

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

Novel Vector Architectures
for Data Management

Timothy Hayes
Universitat Politècnica de Catalunya

Departament d’Arquitectura de Computadors

A thesis submitted for the degree of
Doctor of Philosophy in Computer Architecture

May, 2016

Director: Prof. Mateo Valero
Codirector: Dr. Oscar Palomar

Assessment results for the doctoral thesis
Academic year:

Full name

Doctoral programme

Structural unit in charge of the programme

Decision of the committee

In a meeting with the examination committee convened for this purpose, the doctoral candidate presented the

topic of his/her doctoral thesis entitled

__

___.

Once the candidate had defended the thesis and answered the questions put to him/her, the examiners decided

to award a mark of:

UNSATISFACTORY SATISFACTORY GOOD VERY GOOD

(Full name and signature)

Chairperson

(Full name and signature)

Secretary

(Full name and signature)

Member

(Full name and signature)

Member

(Full name and signature)

Member

______________________, ___

The votes of the members of the examination committee were counted by the Doctoral School at the behest of

the Doctoral Studies Committee of the UPC, and the result is to award the CUM LAUDE DISTINCTION:

 YES NO

(Full name and signature)

Chair of the Standing Committee of the Doctoral School

(Full name and signature)

Secretary of the Standing Committee of the Doctoral School

Barcelona, _________

Per a la Carla.

Abstract

As the rate of annual data generation grows exponentially, there is a demand to man-
age, query and summarise vast amounts of information quickly. In the past, frequency
scaling was relied upon to push application throughput. Today, Dennard scaling has
ceased, and further performance must come from exploiting parallelism. Vector ar-
chitectures offer a highly efficient and scalable way of exploiting data-level parallelism
(DLP) through sophisticated single instruction-multiple data (SIMD) instruction sets.
Traditionally, vector machines were used to accelerate scientific workloads rather than
business-domain applications. In this thesis, we design innovative vector extensions
for a modern superscalar microarchitecture that are optimised for data management
workloads. Based on extensive analysis of these workloads, we propose new algorithms,
novel instructions and microarchitectural optimisations.

We first profile a leading commercial decision support system to better understand
where the execution time is spent. We find that the hash join operator is responsible
for a significant portion of the time. Based on our profiling, we develop lightweight
integer-based pipelined vector extensions to capture the DLP in the operator. We
then proceed to implement and evaluate these extensions using a custom simulation
framework based on PTLsim and DRAMSim2. We motivate key design decisions
based on the structure of the algorithm and compare these choices against alternatives
experimentally. We discover that relaxing the base architecture’s memory model is
very beneficial when executing a vectorised implementation of the algorithm. This
relaxed model serves as a powerful mechanism to execute indexed vector memory
instructions out of order without requiring complex associative hardware. We find
that our vectorised implementation shows good speedups. Furthermore, the vectorised
version exhibits better scalability compared to the original scalar version run on a
microarchitecture with larger superscalar and out-of-order structures.

We then make a detailed study of SIMD sorting algorithms. Using our simulation
framework we evaluate the strengths, weaknesses and scalability of three diverse vec-
torised sorting algorithms—quicksort, bitonic mergesort and radix sort. We find that
each of these algorithms has its unique set of bottlenecks. Based on these findings, we
propose VSR sort—a novel vectorised non-comparative sorting algorithm that is based

vii

on radix sort but without its drawbacks. VSR sort, however, cannot be implemented
directly with typical vector instructions due to the irregularity of its DLP. To facilit-
ate the implementation of this algorithm, we define two new vector instructions and
propose a complementary hardware structure for their execution. We find that VSR
sort significantly outperforms each of the other vectorised algorithms.

Next, we propose and evaluate five different ways of vectorising GROUP BY data
aggregations. We find that although data aggregation algorithms are abundant in DLP,
it is often too irregular to be expressed efficiently using typical vector instructions. By
extending the hardware used for VSR sort, we propose a set of vector instructions and
novel algorithms to better capture this irregular DLP. Furthermore, we discover that
the best algorithm is highly dependent on the characteristics of the input.

Finally, we evaluate the area, energy and power of these extensions using McPAT.
Our results show that our proposed vector extensions come with a modest area over-
head, even when using a large maximum vector length with lockstepped parallel lanes.
Using sorting as a case study, we find that all of the vectorised algorithms consume
much less energy than their scalar counterpart. In particular, our novel VSR sort
requires an order of magnitude less energy than the scalar baseline. With respect
to power, we discover that our vector extensions present a very reasonable—if any—
increase in wattage.

Keywords: Computer Architecture, Microarchitecture, Data-Level Parallelism, Vec-
tor Processors, Single Instruction-Multiple Data, Database Management Systems, De-
cision Support Systems, Online Analytical Processing, Hash Join, Sorting, Aggregation

viii

Acknowledgements

First and foremost, I would like to thank my immediate thesis director—Dr. Oscar
Palomar. You have been an outstanding mentor for me. I am very grateful for your
encouragement, demeanour and wealth of knowledge. I feel that I have learned a great
deal from you and hope that one day I can give to another what you have given to me.
It has been a privilege to work with you.

I would like to express my appreciation to my three supervisors at the Barcelona Su-
percomputing Center—Dr. Osman Ünsal, Dr. Adrián Cristal and Prof. Mateo Valero.
You have collectively brought an immeasurable amount of wisdom and support to my
research. You have always given me the benefit of the doubt, encouraged my ideas and
pushed me to achieve my very best. I appreciate the great opportunity that you’ve
given to me.

A big thank you to the members of my thesis defence committee—Prof. Ramón
Beivide, Prof. Vı́ctor Viñals, Dr. Roger Espasa, Dr. Rubén Titos and Dr. Juan Manuel
Cebrián. I would like to thank Dr. Enric Morancho for participating in my thesis
pre-defence and providing great feedback and suggestions. I would also like to give a
shout-out to the excellent staff at the Barcelona Supercomputing Center and UPC’s De-
partament d’Arquitectura de Computadors, especially Joana Munuera and Dr. Xavier
Masip.

My sincere gratitude to all of my colleagues—both current and former—at the
Barcelona Supercomputing Center. We’ve had a lot fun times together. In particular,
I want to thank the good folks who shared the “vector office” with me. I can’t think of a
single day where our collective diligence didn’t break down resulting in a cacophony of
incoherent ramblings about politics, religion and history (this nonsense went so far as
to getting DNA tested for ancestry composition to determine whose opinion held more
sway on European matters). If we weren’t arguing about something topical, chances
are we were complaining about work. This was certainly a pleasant distraction from
the toil of all those paper deadlines.

A heartfelt thank you to all of my wonderful friends, especially those I’ve had the
pleasure of meeting in Barcelona. You’ve shared your culture, customs and languages
with me and have made my stay in this city such a special one. After living here for six

ix

years and experiencing many great moments together, I feel like an honorary Catalan.
A special thanks goes to Asier Roa who helped induct me into Barcelona and is once
again drafting me to my next destination.

Last but not least, I wish to thank my partner Carla and both of our families. Carla
has been a constant source of strength and inspiration. You supported me through
thick and thin and have been unimaginably patient waiting for this time to arrive.
We’ve shared countless great moments together and I know we will share many more
in the next phase of our life. Words cannot express how grateful I am to you.

The research leading to these results has received funding from the European
Union’s Seventh Framework Programme (FP7/2007-2013) under the AXLE project
(GA no 318633), the RoMoL ERC Advanced Grant (GA no 321253) and has been
supported in part by the European Union (FEDER funds) under contract TTIN2015-
65316-P. From 2013 to 2016 I was supported by a formación de profesorado universit-
ario research grant from the Spanish Ministerio de Educación, Cultura y Deporte.

x

Contents

1 Thesis Overview 1
1.1 Motivation . 1
1.2 Objectives of Research . 7
1.3 Thesis Contributions . 8

2 A Study on Hash Join 11
2.1 Introduction . 11
2.2 Software Characterisation . 12

2.2.1 Hash Join Probing . 13
2.3 Design and Implementation . 14

2.3.1 Instruction Set Proposal . 15
2.3.2 Design Decisions . 16
2.3.3 Microarchitecture Implementation 18

2.4 Experimental Setup . 21
2.4.1 Simulators . 21
2.4.2 Default Parameters . 22
2.4.3 Workload . 24

2.5 Results . 25
2.5.1 Design Exploration . 25
2.5.2 Vector Scalability . 27
2.5.3 Memory Controller Saturation 29
2.5.4 Scalar Scalability . 31
2.5.5 Software Prefetching . 32
2.5.6 Comparison to SSE4.2 . 33

2.6 Related Work . 33
2.7 Conclusions . 34

3 A Study on Sorting 37
3.1 Introduction . 37

xi

Contents

3.2 Changes to the Architecture . 38
3.3 Evaluation of Existing Sorting Algorithms 39

3.3.1 Quicksort . 40
3.3.2 Bitonic Mergesort . 43
3.3.3 Radix Sort . 45
3.3.4 Summary . 48

3.4 VSR Sort . 48
3.4.1 The Algorithm . 48
3.4.2 New Instructions . 50
3.4.3 Results . 54

3.5 Related Work . 57
3.6 Conclusions . 59

4 A Study on Aggregation 61
4.1 Introduction . 61
4.2 Changes to the Architecture . 62
4.3 Experimental Setup . 64

4.3.1 Query and Input Data . 64
4.3.2 Scalar Baseline . 66
4.3.3 DLP and Vectorisation . 67

4.4 Evasion Techniques . 68
4.4.1 Standard Sorted Reduce . 68
4.4.2 Polytable . 70
4.4.3 Summary . 72

4.5 Confrontation Techniques . 72
4.5.1 Advanced Sorted Reduce . 72
4.5.2 Monotable . 77
4.5.3 Partially Sorted Monotable . 79
4.5.4 Summary . 81

4.6 Related Work . 82
4.6.1 Parallel Aggregation Acceleration 82
4.6.2 Hardware Support for Irregular DLP 83

4.7 Conclusions . 84

5 A Study on Area, Energy and Power 87
5.1 Introduction . 87
5.2 Area . 87
5.3 Runtime Dynamic Energy . 88

5.3.1 Scalar and Vectorised Quicksort 89
5.3.2 Bitonic Mergesort . 90
5.3.3 Radix Sort . 92
5.3.4 VSR Sort . 93

5.4 Power . 95
5.5 Related Work . 96
5.6 Conclusions . 97

xii

Contents

6 Thesis Conclusions 99
6.1 Summary of Achievements . 99
6.2 Relegated Ideas . 101
6.3 Behind the Scenes . 102
6.4 Future Outlooks . 105

7 Publications 107

A Algorithm Runtime Characteristics 109
A.1 Hash Join . 111
A.2 Sorting . 116
A.3 Aggregation . 121

B Vector Instruction Set Architecture 133
B.1 General Format . 133
B.2 Registers . 134
B.3 Datatypes . 134
B.4 Vector Instruction Listing . 134

B.4.1 Vector Memory . 135
B.4.2 Value Initialisation . 137
B.4.3 Arithmetic . 138
B.4.4 Logical . 138
B.4.5 Comparison . 139
B.4.6 Permutative . 140
B.4.7 Reduction . 141
B.4.8 CAM-Based . 142
B.4.9 Miscellaneous . 143
B.4.10 Mask Manipulation . 144
B.4.11 Vector Length . 144

List of Figures 147

List of Tables 149

Bibliography 151

Acronyms 163

xiii

CHAPTER 1

Thesis Overview

In this chapter, we define our premise and convey the overall goal of this thesis. We first
motivate the idea of accelerating database management systems (DBMSs) with vector
extensions. After, we outline our objectives and then summarise the contributions of
the thesis.

1.1 Motivation

DBMSs have become an essential tool for industry and research and are often a sig-
nificant component of data centres. They can be used in a multitude of scenarios
including decision support, data mining, e-commerce and scientific analysis. DBMSs
can be broadly categorised into two main categories—(1) online transaction processing
(OLTP), and (2) online analytical processing (OLAP). OLTP is characterised by small
to medium sized databases, frequent updates and short queries. OLAP, in contrast, is
characterised by very large databases, infrequent updates—usually done in batch—and
long compute-intensive queries. Typically, a DBMS will be implemented and optimised
targeting either OLTP or OLAP and its design and architecture will be quite different
depending on the area chosen. OLAP is the fundamental part of a decision support
system (DSS) which allows users to ask complex business-oriented questions over huge
amounts of data.

As the amount of information to manage grows exponentially each year [MCB+11,
CML14], there is a pressure on software and hardware developers to create data centres
that can cope with the increasing requirements. Advances in both hardware and soft-
ware have moved OLAP databases further away from disk storage and relocated its
contents instead to main memory for real-time operation [BMK99]. This has shifted
the problem from being IO-bound to being CPU/memory-bound. It is therefore ne-
cessary to revisit the strategies used to accelerate data management techniques and
find new methods that lie closer to the hardware-software interface. At the same time,

1

Chapter 1. Thesis Overview

there is now also an additional demand to provide greener and more power-efficient
data centres while simultaneously pushing for better performance [HB09].

Moore’s Law [Moo65] famously predicted that the number of transistors on an in-
tegrated circuit would double approximately every two years. For a long time, Moore’s
Law had two fundamental outcomes—(1) more features and functionality in an in-
tegrated circuit, and (2) higher operating frequencies with the same power density.
Both of these outcomes contributed to the processor’s overall performance. Frequency
scaling was generally transparent to the programmer and algorithms were expected to
execute faster with every new generation of processor. In the beginning of the twenty-
first century in what is seen as the breakdown of Dennard scaling [DGR+74, Boh07],
thermal and power issues made it infeasible to continue increasing the processor’s op-
erating frequency. While Moore’s Law still held true, the free performance scaling that
we had grown accustomed finally came to an end [Sut05]. The industry has now had to
shift their focus on using the extra available transistors to achieve better performance
through explicit parallelism.

Parallel techniques can be broadly categorised as instruction-level (ILP), thread-
level (TLP) and data-level (DLP) [Fly66]. When it is possible to exploit it, DLP is by
far the most efficient form of parallelism [HP12]. DLP is defined as applying the same
operation to more than one element of (typically homogeneous) data. Strict definitions
may require that the operations be independent whereas more lax definitions may allow
for semi-independent operations. DLP can be exploited in a variety of ways. Recent
developments in processor architectures have pushed a focus on multi-core acceleration.
While it is generally straightforward to transform DLP to TLP in order take advantage
of a multi-core architecture, single instruction-multiple data (SIMD) instruction sets
offer a much more efficient way to capture and accelerate DLP [GP07, LAB+11].

SIMD instructions are concise, expressive and scalable. One of principal advantages
of SIMD lies in the fact that many operations can be expressed in an ultra-compact form
with much less encoding overhead than techniques used to exploit ILP and TLP. This
succinct form in itself allows for lightweight hardware implementations which can infer
and exploit the independence and homogeneity of the data as well as the repetitiveness
of the operation. SIMD also reduces meta-work of an algorithm by curtailing the
number of control flow instructions allowing the processing unit to instead focus on
the operations of interest.

The SIMD paradigm goes back as early as the 1940s [HJ88]. One of the earliest
examples of a machine using SIMD is the English Electric DEUCE [Hal56] based on
the earlier Pilot ACE [Wil53]. The DEUCE used an instruction set architecture (ISA)
with a limited SIMD facility. The machine’s memory consisted of twelve mercury delay
lines each holding thirty-two 32-bit words. To access a particular value in memory, the
processing unit needed to wait for that word to circulate through the delay line into
the circuitry. Due to the limited amount of memory as well as the long latency when
accessing individual locations, the ISA included a modifier called a ‘characteristic’
which allowed a set of consecutive words within a single delay line to be used as
operands instead of individual words. The DEUCE was an accumulator machine and
this restricted the type of SIMD instructions to unary operations. It was also possible to

2

1.1. Motivation

sum all of the elements of a mercury delay line together using a single instruction. This
kind of pipelined sum reduction operation would reappear in later SIMD architectures.

The 1960s saw substantial advances in SIMD architectures. This was principally
motivated by the realisation that scientific problems—which require substantial pro-
cessing power—are abundant in DLP. The SIMD paradigm fit nicely with the do loop
construct of FORTRAN—the language of choice at the time for developing scientific
and engineering applications. Two principal schools of SIMD design emerged—array
architectures and pipelined architectures [Fly72], the latter becoming better known as
vector architectures [Kog81, Sch87a, Sch87b, Cra96, EVS98].

There are many design similarities and differences between array and vector archi-
tectures, and also many distinctions between the implementations of the architectures
within each of these design categories. An exhaustive list of these differences and simil-
arities is beyond the scope of this thesis, however, from this author’s personal perspect-
ive there is one fundamental difference between early array and vector architectures—
the former were typically designed with isolated local memories per processing element
whereas the latter used a unified memory space. This is a very significant difference
because it directly influenced the programmability of the machines and determined
the types of problem that could be accelerated. The vector machines were a natural
extension to an already familiar scalar Von Neumann design. This led to a power-
ful programming model—a sequential metaphor with implicit concurrency—and was
simpler to program and debug over contemporary array architectures.

Pioneering work on vector architectures began with Senzig and Smith in their
1965 proposal for VAMP [SS65], an architecture which targeted scientific problems
such as global weather prediction. According to Cragon [Cra96], it was the first work
to use the term ‘vector’ in this context. In VAMP, Senzig and Smith identified the
problem of disjoint local memories in state-of-the-art array architectures such as the
SOLOMON [SBM62] (the basis of the ILLIAC IV [BBK+68]) and proposed a global
unified memory space instead. Although it was not a pipelined design, a follow-up
work by Senzig [Sen67] suggested the use of high-speed pipelined functional units in-
stead of a networked array of functional units. Senzig even suggested using replicated
functional units to decrease the latency of vector instruction execution without expos-
ing this redundancy to the ISA, i.e. decoupling the vector instruction’s definition from
its microarchitectural implementation. This idea later became better known as vector
lanes.

Although VAMP was never built, its related publications surely influenced the
first commercial vector architectures, namely the Control Data Corporation STAR-
100 [HT72] and the Texas Instruments Advanced Scientific Computer [Wat72]. Re-
grettably, both of these machines ended up being commercial failures, mainly due to
their memory-to-memory design as well as the poor performance of their non-vector, i.e.
scalar, functional units. These shortcomings were later addressed by Seymour Cray
who developed a high-performance vector machine called the Cray-1 [Rus78] which
used a register-to-register design and included fast non-vector functional units. The
Cray-1 was highly successful in terms of sales and performance and set the stage for
an era between the mid-1970s until the early 1990s where vector architectures were the
design choice for high-performance machines [EVS98]. Several other companies joined

3

Chapter 1. Thesis Overview

Cray in the vector supercomputer market including NEC, Fujitsu and Convex. The
ideas found in vector architectures matured and evolved over time. We now list some
of the features which are characteristic of typical vector architectures. This list is by
no means exhaustive; we simply use it to convey a very general idea of what we mean
by the term ‘vector architecture’.

– A Von Neumann architecture with the ability to execute both scalar and SIMD
instructions, often interlaced together.

– A single global memory that is shared by the scalar and SIMD operations.
– SIMD operations typically pipelined through functional units, sometimes with

redundant functional units to reduce latencies, i.e. parallel vector lanes.
– One control unit (per logical processor) to govern all concurrent or parallel op-

erations generated by a single SIMD instruction.
– Optionally—but typically—a vector register file in which a single register can

hold many values.
– A programmable vector length, i.e. a variable user-controlled number of elements

associated with a single SIMD instruction. This is often achieved through a
dedicated vector length register.

– Support for non-trivial vectorised memory access patterns, e.g. unit-stride, strided
and indexed loads/stores.

– Fine-grained control flow achieved through SIMD predication, i.e. masking, al-
though coarse-grained control flow, i.e. branching, can be used too. Often a
complementary vector mask register file is provided to aid this.

– High bandwidth between the processor and memory system.

In the 1990s, vector architectures began to lose their dominance in the high-
performance computing market. Since the 1970s, there had been tremendous advances
in the microprocessor, i.e. a complete processor contained on a single silicon die. The
general-purpose microprocessor had become both sophisticated and inexpensive due to
(1)—the opportunities afforded by Moore’s Law and Dennard Scaling, and (2)—a high
demand from the personal computer market. In contrast, vector machines were typ-
ically built in small quantities using exotic and expensive components and, therefore,
had fewer economies of scale. Demand for expensive specialised vector supercomputers
gradually reduced in favour of highly-parallel machines built from inexpensive off-the-
shelf microprocessors. As of 2016, all but one the big players in the vector market
have ceased to develop new vector machines. Only NEC continues to produce vector
machines through their SX line of supercomputers.

Around the same time as the decline in high-performance vector architectures,
there was a simultaneous adoption of very simple vector-like capabilities into several
general-purpose microprocessors. Originally proposed by Lee in 1995 as extensions to
the PA-RISC architecture [Lee95], these extensions offered simple SIMD functionality
with the aim of accelerating multimedia algorithms. Instead of adding a dedicated
vector unit to the processor, Lee proposed repurposing the existing architecture’s scalar
registers and functional units and selectively partitioning them in order to operate
on multiple subwords of data in parallel. For example, if the baseline architecture
supported integer arithmetic on 32-bit registers, this could be used to operate on

4

1.1. Motivation

two 16-bit integers or even four 8-bit integers. Lee also demonstrated the benefits
of having multiple SIMD instructions execute concurrently in a superscalar pipeline
thus obtaining ILP and DLP simultaneously. The industry quickly followed suit and
these SIMD extensions— commonly dubbed multimedia extensions—began to appear
in commercial microprocessors such as Intel’s MMX [PW96], AMD’s 3DNow! [OFW99]
and IBM’s AltiVec [DDHS00].

Initially these extensions were very simple, especially compared with contempor-
ary vector architectures. Where vector architectures could process dozens of double-
precision floating-point values with one instruction, multimedia extensions were typ-
ically limited to a much smaller number of values with less precision. Multimedia
extensions typically did not pipeline their operations like vector architectures; instead,
the values were operated on in parallel or else broken up into smaller µops, each of
which could pass through the functional units as a single unit of work as in the Intel
Pentium 4 [HSU+01]. There was limited support for conditional execution and separate
mask registers were not provided. The memory access patterns were generally limited
to contiguous locations, i.e. unit-stride loads or stores. Finally, there was typically
no programmable vector length and the user was forced to operate on the maximum
number of elements possible with each SIMD instruction.

Eventually, multimedia ISA extensions became commonplace enough to justify
their own register file and dedicated functional units within the architecture’s prin-
cipal pipeline. Although multimedia extensions started out relatively simple, successive
generations became more sophisticated offering wider SIMD registers to process more
elements per instruction as well as more intricate instructions to operate on them. As
an example, Intel’s AVX-512 [Int14b] increases the width of its multimedia registers
to 512 bits with respect to the previous generation and also includes mask registers,
full gather/scatter support and many non-trivial SIMD instructions. This trend is
anticipated to continue in the future and the SIMD register width and instruction sets
are expected to grow further. For example, AVX-512 was designed with provisions to
grow to 1,024 bits. We therefore predict that the SIMD support found in commod-
ity microprocessors will eventually resemble the instruction sets of the classical vector
architectures formerly found in the high-performance computing market.

We see a vector architecture as a good candidate for DBMS acceleration for a
variety of reasons. Vector architectures are deterministic with self-synchronisation
and consequently require less hardware than multicore designs as there need be only
one control unit for many concurrent operations. Communication between processing
elements and data movement typically requires fewer cycles than in multicore designs.
Performance scalability of a vector architecture is generally not inhibited by associative
hardware structures as is the case with out-of-order superscalar mechanisms [PJS97].
One the strongest advantages of vector processors is their ability to tolerate long latency
instructions, above all, memory operations. As memory latency and bandwidth have
become a significant issue for both computer architects and software developers, vector
support could be instrumental in optimising databases which are often bottlenecked
by the memory system [BMK99].

Vector architectures are known to be energy-efficient [LSCJ06, LAB+11] and can
be implemented in microprocessors using simple and efficient hardware [Asa98]. En-

5

Chapter 1. Thesis Overview

ergy efficiency is achieved through the large reduction of activity in the pipeline as a
whole due to the compact representation of many operations with one instruction. Ad-
ditionally, there is less requirement for aggressive speculation since execution patterns
are fully encoded into a single instruction. Vector memory instruction also implicitly
encode their access patterns, e.g. one vector load instruction can convey that many
consecutive elements in main memory will be accessed together; this can help reduce
the reliance on memory prediction hardware structures. Using a vector instruction set
also reduces an application’s memory footprint as algorithms can be coded with fewer
instructions. Leveraging this kind of architecture could be instrumental in building
the future generations of green servers for data management where performance and
energy consumption are equally important concerns.

Vector architectures have traditionally been used for scientific applications abund-
ant with floating-point code, however, their applicability to business domain, i.e. in-
teger, applications has yet to be analysed. Some former research in DBMSs has shown
that various operations do contain some DLP [ZR02, GBY07, HNZB07, IMKN07,
CNL+08, KKL+09, PR13]. All of this research, however, was done outside the sphere
of computer architecture. This is important because it implies that researchers were
working with limited ISAs and hardware and tried to solve their problem within these
constraints. We feel that looking at this area from a different angle could be fruitful.
In this thesis, we aim to answer the question—what needs to happen to the algorithms,
instruction sets and hardware in order to effectively exploit data-level parallelism in
DBMSs? There is potential to discover new algorithms—previously impossible to
implement—by defining new instructions as well as optimising existing algorithms by
tailoring the hardware to the available DLP.

We are mindful that there exist other means to exploit DLP; data management
performance has also been improved with dedicated devices like FPGAs [MTA09,
AANS+14] and GPUs [GGKM06, HLY+09, SHG09]. It is possible that using these
accelerators could achieve results more favourable than those presented in this thesis,
however, it would not be correct to make a direct comparison for two reasons. (1)
FPGAs and GPUs haven’t strictly superseded SIMD extensions and there are still ad-
vantages with tightly integrated DLP support in out-of-order superscalar processors
[PM12], especially when it is preferable not to offload to an external device [GH11]
or when there is a fine-grained mixture of scalar and vectorisable code as is common
in DBMSs [BZN05]. (2) This thesis evaluates the relative gains of SIMD acceleration
within a single core. There has been a lot of work done accelerating data management
with TLP [RGAB98, LBE+98, KKL+09, PA11] including some of the algorithms ex-
amined in this thesis. The work of Lee et al. [LKC+10] shows that TLP on multicore
performs comparably with GPUs when the code is optimised for the platform. The
purpose of our research is to improve the DLP capabilities within the core itself, nev-
ertheless, TLP and DLP are not mutually exclusive and there is no reason to believe
TLP could not be leveraged as well, however, this is beyond the scope of the thesis.

6

1.2. Objectives of Research

1.2 Objectives of Research

The primary goal of this thesis is to find new, interesting and efficient ways of acceler-
ating OLAP data management operations with vector microprocessor extensions. To
achieve this, the overall goal can be broken down into a series of individual objectives.
Achieving these objectives will form the contributions of this thesis.

The first objective is to take a set of relevant operations—typically used in data
management applications—and transform them to expose DLP. Some algorithms will
have straightforward translations. In other cases, existing algorithms may not be
the most effective—even when transformed to expose a lot of DLP. For example, it
is possible to use sorting network algorithms [Bat68] to expose a lot of DLP to the
processor. However, by making this transformation we actually increase the number
of dynamic operations to a value larger than would be produced from a more simple
scalar sorting algorithm. In cases like these, new algorithms must be designed that can
outperform existing DLP-enabled equivalents. In many cases new algorithms may not
be possible to implement on existing architectures, therefore, this objective is bound
to subsequent objectives and may require new instructions and custom hardware to
execute.

The second objective is to take the DLP-enabled algorithms created in the first
objective and find the most appropriate instructions to vectorise them. This object-
ive has two parts. (1) To draw from past vector ISAs and cherry pick the optimal
instructions in order to effectively capture the available DLP. Many of these instruc-
tions will have been seen before, however, it is important to determine which ones are
the most effective when working with data management operations. Unlike previous
vector incarnations, our focus will be on integer operations rather than floating point.
(2) To define novel instructions that have not been encountered before in previous
instruction sets. Some of the algorithms from the first objective will not be trivial to
implement with existing instruction sets. To efficiently vectorise these algorithms, new
instructions should be defined that can capture an algorithm’s DLP as concisely as
possible. The instructions should be elementary enough to lend themselves to multiple
scenarios, however, if an instruction with very specific semantics is found to be useful
in the context of data management, it should at least be explored.

The third objective is to create appropriate hardware that efficiently implements the
vector instruction set defined in the second objective. The target is to create hardware
that has modest power dissipation and low energy consumption as well as being able
to execute the vector instructions at a high speed. Furthermore, it is necessary to
understand how this hardware scales with respect to both the algorithms and the
area/energy/power overheads. Not only do we want to execute the vector instructions
in a speedy manner, we also need this hardware to be unobtrusive to the rest of the
processor and play nice with a DBMS as a whole. The algorithms are expected to
be a fine-grained mixture of scalar and vector code, therefore, it is important to be
able to integrate the vector support in such a way that the processor can have inter-
communication between vector and scalar parts with low latencies and overhead. A
second part of this objective is to discover new microarchitectural techniques to be
used in conjunction with this hardware. For example—what are the benefits of using

7

Chapter 1. Thesis Overview

techniques such as register renaming, superscalar execution or a cache hierarchy with
our vector ISA? Are there benefits to executing vector instructions out of order and
how could such a technique be implemented?

1.3 Thesis Contributions

In this section, we summarise the principal contributions of the thesis. We present four
self-contained works that—when combined—complete all of the objectives discussed in
Section 1.2. Each work forms the basis of a different chapter and every chapter covers
multiple objectives and contains numerous contributions. This section also serves as
an outline of the document.

In Chapter 2, we demonstrate that vectors can offer significant performance benefits
to existing DBMS solutions. We first characterise a state-of-the-art OLAP DBMS
called Vectorwise using an Intel Westmere based system. We profile this application
with the TPC-H decision support benchmark and discover that the hash join operator
accounts for 61% of its total execution time. We demonstrate that this operator has
disproportionate performance returns when scaling or increasing the out-of-order and
superscalar parameters in a cycle-accurate simulator. We then take the most significant
part of the operator—the probe phase—and find an abundance of DLP that cannot
be captured by the system’s SIMD multimedia extensions.

Based on these observations, we design our own vector extensions for a modern out-
of-order superscalar x86-64 commodity microprocessor. These extensions are inspired
by the ISAs of classical vector supercomputers but are tailored and optimised for
data management support. We implement these extensions with a custom simulation
framework based on PTLsim and DRAMsim2. Our results show significant speedups
with good scalability for medium to long vector register lengths and future memory
bandwidths.

In Chapter 3, we make a detailed study on sorting—an elementary building block
of OLAP DBMSs. There are several known techniques to vectorise and accelerate a
handful of sorting algorithms by using vector SIMD instructions. We implement three
existing vectorisable algorithms—quicksort, bitonic mergesort and radix sort—to run
with our vector extensions defined in Chapter 2. We show the strengths, weaknesses
and scalabilities of each algorithm when run on our simulation framework.

Based on these findings, we propose our own non-comparative vectorised sorting
algorithm—VSR sort. VSR sort is inspired by radix sort, however, the algorithm
circumvents the drawbacks that we identify in the former. To facilitate the execution
of this algorithm, we define two new vector instructions and propose a complementary
hardware structure for their implementation. The new instructions target DLP which
is too irregular for a typical SIMD ISA to vectorise. We discover that VSR sort has
very significant speedups over all prior work.

In Chapter 4, we explore different vectorisation techniques applied to GROUP BY
data aggregation—another important operator in OLAP DBMSs. Using the infra-
structure developed in Chapters 2 and 3, we propose and evaluate five different ways
of vectorising data aggregation. We find that although data aggregation is abundant

8

1.3. Thesis Contributions

in DLP, it is often too irregular to be expressed efficiently using typical vector SIMD
instructions.

In Chapter 3, we discover that exploiting DLP in its irregular form leads to very
good results. We now build upon this idea and propose a set of novel algorithms
and vector instructions to better capture this irregular DLP in data aggregation. We
discover that the best algorithm is highly dependent on the characteristics of the input.
Our proposed solution can dynamically choose the optimal algorithm in the majority
of cases and achieves significant speedups over a scalar baseline in all cases.

In Chapters 2, 3 and 4, we develop and evaluate vector extensions with performance
as the principal focus. In Chapter 5 we look at the area, energy and power costs of these
extensions. Using McPAT, we model our baseline architecture and vector additions in
order to measure the total area of the microprocessor as well as the area overhead of
the vector extensions. After, we use various event counters generated by our simulation
framework to feed into McPAT and estimate the energy and power consumption of the
scalar and vectorised executables. As a case study, we focus on the sorting algorithms
of Chapter 3.

Our results show that our proposed vector extensions come with a very reason-
able area overhead, even with a large maximum vector length and lockstepped parallel
lanes. We also find that all of the sorting algorithms consume much less energy than
their scalar counterpart. In particular, our own novel VSR sort requires an order-
of-magnitude less dynamic energy than the scalar baseline. With respect to power,
we discover that our vector extensions present a reasonable increase in wattage. Fur-
thermore, we demonstrate that there are configurations of our vector hardware that
consume less power than the scalar baseline and still achieve very good speedups.

In Chapter 6, we give a recap of these contributions as well as some reflections on
the outcomes of this thesis. In Chapter 7, we list the various publications resulting from
this work. Finally, Appendix A provides extra runtime statistics for the algorithms
evaluated in Chapters 2–4 and Appendix B lists the final ISA developed progressively
throughout this thesis.

9

CHAPTER 2

A Study on Hash Join

2.1 Introduction

In this chapter, we take a top-down approach to accelerating decision support sys-
tems (DSSs) on x86-64 microprocessors using purpose-built vector ISA extensions. We
first analyse a leading DSS DBMS for potential DLP and propose an instruction set
reminiscent of classical vector architectures to capture it effectively. We implement
this instruction set using unintrusive modifications to a modern x86-64 microarchitec-
ture that are tailored for the workload. We introduce our cycle-accurate simulation
framework—also used in later chapters—which we use to evaluate the ISA and mi-
croarchitecture. We find a single operator—hash join probing—is responsible for 41%
of the total execution time of the TPC-H DSS benchmark. Our results show perform-
ance speedups between 1.94× and 4.56× for an implementation of this operator run
with our proposed hardware modifications.

Vectorwise [Act11] is a modern OLAP database management system designed for
DSSs. It is a commercial product based on the work of MonetDB/x100 [BZN05]—
a block-at-a-time query engine which is hardware-conscious and highly optimised for
modern superscalar microprocessors. Vectorwise identifies the bottlenecks of previous
database solutions and structures their own software to exploit the full capabilities of
modern commodity hardware. Vectorwise algorithms are designed to reduce branch
misprediction penalties and function call overheads. Where possible, it uses block
partitioning to optimise its algorithms for the data cache. Its functions are designed to
be data-level parallel in order to expose independent loop iterations to the underlying
microarchitecture. Vectorwise can store tables in a columnar fashion [CK85] meaning
that columns of a table are stored as arrays in memory. When the algorithms access
data like this, it can help to expose DLP and generate more regular memory access
patterns.

In order to keep the processor fully utilised, Vectorwise transforms a lot of potential
DLP into ILP. This is principally due to the simplicity and limitations of multimedia

11

Chapter 2. A Study on Hash Join

SIMD extensions which cannot effectively capture the available DLP. While there are
still performance gains achieved through the DLP⇒ILP transformation, optimising
software this way is neither the most efficient nor scalable solution. Modern micro-
processors found in servers generally have out-of-order superscalar microarchitectures
and can cope with ILP to some extent. The problem is that the hardware complexity
and power consumption of finding more independent instructions this way increases
quadratically [PJS97] making this an unscalable solution which is not suitable in the
long term.

In this chapter, we use a top-down methodology and profile Vectorwise in order to
find opportunities to use vector technology. From this, we identify software bottlenecks
caused by unscalable superscalar hardware structures. We propose new integer-based
vector ISA extensions for x86-64 that can capture the available DLP in a concise and
effective manner. These ISA extensions are implemented using simple and scalable
hardware which we evaluate using a cycle-accurate microprocessor simulator fused with
a highly-detailed memory simulator. We compare major design decisions against al-
ternative options both qualitatively and quantitatively. Our vectorised implementation
achieves performance speedups between 1.94× and 4.56× for hash join probing—the
most significant part of the DBMS. In contrast, our experiments show that increasing
the out-of-order superscalar resources offers very little benefit to the same algorithm.

This chapter is structured as follows—Section 2.2 characterises the application and
provides motivation for this work. In Section 2.3, we discuss the design and imple-
mentation of the proposed vector extensions. Section 2.4 describes the experimental
setup and introduces our simulation framework. In Section 2.5, we present the results
of various experiments related to the design space and performance. Section 2.6 com-
pares and contrasts our proposal with related work. Finally in Section 2.7, we conclude
the chapter.

2.2 Software Characterisation

To get an idea of the application’s characteristics, we run Vectorwise v1.0 with TPC-H
[Tra11]. TPC-H is the standard benchmark for evaluating decision support systems.
Unlike other benchmarks such as SPEC, TPC-H is not a set of individual applications
but instead a set of queries that stress different aspects of an OLAP DBMS implement-
ation. The benchmark defines the database tables and their relations (schemas), the
values contained in the database, and the queries to be evaluated over the database.
The DBMS software has the freedom to store the database in its preferred way and
evaluate the queries in a manner that it sees fit. Therefore, what we present here is
one particular evaluation of Vectorwise.

Figure 2.1 shows the CPU time of the 22 1 TPC-H queries executed on a database
of 100 GB on an Intel Westmere system with 16 GB of DDR3-1333 memory. The
results show that a significant amount of time is spent in the hash join operation. If
all the queries are evaluated together and their total execution time is accumulated,
hash joins then account for 61% of this time. This has motivated us to focus our

1Query 21 was not run due to a larger memory requirement than what was available.

12

2.2. Software Characterisation

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22

e
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

tpc-h query number

other hash join

Figure 2.1: Breakdown of the TPC-H benchmark with 100 GB database.

initial evaluation on this operation and—in particular—the probe phase of the join
which constitutes 67% of the time spent in hash joins and 41% of the total execution
time. Although this chapter focuses on one particular operation, we expect many
of our findings to be applicable to other aspects of the DBMS. This is due to the
way that Vectorwise has been implemented using a block-at-a-time column-oriented
query engine. This software organisation helps expose more DLP than is possible with
traditional volcano-style DBMS designs [GM93].

2.2.1 Hash Join Probing

133

239

86

379

1

5

2

1

86

133

239

379

x

3

x

x

LHS HASHES HT RHS COLLISIONS

x

1

0

x

x

2

Figure 2.2: Probe phase of hash join.

Vectorwise’s hash join probe—illustrated in Figure 2.2—works in several stages and
rounds. The ultimate goal is to match and join the keys from the left-hand side (LHS)
with those on the right-hand side (RHS). A portion of the LHS—called a block—is
processed together as a compromise between cache locality and function call overhead.
First, the keys of the block are hashed to create indices into the hash table (HT)
structure. The corresponding values in the HT are—in turn—used as indices into the
RHS. The values must be retrieved and compared against the keys from the LHS for
matches. It is possible for distinct keys to hash to the same index thus leading to

13

Chapter 2. A Study on Hash Join

bucket collisions which must be handled appropriately; it can be seen in the example
that keys 133 and 379 cause such a collision. If the match fails, an auxiliary structure
named collisions is checked. If there was a bucket collision, the entry will chain to the
next colliding key, otherwise the entry is empty which implies there are no collisions
and potentially no possible matches. For a more detailed explanation of the Vectorwise
hash join implementation, we refer the reader to [Ż09, SZB11].

Vectorwise’s hash probing uses block partitioning to expose more independent op-
erations to the compiler/microarchitecture and amortise function-call overheads. In
contrast to other operations in Vectorwise, it is more difficult to achieve data locality
and cache residency. It is necessary that the hash table be fully built before it can be
probed, thus, the entire right-hand side must be evaluated before any work on the left
hand side can begin. If the right-hand side has many values, the hash table becomes
large and reduces the opportunity to effectively use the cache. For example, the tables
used in one particular hash join found in query 9 of TPC-H amount to 86 MB; these
tables are queried by over 600 million keys leading to performance issues.

Each row of the join is independent with respect to another, thus making the
algorithm potentially data-level parallel. The structures are stored contiguously as
arrays in memory, however, due to the random access nature of the algorithm, indexed
memory operations are necessary, i.e. gather/scatter. Mask registers could be used
to optimise many of the operations. For example, when only a subset of keys from the
LHS block are matched with the RHS, these could be masked out of subsequent iter-
ations to avoid redundant checks in the collisions table. Vectorwise’s hash join probe
implementation frequently rearranges its block partitions to filter out data unneces-
sary for subsequent rounds. The vector compress instruction coupled with a mask
population count and programmable vector length could very useful when vectorising
these parts.

2.3 Design and Implementation

In this Section, we design a vector instruction set based on our analysis of the hash
join probe algorithm in Section 2.2.1. We then discuss the various design choices of
the architecture and implementation details of the microarchitecture.

We choose x86-64 as a base ISA to build upon; this was chosen for several reasons.
It is the leading ISA in the server market, having roughly 60% of the market share
[Int11]. It is a universal ISA with mature optimising compilers and toolchains. x86-
64 is also a large improvement over the archaic IA32 ISA. Many improvements have
been made, e.g. the number of general purpose registers is doubled and several legacy
features—such as memory segmenting—have been removed. Vectorwise, although not
exclusively written for x86-64, has several optimisations made for x86-64 and the Intel
Xeon 5500 series [Ing09].

The baseline microarchitecture is not taken from any specific incarnation of x86-
64. Instead, the features available from PTLsim [You07], a cycle-accurate x86-64
simulator, are used. PTLsim models an aggressive superscalar out-of-order microar-
chitecture with instruction-to-µop translation; multistage pipelines; speculation and

14

2.3. Design and Implementation

recovery; and a multi-tiered cache hierarchy. We use Intel’s Westmere microarchitec-
ture [Int14a] as a reference when choosing particular configuration parameters—the
same microarchitecture used to make the initial evaluations in Section 2.2.

2.3.1 Instruction Set Proposal

Here we outline our ISA extensions for true vector SIMD support. The ISA offers eight
vector registers—vr0→ vr7. Each vector register can store up to the same number of
elements defined by the maximum vector length (MVL) constant. The actual number
of elements that a given instruction operates on depends on the value of the vector
length (VL) control register which is managed explicitly by get/set instructions. The
ISA also provides an instruction that sets the VL to the MVL. Retrieving the MVL
at runtime allows for transparent scaling of the microarchitecture; if the vectorised
functions are written using loop strip mining, they may be able to take advantage of
larger vector register lengths without the need of rewriting or recompiling. This is
precisely how we made our vector scalability experiments.

To vectorise hash join, unit-stride and indexed memory access patterns are needed.
Each pattern is supported with its own load, store and prefetch instructions. Strided
memory instructions are not necessary and are omitted from the ISA in this chapter,
however, these would be useful if the baseline DBMS were row-oriented instead of
column-oriented. Individual elements that comprise a vector memory operation are
assumed to be independent of one another; stores/scatters always write to unique
locations and scatters with conflicting indices are left semantically undefined.

Instructions are classified and listed in Table 2.1. Complete definitions of each one
can be found in Appendix B. The ISA includes vectorised integer arithmetic and bitwise
logical instructions. For these, one of the source operands must be a vector register
and the other may be another vector register or a scalar register. There is a class of
initialisation instructions which can set all of the elements within a vector register to
a specified scalar value. A very useful variant of this—known as iota [SFS00]—is also
included. This instruction generates a vector of consecutive integers starting from a
specified value. iota is useful for dynamically generating indices used to access the
hash join structures.

Table 2.1: Overview of added vector instructions.

class instructions

integer arithmetic add, subtract, multiply
bitwise logical and, xor, shift right

comparison not equal
initialisation set all, clear all, iota

mask set mask, clear mask, and, or, not, popcount
permutative compress

vector length set, set MVL, get
memory fence scalar-vector, vector-scalar, vector-vector

15

Chapter 2. A Study on Hash Join

Many of the instructions can take an optional vector mask specified by one of four
available mask registers—mr0 → mr3. Vector masks are updated in three ways—
(1) with initialisation instructions, e.g. set mask and clear mask. (2) With vector
comparison instructions that write their boolean results to mask registers. (3) With
mask-mask logical instructions.

The ISA also includes a position manipulation instruction called compress [Kog81],
which condenses non-masked elements from one vector register contiguously into an-
other vector register. To complement this, a mask population instruction—popcount—
is included which counts the number of set bits in a mask register. These instructions
are useful for eliminating rows that have no potential entry in the hash table as well
as shortening the vector length when checking candidate matches.

In order to achieve better performance, the vector memory instructions have been
made weakly ordered with respect to one another. This way, the execution order of vec-
tor loads and stores is not deterministic and ordering must be achieved through explicit
fence instructions. This allows for more aggressive scheduling in the microarchitecture
as well as reduced hardware complexity due to the absence of memory aliasing checks.
Although this puts more pressure on the programmer, we find that the vast majority of
hash join’s memory accesses are independent of one another. Weak ordering guarantees
can also be found in Cray’s NV-2 ISA [ABS+07].

The proposed ISA is reminiscent of classical vector ISAs used in supercomputers
except with emphasis on integer support over floating point. A true vector ISA is
already known to be useful for scientific computing and multimedia processing [Asa98,
EVS98] as well as other areas [EAE+02] thus broadening the scope of applicability of
our work. Additionally, there has been related work [HLY+09, MK00, ZR02] that shows
DLP opportunities in DBMS software beyond hash join that could also be exploited
with an ISA like this. In subsequent chapters, we use this newly created ISA as a basis
to explore other algorithms.

2.3.2 Design Decisions

In the following subsection, we describe and justify a list of key design decisions of the
implementation of our vector extensions. Figure 2.3 provides a block diagram of the
microarchitecture. The shaded area on the left represents hardware additions to the
baseline x86-64 architecture.

2.3.2-a Out-of-Order Execution

One of the biggest design decisions we made is to allow vector instructions to issue
out of order. The work of Espasa et al. [EVS97] showed that additional performance
can be gained by using register renaming and out-of-order execution. An out-of-order
execution engine can begin memory operations early and utilise the memory ports much
more efficiently hence hiding long memory latencies. Vectors are already tolerant of
long memory latencies in their own right; combining them with an out-of-order core
can further enhance this quality.

There are also drawbacks to an out-of-order microarchitecture. The structures used
to achieve out-of-order execution don’t scale well and are very power hungry [PJS97].

16

2.3. Design and Implementation

L/S QUEUE

DECODE

RENAME/ALLOCATE

DISPATCH

L
O

A
D

S

E
X

E
 2

S
T

O
R

E
S

E
X

E
 0

E
X

E
 1

WRITEBACK

COMMIT

L2 CACHE

L1-I CACHE

FETCH

R
E

G
IS

T
E

R

F
IL

E

L1-D CACHE

V
E

X
E

 1

V
M

E
M

V
E

X
E

 0

VMRF

V
E

C
T

O
R

 R
E

G
IS

T
E

R
 F

IL
E

XBAR

F
E

N
C

E
S

MEMORY

CONTROLLER
DRAM

Figure 2.3: Block diagram of the baseline microarchitecture extended with vector
support.

Fortunately, a single vector instruction can represent a lot of work and reduce the
need to scale these structures more than what already exists in current commodity
out-of-order microprocessors. Our decision to allow issuing vector instructions out of
order affects many of the subsequent design decisions. In Section 2.5.1-a, we evaluate
the benefit of using the out-of-order mechanism against a simpler decoupled design.

2.3.2-b Cache Integration

The block-at-a-time processing technique used by Vectorwise is very conscious of the
cache hierarchy. As mentioned in Section 2.2, large structures like hash tables often
have trouble fitting in the cache hierarchy, however, many other structures can still
reside there comfortably. Of particular importance are the block partitions which flow
through various data operators and create intermediate results in cache-resident arrays.
For this reason, it is highly desirable to take advantage of the cache hierarchy when
possible.

A solution to integrating vector support into an existing superscalar processor was
proposed by Quintana et al. [QCEV99]. A major part of this work was integrating the
vector units with the existing cache hierarchy. Their novel solution involved bypassing
the level 1 data (L1D) cache altogether and going directly to the level 2 (L2) cache.
The main motivation behind this was that adding the logic necessary to support vector
loads at the L1D cache could compromise its access time as seen by the scalar units.

17

Chapter 2. A Study on Hash Join

This idea was later used in Tarantula [EAE+02] which had a 4 MB banked L2 cache
directly accessible by its vector memory units.

Accessing the L2 directly introduces potential coherency problems with the L1D
cache. In the same article, Quintana et al. describe a simple approach to resolve this.
This involves adding an extra bit to each line to mark if its data is exclusively owned
by the scalar units or the vector units.

Since unit-stride loads and cache lines match quite well, this solution can pull many
elements from the cache at once and hide the additional latency incurred by the L2.
The L2 cache also has a larger capacity than the L1D cache so there is the added
benefit of having a larger cache-resident working set. For these reasons, we choose
to use L1D bypassing for our vector extensions. In Section 2.5.1-c, we evaluate and
compare L1D bypassing against an alternative approach that instead accesses the L1D
cache directly.

2.3.3 Microarchitecture Implementation

It is desirable to reuse as much as possible from the base microarchitecture so the
additions necessary to implement the vector ISA can be minimal. One of the key
design decisions we made has been to integrate the vector units into the core itself. This
way, the new vector instructions can make use of the existing pipeline and supporting
hardware structures. Nevertheless, we have had to introduce some new hardware
structures in addition to modifying several existing ones.

The decode units had to be modified to incorporate the new vector ISA. These
changes were minimal as the new instructions all have a fixed length and begin with the
same prefix (described in Appendix B). The register rename tables had to be changed
to accommodate the new vector, mask and vector-length architectural registers. A
new physical register file was added in order to support vectors and masks. The vector
length register was simply mapped to the existing integer physical register file.

Three new clusters have been added—vmem, which executes vector memory in-
structions, and vexe 0 and vexe 1, which handle non-memory vector instructions. Each
cluster contains an issue queue with eight entries and various pipelined integer func-
tional units. The existing issue queues can handle up to four operands which is sufficient
for existing x86-64 instructions; the new vector instructions need two extra operands,
i.e. a total of six. This is for two reasons—(1) the vector length register is allowed
to be renamed and thus it is necessary to have it as an operand in the issue queue.
(2) The destination register is also a source register. This is because it is possible for
the vector instruction to overwrite part—but not all—of its destination register. This
occurs when the VL is shorter than the MVL or if the instruction masks out opera-
tions on some of the vector’s elements. The scalar issue queues using four operands
can coexist with the vector issue queues using six operands.

Misspeculation recovery piggybacks on the existing infrastructure of the out-of-
order core. Vector registers are renamed using the same mechanism as scalar registers.
On branch mispredictions, the register rename table is restored to a stable state before
fetching from the correct path. This is similar to the approach used in [EVS97]. Vector

18

2.3. Design and Implementation

stores can generate their addresses when issued but don’t modify the memory state
until they are the oldest instruction ready to commit.

2.3.3-a Fence Mechanism

Since the new vector memory instructions are weakly ordered, it is mandatory to use
fence instructions to enforce ordering when required. To implement these vector fences,
it is necessary to continually log the youngest, i.e. most recent, store instruction in the
pipeline. This way, when a fence instruction is decoded it can be made dependent on
this store assuming it has not already retired. Subsequent load instructions can use
this fence as a dependent operand. The fence instruction waits in its issue queue until
its source operand—the store instruction—has successfully committed to memory. At
this point, the fence instruction proceeds to issue and wakes up any of the dependent
load instructions waiting in the memory issue queues. To achieve this functionality,
we add three new structures.

The first two structures are placed and used between the rename/allocate and
dispatch stages of the pipeline. The first of these is a small table with two entries used
to record the tag, i.e. reorder buffer id, of the most recent vector and scalar stores. The
second structure is a queue which we use to initialise and manage the fence instructions.
Similar to the reorder buffer, entries need to be allocated and deallocated in this queue
when decoding and committing fence instructions. Each entry of the queue contains
the tag of the associated fence instruction as well as the type of fence it implements,
i.e. vector store → vector load, vector store → scalar load or scalar store → vector load.
When a scalar or vector load instruction passes through the pipeline’s front end, the
queue is checked for the presence of a fence which matches the criteria, e.g. scalar loads
need only check for vector store → scalar load fences and can safely ignore other types.
If there is one or more matching fences present in the queue, the memory instruction
is made dependent on the youngest one. With respect to hash join probing, we have
found that a queue with four entries is sufficient. This requirement could increase for
other algorithms, especially if the fence instructions were to occur more frequently.

The third structure is a new issue queue dedicated entirely to fence instructions.
In our baseline microarchitecture, instructions broadcast their tags to dependent in-
structions after they have completed execution, i.e. passed through the functional unit.
This is problematic for store instructions since their execution only achieves address
generation. We don’t want a fence to issue until the store it depends on has been fully
committed to memory. To solve this, we add a path from the commit stage of the
pipeline to our custom fence issue queue. This is illustrated with the dashed lines in
Figure 2.3.

In Section 2.5.1-a, this fence mechanism is compared against a completely fenceless
approach and in Section 2.5.1-b, against a more a näıve hardware implementation.

2.3.3-b Vector Memory Request File

Vector memory requests have to be handled differently from all of the other operations.
Scalar memory loads can be executed out of order, but to achieve this, a complex
associative hardware structure called the load/store queue (LSQ) must be used. The

19

Chapter 2. A Study on Hash Join

LSQ detects memory aliases, i.e. loads and stores that go to the same address which
may have incorrect behaviour when issued out of order. Using the LSQ for vector
memory instructions would limit the number of in-flight memory operations in the
microprocessor. Additionally, such a structure presents a significant design problem
for handling indexed memory operations in which a single instruction may access a
large number of disjoint memory locations. Vector memory operations are known to
be data independent at the element level and in many cases are also data independent
with respect to one another. Since the infrequent case of vector memory aliasing is
handled explicitly using fence instructions, it does not need transparent resolution in
hardware.

It is also important to take advantage of the regular patterns found in vector
memory operations. Unit-stride loads and stores access consecutive locations in memory
and thus have a lot of spatial locality. It is therefore preferable to work with whole
cache lines when possible. The LSQ as it exists does not take advantage of this loc-
ality and each entry ultimately refers to a single scalar value. For indexed memory
operations with less spatial locality, it is also important to reduce the penalties that
may be incurred from transferring unnecessary data.

We have designed a structure called the Vector Memory Request File (VMRF) to
effectively manage vector memory instructions while avoiding the complex associat-
ive hardware found in the LSQ. This structure is optimised for data transfers at the
granularity of a cache line and can take advantage of the fact that the majority of
vector memory requests are independent. Here we outline the VMRF’s structure and
mechanism.

The VMRF contains three non-associative tables—the Load Table (LT), Store
Table (ST) and the Cache Line Table (CLT). Every vector load instruction is allocated
a single entry in the LT; similarly, each vector store instruction is given one entry in
the ST. Since we anticipate a moderate number of in-flight vector instructions, these
tables can be kept reasonably small. The CLT is used by both vector loads and stores
and is responsible for tracking and managing cache line transfers to and from the vector
register file. Since a single vector memory instruction can generate many cache line
requests, this structure will be significantly larger than both the LT and ST.

When a vector memory instruction is decoded, one entry in the LT or ST is alloc-
ated. An entry contains fields that point to the reorder buffer entry of the memory
instruction as well as the physical register of the source or destination. Additionally,
each entry contains two bitmasks—clt-waiting and clt-resolved. Both of these bitmasks
contain a number of bits equal to the number of entries in the CLT.

When the vector memory instruction is executed, i.e. its addresses are generated,
the VMRF will allocate an entry in the CLT for every L2 cache line accessed. For a
unit-stride memory instruction with a VL of 64, this may generate four or five CLT
entries assuming a datatype of 32 bytes. For indexed memory instructions, up to MV L
CLT entries could be used. Each CLT entry has an implicit identifier which is simply
its offset in the table. When the VMRF allocates an entry in the CLT, it uses that
entry’s identifier to mark the equivalent bit in the clt-waiting bitmask in the LT or ST.

After the address generation, the reorder buffer entry of the vector load or store
is placed in a waiting state. The VMRF then completes the load or store without

20

2.4. Experimental Setup

stalling the principal pipeline. In each clock cycle, the VMRF attempts to resolve a
single valid entry in the CLT. In the case of CLT entries relating to vector stores, the
store must be the oldest instruction in the pipeline before they are considered valid.
Once the values in a cache line are successfully transferred to or from the physical
register file, the VMRF uses the CLT entry’s identifier to set the corresponding bit
in the clt-resolved bitmask. When the clt-waiting and clt-resolved bitmasks match, it
means that the entire vector memory operation has been completed. At this point,
the VMRF wakes up the reorder buffer entry of the vector load or store and frees the
entries in the LT, ST and CLT.

We add two buses that connect the physical register file to the L2 cache—one for
load requests and another for store requests. As an optimisation, the structure can
handle partial cache line transfers. The cache line is broken into discrete sectors—the
size of an L2 cache line divided by the width of the bus. To save bus cycles, only
necessary sectors need to be sent to or from the cache line. Each CLT entry specifies
which bytes within the cache line are actually needed. Indexed operations benefit from
this, especially if the number of required bytes per cache line is small. Reorder buffer
entries of vector loads and stores must contain an identifier into the VMRF to be able
to recover from misspeculation. In these cases, the allocated entries in the VMRF
tables are annulled and recycled.

It is controversial to add indexed vector memory instructions to an out-of-order
microprocessor. There are often reservations about doing this, especially about com-
promising the latency of scalar memory instruction which could affect the performance
of existing non-vectorised applications. We have made two important design choices
to circumvent this from happening—(1) the LSQ is untouched by vector instructions
and, more importantly, avoids the complexities that would arise when detecting ali-
asing between indexed memory operations. (2) We leave the interface between the
functional units and the L1D cache untouched and instead bypass this structure and
access the L2 cache directly instead.

2.4 Experimental Setup

2.4.1 Simulators

We have evaluated our experiments using PTLsim [You07]—a cycle-accurate x86-64
simulator. The experiments were conducted using the classic mode of PTLsim, i.e.
where system calls are emulated. We have extended the simulator extensively to in-
corporate the new vector instruction set, hardware structures and additional microar-
chitectural changes.

PTLsim uses a fixed latency memory model by default which does not model band-
width and contention issues at all. It was felt that for a memory-intensive algorithm
like hash join, it is paramount to model the memory accurately. Consequently, we
have integrated DRAMSim2 [RCBJ11]—a cycle-accurate memory system simulator—
into PTLsim and replaced the default memory model. This also allows us to experi-
ment with multiple memory controllers. Having an accurate memory model allows the
vectorised algorithms to work within a realistic bandwidth envelope thus enforcing a

21

Chapter 2. A Study on Hash Join

fairer comparison to non-vectorised algorithms. Our results in Section 2.5.3 show large
discrepancies between the default simplified model of PTLsim and the more accurate
model using DRAMSim2.

2.4.2 Default Parameters

This section lists the parameters of the baseline setup. In all the experiments that
follow, these parameters are used unless explicitly stated otherwise. The parameters
of the scalar baseline are based on Intel Westmere [Int14a], the same microarchitecture
used to profile Vectorwise in Section 2.2.

Table 2.2: Simulator superscalar and out-of-order parameters.

parameter value parameter value

fetch width 4 fetch queue 28
front end width 4 front end stages 17
dispatch width 4 writeback width 4
commit width 4 reorder buffer 128
x86-64 general purpose registers 16 physical registers 256
issue width per cluster 1 total issue width 5
issue queue entries per cluster 8 total issue queue entries 40
load queue 48 store queue 32
L1D outstanding misses 10 L2 outstanding misses 16

Table 2.2 lists the superscalar parameters as well as the sizes of various structures in
the microarchitecture. Here front end refers to fetching, decoding, renaming/structure
allocation and dispatching to clusters. Based on the measurement of branch mispre-
diction penalties in the work of [Fog12], we estimate the latency of the front end to be
17 cycles.

In Westmere, the equivalent to an issue queue is the reservation station—a single
structure with 36 entries shared by all the clusters. In PTLsim, it is not possible to
model clusters as well as a single shared reservation station. To solve this, we divide
the reservation station into five issue queues, each one with eight entries and assigned
to its own cluster. We have measured the impact of larger issue queues with up to 32
entries and have found a difference in performance of only 3%. As shown in Figure 2.3,
there is one cluster for loads, one cluster for stores and three general purpose clusters—
exe 0, exe 1 and exe 2. As in Westmere, all functional units within the clusters have a
single-cycle throughput, i.e. they are fully pipelined. For details on the functional unit
latencies, we refer the reader to [Int14a].

Table 2.3 shows the parameters used in the cache hierarchy. The given latencies
include address generation. The hierarchy is inclusive and write through with respect
to L1D → L2, but writeback with respect to L2 → memory. Although Westmere has
a larger shared L3 cache, we do not include it as the effects of multiple cores are not
modelled in this work.

22

2.4. Experimental Setup

Table 2.3: Simulator cache hierarchy parameters.

cache level size latency line size ways sets

l1 instruction 32 KB 1 cycle 64 bytes 4 128
l1 data 32 KB 4 cycles 64 bytes 8 64
l2 unified 256 KB 10 cycles 64 bytes 8 512

Table 2.4: Simulator memory system parameters.

parameter value parameter value

type DDR3-1333 clock 1.5 ns
memory controllers 1 DRAM bandwidth 10 GB/s
queue per rank per bank scheduling rank then bank
transaction queue 64 command queue 256
policy open page burst length 64 bytes
banks 8 ranks 4
rows 32,768 columns 2,048
row accesses 8 device width 4
address layout row:rank:bank:column:burst

Table 2.4 contains the parameters of the memory system. We model a memory
system with both one and two memory controllers. The memory modules are DDR3-
1333 with a cycle time of 1.5 ns; since our CPU frequency is taken to be 2.67 GHz,
the memory controllers are clocked once every four CPU cycles. The burst length is
taken as 64 bytes as this coincides with the line sizes of the cache hierarchy. We use
an open page policy, however, we find that using a closed page policy results in only
marginally less overall performance. This may be important when considering energy
consumption where the closed page policy can be more beneficial [JNW07].

Table 2.5: Simulator vector extension parameters.

parameter value parameter value

maximum vector length 64 VMRF load table entries 12
lockstepped parallel lanes 1 VMRF store table entries 8
maximum datatype width 64 bits VMRF cache line table entries 128
architectural vector registers 8 physical vector registers 16
architectural mask registers 4 physical mask registers 8
bus width: L2 → vector 32 bytes total vector issue width 3

Table 2.5 shows the default configuration of the vector parameters. The number
of physical vector registers has been made twice the amount of architectural vector
registers. This is based on the work of Espasa et al. [EVS97] that states for register
renaming to be effective, there should be—at minimum—twice as many physical re-

23

Chapter 2. A Study on Hash Join

gisters to architectural registers. We have noted that eight architectural vector registers
are more than enough to vectorise these kernels. Six architectural registers would be
sufficient meaning that the physical register file could be reduced to 12 entries.

All experiments presented in the next section use a single vector lane (i.e. parallel
lockstepped pipelines used to operate on elements within a single vector instruction).
Our experiments have shown that adding more lanes improves performance only mar-
ginally since hash join is dominated by memory requests. In subsequent chapters, we
introduce lanes into our experiments as they have a larger impact on other algorithms.
Additionally, chaining (i.e. allowing some vector instructions to issue as soon as the
first elements of an input operand are ready rather than waiting for all of the elements
to be calculated first) does not exhibit significant performance gains and has thus been
disabled.

We make the bus width between the L2 cache and the vector register file 32 bytes—
the same as the bus width that connects the L1D cache to the L2 cache. We provide
the cache line table of the VMRF with 128 entries. This number was chosen to allow
at least two indexed memory operations in flight when the MVL is 64, however, this
structure could be reduced when the MVL is shorter.

As mentioned in Section 2.3.3, three additional clusters have been added for vector
support—vexe 0, vexe 1 and vmem. Therefore, one vector memory instruction and two
non-memory vector instructions can be issued in the same cycle. Each cluster requires
one write and two read ports to both the vector register file and the mask register
file. A vector instruction must complete fully before another one can occupy the same
functional unit.

2.4.3 Workload

We evaluate the proposed changes using a partial run of a hash join probe found in
query 9 of TPC-H—the most time-consuming operation of the entire benchmark. This
join uses two keys to query a hash table of 32 MB, a conflict table of 18 MB and RHS
indices of 36 MB (totalling 86 MB). The LHS input was originally 600 million rows
but we reduced this to 12 million in order to shorten the simulation times. This will
be just as representative since the LHS input data is distributed in such a way that
the selectivity of the query will remain fixed whether the LHS is evaluated entirely or
partially. We observe that useful performance metrics such as the instructions per cycle
and the cache miss ratio are invariant to the size of the LHS input. In the proceeding
experiments and results, this query run with the default input is labelled tpch.

In order to evaluate the algorithm in different scenarios, we have added four extra
synthetic datasets—l1r, l2r, 2mb and huge. l1r and l2r are built such that the hash table,
conflict table and RHS indices can be resident in the L1D and L2 caches respectively.
Since the LHS input does not have temporal locality, its number of rows need not be
reduced. 2mb is eight times the size of l2r, thus allowing for a mixture of cache hits
and misses in the experiments. huge has structures of an equal size to tpch but with
a different selectivity that leads to more computational work, i.e. the LHS finds more
matches in the RHS. In order to compare against tpch, the LHS input is fixed at 12
million rows for all the datasets.

24

2.5. Results

We evaluate these datasets using a vectorised binary as well as a purely scalar
one, i.e. the original code compiled without autovectorisation. Our vectorised binary
is coded and optimised by hand using the proposed ISA extensions. The vectorised
functions retain their semantics and minimal transformations are needed. This way, a
comparison against the scalar implementation is fair and representative. We configure
Vectorwise to use blocks of 1,024 elements—a good compromise between cache locality
and function call overhead.

2.5 Results

In this section, we present the results of several key experiments used to evaluate
the impact that our vector extensions have on the hash join probe algorithm. We
choose to present our results in terms of either processor cycles or speedup; this allows
us to fairly compare the purely scalar simulations with the vector ones. CPI/IPC
metrics are not used because they don’t translate well to something analogous with
the baseline architecture. A single vector instruction is not comparable to a single
scalar instruction. For example, l1r run with the scalar baseline commits 1,163 million
instructions whereas the vectorised version run with a MVL of 64 commits only 51
million instructions of which 16 million are vector instructions. Even treating a single
vector instruction as the number of scalar instructions equivalent to the VL is not
fair due to (1)—the decrease in pipeline structural pressure, and (2)—the reduction of
related bookkeeping scalar instructions such as loop constructs and conditionals.

2.5.1 Design Exploration

Figure 2.4 displays the results of various experiments related to the design and im-
plementation space. These experiments are run with the vectorised binary using the
setup described in Section 2.4. ooo-customfence-l2cache refers to the default configur-
ation with out-of-order logic, customised fences and L1D cache bypassing. decoupled
restricts the out-of-order capabilities of the vector issue queues and permits only the
oldest instruction, i.e. at the head, in each cluster to issue. The scalar issue queues
are still fully out of order to isolate the impact of dynamic scheduling applied to vec-
tor instructions. Vector memory instructions can still issue speculatively so the fence
instructions are still necessary. fenceless restricts the out-of-order capabilities in the
same way as decoupled and additionally limits the in-flight vector memory instructions
to remove the necessity of fences entirely. flushed-fence replaces the custom fence mech-
anism with a simpler but slower alternative. l1cache forces vector memory instructions
to communicate directly with the L1D cache instead of the default bypass mechanism.
Both flushed-fence and l1cache use the default out-of-order issue queues. For clarity,
these results are presented with absolute numbers using simulated processor cycles of
execution; accordingly, the lower the value–the better the result. We now discuss the
results of each of these design choices individually.

25

Chapter 2. A Study on Hash Join

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

l1r l2r 2mb huge tpch

p
ro

c
e

s
s

o
r

c
y
c
le

s
 (

b
il
li
o

n
s
)

dataset

ooo-customfence-l2cache decoupled fenceless flushed-fence l1cache

Figure 2.4: Hardware design space exploration running the vectorised hash join probe
binary when MV L = 64.

2.5.1-a Out-of-Order Logic

Here we quantify the benefits of the out-of-order vector issue queues. It is immediately
apparent that the out-of-order capabilities of ooo-customfence-l2cache outperform both
of the more restricted configurations—decoupled and fenceless. Taking into account all
the datasets, ooo-customfence-l2cache takes 75% of the number of cycles of decoupled
and 72% of fenceless or, alternatively, gives 1.34× and 1.39× speedups respectively. Al-
though restricting the scheduling policy simplifies the processor, the out-of-order logic
allows the instruction stream to execute more aggressively and start independent vec-
tor instructions earlier thus utilising the available execution units more efficiently. It
must be restated that out-of-order support does add complexity to the microarchitec-
ture, however, our proposed design attempts to piggyback on the existing out-of-order
support and reuse as much as possible from the scalar core.

2.5.1-b Custom Fences

Next, we evaluate the benefits of the custom fence logic described in Section 2.3.3-a.
We compare ooo-customfence-l2cache against a simpler but slower alternative—flushed-
fence. flushed-fence uses PTLsim’s internal mechanism for creating a true instruction
stream barrier. This is typically used to service hardware assists, i.e. special x86-64
instructions that cannot be decoded into µops. When the decoder encounters one of
these instructions, the processor stops fetching new instructions, drains the pipeline,
establishes a correct hardware state and then services the instruction. The semantics
of our fence instructions are changed to evoke this behaviour.

The difference in performance is not as significant as we originally anticipated.
On average, the custom fence mechanism outperforms flushed-fence by 1.03×. This
may be explained by the fact that the fence instructions are not very frequent and
occur off the critical path. Each phase of the algorithm finishes by storing a block of

26

2.5. Results

temporary results to memory. A different phase begins by loading these temporary
results iteratively into the vector registers. The fence instructions, therefore, need
only be placed between the different phases of the algorithm. The true difference
between flushed-fence and ooo-customfence-l2cache in this scenario is that the latter
allows instructions to decode and dispatch but the former does not, however, in both
cases nothing will be able to issue until the fence has committed. The penalty of using
flushed-fence over ooo-customfence-l2cache would become more apparent with a longer
front end pipeline or if fences were to be needed more frequently on the critical path.

2.5.1-c Level 1 Data Cache Bypass

Here we measure the benefit of L1D cache bypassing. For the l1cache design, the
VMRF uses the L1D cache in comparison to ooo-customfence-l2cache which instead
goes directly to the L2 cache. The benefit is that any data resident in the L1D cache
can be transferred to a vector register in fewer cycles. The disadvantage is that on a
cache miss, an extra cycle is needed to request the missing data from the L2 cache. It
must also be stated that in this evaluation, the scalar access time to the L1D cache
remains unchanged. A vector access takes the same latency as a scalar one, however,
transfers to the vector register file are still restricted to 32 bytes per cycle. The reality
is that a direct vector access to the L1D cache could compromise the access cycle time
as discussed in [QCEV99], thus the l1cache design may be more optimistic than it
should be.

The results show that—on average—l1cache has a negligible speedup over ooo-
customfence-l2cache. This can be explained by the fact that, internally, the VMRF
still needs to generate the same number of requests to the caches. When accessing the
L2 cache, these are pipelined and the penalty is amortised. Additionally, the majority
of the workloads don’t comfortably fit in the L1D cache which, in turn, has fewer
outstanding misses available than its L2 parent. We conclude that going to the L2
cache in lieu of the L1D cache adds very little penalty and ensures that the existing
scalar performance is not compromised.

2.5.2 Vector Scalability

It is desirable to have a large average vector length (AVL), as this is directly related
to the scalability of the vectorised code. Figure 2.5 shows the trend of the AVL of the
tpch dataset when increasing the MVL. The horizontal axis varies the MVL, i.e. the
number of elements that can be contained in a vector register. The vertical axis shows
the AVL normalised to the MVL, this way the scalability of the algorithm is made
clear.

The AVL is calculated by dividing the total number of elements processed by vector
operations divided by the total number of vector instructions. It has two variants—
the AVL including masked out elements (inc.masked) and another excluding these
(ex.masked). The former only considers the programmable vector length register. The
results show that the AVL degrades gradually with larger MVLs, however, not too
rapidly. We conclude that it is worth experimenting with large MVLs such as 64.

27

Chapter 2. A Study on Hash Join

0%

20%

40%

60%

80%

100%

4 8 16 32 64

a
v
e

ra
g

e
 v

e
c

to
r

le
n

g
th

maximum vector length

inc.masked ex.masked

Figure 2.5: Average vector length compared to maximum vector length using tpch.

0

1

2

3

4

5

4 8 16 32 64

s
p

e
e

d
u

p
 o

v
e

r
s

c
a

la
r

c
o

d
e

maximum vector length

l1r l2r 2mb huge tpch

Figure 2.6: Scalability of vector code when increasing the maximum vector length.

Figure 2.6 shows the performance benefits of increasing the MVL for all of the
datasets. The horizontal axis doubles the MVL at each increment and is shown on a
logarithmic scale. The vertical axis shows the speedup of the vectorised code over the
scalar equivalent. The speedup shown for each line is relative to the scalar baseline
run with that particular dataset, i.e. each dataset has its own baseline.

l1r and l2r—the two cache-resident datasets—see the greatest benefit of a larger
MVL with speedups of 4.0× in the best case. 2mb, huge and tpch—the noncache-
resident datasets—also scale with the MVL, albeit more slowly. When increasing the
MVL from 32 elements to 64, the average performance increase of the cache-resident
datasets is 1.2× whereas for the noncache-resident datasets it is 1.1×. Depending on
the expected input size, it may be more economical to have a smaller MVL.

28

2.5. Results

Increasing the size of the MVL is very significant to the performance speedups,
even for single-lane configurations. For the l1r experiments, a MVL of four yields a
speedup of 1.5× over the scalar baseline, however, changing the MVL to 64 increases
the speedup to 4.0× without using additional lanes. We observe that the number of
cycles reduced in l1r run with a MVL of 64 is very close to the number of cycles that
the front end cannot dispatch due to full clusters when the MVL is four. With a larger
MVL there are fewer instructions, and although an instruction with a MVL of 64 has
a higher latency than an instruction with a MVL of four, the aggregate time is lower
due to the vector startup penalty being paid less frequently. In general, there are less
structural hazards leading to higher throughput.

It is interesting to note that the non cache-resident datasets—2mb, huge and tpch—
run with a MVL of four perform worse than their scalar equivalents. It is known in
vector research that there is a break-even vector length below which the vectorised
operation needs more time than the equivalent scalar operation [Sch87b]. This can be
explained by the penalty of going directly to the L2 cache which isn’t yet fully amortised
with such a small MVL. Since it exhibits little benefit over the scalar baseline, we
discard four as a MVL from our experiments in subsequent chapters.

The vector solution is particularly good at describing the independence of individual
operations, expressing them in a compact manner and scheduling them back to back.
The scalar implementation still suffers from inter-instruction dependencies and stifles
the potential of faster scheduling, especially with respect to memory instructions. The
vector implementation reduces the number of instructions fetched, decoded, renamed,
issued and committed as well as their occupancy in structures such as the fetch queue,
issue queues and the reorder buffer. Appendix A contains extra runtime data of these
experiments.

2.5.3 Memory Controller Saturation

Figure 2.7 shows the results of the vectorised code run with different memory config-
urations. Here, the tpch dataset is measured and the vectorised algorithm’s speedup
is shown relative to its scalar baseline. The diagram plots three trends—inf. bw, mc1
and mc2. inf. bw shows the relative performance when using PTLsim’s default fixed
latency memory model. This is configured at 150 cycles per memory request which
is the average load memory latency of the scalar version reported by DRAMSim2.
This model is considered to be infinite in bandwidth as it does not model contention,
variable latencies, bandwidth nor any of the quirks found in a realistic memory system.

Comparatively, mc1 shows the same experiment run using an accurate DRAM
model. For a MVL of 64, mc1 reports 1.84× performance over the scalar baseline
whereas inf. bw discloses 3.4×—a massive discrepancy. The vector unit had been satur-
ating the memory system with requests which in turn did not have enough bandwidth
to sustain the requirements. mc2 shows the same experiment run with an additional
memory controller used to increase the available bandwidth. Although it still falls
short of the controversial inf. bw trend, it allows the speedup to increase to 2.61×.

The effectiveness of vector support applied to hash join probing comes from its
ability to saturate the memory controllers with requests. Figure 2.8 shows the effects

29

Chapter 2. A Study on Hash Join

0

0.5

1

1.5

2

2.5

3

3.5

4

4 8 16 32 64

s
p

e
e

d
u

p

maximum vector length

inf. bw mc2 mc1

Figure 2.7: Impact of memory bandwidth on performance using tpch.

of increasing the maximum number of outstanding last level cache misses by increasing
the number of miss status holding registers (MSHRs). Here the MVL has been fixed
at 64 elements. The results are shown as the speedup over the scalar version with one
memory controller and the default number of MSHRs using the tpch dataset. Here, s-
and v- refer to the scalar and vector experiments respectively.

It can be seen that the scalar version does not show any speedup with the addition
of a second memory controller nor with the infinite bandwidth memory model. s-mc1,
s-mc2 and s-inf.bw do not exceed 1.0× even when extra MSHRs are offered. The scalar
version of the algorithm may be able to take advantage of the available bandwidth in
the system if it were able to generate its requests quicker. We have found that the
scalar code uses about 3.5 GB/s of effective bandwidth out of DDR3-1333’s maximum
theoretical of 10 GB/s.

In comparison, it can be seen that there is little performance gain when the number
of MSHRs is increased for the vector versions using a realistic memory model. The
reasons for this are different to those of the scalar version. Clearly the vector version
can generate a sufficient number of requests to main memory, otherwise the infinite
bandwidth memory model v-inf.bw would not exhibit a speedup when more MSHRs are
provided. The simulations that model detailed memory controllers don’t exhibit addi-
tional speedup with more MSHRs because the memory resources are already strained.

The vector code with a single memory controller achieves 6.2 GB/s of effective
bandwidth, however, it is normal for an application to peak at around 70% of the
maximum theoretical bandwidth. When operating close to the application’s maximum
sustainable bandwidth, latencies tend to increase exponentially—this behaviour is de-
scribed in detail in [JNW07, SZG+09]. Seeing this plateau of available bandwidth
motivated us to experiment with an additional memory controller.

30

2.5. Results

0

1

2

3

4

5

6

s-mc1 s-mc2 s-inf.bw v-mc1 v-mc2 v-inf.bw

s
p
e
e
d
u
p

configuration

mshr1x mshr2x mshr4x

Figure 2.8: Speedups while varying memory bandwidth and MSHRs using tpch and
MV L = 64.

2.5.4 Scalar Scalability

To illustrate that vectors are an appropriate solution to this problem, Figure 2.9 shows
the effects of increasing the superscalar and out-of-order structures listed in Table
2.6. All the datasets are measured using the three new hardware configurations—
ss2, ss4 and ss8—and the results are presented as the speedup over the baseline
ss1 configuration. It must stated that it is extremely unrealistic to presume these
parameters can be scaled in such a way, however, it makes for an interesting experiment
and exposes the limitations of a purely scalar approach.

Table 2.6: Scaled superscalar and out-of-order simulator parameters.

parameter ss1 ss2 ss4 ss8

fetch queue 28 56 112 224
load queue 48 96 192 384
store queue 32 64 128 256
reorder buffer 128 256 512 1,024
issue queues (total) 40 80 160 320
outstanding l1d misses 10 20 40 80
outstanding l2 misses 16 32 64 128
front end width 4 8 16 32
dispatch width 4 8 16 32
writeback width 4 8 16 32
commit width 4 8 16 32

It can be seen that doubling the parameters once increases the performance 1.16×
on average, which is a minor gain considering the resources required to achieve this

31

Chapter 2. A Study on Hash Join

speedup. Increasing the hardware structures 8× will increase the performance between
1.22× (for l1r) and 1.40× (for 2mb and huge). This means in the best case, a huge
out-of-order superscalar design can yield an extra 40% of benefit at best whereas the
simpler vector model can increase performance past 400%—an order of magnitude in
difference.

1

1.2

1.4

1.6

1.8

2

l1r l2r 2mb huge tpch

s
p

e
e

d
u

p
 o

v
e

r
s

s
1

dataset

ss2 ss4 ss8

Figure 2.9: Speedup of scalar code when increasing superscalar capabilities.

2.5.5 Software Prefetching

The work of Chen et al. [CAGM04] showed the potential of increasing hash join per-
formance using software prefetching. This is a particularly appealing solution as it
takes advantage of existing hardware found in commodity processors. x86-64—the
baseline ISA in these experiments—includes a set of software prefetching instructions
defined by the SSE standard. We modify the scalar and vector versions of hash join
probing to use the group prefetching technique described in [CAGM04].

Figure 2.10 shows the results of the experiments made with each dataset. s-pre
is the scalar code with software prefetching enabled. v-no-pre is the default vector-
ised code without software prefetching modifications. v-pre is the vectorised code with
software prefetching additions. The vector configurations use a MVL of 64. All exper-
iments are presented as the relative speedup over the scalar baseline without software
prefetching for that particular dataset.

It can be seen that s-pre improves the performance of the algorithm with an average
speedup of 1.34×; this is quite a good performance boost considering it requires no
additional hardware. That said, v-no-pre achieves much better speedups—between
1.8× for tpch and 4.0× for l1r and l2r—hence showing that the vector approach still
has higher returns than a scalar version with prefetching. v-pre shows that, for all of
the datasets, prefetching combined with the vectorised code pushes the performance
even more. In the case of l2r, performance exceeds 4.5×. This helps demonstrate that
the performance gains of software prefetching can be complementary to the proposed
vector additions. It is important to note that for l1r and l2r, it is only the RHS that

32

2.6. Related Work

is cache-resident; the LHS is larger than the cache and prefetching helps reduce the
effect of cold misses.

0

1

2

3

4

5

l1r l2r 2mb huge tpch

s
p

e
e
d

u
p

 o
v
e
r

s
c

a
la

r
c
o

d
e

w

/o
 p

re
fe

tc
h

in
g

dataset

s-pre v-no-pre v-pre

Figure 2.10: Speedups achieved with use of software prefetching when MV L = 64.

2.5.6 Comparison to SSE4.2

So far, different aspects of the proposed hardware have been evaluated and compared
against a purely scalar baseline. What is missing is a comparison against a hash join
implementation that utilises the multimedia extensions already present in the baseline
architecture. The problem is that no version can exist given the limitations of SSE4.2—
the multimedia extensions found in Westmere. The work of Kim et al. [KKL+09]
made extensive optimisations to—and an evaluation of—the hash join algorithm and
concluded that for DLP to be exploited effectively, there must be efficient support for
indexed memory operations.

Nevertheless, we measure the difference in execution time between an optimised
scalar version of the code and a version with the compiler’s autovectorisation feature
enabled. In order to help the autovectorisation algorithm, we alter the functions to
expose data alignment and the absence of aliasing. The compiler is able to transform
a small portion of the code to use SIMD instructions, namely the part that computes
the hashes of the LHS input. When both versions are run on the same system, the
difference in execution time is less than 1%. This is mainly due to the fact that this
particular part of the code is not the most dominant in the overall algorithm.

2.6 Related Work

This section details several works that have attempted to accelerate DBMS software
by exploiting DLP. We compare and contrast our own research with those mentioned.

The work of Martin [Mar96] describes a hash join implementations for the Cray
C90. The methodology of this work takes a different approach to ours. We profile

33

Chapter 2. A Study on Hash Join

an existing full-featured DBMS that has been optimised for modern out-of-order mi-
croarchitectures to find bottlenecks due to scalar inefficiencies. In contrast, this work
proposes its own algorithm for hash join with no reference to a real DBMS. We are pro-
posing vector extensions to an ISA that already dominates the server marker whereas
Martin’s work is done exclusively on a supercomputer. Meki and Kambayashi [MK00]
also look at the vectorisation of database operators. This time the list is expanded to
selection, projection and join operators, however, their methodology is still the same—
näıve scalar implementations are run against vectorised versions on a supercomputer
and so the same arguments still apply. Since we are conducting our experiments within
a simulation framework, we have been able to characterise the hash join algorithm in
terms of hardware scalability—something not achieved in either of these works.

Zhou and Ross [ZR02] make a broad study accelerating various database operators
using the SSE instruction extensions for x86. The work investigates the benefits of
DLP and reduction of conditional branches in implementations of scans, aggregations,
indexed operations and joins. Since this chapter is primarily focused on joins, a com-
parison of this feature is given. The principal difference between our vectorised join
and their join implemented with SSE is that their work looks at a simple nested loop
implementation whereas our work looks at an optimised hash join implementation. A
nested loop join compares every row from the LHS table with every row from the RHS
table. This is not a problem when the tables are small, but if they are large then this
is a very inefficient join algorithm. In contrast, we look at a hash join implementation
that is suitable for large tables typically found in OLAP DSS databases.

Héman et al. [HNZB07] partially port a DBMS to the Cell Broadband Engine
[GHF+06]—an architecture abundant with DLP capabilities. What is interesting is
that the query engine used in the study is MonetDB/X100 [BZN05] which is an earlier
version of the query engine used in Vectorwise. The work mostly discusses the chal-
lenges that arise from using this esoteric architecture. Furthermore, the work is eval-
uated using TPC-H query 1 which lacks a join operation. This chapter is primarily
focused on joins so it is difficult to make a comparison.

He et al. [HLY+09] investigate the performance benefits of running DBMS oper-
ations on graphics processing units (GPUs). The study includes a hash join imple-
mentation that runs on a GPGPU coprocessor. There are some performance benefits,
however, the study concludes that the necessity to transfer data between the global
memory and the GPU’s local memory can be a large bottleneck. Our approach adds
vector processing capabilities into the CPU’s execution core so this penalty is never
encountered. This is important when treating the DBMS software as a whole since it
can have complex control flow mixed with segments more suitable for DLP-oriented
hardware.

2.7 Conclusions

In this chapter, we have examined a leading decision support DBMS—Vectorwise—
and found that hash join can form a significant proportion of its execution. Using
the TPC-H decision support benchmark, we measure that 61% of Vectorwise’s total

34

2.7. Conclusions

execution time is spent in the hash join operator. It was found that the probe phase
of hash join contains an abundance of DLP that isn’t expressible using the multimedia
SIMD extensions found in the baseline architecture. We have proposed instruction set
extensions to the x86-64 ISA that are suitable for vectorising the algorithm compactly
and efficiently. We have introduced these instructions into a modern out-of-order
x86-64 microarchitecture taking advantage of existing structures where possible and
without compromising their performance.

We have explored various trade-offs in the design space. Our decision to issue vector
instructions out of order gives a 1.34× performance speedup over a decoupled design.
We have also evaluated the benefits of using fences to allow vector memory instructions
to issue out of order without hardware alias checks. We have shown that this gives
1.39× extra performance over a model that restricts its vector memory instructions to
issue non-speculatively and serially. Finally, we have measured the penalty incurred
when bypassing the L1D cache in favour of using the L2 cache which we have found
to be negligible.

Our results show that the new vectorised implementation of hash probe—accounting
for 41% of total execution time—can achieve speedups between 1.94× and 4.56× over
the scalar baseline. We have shown the benefits of using two memory controllers in
conjunction with the vector hardware and have also demonstrated that the scalar code
cannot take advantage of the extra available bandwidth. Furthermore, we have shown
that increasing the out-of-order structures and superscalar widths gives disproportional
returns whereas the vector approach achieves an order-of-magnitude greater speedup.
Finally, we have confirmed that software prefetching techniques described in [CAGM04]
can accelerate the scalar algorithm, albeit not as much as our solution using vectorisa-
tion. We have also demonstrated that this strategy is complementary to our work and
can be used in conjunction with vectorisation for an even greater speedup.

This chapter serves a basis for the rest of the thesis document. Using our newly
created vector ISA and simulation infrastructure, we explore sorting algorithms in
Chapter 3 and data aggregation algorithms in Chapter 4. In Chapter 5 we focus on
measuring the area overhead and power consumption of these new hardware extensions.

35

CHAPTER 3

A Study on Sorting

3.1 Introduction

Sorting is a widely studied problem in computer science and an elementary building
block in database management systems. There are many unique ways to achieve sorted
output and each technique has its own particular strengths and weaknesses. Numerous
works have successfully leveraged DLP to accelerate sorting algorithms [Sto78, Lev90,
ZB91, GBY07, IMKN07, CNL+08, SKC+10]. As current SIMD support found in
microprocessors is still quite restrictive and the transformation from simple multimedia
extensions to true vector support is still incomplete, the true potential of exploiting
the DLP found in sorting algorithms is hitherto unknown.

In this chapter, we make three principal contributions. (1) We first study prior
DLP-accelerated sorting proposals with a modern and uniform platform and assess
them using consistent metrics thus allowing us to identify and compare the strengths
and weaknesses of each algorithm. In particular, we use the vector extensions developed
in Chapter 2 to explore vectorised implementations of quicksort, bitonic mergesort and
radix sort. (2) Based on these evaluations, we propose a novel non-comparative sorting
algorithm—VSR sort—a highly efficient vectorised implementation of radix sort that
overcomes many of the drawbacks found in the evaluated sorting algorithms. (3) To
facilitate this algorithm, we propose two new instructions as well as a hardware im-
plementation that includes both a serial and parallel variant. Additionally, we suggest
several other uses for the new instructions and hardware.

Based on experiments, we report that our VSR sort outperforms the aforementioned
prior work and shows good scalability for large maximum vector lengths. Furthermore,
it exhibits good performance using both a simple single-lane pipelined mechanism as
well as with a more sophisticated implementation using lockstepped parallel lanes.
We show that VSR sort has maximum speedups over a scalar baseline between 14.9×
and 20.6×. On average it performs 3.4× better than the next-best vectorised sorting
algorithm when run on the same hardware configuration.

37

Chapter 3. A Study on Sorting

The outline of this chapter is as follows. Section 3.2 discusses the changes we make
to our architecture and simulation framework to accommodate the sorting algorithms.
Section 3.3 outlines the experimental methodology and evaluates three sorting al-
gorithms that leverage DLP. Section 3.4 describes VSR sort; we propose implementing
this algorithm by extending the vector ISA with two new instructions and recommend
two different ways of realising these instructions in hardware. The algorithm is then
evaluated and compared with those of Section 3.3. Related work is discussed in Section
3.5. Finally, Section 3.6 concludes the chapter.

3.2 Changes to the Architecture

In this section, we outline the changes that we make to our vector architecture and
simulation framework. In Chapter 2, we defined a baseline architecure as well as a
vector ISA suitable for DBMS acceleration and various microarchitectural techniques
and optimisations. In this chapter, we build upon this infrastructure and extend it
further in order make detailed evaluations of the vectorised sorting algorithms.

In Chapter 2, we chose not to show the results with lanes because they did not make
a significant impact on the execution time of the vectorised hash join. For sorting—
depending on the particular algorithm—lanes can have a very significant influence
on performance. In this chapter, we introduce lockstepped parallel lanes into our
microarchitecture. We experiment with a small number of lanes to determine which
algorithms are affected by their presence as well as by how much.

We also found that eight vector registers were more than sufficient to vectorise the
hash join probe algorithm. For sorting, we find that several of the algorithms can
take advantage of an increased number of registers. To ensure that each algorithm
operates optimally, we increase the number of architectural vector registers from eight
to sixteen. Consequently, we also increase the number of physical vector registers from
sixteen to 32.

In order to vectorise hash join probing, we required unit-stride and indexed memory
access patterns. In this chapter, we extend our vector memory instructions to include
a strided access pattern. These memory instructions use a base address in addition
to a parameter that refers to the increment in memory between elements. This allows
for the loading to—or storing from—adjacent elements in a vector register from—or
to—non-adjacent locations in main memory. Although indexed memory instructions
already serve this purpose, a strided memory instruction is more compactly encoded
and conveys more information regarding the regularity of its access pattern. As such,
it is amenable to more optimisations in hardware. Our implementation of radix sort
uses a strided load as one of its dominant instructions; we therefore opt to provide a
good implementation of this instruction rather than emulating it with gathers.

We also expand our vector ISA to include more instructions that are necessary to
vectorise the sorting algorithms. Instructions are classified and listed in Table 3.1 and
those highlighted in bold indicate that it is newly introduced in this chapter. Com-
plete definitions of each one can be found in Appendix B. The shuffle instruction is
an all-to-all permutation instruction with three input operands—two vector registers

38

3.3. Evaluation of Existing Sorting Algorithms

that contain source values and a third vector register that encodes the shuffle pattern.
The merge instruction—also known as blend or select—creates a new vector of values
by selecting individual elements from two possible input vectors based on the state
of a mask. Unlike the shuffle instruction, the selected elements do not change their
relative order so the instruction can be implemented using simple hardware. Each in-
struction now requires V L

lanes cycles to pass through a functional unit, with the exception
of the mask, vector length and get/set element instructions.

Table 3.1: Overview of vector instructions with new additions for sorting.

class instructions

integer arithmetic add, subtract, multiply
bitwise logical and, xor, shift right, shift left

comparison not equal, less than, greater than
initialisation set all, clear all, iota

mask set mask, clear mask, and, or, not, popcount
permutative compress, shuffle, reverse

vector length set, set MVL, get
memory fence scalar-vector, vector-scalar, vector-vector

other merge, get element, set element

3.3 Evaluation of Existing Sorting Algorithms

This section presents an evaluation of three existing vectorised sorting algorithms—
quicksort, bitonic mergesort and radix sort. The former two algorithms are classi-
fied as comparative sorts whereas the latter is a non-comparative sort. While com-
parison sorts generally have fewer limitations and facilitate simpler implementations,
non-comparison sorts are still suitable in many scenarios at the expense of tailoring
the algorithm to a specific datatype. Each algorithm chosen is suitable for a DLP-
accelerated processor but they have very different characteristics from one another.
Their strengths and weaknesses are found experimentally and used to guide our own
algorithm in the next section.

Each algorithm is evaluated with three datasets, a MVL varying between eight
and 64 elements and between one and four lockstepped parallel lanes. Note that we
no longer use a MVL of four since in Chapter 2 we found that in many cases it has a
negative effect on performance. Based on these initial experiments, we further evaluate
some of the algorithms with additional configurations. All results use the metric cycles
per tuple (CPT)—the total execution time of the algorithm in cycles divided by the
length of the input n.

We evaluate each algorithm with three datasets—small, medium and large which
contain 51,200, 512,000 and 5,120,000 tuples respectively. There are several reasons
why these datasets have been chosen. Firstly, small is able to reside in the L2 cache
while the latter two increase in length by one and two orders of magnitude respectively.

39

Chapter 3. A Study on Sorting

This helps identify performance issues related to the input size and also to pinpoint any
noteworthy effects due to the cache. Secondly, these input lengths are multiples of the
MVL, however, they are not perfect powers of two. Using perfect power of two lengths
can often lead to outliers in trends. We have observed some strided memory patterns
impacting performance negatively when n is a power of two and for this reason we
prefer to show the general case rather than the exception.

Each dataset contains a random uniform distribution of 32-bit integer values. Al-
though it is true that some sorting algorithms exhibit different behaviours when the
input is not uniformly distributed, out of the algorithms presented in this work only
quicksort would be affected. A random uniform distribution will at least present quick-
sort’s average case behaviour.

Merely sorting an array of integers has very limited applications, we therefore
create the datasets with both key and payload values. This opens up the applicability
of these algorithms to DBMSs. The two-value tuples are 64 bits each and have been
organised as a structure of arrays which is common in column-store OLAP DBMSs
[ABH+13, CK85].

A purely scalar algorithm called reference is also included with the results of each
vectorised sorting algorithm. This allows for a common baseline when comparing the
vectorised algorithms to one another. We use an in-place quicksort using a median of
three pivot selection and an insertion sort cleanup; this variant of quicksort is known
to perform well [Sed78]. We have optimised all these algorithms by hand and have
used software prefetching when beneficial.

3.3.1 Quicksort

Quicksort [Hoa62] is a comparison sort that uses a divide and conquer strategy to
iteratively partition its input until it is sorted. It is well known for having fast im-
plementations due its O(n · log2n) average complexity, cache-friendly memory access
patterns and the simplicity of the algorithm’s main body.

A vectorised version was first proposed by Stone for the CDC STAR [Sto78]. Its
implementation is recursive, stable and has relatively few operations per pass. It is not
in-place and thus requires an auxiliary array to store partial results. The algorithm
has a unit-stride memory access pattern thus making it very bandwidth friendly. We
optimise this algorithm further by using the median of three technique for choosing
the pivot as suggested by Sedgewick [Sed78]. The pseudocode is shown in Figure 3.1;
we have simplified it by omitting any vector stripmining code.

Figure 3.2 displays the results of this algorithm. The maximum speedup over the
reference benchmark is 1.4×, 1.6× and 1.8× for small, medium and large respectively.
Going from a MVL of eight to sixteen increases the performance in all cases and is
more pronounced than subsequent increases of the MVL. This can be explained by the
fact that sixteen 32-bit elements accessed in a unit-stride fashion is exactly one cache
line. Increasing the number of lanes can help the algorithm’s performance a little bit
as the compare and compress instructions can benefit. Adding more than two lanes
yields very little extra performance; at this point the memory operations dominate

40

3.3. Evaluation of Existing Sorting Algorithms

1: function quicksort(~a, alen)
2: pivot ← median of 3(a[0], a[alen− 1], a[alen

2])
3: mask ← compare(~a > pivot)
4: rlen ← popcount(mask)
5: llen ← popcount(¬mask)
6: ~t← compress(~a, mask)
7: ~u← compress(~a, ¬mask)
8: ~a← concatenate(~u, ~t)
9: if llen > 1 then quicksort(~a〈0:llen−1〉, llen)

10: if rlen > 1 then quicksort(~a〈llen:alen−1〉, rlen)
11: end function

Figure 3.1: Pseudocode for the vectorised quicksort algorithm.

the execution time and none of these can be accelerated with lanes, i.e. there are no
indexed memory operations.

0

100

200

300

400

500

600

v8 v16 v32 v64 v8 v16 v32 v64 v8 v16 v32 v64

small medium large

c
y
c

le
s

 p
e

r
tu

p
le

1 lane 2 lanes 4 lanes reference

Figure 3.2: Performance results for quicksort.

Increasing the MVL from 32 to 64 only improves the performance marginally due to
quicksort’s divide and conquer strategy. As partitions get smaller, the effective vector
length per function call is reduced and eventually causes serialisation which leads to
an increased CPT. Table 3.2 illustrates this for a MVL of 64 and the large dataset.
The leftmost column shows the percentage of time spent processing partitions with
a length in the range of from and to. call frequency displays the number of calls to
the function operating on a partition with a length within the specified range. The
highlighted column—average cpt—indicates the average CPT measured in the main
body. Going from top to bottom, it can be seen that the CPT remains similar until
reaching partitions of 64 elements or fewer. At this point the vector registers become
underutilised and serialisation begins. It can be seen that 62% of the total execution
time is spent operating on partitions with fewer elements than the MVL.

41

Chapter 3. A Study on Sorting

Table 3.2: Quicksort’s performance per partition.

percent of time from to call frequency average cpt

15.6% 5,120,000 119,417 72 6.31
10.6% 119,416 2,786 3,091 4.43
6.2% 2,785 228 35,350 4.99
5.3% 227 65 94,389 8.56

10.4% 64 19 306,189 18.43
19.8% 18 6 849,856 41.11
32.1% 5 1 2,100,685 92.15

To help alleviate this problem, we use a variant of the algorithm. The work of
Levin [Lev90] modifies the original algorithm and uses a vectorised odd-even transpos-
ition (OET) sort [Hab72] as a cleanup mechanism. When the quicksort phase creates
partitions equal or less to some predefined threshold, it gracefully returns instead of
continuing recursively. When this modified quicksort finishes, OET sort is applied to
the entire dataset. Typically this algorithm has a complexity of O(n2), but in this case
it is only O(n · threshold). We have found empirically a value of 16 to be optimal for
the threshold.

Figure 3.3 displays the results of the modified algorithm. The maximum spee-
dup over the reference benchmark is 2.4×, 2.5× and 2.6× for small, medium and large
respectively. On average, these results are 1.4× better than Stone’s quicksort imple-
mentation. A huge advantage of OET sort is that it operates on the entire dataset
without concerning itself with partition boundaries and therefore leverages the entire
MVL of the configuration. A disadvantage is that the cleanup algorithm suffers from
a complexity of O(n · threshold) and we have observed that increasing the threshold
higher than 16 will cause the overall performance to decrease.

0

100

200

300

400

500

600

v8 v16 v32 v64 v8 v16 v32 v64 v8 v16 v32 v64

small medium large

c
y
c

le
s

 p
e

r
tu

p
le

1 lane 2 lanes 4 lanes reference

Figure 3.3: Performance results for quicksort with an OET sort cleanup.

42

3.3. Evaluation of Existing Sorting Algorithms

3.3.2 Bitonic Mergesort

This subsection explores bitonic mergesort, a type of algorithm that makes use of
sorting networks [Bat68]. Sorting networks differ from many other categories of sorting
algorithms in that their complexity and number of operations are fixed ahead of time
and do not depend on the values of the input. The algorithm is broken into two phases.
Phase 1 creates relatively short sorted blocks from the input. Phase 2 iteratively merges
these blocks into a single sorted block.

1: mask ← compare(~v0 > ~v1) . v0 and v1 hold the input
2: ~v2← merge(~v0, ~v1, mask) . minimum values
3: ~v3← merge(~v1, ~v0, mask) . maximum values
4: ~v0← shuffle(~v2, ~v3, patternα)
5: ~v1← shuffle(~v2, ~v3, patternβ)

Figure 3.4: Pseudocode for a single step of the vectorised bitonic network.

Phase 1 loads a block of 2 ·MV L contiguous elements into two vector registers,
sorts them using a bitonic sorting network and stores the sorted output to memory.
Sorting x = 2 ·MV L elements requires ∑log2x

i=1 i steps. The pseudocode of a single step
is shown in Figure 3.4 and has five non-memory vector instructions (nine when using
a payload). Each step uses two unique shuffle patterns which are pregenerated before
compilation. Increasing the MVL also increases the number of steps needed, however,
all of the instructions within a step can be accelerated using parallel lanes. This phase
creates n

2·MV L sorted blocks which are used in the next phase. For more information
regarding vectorised bitonic sorting networks, we refer the reader to [GBY07, Sto78].

Phase 2 iteratively merges adjacent sorted blocks into larger sorted blocks un-
til finally producing a single sorted block. At this point the blocks produced from
Phase 1 are already larger than the MVL meaning that they must be merged piece
by piece rather than all at once. To accomplish this we use a technique proposed
in [IMKN07]. Merging two blocks of combined length m requires b m−1

MV Lc calls to a
bitonic merging network. Bitonic merging networks are similar to the sorting networks
described in Phase 1, however, as both inputs are already sorted they need only log2x
steps instead of ∑log2x

i=1 i steps. This merging strategy has a linearithmic complexity of
O(n · log2blocks) where blocks is the number of sorted blocks created in Phase 1. For
more information about iterative block merging using bitonic merging networks, we
refer the reader to [CNL+08, IMKN07, SKC+10].

Figure 3.5 displays the results of bitonic mergesort. It can be seen that for all the
single lane experiments, increasing the MVL degrades the CPT instead of improving
it. This is because, as previously mentioned, increasing the MVL increases the number
of steps in the sorting network and therefore adds extra work. Using multiple lanes
allows this work to be done in parallel. It can be seen that four lanes is enough to
overcome the penalty of increasing the MVL and using two lanes has mixed results
due to the two opposing effects. The maximum speedup of bitonic mergesort over the
reference benchmark is 2.9×, 3.0× and 2.9× for small, medium and large respectively.

43

Chapter 3. A Study on Sorting

0

100

200

300

400

500

600

v8 v16 v32 v64 v8 v16 v32 v64 v8 v16 v32 v64

small medium large

c
y
c

le
s

 p
e

r
tu

p
le

1 lane 2 lanes 4 lanes reference
680 732

Figure 3.5: Performance results for bitonic mergesort.

Figure 3.6 shows the trend for each dataset run with a MVL of 64 and varying the
number of lanes from one to 64. When 64 lanes are used, the maximum speedup over
the reference benchmark is 6.4×, 6.9× and 6.4× for small, medium and large respectively.
Increasing the number of lanes beyond 16 yields very little extra benefit. This shows
that while a large number of lanes is useful in this case, increasing this number all the
way to the MVL has disproportionate returns.

0

100

200

300

400

500

600

700

800

1 2 4 8 16 32 64

c
y
c

le
s

 p
e

r
tu

p
le

number of lanes

small medium large

Figure 3.6: Varying the number of lanes of bitonic mergesort when MV L = 64.

One drawback of this approach is that it requires a general shuffle vector in-
struction. As the MVL of the vector registers increases, this instruction becomes more
complex to implement with a low number of cycles. Intel’s AVX2 offers an eight-
element 32-bit general shuffle instruction with a 3-cycle latency. The Intel Xeon Phi
has a sixteen-element 32-bit general shuffle and an average latency of 6 cycles has been
measured by Fang et al. [FVS+13]. This would mean their shuffle instructions require

44

3.3. Evaluation of Existing Sorting Algorithms

0.375 cycles per element. All non-memory vector instructions run in our simulation
environment assume a latency of V L

lanes , therefore the four-lane configurations require
a lower 0.25 cycles per element. This implies that our configurations with more than
four lanes assume an aggressive implementation of shuffles and the results should be
considered optimistic. Furthermore, the implementation of shuffle instructions be-
comes increasingly more complex as the number of lanes grows. We discuss this with
more detail in Chapter 5.

3.3.3 Radix Sort

Radix sort [Knu98] is a non-comparative numerical sort with a complexity of O(k · n)
where the value k depends on the number of passes of the algorithm. For m-bit integers,
the number of passes is d m

log2binse where bins—an input parameter of the algorithm—
refers to the size of the histogram used internally and log2bins is the number of bits
sorted per pass.

The work of Zagha and Blelloch [ZB91] proposed a technique to vectorise radix sort
which was originally implemented on the CRAY Y-MP. Figure 3.7 provides a high-level
overview of the algorithm using a step-by-step example of the three principal steps.
The three steps together make up the body of the main loop that forms a single pass of
the algorithm. For a more detailed explanation of the vectorised radix sort algorithm,
we refer the reader to [ZB91].

Step 1—The entire input is loaded iteratively and a histogram is created for a
subset of the input’s bits. For example, the first pass of the algorithm uses the first
log2bins bits of each value, the second pass uses the next log2bins bits, etc. Subfigures
3.7i and 3.7ii illustrate a single iteration of the vectorised loop implementing this step;
in total there are n

MV L iterations. (a) The input array is loaded into a vector register
and log2bins bits of these values are extracted. Due to the nature of the algorithm,
each vector element must see a contiguous portion of the dataset, therefore, the input is
loaded using strides of n

MV L and the base address is incremented after every iteration.
(b) The extracted bits are indices into a histogram which is incremented. Multiple
elements within the same vector can index to the same bin. If a single histogram were
used, updates using these indices would be incorrect. To avoid such conflicts, a local
histogram is used for each vector element, i.e. there are MV L local histograms. Step
2—A prefix sum is performed over the collection of local histograms. Step 3—The
entire input is loaded again and distributed to an output array with offsets determined
by the prefix sum. Similar to Step 1, Subfigures 3.7iv, 3.7v and 3.7vi illustrate a single
iteration of the vectorised loop. (a) The input is reloaded into a vector register in
an identical way to Step 1a and the same bits are extracted. (b) The extracted bits
are indices into the prefix sum which is read and incremented. Unlike Step 1b, the
values before the increment are retained. (c) The retained values are used as a vector
of offsets to scatter the input values to an output array. This output array becomes
the input array in the next pass of the algorithm. The algorithm guarantees that all
elements are scattered to unique locations.

We first look for the optimal number of bins for a given dataset. Figure 3.8 shows
the average CPT for each of the datasets as the number of bins is increased from four

45

Chapter 3. A Study on Sorting

15

9

10 5 9 15

2 1 1 3

v
a
lu

e
in

d
e
x

10

1 7

input array

5

x x x x

14 19

13 20 2

4

(i) Step 1a

0 0 0

1 1 0

0 0 0

local histogram id

h
is

to
g

ra
m

 b
in

 n
u

m
b
e

r

2 1 1 3

in
d

e
x

+1 +1 +1 +1

0

1

2

3

0 1 2 3

0

0

1

0 0 10

(ii) Step 1b

0

2

0 0 1 2

2 2 4 5

6 8 8 9

9 10 10 10

local histograms prefix sum

1 1 0

0 2 1 1

2 0 1 0

1 0 0

(iii) Step 2

15

9

10 5 9 15

2 1 1 3

v
a
lu

e
in

d
e
x

10

1 7

input array

5

x x x x

14 19

13 20 2

4

(iv) Step 3a

p
re

fi
x
 s

u
m

2 1 1 3

in
d

e
x

6 2 4 10

o
ff

se
t

0 1 2

2 4 5

8 8 9

10 10 10 +1

0

2

6

9

(v) Step 3b

o
u

tp
u
t

a
rr

a
y

10 5 9 15

v
a
lu

e

6 2 4 10

o
ff

se
t

5

10

15

9

(vi) Step 3c

Figure 3.7: The three steps of the first pass of the vectorised radix sort where n = 12,
MV L = 4 and bins = 4.

to 1,024. Each experiment is run with a MVL of 64 and a single lane. As the number
of bins is increased the number of passes is decreased, e.g. four bins require sixteen
passes and 256 bins require four passes. Increasing the number of bins also increases
the memory needed and reduces the locality of the working set, this has the effect of
increasing the number of cycles needed per pass. For all the datasets we find the sweet
spot to be sixteen bins.

Figure 3.9 shows the results of radix sort executed with sixteen bins. The values
follow a nice trend in that increasing the MVL decreases the average CPT. The lanes
also help, however—similar to quicksort—adding more than four would give dispro-
portionate returns. Although the indexed memory instructions can benefit from using
lanes, the algorithm is still dominated by its strided memory access pattern which does
not benefit from using them. Another interesting property is that each dataset exhibits
very similar behaviour in terms of CPT; this is because radix sort has a complexity of
O(k · n). The maximum speedup over the reference benchmark is 3.6×, 4.3× and 5.2×
for small, medium and large respectively.

There are two significant drawbacks to this algorithm. (1) Each pass of the al-
gorithm must be stable, i.e. equal values do not change their relative order. To ensure
stability, a technique called loop raking is used which partitions the input into MV L
chunks of sequential values; each element of the vector register, termed ‘virtual pro-

46

3.3. Evaluation of Existing Sorting Algorithms

0

50

100

150

200

250

300

4 8 16 32 64 128 256 512 1024

c
y
c

le
s

 p
e

r
tu

p
le

number of bins

small medium large

Figure 3.8: The optimal number of bins for radix sort when MV L = 64.

0

100

200

300

400

500

600

v8 v16 v32 v64 v8 v16 v32 v64 v8 v16 v32 v64

small medium large

c
y
c

le
s

 p
e

r
tu

p
le

1 lane 2 lanes 4 lanes reference

Figure 3.9: Performance results for radix sort run with sixteen bins.

cessor’, operates on its own chunk. This requires using a strided memory access pattern
in Step 1a and Step 3a which guarantees that any element of the vector register sees
a contiguous portion of the input. As the input length n increases, so does the stride;
this consequently reduces spatial locality and underutilises the available memory band-
width. (2) In order to avoid conflicts, the algorithm’s histogram must be replicated
MV L times. This limits the feasible number of bins which the algorithm can use
without encountering cache locality problems and—in turn—directly influences the
number of passes the algorithm must make. This replication also increases the work
necessary to calculate the prefix sum in Step 2.

47

Chapter 3. A Study on Sorting

3.3.4 Summary

We have evaluated three distinct sorting algorithms on a uniform platform using con-
sistent metrics. Although all these algorithms outperformed the scalar reference, each
one suffered from unique weaknesses and bottlenecks.

Quicksort was shown to perform very well when working with partitions much
larger than the MVL, however, as the size of the partition decreased the performance of
quicksort degraded. We were able to rectify this somewhat by adopting a variant of the
algorithm that uses OET sort as a cleanup mechanism. Increasing the parametrisable
threshold reduced the amount of time that quicksort spent processing short partitions.
However, due to the fact that the OET sort has an O(n2) complexity, we observed
that we could not increase the threshold indefinitely without degrading the overall
performance.

Bitonic mergesort was shown to perform better, but only when the number of par-
allel lanes is high. Four parallel lanes were needed to outperform quicksort and even
more were needed to outperform radix sort in most cases. When a single-lane config-
uration was used, the algorithm performance degraded as the MVL increased. This
behaviour is in stark contrast to that of quicksort whereby the algorithm performed
better as the MVL grows but exhibited only marginal speedups when adding parallel
lanes. Additionally, bitonic mergesort requires a general shuffle instruction which is
complicated to implement with a low latency when the MVL is large.

Both quicksort and bitonic mergesort suffer from a complexity of O(n · log2n)
whereas radix sort has a highly desirable complexity of O(k ·n). In contrast to bitonic
mergesort, radix sort works well on SIMD hardware with or without parallel lanes. It
also does not get bottlenecked by a divide and conquer strategy causing low effective
vector lengths as is the case with quicksort. Unfortunately, radix sort suffers from
using a stride in its dominant memory access pattern as well as having to replicate its
internal bookkeeping structures by the number of elements in a vector register. This
is in contrast to other algorithms which primarily use unit-stride access patterns and
have very modest memory requirements. We use these weaknesses to motivate the
next section of this chapter.

3.4 VSR Sort

This section presents Vectorised Serial Radix (VSR) sort, our novel vectorised non-
comparative sorting algorithm based on radix sort. We first explain and discuss the
algorithm. After, we introduce two new vector instructions in order to facilitate the
algorithm’s vectorisation; we also propose a corresponding hardware structure to im-
plement these instructions. Finally, we evaluate the algorithm experimentally and
compare the results and behaviour with those of the previous algorithms.

3.4.1 The Algorithm

We developed VSR sort with the aim to be efficiently vectorisable without the draw-
backs identified in Section 3.3. VSR sort is inspired by radix sort and follows more

48

3.4. VSR Sort

14

15

9 2

10 14 19 5

2 2 3 1

v
a
lu

e
in

d
e
x

10 19

4 1 7

input array

13 20

5

x x x x

(i) Step 1a
histogram bin number

2 2 3 1

in
d

e
x

+2 +1+1

0 1 2 1

0 1 2 3

(ii) Step 1b

0 2 6 9

prefix sum

2 3

histogram

4 3

(iii) Step 2

14

15

9 2

10 14 19 5

2 2 3 1

v
a
lu

e
in

d
e
x

10 19

4 1 7

input array

13 20

5

x x x x

(iv) Step 3a

+1

+1

6 7 9 2

o
ff

se
t

0 2 6 9

p
re

fi
x
 s

u
m

2 2 3 1
in

d
e
x

(v) Step 3b

o
u

tp
u
t

a
rr

a
y

10 14 19 5

v
a
lu

e

6 7 9 2

o
ff

se
t

5

14

19

10

(vi) Step 3c

Figure 3.10: Step by step example of the first pass of the new VSR sort algorithm
where n = 12, MV L = 4 and bins = 4.

closely a serial implementation of the algorithm. Instead of accessing the input with a
large strided access pattern, a much more efficient unit-stride access is used. Addition-
ally, the bookkeeping structure is not replicated MV L times making the algorithm a
lot more cache friendly. Figure 3.10 provides a high-level overview of one pass of the
algorithm. Each step is analogous to its counterpart in Section 3.3.3.

Step 1—The input is loaded iteratively and a histogram is created for a subset of
the input’s bits. (a) The input is loaded into a vector register and log2bins bits of these
values are extracted. Unlike the vectorised radix sort, a unit-stride access pattern is
now used. (b) The extracted bits are indices into a histogram which is incremented.
Instead of MV L local histograms, only a single instance is used. Conflicting indices
are detected dynamically and the increment value is modified accordingly. This con-
flict detection/correction is discussed in the next subsection. Step 2—A prefix sum
is performed over the histogram. Fewer operations are needed than the previous im-
plementation due to the single histogram. Step 3—The entire input is loaded again
and distributed to an output array with offsets determined by the prefix sum. (a) The
input is reloaded into a vector register in an identical way to Step 1a and the same bits
are extracted. (b) The extracted bits are indices into the prefix sum which is read and
incremented. The prefix sum is updated, however, unlike the previous implementation
the increment may be more than 1 due to conflicting indices. The values loaded from
the prefix sum are corrected according to the conflicts; these corrected values become
the offsets used in the next substep. Subfigure 3.10v illustrates such a conflict—the

49

Chapter 3. A Study on Sorting

index 2 is used twice within the same iteration. The correction ensures that the first
and second offsets generated are distinct and that the prefix sum is incremented twice,
i.e. the number of times this conflicting index is seen. (c) The offsets are used to
scatter the input values to an output array.

3.4.2 New Instructions

Steps 1a, 2, 3a and 3c can be implemented in a vectorised way using conventional vector
SIMD instructions. Steps 1b and 3b are different because there is a lack of suitable
instructions in existing vector SIMD ISAs. Although each element is processed in the
same way, there are loop-carried dependencies which make the operations difficult to
vectorise. To solve this, we introduce two new instructions—vector prior instances
(VPI) and vector last unique (VLU).

3.4.2-a Semantics and Usage

VPI uses a single vector register as input, processes it serially and outputs another
vector register as a result. Each element of the output asserts exactly how many
instances of a value in the corresponding element of the input register have been seen
before. An example is shown in Figure 3.11 (elements are processed from left to right).

7 5 5 5 11 9 9 11

0 0 1 2 0 0 1 1

1 2 1

1

in
o
u
t

Figure 3.11: Example of Vector Prior Instances (VPI).

VLU also uses a single vector register as input but produces a vector mask as a result.
The idea is to mark the last instance of any particular value found. An example is
shown in Figure 3.12 (elements are processed from left to right). A bit in the output
mask register is set only if the corresponding value in the input vector is not seen
afterwards; these cases are shaded in the input vector. A bitmask is useful to generate
because it can be combined with the results of VPI and a scatter instruction to
increment VSR sort’s bookkeeping structures without conflicts.

7 5 5 5 11 9 9 11

1 0 0 1 0 0 1 1

in
o
u
t

Figure 3.12: Example of Vector Last Unique (VLU).

To show the usage of VPI and VLU, pseudocode for Step 3b of VSR sort is listed in
Figure 3.13. In this version we make use of vector compress instructions followed by a
scatter, however, it is possible to achieve the same behaviour without the compress
instructions by using a masked scatter instead.

50

3.4. VSR Sort

1: ~v1← vpi(~v0) . ~v0 is index in the diagram
2: mask ← vlu(~v0)
3: ~v2← gather(base=prefix sum, idx= ~v0)
4: ~v3← vvadd(~v1, ~v2) . ~v3 is offset used in Step 3c
5: ~v4← compress(~v0, mask)
6: ~v5← compress(~v3, mask)
7: vlen← popcount(mask)
8: ~v6← vsadd(~v5, 1)
9: scatter(base=prefix sum, idx= ~v4 vals= ~v6)

Figure 3.13: Pseudocode for Step 3b of VSR sort.

3.4.2-b Applicability Beyond Sorting

Although these instructions are proposed here to enable VSR sort, there are many
opportunities to accelerate other classes of algorithms, especially where irregular DLP
is an obstacle. We present a sample of uses to give an idea of the broader applicability
of VPI and VLU.

Histogram generation is used in a wide variety of applications from image pro-
cessing to range partitioning; VPI/VLU can be used to circumvent collisions and incre-
ment conflicting bins in a single update. Parallel queue insertion [GGK+83] is used
in scenarios such as game engines; VPI/VLU can be useful to avoid collisions when
multiple elements are inserted in the same queue and instead place the elements in
consecutive locations—similar to Step 3 of VSR sort. Maximal matching [SBF+12]
is an algorithm for undirected graphs, often used as scheduling scheme for multi-hop
wireless networks. By laying out edges as an array-of-structures, VLU can be used to
detect repeated vertices within a vector of edges and prune them accordingly.

The work of Lee et al. [LKC+10] discusses the limitations of current SIMD instruc-
tions with irregular DLP and concludes that new instructions are necessary to open up
further possibilities. There are several proposals that try to tackle this however none
are suitable for VSR sort. VPI/VLU provide determinism in their behaviour which opens
up more possibilities than detecting and correcting conflicts in a non-deterministic way
[BFGS12]. VSR sort requires this determinism due to the strict stability requirement
of the algorithm. This will be discussed further in Section 3.5.

In Chapter 4, we will look at VPI/VLU in the context of data aggregation. In-
terestingly, while these instructions cannot be directly used for aggregation, we pro-
pose repurposing the instructions’ hardware implementation—discussed in the next
subsection—with minimal modifications to better support this type of workload.

3.4.2-c Hardware Implementation

There are many possible ways to implement both VPI and VLU; the methods proposed
here take into account the circumstance in which these instructions arise. A näıve
implementation could calculate the results of each instruction in O(MV L2) time, how-
ever, this would not be very useful in this context for several reasons. (1) These
instructions occur on the critical path of tight loops executed many times and such

51

Chapter 3. A Study on Sorting

suboptimal implementations would negatively impact performance due to very long
pipeline stalls. (2) The goal is to propose a vectorised sorting algorithm that scales
well with the MVL; an implementation of O(MV L2) complexity becomes less practical
each time the MVL is enlarged. (3) In VSR sort, both instructions do similar work,
use the same input and are always scheduled back to back; calculating both results
separately would be doing redundant work. The implementation we propose can cal-
culate VPI and VLU together in 2 ·MV L cycles. After, we propose a variant that can
reduce the execution time to approximately 2·MV L

lanes cycles.
To achieve this, a content-addressable memory (CAM) with MV L entries is used.

Each CAM entry contains a key entry and a valid bit used for the lookup, and two
possible return values—count and last idx. count is the running total of the number of
times a particular value of the input vector register has been seen. last idx is an index
of the input vector register and refers to the last position where a particular value has
been observed. Calculating each element of the output vector register requires two
cycles—one for reading the CAM and another for updating it.

Figure 3.14 shows an example of the process to calculate VPI. The diagram shows
the state of the hardware before the instruction has completed. Six of the eight elements
have already been calculated (shown with a dotted pattern) and the seventh element
is just about to be calculated. Arrows with a solid line represent activity done on the
first cycle and arrows with a dashed line represent activity done on the second. The
value 9 located at index 6 of the input is used to access the CAM. The value located
in the count field is copied into the seventh element of the output vector register. This
value is 1 because there has been exactly one element of input seen up until this point
in time which contains the value 9. On the second cycle, count is incremented and the
corresponding last idx value will be updated with 6 as this refers to the most recent
index of the input vector register where the value 9 was observed.

key 7 5 11 9 x x x x

last idx 0 3 4 5 x x x x

count 1 3 1 1 0 0 0 0

+1

= = = = = = = =

vector element idx

0 1 2 3 4 5 6 7

valid Y Y Y Y N N N N

7 5 5 5 11 9 9 11input

0 0 1 2 0 0 x xoutput

Figure 3.14: Proposed hardware calculating VPI.

last idx is not used to calculate VPI, however, it is relatively simple to update
this field when updating count, this way when VLU is executed after VPI using the
same input, all that remains to be done is to convert the array of last idx values to a
bitmask. This can be done in relatively few cycles. Although the CAM requires MV L

52

3.4. VSR Sort

entries to cover a worse-case scenario, the size of each field can be relatively small.
valid is a single bit and both count and last idx require log2MV L bits. To keep the
implementation general purpose, we make key 32 bits.

One obvious obstacle extending this implementation to multiple lanes is that the
semantics of the instructions VPI and VLU are defined serially. In a similar vein to
ILP in out-of-order superscalar microprocessors, we propose finding the DLP dynam-
ically during runtime. Adjacent elements of the input vector register are arranged into
groups; the elements within a group can be processed in parallel provided they do not
conflict with one another, otherwise they are processed serially. Detecting conflicts
requires l!

2·(l−2)! comparators where l is the number of parallel lanes targeted, i.e. the
group size. To keep the number of comparators low, a small l is expected to be chosen.
We distinguish the conventional parallel lanes used in a vector unit from the group size
of VPI/VLU which we will refer to as CAM lanes.

Figure 3.15 illustrates the parallel optimisation using two CAM lanes. There is an
input vector register which is processed from left to right, and underneath there are
two timelines that represent the relative execution time of both the parallel and serial
implementations. Each block of the timelines represents two execution cycles, however,
the parallel timeline shows stacked blocks meaning these are processed in tandem. The
first, third and fourth groups of elements can be processed in parallel as there are no
conflicts. The second group of elements has a conflict and is serialised. The hatched
box represents the time saved over the serial implementation. In this case, it is 3

8 blocks
or a 1.6× speedup.

in
p
u
t

7 5 5 5 11 9 9 11

Y Y
Y

N

p
a
ra
lle
l

≠ ≠ ≠ ≠

11 97 5

5 ✘

5

✘ 9 11

s
e
ri
a
l

7 5 5 5 11 9 9 11

Figure 3.15: Parallel optimisation for VPI/VLU hardware with two CAM lanes.

The benefit of a parallel implementation depends highly on the input. For VSR
sort, it is the number of histogram bins that will determine the probability of a conflict
within a group. Increasing the number of bins decreases the number of collisions and
thus allows for more parallelism. This is a tradeoff because increasing the number of
bins also increases the cache footprint of the algorithm. The probability of not having
a conflict for b bins and l CAM lanes is b!

bl·(b−l)! when l ≤ b. Table 3.3 shows the
probability of group collisions calculated from the formula with various combinations
of bins and CAM lanes. As l increases, the probability of a collision approaches 1.0
and all blocks are serialised with a net result performance equal to the implementation
with a single CAM lane.

53

Chapter 3. A Study on Sorting

Table 3.3: The probabilities of structural collisions in the VPI/VLU hardware for a
uniform distribution when varying the number of histogram bins and CAM lanes.

bins 2 CAM lanes 4 CAM lanes 8 CAM lanes 16 CAM lanes

4 0.25 0.91 1.00 1.00
16 0.06 0.33 0.88 1.00
64 0.02 0.09 0.37 0.87

256 0.00 0.02 0.10 0.38
1,024 0.00 0.01 0.03 0.11

We propose choosing two or four CAM lanes as increasing the parallelism further
would give diminishing returns due to a high amount of serialisation. Increasing the
CAM lanes further would also require (1)—increasing the complexity of the CAM with
more ports and (2)—increasing the number of comparators used to detect collisions. A
configuration with four CAM lanes requires a modest six comparators whereas a con-
figuration with eight CAM lanes would require 28 comparators. Detecting conflicts in
this way resembles the logic needed to detect hazards in superscalar register renaming.
In subsequent experiments, we set the number of CAM lanes equal to the number of
conventional vector lanes and refer to both together as lockstepped lanes, or simply as
lanes.

In order to verify our timing assumptions, we model this structure using CACTI-P
[LCA+11]. We choose a 32 nm technology and a Vdd of 0.75 V which matches our
baseline Westmere microarchitecture. Assuming a CAM of 64 entries and between
one and four ports, our experiments show that searching and accessing this structure
together requires between 0.276 ns and 0.339 ns. These values are lower than the 0.375
ns cycle time of our simulated processor which indicates it is reasonable to assume
updating the structure can be done in two cycles per element. In Section 3.4.3 we make
further experiments assuming different latencies to measure the impact of alternative
hardware implementations.

3.4.3 Results

To directly compare VSR sort with the previous vectorised radix sort, we first run it
with sixteen bins as this was the optimal value found in Section 3.3.3. Figure 3.16
displays the results using single-lane configurations. On average, VSR sort performs
1.8× faster than the previous algorithm; in this case, the constant factor of O(k · n)
has been improved.

Because we have eliminated the histogram replication of the previous vectorised
radix sort, it should be possible to increase the number of bins without compromising
performance and thus reduce the number of passes. Figure 3.17 shows VSR sort run
with a MVL of 64 and a single lane while varying the number of bins. In comparison
to the equivalent experiment in Section 3.3.3, the optimal number of bins for VSR sort
is 256 (four passes) instead of sixteen (eight passes).

54

3.4. VSR Sort

0

100

200

300

400

500

600

v8 v16 v32 v64 v8 v16 v32 v64 v8 v16 v32 v64

small medium large

c
y
c

le
s

 p
e

r
tu

p
le

radix vsr reference

Figure 3.16: Comparison of radix sort and VSR sort using sixteen histogram bins.

0

50

100

150

200

4 8 16 32 64 128 256 512 1024

c
y
c

le
s

 p
e

r
tu

p
le

number of bins

small medium large

Figure 3.17: The optimal number of bins for VSR sort when MV L = 64.

Figure 3.18 shows the results of VSR sort run with 256 bins. On average it performs
1.8× faster than VSR sort run with sixteen bins; in this case the k from O(k·n) has been
improved. With a single-lane configuration, the maximum speedup over the reference
is 7.9×, 9.8× and 11.7× for small, medium and large respectively. In our experiments,
this is the highest speedup seen so far including other algorithms run with parallel
lanes. When this algorithm is run with parallel lanes the maximum speedups over
the reference benchmark increase to 14.9×, 17.3× and 20.6×. On average, VSR sort
performs 3.4× better than the next-best vectorised sorting algorithm when run on the
same hardware configuration.

There are some noteworthy observations about VSR sort. Firstly, while the al-
gorithm benefits from longer MVLs, very good results can still be achieved with a short
MVL. Using a MVL of eight can achieve a CPT below 100 for all datasets whereas the
algorithms evaluated in Section 3.3 could not achieve this kind of performance—even

55

Chapter 3. A Study on Sorting

0

100

200

300

400

500

600

v8 v16 v32 v64 v8 v16 v32 v64 v8 v16 v32 v64

small medium large

c
y
c

le
s

 p
e

r
tu

p
le

1 lane 2 lanes 4 lanes reference

Figure 3.18: Performance results for VSR sort run with 256 histogram bins.

with a MVL as large as 64. Only bitonic mergesort run with at least sixteen parallel
lanes could achieve an average CPT lower than 100 for all the datasets. Secondly,
while lanes give a clear advantage, the performance of VSR sort when run with a
single lane is commendable. VSR sort can achieve an average CPT below 50 on the
single-lane configurations; even bitonic mergesort run with a large number of lanes
could not achieve a CPT below 60. Thirdly, it can be seen that all the datasets achieve
similar CPTs to each other. This implies that the algorithm’s complexity of O(k ·n) is
being adhered to. The original vectorised radix sort also has a complexity of O(k · n),
however, our VSR sort improves k as well as the runtime constant.

We conduct additional experiments with alternative implementations of VPI and
VLU. Figure 3.19 shows the results of VSR sort executed with the large dataset run with
six alternative hardware configurations. cam1, cam2, cam4 and cam8 fix the CAM’s
latency to one, two, four and eight cycles per element respectively—cam2 being the
default configuration used in the previous experiments. naı̈ve-a removes the CAM
structure and calculates VPI and VLU separately using a simple hardware implement-
ation with quadratic complexity. Essentially, both VPI and VLU are microcoded to
perform a type of all-to-all comparison using the existing arithmetic/logical functional
units. Each instruction requires ∑V L−1

i=1 d i
lanese cycles where V L is the vector length

of the operation. naı̈ve-b has a similar implementation to naı̈ve-a, however, both VPI
and VLU are calculated simultaneously and the latency is paid just once.

In all cases, increasing the latency of the CAM structure decreases the overall per-
formance of VSR sort. What is notable is that the impact on performance is far more
pronounced when only one lane is used; as the number of lanes is increased, the relat-
ive penalty of a higher latency CAM decreases. For example, using a MVL of 64 and
one lane, the increase in CPT when changing from cam2 to cam4 is 27%. In contrast,
when four lanes are used the increase in CPT is only 3%. Likewise, when moving from
cam2 to cam8, the single-lane configuration has a 92% increase in CPT whereas the
four-lane configuration’s increase in CPT is a milder 21%. Using the more aggres-

56

3.5. Related Work

0

50

100

150

200

250

300

1
 l
a

n
e

2
 l
a

n
e
s

4
 l
a

n
e
s

1
 l
a

n
e

2
 l
a

n
e
s

4
 l
a

n
e
s

1
 l
a

n
e

2
 l
a

n
e
s

4
 l
a

n
e
s

1
 l
a

n
e

2
 l
a

n
e
s

4
 l
a

n
e
s

v8 v16 v32 v64

c
y
c

le
s

 p
e

r
tu

p
le

cam1 cam2 cam4 cam8 naïve-a naïve-b

431

Figure 3.19: Results for VSR sort when processing the large dataset run with various
hardware implementations of VPI and VLU.

ive cam1 configurations yields speedups over our default cam2 configuration between
1.01× and 1.09×. In contrast, using the less aggressive cam4 configurations over cam2
exhibits CPT increases between 1% and 27%. Our default latency of two cycles per
element appears to be a good compromise between cam1 and cam4, however, the res-
ults also suggest that it is possible to use less aggressive CAM-based implementations
of VPI/VLU and still have good performance.

Both naı̈ve-a and naı̈ve-b have different trends to the CAM-based implementations.
Although using multiple lanes tempers the impact of higher latencies, we observe that
increasing the MVL decreases the overall performance of the algorithm which is in
contrast to the CAM-based experiments. It can be seen that for a MVL of eight, naı̈ve-
a performs comparably with the CAM-based implementations and even outperforms
cam8. Once the MVL is increased, however, the burden of the quadratic complexity
takes effect. Even when multiple lanes are leveraged, they are not numerous enough
to always counteract the effects of the O(MV L2) implementation. naı̈ve-b can be seen
as an optimisation of naı̈ve-a. When multiple lanes are used, naı̈ve-b can sometimes
reach comparable performance to cam8, however, in the case of MV L = 64—even
when using four lanes—naı̈ve-b has a 130% increase in CPT over cam8. We conclude
that a CAM-based approach has clear performance advantages over either of the näıve
approaches.

3.5 Related Work

There have been numerous works related to sorting on SIMD architectures and the most
relevant articles have already been cited and discussed in previous sections. There have

57

Chapter 3. A Study on Sorting

also been several works that focus on the problem of using SIMD-like instructions to
update data structures where there may be memory conflicts. We summarise these
works and explain why they are different to our own instructions and also why none
of them are appropriate for VSR sort.

The work of Ahn et al. [AED05] proposes scatterAdd, an instruction for stream
architectures that provides support for parallel histogram generation. This instruc-
tion takes the following form: scatterAdd(base,

−−→
bins, c) where base is a location in

memory of a histogram,
−−→
bins is an array of values that correspond to bins of the his-

togram and c is the increment (typically 1). scatterAdd is advantageous in the sense
that updating a histogram can be done with a single stream instruction whereas our
approach requires a combination of six vector instructions to do the same. Our pro-
posed instructions VPI and VLU can be used to emulate the behaviour of scatterAdd,
however, the semantics are much stricter meaning they can also be used for VSR sort
whereas scatterAdd cannot. scatterAdd is a FetchAndOp-style instruction but lacks
a return path for the original values; furthermore, the instruction lacks deterministic
ordering semantics. VSR sort requires a return path as well as strict serial ordering
therefore scatterAdd is not suitable.

The work of Kumar et al. [KKS+08] proposes atomic SIMD memory instructions.
First, gather/scatter functionality is added to a SSE-like ISA, then this functionality
is extended with load-linked/store-conditional semantics. The instructions use a best-
effort implementation meaning that stores to conflicting addresses will fail and this is
explicitly visible to the user in the form of a bitmask result. When working with a data
structure like a histogram, a SIMD gather-modify-scatter operation must be contained
in a data-dependent loop and repeated until every element has been successfully up-
dated. In the worst case this will have the penalty of complete serialisation including
the overhead of the loop. Unlike scatterAdd, this technique has a return path meaning
that it is possible to retrieve a copy of the original value before it is updated. Unlike
VPI and VLU, there is no intra-register ordering guarantees which implies that this will
not work for VSR sort in which the ordering is of utmost importance. The atomic
SIMD memory operations also work between threads meaning that multiple cores with
SIMD support can attempt to update the same data structure. VPI and VLU do not
need such complexity because all input and output is contained within registers rather
than shared memory.

Intel has recently developed conflict detection instructions as extensions to AVX-
512 known as AVX-512CD [Int14b]. The VPCONFLICT instruction uses a single mul-
timedia register as input and returns a bitmask showing conflicting pairs. By using
this bitmask it is possible to remedy gather-modify-scatter operations with conflicting
indices and this could be used to aid histogram generation. Any indices that con-
flict can be masked out and—similar to [KKS+08]—the programmer must use a loop
construct to iteratively process the same input until there are no pending elements.
While we also generate histograms in VSR sort, this occurs in very tight loops on
the critical path with a high number of iterations; a best-effort implementation could
severely impact performance. We have proposed suitable instructions to aid this as
well as implementations that are efficient and scalable. We avoid data-dependent loops

58

3.6. Conclusions

to handle conflicts and we prevent unnecessary repeated accesses to the same position
of the histogram structure.

3.6 Conclusions

In this chapter we have performed extensive analysis on three diverse sorting algorithms
using a uniform and modern platform and assessed them using consistent metrics. We
have learned that all of the algorithms suffer from bottlenecks and scalability problems
due to the irregularity of the DLP and the limitations of a standard vector SIMD
instruction set.

Based on these findings, we have proposed VSR sort—a novel way to efficiently
vectorise radix sort. To enable this algorithm in a SIMD architecture we have defined
two new instructions—vector prior instances and vector last unique. We have
provided a suitable hardware proposal that includes both serial and parallel variants.
We have demonstrated that the algorithm scales well when increasing the maximum
vector length, and works well both with and without parallel lockstepped lanes. VSR
sort has shown maximum speedups over a scalar baseline between 7.9× and 11.7× when
a simple single-lane pipelined vector approach is used and maximum speedups between
14.9× and 20.6× when as few as four parallel lanes are used.

We have compared VSR sort with three very different vectorised sorting algorithms—
quicksort, bitonic mergesort and a previously proposed implementation of radix sort.
VSR sort outperforms all of the aforementioned algorithms and achieves a comparat-
ively low CPT without strictly requiring parallel lanes. It has a complexity of O(k ·n)
meaning that this CPT will remain constant as the input size increases—a highly-
desirable property of a sorting algorithm. The k factor is significantly improved over
the original vectorised radix sort as well as the constant performance factor.

VSR Sort’s dominant memory access pattern is unit-stride which helps maximise
the utilisation of the available memory bandwidth. Unlike the previous vectorised
radix sort, VSR sort does not replicate its internal bookkeeping structures which con-
sequently allows them to be larger and reduces the number of necessary passes of the
algorithm. On average VSR sort performs 3.4× better than the next-best vectorised
sorting algorithm when run on the same hardware configuration.

59

CHAPTER 4

A Study on Aggregation

4.1 Introduction

Aggregation is a very useful operation when summarising considerable amounts of data
and is a cornerstone of important technologies such as SQL DBMSs, OLAP cubes,
MapReduce, pivot tables and statistical languages. In the TPC-H decision support
benchmark, aggregations can dominate eight of the twenty-two queries [BNE14]. An
example of a simple aggregation is shown in Figure 4.1; earnings per persons are
grouped together and averaged by age. A summary like this may help the user uncover
trends not immediately apparent from the raw data, e.g. if there is a correlation between
earnings and age. Since the rate of data generation is growing exponentially each
year [MCB+11, CML14], this has led to enormous volumes of data to aggregate and
summarise. As such, there is pressure on both software and hardware developers to
create solutions that can cope with these increasing requirements. In this chapter, we
explore different vectorisation techniques applied to data aggregation.

name age earnings

Hendry 46 €24,000

O'Sullivan 39 €11,000

Davis 58 €24,000

Higgins 40 €10,000

White 53 €15,000

Williams 40 €8,000

Parrott 51 €9,000

Doherty 45 €6,000

age earnings (avg)

30-39 €11,000

40-49 €12,000

50-59 €16,000

Figure 4.1: Example of an aggregation operation. The input table on the left is
summarised on the right. Earnings are grouped by age range and averaged.

61

Chapter 4. A Study on Aggregation

In this chapter, we make three principal contributions. (1) We propose and imple-
ment several vectorised algorithms for data aggregation using common vector SIMD
instructions and evaluate them using the infrastructure created in Chapters 2 and 3.
(2) In order to determine the sensitivity of the input to performance, we assess the
behaviour of these algorithms for a range of data distributions and cardinalities. (3)
Leveraging our proposal for irregular DLP from Chapter 3, we extend this hardware
with minimal additions to create new instructions useful for data aggregations.

There are several notable outcomes of this work. Firstly, we find that the per-
formance of vectorised data aggregation is immensely dependent on the distribution
and cardinality of the input. As a consequence, there is not a single vectorised al-
gorithm that provides the best performance in every case. Secondly, we discover that
vectorising the algorithms is not trivial due the irregularity of the DLP. We propose
two distinctly different types of solutions—the first, evasion, attempts to avoid this
irregularity through transformation whereas the second, confrontation, tackles it head
on. The evasion techniques—relying on typical vector SIMD instructions—yield spee-
dups only in a subset of the cardinalities/distributions with significant slowdowns
over the scalar baseline in other cases. On the other hand, the confrontation tech-
niques—embracing the irregularity with new SIMD instructions—achieve speedup for
all cardinalities/distributions, even when in some cases results are surpassed by an eva-
sion technique. Finally, since cardinality can be determined at runtime, we introduce
an adaptive near-optimal implementation that selects the most appropriate algorithm.
Our proposed vector implementations exhibit speedups between 2.7× and 7.6× over a
scalar baseline for a maximum vector length of 64 and four lockstepped lanes.

The outline of this chapter is as follows. Section 4.2 discusses the changes we make
to our architecture and simulation framework. Section 4.3 outlines our experimental
setup, the scalar baseline and discusses the obstacles related to vectorising data ag-
gregations. We propose and evaluate vectorised evasion techniques in Section 4.4 and
vectorised confrontation techniques in Section 4.5. Related work is discussed in Section
4.6 and Section 4.7 concludes the chapter.

4.2 Changes to the Architecture

In Chapter 2, we defined a vector ISA suitable for DBMS acceleration. In Chapter
3, we extended this vector ISA with new instructions useful for sorting, including
our own novel vector instructions—VPI and VLU. In this chapter, we build upon this
infrastructure and extend it further in order make detailed evaluations of different
vectorised aggregation algorithms. We now describe the various changes that we make
to our vector architecture and simulation framework.

In Chapter 2, we outlined a mechanism whereby the vector memory unit bypasses
the L1D cache and instead directly accesses the L2 cache. We found that in practise
this works well with the evaluated algorithms and datasets. In Chapter 3, we men-
tioned briefly that some of the sorting algorithms exhibit pathological behaviour when
a particular stride is used, however, we opted not to fix this issue and instead avoid it
by using non-problematic datasets. In this chapter, we experiment with a large vari-

62

4.2. Changes to the Architecture

ety of data distributions which can inadvertently trigger troublesome memory access
patterns. In essence, the problem occurs when individual strided or indexed memory
instructions load from—or store to—the same cache set causing premature evictions
and consequently poor performance. To fix this, we interleave the L2 cache sets using
a simple mapping scheme based on irreducible polynomials suggested in the works of
Rau [Rau91] and González et al. [GVTP97]. We find that this scheme completely
eliminates all of the pathological behaviour caused by problematic memory access pat-
terns. Interestingly, the cited work did not consider vector memory instructions as an
application for this idea.

We also expand our vector ISA to include more instructions which are necessary to
vectorise the aggregation algorithms. Instructions are classified and listed in Table 4.1
and those highlighted in bold indicate that they are newly introduced in this chapter.
Complete definitions of each one can be found in Appendix B. The expand instruction
is the inverse of the compress instruction [Kog81]. It requires an input vector register
with V L entries and a mask register with MV L bits of which V L bits are set. The
instruction creates an output vector register whereby the i-th element of the input
vector register goes to the position indicated by the i-th bit set of the mask.

Table 4.1: Overview of vector instructions with new additions for aggregation.

class instructions

integer arithmetic add, subtract, multiply
bitwise logical and, xor, shift right, shift left

comparison not equal, less than, greater than
initialisation set all, clear all, iota

mask set mask, clear mask, and, or, not, popcount
permutative compress, shuffle, reverse, expand

reduction sum, minimum, maximum
vector length set, set MVL, get

memory fence scalar-vector, vector-scalar, vector-vector
CAM-based VPI, VLU

other merge, copy, get element, set element

Historically, vector architectures have offered some support for aggregating vectors
to scalars in the form of reduction instructions [NH83]. A reduction instruction takes
a single vector register as input, applies an associative/commutative operation to all
its elements, and outputs a single reduced scalar value. Table 4.1 includes a set of
vector reduction instructions which we will use in some of our aggregation algorithms.
In our implementation of reductions, there is a partial reduction local to each lane
requiring V L

lanes − 1 cycles and then log2lanes additional cycles needed for interlane
reduction. Figure 4.2 shows an example of a sum reduction operation performed on
a vector register of eight elements. There are two parallel lockstepped lanes that
each processes four elements in three cycles followed by one extra (log2lanes) cycle of
interlane reduction.

63

Chapter 4. A Study on Aggregation

1 5

10 26

2 3 4 6 7 8

+
+

+

+
+

+

36

+

Figure 4.2: Sum reduction when V L = 8 and lanes = 2.

4.3 Experimental Setup

In this section, we describe the experimental setup. Our goal is to define a represent-
ative data-intensive aggregation query, implement it in a variety of ways and evaluate
the implementations with a diverse range of parameters. This will help expose the
strengths and weaknesses of different algorithm designs. Additionally, we present a
scalar aggregation algorithm which we use as a common baseline in subsequent exper-
iments. Finally, we discuss the obstacles to vectorising data aggregation and propose
two possible solution paths.

4.3.1 Query and Input Data

In our experiments, we evaluate the SQL query in Figure 4.3. This type of query
has been successfully used in prior work to evaluate data aggregations [CR07, YRV11,
PR13]; its performance depends highly both on the underlying implementation as well
as the characteristics of the input data. r is a two-column table with n rows consisting
of a 32-bit integer group key g and a 32-bit integer value v. The result is a three-column
output table where each row contains: a group; the frequency of that group—count;
and the sum of all values corresponding to that group—sum. Examples of these tables
are shown in Figure 4.4. Similar to previous chapters, we emulate the behaviour of a
column-oriented OLAP DBMS in which columns are stored contiguously as arrays in
memory.

1: SELECT g, COUNT(*), SUM(v)
2: FROM r GROUP BY g

Figure 4.3: SQL code used to evaluate the various aggregation algorithms.

In all the experiments, we fix the number of input rows n at 10,000,000. This value
is sufficient to represent behaviour indicative of non-cache resident datasets while also
being small enough to simulate experiments to completion in a reasonable time frame.
The value column v is a uniform distribution in the interval [0, 9]; since this column
does not directly affect the performance of the different algorithms, it remains constant
in all experiments. We generate 110 variations of the group column g by varying the
distribution and cardinality c of the data.

64

4.3. Experimental Setup

g v

3 4

0 9

1 3

3 8

2 6

2 4

group count sum

0 1 9

1 1 3

2 2 10

3 2 12

table r

table output

Figure 4.4: Example of input table r and output table of SQL code.

We use five unique data distributions similar to the ones used by Cieslewicz et
al. [CR07]. (1) uniform: a pseudo-random selection in the interval [0, c) with equal
probability. (2) sorted: a presorted uniform distribution. (3) sequential: a repeating
sequence {0, 1, 2, ..., c − 1}. (4) hhitter: similar to uniform however 50% of the data is
a single heavy hitting value. (5) zipf: a pseudo-random selection in the interval [0, c)
with a Zipfian probability.

There are 22 possible cardinalities c ∈ {10, 000, 000, 5, 000, 000, 2, 500, 000, ..., 38,
19, 9, 4}. Due to the nature of each distribution, c represents a maximum possible
cardinality rather than a guaranteed cardinality. For example, it is not always possible
to generate a Zipfian distribution where |g| = c, therefore—for zipf—c represents the
upper bound of the domain in which we sample from rather than a strict cardinality.
sequential is the only distribution where c guarantees both a maximum and an actual
cardinality in every case. Unless otherwise stated, cardinality refers to this upper
bound.

For the sake of discussion, we group the cardinalities into four divisions. (1) low
cardinalities [4, ..., 152], e.g. gender of a person. (2) low-normal cardinalities [305, ...,
9, 765], e.g. date of birth of a client. (3) high-normal cardinalities [19, 531, ..., 312, 500],
e.g. a zip or postal code. (4) high cardinalities [625, 000, ..., 10, 000, 000], e.g. a passport
number.

We assume that the application has a priori knowledge that the sorted datasets are
already ordered and thus avoids the overhead of resorting. This is normal in DBMSs
in which similar metadata is used to choose between alternative algorithms and make
optimisations. This assumption also helps identify performance trends independent of
a sorting phase.

In some aggregation techniques, it is useful to detect the maximum group key and
use it to improve the algorithm’s runtime behaviour. In algorithms with a sorting
phase—or if the input is presorted—the maximum group key is simply the last value
in the array.1 In algorithms without a sorting phase—excluding presorted input—we
locate an exact maximum group key by scanning the entire array g. We find that this

1We accidentally only applied this trick to the vectorised algorithms. When finding the maximum
group key, scalar experiments using the sorted dataset are thoroughly scanned like any other dataset.
Scalar results using this dataset are thus a few CPT higher than the optimum. This scanning is
responsible for the extra branch mispredictions shown in Appendix A.

65

Chapter 4. A Study on Aggregation

adds little overhead compared to the aggregation itself, however, it could be replaced
with sampling and some additional checks.

Since we are already looking at many variables, we fix the vector parameters at
MV L = 64 and lanes = 4. These parameters were shown to be reasonable in Chapter
3. They also represent a configuration that we anticipate could eventually appear on
the market given current trends. Similar to Chapter 3, we report all our results using
CPT—the total number of cycles needed to execute the algorithm divided by the total
number of input tuples n.

4.3.2 Scalar Baseline

Here we introduce the baseline algorithm—scalar—designed without any vector SIMD
instructions. The algorithm uses a separate table in main memory for each aggregation
in the query, i.e. there is a count table and a sum table. We divide its implementation
into four steps. (1) Find the highest value, maxg, stored in the array g. (2) Clear
maxg + 1 cells of the output tables count and sum. (3) Aggregate the input arrays g
and v to output tables count and sum. Pseudocode for this step is shown in Figure 4.5.
(4) Compress the tuples to remove absent groups with NULL results.

for each i in n do
count[g[i]]++;
sum[g[i]] += v[i];

end for

Figure 4.5: Pseudocode for step 3 of the baseline algorithm scalar.

The results for this algorithm are shown in Figure 4.6. For all datasets, the per-
formance is similar in low and low-normal but then changes drastically entering high-
normal. When c = 9, 765, the L1D cache capacity of 32 KB is exceeded. At this point
hhitter, uniform and zipf increase their CPT intensely; uniform alone exhibits a dramatic
8× increase in CPT. This behaviour is not surprising as a uniform distribution exhib-
its poor locality when the bookkeeping structures exceed the cache size. In contrast,
sorted does not take any significant hit in performance in high-normal as having the
tuples presorted introduces a lot more locality. This effect wears off in high and sorted
experiences a steep slope in its CPT as well.

sequential follows a similar pattern to sorted although slightly increases its CPT
in high-normal. After processing the first 9,765 tuples out of n, the L1D cache will
be filled and processing subsequent tuples causes dirty line evictions thus reducing
the memory system’s performance. These evictions can occur with sorted as well, but
unlike sequential, there will be repeated values stored adjacently causing more locality.
This behaviour would suggest that sorting all the datasets will lead to better perform-
ance, however, the cost of doing this with a scalar ISA would be very high—especially
for a large n.

66

4.3. Experimental Setup

0

15

30

45

60

75

90

105

120

135

4 9

1
9

3
8

7
6

1
5
2

3
0
5

6
1
0

1
,2
2
0

2
,4
4
1

4
,8
8
2

9
,7
6
5

1
9
,5
3
1

3
9
,0
6
2

7
8
,1
2
5

1
5
6
,2
5
0

3
1
2
,5
0
0

6
2
5
,0
0
0

1
,2
5
0
,0
0
0

2
,5
0
0
,0
0
0

5
,0
0
0
,0
0
0

1
0
,0
0
0
,0
0
0

low low-normal high-normal high

c
y
c

le
s

 p
e

r
tu

p
le

hhitter sequential sorted uniform zipf

Figure 4.6: Performance results for the baseline algorithm scalar.

4.3.3 DLP and Vectorisation

As discussed in Chapter 1, DLP is accomplished when the same operations are applied
to multiple elements of homogeneous data, i.e. a vector of data. DLP can be achieved
by leveraging a vector SIMD instruction set such as the one described in Section 4.2.
We further categorise DLP as either regular or irregular.

Regular DLP is a form of DLP in which result i of a vector procedure depends only
on element i of its input vectors’ operands, i.e. every element is independent. A typical
vector SIMD instruction set is generally geared towards regular DLP.

Irregular DLP can be defined as DLP where result i of a vector procedure depends
on element i of its input vectors’ operands and may additionally depend on other results
of the vector procedure. It is still DLP as the same operations are applied uniformly
on all data, however, the result of one action may depend on the outcome of another
action within the same unit of work, e.g. SIMD instruction.

Our reference scalar baseline is a relatively straightforward algorithm that makes
use of tables. Nevertheless—due to the irregularity of the DLP—there are numerous
obstacles when vectorising the code. Updating a table is accomplished by—(a) an
indexed load from the table (b) modifying the value (c) an indexed store to the table.
In a SIMD model of computation, this translates to—(a) gathering multiple table
entries to a vector register (b) modifying the vector of loaded values (c) scattering the
modified values back to the table. If the indices used in the gather/scatter operations
are not unique, i.e. conflicting, the behaviour is undefined and updates can be lost
causing erroneous output. We refer to this as a gather-modify-scatter (GMS) conflict.

There are two possible ways to tackle this. One is to evade the irregularity by
transforming the problem into something more regular and then vectorising it. The

67

Chapter 4. A Study on Aggregation

other is to confront the irregularity directly through the use of novel instructions.
In Section 4.4 we evaluate our evasion solutions and in Section 4.5 we evaluate our
confrontation solutions.

4.4 Evasion Techniques

In this section, we propose and evaluate two alternative vectorisable solutions using
typical vector SIMD instructions.

4.4.1 Standard Sorted Reduce

In this subsection, we explore the benefits of using vector reduction instructions coupled
with a standard sorting algorithm taken from Chapter 3, i.e. not VSR sort.

We classify reductions as semi-regular DLP instructions. They are not completely
regular because the output element depends on more than input element i, yet, they
are not irregular either as there is a single output value and, therefore, output element
i does not depend on any other output element.

We evaluate the benefit of using these types of instructions in data aggregation. If
the input is sorted, vector reduction instructions can be used directly. If not, the input
must be sorted first. Our algorithm is as follows. (1) If not already sorted, g is sorted
using v as the associated payload. (2) The sorted g is scanned for runs of repeated
keys. Runs can be found by first comparing g[i] with g[i+1] to generate vector masks.
The distance between set bits in these vector masks corresponds to the length of a run.
These lengths also correspond to the elements of the output column count. (3) The
run lengths are used to load and reduce segments of v. Run lengths that exceed the
MVL are stripmined.

To sort the input arrays in step 1, we choose the vectorised radix sort algorithm
evaluated in Section 3.3.3. It is a good match for this scenario for several reasons.
Firstly, it is vectorisable using typical vector SIMD instructions, i.e. nothing esoteric.
Secondly, we demonstrated in Chapter 3 that it outperforms quicksort and bitonic
mergesort when MV L = 64 and lanes = 4—the same vector configuration used in this
chapter. Thirdly, it has an equal CPT for any input size n, hence making it scalable
for larger datasets. Finally, it can be optimised for a particular maximum group key
thereby reducing the cost of sorting any particular cardinality. We elaborate on this
last point.

In Chapter 3, we evaluated the sorting algorithms using arrays of key-value tuples
where the key was taken from a uniform distribution of 32-bit integers. It was likely
that keys would span most of the—if not the entire—integer range. As such, we
configured radix sort to process all 32 bits of the keys over multiple passes. In this
chapter, we experiment with alternative data distributions and cardinalities. In many
datasets, the most significant bit of the maximum group key will be lower than the most
significant bit of the largest 32-bit integer value. Knowing this allows us to optimise
the algorithm and potentially reduce the number of passes. For example, if the group
keys of a data distribution can be represented with sixteen bits, we could reduce the
number of algorithm passes by a factor of two since radix sort needs only process half

68

4.4. Evasion Techniques

the number of bits as usual. In order to enable this optimisation, we must first find
the largest group key. As mentioned in Section 4.3.1, we achieve this by scanning the
input array g. We find that, in practice, this overhead is offset by the performance
gains achieved through the optimisation.

The results of standard sorted reduce evaluated with all data distributions and
cardinalities are shown in Figure 4.7. To make comparisons easier, we keep the scale
of the y-axis the same as the scalar baseline for all vector experiments. In Table
4.2, a summary is given of the overall performance by taking the average speedup
(and standard deviation) over scalar for each cardinality division. Highlighted cells
indicate that this is the best average performance so far for that particular combination
of dataset and cardinality division.

0

15

30

45

60

75

90

105

120

135

4 9

1
9

3
8

7
6

1
5
2

3
0
5

6
1
0

1
,2
2
0

2
,4
4
1

4
,8
8
2

9
,7
6
5

1
9
,5
3
1

3
9
,0
6
2

7
8
,1
2
5

1
5
6
,2
5
0

3
1
2
,5
0
0

6
2
5
,0
0
0

1
,2
5
0
,0
0
0

2
,5
0
0
,0
0
0

5
,0
0
0
,0
0
0

1
0
,0
0
0
,0
0
0

low low-normal high-normal high

c
y
c

le
s

 p
e

r
tu

p
le

hhitter sequential sorted uniform zipf

Figure 4.7: Performance results for standard sorted reduce.

Table 4.2: Average speedups (and standard deviation) of standard sorted reduce
over scalar. Highlighted cells mark best result so far.

low low-normal high-normal high

hhitter 0.7× (0.1) 0.3× (0.0) 0.6× (0.2) 0.8× (0.1)
sequential 0.6× (0.1) 0.3× (0.0) 0.4× (0.1) 0.3× (0.0)

sorted 5.1× (0.0) 5.1× (0.0) 5.2× (0.1) 2.7× (1.0)
uniform 0.6× (0.1) 0.3× (0.0) 0.8× (0.4) 1.1× (0.1)

zipf 0.6× (0.1) 0.3× (0.0) 0.5× (0.1) 0.7× (0.1)

sorted is the only dataset that does not cause additional sorting overhead, as such,
we see the cost of the aggregation step itself. Its performance is consistent for low, low-
normal and high-normal but then diminishes in high. The increasing cardinality causes

69

Chapter 4. A Study on Aggregation

the average run length to decrease and serialises the algorithm thereby underutilising
the vector units.

In most cases, it can be seen that hhitter, sequential, uniform and zipf show slowdowns
over scalar ; only uniform exhibits a 1.1× average speedup for high. These slowdowns
are due to the overhead of sorting the input which often exceeds the total cost of
scalar. The effects of our cardinality optimisation can also be seen these results. The
overhead of radix sort is moderate for low but gradually rises as the cardinality of each
dataset increases.

Although being the most efficient DLP-accelerated sorting algorithm using typical
vector SIMD instructions, radix sort must undergo significant transformations to be
vectorised. As discussed in Chapter 3, the vectorised algorithm suffers from two major
bottlenecks. (1) In order to avoid GMS conflicts, its internal bookkeeping structures
need to be replicated by the number of elements in a vector register. (2) To ensure
sorting stability, each element of a vector register must process a contiguous portion
of the input. To achieve this effect, the input must be loaded into a vector register
using a strided memory access pattern in lieu of a unit-stride one. In Section 4.5.1, we
experiment with VSR sort as a viable alternative to radix sort.

4.4.2 Polytable

It is also possible to make a vectorised translation of scalar using vector instructions.
Steps 1, 2 and 4 can be vectorised directly using typical vector SIMD instructions,
however—in a similar vein to radix sort—the third step requires transformation due
to GMS conflicts.

1 3 3 0

0 5 2 4

in
p

u
t:
 g

1 3 3 0v
re

g

1 0 0 0

1 0 0 0

0 0 2 0

0 0 0 1

count copy

g
ro

u
p

 k
e

y

1 4 2 3

0

1

3

2

0 1 32

0 1 0 14

0 1 0 05

+1

+1 +1

+1

(a) Table replication avoids GMS conflicts.

1 0 0 1

2 0 0 0

0 0 2 0

0 1 1 1

0 1 0 1

0 1 0 0

2

2

2

3

2

0 1 0 1 +

g
ro

u
p

 k
e

y

0

1

3

2

4

5

count copy
0 1 32

v
re

g

c
o

u
n

t

0

1

3

2

4

5

(b) Local tables reduce to a single global table.

Figure 4.8: An illustrative example of polytable calculating the count table where
n = 12 and MV L = 4.

To circumvent GMS conflicts, we must replicate the output tables count and sum
for every element of a vector register, i.e. there are MV L independent versions of each
table. Figure 4.8a shows the process of incrementing the count table when MV L = 4.
In the figure, input array g is arranged in blocks of consecutive MV L elements. The

70

4.4. Evasion Techniques

elements with dotted patterns have already been processed. The highlighted values
are currently being used to update the table. In this case it can be seen that there are
multiple instances of the value 3 in the vector register (vreg). This duplication would
cause a GMS conflict if a single table were used, however, since each vector element
accesses a local copy, we avoid conflicts entirely.

After the input has been processed, the local copies of count and sum must be
reduced to singular global tables. MV L consecutive elements—which form a single
group—are loaded into the vector register (vreg) that is then summed together using
a reduction instruction. This local to global reduction is illustrated in Figure 4.8b.

0

15

30

45

60

75

90

105

120

135

4 9

1
9

3
8

7
6

1
5
2

3
0
5

6
1
0

1
,2
2
0

2
,4
4
1

4
,8
8
2

9
,7
6
5

1
9
,5
3
1

3
9
,0
6
2

7
8
,1
2
5

1
5
6
,2
5
0

3
1
2
,5
0
0

6
2
5
,0
0
0

1
,2
5
0
,0
0
0

2
,5
0
0
,0
0
0

5
,0
0
0
,0
0
0

1
0
,0
0
0
,0
0
0

low low-normal high-normal high

c
y
c

le
s

 p
e

r
tu

p
le

hhitter sequential sorted uniform zipf

Figure 4.9: Performance results for polytable.

Table 4.3: Average speedups (and standard deviation) of polytable over scalar. High-
lighted cells mark best result so far.

low low-normal high-normal high

hhitter 3.7× (0.4) 0.9× (1.0) 0.8× (0.2) 0.5× (0.2)
sequential 2.9× (0.4) 0.8× (1.0) 0.3× (0.0) 0.2× (0.1)

sorted 7.6× (0.0) 7.0× (0.6) 2.9× (1.6) 0.4× (0.2)
uniform 3.0× (0.6) 0.7× (0.9) 0.6× (0.3) 0.6× (0.2)

zipf 3.3× (0.6) 0.9× (0.7) 0.5× (0.1) 0.4× (0.2)

The results of polytable are shown in Figure 4.9 and Table 4.3. For low, all
datasets exhibit a speedup. Due to the arrangement of the table structures, sorted
shows the biggest improvement and sequential exhibits the least improvement. This
is due to the layout of the MV L table copies. Replications are stored contiguously
in memory, i.e. the cell for group k’s local copy i is adjacent in memory to copy i+1.

71

Chapter 4. A Study on Aggregation

Since sorted contains long runs of the same group, the number of cache lines accessed
is minimal. In contrast, sequential has the opposite behaviour. The datasets have runs
of ascending groups which causes a strided memory access pattern where the stride is
MV L + 1 elements, i.e. a diagonal access through the structure. Since the MV L is
larger than the number of elements in a cache line, MV L cache lines will be accessed
with every memory instruction. All other datasets exhibit performance between these
two extremes.

After low, the performance begins to decrease. Similar to the scalar baseline,
the tables grow larger than what the cache can accommodate and performance drops.
In this case, replicating the tables causes the deterioration to happen sooner. In
the scalar baseline, this transition occurs when c = 9, 765 whereas here it happens
when c = 152 which is sixty-four—the MVL—times smaller than the former. For
hhitter, sequential, uniform and zipf the results are always worse than scalar. sorted
continues to outperform scalar in low-normal and high-normal due to the spatial
locality of its accesses, however, in high, it deteriorates and becomes worse than scalar.
A slightly surprising result here is that for sorted, low and low-normal outperform
their counterparts in standard sorted reduce from Section 4.4.1. This due to an
unignorable overhead incurred when scanning the input to build the array of run
lengths.

4.4.3 Summary

We have evaluated two distinct techniques that vectorise data aggregations through
algorithm transformation. If the input is already sorted, there are positive speedups
to be gained using polytable for lower cardinalities and standard sorted reduce for
higher cardinalities. For non-sorted data distributions, it is beneficial to use polytable
if the cardinality is very low. For other combinations of distribution and cardinality,
neither of these techniques suffice. These limitations arise due to the transformations
necessary to vectorise data aggregation using a typical vector SIMD ISA. These findings
motivate us to explore other techniques using novel vector SIMD instructions which
will allow us to vectorise the algorithms without these detrimental transformations.

4.5 Confrontation Techniques

In this section we look at alternative solutions that attempt to confront the irregular
DLP head on rather than evade it.

4.5.1 Advanced Sorted Reduce

The vectorised radix sort used in Section 4.4.1 suffers from performance bottlenecks
caused by algorithm transformation. In Chapter 3, we proposed VSR sort—a novel
vectorised implementation of radix sort that avoids replicating its internal table struc-
tures and processes the input arrays sequentially. Contiguous portions of the input
are read into vector registers using an efficient unit-stride memory access pattern; the
algorithm then searches for elements that may cause GMS conflicts and corrects them

72

4.5. Confrontation Techniques

accordingly before accessing the bookkeeping structures. To enable this new algorithm
in a vector architecture, we defined and implemented two new instructions—VPI and
VLU. We first revisit the implementation of these instructions and optimise it for the
aggregation datasets. After, we evaluate the sorted reduction algorithm using VSR
sort in place of radix sort.

4.5.1-a Parallel Hardware Optimisation

In Chapter 3, we proposed an implementation of VPI and VLU using a CAM structure
coupled with an increment unit. We also introduced an optimisation whereby adjacent
elements of the input register can be processed in parallel provided they don’t cause
a structural hazard in the CAM. The logic to handle these hazards was designed with
simplicity in mind. A group of consecutive input keys are checked for conflicts; if there
are no conflicts, the CAM is updated in parallel; if a conflict is detected, the group is
processed serially.

VSR sort was evaluated with a uniform distribution of integers and only a subset
of each value’s bits were used when executing VPI and VLU. As such, we could derive
the mathematical probability of a conflict and determined that the most beneficial
hardware configurations have two or four CAM lanes. In this chapter, we experiment
with five new data distributions, each with twenty-two different cardinalities. Since
the variability of these distributions could alter the effectiveness of the CAM lanes,
we construct a microbenchmark to evaluate the implementation of VPI and VLU using
these new datasets.

Figure 4.10 shows the average speedup of executing VPI with two and four CAM
lanes over an implementation with a single CAM lane. We observe that for sequential
and uniform there is a significant advantage when using four CAM lanes over two. For
hhitter, it is clear that using four CAM lanes exhibits a performance slowdown over two
CAM lanes. This is to be expected since 50% of the values are the same thus increasing
the probability of collisions and serialisation. For zipf, there is an advantage of using
four CAM lanes except in the case of low. For sorted, there is almost no advantage
when using four CAM lanes, however, for high there is a small benefit when using
two CAM lanes. It is clear from these results that the optimal hardware configuration
depends a lot on the data distribution and cardinality.

These observations lead us to refine the implementation of VPI and VLU. In the case
of four CAM lanes—instead of serialising the updates on encountering a collision, we
can instead try two CAM lanes for each pair of adjacent elements. If both pairs conflict
internally, only then will the procedure be completely serialised. Figure 4.11 illustrates
an example of this optimisation. In the original implementation—labelled parallel—
the hardware selects a group of four consecutive elements. Although neighbouring
values are non-conflicting in most cases, there are more conflicts when four values
are considered together. As such, the operation is completely serialised giving the net
effect of a configuration with one CAM lane. In our improved implementation—labelled
parallel optimised—the hardware takes into account that numerous pairs of values don’t
conflict internally. It can schedule values from these pairs in parallel and achieve the
net effect of a configuration with two CAM lanes. The hatched box represents the time

73

Chapter 4. A Study on Aggregation

1.00 1.50 2.00 2.50 3.00 3.50 4.00

low

low normal

high normal

high

low

low normal

high normal

high

low

low normal

high normal

high

low

low normal

high normal

high

low

low normal

high normal

high

h
h
it
te

r
s
e
q
u

e
n
ti
a
l

s
o
rt

e
d

u
n
if
o

rm
z
ip

f

speedup over 1 CAM lane

2 CAM lanes 4 CAM lanes 4 CAM lanes w/ optimisation

Figure 4.10: VPI speedups over one CAM lane when using multiple CAM lanes.

74

4.5. Confrontation Techniques

saved over our original implementation, i.e. parallel. In this case it is 3
8 blocks or a 1.6×

speedup. This is quite a straightforward transition since the logic to detect a collision
between four values already contains the logic to detect a collision between any pair of
these values, i.e. all the comparators needed are already present, only the control logic
changes. Further optimisations may be possible, e.g. not selecting adjacent elements,
however, this may complicate the design as it is still necessary to keep the sequential
semantics of VPI and VLU.

in
p

u
t

7 5 3 5 11 9 9 9

p
a
ra

lle
l

p
a
ra

lle
l

o
p
tm

is
e

d

≠

N

≠

N

✘ ✘✘ ✘ ✘ ✘ ✘✘

5 117 5 3 9 99

✘ ✘✘ ✘ ✘ ✘ ✘✘

✘ ✘✘ ✘ ✘ ✘ ✘✘

7 3 11 9

5 5 9 ✘

✘ ✘ ✘ ✘

✘ ✘ ✘ ✘

9

✘

✘

✘

Figure 4.11: Optimised parallel hazard detection for hardware with four CAM lanes.

Figure 4.10 also plots the results of configuration with four CAM lanes using the
new optimised conflict detection. Several of the datasets are able to take advantage
of its fallback mechanism. At worse, the results are equal to a configuration with two
CAM lanes, i.e. there are no slowdowns. However, there are also some cases where
the performance achieved is better than both of the other configurations due to a
composite effect of having the four CAM lanes available and not completely serialising
the groups with conflicts, e.g. for zipf. We run the remainder of our experiments using
this optimisation.

4.5.1-b Algorithm Evaluation

We now evaluate the same algorithm used in standard sorted reduce but replace
radix sort with VSR sort while keeping all other steps equal. We also apply the
optimisation described in Section 4.4.1 whereby the number of algorithm passes can
be reduced if the maximum group key is less than the largest possible 32-bit integer.
The results are shown in Figure 4.12 and Table 4.4. Since the sorted dataset can skip
the sorting step, its behaviour and performance remain equal to standard sorted
reduce; these cases are marked with a Ξ symbol.

For hhitter, sequential, uniform and zipf the results are always better than standard
sorted reduce. There are still some slowdowns over scalar for low and low-normal.

75

Chapter 4. A Study on Aggregation

0

15

30

45

60

75

90

105

120

135
4 9

1
9

3
8

7
6

1
5
2

3
0
5

6
1
0

1
,2
2
0

2
,4
4
1

4
,8
8
2

9
,7
6
5

1
9
,5
3
1

3
9
,0
6
2

7
8
,1
2
5

1
5
6
,2
5
0

3
1
2
,5
0
0

6
2
5
,0
0
0

1
,2
5
0
,0
0
0

2
,5
0
0
,0
0
0

5
,0
0
0
,0
0
0

1
0
,0
0
0
,0
0
0

low low-normal high-normal high

c
y
c

le
s

 p
e

r
tu

p
le

hhitter sequential sorted uniform zipf

Figure 4.12: Performance results for advanced sorted reduce.

Table 4.4: Average speedups (and standard deviation) of advanced sorted reduce
over scalar. Highlighted cells mark best result so far.

low low-normal high-normal high

hhitter 1.0× (0.0) 0.9× (0.0) 2.0× (0.7) 1.8× (0.4)
sequential 1.0× (0.0) 0.9× (0.1) 1.2× (0.1) 0.7× (0.2)

sorted 5.1× (0.0) Ξ 5.1× (0.0) Ξ 5.2× (0.1) Ξ 2.7× (1.0) Ξ
uniform 0.9× (0.1) 0.8× (0.0) 2.7× (1.4) 2.7× (0.7)

zipf 1.0× (0.1) 0.8× (0.0) 1.5× (0.4) 1.6× (0.2)

Despite the performance of VSR sort being better than radix sort, the overhead is still
too high to surpass the CPT of scalar for lower cardinalities. For high-normal, this
sorting overhead becomes less significant and we achieve speedups in all cases.

For high, hhitter, uniform and zipf continue to exhibit speedups whereas sequential
shows a slowdown. The reason for this is twofold: (1) sequential exhibits good local-
ity in high for scalar thereby having better performance relative to the other three
datasets. (2) The average vector length is reduced to values below the MVL in high.
For example, when c = 10, 000, 000 the vector length of every reduction is 1 and this
reduces performance considerably. This second point also affects hhitter, uniform and
zipf for high, but to a lesser extreme than sequential; as mentioned in Section 4.3.1, c
represents an upper bound rather than an absolute value for the cardinalities of these
four datasets.

76

4.5. Confrontation Techniques

4.5.2 Monotable

The principal problem with the polytable algorithm of Section 4.4.2 is that the rep-
lication of tables destroys any locality that may otherwise be present in the scalar
baseline. Here we propose an alternative implementation called monotable which
draws from the novel instructions—VPI and VLU—used in advanced sorted reduce.

VPI and VLU cannot be used to vectorise scalar directly, i.e. without transform-
ations. This is because the calculation of the sum column in Figure 4.4 requires a
type of conflict correction with an increment based on the input array v. VPI and VLU
correct conflicts, but only for increments of 1; these instructions could, however, be
used to calculate the count column.

VPI and VLU use a hardware implementation based on a CAM and an increment
unit. We propose reusing this hardware structure and building new functionality on
top of it. We define a new set of instructions called Vector Group Aggregate (VGAx)
that can aid us further when vectorising data aggregation. There are three operations
supported which form the new instructions—sum (VGAsum), minimum (VGAmin) and
maximum (VGAmax). Each VGAx instruction uses two registers as input—a vector of
groups in-g and a vector of values in-v. The instructions produce a vector out of running
partial aggregates among values of the same group.

We can implement these instructions with relatively minor additions to the hard-
ware already in place for VPI and VLU. As an example, we describe VGAsum. The se-
mantics are illustrated in Figure 4.13 and the implementation is shown in Figure 4.14.
For each input element, instead of incrementing its CAM entry by one as would be done
with VPI, the entry is summed with the corresponding value in in-v. The semantics
resemble VPI when the values of in-v are all 1s, however, an important difference is that
the output of VPI comes from the CAM entry’s value before the increment whereas the
output of VGAsum is taken after the increment. There are two other differences between
this implementation and that of Section 3.4.2-c used to calculate VPI and VLU. (1) Two
vector registers are used as inputs instead of one. (2) The increment unit must be
generalised to a 32-bit adder with two integer inputs.

6 3 4 9 15 2 3 4

6 3 7 16 15 2 5 19

3 7 2

15

in
-v

o
u

t
in

-g 7 5 5 5 11 9 9 11

Figure 4.13: Semantics of the VGAsum instruction.

We use VGAsum to build a vectorised version of scalar using non-replicated tables
with no GMS conflicts. Combining VGAsum with VLU allows us to update a single table
in parallel while avoiding conflicts. Figure 4.15 shows the pseudocode of this step. The
masked scatter instruction could optionally be replaced with a compress followed by
a non-masked scatter.

77

Chapter 4. A Study on Aggregation

key 7 5 11 9 x x x x

last idx 0 3 4 5 x x x x

sum 6 16 15 2 0 0 0 0

+

= = = = = = = =

vector element idx

0 1 2 3 4 5 6 7

valid Y Y Y Y N N N N

6 3 4 9 15 2 3 4in-v

6 3 7 16 15 2 x xoutput

7 5 5 5 11 9 9 11in-g

Figure 4.14: Hardware implementation of VGAsum.

1: ~v2← vgasum(~v0, ~v1) . groups in ~v0 & values in ~v1
2: m0← vlu(~v0)
3: ~v3← gather(base=table, idx= ~v0, mask=m0)
4: ~v4← vadd(~v2, ~v3)
5: scatter(base=table, idx= ~v0, vals= ~v4, mask=m0)

Figure 4.15: Pseudocode for updating a table using VGAsum.

Figure 4.16 and Table 4.5 show the results of monotable. The graph resembles
the trends found in scalar (see Figure 4.6) but with lower CPTs. For low, monotable
exhibits good performance for hhitter, sequential, uniform and zipf and outperforms
polytable—the only evasion method that was useful for this cardinality division. sorted
is not as fast as polytable for low and low normal, which is understandable since the
majority of the VGAsum instruction’s input will cause CAM port conflicts and, therefore,
pay the maximum latency. In contrast, monotable outperforms polytable in all cases
for sorted in high-normal and high.

It can be seen that monotable has consistent performance for lower cardinalities,
but for higher cardinalities hhitter, sequential and uniform become worse whereas se-
quential and sorted remain relatively stable. This behaviour is related to the locality of
memory accesses. When c ≤ 9, 765, the data structures can reside fully in the L2 cache.
When this cardinality is exceeded—depending on the distribution of the data—it may
destroy the locality. Despite this behaviour, all the datasets in the higher cardinalit-
ies exhibit a speedup and beat the polytable method in every case. Compared with
advanced sorted reduce, sometimes the performance is better and sometimes worse.

78

4.5. Confrontation Techniques

0

15

30

45

60

75

90

105

120

135

4 9

1
9

3
8

7
6

1
5
2

3
0
5

6
1
0

1
,2
2
0

2
,4
4
1

4
,8
8
2

9
,7
6
5

1
9
,5
3
1

3
9
,0
6
2

7
8
,1
2
5

1
5
6
,2
5
0

3
1
2
,5
0
0

6
2
5
,0
0
0

1
,2
5
0
,0
0
0

2
,5
0
0
,0
0
0

5
,0
0
0
,0
0
0

1
0
,0
0
0
,0
0
0

low low-normal high-normal high

c
y
c

le
s

 p
e

r
tu

p
le

hhitter sequential sorted uniform zipf

Figure 4.16: Performance results for monotable.

Table 4.5: Average speedups (and standard deviation) of monotable over scalar.
Highlighted cells mark best result so far.

low low-normal high-normal high

hhitter 3.9× (0.1) 3.5x (0.1) 1.8× (0.8) 1.3× (0.1)
sequential 4.1× (0.0) 4.1× (0.1) 2.9× (0.0) 2.7× (0.2)

sorted 4.6× (0.0) 4.6× (0.0) 4.7× (0.0) 4.5× (0.2)
uniform 3.8× (0.1) 2.9× (0.3) 1.5× (0.7) 1.2× (0.1)

zipf 4.0× (0.1) 3.5× (0.2) 2.0× (0.4) 1.4× (0.0)

4.5.3 Partially Sorted Monotable

We observe that monotable works particularly well for the lower cardinalities. For
higher cardinalities, some of the datasets lose their cache locality and exhibit rapid
increases in CPT. sorted and sequential—the datasets that do not lose their local-
ity—maintain more consistent behaviour. We estimate that to achieve the optimal
behaviour of monotable, the input does not necessarily have to be fully sorted but
instead be partitioned in such a way that maximises temporal locality.

In advanced sorted reduce, we use VSR sort to fully sort the input before redu-
cing it. Each pass of VSR sort orders the input according to a subset of bits of each
value, building from the order already found by previous passes. By default, VSR sort
finishes after the last pass processes the most significant bits of the values resulting
in a completely sorted input. Each pass contributes to the algorithm’s overhead. If
only sorting on a subset of each value’s bits is necessary, the number of passes could
be significantly reduced. In monotable, it is not paramount that all group keys be

79

Chapter 4. A Study on Aggregation

stored together contiguously like in the sorted reduce methods. Instead, it should be
sufficient to position repeated groups keys just close enough to one another that noth-
ing in between will evict that group key’s line from the cache. Accordingly, we propose
partially sorting the inputs with higher cardinalities before executing monotable.

We modify VSR sort to perform a single pass of the algorithm on a subset of bits
between the most significant bit of the maximum group key and a user-specified offset.
As the L2 cache in our experiments is 256 KB and each group key requires 4 bytes,
up to 16 bits of each value could be ignored when sorting. Using a configuration that
considers the remaining 16 bits would divide the input into partitions with a maximum
of 65,536 unique groups keys. In practice, we find the best performs is achieved when
sorting the most significant 8 bits of the datasets in high-normal and increasing this
gradually to 11 bits for the largest cardinality in high. This way, the partial sort can
be limited to a single pass in all cases. We do not need to partially sort any datasets
in low and low-normal as these exhibit good temporal locality already.

Figure 4.17 and Table 4.6 show the results of monotable. Since we need not par-
tially sort the lower cardinalities or the sorted dataset, their behaviour and performance
remain equal to monotable; these cases are marked with a Ξ symbol.

For high-normal and high, there is a significant increase in performance for hhitter,
uniform and zipf. These results are considerably better than polytable, monotable
and either sorted reduce methods. sequential is the only dataset that takes a hit in
performance over monotable for the higher cardinalities. This degradation is because
sequential already exhibits enough spatial locality to compensate for a lack of temporal
locality, therefore, partially sorting the input only adds to its CPT.

0

15

30

45

60

75

90

105

120

135

4 9

1
9

3
8

7
6

1
5
2

3
0
5

6
1
0

1
,2
2
0

2
,4
4
1

4
,8
8
2

9
,7
6
5

1
9
,5
3
1

3
9
,0
6
2

7
8
,1
2
5

1
5
6
,2
5
0

3
1
2
,5
0
0

6
2
5
,0
0
0

1
,2
5
0
,0
0
0

2
,5
0
0
,0
0
0

5
,0
0
0
,0
0
0

1
0
,0
0
0
,0
0
0

low low-normal high-normal high

c
y
c

le
s

 p
e

r
tu

p
le

hhitter sequential sorted uniform zipf

Figure 4.17: Performance results for partially sorted monotable.

80

4.5. Confrontation Techniques

Table 4.6: Average speedups (and standard deviation) of partially sorted monotable
over scalar. Highlighted cells mark best result so far.

low low-normal high-normal high

hhitter 3.9× (0.1) Ξ 3.5× (0.1) Ξ 3.5× (0.6) 3.9× (0.3)
sequential 4.1× (0.0) Ξ 4.1× (0.1) Ξ 2.4× (0.2) 2.0× (0.2)

sorted 4.6× (0.0) Ξ 4.6× (0.0) Ξ 4.7× (0.0) Ξ 4.5× (0.2) Ξ
uniform 3.8× (0.1) Ξ 2.9× (0.3) Ξ 4.8× (1.8) 5.9× (0.8)

zipf 4.0× (0.1) Ξ 3.5× (0.2) Ξ 2.8× (0.4) 3.4× (0.3)

4.5.4 Summary

We have evaluated a broad range of datasets using five vectorised data aggregation
techniques—each with varying success—that either evade or confront the irregular DLP
inherent to this workload. In the majority of cases, using an evasion technique adds
too much overhead to be useful whereas our proposed confrontation techniques show
more promising results. Table 4.7 summarises the best results for all data distributions
and cardinality divisions. Each cell provides an average speedup over scalar. The ‡
symbol indicates it may not be practical to detect this configuration at runtime in
order to apply the most suitable algorithm.

Table 4.7: Best average speedup (and algorithm) over scalar.

low low-normal high-normal high

hhitter 3.9× (mono) 3.5× (mono) 3.5× (psm) 3.9× (psm)
sequential 4.1× (mono) 4.1× (mono) 2.9× (mono) ‡ 2.7× (mono) ‡

sorted 7.6× (poly) 7.0× (poly) 5.2× (sr) 4.5× (mono)
uniform 3.9× (mono) 2.9× (mono) 4.8× (psm) 6.0× (psm)

zipf 4.0× (mono) 3.5× (mono) 2.8× (psm) 3.4× (psm)

In all cases, the results are positive although there is no single algorithm that
matches all of the configurations. The best speedup is achieved using a variety of
different techniques. For low and low-normal, the non-sorted datasets fare best us-
ing monotable (mono) whereas sorted achieves the highest speedup using polytable
(poly). For hhitter, uniform and zipf the best method for high-normal and high is par-
tially sorted monotable (psm) and for sequential the best choice is monotable.
sorted performs best using either of the sorted reduce (sr) methods for high-normal
and monotable for high.

In most situations, we have enough information to dynamically choose the best
method for a particular combination of dataset and cardinality. In general, the rule is to
apply monotable to non-sorted datasets for lower cardinalities and partially sorted
monotable for higher cardinalities; for sorted datasets, polytable can be used for
lower cardinalities and sorted reduce and monotable for higher cardinalities. Only
detecting the case of sequential with higher cardinalities would prove difficult, however,

81

Chapter 4. A Study on Aggregation

the difference between partially sorted monotable and monotable for these two
cases is not overly significant. Using the ideal algorithm selection yields a 4.21× total
average speedup whereas a realistic algorithm selection—where sequential with higher
cardinalities is evaluated using partially sorted monotable—yields 4.15×. This
slowdown is a mere 1.3%.

4.6 Related Work

In this section we discuss the related work. We separate the section into two subsec-
tions. The first looks at work related to parallel data aggregation acceleration. The
second looks at alternative hardware proposals that attempt to tackle irregular DLP
vectorisation that could be amenable to aggregations.

4.6.1 Parallel Aggregation Acceleration

Zhou and Ross [ZR02] explore the implementation of DBMS algorithms with basic
SIMD multimedia instruction extensions. They only mention GROUP BY aggregation
in passing and do not find a way to implement it with SIMD instructions unless first
sorting the input. We have seen that fully sorting the input has major overhead for
radix sort—an evasion algorithm—and even a significant overhead for VSR sort—a
fast confrontation algorithm.

Ye et al. [YRV11] evaluate how various aggregation methods scale with multiple
threads. Although multithreading and SIMD are not completely comparable, they
do observe some similar behaviour found in our experiments. We implement table
replication to avoid GMS conflicts between vector register elements; Ye et al. do the
same for read-modify-write conflicts that can occur between threads. Similar to our
observations, they observe a massive loss in performance when cardinalities exceed
the L1D cache size. In general, our motivation is such that vector acceleration is
more efficient than multithreading. We achieve a 7.6× speedup in some cases using
vector extensions within a single core; achieving this result using multithreading would
require—at minimum—eight cores. That said, vector SIMD and multithreading are
not mutually exclusive and can complement each other nicely with the right algorithm
design.

Polychroniou and Ross [PR13] propose SIMD optimisations when aggregating data-
sets similar to zipf and hhitter. Their approach uses multimedia SIMD extensions,
although in a very different way to our vector instructions. Where we use a struct-
of-arrays model and completely vectorise our algorithms, they use an array-of-structs
model and partially vectorise their algorithm in an orthogonal direction. In all of our
vector implementations, we vectorise with n, i.e. along the output arrays count and
sum. Polychroniou and Ross instead pack each count[i] and sum[i] adjacently in SIMD
registers to process both together. Although this approach offers some benefits, it has
limited applicability and little scalability since the amount of parallelism depends on
the number of aggregation operations in the query. In many cases this will be one
aggregation and, therefore, offers no advantage over a scalar algorithm. Additionally,

82

4.6. Related Work

the number of aggregations and their datatypes in a query may not be available un-
til runtime time thereby adding an obstacle when defining the appropriate memory
structures. This scrutiny is not a criticism of their work, but instead an observation
on the limitations when using simple multimedia extensions to vectorise complex al-
gorithms like data aggregation. Our work uses a true vector ISA and we vectorise our
algorithms in the direction of the arrays. This type of vectorisation is very beneficial
for column-store databases—typically used for OLAP—which favour a struct-of-arrays
model over an array-of-struct model.

Power et al. [PLH+15] utilise GPGPUs to perform data aggregation. They argue
that when using discrete off-chip GPUs, there is a high overhead associated with data
movement as well as the coordination between the CPU/OS and the GPU. They mo-
tivate using integrated GPUs, i.e. GPUs on the same die as the CPU. They present two
techniques. The first approach uses a replicated table for each GPU thread. The second
approach uses a single lock-free table with the GPU threads repeatedly trying to per-
form atomic read-modify-write updates. The first technique shows benefits for very low
cardinalities whereas the second approach proves to be good for very high cardinalities.
For middle/normal cardinalities, neither approach works very well. While GPU and
vector hardware organisations are not directly comparable, we do see some common-
alities between the techniques used to parallelise aggregation. Their first technique is
very similar to our polytable method, and—congruous to our observations—they also
find table replication causes rapid performance deterioration as cardinality increases.
Their second technique is similar to our monotable approach in that we both try to
update a single table with potential GMS conflicts. Power et al. propose using atomic
memory instructions, however, they find that contention is too frequent to achieve
good performance if the cardinality is not very high. Our monotable method does
not use such instructions; instead, we rectify any conflicting operations that would
cause GMS conflicts in the registers before even making the memory access. We show
experimentally that this is useful for a variety of data distributions and cardinalities.

4.6.2 Hardware Support for Irregular DLP

The following proposals have already been discussed in Chapter 3, however, we consider
them again in the context of data aggregations.

Scatter-add [AED05] is a proposal for streaming architectures that allows a conflict-
free gather-modify-scatter operation on an array using one instruction. There are
several significant differences with our proposal. The first and foremost is that scatter-
add cannot be used to implement VSR sort. There are two reasons for this—(1) It lacks
a return path for original values in the array before the modifications, and (2) it lacks
the deterministic ordering semantics found in VPI and VLU. Scatter-add, therefore,
has limited applicability to our proposed algorithms in which partially sorting is a
major component. Secondly, scatter-add is an extension to the processor’s memory
hierarchy. Adding a major feature to memory can be less modular, highly intrusive
and more difficult to verify. In contrast, the VGAx instructions use only vector registers
as input and output. Thirdly, although scatter-add is beneficial in the sense that a
single instruction expresses a lot of work, the same behaviour can be emulated by

83

Chapter 4. A Study on Aggregation

VGAsum. Since the VGAx instructions generate a running cumulative for each group in
a vector register, this could have uses beyond aggregation, e.g. a customised prefix
sum operation. Finally, we are building upon hardware that is already in place for the
instructions VPI and VLU. The addition required to implement the VGAx instructions
are minor.

Atomic vectors operations [KKS+08], and more recently, AVX-512CD [Int14b], are
both solutions from Intel that attempt to solve the problem of GMS conflicts. Both of
these proposals operate with a best-effort mechanism as follows. A mask register with
all its bits set is coupled with the vector GMS procedure. The processor attempts to
execute as many non-conflicting elements of the procedure as it can and clears the as-
sociated mask bits of successful outcomes. The programmer is responsible for placing
the GMS procedure inside a loop that is dependent on the state of the mask register.
This means in the worst case scenario the operation will be completely serialised inside
a loop with a difficult to predict exit condition. Since each retry requires loading,
modifying and storing the data again, it could even lead to more operations than its
scalar counterpart. We anticipate that for datasets with low cardinalities and skewed
distributions, the number of retries will be high and thus impede performance. This
problem will be exacerbated further as vector SIMD register widths increase. VPI, VLU
and the VGAx instructions are different because they exist as self-contained non-memory
instructions. This difference means GMS conflicts are resolved completely and determ-
inistically before committing to the memory hierarchy. We have shown experimentally
that datasets with low cardinalities and skewed distributions perform well with a large
MVL. Furthermore, it is not obvious how VSR sort could be constructed from either
the atomic vector operations or AVX-512CD. We have demonstrated that partially
sorting the input using VSR sort for high cardinalities provides major performance
improvements and, consequently, remains an important part of this work.

4.7 Conclusions

As the amount of data increases exponentially each year it is important that data
aggregation algorithms can scale accordingly. In this chapter, we have looked at vector
SIMD instructions as a means to accelerate GROUP BY data aggregations. We have
found that this is not a trivial target due to the irregularity of the DLP in this workload.

We have made experiments with the vector ISA proposed and developed in Chapter
2. We have found that this ISA has limitations since it only permits us to evade the
irregular DLP through performance-degrading algorithm transformations. Based on
this realisation, we have proposed the use of novel vector instructions which directly
confront this irregularity and allow us to vectorise the algorithms directly without
alteration. We have made detailed evaluations using multiple algorithms taken from
both evasion and confrontation techniques.

We have observed that the evasion techniques have limited applicability unless the
input is presorted, otherwise, the confrontation techniques prove to be more advant-
ageous. The latter draws heavily from our work in Chapter 3. We have discovered
that VPI and VLU—and their associated sorting algorithm—can aid data aggregation,

84

4.7. Conclusions

especially with the realisation that the input need not be fully sorted. With minimal
modifications, we have extended the base hardware used in this proposal to accom-
modate data aggregation further by defining a suite of new instructions called VGAx.

We have found that the best algorithm depends highly on both the distribution and
cardinality of the input. In most cases, this can be detected at runtime to make a choice
dynamically. Using a combination of these techniques, we have achieved speedups over
a scalar baseline between 2.7× and 7.6× for a maximum vector length of 64 and four
lockstepped lanes.

85

CHAPTER 5

A Study on Area, Energy and Power

5.1 Introduction

In this chapter, we perform an area, energy and power study of our vector SIMD
extensions. As a case study, we use the sorting algorithms of Chapter 3 to evaluate
energy and power. These algorithms will allow us to examine the scalability of the
hardware, i.e. maximum vector length and lanes, in terms of energy and power. At the
same time, we can also evaluate the energy and power from an algorithmic perspective
in order to gain a deep understanding of how each sorting implementation influences
the activity of the different hardware units. We discover that our own VSR sort uses
up to 20.1× less dynamic energy than the scalar baseline and uses between 5% less and
22% more power, depending if a single-lane or multi-lane implementation is used.

To model the area, energy and power of our baseline architecture we use McPAT
[LAS+09] in conjunction with runtime statistics generated from our simulation frame-
work. We use a high-performance 32 nm technology clocked at 2.67 Ghz and configure
its out-of-order model to use the simulation parameters found in Table 2.2. We modify
and extend McPAT extensively to model our vector additions. We add new register
files for vector and mask registers. The modelled vector ALUs are copies of the ALU
used in the scalar core. If the number of lanes is greater than one, the permutative in-
structions, e.g. compress or shuffle, are implemented using a crossbar. As described
in Chapter 3 and 4, VPI, VLU and VGAx are implemented using a multiported CAM,
adders and a conflict detection unit.

5.2 Area

Here we assess the area requirements of our vector extensions. McPat estimates an
area of 13.26 mm2 for the baseline scalar architecture, i.e. without vector support. Our
vector extensions—including the CAM unit—introduce an overhead between 9% and

87

Chapter 5. A Study on Area, Energy and Power

19% as shown in Table 5.1. This increase in area might be considered reasonable since a
vector ISA is versatile enough to accelerate many types of algorithms and applications.

1 lane 2 lanes 4 lanes

mvl8 14.46 mm2 (9%) 14.75 mm2 (11%) 15.43 mm2 (16%)
mvl16 14.50 mm2 (9%) 14.78 mm2 (11%) 15.46 mm2 (17%)
mvl32 14.56 mm2 (10%) 14.86 mm2 (12%) 15.55 mm2 (17%)
mvl64 14.80 mm2 (12%) 15.09 mm2 (14%) 15.79 mm2 (19%)

Table 5.1: Total area (and overhead) of processor with vector extensions.

Since the area overhead of our vector extensions is at most 19%, the differences
in static energy consumption will relate more to execution time rather than the new
hardware structures. We have observed that, in all but one case, the vectorised al-
gorithms exhibit significant decreases in execution time and, as such, the static energy
consumption will be decreased proportionally. In Section 5.3 we focus on dynamic
energy as this pertains to the behaviour of the algorithms and their instruction mix.
In Section 5.4 we look at power—both dynamic and static.

5.3 Runtime Dynamic Energy

In this section, we evaluate the runtime dynamic energy using the sorting algorithms
from Chapter 3 as a case study. Figure 5.1 shows the dynamic energy consumption of
each algorithm run on each hardware configuration using the large dataset. Two things
are immediately clear from this diagram—(1) that all the vectorised solutions consume
less dynamic energy than the scalar baseline, and (2) that the vectorised algorithms
consume different amounts of energy to each other and exhibit different patterns from
each other with respect to the MVL and number of lanes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m
v
l8

m
v
l1

6

m
v
l3

2

m
v
l6

4

m
v
l8

m
v
l1

6

m
v
l3

2

m
v
l6

4

m
v
l8

m
v
l1

6

m
v
l3

2

m
v
l6

4

m
v
l8

m
v
l1

6

m
v
l3

2

m
v
l6

4

quick-oet bitonic radix vsr

d
y
n

a
m

ic
 e

n
e

rg
y
 (

J
)

1 lane 2 lanes 4 lanes scalar

Figure 5.1: Runtime dynamic energy comparison of all the sorting algorithms.

88

5.3. Runtime Dynamic Energy

5.3.1 Scalar and Vectorised Quicksort

We first compare the scalar baseline to the vectorised quicksort with OET cleanup.
These algorithms are more easily comparable because both are variants of quicksort.
Figure 5.2 shows a detailed breakdown per processor component of both algorithms
using all the hardware configurations.

0 0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5

scalar

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

m
v
l8

m
v
l1

6
m

v
l3

2
m

v
l6

4

v
e
c
to

r
q

u
ic

k
s
o

rt

dynamic energy (J)

fetch decode rename iqs rob fus broadcast

regfile tlbs lsq dcache vmrf l2 cache

Figure 5.2: Dynamic energy breakdown of scalar and vectorised quicksort algorithms.

The scalar baseline uses approximately 1.41 J of dynamic energy. The front end
(fetch, decode and rename) uses 36% of this energy. The out-of-order mechanism
(issue queues and reorder buffer) uses 16%. Value generation (the functional units
and result broadcast) uses 21%. The register file 10% and the memory-related units
(TLBs, load/store queue, L1D and L2 caches) use the remaining 17%.

The most simple vector configuration using a MVL of eight with a single lane
consumes 0.84 J of energy—59% of the scalar baseline’s dynamic energy consumption—
while achieving a 1.4× execution time speedup. The front end components exhibit a
2.5× decrease in energy. We correlate this with a similar reduction in the number of
lines fetched from the instruction cache (see Appendix A). The out-of-order mechanism
sees a 1.4× decrease in energy. Although the issue queues increase their energy slightly
as a result of the additional vector clusters, the reorder buffer decreases its energy
significantly due to the reduction in speculative instructions. The memory-related
units reduce their energy consumption by 2.0×. Since the vector unit bypasses the
L1D cache, there is a significant decrease in energy for this structure. The memory
requests instead go directly to the L2 cache; this structure has an increase in energy,
however, this increase is offset by the savings in the L1D. It is important to remember
that the cache hierarchy is write through with respect to L1D → L2, therefore, the
scalar baseline already includes a lot of L2 write activity.

89

Chapter 5. A Study on Area, Energy and Power

Where the scalar unit may access a cache line multiple times when processing
consecutive elements, a unit-stride vector memory instruction can consolidate all these
accesses into a single read or write. Additionally, the vector unit avoids the load/store
queue since the ISA guarantees that vector memory instructions will not alias with
each other. These instructions are instead more efficiently handled by the simple non-
associative Vector Memory Request File (VMRF) structure previously described in
Section 2.3.3-b. Finally, the energy consumption of the value generation components
and register file are reduced 1.3× and 1.1× respectively.

When keeping the MVL fixed, we find that increasing the number of lanes has only
a minor effect on energy consumption. The VMRF increases its energy consumption
due to the widening of its interface, i.e. each lane needs to write generated addresses
in parallel. However, we find this increase is modest with respect to the total energy;
in the worst case—MV L = 64 and lanes = 4—the VMRF uses 8% of the total energy.
The energy consumption of functional units and result broadcast also increases. This
is caused by multiple factors—firstly, quicksort relies a lot on the compress vector
instruction; we implement this instruction using a crossbar and this uses more energy
as the number of lanes increases. Secondly, there is an increase in the number of
misspeculated instructions that occupy the functional units before being squashed.
The other structures do not show a notable difference in energy consumption.

When keeping the number of lanes fixed, we find that moving from a MVL of eight
to a MVL of sixteen results in further dynamic energy improvements. The front end
components see further energy reduction due to each vector instruction now represent-
ing up to twice as much work. As shown in Appendix A, there is a significant decrease
in both the number of instructions committed and the number of lines fetched from
the instruction cache. The memory-related units also decrease in energy usage. The
energy of the L1D cache and TLBs is halved due to the reduction of scalar code. In-
terestingly, the L2 cache energy is also reduced. This is for two reasons—(1) sixteen
32-bit elements use exactly one cache line, thus letting us load one complete line per
vector memory request, and (2) after quicksort partitions its input, i.e. compresses,
we can store more elements per cache line. We see from the statistics that there are
fewer vector memory store requests that write only partial cache lines. The remaining
structures also exhibit a reduction in energy consumption. This is principally due to
a decrease in instructions needed due to the larger MVLs. Increasing the MVL past
sixteen results in further energy reductions in all the components.

5.3.2 Bitonic Mergesort

Figure 5.3 shows the runtime dynamic energy consumption of bitonic mergesort. Note
that the scale of its horizontal axis is different to the previous figure. The algorithm
exhibits very different behaviour to the vectorised quicksort of Section 5.3.1. We see
that the most dominant components are the register file, functional units and res-
ult broadcast. Bitonic mergesort exhibits relatively little memory activity since the
majority of data movement occurs between vector registers.

Similar to the vectorised quicksort’s behaviour, when increasing the MVL of the
single-lane configurations we observe a decrease in energy in the front end and out-of-

90

5.3. Runtime Dynamic Energy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

m
v
l8

m
v
l1

6
m

v
l3

2
m

v
l6

4

dynamic energy (J)

fetch decode rename iqs rob fus broadcast

regfile tlbs lsq dcache vmrf l2 cache

Figure 5.3: Dynamic energy breakdown of bitonic mergesort.

order engine. In contrast—due to the nature of sorting networks—the value generation
components and the register file show a growth in energy usage. As the MVL is in-
creased, so is the total number of operations. The reason we can achieve further
speedups despite doing more work is because there is a simultaneous growth of the
number of operations that can be executed in parallel. This is why lanes are so fun-
damental to this algorithm’s performance. The register file energy consumption also
grows with the MVL. This is principally due to an increase in energy per read/write
as the structure grows but is also—in part—caused by the extra operations.

Increasing the number of lanes has an interesting effect on dynamic energy. We
observe a major reduction in energy consumption of the register file unit. When using
lanes, the register file is broken up into homogeneous independent banks that are each
strictly coupled with a particular lane. This partitioned design consumes less energy
accessing an element than a larger non-partitioned monolithic structure. Table 5.2
shows the per-bank energy consumption of the vector register file when MV L = 64.

Table 5.2: Per bank energy of vector register file for bitonic mergesort whenMV L = 64.

1 lane 2 lanes 4 lanes

bank 0 0.367 J 0.102 J 0.038 J
bank 1 - 0.102 J 0.038 J
bank 2 - - 0.038 J
bank 4 - - 0.038 J

total 0.367 J 0.204 J 0.151 J

In contrast, we find that the functional unit energy usage increases with the num-
ber of lanes. This is principally due to this algorithm’s reliance on shuffle instruc-

91

Chapter 5. A Study on Area, Energy and Power

tions. We have modelled shuffle and other permutative instructions using crossbars.
The complexity—and consequently energy consumption—increases with the size of the
crossbar. While this energy consumption is still modest with four lanes, a crossbar has
quadratic complexity and we have observed that it becomes the dominant component
when using more than four lanes. Although we do not expect a real shuffle imple-
mentation to use an unscalable structure such as a crossbar, our assumed model helps
highlight the high complexity and large energy requirements of shuffle-based sorting
algorithms.

5.3.3 Radix Sort

Figure 5.4 shows the dynamic energy usage of radix sort run with sixteen bins. The
scale of its horizontal axis is different to the previous figures. These experiments use at
most 40% of the energy required for bitonic mergesort. Radix sort—with an O(k · n)
complexity—executes fewer instructions than quicksort and bitonic mergesort which
both have an O(n · log2n) complexity.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

m
v
l8

m
v
l1

6
m

v
l3

2
m

v
l6

4

dynamic energy (J)

fetch decode rename iqs rob fus broadcast

regfile tlbs lsq dcache vmrf l2 cache

Figure 5.4: Dynamic energy breakdown of radix sort with sixteen bins.

This algorithm’s dynamic energy consumption is dominated by the register file,
value generation components and memory-related units. Its front end energy usage is
small compared to the other algorithms. We observe that enlarging the MVL increases
the register file energy usage slightly. Unlike bitonic mergesort—which increases the
number of register files accesses as MVL increases—the number of accesses remains
the same as the MVL grows. This extra energy consumption alone comes from the
structure’s increase in size which leads to a larger energy cost per access. In contrast,
the functional units decrease their energy usage as the MVL increases, principally due
to a reduction in bookkeeping scalar code achieved through the vector SIMD ISA.

92

5.3. Runtime Dynamic Energy

The L2 cache activity forms a more significant portion of the overall energy con-
sumption than any of the other algorithms. This is caused by the inefficient strided
memory access pattern necessary for radix sort’s stability. When loading the input to
a vector register, each element is located in a different cache line; additionally, these
elements are subsequently scattered to disjoint locations in memory. This is in contrast
to quicksort and bitonic mergesort that both load and store their values with a more
energy-friendly unit-stride pattern. We also see notable energy consumption caused by
the VMRF structure. This is due to an increased number of cache lines being accessed
in comparison to the other algorithms. This structure increases its dynamic energy us-
age as the number of lanes grows since the interface must be widened to write multiple
cache line requests each cycle.

5.3.4 VSR Sort

In order to understand the runtime energy behaviour of VSR sort, we first evaluate
it with sixteen histogram bins—the optimal number of bins for radix sort—shown in
Figure 5.5 using the same scale as the previous figure. The energy consumption is
always less than radix sort and the difference in energy between both algorithms grows
more as the MVL and number of lanes increase.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

m
v
l8

m
v
l1

6
m

v
l3

2
m

v
l6

4

dynamic energy (J)

fetch decode rename iqs rob fus broadcast

regfile tlbs lsq dcache vmrf l2 cache

Figure 5.5: Dynamic energy breakdown of VSR sort with sixteen bins.

We find that the front end components and out-of-order engine use more energy
than radix sort. This is caused by an increased number of instructions per pass in
VSR sort over radix sort. While these structures form a significant percentage of the
total dynamic energy when MV L = 8, this diminishes to something negligible as we
increase the MVL. Functional unit energy consumption exhibits complex behaviour.
The single-lane configurations of VSR sort show equivalent behaviour to—or lower
consumption than—radix sort. Unlike radix sort, increasing the number of lanes does

93

Chapter 5. A Study on Area, Energy and Power

increase the energy consumption as a result of the crossbar and CAM structures which
must be multiported—the latter with port conflict detection logic.

Despite the increase in instructions, the register file does not see an increase in
energy. This is mainly due to a decrease in the L2 cache to vector register transfers
caused by the change from a strided memory access pattern to a unit-stride one. Many
values can now be written to a vector register in one access as a result of the improved
spatial locality. For the same reason, we observe a significant energy reduction in the
memory-related units—above all, the L2 cache and VMRF.

In Section 3.4.3, we found that we can increase the number of histograms bins from
sixteen to 256 while retaining locality, allowing us to reduce the number of passes of
VSR sort from eight to four. Figure 5.6 shows the dynamic energy consumption of VSR
sort run with 256 bins using the same scale as the previous figure. These experiments
consume at most 75% of the energy used in the sixteen-bin configurations of VSR sort.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

1 lane

2 lanes

4 lanes

m
v
l8

m
v
l1

6
m

v
l3

2
m

v
l6

4

dynamic energy (J)

fetch decode rename iqs rob fus broadcast

regfile tlbs lsq dcache vmrf l2 cache

Figure 5.6: Dynamic energy breakdown of VSR sort with 256 bins.

Since the number of algorithm passes is halved, most of the hardware structures
reduce their dynamic energy consumption. The only units that increase their energy
consumption are the L2 cache and VMRF. Relative to sixteen-bin experiments, the
L2 cache energy consumption increases between 1.1× and 2.0×. This growth in energy
consumption is directly related to the increase in the number of histogram bins. With
sixteen bins, a whole histogram fits in a single cache line. When the histogram is
enlarged to 256 bins, sixteen cache lines are required and there is subsequently a higher
number of cache accesses when updating the structure. For the same reason, the VMRF
structure’s energy consumption also goes up. Depending on the configuration, VSR
sort exhibits a reduction in dynamic energy over the scalar baseline between 8.2× and
20.1×.

94

5.4. Power

5.4 Power

Figure 5.7 shows the average power consumption for each sorting algorithm run under
the various hardware configurations. The results have been normalised to the scalar
baseline. Each bar is separated into gate leakage power, subthreshold leakage power
and dynamic power. On the far left, the power consumption of the scalar baseline is
shown—also marked with a horizontal line.

0%

20%

40%

60%

80%

100%

120%

140%

s
c
a

la
r

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

1
 l
a
n
e

2
 l
a
n
e
s

4
 l
a
n
e
s

mvl8 mvl16 mvl32 mvl64 mvl8 mvl16 mvl32 mvl64 mvl8 mvl16 mvl32 mvl64 mvl8 mvl16 mvl32 mvl64

quicksort bitonic mergesort radix sort vsr sort

a
v
e
ra

g
e
 p

o
w

e
r

(n
o

rm
a
li

s
e
d

 t
o

 s
c
a
la

r)

gate leakage subthreshold leakage runtime dynamic scalar

Figure 5.7: Normalised average power consumption of all sorting algorithms.

It can be seen clearly that—depending on the hardware configuration and algorithm—
there are experiments that require less power, the same power and more power than the
scalar baseline. We first comment on the results of the vectorised quicksort algorithm.
When MV L = 8 and lanes = 1, the power is very close to that of the scalar baseline.
Increasing the number of lanes increases both static and dynamic power. Increasing
the MVL reduces power; although the static power increases, the dynamic power de-
creases more. This is because we obtain a substantial reduction in dynamic energy
for quicksort when increasing the MVL (Figure 5.2) but not an equivalent decrease
in execution time (Figure 3.3). This trend continues and we find the best performing
configuration—MV L = 64 and lanes = 4—uses less power than the scalar baseline.

Bitonic mergesort follows the same pattern, however, we see a much larger increase
in dynamic power as the number of lanes increases. This is due to the dramatic
decreases in execution time obtained from using lanes in addition to the extra energy
required to perform shuffle operations in parallel.

Both radix sort and VSR sort exhibit similar trends to each other and are both
slightly different to quicksort and bitonic mergesort. Using a larger MVL increases
power marginally rather than decreases it and implementing more lanes always in-

95

Chapter 5. A Study on Area, Energy and Power

creases the power. The single-lane configurations require less power than the scalar
baseline whereas the configurations using four lanes always use more power.

VSR sort can achieve significant speedups using hardware configurations that con-
sume less power than the scalar baseline and even better speedups if we have a larger
power budget. When MV L = 64, the single-lane configuration uses 5% less power yet
achieves a 13.5× speedup over the scalar baseline. A four-lane configuration with the
same MVL uses 22% more power than the scalar baseline but achieves an impressive
20.6× speedup.

5.5 Related Work

In this section, we discuss work related to the energy efficiency of vector architectures.
Lemuet et al. [LSCJ06] design and evaluate vector extensions for an Alpha 21264.

Similar to our findings, they observe that their vectorised kernels exhibit significant
speedups and consume less energy than their scalar counterparts. Although less en-
ergy is used overall, it is consumed at a faster rate leading to a high power processor.
Our work is significantly different to that of Lemeut et al. We make detailed sensit-
ivity experiments varying the MVL and number of lanes, whereas they evaluate only
two alternative configurations. Our work focuses on integer applications—specifically
sorting—whereas theirs focuses on a selection of FP kernels. In particular, our aim
has been to understand the energy/power differences between several vectorised sorting
algorithms rather than just against a scalar baseline. Finally, our work attempts to
push the state of the art of vector design by focusing on irregular DLP, i.e. novel vector
instructions and hardware structures. We conclude that VSR sort and its hardware
design is significantly more energy efficient than standard SIMD sorting algorithms.
Additionally, we find that hardware configurations with a small number of lanes can
offer significant performance benefits while actually using less power than the scalar
baseline.

Lee et al. [LAB+11] evaluate the relative performance/energy/area benefits of
multi-threaded, vector SIMD and GPU SIMT architectures with a range of bench-
marks. They conclude that for the majority of their benchmarks, a vector SIMD ar-
chitecture achieves better performance, energy consumption and area than a multicore
architecture with an equivalent parallel factor. They also conclude that a vector SIMD
memory system achieves better performance with less energy over a typical SIMT
memory system whereby µthreads individually make requests to memory which, if
possible, are coalesced. Although they include one sorting benchmark—radix sort—it
is not the principal focus of the article and does not appear to have the same optimal
implementation as the radix sort used in our evaluation. Finally, Lee et al. do not
provide detailed breakdowns of the energy consumption. In contrast, we do provide
this because it provides insights into the efficiency of the algorithm and hardware con-
figurations alike. This helps to further motivate our proposed VSR sort algorithm since
we can illustrate with detail exactly where the energy savings come from.

96

5.6. Conclusions

5.6 Conclusions

We reach three principal conclusions from our energy and power evaluation. (1) Our
vector extensions have a small overhead and consume less energy than the scalar
baseline architecture when running vectorised algorithms. (2) VSR sort uses less dy-
namic energy than any other sorting algorithm evaluated in this work and also out-
performs all of them. (3) For VSR sort, the single-lane configurations consume less
power than the scalar baseline while still yielding significant performance speedups.
Multiple lanes can be used for additional performance but this ends up consuming
more power than the scalar baseline. This choice could be useful when deciding the
different configuration, e.g. high-performance or low power, while retaining the same
ISA and binaries.

97

CHAPTER 6

Thesis Conclusions

In this thesis we have explored the applicability of vector architectures as a means to
accelerate data management. We now summarise and reflect on our research, contri-
butions and results.

6.1 Summary of Achievements

In Section 1.2, we outlined a series of objectives for this thesis. In a nutshell, we in-
tended to (1)—define a concise and optimal ISA in order to vectorise representative
operators found in a DBMS; (2)—design efficient hardware extensions that imple-
ment this ISA with low area, energy and power overhead costs; and (3)—to effectively
transform DBMS operators using these vector extensions—including designing novel
algorithms and new instructions to achieve this. We believe that these objectives have
been fulfilled by the following achievements of this thesis.

In Chapter 2, we developed a sophisticated integer-based vector ISA and microar-
chitecture suited for data management. Using our own custom simulation framework,
we performed extensive analysis on a hash join algorithm taken from a commercial
DSS DBMS which we vectorised using the proposed instruction set. We evaluated
various parameters, e.g. the impact of the available memory bandwidth and software
prefetching on performance. Furthermore, we proposed relaxing the memory model
of the architecture which allowed vector memory instructions to issue earlier without
memory alias checks done in hardware. This turned out to be very beneficial with good
performance returns. We demonstrated good scalability with an increasing MVL and
speedups between 1.94× and 4.56× over the scalar baseline without needing lockstepped
parallel lanes.

In Chapter 3, we performed extensive analysis on three diverse sorting algorithms
and assessed them using consistent metrics. We learned that all of the algorithms suffer
from bottlenecks and scalability problems due to the irregularity of the DLP and the

99

Chapter 6. Thesis Conclusions

limitations of a standard vector SIMD instruction set. Based on these findings, we
proposed VSR sort—a novel way to efficiently vectorise radix sort. To enable this
algorithm in our vector architecture, we defined two new instructions—VPI and VLU.
We provided a suitable hardware implementation of these instructions which includes
both serial and parallel variants. We demonstrated that the algorithm scales well when
increasing the MVL, and works well both with and without parallel lockstepped lanes.
VSR sort showed maximum speedups over a scalar baseline between 7.9× and 11.7×
when a simple single-lane pipelined vector approach was used, and maximum speedups
between 14.9× and 20.6× when as few as four parallel lanes were used. This is contrast
to the next best vectorised sorting algorithm—radix sort—which attained maximum
speedups between 3.6× and 5.2×, even when lanes were used.

In Chapter 4, we looked at vector instructions as a means to accelerate data ag-
gregation. We found that this is not a trivial task due to the irregularity of the DLP.
We made detailed evaluations using multiple algorithms which either evade this irregu-
larity, or confront it through the use of novel vector instructions. We observed that the
evasion techniques have limited applicability unless the input is presorted, otherwise,
the confrontation techniques prove to be more advantageous. We discovered that VPI
and VLU—along with VSR sort—can aid data aggregation, especially with the realisa-
tion that the input need not be fully sorted. With minimal modifications, we extended
the logic used for VPI and VLU in order to further accommodate data aggregation by
defining a set of new instructions called VGAx. We found that the best algorithm de-
pends highly on both the distribution and cardinality of the input. In most cases, this
can be easily detected at runtime and be used to make a choice dynamically. Using a
combination of these techniques, we achieved speedups between 2.7× and 7.6× over a
scalar baseline for a MVL of 64 and four lockstepped lanes.

In Chapter 5, we assessed the area, energy and power of our proposed vector ex-
tensions. With respect to area, we found that the overhead of adding vector support
was between 9% and 19%—a modest range considering the performance improvements
gained. We used the sorting algorithms from Chapter 3 as a case study to evaluate
energy and power. In every instance, the vectorised sorting algorithms consumed less
energy than the scalar baseline. A lot of these energy savings came from the decrease
in the number of instructions which led to reduced activity in many hardware struc-
tures. In the case of our own VSR sort, it used up to 20.1× less dynamic energy than
the scalar baseline while still yielding significant performance speedups. We also found
that power is dependent on both the algorithm and the hardware configuration. We
observed that all of the single-lane vector configurations consumed less power than the
scalar baseline. Multiple lanes could be used for additional performance but at the ex-
pensive of higher power. We found that for VSR sort run on a hardware configuration
with a MVL of 64 and four lockstepped lanes, the power consumption was 22% more
than the scalar baseline but achieved a significant 20.6× speedup.

100

6.2. Relegated Ideas

6.2 Relegated Ideas

While this thesis has had many successful outcomes, several ideas were explored that
did not produce as significant results. In this section, we outline three of these.

When we first began looking at vectorised sorting algorithms, we formulated an
idea for an efficient vectorised implementation of quicksort. We had noted that the
implementation proposed by Stone [Sto78] had a deficiency in that it relied heavily on
an auxiliary array for temporary results. This means that—on average—every element
will be copied to and from the auxiliary array log2n times. This copying was often
superfluous since a large number of elements were already positioned correctly relative
to the pivot of that iteration. We devised our own vectorised algorithm based on an
scalar in-place variant of the algorithm. It used two pointers—one at the beginning
of the array and another at the end. Using the first pointer, the input was scanned
forward until a value larger than the pivot was found. Likewise, the input was scanned
in reverse order using the second pointer until a value less than or equal to the pivot
was found. These elements were then switched and the process repeated until the
two pointers collided. The algorithm was cumbersome to vectorise and required many
permutative instructions such as elemental shift and reverse. In the end, the
performance only outperformed Stone’s quicksort by a few percent. These performance
results didn’t merit a detailed explanation of the algorithm and consequently we opted
to cite, explain and evaluate Stone’s algorithm instead.

In another venture into vectorised sorting algorithms, we designed an algorithm to
vectorise a sorting network while avoiding some of the identified deficiencies. As men-
tion in Section 3.3.2, we noted that the depth of a sorting network, i.e. the number of
operations, depends on the size of its input which in our case is the vector length. This
is the reason why we observed a rapid increase in execution time of bitonic mergesort
when increasing the MVL as seen in Figure 3.5. We formulated an alternative ap-
proach whereby we emulate a shorter VL in order to use bitonic merging network with
a small depth. The trick was to have many disjoint networks within one larger vector,
e.g. to have sixteen independent merging networks, each working on four elements,
all contained in a vector with a MVL of 64. In order to implement this, we had to
define a set of new instructions which we categorised as ‘multistream’. For example,
a multistream load might read four consecutive elements from memory, apply an
offset, read the next four consecutive elements and so forth. We encountered sim-
ilar memory patterns in the works of [CVE99] and [CEL+03], however, the semantics
of our idea were significantly more complicated—especially when paired with masks.
Furthermore, the permutative instruction reverse also needed its own multistream
variant. We managed to design and implement a simple working example, however, we
quickly realised that there were many corner cases which created a very complicated
control flow. The algorithm became increasingly difficult to implement correctly and
the idea was eventually shelved.

In our data aggregation work, we also explored an alternative idea not mentioned
in Chapter 4. While it was clear from our initial experiments that irregular DLP was
the culprit behind the poor vector performance, we originally experimented with a dif-
ferent idea to VGAx. We had primarily put our focus on the sorted reduce methods—in

101

Chapter 6. Thesis Conclusions

particular, advanced sorted reduce which leverages VSR sort. We observed that
when vector reductions are applied to datasets with high cardinalities, the average
vector lengths were too short and caused poor performance due to serialisation. As a
solution, we proposed two instructions—intradelta and multireduce. intradelta
was a comparison instruction with one vector input; it compared adjacent elements
within a vector register and produced a mask to mark differences. multireduce be-
haved like a typical reduction instruction except that—when used in conjunction with
a mask—could reduce several independent segments of the input vector which were
marked by bits set in the associated mask. This way, one vector instruction could
represent up to MV L separate reduction operations and the average vector length
was not compromised. A similar concept was explored in the work of Chatterjee et
al. [CBZ90], however, our proposed instructions were significantly more intricate. We
modified advanced sorted reduce to use these new instructions and achieved better
performance when aggregating the high cardinality datasets. Conversely, we found that
when aggregating datasets with cardinalities other than high, the modified algorithm
actually performed worse than the original. We eventually discovered that partially
sorted monotable—using the novel VGAx instructions—outperformed this segmented
reduction method in all cases so we ultimately scrapped the idea of using intradelta
and multireduce.

6.3 Behind the Scenes

In this section, we reflect on some of the decisions and outcomes of the thesis as a
whole.

In Chapter 2, we introduced our idea of relaxing the memory model of the baseline
architecture. This allowed the vector memory instructions to issue out of order without
hardware checks. We proposed the use of fence instructions to describe dependencies
between memory instructions. We compared this technique against a stricter mechan-
ism in which vector memory instructions maintain their relative order and we concluded
that the out-of-order mechanism had enough of an advantage to justify the elaborate
programming model. The hash join algorithm presented a very clear vector trans-
formation and the placement of the memory fences was quite straightforward. When
we moved beyond hash join into other algorithms, we found that this programming
model became more challenging and error prone. Even though preserving this pro-
gramming model presented challenges in later chapters, we opted to maintain it as it
gave significant performance advantages.

In Section 2.5.1-b, we reported that there was very little difference between the
ooo-customfence-l2cache fence implementation—an intricate mechanism in which the
commit logic has a direct path to a fence issue queue—and a simpler alternative—
flushed-fence—whereby fence instructions flush the processor’s pipeline. Although we
did not comment on it, in later chapters we found that the ooo-customfence-l2cache
mechanism outperformed the flushed-fence method with significantly more difference
than what was measured in the hash join algorithm.

102

6.3. Behind the Scenes

While the relaxed memory model certainly gave performance benefits, in retro-
spect it seems we could have achieved something similar using a cleaner programming
model. One year after our MICRO publication—the basis for Chapter 2—NEC de-
scribed a solution similar to this for its SX-ACE vector supercomputer [MHIT14].
Although they used hardware to detect memory aliases between non-indexed memory
instructions, they agreed with our conclusions that extending this hardware to sup-
port gather/scatter aliasing would be complicated. They introduced a ‘vector overtake’
flag for their vector store instructions which allows younger loads to execute earlier.
This way, vector memory instructions will execute in order unless specifically granted
permission to do otherwise. Although we haven’t attempted to vectorise the data man-
agement kernels using such a model, it does seem a little more elegant than our fence
mechanism. The upside to this is that the presence of such a mechanism in a vector su-
percomputer would suggest that the independence between vector memory instructions
is a common occurring pattern and has an applicability outside data management. We
feel that this is an area that deserves more exploration.

In Chapter 3, we made a study on vector SIMD sorting and—based on the charac-
teristics and performance of the studied algorithms—we proposed VSR sort. While we
wrote our HPCA article—which served as the basis for Chapter 3—to make it appear
that VSR sort was the logical step forward to solve the deficiencies in other algorithms,
the reality was much less tidy. The basic idea for VSR sort came after reading about
a method to perform load locked-store conditional operations within a single indexed
vector memory instruction [KKS+08]. We understood that this could reduce the size
of bookkeeping structures in radix sort but, in that moment, we didn’t fully appreciate
how much impact this could make on performance. We left this idea dormant for quite
some time.

As mentioned in Section 6.2, we explored several other directions first. The results
of our own proposals didn’t look promising and we were clutching straws by persisting
with the topic of sorting. As a last resort, we decided to hack together a proof of
concept of radix sort using a single non-replicated histogram. We soon realised that
implementing load locked-store conditional in our simulation framework would be a
massive undertaking. We began searching for alternative ways of achieving the same
effect without touching the memory system and this is how VPI and VLU were conceived.
At that time, it didn’t even occur to us that we would need to transform the memory
access pattern from a strided one to a unit stride one and this only became apparent
after the fact. We did not anticipate how well this algorithm would ultimately perform.
The discovery and success of the algorithm and instructions fed into the contents of
the succeeding chapters. It was at this point that we started exploring the potential
of exploiting irregular DLP through novel instructions and this explain why there is
some disparity in style between Chapter 2 and the remainder of the thesis. We realise
now that this type of instruction has a lot of potential and we feel that the topic of
irregular DLP could become a significant research direction in the future.

Not all of our design decisions can be considered successful. In particular, our
decision to allow partially overwriting architectural vector registers was short of a
disaster. To expand on this point—if, for example, there is an operation such as
~v1← ~v2 + ~v3 but the VL is set to a value less than the MVL, our ISA guarantees that

103

Chapter 6. Thesis Conclusions

the previous values of the final MV L − V L elements of ~v1 will remain intact. While
this may seem like an intuitive design choice from the programmer’s perspective, it
actually caused several problems in the microarchitecural implementation. It forced
us to use an extra operand in the structure of the vector µops which led to larger issue
queues. While we observed in Chapter 5 that this wasn’t detrimental to the overall
energy consumption, its biggest hindrance was to the out-of-order scheduling.

We observed this problem after our work on hash join had already been published.
We were benchmarking a SAXPY kernel but the timing results weren’t matching our
pen-and-paper calculations. Over several days we made a deep dive investigation into
all the nooks and crannies of the microarchitecture using very detailed logfiles from
PTLsim. We anticipated that since the body of the SAXPY loop is small, the processor
should be able to hoist and schedule the loads of the next SAXPY iteration before the
multiply, add and store have completed. Instead we found that these instructions
were not being issued until after the arithmetic part had finished. These stalls were
caused—in part—by our coding style. We used the same architectural registers for
the destination of the vector loads and the destination of arithmetic instructions. In-
ternally, the microarchitecture was putting a physical register dependency between
the current iteration’s vector load and the previous iteration’s vector multiply which
serialised everything.

We devised a solution to fix some of these cases without having to rewrite the code
of all the benchmarks. Its logic is as follows—when a vector instruction is dispatched
to an issue queue, the processor dynamically removes this self-dependency if the VL
equals the MVL and masking is not used. This way, it is guaranteed that the entire
architectural register will be overwritten with no remnant elements. While this fixed
many of the problematic occurrences, some cases still remained. For example, it’s not
always possible to know the value of the VL register at dispatch time since the set VL
instructions are often dispatched on the same cycle as dependent vector instructions.
This made short stripmined loops more difficult to code efficiently.

The worst part of this ISA feature is the fact that we rarely made use of it. There
were only a few cases in our evaluated algorithms where we actually need a vector
register’s old values and these instances could probably work just as well using merge
instructions. We conclude that this design decision was not optimal and in hindsight
we should have designed the ISA differently.

As a final point, it is worth mentioning the overlap between our proposals and
Intel’s SIMD extensions. When we began this project as a master’s thesis in 2010, the
difference between multimedia extensions and a vector ISA was less ambiguous. We
could clearly point out deficiencies in technologies like SSE and use these to motivate
the adoption of a more sophisticated vector-like ISA. Although there were already
dedicated accelerators like FPGAs, CUDA-enabled GPUs and Larrabee, these were
different enough to the idea of specialised vector extensions for a microprocessor; we
could, therefore, continue motivating our own proposals.

The following year, Intel released the Advanced Vector Extensions (AVX) as an
upgrade to their SSE line. The name alone was worrisome since they now explicitly
used the word ‘vector’. Worst of all was that—with the release of this product—they
started a trend of widening their SIMD register width. The last time Intel had done

104

6.4. Future Outlooks

this was in 1999 with the introduction of SSE. These SIMD extensions expanded the
64-bit capabilities of MMX with 128-bit wide SIMD registers. For AVX, they increased
the width to 256 bits. An increasing SIMD width—or MVL to use the terminology
of this thesis—took away one of the more distinguishing features between vector and
multimedia extensions. This was exacerbated even more later with the introduction
AVX-512 which increased the SIMD register width to 512 bits with previsions to extend
this further to 1,024 bits in the future.

The widths of the SIMD registers were not the only concern. With respect to
SSE, we could describe quite clearly the functionality that was missing. For example,
there was no support for indexed memory instructions, a lack of a variable vector
length parameter and very limited support for masks and permutative instructions.
Over the course of this thesis, most of these limitations were addressed by Intel. They
introduced partial support for indexed memory instructions in AVX2 and full support
in AVX-512. With AVX, they introduced a set of permute instructions that allowed the
permutation pattern to be variable; before, their shuffle implementation required the
pattern to be an immediate operand. In AVX-512, they introduced a set of registers to
support masked operations. Each year, Intel’s SIMD support edged away from their
original MMX multimedia extensions and progressed towards a vector ISA.

The most frustrating instance of this relates to our work on sorting. In the spring
of 2014, our article on VSR sort was already written and polished. In the related work
section we cited and discussed both Intel’s atomic vector instructions and an earlier
proposal from Stanford called Scatter-Add. Neither of these solutions resembled our
proposal for VPI and VLU so we remained confident that this work would be seen as
novel. One week before submitting the article for peer review, we came across—for the
first time—Intel’s proposal for AVX-512 CDI conflict detection instructions. Although
semantically different to our own proposal, the CDI instructions attempted to tackle a
similar problem, i.e. resolving conflicts within vector scatters without interfering with
the memory system. Although we didn’t find a way to write VSR sort using the CDI
instructions, it may very well be possible with a bit of tweaking. Learning about these
instructions so late was a large oversight on our part and it ultimately took away from
the novelty of the resulting article.

From the point of view of publishing articles, these moves by Intel were problematic,
however, they simultaneously helped reaffirm the importance of this topic which was
beneficial. When cynical reviewers pointed to GPGPUs as the alpha and omega of
DLP-accelerators, we were able to mention that the industry still had a strong interest
in enabling advanced SIMD support within the cores themselves. This, in a sense,
made publishing somewhat easier.

6.4 Future Outlooks

In this section, we comment on possible future directions for this research topic.
In recent years, we have seen the rise of the multicore microprocessor which now

dominates most markets. As mentioned in Chapter 1, we do not believe vectors and
multicore to be mutually exclusive; both could be used in tandem to gain more ap-

105

Chapter 6. Thesis Conclusions

plication performance. What is less obvious is how the techniques proposed in this
thesis specifically could be incorporated into a multicore architecture. Dealing with a
relaxed vector memory model might become considerably more complex when memory
consistency and cache coherence are brought into the equation. Furthermore, while we
demonstrated in Chapter 2 that a single scalar core cannot easily saturate a system’s
entire memory bandwidth, the same is probably not true when considering multiple
cores. Since vectors require a large sustained memory bandwidth, it could be problem-
atic when multiple cores—each with vector extensions—start competing for the same
bandwidth. This leaves an open question as to how well the algorithms proposed in
this work will scale using multiple cores in addition to vectors.

This thesis has focused on the performance of vector extensions when integrated
into a scalar microarchitecture. As such, our point of reference and comparisons are
generally to the same scalar microarchitecture without these additions. What remains
to be seen is how our extensions compare against dedicated accelerators such as FPGAs.
This is not obvious to estimate. While FPGAs may be able to offer performance
advantages over our vector extensions, they still lie off chip, therefore, the processor will
have setup and data movement overheads. Our vector extensions are tightly integrated
in the processor’s pipeline to be able to efficiently handle an intermix of scalar and
SIMD code. Furthermore, we have demonstrated that the area overhead needed to
implement these extensions is modest—the same may not be true for a dedicated
accelerator. Open work includes comparing these extensions with alternative solutions
and evaluating the performance, energy and area advantages of each technology.

Computer architecture and data management are both rapidly evolving areas.
There are many new and interesting ideas happening in both topics and this may
present new opportunities in the future to combine vectors and data management once
again. One interesting development that occurred in the lifetime of this thesis is the
availability of high bandwidth memory implemented through 3D stacking [LGBT05,
JK12, Sta13]. We concluded in Chapter 2 that our vector extensions can easily saturate
a system’s available memory bandwidth and that adding more bandwidth is generally
beneficial. 3D-stacked memory offers the possibility to provide our vector extensions
with substantially more bandwidth over what was possible using older DRAM techno-
logies.

While this work has focused on typical operations found in relational database
systems, we notice that the landscape of data management is changing. We see that
alternative database technologies—often called NoSQL—are garnering more attention
these days as a means to service the growing amount of diverse data online which
does not fit neatly into the relational model [Cat11]. These include, among others,
graph databases, e.g. Neo4j; document stores, e.g. MongoDB; object databases, e.g.
db4o and key-value stores, e.g. Redis. The semi-structured nature of these databases
might suggest that vector instructions oriented towards irregular DLP could be a good
match.

106

CHAPTER 7

Publications

The work of this thesis has resulted in the following publications.

International Conferences and Journals

[1] T. Hayes, O. Palomar, O. Unsal, A. Cristal and M. Valero, 2012, December.
Vector Extensions for Decision Support DBMS Acceleration. In Proceedings
of the 45th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO) (pp. 166-176).

[2] T. Hayes, O. Palomar, O. Unsal, A. Cristal and M. Valero, 2015, February. VSR
Sort: A Novel Vectorised Sorting Algorithm & Architecture Extensions for Future
Microprocessors. In Proceedings of the 21st IEEE International Symposium on
High Performance Computer Architecture (HPCA) (pp. 26-38).

[3] T. Hayes, O. Palomar, O. Unsal, A. Cristal and M. Valero, 2016, June. Future
Vector Microprocessor Extensions for Data Aggregations. In Proceedings of the
43rd ACM/IEEE International Symposium on Computer Architecture (ISCA).

[4] M. Casas, M. Moreto, L. Alvarez, E. Castillo, D. Chasapis, T. Hayes, L. Jaulmes,
O. Palomar, O. Unsal, A. Cristal, E. Ayguade and M. Valero. Runtime-Aware
Architectures. (2015). In Proceedings of the 21st International European Con-
ference on Parallel and Distributed Computing (Euro-Par) (pp. 16-27).

[5] O. Arcas-Abella, A. Armejach, T. Hayes, G. A. Malazgirt, O. Palomar, B. Salami
and N. Sonmez. (2016). Hardware Acceleration for Query Processing: Lever-
aging FPGAs, CPUs, and Memory. Computing in Science and Engineering,
18(1) (CiSE), 80-87.

107

Chapter 7. Publications

Patent Applications

[6] T. Hayes, O. Palomar, O. Unsal, A. Cristal and M. Valero. Methods and devices
for discovering multiple instances of recurring values within a vector with an
application to sorting. European Patent PCT/EP2015/052394. Filed February
5, 2015

108

APPENDIX A

Algorithm Runtime Characteristics

In this appendix, we provide extra runtime characteristics for the various algorithms
evaluated in this thesis. A complete list of all of PTLsim’s performance counters
for every experiment from previous chapters would require excessive space. Instead,
we choose a pertinent selection of performance statistics for a subset of algorithms,
datasets and hardware configurations. In order to fit one table of data per page, we
choose only the most relevant statistics and opt not to repeat any information that
can be found in the original experiments, e.g. execution cycles.

Each table also contains a summarised dynamic instruction mix list with eight
entries. Each entry provides an instruction category, e.g. add/sub and a percentage of
its presence in the overall µop instruction mix. Unless a category’s name is prefixed
with ‘vec’, it refers only to scalar instructions, e.g. load refers specifically to scalar load
instructions whereas vec load refers to vector loads. The meaning of most category
names should be obvious with the possible exception of lea add/sub. This refers to
a three-operand add/sub operation where the third operand is first shifted before
being added to the sum of the other two operands. This is typically used for address
generation, in particular for x86-64 load-effective address (LEA) instructions.

The vector statistics shown are for single-lane configurations only. While it’s true
that increasing the number of lanes can impact the interaction between the instructions
and the processor’s pipeline, the majority of the listed statistics should not change
drastically. In some cases, there may be more cache misses due to a decrease in cycles
between a prefetch and the subsequent corresponding load. The listings which feature
loads/stores (either scalar or vector) exclude prefetch instructions.

For hash join, we provide a separate table for each of the datasets evaluated in
Chapter 2. Each table contains statistics for the scalar baseline algorithm in addition
to the vectorised implementation run on configurations with a MVL between eight and
64 elements. For sorting, we focus on the large dataset and provide a separate table
for each of the vectorised algorithms. Each table also contains the scalar baseline for
reference. For aggregations, there is a separate table for each algorithm evaluated with

109

Appendix A. Algorithm Runtime Characteristics

one particular cardinality. For brevity, we choose only two cardinalities—c = 152 (low)
and c = 625, 000 (high). Each table contains the results of all five datasets and the
vectorised algorithms are evaluated with a MVL of 64.

The following experiments are run with their optimal configurations and prefetching
enabled when useful. Both the scalar and vector versions have been compiled with ICC
v14 using the best measured optimisation level.

110

A.1. Hash Join

Ta
bl

e
A

.1
:

H
as

h
jo

in
ru

n
w

ith
th

e
l1

r
da

ta
se

t.

sc
al

ar
m

vl
8

m
vl

16
m

vl
32

m
vl

64

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
1,

21
2,

62
2,

84
7

46
7,

23
8,

90
9

26
1,

03
3,

27
0

15
6,

88
0,

16
9

10
4,

90
2,

35
9

of
w

hi
ch

ar
e

ve
ct

or
-

11
9,

49
2,

87
7

60
,9

71
,6

32
31

,6
88

,2
97

17
,1

65
,8

19
sc

al
ar

µ
op

s
1,

78
4,

85
2,

76
5

41
9,

58
0,

25
8

24
2,

66
7,

19
2

15
3,

00
8,

72
1

10
8,

16
3,

11
6

in
sn

lin
e

fe
tc

he
s

-l1 -l2
-m

em

1,
06

2,
45

7,
84

7 0 38

15
3,

87
1,

38
5 1 78

94
,6

43
,5

52 1 78

59
,7

72
,5

87 1 78

41
,5

34
,0

89 1 78
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

22
0,

88
1,

00
4

19
,4

54
,2

48
53

,9
37

,3
74

59
7,

71
3

31
,1

57
,2

06
68

2,
06

9
19

,6
57

,8
80

48
5,

24
8

13
,9

12
,9

66
34

6,
31

4
sc

al
ar

st
or

e/
lo

ad
ra

tio
0.

43
0.

22
0.

28
0.

35
0.

45
sc

al
ar

lo
ad

s
-l1 -l2

-m
em

37
5,

88
2,

22
7

21
,1

11
,4

18
9,

46
8,

43
9

49
,6

22
,4

95 3 52

27
,9

59
,9

36 2 45

16
,2

83
,2

67 4 52

10
,4

27
,0

27 6 56
ve

ct
or

lo
ad

s
-l2

-m
em

-
86

,2
79

,5
74

1,
70

6,
57

7
76

,9
13

,6
52

1,
53

1,
70

3
70

,3
05

,8
00

1,
46

7,
55

1
63

,5
63

,0
54

1,
38

0,
56

4
av

er
ag

e
ve

ct
or

le
ng

th
(s

td
ev

)
-

7.
67

(1
.1

9)
15

.1
8

(2
.6

9)
29

.7
7

(6
.4

0)
56

.9
0

(1
6.

43
)

ve
ct

or
lo

ad
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

-
19

,0
43

,6
20 0

20
,2

22
,9

51

9,
60

5,
05

7 0
10

,3
01

,7
52

4,
87

6,
58

4 0
5,

30
6,

42
9

2,
52

1,
20

5 0
2,

84
9,

57
8

ve
ct

or
st

or
e

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

16
,1

66
,4

25 0
3,

43
3,

26
9

8,
13

6,
52

8 0
1,

75
7,

71
8

4,
10

8,
66

0 0
91

9,
95

4

2,
09

8,
16

1 0
50

8,
87

1

in
st

ru
ct

io
n

m
ix

ad
d/

su
b

25
%

le
a

ad
d/

su
b

23
%

lo
ad

18
%

co
nd

.
br

an
ch

10
%

lo
gi

ca
l9

%
st

or
e

8%
pr

ef
et

ch
2%

ot
he

r
4%

ad
d/

su
b

26
%

lo
gi

ca
l1

9%
co

nd
.

br
an

ch
9%

lo
ad

9%
ve

c
lo

ad
7%

le
a

ad
d/

su
b

6%
ve

c
st

or
e

4%
ot

he
r

20
%

ad
d/

su
b

28
%

lo
gi

ca
l1

8%
co

nd
.

br
an

ch
10

%
lo

ad
9%

ve
c

lo
ad

7%
le

a
ad

d/
su

b
6%

ve
c

st
or

e
3%

ot
he

r
20

%

ad
d/

su
b

31
%

lo
gi

ca
l1

8%
co

nd
.

br
an

ch
10

%
lo

ad
8%

ve
c

lo
ad

6%
le

a
ad

d/
su

b
5%

pr
ef

et
ch

3%
ot

he
r

20
%

ad
d/

su
b

34
%

lo
gi

ca
l1

7%
co

nd
.

br
an

ch
10

%
lo

ad
8%

pr
ef

et
ch

5%
ve

c
lo

ad
4%

le
a

ad
d/

su
b

4%
ot

he
r

18
%

111

Appendix A. Algorithm Runtime Characteristics

Ta
bl

e
A

.2
:

H
as

h
jo

in
ru

n
w

ith
th

e
l2

r
da

ta
se

t.

sc
al

ar
m

vl
8

m
vl

16
m

vl
32

m
vl

64

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
1,

20
6,

13
5,

51
5

46
5,

87
9,

33
1

26
0,

96
2,

33
3

15
7,

35
2,

11
1

10
5,

95
3,

17
0

of
w

hi
ch

ar
e

ve
ct

or
-

11
8,

86
2,

96
2

60
,7

66
,6

11
31

,6
51

,8
33

17
,3

23
,3

40
sc

al
ar

µ
op

s
1,

77
4,

61
6,

55
8

41
8,

74
3,

51
8

24
2,

90
6,

83
7

15
3,

71
0,

79
5

10
9,

33
8,

10
4

in
sn

lin
e

fe
tc

he
s

-l1 -l2
-m

em

1,
05

7,
59

0,
61

7 0 38

15
3,

10
4,

23
9 1 78

94
,0

81
,2

50 1 78

59
,6

25
,1

16 1 78

41
,6

79
,4

91 1 78
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

22
1,

69
6,

31
6

19
,3

57
,7

12
53

,7
79

,9
00

59
8,

31
5

31
,1

29
,0

88
68

6,
91

0
19

,6
72

,4
54

48
2,

90
4

13
,9

97
,4

04
34

2,
00

4
sc

al
ar

st
or

e/
lo

ad
ra

tio
0.

43
0.

22
0.

28
0.

36
0.

46
sc

al
ar

lo
ad

s
-l1 -l2

-m
em

34
0,

00
7,

55
3

53
,4

39
,9

59
13

,1
20

,5
97

49
,4

10
,4

82 5 59

28
,0

07
,3

26 3 65

16
,3

63
,0

58 1 64

10
,6

21
,5

99 2 72
ve

ct
or

lo
ad

s
-l2

-m
em

-
85

,9
70

,7
32

2,
91

3,
25

2
78

,1
04

,6
25

3,
01

0,
96

9
74

,2
09

,4
31

3,
27

3,
41

5
71

,6
84

,1
70

3,
31

3,
96

9
av

er
ag

e
ve

ct
or

le
ng

th
(s

td
ev

)
-

7.
67

(1
.2

1)
15

.1
5

(2
.7

7)
29

.6
6

(6
.5

8)
56

.1
6

(1
7.

53
)

ve
ct

or
lo

ad
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

-
18

,9
76

,6
82 0

20
,0

39
,3

51

9,
57

6,
66

3 0
10

,2
27

,5
89

4,
86

7,
13

6 0
5,

28
2,

12
6

2,
53

1,
80

9 0
2,

88
3,

52
6

ve
ct

or
st

or
e

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

16
,1

31
,1

59 0
3,

38
3,

93
4

8,
12

3,
28

1 0
1,

73
9,

29
0

4,
10

4,
01

7 0
91

3,
51

6

2,
10

0,
36

9 0
51

5,
64

4

in
st

ru
ct

io
n

m
ix

ad
d/

su
b

25
%

le
a

ad
d/

su
b

23
%

lo
ad

18
%

co
nd

.
br

an
ch

10
%

lo
gi

ca
l9

%
st

or
e

8%
pr

ef
et

ch
2%

ot
he

r
4%

ad
d/

su
b

26
%

lo
gi

ca
l1

9%
co

nd
.

br
an

ch
9%

lo
ad

9%
ve

c
lo

ad
7%

le
a

ad
d/

su
b

6%
ve

c
st

or
e

4%
ot

he
r

20
%

ad
d/

su
b

28
%

lo
gi

ca
l1

8%
co

nd
.

br
an

ch
9%

lo
ad

9%
ve

c
lo

ad
7%

le
a

ad
d/

su
b

6%
ve

c
st

or
e

3%
ot

he
r

20
%

ad
d/

su
b

31
%

lo
gi

ca
l1

8%
co

nd
.

br
an

ch
10

%
lo

ad
8%

ve
c

lo
ad

5%
le

a
ad

d/
su

b
5%

pr
ef

et
ch

3%
ot

he
r

20
%

ad
d/

su
b

34
%

lo
gi

ca
l1

7%
co

nd
.

br
an

ch
10

%
lo

ad
8%

pr
ef

et
ch

5%
ve

c
lo

ad
4%

st
or

e
4%

ot
he

r
18

%

112

A.1. Hash Join

Ta
bl

e
A

.3
:

H
as

h
jo

in
ru

n
w

ith
th

e
2m

b
da

ta
se

t.

sc
al

ar
m

vl
8

m
vl

16
m

vl
32

m
vl

64

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
1,

21
0,

66
3,

95
1

46
8,

47
8,

26
7

26
2,

84
0,

09
2

15
8,

96
9,

82
1

10
7,

36
5,

05
8

of
w

hi
ch

ar
e

ve
ct

or
-

11
9,

48
7,

12
0

61
,1

46
,6

55
31

,9
54

,2
47

17
,5

55
,7

52
sc

al
ar

µ
op

s
1,

78
1,

60
5,

79
0

42
1,

29
7,

75
6

24
4,

86
1,

19
3

15
5,

43
5,

28
0

11
0,

89
4,

75
8

in
sn

lin
e

fe
tc

he
s

-l1 -l2
-m

em

1,
08

2,
73

2,
32

4 0 38

15
3,

25
2,

21
9 1 78

93
,5

96
,6

04 1 78

59
,1

23
,3

59 1 78

41
,3

82
,6

19 1 78
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

23
0,

50
0,

19
0

20
,7

81
,6

94
54

,0
56

,8
54

61
7,

20
4

31
,3

05
,0

29
73

1,
72

8
19

,8
18

,9
63

49
0,

70
2

14
,1

40
,1

49
33

8,
52

9
sc

al
ar

st
or

e/
lo

ad
ra

tio
0.

43
0.

23
0.

28
0.

36
0.

46
sc

al
ar

lo
ad

s
-l1 -l2

-m
em

33
4,

58
9,

42
3

51
,5

53
,4

93
35

,5
18

,4
43

49
,9

25
,5

98 5 66

28
,4

87
,8

95 4 59

16
,6

65
,8

61 6 65

10
,8

57
,1

89 3 68
ve

ct
or

lo
ad

s
-l2

-m
em

-
69

,5
90

,0
44

20
,2

48
,2

73
59

,7
56

,1
21

22
,5

53
,7

67
54

,0
57

,8
02

25
,0

87
,1

65
48

,2
95

,0
65

29
,2

13
,0

67
av

er
ag

e
ve

ct
or

le
ng

th
(s

td
ev

)
-

7.
66

(1
.2

2)
15

.1
3

(2
.8

0)
29

.5
5

(6
.8

2)
55

.8
1

(1
7.

91
)

ve
ct

or
lo

ad
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

-
19

,0
32

,8
67 0

20
,1

89
,4

44

9,
61

1,
20

4 0
10

,3
14

,3
66

4,
89

2,
55

1 0
5,

34
7,

83
3

2,
54

8,
87

1 0
2,

92
7,

36
2

ve
ct

or
st

or
e

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

16
,1

62
,2

58 0
3,

42
4,

67
8

8,
13

9,
58

0 0
1,

76
2,

40
0

4,
11

5,
92

6 0
93

1,
00

9

2,
11

0,
09

5 0
52

8,
26

4

in
st

ru
ct

io
n

m
ix

ad
d/

su
b

25
%

le
a

ad
d/

su
b

23
%

lo
ad

18
%

co
nd

.
br

an
ch

10
%

lo
gi

ca
l9

%
st

or
e

8%
pr

ef
et

ch
2%

ot
he

r
4%

ad
d/

su
b

26
%

lo
gi

ca
l1

9%
co

nd
.

br
an

ch
9%

lo
ad

9%
ve

c
lo

ad
7%

le
a

ad
d/

su
b

6%
ve

c
st

or
e

4%
ot

he
r

20
%

ad
d/

su
b

28
%

lo
gi

ca
l1

9%
co

nd
.

br
an

ch
9%

lo
ad

9%
ve

c
lo

ad
7%

le
a

ad
d/

su
b

6%
ve

c
st

or
e

3%
ot

he
r

20
%

ad
d/

su
b

31
%

lo
gi

ca
l1

8%
co

nd
.

br
an

ch
10

%
lo

ad
8%

ve
c

lo
ad

5%
le

a
ad

d/
su

b
5%

pr
ef

et
ch

3%
ot

he
r

20
%

ad
d/

su
b

34
%

lo
gi

ca
l1

8%
co

nd
.

br
an

ch
10

%
lo

ad
8%

pr
ef

et
ch

5%
ve

c
lo

ad
4%

st
or

e
4%

ot
he

r
18

%

113

Appendix A. Algorithm Runtime Characteristics

Ta
bl

e
A

.4
:

H
as

h
jo

in
ru

n
w

ith
th

e
hu

ge
da

ta
se

t.

sc
al

ar
m

vl
8

m
vl

16
m

vl
32

m
vl

64

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
1,

23
8,

26
1,

31
7

47
7,

51
8,

62
8

26
7,

51
8,

21
9

16
1,

65
9,

03
3

10
8,

55
9,

01
2

of
w

hi
ch

ar
e

ve
ct

or
-

12
2,

55
1,

25
9

62
,7

02
,5

74
32

,8
20

,5
08

17
,9

02
,8

04
sc

al
ar

µ
op

s
1,

82
4,

78
2,

12
1

42
8,

75
5,

25
2

24
8,

77
1,

22
3

15
7,

72
5,

25
7

11
1,

98
7,

75
3

in
sn

lin
e

fe
tc

he
s

-l1 -l2
-m

em

1,
10

3,
05

0,
10

3 0 38

15
6,

41
0,

64
7 1 78

94
,4

22
,7

57 1 78

60
,0

59
,1

54 1 78

41
,5

30
,7

87 1 78
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

23
5,

29
6,

14
0

21
,1

19
,5

87
55

,0
63

,8
31

65
0,

61
7

31
,8

74
,7

91
69

9,
54

7
20

,1
32

,0
74

51
2,

81
6

14
,2

70
,0

05
33

8,
51

1
sc

al
ar

st
or

e/
lo

ad
ra

tio
0.

43
0.

23
0.

28
0.

36
0.

46
sc

al
ar

lo
ad

s
-l1 -l2

-m
em

34
3,

17
4,

79
2

52
,2

61
,8

46
40

,7
00

,4
24

51
,5

47
,2

36 3 66

29
,0

59
,5

26 2 62

17
,1

90
,4

90 3 52

11
,0

34
,0

88 3 55
ve

ct
or

lo
ad

s
-l2

-m
em

-
67

,8
87

,5
20

25
,4

70
,1

49
57

,7
66

,2
12

27
,8

86
,4

44
50

,9
47

,2
46

31
,5

18
,2

77
44

,1
57

,4
71

36
,6

33
,4

74
av

er
ag

e
ve

ct
or

le
ng

th
(s

td
ev

)
-

7.
67

(1
.1

9)
15

.1
4

(2
.7

5)
29

.5
2

(6
.8

6)
56

.1
8

(1
7.

23
)

ve
ct

or
lo

ad
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

-
19

,3
33

,8
40 0

21
,0

15
,4

44

9,
76

7,
44

5 0
10

,7
34

,9
66

4,
97

5,
29

8 0
5,

58
3,

76
7

2,
57

8,
00

2 0
3,

00
8,

10
4

ve
ct

or
st

or
e

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

16
,3

17
,6

58 0
3,

64
7,

96
8

8,
21

4,
92

0 0
1,

87
5,

46
7

4,
15

6,
52

2 0
99

2,
93

1

2,
13

1,
85

5 0
55

4,
53

1

in
st

ru
ct

io
n

m
ix

ad
d/

su
b

25
%

le
a

ad
d/

su
b

23
%

lo
ad

18
%

co
nd

.
br

an
ch

10
%

lo
gi

ca
l9

%
st

or
e

8%
pr

ef
et

ch
2%

ot
he

r
4%

ad
d/

su
b

26
%

lo
gi

ca
l1

9%
co

nd
.

br
an

ch
9%

lo
ad

9%
ve

c
lo

ad
7%

le
a

ad
d/

su
b

6%
ve

c
st

or
e

4%
ot

he
r

20
%

ad
d/

su
b

28
%

lo
gi

ca
l1

8%
co

nd
.

br
an

ch
9%

lo
ad

9%
ve

c
lo

ad
7%

le
a

ad
d/

su
b

6%
ve

c
st

or
e

3%
ot

he
r

20
%

ad
d/

su
b

31
%

lo
gi

ca
l1

8%
co

nd
.

br
an

ch
10

%
lo

ad
9%

ve
c

lo
ad

6%
le

a
ad

d/
su

b
5%

pr
ef

et
ch

3%
ot

he
r

20
%

ad
d/

su
b

34
%

lo
gi

ca
l1

8%
co

nd
.

br
an

ch
10

%
lo

ad
8%

pr
ef

et
ch

5%
ve

c
lo

ad
4%

st
or

e
4%

ot
he

r
18

%

114

A.1. Hash Join

Ta
bl

e
A

.5
:

H
as

h
jo

in
ru

n
w

ith
th

e
tp

ch
da

ta
se

t.

sc
al

ar
m

vl
8

m
vl

16
m

vl
32

m
vl

64

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
91

8,
63

8,
04

9
36

5,
11

1,
53

6
21

0,
25

2,
14

0
13

1,
88

2,
95

3
92

,9
31

,6
36

of
w

hi
ch

ar
e

ve
ct

or
-

96
,9

00
,8

38
49

,8
51

,1
33

26
,1

95
,8

37
14

,4
97

,1
96

sc
al

ar
µ

op
s

1,
32

2,
18

0,
24

4
32

8,
34

5,
77

2
19

7,
34

5,
80

1
13

0,
83

6,
99

3
97

,7
04

,3
33

in
sn

lin
e

fe
tc

he
s

-l1 -l2
-m

em

71
5,

77
0,

62
0 1 38

12
7,

27
8,

94
3 1 78

77
,6

42
,2

78 1 78

50
,4

80
,1

45 1 78

36
,3

70
,7

98 1 78
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

18
1,

42
5,

56
1

12
,9

06
,8

20
38

,9
80

,8
16

58
3,

79
1

23
,7

10
,2

58
51

6,
55

3
15

,9
05

,6
59

37
0,

05
7

12
,1

46
,5

81
23

3,
39

5
sc

al
ar

st
or

e/
lo

ad
ra

tio
0.

41
0.

23
0.

29
0.

37
0.

48
sc

al
ar

lo
ad

s
-l1 -l2

-m
em

23
5,

95
3,

83
8

40
,4

46
,8

21
29

,8
66

,5
55

44
,4

92
,3

04 4 66

25
,0

21
,6

40 4 63

14
,9

59
,4

59 4 64

9,
86

5,
08

4 3 71
ve

ct
or

lo
ad

s
-l2

-m
em

-
48

,6
33

,5
28

23
,6

54
,2

50
42

,5
00

,6
40

25
,3

78
,4

92
39

,2
99

,1
59

27
,0

57
,2

47
35

,3
48

,2
85

30
,2

46
,9

93
av

er
ag

e
ve

ct
or

le
ng

th
(s

td
ev

)
-

7.
67

(1
.2

7)
15

.0
1

(3
.2

2)
29

.0
9

(7
.7

4)
54

.6
4

(1
9.

38
)

ve
ct

or
lo

ad
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

-
13

,8
35

,8
75 0

12
,6

94
,0

67

7,
01

8,
45

2 0
6,

55
8,

25
4

3,
58

1,
23

6 0
3,

44
6,

86
8

1,
87

0,
33

9 0
1,

93
3,

46
2

ve
ct

or
st

or
e

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

10
,7

87
,6

85 0
2,

82
5,

59
0

5,
66

6,
53

6 0
1,

46
5,

01
2

2,
96

5,
18

0 0
77

6,
94

4

1,
54

6,
86

7 0
44

2,
16

9

in
st

ru
ct

io
n

m
ix

ad
d/

su
b

23
%

le
a

ad
d/

su
b

23
%

lo
ad

17
%

lo
gi

ca
l1

1%
co

nd
.

br
an

ch
11

%
st

or
e

7%
pr

ef
et

ch
3%

ot
he

r
6%

ad
d/

su
b

25
%

lo
gi

ca
l1

9%
lo

ad
10

%
co

nd
.

br
an

ch
8%

ve
c

lo
ad

6%
le

a
ad

d/
su

b
6%

ve
c

st
or

e
3%

ot
he

r
22

%

ad
d/

su
b

27
%

lo
gi

ca
l1

9%
lo

ad
10

%
co

nd
.

br
an

ch
9%

ve
c

lo
ad

5%
le

a
ad

d/
su

b
5%

ve
c

st
or

e
3%

ot
he

r
22

%

ad
d/

su
b

31
%

lo
gi

ca
l1

8%
lo

ad
9%

co
nd

.
br

an
ch

9%
ve

c
lo

ad
4%

le
a

ad
d/

su
b

4%
pr

ef
et

ch
4%

ot
he

r
21

%

ad
d/

su
b

34
%

lo
gi

ca
l1

7%
co

nd
.

br
an

ch
10

%
lo

ad
8%

pr
ef

et
ch

5%
st

or
e

4%
ve

c
lo

ad
3%

ot
he

r
18

%

115

Appendix A. Algorithm Runtime Characteristics

Ta
bl

e
A

.6
:

Ve
ct

or
ise

d
qu

ic
ks

or
t

ru
n

w
ith

th
e

la
rg

e
da

ta
se

t.

sc
al

ar
qu

ic
ks

or
t

m
vl

8
m

vl
16

m
vl

32
m

vl
64

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
1,

89
2,

17
8,

30
4

2,
34

5,
59

0,
85

4
1,

58
6,

46
7,

47
3

1,
22

0,
37

1,
63

5
1,

04
5,

32
7,

16
3

of
w

hi
ch

ar
e

ve
ct

or
-

42
5,

31
3,

88
7

25
5,

10
2,

56
3

17
2,

93
5,

01
8

13
3,

61
4,

99
9

sc
al

ar
µ

op
s

2,
40

6,
34

9,
73

2
2,

55
3,

17
1,

39
6

1,
80

6,
17

8,
74

9
1,

44
5,

99
9,

06
4

1,
27

3,
80

9,
59

9
in

sn
lin

e
fe

tc
he

s
-l1 -l2

-m
em

2,
24

4,
18

1,
81

6 0 21

71
2,

76
0,

23
3 1 39

51
1,

09
6,

31
3 1 39

41
4,

48
3,

44
0 1 43

36
9,

52
4,

09
3 1 39

br
an

ch
pr

ed
ic

tio
ns

-c
or

re
ct

-in
co

rr
ec

t
46

2,
84

0,
16

4
54

,1
22

,5
80

13
1,

29
7,

72
1

7,
29

1,
35

9
10

1,
48

8,
74

4
6,

81
7,

91
2

87
,0

30
,7

74
6,

33
4,

92
4

80
,0

91
,7

20
6,

08
6,

31
0

sc
al

ar
st

or
e/

lo
ad

ra
tio

0.
64

0.
60

0.
72

0.
80

0.
84

sc
al

ar
lo

ad
s

-l1 -l2
-m

em

33
8,

76
5,

89
4

11
,8

22
,0

77
8,

15
0,

21
0

22
7,

48
9,

07
1

1,
05

1,
76

0
7,

54
6

18
9,

17
1,

09
9

1,
04

7,
35

6
7,

53
8

17
0,

45
0,

57
8

1,
04

3,
84

6
7,

56
6

16
1,

48
0,

13
5

1,
04

3,
93

2
7,

58
0

ve
ct

or
lo

ad
s

-l2
-m

em
-

68
,1

78
,0

57
8,

51
6,

62
1

47
,0

35
,9

79
8,

51
8,

22
9

38
,8

83
,2

37
6,

94
9,

84
9

35
,3

13
,2

76
5,

88
3,

82
2

av
er

ag
e

ve
ct

or
le

ng
th

(s
td

ev
)

-
6.

14
(2

.5
1)

10
.4

5
(5

.9
8)

16
.2

3
(1

3.
17

)
23

.0
4

(2
6.

10
)

ve
ct

or
lo

ad
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

-
56

,6
37

,3
70 0 0

34
,1

83
,5

46 0 0

23
,3

62
,7

40 0 0

18
,1

91
,9

70 0 0
ve

ct
or

st
or

e
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

-
86

,9
39

,8
12 0 0

52
,6

33
,9

64 0 0

35
,0

62
,4

56 0 0

26
,4

63
,4

34 0 0

in
st

ru
ct

io
n

m
ix

ad
d/

su
b

35
%

co
nd

.
br

an
ch

16
%

le
a

ad
d/

su
b

14
%

lo
gi

ca
l1

3%
lo

ad
10

%
st

or
e

7%
sim

pl
e

sh
ift

3%
ot

he
r

2%

lo
gi

ca
l2

8%
ad

d/
su

b
27

%
le

a
ad

d/
su

b
10

%
lo

ad
7%

st
or

e
4%

ve
c

st
or

e
3%

ve
c

se
t-

vl
3%

ot
he

r
18

%

ad
d/

su
b

27
%

lo
gi

ca
l2

6%
le

a
ad

d/
su

b
9%

lo
ad

9%
st

or
e

6%
ve

c
st

or
e

3%
ve

c
se

t-
vl

3%
ot

he
r

17
%

ad
d/

su
b

28
%

lo
gi

ca
l2

5%
lo

ad
10

%
le

a
ad

d/
su

b
9%

st
or

e
8%

un
c.

br
an

ch
3%

x8
6

cc
op

s
2%

ot
he

r
16

%

ad
d/

su
b

28
%

lo
gi

ca
l2

4%
lo

ad
11

%
st

or
e

9%
le

a
ad

d/
su

b
8%

un
c.

br
an

ch
3%

x8
6

cc
op

s
2%

ot
he

r
15

%

116

A.2. Sorting

Ta
bl

e
A

.7
:

Ve
ct

or
ise

d
qu

ic
ks

or
t

w
/

O
ET

cl
ea

nu
p

ru
n

w
ith

th
e

la
rg

e
da

ta
se

t.

sc
al

ar
qu

ic
ks

or
t

m
vl

8
m

vl
16

m
vl

32
m

vl
64

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
1,

89
2,

17
8,

30
4

1,
93

5,
72

6,
27

0
1,

02
8,

30
0,

13
4

57
1,

32
4,

29
6

35
0,

83
9,

82
4

of
w

hi
ch

ar
e

ve
ct

or
-

41
5,

09
4,

90
4

21
1,

90
2,

70
9

10
9,

25
5,

16
4

59
,6

95
,1

45
sc

al
ar

µ
op

s
2,

40
6,

34
9,

73
2

1,
92

9,
17

0,
67

2
1,

04
8,

30
5,

71
7

60
4,

92
6,

03
2

39
1,

13
6,

56
7

in
sn

lin
e

fe
tc

he
s

-l1 -l2
-m

em

2,
24

4,
18

1,
81

6 0 21

53
2,

09
6,

93
9 1 46

29
3,

70
9,

73
9 1 44

17
3,

00
3,

32
8 1 45

11
6,

08
4,

50
1 1 45

br
an

ch
pr

ed
ic

tio
ns

-c
or

re
ct

-in
co

rr
ec

t
46

2,
84

0,
16

4
54

,1
22

,5
80

85
,2

00
,6

41
2,

52
3,

85
0

48
,9

27
,0

10
2,

32
4,

78
2

30
,7

81
,1

81
2,

13
3,

88
4

21
,9

59
,2

97
1,

96
9,

23
6

sc
al

ar
st

or
e/

lo
ad

ra
tio

0.
64

0.
30

0.
41

0.
55

0.
68

sc
al

ar
lo

ad
s

-l1 -l2
-m

em

33
8,

76
5,

89
4

11
,8

22
,0

77
8,

15
0,

21
0

13
7,

16
6,

70
6

85
4,

17
5

8,
37

0

83
,1

08
,9

71
85

2,
84

8
8,

46
4

55
,6

80
,4

75
85

1,
02

4
8,

53
9

42
,2

85
,3

49
84

8,
82

4
8,

53
9

ve
ct

or
lo

ad
s

-l2
-m

em
-

65
,6

65
,6

53
22

,1
11

,3
03

43
,0

45
,8

19
21

,9
13

,5
93

34
,0

54
,8

34
19

,9
03

,4
56

32
,0

33
,2

38
16

,6
49

,0
64

av
er

ag
e

ve
ct

or
le

ng
th

(s
td

ev
)

-
7.

10
(1

.9
1)

13
.8

5
(4

.1
7)

27
.0

1
(8

.7
8)

50
.3

3
(2

0.
16

)
ve

ct
or

lo
ad

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

44
,0

87
,5

72
20

,4
80

,0
00 0

22
,5

75
,2

90
10

,2
40

,0
00 0

11
,7

54
,4

84
5,

12
0,

00
0 0

6,
58

3,
71

4
2,

56
0,

00
0 0

ve
ct

or
st

or
e

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

69
,8

06
,9

16
20

,4
80

,0
00 0

36
,8

83
,9

92
10

,2
40

,0
00 0

19
,3

12
,4

84
5,

12
0,

00
0 0

10
,7

13
,4

62
2,

56
0,

00
0 0

in
st

ru
ct

io
n

m
ix

ad
d/

su
b

35
%

co
nd

.
br

an
ch

16
%

le
a

ad
d/

su
b

14
%

lo
gi

ca
l1

3%
lo

ad
10

%
st

or
e

7%
sim

pl
e

sh
ift

3%
ot

he
r

2%

lo
gi

ca
l2

9%
ad

d/
su

b
26

%
le

a
ad

d/
su

b
10

%
lo

ad
6%

ve
c

st
or

e
4%

ve
c

pe
rm

ut
e

3%
sim

pl
e

sh
ift

3%
ot

he
r

18
%

lo
gi

ca
l2

8%
ad

d/
su

b
26

%
le

a
ad

d/
su

b
10

%
lo

ad
6%

ve
c

st
or

e
4%

ve
c

pe
rm

ut
e

3%
sim

pl
e

sh
ift

3%
ot

he
r

19
%

lo
gi

ca
l2

7%
ad

d/
su

b
26

%
le

a
ad

d/
su

b
10

%
lo

ad
7%

st
or

e
4%

ve
c

st
or

e
3%

ve
c

pe
rm

ut
e

3%
ot

he
r

19
%

ad
d/

su
b

26
%

lo
gi

ca
l2

5%
le

a
ad

d/
su

b
10

%
lo

ad
9%

st
or

e
6%

ve
c

st
or

e
3%

sim
pl

e
sh

ift
3%

ot
he

r
18

%

117

Appendix A. Algorithm Runtime Characteristics

Ta
bl

e
A

.8
:

Ve
ct

or
ise

d
bi

to
ni

c
m

er
ge

so
rt

ru
n

w
ith

th
e

la
rg

e
da

ta
se

t.

sc
al

ar
qu

ic
ks

or
t

m
vl

8
m

vl
16

m
vl

32
m

vl
64

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
1,

89
2,

17
8,

30
4

1,
17

8,
70

7,
18

5
63

2,
23

5,
46

6
37

1,
04

4,
45

4
20

1,
70

0,
18

4
of

w
hi

ch
ar

e
ve

ct
or

-
57

4,
59

7,
15

4
33

4,
87

8,
76

1
19

9,
71

3,
97

2
11

4,
43

4,
30

3
sc

al
ar

µ
op

s
2,

40
6,

34
9,

73
2

92
7,

88
3,

02
4

46
2,

83
1,

46
7

25
9,

51
0,

79
2

13
0,

51
7,

19
0

in
sn

lin
e

fe
tc

he
s

-l1 -l2
-m

em

2,
24

4,
18

1,
81

6 0 21

46
1,

45
6,

06
1 0

11
5

24
5,

32
0,

94
3 0

13
0

13
7,

88
6,

50
4 0

13
5

70
,3

12
,7

01 0
15

7
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

46
2,

84
0,

16
4

54
,1

22
,5

80
91

,3
38

,9
11

3,
83

5,
57

0
50

,0
11

,9
41

1,
83

1,
73

1
26

,6
97

,4
17

86
8,

49
5

14
,1

81
,4

69
21

0,
71

2
sc

al
ar

st
or

e/
lo

ad
ra

tio
0.

64
0.

31
0.

30
0.

41
0.

37
sc

al
ar

lo
ad

s
-l1 -l2

-m
em

33
8,

76
5,

89
4

11
,8

22
,0

77
8,

15
0,

21
0

16
4,

90
0,

43
6

8,
99

9,
41

6
3,

48
5,

58
1

75
,7

31
,8

05
5,

71
6,

85
7

1,
26

2,
21

5

34
,0

67
,8

30
5,

43
5,

03
3

3,
53

0,
47

8

15
,7

83
,1

65
1,

93
1,

94
9

1,
00

1,
41

3
ve

ct
or

lo
ad

s
-l2

-m
em

-
33

,7
53

,8
37

1,
96

8,
82

9
18

,3
16

,0
58

1,
43

5,
61

2
27

,8
00

,6
37

1,
51

7,
64

5
21

,7
89

,9
60

1,
58

0,
06

0
av

er
ag

e
ve

ct
or

le
ng

th
(s

td
ev

)
-

8.
00

(0
.0

0)
16

.0
0

(0
.0

0)
32

.0
0

(0
.0

0)
64

.0
0

(0
.0

0)
ve

ct
or

lo
ad

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

35
,4

02
,6

67 0 0

19
,4

31
,6

72 0 0

20
,7

71
,5

31 0 0

15
,3

86
,2

74 0 0
ve

ct
or

st
or

e
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

-
25

,1
28

,9
60 0 0

11
,9

24
,4

80 0 0

5,
64

2,
24

0 0 0

2,
66

1,
12

0 0 0

in
st

ru
ct

io
n

m
ix

ad
d/

su
b

35
%

co
nd

.
br

an
ch

16
%

le
a

ad
d/

su
b

14
%

lo
gi

ca
l1

3%
lo

ad
10

%
st

or
e

7%
sim

pl
e

sh
ift

3%
ot

he
r

2%

ve
c

pe
rm

ut
e

28
%

ad
d/

su
b

18
%

lo
gi

ca
l1

2%
lo

ad
11

%
le

a
ad

d/
su

b
7%

ve
c

co
m

pa
ris

on
3%

st
or

e
3%

ot
he

r
18

%

ve
c

pe
rm

ut
e

32
%

ad
d/

su
b

16
%

lo
gi

ca
l1

1%
lo

ad
9%

le
a

ad
d/

su
b

6%
x8

6
cc

op
s

4%
ve

c
co

m
pa

ris
on

4%
ot

he
r

18
%

ve
c

pe
rm

ut
e

31
%

ad
d/

su
b

14
%

lo
gi

ca
l1

3%
lo

ad
9%

le
a

ad
d/

su
b

5%
ve

c
lo

ad
5%

x8
6

cc
op

s
4%

ot
he

r
19

%

ve
c

pe
rm

ut
e

33
%

lo
gi

ca
l1

4%
ad

d/
su

b
12

%
lo

ad
7%

ve
c

lo
ad

6%
x8

6
cc

op
s

5%
le

a
ad

d/
su

b
5%

ot
he

r
18

%

118

A.2. Sorting

Ta
bl

e
A

.9
:

Ve
ct

or
ise

d
ra

di
x

so
rt

(b
in

s=
16

)
ru

n
w

ith
th

e
la

rg
e

da
ta

se
t.

sc
al

ar
qu

ic
ks

or
t

m
vl

8
m

vl
16

m
vl

32
m

vl
64

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
1,

89
2,

17
8,

30
4

33
7,

92
5,

93
4

16
8,

96
6,

57
8

84
,4

87
,8

62
42

,2
50

,4
22

of
w

hi
ch

ar
e

ve
ct

or
-

11
7,

76
0,

95
6

58
,8

81
,0

84
29

,4
41

,3
40

14
,7

21
,8

52
sc

al
ar

µ
op

s
2,

40
6,

34
9,

73
2

25
6,

00
5,

78
2

12
8,

00
6,

29
8

64
,0

07
,3

26
32

,0
09

,3
73

in
sn

lin
e

fe
tc

he
s

-l1 -l2
-m

em

2,
24

4,
18

1,
81

6 0 21

10
7,

52
3,

70
3 5 44

53
,7

64
,2

88 4 42

26
,8

84
,7

35 4 42

13
,4

45
,4

90 4 42
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

46
2,

84
0,

16
4

54
,1

22
,5

80
20

,4
80

,8
01 12
8

10
,2

40
,8

49 13
3

5,
12

0,
97

8
13

6
2,

56
1,

24
2

13
8

sc
al

ar
st

or
e/

lo
ad

ra
tio

0.
64

0.
00

0.
00

0.
00

0.
00

sc
al

ar
lo

ad
s

-l1 -l2
-m

em

33
8,

76
5,

89
4

11
,8

22
,0

77
8,

15
0,

21
0

46
,0

80
,7

31 1 29

23
,0

40
,7

37 1 26

11
,5

20
,7

49 0 19

5,
76

0,
77

0 1 17
ve

ct
or

lo
ad

s
-l2

-m
em

-
16

6,
86

8,
02

1
7,

67
9,

83
7

16
5,

87
6,

60
2

7,
67

9,
86

5
16

5,
87

9,
45

0
7,

68
0,

08
4

16
5,

87
4,

23
7

7,
69

0,
63

9
av

er
ag

e
ve

ct
or

le
ng

th
(s

td
ev

)
-

8.
00

(0
.0

0)
16

.0
0

(0
.0

0)
32

.0
0

(0
.0

0)
64

.0
0

(0
.0

0)
ve

ct
or

lo
ad

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

0
15

,3
60

,2
56

10
,2

40
,0

00

0
7,

68
0,

25
7

5,
12

0,
00

0

0
3,

84
0,

25
8

2,
56

0,
00

0

0
1,

92
0,

25
8

1,
28

0,
00

0
ve

ct
or

st
or

e
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

-
12

8
12

8
20

,4
80

,0
00

12
8

12
8

10
,2

40
,0

00

12
8

12
8

5,
12

0,
00

0

12
8

12
8

2,
56

0,
00

0

in
st

ru
ct

io
n

m
ix

ad
d/

su
b

35
%

co
nd

.
br

an
ch

16
%

le
a

ad
d/

su
b

14
%

lo
gi

ca
l1

3%
lo

ad
10

%
st

or
e

7%
sim

pl
e

sh
ift

3%
ot

he
r

2%

lo
gi

ca
l3

0%
ad

d/
su

b
18

%
lo

ad
12

%
ve

c
lo

gi
ca

l8
%

ve
c

lo
ad

7%
ve

c
st

or
e

5%
ve

c
ad

d/
su

b
5%

ot
he

r
14

%

lo
gi

ca
l3

0%
ad

d/
su

b
18

%
lo

ad
12

%
ve

c
lo

gi
ca

l8
%

ve
c

lo
ad

7%
ve

c
st

or
e

5%
ve

c
ad

d/
su

b
5%

ot
he

r
14

%

lo
gi

ca
l3

0%
ad

d/
su

b
18

%
lo

ad
12

%
ve

c
lo

gi
ca

l8
%

ve
c

lo
ad

7%
ve

c
st

or
e

5%
ve

c
ad

d/
su

b
5%

ot
he

r
14

%

lo
gi

ca
l3

0%
ad

d/
su

b
18

%
lo

ad
12

%
ve

c
lo

gi
ca

l8
%

ve
c

lo
ad

7%
ve

c
st

or
e

5%
ve

c
ad

d/
su

b
5%

ot
he

r
14

%

119

Appendix A. Algorithm Runtime Characteristics

Ta
bl

e
A

.1
0:

Ve
ct

or
ise

d
V

SR
so

rt
(b

in
s=

25
6)

ru
n

w
ith

th
e

la
rg

e
da

ta
se

t.

sc
al

ar
qu

ic
ks

or
t

m
vl

8
m

vl
16

m
vl

32
m

vl
64

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
1,

89
2,

17
8,

30
4

27
3,

92
8,

32
0

13
6,

96
5,

66
4

68
,4

84
,8

64
34

,2
45

,5
20

of
w

hi
ch

ar
e

ve
ct

or
-

92
,1

60
,9

84
46

,0
80

,6
00

23
,0

40
,5

04
11

,5
20

,6
48

sc
al

ar
µ

op
s

2,
40

6,
34

9,
73

2
21

7,
60

8,
11

5
10

8,
80

5,
77

9
54

,4
05

,0
43

27
,2

05
,5

39
in

sn
lin

e
fe

tc
he

s
-l1 -l2

-m
em

2,
24

4,
18

1,
81

6 0 21

71
,6

83
,6

21 4 49

35
,8

43
,2

04 4 49

17
,9

22
,7

69 4 50

8,
96

3,
07

8 4 51
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

46
2,

84
0,

16
4

54
,1

22
,5

80
12

,8
00

,7
58 10
2

6,
40

0,
58

3
11

4
3,

20
0,

56
1

10
2

1,
60

0,
63

7
10

5
sc

al
ar

st
or

e/
lo

ad
ra

tio
0.

64
0.

00
0.

00
0.

00
0.

00
sc

al
ar

lo
ad

s
-l1 -l2

-m
em

33
8,

76
5,

89
4

11
,8

22
,0

77
8,

15
0,

21
0

15
,3

60
,5

04 1 17

7,
68

0,
54

5 1 19

3,
84

0,
51

8 0 21

1,
92

0,
53

7 0 12
ve

ct
or

lo
ad

s
-l2

-m
em

-
35

,7
09

,9
20

3,
46

9,
76

8
26

,4
32

,7
23

1,
70

5,
45

7
19

,3
12

,3
59

46
4,

34
7

12
,5

27
,6

46
14

8,
68

5
av

er
ag

e
ve

ct
or

le
ng

th
(s

td
ev

)
-

7.
97

(0
.1

9)
15

.8
6

(0
.4

4)
31

.4
5

(1
.2

4)
61

.8
8

(4
.1

6)
ve

ct
or

lo
ad

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

7,
68

0,
00

0
25

6
5,

12
0,

00
0

3,
84

0,
00

0
12

8
2,

56
0,

00
0

1,
92

0,
00

0 64
1,

28
0,

00
0

96
0,

00
0 33

64
0,

00
0

ve
ct

or
st

or
e

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

12
8

12
8

10
,2

40
,0

00

64 64
5,

12
0,

00
0

32 32
2,

56
0,

00
0

16 16
1,

28
0,

00
0

in
st

ru
ct

io
n

m
ix

ad
d/

su
b

35
%

co
nd

.
br

an
ch

16
%

le
a

ad
d/

su
b

14
%

lo
gi

ca
l1

3%
lo

ad
10

%
st

or
e

7%
sim

pl
e

sh
ift

3%
ot

he
r

2%

lo
gi

ca
l2

9%
ad

d/
su

b
21

%
le

a
ad

d/
su

b
6%

lo
ad

5%
ve

c
ad

d/
su

b
5%

ve
c

lo
ad

4%
ve

c
st

or
e

3%
ot

he
r

26
%

lo
gi

ca
l2

9%
ad

d/
su

b
21

%
le

a
ad

d/
su

b
6%

lo
ad

5%
ve

c
ad

d/
su

b
5%

ve
c

lo
ad

4%
ve

c
st

or
e

3%
ot

he
r

26
%

lo
gi

ca
l2

9%
ad

d/
su

b
21

%
le

a
ad

d/
su

b
6%

lo
ad

5%
ve

c
ad

d/
su

b
5%

ve
c

lo
ad

4%
x8

6
cc

op
s

3%
ot

he
r

26
%

lo
gi

ca
l2

9%
ad

d/
su

b
21

%
le

a
ad

d/
su

b
6%

lo
ad

5%
ve

c
ad

d/
su

b
5%

ve
c

lo
ad

4%
x8

6
cc

op
s

3%
ot

he
r

26
%

120

A.2. Sorting

Ta
bl

e
A

.1
1:

A
gg

re
ga

tio
n

sc
al

ar
w

he
re
c

=
15

2
(lo

w
).

hh
itt

er
se

qu
en

tia
l

so
rt

ed
un

ifo
rm

zi
pf

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
15

0,
00

4,
47

3
15

0,
00

4,
54

5
15

0,
00

4,
55

5
15

0,
00

4,
47

2
15

0,
00

4,
47

4
of

w
hi

ch
ar

e
ve

ct
or

-
-

-
-

-
sc

al
ar

µ
op

s
30

5,
00

7,
14

7
30

5,
00

7,
22

1
30

5,
00

7,
23

1
30

5,
00

7,
14

6
30

5,
00

7,
15

0
in

sn
lin

e
fe

tc
he

s
-l1 -l2

-m
em

50
,0

02
,6

59 4 56

50
,0

02
,6

44 4 56

50
,0

05
,2

34 3 55

50
,0

02
,6

99 4 56

50
,0

02
,7

11 5 55
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

15
,0

13
,3

23 10
1

15
,0

11
,8

48 96
15

,0
00

,9
31 18
0

15
,0

02
,2

48 10
1

15
,0

09
,8

37 10
0

sc
al

ar
st

or
e/

lo
ad

ra
tio

0.
40

0.
40

0.
40

0.
40

0.
40

sc
al

ar
lo

ad
s

-l1 -l2
-m

em

45
,4

12
,5

04
4,

31
8,

87
0

33
7,

98
9

45
,3

92
,0

39
4,

32
3,

39
2

34
1,

88
9

45
,3

71
,3

10
4,

32
4,

57
1

30
5,

92
0

45
,3

52
,1

52
4,

32
5,

01
9

33
3,

21
4

45
,3

92
,6

21
4,

32
2,

67
1

33
5,

57
9

ve
ct

or
lo

ad
s

-l2
-m

em
-

-
-

-
-

av
er

ag
e

ve
ct

or
le

ng
th

(s
td

ev
)

-
-

-
-

-
ve

ct
or

lo
ad

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

-
-

-
-

ve
ct

or
st

or
e

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

-
-

-
-

in
st

ru
ct

io
n

m
ix

le
a

ad
d/

su
b

33
%

ad
d/

su
b

23
%

lo
ad

16
%

pr
ef

et
ch

10
%

st
or

e
7%

co
nd

.
br

an
ch

5%
sim

pl
e

sh
ift

3%
ot

he
r

3%

le
a

ad
d/

su
b

33
%

ad
d/

su
b

23
%

lo
ad

16
%

pr
ef

et
ch

10
%

st
or

e
7%

co
nd

.
br

an
ch

5%
sim

pl
e

sh
ift

3%
ot

he
r

3%

le
a

ad
d/

su
b

33
%

ad
d/

su
b

23
%

lo
ad

16
%

pr
ef

et
ch

10
%

st
or

e
7%

co
nd

.
br

an
ch

5%
sim

pl
e

sh
ift

3%
ot

he
r

3%

le
a

ad
d/

su
b

33
%

ad
d/

su
b

23
%

lo
ad

16
%

pr
ef

et
ch

10
%

st
or

e
7%

co
nd

.
br

an
ch

5%
sim

pl
e

sh
ift

3%
ot

he
r

3%

le
a

ad
d/

su
b

33
%

ad
d/

su
b

23
%

lo
ad

16
%

pr
ef

et
ch

10
%

st
or

e
7%

co
nd

.
br

an
ch

5%
sim

pl
e

sh
ift

3%
ot

he
r

3%

121

Appendix A. Algorithm Runtime Characteristics

Ta
bl

e
A

.1
2:

A
gg

re
ga

tio
n

sc
al

ar
w

he
re
c

=
62

5,
00

0
(h

ig
h)

.

hh
itt

er
se

qu
en

tia
l

so
rt

ed
un

ifo
rm

zi
pf

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
15

8,
59

4,
87

0
15

8,
90

8,
63

3
15

8,
90

9,
02

4
15

8,
59

6,
14

0
15

8,
11

1,
60

8
of

w
hi

ch
ar

e
ve

ct
or

-
-

-
-

-
sc

al
ar

µ
op

s
32

0,
15

7,
37

6
32

0,
47

2,
21

1
32

0,
47

2,
60

2
32

0,
15

9,
72

0
31

9,
26

5,
16

2
in

sn
lin

e
fe

tc
he

s
-l1 -l2

-m
em

52
,6

62
,6

60 4 56

52
,6

58
,1

34 4 54

62
,1

58
,4

85 4 56

52
,6

58
,3

23 4 56

54
,8

14
,5

99 4 55
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

15
,9

96
,5

19 30
0

15
,9

96
,2

06 10
0

16
,5

64
,7

78
31

3,
93

2
15

,9
77

,0
61 10
5

15
,9

80
,9

94
88

,8
25

sc
al

ar
st

or
e/

lo
ad

ra
tio

0.
43

0.
43

0.
43

0.
43

0.
43

sc
al

ar
lo

ad
s

-l1 -l2
-m

em

37
,5

90
,0

59
4,

52
8,

76
9

9,
84

8,
79

1

43
,5

85
,7

69
4,

81
6,

44
4

3,
59

4,
54

7

48
,5

30
,5

98
4,

46
1,

90
1

21
9,

22
1

28
,0

44
,5

68
4,

51
8,

29
1

19
,3

13
,0

83

37
,9

53
,2

92
7,

74
5,

54
7

6,
34

9,
73

5
ve

ct
or

lo
ad

s
-l2

-m
em

-
-

-
-

-

av
er

ag
e

ve
ct

or
le

ng
th

(s
td

ev
)

-
-

-
-

-
ve

ct
or

lo
ad

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

-
-

-
-

ve
ct

or
st

or
e

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d
-

-
-

-
-

in
st

ru
ct

io
n

m
ix

le
a

ad
d/

su
b

33
%

ad
d/

su
b

23
%

lo
ad

16
%

pr
ef

et
ch

10
%

st
or

e
7%

co
nd

.
br

an
ch

5%
sim

pl
e

sh
ift

3%
ot

he
r

3%

le
a

ad
d/

su
b

33
%

ad
d/

su
b

23
%

lo
ad

16
%

pr
ef

et
ch

10
%

st
or

e
7%

co
nd

.
br

an
ch

5%
sim

pl
e

sh
ift

3%
ot

he
r

3%

le
a

ad
d/

su
b

33
%

ad
d/

su
b

23
%

lo
ad

16
%

pr
ef

et
ch

10
%

st
or

e
7%

co
nd

.
br

an
ch

5%
sim

pl
e

sh
ift

3%
ot

he
r

3%

le
a

ad
d/

su
b

33
%

ad
d/

su
b

23
%

lo
ad

16
%

pr
ef

et
ch

10
%

st
or

e
7%

co
nd

.
br

an
ch

5%
sim

pl
e

sh
ift

3%
ot

he
r

3%

le
a

ad
d/

su
b

33
%

ad
d/

su
b

23
%

lo
ad

16
%

pr
ef

et
ch

10
%

st
or

e
7%

co
nd

.
br

an
ch

5%
sim

pl
e

sh
ift

3%
ot

he
r

3%

122

A.3. Aggregation

Ta
bl

e
A

.1
3:

A
gg

re
ga

tio
n

st
an

da
rd

so
rt

ed
re

du
ce

w
he

re
M
V
L

=
64

an
d
c

=
15

2
(lo

w
).

hh
itt

er
se

qu
en

tia
l

so
rt

ed
un

ifo
rm

zi
pf

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
38

,4
54

,6
65

38
,4

52
,3

74
14

,8
52

,1
47

38
,4

54
,5

20
38

,4
54

,4
04

of
w

hi
ch

ar
e

ve
ct

or
10

,4
69

,8
71

10
,4

69
,5

55
2,

81
3,

09
1

10
,4

69
,8

51
10

,4
69

,8
35

sc
al

ar
µ

op
s

32
,9

88
,3

60
32

,9
86

,2
27

14
,0

71
,8

42
32

,9
88

,2
25

32
,9

88
,1

17
in

sn
lin

e
fe

tc
he

s
-l1 -l2

-m
em

10
,9

52
,0

88 0
12

5

10
,9

52
,0

67 0
12

7

3,
75

9,
05

6 3 42

10
,9

52
,2

33 1
12

4

10
,9

52
,4

43 1
12

5
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

2,
34

6,
01

9
54

0
2,

34
5,

98
6

54
9

78
2,

20
8

36
0

2,
34

6,
04

8
54

1
2,

34
6,

06
9

54
9

sc
al

ar
st

or
e/

lo
ad

ra
tio

0.
00

0.
00

0.
00

0.
00

0.
00

sc
al

ar
lo

ad
s

-l1 -l2
-m

em

4,
69

1,
83

5 0 61

4,
69

1,
88

9 0 62

78
3,

88
4 2 30

4,
69

1,
88

4 0 61

4,
69

1,
89

9 1 61
ve

ct
or

lo
ad

s
-l2

-m
em

73
,6

52
,7

86
4,

49
2,

31
0

72
,5

32
,7

02
4,

52
3,

70
1

1,
77

4,
91

4
40

5,
46

6
81

,0
77

,1
33

4,
50

0,
76

6
76

,0
29

,3
65

4,
49

5,
82

3
av

er
ag

e
ve

ct
or

le
ng

th
(s

td
ev

)
63

.9
9

(0
.6

2)
63

.9
9

(0
.5

7)
63

.9
6

(1
.4

9)
63

.9
9

(0
.6

2)
63

.9
9

(0
.6

1)
ve

ct
or

lo
ad

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d

62
5,

27
5

93
7,

56
4

62
5,

00
0

62
5,

21
2

93
7,

56
5

62
5,

00
0

46
9,

05
2 0 0

62
5,

29
4

93
7,

56
5

62
5,

00
0

62
5,

28
6

93
7,

56
5

62
5,

00
0

ve
ct

or
st

or
e

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d

33
4 32

1,
25

0,
00

0

33
4 32

1,
25

0,
00

0

30
2 0 0

33
4 32

1,
25

0,
00

0

33
4 32

1,
25

0,
00

0

in
st

ru
ct

io
n

m
ix

lo
gi

ca
l3

0%
ad

d/
su

b
23

%
lo

ad
11

%
ve

c
lo

ad
5%

ve
c

lo
gi

ca
l4

%
le

a
ad

d/
su

b
4%

ve
c

st
or

e
4%

ot
he

r
19

%

lo
gi

ca
l3

0%
ad

d/
su

b
23

%
lo

ad
11

%
ve

c
lo

ad
5%

ve
c

lo
gi

ca
l4

%
le

a
ad

d/
su

b
4%

ve
c

st
or

e
4%

ot
he

r
19

%

lo
gi

ca
l3

4%
ad

d/
su

b
29

%
le

a
ad

d/
su

b
7%

lo
ad

5%
co

nd
.

br
an

ch
3%

ve
c

se
t-

vl
3%

ve
c

lo
ad

3%
ot

he
r

17
%

lo
gi

ca
l3

0%
ad

d/
su

b
23

%
lo

ad
11

%
ve

c
lo

ad
5%

ve
c

lo
gi

ca
l4

%
le

a
ad

d/
su

b
4%

ve
c

st
or

e
4%

ot
he

r
19

%

lo
gi

ca
l3

0%
ad

d/
su

b
23

%
lo

ad
11

%
ve

c
lo

ad
5%

ve
c

lo
gi

ca
l4

%
le

a
ad

d/
su

b
4%

ve
c

st
or

e
4%

ot
he

r
19

%

123

Appendix A. Algorithm Runtime Characteristics

Ta
bl

e
A

.1
4:

A
gg

re
ga

tio
n

st
an

da
rd

so
rt

ed
re

du
ce

w
he

re
M
V
L

=
64

an
d
c

=
62

5,
00

0
(h

ig
h)

.

hh
itt

er
se

qu
en

tia
l

so
rt

ed
un

ifo
rm

zi
pf

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
10

8,
04

8,
29

8
10

6,
26

3,
16

0
45

,6
26

,5
09

10
6,

26
3,

16
0

10
4,

65
0,

95
7

of
w

hi
ch

ar
e

ve
ct

or
24

,3
75

,3
04

24
,2

19
,9

22
5,

00
0,

00
9

24
,2

19
,9

22
24

,1
47

,5
20

sc
al

ar
µ

op
s

96
,6

43
,0

06
94

,8
58

,4
53

46
,7

20
,8

86
94

,8
58

,4
53

93
,0

09
,8

86
in

sn
lin

e
fe

tc
he

s
-l1 -l2

-m
em

29
,8

49
,9

33 1
13

1

29
,3

83
,5

58 1
12

8

11
,5

63
,8

71 3 43

29
,3

83
,9

38 0
13

3

29
,2

03
,0

33 0
13

0
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

6,
95

4,
33

8
28

2
6,

87
7,

01
2

25
9

3,
12

5,
30

3 63
6,

87
7,

03
6

26
8

6,
68

5,
10

8
12

,5
94

sc
al

ar
st

or
e/

lo
ad

ra
tio

0.
30

0.
30

0.
68

0.
30

0.
28

sc
al

ar
lo

ad
s

-l1 -l2
-m

em

14
,4

92
,9

17
39

,0
53 83

14
,4

94
,5

93
39

,0
63 79

6,
36

7,
68

6
39

,0
64 51

14
,4

94
,6

39
39

,0
64 84

13
,8

50
,1

72
34

,3
90 90

ve
ct

or
lo

ad
s

-l2
-m

em
18

1,
92

6,
13

7
11

,1
80

,8
82

18
5,

76
9,

65
9

11
,0

86
,5

40
2,

59
9,

99
4

16
,9

65
20

4,
95

2,
60

7
10

,9
97

,5
30

18
5,

44
6,

32
9

11
,2

92
,8

62
av

er
ag

e
ve

ct
or

le
ng

th
(s

td
ev

)
59

.2
6

(1
5.

61
)

58
.7

6
(1

5.
76

)
29

.3
3

(2
5.

09
)

58
.7

6
(1

5.
80

)
59

.8
2

(1
5.

13
)

ve
ct

or
lo

ad
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

1,
48

4,
14

8
2,

34
3,

91
0

1,
56

2,
50

0

1,
40

6,
25

4
2,

34
3,

91
0

1,
56

2,
50

0

93
7,

50
2 0 0

1,
40

6,
25

2
2,

34
3,

91
0

1,
56

2,
50

0

1,
44

4,
58

4
2,

34
3,

91
1

1,
56

2,
50

0
ve

ct
or

st
or

e
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

46
8,

91
8 80

3,
12

5,
00

0

62
5,

08
0 80

3,
12

5,
00

0

31
2,

50
0 0 0

62
5,

08
0 80

3,
12

5,
00

0

42
5,

05
0 80

3,
12

5,
00

0

in
st

ru
ct

io
n

m
ix

lo
gi

ca
l3

0%
ad

d/
su

b
21

%
lo

ad
12

%
ve

c
lo

ad
4%

ve
c

lo
gi

ca
l4

%
st

or
e

4%
co

nd
.

br
an

ch
4%

ot
he

r
21

%

lo
gi

ca
l3

0%
ad

d/
su

b
21

%
lo

ad
12

%
ve

c
lo

ad
4%

ve
c

lo
gi

ca
l4

%
st

or
e

4%
co

nd
.

br
an

ch
4%

ot
he

r
21

%

lo
gi

ca
l2

8%
ad

d/
su

b
25

%
lo

ad
12

%
st

or
e

8%
le

a
ad

d/
su

b
5%

co
nd

.
br

an
ch

4%
sim

pl
e

sh
ift

2%
ot

he
r

15
%

lo
gi

ca
l3

0%
ad

d/
su

b
21

%
lo

ad
12

%
ve

c
lo

ad
4%

ve
c

lo
gi

ca
l4

%
st

or
e

4%
co

nd
.

br
an

ch
4%

ot
he

r
21

%

lo
gi

ca
l3

0%
ad

d/
su

b
21

%
lo

ad
12

%
ve

c
lo

ad
5%

ve
c

lo
gi

ca
l4

%
co

nd
.

br
an

ch
4%

st
or

e
3%

ot
he

r
21

%

124

A.3. Aggregation

Ta
bl

e
A

.1
5:

A
gg

re
ga

tio
n

po
ly

ta
bl

e
w

he
re
M
V
L

=
64

an
d
c

=
15

2
(lo

w
).

hh
itt

er
se

qu
en

tia
l

so
rt

ed
un

ifo
rm

zi
pf

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
8,

91
9,

24
4

8,
91

9,
24

4
6,

41
9,

23
1

8,
91

9,
24

4
8,

91
9,

24
4

of
w

hi
ch

ar
e

ve
ct

or
2,

50
1,

28
4

2,
50

1,
28

4
2,

03
2,

53
1

2,
50

1,
28

4
2,

50
1,

28
4

sc
al

ar
µ

op
s

8,
29

5,
72

1
8,

29
5,

72
1

5,
48

3,
21

7
8,

29
5,

72
1

8,
29

5,
72

1
in

sn
lin

e
fe

tc
he

s
-l1 -l2

-m
em

2,
81

7,
95

3 0 85

2,
81

8,
01

0 1 83

1,
88

0,
69

0 17 69

2,
81

7,
95

2 1 83

2,
81

8,
01

2 0 85
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

78
3,

05
4

13
8

78
3,

04
5

14
0

47
0,

54
5

13
2

78
3,

04
5

13
8

78
3,

05
0

14
2

sc
al

ar
st

or
e/

lo
ad

ra
tio

0.
00

0.
00

0.
00

0.
00

0.
00

sc
al

ar
lo

ad
s

-l1 -l2
-m

em

93
8,

74
7 0 45

93
8,

75
3 0 44

31
3,

73
1 2 36

93
8,

75
2 0 43

93
8,

75
5 0 48

ve
ct

or
lo

ad
s

-l2
-m

em
12

,4
94

,8
03

32
5,

71
5

21
,5

53
,7

29
32

2,
50

7
2,

49
6,

78
8

4,
73

6
20

,5
96

,5
00

32
2,

80
6

16
,7

80
,2

33
32

4,
34

5
av

er
ag

e
ve

ct
or

le
ng

th
(s

td
ev

)
64

.0
0

(0
.0

9)
64

.0
0

(0
.0

9)
64

.0
0

(0
.1

0)
64

.0
0

(0
.0

9)
64

.0
0

(0
.0

9)
ve

ct
or

lo
ad

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d

46
9,

06
0 0

31
2,

50
0

46
9,

06
0 0

31
2,

50
0

31
2,

81
0 0

31
2,

50
0

46
9,

06
0 0

31
2,

50
0

46
9,

06
0 0

31
2,

50
0

ve
ct

or
st

or
e

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d

31
3 0

31
2,

50
0

31
3 0

31
2,

50
0

31
3 0

31
2,

50
0

31
3 0

31
2,

50
0

31
3 0

31
2,

50
0

in
st

ru
ct

io
n

m
ix

ad
d/

su
b

26
%

lo
gi

ca
l2

2%
le

a
ad

d/
su

b
10

%
lo

ad
9%

ve
c

lo
ad

7%
ve

c
ad

d/
su

b
7%

co
nd

.
br

an
ch

6%
ot

he
r

13
%

ad
d/

su
b

26
%

lo
gi

ca
l2

2%
le

a
ad

d/
su

b
10

%
lo

ad
9%

ve
c

lo
ad

7%
ve

c
ad

d/
su

b
7%

co
nd

.
br

an
ch

6%
ot

he
r

13
%

lo
gi

ca
l2

5%
ad

d/
su

b
23

%
le

a
ad

d/
su

b
10

%
ve

c
lo

ad
8%

ve
c

ad
d/

su
b

8%
co

nd
.

br
an

ch
4%

lo
ad

4%
ot

he
r

17
%

ad
d/

su
b

26
%

lo
gi

ca
l2

2%
le

a
ad

d/
su

b
10

%
lo

ad
9%

ve
c

lo
ad

7%
ve

c
ad

d/
su

b
7%

co
nd

.
br

an
ch

6%
ot

he
r

13
%

ad
d/

su
b

26
%

lo
gi

ca
l2

2%
le

a
ad

d/
su

b
10

%
lo

ad
9%

ve
c

lo
ad

7%
ve

c
ad

d/
su

b
7%

co
nd

.
br

an
ch

6%
ot

he
r

13
%

125

Appendix A. Algorithm Runtime Characteristics

Ta
bl

e
A

.1
6:

A
gg

re
ga

tio
n

po
ly

ta
bl

e
w

he
re
M
V
L

=
64

an
d
c

=
62

5,
00

0
(h

ig
h)

.

hh
itt

er
se

qu
en

tia
l

so
rt

ed
un

ifo
rm

zi
pf

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
45

,6
28

,6
47

45
,6

28
,6

47
43

,1
28

,6
34

45
,6

28
,6

47
45

,6
28

,6
47

of
w

hi
ch

ar
e

ve
ct

or
7,

64
6,

51
3

7,
64

6,
51

3
7,

17
7,

76
0

7,
64

6,
51

3
7,

64
6,

51
3

sc
al

ar
µ

op
s

44
,3

70
,3

34
44

,3
70

,3
34

41
,5

57
,8

30
44

,3
70

,3
34

44
,3

70
,3

34
in

sn
lin

e
fe

tc
he

s
-l1 -l2

-m
em

12
,3

36
,5

54 0 73

12
,3

36
,5

67 0 72

11
,3

99
,1

14 9 61

12
,3

36
,5

50 0 75

12
,3

36
,4

56 0 68
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

4,
56

1,
31

0
11

5
4,

56
1,

30
8

11
8

4,
24

8,
81

9
11

1
4,

56
1,

29
9

11
6

4,
56

1,
30

7
10

9
sc

al
ar

st
or

e/
lo

ad
ra

tio
1.

21
1.

21
3.

04
1.

21
1.

21
sc

al
ar

lo
ad

s
-l1 -l2

-m
em

1,
03

6,
23

6 3 80

1,
03

6,
21

6 5 77

41
1,

22
5 7 75

1,
03

6,
22

5 4 80

1,
03

6,
20

7 3 83
ve

ct
or

lo
ad

s
-l2

-m
em

5,
77

4,
56

6
12

,4
34

,0
68

4,
52

2,
67

2
22

,4
30

,4
54

4,
17

7,
73

7
4,

57
1,

79
1

4,
53

3,
58

2
22

,4
19

,3
06

10
,6

76
,7

20
15

,2
60

,9
60

av
er

ag
e

ve
ct

or
le

ng
th

(s
td

ev
)

64
.0

0
(0

.0
3)

64
.0

0
(0

.0
3)

64
.0

0
(0

.0
3)

64
.0

0
(0

.0
3)

63
.9

6
(0

.7
5)

ve
ct

or
lo

ad
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

1,
73

8,
28

2 0
31

2,
50

0

1,
73

8,
28

2 0
31

2,
50

0

1,
58

2,
03

2 0
31

2,
50

0

1,
73

8,
28

2 0
31

2,
50

0

1,
73

8,
28

2 0
31

2,
50

0
ve

ct
or

st
or

e
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

1,
27

9,
29

8 0
31

2,
50

0

1,
27

9,
29

8 0
31

2,
50

0

1,
27

9,
29

8 0
31

2,
50

0

1,
27

9,
29

8 0
31

2,
50

0

1,
27

9,
29

8 0
31

2,
50

0

in
st

ru
ct

io
n

m
ix

lo
gi

ca
l2

6%
ad

d/
su

b
26

%
le

a
ad

d/
su

b
8%

co
nd

.
br

an
ch

7%
sim

pl
e

sh
ift

5%
m

ul
5%

ve
c

lo
ad

4%
ot

he
r

18
%

lo
gi

ca
l2

6%
ad

d/
su

b
26

%
le

a
ad

d/
su

b
8%

co
nd

.
br

an
ch

7%
sim

pl
e

sh
ift

5%
m

ul
5%

ve
c

lo
ad

4%
ot

he
r

18
%

lo
gi

ca
l2

7%
ad

d/
su

b
26

%
le

a
ad

d/
su

b
8%

co
nd

.
br

an
ch

7%
sim

pl
e

sh
ift

5%
m

ul
5%

ve
c

lo
ad

4%
ot

he
r

18
%

lo
gi

ca
l2

6%
ad

d/
su

b
26

%
le

a
ad

d/
su

b
8%

co
nd

.
br

an
ch

7%
sim

pl
e

sh
ift

5%
m

ul
5%

ve
c

lo
ad

4%
ot

he
r

18
%

lo
gi

ca
l2

6%
ad

d/
su

b
26

%
le

a
ad

d/
su

b
8%

co
nd

.
br

an
ch

7%
sim

pl
e

sh
ift

5%
m

ul
5%

ve
c

lo
ad

4%
ot

he
r

18
%

126

A.3. Aggregation

Ta
bl

e
A

.1
7:

A
gg

re
ga

tio
n

ad
va

nc
ed

so
rt

ed
re

du
ce

w
he

re
M
V
L

=
64

an
d
c

=
15

2
(lo

w
).

hh
itt

er
se

qu
en

tia
l

so
rt

ed
un

ifo
rm

zi
pf

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
40

,0
12

,2
07

40
,0

09
,9

16
14

,8
52

,1
47

40
,0

12
,0

62
40

,0
11

,9
46

of
w

hi
ch

ar
e

ve
ct

or
9,

68
8,

31
8

9,
68

8,
00

2
2,

81
3,

09
1

9,
68

8,
29

8
9,

68
8,

28
2

sc
al

ar
µ

op
s

36
,4

20
,1

30
36

,4
17

,9
97

14
,0

71
,8

42
36

,4
19

,9
95

36
,4

19
,8

87
in

sn
lin

e
fe

tc
he

s
-l1 -l2

-m
em

10
,4

79
,6

85 1
12

1

10
,4

79
,1

96 1
12

2

3,
75

8,
77

3 3 45

10
,4

79
,8

30 0
12

3

10
,4

79
,7

35 0
12

2
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

2,
18

9,
00

7
46

3
2,

18
8,

92
8

46
6

78
2,

17
2

36
3

2,
18

9,
00

5
46

8
2,

18
9,

01
4

46
6

sc
al

ar
st

or
e/

lo
ad

ra
tio

0.
00

0.
00

0.
00

0.
00

0.
00

sc
al

ar
lo

ad
s

-l1 -l2
-m

em

2,
81

5,
73

6 1 71

2,
81

5,
75

0 3 74

78
3,

82
2 1 34

2,
81

5,
76

4 3 72

2,
81

5,
78

4 2 68
ve

ct
or

lo
ad

s
-l2

-m
em

6,
66

9,
60

8
2,

25
4,

29
8

5,
26

8,
45

2
2,

11
9,

49
9

1,
77

4,
30

4
40

5,
98

0
6,

95
9,

25
6

2,
08

1,
13

5
6,

33
0,

33
1

2,
25

0,
91

1
av

er
ag

e
ve

ct
or

le
ng

th
(s

td
ev

)
58

.7
2

(1
2.

47
)

63
.9

9
(0

.6
3)

63
.9

6
(1

.4
9)

62
.2

0
(4

.3
7)

59
.4

5
(1

0.
76

)
ve

ct
or

lo
ad

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d

1,
40

6,
54

3 8
31

2,
50

0

1,
40

6,
45

7 8
31

2,
50

0

46
9,

03
0 0 0

1,
40

6,
54

3 8
31

2,
50

0

1,
40

6,
53

3 8
31

2,
50

0
ve

ct
or

st
or

e
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

31
2,

80
6 4

62
5,

00
0

31
2,

80
6 4

62
5,

00
0

30
2 0 0

31
2,

80
6 4

62
5,

00
0

31
2,

80
6 4

62
5,

00
0

in
st

ru
ct

io
n

m
ix

lo
gi

ca
l3

3%
ad

d/
su

b
24

%
le

a
ad

d/
su

b
7%

lo
ad

6%
ve

c
lo

ad
4%

co
nd

.
br

an
ch

3%
ve

c
se

t-
vl

3%
ot

he
r

20
%

lo
gi

ca
l3

3%
ad

d/
su

b
24

%
le

a
ad

d/
su

b
7%

lo
ad

6%
ve

c
lo

ad
4%

co
nd

.
br

an
ch

3%
ve

c
se

t-
vl

3%
ot

he
r

20
%

lo
gi

ca
l3

4%
ad

d/
su

b
29

%
le

a
ad

d/
su

b
7%

lo
ad

5%
co

nd
.

br
an

ch
3%

ve
c

se
t-

vl
3%

ve
c

lo
ad

3%
ot

he
r

17
%

lo
gi

ca
l3

3%
ad

d/
su

b
24

%
le

a
ad

d/
su

b
7%

lo
ad

6%
ve

c
lo

ad
4%

co
nd

.
br

an
ch

3%
ve

c
se

t-
vl

3%
ot

he
r

20
%

lo
gi

ca
l3

3%
ad

d/
su

b
24

%
le

a
ad

d/
su

b
7%

lo
ad

6%
ve

c
lo

ad
4%

co
nd

.
br

an
ch

3%
ve

c
se

t-
vl

3%
ot

he
r

20
%

127

Appendix A. Algorithm Runtime Characteristics

Ta
bl

e
A

.1
8:

A
gg

re
ga

tio
n

ad
va

nc
ed

so
rt

ed
re

du
ce

w
he

re
M
V
L

=
64

an
d
c

=
62

5,
00

0
(h

ig
h)

.

hh
itt

er
se

qu
en

tia
l

so
rt

ed
un

ifo
rm

zi
pf

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
83

,8
23

,3
86

82
,0

38
,2

48
45

,6
26

,5
09

82
,0

38
,2

48
80

,4
26

,0
45

of
w

hi
ch

ar
e

ve
ct

or
16

,8
74

,6
36

16
,7

19
,2

54
5,

00
0,

00
9

16
,7

19
,2

54
16

,6
46

,8
52

sc
al

ar
µ

op
s

78
,3

55
,1

57
76

,5
70

,6
04

46
,7

20
,8

86
76

,5
70

,6
04

74
,7

22
,0

37
in

sn
lin

e
fe

tc
he

s
-l1 -l2

-m
em

22
,0

32
,8

68 0
11

4

21
,5

66
,6

59 0
11

6

11
,5

63
,8

81 4 44

21
,5

66
,7

49 0
11

5

21
,3

87
,2

05 1
11

6
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

5,
07

8,
33

2
19

3
5,

00
1,

00
5

17
1

3,
12

5,
29

8 62
5,

00
1,

02
6

17
4

4,
80

9,
25

3
12

,5
60

sc
al

ar
st

or
e/

lo
ad

ra
tio

0.
47

0.
47

0.
68

0.
47

0.
44

sc
al

ar
lo

ad
s

-l1 -l2
-m

em

9,
33

5,
47

7
39

,0
52 10
0

9,
33

7,
15

8
39

,0
67 89

6,
36

7,
67

2
39

,0
63 52

9,
33

7,
17

2
39

,0
64 91

8,
69

2,
95

3
34

,3
93 11
0

ve
ct

or
lo

ad
s

-l2
-m

em
19

,2
16

,1
36

99
4,

27
4

8,
45

5,
35

7
91

8,
79

7
2,

59
9,

79
5

17
,1

64
28

,9
36

,5
79

53
1,

76
4

19
,5

03
,5

10
1,

07
1,

31
4

av
er

ag
e

ve
ct

or
le

ng
th

(s
td

ev
)

50
.2

7
(2

2.
96

)
55

.0
9

(1
9.

74
)

29
.3

3
(2

5.
09

)
54

.6
5

(1
9.

62
)

52
.3

8
(2

1.
56

)
ve

ct
or

lo
ad

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d

2,
10

9,
15

0 64
62

5,
00

0

2,
03

1,
25

2 64
62

5,
00

0

93
7,

50
2 0 0

2,
03

1,
25

2 64
62

5,
00

0

2,
06

9,
61

6 64
62

5,
00

0
ve

ct
or

st
or

e
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

15
6,

37
0 32

1,
25

0,
00

0

31
2,

53
2 32

1,
25

0,
00

0

31
2,

50
0 0 0

31
2,

53
2 32

1,
25

0,
00

0

11
2,

50
2 32

1,
25

0,
00

0

in
st

ru
ct

io
n

m
ix

lo
gi

ca
l2

8%
ad

d/
su

b
24

%
lo

ad
10

%
le

a
ad

d/
su

b
6%

st
or

e
5%

co
nd

.
br

an
ch

3%
ve

c
lo

ad
3%

ot
he

r
22

%

lo
gi

ca
l2

8%
ad

d/
su

b
24

%
lo

ad
10

%
le

a
ad

d/
su

b
6%

st
or

e
5%

co
nd

.
br

an
ch

3%
ve

c
lo

ad
3%

ot
he

r
22

%

lo
gi

ca
l2

8%
ad

d/
su

b
25

%
lo

ad
12

%
st

or
e

8%
le

a
ad

d/
su

b
5%

co
nd

.
br

an
ch

4%
sim

pl
e

sh
ift

2%
ot

he
r

15
%

lo
gi

ca
l2

8%
ad

d/
su

b
24

%
lo

ad
10

%
le

a
ad

d/
su

b
6%

st
or

e
5%

co
nd

.
br

an
ch

3%
ve

c
lo

ad
3%

ot
he

r
22

%

lo
gi

ca
l2

8%
ad

d/
su

b
24

%
lo

ad
10

%
le

a
ad

d/
su

b
6%

st
or

e
4%

co
nd

.
br

an
ch

3%
ve

c
lo

ad
3%

ot
he

r
22

%

128

A.3. Aggregation

Ta
bl

e
A

.1
9:

A
gg

re
ga

tio
n

m
on

ot
ab

le
w

he
re
M
V
L

=
64

an
d
c

=
15

2
(lo

w
).

hh
itt

er
se

qu
en

tia
l

so
rt

ed
un

ifo
rm

zi
pf

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
8,

12
7,

22
1

8,
12

7,
22

1
5,

62
7,

20
8

8,
12

7,
22

1
8,

12
7,

22
1

of
w

hi
ch

ar
e

ve
ct

or
2,

65
6,

32
0

2,
65

6,
32

0
2,

18
7,

56
7

2,
65

6,
32

0
2,

65
6,

32
0

sc
al

ar
µ

op
s

7,
65

9,
29

2
7,

65
9,

29
2

4,
84

6,
78

8
7,

65
9,

29
2

7,
65

9,
29

2
in

sn
lin

e
fe

tc
he

s
-l1 -l2

-m
em

2,
81

4,
22

7 0 52

2,
81

4,
25

3 0 53

1,
87

6,
68

5 3 49

2,
81

4,
23

1 0 52

2,
81

4,
25

0 0 53
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

78
1,

66
5 85

78
1,

66
2 85

46
9,

16
9 67

78
1,

66
9 85

78
1,

66
2 85

sc
al

ar
st

or
e/

lo
ad

ra
tio

0.
00

0.
00

0.
00

0.
00

0.
00

sc
al

ar
lo

ad
s

-l1 -l2
-m

em

1,
71

9,
46

7 0 27

1,
71

9,
46

9 0 29

1,
09

4,
43

2 0 26

1,
71

9,
48

0 0 27

1,
71

9,
46

9 0 28
ve

ct
or

lo
ad

s
-l2

-m
em

4,
53

7,
76

4
32

7,
15

8
3,

01
3,

49
9

32
5,

33
5

1,
55

8,
40

9
4,

12
9

4,
66

2,
43

8
32

5,
63

8
4,

23
0,

23
2

32
5,

41
6

av
er

ag
e

ve
ct

or
le

ng
th

(s
td

ev
)

64
.0

0
(0

.1
0)

64
.0

0
(0

.1
0)

64
.0

0
(0

.1
1)

64
.0

0
(0

.1
0)

64
.0

0
(0

.1
0)

ve
ct

or
lo

ad
in

sn
s

-u
ni

t
st

rid
e

-s
tr

id
ed

-in
de

xe
d

46
8,

75
6 0

31
2,

50
0

46
8,

75
6 0

31
2,

50
0

31
2,

50
6 0

31
2,

50
0

46
8,

75
6 0

31
2,

50
0

46
8,

75
6 0

31
2,

50
0

ve
ct

or
st

or
e

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d

15 0
31

2,
50

0

15 0
31

2,
50

0

15 0
31

2,
50

0

15 0
31

2,
50

0

15 0
31

2,
50

0

in
st

ru
ct

io
n

m
ix

ad
d/

su
b

24
%

lo
ad

17
%

lo
gi

ca
l1

4%
le

a
ad

d/
su

b
9%

ve
c

lo
ad

8%
ve

c
ad

d/
su

b
8%

co
nd

.
br

an
ch

6%
ot

he
r

15
%

ad
d/

su
b

24
%

lo
ad

17
%

lo
gi

ca
l1

4%
le

a
ad

d/
su

b
9%

ve
c

lo
ad

8%
ve

c
ad

d/
su

b
8%

co
nd

.
br

an
ch

6%
ot

he
r

15
%

ad
d/

su
b

20
%

lo
ad

16
%

lo
gi

ca
l1

3%
le

a
ad

d/
su

b
9%

ve
c

lo
ad

9%
ve

c
ad

d/
su

b
9%

co
nd

.
br

an
ch

4%
ot

he
r

20
%

ad
d/

su
b

24
%

lo
ad

17
%

lo
gi

ca
l1

4%
le

a
ad

d/
su

b
9%

ve
c

lo
ad

8%
ve

c
ad

d/
su

b
8%

co
nd

.
br

an
ch

6%
ot

he
r

15
%

ad
d/

su
b

24
%

lo
ad

17
%

lo
gi

ca
l1

4%
le

a
ad

d/
su

b
9%

ve
c

lo
ad

8%
ve

c
ad

d/
su

b
8%

co
nd

.
br

an
ch

6%
ot

he
r

15
%

129

Appendix A. Algorithm Runtime Characteristics

Ta
bl

e
A

.2
0:

A
gg

re
ga

tio
n

m
on

ot
ab

le
w

he
re
M
V
L

=
64

an
d
c

=
62

5,
00

0
(h

ig
h)

.

hh
itt

er
se

qu
en

tia
l

so
rt

ed
un

ifo
rm

zi
pf

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
8,

86
9,

20
9

8,
86

9,
20

9
6,

36
9,

19
6

8,
86

9,
20

9
8,

86
9,

20
9

of
w

hi
ch

ar
e

ve
ct

or
2,

82
2,

29
1

2,
82

2,
29

1
2,

35
3,

53
8

2,
82

2,
29

1
2,

82
2,

29
1

sc
al

ar
µ

op
s

8,
39

1,
51

7
8,

39
1,

51
7

5,
57

9,
01

3
8,

39
1,

51
7

8,
39

1,
51

7
in

sn
lin

e
fe

tc
he

s
-l1 -l2

-m
em

3,
04

8,
56

8 0 52

3,
04

8,
56

5 0 52

2,
11

0,
99

9 3 48

3,
04

8,
55

2 0 52

3,
04

8,
56

1 0 51
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

85
0,

00
6 88

85
0,

00
8 90

53
7,

51
2 74

85
0,

00
3 89

85
0,

01
0 89

sc
al

ar
st

or
e/

lo
ad

ra
tio

0.
00

0.
00

0.
00

0.
00

0.
00

sc
al

ar
lo

ad
s

-l1 -l2
-m

em

1,
83

6,
63

1 0 27

1,
83

6,
62

3 0 31

1,
21

1,
60

5 0 26

1,
83

6,
62

7 0 27

1,
83

6,
63

7 0 27
ve

ct
or

lo
ad

s
-l2

-m
em

2,
38

3,
25

7
9,

88
3,

65
9

1,
76

3,
97

9
1,

59
5,

41
1

1,
61

6,
18

4
10

1,
45

2
2,

57
8,

30
3

19
,3

58
,6

19
9,

17
8,

14
8

6,
38

5,
27

8
av

er
ag

e
ve

ct
or

le
ng

th
(s

td
ev

)
64

.0
0

(0
.0

6)
64

.0
0

(0
.0

6)
64

.0
0

(0
.0

6)
64

.0
0

(0
.0

6)
63

.9
0

(1
.2

2)
ve

ct
or

lo
ad

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d

48
8,

28
2 0

31
2,

50
0

48
8,

28
2 0

31
2,

50
0

33
2,

03
2 0

31
2,

50
0

48
8,

28
2 0

31
2,

50
0

48
8,

28
2 0

31
2,

50
0

ve
ct

or
st

or
e

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d

48
,8

30 0
31

2,
50

0

48
,8

30 0
31

2,
50

0

48
,8

30 0
31

2,
50

0

48
,8

30 0
31

2,
50

0

48
,8

30 0
31

2,
50

0

in
st

ru
ct

io
n

m
ix

ad
d/

su
b

24
%

lo
ad

16
%

lo
gi

ca
l1

4%
le

a
ad

d/
su

b
9%

ve
c

lo
ad

7%
ve

c
ad

d/
su

b
7%

co
nd

.
br

an
ch

6%
ot

he
r

16
%

ad
d/

su
b

24
%

lo
ad

16
%

lo
gi

ca
l1

4%
le

a
ad

d/
su

b
9%

ve
c

lo
ad

7%
ve

c
ad

d/
su

b
7%

co
nd

.
br

an
ch

6%
ot

he
r

16
%

ad
d/

su
b

21
%

lo
ad

15
%

lo
gi

ca
l1

4%
le

a
ad

d/
su

b
9%

ve
c

lo
ad

8%
ve

c
ad

d/
su

b
8%

co
nd

.
br

an
ch

5%
ot

he
r

20
%

ad
d/

su
b

24
%

lo
ad

16
%

lo
gi

ca
l1

4%
le

a
ad

d/
su

b
9%

ve
c

lo
ad

7%
ve

c
ad

d/
su

b
7%

co
nd

.
br

an
ch

6%
ot

he
r

16
%

ad
d/

su
b

24
%

lo
ad

16
%

lo
gi

ca
l1

4%
le

a
ad

d/
su

b
9%

ve
c

lo
ad

7%
ve

c
ad

d/
su

b
7%

co
nd

.
br

an
ch

6%
ot

he
r

16
%

130

A.3. Aggregation

Ta
bl

e
A

.2
1:

A
gg

re
ga

tio
n

pa
rt

ia
lly

so
rt

ed
m

on
ot

ab
le

w
he

re
M
V
L

=
64

an
d
c

=
62

5,
00

0
(h

ig
h)

.

hh
itt

er
se

qu
en

tia
l

so
rt

ed
un

ifo
rm

zi
pf

to
ta

li
ns

tr
uc

tio
ns

re
tir

ed
21

,3
74

,5
65

21
,3

74
,5

65
-

21
,3

74
,5

65
21

,3
74

,5
65

of
w

hi
ch

ar
e

ve
ct

or
8,

44
7,

45
3

8,
44

7,
45

3
-

8,
44

7,
45

3
8,

44
7,

45
3

sc
al

ar
µ

op
s

17
,6

16
,9

77
17

,6
16

,9
77

-
17

,6
16

,9
77

17
,6

16
,9

71
in

sn
lin

e
fe

tc
he

s
-l1 -l2

-m
em

6,
63

6,
15

0 0
12

3

6,
63

6,
11

4 0
12

3

-
6,

63
6,

11
8 0

12
2

6,
63

6,
23

8 0
12

4
br

an
ch

pr
ed

ic
tio

ns
-c

or
re

ct
-in

co
rr

ec
t

1,
78

8,
46

2
21

1
1,

78
8,

46
4

21
3

-
1,

78
8,

45
7

21
0

1,
78

8,
49

0
22

0
sc

al
ar

st
or

e/
lo

ad
ra

tio
0.

00
0.

00
-

0.
00

0.
00

sc
al

ar
lo

ad
s

-l1 -l2
-m

em

2,
93

1,
62

1 0 65

2,
93

1,
62

1 0 64

-
2,

93
1,

60
8 0 65

2,
93

1,
65

1 0 67
ve

ct
or

lo
ad

s
-l2

-m
em

15
,1

22
,2

10
73

1,
04

3
4,

76
1,

47
7

63
0,

17
7

-
24

,1
16

,2
00

54
9,

92
7

17
,2

62
,1

34
72

1,
73

1
av

er
ag

e
ve

ct
or

le
ng

th
(s

td
ev

)
58

.7
0

(1
2.

47
)

54
.2

5
(2

2.
79

)
-

62
.2

1
(4

.3
0)

56
.8

7
(1

6.
62

)
ve

ct
or

lo
ad

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d

95
7,

03
2 11

62
5,

00
0

95
7,

03
2 9

62
5,

00
0

-
95

7,
03

2 10
62

5,
00

0

95
7,

03
2 10

62
5,

00
0

ve
ct

or
st

or
e

in
sn

s
-u

ni
t

st
rid

e
-s

tr
id

ed
-in

de
xe

d

48
,8

35 4
93

7,
50

0

48
,8

35 4
93

7,
50

0

-
48

,8
35 4

93
7,

50
0

48
,8

35 4
93

7,
50

0

in
st

ru
ct

io
n

m
ix

ad
d/

su
b

19
%

lo
gi

ca
l1

7%
lo

ad
11

%
le

a
ad

d/
su

b
8%

ve
c

ad
d/

su
b

7%
ve

c
lo

ad
6%

co
nd

.
br

an
ch

5%
ot

he
r

27
%

ad
d/

su
b

19
%

lo
gi

ca
l1

7%
lo

ad
11

%
le

a
ad

d/
su

b
8%

ve
c

ad
d/

su
b

7%
ve

c
lo

ad
6%

co
nd

.
br

an
ch

5%
ot

he
r

27
%

-
ad

d/
su

b
19

%
lo

gi
ca

l1
7%

lo
ad

11
%

le
a

ad
d/

su
b

8%
ve

c
ad

d/
su

b
7%

ve
c

lo
ad

6%
co

nd
.

br
an

ch
5%

ot
he

r
27

%

ad
d/

su
b

19
%

lo
gi

ca
l1

7%
lo

ad
11

%
le

a
ad

d/
su

b
8%

ve
c

ad
d/

su
b

7%
ve

c
lo

ad
6%

co
nd

.
br

an
ch

5%
ot

he
r

27
%

131

APPENDIX B

Vector Instruction Set Architecture

In this appendix, we provide formal definitions of the instructions used throughout the
thesis. These instructions extend the x86-64 ISA, however, their style and format are
characteristically different. In a similar vein to VMIPS [HP12, Asa98], we construct
our vector ISA extensions in a RISC-like way. This format is flexible, extensible and
simple to implement. Where x86-64 uses variable length instructions, all of our new
instructions are fixed length. x86-64 operands may come from either registers, main
memory or the instruction itself, i.e. immediates, whereas the operands of our new
instructions are all registers. Furthermore, x86-64 instructions typically use two source
operands where one also serves as the operation’s destination, i.e. instructions are
destructive to its operands. Our instructions allow up to three encoded source operands
and a different destination register, i.e. operations are optionally non-destructive.

B.1 General Format

Each new instruction is encoded using six bytes. Although this might be seen as
quite large for an instruction, there are two important points which justify using this
size. Firstly, this is an on-going research project and we prefer to have ample room
to extend the ISA rapidly in order to prototype new ideas. Having unused bytes
in our instructions allows us to easily append new functionality without worrying
about backwards compatibility. Secondly, the new vector instructions encode a lot of
work, therefore, the semantic density is generally much higher than a typical x86-64
instruction.

To extend the x86-64 ISA, we use a prefix to distinguish our new instructions from
existing ones. We have chosen 0xF1 as a single-byte prefix to mark all of the instructions
listed in this appendix. This prefix was formerly used for In-Circuit Emulation (ICE)
breakpoints, however, it is never used in regular x86-64 applications and is therefore
adequate for simulation purposes. The second byte of the new instructions is always

133

Appendix B. Vector Instruction Set Architecture

an 8-bit opcode while the remaining four bytes are used to encode the instruction’s
parameters. Each parameter is encoded using one nyble as this makes coding and
debugging easier.

B.2 Registers

Using nybles to encode instruction parameters places a restriction on the number
of architectural registers that can be included. Each parameter can address one of
sixteen registers of each type—scalar, vector and mask. Using sixteen registers aligns
nicely with the existing x86-64 ISA which already includes sixteen-general purpose
registers. We find sixteen vector registers to be sufficient when vectorising the DBMS
kernels evaluated in this thesis which seldom require spill code. With respect to mask
registers, sixteen would be overkill—instead, we use four registers and the remaining
twelve symbols are used to indicate that the operation is not masked. The registers in
the ISA are as follows—

– 16× general purpose (scalar) x86-64 registers – sr0→ sr15
– 16× vector registers – vr0→ vr15
– 4× mask registers – mr0→ mr3
– 1× vector length register – vlen

B.3 Datatypes

The new ISA additions currently supports eight datatypes—signed and unsigned
byte, word, long and quad integer types which are one, two, four and eight bytes
respectively. Since four bits are reserved for each instruction parameter, it would be
possible to easily extend the ISA to include eight more datatypes in the future, e.g.
wider integers or even floating point datatypes.

To make the hardware simpler, we do not allow composable vector lengths, hence,
there is no subword parallelism. This means that the maximum vector length will be
fixed for all datatypes, e.g. being able to operate on sixty-four 64-bit integers does not
imply it is possible to operate on 128 32-bit integers. Another motivation for doing
this is to simplify the indexed memory instructions which typically require a larger
datatype for indices.

B.4 Vector Instruction Listing

This section lists all of the new instructions used to vectorise the applications dis-
cussed in this thesis. Each entry provides the name of the instruction, a list of input
parameters and pseudocode describing the instruction’s semantics. Instructions which
partially write to a vector register are non-destructive, therefore, if configuring the
vlen to a value less than the MV L or using a mask, the untouched elements of the
destination vector register will remain intact. Furthermore, while vlen is used in many
instructions, it is an implicit operand and therefore is not encoded in the instruction
itself.

134

B.4. Vector Instruction Listing

Instructions are listed with shorthand notation. vrd refers to the destination vec-
tor register whereas vra, vrb and vrc refer to operand vector registers a, b and c
respectively. Similarly srd refers to the destination scalar (x86-64) register whereas
sra and srb refer to operand scalar registers a and b. Likewise, maskd refers to the
destination mask register whereas maska (or simply mask) and maskb refer to operand
mask registers a and b.

The new instructions are classified as follows—
1. Vector Memory
2. Value Initialisation
3. Arithmetic
4. Logical
5. Comparison
6. Permutative
7. Reduction
8. CAM-Based
9. Miscellaneous

10. Mask Manipulation
11. Vector Length

The arithmetic, logical and comparison instructions are listed with two vector
source operands, i.e. vector-vector. There are cases where it made sense to also include
a vector-scalar variant of some of these instructions; for brevity we don’t list these as
the semantics should be easily inferred from their vector-vector counterparts.

The base address of vector memory instructions must be in x86-64 canonical form
and must be aligned to the datatype of the values being loaded, e.g. it is not legal to
load from an array of 32-bit values if the base address if odd.

B.4.1 Vector Memory

vector load: unit stride
array ← (dtype*) sra
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
vrd[i] ← array[i]

end if
end for

vlen vector length
dtype datatype of values
mask (optional) mask register

vrd destination vector
sra 64-bit base address

vector prefetch: unit stride
array ← (dtype*) sra
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
prefetch array[i]

end if
end for

vlen vector length
dtype datatype of values
mask (optional) mask register

sra 64-bit base address

135

Appendix B. Vector Instruction Set Architecture

vector store: unit stride
array ← (dtype*) sra
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
array[i] ← vra[i]

end if
end for

vlen vector length
dtype datatype of values
mask (optional) mask register

vra vector of source values
sra 64-bit base address

vector load: strided
array ← (dtype*) sra
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
vrd[i] ← array[i·srb]

end if
end for

vlen vector length
dtype datatype of values
mask (optional) mask register

vrd destination vector
sra 64-bit base address
srb stride of operation

vector prefetch: strided
array ← (dtype*) sra
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
prefetch array[i·srb]

end if
end for

vlen vector length
dtype datatype of values
mask (optional) mask register

sra 64-bit base address
srb stride of operation

vector store: strided
array ← (dtype*) sra
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
array[i·srb] ← vra[i]

end if
end for

vlen vector length
dtype datatype of values
mask (optional) mask register

sra 64-bit base address
srb stride of operation
vra vector of values

vector load: indexed
array ← (dtype*) sra
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
if sra = 0 then

vrd[i] ← *vra[i]
else

vrd[i] ← array[vra[i]]
end if

end if
end for

vlen vector length
dtype datatype of values
mask (optional) mask register

vrd destination vector
sra 64-bit base address
vra vector of memory offsets

– If sra = 0 then the behaviour is redefined to use absolute addresses.

136

B.4. Vector Instruction Listing

vector prefetch: indexed
array ← (dtype*) sra
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
if sra = 0 then

prefetch *vra[i]
else

prefetch array[vra[i]]
end if

end if
end for

vlen vector length
dtype datatype of values
mask (optional) mask register

sra 64-bit base address
vra vector of memory offsets

– If sra = 0 then the behaviour is redefined to use absolute addresses.

vector store: indexed
array ← (dtype*) sra
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
if sra = 0 then

*vra[i] ← vrb[i]
else

array[vra[i]] ← vrb[i]
end if

end if
end for

vlen vector length
dtype datatype of values
mask (optional) mask register

sra 64-bit base address
vra vector of memory offsets
vrb vector of values

– If sra = 0 then the behaviour is redefined to use absolute addresses.

– If vra contains repeated values, i.e. conflicting indices, behaviour is undefined.

B.4.2 Value Initialisation

vector set: clear
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
vrd[i] ← 0

end if
end for

vlen vector length
dtype datatype of values
mask (optional) mask register

vrd destination vector

vector set: one to all
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
vrd[i] ← sra

end if
end for

vlen vector length
dtype datatype of values
mask (optional) mask register

vrd destination vector
sra source value

137

Appendix B. Vector Instruction Set Architecture

vector set: iota
iota ← sra
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
vrd[i] ← iota

end if
iota ← iota+1

end for

vlen vector length
dtype datatype of values
mask (optional) mask register

vrd destination vector
sra starting value

B.4.3 Arithmetic

vector-vector add

for (i ← 0, i<vlen, i ← i+1) do
if ¬mask or (mask and mask[i]) then

vrd[i] ← vra[i] + vrb[i]
end if

end for

vlen vector length
dtype datatype of values
mask (optional) mask register

vrd vector of sums
vra vector of first addends
vrb vector of second addends

vector-vector subtract

for (i ← 0, i<vlen, i ← i+1) do
if ¬mask or (mask and mask[i]) then

vrd[i] ← vra[i] - vrb[i]
end if

end for

vlen vector length
dtype datatype of values
mask (optional) mask register

vrd vector of differences
vra vector of minuends
vrb vector of subtrahends

vector-vector multiply

for (i ← 0, i<vlen, i ← i+1) do
if ¬mask or (mask and mask[i]) then

vrd[i] ← vra[i] · vrb[i]
end if

end for

vlen vector length
dtype datatype of values
mask (optional) mask register

vrd vector of products
vra vector of first factors
vrb vector of second factors

B.4.4 Logical

vector-vector bitwise: and

for (i ← 0, i<vlen, i ← i+1) do
if ¬mask or (mask and mask[i]) then

vrd[i] ← vra[i] & vrb[i]
end if

end for

vlen vector length
dtype datatype of values
mask (optional) mask register

vrd destination vector
vra vector of first values
vrb vector of second values

138

B.4. Vector Instruction Listing

vector-vector bitwise: exclusive or

for (i ← 0, i<vlen, i ← i+1) do
if ¬mask or (mask and mask[i]) then

vrd[i] ← vra[i] ∧ vrb[i]
end if

end for

vlen vector length
dtype datatype of values
mask (optional) mask register

vrd destination vector
vra vector of first values
vrb vector of second values

vector-vector bitwise: shift right

for (i ← 0, i<vlen, i ← i+1) do
if ¬mask or (mask and mask[i]) then

vrd[i] ← vra[i] » vrb[i]
end if

end for

vlen vector length
dtype datatype of values
mask (optional) mask register

vrd destination vector
vra vector of values
vrb vector of shift amounts

– Shift is arithmetic or logical depending on whether the datatype is signed or unsigned.

vector-vector bitwise: shift left

for (i ← 0, i<vlen, i ← i+1) do
if ¬mask or (mask and mask[i]) then

vrd[i] ← vra[i] « vrb[i]
end if

end for

vlen vector length
dtype datatype of values
mask (optional) mask register

vrd destination vector
vra vector of values
vrb vector of shift amounts

B.4.5 Comparison

vector-vector compare: not equal

for (i ← 0, i<vlen, i ← i+1) do
if ¬mask or (mask and mask[i]) then

maskd[i] ← (vra[i] 6= vrb[i]) ? 1 : 0
end if

end for

vlen vector length
dtype datatype of values
mask (optional) mask register

maskd destination mask
vra vector of first values
vrb vector of second values

vector-vector compare: greater than

for (i ← 0, i<vlen, i ← i+1) do
if ¬mask or (mask and mask[i]) then

maskd[i] ← (vra[i] > vrb[i]) ? 1 : 0
end if

end for

vlen vector length
dtype datatype of values
mask (optional) mask register

maskd destination mask
vra vector of first values
vrb vector of second values

139

Appendix B. Vector Instruction Set Architecture

vector-vector compare: less than

for (i ← 0, i<vlen, i ← i+1) do
if ¬mask or (mask and mask[i]) then

maskd[i] ← (vra[i] < vrb[i]) ? 1 : 0
end if

end for

vlen vector length
dtype datatype of values
mask (optional) mask register

maskd destination mask
vra vector of first values
vrb vector of second values

B.4.6 Permutative

vector compress
k ← 0
for (i ← 0, i<vlen, i ← i+1) do

if mask[i] then
vrd[k] ← vra[i]
k ← k+1

end if
end for

vlen vector length
dtype datatype of values
mask (required) mask register

vrd destination vector
vra vector of source values

vector expand
k ← 0
for (i ← 0, i<vlen, i ← i+1) do

if mask[i] then
vrd[i] ← vra[k]
k ← k+1

end if
end for

vlen vector length
dtype datatype of values
mask (required) mask register

vrd destination vector
vra vector of source values

vector reverse
j ← vlen−1
for (i ← 0, i<vlen, i ← i+1) do

vrd[i] ← vra[j]
j ← j−1

end for

vlen vector length
dtype datatype of values

vrd destination vector
vra vector of source values

140

B.4. Vector Instruction Listing

vector shuffle
for (i ← 0, i<vlen, i ← i+1) do

bitpos ← log2(maxvlen) + 1
regbit ← getbit(bitpos, vrc[i])
srcreg ← regbit ? vrb : vra
srcelm ← vrc[i] & maxvlen-1
vrd[i] ← srcreg[srcelm]

end for

vlen vector length
dtype datatype of values

vrd destination vector
vra 1st vector of source values
vrb 2nd vector of source values
vrc vector of source

register/element

– The least significant log2(maxvlen) bits are used to determine the source element.

– The bit at position log2(maxvlen) + 1 is used to determine the source register.

B.4.7 Reduction

vector reduce: sum
srd ← 0
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
srd ← srd + vra[i]

end if
end for

vlen vector length
dtype datatype of values
mask (optional) mask register

srd reduced value
vra vector of source values

vector reduce: minimum
first ← true
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
if first then

srd ← vra[i]
first ← false

end if
if vra[i] < srd then

srd ← vra[i]
end if

end if
end for

vlen vector length
dtype datatype of values
mask (optional) mask register

srd reduced value
vra vector of source values

141

Appendix B. Vector Instruction Set Architecture

vector reduce: maximum
first ← true
for (i ← 0, i<vlen, i ← i+1) do

if ¬mask or (mask and mask[i]) then
if first then

srd ← vra[i]
first ← false

end if
if vra[i] > srd then

srd ← vra[i]
end if

end if
end for

vlen vector length
dtype datatype of values
mask (optional) mask register

srd reduced value
vra vector of source values

B.4.8 CAM-Based

Vector Prior Instances
for (i ← 0, i<vlen, i ← i+1) do

vrd[i] ← 0
for (j ← 0, j<i, j ← j+1) do

if vra[i] = vra[j] then
vrd[i] ← vrd[i]+1

end if
end for

end for

vlen vector length
dtype datatype of values

vrd destination vector
vra vector of values

Vector Group Aggregate: Sum
for (i ← 0, i<vlen, i ← i+1) do

vrd[i]=0
for (j ← 0, j≤i, j ← j+1) do

if vra[i] = vra[j] then
vrd[i] ← vrd[i]+vrb[j]

end if
end for

end for

vlen vector length
dtype datatype of values

vrd destination vector
vra vector of group keys
vrb vector of values to reduce

142

B.4. Vector Instruction Listing

Vector Last Unique
for (i ← vlen−1, i≥0, i ← i−1) do

found ← false
for (j ← i+1, j<vlen, j ← j+1) do

if vra[i] = vra[j] then
found ← true

end if
end for
md[i] ← ¬found

end for

vlen vector length
dtype datatype of values

md destination mask
vra vector of values
vrb result of VPU/VGAsum

– Currently, our implementation requires performing VPI or VGAsum before calculating
VLU.

B.4.9 Miscellaneous

vector merge
for (i ← 0, i<vlen, i ← i+1) do

if mask[i] then
vrd[i] ← vrb[i]

else
vrd[i] ← vra[i]

end if
end for

vlen vector length
dtype datatype of values
mask mask register

vrd destination vector
vra 1st vector of source values
vrb 2nd vector of source values

vector get element

srd ← vra[sra]

vlen vector length
srd destination register
vra vector of source values
sra position in vector register

– Undefined behaviour when position is not in range.

vector set element

vrd[srb] ← sra

vlen vector length
vrd destination vector
sra value to write
srb position in vector register

– Undefined behaviour when position is not in range.

143

Appendix B. Vector Instruction Set Architecture

B.4.10 Mask Manipulation

mask set all
for (i ← 0, i<maxvlen, i ← i+1) do

maskd[i] ← 1
end for

maskd destination mask

mask clear all
for (i ← 0, i<maxvlen, i ← i+1) do

maskd[i] ← 0
end for

maskd destination mask

mask-mask and
for (i ← 0, i<maxvlen, i ← i+1) do

maskd[i] ← maska[i] & maskb[i]
end for

maskd destination mask
maska first source mask
maskb second source mask

mask-mask or
for (i ← 0, i<maxvlen, i ← i+1) do

maskd[i] ← maska[i] | maskb[i]
end for

maskd destination mask
maska first source mask
maskb second source mask

mask not
for (i ← 0, i<maxvlen, i ← i+1) do

maskd[i] ← ¬maska[i]
end for

maskd destination mask
maska source mask

mask population count
srd ← 0
for (i ← 0, i<vlen, i ← i+1) do

if mask[i] then
srd ← srd+1

end if
end for

vlen vector length
mask source mask

srd destination scalar register

B.4.11 Vector Length

vector length: set maximum
vlen ← maxvlen

144

B.4. Vector Instruction Listing

vector length: set
vlen ← sra sra source value

vector length: get
srd ← vlen srd destination register

145

List of Figures

2.1 Breakdown of the TPC-H benchmark with 100 GB database. 13
2.2 Probe phase of hash join. 13
2.3 Block diagram of the baseline microarchitecture extended with vector

support. 17
2.4 Hardware design space exploration running the vectorised hash join

probe binary when MV L = 64. 26
2.5 Average vector length compared to maximum vector length using tpch. . 28
2.6 Scalability of vector code when increasing the maximum vector length. . 28
2.7 Impact of memory bandwidth on performance using tpch. 30
2.8 Speedups while varying memory bandwidth and MSHRs using tpch and

MV L = 64. 31
2.9 Speedup of scalar code when increasing superscalar capabilities. 32
2.10 Speedups achieved with use of software prefetching when MV L = 64. . 33

3.1 Pseudocode for the vectorised quicksort algorithm. 41
3.2 Performance results for quicksort. 41
3.3 Performance results for quicksort with an OET sort cleanup. 42
3.4 Pseudocode for a single step of the vectorised bitonic network. 43
3.5 Performance results for bitonic mergesort. 44
3.6 Varying the number of lanes of bitonic mergesort when MV L = 64. . . . 44
3.7 The three steps of the first pass of the vectorised radix sort where n = 12,

MV L = 4 and bins = 4. 46
3.8 The optimal number of bins for radix sort when MV L = 64. 47
3.9 Performance results for radix sort run with sixteen bins. 47
3.10 Step by step example of the first pass of the new VSR sort algorithm

where n = 12, MV L = 4 and bins = 4. 49
3.11 Example of Vector Prior Instances (VPI). 50
3.12 Example of Vector Last Unique (VLU). 50
3.13 Pseudocode for Step 3b of VSR sort. 51

147

List of Figures

3.14 Proposed hardware calculating VPI. 52
3.15 Parallel optimisation for VPI/VLU hardware with two CAM lanes. 53
3.16 Comparison of radix sort and VSR sort using sixteen histogram bins. . . 55
3.17 The optimal number of bins for VSR sort when MV L = 64. 55
3.18 Performance results for VSR sort run with 256 histogram bins. 56
3.19 Results for VSR sort when processing the large dataset run with various

hardware implementations of VPI and VLU. 57

4.1 Example of an aggregation operation. The input table on the left is
summarised on the right. Earnings are grouped by age range and averaged. 61

4.2 Sum reduction when V L = 8 and lanes = 2. 64
4.3 SQL code used to evaluate the various aggregation algorithms. 64
4.4 Example of input table r and output table of SQL code. 65
4.5 Pseudocode for step 3 of the baseline algorithm scalar. 66
4.6 Performance results for the baseline algorithm scalar. 67
4.7 Performance results for standard sorted reduce. 69
4.8 An illustrative example of polytable calculating the count table where

n = 12 and MV L = 4. 70
4.9 Performance results for polytable. 71
4.10 VPI speedups over one CAM lane when using multiple CAM lanes. . . . 74
4.11 Optimised parallel hazard detection for hardware with four CAM lanes. 75
4.12 Performance results for advanced sorted reduce. 76
4.13 Semantics of the VGAsum instruction. 77
4.14 Hardware implementation of VGAsum. 78
4.15 Pseudocode for updating a table using VGAsum. 78
4.16 Performance results for monotable. 79
4.17 Performance results for partially sorted monotable. 80

5.1 Runtime dynamic energy comparison of all the sorting algorithms. . . . 88
5.2 Dynamic energy breakdown of scalar and vectorised quicksort algorithms. 89
5.3 Dynamic energy breakdown of bitonic mergesort. 91
5.4 Dynamic energy breakdown of radix sort with sixteen bins. 92
5.5 Dynamic energy breakdown of VSR sort with sixteen bins. 93
5.6 Dynamic energy breakdown of VSR sort with 256 bins. 94
5.7 Normalised average power consumption of all sorting algorithms. 95

148

List of Tables

2.1 Overview of added vector instructions. 15
2.2 Simulator superscalar and out-of-order parameters. 22
2.3 Simulator cache hierarchy parameters. 23
2.4 Simulator memory system parameters. 23
2.5 Simulator vector extension parameters. 23
2.6 Scaled superscalar and out-of-order simulator parameters. 31

3.1 Overview of vector instructions with new additions for sorting. 39
3.2 Quicksort’s performance per partition. 42
3.3 The probabilities of structural collisions in the VPI/VLU hardware for a

uniform distribution when varying the number of histogram bins and
CAM lanes. 54

4.1 Overview of vector instructions with new additions for aggregation. . . . 63
4.2 Average speedups (and standard deviation) of standard sorted reduce

over scalar. Highlighted cells mark best result so far. 69
4.3 Average speedups (and standard deviation) of polytable over scalar.

Highlighted cells mark best result so far. 71
4.4 Average speedups (and standard deviation) of advanced sorted reduce

over scalar. Highlighted cells mark best result so far. 76
4.5 Average speedups (and standard deviation) of monotable over scalar.

Highlighted cells mark best result so far. 79
4.6 Average speedups (and standard deviation) of partially sorted mo-

notable over scalar. Highlighted cells mark best result so far. 81
4.7 Best average speedup (and algorithm) over scalar. 81

5.1 Total area (and overhead) of processor with vector extensions. 88
5.2 Per bank energy of vector register file for bitonic mergesort whenMV L =

64. 91

149

List of Tables

A.1 Hash join run with the l1r dataset. 111
A.2 Hash join run with the l2r dataset. 112
A.3 Hash join run with the 2mb dataset. 113
A.4 Hash join run with the huge dataset. 114
A.5 Hash join run with the tpch dataset. 115
A.6 Vectorised quicksort run with the large dataset. 116
A.7 Vectorised quicksort w/ OET cleanup run with the large dataset. 117
A.8 Vectorised bitonic mergesort run with the large dataset. 118
A.9 Vectorised radix sort (bins=16) run with the large dataset. 119
A.10 Vectorised VSR sort (bins=256) run with the large dataset. 120
A.11 Aggregation scalar where c = 152 (low). 121
A.12 Aggregation scalar where c = 625, 000 (high). 122
A.13 Aggregation standard sorted reduce where MV L = 64 and c = 152

(low). 123
A.14 Aggregation standard sorted reduce where MV L = 64 and c =

625, 000 (high). 124
A.15 Aggregation polytable where MV L = 64 and c = 152 (low). 125
A.16 Aggregation polytable where MV L = 64 and c = 625, 000 (high). 126
A.17 Aggregation advanced sorted reduce where MV L = 64 and c = 152

(low). 127
A.18 Aggregation advanced sorted reduce where MV L = 64 and c =

625, 000 (high). 128
A.19 Aggregation monotable where MV L = 64 and c = 152 (low). 129
A.20 Aggregation monotable where MV L = 64 and c = 625, 000 (high). . . . 130
A.21 Aggregation partially sorted monotable where MV L = 64 and c =

625, 000 (high). 131

150

Bibliography

[AANS+14] Oriol Arcas-Abella, Geoffrey Ndu, Nehir Sonmez, Mohsen Ghasempour,
Adria Armejach, Javier Navaridas, Wei Song, John Mawer, Adrián Cristal,
and Mikel Luján. An Empirical Evaluation of High-level Synthesis Lan-
guages and Tools for Database Acceleration. In 24th International Con-
ference on Field Programmable Logic and Applications (FPL), pages 1–8.
IEEE, 2014. Referenced on 6.

[ABH+13] Daniel Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos, and
Samuel Madden. The Design and Implementation of Modern Column-
Oriented Database Systems. Foundations and Trends in Databases,
5(3):197–280, 2013. Referenced on 40.

[ABS+07] Dennis Abts, Abdulla Bataineh, Steve Scott, Greg Faanes, Jim Schwar-
zmeier, Eric Lundberg, Tim Johnson, Mike Bye, and Gerald Schwoerer.
The Cray BlackWidow: A Highly Scalable Vector Multiprocessor. In Pro-
ceedings of the ACM/IEEE Conference on Supercomputing, pages 17:1–
17:12, 2007. Referenced on 16.

[Act11] Actian. Vectorwise. Record Breaking Action Engine for Big Data. http:
//www.actian.com/products/vectorwise, 2011. Referenced on 11.

[AED05] Jung Ho Ahn, Mattan Erez, and William J. Dally. Scatter-Add in Data
Parallel Architectures. In Proceedings of the 11th International Symposium
on High-Performance Computer Architecture, HPCA ’05, pages 132–142,
2005. Referenced on 58, 83.

[Asa98] Krste Asanović. Vector Microprocessors. PhD thesis, EECS Department,
University of California, Berkeley, 1998. Referenced on 5, 16, 133.

[Bat68] K. E. Batcher. Sorting networks and their applications. In Proceedings of
the April 30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68
(Spring), pages 307–314, 1968. Referenced on 7, 43.

151

http://www.actian.com/products/vectorwise
http://www.actian.com/products/vectorwise

Bibliography

[BBK+68] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A.
Stokes. The ILLIAC IV Computer. IEEE Transactions on Computers,
C-17(8):746–757, Aug 1968. Referenced on 3.

[BFGS12] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun.
Internally Deterministic Parallel Algorithms Can Be Fast. In Proceedings
of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP, pages 181–192, 2012. Referenced on 51.

[BMK99] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Database Ar-
chitecture Optimized for the New Bottleneck: Memory Access. In Pro-
ceedings of the 25th International Conference on Very Large Data Bases,
VLDB ’99, pages 54–65, 1999. Referenced on 1, 5.

[BNE14] Peter Boncz, Thomas Neumann, and Orri Erling. TPC-H Analyzed: Hid-
den Messages and Lessons Learned from an Influential Benchmark. In
Performance Characterization and Benchmarking, volume 8391 of Lecture
Notes in Computer Science, pages 61–76. Springer International Publish-
ing, 2014. Referenced on 61.

[Boh07] M. Bohr. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper.
Solid-State Circuits Society Newsletter, IEEE, 12(1):11–13, 2007. Refer-
enced on 2.

[BZN05] Peter A. Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-
Pipelining Query Execution. In Proceedings of the 2nd Biennial Confer-
ence on Innovative Data Systems Research, volume 5 of CIDR, pages
225–237, 2005. Referenced on 6, 11, 34.

[CAGM04] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C.
Mowry. Improving Hash Join Performance through Prefetching. In Pro-
ceedings of the 20th International Conference on Data Engineering, pages
116–127, 2004. Referenced on 32, 35.

[Cat11] Rick Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Record,
39(4):12–27, May 2011. Referenced on 106.

[CBZ90] Siddhartha Chatterjee, Guy E. Blelloch, and Marco Zagha. Scan Primit-
ives for Vector Computers. In Proceedings of the 1990 ACM/IEEE Confer-
ence on Supercomputing, Supercomputing ’90, pages 666–675, Los Alam-
itos, CA, USA, 1990. IEEE Computer Society Press. Referenced on 102.

[CEL+03] Silviu Ciricescu, Ray Essick, Brian Lucas, Phil May, Kent Moat, Jim Nor-
ris, Michael Schuette, and Ali Saidi. The Reconfigurable Streaming Vector
Processor (RSVPTM). In Proceedings of the 36th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO ’03, pages 141–150.
IEEE Computer Society, 2003. Referenced on 101.

152

Bibliography

[CK85] George P. Copeland and Setrag N. Khoshafian. A Decomposition Storage
Model. In Proceedings of the 1985 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’85, pages 268–279, 1985. Refer-
enced on 11, 40.

[CML14] Min Chen, Shiwen Mao, and Yunhao Liu. Big Data: A Survey. Mobile
Networks and Applications, 19(2):171–209, 2014. Referenced on 1, 61.

[CNL+08] Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy, Mo-
stafa Hagog, Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and Pra-
deep Dubey. Efficient Implementation of Sorting on Multi-Core SIMD
CPU Architecture. Proceedings of the VLDB Endowment, 1(2):1313–1324,
August 2008. Referenced on 6, 37, 43.

[CR07] John Cieslewicz and Kenneth A. Ross. Adaptive Aggregation on Chip
Multiprocessors. In Proceedings of the 33rd International Conference on
Very Large Data Bases, VLDB ’07, pages 339–350. VLDB Endowment,
2007. Referenced on 64, 65.

[Cra96] Harvey G. Cragon. Memory Systems and Pipelined Processors. Jones &
Bartlett Publishers, Inc., 1996. Referenced on 3.

[CVE99] Jesus Corbal, Mateo Valero, and Roger Espasa. Exploiting a New Level
of DLP in Multimedia Applications. In Proceedings of the 32nd Annual
ACM/IEEE International Symposium on Microarchitecture, MICRO ’99,
pages 72–79, 1999. Referenced on 101.

[DDHS00] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scale. AltiVec exten-
sion to PowerPC accelerates media processing. IEEE Micro, 20(2):85–95,
Mar 2000. Referenced on 5.

[DGR+74] Robert H. Dennard, Fritz H. Gaensslen, V. Leo Rideout, Ernest Bas-
sous, and Andre R. LeBlanc. Design of ion-implanted MOSFET’s with
very small physical dimensions. Solid-State Circuits, IEEE Journal of,
9(5):256–268, 1974. Referenced on 2.

[EAE+02] Roger Espasa, Federico Ardanaz, Joel Emer, Stephen Felix, Julio Gago,
Roger Gramunt, Isaac Hernandez, Toni Juan, Geoff Lowney, Matthew
Mattina, and André Seznec. Tarantula: A Vector Extension to the Alpha
Architecture. In Proceedings of the 29th Annual International Symposium
on Computer Architecture, ISCA ’02, pages 281–292, 2002. Referenced
on 16, 18.

[EVS97] Roger Espasa, Mateo Valero, and James E. Smith. Out-of-Order Vector
Architectures. In Proceedings of the 30th Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture, MICRO ’97, pages 160–170, 1997.
Referenced on 16, 18, 23.

153

Bibliography

[EVS98] Roger Espasa, Mateo Valero, and James E. Smith. Vector Architectures:
Past, Present and Future. In Proceedings of the 12th International Confer-
ence on Supercomputing, ICS ’98, pages 425–432, 1998. Referenced on 3,
16.

[Fly66] Michael J. Flynn. Very high-speed computing systems. Proceedings of the
IEEE, 54(12):1901–1909, Dec 1966. Referenced on 2.

[Fly72] Michael J. Flynn. Some Computer Organizations and Their Effective-
ness. IEEE Transactions on Computers, 21(9):948–960, September 1972.
Referenced on 3.

[Fog12] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs/An
optimization guide for assembly programmers and compiler makers, 2012.
Referenced on 22.

[FVS+13] Jianbin Fang, Ana Lucia Varbanescu, Henk J. Sips, Lilun Zhang, Yong-
gang Che, and Chuanfu Xu. An Empirical Study of Intel Xeon Phi. CoRR,
abs/1310.5842, 2013. Referenced on 44.

[GBY07] Buǧra Gedik, Rajesh R. Bordawekar, and Philip S. Yu. CellSort: High
Performance Sorting on the Cell Processor. In Proceedings of the 33rd
International Conference on Very Large Data Bases, VLDB ’07, pages
1286–1297, 2007. Referenced on 6, 37, 43.

[GGK+83] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe,
Larry Rudolph, and Marc Snir. The NYU Ultracomputer - Designing
an MIMD Shared Memory Parallel Computer. IEEE Transactions on
Computers, 100(2):175–189, 1983. Referenced on 51.

[GGKM06] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha.
GPUTeraSort: high performance graphics co-processor sorting for large
database management. In International Conference on Management of
Data, SIGMOD, pages 325–336, 2006. Referenced on 6.

[GH11] Chris Gregg and Kim Hazelwood. Where is the Data? Why You Cannot
Debate CPU vs. GPU Performance Without the Answer. In International
Symposium on Performance Analysis of Systems and Software, ISPASS,
pages 134–144, 2011. Referenced on 6.

[GHF+06] Michael Gschwind, H. Peter Hofstee, Brian Flachs, Martin Hopkins, Yukio
Watanabe, and Takeshi Yamazaki. Synergistic Processing in Cell’s Mul-
ticore Architecture. IEEE Micro, 26(2):10–24, 2006. Referenced on 34.

[GM93] G. Graefe and W. J. McKenna. The Volcano optimizer generator: ex-
tensibility and efficient search. In Proceedings of the Ninth International
Conference on Data Engineering, pages 209–218, April 1993. Referenced
on 13.

154

Bibliography

[GP07] Joe Gebis and David Patterson. Embracing and Extending 20th-Century
Instruction Set Architectures. Computer, 40(4):68–75, 2007. Referenced
on 2.

[GVTP97] Antonio González, Mateo Valero, Nigel Topham, and Joan M. Parcer-
isa. Eliminating Cache Conflict Misses Through XOR-based Placement
Functions. In Proceedings of the 11th International Conference on Super-
computing, ICS ’97, pages 76–83. ACM, 1997. Referenced on 63.

[Hab72] A. Nico Habermann. Parallel neighbor-sort (or the glory of the induction
principle). Technical report, Carnegie Mellon University, 1972. Referenced
on 42.

[Hal56] A. C. D. Haley. DEUCE: a High-speed General-purpose Computer.
Proceedings of the IEE - Part B: Radio and Electronic Engineering,
103(2):165–173, April 1956. Referenced on 2.

[HB09] Urs Hoelzle and Luiz Andre Barroso. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan and
Claypool Publishers, 1st edition, 2009. Referenced on 2.

[HJ88] R. W. Hockney and C. R. Jesshope. Parallel Computers Two: Architec-
ture, Programming and Algorithms. IOP Publishing Ltd., Bristol, UK,
2nd edition, 1988. Referenced on 2.

[HLY+09] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong
Luo, and Pedro V. Sander. Relational Query Coprocessing on Graphics
Processors. ACM Transactions on Database Systems, 34(4):21:1–21:39,
2009. Referenced on 6, 16, 34.

[HNZB07] Sándor Héman, Niels Nes, Marcin Zukowski, and Peter Boncz. Vectorized
Data Processing on the Cell Broadband Engine. In Proceedings of the 3rd
International Workshop on Data Management on New Hardware, DaMoN,
pages 4:1–4:6, 2007. Referenced on 6, 34.

[Hoa62] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.
Referenced on 40.

[HP12] John L Hennessy and David A Patterson. Computer Architecture: A
Quantitative Approach. Elsevier, 2012. Referenced on 2, 133.

[HSU+01] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, et al. The Mi-
croarchitecture of the Pentium R© 4 Processor. In Intel Technology Journal.
Citeseer, 2001. Referenced on 5.

[HT72] R. G. Hintz and D. P. Tate. Control data STAR-100 processor design. In
Compcon72 Sixth Annual IEEE Computer Society International Confer-
ence, pages 1–4. IEEE Computer Society, 1972. Referenced on 3.

155

Bibliography

[IMKN07] Hiroshi Inoue, Takao Moriyama, Hideaki Komatsu, and Toshio Nakatani.
AA-Sort: A New Parallel Sorting Algorithm for Multi-Core SIMD Pro-
cessors. In Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques, PACT ’07, pages 189–198, 2007.
Referenced on 6, 37, 43.

[Ing09] Ingres. Ingres/VectorWise Sneak Preview on the Intel Xeon Processor
5500 Series-Based Platform. white paper, 2009. Referenced on 14.

[Int11] International Data Corporation. Worldwide Server Market Acceler-
ates Sharply in Fourth Quarter as Demand for Heterogeneous Plat-
forms Leads the Way, According to IDC. http://www.idc.com/about/
viewpressrelease.jsp?containerId=prUS22716111, February 2011.
Accessed on 2011-09-08. Referenced on 14.

[Int14a] Intel. Intel R©64 and IA-32 Architectures Optimization Reference Manual,
March 2014. Referenced on 15, 22.

[Int14b] Intel. Intel R©Architecture Instruction Set Extensions Programming Refer-
ence, March 2014. Referenced on 5, 58, 84.

[JK12] J. Jeddeloh and B. Keeth. Hybrid memory cube new DRAM architecture
increases density and performance. In Symposium on VLSI Technology
(VLSIT), pages 87–88, June 2012. Referenced on 106.

[JNW07] Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache,
DRAM, Disk. Morgan Kaufmann Publishers Inc., 1st edition, 2007. Ref-
erenced on 23, 30.

[KKL+09] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D.
Nguyen, Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep
Dubey. Sort vs. Hash Revisited: Fast Join Implementation on Modern
Multi-Core CPUs. Proceedings of The VLDB Endowment, 2(2):1378–1389,
2009. Referenced on 6, 33.

[KKS+08] Sanjeev Kumar, Daehyun Kim, Mikhail Smelyanskiy, Yen-Kuang Chen,
Jatin Chhugani, Christopher J. Hughes, Changkyu Kim, Victor W. Lee,
and Anthony D. Nguyen. Atomic Vector Operations on Chip Multipro-
cessors. In Proceedings of the 35th Annual International Symposium on
Computer Architecture, ISCA ’08, pages 441–452, 2008. Referenced on 58,
84, 103.

[Knu98] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching (2nd Edition). Addison Wesley Longman Publishing Co.,
Inc., 1998. Referenced on 45.

[Kog81] Peter M. Kogge. The Architecture of Pipelined Computers. Hemisphere
Publishing Corporation, 1981. Referenced on 3, 16, 63.

156

http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22716111
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22716111

Bibliography

[LAB+11] Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia, Derek Lock-
hart, Christopher Batten, and Krste Asanović. Exploring the Tradeoffs
Between Programmability and Efficiency in Data-parallel Accelerators.
In Proceedings of the 38th Annual International Symposium on Computer
Architecture, ISCA ’11, pages 129–140, 2011. Referenced on 2, 5, 96.

[LAS+09] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M
Tullsen, and Norman P Jouppi. McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and Manycore Architectures.
In Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’09, pages 469–480. IEEE, 2009. Referenced
on 87.

[LBE+98] Jack L Lo, Luiz André Barroso, Susan J Eggers, Kourosh Gharachorloo,
Henry M Levy, and Sujay S Parekh. An Analysis of Database Work-
load Performance on Simultaneous Multithreaded Processors. In ACM
SIGARCH Computer Architecture News, volume 26, pages 39–50. IEEE
Computer Society, 1998. Referenced on 6.

[LCA+11] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman P.
Jouppi. CACTI-P: Architecture-level modeling for SRAM-based struc-
tures with advanced leakage reduction techniques. In International Con-
ference on Computer-Aided Design, ICCAD, pages 694–701, 2011. Refer-
enced on 54.

[Lee95] Ruby B. Lee. Accelerating Multimedia with Enhanced Microprocessors.
IEEE Micro, 15(2):22–32, April 1995. Referenced on 4.

[Lev90] Stewart A Levin. A fully vectorized quicksort. Parallel computing,
16(2):369–373, 1990. Referenced on 37, 42.

[LGBT05] C.C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari. Bridging the processor-
memory performance gap with 3D IC technology. Design Test of Com-
puters, IEEE, 22(6):556–564, Nov 2005. Referenced on 106.

[LKC+10] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Dae-
hyun Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy,
Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep
Dubey. Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU. In ACM SIGARCH Computer
Architecture News, volume 38, pages 451–460, 2010. Referenced on 6, 51.

[LSCJ06] Christophe Lemuet, Jack Sampson, Jean-Francois Collard, and Norm
Jouppi. The Potential Energy Efficiency of Vector Acceleration. In Pro-
ceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC ’06.
ACM, 2006. Referenced on 5, 96.

[Mar96] Rich Martin. A Vectorized Hash-Join. IRAM technical report, University
of California at Berkeley, 1996. Referenced on 33.

157

Bibliography

[MCB+11] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard
Dobbs, Charles Roxburgh, and Angela H. Byers. Big data: The next
frontier for innovation, competition, and productivity. McKinsey Global
Institute, 2011. Referenced on 1, 61.

[MHIT14] Shintaro Momose, Takashi Hagiwara, Yoko Isobe, and Hiroshi Takahara.
The Brand-New Vector Supercomputer, SX-ACE. In Proceedings of the
29th International Conference on Supercomputing - Volume 8488, ISC
2014, pages 199–214, New York, NY, USA, 2014. Springer-Verlag New
York, Inc. Referenced on 103.

[MK00] Shintaro Meki and Yahiko Kambayashi. Acceleration of Relational Data-
base Operations on Vector Processors. Systems and Computers in Japan,
31(8):79–88, 2000. Referenced on 16, 34.

[Moo65] G. E. Moore. Cramming More Components onto Integrated Circuits.
Electronics, 38(8):114–117, April 1965. Referenced on 2.

[MTA09] Rene Mueller, Jens Teubner, and Gustavo Alonso. Data processing on
FPGAs. Proceedings of the VLDB Endowment, 2(1):910–921, 2009. Ref-
erenced on 6.

[NH83] Lionel M. Ni and Kai Hwang. Vector reduction methods for arithmetic
pipelines. In IEEE 6th Symposium on Computer Arithmetic (ARITH),
pages 144–150, June 1983. Referenced on 63.

[OFW99] S. Oberman, G. Favor, and F. Weber. AMD 3DNow! technology: ar-
chitecture and implementations. IEEE Micro, 19(2):37–48, Mar 1999.
Referenced on 5.

[PA11] Davide Pasetto and Albert Akhriev. A Comparative Study of Parallel
Sort Algorithms. In Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, OOPSLA, pages 203–204, 2011. Ref-
erenced on 6.

[PJS97] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith. Complexity-
Effective Superscalar Processors. In Proceedings of the 24th Annual Inter-
national Symposium on Computer Architecture, ISCA ’97, pages 206–218,
1997. Referenced on 5, 12, 16.

[PLH+15] Jason Power, Yinan Li, Mark D. Hill, Jignesh M. Patel, and David A.
Wood. Toward GPUs being mainstream in analytic processing: An initial
argument using simple scan-aggregate queries. In Proceedings of the 11th
International Workshop on Data Management on New Hardware, DaMoN,
page 11. ACM, 2015. Referenced on 83.

[PM12] Matt Pharr and William R. Mark. ispc: A SPMD Compiler for High-
Performance CPU Programming. In Innovative Parallel Computing, In-
Par, pages 1–13, 2012. Referenced on 6.

158

Bibliography

[PR13] Orestis Polychroniou and Kenneth A. Ross. High Throughput Heavy
Hitter Aggregation for Modern SIMD Processors. In Proceedings of the
Ninth International Workshop on Data Management on New Hardware,
DaMoN ’13, pages 6:1–6:6. ACM, 2013. Referenced on 6, 64, 82.

[PW96] A. Peleg and U. Weiser. MMX technology extension to the Intel architec-
ture. IEEE Micro, 16(4):42–50, Aug 1996. Referenced on 5.

[QCEV99] Francisca Quintana, Jesus Corbal, Roger Espasa, and Mateo Valero.
Adding a Vector Unit to a Superscalar Processor. In Proceedings of the
13th International Conference on Supercomputing, ICS ’99, pages 1–10,
1999. Referenced on 17, 27.

[Rau91] B. Ramakrishna Rau. Pseudo-randomly Interleaved Memory. In Proceed-
ings of the 18th Annual International Symposium on Computer Architec-
ture, ISCA ’91, pages 74–83. ACM, 1991. Referenced on 63.

[RCBJ11] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. DRAMSim2: A
Cycle Accurate Memory System Simulator. IEEE Computer Architure
Letters, 10(1):16–19, January 2011. Referenced on 21.

[RGAB98] Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita V. Adve, and
Luiz André Barroso. Performance of Database Workloads on Shared-
Memory Systems with Out-of-Order Processors. In ACM SIGPLAN No-
tices, volume 33, pages 307–318. ACM, 1998. Referenced on 6.

[Rus78] Richard M. Russell. The CRAY-1 Computer System. Communications of
the ACM, 21(1):63–72, January 1978. Referenced on 3.

[SBF+12] Julian Shun, Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons,
Aapo Kyrola, Harsha Vardhan Simhadri, and Kanat Tangwongsan. Brief
Announcement: The Problem Based Benchmark Suite. In Proceedings of
the 24th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA, pages 68–70, 2012. Referenced on 51.

[SBM62] Daniel L. Slotnick, W. Carl Borck, and Robert C. McReynolds. The
SOLOMON Computer. In Proceedings of the December 4-6, 1962, Fall
Joint Computer Conference, AFIPS ’62 (Fall), pages 97–107, New York,
NY, USA, 1962. ACM. Referenced on 3.

[Sch87a] Paul B. Schneck. Supercomputer Architecture, volume 31 of The Kluwer
International Series in Engineering and Computer Science. Kluwer Aca-
demic Publishers, 1987. Referenced on 3.

[Sch87b] W. Schönauer. Scientific Computing on Vector Computers. Elsevier Sci-
ence Publisher B.V., 1987. Referenced on 3, 29.

[Sed78] Robert Sedgewick. Implementing Quicksort Programs. Communications
of the ACM, 21(10):847–857, October 1978. Referenced on 40.

159

Bibliography

[Sen67] D. N. Senzig. Observations on High-performance Machines. In Proceedings
of the November 14-16, 1967, Fall Joint Computer Conference, AFIPS ’67
(Fall), pages 791–799, New York, NY, USA, 1967. ACM. Referenced on 3.

[SFS00] J. E. Smith, Greg Faanes, and Rabin Sugumar. Vector Instruction Set
Support for Conditional Operations. In Proceedings of the 27th Annual
International Symposium on Computer Architecture, pages 260–269, 2000.
Referenced on 15.

[SHG09] Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient
sorting algorithms for manycore GPUs. In International Symposium on
Parallel & Distributed Processing, IPDPS, pages 1–10, 2009. Referenced
on 6.

[SKC+10] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen,
Victor W. Lee, Daehyun Kim, and Pradeep Dubey. Fast Sort on CPUs
and GPUs: A Case for Bandwidth Oblivious SIMD Sort. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’10, pages 351–362, 2010. Referenced on 37, 43.

[SS65] D. N. Senzig and R. V. Smith. Computer Organization for Array Pro-
cessing. In Proceedings of the November 30–December 1, 1965, Fall Joint
Computer Conference, Part I, AFIPS ’65 (Fall, part I), pages 117–128,
New York, NY, USA, 1965. ACM. Referenced on 3.

[Sta13] JEDEC Standard. High Bandwidth Memory (HBM) DRAM. JESD235,
2013. Referenced on 106.

[Sto78] H. S. Stone. Sorting on STAR. IEEE Transactions on Software Engin-
eering, 4(2):138–146, March 1978. Referenced on 37, 40, 43, 101.

[Sut05] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software. Dr. Dobb’s Journal, 30(3):202–210, 2005. Ref-
erenced on 2.

[SZB11] Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. Vectorization vs.
Compilation in Query Execution. In Proceedings of the 7th International
Workshop on Data Management on New Hardware, pages 33–40, 2011.
Referenced on 14.

[SZG+09] S. Srinivasan, L. Zhao, B. Ganesh, B. Jacob, M. Espig, and R. Iyer. CMP
Memory Modeling: How Much Does Accuracy Matter? In Proceedings
of the 5th Annual Workshop on Modeling, Benchmarking and Simulation,
pages 24–33, 2009. Referenced on 30.

[Tra11] Transaction Processing Performance Council. TPC-H Standard Specific-
ation v2.14.2. http://www.tpc.org/tpch/, 2011. Referenced on 12.

160

http://www.tpc.org/tpch/

Bibliography

[Wat72] W. J. Watson. The TI ASC: A Highly Modular and Flexible Super Com-
puter Architecture. In Proceedings of the December 5-7, 1972, Fall Joint
Computer Conference, Part I, AFIPS ’72 (Fall, part I), pages 221–228,
New York, NY, USA, 1972. ACM. Referenced on 3.

[Wil53] J. H. Wilkinson. The pilot ACE. Automatic Digital Computation, pages
5–14, 1953. Referenced on 2.

[You07] Matt T. Yourst. PTLsim: A Cycle Accurate Full System x86-64 Microar-
chitectural Simulator. In IEEE International Symposium on Performance
Analysis of Systems Software, ISPASS ’07, pages 23–34, 2007. Referenced
on 14, 21.

[YRV11] Yang Ye, Kenneth A. Ross, and Norases Vesdapunt. Scalable Aggrega-
tion on Multicore Processors. In Proceedings of the Seventh International
Workshop on Data Management on New Hardware, DaMoN ’11, pages
1–9. ACM, 2011. Referenced on 64, 82.

[Ż09] Marcin Żukowski. Balancing Vectorized Query Execution with Bandwidth-
Optimized Storage. PhD thesis, Universiteit van Amsterdam, 2009. Ref-
erenced on 14.

[ZB91] Marco Zagha and Guy E. Blelloch. Radix Sort for Vector Multiprocessors.
In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing,
Supercomputing ’91, pages 712–721, 1991. Referenced on 37, 45.

[ZR02] Jingren Zhou and Kenneth A. Ross. Implementing Database Operations
Using SIMD Instructions. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’02, pages 145–156.
ACM, 2002. Referenced on 6, 16, 34, 82.

161

Acronyms

AVL Average Vector Length.

AVX Advanced Vector Extensions.

CAM Content-Addressable Memory.

CPI Cycles per Instruction.

CPT Cycles per Tuple.

DBMS Database Management System.

DLP Data-Level Parallelism.

DSS Decision Support System.

FPGA Field-Programmable Gate Array.

GPGPU General-Purpose GPU.

GPU Graphics Processing Unit.

HT Hash Table.

ILP Instruction-Level Parallelism.

IPC Instructions per Cycle.

ISA Instruction Set Architecture.

L1D Level 1 Data (Cache).

L1I Level 1 Instruction (Cache).

163

Acronyms

L2 Level 2 (Cache).

LHS Left-Hand Side.

LSQ Load/Store Queue.

MC Memory Controller.

MSHR Miss Status Holding Register.

MVL Maximum Vector Length.

NoSQL Not only SQL.

OET Odd-Even Transposition (Sort).

OLAP Online Analytical Processing.

OLTP Online Transaction Processing.

RHS Right-Hand Side.

ROB Reorder Buffer.

SIMD Single Instruction-Multiple Data.

SQL Structured Query Language.

SS Superscalar.

SSE Streaming SIMD Extensions.

TLP Thread-Level Parallelism.

TPC-H Transaction Processing Performance Council: Benchmark H.

VGA Vector Group Aggregate.

VL Vector Length.

VLU Vector Last Unique.

VMRF Vector Memory Request File.

VPI Vector Prior Instances.

VSR Vectorised Serial Radix (Sort).

164

	Thesis Overview
	Motivation
	Objectives of Research
	Thesis Contributions

	A Study on Hash Join
	Introduction
	Software Characterisation
	Hash Join Probing

	Design and Implementation
	Instruction Set Proposal
	Design Decisions
	Microarchitecture Implementation

	Experimental Setup
	Simulators
	Default Parameters
	Workload

	Results
	Design Exploration
	Vector Scalability
	Memory Controller Saturation
	Scalar Scalability
	Software Prefetching
	Comparison to SSE4.2

	Related Work
	Conclusions

	A Study on Sorting
	Introduction
	Changes to the Architecture
	Evaluation of Existing Sorting Algorithms
	Quicksort
	Bitonic Mergesort
	Radix Sort
	Summary

	VSR Sort
	The Algorithm
	New Instructions
	Results

	Related Work
	Conclusions

	A Study on Aggregation
	Introduction
	Changes to the Architecture
	Experimental Setup
	Query and Input Data
	Scalar Baseline
	DLP and Vectorisation

	Evasion Techniques
	Standard Sorted Reduce
	Polytable
	Summary

	Confrontation Techniques
	Advanced Sorted Reduce
	Monotable
	Partially Sorted Monotable
	Summary

	Related Work
	Parallel Aggregation Acceleration
	Hardware Support for Irregular DLP

	Conclusions

	A Study on Area, Energy and Power
	Introduction
	Area
	Runtime Dynamic Energy
	Scalar and Vectorised Quicksort
	Bitonic Mergesort
	Radix Sort
	VSR Sort

	Power
	Related Work
	Conclusions

	Thesis Conclusions
	Summary of Achievements
	Relegated Ideas
	Behind the Scenes
	Future Outlooks

	Publications
	Algorithm Runtime Characteristics
	Hash Join
	Sorting
	Aggregation

	Vector Instruction Set Architecture
	General Format
	Registers
	Datatypes
	Vector Instruction Listing
	Vector Memory
	Value Initialisation
	Arithmetic
	Logical
	Comparison
	Permutative
	Reduction
	CAM-Based
	Miscellaneous
	Mask Manipulation
	Vector Length

	List of Figures
	List of Tables
	Bibliography
	Acronyms

