpreted because a static 

compilation cannot benefit from the runtime information, which is necessary to perform the 

type checks and the late binding of the object methods. However, interpretation introduces a 

high overhead to their execution. These factors penalized the applications written in 

dynamically typed languages, in comparison with the execution of the same applications 

written in statically typed languages. In order to reduce this performance gap, modern virtual 

machines for dynamically typed languages combine both interpretation and Just-In-Time 

compilation techniques, with the support of some kind of dynamic profiling to produce 

specialized code. 

1.2 Overheads in Dynamically Typed Languages 

The performance of the applications developed in these languages depends on two kinds of 

overheads: the overheads associated to the virtual machines, and the overheads due to type 

checks and late binding in the generated code. 

The former overhead is caused by the time spent in dynamic compilation, interpretation, 

garbage collection and other housekeeping tasks. Complex virtual machines adopt different 

strategies that combine JIT compilation and interpretation techniques, in order to focus the 

efforts in the most executed code regions. 
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The latter overhead (i.e. the overheads belonging to the type checks and late binding) 

has been an important focus of the research community. Most proposals consist of collecting 

dynamic information about types, in order to produce specialized code for these types. 

Although the specialized code is more efficient than a more general version, it still incorporates 

an important amount of overhead, which is mainly due to the execution of checking operations 

that verify the assumptions about the types. Often, these checking operations follow the same 

pattern of instructions, which basically are composed of an arithmetic and a branch instruction. 

Moreover, there are other frequently executed patterns of instructions, which are composed of 

more than one kind of checking operations. Other proposals focus on type inference 

techniques, which are based on the deduction of types at compile time. 

The execution of non-optimized code is rather slow, which has an important 

performance impact for short applications common in some web sites. This penalty mainly 

comes from object property lookup operations and profiling activity that is necessary for the 

compilation of the optimized code. 

1.3 Contributions 

In this thesis we propose different HW/SW techniques that target the overheads due to type 

checks and late binding. We use JavaScript [18] as the experimental platform to demonstrate 

the benefits of the techniques, more concretely, the JavaScript engine from Google, known as 

V8 [28]. As a first step, we perform a detailed analysis of common JavaScript applications. 

Below we described in more detail these contributions. 

1.3.1 Analysis of Overhead 

We perform a detailed analysis that characterizes the contribution to the execution time of the 

different components of V8 [22][23]. We consider the execution of both the first phases of 

JavaScript applications and the steady state of these applications. We quantify the overhead 

produced by the dynamic type profiling and code specialization techniques. This analysis has 

served as a guide for the techniques proposed later in this dissertation. 

1.3.2 Fusion of Common Instruction Patterns 

The checking operations used to preserve some assumptions about types in the optimized code 

often use the same pattern of instructions. When these assumptions are not fulfilled, the code 
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branches to a deoptimization procedure. However, these assumptions are rarely not met. 

Taking account this consideration, we optimize the pattern of checking operations by 

proposing a novel exception mechanism that removes the branch instructions used to perform 

these type checks [22][23]. Moreover, two new optimizations are presented, which reduce the 

dynamic instruction count of other frequently executed instruction patterns. 

1.3.3 The Class Cache 

When the checking operations target monomorphic object variables (i.e., object properties or 

elements from an array that only have one single type during the execution), their execution is 

not necessary. In this regard, we have proposed a technique that completely removes some of 

these checking operations, which improves the execution of optimized code. This consists of 

a HW/SW mechanism based on a novel dynamic type-profiling scheme that identifies 

monomorphic object variables. Then, the application code is recompiled in a way that the type 

checks that target these monomorphic variables are completely removed, and an exception 

mechanism is triggered when this assumption is not met [24]. 

1.3.4 The Property Cache 

This technique reduces the overhead related to the late binding of object properties. Moreover, 

this technique targets both non-optimized and optimized codes. For non-optimized code, all 

the operations related to the lookup and profiling of object property accesses are substantially 

optimized. On the other hand, most of the type checks that verify type assumptions before 

accessing object properties in the optimized code are also removed. This technique is based on 

a hybrid HW/SW mechanism that provides the information required to identify the addresses 

of object properties in a very efficient manner [25]. 

1.4 Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 describes the most relevant related 

work about on the techniques that deal with the overheads described earlier. Chapter 3 provides 

some background to help understand the techniques that we will present later. Chapter 4 

describes the simulation tools used to evaluate the proposed mechanisms. Chapter 5 presents 

the analysis of overhead of dynamic typed languages, which is used as the motivation for the 

proposed techniques. Chapter 6 explains our proposal of the fusion of pattern instructions in 
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the optimized code. Chapter 7 presents our proposal called The Class Cache mechanism. 

Chapter 8 presents the Property Cache mechanism. Finally, Chapter 9 concludes this 

dissertation. 
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Chapter 2 
 

 

 

Related Work 

 

The reduction of the overheads of dynamically typed languages has been an important topic 

for the research community, due to the booming of web scripting applications in recent years, 

including proposals based on parallelization techniques. In this chapter, we review the state-

of-the-art techniques to improve the performance of dynamically typed languages. 

2.1 Techniques to Reduce the Overhead Produced by Dynamic 

Typing 

These techniques are divided in two different families: type inferring techniques and type 

feedback techniques. The latter are normally more effective due to two main reasons. On the 

one hand, type inference requires a significant amount of computation to deduce all the 

application types, which is an important drawback for these languages that are dynamically 

compiled and thus, the compilation time becomes critical. On the other hand, most of the types 

cannot be deduced at compile time, due to the dynamic typing nature of these languages. 

Although modern virtual machines [9][28][45][63] combine both kind of techniques, 

the type feedback approach represents the main component of the strategy followed by these 

engines to reduce the overhead. In this regard, type feedback is applied at the beginning of the 

execution of the application, in order to collect the information necessary to specialize the 

hottest regions of code [41]. Once the code is specialized, a type inference pass is performed 

to eliminate unnecessary type checks and to specialize even more the code. Therefore, type 

feedback techniques introduce less initial overhead and collect more type information, whereas 

type inferring efforts mainly focus on hot specialized code, which is more deductible. 
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2.1.1 Type Feedback Proposals 

A significant number of works target type feedback techniques for dynamically typed 

languages, due to their important role in modern virtual machines. In this section the most 

important approaches of type feedback techniques are presented. 

2.1.1.1 Inline Caching 

The state-of-the-art technique used by current JavaScript virtual machines [9][28][45][63] to 

address the overhead of object property accesses (i.e. accesses to an attribute or method of an 

object) due to the runtime binding problem is known as Inline Caching [40][15]. It consists of 

generating type specialized code for the accesses to properties and other program variables 

that have been previously seen. Next time a given property of a particular object type is 

accessed, this code is used to access the property in a more efficient manner. 

The first work [40] to introduce the Inline Caching technique targeted Smalltalk 

compilers. Other works [59][60][61] have improved this technique for Self [17][20] compilers. 

Hölzle et al. [59] extends this technique to polymorphic Inline Caching, which extends Inline 

Caches to more than one object type. Hölzle and Ungar [60] propose a dynamic recompilation 

of hot functions that uses the type information previously collected by the Inline Caches to 

produce more efficient specialized code for the whole function. 

Recently, some other techniques to improve the performance of Inline Caching have 

been proposed [25][51][54][62]. Ahn et al. [62] presents a new scheme that reduces the miss 

ratio of Inline Caching and optimizes polymorphic Inline Caching for real-web applications. 

Li et al. [51] propose a new mechanism similar to Inline Caching, in order to access the object 

properties without incurring the overhead produced by the code generation. It is based on a 

software structure that keeps the information corresponding to property accesses produced in 

every location of the source code. When an object property is accessed in line i of the source 

code, the i-th position of this structure is accessed and the necessary information to perform 

the access (i.e. the address of the property) is obtained. 

2.1.1.2 Trace Based 

In a trace based approach [1][7][42], cyclic regions of code called traces are dynamically 

recorded in initial runs of the application. At the same time, the specific types used in these 



9 

traces are also profiled. Then, when a trace becomes hot, its corresponding code is recompiled 

and speculatively specialized with the profiled types and predicted branches, which results in 

a more efficient code. These assumptions about types and taken branches are verified with 

checks and when these conditions are not fulfilled, the execution exits the trace. When a trace 

is exited, a new trace may be recorded and recompiled with the alternative path or type, 

forming a trace tree. 

2.1.1.3 Customized Compilation 

Customized compilation techniques [8][12] are based on dynamically compiling functions 

according to the types of their arguments when these functions are called for the first time. In 

this regard, multiple versions of the same function can be compiled, which takes more memory 

space and compilation time. However, the advantage of these techniques is the generation of 

more type specialized code for the compiled functions, which results in a better performance. 

2.1.1.4 Other Complementary Works 

Other works propose improvements that can be complementary to the approaches described in 

the above sections. Driesen [39] proposes a space-efficient technique for object method 

lookups in dynamically typed languages. Other works focus on reducing the overhead 

produced by type checks [22][23][24][47][49]. Anderson et al. [47] introduces automatic 

checking of types, which is performed implicitly by a dedicated hardware. 

2.1.2 Type Inferring Proposals 

Type inferring techniques for dynamically typed languages [10][11][37][43][48][50][52] are 

based on statically analyzing the applications, in order to ensure type safety. These techniques 

allow for the early detection of type errors, such as accesses to non-existing members of objects 

or incorrect type conversions. In this regard, the applications that contain errors are rejected 

before executing them. Basically, these works provide a type system that defines some 

constraints to represent the relationships between types. Then, an algorithm uses these 

constraints to infer the types of the application. When these constraints are violated, runtime 

errors are signaled. 

 



10 

2.1.3 Value Specialization Proposals 

Costa et al. [32] proposes a technique to dynamically specialize the values of function 

parameters. When a function is called for the first time, the values of the parameters are 

collected. If these arguments remain unchanged between calls, then the function is recompiled 

and its arguments are replaced by the collected values. This allows to apply classic 

optimizations for the recompiled functions, such as constant propagation, dead-code 

elimination, array bounds check elimination and function inlining, which further improve 

performance. 

2.1.4 Hybrid Proposals 

Other works combine both type inference and type feedback approaches, in order to take 

benefit from the synergy between them [6][41]. Hacket and Guo [6] propose a hybrid type 

inference algorithm that performs an analysis of the application before its execution, in order 

to make assumptions about types. These assumptions are guided by some rules, which are 

based on the effect that operations have on their produced values. However, these assumptions 

are not guaranteed to be correct during the execution of the application and therefore, runtime 

checks are required. This hybrid mechanism is faster and more precise than pure static 

inference algorithms, which cannot perform assumptions about types.  

On the other hand, Kedlaya et al. [41] propose an initial type inference step before the 

execution of the application, in order to reduce the profiling overhead produced by the type 

feedback step. As a result, some type profiling activity becomes unnecessary because the type 

inference pass has already deduced the type. 

2.2 Parallelization Techniques 

Although most of the research efforts in dynamically typed languages focus on reducing the 

overhead of type checks and late binding, some other recent works propose different 

techniques to introduce some kind of parallelization. Traditionally, virtual machines for these 

languages do not exploit parallelism, despite the fact that these applications are often executed 

in parallel hardware platforms. In addition, some studies [19] show that current applications 

written in these languages are well-suited for parallelization. 
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These works are basically divided into implicit and explicit parallelization support. The 

former is based on dynamically identifying code regions that are parallelizable and 

speculatively execute them on different threads. There are proposals that parallelize loops 

[44][66], whereas others parallelize function calls [33][34]. Moreover, some modern virtual 

machines for dynamically typed languages execute application code and compilation tasks in 

parallel, as it is the case of V8 JavaScript engine [28]. On the other hand, works based on 

explicit parallelism extend the APIs of these languages to provide parallel semantics to the 

programmer [13][30][31][38].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

Chapter 3 
 

 

 

Background 

 

In this chapter, we present the main characteristics of JavaScript and the V8 JavaScript engine 

from Google [28], which is an open source and widely used dynamic compiler for JavaScript. 

In this thesis, V8 (64 bits) has been used as part of the experimental platform. Nevertheless, 

the basic techniques used by this dynamic compiler are also adopted by other modern virtual 

machines, such as Nitro from Apple (previously known as SquirrelFish Extreme [63]), 

SpiderMonkey from Mozilla [45] and Chakra from Microsoft [9]. Therefore, although the 

techniques presented in this dissertation are evaluated for a V8 JavaScript environment, they 

can be extended to other engines for dynamically typed languages, as long as they use similar 

approaches to deal with object typing. 

3.1 JavaScript 

HTML5 has improved not only the design of attractive websites (CSS style sheets, SVG 

images, and video), but also has succeeded in creating web applications with performance 

comparable to desktop applications. To achieve this, it uses JavaScript [18], which is a 

dynamically typed programming language embedded into web pages that allows the creation 

of sophisticated solutions in the client-side web. 

JavaScript provides a small set of data types (e.g. Boolean, String, Object, etc.), some 

built-in objects and functions and an inheritance mechanism based on prototype objects. In 

addition, JavaScript has access to its host environment through the Document Object Model 

(DOM), which is an API that allows JavaScript to interact dynamically with web pages. 

In JavaScript, the structure of an object is defined by its ordered set of named variables 

(i.e. variables that are referenced by name) and methods. Objects that have the same structure 

are considered of the same type. For the rest of this dissertation, the term property of an object 

refers to any of its named variables or methods. Moreover, JavaScript uses an inheritance 
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mechanism to share properties among different objects. This mechanism is implemented 

through what is called prototype objects. Each object x has an associated prototype, which is 

another object that contains a set of additional properties that the object x can access. In 

JavaScript all objects have a property that point to its prototype (which can be null in some 

cases), thereby forming a prototype chain (see next paragraph for more detail). Therefore, 

when accessing a property of an object, the entire prototype chain needs to be searched. 

Furthermore, when a constructor object creates an object, the new object inherits the prototype 

of the constructor.  Some object variables are accesses by a number like conventional arrays 

elements. However, these numbered variables do not affect the object structure because they 

are considered as conventional elements of a special array that belongs to the object. 

In Figure 3.1, objects o and k have been created by the object constructor c. Therefore 

o and k inherit the prototype of the constructor c, which is p. In this way, properties f and g 

from the prototype p can also be accessed from o and k in addition to c. In other words, these 

are properties shared by these three objects. 

 

Figure 3.1: Prototype chain scheme. 

Dynamically-typed languages like JavaScript increase programmer productivity but 

present important inefficiencies compared to statically-typed languages. This is mainly due to 

the fact that compilers cannot determine the type of the objects that will be accessed at runtime. 

One of the major overheads is when the value of an object property has to be loaded. In this 
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scenario, we need to first know the address in memory of this property (i.e. the offset of this 

property with respect to the address of the object), which entails a costly sequence of steps: 

first of all, the type of the accessed object has to be obtained, then the property has to be found 

in the type descriptor, which contains the offset for all its properties, and finally this offset is 

used to obtain the memory address where the value is stored.   

3.2 The V8 JavaScript Engine 

V8 was specifically designed for fast execution of large JavaScript applications. Its 

performance is normally better if it runs the same functions repeatedly, instead of running 

many different functions very few times each. This is because V8 focuses on optimizing hot 

functions (i.e. those functions that execute very often). V8 integrates two compilers, one that 

has light overhead and produces generic code (Full Codegen); and another that is heavier but 

generates more optimized code (Crankshaft) [3][4][5]. When a new function is encountered, it 

is first compiled by Full Codegen just before its execution, instead of being interpreted. After 

a while, if the function becomes hot, then it is compiled by Crankshaft.  

Inline Caching [15][40] is applied by both compilers, despite the fact that the dynamic 

profiling of the code is only performed during the execution of the non-optimized code (i.e., 

the generic code produced by Full Codegen). 

3.2.1 Hidden Classes 

JavaScript is an object-oriented programming language without explicitly declared classes. 

However, V8 uses Hidden Classes to represent object types (i.e. an ordered collection of 

properties). All objects built by the same function constructor share the same Hidden Class. In 

other words, objects that share the same Hidden Class have the same type. When a function 

constructor at runtime creates an object for the first time, its Hidden Class is also created. 

Moreover, every time that a new property, x, is added to an object, the object changes its 

Hidden Class to another one, which contains all properties of the old Hidden Class and the 

property x. If this second Hidden Class does not exist yet (i.e. it is the first time that x is added 

to the old Hidden Class), then it is created. 

In Figure 3.2, there is an example: object v belongs to Hidden Class Vector. It also 

contains a property, x, which belongs to Hidden Class Double. Note that the first field of each 
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object (called Map) contains the address of the Hidden Class descriptor. In V8, this address is 

also used as identifier for the Hidden Class, which is called the Hidden Class identifier. For 

the rest of this thesis, we use the terms Hidden Class and type of an object indistinctly. 

Note also that the prototype property of an object is kept in its Hidden Class descriptor, 

instead of the object itself, as we can see in Figure 3.2. Therefore, when the prototype property 

of an object is overwritten, the Hidden Class of that object also changes, as Hidden Classes 

are immutable data structures. 

 

Figure 3.2: Example of two objects and their corresponding Hidden Classes (Double and Vector). 

Furthermore, objects contain two reserved special properties, which are used to manage 

their numbered variables (i.e., variables that are indexed by a number): The elements array 

pointer and the elements length, which are located in the third and fourth 8-byte words of the 

object, respectively. The former contains a pointer that targets an internal array called the 

elements array, which contains all the variables of the object that are indexed by a number, as 

explained in section 3.1. The latter contains the length of the elements array, which can change 

during the execution. However, in some other cases, the elements length is directly located 

inside the elements array, instead of the object itself. 

Occasionally, when the number of properties (i.e., named variables or methods) of an 

object exceeds a particular threshold (128 properties), their properties are stored in a separate 

dictionary-style structure called the property dictionary collection. When this happens, the 

subsequent additions of new properties for the object will not change its Hidden Class, because 

its structure keeps being the same. In addition, the object will contain another special property 

called the property pointer, which keeps the address to its property dictionary collection. Note 

that the property pointer is always located in the second position of the object. This is an 
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optimization performed by V8, in order to avoid an explosive number of Hidden Class 

creations for objects that are used as dictionaries. 

Note that all objects in V8 are represented by their address. When they are stored in a 

register, its least-significant bit is set to 1. Therefore, before a particular object is accessed, this 

bit has to be cleared, in order to obtain the address. As exception, small integers (SMIs) that 

do not need more than 32 bits for its representation are directly stored in registers, in the 32 

most significant bits, and the least-significant bit is set to 0, to indicate that the register contains 

a SMI, instead of an object address. 

3.2.2 Inline Caching in V8 

Inline Caching has a twofold purpose: recording information concerning the types of objects 

and improving the performance of the system lookup routine used to disambiguate the type of 

objects when they are accessed. Full Codegen and Crankshaft apply this technique in a 

different manner, as described below for loads or stores to object properties, which is the most 

common scenario for this technique. Inline Caching is also applied for loads and stores to 

object array elements (i.e. object variables that are referenced by number), method invocations, 

arithmetic operations, boolean operations, and other binary operations, in a similar manner. 

 During the execution of the generic code produced by Full Codegen, for each object 

property access, a call instruction is executed, which is constantly patched by the runtime. The 

first time that the access is produced, the call instruction targets a lookup routine that performs 

a sequence of steps that determine the type of the object and find the offset for that property. 

Then, the access is performed by this routine. Since this process is quite costly, a special 

software structure called Inline Cache (IC) is created, which contains specialized code (i.e., 

the code to perform that access) for that particular object type and the offset found. Then, the 

call instruction is patched to point to this Inline Cache. Therefore, subsequent accesses are 

substantially faster if the type keeps being the same. In this regard, a type check needs to be 

inserted before the generated code to verify that the type is the expected one. Figure 3.3 

illustrates the use of Inline Caching for loads. In Figure 3.3a, we show the scenario for the first 

time an object property load is performed. In this case, it is executed by the lookup routine, 

which is rather costly. Subsequent accesses are executed by the optimized Inline Caches, as 

we can see in Figure 3.3b. 
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Figure 3.3: Basic Inline Caching process. 

The information recorded during this process is also used by Crankshaft (the optimizing 

compiler) to perform more aggressive optimizations for hot code. In this regard, Crankshaft 

generates specialized code that performs directly the property accesses for those Hidden 

Classes previously encountered by the Inline Caches, instead of executing a call instruction 

for each of them. Also, type checks are introduced in this specialized code, in order to verify 

that the encountered type is the expected one; otherwise (i.e., when a type check fails), the 

optimized code falls back to non-optimized code through a deoptimization bailout. Note that 

the specialized code produced by Crankshaft is much more efficient than the non-optimized 

code produced by Full Codegen, due to the fact that the call instructions are not present, which 

also allows that other standard compiler optimizations can be performed over this specialized 

code. 

3.2.3 Full Codegen Compiler 

This compiler takes as input the abstract syntax tree (AST) of a function, walks over the nodes 

in the AST, and emits calls to a macroassembler. The code produced is generic native code, for 

which only the inline caching optimization is performed. Figure 3.4 outlines the flow of data 

at the compilation process. 

Furthermore, Full Codegen does not store local variables in registers; instead these are 

stored either on the stack or on the heap. All variables stored on the heap belong to objects 

contexts, each one associated to a different function. When the value of a local variable is 

needed, the compiler emits a load to pull the value into a register [5]. 
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Figure 3.4: Full codegen compilation process. 

3.2.4 Crankshaft Compiler 

Once V8 has identified that a function is hot (by profiling) and has collected some type 

information through the Inline Caches, compiles that function through the optimizing compiler 

(Crankshaft). As we can see in Figure 3.5, the process of Crankshaft is more sophisticated than 

Full Codegen [4]. 

 
Figure 3.5: Crankshaft compilation process. 

Crankshaft first translates the JavaScript AST to a high-level static single-assignment 

(SSA) Intermediate Representation, which is called Hydrogen. In this part of the process, the 

compiler specializes the code according to the information collected (i.e. Inline Caching 

technique) and tries to apply other high-level optimizations. Then, the Hydrogen code is 

translated to a machine-specific low-level Intermediate Representation, which is called 

Lithium. This representation facilitates other machine-specific optimizations. Finally, Register 

Allocation and Code Generation are performed. 

3.2.4.1 High Level Optimizations 

Other high level optimizations mentioned above are: 

 Mark Dead Subgraphs: Regions of code without Inline Cached types means that 

some paths in the original function may have never been executed. This 

optimization avoids optimizing these blocks and wasting compilation time. 

 Redundant/Dead Phi Elimination:  The AST to SSA Hydrogen translation 

process handles Phi instruction insertions [48]. This optimization eliminates Phi 

instructions that are not needed, either because they are redundant (consequence of 

a dead subgraph) or because they do not have real uses. 
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 Representation Inference:  Numbers need also a mechanism to indicate that they 

are numbers (i.e. integers or doubles), before manipulating them. In this regard, 

numbers are represented in a similar manner than the rest of object types, which is 

called boxed representation. When a boxed number is needed to execute any 

operation, it is necessary a previous unboxing process to obtain the value of the 

number. Therefore, the manipulation of objects in a boxed representation is costlier 

than the direct manipulation of the value. The goal of this optimization is to 

represent temporary variables as integers or doubles, whenever possible, instead of 

a boxed representation. Inference techniques are used to deduce the type of these 

temporaries. 

 Range Analysis: This optimization tries to determine the range of some values. It 

allows asserting various properties that influence code generation, such as the lack 

of overflow or the lack of negative zero values. 

 Type Inference and Canonicalization: Type Inference can help to eliminate 

runtime checks. After this, each instruction is canonicalized (i.e. elimination of 

unnecessary operations) to eliminate other useless checks. 

 Stack Check Elimination: Loops need to be interruptible. As a solution, a Stack 

checking operation is inserted at the beginning of every iteration. If the runtime 

wants to interrupt a loop, it resets the stack limit of the process to wait for the next 

stack check. This optimization eliminates some of these checks in case that a call 

dominates its backward branches, since all calls have a fixed stack check in the 

callee’s prologue. 

 Global Value Numbering: Other typical high level optimizations are 

implemented, such as Common Subexpressions Elimination and Loop Invariant 

Code Motion. 

3.2.4.2 Additional Operations Performed in the Optimized Code 

In this section, we present some operations performed during the execution of the optimized 

code that are not part of the JavaScript application. Instead, these additional instructions can 

be considered as overhead produced by Crankshaft, as a consequence of the dynamic 
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characteristics of the language. 

Checking Operations 

As we outlined above, type checks are introduced in the execution of optimized code to 

preserve assumptions about types. Moreover, other kinds of checks are also inserted at this 

optimization level, which are used for similar purposes.  When a check fails, the optimized 

code falls back to non-optimized code through a deoptimization bailout, with the exception of 

Check Stack. In this latter case, the program is interrupted and another routine is executed, 

which handles an external exception. These checking operations are detailed below: 

 Check Maps: These are the most commonly used type checks. The first slot in 

each V8 object points to its Hidden Class identifier (i.e. the object type). In this 

operation, the type of an object is checked to be the same as that of another recorded 

type, which has been seen before. 

 Check SMI: A register containing a boxed object can be of two types: either a 

small integer (SMI), which has its last bit cleared or an object address, which has 

its last bit set. In this case, the last bit of a register is checked to know whether it is 

a SMI. 

 Check Non-SMI: The opposite of check SMI. 

 Check Instance Type: It checks whether the kind of a particular instance is the 

expected one. 

 Check Function: This is used to check whether an inlined function is the expected 

one. 

 Check Prototype Maps: There are accessible object properties that reside in its 

prototype chain. Therefore, when a function call belonging to a prototype object is 

inlined, it is necessary to introduce a type check of that prototype. 

 Check Map Value: It is like a Check Maps, but for enumerable objects in a for-in 

statement. 

 Check Bounds: After obtaining the total length of the array, it is checked that the 
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accessed position of the array is not out of bounds. 

 Check Stack: Inside a loop, the stack pointer is checked to see if it has been reset, 

in order to know whether an external exception has been produced. 

Tagging/Untagging Operations 

Other overhead instructions are tagging and untagging instructions, which are used to box and 

unbox number values. When a number value is boxed, the register that supposedly contains 

that number does not contain the value directly. Instead, it contains the object (i.e. the address 

of the object, but its last bit is set to 1) where that value is stored. As an exception, if the boxed 

number is a SMI, the value is located in the 32 most significant bits of the register and the last 

bit is set to 0. The specific tagging/untagging operations are detailed next: 

 Number Tag (Non-SMI): This process consists of allocating in the heap an object 

structure that contains a number. The type (i.e. Hidden Class) of this object depends 

on the type of the number, such as Integer, Unsigned Integer or Double. Therefore, 

the resulting register contains the address of the allocated object.  

 SMI Tag: This process consists in introducing the value in the 32 most significant 

bits of the resulting register. In addition, the last bit of the register is set to 0. 

 Number Untag (Non-SMI): The input register contains the address of an object 

that contains a number. Therefore, this operation obtains this number from this 

object, which is in heap memory. 

 SMI Untag: Reverse process of tagging a SMI. Therefore, the resulting register 

contains the SMI value from the 32 most significant bits of the tagged input 

register. 

Math Assumptions 

There are some math operations that require some runtime value verifications on their source 

operands or the produced result. The most common scenarios are overflows of SMIs and 

division by 0. Note that the former is necessary because when the produced value is not a SMI 

(i.e., it needs more than 32 bits for its representation), this has to be boxed as a non-SMI. Note 

also that these situations rarely occur during the execution. Therefore, V8 assume 
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optimistically that they will never occur, in order to produce more efficient code (i.e., the 

generated code does not cover these alternative paths). However, these rare situations have to 

be detected when they occur. In this regard, V8 inserts additional instructions that verify that 

these math assumptions are correct. When any of these validations fails, the code is 

deoptimized. 

3.2.5 V8 Dynamic Components 

V8 is a dynamic compiler and therefore, program execution and code generation/optimization 

have to be efficiently synchronized in order not to affect responsiveness. Moreover, JavaScript 

is a managed memory language, which needs a mechanism to reclaim memory that will no 

longer be used. Taking into account these characteristics, the execution of an application in V8 

can be broken down into the next components: 

 Non-optimizing compiler: V8 runtime executing Full Codegen compiler. 

 Execution of non-optimized code: Execution of application code produced by 

Full Codegen compiler. 

 V8 runtime: The execution of various management routines. 

 Optimizing compiler: V8 runtime executing Crankshaft compiler. 

 Execution of optimized code: Execution of application code produced by 

Crankshaft compiler. 

 Garbage collector: V8 runtime mechanism that reclaims memory used by objects 

that are no longer required. 

 Shared libraries: Execution of auxiliary libraries. 

 Helpers: Execution of helper code to carry out some aspects of the JavaScript 

engine, such as built-ins corresponding to JavaScript construct calls. Note that most 

of these helpers are executed during the execution of the non-optimized code, in 

order to perform tasks related to the management of the Inline Caching mechanism. 

This classification will be used in the following chapters and we will refer it frequently. 
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Chapter 4 
 

 

 

Experimental Framework 

 

The V8 JavaScript engine described in the previous chapter is part of the experimental 

framework that we have used to demonstrate the ideas proposed in this dissertation. In this 

chapter, we describe the rest of tools and benchmark suites that have been used. 

4.1 Tools 

Pin [16] and V8’s built-in sampling profiler [28] have been used for the analysis of the V8 

JavaScript engine. Marss [2] and Sniper [58] micro-architectural simulators have provided the 

results regarding the speedups achieved by the proposed ideas. McPAT [53] and CACTI [55] 

power modeling tools have provided the energy savings of these proposals. We briefly describe 

these tools below. 

4.1.1 Pin 

Pin is a dynamic instruction instrumentation tool for the x86 instruction set architecture. It is 

based on inserting profiling code to the application binary. This instrumentation code collects 

run-time information about the instructions, such as their type, the type of their operands, 

number of operands, etc. In our experiments, we use Pin mainly to count the total number of 

dynamic instructions. 

4.1.2 V8 Sampling Profiler 

This is an internal tool of the V8 JavaScript engine, based on a sampler profiler that records 

the execution time spent in the different execution components of V8, which are described in 

section 3.3.5. 
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4.1.3 Sniper 

Sniper is a timing multi-core simulator that uses a novel simulation technique called interval 

simulation [14], which allows nearly as much accuracy as a cycle-level approach while 

providing faster simulation speed. Interval simulation is based on partitioning the execution 

time into intervals, which are determined by the miss events. These events are modeled by an 

event based simulator. Then, the timing for each interval is derived by an analytical model, 

which also includes the penalties associated to the corresponding miss event. These penalties 

are determined by the type of the miss: I-cache miss, branch missprediction, long-latency load 

miss and resource stalls. 

4.1.4 Marss 

Marss is a cycle-level, full system, multicore simulator for the x86-64 ISA. This simulator is 

the result of the combination of two existing frameworks, which are Qemu and PTLsim. The 

former is a full system emulator that supports multiple ISAs and the latter is a cycle-level 

simulator. Marss provides a modular framework for the simulation of different cpu cores and 

cache memory models. Moreover, this modular framework allows the integration of other 

simulation tools, such as DRAMSim2, which is a DRAM simulator. The full system simulation 

includes the activity of operating systems, standard libraries and kernel interrupt handlers. It 

allows the evaluation of parallel applications and heterogeneous architectures, and eases the 

implementation of HW/SW co-designed techniques. 

4.1.5 McPAT 

McPAT is a multicore modeling framework that integrates power, area and timing. The power 

model includes both leakage and dynamic power consumption. The input for McPAT is a file 

that describes the dynamic events of a previous performance simulation, such as the number 

of cycles, number of L1 misses, number of branch misspredictions, etc. In addition, this file 

defines the architectural, circuit and technological parameters of the system. In general, any 

micro-arquitectural performance simulator can feeds the input for McPAT, as long as its output 

has the required format for McPAT.  

4.1.6 CACTI 

CACTI is an analytical model that estimates latency, power and area of memory units (e.g., 
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cache memories). For caches, this tool takes as input the cache size, cache block size, cache 

associativity, technology, number of ports, and number of banks. The output is the optimal 

cache configuration for the input parameters and its associated latency, power and area. 

4.1.7 Microarchitectural Configuration 

For the experiments presented in this dissertation, the core configuration used by the 

simulators described above is shown in Table 4.1, which closely resembles a Nehalem core 

[65]. In this thesis, we use applications compiled for the x86-64 ISA. 

Issue width 4 

Instruction Issue queue 36 entries  

Window size 128 

Outstanding load/stores 10 

Itlb 128 entries, 4-way  

Dtlb 64 entries, 4-way 

IL1 cache 32 KB, 4-way 

DL1 cache 32 KB, 8-way 

L2 cache 

L3 cache 

256 KB, 8-way  

2MB, 16-way 

Table 4.1: Microarchitectural configuration. 

4.2 Benchmarks 

We have used four common JavaScript benchmarks suites for our experiments: Octane 

[26][27], SunSpider [64], Kraken [46] and JSBench [29][36].  

4.2.1 Octane 

Octane is commonly used for evaluating JavaScript since it is representative of current 

workloads and execution profiles of real web applications. Octane's goal is to be a proxy for 

JavaScript applications like browser games, highly-interactive web pages and online 

productivity tools. 

4.2.2 SunSpider 

SunSpider consists of more than a dozen tests, each concentrating on a different part of the 

JavaScript language. Since SunSpider focuses on computation (does not include HTML, CSS, 

networking, etc.), its applications are micro-benchmarks that are very computational intensive. 
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4.2.3 Kraken 

Kraken centers on four key areas of browser performance: 

 Audio: These applications perform various audio functions, including fast fourier 

transforms, discrete fourier transforms, audio oscillator and beat frequency 

detection. 

 Image filtering: These application use Pixastic Processing Library to desaturate 

an image, perform a Gaussian blur and other image manipulations. 

 JSON:  These applications test how quickly a browser can transmit data between 

two or more objects, which are usually a web server and a client. 

 Cryptography: These applications use the Stanford JavaScript Crypto Library to 

perform four common cryptographic functions. 

4.2.4 JSBench 

JSBench are representative of user interactions from five representative websites: Google, 

Amazon, Facebook, Yahoo and Twitter. However, we have discarded Facebook and Yahoo 

benchmarks for our evaluations, because these applications cannot run without a browser. 

 

 

 

 

 

 

 

 



29 

Chapter 5 
 

 

 

Analysis of Overhead 

 

The performance of applications written in dynamically typed languages such as JavaScript 

changes with time. In this regard, at the beginning, the execution time is dominated by non-

optimized code, interpretation, and compilation tasks, which result in low performance. Later, 

as the code becomes increasingly optimized, performance improves until no further 

optimization is possible, reaching a steady state. Note that some overhead remains in the steady 

state, which is mainly due to the verification of some assumptions made to generate the code. 

Short-running JavaScript web applications for event-driven scripts are dominated by 

the execution of the non-optimized code, helper routines and runtime tasks (i.e., compilation 

tasks), because there is not time for much code specialization. On the other hand, long-running, 

sophisticated applications such as online image editors and games tend to execute repeatedly 

the same regions of code, which become very soon specialized. Therefore, the execution time 

is dominated by this optimized code.  

Since there is a no consensus in the scientific community about which kind of 

applications will predominate in the future [44], this dissertation considers both short and long-

running applications. Two of the techniques we propose target the execution of optimized code, 

whereas another technique targets both the execution of the non-optimized code and some 

runtime tasks. 

In this section, we analyze the contribution of these execution components in the V8 

JavaScript engine, and characterize the most important overheads. 

5.1 Analysis of V8 Dynamic Components 

Figures 5.1 and 5.2 show the contribution of the V8 dynamic components described in section 

3.2.5 to the total run time of Octane, SunSpider and Kraken benchmarks. We consider both 
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steady state and first iteration (i.e. the first execution of the application). Figure 5.3 shows the 

same statistics for JSBench benchmark suite, regarding the fourth iteration of each application 

(i.e., the application is executed four times and the statistics are taken from the fourth iteration) 

[62]. We are most interested in the execution of the JavaScript code rather than other 

preliminary compilation tasks, such as the source code scanning process, which represents 

more than 50% of the dynamic instructions for the first iteration of these benchmarks. Steady 

state for JSBench is not analyzed because these benchmarks are not meant for modeling long-

running complex applications. In all the cases, results were obtained through the V8’s built-in 

sampling profiler [28].  

Figure 5.1 shows that in steady state, most of the time is consumed in optimized code 

and only a very small fraction of time is dedicated to non-optimized code and helpers. In 

addition, V8 runtime tasks represent around 24% of the total time for Octane and Kraken and 

14% for SunSpider. In Octane, the garbage collector is a very important contributor for splay, 

typescript and earley-boyer benchmarks, which make an intensive use of heap memory. 

Nevertheless, in this dissertation, we do not focus in the garbage collector because this is a 

widely investigated topic elsewhere. Note also that many benchmarks (for instance, code-load, 

json-parse, and json-stringify benchmarks) have little optimized code since they have limited 

code reuse. 

Figure 5.2 shows that during the first iteration of Octane, SunSpider and Kraken, the 

execution time is dominated by V8 runtime tasks. SunSpider and Kraken have more optimized 

code than non-optimized code and helpers, which means that these are benchmarks that are 

dominated by hot loops. In contrast, the contribution of non-optimized code and helpers in 

Octane is higher than the optimized code. This correlates with the profile of JSBench (Figure 

5.3), which hardly executes any optimized code. Therefore, Octane in the first iteration 

presents a similar behavior to real web applications. 

5.2 Overheads in the Steady State 

As detailed above, in the steady state of Octane, SunSpider and Kraken, the most important 

component is the optimized code. This subsection quantifies the contributions of the different 

kinds of overheads in optimized code. We achieve steady state by executing each benchmark 

ten times and taking statistics from the tenth iteration. We run each benchmark twice. In the
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Figure 5.1: V8 engine components in steady state execution. 
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Figure 5.2: V8 execution breakdown in the first execution. 
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Figure 5.3: V8 execution breakdown in JSBench. 

first run, we count the total number of x86-64 dynamic instructions using Pin [16]. In the 

second run, we introduced additional assembler code (i.e., dynamic counters) to the V8 

runtime in order to gather some statistics of interest (e.g., number of times a given check is 

performed). Results are presented as percentages with respect to the original unmodified code. 

The overheads are broken down into three categories: Checks, Tags/Untags and Math 

Assumptions which are described in section 3.2.4.2. Figure 5.4 shows the breakdown of these 

overheads. Rest of code means the non-optimized code, the garbage collector, V8 runtime 

tasks, auxiliary libraries, etc. We can observe similar overheads for the three suites. They have 

a similar percentage of Checks, and these are the most frequent operations. In addition, 

Tags/Untags category has an important contribution only for a few benchmarks of SunSpider. 

Finally Math Assumptions only represent 1.4% of the total dynamic instructions. Next, each 

of the above overheads is further broken down into subcategories. 
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Figure 5.4: Breakdown of main overheads. 
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Figure 5.5: Breakdown of checking operations. 
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5.2.1 Checking Operations 

Figure 5.5 shows the dynamic instruction breakdown for Checks. Check Map, Check Stack, 

and Check Bounds are the most important checks for SunSpider and Kraken, whereas Check 

Maps, Check Non-SMI, Check Bounds, Check Stack and Check Prototype Maps are the most 

important ones for Octane. Some programs, such as 3d-morph, access-nsieve, and math-

spectral-norm, from SunSpider, only have Check Bounds and Check Stack operations as 

overhead. It means that these are loop-intensive benchmarks, because V8 generates a Check 

Stack operation for every loop iteration, in order to know if an external exception has 

happened. Finally, benchmarks with a high percentage of both Check Maps and Check Non-

SMI operations are also very common. 

5.2.2 Tagging/Untagging Operations 

Figure 5.6 shows a breakdown for Tag and Untag operations. The vast majority of the 

benchmarks present either SMI tagging/untagging operations or Number tagging/untagging 

operations, the former being the most frequent for all suites. Note that some of the untagging 

operations also perform Check Maps, Check Non-SMI and Check SMI operations before the 

value is untagged, in order to verify that the number to be untagged has the expected type (i.e., 

either SMI or Non-SMI number). We have included these additional checking operations in 

the tagging/untagging category. 

5.2.3 An Example of JavaScript Code 

In Figure 5.7, we show an example of a JavaScript function called findGraphNode, which is 

extracted from ai-astar benchmark, from Kraken. This benchmark implements the A* graph 

search algorithm, which finds the best path (i.e., the path with the minimum cost) between two 

nodes of a graph. The findGraphNode function is a member method of a Hidden Class (i.e. 

nodeList) that represents a list of nodes structure. This function checks whether a particular 

node of the graph is contained in that list. This consists of a loop that compares the position 

property of the node with all the nodes of the list. Note that this variable refers to the object 

itself, which in this case is the list of nodes. In Figure 5.8, we show the main Hidden Classes 

that involve nodes object of Figure 5.7, which belongs to nodeList Hidden Class. The node 

objects contained in nodes belong to GraphNode Hidden Class and they are stored in the 

elements array of nodes. 
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Figure 5.6: Breakdown of Tagging/Untagging operations. 
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Figure 5.8: nodes object structure. 

In Figure 5.9, we show the generated x86-64 optimized code corresponding to the 

findGraphNode function of Figure 5.7. Instruction I1 loads the this variable, which contains 

the address of the nodes object (i.e., the list of nodes on which the findGraphNode function is 

applied). Then, instructions I2 and I3 perform a Check Non-SMI operation, which checks 

whether its last bit is set to 1, in order to verify that this contains an address. If so, then a Check 

Maps operation takes place, which is executed by instructions I4 to I6. Check Maps verifies 

that the expected Hidden Class (i.e., nodeList Hidden Class, which has been profiled during 

the execution of the non-optimizing code) and the Hidden Class of the nodes object is the 

same. If this comparison is successful, then the elements array and the elements length 

properties of nodes object are obtained by instructions I7 and I8, respectively. In addition, 

instruction I9 performs a SMI Untag operation over the register (rbx) that contains the elements 

length property, which does not require any previous check to verify that the value is a SMI 

because it is a special property that always contain SMI values. Finally, before entering the 

loop, the same process is repeated (I10 to I16) with node object (i.e., the input parameter of 

the function) and the property position is obtained. Moreover, Instructions I17-I21 verifies that 

the Hidden Class of position is the expected (classPosition).  

 

1 findGraphNode = function(node) {     
2  for(var i=0;i<this.length;i++) {         
3   if(this[i].position == node.position) {  
4    return true;  
5   }     
6  }    
7   return false; 
8 } 

Figure 5.7: Example of a JavaScript function. 
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Once the loop is entered, instruction I22 is used to compare the loop control variable, 

i, with the total number of loop iterations (i.e., this.length). If this comparison is equal, then 

the function ends (I23) and the false value is returned, which means that the node has not been 

found in the nodes list. Otherwise the loop body is executed. At the beginning of the loop body, 

a Check Stack operation is performed by instructions I24 and I25, which compare the stack 

pointer (contained in rsp register) with the stack limit value, in order to know whether an 

I1 movq rax, this   // load this 
I2 test rax, 1   // check non-smi 
I3 jz code_deoptimization // check non-smi 
I4 movq r10, nodeList  // check maps 
I5 cmpq (rax-1), r10  // check maps 
I6 jnz code_deoptimization // check maps 
I7 movq rdx,(rax+15)  // load elements array 

I8 movq rbx, (rax+23)  // load elements length 
I9 shrq rbx, 32   // SMI Untag  
I10 movq rcx, (rbp+16)   // load node 
I11 testb rcx, 1   // check non-smi 
I12 jz code_deoptimization  // check non-smi 
I13 movq r10, GraphNode      // check maps 
I14 cmpq (rcx-1), r10  // check maps 
I15 jnz code_deoptimization // check maps 
I16 movq rsi,(rcx+47)  // load node.position 

I17 testb rsi, 1   // check non-smi 
I18 jz code_deoptimization  // check non-smi 
I19 movq r10, classPosition    // check maps 
I20 cmpq (rsi-1), r10  // check maps 
I21 jnz code_deoptimization // check maps 
loop: 
I22 cmpl rdi, rbx    // compare i to this.length 
I23 jge return_false   // node not found: return false 
I24 cmpq rsp, (stack_limit)  // check stack 
I25 jc external_exception  // check stack 
I26 cmpl rbx,rdi   // check bounds 
I27 jna code_deoptimization // check bounds 
I28 movq r8, (rdx+rdi*8)  // load this[i] 
I29 testb r8, 1   // check non-smi 
I30 jz code_deoptimization // check non-smi 
I31 movq r10, GraphNode  // check maps 
I32 cmpq (r8-1), r10   // check maps 
I33 jnz code_deoptimization  // check maps 
I34 movq r9,(r8+47)   // load this[i].position 

I35 testb r9, 1   // check non-smi 
I36 jz code_deoptimization // check non-smi 
I37 movq r10, classPosition // check maps 
I38 cmpq (r9-1), r10   // check maps 
I39 jnz code_deoptimization  // check maps 
I40 cmpq r9,rsi   // compare property position 
I41 jz return_true   // node found: return true 
I42 addl rdi,0x1             // i++ 
I43 jmp loop    // loop back edge 

Figure 5.9: x86-64 optimized code corresponding to findGraphNode function 
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external exception has been produced (i.e., when an external exception occurs, the stack 

pointer is reset to the stack limit value). Then, instructions I26-I27 compare the loop control 

variable i with the elements length, in order to check whether the array position is not out of 

bounds (i.e., Check Bounds operation). After this check, the load access to the corresponding 

i position of elements array is performed by instruction I28. Again, the obtained value is 

verified to contain an address by instructions I29 and I30 (Check Non-SMI) and the Hidden 

Class of the object is compared to the expected one by instructions I31 to I33 (Check Maps). 

If these checks are successful, then the property position is obtained by instruction I34. Again, 

position is checked to belong to the expected Hidden Class, which is performed by instructions 

I35 to I39. Lastly, the property position of this[i] and node variables are compared (I40) and 

if they are equal, the function ends (I41) and the true value is returned, which means that the 

node has been found in the nodes list. Otherwise, the control loop variable is incremented by 

1 (I42) and the next loop iteration is executed (I43). 

5.3 Overheads in the Initial Phase 

 
As stated above, at the beginning of the application, the execution is dominated by the V8 

runtime tasks, the non-optimized code and some helpers. Furthermore, during this initial phase 

the overhead is high. This is due to the time spent in both compilation of the code and 

initialization and warm-up of the Inline Caches. Note that Inline Caching is managed not only 

by the non-optimized code, but also by some compilation tasks and helpers. Moreover, as we 

discussed in section 3.2.2, the most common scenarios for Inline Caching are object property 

loads and object property stores. In this regard, this section analyzes the overhead produced 

by this mechanism in these common scenarios during the initial phases of the application. We 

consider the first iteration of Octane, SunSpider and Kraken applications. For JSBench suite, 

we consider as initial phase the fourth iteration of the applications, as explained in section 5.1. 

Figure 5.10 shows the overhead of Inline Caching for Octane, Kraken and SunSpider 

suites, due to object property accesses. The same results for JSBench suite are showed in 

Figure 5.11. Results are broken down into overheads produced during the optimized code and 

the non-optimized code. It can be seen that this overhead is quite important in practically all 

programs of JSBench and Octane suites, with an average overhead of 23.4% and 16.7% 

respectively. However, for SunSpider and Kraken, this overhead is not very important, due to 

the low amount of non-optimized code and helpers in these initial phases. Moreover, the 
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Figure 5.10: Object property accesses overhead. 
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overhead incurred in the optimized code in these latter suites is also low. Note that although 

the percentage of optimized execution for Kraken is 30%, and the percentage of checking 

operations in the optimized code is also significant, these checks not only target object property 

accesses, but also other common scenarios of the Inline Caching mechanism, such as the 

accesses to object variables that are indexed by a number (i.e., numbered variables). We have 

not considered these other scenarios because the addition of these variables to an object do not 

change the object structure (i.e., the Hidden Class of the object keeps being the same) and 

therefore, the Inline Caches for these scenarios do not reflect the most important issues about 

dynamic typing. These Inline Caches are used to deal with other more specific optimizations, 

such as the efficient access to arrays that contain only one particular type of objects (e. g., SMI 

arrays). 

5.3.1 A Simple Example of a JavaScript Application 

In this section, we illustrate how the Inline Caching mechanism works during the execution of 

the non-optimized code. In Figure 5.12 we show an example of a simple JavaScript 

application, which calculates the total sum of salaries of a university department staff. In lines 
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1-14, we define the Hidden Classes Researcher, Technician and Other, which represent the 

different kind of the staff people. For example, people from PDI have four properties, which 

correspond to their id number, position, number of publications and salary. Note that all kinds 

of staff have the property salary. Then, we create another class that represents all the staff of 

a department (lines 16-26). This class has three properties: the name of the department, the 

people of the department, and a function called calculateTotalSalaries, which is used to 

calculate the total sum of salaries. The body of this function is based on a loop that traverses a 

1 Researcher=function(id,p,n,s){ 
2  this.id=id; 
3  this.position=p; 
4  this.numberOfPublications=n; 
5  this.salary=s 

6 } 
7 Technician=function(id,p,s){ 
8  this.id=id; 
9  this.position=p; 
10  this.salary=s; 
11 } 
12 Other=function(id,s){ 
13  this.id=id; 
14  this.salary=s; 
15 } 
16 departmentStaff=function(name,p){ 
17  this.departmentName=name; 
18  this.people=p; 
19  this.calculateTotalSalaries=function(){ 
20   var total=0; 
21   for(var i = 0; i<this.people.length; i++){ 
22    total=total+this.people[i].salary; 
23   } 
24   return total; 
25  } 
26 } 
27 var g=new Array(9); 
28 g[0]=new Researcher(1,"Phd student",2,900); 
29 g[1]=new Technician(2,"Travel administrator",1300); 
30 g[2]=new Other(3,1200); 
31 g[3]=new Researcher(4,"Postdoc",4,1800); 
32 g[4]=new Researcher(5,"Professor",30,2800); 
33 g[5]=new Researcher(6,"Phd student",1,900); 
34 g[6]=new Technician(7,"Phd administrator",1300); 
35 g[7]=new Researcher(8,"Phd student",3,900); 
36 g[8]=new Other(9,1000); 
37 staff= new departmentStaff("DAC",g) 
38 print(staff.calculateTotalSalaries()); 

Figure 5.10: Example of JavaScript code. 
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list that contains all the people from the department and accumulates their salary on the 

variable total, which is returned at the end of the function. Finally, the main of this program 

creates the objects that represent a particular department staff (lines 27-36) and invokes the 

calculateTotalSalaries function for this department. 

In Figure 5.13, the generated x86-64 optimized code corresponding to the JavaScript 

code line 22 of departmentStaff function from Figure 5.12 is showed. Concretely, we show the 

code corresponding to this.people[i].salary statement. First, the Inline Cache mechanism is 

used to obtain the property people of the object pointed by this. For this purpose, the this 

pointer is obtained from the stack and loaded into the rdx register (I1-I2), which corresponds 

to the first argument of the Inline Cache. Then, the address that contains the “people” string 

object is loaded (I3) into rcx, which is the second argument of the Inline Cache. Finally the 

incline cache is called (I4), which finds a property called “people” inside the this object.  

As second step, instructions I5 to I9 are used to obtain the object corresponding to the 

numbered variable i (i.e. the i-th element from the elements array) of the this.people object. In 

this regard, Instructions I6 and I7 load the control loop variable i into the rcx register and the 

instructions I5 and I8 load the address of this.people into the rdx register. Finally, the Inline 

Cache is called again, which finds the object corresponding to the position i of the elements 

array contained in this.people. 

As last step, instructions I10 to I12 are used to obtain the property salary of the object 

obtained by the previous Inline Cache (i.e., this.people[i] object). For this purpose, the same 

process as in the first step is repeated, but using the string “salary” and the this.people[i] object 

as Inline Cache parameters. 

I1 movq rax, [rbp+16] // load this 
I2 movq rdx, rax  // move this to rdx 
I3 movq rcx, ”people” // load “people” to rcx 
I4 call IC_loadNamed // call to property load Inline Cache 
I5 push rax   // push this.people on stack 
I6 movq rax, [rbp-32]    // load control loop variable i  
I7 movq rcx, rax   // move i to rcx 
I8 Pop rdx   // pop this.people from the stack to rdx 
I9 call IC_loadNumbered // call to numbered variable load Inline  

   Cache 
I10 movq rdx, rax  // move this.people[i] to rdx 
I11 movq rcx, “salary” // load “people” to rcx 
I12 call IC_loadNamed // call to property load Inline Cache 

Figure 5.11: Generated x86-64 optimized code corresponding to the JavaScript code line 23. 
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If we focus on the Inline Cache load scenario of salary property of Figure 5.13, when 

the call instruction I12 is executed for the first time (i.e., in the first loop iteration), the state 

of the Inline Cache is not initialized, which means that no Hidden Class has been profiled yet, 

as shown in Figure 5.14.  

In this state, the Inline Cache branches directly (jump instruction I5, from Figure 5.14) 

to a handler routine that searches the relative position that salary occupies inside this.people[0] 

object, which depends on its Hidden Class Researcher. Then, the value of salary is obtained. 

Finally, the Inline Cache evolves to a monomorphic state, which incorporates the Hidden Class 

Researcher and the relative position (i.e. the offset) that salary occupies inside objects 

belonging to Researcher, in order to accelerate future accesses with the same Hidden Class.  

Figure 5.15 shows the Inline Cache in monomorphic state. Instruction I3 is used to 

obtain the current Hidden Class of the object, which is compared to Researcher (i.e., the 

expected Hidden Class) by instruction I5. If this comparison is successful, then the code 

branches (I6) to specialized code, which obtains the corresponding value of salary in a very 

efficient manner, because the relative position of this property is already known. Otherwise, 

the code branches to the Inline Cache miss handler (I7).  

At the second iteration of the loop of Figure 5.13, the call instruction I12 is patched to 

branch to the new version of the Inline Cache (i.e., the monomorphic state). However, in this 

loop iteration, the Hidden Class of this.people[1] is Technician, which is not registered yet by 

the Inline Cache. Therefore, the code branches to the Inline Cache miss handler, in order to 

obtain the corresponding position of salary for the new Hidden Class. Then, the Inline Cache 

evolves to polymorphic state, which incorporates the two Hidden Classes seen until now (i.e., 

Researcher and Technician), as we can see in Figure 5.16. The polymorphic version is very 

similar to the monomorphic one, but with the addition of instructions I7 to I9, which cover the 

case when the Hidden Class of this.people[i] is Technician. 

At the third iteration of the loop, the call instruction I12 has been patched to branch to 

the new polymorphic state of the Inline Cache. However, now the Hidden Class of 

this.people[2] is Other, which is not registered yet by this Inline Cache. Therefore, the Inline 

Cache of figure 5.16 is extended to incorporate this new Hidden Class, as shown in Figure 

5.17, where instructions I10 to I12 cover this new scenario. Note that for the remaining loop 

iterations, this.people[i] will always belong to one of the three Hidden Classes already profiled 
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by this Inline Cache and therefore, it will never miss again to the property handler. 

 

 

I1 testb rdx,0x1  // check non-smi 
I2 jz miss   // check non-smi 
I3 movq rax,[rdx-1]  // load hidden class of this.people[i] 
I4 movq rbx, Researcher // load pointer to Researcher hidden class 
I5 cmpq rax,[rbx+7]  // hidden class comparison  
I6 jz loadPropertyStub // branch to load property code (fast) 

miss: 
I7 jmp LoadIC_Miss   //jump to load property IC miss handler 

I1 testb rdx,0x1  // check non-smi 
I2 jz miss   // check non-smi 
I3 movq rax,[rdx-1]  // load hidden class of this.people[i] 
I4 movq rbx, Researcher // load pointer to Researcher hidden class 
I5 cmpq rax,[rbx+7]  // hidden class comparison  
I6 jz loadPropertyStub // branch to load property code (fast) 
I7 movq rbx, Technician // load pointer to Technician hidden class 
I8 cmpq rax,[rbx+7]  // hidden class comparison  
I9 jz loadPropertyStub // branch to load property code (fast) 
miss: 
I10 jmp LoadIC_Miss   //jump to load property IC miss handler 

I1 pop rbx 
I2 push rdx // Push this.people[i] 
I3 push rcx // Push “people” 
I4 push rbx 
I5 jmp LoadIC_Miss // Jump to load property IC miss handler 

Figure 5.16: Inline Cache of the property load scenario in polymorphic state. 

Figure 5.14: Inline Cache of the property load scenario in uninitialized state. 

Figure 5.17: Inline Cache of the property load scenario in polymorphic state. 

Figure 5.15: Inline Cache of the property load scenario in monomorphic state. 

I1 testb rdx,0x1  // check non-smi 
I2 jz miss   // check non-smi 
I3 movq rax,[rdx-1]  // load hidden class of this.people[i] 
I4 movq rbx, Researcher // load pointer to Researcher hidden class 
I5 cmpq rax,[rbx+7]  // hidden class comparison  
I6 jz loadPropertyStub // branch to load property code (fast) 
I7 movq rbx, Technician // load pointer to Technician hidden class 
I8 cmpq rax,[rbx+7]  // hidden class comparison  
I9 jz loadPropertyStub // branch to load property code (fast) 
I10 movq rbx, Other  // load pointer to Other hidden class 
I11 cmpq rax,[rbx+7]  // hidden class comparison  
I12 jz loadPropertyStub // branch to load property code (fast) 
miss: 
I13 jmp LoadIC_Miss   //jump to load property IC miss handler 
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Chapter 6 
 

 

 

Fusion of Common Instructions Patterns 

 

In JavaScript long-running, compute-intensive applications, the execution time is dominated 

by specialized code. Although this code is similar to the code produced by other compilers 

tailored to statically typed languages, it incorporates important inefficiencies, mainly due to 

the checking of some assumptions. In this chapter, we propose some techniques to reduce the 

impact of these overheads.  

6.1 Introduction 

JavaScript applications are dynamically typed and therefore, object types cannot be inferred at 

compile time because variables of these applications (including all the object variables) can 

change their type at any time. In order to deal with this issue, modern JavaScript compilers 

perform a dynamic profiling of the types of objects. Then, the code is optimized and 

specialized with the information collected. Moreover, some checking operations and 

tagging/untagging operations are inserted to this specialized code, in order to check the 

assumptions about object types. It represents an important overhead, as we saw in chapter 5. 

The objective of this chapter is to reduce the overhead of checking and 

tagging/untagging operations. In this regard, we propose three HW/SW optimizations that 

reduce the dynamic instruction count and number of cycles for the most common instruction 

patterns used for checks and tagging/untagging operations. These optimizations require new 

ISA instructions and some software changes in V8. 

There are few works in the literature that reduce these overheads using a HW/SW 

approach. The most relevant one [47] introduces automatic checking of types of objects, in 

order to reduce the overhead of these checks. However, that work only deals with checks that 

target property accesses. The technique presented in this chapter, addresses all types of 

checking operations, which have been analyzed in Chapter 5. Furthermore, it also improves 



48 

the performance of some other patterns of instructions, such as the SMI Untag operations. 

In the rest of the chapter we first motivate our proposal. Next, the proposed technique 

is presented and lastly, the results are shown and discussed. 

6.2 Motivation 

In Figure 6.1, we show the overheads related to checks and tagging/untagging operations, 

which were quantified in section 5.2. These overheads represent 25.4% of the total dynamic 

instructions for long-running, compute intensive applications. If we take into account only the 

optimized code, these overheads represent 37.4% of the total dynamic instructions, which is a 

very important fraction of the total activity.  

We have observed that most of these operations follow the same pattern of machine 

instructions. The most common patterns consist of the execution of two or three instructions 

that verify that a particular assumption is correct and a branch to deoptimization code when 

the assumption is not fulfilled. The most frequent checking operation is Check Maps, which 

usually executes the pattern of three x86-64 instructions showed in Figure 6.2a. The first 

instruction is a move, which is used to load the expected Hidden Class to register regA. The 

second instruction is a cmp, in order to compare the expected Hidden Class with the Hidden 

Class of the current object, which is contained in regB. Finally, the third instruction branches 

to a deoptimization code, in case that the comparison is not equal. Another example of these 

patterns is showed in Figure 6.2b, which corresponds to the Check Non-SMI operation. In this 

example, two x86-64 instructions are executed. The first one is a test instruction, which is used 

to check whether the last bit of the register regA is set to 1, which means that the register 

contains the address of an object, instead of a SMI. The second instruction is a branch 

instruction, which branches to code deoptimization, in case that the register contains a SMI. 

Figure 6.2c shows the two-instruction sequence for a Check Stack operation. The first 

instruction compares the stack pointer with the stack limit, which is contained in the memory 

position pointed by (regA + imm). If the stack pointer is below the stack limit, then the code 

branches to an exception routine, instead to deoptimization of the code. 

The instructions used to verify math assumptions follow patterns similar to checking 

operations. However, these patterns do not perform any comparison or testing before 

branching to deoptimization code. Instead, the branch to deoptimization is based on the 
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outcome of an arithmetic or a logical instruction. In Figure 6.2d, we show an example of a 

math assumption scenario, which consists on a 32-bit addition (I1) between a SMI value 

contained in a register (regA) and an immediate value (imm). For the rest of the execution, V8 

assumes that the resulting value is also a SMI value, which needs less costly tagging/untagging 

operations, compared to non-SMI numbers. However, this fact has to be validated by 

Instruction I2, which branches to code deoptimization, in case that the result overflows (i.e., 

the result needs more than 32 bits for its representation, which means that it is not a SMI value). 

Regarding tagging/untagging operations, the most common instruction pattern 

corresponds to the SMI Untag operation, which is shown in Figure 6.2e. In this case, the first 

two instructions check whether the register regA contains a SMI (i.e., Check SMI operation). 

If so, a 32-bit shift right operation is performed, in order to untag the SMI value contained in 

regA. Otherwise, the code is deoptimized. 

Finally, we have detected other frequently executed instructions patterns, which are 

composed of various checking operations. The most common one is a Check Non-SMI 

followed by a Check Maps, as shown in Figure 6.2f. 

In conclusion, there is a great opportunity to improve the performance of JavaScript 

platforms by reducing the latency and number of instructions used to perform the overhead 

operations described above. 

6.3 Optimization of Common Instructions Patterns 

Below we present three proposed HW/SW optimizations that target the patterns described in 

the previous section. In this regard, we extend the ISA with new x86-64 instructions and we 

describe the required hardware to implement these new instructions. 

6.3.1 HW Exception Mechanism 

We have observed that when the code may branch to deoptimization code (due to math 

assumptions and checking operations, with the exception of Check Stack, as described in 

Section 3.2.4.2), in the vast majority of cases (almost 100%) the code is not deoptimized. Every 

time the optimized code is checked to potentially deoptimize it, two instructions are used. The 

first one is an instruction that changes a flag. This instruction is usually a test or a cmp 

instruction, but can also be an arithmetic or a logical instruction, such as the add instruction of  
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Figure 6.1: Overhead produced by Checking operations, tagging/untagging operations and Math 

Assumptions. 
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I1 mov regA, expected_type // load expected type 

I2 cmp (regB-1), regA  // compare expected type with  

   the type of the object 

I3 jnz deoptimization bailout // if not equal, branch to  

   deoptimization 

 

a) Check Maps. 
 

 

I1 test regA, 1   // test last bit of the object 
I2  jz deoptimization bailout // if it is not set to 1, branch to  

   deoptimization 

 

b) Check Non-SMI. 
 

 

I1 cmp rsp, (regA+imm)  // stack pointer with stack limit 
I2 jc external exception  // if stack pointer is below stack  

   limit, branch to external    

   exception 

 

c) Check Stack. 
 

 
I1 add regA,imm32   // add immediate to regA 

I2 jo deoptimization bailout // if the result overflows, branch  

   to deoptimization 

 

d) Integer Addition. 
 

 

I1 test regA, 1   // test the last bit 
I2 jnz deoptimization bailout // if it is not set to 1, branch to  

   deoptimization 

I3 shr regA, 32    // perform shift right 32-bits  

   displacement 

 

e) SMI Untag. 
 

 

I1 test  regA, 1   // test last bit of the object 
I2 jz deoptimization bailout // if it is not set to 1, deoptimize 

I3 mov regB, expected_type // load expected type 

I4 cmp (regA-1), regB  // compare expected type with object  

   type 
I5 jnz deoptimization bailout // if not equal, branch to  

   deoptimization 

 

f) Check Non-SMI and Check Maps 

Figure 6.2: Instructions patterns for checking operations, tagging/untagging operations and math 

assumptions. 
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Figure 6.2e. The second one is a conditional branch to a deoptimization bailout depending on 

the flag. 

Our proposal is to replace these two instructions by a new one. This new instruction 

performs a scalar operation (test, cmp, add, etc.) and checks the resulting value of a specific 

flag. Moreover, this instruction can throw a HW exception according to the encoded specific 

flag. Therefore, branch prediction is not needed and whenever the code is not deoptimized, 

less dynamic instructions are executed. If the code has to be deoptimized, a hardware exception 

is thrown. This exception is intercepted by a handler in the V8 runtime and executes a special 

routine, which finds the action to do according to the current program counter. This action is a 

jump to an address that targets a specific deoptimization bailout. The overhead of this lookup 

is negligible compared with the deoptimization routine itself. 

The new x86-64 instructions that we have introduced to allow the implementation of 

this optimization are described in Appendix A. Note that the third argument of these new 

instructions corresponds to the flag to be checked and the fourth argument indicates the 

expected value for that flag (0 or 1), in order not to throw a HW exception. 

In Figures 6.3, 6.4 and 6.5, we show three examples of these optimizations, which 

correspond to the instructions patterns showed in Figures 6.2a, 6.2b and 6.3d, respectively. We 

show the changes at x86-64 and microinstruction level. Note that each microinstruction is 

numbered according to the x86-64 instruction that it belongs to. 

 

Figure 6.3: HW Exception mechanism improvement for Check Maps. 
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Figure 6.4: HW Exception mechanism improvement for Check Non-SMI. 

 

Figure 6.5: HW Exception mechanism improvement for Integer Addition. 

We can use the same exception mechanism to optimize the Check Stack pattern. This 

check uses the same routine as the deoptimization bailout to find the action to do. However, in 

this case, the action is a call that interrupts the program because an external exception has 

taken place, as explained in section 3.2.4.2. Figure 6.6 illustrates this optimization at 

instruction and microinstruction level. 

 

Figure 6.6: HW Exception mechanism improvement for Check Stack. 

Figure 6.7 outlines the required hardware support for this mechanism. A mux is added 

in the execute stage to select the flag to check, which is compared with the expected value. 

The result of this comparison is saved in the exception bit. If this bit is set, a HW exception 
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will be thrown at the commit stage. Note that the Hardware support for this optimization is 

very simple and, in addition, the critical path is not affected, because the result is not needed 

until the commit stage. 

These optimizations can also be applied to other common JavaScript engines and other 

dynamically typed languages. For instance, SpiderMonkey [45] and Nitro [63] introduce a 

guard just before unboxing an object, in order to ensure that the specific type of the object is 

the expected one. This guard also consists of a comparison and a subsequent conditional jump 

to a bailout that can be optimized in the same way as shown for V8. These guards are also used 

for other type of assumptions (e.g., arithmetic assumptions). 

 

Figure 6.7: Block diagram for the HW Exception mechanism. 

6.3.2 SMI Untag Pattern 

As commented in section 6.2, SMI Untag operations follow a very common pattern of 

instructions for tagging/untagging. These operations are necessary when SMI integer values 

need to be unboxed. As shown in section 5.2, they represent 5% of the dynamic instructions 

for SunSpider on average, and can reach up to 9% for some benchmarks.  

The optimization that we propose for the SMI Untag instruction pattern of Figure 6.2e 

is based on replacing three x86-64 instructions by a new single one, which is called xehtestshr. 

This new instruction shifts the value of the register at the same time that checks whether the 

value is a SMI. If it is not, an exception is raised. Figure 6.8 presents the code and micro code 

for the SMI Untag pattern before and after applying this optimization. 
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Figure 6.8: SMI Untag pattern improvement. 

Figure 6.9 presents a block diagram of the hardware required to support the xehtestshift 

instruction, which is an extension of the scheme of Figure 6.7. Note that another mux is 

introduced to select between the flag indicated by the previous optimization and the least-

significant bit, which indicates whether the value is a SMI. In this case, the least-significant 

bit is compared to 0 (i.e. because the last bit of a SMI is cleared) and the result of this 

comparison is saved in the exception bit. If this bit is set, then a HW exception will be thrown 

at the commit stage. Note that both the negate bit, the flag selector and the optimization mode 

selector bit of Figure 6.9 are directly codified in the xehtestshift instruction, instead of as a 

source operands. 

Both Nitro and IonMonkey encode the integer tag into the most significant part of the 

64 bit register. This optimization could be easily adapted for them. 

 

Figure 6.9: Block diagram for the SMI Untag pattern optimization 

 

 

 

Figure 6.8: SMI Untag pattern improvement. 
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6.3.3 Check Non-SMI and Check Maps Pattern 

As explained in section 6.2, there are sequences of different checking operations that are very 

frequent. The most repeated of these patterns is a Check Non-SMI followed by a Check Map 

operation, so in this section we present an optimization for it. 

The optimization that we propose consists of replacing the instructions I1, I2, I4 and I5 

by a new single instruction called xehtestcmp, as we can see in the upper part of Figure 6.10. 

The optimized instruction sequence consists of the mov instruction I3, followed by the 

xehtestcmp instruction. This new instruction has two source operands: the first one is a register 

that contains an object address. The second is a register that contains the expected Hidden 

Class identifier (type) of the object pointed by the first operand.  

The bottom part of Figure 6.10 shows this optimization at microinstruction level. We 

can see that the x86-64 xehtestcmp instruction is cracked into three microinstructions. The first 

one (µ-xehtestsub) checks whether the address of the object is not a SMI, at the same time that 

calculates the effective address of its first memory position, which contains the Hidden Class 

identifier. If the address is a SMI, then a HW exception is raised. Note that the hardware 

mechanism for µ-xehtestsub is very similar to the mechanism described above for µ-xehtestshr. 

However, µ-xehtestsub microinstruction decrements the value contained in the source register 

regA, instead of performing a shift right operation. 

The second microinstruction (µ-load) performs a memory load operation using the 

effective address stored in reg_tempA. Finally, the third microinstruction (µ-xehcmp) is the 

same used for the mechanism described in section 6.3.1. This instruction raises and exception 

in case that the values stored in reg_tempB and regB are not equal. In this way, the number of 

dynamic x86-64 instructions for Check Non-SMI and Check Map pattern is reduced from five 

to two and the number of microinstructions is reduced from seven to four, as showed in Figure 

6.10. 

As Both Nitro and IonMonkey encode the integer tag in the same way as the other object 

types, they do not need to use this optimization. They simply need to perform a single check 

for the expected type of the object. 
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Figure 6.10: Check Non-SMI and Check Maps pattern improvement. 

6.4 An Example of the Proposed Optimizations 

As example, Figure 6.11 shows the new x86-64 code for the example described in section 

5.2.3, before and after applying our optimizations. The bold Instructions of the left part of this 

Figure correspond to the instructions patterns optimized in this example. The right part of this 

Figure shows the resulting code after applying our optimizations, which are also in bold.  

Note that Instructions I2-I6, I11-I15, I17-I21, I29-I33 and I35-I39 correspond to the 

Check Non-SMI and Check Map pattern and instructions I24-I25 and I26-I27 correspond to a 

Check Stack and Check bounds operations, respectively. The code of the outer loop is reduced 

from 21 to 12 x86-64 dynamic instructions, whereas the code of the inner loop is reduced from 

22 to 14 x86-64 dynamic instructions. 

6.5 Performance Evaluation 

Below we present the performance of the proposed optimizations using Octane, Kraken and 

SunSpider benchmark suites. As in section 5.2, the results are reported for the tenth iteration, 

in order to focus on the steady state of the applications. 

6.5.1 Dynamic Instruction Count Improvements 

We have measured the reduction in instruction count through instrumentalization of the V8 

engine. In this regard, we have inserted additional assembler code to the V8 runtime, in order 

to identify the instructions patterns that our mechanism optimizes. Then, we have quantified 

the number of removed x86-64 dynamic instructions in these patterns. On the other hand, the 

number of total dynamic instructions has been obtained using Pin [16].  
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Figure 6.12 shows the results for the three benchmark suites. Overall the proposed 

techniques achieve an 11.2% dynamic instruction reduction for the whole application and 

17.3% reduction for optimized code. All three suites get an important improvement from the 

HW Exception mechanism optimization because it targets all kinds of check operations. On 

the other hand, most benchmarks from Octane execute an important amount of Check Non-

SMI and Check Map patterns so they significantly benefit from our optimization. Finally, 

controlflow-recursive and bitops-bitwise-and benchmarks, from SunSpider, and Richards and 

Crypto, from Octane, benefit a lot from our SMI Untag pattern optimization, which reduces to 

two thirds the total dynamic instructions used for these operations. 

Figure 6.11: Example of the proposed optimizations. 
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6.5.2 Cycle Count Improvements 

In this section we analyze the execution time improvements of our technique using the Sniper 

simulator [58]. For this purpose, each benchmark was previously executed nine times for the 

warm up phase (mandreel and typescript are not included since they crash in our simulation 

environment) and statistics were taken from the tenth execution. We have extended Sniper with 

the ability to detect the patterns mentioned above. Then, for each of these patterns, we have 
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Figure 6.12: Improvement in dynamic instructions. 
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obtained the number of cycles that the removed instructions (and corresponding 

microinstructions) take for their execution, in order to subtract this number from the total 

cycles of the entire simulation. 

Figure 6.13 presents the speedups for the three benchmark suites. Overall the proposed 

techniques achieve a 6.2% cycle count reduction for the whole application and 9% for 

optimized code. Regarding the whole application, the speedups achieved by the three suites 

are approximately half the dynamic instruction count reduction results showed in the previous 

section. This is basically due to two main reasons. On the one hand, the instructions that we 

are removing belong to checking operations, which usually are not in the critical path of the 

applications. They consist basically of either a compare instruction or an arithmetic instruction 

that is followed by a branch that rarely is taken and thus, the branch predictor for these cases 

is very accurate. Therefore, as long as there are enough resources, these instructions do not 

suppose a main bottleneck for the application.  

Besides, the kind of instructions that we are removing in our optimizations are cracked 

into only one microinstruction whereas the new x86-64 instructions need more than one 

microinstruction for their execution. 

6.5.3 Energy Consumption 

Figure 6.14 shows the energy savings of our technique for the three benchmark suites, which 

are measured through the McPAT simulator [53]. Energy consumption is reduced by 3.9% on 

average for the whole application and 5.7% for optimized code. These savings correlate with 

the reduction of execution time (which results in less leakage energy) and number of executed 

instructions (which results in less dynamic energy). 

6.6 Conclusions 

The analysis performed in section 5.2 showed that around 25% of the overhead produced in a 

steady state execution of representative benchmarks is due to checking, tagging/untagging and 

math assumptions operations. In addition, we have found that most of these operations follow 

the same pattern of instructions. In this regard, three optimizations are proposed in this chapter, 

in order to reduce the dynamic instruction count and number of cycles due to these patterns, 

which represent an important fraction of the quantified overhead. These optimizations are 
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based on a hybrid HW/SW approach that requires the introduction of some new machine 

instructions, some additional hardware support and some changes in the code generated by the 

dynamic compiler.   

We have shown that these optimizations result in an average 6.2% speedup and 3.9% 

reduction in energy consumption for representative benchmarks. Although the techniques are 

implemented on V8 JavaScript engine, these optimizations can be extended to other engines 

for dynamically typed languages using similar type profiling mechanisms. 

0

5

10

15

20

25

b
o

x2
d

co
d

e-
lo

ad
cr

yp
to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r
gb

em
u

m
an

d
re

el
n

av
ie

r-
st

o
ke

s
p

d
fj

s
ra

yt
ra

ce
re

ge
xp

ri
ch

ar
d

s
sp

la
y

ty
p

es
cr

ip
t

zl
ib

O
ct

an
e 

av
er

ag
e

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft
au

d
io

-f
ft

au
d

io
-o

sc
ill

at
o

r
im

ag
in

g-
d

ar
kr

o
o

m
im

ag
in

g-
d

es
at

u
ra

te
im

ag
in

g-
ga

u
ss

ia
n

-b
lu

r
js

o
n

-p
ar

se
-f

in
an

ci
al

js
o

n
-s

tr
in

gi
fy

-t
in

d
er

b
o

x
st

an
fo

rd
-c

ry
p

to
-a

es
st

an
fo

rd
-c

ry
p

to
-c

cm
st

an
fo

rd
-c

ry
p

to
-p

b
kd

f2
st
an

fo
rd
-c
ry
p
to
-s
h
a2

5
6
-…

K
ra

ke
n

 a
ve

ra
ge

Sp
e

e
d

u
p

 (
%

)

0

5

10

15

20

25

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

ec
u

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
p

ar
b

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

Whole application Optimized Code

Sp
e

e
d

u
p

 (
%

)

Figure 6.13: Improvement in number of cycles. 
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Figure 6.14: Improvement in energy consumption. 
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Chapter 7 
 

 

 

The Class Cache Mechanism 

 

In this chapter, we present the Class Cache, a HW/SW hybrid mechanism that allows the 

removal of checking operations executed in the optimized code by performing a HW profiling 

of the types of object properties and objects contained in the elements arrays. As explained in 

chapter 3, the elements array is an internal array owned by each object, which contains all the 

variables of an object that are indexed by a number. Note that this technique takes a different 

approach than the optimizations presented in the previous chapter. Before, we improved 

performance by reducing the dynamic instruction count of these checking operations, while 

now we are removing the checks completely. Both kinds of techniques are complementary and 

can be implemented together. 

7.1 Introduction 

The main characteristic of dynamically typed languages such as JavaScript is that variables 

are neither declared nor bound to a particular type, and their types may change during the 

execution. Compilers usually make some assumptions about the types of the variables, in order 

to generate specialized code, which is significantly more efficient than a generic one. These 

assumptions are based on some dynamically profiled information collected previously by the 

runtime. This collected information consists of the object types seen in particular static points 

of the program. However, these assumptions need a verification mechanism that introduces 

some overhead to this specialized code. The operations used by this verification mechanism 

are referred to as checking operations. For long-running, compute-intensive applications in 

which the execution is dominated by specialized code, the overhead produced by checking 

operations is significant.  

Although the assumptions verified by checking operations are fulfilled most of the time, 

they are not removed either because the compiler cannot ensure that the types will not change 

during the program execution or because the time spent on an exhaustive dynamic analysis of 
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the application would not compensate the gains of removing some unnecessary checking 

operations. 

In order to improve this part in an effective way, we propose a HW/SW technique that 

allows the removal of some checking operations in a safe and efficient manner. The basic idea 

of this technique is that object properties and elements arrays that always contain objects with 

the same type do not need to be type checked. We refer to them as monomorphic properties or 

monomorphic elements arrays. Our technique keeps this information at Hidden Class 

granularity, which means that it tracks which properties or elements arrays of every Hidden 

Class are monomorphic. This information is tracked by a new hardware structure called the 

Class Cache, which is located next to the L1 data cache.  

Once these monomorphic properties or monomorphic elements arrays are identified, 

the information is passed to the compiler, which can use it to remove some checking operations 

assuming that the type of these properties will never change. In order to verify these 

assumptions, when a store that writes a monomorphic property or a monomorphic elements 

array is executed, the Memory Unit sends a request to the Class Cache indicating the type of 

the object to be stored. If this type is different to the one observed in the past, then the 

corresponding property or elements array will no longer be considered as monomorphic. In 

addition, if any optimization (i.e., the removal of any checking operation) has been previously 

performed considering this property or elements array as monomorphic, then a HW exception 

is triggered. This exception is captured by the runtime, which recompiles all the affected 

functions (i.e., deoptimizes them to a version that does not consider that property or elements 

array as monomorphic). 

In the rest of this chapter, we first explain the reasons that have motivated us to devise 

the proposed mechanism. Next, we present the design and functionality of the technique and 

then, we describe the optimizations that make use of it. Finally, we provide a performance 

evaluation of these optimizations. 

7.2 Motivation 

We have observed that in a significant fraction of the benchmarks, the main source of overhead 

comes from checking operations of objects obtained from properties or elements arrays. In 

Figure 7.1 we quantify this overhead for both the whole application and optimized code. Note 
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that we also include part of the overhead of untagging operations, which corresponds to the 

checking operations needed before unboxing a value.  

We can see that about half of the total benchmarks present a zero overhead. One of the 

major reasons for this is that some of them do not exploit the object-oriented paradigm of 

JavaScript and therefore, they do not perform many dynamic object accesses. Another 

important reason is that although some of these benchmarks perform a significant number of 

object accesses, they do not require any type checks after these accesses because they use built-

in JavaScript objects for their computations. Note that most of the properties from built-in 

objects are either read-only or type specific (e.g., Float64Array objects) and therefore, they do 

not require any type check after they have been obtained. Finally, there are a few number of 

benchmarks that still are spending a significant fraction of the time in non-optimized code 

(e.g., string-base64 benchmark, from SunSpider suite), which does not suffer from the 

overheads targeted in this section. For the rest of this chapter, in order to evaluate the impact 

of these particular checking operations, we have selected the benchmarks with more than 1% 

overhead, which represent 27 out of the 54 benchmarks. In this regard, we have averaged the 

benchmarks suites of Figure 7.1 only for these selected benchmarks. We can see that these 

overheads represent 10.7% of the total dynamic instructions. Furthermore, if we take into 

account only the optimized code, these overheads represent 15.9% of the total dynamic 

instructions, which is quite significant. 

On the other hand, we have observed that most of the type checks quantified in Figure 

7.1 are performed over monomorphic properties or monomorphic elements arrays (i.e., those 

that stay with the same type throughout the whole execution of the program). We have 

quantified that 66% of the object load accesses target either monomorphic properties or 

monomorphic elements arrays, as showed in Figure 7.2. Lastly, we have also observed that 

many checking operations target these object load accesses. Therefore, the key idea behind our 

technique is that these checking operations can be removed as long as the monomorphism of 

the variables is preserved during the execution of the program. 

Finally, we have also observed that programs normally use a limited number of Hidden 

Classes and these classes tend to remain constant. Our analysis of representative workloads 

reveals that the number of Hidden Classes is relatively small in almost all benchmarks: they 

all use up to 32 Hidden Classes excepting box2d and raytrace, from Octane, as we can see in 
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Figure 7.3. Therefore, the hardware structure (i.e., the Class Cache) that we use to keep the 

Hidden Class information about monomorphic properties or monomorphic elements arrays 

does not have important storage requirements. 

 

 

Figure 7.1: Overhead produced by checking and untagging operations after performing object load 

accesses of properties and elements arrays. 

0

5

10

15

20

25

30

35

40

45

b
o

x2
d

co
d

e-
lo

ad

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el

n
av

ie
r-

st
o

ke
s

p
d

fj
s

ra
yt

ra
ce

re
ge

xp

ri
ch

ar
d

s

sp
la

y

zl
ib

O
ct

an
e 

av
er

ag
e

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft

au
d

io
-f

ft

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

d
ar

kr
o

o
m

im
ag

in
g-

d
es

at
u

ra
te

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

js
o

n
-p

ar
se

-f
in

an
ci

al

js
o

n
-s

tr
in

gi
fy

-t
in

d
er

b
o

x

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd
-c
ry
p
to
-s
h
a2

5
6
-…

K
ra

ke
n

 a
ve

ra
ge

D
yn

am
ic

 In
st

ru
ct

io
n

s
(%

)

0

5

10

15

20

25

30

35

40

45

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

ec
u

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
p

ar
b

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

Whole application Optimized code

D
yn

am
ic

 In
st

ru
ct

io
n

s
(%

)



67 

 

Figure 7.2: Object load accesses to monomorphic properties and monomorphic elements arrays. 

 

Figure 7.3: Number of different Hidden Classes used for each benchmark. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
o

x2
d

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el

p
d

fj
s

ra
yt

ra
ce

ri
ch

ar
d

s

O
ct

an
e 

av
er

ag
e

3
d

-c
u

b
e

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

cr
yp

to
-a

es

d
at

e-
fo

rm
at

-t
o

ft
e

m
at

h
-s

p
ec

tr
al

-n
o

rm

st
ri

n
g-

u
n

p
ac

k-
co

d
e

Su
n

Sp
id

er
 a

ve
ra

ge

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd

-c
ry

p
to

-s
h

a2
5

6
-i

te
ra

ti
ve

K
ra

ke
n

 a
ve

ra
ge

O
b

je
ct

 lo
ad

 a
cc

e
ss

e
s 

(%
)

monomorphic  properties monomorphic  array elements
no monomorphic  properties no monomorphic  array elements

0

20

40

60

80

100

120

140

b
o

x2
d

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el

p
d

fj
s

ra
yt

ra
ce

ri
ch

ar
d

s

O
ct

an
e 

av
er

ag
e

3
d

-c
u

b
e

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

cr
yp

to
-a

es

d
at

e-
fo

rm
at

-t
o

ft
e

m
at

h
-s

p
ec

tr
al

-n
o

rm

st
ri

n
g-

u
n

p
ac

k-
co

d
e

Su
n

Sp
id

er
 a

ve
ra

ge

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd
-c
ry
p
to
-s
h
a2

5
6
-…

K
ra

ke
n

 a
ve

ra
ge

N
u

m
b

e
r 

o
f 

H
id

d
e

n
 C

la
ss

e
s



68 

7.3 The Class Cache Mechanism 

The Class Cache mechanism is based on a small, special new HW/SW structure that keeps 

information about monomorphic properties and monomorphic elements arrays at Hidden Class 

level. In other words, it stores which properties and elements arrays have the same type (i.e. a 

particular Hidden Class or SMI) for all the objects of the same Hidden Class during the 

execution of a program. This structure collects information during the execution of the code 

produced by the Full Codegen compiler (i.e., non-optimized code). This information is used 

to perform the optimizations in the code produced by Crankshaft compiler (i.e. optimized 

code). Then, this structure is accessed to verify the assumptions about monomorphic properties 

and monomorphic elements arrays. In this regard, the class properties’ information is read on 

demand when a store that targets an object property is executed. Similarly, the class elements 

array’ information is read on demand when a store that targets an elements array is executed. 

On the other hand, a new entry is stored in this structure every time that a property of a 

new Hidden Class (i.e., a Hidden Class that is not yet present in the structure) is written for the 

first time. Below we explain in detail the new structures used for this mechanism and how 

these two phases, profiling and optimization, work. 

7.3.1 The New Structures 

In this section, we present the software and hardware components used for the Class Cache 

mechanism. 

7.3.1.1 The Class List 

The runtime maintains a software structure that we call the Class List, which stores the object 

types of the monomorphic properties and monomorphic elements arrays for each Hidden Class 

of the JavaScript application. As we outlined in Section 3.2.1, the V8 engine creates these 

Hidden Classes dynamically as objects are constructed. For each Hidden Class, the Class List 

contains as many entries as cache lines the objects belonging to this class occupy (one is 

enough most of the time as we will show later). Note that for each 64-byte cache line, there 

are up to seven 8-byte properties, because the first 8-byte word contains the identifier for the 

Hidden Class along with the corresponding relative cache line position. For each entry, it 

contains the following information. 
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 ClassID, Line: The identifier of the Hidden Class together with the relative cache 

line that this entry represents. As commented above, each entry represents up to 

seven properties of the object. Note that these identifiers are not the same that the 

ones used by V8, which need 48 bits for their representation because they are 

memory addresses of the Hidden Class descriptors. Instead, the identifiers for the 

Hidden Classes that we use are consecutive numbers, which allow us to represent 

them with only 8 bits. On the other hand, the Line attribute is represented with 8 

bits. Note that the Class List occupies only 2^16 entries, which are located together 

in the same memory region. As special case, the SMI type is encoded as 11111111. 

 InitMap: An 8-bit map that indicates for each property of the entry whether it has 

been initialized in any object. This bitmap is initialized to zeros, indicating that no 

property has been initialized so far. Note that each bit represents a different 

property, so only the 7 least-significant bits are used in practice. 

 ValidMap: An 8-bit map that indicates for each property of the entry whether this 

is monomorphic so far.  As with InitMap field, each bit represents a property of the 

object. This bitmap is initialized to 11111111, indicating that all properties are 

monomorphic.  Note that the first time that a type is profiled for a particular 

property, the corresponding bit of the InitMap field is set to 1. Then, if the type of 

that property differs from the profiled one, the corresponding bit of the ValidMap 

field is set to 0 and this will never be set to 1 again.  

 SpeculateMAP: A bit map that indicates for each property whether a speculative 

optimization that depends on this property has been applied by the Crankshaft 

compiler. This field is initialized to zeros, indicating that no speculation has been 

applied yet. 

 Prop1 … Prop7: Seven 1-byte fields that contains the ClassIDs that are profiled 

for each property of the entry. As special case, the Prop2 field of the first line of 

each object contains the ClassID that has been profiled for the objects contained in 

the elements array, as long as all the objects contained in this array have been 

profiled with one single ClassID. 

 FunctionList: For each property, the list of functions that have been speculatively 

optimized based on this property. 
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In Table 7.1 we show an example of a Class List, which contains two Hidden Classes: 

NodeList and GraphNode. GraphNode occupies two cache lines because it has 9 properties. 

In the first cache line, the InitMap field indicates that all the properties have been initialized 

for that line and therefore, Prop1 to Prop7 fields contain the profiled ClassID for each property. 

Note also that the ValidMap field indicates that all the ClassIDs profiled for each property are 

valid (i.e., monomorphic), which means that they can be used for our optimizations. Moreover, 

findGraphNode function has been speculatively optimized assuming that the sixth (position) 

property is monomorphic, and its type is classPosition Hidden Class, according to the profiling 

data. The two properties contained in the second cache line have not been used to optimize 

any function, despite the fact that both properties are valid and initialized. 

NodeList objects occupy only one cache line because they contain four properties. In 

Table 7.1, all the properties of this Hidden Class have been initialized and are considered valid. 

Note also that the second property of this Hidden Class has been used to speculatively optimize 

findGraphNode function. As commented above, this is a special property that contains the 

elements array pointer of the object. Therefore, the Hidden Class profiled for this property 

(i.e., GraphNode) corresponds to the type of the objects contained in the elements array of 

NodeList. 

ClassID, 

Line 

InitMap ValidMap Speculate

Map 

  

Prop1 Prop2 … Prop6 … FunctionList 

(property: list 

of functions) 

GraphNode, 

1 

01111111 11111111 00000010 …. …. … classPosition … 6th property 

(position): 

findGraphNode 

GraphNode, 

2 

01100000 11111111 00000000 …. …. … …. … --- 

NodeList,  

1 

01111000 11111111 00100000 …. GraphNode … …. … 2nd property 

(elements 

array): 

findGraphNode 

… …  … …. …. … …. … … 

Table 7.1: Class List Structure. 

Besides, there is a special register that has a pointer to this Class List in memory, in a 

similar way that there is a special register that points to the memory translation table. Note that 

the Class List entries are together in the same 1 MB memory region (i.e., 16 bytes reserved for 

each entry) and therefore, all the entries are indexed by adding to this special register the 

resulting value of concatenating the ClassID and the Line number attributes. 
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7.3.1.2 New Machine Instructions 

The compiler (both Full Codegen and Crankshaft) identifies which stores can affect objects 

and they are encoded with a new different opcode through two new instruction called 

movStoreClassCache and movStoreClassCacheArray. The former is used for stores that target 

object properties and the latter is used for stores to the elements array of an object. These 

instructions are similar to a mov x86-64 instruction, but in addition to the L1 data cache write, 

they perform a request to the Class Cache in parallel. 

Besides these instructions, two more new instructions are required by our mechanism, 

which are called movClassID and movClassIDArray. The former loads the ClassID of an 

object to a special 8-byte register called regObjectClassId. If the object is a SMI (i.e. the least-

significant bit of the register that represents the object is 0), the corresponding ClassID value 

for SMI’s (i.e., 11111111) is directly loaded to regObjectClassId. Otherwise, since the register 

that represents the object contains the memory address where the object resides, the ClassID 

is obtained from the first 8-byte word of this location. Note that this register will be used by 

both movStoreClassCache and movStoreClassCacheArray instructions. The latter works 

similar to the former, but instead of loading the ClassID to the regObjectClassId special 

register, it is loaded to a specified register among an additional set of four special 8-byte 

registers called regArrayObjectClassId0-3. Note that these registers will be consumed only by 

movStoreClassCacheArray instructions, which need a source operand (i.e., regArray) to 

indicate which of the four registers they use. 

 Appendix B details the mnemonics of these new instructions. Note that identifying 

these object stores is straightforward for the dynamic compiler, since it knows the semantics 

of the code being generated. 

7.3.1.3 The Class Cache 

The Class Cache is a cache of the Class List, in a similar way as the TLB is a cache of the Page 

Table. When a special store that writes to an object property or an elements array (i.e., a 

movStoreClassCache or an movStoreClassCacheArray instruction) is executed, the Memory 

Unit sends a request to the Class Cache that includes the ClassID of the Hidden Class that 

contains that property or array, the relative cache line (0 in case of a movStoreClassCacheArray 

instruction), the position of the property that is written (2 in case of a 
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movStoreClassCacheArray instruction) and the ClassID of the object to be stored. 

In Figure 7.4 we depict a Class Cache request for a movStoreClassCache instruction. 

Note that in V8, the first 8-byte word of the first cache line of an object contains its Hidden 

Class identifier, which occupies the 48 least-significant bits. Therefore, we store the ClassID 

and Line parameters in the two most significant bytes of the first 8-byte word. Furthermore, 

for objects larger than one cache line, the rest of lines also contain the ClassID and Line 

parameters in the same position (and the rest of the bytes in the first 8-byte word are not used). 

Consequently, the proposed mechanism requires that objects are created aligned to cache lines. 

Note that this restriction is not costly [47] and both Nitro [63] and Mozilla JavaScript engines 

[45] already apply it. Moreover, a Class Cache request needs to specify the relative position 

that the property occupies inside the cache line. Since objects are cache line aligned, this 

information is contained in the bits 3-5 of the store address. Finally, each execution of a 

movStoreClassCache instruction requires the previous execution of a movClassID instruction, 

which loads the ClassID of the object that is written in the selected property to the 

regObjectClassId register. 

 

Figure 7.4: Block diagram of a Class Cache access for a movStoreClassCache instruction. 

In Figure 7.5 we illustrate a Class Cache request for the movStoreClassCacheArray 

instruction. This scenario is very similar to the previous one, with two main differences. The 

first one is that the relative property position and the Line parameters of the Class Cache are 

fixed to 2 and 0, respectively. As commented above, the field inside the Class Cache that is 
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reserved for the elements array pointer (i.e., the second property of each Hidden Class) is used 

to keep the ClassID that has been profiled for the objects contained in the elements array. Note 

that this special property will never be used by a movStoreClassCache instruction. The second 

difference is that the ClassID parameter of the Class Cache (i.e., the Hidden Class identifier 

of the object that contains the elements array in which the store will write) comes from another 

special register (regArrayObjectClassId0-3), which is selected by the 

movStoreClassCacheArray instruction. In this regard, each execution of a 

movStoreClassCacheArray instruction requires the previous execution of a movClassIDArray 

instruction, apart from the corresponding movClassID instruction.  This movClassIDArray 

instruction loads the ClassID of the object that contains the elements array to one of the 

regArrayObjectClassId0-3 registers. 

Note that in the optimized code, both movStoreClassCache and 

movStoreClassCacheArray instructions are inserted only for those properties or elements 

arrays that still are considered as monomorphic. Otherwise, a regular store is used. 

Furthermore, the movClassIDArray instructions can be moved out of the loop in many cases, 

as long as the variable that contains the object is not modified inside the loop and there are not 

function calls inside this loop. For this reason, we have four regArrayObjectClassId0-3 

registers, in order to move out of the loop up to four movClassIDArray instructions for 

different objects that are accessed inside the loop. 

Figure 7.5: Block diagram of a Class Cache access for a movStoreClassCacheArray instruction. 
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Each Class Cache entry contains the ClassID, the Line, the InitMap, the ValidMap and 

the SpeculateMAP attributes from the Class List, as we can see in Figure 7.6. The ClassID and 

Line parameters are used to index the Class Cache. The Class Cache checks whether it has the 

corresponding entry stored, as we can see in the left upper part of Figure 7.6. If the class is not 

present, its information is obtained from the Class List in memory, in a similar way to a TLB 

miss, and one of the entries is replaced and copied back to the Class List. Once the requested 

entry is in the cache, the corresponding bits of InitMap, ValidMap and SpeculateMap are 

selected by the relative property position input parameter. Moreover, the corresponding field 

with the profiled ClassID (Prop1-Prop7) is selected by this input parameter.  

The first time that a particular property is selected, the corresponding InitMap bit 

contains a 0 value, indicating that no ClassID have been profiled yet for that property. 

Therefore, the Object ClassID input parameter is stored in the corresponding prop1-prop7 field 

and, the InitMap bit is set to 1. For the following accesses to that property, the Object ClassID 

input parameter is compared to the corresponding prop1-prop7 field. When this comparison is 

not equal, the corresponding ValidMap bit is set to 0 and it will never be set to 1 again. 

Moreover, the corresponding SpeculateMap bit is checked. If this bit is set to 1, then a HW 

exception is raised, because at least one function was optimized assuming that this property 

was monomorphic, but it is not anymore. The exception routine deoptimizes the offending 

functions and sets to 0 the corresponding SpeculateMap bit. 

 

Figure 7.6: Scheme of a Class Cache entry. 
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7.3.2 How the Mechanism Works 

As explained in chapter 3.2, when a function is invoked by the first time, the code is compiled 

by Full Codegen and then it is executed. This execution may create new classes and their 

corresponding entries in the Class List and the Class Cache. In addition, it updates all the fields 

of the Class Cache accordingly. That is, when a property or elements array is written, the Class 

Cache is accessed, in order to perform the corresponding profile. 

When a function has been executed often enough (hot function), the runtime compiles 

it with the more aggressive compiler (Crankshaft). Using the information collected by the 

Class List, the compiler can perform some speculative optimizations that we describe later 

(section 7.3.3), based on the assumption that the monomorphic properties or monomorphic 

elements arrays will remain so for the rest of the execution. When any of these optimizations 

are applied, the relevant bit in the SpeculateMAP of the corresponding property or elements 

array is set to 1. Figure 7.7 illustrates this optimization process.  

For every store to an object property or elements array, the Class Cache is accessed, in 

order to perform the corresponding Hidden Class profiling and to check whether a 

misspeculation has occurred (i.e. a monomorphic property or a monomorphic elements array 

is not monomorphic anymore and it had previously been used to optimize at least one function). 

If so, then a hardware exception is triggered. In the exception routine, the V8 runtime is called, 

which invalidates and recompiles all the functions that have performed speculative 

optimizations assuming that the property or elements array was monomorphic. These 

functions are identified by the runtime through the FunctionList field of the Class List. Note 

that the application state is correct because up to this point in the execution all the assumptions 

were correct, so no recovery action is required. 

There is a situation that deserves special attention, which is due to functions in the 

program stack (i.e. function f calls function g, and g causes an exception that requires f to be 

deoptimized). This case can be handled by performing on-stack-replacement, which is a 

technique that modern JavaScript engines already support. 

Although this technique introduces some overheads (extra movClassID and 

movClassIDArray instructions, larger objects, managing misspeculations, Class Cache 

misses), it allows for new compiler optimizations, and the net benefit is a significant reduction 
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in execution time and energy consumption, as we will see in the next sections. 

 

Figure 7.7: Optimization process. 

7.3.3 New Speculative Optimizations 

Functions compiled with the non-optimizing compiler do not contain any speculation and are 

executed as usual. When functions become hot and are optimized by the Crankshaft compiler, 

the information contained in the Class Cache and the Class List is used to optimize the 

generated code. Below we describe several new optimizations that we have developed based 

on this scheme. 

Check Maps Elimination 

We remove the Check Maps operations that verify the monomorphic properties or 

monomorphic elements arrays. Note that this optimization also includes the Check Maps 

operations that are necessary for the Number Untags commented in section 5.2.2. 

Check Non-SMI Elimination 

We remove the Check Non-SMI operations that verify monomorphic properties or 

monomorphic elements arrays that are profiled as non-SMI. Note that this optimization also 

includes the Check Non-SMI operations that are necessary for the Number Untags. 

Check SMI Elimination 

We remove the Check SMI operations that verify the monomorphic properties or monomorphic 

elements arrays that are profiled as SMIs. Note that this optimization also includes the Check 
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SMI operations that are necessary for the SMI Untags. 

7.3.4 An Example of the Proposed Optimizations 

In Figure 7.8 we show an example of our optimizations for the findGraphNode function 

explained in section 5.2.3. As we have seen in Table 7.1, our mechanism has optimized this 

function by considering that the 6th property (position) from GraphNode and the elements 

array from NodeList are monomorphic. The position property of GraphNode has been profiled 

with a single ClassID (i.e., classPostion) and all the objects stored in the elements array of 

NodeList have also been profiled with a single ClassID (i.e., GraphNode). 

The left part of Figure 7.8 shows that instructions I17-I21 and instructions I35-I39 are 

used to perform a Check Non-SMI and a Check-Maps operations to the values obtained from 

the position property of GraphNode objects. The right part of Figure 7.8 shows that these 

instructions are removed by our Class Cache mechanism, because up to this point all position 

properties of GraphNode are monomorphic properties that contain objects that belong to the 

classPosition Hidden Class.  

On the other hand, the left part of Figure 7.8 shows that instructions I29-I33 are used 

to perform a Check Non-SMI and a Check-Map operations to the values obtained from the 

elements array of NodeList objects. The right part of Figure 7.8 shows that these instructions 

are removed by our Class Cache mechanism, because up to this point the elements array of 

NodeList is monomorphic since all objects contained in this array belong to the GraphNode 

Hidden Class.  

7.4 Performance Evaluation 

In this section, the benefits of the Class Cache mechanism are evaluated for a subset of Octane, 

Kraken and SunSpider benchmark suites. The V8 JavaScript engine has been extended to 

include the proposed optimizations. As in section 5.2, the reported results refer to the tenth 

iteration, in order to achieve a steady state of the benchmarks. 

In the experiments below, the Class Cache has 128 entries and 2-way set associativity. 

We have chosen this configuration because it achieves more than 99.9% of hit rate for all the 

benchmarks, with very low hardware cost.  
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Figure 7.8: Example of the proposed optimizations. 

As evaluation methodology, we have implemented the Class Cache mechanism in V8 

JavaScript engine, in order to remove the execution of the corresponding checking operations. 

Besides, we have also inserted additional mov x86-64 instructions before the corresponding 

stores to properties or array elements, in order to obtain their ClassID parameters. Finally, in 

a separated simulation of the Class Cache, we have quantified the number of dynamic 

instructions and cycles taken by all the misses of the Class Cache. 
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7.4.1 Dynamic Instruction Count Improvements 

In this section we analyze the dynamic instructions that are executed with and without our 

technique. Figure 7.9 shows the results for the three benchmark suites, considering both the 

whole application and the optimized code. Our technique reduces the number of instructions 

in optimized code by 7.5% on average and up to 21% in the best case. We achieve similar 

improvements for all three benchmarks suites. If we consider not only the optimized code, but 

the compiler, garbage collector and the rest of the runtime as well (i.e., the whole application), 

instruction count gains are still important with an average improvement of 5.2% and up to 

20.5%.  

Note also that our technique reduces the overhead quantified in section 7.1 by 51% on 

average. The overhead that is not removed by our mechanism consists basically of checking 

operations of properties or elements arrays that are not monomorphic. 

As we have seen in Section 5.2, the percentage of dynamic checks in Kraken is similar 

to Octane and SunSpider. However, as shown in Figure 7.9, Kraken gets 5.7% instruction count 

reduction for the whole application, which is a bit better than the other suites. This is mainly 

due to the fact that Kraken has a higher fraction of dynamic instructions in optimized code. 

There are benchmarks that do not have much optimized code and therefore our technique 

provides small benefits for these cases. However, as JavaScript applications become more 

compute intensive, we expect that the relative overhead of the compiler will decrease and the 

weight of the optimized code will become more important, which will increase the benefits of 

our technique. 

7.4.2 Cycle Count Improvements 

In this section we evaluate the performance benefits of our technique, as measured with Marss 

[2] cycle-level microarchitectural simulator. Figure 7.10 shows the speedups for both the 

optimized code and the whole application. Regarding the former, our technique achieves an 

average speedup of 7.1%. We can see benchmarks with gains up to 34%. This confirms that 

our technique has an important impact on the execution of many JavaScript applications. 

If we look at the whole application, including all the runtime, the average speedup is 

5%. This is still an important benefit and, as discussed above, we expect it will improve as 

JavaScript applications become more compute intensive and the relative overhead of the 
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housekeeping tasks decreases. 

These results correlate significantly with the ones presented in the previous section for 

dynamic instructions. For Octane and SunSpider suites, the obtained speedup is somewhat 

lower than the dynamic instruction count reduction. The reason is that some of these checking 

0

5

10

15

20

25

b
o

x2
d

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el

p
d

fj
s

ra
yt

ra
ce

ri
ch

ar
d

s

O
ct

an
e 

av
er

ag
e

3
d

-c
u

b
e

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

cr
yp

to
-a

es

d
at

e-
fo

rm
at

-t
o

ft
e

m
at

h
-s

p
ec

tr
al

-n
o

rm

st
ri

n
g-

u
n

p
ac

k-
co

d
e

Su
n

Sp
id

er
 a

ve
ra

ge

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd
-c
ry
p
to
-…

K
ra

ke
n

 a
ve

ra
ge

Whole Application Optimized Code

In
st

ru
ct

io
n

 C
o

u
n

t 
R

e
d

u
ct

io
n

 (
%

)

0

5

10

15

20

25

30

35

40

b
o

x2
d

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el

p
d

fj
s

ra
yt

ra
ce

ri
ch

ar
d

s

O
ct

an
e 

av
er

ag
e

3
d

-c
u

b
e

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

cr
yp

to
-a

es

d
at

e-
fo

rm
at

-t
o

ft
e

m
at

h
-s

p
ec

tr
al

-n
o

rm

st
ri

n
g-

u
n

p
ac

k-
co

d
e

Su
n

Sp
id

er
 a

ve
ra

ge

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd
-c
ry
p
to
-s
h
a2

5
6
-…

K
ra

ke
n

 a
ve

ra
ge

Whole Application Optimized Code

Sp
e

e
d

u
p

 (
%

)

Figure 7.10: Improvement in number of cycles. 

Figure 7.9: Improvement in number of instructions. 
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operations are not in the critical path of the application, so they have a small impact on 

performance. On the other hand, we see the opposite effect for Kraken suite, for which the 

speedup is higher than the reduction in dynamic instruction count. A remarkable case is ai-

astar benchmark, from Kraken, which achieves a 34% of speedup. This benchmark is 

executing most of the time a loop with many object property accesses, which require an 

important number of checking operations that are removed by our optimizations. More than 

half are Check-Maps operations and as commented in chapter 5, a Check-Maps operation 

performs a memory access, in order to obtain the Hidden Class identifier of the object. We 

have observed that after removing most of these memory accesses, the DL1 hit rate, the L2 hit 

rate and the Dtlb hit rate have improved by 20%, 40% and 37% respectively, which indicates 

that memory accesses are an important bottleneck for this benchmark. 

7.4.3 Energy Reduction 

Figure 7.11 shows the energy savings of our technique for the three benchmark suites, which 

are measured through the McPAT simulator [53]. We used CACTI [55] to obtain the energy 

consumption of the Class Cache. Energy consumption is reduced by 4.5% on average for the 

whole application and 6.5% for optimized code. These savings come mainly from the 

reduction in number of executed instructions (which results in less dynamic energy) and 

execution time (which results in less leakage energy). Again, Kraken suite achieves the best 
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Figure 7.11: Improvement in energy consumption. 
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energy savings with a 6.5% improvement. The consumed energy of this suite is also 

significantly reduced for optimized code, by 8.8% on average. 

7.4.4 Incurred Overheads 

In this section we present a detailed analysis of the overheads incurred by our technique. 

7.4.4.1 Class Cache Hits 

Every time that a special store instruction that targets an object is performed, the Class Cache 

has to be accessed at the same time as the data is written to L1 data cache. Therefore, as long 

as the access hits in the Class Cache, we do not incur any penalty for the movStoreClassCache 

and movStoreClassCacheArray instructions. 

7.4.4.2 Class Cache Misses 

When a miss in the Class Cache happens, the information has to be retrieved from the Class 

List, which resides in main memory, and is a rather slow operation. However, the hit rate of a 

Class Cache of just 128 entries and 2-way set associativity is higher than 99.9% for all 

benchmarks and thus the penalty of misses is negligible. 

7.4.4.3 Misspeculations and Recompilations 

When a misspeculation occurs for a particular property or elements array (i.e., a property or 

elements array that has been used to optimize at least one function changes its profiled 

ClassID), a hardware exception is triggered and all the functions that have been optimized 

using that property or elements array have to be recompiled. This exception is captured by the 

runtime, which manages this recovery mechanism. Identifying the functions to recompile is 

straightforward because these are kept in the FunctionList field of the Class List. Note that all 

code executed until this point is correct, and by recompiling the speculative functions, the code 

executed in the future will also be correct. In other words, our scheme never executes incorrect 

code that has later to be squashed.  

Since our results report the tenth iteration of each benchmark, there is not any 

misspeculation at that point. However, we have verified that in the first iteration, the number 

of misspeculations is negligible for all the benchmarks. The main reason is that at the 
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beginning of the application all the functions are executed in non-optimized code. Therefore, 

during this period the Class Cache performs a very accurate profiling of the monomorphic 

properties and monomorphic elements arrays, which does not differ much for the rest of 

execution. 

7.4.4.4 Larger Objects 

The objects whose size is higher than 64 bytes (one cache line) require an extra memory word 

for each extra line (i.e., because the insertion of ClassID and Line fields), as described in 

section 7.3.1. The fact that a small fraction of the objects are slightly larger (up to 11% larger) 

may affect the L1 Data Cache hit rate. However, most of the object property accesses (79%) 

target the first cache line, as we can see in Figure 7.12. Therefore, the L1 Data Cache miss rate 

hardly increases and this overhead is not relevant. 

7.4.5 Hardware Cost 

The Class Cache occupies less than 1.5KB, which represents less than 0.04% of the total area 

of the core, measured through McPAT [53] and CACTI [55]. Similarly, the energy 
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Figure 7.12: Object property accesses that target the first cache line. 
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consumption of this hardware structure has a negligible impact in total consumption of the 

core.  

Note that a pure software implementation of the proposed technique would be possible 

but would result in significant penalties, which would more than offset its benefits. In 

particular, several additional instructions (more than seven micro-operations) would be needed 

for every store to an object, to perform the following steps: 

1. Load the class identifier of the property or elements array (ClassID). 

2. Load the relative cache line (Line). 

3. Load the class identifier of the object to be stored (Object ClassID). 

4. Hash the Line with the ClassID to index the corresponding Class Cache entry. 

5. Load the Class Cache entry. 

6. Compare the first two fields of this entry (i.e., ClassID and Line attributes) with 

the ClassID and Line fields of the object. 

7. If they are not equal, then branch to the Class Cache miss routine. 

8. Check the corresponding InitMap bit. If this bit is 0, then write the Object ClassID 

to the corresponding Prop1-Prop7 field of the entry and set the InitMap bit to 1. 

Otherwise, go to step 9. 

9. Check the corresponding ValidMap bit. If this bit is 1, compare the Object ClassID 

with the corresponding Prop1-Prop7 field of the entry. 

10. If they are not equal, set the ValidMap bit to 0 and check the corresponding 

SpeculationMap bit.  

11. If the SpeculationMap bit is 1, branch to the routine that deoptimizes the functions 

that have been optimized considering the stored property as monomorphic. 

7.5 Conclusions 

In this chapter, we have proposed a new mechanism, the Class Cache, which allows a number 
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of optimizations based on code specialization for particular object types. The specialization is 

based on a run time profiling that is extremely accurate. Besides, the proposed scheme detects 

when the specialized code is no longer correct before executing it, so there is no need for 

providing a recovery mechanism. In those cases, an exception is triggered and the code is 

recompiled to a non-specialized version that is guaranteed to be correct. 

We have shown that these optimizations achieve important improvements in terms of 

speedup (7.1% on average; up to 34% for some programs), dynamic instruction count 

reduction (7.5% on average) and energy consumption (6.5% on average) for optimized 

JavaScript code. 
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Chapter 8 
 

 

 

The Property Cache Mechanism 

 
 
The execution of short JavaScript web applications for event-driven scripts is dominated by 

non-optimized code, helper routines and runtime tasks (i.e. compilation tasks). Furthermore, a 

significant fraction of time is dedicated to access object properties, due to the fact that program 

variables are not tailored to any specific type, which is known as the dynamic binding problem. 

In this regard, when a property is accessed by the first time, the type of the object has to be 

obtained, in order to compute the correct address for that property. Then, this access is 

improved by specializing the code for that particular type. Note that every time that a particular 

access encounters a new type, this process can be very time-consuming. 

In this chapter, we present a HW/SW mechanism that performs the accesses to object 

properties in a more efficient manner than state-of-the-art techniques. 

8.1 Introduction 

In dynamically typed languages, variables are neither declared nor bound to a particular type 

(i.e., Hidden Class), and their types may change during the execution. One of the major issues 

with this feature is that when a property (i.e., an attribute or method of an object) of a particular 

variable is accessed, the corresponding address (i.e., offset) for that property is not known at 

compile time. Therefore, a time-consuming process is needed to obtain the corresponding 

address according to the type of the object that is contained in the variable.  

The state-of-the-art technique used by current JavaScript virtual machines to address 

this overhead is known as Inline Caching [40][15]. This technique has a twofold purpose: 

record information concerning the types of objects and improve the performance of the system 

lookup routine used to disambiguate the type of objects when they are accessed. As explained 

in Chapter 3, both Full Codegen and Crankshaft compilers from V8 apply this technique, but 

in a different manner. 
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In the code produced by Full Codegen, each property access is represented by a x86-64 

call instruction, which is constantly patched by the runtime. The first time that a particular 

property access is performed, this call instruction targets a lookup routine that performs a 

sequence of steps that determine the Hidden Class of the object and find the offset for that 

property, in order to perform the access. Then, this lookup routine is specialized for that 

particular Hidden Class, in order to accelerate future accesses. This code is preceded by a 

checking operation that verifies that the Hidden Class of the object is the expected one. This 

specialized code is kept in a software structure called Inline Cache (IC), which is unique to 

each property access. The call instruction is patched to point to this Inline Cache and therefore, 

the subsequent accesses are substantially faster as long as the Hidden Class of the object keeps 

being the same. Otherwise, the default lookup routine is executed. 

On the other hand, the information (i.e., the Hidden Class of the objects) recorded by 

the Inline Caches during the process explained above is later used by Crankshaft to perform 

more aggressive optimizations for hot code. In this regard, the specialized code generated by 

Crankshaft performs directly the property accesses for those Hidden Classes previously 

encountered by the Inline Caches, instead of executing a call instruction for each of them. 

Therefore, Check Maps operations are also introduced in this specialized code in order to 

verify that the encountered Hidden Class is the expected one; otherwise (i.e. when a Check 

Maps fails), the optimized code falls back to non-optimized code through a deoptimization 

bailout.  

The technique presented in this chapter takes an innovative HW/SW approach to 

remove most of the overhead produced by the Inline Caching mechanism for short-running 

event-based applications. Concretely, it targets loads of object properties, which is the most 

frequent scenario. This new approach is based on a small hardware structure called the 

Property Cache that caches the addresses of the most commonly used object properties, which 

are also stored on a runtime-built software structure. Therefore, when a particular object 

property is found in the Property Cache, the access is performed with minimal overhead and 

without executing any lookup routine. 

In the rest of this chapter, we first explain the reasons that have motivated us to devise 

this new technique. Next, we present the design and functionality of the mechanism and finally, 

we evaluate the performance of this technique. 
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8.2 Motivation 

In Figure 8.1 we show the overhead of to the Inline Caching mechanism for object property 

loads, for both non-optimized and optimized code. As explained in section 5.1, we have chosen 

for our experiments the first and fourth iterations of Octane and JSBench suites, respectively, 

in order to reflect typical short-running event-based applications. We can see that this overhead 

is significant, being 12% on average. 

On the other hand, note that the offsets of all properties of any Hidden Class are known 

before the corresponding loads are performed. In this regard, we propose a mechanism to 

obtain the corresponding offsets for each object property load in an efficient manner, which 

require small hardware extensions. Unlike Inline Caching, our mechanism does not require 

any dynamic profiling neither the dynamic creation of specialized code for property loads. In 

addition, it is not speculative.  

The proposed technique does not target stores because the first store to a property 

creates a new Hidden Class that contains the new property and the corresponding offset is not 

known until then. Besides, when a store is executed, a write barrier operation is performed, in 

order to notify the garbage collector of new pointers. These issues would significantly reduce 

the benefits of the proposed technique and increase its complexity. 

Figure 8.1: Object property loads overhead due to the Inline Caching mechanism. 
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8.3 The Property Cache Mechanism 

In this section we present the Property Cache, a HW/SW mechanism that reduces some of the 

most important inefficiencies due to dynamic typing. First, we present a general overview of 

the technique. Then, the required software and hardware structures are presented. Next, the 

entire process is described and finally, we detail some particularly important scenarios. 

8.3.1 Overview 

Our mechanism is based on obtaining on demand and efficiently the offsets for each load to 

an object property which is indexed by name. In order to obtain these offsets, we keep in 

memory a data structure called Property List, which contains all property names and their 

corresponding offsets for all Hidden Classes. In order to efficiently access this information, 

we extend the hardware with two new structures that cache the information needed to compute 

the effective address of the latest accessed properties: the Property Cache and the Prototype 

Cache. 

For every property load, we first check these caches, and in case of hit, the address is 

obtained in a very efficient manner. Otherwise, a software trap is generated and control is 

transferred to a subroutine that traverses the Property List in order to obtain the information 

related to this property. 

8.3.2 The New Structures 

In this section, we present the software and hardware components used by the mechanism. 

8.3.2.1 The Property List 

The Property List is a software structure that contains as many entries as different property 

names encountered during the execution of a JavaScript program. In figure 8.2a, we show an 

example of the Property List for the JavaScript program explained in section 5.3.1. Each entry 

contains the following information: 

 Property name: The name of the property. 

 Property identifier: a number that identifies the property name. 

 Hidden Classes table pointer: A pointer to a table that contains as many entries 
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as the number of Hidden Classes that use this property name. For each entry of this 

table there are two fields: the Hidden Class identifier and the corresponding offset 

of this property in this Hidden Class (see Figure 8.2b1-b7). In other words, each 

pair of Hidden Class identifier and property identifier has a particular offset. 

Besides, there is a special register that has a pointer to this Property List in memory, in 

a similar way that there is a pointer to memory translation tables (i.e., the Property List special 

register in Figure 8.2a). 

 

Figure 8.2: Property List structure. 

8.3.2.2 The Property Cache 

The Property Cache keeps the most recently used information of the Property List. In Figure 

8.3, the basic scheme of a Property Cache entry is shown. When a particular cache entry is 

selected through a hash function, the property identifier and the Hidden Class identifier fields 

are used as cache tags. If a hit occurs, then the offset, P and I fields are returned. P field 

indicates whether the property comes from a prototype object instead of the object itself (see 

section 3.1). The I field indicates whether the property is contained in a property dictionary 
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collection structure (see section 3.2.1). If a miss occurs, then the control is transferred to the 

runtime to obtain the offset from the Property List and this information is stored in the Property 

Cache by replacing one of the entries. Section 8.3.4.2 describes the miss subroutine.  

 

Figure 8.3: Scheme of a Property Cache entry. 

8.3.2.3 The Prototype Cache 

When the property comes from a prototype object instead of the object itself, we need to obtain 

the address of the prototype object in addition to the offset since the load instruction only 

knows the address of the object but not the address of its prototype property (see section 3.1). 

However, prototype object addresses are not kept in the Property Cache for space efficiency 

reasons because the majority of requested properties are contained in the object itself and thus, 

the prototype address is not required for these cases. For this purpose, we use the Prototype 

Cache, which contains the most recently used prototype addresses.  

In Figure 8.4, a block diagram of a Prototype Cache entry is shown. The property 

identifier and the Hidden Class identifier fields are used as cache tags. In case of a hit, the 

corresponding prototype address field is transferred to the output. In case of a miss, a software 

exception is generated only when the P bit from the Property Cache is set to 1 (which means 

that the object prototype address is necessary). 

8.3.2.4 Two New Machine Instructions 

Besides this new hardware support we extend the ISA with two new special machine 

instructions, which are used to interact with this hardware. We call these two instructions 

specialMovMap and specialMovOffset, whose mnemonics are detailed in appendix C. 
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SpecialMovMap instruction has a source memory operand that is the address of an 

object (the object to which the property belongs) and returns its Hidden Class identifier, which 

is located in the first 8-byte word of the object. This Hidden Class identifier is stored into the 

first 8-byte word of a special 64-byte register that we call hiddenClassReg. Moreover, the 

following 56 bytes of this register are filled with the rest of the cache line obtained from the 

memory request, which corresponds to the first properties of the object. In this regard, heap-

allocated values need to be cache line aligned, which is a common constraint of current 

JavaScript engines. However, in rare occasions the source operand might contain a SMI value, 

instead of an object address. We can easily identify these cases because the least-significant 

bit of a SMI value is 0. Therefore, when the hardware detects that this bit is 0, a special value 

(i.e., to indicate that it is a SMI) is directly stored to the hiddenClassReg register, instead of 

obtaining it from memory. 

SpecialMovOffset instruction has two source operands, the address of the object and the 

property identifier, and a destination operand that is a register where the value of the property 

will be stored. This instruction performs the access to the value of the property and stores it in 

the destination register. In this way, each property load is translated to a sequence of these two 

instructions (the reason for having two separate instructions rather than a single one is 

described in Section 8.3.5.1). 

8.3.3 How The Mechanism Works 

In Figure 8.5, we show the main components of our mechanism and the steps taken by a load 

of a property. First, (1a) the specialMovMap instruction is executed in order to obtain the 

Hidden Class identifier of the object to which the property belongs, and (1b) store it in the 

Figure 8.4: Scheme of a Prototype Cache entry. 



94 

special 64-byte register hiddenClassReg, along with the rest of cache line. Then, (2) the 

specialMovOffset instruction is executed, which results in the following actions:  First, (3) the 

Hidden Class identifier and the property identifier are used to index both the Property and 

Prototype Caches. Although the Prototype Cache is always accessed, its information will be 

used only when the accessed property is contained in a prototype object, instead of the object 

itself. In this regard, (4) the base address used to compute the effective address of the accessed 

property comes from either the object address, the prototype object address, or the second 8-

byte word of the hiddenClassReg register (i.e., this word contains the property pointer, but 

only for those objects that have their properties stored in a property dictionary collection), 

which is selected by both the P and I signals. Then, this value is added to the offset (5) obtained 

from the Property Cache, in order to compute the effective address, which is used to perform 

a memory request to read the property value (6a). Then, this value is written to the destination 

register (7). 

As commented in the previous section, when the specialMovMap instruction stores the 

result in the hiddenClassReg register, not only the Hidden Class identifier is kept, but also the 

entire cache line is transferred to this special register, in order to optimize the access to nearby 

properties. The number of prefetched properties is equal to the size of the cache line (i.e. the 

number of the properties that fit in a cache line) minus one. Therefore, when the offset obtained 

by the Property Cache is less than or equal to this number of prefetched properties, the accessed 

property is obtained from the hiddenClassReg register and a new access to memory is saved. 

We illustrate this situation in the step 6b of Figure 8.5. 

In rare occasions, it may happen that the requested property does not exist for this object 

(i.e., it is because a program error) and therefore, it is not found in the Property List. When 

this occurs, the runtime sets the NoExist signal to 1 and the special undefined value is returned. 

On the other hand, when the hiddenClassReg contains a SMI (see previous section), the special 

undefined value is also returned. We illustrate this situation in step 6c of Figure 8.5. 

8.3.4 The New Runtime Subroutines 

In this section we detail the subroutines that are used to manage the Property List. 
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Figure 8.5: Block diagram of the proposed mechanism. 

8.3.4.1 The Creation Subroutine 

When at compile time a new property name is found, a new entry is created in the Property 

List, and the corresponding Hidden Classes table for this name is also created, which does not 

contain any entry at this point in time. Note that the property identifiers are natural numbers 

assigned sequentially as new names are encountered.  

As we saw in Section 3.2.1, the V8 engine creates Hidden Classes dynamically as new 

properties are encountered at runtime. Therefore, the Property List is updated whenever a new 

Hidden Class is created. For this purpose, the name of the property is searched in the Property 

List, and a new entry is added to the corresponding Hidden Classes table. 

8.3.4.2 The Miss Subroutine 

When a Property or Prototype cache miss occurs, a software trap is generated and the runtime 

executes a subroutine that searches the required information from the Property List. For this 

purpose, the Property List is indexed by the property identifier, in order to obtain the pointer 

to the corresponding Hidden Classes Table. In this table, the subroutine searches the entry that 

matches the Hidden Class identifier. If the entry is found, then its offset field is transferred to 

the Property Cache and the exception routine finishes. If the entry is not found, it probably 

means that the property is contained in the prototype chain of the object. In this case, we obtain 
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the prototype of the object, and the table is searched again for this Hidden Class identifier of 

the prototype. This is an iterative process that is repeated successively with all the prototype 

chain, until the Hidden Class identifier matches an entry or the end of the prototype chain is 

reached. When the former occurs, the offset field is transferred to the Property Cache and the 

P field for that offset is set to 1 (see figure 8.2). Moreover, the address of the prototype whose 

Hidden Class identifier has matched the entry is transferred to the Prototype Cache, since in 

this case the accessed property is contained in this prototype instead of the object itself. If the 

Hidden Class identifier has not matched any entry and the end of the prototype chain is 

reached, the NoExist signal of Figure 8.5 is set to 1 and the special undefined value is returned, 

as explained in section 8.3.3 

8.3.5 Other Issues 

In this section we describe some special cases and optimizations. 

8.3.5.1 Two Special Instructions 

As we have explained in section 3.2.2, Crankshaft generates specialized code that contains 

checking operations and an important amount of these operations are inserted just before every 

property access. However, there are some situations where the compiler removes the execution 

of some Check Maps operations that guard loads of properties when they target objects that 

have already been checked in the same basic block. 

In figure 8.6a, we observe a scenario where for every property load of the same object 

obj, a Check Maps operation is initially inserted. If no stores for this object are performed in 

between, all these Check Maps operations can be removed, except for the first one. The 

optimized version is showed in Figure 8.6b. 

The reason for having two new instructions (as described in section 8.3.2.4) instead of 

just one is to optimize the scenario described above in Figure 8.6b. For the first load both 

specialMovMap and specialMovOffset instructions are needed, whereas for the other loads, 

just the specialMovOffset is sufficient since the specialMovMap instruction is redundant (all 

would return the same Hidden Class identifier). 
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Figure 8.6: Specialized code with Check Maps operations. 

8.3.5.2 Prototype Cache Optimizations 

We have observed that most of the accessed prototypes are located in the first level of the 

prototype chain (i.e. the first prototype after the object). When all objects of a particular Hidden 

Class have accessed only up to the first prototype level, we refer to that Hidden Class as single-

prototype. The information about which Hidden Classes are single-prototype is kept in a new 

field of the Hidden Class descriptors. When a new Hidden Class is created, this field is 

initialized to single-prototype and it is updated by the runtime when either a Property Cache 

miss, or a Prototype Cache miss occurs, if the accessed property is located in a prototype 

beyond the first level of the prototype chain.  

Therefore, when the Prototype Cache is accessed using a single-prototype Hidden 

Class, then the tag comparison regarding the property identifier is not required. This is because 

we are sure that only one prototype (i.e. the first one) contains the requested property, no matter 

which property we access. We can exploit this fact to reduce the size of the Prototype Cache 

since all properties of a single-prototype Hidden Class can share the same entry. The hardware 

modifications to implement this optimization are shown in Figure 8.7. Note that in this case, 

the property identifier is set to a special value (all bits are set to 1) which does not belong to 

any property. If the Hidden Class identifier matches the searched one, there will be a hit no 

matter which property is being searched. 

We have experimentally observed that this optimization is very effective since about 

90% of the property loads are performed to single-prototype Hidden Classes. 
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Figure 8.7: Block diagram of the Property Cache optimized for single-prototype Hidden Classes. 

8.3.5.3 Offset Invalidations 

There are two scenarios that may require the offset invalidation of a Prototype Cache entry: 

The addition of a new property in a prototype object and the overwriting of the prototype 

property in a prototype object. It is important to recall that a prototype is any object that is 

located within at least one prototype chain. Next, we describe in detail these two scenarios. 

In Figure 8.8a, we show the prototype chain of a particular object O and the current 

state of the Prototype Cache. This prototype chain contains two prototype objects: prototype 1 

and prototype 2. Each prototype has two different properties with a different identifier 

(property identifiers 3 and 4 in prototype 1, and 5 and 6 in prototype 2). In this scenario, the 

Prototype Cache has an entry for each one of these four properties, since they have been 

previously accessed by object O. 

In Figure 8.8b, we show the prototype chain of figure 8.8a after adding a new property 

(property identifier 6) in prototype 1. Note that this property has the same identifier as the 

second property of prototype 2, which means that both have the same name (but not necessarily 

the same type). In this scenario, the Prototype Cache state of Figure 8.8a is incorrect, because 

according to the JavaScript inheritance mechanism, we have to obtain the closest property of 

the prototype chain. Therefore, the property with ID 6 has to come from prototype 1 and the 

corresponding entry in the Prototype Cache is incorrect. 

In Figure 8.8c, we show the prototype chain of figure 8.8a after overwriting the 

prototype property of prototype 1 (its corresponding prototype is changed to another object: 
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object prototype 3). In this scenario, the Prototype Cache state of Figure 8.8a is also incorrect. 

This is because the prototype chain has changed, which now is composed by prototype 1 and 

prototype 3. Therefore, all the entries that their property comes from prototype 2 are incorrect 

(see in Figure 8.8c). 

In summary, every time that the above scenarios occur, all entries in the Prototype 

Cache whose Hidden Class contains the modified object in its prototype chain should be 

invalidated. Since identifying all these entries can be costly, and we have observed that this 

scenario is relative rare, we have adopted a conservative simple solution consisting in 

invalidating all the Prototype Cache entries that do not contain a single-prototype Hidden 

Class. 

We do not need to invalidate single-prototype Hidden Class entries because on the one 

hand, according to the problem described in Figure 8.8b, we are sure that the properties 

represented by these entries are the closest ones of the prototype chain. Therefore, other new 

properties with the same name in subsequent levels of the prototype chain will not be owned 

by the object. On the other hand, according to the problem described in Figure 8.8c, for single-

prototype Hidden Class entries we only care about the first prototype of the chain (i.e. which 

is contained in the Hidden Class of the object). If this prototype is overwritten, then the class 

of the object also changes (see section 3.1) and therefore, next time that the object is accessed, 

it will miss in the Property and Prototype Caches. 

 
Figure 8.8: Prototype Cache invalidations. 
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8.3.6 An Example of the Proposed Optimizations 

In Figure 8.9, we show an example of our proposed optimizations for the line 22 of the 

departmentStaff function explained in section 5.3.1, taking into account the Class List example 

showed in Figure 8.2. The left part of the Figure shows the original assembly x86-64 code, 

which performs two object property loads (highlighted in bold). For the first property load 

(instructions I2-I4), a call instruction is executed, which targets the corresponding Inline Cache 

for this access, in order to obtain the value of a property called people (property identifier 5) 

from the object contained in the rax register (then moved to rdx as an input parameter for the 

call). For the second property load (instructions I10-I2), the same process is repeated for a 

property called salary (property identifier 3). 

The right part of the Figure contains the x86-64 assembly code after applying our 

optimizations. The first property load described above is performed by instructions I2 and I3. 

The former instruction is a specialMovMap instruction, which loads the Hidden Class of the 

object to the special hiddenClassReg register. The latter is a specialMovOffset instruction, 

which accesses the Property Cache, in order to obtain the corresponding offset for the property 

called people (property identifier 5) from the Hidden Class stored in hiddenClassReg. Then, a 

memory access is performed using the obtained offset and the resulting value is stored to the 

rax register. The second property load is performed by instructions I9 and I10, which work 

very similar than instructions I2 and I3, but with salary as a property name (property identifier 

3).  

Note that with our optimizations we are avoiding the execution of call instructions to 

miss handler subroutines or Inline Caches, as long as no Property nor Prototype Cache misses 

are produced. 

 

Figure 8.9: An example of the proposed optimizations. 
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8.4 Performance evaluation 

In this section we evaluate the benefits of the proposed technique in terms of performance and 

energy consumption. We have implemented the software changes required by the above 

mechanism in V8. To model the hardware, we have used the Marss [2] cycle-level 

microarchitecture simulator. For energy consumption we have used McPat [53] and CACTI 

[55] power models. We have used Octane [26][27] (navier-stokes and code-load are not 

included since they crash in our simulation environment) and JSBench [29][36] benchmark 

suites for the evaluation of the proposed mechanism. We have discarded SunSpider and Kraken 

benchmark suites for the evaluations of this technique because they are not representative of 

typical short-running web applications, as explained in chapter 5, and therefore they hardly 

benefit from this mechanism. 

We have chosen a 256-entry, 4-way set associative configuration for the Property Cache 

and a 64-entry, direct-mapped configuration for the Prototype Cache. Next section provides a 

sensitivity analysis to varying these parameters. 

The additional hardware incurs in a 2-cycle penalty for each load of an object property. 

This overhead is mainly due to both the addition operation used to obtain the effective address 

and the access to the Property and Prototype Caches, which are very small structures (1.25 KB 

and 0.5 KB respectively). However, when the accessed property is directly obtained from the 

hiddenClassReg register (see section 8.3.3), the additional hardware incurs only a 1-cycle 

penalty because the addition operation of the step 5 from Figure 8.5 is not necessary for these 

cases. 

As evaluation methodology, we have measured the total number of cycles and dynamic 

instructions of our technique by adding the results of two separate simulations. In the first 

simulation, we have executed our technique with a perfect Property and Prototype Caches (i.e., 

without cache misses). In this simulation, we have also measured the penalty (i.e., the time 

spent by executing specialMovMap instructions and the extra 1-cycle or 2-cycle latency for 

specialMovOffset instructions) incurred by accessing the new hardware structures in a hit 

scenario. In the second simulation, we have obtained the number of cycles and dynamic 

instructions for the Property and Prototype Cache misses and the updates to the Property List, 

which is modified (i.e., extended) for each new hidden class creation. 
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8.4.1 Execution Time 

Our technique achieves an important improvement in the execution time of JavaScript 

applications, with an average speedup of 11% as shown in Figure 8.10. A remarkable case is 

raytrace benchmark, with a 33% speedup. This benchmark performs an important number of 

property loads during the non-optimized code, which are optimized by our technique. Gbemu 

and typescript benchmarks also obtain an important benefit with our technique. These two 

benchmarks use a large number of different properties and Hidden Classes during execution, 

which increases the degree of polymorphism of the Inline Caches. The larger the degree of 

polymorphism, the slower the Inline Cache is. On the other hand, mandrel and zlib benchmarks 

present a very poor improvement since they perform very few property loads. In addition, all 

applications from JSBench suite achieve important improvements, which confirm the 

effectiveness of the Property Cache Mechanism for short-running web applications.  

Figure 8.11 shows the reduction of the overhead produced by loads of object properties 

(original overhead is shown in Figure 8.1). We can see that our technique reduces drastically 

this overhead, by 90% on average, and the reduction is quite high for all programs, which 

proves that our technique addresses a rather common source of overhead in JavaScript 

applications. 

 

Figure 8.10: Improvement in execution time. 
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8.4.2 Sensitivity Analysis 

The main motivation of this sensitivity analysis is to identify a good tradeoff between cost and 

benefits of the proposed mechanism. We have evaluated the Property Cache mechanism with 

different number of entries and associativity for the Property Cache. Table 8.1 shows the 

resulting overhead due to misses for the different configurations. 

To identify the capacity requirements, let us first look at the Full-Associative row. We 

can observe that a cache with 128 entries still suffers from these misses, whereas using 256 or 

more entries practically removes all miss penalties. Regarding conflict misses, we discarded a 

direct-mapped configuration because its high miss rate. Both, 2-way and 4-way configurations 

seem reasonable, so we finally chose a 256-entry, 4-way set associative cache as the best trade-

off between cost and benefit. Figure 8.12 shows the Property Cache hit rate using this 

configuration. 

The total size of the Property Cache is 1.25 KB since each entry occupies 5 bytes: 20 

bits for the Hidden Class identifier, 10 bits for the property identifier, 9 bits for the offset, and 
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Figure 8.11: Overhead reduction in number of cycles. 

128 entries 256 entries 512 entries

Direct-mapped 7,28% 3,48% 1,29%

2-way 2,71% 1,22% 0,61%

4-way 2,15% 0,82% 0,45%

Full-associative 1,51% 0,23% 0,01%

Table 8.1: Overhead produced by Property Cache Misses. 
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1 bit for the P field. In the extremely rare case that an application requires more bits for any of 

these fields, the proposed mechanism would be simply not used for this particular application 

(this never happened in our benchmarks). Note that the Hidden Class identifier is an address 

that points to the Hidden Class descriptor (i.e. it occupies 64 bits), but we have observed that 

only the 20 least-significant bits or less change for typical applications, since these structures 

are put together in consecutive memory locations.  

The Prototype Cache has 64 entries and is direct-mapped. We have chosen a simple and 

small configuration for the Prototype Cache, as the majority of object property accesses target 

the object itself, instead of the prototype chain.  

The total size of the Prototype Cache is 0.5 KB since each entry occupies 8 bytes: 20 

bits for the Hidden Class identifier, 10 bits for the property identifier, 9 bits for the prototype 

address, and 1 bit for the invalid field. Note that for the prototype address needs we only keep 

the 32 least-significant bits. This is because V8 only reserves 4 GB of virtual memory for the 

heap and therefore, the remaining bits are the same for all object addresses. 

8.4.3 Energy Consumption 

Figure 8.12 shows the energy savings of our technique for Octane and JSBench benchmark 

suites, which are measured through the McPAT simulator [53] and CACTI [55] (i.e. CACTI 

has been used to obtain the energy consumption of the Property and Prototype Caches). Energy 

96.5

97

97.5

98

98.5

99

99.5

100

100.5

H
it

 R
at

e
 (

%
)

Figure 8.12: Hit rate of the Property Cache for 256 entries and 4-way associativity. 
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consumption is reduced by 9.9% on average and is close to 30% in some applications (e.g. 

raytrace). These important savings come mainly from the reduction in number of executed 

instructions (which results in less dynamic energy) and execution time (which results in less 

leakage energy). 

8.5 Conclusions 

In this chapter, we have proposed a HW/SW mechanism that removes most of the overhead 

due to the Inline Caching mechanism in short-running applications. This mechanism requires 

small hardware extensions, mainly two new specialized memories with a total capacity less 

than 2KB and two new machine instructions. 

We have shown that the proposed mechanism produces important benefits both in 

execution time and energy consumption. This technique opens a new avenue in the way to deal 

with code specialization in dynamically typed languages. In future work we plan to investigate 

how to apply a similar approach to remove other overheads related to other scenarios of the 

Inline Caching mechanism, such as the array accesses. 
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Figure 8.13: Improvement in energy consumption. 
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Chapter 9 
 

 

 

Summary and Future Work 

 

In this chapter, the main thesis conclusions are summarized and some future work is presented. 

9.1 Summary 

Dynamically typed languages are ubiquitous in today applications. These languages ease the 

task of programmers but introduce significant runtime overheads. Since variables are neither 

declared nor bound to a particular type, for efficiency reasons, the code generated at runtime 

is specialized for certain types and assumptions about the types of variables require to be 

constantly validated. These validations are an important source of overheads. 

Analysis of Overheads. In chapter 5, we have evaluated the overheads for different kind of 

JavaScript applications, including short-running, event-based applications and long-running, 

compute-intensive applications. In the former, the overhead mainly occurs during the 

execution of non-optimized code, which performs an important amount of profiling work and 

other tasks related to the lookup of object properties. In the latter, the main overheads arise 

while executing specialized code, and are mainly due to the frequent execution of checking 

operations that are used to preserve some type assumptions. 

Fusion of Common Instruction Patterns. In chapter 6, we propose three instruction-level 

optimizations, in order to improve the performance of checking operations executed in the 

optimized code. These optimizations are based on a hybrid HW/SW approach that requires the 

introduction of some new machine instructions, which improve the performance of the most 

common instruction patterns related to this overhead.  These optimizations require also some 

changes in the code generated by the dynamic compiler. 

The Class Cache. In chapter 7, we demonstrate that in long-running applications, an important 

amount of checking operations target monomorphic properties or monomorphic elements 

arrays. In this regard, we have proposed a new hybrid HW/SW scheme based on a runtime 
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profiling that keeps information about these monomorphic properties and elements arrays, in 

order to remove the checking operations that target them, in a safely manner. Besides, the 

proposed scheme detects when this specialized code is no longer correct before executing it, 

so there is no need for providing a recovery mechanism. In these cases, an exception is 

triggered and the code is recompiled to a non-specialized version that is guaranteed to be 

correct. 

The Property Cache. In chapter 8, we propose a hybrid HW/SW mechanism that removes 

most of the overhead in short-running applications. The proposed technique avoids the 

speculative strategy adopted by state-of-the-art dynamic compilers for property lookup 

operations. Instead of speculation, our approach relies on a runtime-built structure that 

provides the information required to identify the addresses of object properties in a very 

efficient manner. Besides, a hardware cache of this structure stores the most frequently 

elements to speedup its access. This technique is applied to both optimized and non-optimized 

code. 

9.2 Future Work 

The work presented in this thesis can open different research lines, according to the kind of 

applications. 

Long-running applications. The Class Cache mechanism presented in chapter 7 is focused 

on checking operations for objects properties or object elements arrays. However, there are 

checking operations that target other program variables, such as function parameters or global 

variables. We can extend the Class Cache to profile the types of these other program variables 

by providing them a pseudo-ClassID, which would be also contained in the first 8-byte word 

of each cache line that contains any of these variables. 

Short-running applications. The Prototype Cache mechanism presented in chapter 8 opens a 

new avenue in the way to deal with code specialization in dynamically typed languages. In 

future work we plan to investigate how to apply a similar approach to remove the overheads 

related to other scenarios of the Inline Caching mechanism, such as the stores to object 

properties. Although object property stores can be optimized in a similar way as object 

property loads, they are different because in some cases Hidden Class transitions occur. As 

explained in chapter 5, every time that a new property, x, is added to an object, the object 



109 

changes its Hidden Class to another one, which contains all properties of the old Hidden Class 

plus the property x. To deal with this situation, a new cache called the Transition Cache could 

be added to our mechanism, in order to keep the target Hidden Classes of these transitions. 

Therefore, when a property store that produces a transition is executed, both the Property 

Cache and the Transition cache would be accessed, and the Hidden Class of the object would 

be updated with the corresponding Hidden Class of the Transition Cache. 
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Appendix A:  New x86-64 Instructions of chapter 6. 

name Mnemonic Description 

xehcmp xehcmp reg32, imm32, flag, neg HW exception comparison of reg32 with imm32 

xehcmp reg32, reg32, flag, neg HW exception comparison of reg32 with reg32 

xehcmp reg64, reg64, flag, neg HW exception comparison of reg64 with reg64 

xehcmp reg64, mem64, flag, neg HW exception comparison of reg64 with mem64 

xehcmp mem64, reg, flag, neg HW exception comparison of mem64 with reg64 

xehtest xehtest reg64, reg64, flag, neg HW exception test of      reg64 with reg64 

xehtest reg32, reg32, flag, neg HW exception test of      reg32 with reg32 

xehtest reg32, imm32, flag, neg HW exception test of      reg32 with imm32 

xehtest mem8, imm8, flag, neg HW exception test of      mem8 with imm8 

xehtest reg8, imm8, flag, neg HW exception test of        reg8 with imm8 

xehadd xehadd reg32, reg32, flag, neg HW exception addition of reg32 with reg32 

xehadd reg32, imm32, flag, neg HW exception addition of reg32 with imm32 

xehadd reg32, mem32, flag, neg HW exception addition of reg32 with mem32 

xehadd reg64, reg64, flag, neg HW exception addition of reg64 with reg64 

xehadd reg64, mem64, flag, neg HW exception addition of reg64 with mem64 

xehsub xehsub reg32, reg32, flag, neg HW exception subtraction of reg32 less reg32 

xehsub reg32, imm32, flag, neg HW exception subtraction of reg32 less imm32 

xehsub reg32, mem32, flag, neg HW exception subtraction of reg32 less mem32 

xehsub reg64, reg64, flag, neg HW exception subtraction of reg64 less reg64 

xehsub reg64, mem64, flag, neg HW exception subtraction of reg64 less mem64 
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name Mnemonic Description 

xehimull xehimul reg32, reg32, flag, neg HW exception integer multiplication of reg32 with reg32 

xehimul reg32, imm32, flag, neg HW exception integer multiplication of reg32 with imm32 

xehimul reg32, mem32, flag, neg HW exception integer multiplication of reg32 with mem32 

xehimul reg64, reg64, flag, neg HW exception integer multiplication of reg64 with reg64 

xehadd reg64, mem64, flag, neg HW exception integer multiplication of reg64 with mem32 

xehor xehor reg32, reg32, flag, neg HW exception binary or of reg32 with reg32 

xehor reg32, mem32, flag, neg HW exception binary or of reg32 with mem32 

xehor reg64, reg64, flag, neg HW exception binary or of reg64 with reg64 

xehsub reg64, mem64, flag, neg HW exception binary or of reg64 with mem64 

xehand xehand reg32, imm32, flag, neg HW exception binary and of reg32 with imm32 

xehneg xehneg reg32, flag, neg HW exception binary neg of reg32 

xehneg reg64, flag, neg HW exception binary neg of reg64 

xehucomis xehucomis reg128, reg128 flag, neg HW exception ucomis operation  of reg128 with reg128 

xehtestshr xehtestshr reg8 HW exception test + shift rigth operations with reg8 

xehtestshr reg32 HW exception test + shift rigth operations with reg32 

xehtestshr reg64 HW exception test + shift rigth operations with reg64  

xehtestcmp xehtestcmp reg64, reg64 HW exception test + comparison of reg64 and reg64  

xehtestcmp rax, reg64 HW exception test + comparison of rax and reg64  
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Appendix B:  New x86-64 Instructions of chapter 7 

name Mnemonic Description 

movStoreClassCache   movStoreClassCache  mem64, 

reg64  

Class Cache Request for property access 

scenario plus mov instruction of reg64 to 

mem64  

movStoreClassCacheArray   movStoreClassCacheArray  

mem64, reg64, regArray 

Class Cache Request for elements array 

access scenario plus mov instruction of reg64 

to mem64 

movClassID movClassID mem64 Special mov instruction of ClassID field 

from an object to the regObjectClassId 

register 

movClassIDArray movClassIDArray regArray, 

mem64 

Special mov instruction of ClassID field 

from an object to a regArrayObjectClassId0-

3 register 
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Appendix C:  New x86-64 Instructions of chapter 8 

name Mnemonic Description 

specialMovMap specialMovMap 

mem64  

 

Special mov instruction to load the Hidden Class identifier of an 

object (along with the whole cache line) to the special 

hiddenClassReg register. 

specialMovOffset specialMovOffset 

reg64, mem64, 

propertyID 

 

Property Cache and Prototype Cache request, which is indexed by 

both the propertyID operand and the Hidden Class identifier 

stored in the hiddenClassReg register. Then a memory request is 

performed with the obtained offset. At the end of the instruction, 

the obtained value from memory is stored to reg64 destination 

register. 

 


