
“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page — #1

Universitat Politécnica de Catalunya

Network Engineering Department

PhD Thesis

Scalability and Robustness of
the control plane in

Software-Defined Networking
(SDN)

Author: Yury Andrea Jiménez Agudelo

Advisor: Cristina Cervelló i Pastor

Barcelona, May 2016

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page — #2

Universitat Politécnica de Catalunya
Network Engineering Department

Yury Andrea Jiménez: Scalability and Robustness of the control plane in
Software-Defined Networking (SDN), Copyright c© May, 2016

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page i — #3

Contents

List of Figures v

List of Tables ix

I Network Management Fundamentals and State of the Art 1

1 Introduction 3
1.1 Goals of the thesis . 5
1.2 Structure and Overview . 6

2 Network Management Fundamentals 9
2.1 Outline . 9
2.2 Traditional networks . 9
2.3 Sofware Defined-Networking (SDN) 10

2.3.1 Definition . 10
2.3.2 Network elements . 11
2.3.3 SDN Architecture . 11

2.4 Communication protocols . 14
2.4.1 OpenFlow . 14
2.4.2 ForCEs . 17

2.5 Recovery . 18
2.6 Network Protocols . 19

2.6.1 Link Layer Discovery Protocol (LLDP) 19
2.6.2 The Bidirectional Forwarding Detection (BFD) 20

2.7 Conclusions . 21

3 Review of the state of the art 23
3.1 Outline . 23
3.2 Challenges in SDNs . 24

3.2.1 Scalability . 24
3.2.2 Control plane resilience 25
3.2.3 Consistency of the network information over controllers 26

i

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page ii — #4

Contents

3.3 Controller placement . 26

3.4 A controller placement taxonomy 27

3.4.1 Static vs. Dynamics 28

3.4.2 Robustness vs. Unprotected 29

3.4.3 Assumptions vs. Real network conditions 30

3.5 Computing the optimal controller placements 30

3.5.1 Main controller placement objectives 30

3.5.2 Optimization strategies 31

3.6 Controller placement metrics 32

3.6.1 Metric related to the network performance 33

3.6.2 Metric related to control plane scalability 35

3.6.3 Metric related to control plane robustness 36

3.7 A classification of the controller placement approaches 37

3.8 Network discovery . 38

3.8.1 Network discovery based on OpenFLow protocol . . . 40

3.8.2 Network discovery based on ForCES protocol 41

3.9 Network topology consistency 41

3.9.1 Fault detection in SDN networks 41

3.10 Conclusions . 45

II Contributions to the SDN management 47

4 Discovering controller placement in SDN networks 49
4.1 Outline . 49

4.2 Controller placements and its implications 50

4.3 Shortcomings of existing controller placement approaches . . 50

4.4 K-Critical . 55

4.4.1 Definitions . 57

4.4.2 Problem formulation 59

4.4.3 Candidate switch selection 60

4.4.4 Controller placement selection 61

4.4.5 Complexity analysis 64

4.5 Heuristic Algorithm for k-Critical 64

4.5.1 Fault-Tolerant SDN controllers 66

4.5.2 An example . 69

4.6 Comparison of Controller placement approaches 72

4.6.1 k-Median problem . 73

4.6.2 k-Center problem . 74

4.6.3 Evaluation and results 74

ii

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page iii — #5

Contents

4.6.4 Analysis . 78

4.7 Conclusions . 81

III Contributions to build a robust control plane in SDN 83

5 Evaluation of control plane robustness 85
5.1 Outline . 85

5.2 Network Resilience in SDN 86

5.2.1 Backup Control Paths 86

5.3 Control plane resilience metrics 88

5.4 Fast Failover . 90

5.5 Towards a network robustness metric 93

5.5.1 Robustness as generalized switch protection 93

5.6 Evaluation . 95

5.6.1 k-Critical and the restriction to k=1 95

5.6.2 A Note on Complexity 96

5.7 Simulation and Results . 97

5.7.1 Setup . 97

5.7.2 Results . 98

5.8 Conclusions . 103

6 Resource discovery for SDN networks 107
6.1 Outline . 107

6.2 Network management in SDN 108

6.2.1 Formulation . 108

6.3 Resource Discovery Protocol 109

6.3.1 Forwarding Phase (FP) 109

6.3.2 Backward Phase (BP) 111

6.3.3 Partial network topology discovered by each controller 113

6.3.4 Protocol complexity 114

6.4 Network topology discovery by controllers 116

6.4.1 Finding a path between controllers 116

6.5 Allocation of switches to controllers 120

6.5.1 Re-distribution of switches-to-controllers 120

6.6 Updating the network topology 122

6.6.1 Detecting network topology changes 124

6.6.2 Principles to update the network topology 125

6.6.3 Discovering network events and updating the network
topology information 129

iii

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page iv — #6

Contents

6.7 Simulation and Results . 133
6.7.1 Evaluation . 135
6.7.2 Protocol evaluation in Syn mode 136
6.7.3 Protocol evaluation in Asyn mode 141
6.7.4 Evaluation of the scalability of the SDN-RDP protocol 155

6.8 Conclusions . 158

7 Conclusions 163
7.1 Summary of Contributions . 164
7.2 Further improvement of proposed contributions 165
7.3 Future Work . 166

Bibliography 169

iv

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page v — #7

List of Figures

2.1 SDN network architecture. 12

2.2 Representation of backup control paths. 19

4.1 Classification of controller placement approaches according to
their objective. 51

4.2 Network topology. 55

4.3 k-Critical process. 56

4.4 k − Critical processes. 57

4.5 Network topology. 71

4.6 Tree topologies from candidate switches, Cswitches = {8, 10, 11, 12}. 71

4.7 Tree topologies from candidate switches, Cswitches = {1, 2, 3, 5, 8, 9}. 72

4.8 Control plane created from candidate switches selected. . . . 73

4.9 Number of controllers for all possible delay ranges in gener-
ated networks with sparse connectivity. 76

4.10 Number of controllers for all possible delay ranges in gener-
ated networks with medium connectivity. 77

4.11 Number of controllers for all possible delay ranges in gener-
ated networks with high connectivity. 78

4.12 Average switches managed by controller. 79

4.13 Average depth on control topology. 79

4.14 Expected data loss on randomly generated networks. 80

4.15 Expected link delay on control topology. 81

5.1 Representation of backup control paths. 87

5.2 Average switch distribution for each network category. 93

5.3 Average switch distribution for each network category. 98

5.4 Average link delay. 99

5.5 Maximum controller-to-switch delay in control plane trees. . . 100

5.6 Average maximum tree depth, the depth of a tree correspond-
ing to the maximum length of a branch. 101

5.7 Average tree length. 101

v

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page vi — #8

List of Figures

5.8 Average number of downstream switches/switch on the tree.
These are the affected switches in case of failure of the corre-
sponding switches. 102

5.9 Experimental Cumulative Distribution Function (CDF) for
the number of downstream switches, for k-Critical (top) and
Fast Failover (bottom), for sparse SDNs. 103

5.10 Switches locally protected against failures in immediate up-
stream link/parent. 104

5.11 Network robustness index. 0=robust, 1=non-robust. 104

6.1 Representation of the network topology discovery process. 115

6.2 Process to discover a path between two controllers, CA and CB . . . 117

6.3 Process to discover the network topology by controllers. 119

6.4 Representation of the processes to allocate switches to controllers. . 122

6.5 Flowchart: assignation process of switches-to-controllers. 123

6.6 Examples of switches disconnected from the control plane, with

their control plane representation: (a) isolated switches, (b) switches

disconnected from their controller, (c) switches that do not have a

backup control path configured. 129

6.7 Process to maintain updated the network topology. 131

6.8 Process to detect network changes. 132

6.9 Process to detect link failures. 133

6.10 Process to detect switch failures. 134

6.11 Protocol evaluation in Syn mode for networks that consist of 200

switches. 137

6.12 Boxplots of the protocol evaluation in Syn mode for networks that

consist of 200 switches. 139

6.13 Q-Q plots of the computation time (µs) in Syn and Asyn modes for

networks that consist of 200 switches. 142

6.14 Boxplots of the computation time in Syn and Asyn modes for net-

works that consist of 200 switches. Black points indicate the mean

value. 143

6.15 Q-Q plots of the number of messages per switch in Syn and Asyn

modes in networks that consist of 200 switches. 144

6.16 Q-Q plots of the number of switches discovered by each controller

in Syn and Asyn modes in networks that consist of 200 switches. . 146

6.17 Boxplots of the number of switches discovered by each controller

in networks that consist of 200 switches. Black points indicate the

mean value. 147

vi

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page vii — #9

List of Figures

6.18 Cumulative Distribution Functions of the number of switches dis-

covered by each controller in networks that consist of 200 switches

for 1-8 controllers. 148
6.19 Q-Q plots of the stretch in switch-to-controller paths discovered by

each controller in Syn and Asyn modes in networks that consist of

200 switches. 149
6.20 Q-Q plots of the maximum switch-to-controller path delay found in

Syn and Asyn modes in networks that consist of 200 switches. . . . 150
6.21 Q-Q plots of the control plane robustness found in Syn and Asyn

modes in networks that consist of 200 switches. 151
6.22 Q-Q plots of the maximum expected data loss found in Syn and

Asyn modes in networks that consist of 200 switches. 152
6.23 Boxplots of the maximum expected data loss in networks that con-

sist of 200 switches. Black points indicate the mean value. 153
6.24 (a) Mean number of messages to create a control plane (b) Control

plane computation time. (Networks with different sizes, varying the

number of k-Critical controllers.) 157
6.25 Control plane computation time; CI are omitted to improve read-

ability. (Different number of switches, k-Critical and randomly se-

lected controllers.) . 158

vii

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page viii — #10

viii

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page ix — #11

List of Tables

3.1 Classification of controller placement approaches. 39

5.1 Simulated networks. 97

6.1 Information of randomly generated networks. 135
6.2 Description of quartiles. 139
6.3 Control plane characteristics when executing the SDN-RDP proto-

col in Syn mode over 100 networks that consist of 200 nodes. . . . 154
6.4 Control plane characteristics when executing the SDN-RDP proto-

col in Asyn mode over 100 networks that consist of 200 nodes. . . . 154

ix

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page x — #12

x

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 1 — #13

Part I

Network Management
Fundamentals and State of the

Art

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 2 — #14

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 3 — #15

Chapter 1

Introduction

First computer networks began in a laboratory in the early 1960s with the
idea of sending data between two computers where data was divided and
encapsulated into packets. This network grew over the next few years and
began to support applications such as file transfers and electronic mails. A
few years after, in 1972, the idea of connecting independent networks each
based on a different technology resulted in the appearance of Transmission
Control Protocol (TCP) and Internet Protocol (IP). The former provides re-
liable communication across different networks and the latter deals with the
delivery of packets. The goal of the Internet was simply to carry the packets
from source to destination, where simple routing algorithms, installed on
each network element, computed the routing tables to achieve that goal. In
this model, the control plane merely needed to manage an end-to-end com-
munication, where all traffic was treated in exactly the same way: the best
effort service.

The growth of computer networks. The simplicity of Internet design
has led to enormous growth and innovation. In recent decades several net-
work technologies, services and applications have appeared, which demand
specific network requirements for their correct operation. The growth of
computer networks together with the use of increasingly sophisticated user’s
terminals, has led to the networks to evolve from:

• a static academic network managed by a centralized entity evolving
into a network operated by numerous providers where routing pro-
tocols operate in a distributed way and each operator manages its
network based on a set of policies, and

• a network system designed to provide basic end-to-end communication
between two simple machines (in a topology known in advance) evolv-
ing into a heterogenous networking system (wire and wireless) that

3

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 4 — #16

Chapter 1 Introduction

delivers a range of specific service requirements far more sophisticated
than best-effort packet delivery (in a unknown network topology).

The complexity of heterogeneous network configuration. In tra-
ditional networks, operators are responsible for providing a network config-
uration sufficiently robust to deal with a wide range of network events and
applications. To achieve this is incredibly difficult because: i) the state of
the networks can change continuously and today’s networks do not provide
a mechanism to automatically respond to the wide range of events that may
occur and ii) the static nature of current network devices does not permit
detailed control-plane configuration, given that the hardware and software
are provided by the manufacturer and can not be customized. This network
rigidity has led to:

• the development of new specific protocols and mechanisms on top of
TCP/IP to transport the enormous amounts of data in an efficient,
robust and flexible manner,

• the manual installation of policies to manage anomalies during network
changes,

• the installation of several network components called middleboxes that
provide specific functions to alleviate the lack of in-path functionalities
within the network.

This is the basis of the current, present-day Internet and its architecture,
that has grown in an evolutionary fashion from experimental beginnings,
rather than from a deliberate strategy.

The unpredictable network growth in terms of size and heterogeneity, has
exposed a number of fundamental complexities in the current architecture,
such as:

• networking devices usually support a handful of commands and config-
urations based on a specific embedded operating system (OS) [1], and
as a result, new software can not be installed on forwarding devices
because of incompatible hardware or because the currently available
software is incapable of managing all the hardware capabilities,

• manual configuration of control functions on network devices that may
lead to misconfigurations [2]. For instance, more than 1000 configura-
tion errors have been observed in BGP routers [2]. Undesired network

4

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 5 — #17

1.1 Goals of the thesis

behaviour may result from a simple misconfigured device that may
compromise the network operation for hours [3], and

• the vertical integration of middleboxes makes it difficult for operators
to specify high-level network-wide policies using current technologies.

Network management requires more intelligent and efficient management
systems to coordinate thousands of network elements and applications, the
high demand on network performance and growing configuration complexity
[4], [5]. In recent decades, several approaches have been introduced in order
to improve the network management, such as: MPLS, virtualization and
programmable networks. These latter networks have been proposed as a way
of facilitating network evolution. In particular, Software Defined Networking
(SDN), a networking paradigm focused on allowing software developers to
rely on network resources in an easy manner, unifying the state network
distribution and a general-purpose technique to manage any type of network
in an transparent manner.

In SDN, network intelligence is logically centralized in software-based con-
trollers (the control plane), and network devices become simple packet for-
warding devices (the data plane) that can be programmed via an open in-
terface. By decoupling the control and data planes, network devices can
be easily programmed and reconfigured, allowing the behaviour of different
types of network devices to be unified.

Several SDN architectures have been proposed to handle current and fu-
ture network services [6], [7], [8], [9]. However, there are still important
research challenges to be addressed in SDN. Some of these current chal-
lenges are related to: i) SDN scalability as control is centralized, ii) control
plane robustness as any failure can lead to switches to be disconnected from
the controller, iii) consistency of network information as wrong decisions can
be made affecting network performance and iv) security as controllers can
be attacked. The purpose of this manuscript is to address the first three of
the aforementioned problems.

1.1 Goals of the thesis

The main objective of this thesis is to design network mechanisms to manage
the scalability and robustness of the control plane in SDNs. Three specific
goals are defined:

G.1 Select the controller placements in SDN networks.

5

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 6 — #18

Chapter 1 Introduction

G.1.1 Classify the existing approaches to find the controller placement
in SDNs.

G.1.2 Design an algorithm to find both the number of controllers and
their location on the network.

G.1.3 Implement and evaluate the solution proposed, contrasted with
other existing solutions.

G.2 Define a mechanism that allows the robustness of control plane in SDNs
to be determined.

G.2.1 Classify the existing approaches to define the control plane ro-
bustness.

G.2.2 Design and implement a metric to define the robustness of a
control plane.

G.3 Design a protocol to discover the network topology in SDNs.

G.3.1 Classify the existing approaches to discover the network topol-
ogy in SDNs and maintain it updated.

G.3.2 Design a protocol to discover the network topology in SDNs and
a set of mechanisms to maintain the network topology updated.

G.3.3 Implement and evaluation of the discovery network protocol .

1.2 Structure and Overview

This manuscript is divided in two Parts. The main concepts used throughout
this manuscript as well as the most relevant approaches proposed in each of
the issues covered here are presented in Part I as follows. Chapter 2 presents
a brief overview of the notion of SDNs and OpenFlow. Chapter 3 introduces
the main solutions for each one of the following aspects: i) the controller
placement problem, ii) control plane robustness and iii) the discovery of the
network topology by controllers.

Part II presents the contributions of this thesis. Chapter 4 describes the
implications of controller placement in the SDN network performance and
proposes an algorithm to find the number and placement of controllers to
satisfy a specific requirement. Chapter 5 presents a robustness metric to
measure the resilience of the control plane in SDNs. Chapter 6 presents a
protocol to discover the network topology by controllers and also introduces
a set of network mechanisms to maintain the network topology consistency

6

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 7 — #19

1.2 Structure and Overview

on the control plane. Finally, Chapter 7 presents the main conclusions of
this thesis.

7

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 8 — #20

8

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 9 — #21

Chapter 2

Network Management Fundamentals

As a starting point for this manuscript, this chapter presents the networking
concepts and technologies that will be used in the following chapters. Firstly,
SDN architecture and the most relevant forwarding network protocols for
SDNs are introduced. Secondly, existing path recovery mechanisms and
traditional protocols used in current networks to discover network failures
are presented.

2.1 Outline

This chapter presents the main network concepts of traditional and SDN
networks. Section 2.2 presents the traditional network architecture: data
plane, control plane and management plane. Section 2.3 introduces the
concepts related to SDNs such as: its definition, architecture, planes and
interfaces. Section 2.4 outlines the two most relevant communication proto-
cols in SDNs, which are: OpenFlow and ForCES. Section 2.5 addresses the
recovery path strategies in traditional networks. Section 2.6 presents two
protocols implemented in traditional networks, these are BDF and LLDP.
BDF detects network changes and LLDP updates the network topology in-
formation. Section 2.7 concludes the chapter.

2.2 Traditional networks

Computer networks are typically built from a large number of intercon-
nected network devices such as routers, switches and numerous types of
middleboxes. Traditional IP networks consist of three integrated planes on
each network device. These are:

• The data plane: also called the forwarding plane. It corresponds to
the set of physical and virtual network devices in the underlying network
infrastructure that may include any forwarding devices such as routers,

9

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 10 — #22

Chapter 2 Network Management Fundamentals

switches, virtual switches, wireless access points, among others. These
network devices are responsible for forwarding data based on the infor-
mation in their forwarding tables that are programmed by distributed
routing protocols, such as BGP and OSPF.

• The control plane: this plane is defined by the set of protocols and
algorithms that are used to compute and populate the routes programmed
in the forwarding tables of network devices included in the data plane.
These network mechanisms (protocols and algorithms) are implemented
on the network devices, defining the network behaviour, that is, what and
how data is forwarded on the network.

• The management plane: this plane includes the software services to
remotely monitor and configure the control functionalities of the network
devices in the data plane. Network managers are responsible for config-
uring manually the network policies in the control plane. They transform
the high level-policies into low-level configuration commands, in response
to a wide range of network events and application requirements.

In traditional networks, network policies are defined in the management
plane, the control plane enforces these policies and the data plane forwards
data based on these policies.

2.3 Sofware Defined-Networking (SDN)

2.3.1 Definition

According to Open Network Fundation (ONF), Software-Defined Network-
ing (SDN) is an emerging architecture where the forwarding state in the data
plane is managed by a remote control plane decoupled from the former. This
network architecture has the following characteristics:

. the network control and forwarding functions are decoupled,

. the network control is executed by an centralized external entity,

. the network is programmable,

. forwarding decisions are flow-based,

. SDN has the capacity to the initialize, control, change, and manage
network behavior dynamically via open interfaces.

10

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 11 — #23

2.3 Sofware Defined-Networking (SDN)

. the underlying infrastructure is abstracted by applications and net-
work services.

In SDN, data is forwarded through flows, which are defined as a sequence
of packets between two end-points. All packets of a flow receive identical
service policy treatment at the forwarding devices. The flow abstraction
allows the behaviour of different types of network devices to be unified.

Thanks to all the aforementioned characteristics, SDN is claimed to be
dynamic, manageable, cost-effective and adaptable, making it ideal for the
high-bandwidth, dynamic nature of today’s applications.

2.3.2 Network elements

Basically two network elements are considered in SDN, these are controllers
and forwarding elements.

The controller

Controllers in SDN are considered as the ”brain” of the network, since they
have a whole view of the network status and the forwarding logic required
to forward data flows properly. This is possible through an open interface
to the network, devices southbound from the controller. Through this inter-
face the controller can: i) communicate and program the network devices,
ii) execute basic functions, such as monitoring network devices and even
gathering network statistics, among other functions.

The forwarding devices

This refers to all the entities, physical and virtual, that receives packets on its
ports and performs one or more network functions on them. In SDN, network
devices are often represented as basic forwarding hardware accessible via an
open interface. However, different physical network equipments with an
interface to the controller can be considered as forwarding devices in SDN.

2.3.3 SDN Architecture

An SDN architecture consists of three different planes and a set of interfaces
that allows the communication between them. These planes are: control
plane, data plane and application plane, as illustrated in Fig. 2.1.

11

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 12 — #24

Chapter 2 Network Management Fundamentals

OpenFlow switches Controller

Northbound Interface

Data Plane

Control Plane

Southbound Interface

Routing
Applications Load Balancer

Applications

Security
Applications

Application Plane

West-East Interface

…

Figure 2.1: SDN network architecture.

Control Plane

Responsible for making decisions on how packets should be forwarded by one
or more network devices and pushing such decisions down to the network
devices for execution [10]. This plane consists of a centralized set of software-
based SDN controllers that has an abstract view of the whole network infras-
tructure, enabling the network manager to apply customized policies across
the network devices (through the southbound interface), based on the net-
work topology or external service requests. The SDN controller is at the
heart of the architecture. It is the intelligent entity that controls resources

12

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 13 — #25

2.3 Sofware Defined-Networking (SDN)

to deliver services [11]. Control-plane functionalities usually include:

• Topology discovery and maintenance

• Packet route selection and instantiation

• Path failover mechanisms

• install the forwarding rules on the forwarding tables based on the re-
quested performance from the applications and the network security
policy, and

• collect status information about the forwarding plane.

Data Plane

The data plane consists of physical and virtual forwarding devices that are
accessible via the southbound interface through which controller and for-
warding devices can communicate with each other. Forwarding devices can
support basic functions like forwarding, but also other types of functions,
such as: caching, transcoding and monitoring, among others.

Application Plane

The plane where applications and services that define network behavior re-
side. This plane contains network applications that interact with the con-
troller to achieve a specific network function to fulfill the network operator
needs, such as: quality of service, security, virtualization and traffic engi-
neering functions. This plane allows the behaviour of desired control re-
quirements to be specified on the abstract network view. For this purpose,
the control plane provides an abstract view from the network to the appli-
cation plane, while this is shared via a general interface called Northbound.
This abstract view does not contain detailed connectivity information, but
enough information for the applications to request and maintain connectiv-
ity.

In SDN, three interfaces are defined:

• Southbound interface: this is the interface between the control
plane and the forwarding plane, through which controller and switches
can communicate with each other.

13

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 14 — #26

Chapter 2 Network Management Fundamentals

• Northbound interface: it represents the software interface between
the software modules of a controller and the network applications.

• East-West interface: through this interface controllers can commu-
nicate with each other.

SDN relies on three main abstractions [1], that allow the administrators
to run the network as a whole, by way of an unified interface:

• Abstraction on the distributed state: network controllers get a global
view of the network state, so there is no longer a needed for distributed
algorithms on devices with partial network information.

• Abstraction on the forwarding model: forwarding hardware (in net-
work switches) is decoupled from the network control plane (handled
by network controllers).

• Abstraction on the specification of network operation: this allows a
network application to express the desirable network behaviour with-
out being responsible for implementing it.

2.4 Communication protocols

Different communication protocols have been defined in SDN to address
the forwarding plane of the network elements on an SDN. Two of the most
common are: OpenFlow [12] and the Forwarding and Control Element Sep-
aration ForCES [13].

ForCES and OpenFlow are similar in the following aspects:

• Both protocols consider the separation of the control plane from the
data plane,

• Both protocols standardize information exchange between the control
and data planes.

2.4.1 OpenFlow

OpenFlow is a communication protocol that enables the controller-to-switch
communication in SDNs through the southbound interface [12], [14]. This
protocol also defines a set of basic forwarding and management functions.
The forwarding functions let programmers address the network operation by

14

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 15 — #27

2.4 Communication protocols

routing packets. The set of management functions can be used to control
network features. For instance, switches can inform the controller when
links go down or when receiving a packet for which there is no forwarding
instruction.

This controller-to-switch protocol runs over either Transport Layer Secu-
rity (TLS) or an unprotected TCP connection. OpenFlow provides software-
based access to the forwarding tables that instruct forwarding devices how
packets are forwarded. OpenFlow defines the following network components
for its operation: OpenFlow switches, OpenFlow controllers and control
channels.

OpenFlow switch: OpenFlow switches or forwarding devices have one
or more flow tables and a group table. Forwarding devices perform packet
lookups and take forwarding decisions based on flow tables and group tables.

These Flow tables contain a list of flow entries, each of which determine how
packets belonging to a flow will be forwarded. Flow entries consist of: a
match field, a counter and actions.

• Match field: this is used to match incoming packets, entries in the
match field contain either a specific value against which the corre-
sponding parameter in the incoming packet is compared or a value
indicating that the entry is not included in this flow’s parameter set.

• Counters: these are used to collect statistics for a particular flow,
such as the number of received packets and the duration of the flow.

• Actions: these are a set of instructions to be applied upon a match,
which define how to handle matching packets. These actions describe
packet forwarding, packet modification, and group table processing
operations. For instance, actions can specify that the packet will be
forwarded through a specified port.

Upon receiving a packet, a switch extracts the packet header field of the
flow table entries. If a match is found, the switch applies the set of actions
associated with the matched flow entry. If there is not a match, the action
taken by the switches depends on the instructions defined in the table-miss
flow entry. This table specifies a set of actions to be performed when a match
is not found for a packet, such as: dropping the packet or re-forwarding the
packet to the controller.

15

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 16 — #28

Chapter 2 Network Management Fundamentals

OpenFlow Controller: this is defined as an entity or server software
that interacts with the OpenFlow switch using the OpenFlow protocol. This
protocol connects controller software to network devices so that controllers
can configure network devices and inform where to forward packets.

The OpenFlow channel: the control channel is the interface that con-
nects each OpenFlow switch to a controller. Through this interface, the con-
trollers configure and manage the switches, receive events from the switches,
and send packets out the switches (to add, update, and delete flow entries
in flow tables). The OpenFlow channel is usually instantiated as a single
network connection. This may be encrypted using TLS, but may be run
directly over TCP.

OpenFlow-Resilience

Openflow provides some strategies and mechanisms against controller, con-
trol channel and datapath failures.

Controller. In OpenFlow, three controller roles are defined; equal, slave
and master. The default role of a controller is equal, in this role the con-
trollers have access to the switches and can modify their state. A controller
can request a change in its role from slave to master. In a slave role, the
controllers only have access to read the switches and can only process port
status messages. In the master role, the controller has complete access to
the switches; switches ensure that a maximum of one controller can be in
the master state.

Switches may be simultaneously connected to multiple controllers in equal
state, multiple controllers in slave state, and at most one controller in master
state, for reliability purposes. Following a master controller failure, a slave
controller becomes master controller. This role change mechanism supports
multiple controllers for failover, allowing the switches to be able to continue
operating if their master controller fails.

Control channel. The OpenFlow channel may be composed of multiple
network connections. In addition, OpenFlow specifies two simpler modes to
deal with the loss of connectivity with the controller. In fail secure mode,
the switches continue operating in OpenFlow mode until it reconnects to
a controller. In fail standalone mode, the switches revert to using normal
processing. In addition, in OpenFlow is also considered that a switch can
have multiple control paths to the same or different controllers.

16

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 17 — #29

2.4 Communication protocols

Data path protection. Group tables allow the network to configure
fast failover mechanisms. The action buckets in the group tables provide
the ability to define multiple forwarding actions. For instance, when the
type of a group table is fast failover (FF), it means that the flows can be
rerouted if a failure occurs in the datapath. Therefore, the controller must
anticipate every possible failure and compute backup paths in a proactive
manner. This group type enables the switches to change forwarding port
without requiring a round trip to the controller. If no buckets are live,
packets are dropped.

2.4.2 ForCEs

Forwarding and Control Element Separation (ForCES) is an open, pro-
grammable distributed network architecture, standardized by the IETF.
This defines a new environment to build network devices that split them
into units. ForCES also defines associated protocols to standardize informa-
tion exchange between the control plane and the forwarding plane.

The ForCES network architecture defines two logical entities called the
Forwarding Element (FE) and the Control Element (CE), and an API through
which both network elements can communicate with each other by using the
ForCES protocol.

• Forwarding Element: this is a logical entity that implements the
ForCES Protocol. FEs use the underlying hardware to provide per-
packet processing.

• Control Element: this element is a logical entity that implements
the ForCES Protocol and uses it to instruct FEs on how to handle
packets.

The protocol works based on a master-slave model, where the FEs are
slaves and CEs are masters. Unlike OpenFlow, ForCES defines Logical Func-
tion Blocks (LFBs) that reside on the forwarding elements and are managed
by the controllers. The LFBs enable the CEs to configure and manage the
FEs.

The resources in FEs are instantiated in LFBs, each of which has a specific
function in the packet forwarding chain. Multiple LFBs are interconnected
via data paths to form an LFB topology in FE, so that the FE can carry
out a complex process on packet forwarding. The management of LFBs
includes the configuration and inquiry of LFB attributes, capabilities and

17

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 18 — #30

Chapter 2 Network Management Fundamentals

events. ForCES protocol makes it possible for CE to dynamically manage
the LFBs, such as to add, remove and modify some of them. Manageability
of FEs by CEs provided in this model is at a much higher level than the
manageability in present commercial routers aiming to provide the ability
to configure new services in an open and simple way.

2.5 Recovery

Different kinds of disjoint control paths, partially or completely disjointed
with respect to a defined control path between a switch-to-controller (called
the primary control path), can be used to recover a switch-to-controller com-
munication after it is broken. Different backup paths are described below.
For this purpose, consider P1 as the primary control path between a switch
s and a controller C and P2 as the backup control path.

Switch disjoint control path : a switch disjoint path P2 is the one that
has only the source switch and controller in common to the primary path,
P1
⋂
P2 = {s, C}.

Link disjoint control path : a path between switch s and controller C
is called the link disjoint (P2) if it has no common links with the primary
path P1. The primary control path and its backup disjoint link path may
contain the same intermediate switch(es), but can not share link resources.

Partial disjoint control path : this backup path may contain disjoint
switch sub-paths to the controller, while the remaining intermediate switches
and also some links can be the same as in the primary control path.

Disjoint control path to another controller : this control path has
the same source switch but different controller destination as the primary
path. This backup path may share switches and links with the primary path
or may be completely disjointed from it (P1

⋂
P2 = {s}).

Fig. 2.2(a) illustrates a physical network topology and each one of the
remaining figures illustrates the primary control path and one of the different
backup control paths described previously between the source switch (switch
1) and the controller (placed in node 6).

Fig. 2.2(b) shows a switch disjoint backup control path that can be con-

18

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 19 — #31

2.6 Network Protocols

figured in the case of any link/switch failure in the primary control path.
Fig. 2.2(c) illustrates a link disjoint backup control path that provides pro-
tection for any link failures in the primary control path. Finally, Fig. 2.2(d)
represents a backup partial disjoint path that has link (1, 2) and switch 2 in
common to the primary control path.

Note that different backup control paths exist than those shown in Fig. 2.2.
These can also be considered in order to protect the network against failures,
improving network resilience. Ideally, the controller placements should be
selected to provide the highest level of disjointness in paths of a control plane
as it reduces the number of switches affected in the presence of failures,
leading to a reduction in data loss.

1

2

6

3

4 5
(a)

C

53

1

2 4

C

53

1

2 4

(c)(b)

C

53

1

2 4

(d)

Physical network
Primary control path
Backup path

Figure 2.2: Representation of backup control paths.

2.6 Network Protocols

Two protocols used in traditional networks to detect network changes and
discover the network topology are briefly described below.

2.6.1 Link Layer Discovery Protocol (LLDP)

Link Layer Discovery Protocol (LLDP) was standardized by the IEEE. This
protocol runs over any data link layer network that allows the network de-

19

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 20 — #32

Chapter 2 Network Management Fundamentals

vices (switches and routers): i) identify capabilities and their adjacent neigh-
bours, and ii) listen to their neighbour devices. LLDP information can only
be sent to and received from devices that are directly connected to each other
through the same link. That is, announced information is not forwarded to
other devices on the network. Network devices discover the status of their
neighbours as they continually broadcast and listen to LLDP messages on
each connection, discovering when a new device is added or removed. In this
way, each network device can maintain its local network topology informa-
tion updated.

Network devices identify neighbours according to the information (such as
the MAC address) they receive in LLDP messages. This information is sent
in packets called LLDP Data Units (LLDPDUs). The data sent and received
via LLDPDUs is useful as network devices discover: i) the neighbour nodes
of each device and ii) through which ports they connect to each other.

LLDP defines the following aspects:

• A set of common advertisement messages (Type Length Values),

• A protocol for transmitting and receiving advertisements,

• A method for storing the information that is contained within received
advertisements.

LLDP is unidirectional, operating only in an advertising mode. Therefore,
LLDP does not solicit information or monitor state changes between LLDP
network devices.

2.6.2 The Bidirectional Forwarding Detection (BFD)

The Bidirectional Forwarding Detection (BFD) protocol detects failures in
forwarding paths, operating on top of any data protocol (network plane, link
plane, tunnels, etc.).

To detect failures BFD implements a control and echo message mecha-
nism. This is a simple Hello protocol that transmits BFD packets periodi-
cally over a path between two pre-configured end-points to detect its status.
If an end-point stops receiving BFD packets for long enough, it assumes
that a network device in the monitored path has failed. Each network de-
vice transmits control messages with the current state of the monitored link
or path. That is, a node receiving a control message, replies with an echo
message containing its respective session status. A session is built up with
a three-way handshake, after which frequent control messages confirm ab-
sence of a failure between the session end-points. Under some conditions,

20

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 21 — #33

2.7 Conclusions

systems may negotiate not to send periodic BFD packets in order to reduce
overhead.

2.7 Conclusions

The Internet has been very successful in providing us with the capacity to
exchange information in the modern world. The Internet architecture has
shown its robustness by supporting the continued growth of applications,
services, users, and a large variety of network technologies over which it
currently runs. However, nowadays, the strong coupling between control
and data planes in traditional IP networks has made it difficult to add new
network functionalities, since it implies the modification of the control plane
on all network devices.

In contrast, SDN provides flexibility and scalability to the networks by
decoupling the control and data planes. The logical centralization of the
control plane (in SDN) offers several benefits: i) it simplifies the network
management, reducing the possibility of errors when modifying the network
policies, ii) SDNs can react to network changes, leading to more consistent
and effective policy decisions and iii) it simplifies the development of more
sophisticated networking functions, services and applications.

In short, SDN refers to the ability of software applications to program in-
dividual network devices dynamically and therefore control the behavior of
the network as a whole [10]. OpenFlow-based SDN technologies enable the
network to address the high-bandwidth, dynamic nature of today’s applica-
tions, adapting the network resources, and significantly reducing operations
and management complexity.

21

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 22 — #34

22

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 23 — #35

Chapter 3

Review of the state of the art

Aiming at confirming that the objectives of this thesis are not yet covered,
in this chapter, a set of approaches that improves scalability, robustness and
information consistency on the control plane are introduced. To manage
an SDN network, controllers need to discover the network topology of the
switches they are responsible for. This information is used by the controllers
to plan, configure and monitor the end-to-end data paths. However, initially
controllers do not have information about the network and the switches do
not have a control path until they are set up. To solve this dilemma, current
solutions assume that controllers discover the network topology through the
traditional link discovery protocol LLDP. In addition, network topology in-
formation must be consistent, such that controllers can manage the network
in an efficient way. Approaches that handle these topics are introduced in
this chapter.

3.1 Outline

First section is devoted to describe the scalability, robustness and informa-
tion consistency issues in SDN networks. Section 3.3 reviews the controller
placement problem (CPP) approaches. In Section 3.4, different aspects of
the controller placements approaches are described, while that in Section 3.6,
different metrics used to select the controller placements are classified and
described. Section 3.7, presents a classification of the controller placement
approaches found in the literature, based on the aspects described in pre-
vious sections. Sections 3.8 and 3.9 introduce some approaches to discover
the network topology and detect network failures, respectively. Finally, in
Section 3.10, the conclusions of the chapter are presented.

23

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 24 — #36

Chapter 3 Review of the state of the art

3.2 Challenges in SDNs

Although the decoupling of control functions provides network flexibility, it
also imposes several challenges in the control plane, related to the control
plane scalability, resilience and data consistency among others issues [1], [2],
[15], [16], [17], [18], [19], [20], [21], [22].

3.2.1 Scalability

When the SDN network scales up in the number of switches or traffic, it
can increment drastically the load on the controllers that can become a
bottleneck [1], [17], [18], [19], [23], [24] and [25]. This is because:

• whenever a large quantity of control messages arrive at a controller,
the bandwidth, memory and processor of controllers are all potential
bottlenecks,

• if the network has a large diameter, no matter where the controller
is placed, some switches will encounter long flow setup latencies [16],
[26],

• finally, since the system is bounded by the processing power of the
controller, flow setup times can grow significantly as demand grows
with the size of the network [17]. According to [27] and [28] the load
of processing events is generally regarded as the most significant part
of the total load on the controllers.

One of the most important reasons to distribute the network control is
based on the fact that one controller alone may not have enough capacity
to manage the whole network, and therefore it could become a bottleneck
in terms of processing power, memory, or input/output bandwidth. As ex-
plained in [17], in a centralized and reactive SDN network, scalability prob-
lems can be caused by flow initiation overhead or resiliency to failures. In
large networks with a distributed control plane, these scalability problems
may also arise, since controllers not only have to process requests coming
from switches it is responsible for, but also requests sent from other con-
trollers. As in a centralized SDN network, in a distributed SDN network,
controllers have limited capacity of memory and CPU that can be saturated
if the size of a network grows or if the switch load is not distributed homo-
geneously between the controllers, [29], [30]. In addition, increasing network
traffic lead to a reduction of the available bandwidth in the links used by

24

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 25 — #37

3.2 Challenges in SDNs

the control channels, limiting the switch-to-controller communication. This
situation is critical in a reactive approach, given that the controller can not
do anything about the control link capacity as it can not treat messages
faster than it receives them [31], [32].

Several approaches have been proposed to distribute the control plane
across multiple controllers to improve the scalability of SDN, Kandoo [33],
HyperFlow [34], and Onix [35], however, in these approaches the controller
placement is not defined. Each one of those approaches distributes con-
troller states differently. Kandoo distributes controller states by placing the
controllers in two levels, a root controller and multiple local controllers. Lo-
cal controllers respond to the events that do not depend on global network
state, while the root controller takes actions that require a global network
view. HyperFlow handles state distribution of the controllers through a pub-
lish/subscribe system based on the WheelFS distributed file system. Finally,
controller state distribution in Onix is managed through a distributed hash
table.

In general, controller placement approaches are not concerned with the
controller scalability, because they assume that commercial controllers are
scalable in terms of capacity (quantity of flows processed per second). How-
ever, it has been demonstrated that, controller overload and long propa-
gation delays among controllers and controllers-switches can lead to a long
response time of the controllers, affecting their ability to respond to network
events in a very short time and reducing the reliability of communication
[2], [16], [34].

3.2.2 Control plane resilience

In a centralized controller architecture as SDN, the network management is
compromised in case of network failures (e.g., switch and controller failures).
This is because, when a switch fails in the physical network, it not only
affects the switch-to-controller communication, but also all the switches that
include the failed switch in their control path.

In general, different stages can be implemented to ensure the resilience of
networks [36], [37]. For instance, that includes redundant network paths.
While such redundancy is desirable in both data and control paths, their
effectiveness is dependant upon the ability of individual network devices to
quickly detect failures and reroute traffic to an alternate path [38]. The
detection times in existing protocols are typically greater than one second
or much longer, for some applications, this is too long to be useful.

After detecting a failure or network degradation, the switch-to-controller

25

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 26 — #38

Chapter 3 Review of the state of the art

communication should be re-established, if it is possible. The OpenFlow
standard defines that a switch can have a connection to different controllers
in order to improve the network resilience. In the case of a controller failure,
all the switches managed by it are disconnected from the control plane, and
therefore, those switches can not forward flows destined to switches that are
not configured in their flow table yet. The OpenFlow standard defines that
a controller can also have backup controllers, called slave controllers.

In this context, the control plane resilience can be handled from the point
of view of the controller placement. This is because, the controller location
influences the control plane topology as described in [36], [39], [40] and [41].
Therefore, depending on the network topology and the controller placements,
the switches disconnected from the controller can re-establish the connection
to the control plane, if it is possible [42],[43], [44].

Given the criticality of the data today, networks are typically constructed
with a high degree of redundancy. Therefore, in SDNs, not only the data
plane (data paths) has to be protected against failures, but also the control
plane (control paths).

3.2.3 Consistency of the network information over controllers

The failure detection time not only affects the response time of the network
to re-establish the affected flows, but also the time switches can update the
network status information on the control plane [16]. Keeping network infor-
mation consistent is fundamental to make right routing decisions. That is
because in SDNs, network decisions (e.g., backup paths, data paths, load
balancing) are made based on the knowledge of the underlying network
topology and resource utilization [45], [46]. In [47] and [48], the impact
of the consistent global network view on network control was studied. Au-
thors concluded that inconsistent information may significantly degrade the
network performance.

3.3 Controller placement

The scalability and resilience of the control plane have been tackled from
the point of view of the controller placement. In terms of scalability, the
controller placements in a SDN network can be selected to guarantee that
the control paths as well as the controllers have enough capacity to handle
the traffic coming from the switches they manage, avoiding they become a
bottleneck as in [49]. In terms of resilience, the controller placements can

26

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 27 — #39

3.4 A controller placement taxonomy

be selected to maximize the number of control paths protected [39], [40], or
minimize the data loss [44], [50], [51].

The network status consistency is also affected by the controller place-
ments. Regardless of the strategies used to manage the network state con-
sistency, the connectivity among controllers determines the maximum time
required to update information among them. It is called the window of
inconsistency in [16]. This is a factor of delay bounded by the farthest con-
trollers in the network and the load on controllers. In [47], the authors
describe the impact of the physical distribution of the control plane for the
performance and coordination of a control application logic.

Related to the location of the controllers in the network, several ap-
proaches have been proposed from the controller placement problem in SDNs
formulated in 2012 [52]. Followed by Heller et al.[52], during the last years,
several research works have been proposed on the controller placement prob-
lem [26], [27], [39], [40], [41], [42], [44], [50], [51], [53], [54], among other
approaches. Approaches focused to virtualize the SDN resources have also
been proposed, [55].

In general, these aforementioned approaches can be differentiated by the
metric(s) to optimize, the strategy used for finding the controller placement,
if approaches consider the network resources (controller, switch and link
capacities) to the selection of the controller placement, and if controllers
and/or switch can be reallocated dynamically. In addition, the controller
placement approaches can also be classified according to the considerations
or assumptions made to select the placement of the controllers in the net-
work.

3.4 A controller placement taxonomy

The controller placement problem can be described by three further consid-
erations that depend on the network requirements. First consideration is re-
lated to the reallocation of switches-to-controllers and controllers, which can
be static (where switch-to-controller assignation do not change) or dynamic
(where switches can dynamically change of controller). Second considera-
tion to select the controller placement is related to the robustness, this is
considered as a relevant characteristic that control planes should have [56].
Finally, approaches are also classified based on the considered assumptions
in the selection of the controller placements.

27

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 28 — #40

Chapter 3 Review of the state of the art

3.4.1 Static vs. Dynamics

In SDNs, the controller placements are selected offline, that is, during the
network design stage. However, the number of controllers as well as their
placement can be dynamically adapted during the network operation based
on the network changes.

Static

This approach does not contemplate the possibility of reallocating switches
to controllers or activate a new controller in case of network changes. Several
situations can lead to a need for reallocation switch-to-controllers:

• Controller failure: in this case, switches without an active connection
to a controller can be managed by another controller,

• Change of network conditions: increment of network traffic can satu-
rate a controller and it can become a bottleneck, affecting the network
performance as all requests can take more time to be attended,

• Save energy: some controllers can be sub-utilized, these are controllers
that manage a low traffic compared with other controllers in the net-
work. To save energy, switches can be reallocated in order to turn off
the controller with low load.

Dynamic

In the aforementioned situations, both the controller placements and swit-
ches-to-controllers can be reallocated dynamically to improve the network
performance, for instance, minimize the flow setup time or minimize the
controllers overhead as in [26] and [53].

In general, dynamic approaches try to reconfigure the distribution of
switches-to-controllers in order to balance the load on the controllers while
optimizing the utilization of the network resources (e.g., controller utiliza-
tion). A static controller placement assignation achieves good results with
regard to optimality, since that it does not consider dynamic network changes
that can compromise the controller scalability and/or robustness. While a
dynamic approach is better suited to deal with high network dynamicity, it
tends to come at the cost of less optimal solutions.

In [26], authors propose a framework for dynamically adjusts the number
of active controllers and assigns to each controller a set of switches according
to network state while ensuring minimal flow setup time and communication

28

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 29 — #41

3.4 A controller placement taxonomy

overhead. In [57], authors propose a non-zero-sum game based on a dy-
namic controller placement technique. The controllers can be dynamically
activated and disabled based on the traffic demand. The optimal number
of controllers can be found by adding and rejecting controllers, ensuring the
maximum utilization of controllers from a set of controllers in the network.

However, selecting a new controller and migrating the switches to that
new controller, is non trivial. It is even more complicated when considering
physical controllers, as frequent switching on/off consumes more time and
power [57].

In [58] and [59], an architecture that provides the ability to dynamically
adapt the controller resources is proposed. Switches are assigned to con-
trollers based on the traffic conditions.

3.4.2 Robustness vs. Unprotected

Failures on the control plane are due to underlying physical causes that can
be identified and are statistically independent [60]. The failure of a single
switch (or link included in a control path) affects the switch-to-controller
communication of all switches that share the failed switch/link. Therefore,
in environments where fault-sensitive applications are deployed inside the
networks, it must react efficiently to re-establish the affected data and con-
trol communications.

Robustness

In the context of a control plane, when a failure occurs, the switches that
have lost communication to their controller should be capable of setting-
up a backup control path to their controller. The standard communication
protocol, OpenFlow, defines that a switch can have multiple disjoint paths
to its controller or another one. To do that, the controller placements can
be selected in order to maximize the control path redundance when node
and/or link failures occur as in [39], [40], [51]. If there is no redundancy, the
control plane is referred to be unprotected.

Unprotected

In this case, switches have only one control path to their controller. There-
fore, if a failure occurs, the switch-to-controller communication is lost until
its controller detects and configures an available control path to it. The time
a communication is recovered depends on the network connectivity and the
time it takes to the controller to discover the event and configure the control

29

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 30 — #42

Chapter 3 Review of the state of the art

path over the affected switches, if it exists. This means that in case a switch
fails, there is no guarantee that the switch-to-controller path can recover
after a failure.

3.4.3 Assumptions vs. Real network conditions

The controller placements are selected based on a limited set of requirements,
which are defined based on the network/service requirements. When several
network requirements and network constraints are defined, the formulation
becomes too complex, increasing the time resolution.

Assumptions

To simplify the complexity of the problem and therefore its resolution, some
assumptions are considered in the selection of the controller placements.
First assumption is related to the location of the controllers in the network.
In this case, the controller placements are selected from a limited set of
nodes instead of considering the entire network space. Second consideration
is related to the number of controllers, which is assumed to be defined in
advance.

Real network conditions

Approaches that do not make any assumption about those mentioned as-
pects, consider the real network conditions to select both, the controller
placements and the number of controllers required to satisfy a specific ob-
jective.

3.5 Computing the optimal controller placements

This section presents the different objectives, strategies and the metrics that
can be defined for selecting the controller placements in SDNs.

3.5.1 Main controller placement objectives

The controller placement problem consists of discovering both the optimal
number of controllers and their placement in a network to satisfy a specific
objective that can be formulated in terms of:

30

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 31 — #43

3.5 Computing the optimal controller placements

Metrics to provide QoS

The controller placements can be selected according to a set of quality of
service requirements defined by the service provider. These QoS require-
ments are related to the switch-to-controller delay [42], [52], inter-controller
delay [26], controller utility [27], among others. The location of the con-
trollers in the network, can be also selected based on specific QoS metrics
that guarantee the flow setup time and the response time of a request [26].
For instance, critical services as video or voice over IP have to satisfy specific
QoS requirements to not be seriously affected.

Economical profit of the controller placement

From the point of view of network providers, a natural objective to select
the controller placement would be to minimize the capital and operational
expenditure. This objective is directly proportional to reduce the number
of controllers in the network and use the controller resources in an efficient
way. The number of controllers implemented in a network, directly impacts
the capital and operational expenditures (CAPEX and OPEX). Therefore, it
becomes necessary to find the optimal number of controllers in a network and
the switch-to-controller assignation. In order to reach this goal, controller
placement approaches should try to assign the maximum number of switches
to each controller while satisfying a set of network requirements [43].

For instance, in [49] the objective is to minimize the cost of assigning a
switch-to-controller, and in [54] the objective function is to minimize a given
cost function, that seeks to maximize the resilience.

Resilience of the control plane

In terms of the control plane, resilience is related to find the controller
placement that: i) minimize the data loss, by reducing the number of control
paths affected by a network failure as in [44], [51] or ii) maximize the number
of backup paths per each control path or at least, find the number of backup
paths that satisfy defined resilience requirements [39], [40],[41] and [61].

3.5.2 Optimization strategies

The controller placement problem is NP-hard. Therefore, for large networks
the time to find the optimal solution becomes very high. In this case, differ-
ent strategies have been used to solve the controller placement problem in
an efficient way.

31

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 32 — #44

Chapter 3 Review of the state of the art

Exact solutions

To find an optimal control placement solution, the problem has to be for-
mulated by means of Integer Linear Programming (ILP). When using this
strategy, network resources can be limited (e.g., controller, switches and
links resources). In addition, other specific requirements such as resilience,
switch-to-controller delay and inter-controller delay can be defined. How-
ever, the disadvantage of this strategy is the time it takes to find a solution,
finding the controller placements in large networks can take a long time, as
shown in [43] and [62].

Heuristic solutions

This strategy allows the controller placement problem to be solved in a more
efficient time in comparison with ILP. Heuristic strategy does not find an
optimal solution, but it finds a solution near the optimal, compromising
optimality for short execution time. In general, the controller placement
approaches are formulated through a heuristic algorithm.

Clustering solutions

Clustering is used in many disciplines and applications, it is an important
tool that seeks to identify homogeneous groups of objects based on the values
of their attributes. In the controller placement problem, clustering can be
used with heuristic and exact solutions. In this case, the clustering approach
is responsible for reducing the search space where a controller placement is
sought, defining the set of feasible controller placements. Then, a heuristic
or exact strategy can be used to select the better controller placement.

Strategies for hierarchical clustering generally fall into two types, agglom-
erative and partitive approaches [63]. In the case of an agglomerative ap-
proach, each node starts being its own cluster, this is the case of k-center
and k-Median, and pairs of clusters are merged until a certain condition is
satisfied. In a partitive approach, all the nodes are part of one cluster, while
is recursively split until a terminating condition is met.

3.6 Controller placement metrics

Different metrics have been considered to select the controller placement.
These can be classified according to the main network objective to select
the controller placements, as described in Section 3.5.

32

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 33 — #45

3.6 Controller placement metrics

3.6.1 Metric related to the network performance

These metrics evaluate the performance of the resulting control planes, which
are related to: the switch-to-controller path and the switch allocation be-
tween controllers. These metrics can also be used to compare different con-
troller placement approaches.

Stretch

This metric compares the path length of each switch to the controller place-
ment found (control path) with the shortest path from the switch to the
controller. A high stress might result in some control paths with an addi-
tional delay because the resources of the switches/links can be shared by
multiple control paths. The more control paths use the same switch or link,
the higher the impact regarding possible side effects. For instance, if mul-
tiples control paths use the same switch/link, when it fails all the control
paths including this switch are disconnected from the controller.

Path length

The path length metric measures the number of hops between the controller
and each switch that is managed by it. The longer a control path, the more
resources are used and the node dependence increases (number of down-
stream nodes). This means that the path length has a direct impact on the
cost of the resulting control plane. Depending on the links traffic, switches
that have longer control paths to their controller can take a long communi-
cation delay, affecting the control plane performance. In long paths, when
a network failure happens, all the downstream nodes to the failure node are
disconnected from the controller.

Control path delay

This is the time it takes to a switch to communicate with its controller and
vice versa. Therefore, this delay influences: i) the time switches announce
events to their controller and ii) the time it takes to the controllers to con-
figure their switches. Given the importance of this metric in the network
performance, most of the approaches take into account this metric in the
selection of the controller placement.

33

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 34 — #46

Chapter 3 Review of the state of the art

Inter-controller delay

This is the time it takes to each pair of controllers communicate with each
other in a control plane. In a distributed control plane, controllers need to
communicate among themselves to exchange control information and update
their routing tables. These are essential operations to the network opera-
tion. To make right forwarding decisions, controllers must have the network
topology information updated. In [16] and [47], the authors describe the
impact of the physical distribution of the controllers for the performance
and coordination of a control application logic. Regardless of the strategies
used to manage the network state consistency, the connectivity among con-
trollers determines the time required to update information among them.
It is called the window of inconsistency in [27]. This is a factor of delay
bounded by the farthest controllers in the network and the load on con-
trollers. A high inter-controller delay can affect the network operation, due
to the controllers can make wrong decisions if routing tables or control in-
formation is not updated in a short time. Nonetheless, multiple controllers
may be used to reduce latency or increase fault tolerance [64]. In [65] an
inter-controller communication mechanism was proposed.

Flow setup time

One of the key functions of an SDN controller is to establish flows. As such,
some of the performance metrics associated with the controller scalability
are the flow setup time and the number of flows per second that the con-
troller can setup. In a reactive flow management approach, when a switch
receives a flow that it does not know how to forward, the switches has to
forward the flow to the controller for processing. The time associated with
the flow setup time is the sum of the time it takes to send the packet from
the switch to the controller, the processing time in the controller and the
time it takes to send the configuration message back to the switch. As-
suming that the controller is not a bottleneck and that it has information
about the service required, the total setup time can only be affected by the
distance between switch-controller. In [27], it has been demonstrated that
a long flow setup time limits the network convergence time, and affects the
controller ability to respond to network events in a minimal time that can
degrade the application and service performance. In [26], authors propose a
dynamic controller placement to minimize the flow setup time by dynami-
cally changing the number of controllers and their locations.

34

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 35 — #47

3.6 Controller placement metrics

3.6.2 Metric related to control plane scalability

One of the most important reasons to distribute the network control is based
on the fact that one controller alone may not have enough capacity to manage
the whole network, and therefore it could become a bottleneck in terms of
processing power, memory, or input/output bandwidth [64]. As explained in
[17], in a centralized and reactive SDN network, scalability problems can be
caused by flow initiation overhead or resiliency to failures. In large networks
with a distributed control plane, these scalability problems may also arise,
since controllers not only have to process requests coming from switches it
is responsible for, but also requests sent from other controllers. As in a
centralized SDN network, in a distributed SDN network, controllers have
limited capacity of memory and CPU that can be saturated if the size of a
network grows or if the switch load is not distributed homogeneously between
the controllers. In addition, increasing network traffic lead to a reduction of
the available bandwidth in the links used by the control channels, limiting
the communication with the control plane. This situation is critical in a
reactive network, given that the controller can not do anything about the
control link capacity as it can not treat messages faster than it receives them
[31].

Therefore, in large scale WANs, the control plane topology can limit the
availability, response time and convergence time on the network [27]. The
reason is that, control applications require the ability to reprogram data
plane state at very fine time-scales to satisfy network objectives in SDN.
Therefore, selecting the controller placements to keep the flow setup time as
low as possible is fundamental for an efficient network operation.

Link capacity

In SDNs, data and control paths share network resources. Therefore, the
controller placements should be selected so that: i) all switches are managed,
ii) the switch-to-controller control paths have enough capacity and, iii) the
controllers have enough available resources. A congested link that is used
by one or more control paths can add a switch-to-controller communication
delay that affects the response time of a request and consequently the flow
setup time [31].

Controller utilization

The controller utilization is measured by the number of flows managed by
each controller. Each controller has an upper limit on the number of control

35

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 36 — #48

Chapter 3 Review of the state of the art

messages and flows it can handle at any time. Therefore, there is a limited
number of switches that can be managed by a controller. In [52], it was
shown that one controller alone is capable of managing a complete network,
in terms of controller capacity. However, the switch-to-controller delay can
be very high, affecting the application performance. In large SDN networks,
data center or enterprise networks that can manage a high traffic load, only
one controller is not enough.

The placement of controllers should try to minimize the propagation la-
tency, while the load of each controller should not exceed its capacity. The
capacitated controller placement problem (CCPP) mentioned in [49] consid-
ered the problem of load controller capacity.

Number of controllers

The number of controllers in a control plane not only depends on the traffic
managed by the network, but also on the other requirements that must be
satisfied (e.g., control path delay, inter-controller delay). It has also been
shown that the number of required controllers is more dependent on the
topology than on network size [40].

Increasing the number of controllers in the network can significatively
improve the resilience, as shown in [52], [43] and [54]. In [42] and [43],
authors shown that there is a specific number of controllers that improve
the network resilience, which depends on the network topology. It is also
shown that, using more controllers than the necessary does not improve the
network performance, but increases the solution cost and can difficult the
controller communication . Authors in [66], propose a mathematical model
to define the optimal number and locations of controllers. They also consider
heterogeneity of controllers and their interconnections.

3.6.3 Metric related to control plane robustness

In traditional networks, the network robustness mainly depends on the node
connectivity in the network [67], [68],[69]. In SDN, in addition to the net-
work connectivity, the controller placements is also a decisive factor in the
resulting control plane robustness [56]. The controller placements influence
both i) the number of switches that can be disconnected or unprotected
when a network failure occurs and ii) the number of switches that can re-
establish the communication to the control plane through a backup path (or
protected switches). Therefore, the controller placements can be selected to
reduce the control plane resilience.

36

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 37 — #49

3.7 A classification of the controller placement approaches

Number of backup paths

When a switch-to-controller communication is broken due to a link or switch
failure, those switches that are disconnected from their controller can used
a backup path to its controller or another one, as specified in the OpenFlow
standard [70]. In the case of a controller failure, the switches managed by it
can be managed by a backup controller [71].

Solutions based on connecting switches to several controllers in a cost-
effective, have been proposed in order to maximize network robustness and
therefore the network performance [72]. In [39] and [40], each switch must
meet a reliability constraint so that operative paths towards any of the
controllers it connects to, exists with at least a given probability. As a
result the set of controllers that minimizes the associate cost are found. In
[41] and [61], the authors select the controller placements that maximize the
number of switches protected in the presence of a failure in the upstream
switch. To achieve high availability, in [47] robustness is handled in terms
of control plane connectivity.

Data Loss

In [44] and [51], a reliability metric called the expected percentage of control
path loss is proposed. This metric is defined as the number of broken control
paths due to network failures. In [50], a reliable metric that measures the
expected percentage of valid control paths when network failures happen is
defined. Therefore, these approaches do not consider backup paths, they
find the controller placements that minimize the data loss due to network
failures.

3.7 A classification of the controller placement
approaches

Thus, all controller placement approaches proposed in the literature can be
categorized according to: a) whether they are Static (S) or Dynamic (D), and
b) whether node protection (Resilience (R)) or nodes are Unprotected (U)
is considered. In addition, solutions can be categorized according to: i) the
number of controllers (K), ii) the controller placements (CP) or iii) both the
number of controllers and their location (K−CP). If an approach considers
Real network Conditions, it is represented as (RC). In Table 3.1, the con-
troller placement approaches are classified according to the aforementioned
aspects by using the following syntax:

37

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 38 — #50

Chapter 3 Review of the state of the art

[S—D]/[R—U]/[K/CP/K-CP/RC].

The first character denotes, whether the approach is is Static or Dynamic.
Likewise, the second character denotes whether the controller placement
approach considers Resilience to the control plane or if the control plane
is Unprotected. Finally, the third character denotes whether an approach
assumes any of the following aspects to select the controller placements: i)
the number of controllers defined by K, ii) the controller placements CP
or iii) if an approach assumes both the number of controllers and their
location, k − CP . Otherwise, if an approach does not assume any of the
aforementioned aspects, it is denoted as RC. So, an approach denoted as
S/R/RC will be a static and resilience approach that does not make any
assumption about the number of controllers neither their placement in the
network.

3.8 Network discovery

Different communication protocols have been defined in SDN to address the
communication between switch-to-controller, such as OpenFlow [12] and the
Forwarding and Control Element Separation ForCES [13]. These protocols
do not define neither the allocation of switches to controllers nor the commu-
nication path between switch to controller. In general, to establish a switch-
to-controller communication, the aforementioned communication protocols
considers that:

• each switch has programmed the IP address of its controller and,

• they also have information about the TCP port number through with
can communicate to their controller.

Therefore, controllers and switches can contact each other on the cor-
responding IP address and TCP port programmed in advance, through a
Transport Layer Security (TLS) section. Consequently, the allocation of
switches to controllers and the network topology information on control
plane dependent on/require of human intervention.

To maintain the network information on the control plane updated, some
protocols used in traditional networks with this purpose have been adopted
for SDN networks. This is the case with the link discovery protocol (LLDP),
a protocol used by the network devices to announce their identity , capacities
and neighbours. LLDP has been adopted for SDN networks to maintain

38

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 39 — #51

3.8 Network discovery

Table 3.1: Classification of controller placement approaches.

Classification Reference Strategy Contribution

S/U/K [52] Heuristic Analyzes the impact of the controller

locations on the control path delay.

[73] Clustering/ Finds the CPs that balance load

Heuristic on the controllers.

S/U/CP [49] ILP Focuses on the capacitated CPP.

[66] ILP Defines the type of controllers and

connections between network elements.

[74] ILP Proposes a multi-criteria optimization

method applicable to the CPP.

S/R/K [54] Clustering/ Divides the CPP in two sub-problems,

Heuristic partitions network and assigns CPs.

[41] Heuristic Finds the CPs that maximizes

the control plane resilience.

[62] Heuristic Analyzes the trade-off between control

path delay Vs other metrics.

[43] ILP Analyzes the trade-off between control

path delay Vs other metrics.

[44] Heuristic Introduces a reliability metric that

measures the data loss.

S/R/CP [40], [39] ILP/ Finds the CPs that guarantee a

Heuristic reliability constraint.

[61] Heuristic Improves network resiliency and finds

CPs to maximize fail-over probability.

[50] Heuristic Defines a resilience metric that

minimizes the data loss.

S/R/K-CP [51] ILP Characterizes the control plane

reliability.

D/U/CP [26] ILP Proposes a dynamic version of

the CPP.

[57] Heuristic Finds the optimal CPs by dynamic

addition or deletion of controllers.

D/U/RC [53] Clustering/ Combines CP with a dynamic

Heuristic flow management algorithm.

the network topology information and the network resources information
updated on the control plane. This mechanism is referred to as OpenFlow

39

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 40 — #52

Chapter 3 Review of the state of the art

Discovery Protocol (OFDP) [75].

Other approaches to discover the underlying network topology are based
on LLDP-OpenFlow or LLDP-ForCES.

3.8.1 Network discovery based on OpenFLow protocol

In [46], authors propose a topology discovery mechanism based on OFDP
protocol. The contribution of this approach, in comparison with the LLDP
protocol is the reduction of the number of LLDP Packet − Out messages
a controller has to forward in order to discover the links between switches.
For this purpose, the authors consider that:

• controllers have information about the switches in the network, but
they do not have information about the links between them and,

• controllers have a control channel established with each switch in the
network.

In this approach, the topology discovery is reduced to discover the links in
the network. Given that an OpenFlow switch can not by itself send, receive
and process LLDP messages, these messages are encapsulated in the control
messages defined in OpenFlow. As part of the initial protocol handshake,
controllers can request information to the switches through OpenFlow mes-
sages via their control path. This information includes the active ports and
MAC addresses of the switches. While LLDP messages have information
about, the port ID and time-to-live [46].

The information provided by all of these messages is used by the controllers
to discover the connectivity between switches. When a controller receives
a Packet − In, it discovers the ID of the switch and the ingress port via
which the packet was received. From this information, and from information
contained in the LDDP packets (e.g., Port ID, TLV, etc.), the controllers
can infer that existence of links between two switches. The controllers have
to execute this procedure periodically to maintain the network topology
information updated.

A disadvantage of this approach is the high load that a controller has to
manage, which depends on the number of LLDP Packet − Out messages
the controller needs to send (that is proportional to the number of ports
in the network) and the number of LLDP Packet− In messages it receives
(it depends on the network topology). Besides, this approach only informs
about the link status.

40

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 41 — #53

3.9 Network topology consistency

In order to reduce the number of LLDP Packet − Out messages that a
controller has to send, authors propose that SDN switches are capable of re-
writing the LLDP port ID according to the port the packet is being sent out
in. Consequently, a controller is not required to forward as many messages
as there are ports per switch, as each switch can re-forward the message.

3.8.2 Network discovery based on ForCES protocol

An approach to discover the network topology based on ForCES is proposed
in [45]. Authors propose a generic model for extracting the topology infor-
mation directly from the network devices, defining the switch-to-controller
paths by configuring the Logical Function Blocks (LFBs). In ForCES,
switches have Logical Function Blocks or LFBs, which are configured by
the controllers, such that switches are capable of receiving, transmitting
and modifying packets. Each switch runs the traditional LLDP protocol pe-
riodically to maintain the local neighbour table updated. In the occurrence
of an event (e.g,. a new switch or a neighbour switch is broken), the switch
announces it to the controller, updating the network topology information.

3.9 Network topology consistency

In an operative network, topological changes can happen anywhere and any-
time, which must be detected and announced to the respective controllers
to maintain the network topology information updated on the control plane.
Regarding the importance of failure detection in SDN networks, there is
not a detailed mechanism of failure detection on any of the communication
protocols defined for SDN networks (e.g., OpenFlow specifications); this is
still an open issue. In this section, a description of some proposed detection
failure mechanisms in SDN networks are presented.

The speed at which failures are detected directly affects the performance
of both the control and data planes. This is because, in the context of the
control plane, it is desirable to maintain the consistency in network infor-
mation at all times to avoid making routing decisions that involve disabled
network resources. At the same time, in the context of the data plane, the
time a failure is detected affects the communication recovery time.

3.9.1 Fault detection in SDN networks

Whereas traditional network protocols rely on their distributed algorithm
running on the network switches to detect and react in the presence of

41

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 42 — #54

Chapter 3 Review of the state of the art

failures, in SDN networks, as a consequence of the separation between the
control and data planes, these functions are no longer executed by the data
plane. Instead, in SDN networks, the operator through the controllers has to
explicitly define the switch behaviour after a failure occurs in the network.
Despite this fact, failure detection mechanisms can be considered, in general,
to be executed by controllers. However, due to the resulting high overloading
on the controller, it also has been considered that SDN switches can execute
this function.

Detection failure by controllers

Different approaches have been considered to discovery the network topology,
but few of them address the detection of failures. For instance, in [46],
authors propose a mechanism to discover the links between switches by
encapsuling the OpenFlow packets in LLDP packets. However, this approach
can also be used to discover network failures through OpenFlow messages.
While that in [76], authors propose the creation of a ring topology that
includes all the switches and links of the network through which probe packet
are forwarded to monitor the network status.

The basic idea behind failure detection approaches executed by controllers
consists of forwarding probe packets through the end-to-end paths being
monitored, which require a response from the switches; an unanswered mes-
sage implies that a failure has happened. In this model, when a failure
occurs, it is hard to detect its location with precision. To detect the lo-
cation of a failure, controllers can forward probe packets to each one of
the switches in the monitored path, such that each message sent has to be
answered before forwarding the message to the next switch in the path.

When multiple and simultaneous failures happen, the detection of a spe-
cific failure becomes complex as the network may be partitioned. This simple
detection mechanism is neither time efficient nor scalable as the controller
has to send an increasing number of messages directly proportional to the
number of switches monitored to check if the network elements are opera-
tional.

In addition, the speed of this failure detection is slow, as the failure de-
tection depends on:

• the path length and,

• the rate at which messages are sent.

This detection model imposes a high load on the controllers that can
affect the performance of the original tasks it was designed for. Hence, the

42

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 43 — #55

3.9 Network topology consistency

controller must be able to handle and react to millions of monitoring packets
per second just to monitor the state of the network. This not only leads to
a high load on the controller, but also on the control paths.

The approach proposed in [76] is designed to verify topology connectivity
and locate link failures. For this purpose, a single closed path that includes
each edge in the network is created. This defines a logical ring topology
where all switches in the network are included. In order to define the cycle,
each link can be used twice, if necessary. After the ring topology is built,
each controller in its network domain proceeds to install flows in each switch,
configuring the monitoring cycle.

To verify the network topology connectivity, the controllers inject probe
packets that are forwarded along the cycle, unless there is another rule spec-
ified. If there is no failure in the ring or segment inspected, the probe
packets must be forwarded back to the controller. A bidirectional logical
ring topology is created to locate an arbitrary link failure.

When a probe packet fails to return to a controller, it defines different
segments of the ring to be inspected (by sending probe packets) and detects
the location of a failure. Depending on which messages are received back, a
controller can detect the segment where the failed link is located. Each seg-
ment of the logical ring must be inspected in order to locate the failure. For
this purpose, controllers have to configure the forwarding tables of switches
involved in each segment.

This approach can not detect and locate more than a single link at the
same time. The reason for this is that, in the case of multiple failures, the
monitored path/cycle is broken in different places impeding the forwarding
of control messages to the controller. Besides, this mechanism can not be
implemented for any kind of network, since there are network topologies for
which it is not possible to built a ring/cycle.

Some disadvantage of the aforementioned approaches are:

• the performance of controller-based detection approaches is poor as it
can take a long time to discover a failure. In [76] this time is propor-
tional to twice the delay on each monitored path,

• overload the controller,

• controllers are unable to differentiate between switch and link failures.

Alternative approaches to detect failures in SDN networks consider that
the fault detection function should remain directly implemented by the
switches.

43

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 44 — #56

Chapter 3 Review of the state of the art

Detection failure by switches

Different switch-based fault detection approaches have been proposed to
improve the detection time without overloading the controller, such as [38]
and [77]. The objective of these approaches is to detect as soon as possible
a network failure, such that data communication can be recovered as fast
as possible. To ensure this, both approaches consider that all switches have
backup paths to the controller, which can be activated as soon as a failure
is detected.

In [77], authors propose a set of functions to provide reliability to the
network, based on the idea of re-establishing a communication when a path
failure occurs. Within these functions, authors propose the implementation
of a monitoring function on the OpenFlow switches to monitor a data path
without involving the controller. The end-source of a monitored flow for-
wards periodically and interleaves probe packets into the data flow running
along the data path. The switches along the path are able to receive and
forward these packets, as they have static flow table entries that allow the
packets to be processed accordingly. However, the switch responsible for
detecting a failure in the data path is the destination switch that extracts
the probe packets to check the path status. The absence of probe pack-
ets during the data flow transmission, indicates that there is a failure in
the path. In this case, the destination switch changes to a backup control
path to re-establish the communication. The detection fault time, in this
approach, depends on the data path length and the interval between probe
packets.

Authors in [38] use the Bidirectional Forwarding Detection (BFD) proto-
col to detect the path state between two pre-configured end-points. BFD
is a simple Hello protocol that transmits BFD packets periodically between
the end points. If an end point stops receiving the BFD packets, it assumes
that the path has failed. Actions are defined in the Action Buckets, which
activate the protected path. In order to reduce the fault detection time,
authors in [38] considered that switches can be configured to monitor their
adjacent neighbour switches in an active way, instead of monitoring only
the communication between end-points. For this purpose, a BFD session
is configured between each pair of adjacent switches in a data path. If pe-
riodical messaging over the session fails, a switch assumes the link to its
adjacent switch is lost, updating the Action Bucket status and sending this
information to the controller, which configures a new path. The overhead
on the network itself remains low as it does not involve the controller until
the failure is localized.

44

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 45 — #57

3.10 Conclusions

In general, authors in the aforementioned switch-based approaches con-
sider that the Group Tables extend OpenFlow configuration rules allowing
advanced forwarding and monitoring functions at switch level [38]. For in-
stance, the Fast Failover Group Table can be configured to monitor the
status of ports and interfaces, independent of the controller.

From the approaches introduced, it is clear that fault detection approaches
executed by switches reduce the number of messages used to monitor the
data paths, reducing the time a failure is detected without posing a pro-
cessing load on the controller compared to when failures are detected by
the controllers. Note that, the detection failure mechanisms are designed to
monitor only data paths.

3.10 Conclusions

In this chapter, controller placement approaches and some mechanisms to
discover the network topology and keep it updated are introduced. The
controller placement problem is NP-hard, therefore, each approach finds the
controller placements based on a set of limited constraints. Several network
metrics and algorithms approaching this problem have been discussed in the
literature, so far.

In this chapter, a set of general aspects found in the controller placement
solutions was described along three distinct aspects: i) static vs. dynamic, ii)
protected vs. unprotected and iii) real network conditions vs. assumptions.
In addition, the different metrics used to select the controller placements
were described. This information was used to create a classification of the
controller placement approaches found in the literature. Finally, solutions
that discover the network topology and detect network changes and failures
were described.

45

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 46 — #58

46

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 47 — #59

Part II

Contributions to the SDN
management

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 48 — #60

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 49 — #61

Chapter 4

Discovering controller placement in
SDN networks

The software-defined networking (SDN) advocates a centralized network
control global view. Large SDN networks may consist of multiple controllers
in one or different controller domains, distributing the network management
between them. Each controller has a logically centralized but physically
distributed vision of the network. In this context, a key challenge faced
by providers is to define a scalable control plane that exploits the bene-
fits of SDN, given that design aspects in the control plane such as load
distribution between controllers, propagation delays among controllers and
delay between controller-to-switches can lead to a long response time of the
controllers, affecting their ability to respond rapidly to network events and
reducing the reliability of communication. In this chapter, a new solution
to the controller placement problem called k − critical is proposed, that de-
termines where to place controllers and how many controllers need to be
installed in a network in order to create a robust control plane while sat-
isfying a controller-to-switch delay. K − critical was published in [78] and
[42].

4.1 Outline

Section 4.2 describes the implications of the controller placement on the
SDN network performance. In Section 4.3, controller placement approaches
found in the literature are classified based on the criteria used to select the
controller placements. Section 4.4 describes k − critical in detail, the con-
cepts defined and the process used to select the controller placements for
any kind of network, and in Section 4.5 a scalable version for k − critical is
defined to find controller placement in big networks in an efficient time. Sec-
tion 4.6 presents a comparison of k − critical with other controller placement
approaches based on clustering. Finally, Section 4.7 concludes the chapter.

49

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 50 — #62

Chapter 4 Discovering controller placement in SDN networks

4.2 Controller placements and its implications

The control plane in SDNs may take any topology, including that of a star,
where a single controller manages the network; a hierarchical architecture
where controllers are connected creating a mesh network; or even a ring
composed of a set of controllers that are managed using a distributed hash
table. Each one of these control plane topologies has implicit limitations.
However, regardless of the topology, there are some general aspects, such as
the delay both among controller-switches and delay among controllers (as
described in Section 3.6), the controller scalability, that affect the ability of
the controllers to respond to network events [50].

The controller placement influences every aspect of a decoupled control
plane, from state distribution options to fault tolerance, to performance met-
rics and network reliability. The importance of controller placement is well
established [17], [52], [51], [79]. In [52] the authors show the implications
between the number of controllers and the delay communication between
switches-to-controller and between controllers, and in [51] the authors de-
velop several placement algorithms to make placement decisions to maximize
the reliability of SDN. In [79] the authors describe the implications of the
local network view of the controllers and discuss the design of a distributed
control plane.

4.3 Shortcomings of existing controller placement
approaches

In general, the controller placement in an SDN network depends on three
aspects: the application requirements, the physical network topology and the
performance of the method used for this purpose. As with any distributed
management system, a control plane in SDN should be flexible, scalable and
robust. In SDN, the application plane provides flexibility to the network,
as it gives the switches the ability to adapt their operation in the event of
network changes. Meanwhile, the scalability and robustness of a distributed
control plane are properties influenced largely by controller placement, as
mentioned in the last section. Therefore, both the controller placement
and the number of controllers not only have to be selected to satisfy the
application requirements, but also to provide scalability and robustness to
the control plane.

These criteria, scalability and robustness, are applied to classify the differ-
ent approaches proposed by the research community to solve the controller

50

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 51 — #63

4.3 Shortcomings of existing controller placement approaches

placement problem. This classification is shown in Fig. 4.1. Here, approaches
are classified according to the requirements taken into account to select the
controller placements. That is, if an approach takes into account the avail-
able resources in the network to select the controller placement (e.g., links
and controller capacities), it is said that the approach selects the controller
placements that create a scalable control planes. On the another hand, if
during the controller placement selection, an approach considers any metric
that allows the network to minimize control data loss in the event of network
failures (switches and/or links failures), it is considered that the approach
selects the controller placements that create a robust control plane.

The switch-to-controller delay is regarded as one of the main restrictions
for any application running on the control plane. Therefore, this metric is
also used to classify the approaches in Fig. 4.1.

Delay Robustness

Scalability

[B. Heller+50]

[T. Huque +51]
[H. Rath +55]

[J. Ros +37]

[F. Bari +24]

[A. Sallahi +64]

[Y. Guang +47]

[M. Tatipamula, + 39]

[H. Yan-nan +42]
[H. Yan-nan +48]

[H. Yan-nan +49]

[D. Hock +41]*

[S. Lange +60]*

[J. Ros +38]

[N. Beheshti + 59]

[L. Shuai +71]
[E. Borcoci +72]

[Z. Ying + 52]

Figure 4.1: Classification of controller placement approaches according to
their objective.

Switch-to-controller delay

As can be seen in this diagram, most of the solutions consider the switch-to-
controller delay in the selection of controller placement. In [52], [26], [53],
and [57] this delay is limited to a specific value that is defined by the ap-
plication, while in the remaining approaches grouped in this category, the

51

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 52 — #64

Chapter 4 Discovering controller placement in SDN networks

objective is to find the best trade-off between this delay and other require-
ments. In this case, the selection of the controllers may not satisfy the delay
required for the correct operation of an application, as the controller selec-
tion depends on other requirements and restrictions. For instance, in [40]
the objective is to maximize the controller utilization while minimizing the
switch-to-controller delay.

From the pool of approaches considering the switch-to-controller delay in
the controller selection, only [26] and [66] consider the flow setup time in
their formulation.

Assumptions

To simplify the complexity of the problem and therefore its resolution, in
[26], [50], [57], [66], [49], and [40] the authors assume the facilities where a
controller can be installed are limited and known. As shown in [53], limiting
the controller location in the network may lead to an inefficient solution
compared to considering the entire solution space. As this restriction may
increment the number of controllers required to find a specific delay, or if the
objective is to minimize the switch-to-controller delay, the minimum delay
value found may not satisfy the delay required for an application.

Another assumption to simplify the controller placement problem is to
define the number of controllers k in advance. This assumption is considered
in approaches [50], [51] and [54]. In [44] both assumptions are adopted, the
number and a possible topological placement of the controllers.

Defining the number of controllers k in advance clearly simplify the prob-
lem resolution, as the problem is reduced to find the best k placement for
the controllers. But in practice, it is hard to know in advance both the exact
number of controllers required to handle a network and their possible loca-
tion in the network. Given that, it has been demonstrated in [43] that the
number of controllers to be used and their placement depend on the network
topology on the one side, and the trade-off between the availability and the
performance metrics fixed by the network operator on the other side.

Despite a good enough trade-off between metrics can be find for k con-
trollers, two situations can happen:

• the number of controllers k can satisfy the required network/application
requirements with great difference compared to the minimum require-
ments, that leads to the network resources to be sub-utilized or,

• the number of controllers can not satisfy the required network re-
quirements. Therefore, considering these assumptions in the controller

52

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 53 — #65

4.3 Shortcomings of existing controller placement approaches

placement problem have important effects on the network performance,
as has been shown in [43] and [62].

Approaches that appear in more than one category are marked with an
asterisk (*). This is the case for approaches [43] and [62] that evaluate
the trade-off between switch-to-controller delay and different metrics. To
do that, these approaches evaluate all possible controller placement on the
network while varying the number of controllers.

From the set of solutions presented in Fig. 4.1 there is only one approach
that does not made any assumption about the number of controllers neither
their placement in the network, this is [53]. However, the resulting control
plane built from controller placement selected using this approach does not
consider in its formulation any metric to minimize the data loss in case of
network failures.

To summarize, the most important disadvantage found from the controller
placement approaches shown in in Fig. 4.1 are related with:

• real network requirements are not taken into account,

• relevant aspects in the control plane design are assumed,

• the delay between switch-to-controller and inter-controller delay are
not restricted and,

• few controller placements approaches provide robustness to the control
plane, through greedy strategies.

Complexity of approaches

Below, the complexity of each one of the strategies used for discovering the
controller placements are presented.

Exact solution: In terms of the complexity of the solutions, approaches
that solve the controller placement based on Integer linear programming
such as [26] and [66], find an optimal solution. However, it becomes imprac-
tical with real-sized networks due to the number of constraints they handle,
even if these approaches only take into consideration the application require-
ments in terms of delay and the availability of resources on the links.

Heuristic solution: This strategy reduces the solution complexity com-
pared when using an exact strategy. This is an alternative to find a feasible

53

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 54 — #66

Chapter 4 Discovering controller placement in SDN networks

solution in a scalable way with a good approximation to the optimal solu-
tion. Most of the approaches named in Fig. 4.1 formulate the CPP by using
heuristic.

Clustering solution: Traditional clustering approaches such as k-Center
or k-Median are also considered when selecting controller placement in an
SDN network, given the similarities between the objective of these prob-
lems and the controller placement problem. Clustering approaches reduce
the complexity of the solution compared to an Integer Linear Programming
(ILP) formulation where each switch is evaluated as a possible controller.
This is because, in a clustering approach, a cluster is created from a refer-
ence switch, which is selected as controller placement, if any switch in the
cluster can improve a given restriction. If exists a switch in the cluster that
improves the delay to all switches in the cluster, it is declared as controller
placement. Complexity of clustering approaches is defined by O(nk), where
n is the number of switches in the network and k the number of controllers.
However, a critical aspect in clustering approaches is the selection of the
reference switch to initiate the creation of the clusters. This switch is usu-
ally selected randomly. Even though it simplifies the problem, it affects the
density or distribution of elements in the clusters. In a SDN network, this
situation may leave the controller with a high number of switches carrying
a high load, whilst other controllers may be underutilized.

Using clustering approaches to solve the controller placement problem
have other additional issues. First, the number of controllers to be located
in the network has to be known in advance. Second, the optimized metric
value may not satisfy the specific application requirement. Finally, a sig-
nificant shortcoming of these simple formulations (k-Center or k-Median) is
that a small number of distant switches, called outliers, can exert a dispro-
portionately strong influence over the final solution.

This is clearly true for min-max problems like k-Center, where a single
switch residing far from the other switches may force a center to be placed in
its vicinity. With min-sum formulations this effect is reduced, but it is still
possible if the switches are sufficiently far away. These switches have the
undesirable effect of increasing the cost of the solution, without improving
the level of service to the majority of switches.

As shown in Fig. 4.1, solutions that consider robustness, application re-
quirements and resource constraints are limited.

54

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 55 — #67

4.4 K-Critical

4.4 K-Critical

K − Critical is a clustering approach designed in this thesis to find both the
number of controllers and the controller placement that satisfy the appli-
cation requirements and reduce data loss in an SDN network. K − Critical
provides an efficient way of finding controller placement in SDN networks.
This is because, it restricts network area where the optimal location of each
controller is sought, instead of evaluating every switch as a possible controller
placement.

Given an SDN network topology denoted by the tuple G = (V,E), where
V = {1, . . . ,N} is the set of vertices and E is the set of edges, and a switch-
to-controller delay restriction called Dreq, k − Critical finds the set of con-
trollers C = {C1, . . . , Ck}, where C ⊆ V .

K − Critical divides the controller placement problem into two subprob-
lems. First, the candidate switch selection problem to find the set of candi-
date switches (defined as Cswitches) that can become a controller placement,
and second, the controller placement selection problem to find the optimal
controller placement (denoted as (Cj)) from the set of candidate switches.
For illustrative purposes consider the network topology G shown in Fig. 4.2.

Figure 4.2: Network topology.

Fig. 4.3 shows the graph G in a geometrical space in order to illustrate
clearly the sequence of processes executed by k − Critical to select the con-
troller placements. As illustrated in Fig. 4.3, k − Critical finds the controller
placements required for a network topology G in k phases (each row repre-
sents a phase), selecting a controller placement Cj in each phase as explained
below.

Through the candidate switch selection problem, k − Critical :

1) selects a reference switch called the critical node (Crn) that is used as
reference to define the set of candidate switches (Cswitches),

55

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 56 — #68

Chapter 4 Discovering controller placement in SDN networks

Phase 1

≤ Dreq

≤ Dreq

≤ Dreq

a. Candidate switches selection b. Controller placement selection

Phase 2

Phase 3

 Critical node selection Candidate switches Controller placement

Figure 4.3: k-Critical process.

2) discovers the controller placement from the set of (Cswitches) (These
processes are represented by the first and second columns in Fig. 4.3,
respectively),

3) creates from each candidate switch a subgraph G∗, this consists of all
the switches v ∈ V that may be managed by a candidate switch, in the
event that such a candidate switch is selected as controller placement,
denoted as V ∗v , and the links between these switches defined by E∗e .

4) gets as result, the subgraph created from each candidate switch, de-
fined by G∗ = (V ∗v , E

∗
e).

On the another hand, the controller placement selection problem:

1) evaluates the connectivity characteristics of each switch vi ∈ Cswitches
in relation to the set of switches in its subgraph G∗. For this purpose,

56

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 57 — #69

4.4 K-Critical

a tree rooted from each candidate switch vi that includes the switches
in its subgraph G∗,

2) measures the expected data loss of the resulting tree,

3) selects as controller placement the switch that minimizes the data loss,
creating the control plane topology.

In each phase, these two processes are executed, as a result the candidate
switch vi ∈ Cswitches that minimizes the expected data loss is selected as
a controller placement, Cj . These are the switches shown in grey in each
phase in the last column in Fig. 4.3. For each controller placement selected,
a cluster that includes the switches it can manage and the links between
these switches is created.

Fig. 4.4 shows how these two problems are related.

Candidate switch selection

G=(V,E)
Dreq

Controller placement

selection

Cswitches
G*

Tvi

Cj
Clj={Vcj, Ecj}

C={C1,C2,…,Ck}

*

Figure 4.4: k − Critical processes.

4.4.1 Definitions

K − Critical partitions a graph in k clusters, each one managed by a con-
troller. A cluster can be formally defined as:

Definition 3.1 (Clusterj, Clj). A cluster consists of the set of switches
that are in a range less or equal to Dreq from a controller placement Cj ∈ C,
and the set of links that connect these switches to the controller. The set of
switches in a cluster is defined as:

VCj = {vj′ : d(vj′ , Cj) ≤ Dreq, j, j′ ∈ N, 1 ≤ j′ <
∣∣V ′∣∣ , 1 ≤ j < |C|}, (4.1)

57

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 58 — #70

Chapter 4 Discovering controller placement in SDN networks

where V ′ is the set of switches that has not been included in a cluster.

The control channel between each switch vj′ ∈ VCj to controller placement
Cj ∈ C is represented as a list of traversed links, as follows:

ECj = p(vj′ , Cj) = {e1 = {vj′ , v1}, e2 = {v1, v2}, ..., ek = {vk−1, Cj}}, (4.2)

where e1, e3, ..., ek ∈ E. Therefore, a cluster created from a controller Cj
can be represented as Clj = (VCj , ECj), and the set of all the clusters in
phase j < k in a network can be denoted as GCl = (Cl1, Cl2, ..., Clk) →
GCl = (VCl, ECl). Note that after finding the controller placements re-
quired, that is after k phases, VCl = V .

The set of switches that have not been included in a cluster V ′ is defined
in the first phase as V ′ = V , and in each phase, when a controller placement
is selected, this set of switches is updated as follows V ′ = (V ′ − VCj).

K − Critical defines the set of switches from where a controller placement is
selected taken as a criterion, the communication delay time between switches
in the network. To select these switches, k − Critical defines a reference
switch called critical node that is formally defined as follows:

Definition 3.2 (Critical node, Crn). A critical node is a switch that is
not included in any cluster Clj , and that has the furthest distance to the set
of switches that has already been assigned to a cluster, defined by VCl. The
shortest delay between a vertex v ∈ VCl to a vertex in v′ ∈ V ′ is defined as
d(v, v′). Then, in each phase, the critical node in V ′ can be formally defined
as the node v′ that:

maximize
∑
v′∈V ′

d(v, v′) ∀v ∈ VCl, (4.3)

where v′ = Crn and, therefore, (Crn ⊂ V ′).
The first critical node selected in the network is the switch with the highest

delay to the rest of the switches, given the absence of any cluster, GCl = ∅.

K − Critical leverages link delays to determine the set of candidate switches
Cswitches: only switches for which the maximum delay to the critical node
Crn is less or equal to Dreq are selected as candidate switches to become a
controller. These switches are illustrated in Fig. 4.3 in Phase 1b. The set of
candidate switches to manage a critical node Crn is formally defined as:

58

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 59 — #71

4.4 K-Critical

Definition 3.3 (Candidate switches, Cswitches). This is the set of switches
vi ∈ V ′ that, due to their location, are at a delay less or equal to Dreq from
the critical node, Crn. This set of switches can be defined as follows:

Cswitches = {vi : d(vi, Crn) ≤ Dreq, i ∈ N, 1 ≤ i <
∣∣V ′∣∣}, (4.4)

where
∣∣V ′∣∣ defines the number of switches in the set V ′.

4.4.2 Problem formulation

In physical SDN network topologies, where switches forward traffic between
them and their traffic rate is not known, k − Critical provides a first controller
placement approximation to guarantee:

• all switches in the network topology G are managed by a controller
and,

• the controller placements guarantee a minimum delay communication
Dreq to each switch, while reducing, as much as possible, the flow
communication time between any pair of end switches in the network.

To find the number of controllers and their placement in the network, the
following sets and parameters have been defined in k − Critical :

Topology :
G Network topology, G = (V,E).
V Set of switches in the network topology G.
E Set of links in the network topology G.
N(v) Neighbour switches of switch v.
d(i, j) Delay in link (i, j) ∈ E.
D[i, j] Matrix of delays for links in E.

Requirements:
Dreq Required switch-to-controller delay.

Variables:
Crn Critical node.
Cswitches Set of candidate switches.
G∗ Subgraph created from each candidate switch.
V ∗v Set of switches in G∗.
E∗e Set of links in G∗.

59

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 60 — #72

Chapter 4 Discovering controller placement in SDN networks

T(V ∗v ,vi) Shortest tree rooted at candidate switches vi.

T ∗vi Set of shortest trees rooted at switches vi ∈ Cswitches.
Cj Controller placement selected.
Clj Cluster created from controller placement Cj .
V cj Set of switches in cluster Clj .
Ecj Set of links in control channels from each switch in V cj

to Cj .
C Set of controller placement selected in network topol-

ogy G.
GClj Set of clusters created from each controller placement.

4.4.3 Candidate switch selection

The candidate switch selection problem can be formally stated as follows:

Given: a network topology represented by a graph G(V,E) and the appli-
cation requirement in terms of switch-to-controller delay, Dreq.

Output : a shortest tree T(V ∗v ,vi) rooted at each candidate switch, where
vi ∈ Cswitches.

Objective: find the set of candidate switches in each phase, such that in k
phases it i) guarantees the coverage of all switches in the network by at least
one controller and ii) ensures an specific switch-to-controller delay for all
switches in the network.

Algorithm 1 specifies the selection of the candidate switches in an SDN
network. Essentially, this process is divided into three processes:

First, the critical node Crn is selected from the switches that have not been
assigned to any cluster (that is set V ′), after that, the possible candidate
switches Cswitches that can manage Crn are found (lines 1-3).

Second, from each candidate switch vi ∈ Cswitches a subgraphG∗ = (V ∗v , E
∗
e)

is created, which contains all the switches that a candidate switch vi can
manage in the event of being selected as a controller placement as well as
the links between these switches. This subgraph is used to find the shortest
paths from each switch v ∈ V ∗v to the candidate switch vi creating a tree
defined as T(V ∗v ,vi). The set of shortest trees created from each candidate
switch are stored in the matrix defined as T ∗vi (lines 4-16).

Third, the controller placement selection problem evaluates the data loss
from each shortest trees rooted at candidate switches, selecting the switch

60

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 61 — #73

4.4 K-Critical

Algorithm 1 Candidate switch selection algorithm.

Input: G=(V,E), D[i, j]← SP Delay Matrix. Dreq ← Req. Delay, V ′ = V , N(v),

[C, Cswitches, GCl, Clj , E∗e , V ∗v , Tvi∗]← ∅
Output: set of trees rooted at the candidate switches .
1: while V ′ 6= ∅ do
2: Find critical node Crn from V ′ through Eq.(4.3)
3: Find candidate switches Cswitches that can manage Crn through Eq.(4.4)
4: for each switch vi ∈ Cswitches do
5: V ∗v ← set of switches defined by Eq.(4.1), where vi=Cj

6: for each switch v ∈ V ∗v do
7: for vn ∈ N(v) do
8: if vn ∈ V ∗v then
9: E∗e = Ee ∗ ∪e(v, vn)

10: end if
11: end for
12: T(V ∗

v ,vi) ← shortest path (v, vi)
13: end for
14: Define subgraph G∗ = (V ∗v , E

∗
e) for vi

15: T ∗vi ← T(V ∗
v ,vi)

16: end for
17: Select Controller placement Cj from Cswitches (Go Algorithm 2)
18: Create cluster from controller placement selected, Clj = (VCj , ECj) through

Eq.(4.1) and Eq.(4.2)
19: V ′ = V ′ − VCj

20: GCl = GCl ∪ Clj
21: C = C ∪ Cj , Cj ← ∅, Cswitches ← ∅, G∗ ← ∅
22: end while

vi that minimizes the data loss in the SDN network. After selecting a con-
troller placement Cj , the set of switches as well as the set links involved
in the control channels from each switch to the controller create a cluster,
Clj = (VCj , ECj). Consequently, the variables are updated (lines 17-21) to
find the next controller placement. This process finishes when all switches
are included in a cluster, this is when V ′ = ∅.

4.4.4 Controller placement selection

Intuitively, a network is robust when communication between two switches
is not severely affected by –or can efficiently recover from– network failures,
thus minimizing (ideally, avoiding) data loss in these cases. In k − Critical ,
it is considered that:

61

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 62 — #74

Chapter 4 Discovering controller placement in SDN networks

• control channels are the shortest paths from a controller to a switch,

• each controller manages its nearest switches,

• several control channels can use the same switches/links.

In terms of a control plane, this notion of robustness implies that the data
loss due to a switch failure along control channels of a given SDN network
is low, meaning that the number of involved switches in a control path, and
therefore its hop length, is small. In addition, the number of control channels
that share a link/switch also should be low. That is because, in case of a
switch failure, all the control channels using this switch/link are broken.

In this context, the robustness of a tree T(V ∗v ,vi) rooted at vi ∈ Cswitches,
can be estimated from the expected data loss of each switch in the tree.
Note that for tree networks, there is no loss of generality in considering only
switch failures because, as far as the amount of data loss is concerned, the
failure of a switch is equivalent to the failure of the link to the parent. This
applies to every switch except the candidate switch (root switch), which is
assumed not to fail. This is because, if the root fails, data forwarded from
each switch in the tree to the controller is lost.

In the context of the controller selection problem, the robustness for a
tree T(V ∗v ,vi) can be estimated as the sum of the expected data loss when
considering that each switch fails in different times. That can be defined
as follows: the expected data loss dx for a switch x depends on the number
of switches nx that are rooted at it, and on the probability that the switch
x fails. If it is considered that every switch in the tree topology T(V ∗v ,vi)
has the same loss probability, the expected data loss dx depends on the
set of downstream switches in the subtree rooted at failed switch x, Tx, as
these are disconnected from the controller. This can be formalized as follows.

Let W (x) be a variable that indicates if a switch is affected by failure of
switch x, that can be defined as follows:

W (xi) =

{
1 If i ∈ Tx
0 Otherwise

(4.5)

where Tx represents the subtree rooted at switch x. Therefore, the number
of switches disconnected from the control plane due to a failure in switch x,
are the downstream switches (Dn) of x (including switch x itself), that can
be computed as:

62

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 63 — #75

4.4 K-Critical

Dn(x) =
∑

i∈T(V ∗v ,vi)

W (xi) + 1. (4.6)

The expected data loss of a tree T(V ∗v ,vi) can be defined as:

d(T(V ∗v ,vi)) =
1

|T(V ∗v ,vi)| − 1

∑
Dn(x) ∀x ∈ T(V ∗v ,vi), (4.7)

where |T(V ∗v ,vi)| is the number of switches in the tree T(V ∗v ,vi).

The candidate switch vi selected as a controller placement is the switch
that minimizes the data loss:

Minimize d(T(V ∗v ,vi)). (4.8)

Therefore, the controller placement selection problem can be formally
stated as follows:

Given: a set of shortest trees rooted at switches included in the set of can-
didate switches, defined as T ∗vi .

Output : controller placement Cj .

Objective: Discover the controller placement that maximizes the control
plane robustness.

Algorithm 2 specifies the selection of controller placements in an SDN
network. It starts computing the data loss for each tree rooted at a candidate
switch T(Vv∗,vi) ∈ T ∗vi , by considering each switch x in the tree fails in different
times (line 1-7). Computing the data loss of a tree as the sum of the nodes
disconnected when each switch x ∈ T(Vv∗,vi) fails (lines 3-7). This result
obtained for the set of trees rooted at the candidate switches is stored in a
vector defined as d(T(V ∗v ,vi)) (line 8). At the end, the candidate switch that
minimizes the data loss is selected as a controller (line 10).

k − Critical tackles failures in controllers by selecting controllers of backup.
These controllers are selected at the same time a controller placement is
found, these are the candidate switches that maximize the control plane
robustness.

63

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 64 — #76

Chapter 4 Discovering controller placement in SDN networks

Algorithm 2 Controller selection algorithm.

Input: T ∗vi ← set of trees rooted at candidate switches

Output: Controller placement Cj .
1: for each tree T(V ∗

v ,vi) ∈ T ∗vi do
2: for each switch x ∈ T(V ∗

v ,vi) do
3: for x ∈ Tx do
4: compute W (xi) ← through Eq.(4.5)
5: end for
6: d(x) ← saves W (xi) for each switch x ∈ T(V ∗

v ,vi)

7: end for
8: d(T(V ∗

v ,vi)) ← saves
∑
d(x) for each tree T(V ∗

v ,vi) ∈ T ∗vi
9: end for

10: return arg minvi∈Cswitches
d(T(V ∗

v ,vi)).

4.4.5 Complexity analysis

The complexity of controller placement approaches is defined by the num-
ber of operations required to select a controller within a network graph G.
In the case of k − Critical , the number of operations depends on the size
of the network and of the set of candidate nodes in each phase. This is
because, k − Critical builds a delay-based shortest path tree from each can-
didate switch in each phase, and then executes a heuristic algorithm on the
computed trees to quantify the data loss. In the worst case, that is when
all switches (N) in the network are candidates (N = k) and therefore all the
switches are included in the tree, the complexity of k − Critical is defined
by O (n) ∗ (n− 1), that is O

(
n2
)
. Note that this is the case when only one

controller manages the whole network.

Although k − Critical reduces the number of switches evaluated to select
a controller placement when k > 1 compared to other approaches, the set
of operations executed to compute the data loss per each candidate switch
can take a long time, since that it depends on the network topology size
and the network connectivity. Thus, aiming to provide a near-optimal so-
lution within reasonable computational effort, the next section presents a
function to measure the tree robustness to select the controller placement in
k − Critical in an efficient time.

4.5 Heuristic Algorithm for k-Critical

From the robustness metric presented in the previous section, it can be
deduced that one of the main characteristics that a controller placement

64

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 65 — #77

4.5 Heuristic Algorithm for k-Critical

must have to reduce the expected data loss in a network is a high number of
interfaces and that it is located at a short delay from the other switches in
the network. That is, the diameter of the control plane topology should be
as small as possible, as longer paths imply larger data loss as many switches
depend on the switches near the controller, longer transmission times and
higher traffic load on links. With respect to controller connectivity, the
intuition is that a high connectivity (a high number of switch interfaces)
should present a homogenous switch distribution on the branches to reduce
the data loss, by reducing the branch length and the number of downstream
switches at each switch of the tree. In consequence, the control plane built
from selected controller placement with these characteristics tends to be wide
(i.e., switches have many children) near the controllers and narrow (i.e., with
decreasing number of children) for switches closer to leaf switches.

Based on these concepts, a function called theta is defined to evaluate
the robustness property of the tree topology created from each candidate
switch. This function evaluates the connectivity characteristics of each can-
didate switch vi ∈ Cswitches, specifically the tree diameter and the switch
degree characteristics, as follows:

Definition 3.4 (Theta Function). This function is defined by two metrics
that are constructed by considering a weighted combination of the switch
connectivity (switch degree) and the path weight (delay and network diam-
eter). In general, θ function is defined as follows:

θ = γ × (switch connectivity) + (1− γ)× (path weight) (4.9)

In function θ, the coefficient γ weighs the switch connectivity and the path
weight for each switch vi ∈ Cnodes. This coefficient is defined by:

γ =
Lh
LMax

, (4.10)

being 0 ≤ γ ≤ 1, and where Lh is the maximum path length measured in the
number of hops from the switch evaluated vi to a leaf switch, and LMax is
the maximum path length found among the candidate controllers. Note that
γ can be conveniently redefined to allow optimization of any other variable
that needs to be taken into consideration in a particular case.

Note that γ is really a function of the depth of a switch in the tree,
as it measures the depth of the deepest leaf in the tree created from each
candidate switch. Coefficient γ takes the lowest value for the candidate
switch with smallest diameter, and 1 for the candidate switches with the

65

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 66 — #78

Chapter 4 Discovering controller placement in SDN networks

largest diameter. This factor depends on the characteristic of the underlying
graph; it is not a property of the control plane.

Function θ provides a weight of the distribution of switches in a tree that
is defined as:

θ(n) = γ(vi)
deg(vi)

N − (deg(vi) + hi(vi))
+
(
1− γ(vi)

) δmax(vi)

Dreq
. (4.11)

The first term in Eq.(4.11) weighs the connectivity of a switch that is
defined as the relation between switch degree deg(vi) and the distribution of
the N switches to hi hops in the resulting shortest tree topology, T(Vv∗,vi).
hi(vi) is the number of switches that a candidate switch has at i hops in
its associated tree, and δmax(vi) is the maximum root-to-leaf delay within
the control tree rooted at vi. The second term of this function weighs the
path weight in terms of delay, this is defined by the maximum delay value
that the candidate switch reaches when it is the root, with respect to the
required switch-to-controller delay, Dreq.

The candidate switch with best relation between the delay and the switch
distribution is selected as the controller placement. Considering the physical
network diameter (γ) allows the selection of the candidate switch with the
best relation between the delay and the switch distribution in its branches.

4.5.1 Fault-Tolerant SDN controllers

In SDN networks, controller failures are tackled by considering backup con-
trollers called slave controllers in the Openflow standard, which change their
operational mode when their master controller fails.

An important limitation when considering backup controllers is the fact
that these controllers do not have information about the network state after
they change their operation mode from slave to master controllers.

In an SDN model where each controller has information about the whole
network, but only manages a specific set of switches based on its local net-
work state information, the controllers announce critical local events to all
other controllers in the control plane to keep the network information con-
sistent. In this context, a long delay between controllers has a large impact
on the network performance, as it affects the time it takes for controllers to
update their network state information. As a consequence, controllers can
make wrong decisions if network state information is inconsistent.

To handle this issue, in [71] authors propose that the controllers replicate
the network and application state (the Network Information Base or NIB) in

66

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 67 — #79

4.5 Heuristic Algorithm for k-Critical

a shared data store implemented on servers. To ensure a smooth transition
from slave to master controller, operational master controllers always update
the NIB before modifying the state of the network. When a master controller
fails, its backup controller takes over its role and its first action is to read the
current state from the data store. As the network state in the data store is
always up-to-date, backup controllers have a consistent view of the network
from the outset.

Authors in [80] propose a hierarchical SDN control plane, where the infor-
mation about network state is originated at the bottom of the hierarchy and
is passed upwards from children to parent. On the other hand, configuration
information that defines the switch behaviour is forwarded downwards from
servers to the switches, where each controller/server computes the configu-
ration for their associated switches. At the highest level, there is a logical
server that has information about the whole network. Architecturally, logi-
cal servers appear as a single machine (that is, they are logically centralized),
but in practice they can be replicated for fault tolerance.

In general, the performance of hierarchical control planes depends on the
convergence time, which is a function of the depth of the hierarchy [80]. This
convergence time depends mainly on two aspects: i) the processing capacity
of the switches and controllers and ii) the delay between switch-to-controller
and between controller-to-server.

In this section an extension of k − Critical is introduced to select the server
placements to build hierarchical SDN network architectures. Selection of the
server placements is based on i) the placement of the controllers and ii) the
convergence time (Dcvg) required in the SDN network. The convergence time
(Dcvg) may be the maximum response time permissible for an application
without affecting the quality of service. This delay has the constraint that
Dreq + Dc,s ≤ Dcvg, where Dc,s is the controller-to-server delay.

K − Critical applies the same criteria to select the server placements as
in the controller placement selection. That is, from the set of controller
placements found, k − Critical selects the critical controller. This controller
is taken as a reference to find the set of candidate switches where a server can
be installed. Note that as in the controller placement selection (defined in
Section 4.4.4), considering the critical switch/controller allows the network
to discover the controller that limits the server placement in the network.

After evaluating each candidate switch through the theta function Eq.(4.11),
the switch selected as server placement is the one that has the best relation
between i) the switch distribution (highest theta function value) and ii) the
number of controllers that can reach the candidate switch in a delay less or
equal to Dc,s.

67

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 68 — #80

Chapter 4 Discovering controller placement in SDN networks

Below, the concept definitions are introduced to find the server placements
in an SDN network.

Definition 3.5 (Critical controller placement, Crc). A critical con-
troller placement is the controller that is included in set C, and has the
furthest distance from the rest of controllers. If the delay between two con-
trollers in set C is defined as d(Ci, Cj), then the critical controller Crc is the
controller Ck that:

maximize
∑
Ck∈C

d(Ck, Cj) ∀Cj ∈ C, Ck 6= Cj . (4.12)

Definition 3.6 (Candidate server placements, Csp). This set consists
of all the switches vi that are not included in C and have a delay to the
critical controller Crc less or equal to Dc,s. The set of switches that are not
included in C is defined as V ′c = (G − C). Therefore, the set of candidate
switches selected to become a server placement is defined as follows:

Csp = {vi : d(vi, Crc) ≤ Dc,s, ∀vi ∈ V ′c , i ∈ N, 1 ≤ i <
∣∣V ′c ∣∣}, (4.13)

where
∣∣V ′c ∣∣ defines the number of switches in the set V ′c .

Definition 3.7 (Candidate controller covered, C(vi)cover). This is the
number of controllers in set C that can reduce their delay communication
time to Dc,s in the event of candidate switch vi being selected as a server
placement.

X(Cj ,vi) =

{
1 If d(vi, Cj) < Dc,s

0 Otherwise
(4.14)

C(vi)cover =
∑
vi∈Csp

X(Cj ,vi) ∀Cj ∈ C, (4.15)

where, X(Cj ,vi) is a binary variable, which becomes 1 if the delay from candi-
date switch vi to a controller Cj ∈ C is less or equal to Dc,s. Otherwise, it is 0.

Therefore, the server placement problem can be formally defined as follows:

Given: a set of controller placement C in network G,

68

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 69 — #81

4.5 Heuristic Algorithm for k-Critical

Output : set of server placements S,

Objective: To find the set of server placements that ensures a communica-
tion controller-to-server delay not higher than Dc,s.

Algorithm 3 defines the process to select the server placements. In order
to restrict the controller-to-server delay requirement, an initial condition is
defined in Algorithm 3. This condition limits Dc,s in the control plane to
Dcvg

k+1 , where Dcvg is the maximum convergence time delay for an application
running on network G (lines 1-3). This condition, together with the criti-
cal controller criterion, guarantees that the minimum number of servers is
added.

Initially the delay from each controller to a server is defined as infinite,
given that no server placement has been selected in the network. Algorithm
3 is executed while there are controllers to a delay higher than Dc,s to a
server.

This process is executed as follows. First, the critical controller Crc ⊂ C ′
is discovered, along with the set of candidate switches Csp that are selected
to become a server placement for Crc (line 5-6). After that, each candidate
switch vi ∈ Csp is evaluated by means of function theta, and the number of
controllers that vi can reach to satisfy the required Dc,s is also computed.
This is defined as C(vi)cover (lines 7-13). In order to add the lowest number
of server placements in the network, it is considered that any new server
placement should reduce the delay to the maximum number of controllers
in the network. For this purpose, the candidate switch (vi) selected is the
one that has the best relation between theta function value and the number
of controller placements to which the candidate switch vi can reduce the
delay communication to Dc,s. This relation is called θ′, that is defined as:
θ′ = θ

C(vi)cover
, selecting the candidate switch with the highest θ′ value (lines

14-16). If the previous condition can not be satisfied, the candidate switch
selected is the one that minimizes the delay to the rest of the controllers
(lines 18-19). This process continues until Dc,s is satisfied for all connections
between controller-to-server in the network.

4.5.2 An example

Consider the network topology in Fig. 4.5, for which the set of controller
placements that satisfy a switch-to-controller delay requirement of Dreq equal
to 45 µsec must be found. In Fig. 4.5, the number on the edges represents
the delay on the link. In K − Critical basically three processes are executed:

69

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 70 — #82

Chapter 4 Discovering controller placement in SDN networks

Algorithm 3 Controller placement selection.

Input: (N ×N) SP Delay Matrix. G=(V,E), Dc,s, Dcvg, S = ∅ , d (Ci, S) =

∞∀ Ci ∈ C, C’=C, k = |C|.
Output: Controller placement Cj .

1: if Dc,s >
Dcvg

k+1 then

2: Dc,s =
Dcvg

k+1
3: end if
4: while exists a Ci ∈ C ′ →d (Ci, Sj) ≥ Dc,s do
5: Cr c ← Find the critical controller placement in C’ through Eq.(4.12)
6: V ′c = G− C ′ − S
7: Csp ← Find the candidate switches in V ′c through Eq.(4.13)
8: for each candidate switch vi ∈ Csp do
9: Evaluate θ, Eq.(4.11)

10: Compute Ccovered through Eq.(4.15)
11: C(vi)covered = Ccovered

12: θ′vi = θ/C(vi)covered
13: end for
14: if C(vi)covered ∈ Ccovered 6= 0 exists then
15: S = S ∪ vi, where vi is the candidate switch with the highest value in θ′vi
16: Cc → set of controllers Cj ∈ C ′ for which X(Cj ,vi) > 0
17: else
18: Select vi ∈ Csp that → Minimize

∑
vi∈Csp

d(vi, Cj) ∀Cj ∈ C
19: S = S ∪ vi
20: end if
21: Csp ← ∅, C ′ = C ′ − Crc − Cc

22: end while

1) Critical node selection, 2) Candidate switch selection and 3) Controller
selection.

First, k − Critical selects switch 13 as a critical node in the network. The
set of candidates switches that can manage the critical node consists of the
following switches, Cswitches = {8, 10, 11, 12}. By evaluating these switches
through function theta Eq.(4.11), where N=13 and hi = 2, the following
values are obtained: θ8 = 0.28, θ10 = 0.67, θ11 = 0.5 and θ12 = 0.43.

Note that even though the switches 10, 11 and 12 have the same degree
(Fig. 4.6), the switch distribution in the tree created at switch 10 is better
(in terms of switch distribution on the branches, reducing the data loss in
case of switch failures) and therefore the highest function value is obtained.

From the controller placement selected (switch 10) a cluster (Cl10) is cre-
ated that includes all the switches it can manage, Cl10 = {4, 6, 7, 9, 10, 11,

70

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 71 — #83

4.5 Heuristic Algorithm for k-Critical

1

2

3

4

8 12

11 13

6

5 9

10

6

4

4 5

6 3

3 1

7

7 5

8

5 8

4
7

7

2

4

Figure 4.5: Network topology.

Figure 4.6: Tree topologies from candidate switches, Cswitches = {8, 10, 11, 12}.

12, 13}. As not all switches can be managed by the controller selected Cl10,
k − Critical continues the process by finding another controller placement.

To do that, a new critical node is found from the set of switches that has
not been included in a cluster. This set is defined as V ′ = {1, 2, 3, 5, 8}.
From this set, the switch selected as the critical node is switch 8. The
set of candidate switches that can manage the critical node is defined as
Cswitches = {1, 2, 3, 5, 8, 9}. Fig. 4.7 shows the set of shortest tree topologies
created from each one of the candidate switches. By evaluating these trees
through Eq. 4.7, trees rooted from switch 2 and switch 1 are found to
have the lowest data loss. However, switch 2 is selected by function θ as it
has more interfaces and can lead to a better distribution of the load on the
branches than switch 1, reducing the data loss. Note that, there are switches
that can be managed by different controllers, in the example, switch 9 can be
managed by both controllers C2 and C10. In this case, a switch is managed
by the controller that reduces the switch-to-controller delay.

As a result, the control plane consists of two controllers (C2 and C10),
each one managing a specific set of switches as shown in Fig. 4.8.

The resulting control plane topology created from the controllers selected
is robust, because the loss of management data due to switch or link failures

71

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 72 — #84

Chapter 4 Discovering controller placement in SDN networks

1

2

9 3

4

7 6

8

5

4 3 2

1

8 9 5 6

7

7 3

5

2 1 9

8 4

6

5 2 1

3

8 4 7

9 6

2

8

1 3

5

9

4 7

6

7 2

9

1

5

3 4

6 8

Figure 4.7: Tree topologies from candidate switches, Cswitches = {1, 2, 3, 5, 8, 9}.

is minimized. Moreover, it is homogeneous because the number of switches
along the different branches is balanced.

Note that the set of controller placements found by k − Critical guarantees
that every switch is managed by at least one controller and that the maxi-
mum delay between them is no higher than Dreq. However, the delay among
controllers in the control plane is not limited. Therefore, controllers can be
placed with a long delay between them, affecting the network response time.
As introduced in the last section, a solution to reduce the impact on the per-
formance of a distributed SDN network following network failures, consists
of having a distributed data store (that can be considered as a controller)
that can be consulted by any controller in order to update the network state
on their local caches.

To find the server placements on the network, k − Critical follows the same
procedure as followed when finding the controller placements. That is, first
the critical controller in C is controller C10, along with the set of candidate
switches to become a server placement, defined as Csp = {4, 6, 7, 9, 11, 13}.
By evaluating each one of these switches using function θ′, the switch with
the highest function value is switch 9. Consequently, this switch is selected
as a server placement, which allows the time topology information is updated
on the control plane to be reduced.

In Fig 4.8, the logical switch-to-controller and controller-to-server paths
that define the control plane topology are illustrated. As can see from this
figure, control paths of different switches can share resources.

4.6 Comparison of Controller placement approaches

k − Critical is a controller placement approach inspired by clustering ap-
proaches. The main differences between k − Critical and the traditional
clustering approaches such as k-center and k-Median, solutions considered
in [52], is that k − Critical :

72

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 73 — #85

4.6 Comparison of Controller placement approaches

1

2

3

7

8

5 4 12

11 13 6

10

9

Figure 4.8: Control plane created from candidate switches selected.

• finds the controller placement to satisfy a specific switch-to-controller
delay,

• finds the number of controllers required,

• selects the controller placement taking into account the switches out-
side the average delay in the network.

In order to compare k − Critical performance with k-center and k-Median
approaches, they have been adapted to discover the set of controllers that
satisfies a delay constraint, defined as Dreq. Just like in k − Critical , in these
algorithms a controller can be placed in any switch in the network.

4.6.1 k-Median problem

This clustering approach finds the set of controller placement C that min-
imizes the average propagation latencies between switch-to-controller, de-
fined as d(v, Ck), using Eq. (4.16).

Lavg =
1

N
∑
v∈V

d(v, Ck). (4.16)

Where N is the number of switches in a network.
Algorithm 4 describes this process. It starts identifying the shortest link

in the network, selecting as candidate controller the switch i in the shortest
link that minimizes the average delay (Lavg) to the rest of the switches in
the network (lines 1-2). All switches v for which d(vi, v) ≤ Dreq are joined
to the selected switch vi, creating a cluster (line 4). Then, each switch in
the cluster is evaluated through Eq. (4.16), checking if there exists a switch
in the cluster with better average delay than the switch vi, that satisfies the

73

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 74 — #86

Chapter 4 Discovering controller placement in SDN networks

Algorithm 4 Controller selection algorithm using k-Median.

Require: (N ×N) Delay Matrix, G = (V,E), Dreq ← Req. Delay,Cluster← ∅
1: find the shortest link (i, j) in network G

2: select the switch vi that minimizes the delay to the rest of the switches in G

3: while there are switches not belonging to a cluster do
4: Clusterk ← switches v ∈ V that d(vi, v) ≤ Dreq, where v /∈ Cluster
5: for each switch v ∈ Clusterk do
6: Evaluate Lavg

7: end for
8: Select the switch j ∈ Clusterk that minimizes Lavg as controller
9: Cluster← Cluster ∪ Clusterk, Find the nearest switch i to the Cluster, where

k /∈ Cluster, Clusterk ← ∅
10: end while

Dreq for all switches in the cluster (lines 5-7). If a switch n 6= vi exists that
minimizes the Lavg, it is selected as new controller placement and the cluster
is updated (lines 8-9). Otherwise the switch vi is selected as controller. To
find additional controllers, the algorithm finds the nearest switch vi to the
cluster or set of clusters created, building a new cluster, this process is
repeated until all switches are included in a cluster.

4.6.2 k-Center problem

This approach finds the controllers so as to minimize the maximum distance
of the switches v to their closest controller Ck (see Eq. (4.17)), as described
in Algorithm 5.

Lk−center = max
v∈V

min
Ck∈C

d(v, Ck). (4.17)

At the beginning, k-Center selects randomly a switch vi ∈ V in the net-
work, creating a cluster with all switches for which d(vi, v) ≤ Dreq (lines
1-3). If there exists a switch n in the cluster that minimizes the delay to
the switches, it is selected as controller and the cluster is updated (lines
4-7). Otherwise the switch vi is selected as controller. After that, the algo-
rithm finds the furthest switch vi to the cluster or set of clusters included in
Cluster, repeating the process until all switches are assigned to a cluster.

4.6.3 Evaluation and results

This section performs an evaluation of the implications of the controller
selection in the control topology performance in terms of delay, data loss,

74

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 75 — #87

4.6 Comparison of Controller placement approaches

Algorithm 5 Controller selection algorithm using k-Center.

Require: (N ×N) Delay Matrix, G = (V,E), Dreq ← Req. Delay,Cluster← ∅
1: vi ← Select randomly a switch v ∈ V
2: while there are switches not belonging to the cluster do
3: Clusterk ← Find from (N ×N) the switches v that satisfy d(vi, v) ≤ Dreq,

where v /∈ Cluster
4: for each switch v ∈ Clusterk do
5: Evaluate Lk−center
6: end for
7: Select as controller the switch j that minimizes the d(v, j)
8: Find the furthest switch k from Cluster

9: end while

the allocation of switches to controllers and average tree-depth.

For this purpose, three different network categories have been randomly
generated, which are defined based on their network connectivity as: sparse,
medium and dense networks. These networks were generated using the soft-
ware described in [81]. Switches in sparse networks have between 1 and
10 neighbors; in medium networks between 20 and 30 neighbors, and in
dense networks between 40 and 50 neighbors. For each category 100 net-
works were generated which consist of 100 switches with the edge distance
uniformly distributed between 1 and 10 km. The controllers were found
for different switch-to-controller delay values in the range of microseconds.
The results presented are the average results obtained for each network cat-
egory evaluated. MATLAB was used to evaluate the algorithms and their
performance.

The performance and robustness of the trees built at the controllers se-
lected for each one of the presented solutions and for each one of the net-
work categories are evaluated. In order to compare the effect that the con-
trollers selected have over control topology, a quantitative analysis is applied
to determine the number of optimal controllers for each network category.
Based on the maximum delay time reached for each network category, it
was found that the optimal number of controllers is the one that has the
best cost/benefit relation. In other words, it is the maximum number of
controllers for which adding another controller results in negligible delay re-
duction. Fig. 4.9, 4.10 and 4.11 illustrate the number of controllers found
for each defined Dreq in each network category.

For sparse networks (Fig. 4.9), a significant delay range –from 23 µs to 60
µs– is covered when using 5 controllers, note that this is the same number

75

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 76 — #88

Chapter 4 Discovering controller placement in SDN networks

of controllers found for all methods. The benefit of using 5 controllers is
a considerable delay reduction in comparison with using fewer controllers,
and reduces the maximum delay (60 µs) by more than a third when using
only one controller. This is an appreciable delay reduction, given that this
network category has a low connectivity. Consequently, 5 controllers are
considered as optimal.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

Delay (microseconds)

N
um

be
r

of
 C

on
tr

ol
le

rs

k−Critical
k−Center
k−Median

5

Optimal number
 of controllers

Figure 4.9: Number of controllers for all possible delay ranges in generated
networks with sparse connectivity.

Fig. 4.10 shows the number of controllers found for a specific delay range in
medium connectivity networks. As can be seen, the maximum delay reached
(35 µs) is significantly lower than for sparse networks (approximately a half).
This is a logical result, because networks with high connectivity have a small
diameter. For this network category, it was found that the delay decreases
when from 1 to 3 controllers are considered. But just considering 3 con-
trollers halved the maximum delay time (17 µs) for all methods. Therefore,
it can be considered that the optimal number of controllers to manage this
network category is 3.

As was to be expected, for dense networks the maximum delay in a tree is
reduced (27 µs) (Fig. 4.11) in comparison with the maximum delay for the
medium network category.

Fig. 4.11 shows that there are two points for which the delay reduction
is significant, i.e., 1 and 5 controllers. As can be seen (Fig. 4.11) when
only one controller manages the network, trees with a Dreq between 20 µs

76

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 77 — #89

4.6 Comparison of Controller placement approaches

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

Delay (microseconds)

N
um

be
r

of
 C

on
tr

ol
le

rs

k−Critical
k−Center
k−Median

3

Optimal number
 of controllers

Figure 4.10: Number of controllers for all possible delay ranges in generated
networks with medium connectivity.

and 26 µs can be built. Note that the delay reduction is negligible when
2, 3 or 4 controllers are considered compared to using just 1. A significant
delay reduction is reached when 5 controllers manage the network, which
reduces the maximum delay by half. In order to select the optimal number
of controllers for dense networks, it was taken as a reference the delay reached
for the optimal number of controllers selected for medium and sparse network
categories, 17 µs and 23 µs, respectively. If this delay interval is considered
as optimal (17 µs to 23 µs), one controller is a good selection in terms of
delay for dense networks, since trees with 20 µs can be built. Using just one
controller is not considered a problem, even though it implies that it has
to handle the information from all the network, which may be inefficient.
Some mechanisms may be considered for processing information efficiently
(e.g., parallel processing) when just 1 controller has to manage the whole
network.

The presented results indicate that using more controllers than the opti-
mal number or using a poor controller location, reduces slightly the delay
compared to the cost of adding more controllers.

77

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 78 — #90

Chapter 4 Discovering controller placement in SDN networks

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

Delay (microseconds)

N
um

be
r

of
 C

on
tr

ol
le

rs

k−Critical
k−Center
k−Median

1

Optimal number
 of controllers

Figure 4.11: Number of controllers for all possible delay ranges in generated
networks with high connectivity.

4.6.4 Analysis

In this section, the clustering methods are compared from the point of view
of the characteristics of the tree topologies built from controllers selected for
each one of the presented methods. This analysis is done for the optimal
number of controllers found for each network category.

Fig. 4.12 shows the maximum number of switches managed by the con-
trollers selected from each method. The maximum number of switches man-
aged by controllers are averaged over the 100 random graphs in the respec-
tive categories. Fig. 4.12 shows that for sparse and medium connectivity
networks the controllers selected by k − Critical have better switches distri-
bution than the other solutions. The results obtained for dense networks
is not shown, because just 1 controller manages the whole network for all
cases.

Fig. 4.13 shows the average tree-depth obtained from controllers selected
for each method.

From Fig. 4.12 and Fig. 4.13 it can be observed that the allocation of
switches to controllers affects the tree-depth. For instance, the trees created
from the controllers found by k-Median have the worst switch distribution,
and as a consequence have the longest paths. For the dense network cate-
gory, when only one controller is required, k − Critical has the best switch

78

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 79 — #91

4.6 Comparison of Controller placement approaches

Figure 4.12: Average switches managed by controller.

Figure 4.13: Average depth on control topology.

distribution among branches, and consequently the resulting trees are the
shortest ones.

79

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 80 — #92

Chapter 4 Discovering controller placement in SDN networks

Fig. 4.14 shows the expected data loss on trees built from the selected
controllers. For each network category, the data loss parameter is computed
using Eq. (4.7). From the obtained results, it can be seen clearly the relation
among switch distribution, tree-depth and data loss. The shortest trees have
the lowest data loss, which is the case for trees created from the controllers
selected by k − Critical . On the other hand, the longest trees have the highest
data loss, as shown in the case of k-Median in Fig. 4.14.

Figure 4.14: Expected data loss on randomly generated networks.

Fig. 4.15 shows the maximum delay of the trees obtained for each network
category. As shown, k − Critical improves the robustness for networks with
high connectivity but, as a consequence, the delay of the branch cannot be
improved in comparison with other methods. However, it is ≤ Dreq. Thus,
k − Critical improves the tree robustness at the expense of delay.

Even though the trees created from controller placement by k-Center and
k − Critical have similar characteristics in terms of tree-depth and switches
managed by controllers, the resulting trees built at controllers selected by
k − Critical reduces considerably the data loss for all the network categories,
as it can be seen in Fig. 4.14. k-Center has good results on average, but not
as good as k − Critical .

As shown, k − Critical (heuristic version) makes the best controller selec-
tion in general. The good results obtained using k − Critical are due to the
criterion to select the candidate switches to be a controller placement, the

80

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 81 — #93

4.7 Conclusions

Figure 4.15: Expected link delay on control topology.

critical node criterion.
This is because, k-Center and k-Median do not obtain a good performance

due to the initial criteria to select the controller is not efficient.
The computational complexity for each one of the controller placement

solutions evaluated is O(nk). In general, finding a controller requires check-
ing the shortest distances of the n switches in the network. Therefore, the
computational complexity for finding one controller is defined by O(n). This
process has to be repeated until k controllers are discovered, for all the ap-
proaches.

4.7 Conclusions

In this chapter a novel controller placement algorithm, called k − Critical ,
was proposed. It has been designed to find the number of controllers and
their placement in any kind of network. Unlike other proposals, k − Critical
not only solves the controller placement problem, but also finds the required
number of controllers. Controller placements selected by k − Critical reduce
the data loss in the case of failures, and also balance the load among them in
terms of number of switches. This is because k − Critical takes into account
the network topology and selects the controller placements based on the
critical nodes. These are the switches that limit the switch-to-controller

81

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 82 — #94

Chapter 4 Discovering controller placement in SDN networks

assignation based on the control plane requirements.
The controller placements selected by k − Critical permit the construc-

tion of robust control planes in response to network disturbances. This is
because the physical characteristics of the network are taken into account
when selecting the controllers. This solution can also be used to find the
best controller location when a network needs to be extended or the load
needs to be reallocated.

K − Critical performance was compared to existing clustering approaches,
k-Center and k-Median, through intensive numerical simulations. To do
that, three different network categories were considered. The results clearly
showed the benefits of the proposed algorithm when compared to these so-
lutions. From the results obtained, it can be seen that the number of con-
trollers, as well as their location, have a high influence on the network per-
formance. Therefore, a poor controller selection can affect considerably the
control network robustness, which affects the network operation (e.g., long
recovery time after failures). On the other hand, using more than the op-
timal number of controllers can be inefficient and costly, because the delay
improvement is negligible.

Based on the comparison of clustering approaches, it was found that the
criterion used to select the first controller is crucial in defining the control
plane topology and therefore its performance. A good controller selection
allows the network to balance load and respond to events in the shortest
time possible.

K − Critical provides a first approach to find the controller placements to
design control planes for SDNs, where the controller placements are selected
based on the switch-to-controller delay and the control plane robustness. In
general, it was found that the optimal number of controllers depends on the
physical network characteristics and the application requirements.

82

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 83 — #95

Part III

Contributions to build a robust
control plane in SDN

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 84 — #96

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 85 — #97

Chapter 5

Evaluation of control plane robustness

Separation of control and data planes in SDN networks introduces new chal-
lenges in terms of the reliability of the communication between planes that
needs to be addressed, as it is no longer directly linked. In SDN, if a switch-
to-controller connection is interrupted, the affected switch will not know how
to re-connect to the controller (i.e., a backup path to the controller does not
exist) and will lose its forwarding functionality. The level of protection of
a control plane depends mainly on the underlying network connectivity and
the controller placements, since controllers can re-establish communication
with the data plane, if backup paths exist. This chapter presents a new
robustness metric that measures the level of protection in a control plane.
This metric is defined as the number of switches in the network that are ca-
pable of reestablishing the communication with the corresponding controller
after any link/switch failures.

5.1 Outline

Section 5.2 presents some characteristics of the recovery process when differ-
ent backup paths are used to protect the control plane following switch/link
failures. Section 5.3 introduces some approaches that select the controller
placement based on the resilience it provides to the control plane. Sec-
tion 5.4 describes in detail an approach called Fast Failover that evaluates
each switch in the network to select the switch that maximizes the network
resilience as a controller placement. Section 5.5 introduces a proposal of
robustness metric to evaluate the resilience of a control plane in the pres-
ence of any link/switch failures. In Section 6.7.2 the characteristics defined
to evaluate both approaches k-Critical and Fast Failover are defined, and
Section 5.7 presents the analysis of the characteristics of the control planes
built by each approach, including their resilience that is evaluated using the
metric proposed in 5.5. Finally, in Section 5.8, the conclusions of the chapter
are presented.

85

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 86 — #98

Chapter 5 Evaluation of control plane robustness

5.2 Network Resilience in SDN

To protect SDN networks in the presence of network failures, in OpenFlow
[12], the de facto standard protocol for communications between the control
and data planes in SDN, backup control paths are considered as an alterna-
tive to improve the control plane network resilience. When a network failure
that affects the control plane occurs, switches disconnected can restore the
communication with the control plane, according to the OpenFlow, (1) by al-
lowing the switch to use an alternative path to the same controller through a
predefined backup path, or (2) by allowing the affected switch to re-establish
the communication with a different controller through a predefined control
path.

5.2.1 Backup Control Paths

In OpenFlow, a switch may establish communication with a single controller,
or may establish communication with multiple controllers. Having multiple
controllers improves reliability, as a switch can continue operating if one
controller or the controller connection fails. Following this idea, in [41],
authors consider that switches can have a pre-configured backup path, so
that if the primary control path does not work properly, the backup path
(secondary) could be used. In [40], each switch must be guaranteed that an
operational path towards any of the controllers it connects to, exists with at
least a given probability.

Below, the recovery process executed by switches when considering differ-
ent backup control paths is described.

Switch disjoint control path : When intermediate switches receive a
notification about a failure in a control path it is part of, those switches
do not have information about how to contact their controller, as they do
not have forwarding information in their forwarding tables. In this case, the
only switch that can initiate the control path re-establishment is the source
switch. Therefore, it is necessary to announce the event to the source switch,
which re-forwards the control messages through the backup control path to
the controller. As a consequence, the recovery time mainly depends on the
control path length, the primary and the backup path. In general, disjoint
paths offer the maximum level of survivability, as these protect the primary
control path from any link and switch failures. Fig. 5.1(a) shows the case
when link (3, C) fails and it is detected by switch 3. The fault announcement
is then forwarded to source switch 1 that after receiving this message starts

86

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 87 — #99

5.2 Network Resilience in SDN

the backup path configuration process.

Link disjoint control path : If a link fails in the primary control path,
the decision to re-route the control traffic is made locally at the switch that
detects the failure. Consequently, this backup path offers only survivability
on link failures in the primary control path. The recovery time depends on
the backup path length, if it exists. Consider the network topology presented
in Fig. 2.2, and Fig. 5.1(b) illustrates the link disjoint path used by switch
3 to re-establish the communication to the controller when link (3, C) fails
in the primary control path between switch 1 to controller C.

(a)

C

53

1

2 4

(b)

Failure message

C

53

1

2 4

(c)

C

53

1

2 4

Physical links Primary control path
Backup path

Figure 5.1: Representation of backup control paths.

Partial disjoint control path : when a switch detects a failure in its con-
trol path, it can re-establish the communication if the partial backup path is
not affected by the failure. Ideally, each switch should have as backup path
to its controller a switch disjoint sub-path, in order to protect a primary
control path in the event of any link/switch failures. Such that, any switch
in the primary control path can re-establish communication with the con-
trol plane. The level of survivability provided by this backup disjoint path
improves by minimizing the number of switches and links shared with the
primary control path. The highest level of survivability is obtained when
each switch in the primary path has a switch disjoint sub-path to the con-
troller. In this case, the recovery time a switch-to-controller communication
is re-established depends on the backup path length. Fig. 5.1(c) illustrates
the case when switch 3 in the primary control path fails. In this scenario,
switch 2 detects this failure and starts forwarding the control messages to

87

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 88 — #100

Chapter 5 Evaluation of control plane robustness

the controller through the backup control path (2− 5− C).

Disjoint control path to another controller : a switch can commu-
nicate with another controller through a control path when it detects a
failure in the communication with its controller. This backup control pro-
tects the network against controller failures and against switches without
an alternative backup control path to their controller. In this last case, it
is necessary to have extra communication between controllers to coordinate
and exchange information about switch management, given that a switch
can only be managed by a single controller at any time. This is the only
backup control path that offers survivability in case of a controller failure.
As a switch disjoint path, the recovery time depends on the length of both
control paths, the primary and the backup.

The protection paths that reduce the use of the memory of the switches
are: the switch disjoint paths and the disjoint control path to another con-
troller, as the backup path is only configured/stored in the source switches.
However, these are the protection paths that take more time in recover a
switch-to-controller communication. The remaining protection paths have
to be configured on each switch in the primary path.

5.3 Control plane resilience metrics

As described in Section 3.5, different resilience metrics have been defined to
select the controller placements that permit the data loss to be minimized
in occurrence of failures. These metrics can be classified based on whether
or not they consider a protection path to recover a communication after it
is interrupted.

For instance, in [44], [51] and [54] authors do not consider a protection
path and therefore, the communication re-establishment to the control plane
is not contemplated. In these approaches, the network resilience is defined
in terms of the number of control paths affected due to a link/switch failure.

In [54], the switch selected as controller placement is the one that mini-
mizes the average disconnection, where the average is computed by taking
into account all pairs of switches that communicate with each other in a
control path. The objective in [51] and [44] is to find the controller place-
ment that maximizes the expected percentage of valid control paths in the
presence of network failures.

The solutions that consider a protection paths such as, [40] and [41],

88

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 89 — #101

5.3 Control plane resilience metrics

define the network resilience in terms of the number of switches that can
re-establish the communication to the control plane after a failure. In [40],
the control plane resilience is defined in terms of the probability a source
switch can be re-connected to the control plane after a link/switch failure.
For this purpose, the controller placement selected is the one that satisfies
a resilience metric value that is defined in terms of the number of switch
disjoint control paths to the controller from each source switch. In order to
satisfy the constrained value of the resilience metric for each source switch,
authors also consider switch disjoint control paths from a switch to different
controllers in the control plane.

In [41], the controller placements are selected such that the connection
between the control plane and the forwarding plane is less likely to be inter-
rupted when the adjacent switch/link of a switch in the control plane fails.
It is considered that a good selection of the controller placement must result
in a high number of reliable paths from the switches to the controller, in
the sense that a large number of switches must have backup paths to the
controller (all kinds of backup paths are considered in this approach). In
this approach, the controller placement selected is the one that maximizes,
in general, the number of backup disjoint control paths from the switches to
their controller.

From the aforementioned approaches, the backup switch disjoint control
paths, considered in [40], offers the best recovery approach. This is because,
this approach provides the highest level of survivability to the control paths
in the case of any link/switch failures in the network in comparison with the
partial disjoint control paths considered in [41]. However, when a switch-to-
controller communication is broken, it requires the failure to be announced
to the source switch, which may take a long time. This time depends on the
control path length.

Protection provided by partial disjoint control paths considered in [41] is
limited. It only protects switches against failures in their adjacent switch
or link in the control plane tree. For each intermediate switch between
the source switch and the controller, a backup switch disjoint sub-path to
the controller must be computed to avoid the backup path be affected by
the failure in the primary path. Therefore, an inherent drawback of this
protection backup path is the number of backup control paths that must be
computed to protect a primary control path. The number of control paths
that must be computed is defined by the length of the primary control path.

Note that, if only partial disjoint backup paths from each switch to con-
troller are considered, the level of protection can be compared with a switch

89

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 90 — #102

Chapter 5 Evaluation of control plane robustness

disjoint path. Considering disjoint backup paths also may reduce the num-
ber of switches that have to change their path to the control plane in the
event of network damage, compared to a complete switch disjoint path.

Let consider the control plane represented by Figs. 5.1 when a failure in
link (3,C) happens. Fig. 5.1(a). illustrates the process executed by the
control plane to recover the communication of the switch 1 to the controller
when considering a switch disjoint path, while that Fig. 5.1(b) and Fig. 5.1(c)
show two different alternatives switch disjoint sub-paths to recover the com-
munication to the controller. From this simple example can be seen that,
when considering partial switch disjoint paths to the controller, the config-
uration time can be reduced (as the number of switches to be re-configured
is lower than in the case of the backup switch disjoint path) as well as the
traffic on the network.

In general, network resilience metrics proposed by authors consider pro-
tection paths. In some cases limiting the protection to a specific back control
path (e.g., switch disjoint path as in [40]) and the protection to specific fail-
ures (e.g., failures in the adjacent switches/links in the control plane as in
[41]). These considerations limit network protection, and therefore, the net-
work resilience. Note that, one of the main conditions that must be found to
provide a high protection level to the control plane is to choose the controller
placements that maximize the level of disjointness of: 1) primary paths in
a control plane and 2) switch disjoint backup control paths for each switch
to the controller. Condition (1) reduces the number of switches affected
by a link/switch failure and condition (2) provides the highest survivability
level to the control plane. These conditions reduce the recovery time of a
communication after a failure and also reduce the traffic generated on the
network during the recovery process.

5.4 Fast Failover

This section describes in detail the approach proposed in [41]. This approach
is taken as a reference point to propose a new robustness metric for the
control plane in SDN networks. This is because, the approach has some
desirable characteristics for the design of a resilient control plane, such as:

• it considers all protection backup paths to select the controller place-
ment,

• the number of switches that must be configured to re-establish the
switch-to-controller communication is reduced compared with a switch

90

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 91 — #103

5.4 Fast Failover

disjoint control path, and therefore,

• it reduces the recovery time and number of fault messages in case a
network failure.

In this approach, resilience is defined in terms of the number of switches
protected against a disconnection to their parent switch in the control plane
tree. A switch is considered protected against a failure if it has a backup
path in the direction of the controller that is not affected by the same failure.
The idea behind this solution is to locate the controller in a place so that the
connection between the control and data plane is less likely to be interrupted,
minimizing the disconnections when a failure occurs. In this approach, it is
considered that the network is split and that just one controller is selected
in each network partition.

In order to select the controller placement, a tree (Tn) rooted at each
switch n ∈ V is created to evaluate the resulting tree resilience. Based on
the protection level of each switch in the tree and its number of downstream
switches (ds), a weight is assigned to each switch n, defined as w(n). The
switch (n ∈ V) with the highest protection metric value is selected as a
controller placement for the split network. Considering the downstream
switches in the weight computation allows a higher weight to be assigned to
the switches closer to the controller that has protection. This is important
given that switches with high protection near the controller can minimize the
switches disconnected in case the connection to the controller is interrupted.

To compute the resilience provided by a controller placement n or the
protection level of Tn, it is considered that the parent of a switch s ∈ Tn
is its immediate upstream switch p, and the set of the children of a switch
are its downstream switches, ds, except for the leaf switches. In order to
compute the protection level of Tn, the switch protection for each switch is
evaluated when considering the failure of its upstream link (s, p), as well as
its upstream switch p.

The switch protection for each switch s ∈ Tn is computed as follows:

1) Switch s is protected against a failure in its upstream link (s, p) if
at least another upstream link (s, p1) ∈ G exists, where p1 is not a
downstream switch of switch s ∈ Tn, p1 /∈ ds. If switch s has link
protection a weight w1 is assigned to it.

2) Besides, switch s is protected against a failure of its upstream switch
(p) by p1, if p1 is not a downstream switch of switch p, that is p1 /∈
Tp(s). In this case a weight w1 + w2 is assigned to the switch.

91

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 92 — #104

Chapter 5 Evaluation of control plane robustness

If a switch n is neither protected against link nor switch failures, the
weight assigned is zero, w(n) = 0. Algorithm 6 shows this process. After
evaluating all of the switches s ∈ Tn in the split network, switch n that
maximizes the sum of weights is selected as controller. With this approach,
when a switch detects a failure in its ongoing link or its upstream switch,
it only has to change the path to the controller by going through another
upstream switch without any instruction from the controller. This requires
just one local change in the outgoing interface of the affected switch. This
approach can be formally defined as follows:

P (s) =

{
0 if ∃ s′ ∈ V, s /∈ Tp(s) : (s, s′) ∈ E
1 otherwise.

(5.1)

According to this expression, a switch s is considered protected if P (s) = 0,
and unprotected otherwise. Note that this protection metric is only effective,
in practice, against failures in the parent switch; but the fact that a switch is
protected according to this definition does not imply that it is resilient with
respect to further failures in the corresponding tree, e.g. if the failure occurs
at the 2-hop parent. Therefore, this protection metric is not sufficient to
determine the network robustness with respect to any link/switch failure in
the network. This metric provides an idea about how many switches have
a certain local (1-hop) protection, but is not informative about the effective
level of protection. Hence, can not be used to directly infer the number of
switches that can re-establish communication with the controller in case of
any link/switch failure in the network.

Algorithm 6 Fast Failover approach

Require: G = (V,E, δ), Tn (trees rooted at n, n ∈ V)
for each n ∈ V do
Tn = (VTn

, ETn
)← shortest path tree (w.r.t. δ) rooted at n w(n)← 0

for each s 6= n, s ∈ V do
w(n) = |Ts| − 1
if ∃ r ∈ V : (s, r) ∈ E, r /∈ d(s) then
w(n)← w(n) + w1

if ∃ q ∈ V : (s, q) ∈ E, r /∈ d(p(s)) then
w(n)← w(n) + (w1 + w2)

end if
end if

end for
end for
return arg maxn∈V w(n)

92

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 93 — #105

5.5 Towards a network robustness metric

5.5 Towards a network robustness metric

This section proposes and formalizes a complete measure for the robustness
of SDN control planes. This metric quantifies the number of switches poten-
tially affected by any network failure, and their possibility to recover from
them with a 1-hop reconnection by using a backup path to the controller.
The resilience metric proposed in [41] is a valid first-order estimation of ro-
bustness. It implicitly assumes that all possible failures are equivalent, as
it does not take into consideration the different impact of failures in the
network. Given that when there is a failure in an SDN network, the number
of affected switches does not only depend on their local protection at 1-hop
(with respect to their immediate parent), but on their local protection with
respect to the failing switch and also on the protection provided by upper
switches affected by the failure. Consider the situation in Figure 5.2, where
A is assumed to be controller. For instance, note that G is a local 1-hop
protected switch, according to expression (5.1): if E fails, it can still get
reconnected to the control plane tree via D, which is a neighbor of G in the
network. However, G is not protected against a failure in B, given that its
possible path through D also involves B. Note also that G would, in prac-
tice, be “protected” against a B failure if there was a link in the network
between E and F (not shown in Figure 5.2) and its parent E could hence
reconnect to the control plane tree via {F,C,A}.

A

B C

D E F

A

G H

Figure 5.2: Average switch distribution for each network category.

5.5.1 Robustness as generalized switch protection

In order to define an accurate metric for control plane robustness, a gen-
eralized local switch protection parameter is introduced here, defined in
Eq. (5.2). For this purpose, consider that the control plane or management
tree of a Software Defined Network (SDN) is induced by the selection of a

93

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 94 — #106

Chapter 5 Evaluation of control plane robustness

controller n ∈ V and defined as a subgraph Tn ⊂ G, which set of vertices
and edges are denoted by VTn and ETn , respectively.

Let Tx be the subtree rooted at switch x that consists of the set of branches
or paths p(x, y), where y is the leaf switch of each branch at Tx. A switch
s ∈ Tx has generalized local protection against a failure in x if it has a
connection with a switch s′ in the direction of the controller that is not in
Tx.

P ′(s) =

{
0 if ∃ s′ ∈ V, s /∈ Tx(s) : (s, s′) ∈ E
1 otherwise.

(5.2)

In this context, given a control plane tree Tn (rooted in controller n),
the switches primarily affected by a failure in switch x are the downstream
switches of x, that is, |Tx|. The fraction of these switches that are locally
protected against this failure is then:

1

|Tx|
∑
s∈Tx

P ′(s). (5.3)

Given a controller n, switches y depending (downstream) on a locally-
protected switch s∗ against a failure in x are also protected, as the recon-
nection of s∗ allows them to communicate to the controller by way of the
path p(y, s∗) ∪ p(s∗, n). The binary function

F (z) =
∏

s∈p(z,x)

P ′(s) = {0, 1} (5.4)

indicates whether a switch z ∈ Tx is protected against the failure of x (value
0) or not (value 1). Note that, for a switch z in Tx to be protected, it is only
necessary that one of the ascendant switches of z in the path towards x is
locally protected, or z is locally protected itself. In other words, a locally
protected switch induces protection for any downstream switch. Taking all
these cases into account, the fraction of protected switches (locally protected
or indirectly protected by upper switches) against the failure of x in Tx can
be computed as follows:

Rx,n =
1

|Tx|
∑
z∈Tx

F (z) =
1

|Tx|
∑
z∈Tx

∏
s∈p(z,x)

P ′(s). (5.5)

In order to discover the control plane robustness in a control plane tree
Tn ⊂ G, rooted at controller n, for each possible switch failure in the net-
work, the number of affected switches and the number of affected unpro-
tected switches are computed, that is, those switches which can not re-
establish communication with the controller n. Algorithm 7 describes the

94

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 95 — #107

5.6 Evaluation

computation of the robustness of a control plane. Given a controller n and
the control plane tree Tn (the shortest tree rooted at n), each switch x ∈ VTn
is considered to fail (line 1). To compute the number of switches affected by
this failure, a sub-tree rooted at switch x is built and for each switch s in the
subtree a backup path to the controller is sought (lines 3-11). As a result,
the switches that can not re-establish the communication to the controller
through an adjacent switch are obtained. Finally, the number of switches
protected against switch/link failures is computed (line 12).

Algorithm 7 Evaluating Control Plane Robustness

Require: G = (V,E), n ∈ V, Tn ⊂ G
1: for each switch-to-fail x 6= n, x ∈ VTn

do
2: Tx ←− subtree rooted at x
3: for each path p(x, y) ⊂ Tx, where y is a leaf switch do
4: for each switch s ∈ p(x, y), s 6= x do
5: P (s)←− Eq. (5.1)
6: for each switch z ∈ p(x, s), where z 6= x do
7: P ′(z)←− Eq. (5.2)
8: end for
9: F (s)←−

∏
z∈p(x,s) P

′(z)
10: end for
11: end for
12: Rx,n ←− 1

|Tx|
∑

s∈Tx
F (s)

13: end for
14: return En{Rx,n}

5.6 Evaluation

This section evaluates two approaches, Fast Failover and k-Critical, in terms
of the characteristics of the resulting control planes created from the con-
trollers selected by them.

In addition, the robustness of these control planes is evaluated by using
the robustness metric proposed in the last section.

5.6.1 k-Critical and the restriction to k=1

In its most general form, k-Critical selects, for a given SDN topology and a
maximum controller-to-switch delay, k switches to be controllers and gener-
ates their corresponding control plane trees, in a way such that the maximum

95

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 96 — #108

Chapter 5 Evaluation of control plane robustness

delay between a controller and a leaf switch belonging to its tree is smaller
than the maximum requested delay.

According to the results presented in the last chapter, the generated
control plane rooted at each controller selected by k-Critical is homoge-
neous (i.e., the number of switches per branch is balanced between different
branches) and robust (i.e., the loss of control data due to switch/link failures
is low).

Note that unlike the Fast Failover algorithm, k-Critical determines the
set C of controller candidates based on their network connectivity. Switches
selected as candidate switches to be a controller are those that fulfill the
Dreq requirement: this is the maximum switch-to-controller delay within the
shortest paths tree (computed with respect to delay metric). The candidate
switch with the best tradeoff between delay and load distribution is then
selected as a controller.

Unlike other approaches, k-Critical does not define a resilience metric to
select the controller placement, it only combines the advantages of high
switch connectivity and small diameter networks to get a network topology
that reduces the data loss in case of failures. As it selects controller place-
ment that reduces the diameter of the control topology as much as possible,
it also reduces the switch-to-controller transmission times along with the
traffic load on links.

With respect to switch connectivity, k-Critical aims at distributing ho-
mogenously the switches on the branches to reduce the data loss, by reduc-
ing branch length and the number of downstream switches at each switch
of a control plane or tree. In consequence, the control plane built from any
selected controller tends to be wide (i.e., switches have many children) near
the controllers and narrow (i.e., with decreasing number of children) for
switches closer to leaf switches.

In order to compare the resilience of the control planes created from the
controller selected by Fast Failover and k-Critical, this latter approach must
be restricted to k = 1, in which only 1 controller is selected by the algorithm.
This is due to fairness reasons, as Fast Failover relies on the selection of a
single controller (see Section 5.4).

5.6.2 A Note on Complexity

Algorithm complexity is defined by the number of operations required to
select a controller within a network graph G. Both algorithms build a delay-
based shortest path tree for some switches in the network, and then execute
different heuristics on the computed trees. In the case of Fast Failover, the

96

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 97 — #109

5.7 Simulation and Results

complexity of this additional heuristic is quadratic, given that for each switch
n in the network (n− 1) additional operations are performed, thus n(n− 1)
operations. Consequently the complexity of these additional operations is
O
(
n2
)
. In the case of k-Critical, the number of additional operations de-

pends on the size of the set of candidate switches. In the worst case (that
is, all switches in the network are candidates), the complexity of k-Critical
is defined by O (n). This is because, in this analysis k-Critical is restricted
to k = 1, in which only 1 controller is selected by the algorithm.

5.7 Simulation and Results

5.7.1 Setup

Both algorithms for controller selection and control plane tree construction
(Fast Failover and k-Critical) are implemented in MATLAB, and their per-
formance is evaluated over a set of randomly generated graphs of fixed size
(100 switches) with three levels of switch connectivity:

• sparsely connected graphs.

• medium connectivity graphs.

• strongly connected graphs.

Table 5.1 shows the main characteristics of the generated networks for
each category. For each switch connectivity level, results are averaged over
100 graph samples. The adjacency matrices for these graphs are generated
by using the Gephi platform [81]. Depending on the value of the network
wiring probability (see Table 5.1), Gephi generates networks with close-to-
Gaussian distribution of switch degrees (see Fig. 5.3). Table 5.1 summarizes
the main characteristics of each network category; Figure 5.3 displays the
average distribution of switch degree for each category.

Table 5.1: Simulated networks.

Connectivity Switch degree interval Wiring parameter

Sparse [1, 5] 0.036
Medium [1, 10] 0.050
Strong [1, 50] 0.18

For each edge, a random link length is assigned following a uniform dis-
tribution within [1, 10] km. Delays associated to network links depend on

97

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 98 — #110

Chapter 5 Evaluation of control plane robustness

1 2 3 4 5
0

0.5

1
Sparse network category

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2
Medium network category

0 10 20 30 40 50 60
0

0.02

0.04

0.06
High network category

Figure 5.3: Average switch distribution for each network category.

their length, assuming typical optical fiber rates and using the following
expression:

Delay =
Dlink(m)

Vlight(m/sec)
.

Both algorithms (Fast Failover and k-Critical for k = 1) are executed over
these graphs: controllers are selected and the corresponding delay-based
shortest path trees rooted at them are computed. This setup allows the
properties of both algorithms to be compared by observing the structure
and impact of switch density (measured in neighbour switches) over the
induced control plane tree. For the case of k-Critical algorithm, the delay
value (Dreq) used in the simulations was high enough to select just one
controller (Dreq = 0.20secs) for all network categories.

5.7.2 Results

Delay

Fig. 5.4 and Fig. 5.5 display, respectively, the average and the maximum
delay between controllers and switches in the generated control plane trees
for k-Critical and Fast Failover. It can be observed that k-Critical produces
substantially “faster” trees that Fast Failover. This effect, which is par-
ticularly relevant in sparse SDNs, implies that the dissemination of control
information throughout the SDN is performed, both for an average switch
and for the most “distant” switch from the controller, within shorter time in-
tervals. This is an expected result, due to the fact that k-Critical takes into
consideration the Dreq requirement and explicitly discards as a controller

98

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 99 — #111

5.7 Simulation and Results

candidate any switch unable to provide a maximum delay in its tree smaller
than Dreq. As shown in Section 5.4, the Fast Failover heuristic selects a
controller based only on topological (switch connectivity) considerations.

Figure 5.4: Average link delay.

Topology

k-Critical also produces shorter trees (in hops) than Fast Failover, that is,
trees for which both the longest branch (Fig. 5.6) and the average branch
(Fig. 5.7) have less hops than the trees generated from controller selected
by Fast Failover algorithm. Although the advantage of k-Critical over Fast
Failover naturally decreases with switch density (as, in a full mesh SDN, all
trees would have a length 1), it is still observable for dense SDNs.

The fact that tree branches are shorter in k-Critical than in Fast Failover
also implies that a random switch x has, in average, less downstream switches
(i.e., switches for which the control path towards the controller traverses x)
in the first case (k-Critical) than in the second. These downstream switches
are the switches affected by the failure of the switch (including those that
may recover due to some sort of protection). The average number of down-
stream switches for both algorithms over different network densities is dis-
played in Fig. 5.8.

99

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 100 — #112

Chapter 5 Evaluation of control plane robustness

Figure 5.5: Maximum controller-to-switch delay in control plane trees.

The average distribution of switches in function of the number of down-
stream “attached” switches in the corresponding control plane trees, for each
algorithm in the sparse network category, is shown in Figs. 5.9. Although
the represented CDFs are very similar, only 2, 5% of the switches in k-Critical
trees have more than 10 downstream switches, while this percentage grows
beyond 4% in the case of Fast Failover: trees in the first case are thus more
homogeneous (in the sense that the number of downstream switches, and
therefore the control traffic load, are distributed more equally among SDN
switches) than in the second. Results for other categories are consistent.

Robustness

Fig. 5.10 shows the percentage of “locally 1-hop protected switches” in
control plane trees generated by k-Critical and Fast Failover. This is, as
detailed in Section 5.4, the fraction of switches that could reconnect with
the control tree in case of failure in their upstream link/parent. Although
Fast Failover is designed to optimize this specific metric, it can be observed
that its performance in this aspect is very similar to the one achieved by
k-Critical.

As it was argued in Section 5.5, the metric of “locally 1-hop protected

100

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 101 — #113

5.7 Simulation and Results

Figure 5.6: Average maximum tree depth, the depth of a tree corresponding
to the maximum length of a branch.

Figure 5.7: Average tree length.

101

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 102 — #114

Chapter 5 Evaluation of control plane robustness

Figure 5.8: Average number of downstream switches/switch on the tree.
These are the affected switches in case of failure of the corre-
sponding switches.

switches” is not sufficient to evaluate the robustness of a control plane tree.
A generalization of this metric is thus proposed to measure, for a particular
tree built over an SDN and a particular switch failure, the fraction of down-
stream switches that could reconnect to the control tree. Fig. 5.11 shows the
complementary of this metric, that is, the average (computed over all pos-
sible link/switch failures) of the fraction of downstream switches that can
not recover from the failure, in k-Critical and Fast Failover control plane
trees. Note that this metric behaves as expected when the network density
increases – SDNs with higher connectivity are, in general, more robust than
those with low connectivity, due to the fact that more links are available,
and thus more redundant paths can be leveraged in case of switch failures.

It can be observed that, in the light of this generalized robustness metric,
k-Critical (k = 1) selected controllers produce more robust control trees than
Fast Failover, in particular in sparse SDNs – that is, in networks where al-
gorithm robustness is more necessary. As the SDN switch density increases,
both algorithms tend to provide a similar level of tree robustness.

102

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 103 — #115

5.8 Conclusions

0 10 20 30 40 50 60 70
0

0.5

1
Number of downstream nodes (k−Critical)

0 10 20 30 40 50 60 70
0

0.5

1
Number of downstream nodes (Fast Failover)

Figure 5.9: Experimental Cumulative Distribution Function (CDF) for the
number of downstream switches, for k-Critical (top) and Fast
Failover (bottom), for sparse SDNs.

5.8 Conclusions

The problem of controller placement in Software Defined Networks (SDN) re-
mains open. Some of the most prominent heuristics that have been recently
proposed stress the relevance of resilience and robustness in the resulting
control plane tree for controller selection. While this intuition remains fun-
damentally correct, the metric of robustness in this context needs to be
further developed.

This chapter examines in particular the Fast Failover heuristic, that is
aligned with the fast failover mechanisms included in the specification of
OpenFlow. In order to evaluate the control plane robustness, in this chapter
a robustness metric was proposed and formalized. Based on this metric,
the Fast Failover heuristic is compared to a simplified version of k-Critical,
a heuristic designed to select the controller placements that reduces the
controller-to-switch delays in SDNs, by way of extensive graph simulations.

First results of these simulations show the different characteristics of con-

103

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 104 — #116

Chapter 5 Evaluation of control plane robustness

Figure 5.10: Switches locally protected against failures in immediate up-
stream link/parent.

Figure 5.11: Network robustness index. 0=robust, 1=non-robust.

104

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 105 — #117

5.8 Conclusions

trol plane trees produced by Fast Failover and k-Critical: this last heuristic
selects controllers such that their delay-based control plane trees are shorter
(in hops) and wider than those created by the controllers found by Fast
Failover. When the underlying network is not densely connected, these dif-
ferences imply that k-Critical trees are more robust against failures, accord-
ing to the proposed metric, than Fast Failover trees. Interestingly, although
k-Critical has not been explicitly designed to optimize any robustness metric,
it shows a very similar performance to Fast Failover in terms of the underly-
ing robustness metric. In summary, k-Critical shows a good performance for
the aspects that are related to its own design (delay optimization), achieves
a similar performance to Fast Failover in terms of the specific metric (lo-
cal 1-hop protection) and is able to produce, in general, control plane trees
shorter, wider, more homogeneous and, therefore, more robust to random
failures than those produced by Fast Failover.

Beyond the specific aspects corresponding to the comparison between
these two heuristics, results shown in this chapter, while preliminary, in-
dicate that there is substantial room for improvement and optimization of
controller placement heuristics in SDN, in particular, in what concerns the
definition of an accurate and meaningful control plane robustness metric.

Note that the robustness control plane metric proposed can also be used
as a constraint to select the controller placements in a SDN network. This
permits the selection of the controller placement that provides the highest
switch protection against any switch/link failures in the network.

The results of the performed evaluation show clearly: 1) the implications
of the controller selection in the SDN performance, and 2) the control plane
topology induced by k-Critical, even in its simplified version (k = 1), is less
prone to failures, more robust according to the proposed metrics and more
homogenous than those computed by Fast Failover.

The robustness metric presented in this chapter can also be used when
considering a backup control path to any controller in the control plane.

105

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 106 — #118

106

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 107 — #119

Chapter 6

Resource discovery for SDN networks

Communication protocols for SDN networks (e.g., OpenFlow, ForCES, etc.)
do not support any dedicated functionality for topology discovery, whose
implementation is the responsibility of the controller. Furthermore, there is
not official standard that defines a topology discovery method for SDNs. As
an alternative to managing SDN networks in a distributed way, this chap-
ter introduces a set of mechanisms that includes: i) a Resource Discovery
Protocol through which the controllers discover a partial network topology,
ii) a Network topology discovery mechanism through controllers exchange
information between them, discovering the whole network topology, iii) an
Allocation of switches to controllers, this mechanisms let the controllers al-
locate the switches between them, based on a defined parameter, finally iv) a
mechanism that updates the network topology on controllers. The Resource
Discovery Protocol was published in IEEE communication letter [82].

6.1 Outline

Section 6.2 presents briefly the challenges in managing a SDN network and
the mechanisms required to maintain the network topology updated on the
control plane. Section 6.3 describes the SDN Resource Discovery Protocol
and its complexity. Section 6.4 describes a mechanism that allows the con-
trollers to exchange network topology information, while Section 6.5 outlines
a mechanism that allows the controllers to re-distribute the network man-
agement between them. Section 6.6 introduces a mechanism that maintains
updated the network topology on the control plane. Section 6.7 is devoted
to the analysis of the protocol through simulations. Finally, Section 6.8
presents the conclusions.

107

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 108 — #120

Chapter 6 Resource discovery for SDN networks

6.2 Network management in SDN

One of the main ideas behind the separation between control and forwarding
planes in SDN is to simplify and make more efficient the network manage-
ment and therefore, its operation. In SDN networks, the intelligence is
delegated to a centralized controller, which makes network decisions based
on the network state. For scalability purposes, the switch management is
distributed between controllers, so that each controller is responsible for
configuring the forwarding tables of a set of switches. Controllers can have
information about the whole network topology in order to attend and ad-
dress the requests coming from the switches that they manage. For this
purpose, an indispensable condition is that the controllers have information
updated about the underlying network topology.

In this context, there are different challenges that must be addressed, such
as: 1) the discovery of the network topology , 2) the allocation of switches
to controllers and 3) the network topology update on the control plane.

In Section 3.8, some approaches to update the network topology in SDN
are described, which assume that:

• controllers have information about the switches of the network topol-
ogy,

• controllers have information about the set of switches they have to
manage,

• the controllers based on the aforementioned information are capable
of configuring a switch-to-controller path or control path,

• network information is updated through the LLDP protocol.

Given the capacities associated with the controllers in SDN, it is realistic
to believe that the controllers are capable of discovering the network topol-
ogy and selecting the switches that they should manage based on a specific
criterion (e.g., delay, robustness, etc.).

6.2.1 Formulation

Consider a physical network that is modeled using a graph denoted by the
tuple G = (V,E), where V is partitioned into the set of switches n and
controllers C, and E is the set of links. Then, C = {C1, . . . , Ck} is the set
of distributed controllers that defines the control plane. The set of adjacent
neighbours of each switch i ∈ V is defined by Ni. The control plane tree

108

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 109 — #121

6.3 Resource Discovery Protocol

created by each controller Ci is defined as GCi = (nCi , eCi), where nCi ⊆ n is
the set of switches managed by the controller Ci ⊆ C, and eCi ⊆ E is the set
of links that defines the control paths. The global control plane is defined by
the set of control planes built by the controllers, GC = {GC1 , GC2 , ..., GCk

}.
It is assumed that each switch has information about the identifier of all its
neighbours switches as well as the interfaces through they can communicate
each other.

6.3 Resource Discovery Protocol

The process of creating the control plane is executed in two phases, the
forwarding phase where the controllers announce their presence and the
switches that start the creation of the control paths (leaf switches) are dis-
covered, and the backward phase where the switches decide which switch to
join in direction of a controller, thus creating the control plane. Below, the
in-band control messages used by SDN-RDP are described.

• Announcement messages (AN): Controllers and switches announce events
through these messages. The controllers announce their presence to the
network (message Type 0), and the switches announce network changes or
events (e.g., broken links, switch failures, etc) to the controllers (message
Type 1).

• Response messages (RES): These messages are used to create the control
paths. Switches send a join message (RES JOIN) to join to a parent
switch, and a leave message (RES LEAV E) to announce to their neigh-
bours that the switch has already been joined to a switch.

• Improved Announcement messages (IAN): By sending these messages
the switches can announce to their neighbours that a nearer path to a
controller has been discovered.

6.3.1 Forwarding Phase (FP)

To build the control plane each controller advertises its presence by forward-
ing an AN message to all their Ni adjacent switches. This message contains
information concerning the controller identifier, the sender switch identifier
and its latency to the controller. It is assumed that switches can discover
their adjacent neighbours and the latency to them by exchanging control
messages (e.g., LLDP). Upon receiving the first AN message, the switches
update the packet fields and forward the message through every outgoing

109

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 110 — #122

Chapter 6 Resource discovery for SDN networks

interface except that which the message was received. This process is re-
peated for each switch, consequently the AN messages are distributed all
over the network.

The switches that receive at least one AN message through all their neigh-
bours stop forwarding this message, these switches are called discovered
switches.

Definition 6.1 (Discovered switches (Dn)): these switches discover
the latency to a controller through each one of their (Ni) neighbours. Let
Dn = {D1, D2 . . .} be the set of discovered switches in G. These switches
based on the known information can find out if the latency of any Ni switch
can be improved via another neighbour.

When a switch i ∈ Dn discovers that through switch k ∈ Ni the known
latency of switch j ∈ Ni to a controller can be reduced, it forwards an IAN
message to switch j announcing that a better path to a controller has been
found. This message is retransmitted back hop-to-hop as long as it encoun-
ters a switch that can not improve its latency through this path. Upon
receiving this message, the switches update the delay and sender identifier
fields in the message. The discovered switches that cannot improve the la-
tency of any neighbour to a controller are called leaf switches.

Definition 6.2 (Leaf switches (Ln)): the set of leaf switches is defined
as Ln = {L1, L2, . . .}, where Ln ⊆ Dn. These switches determine the mini-
mum latency possible to a controller Ck ∈ C, and initiate the control plane
construction process (backward phase).

On the other hand, switches that have not received one AN message
through all their neighbours wait for the answer to the AN messages sent
through each interface. This answer can be an IAN message or a RES mes-
sage. The switches that become discovered switches can make a decision as
explained below in the backward phase. In this context, the IAN message
has 2 purposes:

• discover the leaf switches, and

• discover the nearest controller from each switch.

Given that the controllers are not synchronized, it is considered that the
controllers that have not started the network discovery process initiate the
FP when receiving one AN message. In this way, the protocol guarantees
that the switch management is distributed among all the controllers, besides

110

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 111 — #123

6.3 Resource Discovery Protocol

simplifying the SDN-RDP resolution. Algorithm 8 describes the process
executed by each switch during the forwarding phase.

Algorithm 8 Forwarding Phase for switch i.

Require: At least one controller has started the FP , and switch i knows its ad-
jacent neighbours and the delay to them, d(i, j)

d(k,Ck) = 0← delay from each switch k ∈ Ni to a controller Ck ∈ C
if it has received one AN or a RES message then

update local delay information, d(k,Ck)
if this is one AN message and this is the first AN received then

forward the message through every outgoing interface except those which:
i) the message was received and,
ii) connect to neighbours whose identifiers were included in this message

else
if it has received at least one AN or one RES message from all its neigh-
bours then

change state to discovered switch
end if

end if
else

if it has received an IAN message or state is discovered switch then
for each switch k ∈ Ni from which an AN or IAN message was received
do

if d(k,Cl) + d(i, k) < d(j, Cm) + d(i, j) ∀j ∈ Ni, j 6= k where j are the
switchs from which an AN message was received then

send an IAN message to switch j
update local delay information, d(j, Ci)

else
change state to leaf switches

end if
end for

end if
end if

6.3.2 Backward Phase (BP)

In this phase the switches decide to which switch to join, leading backwards
in the direction of a controller, and as a result, a control plane GCi on top of
each controller Ci ⊆ C is created. This process starts from the leaf switches
which send a RES JOIN message to their neighbour switch that is nearest
to a controller and a RES LEAV E message to the rest of the adjacent
switches, if needed.

111

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 112 — #124

Chapter 6 Resource discovery for SDN networks

In order to ensure the discovered control paths are the shortest ones and
also that all switches are managed, only the switches that:

i) have received a response message to the sent AN messages, and

ii) can not improve the latency of any switch k ∈ Ni,

can decide which switch to join in the direction of a controller. Therefore,
the switches that satisfy these conditions have to update their identifier into
the received RES JOIN message and forward it to their best neighbour.
Consequently, the RES JOIN messages converge on the controllers, which
receive (at most) a join message from each Ni adjacent switch.

There are two situations that prevent condition (i) can be fulfilled. These
are:

• forwarding conflicts, and

• network failures.

These cases, as well as the proposed solution, are explained below.

Forwarding Conflicts

As switches work asynchronously, during the forwarding phase some switches
i and j can receive and forward over the same link (i, j) an AN message. This
fact causes that the involved switches may wait indefinitely for a response
from each other to make a decision in the BP . Consequently, these switches
can not take any decision, stopping the control path building. In order
to solve this problem, conditions (6.1) and (6.2) have been defined. These
conditions are evaluated independently by each switch. By evaluating (6.1)
each switch i and j discovers if the latency to the known controller can be
improved through its neighbour.

d(i, Cm) ≤ d(j, Cl) + d(i, j), (6.1)

where Cm, Cl ∈ C and d(i, j) is the latency in link (i, j). Thus, if condition
(6.1) is true for switch i, it will decide that the path to the controller Cm is
better than the path to the controller Cl through the neighbour j. In this
case, the AN message sent by the neighbour j is unanswered and becomes
an implicit RES LEAV E message. This means that, switch i does not need
to send the RES LEAV E message. If condition (6.1) is false for switch i, it
will decide that the path to controller Cl through switch j is better than the
path to controller Cm. In this case, it will not wait for a response from j to

112

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 113 — #125

6.3 Resource Discovery Protocol

make a decision. By evaluating condition (6.2) switch i knows the decision
made by switch j without any dialogue between them.

If condition (6.2) is true for switch i, it will not wait for a response because
it knows that switch j will join another switch. On the other hand, if
condition (6.2) is false for switch i, it will wait for a response from switch j.

d(j, Cl) ≤ d(i, Cm) + d(i, j). (6.2)

These conditions are valid if both controllers are the same or even if they
are different. By evaluating these conditions, each switch discovers which is
its best neighbour leading to the nearest controller. In this way, the local
conflicts are resolved implicitly without generating any additional traffic and
in a minimum time. These conditions also ensure that no cycles exist in the
control plane.

Failures

Network failures can prevent the switches receiving the response messages
and, as a result, being unable to make a decision. In order to avoid this
situation, a timer is activated after the first response message is received by
a switch. Therefore, if after a time t the switch has not received a response
from an adjacent neighbour, it assumes that the latency to a controller
through this neighbour is infinite. After that the switch can decide to which
parent switch to join.

Algorithm 9 describes the process executed by each switch during the
backward phase.

6.3.3 Partial network topology discovered by each controller

As a result of the SDN-RDP protocol execution, each controller receives a
RES JOIN message through each of its interfaces. This message contains
the sequence of switch identifiers from the leaf switch to the adjacent switch
of the controller through which the information is received. This informa-
tion has a general tree structure, which is converted to a binary string and
forwarded in a linear sequence. In this way, each controller can create the
control plane GCk

, that consists of all switches into the RES JOIN . After
receiving each RES JOIN message, Hello messages are exchanged between
the switches contained in the message and controller upon connection startup
(as defined in OpenFlow).

Fig. 6.1(a) and Fig. 6.1(b) illustrate the process executed by the SDN-
RDP protocol from controllers placed in switches 1 and 11. Numbers over
each link represent the delay on the link in microseconds.

113

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 114 — #126

Chapter 6 Resource discovery for SDN networks

Algorithm 9 Backward Phase for switch i.

Require: Switch knows its state; d(k,Ck) ← delay from each k ∈ Ni to a con-

troller Ck ∈ C
if state is discovered switch then

if it has sent and received through the same interface an AN message then
evaluate d(i, Cm) ≤ d(j, Cl) + d(i, j)
evaluate d(j, Cl) ≤ d(i, Cm) + d(i, j)
decide the (implicit or not) response

end if
end if
if state is leaf switch or discovered switch and it has received a response message
or an implicit response message then

forward a RES JOIN message to the nearest adjacent switch to a controller
and a RES LEAV E to the rest of the switches (if it is not implicit)

end if

After a controller finishes the SDN-RDP protocol execution, it configures
a switch-to-controller path or control path for each discovered switch. As a
result, the shortest tree rooted at each controller is obtained (e.g., by using
OpenFlow), the switches and links in each control plane define the controller
domain D(C) as shown in Fig 6.1(c). During the tree configuration process
(backward phase), the switches discover the controller they have been joined
to, announcing this information to their N(i) adjacent switches.

Through the defined control path, each switch forwards the following in-
formation to its controller:

• its identifier,

• the identifier of its neighbour switches (Ni) and,

• the identifier of the controller to which its neighbours have been joined.

By aggregating this information the controllers can discover a partial net-
work topology and the control paths among them, as explained in the next
section.

6.3.4 Protocol complexity

The complexity of SDN-RDP is defined in terms of time and number of
messages to create the control plane GC. Given a network of N switches
and k controllers, the network discovery time is defined by the mean number
of switches assigned to each controller, Nc = dN−kk e, the mean number of

114

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 115 — #127

6.3 Resource Discovery Protocol

1

2

3

4

5 8

7

6 9

10

2

5

4

2 1

4 3

3

2 5

1

4 2

3

4

8 9 10

6

5 4 3

2

2 3 4

5 7

5 2 4

2 3

5

1

2

3

4

5 8

7

9

10

1 11
2

11

7

2

5

4

2 1

4 3

3

2

5

1

4 2

3

4 5

(a) Forwarding phase (b) Backward phase

(d) Backup control channels

t0 t1

(c) Management trees

Border-switches

3

3

 Control paths

11 11

8 5

6 9

10

1

4

6

3

AN msg from C1 AN msg from C11 Discovered switches

Join msg Implicit Leave msg Leaf switches

Figure 6.1: Representation of the network topology discovery process.

neighbours per switch, D, and the average time (tt) defined as the sum
of propagation delay (tp) and transmission time (ttx), assuming that the
switch processing time is negligible. Thus, the maximum time to create
GC is defined by 2 × Nc/D × tt. Where 2 represents the time it takes to
a message to be forwarded and responded (switch-to-controller) during the

RDP protocol. Therefore, the time complexity is O
(
N
kD

)
.

On the other hand, the upper number of messages per controller is bounded
by k × D + (N − k)

[
2× (D − 1) + 1

]
, considering that just one AN mes-

sage is sent by each controller through each one of its output interfaces, the
switches forward an AN message just one time, and the switches respond
to all of the received AN messages. Therefore, the message complexity is
O (ND).

115

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 116 — #128

Chapter 6 Resource discovery for SDN networks

6.4 Network topology discovery by controllers

To create a whole map of the network topology on the controllers, each con-
troller has to exchange the network information with all other controllers.
As controllers do not have the complete network topology nor the identifiers
of all controllers in the network, they are unable to find a path to commu-
nicate to each other. However, each controller can find at least one path to
a neighboring controller in the network. These are the controllers that dis-
covered the same switch(es) during the SDN-RDP protocol. These switches
are called border switches and are defined as follows.
Definition 6.3 (Border switch (Bs)): this is a switch s ∈ S discov-
ered/managed by a controller Ci ∈ C, s ∈ D(Ci) that has at least one
adjacent switch x ∈ N(s) managed by a different controller, x /∈ D(Ci).

Each controller Ci ∈ C uses the information forwarded by its discovered
switches to identify:

• which controllers they can communicate with, and simultaneously dis-
cover...

• through which switches it (controller Ci) can contact these discovered
neighbouring controllers.

Controllers establish a temporary path through their border-switches,
since these are the switches that have information about how to contact
the destination controller, enabling an end-to-end path between controllers
to be established. These switches are represented in grey in Fig. 6.1(d). The
process to define the control path between two controllers is defined below.
Definition 6.4 (Control path between controllers): a path between
two controllers consists of the path between each border-switch to its re-
spective controller and the link between them (these are the dashed links
between the border-switches in Fig. 6.1(d)). This path is used to exchange
the network information discovered by each one of the controllers.

6.4.1 Finding a path between controllers

To establish a path between two controllers, these have that i) select a
border-switch and ii) configure the forwarding table of the border-switch
selected.

Each controller has to select a border switch to communicate to each one
of its neighbour controllers, given that, each pair of neighbour controllers can
have several border-switches to contact each other. In this case, the border-
switch selected by each controller is the one that reduces a defined parameter

116

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 117 — #129

6.4 Network topology discovery by controllers

in the end-to-end path between them, as for example, the delay. Although,
other parameters can be considered in the selection of border-switches, such
as: distance or hops.

After each controller has selected a border-switch to contact a specific
neighbour controller, it has to configure the forwarding table of the border-
switch, such that when these border switches receive a packet destined to a
neighbour controller, they forward the packet to the adjacent switch that is
managed by the destination controller (e.g., by using OpenFlow protocol).
Process 1 in Fig.6.2 represents this process, where controller CA config-
ures the forwarding table of its border-switch (BS→CA

), such that it can
forward the messages destined to controller CB through the border-switch
(BS→CB

) (Process 2 in Fig.6.2). An end-to-end path between two neighbour
controllers can only be established if both controllers executed the aforemen-
tioned process. Otherwise, the control messages are dropped. This case is
illustrated in Process 2 in Fig. 6.2.

CA Bs→CA CB Bs→CB

Flow table setup

Flow table setup

Control message

Exchange of information

1

2

Drop
messages

4

3

Control message

Control message

Control message

Control message

Control message

Control message

Control message

Control message

Control message

Figure 6.2: Process to discover a path between two controllers, CA and CB .

Controllers can forward control messages (e.g. Echo message in Open-
Flow) to verify the liveness of a controller-controller connection, which must
be replied if the path has been rightly configured. If after a defined time, a
controller does not have an echo message back from a destination controller,

117

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 118 — #130

Chapter 6 Resource discovery for SDN networks

it proceeds to configure the forwarding table of the next border-switch that
minimizes the criterion of selection defined. This is the case, if there are
more border-switches between the controllers. In the worst case, the for-
warding tables of all the border-switches between two controllers will be
configured and the controllers will forward echo messages until one of them
is responded to (Process 3 in Fig. 6.2).

There is an assumption that each pair of controllers have exactly the
same information about border-switches to communicate each other. This
is realistic as this information is exchanged after each controller finishes the
SDN-RDP protocol execution and, this is forwarded from each switch to the
controller through a secure path.

By using this path the neighbour controllers exchange the following infor-
mation:

• switch connectivity (e.g, identifier of switches, switch ports, link iden-
tifier, identifier of neighbour switches of each switch discovered), and

• the identifier of the neighbour controllers each controller can commu-
nicate with (Process 4 in Fig. 6.2).

Through this exchange of information, controllers not only discover the
partial network information found by their neighbour controller(s), but also
discover the controllers to which it can communicate with. Therefore, neigh-
bour controllers can request any outstanding information about the network
topology discovered by other controllers from their neighbours, and even
announce discovered controller identifiers between them.

The procedure is summarized in the flowchart illustrated in Fig. 6.3. This
flowchart defines the processes executed by the controllers:

• Forward information requested:

A controller C can receive a request from a neighbour controller Ci ∈
N(C) asking for information of a controller Cj ∈ N(C). If controller
C does not have this information, it queues the request for a limited
time (defined by a timer). If controller C receives information about
Cj before the timer is expired, it forwards the information of Cj to Ci.
This process is defined in light grey in the flowchart.

• Request information from their neighbour controllers:

A controller can receive information about a new controller identifier.
In this case, the controller asks for this information to the neighbour

118

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 119 — #131

6.4 Network topology discovery by controllers

controller that announces this information (the new controller identi-
fier). This process is defined in white in the flowchart.

• Announce to them newly discovered topology information:

Controllers can discover the information that their neighbour con-
trollers have about other controllers from the information exchanged
between them. If a controller has information about identifiers that
their neighbour controllers have not discovered, it announces this in-
formation (controller identifiers) to them. This process is defined in
dark grey in the flowchart.

Has a request
been received?

Is this information
 available?

Has new information
about controllers
been received ?

Has the information
requested

been received?

Do the neighbour
controllers have this

information?

Request this information

Announce controller ID

Queue

Timer=0?

Timer=0?

Remove from
queue

NO

NO

NO

NO

NO

NO

YES

YES

YES

YES

YES

1

1

YES

2

2

NO

Forward the
information

YES

0

0

Figure 6.3: Process to discover the network topology by controllers.

If all the controllers execute this process with the controllers they have

119

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 120 — #132

Chapter 6 Resource discovery for SDN networks

information from, at some point, all controllers discover each other, and
therefore, will be able to compose the whole network topology.

6.5 Allocation of switches to controllers

For consistency, the criterion used to distribute switches to controllers should
be the same as that considered to select the controller placements in the SDN
network (e.g., shortest paths, delay, robustness, etc).

The first switch-to-controller distribution is obtained as a result of the
SDN − RDP protocol execution. In this case, the resulting allocation of
switches-to-controllers not only depends on the network topology, but also
on the time each controller starts the protocol execution. That is to say, in
an scenario where all controllers start the SDN-RDP protocol execution in a
synchronized manner, each controller finds its nearest switches, such that if
the criterion to distribute the switches is to minimize the switch-to-controller
delay, it is not necessary to re-distribute switches between them.

However, this situation is not realistic, since it is unlikely that all con-
trollers start the protocol execution at exactly the same time. When con-
trollers start the SDN-RDP protocol execution independently, without syn-
chronization, controllers will discover their nearest switches but can also
discover switches that are nearer to other controllers. Consequently, the ini-
tial allocation of switches to controllers must not satisfy a defined criterion.

6.5.1 Re-distribution of switches-to-controllers

To re-distribute the switch management between the controllers satisfying
a specific criterion, it is considered that each controller locally executes a
switch-distribution algorithm through which they discover the set of switches
it should manage as well as the switches that the other controllers should
manage. Fig 6.4 represents this process.

The controllers must execute the switch-distribution algorithm after dis-
covering the whole network topology that is assumed to be equal over all the
controllers. From this information each controller must classify the following
information, as illustrated in Process 1 in Fig 6.4.

• the identifier of switches and controllers,

• adjacent connections between switches, and

• delays in all of the links in the network.

120

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 121 — #133

6.5 Allocation of switches to controllers

Criterion to re-distribute switches-to-controllers

The criterion to distribute the switches between controllers must be defined
by network providers, as the allocation of switches to controllers should be
defined based on the service requirements.

A switch-to-controller assignation algorithm must consider:

• the criterion to distribute the switches-to-controllers, and

• a function f(δ) that assigns a weight to each switch s ∈ S with respect
to each controller ci ∈ C in the network.

Each controller assigns a weight to each switch through a function f(δ)
that weighs up the relation of each switch to each controller with respect
to a defined criterion. A number of criterion can be considered, such as:
the delay, hops, distance, for instance. As a result, each switch must have
the same number of weights as there are controllers in the network. In
this way, each controller, based on the weights obtained for each switch,
identifies those switches that each controller should manage (process 2 in
Fig 6.4). Ideally, it is expected that all controllers obtain the same switch-
to-controller assignation as a result.

To make sure the switch distribution found by each controller is the same,
when controllers have each switch assigned to a controller, they announce
the assignation found through the West-East bound interface (process 3 in
Fig 6.4). With this information, each controller checks if the results obtained
by the other controllers match its own results (process 4 in Fig 6.4).

If the result found by each controller does not match, the controllers which
encounter a mismatch between them, start a re-allocation process to solve
the conflict(s) (process 5 in Fig 6.4). For simplicity, conflicts can be solved
by the controllers as follows:

• If switches in conflict do not have downstream switches, the switches
are assigned to the controller with the lowest identifier,

• otherwise, switches in conflict are assigned to the controller that most
reduces the number of downstream switches to be re-allocated.

If there are no mismatches, controllers locally update the switch assigna-
tion and proceed to configure their identifier in the set of switches they will
manage through the Southbound interface (process 6 in Fig 6.4). After that,
each controller can establish the control path with each one of their switches
using a communication protocol, OpenFlow, for instance. This process is
summarized in Fig. 6.5.

121

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 122 — #134

Chapter 6 Resource discovery for SDN networks

Identifier of Controllers

Switches managed
by Controller

Switch distribution

A
lgo

rith
m

C1={S1}
C2={S2}
C3={S3}

.
.
.

Cn={Sn}

Network

Topology information

Announcement
messages

Re-assignation

W
e

st-East b
o

u
n

d

 Southbound

 1 2

3

4

6

6
5

Figure 6.4: Representation of the processes to allocate switches to controllers.

6.6 Updating the network topology

In an operative network, topological changes can happen anywhere and any-
time, which must be detected and announced to the respective controllers
to maintain the network topology information updated on the control plane.
SDN-RDP protocol can keep the network topology updated on the con-
trollers by announcing events through AN messages, but this can not detect
network changes.

Regarding the importance of failure detection in SDN networks, there is
not a detailed mechanism of failure detection on any of the communication
protocols defined for SDN networks (e.g., OpenFlow specifications), this is
still an open issue.

This section introduces a cooperative mechanism to maintain the network
topology updated. It is said to be cooperative because:

• combines both switch and controller fault detection approaches,

• switches announce network changes (or events) to the controllers that
are capable of discovering what the events are about and update the
network topology, and in addition,

• controllers can announce to a controller when discovering events that
involve the switches that it manages,

122

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 123 — #135

6.6 Updating the network topology

End

Start

Network topology
• Controller identifier
• Switch identifier
• Link delays

Are all
switches

assigned to a
controller?

F(δ)→ w(s,C)

NO

YES
Forward the resulting
switch-to-controller

assignation via West-
East interface

Has the resulting
assignation from all controllers

been received ?

NO

Compare assignation

Is there any mismatch?

YES

YES

NO

Re-assignate switches-
to-controllers

Configure control paths

Figure 6.5: Flowchart: assignation process of switches-to-controllers.

123

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 124 — #136

Chapter 6 Resource discovery for SDN networks

• switches and controllers announce the network events through the
SDN-RDP protocol.

6.6.1 Detecting network topology changes

To maintain the network topology updated in a control plane, network
changes have to be detected and announced. Two types of network changes
are detected, these are: network failures and network devices recovered after
a failure.

Network failures: failures can be detected through the BFD protocol.
It is considered that the link status is monitored by a BFD session between
all adjacent switches. That is, each switch s ∈ S forwards BFD Echo packets
to all its neighbours to one hop x ∈ N(s), such that all the links in a network
are monitored.

Network recovery : despite BFD was only designed to detect failures, it
can also be used to detect when a communication between two switches has
been recovered after a failure. For this purpose consider that:

• each switch s ∈ S executes the BFD protocol with each one of its
neighbour switches (1 hop),

• each switch s ∈ S has information about all its connected adjacent
switches N(s), and

• each switch has a local list that contains the identifier of the adjacent
switches that have failed and have not been recovered, denoted as
Ldown.

When a switch s detects that the communication with an adjacent switch
x is down x ∈ N(s), it adds the identifier of switch x to the Ldown list. If a
switch detects that an adjacent switch included in this list starts the BFD
protocol, they remove the switch from Ldown as the communication with it
is no longer down. When a switch detects any of these both events, network
failure or a network recovery, it announces the event to the controller through
AN messages.

Note that the BFD protocol detects network failures, but it does not
define if the failure is due to a failed switch or a broken link. To maintain
the network topology updated in the control plane, this is required that the
controllers not only detect the type of network change, but also if it was due
to a link or switch. Below the process to discover if a failure is due to a
switch or link failure is explained in detail.

124

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 125 — #137

6.6 Updating the network topology

6.6.2 Principles to update the network topology

Each switch s ∈ S has a set of interfaces defined as I(s). A bidirectional
link between two switches A,B ∈ S is defined through the switch interfaces
a ∈ I(A) and b ∈ I(B), such that the link is denoted as a ↔ b. It is
considered that a switch s may have as many neighbour switches N(s) as
interfaces I(s).

In general, each pair of switches A and B monitors each other through
ports a→ b and b→ a, respectively, by exchanging BFD Echo messages as
described in [38]. Switch A is said to be the monitor switch of B, and B
is said to be the target switch of A. If switch A has N neighbour switches,
where (N = |N(A)|), switch A is the target switch of N monitor switches
and switch A is the monitor of N target switches.

That is, each switch x ∈ S acts as:

• monitor, when it forwards control messages to its N(x) neighbour
switches,

• target, when it is monitored by its N(x) neighbour switches.

By monitoring their target switches, each monitor switch A ∈ S detects
when two of the following events occur:

• A failure is detected by a monitor switch A when it does not receive a
response back from a target switchB ∈ N(A) to which it has forwarded
an BFD Echo message.

• A switch A can detect that a communication has been recovered,
when it receives an BFD Echo message from a neighbour B ∈ N(A)
that is contained in its Ldown list.

Events are announced by the monitor switches through AN messages to
the controller via their control path. This message contains the following
information:

• the identifier of the monitor switch, A,

• the identifier of the target switch, B,

• the identifier of the port of monitor switch A through which the target
switch B is monitored (a→ b), defined as a,

• the identifier of the port of monitor switch B through which the target
switch A is monitored (b→ a), defined as b.

125

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 126 — #138

Chapter 6 Resource discovery for SDN networks

Note that through an AN message, a monitor switch A announces the
identifier of the target switch B with which it lost communication and
through which interface it was connected to. Through the information con-
tained in the AN messages, the controllers can discover:

1) the location of the event and what the event is about (e.g., failure or
recovery event) and,

2) what the network failure is (e.g., link or switch failure), updating the
network information on the control plane.

Location of an event in the network

The location of an event in the network is limited to the communication
between the monitor switch and the target switch announced in an AN
message. That is, the event may be related to a failure or recovery of the
monitor switch, the target switch or the link between them.

To discover if the event is related to a failure or a recovery communication,
it is considered that controllers have a list that contains the identifier of the
link interfaces and identifier of the target switch broken, called IDlist. Upon
receiving an AN message and discovering what the failure is, the controllers
add in the IDlist list, the identifier of: i) the target switch if it has failed or
ii) the identifier of the interfaces of the link failed.

Upon receiving an AN message a controller discovers what the event is
about as follows:

• if the identifier of i) the target switch or ii) the link between monitor-
target switches, announced in an AN message are not included in
IDlist, a Controller can discover that there is a network failure.

• if the identifier of i) the target switch or ii) the link between monitor-
target switches are included in IDlist, the event is said to be a network
recovery event.

Discovering a network failure

By correlating the information contained in the AN messages received, the
controllers can discover the kind of failure as follows:

Link failure . Consider switches A and B managed by the same con-
troller, this is A,B ∈ D(C), that have a bidirectional link between them. If
the link between these switches fails, it is expected that controller C receives

126

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 127 — #139

6.6 Updating the network topology

two AN messages, one coming from monitor switch A and the other from
monitor switch B. If the identifier of the ports in the messages correspond
to a bidirectional link between the switches, that is if:

∃ a ∈ I(A), b ∈ I(B) : (a→ b), (b→ a)⇒ a↔ b,

then a controller can deduce that the bidirectional link a↔ b has failed.
Switch failure . A switch failure is defined by the status of the links to

its N monitor switches. If switch A fails, it is expected that the controller
receives |N(A)| AN messages coming from the N(A) monitor switches of
target switch A, such that:

• the identifier of the target switch in all the AN messages is the same,
and

• the set of the port identifiers of the monitor switches defined as Pm
are included in I(A), Pm ⊆ I(A).

A controller can deduce that switch A is no longer operational if:

Pm \ I(A) = ∅ .

After detecting a failure, the controllers update the network topology
information and the IDlist list.

The aforementioned conditions defined to discover a link and switch fail-
ures can only be satisfied if:

1) all the monitor switches of a target switch have an active control path
to their controller to announce the event and,

2) all the AN messages are processed by the same controller.

Condition (1) ensures that events are announced to the controllers and
condition (2) guarantees that a controller has the necessary information to
discover the type of failure. However, these conditions can not always be
satisfied, since not all the switches have an available control path to the
same controller to announce the events detected.

In the case with condition (1), there are different reasons why switches can
not communicate to their controller, and therefore this condition can not be
satisfied. This is the case with switches that are isolated after a network
failure or switches that do not have an active backup control path to their
controller. Fig. 6.6 represents an example for each one of these cases.

127

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 128 — #140

Chapter 6 Resource discovery for SDN networks

• Isolate switches: some switches can be isolated from their controller
as a consequence of their scarce network connectivity and/or network
failures. These are switches s ∈ S such that @ x ∈ N(s) : p(s, C(s)).
This is the case with switch 5 in Fig. 6.6(a).

• Disconnected border switches from their controller : These are switches
s ∈ BS for which do not exist a control path to their controller,
@ x ∈ N(BS) : x ∈ D(C(BS)). This is the case with border switch
7 in Fig. 6.6(b) that does not have connection to a neighbour switch
managed by the same controller.

• Switches that do not have a backup control path configured : these are
switches that are unable to communicate with their controller even
though at least a physical switch-to-controller path exists. This is
because, switches do not have this path configured. These are switches
s ∈ S such that @ x ∈ N(s) : p(s, C(s)). This is the case of switch 6
in Fig. 6.6(c), that can be monitored by the controller through path
(1-3-5-7-6).

On the another hand, condition (2) can not be satisfied for the switches
that have neighbour switches that belong to a different controller domain
that their target switch. This is the case when there are more than one
controller in the network, given that the management switch is distributed
between them, and as a consequence the border switches have neighbour
switches managed by at least a different controller.

For the aforementioned reasons, additional conditions have to be defined
in order to satisfy the conditions (1) and (2) and therefore the controllers
can discover failures in the network.

In order to minimize the number of switches disconnected from the con-
trol plane after a network failure, it is considered that the controllers have
configured a disjoint backup path on each switch, if it is possible. Note
that despite the number of switches that can communicate with their con-
troller may increment after a network failure, it is not a sufficient condition
to guarantee that all switches can announce the network events to its con-
troller (condition 1). Therefore, to monitor the switches that do not have a
backup control path to their controller, the following additional conditions
are required:

• controllers can monitor switches that do not have a control path, if it
is possible, by configuring a BFD session,

128

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 129 — #141

6.6 Updating the network topology

Network topology

2 541 3 

1

2

4

3

5



Management tree

2

11

7

2

5

2

4

5

1

4

85

1

4

3 6 9

10

12

3 4

4

2 3

2
1

54

3

5

4

7

1

2 9

6

8

12

11

10



Network topology

Management tree

(b) (c)

Network topology

2

6

3

45

1

2

7

5

2

5

2

4

5

1
4

Management tree

64

1

3

7





(a)

Figure 6.6: Examples of switches disconnected from the control plane, with their
control plane representation: (a) isolated switches, (b) switches discon-
nected from their controller, (c) switches that do not have a backup
control path configured.

• otherwise, controllers can deduce what the failure is about from the
AN messages received.

On the other hand, in order to satisfy condition (2), it is considered that
controllers receiving AN messages that contain information about a target
switch that they do not manage are forwarded to the controller responsible
for managing the target switch.

Considering the aforementioned considerations, the mechanism to discover
the kind of network changes in a network is generalized below.

6.6.3 Discovering network events and updating the network
topology information

The procedure to detect network changes and keep the network topology
and the IDlist updated can be divided in three different parts: 1) network

129

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 130 — #142

Chapter 6 Resource discovery for SDN networks

changes detection, 2) link failure detection and 3) switch failure detection.
Fig. 6.7. displays this procedure.

Network changes detection

Each controller C only discovers network changes over the network elements
in its domain D(C). When a controller is informed about a network change,
through an AN message, it checks first if the event announced has occurred
in its domain. That is, if the target switch identifier A announced in the
AN message is a switch in its domain, A ∈ D(C).

If the target switch is managed by a different controller, the controller
receiving this message re-forwards the AN message(s) to the controller re-
sponsible for managing the target switch. The switches in this situation are
the switches identified as border-switches (BS).

Controller receiving an AN message related to a network element (switch,
interface) in its domain, first checks if the identifier of the target switch or its
interface announced in the message are included in the IDlist. If this infor-
mation is included in the list, the controller deduces that the communication
between the monitor and target switches announced in the AN message has
been recovered. In this case, controllers update both the IDlist and the net-
work topology information. In addition, controllers re-configure the control
path of the recovered target switch (this specific process is played in Fig.
6.8). Otherwise, the AN messages were forwarded to announce a network
failure.

In case a network failure, to discover what kind of failure happened in
the network, the controllers wait within a defined window time, for an AN
message from the target switch or any of its monitor switches, different to
the monitor switch that had announced the event, if any exist.

If a controller does not receive any messages from those switches, it for-
wards probe packets to monitor the target switch through all its active in-
terfaces, if possible.

Link failure detection

The link failure detection process is illustrated in Fig. 6.9. A controller
discovers if the network failure that occurred was a link failure if:

• after receiving an AN message, a controller also receives a message
from the target switch defined in the message, or

• after forwarding probe messages to the target switch a response is
received.

130

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 131 — #143

6.6 Updating the network topology

Has an AN
message been

received?

0

NO

NO

Is the target-switch
managed by C?

NO

Announce to the
controller responsable
for the target switch

Is target-switch A
Included in IDList={}?

YES

Update
Data base

Re-establish control path

YES

YES

0

0

YES

NO

Has target-switch
 forwarded

 an AN message?

NO

Has target-switch
answered?

Link failure

│N(A) │ >1

YES

YES
Link failure

Forward an Echo message
to target-switch through
each one of its interfaces

0

0

Have monitor-switch
 forwarded

 an AN message to
another C?

NO

YES

Switch failure
IDList= {}

0

Assume switch andlink
hasve failed. IDList= {}

0

Have monitor-switches
 forwarded

 an AN message?

YES

0

Switch failure
IDList= {}

NO

NO Assumed to be
link and switch failure

IDList={}

0

Figure 6.7: Process to maintain updated the network topology.

131

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 132 — #144

Chapter 6 Resource discovery for SDN networks

Has an AN
message been

received ?

0

NO

NO

Is the target-switch
managed by C?

NO

Is target-switch A
Included in IDList={}?

YES

Update
Data base

Re-establish control path

YES

YES
1

0

0

Announce to the
controller responsable

for the target switch

Figure 6.8: Process to detect network changes.

Switch failure detection

In the case of a switch failure (e.g., switch A), a controller can discover it in
two different ways:

• If after receiving an AN message, a controller receives at least one
message from any of the monitor switches x ∈ N(A) of target switch
A, different to original monitor switch that had announced the event.

• If a controller C receives from another controller an AN message from
a monitor switch of the target switch A monitored, where A ∈ D(C).
This is the case with target switches that are border switches.

This process is illustrated in Fig. 6.10.

132

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 133 — #145

6.7 Simulation and Results

YES

NO

NO

Has the target-switch
 forwarded

 an AN message?

NO

Has the target-switch
answered?

Link failure

│N(A) │ >1
YES

Assumed to be
link and switch failure

IDList={}

0

YES
Link failure 1

2

Forward an Echo message
to target-switch through
each one of its interfaces

0

0

Figure 6.9: Process to detect link failures.

There are two cases where a controller can not discover if the failure is
due to a link or switch failure, given that neither condition is satisfied. This
is the case for:

• switches that have only one neighbour switch, this is N = 1. In this
situation, a controller assumes that both the link and target switch
have failed.

• when a controller does not receive an AN message message from nei-
ther, the target switch nor its monitor switches. In this case, it is also
considered that both the target switch and the link between the target
and monitor switch announced in the AN message have failed.

Each time a controller detects a switch or a link has failed, it updates its
IDlist and the network topology on the control plane.

6.7 Simulation and Results

The SDN-RDP protocol has been implemented from scratch in OMNET++.
In order to show the efficiency and scalability of this protocol three different
evaluations are presented. First, the protocol performance is evaluated when
it is executed in a synchronous (Syn) mode. Second, a comparison of the

133

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 134 — #146

Chapter 6 Resource discovery for SDN networks

Has monitor-switch
 forwarded

 an AN message to
another C?

NO

YES

Switch failure
IDList= {}

0

Assume switch andlink
have failed. IDList= {}

0

Have monitor-switches
 forwarded

 an AN message?

YES

0

Switch failure
IDList= {}

NO

2

Figure 6.10: Process to detect switch failures.

protocol performance when it is executed in synchronous and asynchronous
(Asyn) modes is presented. For these both cases, 100 networks that consists
of 200 nodes are used. Finally, the scalability of the protocol is evaluated
in a synchronous mode using a set of graphs generated randomly that have
different sizes, 50, 100, 200 and 500 switches. Each set of networks consists
of 100 graphs. For all aforementioned cases, the results for the SDN-RDP
are presented together with their respective 95% confidence intervals based
on Student-t distribution.

The adjacency matrices for these graphs are generated by using the Gephi
software. This tool generates networks with a given number of switches n,
which are randomly connected by undirected links. For a random pair of

134

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 135 — #147

6.7 Simulation and Results

switches, there is a probability p (wiring probability), where 0 < p < 1, that
a link exists which connects them. This implies that the degree of random
graphs generated using a fixed value of p increases when n increments. Table
6.1 shows the main characteristics of the generated networks, all of them were
generated using a wiring probability of 0.05.

Table 6.1: Information of randomly generated networks.

Size Avg. Number of links Avg. Switch degree

50 65 3
100 253 5
200 994 10
500 6243 25

In all these cases, a link capacity of between 100 Mbps to 10 Gbps is as-
sumed and the distances between any pair of switches are selected randomly
in a range of 1 to 15 Km. The protocol is executed over k controllers in both
synchronous (Syn) and asynchronous (Asyn) modes where k varies between
1 and 8 controllers. The controllers are selected among the 200 nodes in
each one of the networks, using the k − Critical algorithm.

6.7.1 Evaluation

The evaluation of the protocol consists of two different aspects: i) the perfor-
mance of the protocol and ii) the characteristics of the control plane obtained
as a result of executing the protocol over the controllers.

The performance of the protocol is evaluated in terms of: i) the average
time it takes to discover the whole network topology, and ii) the average
number of messages processed by each switch during the network topology
discovering process when varying the number of controllers.

• Average number of messages per switch: this is the number of
control messages (Announcement messages (AN) Response messages
(RES) and Improved Announcement messages (IAN)) received and
sent by each switch during the SDN-RDP protocol execution.

• Computing time: this is the time it takes for the controllers to
discover a partial network topology that defines their control plane.
This time includes: i) the time it takes the switches to forward the AN
messages over the network, ii) the time it takes the switches to make a
decision about which controller to join to, and iii) the forwarding time
of the join message from each switch to its controller.

135

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 136 — #148

Chapter 6 Resource discovery for SDN networks

On the other hand, the characteristics of the resulting control plane eval-
uated are:

• Switch distribution: this defines the number of switches that each
controller discovers as a result of the SDN-RDP protocol execution.

• Robustness: this parameter provides information about the fraction
of unprotected switches in the presence of failures in the network. This
is the robustness metric proposed in Section 5.5.

• Stretch: this is the ratio of the path length of the shortest path
found between a controller and the path length of the path found by
the controller as a result of the protocol execution.

• Expected Data Loss (EDL): this metric defines the dependence of
a switch with respect to the upstream switches in the control plane.

• Control tree path delay: this is the delay of each switch s ∈ S with
respect to its controller CA ∈ C.

6.7.2 Protocol evaluation in Syn mode

First, Fig. 6.11 shows results of the performance of the protocol and control
plane characteristics when the protocol is executed in Syn mode over k
controllers , k ∈ 1, ..., 8. In Syn mode, the controllers start the protocol
execution at the same time, i.e., t = 0.

Fig. 6.11(a) illustrates the mean computation time it takes to k controllers
to discover the network topology. This time tends to decrease as the num-
ber of controllers increases. This is because, as the number of controllers
increases, the number of nodes assigned to each controller decreases. If the
number of controllers increases, the number of hops the AN messages have
to be forwarded along the network decreases and consequently, the time the
controllers receive a response is smaller. However, when considering more
than k = 4 controllers the mean computation time does not decrease sig-
nificantly because the reduction of number of nodes per controller is not so
significant.

Fig. 6.11(b) shows the mean number of control messages that each node
in the network processes (send and receive) during the protocol execution.
From this figure, it can be seen that, in Syn mode, the average number
of messages on each node remains constant with respect to the number of
controllers. This is because: i) IAN messages are not required as switches

136

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 137 — #149

6.7 Simulation and Results

75
80
85
90
95

100
105
110

1 2 3 4 5 6 7 8
No. of Controllers

(a)

T
im

e
(µ

s)

10

1212

1 2 3 4 5 6 7 8
No. of Controllers

(b)

M
sg

 p
er

 N
od

e Network Size
200 Nodes
Syn Mode

1
25
50
75

100

150

200

1 2 3 4 5 6 7 8
No. of Controllers

(c)

N
od

es
 p

er
 C

on
t.

20

25

30

35

40

1 2 3 4 5 6 7 8
No. of Controllers

(d)

M
ax

 D
el

ay
 (

µs
)

0.00
0.05
0.10
0.15
0.20

0.30

1 2 3 4 5 6 7 8
No. of Controllers

(e)

R
ob

us
tn

es
s

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8
No. of Controllers

(f)

M
ax

 E
D

L

Figure 6.11: Protocol evaluation in Syn mode for networks that consist of 200
switches.

receive the AN message through their shortest path, and ii) conflicts are
solved using implicit response messages.

The allocation of switches between k controller is illustrated in Fig. 6.11(c).
The number of nodes managed by k controllers is reduced when k increases.
This is because the nodes tend to be discovered by their closest controller,
therefore, the greater the number of controllers, the fewer the number of
nodes they discover.

Fig. 6.11(d) shows the maximum control path delay found for each switch-
to-controller path. Given that RDP-SDN protocol tends to discover the
closest switches from each controller, the switch-to-controller delay tends to
be reduced as k increases.

The robustness of the resulting control plane is represented in Fig. 6.11(e).

137

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 138 — #150

Chapter 6 Resource discovery for SDN networks

As expected, when the number of controllers increases the number of nodes
protected against a network failure is reduced. This is because, when the
switches are distributed among k controllers, the probability of finding alter-
native control paths of each switch to its controller is lower compared with
the case of having k − 1 controllers.

Fig. 6.11(f) shows the maximum expected data loss per node, which rep-
resents the maximum nodes that are disconnected when a failure occurs in
the network . From this graph, it can be seen that the mean value for the
expected data loss for all number of controllers evaluated is similar. Further
analysis of the dispersion of this distribution will be presented in the next
figure.

In order to analyze the protocol performance in detail, the results ob-
tained when the protocol is executed in Syn mode are presented through
boxplot graphs in Fig. 6.12. This is a standardized way of displaying the
distribution of numerical data groups through their quartiles: minimum,
first quartile, median, third quartile, and maximum. In the simplest box
plot the central rectangle spans the first quartile to the third quartile (the
interquartile range or IQR). The middle half of a data set falls within the
interquartile range. The larger the IQR, the more variable the data set is.
The largest and smallest values shown for each evaluated parameters are
called whiskers. Points outside the area defined by the whiskers are called
outliers and are represented by a small circle (these are data points more
extreme than 3× IQR above Q3 or below Q1).

The interquartile range is typically reported along with the median to
represent variability and central tendency in distributions that either are
skewed or have outliers.

The box plot displays the full range of variation (from minimum to max-
imum values obtained for an evaluated parameter), the likely range of vari-
ation (the IQR), and the line dividing the box is the median of the data set
obtained. In the box plot each section represents 25 % of the data, which
are defined in Table. 6.2.

From Fig. 6.12(a), it can be seen that the dispersion of the computation
time values are not significantly lower and higher with respect to the median,
for the different number of controllers. This suggests that overall controllers
have a high level of agreement with each other regarding the time needed to
create the control plane tree.

Fig. 6.12(b) illustrates the dispersion of the number of control messages
processed by the nodes in the network. The median number of messages
tends to be constant and is close to the mean value, identifying symmetric
distributions. Even though the data dispersion increases as the number of

138

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 139 — #151

6.7 Simulation and Results

Table 6.2: Description of quartiles.

Quar-
tile

Description

Q1 25% of the data are less that or equal to this value
Q2 The median. 50 of the switch distribution are less or equal to this

value
Q3 75% of the data are less or equal to this value
IQR The distance between (Q3−Q1); thus, it spans the middle 50% of

the data.

60

80

100

1 2 3 4 5 6 7 8
No. of Controllers

(a)

T
im

e
(µ

s)

8

9

10

11

1 2 3 4 5 6 7 8
No. of Controllers

(b)

M
sg

 p
er

 N
od

e

0

50

100

150

2 3 4 5 6 7 8
No. of Controllers

(c)

N
od

es
 p

er
 C

on
t.

20

25

30

35

40

1 2 3 4 5 6 7 8
No. of Controllers

(d)

M
ax

 D
el

ay
 (

µs
)

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8
No. of Controllers

(e)

R
ob

us
tn

es
s

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8
No. of Controllers

(f)

M
ax

 E
D

L

Figure 6.12: Boxplots of the protocol evaluation in Syn mode for networks that
consist of 200 switches.

139

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 140 — #152

Chapter 6 Resource discovery for SDN networks

controllers increases, the IQR only varies from 0.42 (1C) to 0.91 (8C), similar
to the variation of the computation time parameter.

In addition, Fig. 6.12(c) shows that the dispersion of the number of nodes
per controller is lower as the number of controllers increases. This figure
indicates that this parameter has a high variability, in accordance with the
criterion of allocation of switches to controllers, which takes into account
the delay, and not the number of nodes.

In the case of the maximum control path delay shown in Fig. 6.12(d), the
dispersion for k controllers tends to be in the range of 10 µsecs. Moreover,
the IQR varies from 2 µs (6C) to 4.2 µs (4C).

In the case of the robustness of the Fig. 6.12(e), the dispersion values
are wider when the number of controllers increases. This is because the
protection of some nodes can be high while the robustness for nodes which
their adjacent nodes are managed by other controllers, is low. In this case,
the maximum robustness is pretty far away from the box, and the box is
located farther to the top. This long upper whisker means that the data is
partially skewed. Thus, nodes with low robustness (high values) have varied
values of this parameter, while nodes with high robustness (low values) have
similar values.

Fig. 6.12(f) illustrates the maximum expected data loss found for the
networks evaluated. This parameter represents the maximum expected data
loss or nodes that are disconnected when a failure occurs in the network.
From this figure, it can be seen that the mean value for the expected data
loss for all number of controllers evaluated is similar. However, when the
number of controllers increases, the data dispersion is higher.

From this result, it can be deduced that when the number of controllers in-
creases (k ≥ 3), the nodes in the control plane have a high node dependency,
compared with the results obtained when k is lower. This is because, de-
pending on the network topology and the condition to select the controllers
(e.g., switch-to-controller delay), there are cases where the controllers can
be selected to manage a reduced number of switches (critical nodes). As a
result, some controllers can manage a high number of switches (which have
a high number of downstream nodes), while other controllers can have few
switches (switch to one hop of the controller). This deduction is coherent
with the other results obtained.

From all these results, it can be seen that the protocol performance is good
as the value dispersion for all parameters evaluated varies in a short-range,
and hence the protocol behaviour is similar for all nodes.

140

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 141 — #153

6.7 Simulation and Results

6.7.3 Protocol evaluation in Asyn mode

In this section a comparison between both protocol operation modes, Syn
and Asyn modes, is presented. In Asyn mode, k controllers start the protocol
execution randomly that varies from 1 to 5 seconds, but is really initiated
by the first AN message (of another controller) they receive.

In order to compare the protocol performance different techniques can be
used, such as histograms or boxplots. This last case exploits the fact that
an equal shape is equivalent to “linearly related quantile functions”. Such a
plot is the Quantile-Quantile plot, or Q-Q plot.

A Q-Q plot is a plot of the quantiles of the first data set (Syn mode) against
the quantiles of the second data set (Asyn mode). It is a diagnostic tool,
which is widely used to assess the distributional similarities and differences
between two independent data sets. The Q-Q plot is an effective display of
the relationship between corresponding order statistics from two samples:
plot the corresponding pairs as points in a scatter plot.

A Q-Q plot is constructed by comparing two distributions, matching like-
positioned values (i.e., quantiles) in the two distributions. These plots can
reveal outliers, differences in location and scale, and other differences be-
tween the distributions.

In this case, the functions qqplot() and abline() of the R tool have been
used. Each point (x,y) is a plot of a quantile of one distribution along the
vertical axis (y-axis, or Asyn mode) against the corresponding quantile of
the other distribution along the horizontal axis (x-axis, or Syn mode). The
shape comparison can be clarified by plotting a straight line on the Q-Q
plot with the abline() function. The syntax is abline(c(intercept,slope)),
with ”intercept” and ”slope” replaced by the appropriate values taken from
a linear model. The closer the points are to the straight line, the more
similar the shapes of the distributions. The Q-Q plot for the two groups
appears to be roughly a straight line (represented by a dashed red line), but
clearly the locations and spreads differ.

Computation Time

Fig 6.13 shows the relation of the computation time that each controller,
included in the k controllers evaluated, spends to discover a partial network
topology in both protocol operation modes.

From this figure, it can be seen that for both cases, Syn and Asyn ex-
ecution modes, the mean computation time decreases as the number of
controllers increases. In Asyn mode, when considering more than k = 4

141

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 142 — #154

Chapter 6 Resource discovery for SDN networks

●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●

●●

90 100 110

90
95

10
0

10
5

11
0

11
5

1 Controller

1C Syn

1C
 A

sy
n

Mean Syn: 102.171
Mean Asyn: 102.125

●

● ●●●

●

●

● ●●

●●●●●●

●●

●●●●●●●

●●●●● ●●●●

●●●●●●●●●●

●●●●●●● ●●●●

●●●●●●●●●

●●●●●●

● ●●●

●●

●●

●●●

●

80 90 100

70
80

90
10

0
11

0
12

0

2 Controllers

2C Syn

2C
 A

sy
n

Mean Syn: 93.477
Mean Asyn: 95.432

●●●
●●
● ●●●●●●●●●●

●
●●●●●
●●●●●●●● ●●●

●●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●
● ●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●● ●●

●
●●●●
●●●●●●●

●●●

●

●

80 90 100

60
80

10
0

12
0

14
0

3 Controllers

3C Syn

3C
 A

sy
n

Mean Syn: 89.692
Mean Asyn: 94.008

●

●

●

●●●●●●●●●●● ●●●●

●●●●●

●●●●●●●●●●●●

●●●●●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●

●●●●●●●●

● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●

●●●●●● ●●●●●●●●●●

●

●●●●● ●●

●●●

●●●●●

●

●●

75 85 95

60
80

10
0

12
0

4 Controllers

4C Syn

4C
 A

sy
n

Mean Syn: 85.667
Mean Asyn: 90.595

●●●●●●
●
● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●● ●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●● ●●●●●●

●●●●●
●●●●●●●●●●
●●
●● ●●●●●

●●

●●

●

75 85

60
80

10
0

12
0

14
0

5 Controllers

5C Syn

5C
 A

sy
n

Mean Syn: 83.504
Mean Asyn: 88.674

●●●

●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●● ●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●● ●●●●●

●●●●

●●●●●● ●●●●●●●●●

●

●●●●●●

●

●

70 80 90

60
70

80
90

10
0

11
0

12
0

6 Controllers

6C Syn

6C
 A

sy
n

Mean Syn: 80.698
Mean Asyn: 85.771

●

●●●●●● ●●●●

●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●● ●●●●●

●

●●●●●●●● ●

●●●

●●

●●

60 70 80 90

60
80

10
0

12
0

7 Controllers

7C Syn

7C
 A

sy
n

Mean Syn: 79.116
Mean Asyn: 85.311

●●●

●●●●
● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●● ●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●●

●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●

● ●

●●

●

● ●●●●

●

70 80 90

60
80

10
0

12
0

8 Controllers

8C Syn

8C
 A

sy
n

Mean Syn: 77.226
Mean Asyn: 84.202

Figure 6.13: Q-Q plots of the computation time (µs) in Syn and Asyn modes for
networks that consist of 200 switches.

controllers, the mean time does not decrease significatively, similar to what
happened in the Syn mode.

Although the behaviour is similar, the distribution of the dataset obtained
from Syn and Asyn protocol mode simulations varies considerably with re-
spect to the linear distribution.

Box plots of Fig 6.14 show the relation between both distributions (Syn
and Asyn mode). For all k controllers evaluated, the lowest and the high-
est topology discovery time is obtained when the protocol is executed in
Asyn mode. The highest distribution times are obtained when controllers
start the protocol execution sooner, as they tend to discover more switches

142

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 143 — #155

6.7 Simulation and Results

which translates to a higher delay on the controller (represents the highest
time distribution in the box). Therefore, controllers that start the protocol
execution later tend to finish the protocol execution sooner (represents the
lowest time distribution). In general, the best protocol performance is ob-
tained when it is executed in Syn mode. In this mode, the time the protocol
takes to discover the network topology is significatively less than when it is
executed in Asyn mode.

●

●

1C
 S

yn

1C
 A

sy
n

2C
 S

yn

2C
 A

sy
n

3C
 S

yn

3C
 A

sy
n

4C
 S

yn

4C
 A

sy
n

5C
 S

yn

5C
 A

sy
n

6C
 S

yn

6C
 A

sy
n

7C
 S

yn

7C
 A

sy
n

8C
 S

yn

8C
 A

sy
n

60

80

100

120

140

C
om

pu
ta

tio
n

T
im

e
(µ

s)

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 6.14: Boxplots of the computation time in Syn and Asyn modes for networks
that consist of 200 switches. Black points indicate the mean value.

Number of Messages per Switch

Despite the similarity in the mean number of messages per switch, as the
number of controllers increases, the number of messages needed to discover
the complete network is higher in Asyn mode than in Syn mode. The differ-
ence of the number of messages processed by nodes in Syn and Asyn modes
is evident when the number of controllers increases, as can be seen in Fig.

143

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 144 — #156

Chapter 6 Resource discovery for SDN networks

6.15.

●

●●

●
●

●●●
●●●
●●●●●
●●●
●●●●●●●
●●●●●
●●●
●●●●●
●●●●●●
●●
●●●
●●
●●●●
●●●●●●●
●●●
●●●●
●●●●●●
●●●●●●
●●●●
●●●
●●●
●●

●●
●

●
●

9.5 10.5

9.
5

10
.0

10
.5

1 Controller

1C Syn

1C
 A

sy
n

Mean Syn: 9.941600
Mean Asyn: 9.942828

● ●●
●●●●
●●●●●●●●

●●●●●
●●●●
●●●●
●●
●●●●
●●
●

●●
●
●

●●
●●●
●●
●●
●●●●●
●●
●●●
●●●
●●●●●
●●●
●●

●●●
●●●

●

●

9.0 10.0 11.0

5
10

15

2 Controllers

2C Syn

2C
 A

sy
n

Mean Syn: 9.903290
Mean Asyn: 7.787854

● ●●●
●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●
●●●
●●
●●

●●
●
●●●
●●●●
●●●●●
●●●●●●
●●●●
●●●●●●●
●●●●
●●●
●●●●
●●●●●
●●
●
●
●●
●●●●

●

●

●
●

●

8.5 9.5 10.5

0
5

10
15

20
25

3 Controllers

3C Syn

3C
 A

sy
n

Mean Syn: 9.929540
Mean Asyn: 7.342799

●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●
●●●●
●●
●●
●●●
●●●●
●●●
●
●●
●●

●
●●●
●●●●●
●●●
●●●●●
●●●●
●●●
●●●●
●●●●
●●
●
●

●●
●●●●

●●

●

●

●

9.0 10.5 12.0

0
5

10
15

20
25

30

4 Controllers

4C Syn

4C
 A

sy
n

Mean Syn: 10.024112
Mean Asyn: 7.685490

●
● ●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●
●●
●●
●
●

●●●
●●
●●
●●●
●●●●
●●●●●
●●●●
●●●
●●●●●
●●●
●●●
●●●
●●
●●●
●
●

●●

●
●

●

2 4 6 8 12

0
5

10
15

20
25

30
35

5 Controllers

5C Syn

5C
 A

sy
n

Mean Syn: 9.951078
Mean Asyn: 7.120015

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●
●●●
●
●●●

●

●
●●
●●●
●
●●●
●●●●●
●●●●
●●

●●●●

●

●
●●

●
●
●●

●

●

9 10 11 12

0
10

20
30

40

6 Controllers

6C Syn

6C
 A

sy
n

Mean Syn: 9.933469
Mean Asyn: 7.771540

● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●
●●
●●
●
●●
●
●
●●
●●
●
●●●
●●
●●●
●●
●
●●●●
●●●
●●●

●●

●●

●

● ●

5 10 15

0
10

20
30

40
50

7 Controllers

7C Syn

7C
 A

sy
n

Mean Syn: 9.983520
Mean Asyn: 7.923687

● ●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●
●
●

●

●●●
●●
●●●
●●

●●
●●

●●
●●

●

●●
●
●

●

●●

●

●●

4 6 8 10

0
10

20
30

40
50

60

8 Controllers

8C Syn

8C
 A

sy
n

Mean Syn: 10.086871
Mean Asyn: 8.317833

Figure 6.15: Q-Q plots of the number of messages per switch in Syn and Asyn modes
in networks that consist of 200 switches.

This is because, when the protocol is executed in Asyn mode, some
switches have to process a high number of messages, while other switches
have only to process few messages (fewer that in Syn mode). When the pro-
tocol is executed in Syn mode, the mean number of control messages that
each node in the network processes (send and receive) tends to be constant
with respect to the number of controllers as shown in Fig. 6.11(b).

In Asyn mode, it was observed that the controllers were activated by
an AN message (coming from a controller) before reaching the time pro-
grammed to start the protocol execution (1-5 sec). In this scenario, some
switches have already made a decision before receiving a message from their
closest controller, therefore switches near to the controllers that start the

144

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 145 — #157

6.7 Simulation and Results

protocol later process few messages. Controllers in this situation discover
their partial network topology in few time (as shown in Fig 6.14).

Allocation of Switches to Controllers

Fig. 6.16 illustrates the relation between the allocation of switches to con-
trollers for both protocol operation modes, Asyn and Syn. This figure shows
that the mean number of switches distributed for k controllers and for both
operation modes is similar.

The results presented in Fig. 6.12(c) show that the allocation of switches
to controllers is balanced when controllers execute the protocol in Syn mode.
Fig. 6.17 shows that the number of switches managed for k controllers is
reduced when k increases, in both cases.

Note that for k > 5, there is a high dispersion when more than 50 switches
are distributed for each controller. For those cases, controllers that execute
the protocol in Syn mode have assigned less that 60 switches. This is rep-
resented in Fig. 6.16, where the lineal distribution does not match for the
highest switch distribution values.

From Fig. 6.17, it can be seen that when k < 4 controllers, the IQR
region area (it represents the 50% of the switches distributed) is smaller for
controllers that executed the protocol in Syn mode compared with those
controllers that execute the protocol in Asyn mode.

The difference between the minimum and maximum switch distribution
values is also smaller when the protocol is executed in Syn mode. This
means that, when the protocol is executed in Syn mode, the allocation of
switches to controllers tends to be more balanced, reducing the dispersion
in comparison to the case when the protocol is executed in Asyn mode.

However, as the number of controllers increases (k > 4 controllers) the
allocation of switches to controllers tends to be similar in both cases. This is
expected, since that the network diameter is reduced and in an asynchronous
scenario, controllers start the protocol execution before the time they were
programmed to start (1-5 s) by receiving an AN message.

Fig. 6.18 shows the cumulative distribution functions comparing both
execution modes. In this figure, it is also shown that as the number of
controllers increases, the switch distribution in Asyn mode tends to be equal
to the ideal case (Syn mode), achieving well-balanced network management
among controllers.

145

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 146 — #158

Chapter 6 Resource discovery for SDN networks

●●●

150 250

15
0

20
0

25
0

1 Controller

1C Syn

1C
 A

sy
n

Mean Syn, Asyn: 200.00

●●●
● ●●●●

●
●●●●●

●●●
●●●
●●●
●●
●●
●●
●●
●
●●●
●●●

●
●

●●

●
●

●●●●
●●
●
●●
●●
●●
●●●
●●●
●●●
●●

●●●●●
●
●●●● ●

●●
●

50 100

50
10

0
15

0

2 Controllers

2C Syn

2C
 A

sy
n

Mean Syn, Asyn: 100.00

●●
●●●●●●●

●●●●
●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●
●●●
●●●●●●●
●●●●●●●●
●●●●
●●
●●●●
●●●
●●●●●●
●●●●
●●
●●●●
●
●●
●●●●
●
●●●●
●●
●●●●
●●
●
●●●●
●●●●●
●●
●
●●●●●
●●●●●
●●●●
●●●●
●●
●
●●
●●
●●●●

●

●

20 60 100

0
50

10
0

15
0

3 Controllers

3C Syn

3C
 A

sy
n

Mean Syn, Asyn: 66.67

●●●●●●
●●
●●●●
●●●●●●
●●●●●
●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●
●●●●●●●●●
●●●
●
●●●●●●
●●●●●●●
●●●●●●●
●●●●
●●
●●●
●●●●●
●●●●
●●●●
●●●
●●
●●●●●
●●●●
●
●●
●●
●●●
●●●
●
●
●
●●●
●●●
●●
●
●●
●●
●●
●●
●●
●●
●
●●●
●
●●●

●
●

●
●

20 60 100

20
40

60
80

10
0

12
0

4 Controllers

4C Syn

4C
 A

sy
n

Mean Syn, Asyn: 50.00

●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●
●
●●●●
●●●●●●
●●●
●●
●●●●
●●●●●●
●●●
●●●●●●●

●●
●●
●●●●
●
●●
●●●●

●●
●●●
●
●

●

0 40 80

0
20

40
60

80
10

0
12

0

5 Controllers

5C Syn

5C
 A

sy
n

Mean Syn, Asyn: 40.00

●
●●●
●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●
●●●●●●●●●
●●
●●●●
●●●●●●●
●●●●●●
●●●●
●
●●
●●●●
●●
●●●
●
●●
●●

●●●
●

●
●●●●

●
●●
●●
●

●

0 40 80

0
20

40
60

80
10

0

6 Controllers

6C Syn

6C
 A

sy
n

Mean Syn, Asyn: 33.33

●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●
●●
●●
●●●●●
●●●●●
●●●●
●●●●●
●
●●●
●●●●●
●●●
●

●●
●●
●
●

●●●
●●●

●
●●

●
● ●

0 20 60

0
20

40
60

80
10

0

7 Controllers

7C Syn

7C
 A

sy
n

Mean Syn, Asyn: 28.57

●●
●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●●●

●
●
●●
●●
●●
●●
●
●●

●
●

●

0 20 60

0
20

40
60

80

8 Controllers

8C Syn

8C
 A

sy
n

Mean Syn, Asyn: 25.00

Figure 6.16: Q-Q plots of the number of switches discovered by each controller in
Syn and Asyn modes in networks that consist of 200 switches.

Stretch

Fig. 6.19 illustrates the stretch of the switch-to-controller paths found during
the protocol execution.

The delay-constrained shortest control path for all switches is found when
the protocol is executed in Syn mode, for all the number of controllers eval-
uated. In this case, the stretch value is always 1. When the protocol is
executed in Asyn mode, the switch-to-controller paths tend to be longer
than the shortest path in terms of delay; hence, the stretch value is greater
than 1.

146

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 147 — #159

6.7 Simulation and Results

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●●

●

2C
 S

yn

2C
 A

sy
n

3C
 S

yn

3C
 A

sy
n

4C
 S

yn

4C
 A

sy
n

5C
 S

yn

5C
 A

sy
n

6C
 S

yn

6C
 A

sy
n

7C
 S

yn

7C
 A

sy
n

8C
 S

yn

8C
 A

sy
n

0

50

100

150

N
um

be
r

of
 N

od
es

 p
er

 C
on

tr
ol

le
r

● ●

● ●

● ●

● ●

● ●
● ●

●
●

Figure 6.17: Boxplots of the number of switches discovered by each controller in
networks that consist of 200 switches. Black points indicate the mean
value.

Maximum control path delay

Fig. 6.20 represents the maximum switch-to-controller path delay found by
the k controllers evaluated in both operation modes, Syn and Asyn.

Despite the mean of the maximum control path delay found for both
modes, Syn and Asyn, and for all number of controllers evaluated is similar,
the distribution of the delay values have a wide dispersion (does not match
with the straight line), when the protocol is executed in Asyn mode. This
is because, in this case, some controllers discover more switches that others
(as illustrated in Fig. 6.17), therefore the tendency is that switches whose
controllers have more switches discovered, have a longer control path delay.
When the protocol is executed in Syn mode, the switches are discovered by
their closest controller, therefore, for all cases, in Syn mode the switches have
the shortest delay to the controller. This can also be confirmed from results
shown in Fig. 6.19. As the number of controllers increases, the dispersion
values between both data sets (Syn and Asyn) tends to be higher.

147

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 148 — #160

Chapter 6 Resource discovery for SDN networks

1 controller

0.00

0.25

0.50

0.75

1.00

190 195 200 205 210
Nodes per Controller

C
D

F Syn

Asyn
2 controllers

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Nodes per Controller

C
D

F

3 controllers

0.00

0.25

0.50

0.75

1.00

0 50 100 150
Nodes per Controller

C
D

F

4 controllers

0.00

0.25

0.50

0.75

1.00

0 50 100 150
Nodes per Controller

C
D

F

5 controllers

0.00

0.25

0.50

0.75

1.00

0 50 100
Nodes per Controller

C
D

F

6 controllers

0.00

0.25

0.50

0.75

1.00

0 40 80 120
Nodes per Controller

C
D

F

7 controllers

0.00

0.25

0.50

0.75

1.00

0 30 60 90
Nodes per Controller

C
D

F

8 controllers

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Nodes per Controller

C
D

F

Figure 6.18: Cumulative Distribution Functions of the number of switches discov-
ered by each controller in networks that consist of 200 switches for 1-8
controllers.

Robustness

Fig. 6.21 shows results about the control plane robustness. This parameter
is evaluated through the metric defined in Section 5.3. This metric defines
the fraction of nodes that could be reconnected with the control plane in the
presence of any link or switch failure in the network. The metric value is
between zero and one, where zero (0) means that all switches are protected
against link and switch failures.

From Fig. 6.21, it can be seen that the control plane created when the

148

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 149 — #161

6.7 Simulation and Results

●●●

0.6 1.0 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

1 Controller

1C Syn

1C
 A

sy
n

Mean Syn: 1.000
Mean Asyn: 1.000

●●●
●●●
●●●●●
●●●●●●●●
●●
●●●
●●●
●●
●
●●

●●
●●
●

●

●

●

●

●

0.6 1.0 1.4

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

2 Controllers

2C Syn

2C
 A

sy
n

Mean Syn: 1.000
Mean Asyn: 1.048

●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●●●
●●●●●
●●●
●●●
●●●●
●●●●●
●●●●●
●●
●●●●●●
●●●●
●●●●
●●
●●

●
●●
●●
●
●●
●●
●
●

●
●●
●
●
●●

●

●

0.6 1.0 1.4

1.
0

1.
1

1.
2

1.
3

3 Controllers

3C Syn
3C

 A
sy

n

Mean Syn: 1.000
Mean Asyn: 1.056

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●
●●●●●
●●●●●●
●●●●
●●●
●●●
●●
●●
●●●●●
●●●
●●
●
●
●●●
●●
●●●●
●

●
●

●

●

0.6 1.0 1.4

1.
0

1.
1

1.
2

1.
3

1.
4

4 Controllers

4C Syn

4C
 A

sy
n

Mean Syn: 1.000
Mean Asyn: 1.064

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●
●●●●●●●●
●●●●●
●●●●●
●●●●●●
●●●
●●●●
●●●
●●
●
●●
●●●●
●●
●●
●
●

●
●●

●

●

●

●

●

0.6 1.0 1.4

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

5 Controllers

5C Syn

5C
 A

sy
n

Mean Syn: 1.000
Mean Asyn: 1.086

●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●
●●●●
●●●●●
●●●●●
●●●
●●●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●●●●
●●
●●●●●
●●●
●
●●
●●●●●
●●
●●
●
●
●
●●
●
●

●
●
●
●

●

●

0.6 1.0 1.4

1.
0

1.
1

1.
2

1.
3

1.
4

6 Controllers

6C Syn

6C
 A

sy
n

Mean Syn: 1.000
Mean Asyn: 1.092

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●
●●●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●
●●
●
●●●
●●●
●●●●●●
●●●
●
●
●●

●

●

●
●

●

0.6 1.0 1.4

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

7 Controllers

7C Syn

7C
 A

sy
n

Mean Syn: 1.000
Mean Asyn: 1.091

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●
●
●●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●●●
●●●●●●●
●●●●
●●●●●●
●●●●
●●●●
●●●●
●●
●●
●●
●●●
●
●●●
●●
●●
●
●

●●

●

●

0.6 1.0 1.4

1.
0

1.
1

1.
2

1.
3

1.
4

8 Controllers

8C Syn

8C
 A

sy
n

Mean Syn: 1.000
Mean Asyn: 1.103

Figure 6.19: Q-Q plots of the stretch in switch-to-controller paths discovered by
each controller in Syn and Asyn modes in networks that consist of 200
switches.

protocol is executed in Syn mode is more robust, for all k controllers eval-
uated. However, as the number of controllers increases, the robustness of
the control plane is reduced independent of the protocol operation mode.
This is due to the allocation of switches to controllers. When the number of
controllers increases, the number of switches discovered per controller tends
to be reduced (as illustrated in Fig. 6.17) and therefore, the probability of a
switch to re-establish the communication to their controller is also reduced.

Note that for the highest robustness values, the lineal distribution does
not match for all number of controllers evaluated. This resulting dispersion

149

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 150 — #162

Chapter 6 Resource discovery for SDN networks

●

●

●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●

●●●●

●●

●

30 40 50

30
35

40
45

50

1 Controller

1C Syn

1C
 A

sy
n

slope: 2.0055

Mean Syn: 39.170
Mean Asyn: 39.172

●

● ●●●

●●●●

●●● ●●●●●●●●●●●●

●●●●●●●●●●●●●

●● ●●

●●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●

●●

●●●●

●

●

●

●

30 34 38

30
35

40
45

2 Controllers

2C Syn

2C
 A

sy
n

Mean Syn: 34.071
Mean Asyn: 35.073

●

● ●●●
●

●●●● ●
●●
●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●
● ●●●●●●

●
●●

●●●●●●●

●
●● ●

●

25 30 35 40

20
25

30
35

40
45

50

3 Controllers

3C Syn

3C
 A

sy
n

Mean Syn: 32.000
Mean Asyn: 32.785

●
●

●●● ●●●

●●●●●●●●●
●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●
●●
●●●●●●●

●● ●

●●●●●

●

20 25 30 35

15
20

25
30

35
40

45

4 Controllers

4C Syn

4C
 A

sy
n

Mean Syn: 29.714
Mean Asyn: 30.915

●

● ●

●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●● ●●●

●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●
●
●●●●●●

●●●●●●●●●●●●●●

●●●●

●
● ●●

20 25 30 35

10
20

30
40

5 Controllers

5C Syn

5C
 A

sy
n

slope: 2.0055

Mean Syn: 28.308
Mean Asyn: 30.045

● ●●●

●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●

●●●
●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●
●
●●●●●●●●●●●

●●●●●●●
●

●●●●●●●
●
●●●●●
●
●●●
●●

●●
●

10 20 30

20
25

30
35

40
45

6 Controllers

6C Syn

6C
 A

sy
n

slope: 2.0055

Mean Syn: 26.298
Mean Asyn: 28.729

● ●

●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●
● ●●●●●●●●●●

●
●●●●
●●●●

●

●

15 20 25 30

15
20

25
30

35
40

45

7 Controllers

7C Syn

7C
 A

sy
n

Mean Syn: 25.793
Mean Asyn: 27.955

●●

●
●● ●●●●●●●●

●
●
●
●●●●●●●●●●●●●●●●● ●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●
●●●●●●●●●●●●●●●●
●●

●●●●
●● ●●●

●●●
●●●●●
●
●

●

20 25 30

15
20

25
30

35
40

8 Controllers

8C Syn

8C
 A

sy
n

Mean Syn: 24.302
Mean Asyn: 26.908

Figure 6.20: Q-Q plots of the maximum switch-to-controller path delay found in
Syn and Asyn modes in networks that consist of 200 switches.

can be explained from the switch distribution, since controllers that execute
the protocol in Asyn mode discover a high number of switches while other
only find few switches. Even though the robustness of the control plane
in Asyn mode is not as good as that in Syn mode, the relation between
both operation mode (Syn and Asyn) is linear, since the points lie along the
straight line, in general.

Note that this metric behaves as expected. When the number of con-
trollers is reduced and the mean number of switches distributed between
controllers tends to be homogenous, the control plane is, in general, more
robust (with low dispersion) due to the fact that more switches are available,

150

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 151 — #163

6.7 Simulation and Results

●●

●●●●●●●

●●

●

●

●

●

●

●

0.000 0.003 0.006

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
1 Controller

1C Syn

1C
 A

sy
n

Mean Syn: 0.000
Mean Asyn: 0.000

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●
●
●

●
●●
●
●
●●
●
●●
●●
●●
●
●●

●
●

●

●
●●●

●
●

●
●

●

●

●

0.00 0.04 0.08

0.
0

0.
1

0.
2

0.
3

2 Controllers

2C Syn

2C
 A

sy
n

Mean Syn: 0.010
Mean Asyn: 0.075

●●●
●●●●●●
●●●●
●●
●●●●●●
●●●●●●
●●●
●●●
●●
●●●
●
●●●●
●●
●●
●●●
●●●●
●●●●
●●
●●●
●●●●●●
●●●●●●

●●
●●●
●●
●●●
●●●
●●●
●●
●●●
●●
●●
●●

●●
●●
●●
●●
●
●●●●

●
●●

●

●
●

0.00 0.15 0.30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

3 Controllers

3C Syn
3C

 A
sy

n

Mean Syn: 0.050
Mean Asyn: 0.128

●●
●●●●
●●●
●●●●●
●●
●●●
●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●
●●●●
●●●●●●●●●
●●●●
●●●
●●●
●●●●●
●●
●●●●●●●
●●●●●
●●●
●
●●●
●●
●●●
●
●●●
●●●
●●
●●
●●●

●●
●
●●●●●
●
●●
●●
●
●●

●●●●

●
●

●

0.0 0.2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

4 Controllers

4C Syn

4C
 A

sy
n

Mean Syn: 0.072
Mean Asyn: 0.146

●●
●●●●●
●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●
●●●●
●●●●●●●●●●
●●●●
●●●●●●
●●●●
●●●●●●
●●●
●●●
●●●
●
●
●
●●●●

●

●●●●
●
●●

●●
●
●

●

0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

5 Controllers

5C Syn

5C
 A

sy
n

Mean Syn: 0.121
Mean Asyn: 0.164

●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●●●
●●●●●●
●●●●
●
●●●●●●●●
●●●●●
●●●●●●
●●●●
●●●●●
●●●●●●●●
●●●
●●●●●
●●●
●●●●●●●●
●●●●●●●
●●●●
●●●●●
●●●●●●●●
●●●●
●●●●●●●

●●●
●●●●●●●●
●●●●●
●
●
●●
●●●●●●
●●●●●

●●
●●
●●
●●●
●●●
●●
●
●●●

●

●●

●
●

0.0 0.2 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

6 Controllers

6C Syn

6C
 A

sy
n

Mean Syn: 0.151
Mean Asyn: 0.177

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●
●●●●
●●●●●●●
●●●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●
●●●
●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●
●●●●●
●●
●●●
●●●●●●●
●●
●
●●
●●
●
●●●
●●●
●●●●

●
●●

●
●
●
●

●
●
●

0.0 0.2 0.4 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

7 Controllers

7C Syn

7C
 A

sy
n

Mean Syn: 0.170
Mean Asyn: 0.180

●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●
●●●●●

●●●●
●●
●●
●●●●●●

●
●●
●
●

●●

●

●

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

8 Controllers

8C Syn

8C
 A

sy
n

Mean Syn: 0.178
Mean Asyn: 0.175

Figure 6.21: Q-Q plots of the control plane robustness found in Syn and Asyn modes
in networks that consist of 200 switches.

and thus more redundant paths can be leveraged in case of switch failures.

Expected Data Loss

Fig.6.22 presents a comparison between the maximum expected data loss
from the control planes built when the protocol is executed in Syn and Asyn
modes. The expected data loss for the control planes created in Syn and
Asyn protocol operation modes is similar.

This control plane characteristic depends on the network topology (node
connectivity) and the protocol operation mode. This is because control paths
for networks with a scarce connectivity may be long in terms of hops, and

151

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 152 — #164

Chapter 6 Resource discovery for SDN networks

nodes in a control plane created for networks with a high node connectivity,
can have a high number of downstream nodes. For these cases, the expected
data loss tends to be high. For the network evaluated, the average expected
data loss is similar, since some control plane trees created in Asyn mode
have few nodes, while others have a high number of nodes. In the case
of a control plane created in Syn mode, the average switch reallocation to
controllers tends to be homogeneous, as shown in Fig. 6.17.

●

●
●●
●●●●
●●●
●●●
●●
●●
●●●●●●●
●●●●●●●
●●●●
●●
●●
●●
●●●
●●●
●●
●●
●●●●
●●●

●●●
●●●

●●●●●
●●
●●
●

●
●

●●
●

●

●

0.2 0.4 0.6 0.8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

1 Controller

1C Syn

1C
 A

sy
n

Mean Syn: 0.391
Mean Asyn: 0.356

●

●
●●
●●●●
●●●
●●●
●●
●●
●●●●●●●
●●●●●●●
●●●●
●●
●●
●●
●●●
●●●
●●
●●
●●●●
●●●

●●●
●●●

●●●●●
●●
●●
●

●
●

●●
●

●

●

0.2 0.4 0.6 0.8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

2 Controllers

2C Syn

2C
 A

sy
n

Mean Syn: 0.391
Mean Asyn: 0.356

●●●
●
●
●●●
●
●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●
●●●●●●
●●●
●●●●●●●●●●

●●●●●●●
●●●●●
●●●●●

●●●●●
●●●●

●
●●●

●●
●●
●●
●●

●

●

●
●

●
●

0.2 0.4 0.6 0.8

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

3 Controllers

3C Syn

3C
 A

sy
n

Mean Syn: 0.400
Mean Asyn: 0.336

●

●

●
●●
●●●●
●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●
●●
●●●●●
●●●●●●
●●●●●

●●●●●●
●●●●

●●
●●

●●●
●●

●
●

●
●

●●

0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

4 Controllers

4C Syn
4C

 A
sy

n

Mean Syn: 0.392
Mean Asyn: 0.343

●● ●●

●●●●
●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●
●●
●●
●●●●●●●
●●●●
●●●●
●●●●
●●●●●
●●●
●●
●

●●●●
●

●

●

●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

5 Controllers

5C Syn

5C
 A

sy
n

Mean Syn: 0.401
Mean Asyn: 0.337

●

●
●●●

●●
●
●●●●●
●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●
●●●●
●●●●●●
●●●●●
●●●●
●●●
●●●

●●
●
●●●
●●●

●

● ●

●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

6 Controllers

6C Syn

6C
 A

sy
n

Mean Syn: 0.388
Mean Asyn: 0.324

●●●●●●● ●●●●●

●●
●●
●●●●
●●●●●
●●
●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●
●●●●
●●●
●●●●●●
●●●●●●
●●●
●●●●●●●●●●
●●●
●●●●●

●

●●●

●
●
●●

●
●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

7 Controllers

7C Syn

7C
 A

sy
n

Mean Syn: 0.382
Mean Asyn: 0.311

●●●

●
●●●●●●
●●●

●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●
●●
●●●●●●
●●●●
●●●
●●●
●
●
●●●●●
●●●●
●
●●

●

●

●

●

●●
●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

8 Controllers

8C Syn

8C
 A

sy
n

Mean Syn: 0.398
Mean Asyn: 0.312

Figure 6.22: Q-Q plots of the maximum expected data loss found in Syn and Asyn
modes in networks that consist of 200 switches.

Fig. 6.23 illustrates boxplots of the maximum average expected data loss
for the control planes created when the protocol is executed in Syn and Asyn
modes.

152

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 153 — #165

6.7 Simulation and Results

From this figure, it can be deduced that the nodes in the control plane
created when the protocol is executed in Asyn mode have fewer downstream
switches compared with the control plane created when the protocol is exe-
cuted in Syn mode.

Thus, in Asyn mode the control plane has a higher switch-to-controller
delay (as shown in Fig. 6.20) but a lower node dependence (downstream
nodes), compared with the resulting control plane built in Syn mode.

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

1C
 S

yn

1C
 A

sy
n

2C
 S

yn

2C
 A

sy
n

3C
 S

yn

3C
 A

sy
n

4C
 S

yn

4C
 A

sy
n

5C
 S

yn

5C
 A

sy
n

6C
 S

yn

6C
 A

sy
n

7C
 S

yn

7C
 A

sy
n

8C
 S

yn

8C
 A

sy
n

0.0

0.2

0.4

0.6

0.8

M
ax

 E
D

L

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 6.23: Boxplots of the maximum expected data loss in networks that consist
of 200 switches. Black points indicate the mean value.

Summarizing all the evaluation, the protocol behaviour is better in Syn
mode, but it is also feasible to apply it in Asyn mode in real networks, even
with networks of high number of nodes.

Specific example: three controllers

In order to show clearly the characteristics of: i) the protocol when it is
executed in Syn and Asyn modes, and ii) the resulting control planes, the

153

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 154 — #166

Chapter 6 Resource discovery for SDN networks

SDN-RDP protocol was executed over a specific network topology that con-
sisted of 200 nodes, from which a set of three controllers were selected using
k − critical . These are controllers 13, 7 and 62. Table 6.3 presents the results
obtained when the SDN-RDP protocol is executed in Syn mode and Table
6.4 presents the results obtained when the SDN-RDP protocol is executed
in Asyn mode. In this last case, controllers were programmed to start the
protocol execution as follows: controller 7 starts at 1.54 µs, controller 13
starts at 4.1 µs and controller 62 starts at 4.37 µs.

Table 6.3: Control plane characteristics when executing the SDN-RDP protocol in
Syn mode over 100 networks that consist of 200 nodes.

Con-
troller

Time (µ
sec)

No.
Msg

No.
Switches

Max.
Delay

Mean
Delay

Robust-
ness

13 90 9 95 33 18 0.01
7 96 10 47 34 19 0.03
62 90 9 58 33 18 0.02

From Table 6.3, it can be seen that similar results are obtained for each
one of the controllers evaluated. Despite the controllers start the protocol
at the same time, controller 13 is the one that discovers the highest number
of switches and therefore build the most robust control plane. Controller
7 spent the longest time in executing the protocol, however, this is the
controller that discovers the lowest number of switches and generates the
highest number of messages over the switches. These characteristics are due
to the network topology, the SDN-RDP protocol execution mode, and the
connectivity of the switches discovered by each controller.

Table 6.4: Control plane characteristics when executing the SDN-RDP protocol in
Asyn mode over 100 networks that consist of 200 nodes.

Con-
troller

Time (µ
sec)

No.
Msg

No.
Switches

Max.
Delay

Mean
Delay

Robust-
ness

13 107 3 23 30 15 0.17
7 113 19 83 37 22 0.0
62 107 4 94 33 20 0.01

When the protocol is executed in Asyn mode, controllers need more time
to discover their partial network topology and to create their control plane
than when executing the protocol in Syn mode. It was observed that con-
troller 62 started the protocol before the time it was programmed, it starts

154

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 155 — #167

6.7 Simulation and Results

at 1.55 µs instead of 4.37 µs. It was activated through an AN message
from controller 7. Controllers that start the protocol first (controllers 13
and 7) spent the longest time in executing the protocol, discovering their
partial network topology and creating their control plane trees. These con-
trollers discover the switches that have the longest delay in the resulting
control plane. Despite that controller 62 starts the protocol after controller
7, it finds the highest number of switches. However, controller 7 builds the
most robust control plane tree. Control plane robustness not only depends
on the number of switches each controller manages, but also on the switch
connectivity.

From Tables 6.3 and 6.4, it can be seen that the protocol performance
and control plane characteristics not only depend on the network topology,
but also on the controller placements and protocol execution mode. Results
shown in these tables are coherent with the results presented previously.

• In Syn mode, the time the protocol takes to discover the network
topology is significatively less than when it is executed in Asyn mode.

• The average number of messages on each switch tends to be constant
when the protocol is executed in Syn mode. In Asyn mode, the average
number of messages on switches has a high dispersion.

• On average the switches distributed among controllers is higher and
balanced when controllers execute the protocol in a Syn manner.

• The shortest control path for all switches is found when the protocol
is executed in a Syn manner.

• Robustness not only depends on the number of switches discovered by
each controller but also on the switch connectivity.

From the results presented, it can be seen that the controllers are selected
to guarantee a switch-to-controller delay lower than 37 µs.

6.7.4 Evaluation of the scalability of the SDN-RDP protocol

In order to evaluate the scalability of the SDN-RDP protocol, a set of gen-
erated graphs of different size, 50, 100, 200 and 500 switches, are used. The
protocol is executed in Syn mode and the number of controller varies from
1 to 8.

155

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 156 — #168

Chapter 6 Resource discovery for SDN networks

SDN-RDP scalability

Fig. 6.24(a)(b) shows that networks with high connectivity (or density)
reduce the control plane creation time with respect to networks with low
connectivity. In networks with high connectivity, the number of forwarding
hops of the messages decreases because the network diameter is small. Thus,
the AN messages are quickly spread, discovering the leaf switches in few
hops.

Number of messages per switch

Fig.6.24(b) show that networks with high connectivity (or density) process
a higher number of messages per each switch than networks with low con-
nectivity, and also reduce the control plane creation time with respect to
networks with low connectivity. This behaviour can also be compared with
the protocol complexity presented in section 6.3.4. That is, as the number
of controllers increases the protocol complexity is reduced.

In networks with high connectivity, the number of forwarding hops of
the messages decreases because the network diameter is small. Thus, the
AN messages are quickly spread, discovering the leaf switches in few hops.
Networks with low connectivity reduce the message conflicts in the network,
but increase the construction time of the control plane since the diameter
is large. That is, the convergence time of the response messages to the
controller is limited by the longest delay time of all the shortest paths found.
In this scenario, for each network size, the average number of messages
on each switch remains constant even if the number of controllers is low
(Fig.6.24(a)). This is because, i) conflicts are solved using implicit response
messages and ii) IAN messages are not required as switches receive the AN
message through their shortest path.

The number of messages that switches process (forward and receive) dur-
ing the protocol execution depends on the switch connectivity, the number
of controllers in the network and the protocol execution mode (Syn or Asyn).

Controller selection

The implications of the controller selection in the SDN−RDP performance
are also evaluated. Fig. 6.25 shows the control plane creation time for
different number of controllers selected randomly (dashed lines) and using
k − Critical (solid lines). As can be seen in Fig. 6.25, the control plane
creation time required by controllers selected randomly was significantly
higher than the time spent by controller selected using k-Critical in all cases.

156

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 157 — #169

6.7 Simulation and Results

● ● ● ● ● ● ● ●5

10

15

20

25

1 2 3 4 5 6 7 8
Number of Controllers

A
vg

 N
o

of
 M

sg
 p

er
 N

od
e

●50 Nodes 100 Nodes 200 Nodes 500 Nodes

●

●

●

●

●
●

●
●

60

80

100

120

140

160

1 2 3 4 5 6 7 8
Number of Controllers

C
om

pu
ta

tio
n

T
im

e
(µ

s)

Figure 6.24: (a) Mean number of messages to create a control plane (b) Control
plane computation time. (Networks with different sizes, varying the
number of k-Critical controllers.)

As controllers selected randomly may be geographically close or far way
among them, some controllers may have more load than others, increasing
the creation time of the control plane and therefore affecting the SDN-RDP
performance.

The average number of messages on each switch, for each network size, is
slightly higher when the control plane is created by controllers selected ran-
domly, but in both cases (controller selected randomly and using k − critical)
the average number of messages remains constant on the switches.

SDN − RDP has been designed to be scalable over a wide range of net-
work sizes and operational modes (Syn and Asyn). Presented results indicate
that, for a given network, the average number of required messages to create
the control plane is invariant with respect to the number of controllers for
networks of any density when the protocol is executed in Syn mode. How-

157

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 158 — #170

Chapter 6 Resource discovery for SDN networks

ever, when the protocol is executed in Asyn mode, switches process more
messages when k ≤ 4, but when k increases the number of messages required
is less than those processed by switches in Syn mode.

60

80

100

120

140

160

180

200

220

240

260

280

1 2 3 4 5 6 7 8
Number of Controllers

C
om

pu
ta

tio
n

Ti
m

e
(µ

s)

k-Critical Random

 50 N

100 N

200 N

500 N

 50 N

100 N

200 N

500 N

Figure 6.25: Control plane computation time; CI are omitted to improve readabil-
ity. (Different number of switches, k-Critical and randomly selected
controllers.)

With respect to the control plane computation time, improvement in the
case of networks with low connectivity is only observed when multiple con-
trollers are used. However, the control plane creation time is reasonable even
when using just 1 controller. According to the evaluation, it can be deduced
that the resulting control planes deal with real network requirements for all
network sizes evaluated for both cases, Syn and Asyn modes. For instance,
the data plane fault recovery may be achieved in a scalable way within 50
ms, the time required in transport networks.

6.8 Conclusions

In this chapter a set of mechanisms was presented to discover the network
topology and maintain it updated, that includes:

1) the SDN −RDP protocol through which controllers discover the net-
work topology in a distributed way,

2) a network discovery mechanism that enables each controller to discover
the complete network topology,

158

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 159 — #171

6.8 Conclusions

3) a mechanism that reallocates switches-to-controllers is executed locally
by each controller to select the set of switches to be managed by them,

4) finally, a collaborative mechanism to maintain the network topology
updated on the control plane, where switches detect network changes
that are announced to their controllers, while the controllers with this
information are capable of discovering what the event is and updating
the network topology information on the control plane.

First, the SDN-RDP protocol distributes the network management among
k controllers, creating a control plane on top of them. The resulting local
control plane on each controller is the shortest tree, as each switch is dis-
covered by its nearest controller. Through these paths or control paths the
switches:

• announce their switch connectivity to their controller, and

• can be monitored by their controller,

Although switches are assigned to a controller taking into account the
delay, other parameters may be considered when building the control plane.
The results obtained show that the proposed protocol works efficiently on
large networks in terms of time and load. SDN-RDP is a protocol designed
to discover the SDN network topology from scratch, independently of any
communication protocol and network topology.

Second, as a result of the SDN-RDP protocol execution, each controller
has limited information about the network topology, therefore a mechanism
that enables controllers to exchange the partial network information discov-
ered is defined. This mechanism is executed locally by each controller, which
discovers from the partial network information known, a path to communi-
cate with at least one of its neighbour controllers. Each time controllers
communicate with each other they get information about the existence of at
least one controller and the neighbour controller through which it is con-
nected. Each controller asks the partial topology information from the
discovered controllers and as a result, each controller discovers the whole
network topology information.

Third, as a consequence of the asynchronous SDN-RDP protocol execu-
tion, the allocation of switches to controllers is not homogeneous (in terms
of load or delay). To get a fair switch distribution, a mechanism that re-
distributes the load on controllers is defined. This mechanism is executed
locally by each controller that discovers, based on a defined parameter, the

159

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 160 — #172

Chapter 6 Resource discovery for SDN networks

switches that each controller should manage. After computing the switch
distribution, the controllers exchange the result obtained. Ideally, the result
obtained by each controller should be the same given that all controllers
share the same network topology information.

The traditional fault detection mechanisms executed by both controllers
and switches can not be applied to maintain the network topology updated
on a control plane, because these approaches:

• were designed with a different purpose, and

• only detect that a failure has happened, but do not identify the kind
of failure and its location.

Therefore, a mechanism to keep the network topology updated has been
designed, which: i) detects network changes, ii) discovers what the event is
about, and ii) announces the events to the responsible controller.

• this mechanism uses a switch-based fault detection to discover network
changes in the network that are announced to the controller,

• a controller-based fault detection is also considered that is executed to
discover what the event is about, if this is required,

• in addition, controllers can communicate to each other events. When
a controller receives an event that is not related to the switches it
manages, it can announce this event to the responsible controller.

The set of approaches presented in this chapter to distribute and update
the network topology has several desirable characteristics:

• the ability to monitor the complete network in an efficient time,

• the detection and location of any link and switch failure in the network,

• the exclusion of controllers in the monitoring process,

• the maintenance of information on the control plane updated.

This fault detection mechanism together with the SDN-RDP protocol, can
maintain the network topology updated on the control plane.

Results presented in this chapter show that the SDN-RDP protocol is
scalable and efficient, when it is executed in both a synchronous and an
asynchronous way. There is a tradeoff between the switch-to-controller de-
lay and load balance over controllers for any kind of network topology. The

160

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 161 — #173

6.8 Conclusions

network discovery process for networks with a high connectivity takes less
time than networks with sparse connectivity. However, the number of mes-
sages required to discover a dense network is higher than in the case of
networks with a sparse connectivity.

161

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 162 — #174

162

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 163 — #175

Chapter 7

Conclusions

This manuscript has addressed some of the most challenging problems in
the management of SDNs. All the contributions are original, designed from
scratch. This means that non-existing mechanisms were adapted for their
design.

Research on SDN networks, their properties, requirements and challenges
to tackle the current operational problems in the traditional networks have
been intensively studied during years, in particular since the ONF defined the
standard in 2000. This standard is focused on the communication operations
between a centralized controller and the switches, by means of the OpenFlow
protocol.

Programmable networks like SDN have been evolved quickly, given that
these type of networks are able to manage i) the increasing heterogeneous
traffic on the network and, ii) the operation between different network tech-
nologies and network providers. SDN has been proposed as a promising
solution to solve most of the current network problems related to its man-
agement. However, it is still necessary to solve different network challenges
related to the i) controller scalability, ii) control plane robustness and, iii)
discovery of the network topology, among others. This thesis proposes a
solution for each one of these challenging topics.

In SDN paradigm, controllers play a relevant role. These are considered
as the brain of the network, provided that they program the switches and
consequently, define the network behaviour. Therefore, any aspect related
to the controller, i.e., its location with respect to switches and between
them, its capacity, traffic managed, affects the network performance. This
manuscript describes the implications of the controller placement in different
aspects, such as: setup time, recovery time and robustness.

The controller placement in a network must be selected carefully based on
not only the application requirements but also the provider requirements. It
can be assumed that a controller has enough capacity to manage the switches
and it could be located in any network place.

163

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 164 — #176

Chapter 7 Conclusions

7.1 Summary of Contributions

The main contributions of this thesis are:

• In Chapter 4, the scalability of the controller is tackled from the point
of view of the controller placement. In this chapter, a novel controller
placement approach called k − critical , has been proposed. It has been
designed to find both, the number of controllers needed to satisfy a
defined network requirement and their placement to create a robust
control plane for any kind of network topology. This approach can
be applied to find the controller location in a scalable way on any
network topology. It is because, k − critical limits the network area
where a controller is searched, reducing its complexity in terms of
number of processes and resolution time. To compare the performance
of k − critical against existing clustering solutions, such as k − center
and k − median , the k − critical algorithm has been stated and modeled
as a heuristic problem. Results obtained show that k − critical not only
is scalable but also reduces the number of controllers required when
comparing it with the aforementioned approaches.

• In Chapter 5, a robustness metric has been proposed. This metric
has been designed with two purposes, first, to measure the control
plane resilience, and second, to select the controller placement that
maximizes the control plane robustness.

Through this metric, the resilience of any control plane can be mea-
sured. To do that, the data loss is computed by considering that one
or different failures happen at the same time in the network, and mea-
suring the number of switches that are unprotected or disconnected
from their controller. It is considered that a switch is protected if it
has a backup path to the controller that is not affected by a network
failure. To build a robust control plane, this metric can be used to
evaluate the resulting control plane from the set of switches where a
controller can be installed.

The robustness of the control plane created by using the controller
placement approach proposed in Chapter II, i.e. k − critical , has been
evaluated using this robustness metric. The results obtained have
been compared with an existing solution, called Fast−Failover, pro-
posed with the goal of selecting the controller that maximizes the con-
trol plane robustness. Results obtained show clearly that k − critical
not only reduces the time resolution, but also selects the controllers

164

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 165 — #177

7.2 Further improvement of proposed contributions

that besides building robust control plane also reduce the switch-to-
controller delay. It is because, Fast − Failover limits the network
protection of a switch to failures of its parent switch and not to fail-
ures in any upstream switch, which can lead to a switch disconnection
from the controller.

• In Chapter 6, a protocol to discover the network topology in a coop-
erative way by all controllers, as well as different network mechanisms
to maintain the network topology information consistent in the con-
trol plane have been proposed, implemented and evaluated. Firstly,
a protocol called SDN − RDP executed by one or more controllers
to discover any network topology has been designed. This protocol
discovers the network topology in an efficient time because it can be
executed by several controllers in an asynchronous way, where each
controller discovers a partial network topology. In addition, this pro-
tocol uses few network resources due to control messages are forwarded
in a controlled way through the network, and each switch needs to for-
ward only one message to decide to which controller it is going to join
to. This protocol is robust given that it considers network failures can
happen during its execution.

Secondly, controller scalability and consistency of the network topology
information is considered through the design of a set of mechanisms,
which are: i) the reallocation of switches-to-controlles, ii) network de-
tection failures and, iii) updating of network topology information.

7.2 Further improvement of proposed contributions

Some of the contributions presented in this manuscript have still room for
further improvement. In Chapter 4, the k-Critical algorithm only considers
the delay and the tree topology created from the candidates switches to select
the controllers. Future work can be devoted to include other parameters
such as traffic and bandwidth, in order to avoid bottlenecks. In addition,
as part of the future work, the robustness of the data plane with respect to
the control plane should also be considered in the selection of the controller
placements. This implies to take into account the switch connectivity with
respect to multiple controllers, improving the control plane reliability.

In dynamic networks, a static switch-to-controller configuration may result
in uneven load distribution among the controllers. To address this problem,
future work can be devoted to design a distributed controller architecture in

165

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 166 — #178

Chapter 7 Conclusions

which switches can change their controller dynamically according to traffic
conditions, so that the load on the control plane can be dynamically shifted
among them.

A metric to measure the number of switches that can recover the commu-
nication to their controller has been proposed in Chapter 5. Future work
can include: i) the comparison of this metric with other existing ones and,
ii) the modification of this metric by considering several protection paths
between a switch to any controller.

The resource discovery protocol RDP-SDN presented in Chapter 6 is, to
the best of our knowledge, the first protocol to discover a SDN network
topology on the control plane. Some aspects to be considered in future
work are: i) the evaluation of this protocol in real network topologies to
have a more clear idea about its performance, ii) the implementation of this
protocol in real network devices (SDN switches) and, iii) the implementation
of the mechanisms proposed in this chapter (the reallocation of switches
to controllers, the failure detection mechanisms and the network update
mechanism).

7.3 Future Work

Apart from the aforementioned improvements to the contributions presented
in this thesis, several key challenges of the management of SDNs remain
unexplored.

The main challenge is being able to move today’s management practices
into the automation realm. The impact on the network performance when
an application requests resources from an SDN must be understood. This
is important given that SDN needs to replicate traditional functions of ca-
pacity planning, monitoring, troubleshooting, security, and other critical
management capabilities.

An incipient topic in SDN is the communication between controllers. In
a distributed control plane composed of different SDN domains, it is needed
the interaction between them to create a whole network view, negotiate
end-to-end communications, migrate load, among other functions.

Future networks will become increasingly more heterogeneous, intercon-
necting users and applications over networks ranging from wired, infras-
tructure-based wireless (e.g., cellular based networks, wireless mesh net-
works), to infrastructure-less wireless networks (e.g. mobile ad hoc networks,
vehicular networks). As mobile devices with multiple network interfaces be-
come commonplace, users will demand high quality communication service

166

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 167 — #179

7.3 Future Work

regardless of location or type of network access.
Efficient network management over wireless access networks and heteroge-

nous environments in general, will become essential, and wireless networks
may become a prevalent part of the future hybrid Internet. A major chal-
lenge for SDNs is the efficient utilization of resources, especially the case
in wireless multi-hop ad-hoc networks as the available wireless capacity is
inherently limited. The heterogeneous characteristics of the underlying net-
works (e.g., physical medium, topology, stability) and nodes (e.g., buffer
size, power limitations, mobility) also add another important factor when
considering routing and resource allocation.

167

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 168 — #180

168

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 169 — #181

Bibliography

[1] H. Farhady, H. Lee, and A. Nakao, “Software-defined networking:
A survey,” Computer Networks, vol. 81, pp. 79 – 95, 2015.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1389128615000614

[2] D. Kreutz, M. Fernando, V. Ramos, P. Veŕıssimo, C. Esteve Rothen-
berg, S. Azodolmolky, and S. Uhlig, “Software-defined networking:
A comprehensive survey,” CoRR, vol. abs/1406.0440, 2014. [Online].
Available: http://arxiv.org/abs/1406.0440

[3] K. Butler, T. Farley, P. McDaniel, and J. Rexford, “A survey of bgp
security issues and solutions,” Proceedings of the IEEE, vol. 98, no. 1,
pp. 100–122, Jan 2010.

[4] D. Tennenhouse and D. Wetherall, “Towards an active network archi-
tecture,” in DARPA Active NEtworks Conference and Exposition, 2002.
Proceedings, 2002, pp. 2–15.

[5] M. Casado, M. Freedman, J. Pettit, L. Jianying, N. Gude, N. McKeown,
and S. Shenker, “Rethinking enterprise network control,” Networking,
IEEE/ACM Transactions on, vol. 17, no. 4, pp. 1270–1283, 2009.

[6] M. Kind, F. Westphal, A. Gladisch, and S. Topp, “Split architecture:
Applying the software defined networking concept to carrier networks,”
in World Telecommunications Congress (WTC), 2012, March 2012, pp.
1–6.

[7] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, and M. Zhu, “B4: Experience with
a globally-deployed software defined wan,” in ACM SIGCOMM Com-
puter Communication Review, vol. 43, no. 4, 2013, pp. 3–14.

[8] L. Tie, T. Hwee-Pink, and T. Quek, “Sensor openflow: Enabling
software-defined wireless sensor networks,” Communications Letters,
IEEE, vol. 16, no. 11, pp. 1896–1899, 2012.

169

http://www.sciencedirect.com/science/article/pii/S1389128615000614
http://www.sciencedirect.com/science/article/pii/S1389128615000614
http://arxiv.org/abs/1406.0440

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 170 — #182

Bibliography

[9] L. Li, Z. Mao, and J. Rexford, “Toward software-defined cellular net-
works,” in Software Defined Networking (EWSDN), 2012 European
Workshop on, 2012, pp. 7–12.

[10] E. Haleplidis, K. Pentikousis, S. DenazisJ, D. Meyer, H. Salim, and
O. Koufopavlou, “Software-defined networking (sdn): Layers and ar-
chitecture terminology. rfc 7428,” 2015.

[11] O. A. working group, “Sdn architecture, onf tr-521,” 2016.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[13] D. Avri, H. S. Jamal, H. Robert, K. Hormuzd, W. Weiming, D. Lig-
ang, G. Ram, and H. Joel, “Forwarding and control element separation
(forces) protocol specification. rfc 5810 (proposed standard),” 2010.

[14] T. Limoncelli, “Openflow: A radical new idea in networking,”
Communication. ACM, vol. 55, no. 8, pp. 42–47, Aug. 2012. [Online].
Available: http://doi.acm.org/10.1145/2240236.2240254

[15] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi,
and S. Shenker, “Software-defined internet architecture: Decoupling
architecture from infrastructure,” in Proceedings of the 11th ACM
Workshop on Hot Topics in Networks, ser. HotNets-XI. New
York, NY, USA: ACM, 2012, pp. 43–48. [Online]. Available:
http://doi.acm.org/10.1145/2390231.2390239

[16] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent
updates for software-defined networks: Change you can believe in!” in
Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
ser. HotNets-X. New York, NY, USA: ACM, 2011, pp. 7:1–7:6.
[Online]. Available: http://doi.acm.org/10.1145/2070562.2070569

[17] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability
of software-defined networking,” Communications Magazine, IEEE,
vol. 51, no. 2, pp. 136–141, February 2013.

[18] Y. Jarraya, T. Madi, and M. Debbabi, “A survey and a layered taxon-
omy of software-defined networking,” Communications Surveys Tutori-
als, IEEE, vol. 16, no. 4, pp. 1955–1980, Fourth quarter 2014.

170

http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/2240236.2240254
http://doi.acm.org/10.1145/2390231.2390239
http://doi.acm.org/10.1145/2070562.2070569

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 171 — #183

Bibliography

[19] J. Manar, S. Taranpreet, S. Abdallah, A. Rasool, and L. Yiming,
“Software-defined networking: State of the art and research
challenges,” CoRR, vol. 1406-0124, 2014. [Online]. Available:
http://arxiv.org/abs/1406.0124

[20] H. Akram, G. Aniruddha, B. Pascal, S. Douglas, and G. Thierry,
“Software-defined networking: Challenges and research opportunities
for future internet,” Computer Networks, vol. 75, Part A, pp. 453 –
471, 2014. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1389128614003703

[21] A. Ian, L. Ahyoung, W. Pu, L. Min, and C. Wu, “A
roadmap for traffic engineering in sdn-openflow networks,” Computer
Networks, vol. 71, pp. 1 – 30, 2014. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1389128614002254

[22] H. Fei, H. Qi, and B. Ke, “A survey on software-defined network and
openflow: From concept to implementation,” Communications Surveys
Tutorials, IEEE, vol. 16, no. 4, pp. 2181–2206, Fourthquarter 2014.

[23] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: A
retrospective on evolving sdn,” in Proceedings of the First Workshop
on Hot Topics in Software Defined Networks, ser. HotSDN ’12.
New York, NY, USA: ACM, 2012, pp. 85–90. [Online]. Available:
http://doi.acm.org/10.1145/2342441.2342459

[24] H. Jie, L. Chuang, L. Xiangyang, and H. Jiwei, “Scalability of con-
trol planes for software defined networks: Modeling and evaluation,” in
Quality of Service (IWQoS), 2014 IEEE 22nd International Symposium
of, May 2014, pp. 147–152.

[25] R. Veisllari, N. Stol, S. Bjornstad, and C. Raffaelli, “Scalability analysis
of sdn-controlled optical ring man with hybrid traffic,” in Communica-
tions (ICC), 2014 IEEE International Conference on, June 2014, pp.
3283–3288.

[26] F. Bari, A. Roy, S. Chowdhury, Z. Qi, M. Zhani, R. Ahmed, and
R. Boutaba, “Dynamic controller provisioning in software defined net-
works,” in Network and Service Management (CNSM), 2013 9th Inter-
national Conference on, Oct 2013, pp. 18–25.

[27] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sher-
wood, “On controller performance in software-defined networks,” in

171

http://arxiv.org/abs/1406.0124
http://www.sciencedirect.com/science/article/pii/S1389128614003703
http://www.sciencedirect.com/science/article/pii/S1389128614003703
http://www.sciencedirect.com/science/article/pii/S1389128614002254
http://www.sciencedirect.com/science/article/pii/S1389128614002254
http://doi.acm.org/10.1145/2342441.2342459

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 172 — #184

Bibliography

Proceedings of the 2Nd USENIX Conference on Hot Topics in Manage-
ment of Internet, Cloud, and Enterprise Networks and Services, ser.
Hot-ICE’12, 2012, pp. 10–15.

[28] D. Erickson, “The beacon openflow controller,” in Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp.
13–18.

[29] K. Masayoshi, S. Srini, P. Guru, A. Guido, L. Joseph, v. R. Johan,
W. Paul, and M. Nick, “Maturing of openflow and software-defined
networking through deployments,” Computer Networks, vol. 61, pp.
151 – 175, 2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S138912861300371X

[30] S. Shah, J. Faiz, M. Farooq, A. Shafi, and S. Mehdi, “An architectural
evaluation of sdn controllers,” in Communications (ICC), 2013 IEEE
International Conference on, June 2013, pp. 3504–3508.

[31] K. Phemius and M. Bouet, “Openflow: Why latency does matter,” in
Integrated Network Management (IM 2013), 2013 IFIP/IEEE Interna-
tional Symposium on. IEEE, 2013, pp. 680–683.

[32] C. Andrew, M. Jeffrey, T. Jean, Y. Praveen, S. Puneet, and B. Sujata,
“Devoflow: Scaling flow management for high-performance networks,”
in In ACM SIGCOMM, 2011.

[33] S. H. Yeganeh and G. Yashar., “Kandoo: A framework for efficient and
scalable offloading of control applications,” in Proceedings of the First
Workshop on Hot Topics in Software Defined Networks, ser. HotSDN
’12. ACM, 2012, pp. 19–24.

[34] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed con-
trol plane for openflow,” in Proceedings of the 2010 Internet Network
Management Conference on Research on Enterprise Networking, ser.
INM/WREN’10, Berkeley, CA, USA, 2010, pp. 3–3.

[35] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks,” in
Proceedings of the 9th USENIX conference on Operating systems de-
sign and implementation, ser. OSDI’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 1–6.

172

http://www.sciencedirect.com/science/article/pii/S138912861300371X
http://www.sciencedirect.com/science/article/pii/S138912861300371X

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 173 — #185

Bibliography

[36] S. James, H. David, C. Egemen, J. Abdul, R. Justin, S. Marcus,
and S. Paul, “Resilience and survivability in communication networks:
Strategies, principles, and survey of disciplines,” Computer Networks,
vol. 54, no. 8, pp. 1245 – 1265, 2010.

[37] A. Schaeffer-Filho, P. Smith, A. Mauthe, and D. Hutchison, “Network
resilience with reusable management patterns,” Communications Mag-
azine, IEEE, vol. 52, no. 7, pp. 105–115, July 2014.

[38] N. Van Adrichem, B. Van Asten, and F. Kuipers, “Fast recovery
in software-defined networks,” in Third European Workshop on
Software Defined Networks, EWSDN 2014, Budapest, Hungary,
September 1-3, 2014, 2014, pp. 61–66. [Online]. Available: http:
//dx.doi.org/10.1109/EWSDN.2014.13

[39] F. Ros and P. Ruiz, “On reliable controller placements in software-
defined networks,” Computer Communications, 2015.

[40] ——, “Five nines of southbound reliability in software-defined net-
works,” in Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, ser. HotSDN ’14, 2014.

[41] M. Tatipamula, N. Beheshti-Zavareh, and Y. Zhang, “Controller
placement for fast failover in the split architecture,” 2014. [Online].
Available: http://www.google.com/patents/US8804490

[42] Y. Jiménez, C. Cervelló-Pastor, and A. Garćıa, “On the controller place-
ment for designing a distributed sdn control layer,” in Networking Con-
ference, 2014 IFIP, 2014, pp. 1–9.

[43] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-
Gia, “Pareto-optimal resilient controller placement in sdn-based core
networks,” in 25th International Teletraffic Congress (ITC), Shanghai,
China, sep 2013.

[44] H. Yannan, W. Wang, G. Xiangyang, Q. Xirong, and S. Cheng,
“Reliability-aware controller placement for software-defined networks,”
in Integrated Network Management (IM 2013), 2013 IFIP/IEEE Inter-
national Symposium on, May 2013, pp. 672–675.

[45] G. Tarnaras, E. Haleplidis, and S. Denazis, “Sdn and forces based opti-
mal network topology discovery,” in Network Softwarization (NetSoft),
2015 1st IEEE Conference on, 2015, pp. 1–6.

173

http://dx.doi.org/10.1109/EWSDN.2014.13
http://dx.doi.org/10.1109/EWSDN.2014.13
http://www.google.com/patents/US8804490

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 174 — #186

Bibliography

[46] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, “Efficient topol-
ogy discovery in software defined networks,” in Signal Processing and
Communication Systems (ICSPCS), 2014 8th International Conference
on, 2014, pp. 1–8.

[47] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Log-
ically centralized?: State distribution trade-offs in software defined net-
works,” in Proceedings of the First Workshop on Hot Topics in Software
Defined Networks, ser. HotSDN ’12. New York, NY, USA: ACM, 2012,
pp. 1–6.

[48] F. Botelho, F. Valente Ramos, D. Kreutz, and A. Bessani, “On the
feasibility of a consistent and fault-tolerant data store for SDNs,” in
Proceedings of the 2013 Second European Workshop on Software Defined
Networks, ser. EWSDN ’13. IEEE Computer Society, Oct 2013, pp.
38–43.

[49] Y. Guang, B. Jun, L. Yuliang, and G. Luyi, “On the capacitated con-
troller placement problem in software defined networks,” IEEE Com-
munications Letters, vol. 18, no. 8, pp. 1339–1342, Aug 2014.

[50] H. Yan-nan, W. Wen-dong, G. Xiang-yang, Q. Xi-rong, and C. Shi-
duan, “On the placement of controllers in software-defined networks,”
The Journal of China Universities of Posts and Telecommunications,
vol. 19, pp. 92–171, 2012.

[51] H. Yannan, W. Wendong, G. Xiangyang, Q. Xirong, and C. Shiduan,
“On reliability-optimized controller placement for software-defined net-
works,” Communications, China, vol. 11, no. 2, pp. 38–54, 2014.

[52] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proceedings of the First Workshop on Hot Topics in Soft-
ware Defined Networks, ser. HotSDN ’12, 2012, pp. 7–12.

[53] T. Ul Huque, G. Jourjon, and V. Gramoli, “Revisiting the controller
placement problem,” NICTA, Sydney, Australia, Tech. Rep., jul 2015.

[54] Z. Ying, N. Beheshti, and M. Tatipamula, “On resilience of split-
architecture networks,” in Global Telecommunications Conference
(GLOBECOM 2011), 2011 IEEE, 2011, pp. 1–6.

[55] A. Garćıa, C. Cervelló-Pastor, and Y. Jiménez, “A modular simulation
tool of an orchestrator for allocating virtual resources in sdn,” Interna-
tional Journal of Modeling and Optimization, no. 2, April 2014.

174

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 175 — #187

Bibliography

[56] A. S. da Silva, P. Smith, A. Mauthe, and A. Schaeffer-Filho,
“Resilience support in software-defined networking: A survey,”
Computer Networks, vol. 92, no. P1, pp. 189–207, Dec. 2015. [Online].
Available: http://dx.doi.org/10.1016/j.comnet.2015.09.012

[57] H. Rath, V. Revoori, S. Nadaf, and A. Simha, “Optimal controller place-
ment in software defined networks (sdn) using a non-zero-sum game,”
in World of Wireless, Mobile and Multimedia Networks (WoWMoM),
2014 IEEE 15th International Symposium on a, June 2014, pp. 1–6.

[58] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Elasticon: An elastic distributed sdn controller,” in Proceedings of
the Tenth ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ser. ANCS ’14. New York, NY, USA:
ACM, 2014, pp. 17–28. [Online]. Available: http://doi.acm.org/10.
1145/2658260.2658261

[59] ——, “Towards an elastic distributed sdn controller,” SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 7–12, Aug. 2013. [Online].
Available: http://doi.acm.org/10.1145/2534169.2491193

[60] G. Liu and C. Ji, “Scalability of network-failure resilience: Anal-
ysis using multi-layer probabilistic graphical models,” Networking,
IEEE/ACM Transactions on, vol. 17, no. 1, pp. 319–331, 2009.

[61] N. Beheshti and Y. Zhang, “Fast failover for control traffic in software-
defined networks,” in Global Communications Conference (GLOBE-
COM), 2012 IEEE, Dec 2012, pp. 2665–2670.

[62] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and
M. Hoffmann, “Heuristic approaches to the controller placement prob-
lem in large scale sdn networks,” Network and Service Management,
IEEE Transactions on, vol. 12, no. 1, pp. 4–17, March 2015.

[63] S. Rahmat, Z. Jasni, and E. Abdullah, “A comparative agglomerative
hierarchical clustering method to cluster implemented course,” CoRR,
vol. abs/1101.4270, 2011. [Online]. Available: http://arxiv.org/abs/
1101.4270

[64] V. Yazici, M. O. Sunay, and A. O. Ercan, “Controlling a software-
defined network via distributed controllers,” in Proceedings of the Con-
ference on Implementing Future Media Internet Towards New Horizons,

175

http://dx.doi.org/10.1016/j.comnet.2015.09.012
http://doi.acm.org/10.1145/2658260.2658261
http://doi.acm.org/10.1145/2658260.2658261
http://doi.acm.org/10.1145/2534169.2491193
http://arxiv.org/abs/1101.4270
http://arxiv.org/abs/1101.4270

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 176 — #188

Bibliography

ser. 2012 NEM SUMMIT. Heidelberg, Germany: Eurescom GmbH,
Oct 2012, pp. 16–22.

[65] H. Yin, H. Xie, T. Tsou, D. Lopez, P. Aranda, and R. Sidi,
“SDNi: A Message Exchange Protocol for Software Defined
Networks (SDNS) across Multiple Domains,” Internet Draft, Internet
Engineering Task Force, June 2012. [Online]. Available: http:
//tools.ietf.org/id/draft-yin-sdn-sdni-00.txt

[66] A. Sallahi and M. St-Hilaire, “Optimal model for the controller place-
ment problem in software defined networks,” Communications Letters,
IEEE, vol. 19, no. 1, pp. 30–33, Jan 2015.

[67] A. Dekker and B. Colbert, “Network robustness and graph topology,” in
Proceedings of the 27th Australasian Conference on Computer Science
- Volume 26, ser. ACSC ’04. Australian Computer Society, Inc., 2004,
pp. 359–368.

[68] J. Rohrer, A. Jabbar, and J. Sterbenz, “Path diversification for
future internet end-to-end resilience and survivability,” Telecom-
munication Systems, vol. 56, no. 1, pp. 49–67, May 2014.
[Online]. Available: https://cdn.jprohrer.org/documents/publications/
Rohrer-Jabbar-Sterbenz-2012.pdf

[69] J. Sterbenz, D. Hutchison, E. Çetinkaya, A. Jabbar, R. Justin,
S. Marcus, and S. Paul, “Redundancy, diversity, and con-
nectivity to achieve multilevel network resilience, survivability,
and disruption tolerance (invited paper),” Springer Telecom-
munication Systems Journal, 2012, (accepted April 2012).
[Online]. Available: https://cdn.jprohrer.org/documents/publications/
Sterbenz-Hutchison-Cetinkaya-Jabbar-Rohrer-Scholler-Smith-2012.
pdf

[70] [Online]. Available: www.opennetworking.org

[71] F. Andrade, A. Neves Bessani, F. Ramos, and P. Ferreira, “Smartlight:
A practical fault-tolerant SDN controller,” CoRR, vol. abs/1407.6062,
2014. [Online]. Available: http://arxiv.org/abs/1407.6062

[72] D. Peleg., Distributed Computing: A Locality-Sensitive Approach. So-
ciety for Industrial and Applied Mathematics, 2000.

176

http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt
http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt
https://cdn.jprohrer.org/documents/publications/Rohrer-Jabbar-Sterbenz-2012.pdf
https://cdn.jprohrer.org/documents/publications/Rohrer-Jabbar-Sterbenz-2012.pdf
https://cdn.jprohrer.org/documents/publications/Sterbenz-Hutchison-Cetinkaya-Jabbar-Rohrer-Scholler-Smith-2012.pdf
https://cdn.jprohrer.org/documents/publications/Sterbenz-Hutchison-Cetinkaya-Jabbar-Rohrer-Scholler-Smith-2012.pdf
https://cdn.jprohrer.org/documents/publications/Sterbenz-Hutchison-Cetinkaya-Jabbar-Rohrer-Scholler-Smith-2012.pdf
www.opennetworking.org
http://arxiv.org/abs/1407.6062

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 177 — #189

Bibliography

[73] L. Shuai, W. Hua, Y. Shanwen, and F. Zhu, “Ncpso: A solution of the
controller placement problem in software defined networks,” in Algo-
rithms and Architectures for Parallel Processing, vol. 9530, 2015, pp.
213–225.

[74] E. Borcoci, R. Badea, S. Georgica, and M. . Vochin, “On multi-
controller placement optimization in software defined networking-based
wans,” in ICN 2015 : The Fourteenth International Conference on Net-
works, 2015, pp. 261–266.

[75] [Online]. Available: http://groups.geni.net/geni/wiki/
OpenFlowDiscoveryProtocol

[76] U. Kozat, G. Liang, and K. Kokten, “On diagnosis of forwarding
plane via static forwarding rules in software defined networks,”
CoRR, vol. abs/1308.4465, Aug 2013. [Online]. Available: http:
//arxiv.org/abs/1308.4465

[77] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and P. Skold-
strom, “Scalable fault management for openflow,” in Communications
(ICC), 2012 IEEE International Conference on, June 2012, pp. 6606–
6610.

[78] Y. Jiménez, C. Cervelló-Pastor, and A. Garćıa, “Defining a network
management architecture,” in Network Protocols (ICNP), 2013 21st
IEEE International Conference on, 2013, pp. 1–3.

[79] S. Schmid and J. Suomela, “Exploiting locality in distributed sdn con-
trol,” in Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, ser. HotSDN ’13. ACM, 2013,
pp. 121–126.

[80] J. McCauley, A. Panda, M. Casado, T. Koponen, and S. Shenker, “Ex-
tending sdn to large-scale networks,” Open Networking Summit, pp.
1–2, 2013.

[81] M. Bastian, S. Heymann, M. Jacomy et al., “Gephi: an open source
software for exploring and manipulating networks.” ICWSM, vol. 8,
pp. 361–362, 2009.

[82] Y. Jiménez, C. Cervelló-Pastor, and A. Garćıa, “Dynamic resource dis-
covery protocol for software defined networks,” IEEE Communications
Letters, vol. 19, no. 5, pp. 743–746, 2015.

177

http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol
http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol
http://arxiv.org/abs/1308.4465
http://arxiv.org/abs/1308.4465

“Thesis˙Yury˙Final” — 2016/5/31 — 7:28 — page 178 — #190

178

	List of Figures
	List of Tables
	I Network Management Fundamentals and State of the Art
	1 Introduction
	1.1 Goals of the thesis
	1.2 Structure and Overview

	2 Network Management Fundamentals
	2.1 Outline
	2.2 Traditional networks
	2.3 Sofware Defined-Networking (SDN)
	2.3.1 Definition
	2.3.2 Network elements
	2.3.3 SDN Architecture

	2.4 Communication protocols
	2.4.1 OpenFlow
	2.4.2 ForCEs

	2.5 Recovery
	2.6 Network Protocols
	2.6.1 Link Layer Discovery Protocol (LLDP)
	2.6.2 The Bidirectional Forwarding Detection (BFD)

	2.7 Conclusions

	3 Review of the state of the art
	3.1 Outline
	3.2 Challenges in SDNs
	3.2.1 Scalability
	3.2.2 Control plane resilience
	3.2.3 Consistency of the network information over controllers

	3.3 Controller placement
	3.4 A controller placement taxonomy
	3.4.1 Static vs. Dynamics
	3.4.2 Robustness vs. Unprotected
	3.4.3 Assumptions vs. Real network conditions

	3.5 Computing the optimal controller placements
	3.5.1 Main controller placement objectives
	3.5.2 Optimization strategies

	3.6 Controller placement metrics
	3.6.1 Metric related to the network performance
	3.6.2 Metric related to control plane scalability
	3.6.3 Metric related to control plane robustness

	3.7 A classification of the controller placement approaches
	3.8 Network discovery
	3.8.1 Network discovery based on OpenFLow protocol
	3.8.2 Network discovery based on ForCES protocol

	3.9 Network topology consistency
	3.9.1 Fault detection in SDN networks

	3.10 Conclusions

	II Contributions to the SDN management
	4 Discovering controller placement in SDN networks
	4.1 Outline
	4.2 Controller placements and its implications
	4.3 Shortcomings of existing controller placement approaches
	4.4 K-Critical
	4.4.1 Definitions
	4.4.2 Problem formulation
	4.4.3 Candidate switch selection
	4.4.4 Controller placement selection
	4.4.5 Complexity analysis

	4.5 Heuristic Algorithm for k-Critical
	4.5.1 Fault-Tolerant SDN controllers
	4.5.2 An example

	4.6 Comparison of Controller placement approaches
	4.6.1 k-Median problem
	4.6.2 k-Center problem
	4.6.3 Evaluation and results
	4.6.4 Analysis

	4.7 Conclusions

	III Contributions to build a robust control plane in SDN
	5 Evaluation of control plane robustness
	5.1 Outline
	5.2 Network Resilience in SDN
	5.2.1 Backup Control Paths

	5.3 Control plane resilience metrics
	5.4 Fast Failover
	5.5 Towards a network robustness metric
	5.5.1 Robustness as generalized switch protection

	5.6 Evaluation
	5.6.1 k-Critical and the restriction to k=1
	5.6.2 A Note on Complexity

	5.7 Simulation and Results
	5.7.1 Setup
	5.7.2 Results

	5.8 Conclusions

	6 Resource discovery for SDN networks
	6.1 Outline
	6.2 Network management in SDN
	6.2.1 Formulation

	6.3 Resource Discovery Protocol
	6.3.1 Forwarding Phase (FP)
	6.3.2 Backward Phase (BP)
	6.3.3 Partial network topology discovered by each controller
	6.3.4 Protocol complexity

	6.4 Network topology discovery by controllers
	6.4.1 Finding a path between controllers

	6.5 Allocation of switches to controllers
	6.5.1 Re-distribution of switches-to-controllers

	6.6 Updating the network topology
	6.6.1 Detecting network topology changes
	6.6.2 Principles to update the network topology
	6.6.3 Discovering network events and updating the network topology information

	6.7 Simulation and Results
	6.7.1 Evaluation
	6.7.2 Protocol evaluation in Syn mode
	6.7.3 Protocol evaluation in Asyn mode
	6.7.4 Evaluation of the scalability of the SDN-RDP protocol

	6.8 Conclusions

	7 Conclusions
	7.1 Summary of Contributions
	7.2 Further improvement of proposed contributions
	7.3 Future Work

	Bibliography

