“Thesis Yury Final” — 2016/?/31 — T7:28 — page — #1

UNIVERSITAT POLITECNICA DE CATALUNYA

NETWORK ENGINEERING DEPARTMENT

PhD Thesis

Scalability and Robustness of
the control plane in
Software-Defined Networking

(SDN)

Author: Yury Andrea Jiménez Agudelo

Advisor: Cristina Cervelld i Pastor

Barcelona, May 2016

“Thesis Yury Final” — 2016/?/31 — T7:28 — page — #2

Universitat Politécnica de Catalunya
Network Engineering Department

Yury Andrea Jiménez: Scalability and Robustness of the control plane in
Software-Defined Networking (SDN), Copyright © May, 2016

“Thesis Yury Final” — 2016/5{/31 — 7:28 — page i — #3

Contents
List of Figures v
List of Tables ix
I Network Management Fundamentals and State of the Art 1
1 Introduction 3
1.1 Goals of the thesis 5
1.2 Structure and Overview 6
2 Network Management Fundamentals 9
2.1 Outline 9
2.2 Traditional networks oL, 9
2.3 Sofware Defined-Networking (SDN) 10
2.3.1 Definition o0 10
2.3.2 Network elements. 11
2.3.3 SDN Architecture 11
2.4 Communication protocols 14
24.1 OpenFlow, 14
2.4.2 ForCEs 17
2.5 Recovery. 18
2.6 Network Protocols 19
2.6.1 Link Layer Discovery Protocol (LLDP) 19
2.6.2 The Bidirectional Forwarding Detection (BFD) 20
2.7 Conclusionso 21
3 Review of the state of the art 23
3.1 Outline 23
3.2 Challengesin SDNs. 24
3.2.1 Scalability 24
3.2.2 Control plane resilience 25

3.2.3 Consistency of the network information over controllers 26

“Thesis Yury Final” — 2016/%/31 — T:28 — page ii — #4

Contents

ii

3.3 Controller placement
3.4 A controller placement taxonomy
3.4.1 Static vs. Dynamics
3.4.2 Robustness vs. Unprotected
3.4.3 Assumptions vs. Real network conditions
3.5 Computing the optimal controller placements
3.5.1 Main controller placement objectives
3.5.2 Optimization strategies
3.6 Controller placement metrics
3.6.1 Metric related to the network performance
3.6.2 Metric related to control plane scalability
3.6.3 Maetric related to control plane robustness
3.7 A classification of the controller placement approaches
3.8 Network discovery L.
3.8.1 Network discovery based on OpenFLow protocol
3.8.2 Network discovery based on ForCES protocol
3.9 Network topology consistency
3.9.1 Fault detection in SDN networks
3.10 Conclusions L L

Contributions to the SDN management

Discovering controller placement in SDN networks

4.1 Outline e

4.2 Controller placements and its implications

4.3 Shortcomings of existing controller placement approaches

4.4 K-Critical
4.4.1 Definitions oo
4.4.2 Problem formulation
4.4.3 Candidate switch selection.
4.4.4 Controller placement selection
4.4.5 Complexity analysis

4.5 Heuristic Algorithm for k-Critical
4.5.1 Fault-Tolerant SDN controllers
452 Anexample oo

4.6 Comparison of Controller placement approaches
4.6.1 k-Median problem
4.6.2 k-Center problem
4.6.3 FEvaluation and results

“Thesis Yury Final” — 2016/5V31 — T7:28 — page iii — #5

Contents

4.6.4 Analysis oo 78

4.7 Conclusions e 81
11l Contributions to build a robust control plane in SDN 83
5 Evaluation of control plane robustness 85
51 Outline 85
5.2 Network Resilience in SDN 86
5.2.1 Backup Control Paths 86

5.3 Control plane resilience metrics 88
5.4 Fast Failover 90
5.5 Towards a network robustness metric. 93
5.5.1 Robustness as generalized switch protection 93

5.6 Evaluation. 95
5.6.1 k-Critical and the restriction tok=1 95
5.6.2 A Note on Complexity 96

5.7 Simulation and Results 0L 97
5.7.1 Setup 97
572 Results 98

5.8 Conclusions 103
6 Resource discovery for SDN networks 107
6.1 Outline 107
6.2 Network management in SDN 108
6.2.1 Formulation 108

6.3 Resource Discovery Protocol 109
6.3.1 Forwarding Phase (FP) 109
6.3.2 Backward Phase (BP) 111
6.3.3 Partial network topology discovered by each controller 113
6.3.4 Protocol complexity 114

6.4 Network topology discovery by controllers 116
6.4.1 Finding a path between controllers 116

6.5 Allocation of switches to controllers 120
6.5.1 Re-distribution of switches-to-controllers 120

6.6 Updating the network topology 122
6.6.1 Detecting network topology changes 124
6.6.2 Principles to update the network topology 125

6.6.3 Discovering network events and updating the network
topology information 129

iii

“Thesis Yury Final” — 2016/5V31 — T7:28 — page iv — #6

Contents
6.7 Simulation and Results. 133
6.7.1 Evaluation 135
6.7.2 Protocol evaluation in Syn mode 136
6.7.3 Protocol evaluation in Asyn mode 141
6.7.4 Evaluation of the scalability of the SDN-RDP protocol 155
6.8 Conclusions 158
7 Conclusions 163
7.1 Summary of Contributions 164
7.2 Further improvement of proposed contributions 165
7.3 Future Work 166
Bibliography 169

v

List

2.1
2.2

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11

4.12
4.13
4.14
4.15

5.1
5.2
5.3
5.4
5.5
5.6

5.7

“Thesis"Yury Final” — 2016/%/31 — T7:28 — page v — #T7

of Figures

SDN network architecture. 12
Representation of backup control paths. 19

Classification of controller placement approaches according to

their objective. Lo 51
Network topology. 55
k-Critical process. 56
K — Critical PTOCESSES. . .« v v v v v e e e e e 57
Network topology. oo 71

Tree topologies from candidate switches, Csyitehes = {8,10,11,12}. 71
Tree topologies from candidate switches, Csyitenes = {1,2,3,5,8,9}. 72

Control plane created from candidate switches selected. . . . 73
Number of controllers for all possible delay ranges in gener-

ated networks with sparse connectivity. 76
Number of controllers for all possible delay ranges in gener-

ated networks with medium connectivity. 77
Number of controllers for all possible delay ranges in gener-

ated networks with high connectivity. 78
Average switches managed by controller. 79
Average depth on control topology. 79
Expected data loss on randomly generated networks. 80
Expected link delay on control topology. 81
Representation of backup control paths. 87
Average switch distribution for each network category. 93
Average switch distribution for each network category. 98
Average link delay. oo 99
Maximum controller-to-switch delay in control plane trees. . . 100
Average maximum tree depth, the depth of a tree correspond-

ing to the maximum length of a branch. 101
Average tree length. L. 101

“Thesis"Yury Final” — 2016/5V31 — T7:28 — page vi — #8

List of Figures

vi

5.8 Average number of downstream switches/switch on the tree.
These are the affected switches in case of failure of the corre-
sponding switches. oo

5.9 Experimental Cumulative Distribution Function (CDF) for
the number of downstream switches, for k-Critical (top) and
Fast Failover (bottom), for sparse SDNs.

5.10 Switches locally protected against failures in immediate up-
stream link/parent.

5.11 Network robustness index. O=robust, 1=non-robust.

6.1 Representation of the network topology discovery process.
6.2 Process to discover a path between two controllers, C'4 and Cp. . .
6.3 Process to discover the network topology by controllers.
6.4 Representation of the processes to allocate switches to controllers. .
6.5 Flowchart: assignation process of switches-to-controllers.
6.6 Examples of switches disconnected from the control plane, with
their control plane representation: (a) isolated switches, (b) switches
disconnected from their controller, (c¢) switches that do not have a
backup control path configured.
6.7 Process to maintain updated the network topology.
6.8 Process to detect network changes.
6.9 Process to detect link failures.
6.10 Process to detect switch failures.
6.11 Protocol evaluation in Syn mode for networks that consist of 200
switches. L e
6.12 Boxplots of the protocol evaluation in Syn mode for networks that
consist of 200 switches. L L
6.13 Q-Q plots of the computation time (us) in Syn and Asyn modes for
networks that consist of 200 switches.
6.14 Boxplots of the computation time in Syn and Asyn modes for net-
works that consist of 200 switches. Black points indicate the mean

6.15 Q-Q plots of the number of messages per switch in Syn and Asyn
modes in networks that consist of 200 switches.

6.16 Q-Q plots of the number of switches discovered by each controller
in Syn and Asyn modes in networks that consist of 200 switches.

6.17 Boxplots of the number of switches discovered by each controller
in networks that consist of 200 switches. Black points indicate the
mean value. L. oL

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

“Thesis Yury Final” — 2016/54/31 — T7:28 — page vii — #9

List of Figures

Cumulative Distribution Functions of the number of switches dis-
covered by each controller in networks that consist of 200 switches
for 1-8 controllers. 148
Q-Q plots of the stretch in switch-to-controller paths discovered by
each controller in Syn and Asyn modes in networks that consist of
200 switches. oL 149
Q-Q plots of the maximum switch-to-controller path delay found in
Syn and Asyn modes in networks that consist of 200 switches. . . . 150
Q-Q plots of the control plane robustness found in Syn and Asyn
modes in networks that consist of 200 switches. 151
Q-Q plots of the maximum expected data loss found in Syn and
Asyn modes in networks that consist of 200 switches. 152
Boxplots of the maximum expected data loss in networks that con-
sist of 200 switches. Black points indicate the mean value. 153
(a) Mean number of messages to create a control plane (b) Control
plane computation time. (Networks with different sizes, varying the
number of k-Critical controllers.) 157
Control plane computation time; CI are omitted to improve read-
ability. (Different number of switches, k-Critical and randomly se-
lected controllers.) L oL o 158

vil

“Thesis"Yury Final” — 2016/5/?1 — 7:28 — page viii — #10

viii

“Thesis Yury Final” — 2016/5431 — T:28 — page ix — #11

List of Tables

3.1 Classification of controller placement approaches. 39
5.1 Simulated networks. 0oL 97
6.1 Information of randomly generated networks. 135
6.2 Description of quartiles., 139

6.3 Control plane characteristics when executing the SDN-RDP proto-

col in Syn mode over 100 networks that consist of 200 nodes. . . . 154
6.4 Control plane characteristics when executing the SDN-RDP proto-

col in Asyn mode over 100 networks that consist of 200 nodes. . . . 154

ix

“Thesis"Yury Final” — 2016/5{31 — T:28 — page x — #12

“Thesis Yury Final” — 2016/5(31 — T7:28 — page 1 — #13

Part |

Network Management

Fundamentals and State of the
Art

“Thesis Yury Final” — 2016/5(31 — T7:28 — page 2 — #14

“Thesis Yury Final” — 2016/5(31 — T7:28 — page 3 — #15

Chapter 1
Introduction

First computer networks began in a laboratory in the early 1960s with the
idea of sending data between two computers where data was divided and
encapsulated into packets. This network grew over the next few years and
began to support applications such as file transfers and electronic mails. A
few years after, in 1972, the idea of connecting independent networks each
based on a different technology resulted in the appearance of Transmission
Control Protocol (TCP) and Internet Protocol (IP). The former provides re-
liable communication across different networks and the latter deals with the
delivery of packets. The goal of the Internet was simply to carry the packets
from source to destination, where simple routing algorithms, installed on
each network element, computed the routing tables to achieve that goal. In
this model, the control plane merely needed to manage an end-to-end com-
munication, where all traffic was treated in exactly the same way: the best
effort service.

The growth of computer networks. The simplicity of Internet design
has led to enormous growth and innovation. In recent decades several net-
work technologies, services and applications have appeared, which demand
specific network requirements for their correct operation. The growth of
computer networks together with the use of increasingly sophisticated user’s
terminals, has led to the networks to evolve from:

e a static academic network managed by a centralized entity evolving
into a network operated by numerous providers where routing pro-
tocols operate in a distributed way and each operator manages its
network based on a set of policies, and

e a network system designed to provide basic end-to-end communication
between two simple machines (in a topology known in advance) evolv-
ing into a heterogenous networking system (wire and wireless) that

“Thesis Yury Final” — 2016/5(31 — T7:28 — page 4 — #16

Chapter 1 Introduction

delivers a range of specific service requirements far more sophisticated
than best-effort packet delivery (in a unknown network topology).

The complexity of heterogeneous network configuration. In tra-
ditional networks, operators are responsible for providing a network config-
uration sufficiently robust to deal with a wide range of network events and
applications. To achieve this is incredibly difficult because: i) the state of
the networks can change continuously and today’s networks do not provide
a mechanism to automatically respond to the wide range of events that may
occur and ii) the static nature of current network devices does not permit
detailed control-plane configuration, given that the hardware and software
are provided by the manufacturer and can not be customized. This network
rigidity has led to:

e the development of new specific protocols and mechanisms on top of
TCP/IP to transport the enormous amounts of data in an efficient,
robust and flexible manner,

e the manual installation of policies to manage anomalies during network
changes,

e the installation of several network components called middleboxes that
provide specific functions to alleviate the lack of in-path functionalities
within the network.

This is the basis of the current, present-day Internet and its architecture,
that has grown in an evolutionary fashion from experimental beginnings,
rather than from a deliberate strategy.

The unpredictable network growth in terms of size and heterogeneity, has
exposed a number of fundamental complexities in the current architecture,
such as:

e networking devices usually support a handful of commands and config-
urations based on a specific embedded operating system (OS) [1], and
as a result, new software can not be installed on forwarding devices
because of incompatible hardware or because the currently available
software is incapable of managing all the hardware capabilities,

e manual configuration of control functions on network devices that may
lead to misconfigurations [2]. For instance, more than 1000 configura-
tion errors have been observed in BGP routers [2]. Undesired network

“Thesis Yury Final” — 2016/5(31 — T:28 — page 5 — #17

1.1 Goals of the thesis

behaviour may result from a simple misconfigured device that may
compromise the network operation for hours [3], and

e the vertical integration of middleboxes makes it difficult for operators
to specify high-level network-wide policies using current technologies.

Network management requires more intelligent and efficient management
systems to coordinate thousands of network elements and applications, the
high demand on network performance and growing configuration complexity
[4], [5]. In recent decades, several approaches have been introduced in order
to improve the network management, such as: MPLS, virtualization and
programmable networks. These latter networks have been proposed as a way
of facilitating network evolution. In particular, Software Defined Networking
(SDN), a networking paradigm focused on allowing software developers to
rely on network resources in an easy manner, unifying the state network
distribution and a general-purpose technique to manage any type of network
in an transparent manner.

In SDN, network intelligence is logically centralized in software-based con-
trollers (the control plane), and network devices become simple packet for-
warding devices (the data plane) that can be programmed via an open in-
terface. By decoupling the control and data planes, network devices can
be easily programmed and reconfigured, allowing the behaviour of different
types of network devices to be unified.

Several SDN architectures have been proposed to handle current and fu-
ture network services [6], [7], [8], [9]. However, there are still important
research challenges to be addressed in SDN. Some of these current chal-
lenges are related to: i) SDN scalability as control is centralized, ii) control
plane robustness as any failure can lead to switches to be disconnected from
the controller, iii) consistency of network information as wrong decisions can
be made affecting network performance and iv) security as controllers can
be attacked. The purpose of this manuscript is to address the first three of
the aforementioned problems.

1.1 Goals of the thesis
The main objective of this thesis is to design network mechanisms to manage
the scalability and robustness of the control plane in SDNs. Three specific

goals are defined:

G.1 Select the controller placements in SDN networks.

“Thesis Yury Final” — 2016/5(31 — T7:28 — page 6 — F#18

Chapter 1 Introduction

G.1.1 Classify the existing approaches to find the controller placement
in SDNs.

G.1.2 Design an algorithm to find both the number of controllers and
their location on the network.

G.1.3 Implement and evaluate the solution proposed, contrasted with
other existing solutions.

G.2 Define a mechanism that allows the robustness of control plane in SDNs
to be determined.

G.2.1 Classify the existing approaches to define the control plane ro-
bustness.

G.2.2 Design and implement a metric to define the robustness of a
control plane.

G.3 Design a protocol to discover the network topology in SDNs.

G.3.1 Classify the existing approaches to discover the network topol-
ogy in SDNs and maintain it updated.

G.3.2 Design a protocol to discover the network topology in SDNs and
a set of mechanisms to maintain the network topology updated.

G.3.3 Implement and evaluation of the discovery network protocol .

1.2 Structure and Overview

This manuscript is divided in two Parts. The main concepts used throughout
this manuscript as well as the most relevant approaches proposed in each of
the issues covered here are presented in Part I as follows. Chapter 2 presents
a brief overview of the notion of SDNs and OpenFlow. Chapter 3 introduces
the main solutions for each one of the following aspects: i) the controller
placement problem, ii) control plane robustness and iii) the discovery of the
network topology by controllers.

Part II presents the contributions of this thesis. Chapter 4 describes the
implications of controller placement in the SDN network performance and
proposes an algorithm to find the number and placement of controllers to
satisfy a specific requirement. Chapter 5 presents a robustness metric to
measure the resilience of the control plane in SDNs. Chapter 6 presents a
protocol to discover the network topology by controllers and also introduces
a set of network mechanisms to maintain the network topology consistency

“Thesis Yury Final” — 2016/5(31 — T7:28 — page 7 — #19

1.2 Structure and Overview

on the control plane. Finally, Chapter 7 presents the main conclusions of
this thesis.

“Thesis Yury Final” — 2016/5(31 — T7:28 — page 8 — #20

“Thesis Yury Final” — 2016/5(31 — T7:28 — page 9 — #21

Chapter 2
Network Management Fundamentals

As a starting point for this manuscript, this chapter presents the networking
concepts and technologies that will be used in the following chapters. Firstly,
SDN architecture and the most relevant forwarding network protocols for
SDNs are introduced. Secondly, existing path recovery mechanisms and
traditional protocols used in current networks to discover network failures
are presented.

2.1 OQutline

This chapter presents the main network concepts of traditional and SDN
networks. Section 2.2 presents the traditional network architecture: data
plane, control plane and management plane. Section 2.3 introduces the
concepts related to SDNs such as: its definition, architecture, planes and
interfaces. Section 2.4 outlines the two most relevant communication proto-
cols in SDNs, which are: OpenFlow and ForCES. Section 2.5 addresses the
recovery path strategies in traditional networks. Section 2.6 presents two
protocols implemented in traditional networks, these are BDF and LLDP.
BDF detects network changes and LLDP updates the network topology in-
formation. Section 2.7 concludes the chapter.

2.2 Traditional networks

Computer networks are typically built from a large number of intercon-
nected network devices such as routers, switches and numerous types of
middleboxes. Traditional IP networks consist of three integrated planes on
each network device. These are:

e The data plane: also called the forwarding plane. It corresponds to
the set of physical and virtual network devices in the underlying network
infrastructure that may include any forwarding devices such as routers,

“Thesis Yury Final” — 2016/5/‘31 — T7:28 — page 10 — #22

Chapter 2 Network Management Fundamentals

switches, virtual switches, wireless access points, among others. These
network devices are responsible for forwarding data based on the infor-
mation in their forwarding tables that are programmed by distributed
routing protocols, such as BGP and OSPF.

The control plane: this plane is defined by the set of protocols and
algorithms that are used to compute and populate the routes programmed
in the forwarding tables of network devices included in the data plane.
These network mechanisms (protocols and algorithms) are implemented
on the network devices, defining the network behaviour, that is, what and
how data is forwarded on the network.

The management plane: this plane includes the software services to
remotely monitor and configure the control functionalities of the network
devices in the data plane. Network managers are responsible for config-
uring manually the network policies in the control plane. They transform
the high level-policies into low-level configuration commands, in response
to a wide range of network events and application requirements.

In traditional networks, network policies are defined in the management

plane, the control plane enforces these policies and the data plane forwards
data based on these policies.

2.

3 Sofware Defined-Networking (SDN)

2.3.1 Definition

According to Open Network Fundation (ONF), Software-Defined Network-
ing (SDN) is an emerging architecture where the forwarding state in the data
plane is managed by a remote control plane decoupled from the former. This

ne

10

twork architecture has the following characteristics:

> the network control and forwarding functions are decoupled,

> the network control is executed by an centralized external entity,
> the network is programmable,

> forwarding decisions are flow-based,

> SDN has the capacity to the initialize, control, change, and manage
network behavior dynamically via open interfaces.

“Thesis"Yury Final” — 2016/5/‘31 — T7:28 — page 11 — #23

2.3 Sofware Defined-Networking (SDN)

> the underlying infrastructure is abstracted by applications and net-
work services.

In SDN, data is forwarded through flows, which are defined as a sequence
of packets between two end-points. All packets of a flow receive identical
service policy treatment at the forwarding devices. The flow abstraction
allows the behaviour of different types of network devices to be unified.

Thanks to all the aforementioned characteristics, SDN is claimed to be
dynamic, manageable, cost-effective and adaptable, making it ideal for the
high-bandwidth, dynamic nature of today’s applications.

2.3.2 Network elements

Basically two network elements are considered in SDN, these are controllers
and forwarding elements.

The controller

Controllers in SDN are considered as the ”brain” of the network, since they
have a whole view of the network status and the forwarding logic required
to forward data flows properly. This is possible through an open interface
to the network, devices southbound from the controller. Through this inter-
face the controller can: i) communicate and program the network devices,
ii) execute basic functions, such as monitoring network devices and even
gathering network statistics, among other functions.

The forwarding devices

This refers to all the entities, physical and virtual, that receives packets on its
ports and performs one or more network functions on them. In SDN, network
devices are often represented as basic forwarding hardware accessible via an
open interface. However, different physical network equipments with an
interface to the controller can be considered as forwarding devices in SDN.

2.3.3 SDN Architecture

An SDN architecture consists of three different planes and a set of interfaces
that allows the communication between them. These planes are: control
plane, data plane and application plane, as illustrated in Fig. 2.1.

11

“Thesis"Yury Final” — 2016/5/|31 — 7:28 — page 12 — #24

Chapter 2 Network Management Fundamentals

Routing Security
Applications Load Balancer Applications
Applications

Northbound Interface

East Interface

Southbound Interface

e OpenFlow switches ‘ Controller

Figure 2.1: SDN network architecture.

Control Plane

Responsible for making decisions on how packets should be forwarded by one
or more network devices and pushing such decisions down to the network
devices for execution [10]. This plane consists of a centralized set of software-
based SDN controllers that has an abstract view of the whole network infras-
tructure, enabling the network manager to apply customized policies across
the network devices (through the southbound interface), based on the net-
work topology or external service requests. The SDN controller is at the
heart of the architecture. It is the intelligent entity that controls resources

12

“Thesis"Yury Final” — 2016/5/‘31 — T7:28 — page 13 — #25

2.3 Sofware Defined-Networking (SDN)

to deliver services [11]. Control-plane functionalities usually include:

e Topology discovery and maintenance
e Packet route selection and instantiation
e Path failover mechanisms

e install the forwarding rules on the forwarding tables based on the re-
quested performance from the applications and the network security
policy, and

e collect status information about the forwarding plane.

Data Plane

The data plane consists of physical and virtual forwarding devices that are
accessible via the southbound interface through which controller and for-
warding devices can communicate with each other. Forwarding devices can
support basic functions like forwarding, but also other types of functions,
such as: caching, transcoding and monitoring, among others.

Application Plane

The plane where applications and services that define network behavior re-
side. This plane contains network applications that interact with the con-
troller to achieve a specific network function to fulfill the network operator
needs, such as: quality of service, security, virtualization and traffic engi-
neering functions. This plane allows the behaviour of desired control re-
quirements to be specified on the abstract network view. For this purpose,
the control plane provides an abstract view from the network to the appli-
cation plane, while this is shared via a general interface called Northbound.
This abstract view does not contain detailed connectivity information, but
enough information for the applications to request and maintain connectiv-

ity.
In SDN, three interfaces are defined:

e Southbound interface: this is the interface between the control
plane and the forwarding plane, through which controller and switches
can communicate with each other.

13

“Thesis"Yury Final” — 2016/5/‘31 — T7:28 — page 14 — #26

Chapter 2 Network Management Fundamentals

e Northbound interface: it represents the software interface between
the software modules of a controller and the network applications.

o East-West interface: through this interface controllers can commu-
nicate with each other.

SDN relies on three main abstractions [1], that allow the administrators
to run the network as a whole, by way of an unified interface:

e Abstraction on the distributed state: network controllers get a global
view of the network state, so there is no longer a needed for distributed
algorithms on devices with partial network information.

e Abstraction on the forwarding model: forwarding hardware (in net-
work switches) is decoupled from the network control plane (handled
by network controllers).

e Abstraction on the specification of network operation: this allows a
network application to express the desirable network behaviour with-
out being responsible for implementing it.

2.4 Communication protocols

Different communication protocols have been defined in SDN to address
the forwarding plane of the network elements on an SDN. Two of the most
common are: OpenFlow [12] and the Forwarding and Control Element Sep-
aration ForCES [13].

ForCES and OpenFlow are similar in the following aspects:

e Both protocols consider the separation of the control plane from the
data plane,

e Both protocols standardize information exchange between the control
and data planes.

2.4.1 OpenFlow

OpenFlow is a communication protocol that enables the controller-to-switch
communication in SDNs through the southbound interface [12], [14]. This
protocol also defines a set of basic forwarding and management functions.
The forwarding functions let programmers address the network operation by

14

“Thesis"Yury Final” — 2016/5/‘31 — T:28 — page 15 — #27

2.4 Communication protocols

routing packets. The set of management functions can be used to control
network features. For instance, switches can inform the controller when
links go down or when receiving a packet for which there is no forwarding
instruction.

This controller-to-switch protocol runs over either Transport Layer Secu-
rity (TLS) or an unprotected TCP connection. OpenFlow provides software-
based access to the forwarding tables that instruct forwarding devices how
packets are forwarded. OpenFlow defines the following network components
for its operation: OpenFlow switches, OpenFlow controllers and control
channels.

OpenFlow switch: OpenFlow switches or forwarding devices have one
or more flow tables and a group table. Forwarding devices perform packet
lookups and take forwarding decisions based on flow tables and group tables.
These Flow tables contain a list of flow entries, each of which determine how
packets belonging to a flow will be forwarded. Flow entries consist of: a
match field, a counter and actions.

e Match field: this is used to match incoming packets, entries in the
match field contain either a specific value against which the corre-
sponding parameter in the incoming packet is compared or a value
indicating that the entry is not included in this flow’s parameter set.

e Counters: these are used to collect statistics for a particular flow,
such as the number of received packets and the duration of the flow.

e Actions: these are a set of instructions to be applied upon a match,
which define how to handle matching packets. These actions describe
packet forwarding, packet modification, and group table processing
operations. For instance, actions can specify that the packet will be
forwarded through a specified port.

Upon receiving a packet, a switch extracts the packet header field of the
flow table entries. If a match is found, the switch applies the set of actions
associated with the matched flow entry. If there is not a match, the action
taken by the switches depends on the instructions defined in the table-miss
flow entry. This table specifies a set of actions to be performed when a match
is not found for a packet, such as: dropping the packet or re-forwarding the
packet to the controller.

15

“Thesis"Yury Final” — 2016/5/‘31 — T:28 — page 16 — #28

Chapter 2 Network Management Fundamentals

OpenFlow Controller: this is defined as an entity or server software
that interacts with the OpenFlow switch using the OpenFlow protocol. This
protocol connects controller software to network devices so that controllers
can configure network devices and inform where to forward packets.

The OpenFlow channel: the control channel is the interface that con-
nects each OpenFlow switch to a controller. Through this interface, the con-
trollers configure and manage the switches, receive events from the switches,
and send packets out the switches (to add, update, and delete flow entries
in flow tables). The OpenFlow channel is usually instantiated as a single
network connection. This may be encrypted using TLS, but may be run
directly over TCP.

OpenFlow-Resilience

Openflow provides some strategies and mechanisms against controller, con-
trol channel and datapath failures.

Controller. In OpenFlow, three controller roles are defined; equal, slave
and master. The default role of a controller is equal, in this role the con-
trollers have access to the switches and can modify their state. A controller
can request a change in its role from slave to master. In a slave role, the
controllers only have access to read the switches and can only process port
status messages. In the master role, the controller has complete access to
the switches; switches ensure that a maximum of one controller can be in
the master state.

Switches may be simultaneously connected to multiple controllers in equal
state, multiple controllers in slave state, and at most one controller in master
state, for reliability purposes. Following a master controller failure, a slave
controller becomes master controller. This role change mechanism supports
multiple controllers for failover, allowing the switches to be able to continue
operating if their master controller fails.

Control channel. The OpenFlow channel may be composed of multiple
network connections. In addition, OpenFlow specifies two simpler modes to
deal with the loss of connectivity with the controller. In fail secure mode,
the switches continue operating in OpenFlow mode until it reconnects to
a controller. In fail standalone mode, the switches revert to using normal
processing. In addition, in OpenFlow is also considered that a switch can
have multiple control paths to the same or different controllers.

16

“Thesis"Yury Final” — 2016/5/‘31 — T:28 — page 17 — #29

2.4 Communication protocols

Data path protection. Group tables allow the network to configure
fast failover mechanisms. The action buckets in the group tables provide
the ability to define multiple forwarding actions. For instance, when the
type of a group table is fast failover (FF), it means that the flows can be
rerouted if a failure occurs in the datapath. Therefore, the controller must
anticipate every possible failure and compute backup paths in a proactive
manner. This group type enables the switches to change forwarding port
without requiring a round trip to the controller. If no buckets are live,
packets are dropped.

2.4.2 ForCEs

Forwarding and Control Element Separation (ForCES) is an open, pro-
grammable distributed network architecture, standardized by the IETF.
This defines a new environment to build network devices that split them
into units. ForCES also defines associated protocols to standardize informa-
tion exchange between the control plane and the forwarding plane.

The ForCES network architecture defines two logical entities called the
Forwarding Element (FE) and the Control Element (CE), and an API through
which both network elements can communicate with each other by using the
ForCES protocol.

e Forwarding Element: this is a logical entity that implements the
ForCES Protocol. FEs use the underlying hardware to provide per-
packet processing.

e Control Element: this element is a logical entity that implements
the ForCES Protocol and uses it to instruct FEs on how to handle
packets.

The protocol works based on a master-slave model, where the FEs are
slaves and CEs are masters. Unlike OpenFlow, ForCES defines Logical Func-
tion Blocks (LFBs) that reside on the forwarding elements and are managed
by the controllers. The LFBs enable the CEs to configure and manage the
FEs.

The resources in FEs are instantiated in LFBs, each of which has a specific
function in the packet forwarding chain. Multiple LFBs are interconnected
via data paths to form an LFB topology in FE, so that the FE can carry
out a complex process on packet forwarding. The management of LFBs
includes the configuration and inquiry of LFB attributes, capabilities and

17

“Thesis Yury Final” — 2016/5/‘31 — 7:28 — page 18 — #30

Chapter 2 Network Management Fundamentals

events. ForCES protocol makes it possible for CE to dynamically manage
the LFBs, such as to add, remove and modify some of them. Manageability
of FEs by CEs provided in this model is at a much higher level than the
manageability in present commercial routers aiming to provide the ability
to configure new services in an open and simple way.

2.5 Recovery

Different kinds of disjoint control paths, partially or completely disjointed
with respect to a defined control path between a switch-to-controller (called
the primary control path), can be used to recover a switch-to-controller com-
munication after it is broken. Different backup paths are described below.
For this purpose, consider P1 as the primary control path between a switch
s and a controller C' and P2 as the backup control path.

Switch disjoint control path: a switch disjoint path P2 is the one that
has only the source switch and controller in common to the primary path,
P1NP2={sC}.

Link disjoint control path: a path between switch s and controller C
is called the link disjoint (P2) if it has no common links with the primary
path P1. The primary control path and its backup disjoint link path may
contain the same intermediate switch(es), but can not share link resources.

Partial disjoint control path: this backup path may contain disjoint
switch sub-paths to the controller, while the remaining intermediate switches
and also some links can be the same as in the primary control path.

Disjoint control path to another controller: this control path has
the same source switch but different controller destination as the primary
path. This backup path may share switches and links with the primary path
or may be completely disjointed from it (P1() P2 = {s}).

Fig. 2.2(a) illustrates a physical network topology and each one of the
remaining figures illustrates the primary control path and one of the different
backup control paths described previously between the source switch (switch
1) and the controller (placed in node 6).

Fig. 2.2(b) shows a switch disjoint backup control path that can be con-

18

“Thesis"Yury Final” — 2016/5/‘31 — T:28 — page 19 — #31

2.6 Network Protocols

figured in the case of any link/switch failure in the primary control path.
Fig. 2.2(c) illustrates a link disjoint backup control path that provides pro-
tection for any link failures in the primary control path. Finally, Fig. 2.2(d)
represents a backup partial disjoint path that has link (1,2) and switch 2 in
common to the primary control path.

Note that different backup control paths exist than those shown in Fig. 2.2.
These can also be considered in order to protect the network against failures,
improving network resilience. Ideally, the controller placements should be
selected to provide the highest level of disjointness in paths of a control plane
as it reduces the number of switches affected in the presence of failures,
leading to a reduction in data loss.

—— Physical network
e —> Primary control path

— 2> Backup path

Figure 2.2: Representation of backup control paths.

2.6 Network Protocols

Two protocols used in traditional networks to detect network changes and
discover the network topology are briefly described below.

2.6.1 Link Layer Discovery Protocol (LLDP)

Link Layer Discovery Protocol (LLDP) was standardized by the IEEE. This
protocol runs over any data link layer network that allows the network de-

19

“Thesis"Yury Final” — 2016/5/‘31 — T:28 — page 20 — #32

Chapter 2 Network Management Fundamentals

vices (switches and routers): i) identify capabilities and their adjacent neigh-
bours, and ii) listen to their neighbour devices. LLDP information can only
be sent to and received from devices that are directly connected to each other
through the same link. That is, announced information is not forwarded to
other devices on the network. Network devices discover the status of their
neighbours as they continually broadcast and listen to LLDP messages on
each connection, discovering when a new device is added or removed. In this
way, each network device can maintain its local network topology informa-
tion updated.

Network devices identify neighbours according to the information (such as
the MAC address) they receive in LLDP messages. This information is sent
in packets called LLDP Data Units (LLDPDUs). The data sent and received
via LLDPDUs is useful as network devices discover: i) the neighbour nodes
of each device and ii) through which ports they connect to each other.

LLDP defines the following aspects:

e A set of common advertisement messages (Type Length Values),
e A protocol for transmitting and receiving advertisements,

e A method for storing the information that is contained within received
advertisements.

LLDP is unidirectional, operating only in an advertising mode. Therefore,
LLDP does not solicit information or monitor state changes between LLDP
network devices.

2.6.2 The Bidirectional Forwarding Detection (BFD)

The Bidirectional Forwarding Detection (BFD) protocol detects failures in
forwarding paths, operating on top of any data protocol (network plane, link
plane, tunnels, etc.).

To detect failures BFD implements a control and echo message mecha-
nism. This is a simple Hello protocol that transmits BFD packets periodi-
cally over a path between two pre-configured end-points to detect its status.
If an end-point stops receiving BFD packets for long enough, it assumes
that a network device in the monitored path has failed. Each network de-
vice transmits control messages with the current state of the monitored link
or path. That is, a node receiving a control message, replies with an echo
message containing its respective session status. A session is built up with
a three-way handshake, after which frequent control messages confirm ab-
sence of a failure between the session end-points. Under some conditions,

20

“Thesis Yury Final” — 2016/5/‘31 — 7:28 — page 21 — #33

2.7 Conclusions

systems may negotiate not to send periodic BFD packets in order to reduce
overhead.

2.7 Conclusions

The Internet has been very successful in providing us with the capacity to
exchange information in the modern world. The Internet architecture has
shown its robustness by supporting the continued growth of applications,
services, users, and a large variety of network technologies over which it
currently runs. However, nowadays, the strong coupling between control
and data planes in traditional IP networks has made it difficult to add new
network functionalities, since it implies the modification of the control plane
on all network devices.

In contrast, SDN provides flexibility and scalability to the networks by
decoupling the control and data planes. The logical centralization of the
control plane (in SDN) offers several benefits: i) it simplifies the network
management, reducing the possibility of errors when modifying the network
policies, ii) SDNs can react to network changes, leading to more consistent
and effective policy decisions and iii) it simplifies the development of more
sophisticated networking functions, services and applications.

In short, SDN refers to the ability of software applications to program in-
dividual network devices dynamically and therefore control the behavior of
the network as a whole [10]. OpenFlow-based SDN technologies enable the
network to address the high-bandwidth, dynamic nature of today’s applica-
tions, adapting the network resources, and significantly reducing operations
and management complexity.

21

22

“Thesis"Yury Final” — 2016/5/‘31 — T7:28 — page 22 — #34

“Thesis Yury Final” — 2016/5/‘31 — 7:28 — page 23 — #35

Chapter 3

Review of the state of the art

Aiming at confirming that the objectives of this thesis are not yet covered,
in this chapter, a set of approaches that improves scalability, robustness and
information consistency on the control plane are introduced. To manage
an SDN network, controllers need to discover the network topology of the
switches they are responsible for. This information is used by the controllers
to plan, configure and monitor the end-to-end data paths. However, initially
controllers do not have information about the network and the switches do
not have a control path until they are set up. To solve this dilemma, current
solutions assume that controllers discover the network topology through the
traditional link discovery protocol LLDP. In addition, network topology in-
formation must be consistent, such that controllers can manage the network
in an efficient way. Approaches that handle these topics are introduced in
this chapter.

3.1 Outline

First section is devoted to describe the scalability, robustness and informa-
tion consistency issues in SDN networks. Section 3.3 reviews the controller
placement problem (CPP) approaches. In Section 3.4, different aspects of
the controller placements approaches are described, while that in Section 3.6,
different metrics used to select the controller placements are classified and
described. Section 3.7, presents a classification of the controller placement
approaches found in the literature, based on the aspects described in pre-
vious sections. Sections 3.8 and 3.9 introduce some approaches to discover
the network topology and detect network failures, respectively. Finally, in
Section 3.10, the conclusions of the chapter are presented.

23

“Thesis Yury Final” — 2016/5/‘31 — 7:28 — page 24 — #36

Chapter 3 Review of the state of the art

3.2 Challenges in SDNs

Although the decoupling of control functions provides network flexibility, it
also imposes several challenges in the control plane, related to the control
plane scalability, resilience and data consistency among others issues [1], [2],
[15], [16], [17], [18], [19], [20], [21], [22].

3.2.1 Scalability

When the SDN network scales up in the number of switches or traffic, it
can increment drastically the load on the controllers that can become a
bottleneck [1], [17], [18], [19], [23], [24] and [25]. This is because:

e whenever a large quantity of control messages arrive at a controller,
the bandwidth, memory and processor of controllers are all potential
bottlenecks,

e if the network has a large diameter, no matter where the controller
is placed, some switches will encounter long flow setup latencies [16],
[26],

e finally, since the system is bounded by the processing power of the
controller, flow setup times can grow significantly as demand grows
with the size of the network [17]. According to [27] and [28] the load
of processing events is generally regarded as the most significant part
of the total load on the controllers.

One of the most important reasons to distribute the network control is
based on the fact that one controller alone may not have enough capacity
to manage the whole network, and therefore it could become a bottleneck
in terms of processing power, memory, or input/output bandwidth. As ex-
plained in [17], in a centralized and reactive SDN network, scalability prob-
lems can be caused by flow initiation overhead or resiliency to failures. In
large networks with a distributed control plane, these scalability problems
may also arise, since controllers not only have to process requests coming
from switches it is responsible for, but also requests sent from other con-
trollers. As in a centralized SDN network, in a distributed SDN network,
controllers have limited capacity of memory and CPU that can be saturated
if the size of a network grows or if the switch load is not distributed homo-
geneously between the controllers, [29], [30]. In addition, increasing network
traffic lead to a reduction of the available bandwidth in the links used by

24

“Thesis Yury Final” — 2016/5/‘31 — T7:28 — page 25 — #37

3.2 Challenges in SDNs

the control channels, limiting the switch-to-controller communication. This
situation is critical in a reactive approach, given that the controller can not
do anything about the control link capacity as it can not treat messages
faster than it receives them [31], [32].

Several approaches have been proposed to distribute the control plane
across multiple controllers to improve the scalability of SDN, Kandoo [33],
HyperFlow [34], and Onix [35], however, in these approaches the controller
placement is not defined. Each one of those approaches distributes con-
troller states differently. Kandoo distributes controller states by placing the
controllers in two levels, a root controller and multiple local controllers. Lo-
cal controllers respond to the events that do not depend on global network
state, while the root controller takes actions that require a global network
view. HyperFlow handles state distribution of the controllers through a pub-
lish /subscribe system based on the WheelF'S distributed file system. Finally,
controller state distribution in Onix is managed through a distributed hash
table.

In general, controller placement approaches are not concerned with the
controller scalability, because they assume that commercial controllers are
scalable in terms of capacity (quantity of flows processed per second). How-
ever, it has been demonstrated that, controller overload and long propa-
gation delays among controllers and controllers-switches can lead to a long
response time of the controllers, affecting their ability to respond to network
events in a very short time and reducing the reliability of communication
(2], [16], [34].

3.2.2 Control plane resilience

In a centralized controller architecture as SDN, the network management is
compromised in case of network failures (e.g., switch and controller failures).
This is because, when a switch fails in the physical network, it not only
affects the switch-to-controller communication, but also all the switches that
include the failed switch in their control path.

In general, different stages can be implemented to ensure the resilience of
networks [36], [37]. For instance, that includes redundant network paths.
While such redundancy is desirable in both data and control paths, their
effectiveness is dependant upon the ability of individual network devices to
quickly detect failures and reroute traffic to an alternate path [38]. The
detection times in existing protocols are typically greater than one second
or much longer, for some applications, this is too long to be useful.

After detecting a failure or network degradation, the switch-to-controller

25

“Thesis Yury Final” — 2016/5/‘31 — T7:28 — page 26 — #38

Chapter 3 Review of the state of the art

communication should be re-established, if it is possible. The OpenFlow
standard defines that a switch can have a connection to different controllers
in order to improve the network resilience. In the case of a controller failure,
all the switches managed by it are disconnected from the control plane, and
therefore, those switches can not forward flows destined to switches that are
not configured in their flow table yet. The OpenFlow standard defines that
a controller can also have backup controllers, called slave controllers.

In this context, the control plane resilience can be handled from the point
of view of the controller placement. This is because, the controller location
influences the control plane topology as described in [36], [39], [40] and [41].
Therefore, depending on the network topology and the controller placements,
the switches disconnected from the controller can re-establish the connection
to the control plane, if it is possible [42],[43], [44].

Given the criticality of the data today, networks are typically constructed
with a high degree of redundancy. Therefore, in SDNs, not only the data
plane (data paths) has to be protected against failures, but also the control
plane (control paths).

3.2.3 Consistency of the network information over controllers

The failure detection time not only affects the response time of the network
to re-establish the affected flows, but also the time switches can update the
network status information on the control plane [16]. Keeping network infor-
mation consistent is fundamental to make right routing decisions. That is
because in SDNs, network decisions (e.g., backup paths, data paths, load
balancing) are made based on the knowledge of the underlying network
topology and resource utilization [45], [46]. In [47] and [48], the impact
of the consistent global network view on network control was studied. Au-
thors concluded that inconsistent information may significantly degrade the
network performance.

3.3 Controller placement

The scalability and resilience of the control plane have been tackled from
the point of view of the controller placement. In terms of scalability, the
controller placements in a SDN network can be selected to guarantee that
the control paths as well as the controllers have enough capacity to handle
the traffic coming from the switches they manage, avoiding they become a
bottleneck as in [49]. In terms of resilience, the controller placements can

26

“Thesis Yury Final” — 2016/5/‘31 — T7:28 — page 27 — #39

3.4 A controller placement taxonomy

be selected to maximize the number of control paths protected [39], [40], or
minimize the data loss [44], [50], [51].

The network status consistency is also affected by the controller place-
ments. Regardless of the strategies used to manage the network state con-
sistency, the connectivity among controllers determines the maximum time
required to update information among them. It is called the window of
inconsistency in [16]. This is a factor of delay bounded by the farthest con-
trollers in the network and the load on controllers. In [47], the authors
describe the impact of the physical distribution of the control plane for the
performance and coordination of a control application logic.

Related to the location of the controllers in the network, several ap-
proaches have been proposed from the controller placement problem in SDNs
formulated in 2012 [52]. Followed by Heller et al.[52], during the last years,
several research works have been proposed on the controller placement prob-
lem [26], [27], [39], [40], [41], [42], [44], [50], [51], [53], [54], among other
approaches. Approaches focused to virtualize the SDN resources have also
been proposed, [55].

In general, these aforementioned approaches can be differentiated by the
metric(s) to optimize, the strategy used for finding the controller placement,
if approaches consider the network resources (controller, switch and link
capacities) to the selection of the controller placement, and if controllers
and/or switch can be reallocated dynamically. In addition, the controller
placement approaches can also be classified according to the considerations
or assumptions made to select the placement of the controllers in the net-
work.

3.4 A controller placement taxonomy

The controller placement problem can be described by three further consid-
erations that depend on the network requirements. First consideration is re-
lated to the reallocation of switches-to-controllers and controllers, which can
be static (where switch-to-controller assignation do not change) or dynamic
(where switches can dynamically change of controller). Second considera-
tion to select the controller placement is related to the robustness, this is
considered as a relevant characteristic that control planes should have [56].
Finally, approaches are also classified based on the considered assumptions
in the selection of the controller placements.

27

“Thesis"Yury Final” — 2016/5/‘31 — T:28 — page 28 — #40

Chapter 3 Review of the state of the art

3.4.1 Static vs. Dynamics

In SDNs, the controller placements are selected offline, that is, during the
network design stage. However, the number of controllers as well as their
placement can be dynamically adapted during the network operation based
on the network changes.

Static

This approach does not contemplate the possibility of reallocating switches
to controllers or activate a new controller in case of network changes. Several
situations can lead to a need for reallocation switch-to-controllers:

e Controller failure: in this case, switches without an active connection
to a controller can be managed by another controller,

e Change of network conditions: increment of network traffic can satu-
rate a controller and it can become a bottleneck, affecting the network
performance as all requests can take more time to be attended,

e Save energy: some controllers can be sub-utilized, these are controllers
that manage a low traffic compared with other controllers in the net-
work. To save energy, switches can be reallocated in order to turn off
the controller with low load.

Dynamic

In the aforementioned situations, both the controller placements and swit-
ches-to-controllers can be reallocated dynamically to improve the network
performance, for instance, minimize the flow setup time or minimize the
controllers overhead as in [26] and [53].

In general, dynamic approaches try to reconfigure the distribution of
switches-to-controllers in order to balance the load on the controllers while
optimizing the utilization of the network resources (e.g., controller utiliza-
tion). A static controller placement assignation achieves good results with
regard to optimality, since that it does not consider dynamic network changes
that can compromise the controller scalability and/or robustness. While a
dynamic approach is better suited to deal with high network dynamicity, it
tends to come at the cost of less optimal solutions.

In [26], authors propose a framework for dynamically adjusts the number
of active controllers and assigns to each controller a set of switches according
to network state while ensuring minimal flow setup time and communication

28

“Thesis Yury Final” — 2016/5/‘31 — T:28 — page 29 — #41

3.4 A controller placement taxonomy

overhead. In [57], authors propose a non-zero-sum game based on a dy-
namic controller placement technique. The controllers can be dynamically
activated and disabled based on the traffic demand. The optimal number
of controllers can be found by adding and rejecting controllers, ensuring the
maximum utilization of controllers from a set of controllers in the network.

However, selecting a new controller and migrating the switches to that
new controller, is non trivial. It is even more complicated when considering
physical controllers, as frequent switching on/off consumes more time and
power [57].

In [58] and [59], an architecture that provides the ability to dynamically
adapt the controller resources is proposed. Switches are assigned to con-
trollers based on the traffic conditions.

3.4.2 Robustness vs. Unprotected

Failures on the control plane are due to underlying physical causes that can
be identified and are statistically independent [60]. The failure of a single
switch (or link included in a control path) affects the switch-to-controller
communication of all switches that share the failed switch/link. Therefore,
in environments where fault-sensitive applications are deployed inside the
networks, it must react efficiently to re-establish the affected data and con-
trol communications.

Robustness

In the context of a control plane, when a failure occurs, the switches that
have lost communication to their controller should be capable of setting-
up a backup control path to their controller. The standard communication
protocol, OpenFlow, defines that a switch can have multiple disjoint paths
to its controller or another one. To do that, the controller placements can
be selected in order to maximize the control path redundance when node
and/or link failures occur as in [39], [40], [51]. If there is no redundancy, the
control plane is referred to be unprotected.

Unprotected

In this case, switches have only one control path to their controller. There-
fore, if a failure occurs, the switch-to-controller communication is lost until
its controller detects and configures an available control path to it. The time
a communication is recovered depends on the network connectivity and the
time it takes to the controller to discover the event and configure the control

29

“Thesis Yury Final” — 2016/5/‘31 — T7:28 — page 30 — #42

Chapter 3 Review of the state of the art

path over the affected switches, if it exists. This means that in case a switch
fails, there is no guarantee that the switch-to-controller path can recover
after a failure.

3.4.3 Assumptions vs. Real network conditions

The controller placements are selected based on a limited set of requirements,
which are defined based on the network/service requirements. When several
network requirements and network constraints are defined, the formulation
becomes too complex, increasing the time resolution.

Assumptions

To simplify the complexity of the problem and therefore its resolution, some
assumptions are considered in the selection of the controller placements.
First assumption is related to the location of the controllers in the network.
In this case, the controller placements are selected from a limited set of
nodes instead of considering the entire network space. Second consideration
is related to the number of controllers, which is assumed to be defined in
advance.

Real network conditions

Approaches that do not make any assumption about those mentioned as-
pects, consider the real network conditions to select both, the controller
placements and the number of controllers required to satisfy a specific ob-
jective.

3.5 Computing the optimal controller placements

This section presents the different objectives, strategies and the metrics that
can be defined for selecting the controller placements in SDNs.

3.5.1 Main controller placement objectives

The controller placement problem consists of discovering both the optimal
number of controllers and their placement in a network to satisfy a specific
objective that can be formulated in terms of:

30

“Thesis Yury Final” — 2016/5/‘31 — 7:28 — page 31 — #43

3.5 Computing the optimal controller placements

Metrics to provide QoS

The controller placements can be selected according to a set of quality of
service requirements defined by the service provider. These QoS require-
ments are related to the switch-to-controller delay [42], [52], inter-controller
delay [26], controller utility [27], among others. The location of the con-
trollers in the network, can be also selected based on specific QoS metrics
that guarantee the flow setup time and the response time of a request [26].
For instance, critical services as video or voice over IP have to satisfy specific
QoS requirements to not be seriously affected.

Economical profit of the controller placement

From the point of view of network providers, a natural objective to select
the controller placement would be to minimize the capital and operational
expenditure. This objective is directly proportional to reduce the number
of controllers in the network and use the controller resources in an efficient
way. The number of controllers implemented in a network, directly impacts
the capital and operational expenditures (CAPEX and OPEX). Therefore, it
becomes necessary to find the optimal number of controllers in a network and
the switch-to-controller assignation. In order to reach this goal, controller
placement approaches should try to assign the maximum number of switches
to each controller while satisfying a set of network requirements [43].

For instance, in [49] the objective is to minimize the cost of assigning a
switch-to-controller, and in [54] the objective function is to minimize a given
cost function, that seeks to maximize the resilience.

Resilience of the control plane

In terms of the control plane, resilience is related to find the controller
placement that: i) minimize the data loss, by reducing the number of control
paths affected by a network failure as in [44], [51] or ii) maximize the number
of backup paths per each control path or at least, find the number of backup
paths that satisfy defined resilience requirements [39], [40],[41] and [61].

3.5.2 Optimization strategies

The controller placement problem is NP-hard. Therefore, for large networks
the time to find the optimal solution becomes very high. In this case, differ-
ent strategies have been used to solve the controller placement problem in
an efficient way.

31

“Thesis"Yury Final” — 2016/5/‘31 — T7:28 — page 32 — #44

Chapter 3 Review of the state of the art

Exact solutions

To find an optimal control placement solution, the problem has to be for-
mulated by means of Integer Linear Programming (ILP). When using this
strategy, network resources can be limited (e.g., controller, switches and
links resources). In addition, other specific requirements such as resilience,
switch-to-controller delay and inter-controller delay can be defined. How-
ever, the disadvantage of this strategy is the time it takes to find a solution,
finding the controller placements in large networks can take a long time, as
shown in [43] and [62].

Heuristic solutions

This strategy allows the controller placement problem to be solved in a more
efficient time in comparison with ILP. Heuristic strategy does not find an
optimal solution, but it finds a solution near the optimal, compromising
optimality for short execution time. In general, the controller placement
approaches are formulated through a heuristic algorithm.

Clustering solutions

Clustering is used in many disciplines and applications, it is an important
tool that seeks to identify homogeneous groups of objects based on the values
of their attributes. In the controller placement problem, clustering can be
used with heuristic and exact solutions. In this case, the clustering approach
is responsible for reducing the search space where a controller placement is
sought, defining the set of feasible controller placements. Then, a heuristic
or exact strategy can be used to select the better controller placement.

Strategies for hierarchical clustering generally fall into two types, agglom-
erative and partitive approaches [63]. In the case of an agglomerative ap-
proach, each node starts being its own cluster, this is the case of k-center
and k-Median, and pairs of clusters are merged until a certain condition is
satisfied. In a partitive approach, all the nodes are part of one cluster, while
is recursively split until a terminating condition is met.

3.6 Controller placement metrics
Different metrics have been considered to select the controller placement.

These can be classified according to the main network objective to select
the controller placements, as described in Section 3.5.

32

“Thesis Yury Final” — 2016/5/‘31 — T7:28 — page 33 — #45

3.6 Controller placement metrics

3.6.1 Metric related to the network performance

These metrics evaluate the performance of the resulting control planes, which
are related to: the switch-to-controller path and the switch allocation be-
tween controllers. These metrics can also be used to compare different con-
troller placement approaches.

Stretch

This metric compares the path length of each switch to the controller place-
ment found (control path) with the shortest path from the switch to the
controller. A high stress might result in some control paths with an addi-
tional delay because the resources of the switches/links can be shared by
multiple control paths. The more control paths use the same switch or link,
the higher the impact regarding possible side effects. For instance, if mul-
tiples control paths use the same switch/link, when it fails all the control
paths including this switch are disconnected from the controller.

Path length

The path length metric measures the number of hops between the controller
and each switch that is managed by it. The longer a control path, the more
resources are used and the node dependence increases (number of down-
stream nodes). This means that the path length has a direct impact on the
cost of the resulting control plane. Depending on the links traffic, switches
that have longer control paths to their controller can take a long communi-
cation delay, affecting the control plane performance. In long paths, when
a network failure happens, all the downstream nodes to the failure node are
disconnected from the controller.

Control path delay

This is the time it takes to a switch to communicate with its controller and
vice versa. Therefore, this delay influences: i) the time switches announce
events to their controller and ii) the time it takes to the controllers to con-
figure their switches. Given the importance of this metric in the network
performance, most of the approaches take into account this metric in the
selection of the controller placement.

33

“Thesis"Yury Final” — 2016/5/‘31 — T7:28 — page 34 — #46

Chapter 3 Review of the state of the art

Inter-controller delay

This is the time it takes to each pair of controllers communicate with each
other in a control plane. In a distributed control plane, controllers need to
communicate among themselves to exchange control information and update
their routing tables. These are essential operations to the network opera-
tion. To make right forwarding decisions, controllers must have the network
topology information updated. In [16] and [47], the authors describe the
impact of the physical distribution of the controllers for the performance
and coordination of a control application logic. Regardless of the strategies
used to manage the network state consistency, the connectivity among con-
trollers determines the time required to update information among them.
It is called the window of inconsistency in [27]. This is a factor of delay
bounded by the farthest controllers in the network and the load on con-
trollers. A high inter-controller delay can affect the network operation, due
to the controllers can make wrong decisions if routing tables or control in-
formation is not updated in a short time. Nonetheless, multiple controllers
may be used to reduce latency or increase fault tolerance [64]. In [65] an
inter-controller communication mechanism was proposed.

Flow setup time

One of the key functions of an SDN controller is to establish flows. As such,
some of the performance metrics associated with the controller scalability
are the flow setup time and the number of flows per second that the con-
troller can setup. In a reactive flow management approach, when a switch
receives a flow that it does not know how to forward, the switches has to
forward the flow to the controller for processing. The time associated with
the flow setup time is the sum of the time it takes to send the packet from
the switch to the controller, the processing time in the controller and the
time it takes to send the configuration message back to the switch. As-
suming that the controller is not a bottleneck and that it has information
about the service required, the total setup time can only be affected by the
distance between switch-controller. In [27], it has been demonstrated that
a long flow setup time limits the network convergence time, and affects the
controller ability to respond to network events in a minimal time that can
degrade the application and service performance. In [26], authors propose a
dynamic controller placement to minimize the flow setup time by dynami-
cally changing the number of controllers and their locations.

34

“Thesis Yury Final” — 2016/5/‘31 — T7:28 — page 35 — #47

3.6 Controller placement metrics

3.6.2 Metric related to control plane scalability

One of the most important reasons to distribute the network control is based
on the fact that one controller alone may not have enough capacity to manage
the whole network, and therefore it could become a bottleneck in terms of
processing power, memory, or input/output bandwidth [64]. As explained in
[17], in a centralized and reactive SDN network, scalability problems can be
caused by flow initiation overhead or resiliency to failures. In large networks
with a distributed control plane, these scalability problems may also arise,
since controllers not only have to process requests coming from switches it
is responsible for, but also requests sent from other controllers. As in a
centralized SDN network, in a distributed SDN network, controllers have
limited capacity of memory and CPU that can be saturated if the size of a
network grows or if the switch load is not distributed homogeneously between
the controllers. In addition, increasing network traffic lead to a reduction of
the available bandwidth in the links used by the control channels, limiting
the communication with the control plane. This situation is critical in a
reactive network, given that the controller can not do anything about the
control link capacity as it can not treat messages faster than it receives them
[31].

Therefore, in large scale WANSs, the control plane topology can limit the
availability, response time and convergence time on the network [27]. The
reason is that, control applications require the ability to reprogram data
plane state at very fine time-scales to satisfy network objectives in SDN.
Therefore, selecting the controller placements to keep the flow setup time as
low as possible is fundamental for an efficient network operation.

Link capacity

In SDNs, data and control paths share network resources. Therefore, the
controller placements should be selected so that: i) all switches are managed,
ii) the switch-to-controller control paths have enough capacity and, iii) the
controllers have enough available resources. A congested link that is used
by one or more control paths can add a switch-to-controller communication
delay that affects the response time of a request and consequently the flow
setup time [31].

Controller utilization

The controller utilization is measured by the number of flows managed by
each controller. Fach controller has an upper limit on the number of control

35

“Thesis Yury Final” — 2016/5/‘31 — T7:28 — page 36 — #48

Chapter 3 Review of the state of the art

messages and flows it can handle at any time. Therefore, there is a limited
number of switches that can be managed by a controller. In [52], it was
shown that one controller alone is capable of managing a complete network,
in terms of controller capacity. However, the switch-to-controller delay can
be very high, affecting the application performance. In large SDN networks,
data center or enterprise networks that can manage a high traffic load, only
one controller is not enough.

The placement of controllers should try to minimize the propagation la-
tency, while the load of each controller should not exceed its capacity. The
capacitated controller placement problem (CCPP) mentioned in [49] consid-
ered the problem of load controller capacity.

Number of controllers

The number of controllers in a control plane not only depends on the traffic
managed by the network, but also on the other requirements that must be
satisfied (e.g., control path delay, inter-controller delay). It has also been
shown that the number of required controllers is more dependent on the
topology than on network size [40].

Increasing the number of controllers in the network can significatively
improve the resilience, as shown in [52], [43] and [54]. In [42] and [43],
authors shown that there is a specific number of controllers that improve
the network resilience, which depends on the network topology. It is also
shown that, using more controllers than the necessary does not improve the
network performance, but increases the solution cost and can difficult the
controller communication . Authors in [66], propose a mathematical model
to define the optimal number and locations of controllers. They also consider
heterogeneity of controllers and their interconnections.

3.6.3 Metric related to control plane robustness

In traditional networks, the network robustness mainly depends on the node
connectivity in the network [67], [68],(69]. In SDN, in addition to the net-
work connectivity, the controller placements is also a decisive factor in the
resulting control plane robustness [56]. The controller placements influence
both i) the number of switches that can be disconnected or unprotected
when a network failure occurs and ii) the number of switches that can re-
establish the communication to the control plane through a backup path (or
protected switches). Therefore, the controller placements can be selected to
reduce the control plane resilience.

36

“Thesis Yury Final” — 2016/5/‘31 — T7:28 — page 37 — #49

3.7 A classification of the controller placement approaches

Number of backup paths

When a switch-to-controller communication is broken due to a link or switch
failure, those switches that are disconnected from their controller can used
a backup path to its controller or another one, as specified in the OpenFlow
standard [70]. In the case of a controller failure, the switches managed by it
can be managed by a backup controller [71].

Solutions based on connecting switches to several controllers in a cost-
effective, have been proposed in order to maximize network robustness and
therefore the network performance [72]. In [39] and [40], each switch must
meet a reliability constraint so that operative paths towards any of the
controllers it connects to, exists with at least a given probability. As a
result the set of controllers that minimizes the associate cost are found. In
[41] and [61], the authors select the controller placements that maximize the
number of switches protected in the presence of a failure in the upstream
switch. To achieve high availability, in [47] robustness is handled in terms
of control plane connectivity.

Data Loss

In [44] and [51], a reliability metric called the expected percentage of control
path loss is proposed. This metric is defined as the number of broken control
paths due to network failures. In [50], a reliable metric that measures the
expected percentage of valid control paths when network failures happen is
defined. Therefore, these approaches do not consider backup paths, they
find the controller placements that minimize the data loss due to network
failures.

3.7 A classification of the controller placement
approaches

Thus, all controller placement approaches proposed in the literature can be
categorized according to: a) whether they are Static (S) or Dynamic (D), and
b) whether node protection (Resilience (R)) or nodes are Unprotected (U)
is considered. In addition, solutions can be categorized according to: i) the
number of controllers (K), ii) the controller placements (CP) or iii) both the
number of controllers and their location (K —CP). If an approach considers
Real network Conditions, it is represented as (RC). In Table 3.1, the con-
troller placement approaches are classified according to the aforementioned
aspects by using the following syntax:

37

“Thesis Yury Final” — 2016/5/‘31 — T7:28 — page 38 — #50

Chapter 3 Review of the state of the art

[S—D]/[R—U]/[K/CP/K-CP/RC].

The first character denotes, whether the approach is is Static or Dynamic.
Likewise, the second character denotes whether the controller placement
approach considers Resilience to the control plane or if the control plane
is Unprotected. Finally, the third character denotes whether an approach
assumes any of the following aspects to select the controller placements: i)
the number of controllers defined by K, ii) the controller placements CP
or iii) if an approach assumes both the number of controllers and their
location, k — C'P. Otherwise, if an approach does not assume any of the
aforementioned aspects, it is denoted as RC. So, an approach denoted as
S/R/RC will be a static and resilience approach that does not make any
assumption about the number of controllers neither their placement in the
network.

3.8 Network discovery

Different communication protocols have been defined in SDN to address the
communication between switch-to-controller, such as OpenFlow [12] and the
Forwarding and Control Element Separation ForCES [13]. These protocols
do not define neither the allocation of switches to controllers nor the commu-
nication path between switch to controller. In general, to establish a switch-
to-controller communication, the aforementioned communication protocols
considers that:

e each switch has programmed the IP address of its controller and,

e they also have information about the TCP port number through with
can communicate to their controller.

Therefore, controllers and switches can contact each other on the cor-
responding IP address and TCP port programmed in advance, through a
Transport Layer Security (TLS) section. Consequently, the allocation of
switches to controllers and the network topology information on control
plane dependent on/require of human intervention.

To maintain the network information on the control plane updated, some
protocols used in traditional networks with this purpose have been adopted
for SDN networks. This is the case with the link discovery protocol (LLDP),
a protocol used by the network devices to announce their identity , capacities
and neighbours. LLDP has been adopted for SDN networks to maintain

38

“Thesis Yury Final” — 2016/5/‘31 — 7:28 — page 39 — #51

3.8 Network discovery

Table 3.1: Classification of controller placement approaches.

Classification Reference Strategy Contribution
S/U/K [52] Heuristic Analyzes the impact of the controller
locations on the control path delay.
[73] Clustering/ Finds the CPs that balance load
Heuristic on the controllers.
S/U/CP [49] ILP Focuses on the capacitated CPP.
[66] ILP Defines the type of controllers and
connections between network elements.
[74] ILP Proposes a multi-criteria optimization
method applicable to the CPP.
S/R/K [54] Clustering/ Divides the CPP in two sub-problems,
Heuristic partitions network and assigns CPs.
[41] Heuristic Finds the CPs that maximizes
the control plane resilience.
[62] Heuristic Analyzes the trade-off between control
path delay Vs other metrics.
[43] ILP Analyzes the trade-off between control
path delay Vs other metrics.
[44] Heuristic Introduces a reliability metric that
measures the data loss.
S/R/CP [40], [39] ILP/ Finds the CPs that guarantee a
Heuristic reliability constraint.
[61] Heuristic Improves network resiliency and finds
CPs to maximize fail-over probability.
[50] Heuristic Defines a resilience metric that
minimizes the data loss.
S/R/K-CP [51] ILP Characterizes the control plane
reliability.
D/U/CP [26] ILP Proposes a dynamic version of
the CPP.
[57] Heuristic Finds the optimal CPs by dynamic
addition or deletion of controllers.
D/U/RC [53] Clustering/ Combines CP with a dynamic
Heuristic flow management algorithm.

the network topology information and the network resources information
updated on the control plane. This mechanism is referred to as OpenFlow

39

“Thesis"Yury Final” — 2016/5/‘31 — T7:28 — page 40 — #52

Chapter 3 Review of the state of the art

Discovery Protocol (OFDP) [75].
Other approaches to discover the underlying network topology are based
on LLDP-OpenFlow or LLDP-ForCES.

3.8.1 Network discovery based on OpenFLow protocol

In [46], authors propose a topology discovery mechanism based on OFDP
protocol. The contribution of this approach, in comparison with the LLDP
protocol is the reduction of the number of LLDP Packet — Out messages
a controller has to forward in order to discover the links between switches.
For this purpose, the authors consider that:

e controllers have information about the switches in the network, but
they do not have information about the links between them and,

e controllers have a control channel established with each switch in the
network.

In this approach, the topology discovery is reduced to discover the links in
the network. Given that an OpenFlow switch can not by itself send, receive
and process LLDP messages, these messages are encapsulated in the control
messages defined in OpenFlow. As part of the initial protocol handshake,
controllers can request information to the switches through OpenFlow mes-
sages via their control path. This information includes the active ports and
MAC addresses of the switches. While LLDP messages have information
about, the port ID and time-to-live [46].

The information provided by all of these messages is used by the controllers
to discover the connectivity between switches. When a controller receives
a Packet — In, it discovers the ID of the switch and the ingress port via
which the packet was received. From this information, and from information
contained in the LDDP packets (e.g., Port ID, TLV, etc.), the controllers
can infer that existence of links between two switches. The controllers have
to execute this procedure periodically to maintain the network topology
information updated.

A disadvantage of this approach is the high load that a controller has to
manage, which depends on the number of LLDP Packet — Out messages
the controller needs to send (that is proportional to the number of ports
in the network) and the number of LLDP Packet — In messages it receives
(it depends on the network topology). Besides, this approach only informs
about the link status.

40

“Thesis Yury Final” — 2016/5/‘31 — 7:28 — page 41 — #53

3.9 Network topology consistency

In order to reduce the number of LLDP Packet — Out messages that a
controller has to send, authors propose that SDN switches are capable of re-
writing the LLDP port ID according to the port the packet is being sent out
in. Consequently, a controller is not required to forward as many messages
as there are ports per switch, as each switch can re-forward the message.

3.8.2 Network discovery based on ForCES protocol

An approach to discover the network topology based on ForCES is proposed
in [45]. Authors propose a generic model for extracting the topology infor-
mation directly from the network devices, defining the switch-to-controller
paths by configuring the Logical Function Blocks (LFBs). In ForCES,
switches have Logical Function Blocks or LFBs, which are configured by
the controllers, such that switches are capable of receiving, transmitting
and modifying packets. Each switch runs the traditional LLDP protocol pe-
riodically to maintain the local neighbour table updated. In the occurrence
of an event (e.g,. a new switch or a neighbour switch is broken), the switch
announces it to the controller, updating the network topology information.

3.9 Network topology consistency

In an operative network, topological changes can happen anywhere and any-
time, which must be detected and announced to the respective controllers
to maintain the network topology information updated on the control plane.
Regarding the importance of failure detection in SDN networks, there is
not a detailed mechanism of failure detection on any of the communication
protocols defined for SDN networks (e.g., OpenFlow specifications); this is
still an open issue. In this section, a description of some proposed detection
failure mechanisms in SDN networks are presented.

The speed at which failures are detected directly affects the performance
of both the control and data planes. This is because, in the context of the
control plane, it is desirable to maintain the consistency in network infor-
mation at all times to avoid making routing decisions that involve disabled
network resources. At the same time, in the context of the data plane, the
time a failure is detected affects the communication recovery time.

3.9.1 Fault detection in SDN networks

Whereas traditional network protocols rely on their distributed algorithm
running on the network switches to detect and react in the presence of

41

“Thesis"Yury Final” — 2016/5/‘31 — T7:28 — page 42 — #54

Chapter 3 Review of the state of the art

failures, in SDN networks, as a consequence of the separation between the
control and data planes, these functions are no longer executed by the data
plane. Instead, in SDN networks, the operator through the controllers has to
explicitly define the switch behaviour after a failure occurs in the network.
Despite this fact, failure detection mechanisms can be considered, in general,
to be executed by controllers. However, due to the resulting high overloading
on the controller, it also has been considered that SDN switches can execute
this function.

Detection failure by controllers

Different approaches have been considered to discovery the network topology,
but few of them address the detection of failures. For instance, in [46],
authors propose a mechanism to discover the links between switches by
encapsuling the OpenFlow packets in LLDP packets. However, this approach
can also be used to discover network failures through OpenFlow messages.
While that in [76], authors propose the creation of a ring topology that
includes all the switches and links of the network through which probe packet
are forwarded to monitor the network status.

The basic idea behind failure detection approaches executed by controllers
consists of forwarding probe packets through the end-to-end paths being
monitored, which require a response from the switches; an unanswered mes-
sage implies that a failure has happened. In this model, when a failure
occurs, it is hard to detect its location with precision. To detect the lo-
cation of a failure, controllers can forward probe packets to each one of
the switches in the monitored path, such that each message sent has to be
answered before forwarding the message to the next switch in the path.

When multiple and simultaneous failures happen, the detection of a spe-
cific failure becomes complex as the network may be partitioned. This simple
detection mechanism is neither time efficient nor scalable as the controller
has to send an increasing number of messages directly proportional to the
number of switches monitored to check if the network elements are opera-
tional.

In addition, the speed of this failure detection is slow, as the failure de-
tection depends on:

e the path length and,
e the rate at which messages are sent.

This detection model imposes a high load on the controllers that can
affect the performance of the original tasks it was designed for. Hence, the

42

“Thesis Yury Final” — 2016/5/‘31 — T7:28 — page 43 — #55

3.9 Network topology consistency

controller must be able to handle and react to millions of monitoring packets
per second just to monitor the state of the network. This not only leads to
a high load on the controller, but also on the control paths.

The approach proposed in [76] is designed to verify topology connectivity
and locate link failures. For this purpose, a single closed path that includes
each edge in the network is created. This defines a logical ring topology
where all switches in the network are included. In order to define the cycle,
each link can be used twice, if necessary. After the ring topology is built,
each controller in its network domain proceeds to install flows in each switch,
configuring the monitoring cycle.

To verify the network topology connectivity, the controllers inject probe
packets that are forwarded along the cycle, unless there is another rule spec-
ified. If there is no failure in the ring or segment inspected, the probe
packets must be forwarded back to the controller. A bidirectional logical
ring topology is created to locate an arbitrary link failure.

When a probe packet fails to return to a controller, it defines different
segments of the ring to be inspected (by sending probe packets) and detects
the location of a failure. Depending on which messages are received back, a
controller can detect the segment where the failed link is located. Each seg-
ment of the logical ring must be inspected in order to locate the failure. For
this purpose, controllers have to configure the forwarding tables of switches
involved in each segment.

This approach can not detect and locate more than a single link at the
same time. The reason for this is that, in the case of multiple failures, the
monitored path/cycle is broken in different places impeding the forwarding
of control messages to the controller. Besides, this mechanism can not be
implemented for any kind of network, since there are network topologies for
which it is not possible to built a ring/cycle.

Some disadvantage of the aforementioned approaches are:

e the performance of controller-based detection approaches is poor as it
can take a long time to discover a failure. In [76] this time is propor-
tional to twice the delay on each monitored path,

e overload the controller,

e controllers are unable to differentiate between switch and link failures.

Alternative approaches to detect failures in SDN networks consider that
the fault detection function should remain directly implemented by the
switches.

43

“Thesis"Yury Final” — 2016/5/‘31 — T7:28 — page 44 — #56

Chapter 3 Review of the state of the art

Detection failure by switches

Different switch-based fault detection approaches have been proposed to
improve the detection time without overloading the controller, such as [3§]
and [77]. The objective of these approaches is to detect as soon as possible
a network failure, such that data communication can be recovered as fast
as possible. To ensure this, both approaches consider that all switches have
backup paths to the controller, which can be activated as soon as a failure
is detected.

In [77], authors propose a set of functions to provide reliability to the
network, based on the idea of re-establishing a communication when a path
failure occurs. Within these functions, authors propose the implementation
