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Abstract 

The goal of this research was to determine the relations between processing, structure and 

properties of polycarbonate-graphene nanoplatelets (PC-GnP) foams. Using two different foaming 

processes (in one and two steps) using supercritical carbon dioxide (scCO2) as a physical foaming 

agent, a series of foams were prepared and investigated.  The effects of processing variables (P, T 

and time) and the materials composition (% GnP) on the cellular morphology, microstructure and 

properties of the foams were investigated. The addition of GnP promoted cell nucleation in PC, 

allowing the preparation of foams with a broad range of relative densities, varying from 0.07 to 

0.80, with average cell sizes ranging from a few to hundreds of micrometers. Changes in PC 

microstructure during processing in the presence of CO2 and GnP were investigated as well as the 

variation of the thermal stability of the foams. At the microstructural level, the foams prepared in 

two steps (typical foaming temperature of 165 ºC) the foams remained amorphous, while the foams 

prepared in one step with typical foaming temperatures above 200 ºC, developed a degree of 

crystallinity. The thermal stability of the foams was observed to be higher when compared with the 

thermal stability of the unfoamed material, attributed to the thermal insulator effect of the cellular 

structure. In addition, the presence of GnP delayed the diffusion of gaseous products due to the 

barrier effect. These enhancements suggest the use of these foams in higher temperatures when 

compared with PC. The influence of density, morphology and microstructure on the mechanical and 

transport properties of the foams was analyzed. Regarding the viscoelastic properties of foams, it 

was observed different linear relations in terms of their storage modulus with density, depending on 

the density, composition and cellular morphology. The crystallinity in the foams prepared in one 

step allow to explain the stiffer nature when compared with the foams prepared in two steps, 

regardless of their comparatively smaller cell densities and larger cells. Regarding the electrical 

conductivity, in addition to the content of conductive nanoparticles, the effect of the cellular 

structure on the electrical conductivity of the foams was evident. The enhancement of conductivity 

while reducing the relative density of foams, suggesting the formation of a more effective 

conductive network, resulting from a better dispersion and/or distribution of nanoparticles when 

increasing the expansion ratio. This effect was also observed in the electromagnetic interference 

(EMI) shielding properties. In the case of the thermal conductivity, it was mainly controlled by 

foam densities, while the cellular morphology of foams had a smaller impact. It was observed a 

reduction of 90 % in density of pure PC promoted a reduction in thermal conductivity of 80 % 

approximately. The addition of a small fraction (0.5 wt%) of GnP promoted up to 95% 

enhancement of the thermal conductivity as compared to pure PC foams with similar relative 
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densities. This was attributed to a better thermal conductivity through the solid fraction with GnP. 

The addition of higher GnP contents (5 wt%) led to foams with thermal conductivities similar to 

that of the unfoamed composite (5 wt%). These results suggest the use of PC-GnP foams could be 

considered for applications where dissipation of heat is needed while using lightweight materials. 
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Resumen 

Este trabajo fue llevado a cabo con el objetivo de determinar las relaciones entre procesado, 

estructura y propiedades de los nanocompuestos espumados de policarbonato con nanoparticulas de 

grafeno (PC-GnP). Se prepararon e investigaron series de espumas producidas según dos procesos 

diferentes de espumación (proceso en una etapa y en dos etapas) usando dióxido de carbono 

supercrítico (scCO2) como agente físico de espumación. Se analizaron los efectos de las variables 

del proceso (presión, temperatura y tiempo) y de la composición del material (% GnP) sobre la 

morfología, estructura y propiedades de las espumas. La incorporación de GnP favoreció la 

nucleación celular en el polímero, permitiendo preparar espumas con un amplio rango de 

densidades relativas, entre 0.07 y 0.80, con tamaños celulares promedio de entre unos pocos 

micrómetros hasta varios cientos. Se investigaron, asimismo, los cambios microestructurales 

desarrollados por el PC durante el procesado en presencia de scCO2 y GnP, así como la variación de 

la estabilidad térmica de las espumas. A nivel estructural, en el caso de espumación llevada a cabo 

en dos etapas (Temperatura típica de espumación 165 ºC) las espumas no desarrollaban 

cristalinidad, mientras que las espumas producidas directamente en una etapa, con temperatura 

típica de espumación superior a 200 ºC, presentaban un grado de cristalinidad. La estabilidad 

térmica de las espumas resultaba superior a la del material no celular, debido al efecto aislante de la 

estructura celular. Asimismo, las nanopartículas GnP limitaban la difusión de los productos 

gaseosos por efecto barrera. Ello sugiere, para estas espumas, eventuales aplicaciones de mayor 

temperatura que las del propio PC. Por otra parte, con respecto a las propiedades termomecánicas 

de las espumas, se encontraron diferentes relaciones entre los valores del módulo de 

almacenamiento con la densidad, dependiendo de la densidad, composición y morfología celular. 

Asimismo, la cristalinidad desarrollada en las espumas producidas en el proceso de una etapa, 

permitió explicar su mayor rigidez frente a las producidas en dos etapas, a pesar de tener menores 

densidades celulares y superiores tamaños de celda. Por lo que respecta a la conductividad eléctrica, 

además de la concentración de partículas conductoras GnP, se evidenció la influencia de la 

estructura celular de la espuma como una característica relevante sobre dicha propiedad. Así, se 

puso de manifiesto el aumento de la conductividad al disminuir la densidad relativa de las espumas, 

sugiriendo una red de conducción eléctrica más efectiva, que resultaría de una mayor dispersión y/o 

mejor distribución de las partículas al aumentar el grado de espumación. Este efecto se pudo 

observar sobre las propiedades de protección frente a la interferencia electromagnética (EMI-SE). 

En el caso de la conductividad térmica, esta fue determinada principalmente por la densidad relativa 

de las espumas y, en menor medida, por su morfología celular. Así, una disminución del 90 % en la 
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densidad del material conllevó una reducción de la conductividad térmica de un 80% 

aproximadamente. De igual modo, una fracción másica tan pequeña como un 0.5 % de GnP 

promovió hasta un 95% de incremento de conductividad térmica en espumas de similar densidad. El 

efecto se atribuye a una mejor conducción de la fase sólida que contiene las partículas GnP. En este 

sentido, las espumas con contenidos de GnP del 5 % en peso, manifestaron conductividades 

térmicas del mismo orden que las del compuesto no celular sin espumar. Estos resultados sugieren 

eventuales aplicaciones para las espumas de PC-GnP donde se requiera disipación de calor con 

materiales ligeros. 
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1.1 Introduction. 

 

This thesis is written in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy in the Department of Ciència dels Materials I Enginyeria Metal.lúrgica (CMEM) of the 

Universitat Politècnica de Catalunya - BarcelonaTech (UPC). Most of the research activities were 

carried out in the facilities of the Centre Català del Plàstic (CCP) in Terrasa, Barcelona, Spain. In 

addition, as a partial fulfillment for the “International Doctorate certification” part of the research 

was carried out under the collaboration agreement of doctoral student mobility in the Department of 

Materials Science at Rensselaer Polytechnic Institute (RPI) in New York, USA. 

 

This work is a continuation of the research conducted at the CCP, specifically by the research 

group developing new lightweight polymeric composites led by Prof. José Ignacio Velasco. 

Currently one of the focuses of the research group is to develop multifunctional polymer foams. As 

the trend moves for lighter weight materials in the aerospace, electronic and transportation 

industries, the importance of research in this area is growing exponentially. The goal of this thesis is 

to contribute with novel research to the scientific community’s knowledge in this field. The general 

objective of this thesis is to contribute to the development of novel cellular composites by 

combining polymeric foam characteristics with nanosized materials such as graphene nanoplatelets 

(GnP) to achieve improved polycarbonate (PC) matrix properties in conjunction with weight 

reduction. The relationship between the processing conditions, cellular morphology and final 

properties will be discussed. The following section will display in more detail the objectives of this 

work.   

 

The structure of this thesis is based on a compilation of published articles from the research 

carried out during the past 6 years. The articles have been published in international journals in the 

field of research related to this thesis (i.e. peer-reviewed), in addition to proceedings of international 

conferences attended, as indicated later in section 1.2. The publications included in the body of this 

thesis have been grouped in chapters covering fundamental topics such as the morphology of the 

cellular structures, microstructure, thermal and mechanical behaviors characterization of the 

different foams prepared, as well as characterization of multifunctional properties such as transport 

(electrical and thermal conductivities) and electromagnetic interference protection. Each chapter is 

preceded by an opening introductory section explaining the objective of the articles, the hypothesis 
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established, the theories used and the main conclusions as it will be detailed in the following 

section.  

 

1.2 Overview and objectives.  

 

This thesis addresses the preparation and characterization of different morphologies and final 

properties of Polycarbonate foams and Polycarbonate/graphene nanoplatelets nanocomposite foams. 

The idea comes from the opportunities that industries such as aerospace, automotive, electronics 

and construction currently offer when looking for lighter materials with different characteristics and 

functionalities that can substitute materials currently in used. With this in mind, the main hypothesis 

of choosing an engineering polymer such as Polycarbonate with a broad use in today’s industry, 

which could be able to be foamed under high temperatures and pressures with minimum 

degradation and still have a decent mechanical behavior, was chosen to be the candidate. The 

second hypothesis was that the addition of carbon-based fillers such as graphene nanoplatelets 

could be used as a driver in order to aim the enhancing of mechanical behavior of foams while 

adding possible new functionalities to the developed materials, taking into consideration the 

characteristics of these fillers (i.e. transport, aspect ratio, stiffness that will be discussed in the 

following sections). In general, it would be expected that developing new polycarbonate systems 

will provide PC with a broad range of new characteristics and multi-functionalities that will enable 

it to have better chances when competing for a position in the race of lightweight materials in 

today’s industry.  

 

Particularly, the main and principal objective of this work is to analyze, correlate and 

understand the effects of processing on the cellular morphology, microstructure and final 

properties of polycarbonate and polycarbonate-graphene nanoplatelets foams. The study has 

been divided in two focused-objectives in order to display targeted goals. The focused-objectives 

take into account firstly, the analysis of foaming processing and its effect on cellular 

morphology, microstructure and final properties of foams. Secondly, the analysis of the 

presence of graphene nanoplaletes effect on the characteristics of composite foams. This has 

been displayed in such a way, taking into consideration that the understanding of the neat system 

(pure PC foams) needs to be addressed in order to later be able to understand the more complex 

system when graphene nanoparticles are part of it (polymer-gas-filler). The addition of this type of 

carbon filler has been focused in the one hand on the possible effect that the filler will have on the 
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cellular morphology and microstructure of the foams, and in the other hand, the effects that it will 

have on the final properties property of the foams, while at the same time targeting new 

multifunctional characteristics, which will promote a broader range of new applications for these 

lightweight systems.  

 

These two focused-objectives are at the same time divided into more specific goals, allowing 

the display of results, analyses and correlations to take place in a clear, coherent and explicit 

manner. The following listing shows the different analyses and correlations carried out aiming to 

target very specific objectives. This enables a concise display of results, promoting the correlation 

and understanding of the different variables linked to different characteristics and properties of the 

prepared foams: 

 

1. Correlate foaming process parameters with the final cellular morphology, microstructure 

and final properties of the developed foams taking into consideration: 

1.1 The use of industrial-scalable processes to prepared foams. 

1.2 Variations of process parameters to develop different cellular morphologies. 

1.3 Varying process parameters to control the microstructure of foams. 

1.4 Process and morphology’s influence on the final properties of foams: 

1.4.1 On the viscoelastic behavior. 

1.4.2 On the thermal stability. 

1.4.3 On the thermal conductivity 

 

2. Analyze the effect of the presence of graphene nanoparticles on the morphology, 

microstructure and final properties of the nanocomposite foams taking into consideration: 

2.1 The use of industrial-scalable processes to achieve a good dispersion of graphene 

nanoplatelets in Polycarbonate. 

2.2 The effect of the incorporation of different contents of graphene nanoplatelets on the 

CO2 diffusion. 

2.3 The effect of the incorporation of different contents of graphene nanoplatelets on cellular 

morphologies. 

2.4 Influence of the process parameters and incorporation of graphene nanoplatelets on the 

final properties of nanocomposite foams: 

2.4.1 On the viscoelastic behavior. 
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2.4.2 On the thermal stability. 

2.4.3 On the electrical conductivity. 

2.4.4 On the thermal conductivity. 

2.4.5 On the electromagnetic interference shielding effectiveness. 

 

In this Chapter (Chapter 1) in addition to the introduction and objectives, the overview of the 

thesis is displayed; briefly introducing the contents of each chapter and presenting the structure of 

the thesis. Subsequently the chapter closes with the state of the art of the thesis. 

 

Chapter 2 describes the materials used in this work, including the processes used for sample 

preparation and the characterization techniques utilized. Sample preparation includes the 

manufacturing of the foam precursors by means of melt mixing and compression-molding. For the 

preparation of foams with a broad range of densities, two different foaming processes were used; 

they are explained in detail in this chapter. Subsequently the description of the different 

characterization techniques used is displayed. 

 

In Chapter 3, the study of the cellular morphology of PC and composite foams are presented 

along with their respective carbon dioxide desorption behavior. This chapter displays the 

characterization of the cellular structures by means of SEM analysis. In addition, the effects of the 

different processing parameters on the cellular morphology displayed are analyzed.  This chapter is 

presented in the form of published papers in international journals and conferences proceedings, 

preceded by a preliminary introduction as mentioned before. In chapter 3 a total of four papers are 

presented, two papers regarding the preparation of PC-based foams using a one-step foaming 

process (one for pure PC foams and the other for PC/GnP foams) and the other two regarding the 

foams prepared by the two-step foaming process. 

 

Chapter 4 focuses on the analysis of the effect of carbon dioxide and the combination of 

carbon dioxide - graphene nanoplatelets on the microstructure of PC during processing. In this 

section, techniques such as Raman spectroscopy, atomic force microscopy (AFM), wide angle and 

small angle X-Ray scattering (WAXS and SAXS) were employed to perform qualitative and 

quantitative analyses of polymer microstructure changes during processing in the presence of 

carbon dioxide and graphene nanoplatelets. In another section, this chapter compares the thermal 

stabilities of the PC foams and nanocomposites foams where the effect of the presence of graphene 
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nanoplatelets was analyzed. Similarly, the composite foams are studied and their different thermal 

stabilities are discussed and related to the dispersion of graphene nanoplatelets resulted from the 

different foaming parameters and processes used (i.e. 1- and 2-step foaming processes). For this aim 

thermogravimetric analyses in both nitrogen and air atmospheres are carried out including scanning 

electron microscopy imaging for graphene particles observation. Finally the effects of different 

cellular structures, process parameters, and the presence of graphene nanoparticles on the 

viscoelastic properties of PC and PC-GnP composite foams are discussed. The different mechanical 

behaviors of the foams prepared by one and two-step foaming processes were examined by means 

of dynamic mechanical thermal analysis.   

 

In Chapter 5, the electrical conductivity of the nanocomposite foams is revised by means of 

DC electrical resistance measurements. The different graphene nanoplatelets dispersion degrees 

were demonstrated when the electrical conductivity was enhanced for some of the nanocomposite 

foams. Also the AC electrical conductivity was measured along with the electromagnetic shielding 

effectiveness of the nanocomposite foams. Graphene nanoplatelets observation was supported by 

transmission electron microscopy imaging analysis. Additionally this chapter focuses on the thermal 

conductivity characterization of PC foams and PC/graphene composite foams prepared by means of 

one and two-step foaming processes. Thermal conductivities were measured implementing a steady 

state one-dimensional heat conduction method, while transmission electron microscopy revealed the 

graphene nanoplatelets dispersion/exfoliation within the material.  

 

Lastly, Chapter 6 displays a general discussion and summarizes the conclusions of the 

polycarbonate/graphene nanocomposite foams study. In addition, this chapter provides future 

research activities suggestions.   

 

The information of the publications presented in this thesis is displayed in table 1.1. The 

different sections of the thesis where the articles are included are also indicated. Table 1.2 shows 

the list of conferences where the research carried out during this thesis was presented both as oral 

presentations and posters. In addition, it is shown whether the presentation was subsequently 

published in the conference proceedings or special issues of journals, indicating if the publication is 

part of the thesis or complementary/collaboration work. The publications not included in this thesis 

are presented in table 1.3, some of which were carried out not as a fundamental part of the thesis but 

related to the preparation and characterization of polymeric composites and composite foams. 
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Table 1.1. Publications included in this thesis. 

International publications Chapter 
Authors: G. Gedler, M. Antunes, V. Realinho, J.I. Velasco. 
Title: Characterization of polycarbonate foam structure prepared by one-step sc-CO2 
dissolution process. 
Journal: Proceedings of the 10th International Conference on Foam Materials & 
Technology-SPE-FOAMS 2012. 

3 

Authors: G. Gedler, M. Antunes, V. Realinho, J.I. Velasco. 
Title: Novel polycarbonate-graphene nanocomposite foams prepared by CO2 
dissolution. 
Journal: IOP Conf. Series: Materials Science and Engineering 31 (2012) 012008. 

3 

Authors: G. Gedler, M. Antunes, J.I. Velasco. 
Title: Polycarbonate foams with tailor-made cellular structures by controlling the 
dissolution temperature in a two-step supercritical carbon dioxide foaming process 
Journal: The Journal of Supercritical Fluids. 2014;88(0):66-73. 

3 

Authors: G. Gedler, M. Antunes, J.I. Velasco. 
Title: Effects of graphene nanoplatelets on the morphology of polycarbonate–
graphene composite foams prepared by supercritical carbon dioxide two-step foaming 
Journal: The Journal of Supercritical Fluids. 2015;100:167-74. 

3 

Authors: G. Gedler, M. Antunes, J.I. Velasco. 
Title: Graphene-induced crystallinity of bisphenol A polycarbonate in the presence of 
supercritical carbon dioxide 
Journal: Polymer. 2013;54(23):6389-98. 

4 

Authors: G. Gedler, M. Antunes, V. Realinho, J.I. Velasco. 
Title: Thermal stability of polycarbonate-graphene nanocomposite foams. 
Journal: Polymer Degradation and Stability. 2012;97(8):1297-304. 

4 

Authors: G. Gedler, M. Antunes, J.I. Velasco. 
Title: Low density polycarbonate-graphene nanocomposite foams produced by 
supercritical carbon dioxide two-step foaming. Thermal stability. 
Journal: Composites Part B: Engineering. 2016; 92:299-306. 

4 

Authors: G. Gedler, M. Antunes, J.I. Velasco. 
Title: Viscoelastic properties of polycarbonate-graphene nanoplatelets nanocomposite 
foams.  
Journal: Composites Part B: Engineering. 2016;93:143-52.  

4 

Authors: G. Gedler, M. Antunes, J.I. Velasco. 
Title: Enhanced electrical conductivity in graphene-filled polycarbonate 
nanocomposites by microcellular foaming with sc-CO2.  
Journal: J. of Adhesion Science and Technology. 2016;30(9):1017-29. 

5 

Authors: G. Gedler, M. Antunes, T. Borca-Tasciuc, J.I. Velasco, R. Ozisik 
Title: Effects of graphene nanoplatelets and cellular morphology on the thermal 
conductivity of polycarbonate/graphene lightweight composites.  
Journal: European Polymer Journal. 2016; 75:190-9. 

5 

Authors: G. Gedler, M. Antunes, J.I. Velasco, R. Ozisik. 
Title: Enhanced electromagnetic interference shielding effectiveness of 
polycarbonate/graphene composites foamed using supercritical carbon dioxide by a 1-
step process.  
Journal: Materials and Design. 2016; 90:906-14. 

5 
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Authors: G. Gedler, M. Antunes, J.I. Velasco, R. Ozisik. 
Title: Electromagnetic shielding effectiveness of polycarbonate/graphene 
nanocomposite foams processed in 2-steps with supercritical carbon dioxide.  
Journal: Materials Letters. 2015; 160:41-4. 

5 

 

The research group developing multifunctional foams at the CCP is continuously working 

on different projects simultaneously; therefore the research productivity is highly efficient. Table 

1.2 list the works presented at different conferences in the form of posters and oral presentations 

throughout the almost 6 years of this thesis. As mentioned before, some of these research works 

were published in conference proceedings or special issues of journals afterwards. It needs to be 

pointed out that two of the publications in conference proceedings were included in this thesis as a 

basis of subsequent research. These publications show the morphological characterization of the 

cellular structure for the different foams prepared as can be seen in the previous table.  

 

Some of the articles from the research in this thesis and others in collaboration with different 

projects within the research on multifunctional foams were published; however they were not 

included in this thesis. These are listed on table 1.3. 

 

Table 1.2. List of presentations at conferences 

Communications at conferences. Section 
Authors: G. Gedler, M. Antunes, V. Realinho, J.I. Velasco. 
Title: Novel polycarbonate-graphene nanocomposite foams prepared by CO2 
dissolution. 
Conference: 6th EEIGM International Conference on Advanced Materials Research. 
Nancy, France, 2011. 
Presented as: Poster 

* 

Authors: G. Gedler, M. Antunes, V. Realinho, J.I. Velasco. 
Title: Characterization of polycarbonate foam structure prepared by one-step sc-CO2 
dissolution process. 
Conference: 10th International Conference on Foam Processing and Technology - 
FOAMS 2012. Barcelona, Spain, 2012) 
Presented as: Poster 

* 

Authors: M. Antunes, G. Gedler, V. Realinho, J.I. Velasco. 
Title: The influence of nanoparticles on the thermal-mechanical properties of 
polymeric foams. 
Conference: XXIX Encuentro del Grupo Español de Fractura. Bilbao, Spain, 2012. 
Presented as: Poster 

** 

Authors: M. Antunes, G. Gedler, M. Mudarra, J.I. Velasco. 
Title: Multifunctional nanocomposite foams based on polypropylene with carbon 
nanofillers. 
Conference: 14th International Conference on Blowing Agents and Foaming 

** 
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Processes. Berlin, Germany, 2012. 
Presented as: Oral Presentation. 
Authors: G. Gedler, M. Antunes, V. Realinho, J.I. Velasco. 
Title: Influence of graphene nanoparticles on the thermal stability of polycarbonate 
nanocomposite foams.  
Conference: 7th MoDeSt Conference. Prague, Czech Republic, 2012. 
Presented as: Oral Presentation. 

** 

Authors: G. Gedler, M. Antunes, V. Realinho, A.B. Martínez, J.I. Velasco.  
Title: Combined effects of sc-CO2 and graphene nanoparticles on the crystallinity of 
bisphenol A polycarbonate. 
Conference: Third International Symposium Frontiers in Polymer Science. Sitges, 
Spain, 2013. 
Presented as: Poster. 

 

Authors: M. Antunes, V. Realinho, G. Gedler, D. Arencón, J.I. Velasco. 
Title: Diffusion of CO2 in polymer nanocomposites containing different types of 
carbon nanoparticles and nanoclays for solid-state microcellular foaming 
applications.  
Conference: 9th International Conference on Diffusion in Solids and Liquids– 
DSL‐2013. Madrid, Spain, 2013. 
Presented as: Oral Presentation. 

** 

Authors: G. Gedler, M. Antunes, M. Sánchez-Soto, M.Ll. Maspoch, J.I. Velasco. 
Title: Two-step supercritical carbon dioxide dissolution foaming of bisphenol A
polycarbonate: Effects of the heating stage parameters on foam characteristics. 
Conference: 9th International Conference on Diffusion in Solids and Liquids– 
DSL‐2013. Madrid, Spain, 2013. 
Presented as: Poster. 

 

Authors: M. Antunes, V. Realinho, G. Gedler, D. Arencón, J.I. Velasco. 
Title: Graphene in multifunctional polymeric materials. 
Conference: II Jornada Internacional de Innovaciones Técnicas en Plásticos. 
Barcelona, Spain, 2013. 
Presented as: Oral presentation. 

 

Authors: G. Gedler, M. Antunes, V. Realinho, J.I. Velasco. 
Title: Comportamiento mecánico dinámico de espumas de policarbonato.  
Conference: XXXI Encuentro del Grupo Español de Fractura. San Lorenzo del 
Escorial, Spain, 2014. 
Presented as: Oral Presentation. 

** 

Authors: G. Gedler, M. Antunes, J.I. Velasco. 
Title: Graphene nanoplatelets as multifunctional fillers for polymer foams.  
Conference: International conference on Diamond and Carbon Materials. Madrid, 
Spain, 2014. 
Presented as: Oral Presentation. 

 

Authors: G. Gedler, M. Antunes, D. Rende, L.S. Schadler, J.I. Velasco, R. Ozisik. 
Title: Microstructural characteristics of polycarbonate/graphene nanocomposite 
foams. 
Conference: 12th International Conference on Foam Materials and Technology – 
FOAMS 2014. New Jersey, USA, 2014. 
Presented as: Oral Presentation. 

** 

* Published in conference proceedings and included in this thesis (Table 1.1).  
**Published in the conference proceedings/special issue not included in this thesis (Table 1.3). 
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Table 1.3. Other publications not included in this thesis. 

Other publications 
Authors: M. Antunes, G. Gedler, J.I. Velasco. 
Title: Multifunctional nanocomposites foams based on polypropylene with carbon nanofillers. 
Journal: Journal of Cellular Plastics. 49 (3): 259-79, 2013. 
Authors: M. Antunes, V. Realinho, G. Gedler, D. Arencón, J.I. Velasco. 
Title: Diffusion of CO2 in polymer nanocomposites containing different types of carbon 
nanoparticles for solid-state microcellular foaming applications. 
Journal: Journal of Nano Research. 26: 63-74, 2014. 
Authors: Marcelo Antunes, Gabriel Gedler, Hooman Abbasi, José Ignacio Velasco. 
Title: Graphene Nanoplatelets as a Multifunctional Filler for Polymer Foams. 
Journal: Materials Today: Proceedings, Volume 3, Supplement 2, 2016, Pag S233-9. 

 

1.3 State of the art. 

 

Polycarbonate as an engineering thermoplastic. 
 

Polycarbonate (PC) is one of the most versatile engineering polymers due to its attractive 

combination of mechanical properties, low moisture absorbency, transparency, toughness and good 

dimensional and thermal stability [1]. Its amorphous nature makes polycarbonate attractive for 

optical applications [2]. Aromatic polycarbonates derived from Bisphenol A are particularly 

interesting because of their useful aforementioned properties; attributable to Bisphenol A’s rigid 

molecular structure [3-6]. Polycarbonates also offer excellent moldability and extrudability, good 

fire resistance and high dimensional stability, and are useful in a wide range of industrial 

applications [7-8]. Other properties such as modulus, dielectric strength and tensile strength are 

comparable to other amorphous thermoplastics at similar temperatures below their respective glass 

transition temperatures (Tgs). However, while most amorphous polymers are stiff and brittle below 

their Tg values, polycarbonate retains its ductility and impact resistance below its Tg values 

(~150oC) [7]. Although Polycarbonate is well known as an amorphous polymer, it has been shown 

that it can crystallize under certain conditions. In 1966 Bonart [9] published a study which 

characterized the crystalline structure of Polycarbonates. More recently, Sohn et al. [10] studied 

PC’s multiple melting behavior, and found the presence of primary and secondary crystals. Zhai et 

al. [11] also showed the crystallinity of PC, in this case in the presence of supercritical Carbon 

Dioxide (scCO2) that acted as a plasticizer displaying the double melting behavior previously 

observed by Sohn. Other solvents have been used to induce crystallization in PC. Fan et al. [12] 
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used acetone in PC and observed the double melting behavior of PC crystals. Therefore, the 

processing of PC has to be taken into account in order to control its microstructure.  

 

Graphene as multifunctional material. 

 

In the past few years, graphene (the basic building block of all graphitic forms of carbon [13] 

consisting of an isolated single atomic layer of graphite, an ideal realization of such a two-

dimensional system [14]) has attracted a great deal of attention due to its incorporation into polymer 

matrices for development of graphene-based composites [15]. Because graphene displays high 

mechanical properties (Young modulus of 1 TPa and breaking strength of 40 N/m [16]), the 

addition of a filler with such impressive mechanical properties would be expected to lead to 

significant improvements in the mechanical properties of the host polymer matrix [17]. In addition, 

graphene’s excellent transport properties makes it suitable for developing conductive 

nanocomposites, which could be useful for electronic applications [18]. Graphene synthesis has 

been widely reported, however it is still not easy to prepare graphene monolayer in large quantities. 

Graphene monolayers are often prepared by different methods such as micromechanical cleavage 

(repeated peeling/exfoliation) of small mesas of highly oriented pyrolytic graphite [19], by chemical 

vapor deposition (CVD) [20], by chemical oxida- tion-reduction methods , by epitaxial growth on 

SiC [21], by plasma deposition techniques [22], chemical conversion [23], unzipping carbon 

nanotubes [24] among others. The use of a few layers of graphene or graphene nanoplatelets (GnP) 

and graphene oxide is commonly used in polymeric composites for multifunctional properties 

purposes. Zhu et al. [25] prepared graphene oxide by exfoliation and dispersion in propylene 

carbonate by bath sonication. Qi et al. [26] prepared graphene platelets by a one-step thermal 

exfoliation and reduction of graphite oxide, subsequently they prepared PS/Graphene composites by 

solution mixing and compressing-molding. They reported the formation of a conduction network 

thus promoting an enhanced electrical conductivity for the PS/graphene composites. Rafiee et al. 

[27] prepared few-layered graphene sheets by firstly oxidizing graphite in a solution of sulfuric 

acid, nitric acid, and potassium chlorate obtaining graphite oxide, then thermal exfoliation of 

graphite oxide took place by rapid heating (>2000 oC min-1). The graphene was solution mixed with 

PMC (1-octadecanol (stearyl alcohol)) composite  exhibiting an enhanced thermal conductivity 

[28]. They also prepared epoxy/graphene by unzipping MWCNT. The composites with 0.3% 

weight fraction of nanofillers exhibited 30% increase of Young’s modulus as compared to its 

MWCNT composite counterpart. Ramanathan et al. [29] prepared PMMA/graphene composites by 
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solution mixing. The resulting composites demonstrated that reduced particle size, high surface 

area, and increased surface roughness can significantly alter the graphene/polymer interface and 

enhance the mechanical, thermal, and electrical properties of the polymer matrix. 

 

Polycarbonate composites. 

 

Polycarbonate has been widely used for composites applications. Fillers such as nanoclays, 

carbon nanofibers (CNF), carbon nanotubes (CNT) including single-walled carbon nanotubes 

(SWCNT) and multi-walled carbon nanotubes (MWCNT) are the most common fillers used in 

Polycarbonate composites. Yoon et al. [30]  prepared PC/organoclay composites by extrusion. The 

composites exhibited tactoids structures containing intercalated polymer. Increments in modulus 

were attributed to partially exfoliated platelets within PC. Lee et al. [31] prepared PC/natural 

montmorillonite by extrusion. Increment in dynamic moduli was attributed to an increase in the 

surface area of dispersed and partially exfoliated layered silicates as the concentration of fillers was 

increased. Hsieh et al. [32] investigated the effect of clay loading on the mechanical behavior and 

melt state linear viscoelastic properties of intercalated PC nanocomposites. They reported that at 

low frequency the linear dynamic oscillatory moduli data revealed diminished frequency 

dependence with increasing nanoclay loading. The nanocomposites also exhibited a significant 

decrease in the extent of tensile elongation and ductility with respect to the nanoclay incorporation. 

Nayak et al. [33] prepared PC/layered silicate nanocomposites by melt blending technique followed 

by injection molding. Morphological observation revealed that the organoclay platelets were 

exfoliated thus the mechanical and thermal behavior of PC matrix was enhanced for 3 wt.% of 

fillers content. In the case of PC/CNF composites there is a wide range of publications [34]. Higgins 

et al. [35] prepared PC/CNF composites by in situ polymerization and subsequently compression-

molded. The composites exhibit an electrical conductivity percolation threshold of 6.3 wt% and an 

increase in thermal stability of 40 oC as the CNF loading increases from 0 to 9 wt%. Kumar el al. 

[36] prepared PC composites adding carbon nanofibers (CNF) by solution mixing. The composites 

exhibit a 282% increment of the storage modulus at 165 oC as compared to pure PC. In addition an 

enhanced DC electrical conductivity (up to 10-2 S/m for 3 wt.% of CNFs) was attributed to the well 

dispersed fillers. CNTs are one of the most common fillers used in PC composites [37-44]. 

Potschke et al [45] prepared PC composites with different amounts of multiwalled carbon 

nanotubes (MWNT) by melt mixing, they reported an excellent dispersion observed by TEM and an 

electrical percolation of MWNT between 1and 1.5 wt%. Pande et al. [38] prepared PC/MWCNT 
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using solvent casting and a combination of solvent casting and compression molding techniques for 

electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding applications. 

Composite films at 20 wt% loading reached 43 dB in the X-band (8.2–12.4 GHz). The primary 

mechanism of shielding was absorption, suggesting possible use as an EMI absorbing material. By 

using low pressure in compression molding the EMI shielding properties of bulk composites (2 mm 

thickness) improved by about 14 dB at 10 wt% MWCNT loading. More recently, Bautista-Quijano 

et al. [46] prepared PC/MWCNT composites by melt mixing and subsequently prepared 

monofilament fibers by melt spinning with conductive properties, finding that piezoresistivity 

effects could be characterized only for fibers with MWCNT amounts of 3 wt% or higher.  Koratkar 

et al. [47] prepared PC/SWCNT composites by a solution mixing. The loss modulus increased with 

the addition of 2% weight fraction of oxidized single-walled nanotube fillers. They showed that the 

increase in damping was derived from frictional sliding at the nanotube-polymer interfaces. The 

nanosize of CNTs resulted in large interfacial contact area, generating high damping efficiency. 

 

The addition of nanosized ceramics to PC also has been used allowing tailoring of its properties 

such as thermomechanical and optical. The incorporation of ceramic fillers such as alumina and 

silica (silicon dioxide) has been reported. Hanemann et al. [48] reported the impact of nanosized 

alumina to PC. The composites were prepared by extrusion. The refractive indices of the 

polycarbonate-alumina-composites increased with increasing filler content attributed to 

nanoparticles agglomeration. Although the Young’s modulus remained almost constant, the impact 

strength as well as the glass transition temperature were reduced with increasing nanofiller content 

attributed to polymer degradation. However the agglomeration of fillers could have been one of the 

causes of the deterioration of those properties. Hakimelahi et al. [49] reported the preparation of 

transparent nanocomposite films fabricated by blending a concentrated nanocomposite formed by 

in-situ polymerization of polycarbonate in the presence of alumina nanowhisker with PC. 

Functionalization of alumina nanowhisker enhanced tensile properties (Young’s modulus and 

tensile strength) relative to the pure polycarbonate and blends produced with raw alumina 

nanowhisker, attributed to the interaction between polymer matrix and fillers during 

polymerization. The use of other ceramic fillers has been attempted. Motaung et al. [50] prepared 

PC/silica nanocomposites with different silica quantities by melt mixing. The addition of 1 wt.% 

silica content showed a decrease in the storage and loss moduli below the glass transition 

temperature, attributed to plasticization effect. However, an increase in the amount of silica 

increased the moduli. The presence of silica in PC slightly increased the thermal stability, except for 
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high (5 wt.%) silica content which showed a decrease. Yang et al. [51] prepared PC/silica by single-

screw extrusion. The composites exhibited improved mechanical performance, thermal stabilities 

(up to 30 oC) and flammability behavior according to vertical burning tests, attributed to strong 

interfacial interactions and good particle dispersion.  

 

Polycarbonate/graphene composites. 

 

Polycarbonate as a thermoplastic material, which has been the subject of extensive research due 

to its potential use in applications such as a matrix for advanced composite material seems to be one 

of the ideal candidates for the development of graphene-based polymer composites. Recently, 

Polycarbonate composites containing graphene have been recommended for applications that 

require the combination of good transport and mechanical properties. Because of the 

aforementioned properties of graphene, this is considered a good candidate to give multifunctional 

properties to polymeric matrices such as PC. However, there is still a lack of studies regarding 

PC/graphene composites. Kim et al. [52] prepared PC/graphene composites by means of 

conventional melt-compounding and injection molding, and reported enhanced electrical 

conductivity compared to the pure PC, reaching values of 10-9 S/m for composites containing 

approximately 2 wt.%  of graphene. Composite properties were influenced by both dispersion and 

orientation of graphene particles. King et al. [53] prepared polycarbonate/graphene composites by 

extrusion followed by injection molding from a commercial masterbatch.  They reported electrical 

resistivity values of 2.8x104 ohm-cm, a thermal conductivity of 0.48 W/m.K and a tensile modulus 

of 5.9 GPa at 15 wt% of graphene, finding enhanced properties when compared to pure PC, which 

was attributed to the presence of conductive and stiffer fillers. Yoonessi et al. [54] prepared 

PC/graphene composites with 0.14 vol.% of graphene by the emulsion method. They also prepared 

composites by solution mixing followed by compression molding (0.38 Vol.% graphene), and 

reported electrical conductivities of 10-7 S/m. This was attributed to the improved dispersion of the 

graphene particles, promoted by the emulsion preparation method. Potts et al. [55] stated to present 

the first report of polymer composites using microwave-exfoliated graphite oxide (MEGO). They 

produced PC/MEGO composites at various loadings and evaluated their morphology and properties. 

The composites showed significant increases in electrical conductivity, with an onset of electrical 

percolation around 1.3wt% of MEGO. They reported the improvements in stiffness while 

rheological measurements suggested an onset of connectivity percolation (2.1 wt.%). Jun et al. [56] 

prepared nanocomposites of PC/graphene (0.5 wt.%) by solution mixing and reported that the 
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rheology of PC can be modified by the addition of small graphene content. They stated that 

graphene can be utilized as a flow modifier for PC in various applications such as polymer 

composites and a coating process.  

 

Polycarbonate foams. 

 

Polymeric materials and Polycarbonate in particular are widely used in many important 

applications, including appliances, electronics, packaging and vehicles components, to name a few. 

By reducing the weight of polymeric materials via inducing the formation of a cellular structure, the 

range of potential applications broadens. Polymeric foams, characterized by their exceptional 

lightness, have become increasingly prominent in industrial applications in which weight is a key 

factor [57]. Both the volume of material used and weight of foams is extremely low, and may be of 

immense benefit to industries such as transportation and aerospace, in which costs are driven by 

power and fuel usage. A significant weight reduction in materials could lead to remarkable 

reductions in energy and cost.  

 

The preparation of thermoplastic polymeric foams is mainly carried out by chemical and 

physical foaming [58-59]. In this thesis the foaming process considered is physical foaming. In 

which different gases can be used as physical blowing agents. Nitrogen (N2) and Carbon Dioxide 

(CO2) are two of the most common gases used as blowing agents [60-62]. In this research, carbon 

dioxide is selected as the blowing agent due to its combination of chemical inertness, non-

flammability and mild supercritical conditions (Tc = 31 ºC, Pc = 7,38 MPa) [63], and its well 

known plasticizing effect in a remarkable number of thermoplastics including Polycarbonate [63-

65], which facilitates ease of the foaming process. Another advantage of using CO2 as a physical 

blowing agent is that the cell structure may be controlled through the processing temperature and 

pressure, enabling optimization of the foam properties [66]. Because it is known that foaming 

reduces the mechanical properties of the solid base materials, an evenly distributed micrometric-

sized closed cell structure is desirable in order to counteract the effect of foaming on decrementing 

the mechanical behavior of the base polymer [67].  

Since  microcellular foams were developed in the early 1980s [68], different preparation 

techniques have emerged. For instance, the batch foaming process [69-70] (which is the technique 

used in this work), the extrusion foaming [61, 71] and injection molding foaming (Mucell®) [72-75] 
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are the most common. These techniques induce the thermodynamic instability needed for nucleation 

and growth of cells to take place [76], the so called foaming. In the batch process [69], gases 

(blowing agents) are dissolved into the polymer commonly under high pressure and temperature. 

The thermodynamic instability is then caused when the pressure is dropped, causing foaming to 

occur. In the extrusion process [61], the gas is introduced to the polymer melt. Subsequently when 

the material leaves the extruder, a rapid pressure drop causes foaming. Similarly, in the injection 

molding foaming process [73-74], the gas is added to the melt polymer while traveling through the 

screw. When the mix gas/polymer enters the mold, the pressure drop induces foaming. As a 

variation of the batch foaming process, the so-called solid-state foaming process [77] uses low 

temperatures and low pressures (below Tg) to dissolve the gases into the polymers, using a batch 

process in which the sample does not leave the solid/rigid phase during the blowing agent 

dissolution. Then a thermodynamic instability is caused when the sample is heated generally in a 

hot bath inducing the thermal instability needed for foaming. 

 

Polycarbonate foams have been prepared using the aforementioned foaming processes [78-81]. 

For Instance, PC foams with cell sizes ranging from 1 to 10 m were prepared by extrusion and the 

solid-state method, producing foams with high cell densities but lacking both small cells and low 

foam density [77, 79]. Lee et al. [82] reported the development of high cell density PC foams with 

low densities by extrusion, however the presence of open cells content was detected, which could 

be detrimental for the final mechanical properties of the PC foams. On the other hand, Mascia et al. 

[78] reported the preparation of closed-cells PC foams using a batch foaming process, which 

produced foams with cell sizes ranging from 20 to 40 m. Although, the densities of foams were 

not reported, the development of crystalline structures in PC foams measured by Wide angle X-ray 

scattering (WAXS) and differential scanning calorimetry (DSC) was reported, revealing the effect 

of the foaming process on the PC microstructure. This process could be advantageous in terms of 

mechanical properties. 

 

Polycarbonate composite foams. 

 

Current trends focus on improving the specific mechanical response of PC microcellular foams 

while adding functional properties and taking into consideration both the material’s composition 

and cellular structure control [83]. Producing cellular structures with smaller and uniform cell sizes 

is necessary to improve the specific mechanical properties.  A common solution to this problem is 
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the use of fillers that act as nucleation sites, helping all cells nucleate simultaneously after rapid 

depressurization. These fillers could be considered heterogeneous nucleating agents [84] and 

depending on their characteristics, may also act as nanoreinforcements and add multifunctional 

characteristics to the composite foam [85].  

 

Fillers such as clay particles have been incorporated into PC foams looking for mechanical 

and gas barrier properties enhancements. Mitsunaga et al.[86] prepared PC/clay nanocomposites, 

reporting that intercalation of clay particles had a nucleation effect, displaying smaller cell sizes as 

compared to the pure PC foams. This remarkably enhanced the mechanical properties of the 

composites when compared to PC without clay. Ito et al. [87] investigated the influence of clay 

loading to the morphology of PC/clay foams, they reported that the dispersion of clay particles 

hinder CO2 diffusion under a low saturation CO2 pressure (10 MPa) by creating a more tortuous 

path. While at higher saturation pressures a large population of cell nuclei formed upon 

depressurization, changing the cellular morphology from microcellular (20 m) to nanocellular 

(600 nm). They stated that the incorporation of nanoclay induced heterogeneous nucleation because 

of a lower activation energy barrier compared with homogeneous nucleation. Polycarbonate foams 

with other types of fillers such as fiber glass, silica and wood fibers have been study and patented 

[88-89]. 

 

Carbon fillers such as carbon nanofibres (CNF) and carbon nanotubes (CNT) have been 

used in polymeric composites foams to enhance not only the mechanical properties of the foams but 

also the transport properties [70, 83, 90]. In the case of Polycarbonate, Monnereau et al. [91] 

prepared PC/MWCNT composite foams by means of melt mixing and compression-molding 

followed by solid state foaming (saturating with CO2 and then heated to induce foaming). They 

produced foams with densities down to 0.65 g/cm3, cell sizes of 2 to 30 m and cell densities of 

1011 cells/cm3 for 2 wt.% MWCNT content. In addition 20% crystallinity induced after the process 

was reported.  

 

Polymer/graphene composite foams. 

 

More recently graphene nanoplatelets have attracted a great deal of interest due to their high 

theoretical properties and particularly flat morphology [13, 17]. The fact that graphene not only 

displays high mechanical properties [16], but also excellent transport properties [18] suggests that 
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graphene nanoplatelets may be a good candidate for adding multifunctional properties to 

lightweight composite foams. Currently, the application of graphene in the field of nanocomposites 

is increasing rapidly [17, 92-93]. Thus, the combination of its favorable properties with its good 

thermal stability could lead to the development of polymer nanocomposites foams with specific 

tailored properties. 

 

It has been shown that Polycarbonate has an excellent affinity for carbon dioxide, enabling 

relatively high solubility and rates of diffusion compared to other gas-polymer systems. 

Microcellular Polycarbonate presents a very uniform, homogeneous cellular structure with many 

desirable properties [94]. This affinity might induce changes in the Polycarbonate microstructure 

particularly in the presence of an inorganic phase such as graphene nanoplatelets. Microstructural 

changes could lead to effects on cellular morphology, as well as thermal, mechanical and transport 

properties of the final foams. It has also been found that in all foams, foam density is the primary 

structural variable that governs mechanical behavior [95]. Therefore, a detailed understanding of 

how foam density, cell sizes and microstructure of polymers are affected by different processing 

conditions is necessary before a full evaluation of the mechanical, thermal and transport properties 

of a given microcellular system can be completed.  

 

A full understanding of polymeric foams filled with graphene nanoplatelets remains evasive, 

mainly due to their multiphase nature, a direct result of the combination of a complex developed 

cellular structure and polymer microstructure [96]. The influence of the foaming conditions has 

been considered in order to decrease cell size while incorporating inorganic functional fillers [97].  

 

Despite increasing interest in the preparation and characterization of polymer nanocomposite 

foams, investigation into the dynamic mechanical thermal behavior of these materials remains 

scarce. For instance, the effective mechanical reinforcement effect of graphene nanoplatelets in PP 

foams prepared by CO2 dissolution foaming was reported [85], which was related to a 

homogeneous cellular structure with high cell densities. 

 

Generally, the addition of graphene nanoplatelets to polymer foams has proven beneficial not 

only with regard to mechanical properties but also for multifunctional properties. Antunes et al. [83] 

recently showed that physical foaming using supercritical carbon dioxide may further enhance the 

electrical conductivity of composites containing conductive carbon-based nanofillers while 
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lowering their density. This was attributed to an improved dispersion of the nanofillers and 

preferential orientation within cell walls during foaming, promoting an efficient interconnected 

conductive network throughout the material [83, 98-99]. The enhanced electrical conductivity of 

polymer/graphene nanocomposite foams has been reviewed for polymers such as PMMA [99] and 

PVDF [100]. Ultimately, these systems exhibit enhanced electromagnetic interference shielding 

properties [101]. In addition, Ling et al. [102] reported the electrical conductivity of PEI/graphene 

nanocomposite foams, which was 10-5 S/cm for 10 wt.% of graphene content. This was 

advantageous for electromagnetic interference shielding effectiveness (EMI SE) that took place 

throughout absorption (10dB) of the electromagnetic waves in the X-band (~8-12 GHz). This 

electromagnetic interference consists of many unwanted radiated signals which can cause 

unacceptable degradation of system or equipment performance, a consequence of the increasing 

complexity of electronic devices/systems in the form of higher packing density for quick response 

[103]. The EMI shielding effectiveness of a material measures the ability to attenuate 

electromagnetic waves [104]. Electromagnetic interference protection is required for applications in 

electronics, aerospace and any industry that requires protection for electronics. The development of 

polymeric nanocomposite foams with EMI shielding properties provides an opportunity to replace 

conventional metals that exhibit disadvantageous characteristics such as high densities, easy 

corrosion and costly processing. 

 

Regarding thermal conductivity of polymeric foams, only few studies have used the addition of 

carbon fillers into cellular composite materials for thermal conductivity characterization. Antunes et 

al. [105] studied the thermal conductivity behavior of PP-CNF composite foams. The fillers were 

not efficient in increasing the thermal conductivity of composites, and the resulting value was 

independent of CNF’s volume fraction. Because graphene displays a thermal conductivity at room 

temperature of 3000 W/mK [106], is suitable for the preparation of thermally conductive cellular 

composites. Verdejo et al. [107] reported the enhancement of 6% of thermal conductivity of silicone 

foams with 0.25 wt. % of graphene nanoplatelets. Yan et al. [108] prepared rigid polyurethane foam 

(RPUF) nanocomposites based on graphene. They reported that changes in the thermal conductivity 

of the nanocomposites were negligible. Due to the lack of studies regarding thermal conductivity 

behavior of thermoplastic/graphene composite foams, this topic is studied in this thesis.  
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Polycarbonate/graphene composite foams. 

 

More recently, Ma et al. [109] prepared PC/graphene oxide (GO) and PC/graphene 

nanocomposites by solution mixing, then foaming by saturating with CO2 and immersion in a 

preheated hot oil bath to induce cell nucleation and growth. They reported cell sizes of the order of 

a few micrometers (up to 5 m) and cell densities of the order of 1011 cell/cm3. Enhanced electrical 

conductivity of the composite foams was observed, nanocomposite foams exhibited similar or even 

higher electrical conductivity in comparison to their solid counterparts for PC/GO foams. 

Additionally, for PC/graphene, a slight decrease in electrical conductivity after foaming was 

observed, perhaps due to the high interaction between particles enabling a better dispersion within 

the matrix.  

  

The ability to produce a family of Polycarbonate/graphene foams provides an opportunity to 

explore the effect of process parameters on the morphology and microstructure of nanocomposite 

foams, as well as the multifuctional properties of these cellular materials. 
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2.1 Materials 

 

Nowadays polymers composites are widely used in many important applications such as 

appliances, electronics, packaging and in components for automotive and aerospace industries. It is 

very important to know the main characteristics of the materials used for the composite preparation 

and understand the processes carried out for such preparation.  

This chapter focuses on presenting the main characteristics of primary materials used in this 

thesis, the processing and the experimental techniques used for the characterization of these 

materials.  

 

2.1.1. Polycarbonate Bisphenol A (PC) 

 

Polycarbonate (PC) is a thermoplastic polyester with excellent mechanical and thermal 

properties, due to its high tenacity today it is considered one of the toughest polymers at room 

temperature and exhibits a fairly high glass transition temperature (Tg) [1]. This engineering 

thermoplastic is commonly found in a fully  amorphous state, presenting transparency and heat 

resistance as characteristic properties [2]. 

Polycarbonate used to be obtained from the reaction of a di-hydroxyl compound such as 

Bisphenol A and phosgene. Figure 2.1 shows the molecular structure of PC. An alternative method 

to obtain PC is through the ester exchange between a di-hydroxyl compound and a carbonic acid 

diester. 

 

Figure 2.1. Structure of Polycarbonate Bisphenol A.  

The most widely used polycarbonates are Bisphenol-A based polycarbonate (i.e.,aromatic 

polycarbonates), however aliphatic polycarbonates do exist as previously mentioned. In the present 
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study, only Bisphenol-A polycarbonate has been used so sample nomenclature from now on will be 

PC for Bisphenol-A polycarbonate. 

Commercial PC Lexán 123R from Sabic was used in this work; its main characteristics are 

presented in table 2-1. 

 

Tabla 2.1. Main characteristics of PC Lexan 123 R de Sabic 

Company Sabic.  

General characteristics High stiffness and fairly tenacy over  140ºC 

Material PC Bisphenol A 

Typical properties 

Physical properties Method Value Unit 

MFI (300ºC,1.2 Kg) 
ASTM D 

1238 
17.5 g/10 min 

Density @ 73 ºF ASTMD792 1.2 g/cm3 

Water absorption 24hr ASTMD570 0.15 % 

Electricla properties Method Value Unit 

Volumetric resistivity ASTM D 257 >1015 Ohm*cm 

Mechanical properties Method Value Unit 

Yield stress ASTM D 638 61.4 MPa 

Ultimate tensile strength ASTM D 638 64.8 MPa 

Yield strength ASTM D 638 7 % 

Breaking strain ASTM D 638 110 % 

Young modulus ASTM D 790 2337.3 MPa 

Impact Izod (notch-depth 1/8 in)  ASTM D 256 0.722 KJ/m 
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2.1.2   Graphene nanoplatelets (GNP) 

 

Graphene is considered a novel material with excellent multi-functional reinforcement 

characteristics, for making versatile new nanocomposites for nanotech applications. Due to its 

excellent mechanical and electronic properties graphene is called to be the candidate both for 

scientific and technological perspectives [3-4]. Graphene is the basic building block of all graphitic 

forms of carbon, as for example graphite (Fig. 2.2a). Graphene consists of a single atomic layer of 

sp2 hybridized carbon atoms arranged in a honeycomb structure as shown in Figure 2.2b. Graphene 

as just one atom thick, thus considered a 2D crystal, presents outstanding mechanical properties 

with a Young modulus of 1 TPa and breaking strength of 40 N/m [5], as well as good thermal 

properties with a thermal conductivity at room temperature of 3000 W/mK [6]. Besides these 

interesting and exciting physical properties such as high levels of stiffness, strength, and thermal 

conductivity, graphene also presents impermeability to gases having the well known barrier effect 

[7]. As a consequence graphene opens up to a large number of applications, electronic circuits [8], 

sensors [9], photovoltaic conversion due to its excellent charge carrier mobility and large specific 

surface area [10] among others. In addition it has been said that one obvious application of 

graphene is in the field of nanocomposites [3, 11-12]. 

 

 

Figure 2.2. a) Graphite structure, b) Graphene structure. 

 

Graphene as a single layer (SLG) is currently considered a filler with enormous potential for 

a variety of applications, including use in composite materials. However, taking into consideration 

that the production of graphene as a single layer (SLG) is currently quite expensive and still not 

produced on a large scale, we have decided to use an intermediate filler between graphite (as more 

than 100 layers of stacked graphene) and graphene (SLG). These rigid layered nanofillers not only 
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reinforced the matrix but also enabled us to study the changes that the processes in the presence of 

the fillers induced, during the preparation of lightweight composites.  

 

The fillers used in this study were commercial stacks of graphene nanoparticles (GnP) (from 

now on graphene nanoplatelets) supplied by XG Sciences, Inc. These xGnP-Grade-M nanoplatelets 

are 6 to 8 nm thick with a 15 m average diameter, a typical surface area of 120-150 m2/g and a 

density of 2.2 g/cm3, as reported by the manufacturer.  

 

A continuous characterization of these graphene nanoplatelets was carried out after each 

process that the materials went though. Starting from its original state (as supplied), continuing with 

the characterization of the unfoamed composites (PC-GnP) after having melt-mixed, compression-

molded and finishing after being foamed with the foamed composites (PC-GnP-f) under different 

processing conditions. 

 

2.1.3   Carbon dioxide (CO2) 

 

Since the use of many foaming agents has been banned due to environmental reasons, the use of 

carbon dioxide as a foaming agent has increased taking into consideration that it has an easily 

attainable critical point (Tc=31.1ºC, Pc=73.8 bar) [13], meaning that these parameters represent the 

highest pressure and temperature at which gaseous and liquid CO2 can coexist in equilibrium, above 

the critical point CO2 remains in a single phase. In addition, properties such as density, viscosity 

and diffusion coefficients can be tuned by changing its pressure and temperature, which provides it 

with plasticizing characteristics during polymer processing. It also has been shown that its low 

toxicity, variable density, low viscosity, low surface tension, high levels of solubility/easy removal 

in typical polymer systems make carbon dioxide an ideal candidate as a foaming agent for the 

preparation of microcellular foams [14-17]. 

 

2.2 Sample preparation 

 

2.2.1   Melt compounding 

 

The content of absorbed water in the PC pellets was minimized by drying them in an oven at 

110 °C at least for 3 hours before melt processing. Right after, the PC + 0.5, 2 and 5 wt% graphene, 
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so-called for now on PC-05GnP, PC-2GnP and PC-5GnP respectively, were physically mixed and 

melt blended, using a Brabender Plasti-Corder counter-rotating twin screw melt mixer. 

The mix was prepared by placing the material in the internal mixer for 2 min at a 

temperature of 180 ºC and rotating screw speed of 30 rpm. The rotating speed was then increased to 

60 rpm and 120 rpm for 1 and 3 min, respectively.  

 

Table 2.2. Melt mixer main characteristics 

Brabender Plastic-Corder W 50 EHT 

Characteristic Value 

Capacity 55 cm3 

Torque Max 200 N.m 

Maximum working temperature 500 ºC 

   

2.2.2   Compression molding 

  

 For the neat polycarbonate samples preparation, PC pellets were first dried in an oven at 110 

°C for at least 3 hours before being directly compress-molded into PC discs. For the composites, 

Polycarbonate and graphene nanoplatelets were melt mixed, pelletized and immediately 

compression-molded. Neat PC and pelletized composite material were compression-molded at 220 

ºC and 45 bar in a hot-plate press (IQAP LAP PL-15) to discs with a thickness of 3.5 mm and 

diameter of 74 mm in 3 steps. In the first step the upper hot plate was used to melt the mixed 

material by slowly lowering the upper plate at a temperature of 220 ºC. The second step consisted 

in allowing air to escape the material by pulsating the upper plate in an up and down motion using a 

pressure of 45 bar and a temperature of 220 ºC during 1.5 min. For the third step the material was 

pressed continuously for 1 min at 220 ºC and 45 bar. Lastly, the mold with the sample still inside 

was left to cool for 15 min in the cooling station of the press applying a constant pressure of 45 bar. 

The samples used in the CO2 desorption kinetics study were obtained from these solid discs by 

reducing the disc diameter to a typical value of 40 mm. 
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Table 2.3. Hot-plate press main characteristics 

IQAP-LAP PL-15 

Characteristic Value 

Force* 15 Tn. 

Motor maximum power 1.5 kW 

Heating power 2.4 kW 

Electrical resistance heaters 

(P-104 230×75 380 V/600W) 
4 units 

Temperature sensor 

(FE/KO nº2 × 2 m, wire M12×100) 
2 units 

Digital temperature indicators 2 digits 

Between columns 400 mm 

Between plates 230 mm 

Piston diameter 100 mm 

Piston stroke 100 mm 

Dimensiones máximas de los moldes 230 × 300 mm 

Refrigeración por circuito de agua 1.4 ´´ G 

Height 1030 mm 

Working height 1050 mm 

Length 1280 mm 

Width 400 mm 

Weight 340 kg 
*Maximum force: 200 kg/cm2 

2.2.3. Foaming 

2.2.3.1. One step foaming process 

A supercritical carbon dioxide (sc-CO2) dissolution one-step batch foaming process was used to 

prepare the cellular materials studied. Foaming was carried out using a Büchi Glasuster, high 

pressure vessel with a capacity of 2.1 L (table 2.4). The process consisted of saturating the solid 

discs with CO2 inside the high pressure vessel at pressures varying from 120 to 160 bar. The 
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supercritical conditions were reached at  Tc= 31.1ºC, Pc= 73.8 bar [18] by injecting CO2 using a 

pump-compressor system while heating the vessel. 

 

Table 2.4. High pressure vessel Büchi Glasuster Stirrer vessel type 3 

Characteristic Value 

Capacity 2.1 L 

Maximum pressure 350 bar 

Maximum temperature 350 ºC 

Electrical heating system Electrical resistance jacket 

Cooling system Water cooling system 

Heating system precision 0.01 ºC 

Cooling system precision 0.1 ºC 

 

The final values of the saturation/foaming temperature were reached by adjusting the process 

conditions (pressure/temperature) in order to attain the desired parameters. The saturation/foaming 

pressure ranged between 200 and 213 ºC, and times at saturation conditions varied from 0 to 120 

min in order to achieve a homogeneous mixture [19]. The saturation time is defined as the period of 

time that the sample stayed at the saturation conditions once those said conditions were reached and 

until depressurization/cooling started. It is important to take into account that once the samples 

were placed and the CO2 was introduced into the vessel, the heating time from 30 to 200 ºC was 

38min. 

 

Foaming was done in one-step by applying a sudden pressure drop, inducing an thermodynamic 

instability within the system producing an immiscibility in the polymer-gas system [20]. Therefore, 

the system induced a phase separation that promoted cell nucleation. Once the cell was nucleated, 

cell growth took place due to the diffusion of the gas molecules from the solution to the gas phase 

nucleated. The phenomena governing the expansion of the cells are related to the transport 

properties of the gas in the polymeric melt and to the rheological and surface properties of the 

matter around the cell. The rate at which the cells grow is limited by the diffusion rate and the 

stiffness of the viscoelastic of the polymer-gas solution [21]. For instance cooling and the presence 

of crystals or fillers could restrict cell growth until the blowing agent has been consumed. Generally 
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speaking, the cell growth process is controlled primarily by the time allowed for the cells to grow, 

the temperature of the system, the state of supersaturation, the hydrostatic pressure or stress applied 

to the polymer matrix and the viscoelastic properties of the polymer-gas solution [21]. 

 

The pressure drop rate was controlled by regulating a release valve, which was closed in order 

to leave a residual pressure depending on the case of study (Figure 2.3 illustrates the process). The 

pressures used for one-step foaming ranged between 100 and 220 bar with residual pressures 

ranging from 0 to 20 bar and the temperatures varied from 200 to 213 ºC as will be further detailed 

in Chapter 3. 

 

Figure 2.3.  Illustration of one-step batch foaming process. Figure displays both the CO2 

dissolution and depressurization stages used in the one-step foaming process. 

 

2.2.3.2. Two-step foaming process. 

Stage I - Supercritical carbon dioxide dissolution  

 

Once obtained by compression-molding, the PC/composite foam precursors were foamed by 

placing them inside a high pressure vessel and initially dissolving supercritical carbon dioxide (sc-

CO2). Two sc-CO2 dissolution temperatures were used: 80 and 100 ºC, in both cases applying a 

total dissolution time of 210 min. The sc-CO2 was introduced in the vessel at room temperature at a 

pressure of 70 bar, reaching a final dissolution pressure of 140 and 170 bar, for a dissolution 

temperature of 80 and 100 ºC respectively. Once carbon dioxide was dissolved into the foam 

precursors, they were cooled down to room temperature by re-circulating water through the vessel’s 
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cooling jacket while keeping the vessel pressurized. After slow depressurization of the sc-CO2 at 

room temperature, the PC foam precursors containing CO2 were taken out of the vessel and left to 

stabilize at room temperature and atmospheric pressure for 120 min.   

 
Figure 2.4. Illustration of the CO2 pressurization/dissolution step used in the two-step foaming 

process. 

 

Stage II - Double contact restricted foaming  

 

The PC/composite foam precursors containing CO2 obtained at the end of Stage I were once 

again placed in the circular-cavity mold and foamed in the hot-plate press by compression-molding 

at a constant temperature of 165 ºC and constant pressure of 60 bar. The compression-molding 

double contact used in this stage guaranteed the homogeneous heating of the precursors and at the 

same time restricted their initial expansion. After applying a heating time that varied between 40 

and 120 seconds, the applied pressure was quickly released, allowing the PC foam precursors 

containing CO2 to expand in both vertical and width directions. After the expansion, the obtained 

foams were quickly removed from the plates and left to cool at room temperature with direct 

contact to air. 
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Figure 2.5. Illustration of the double contact restricted foaming step used in the two-step 

foaming process. 

 

2.3 Experimental procedure 

 

2.3.1   Density measurements 

 

Density is one of the main fundamental parameters in the macroscopic characterization of 

foams. Density measurements were carried out using the geometric method following UNE-EN 

ISO 1183-1 [22]. The values obtained from the solids were compared to the values obtained using 

the Archimedes principle, allowing the density of the foam precursors to be determined [13] using 

the weight of a known solid sample and a known liquid (density). The liquid used was distilled 

water due to its lower density when compared to the solid polycarbonate.   

The density () was determined using the following equation: 

 

𝜌 =
𝑃1

𝑃2
 𝜌𝑎                                                          (2.1) 

 

Being P1 the weight of the dry sample, P2 the weight of the sample submerged in the liquid 

and ρa is the density of the distilled water at the temperature during the measurement. 

 

The elements of the system used were: 

1 – Electronic scale 

2 – Base-holder 
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3 – Metallic hook 

4 – Vessel 250 ml (with distilled water) 

5 – Submerged sample. 

 

 It needs to be pointed out that this method was used for the foam precursors due to the 

higher density presented by the unfoamed material when compared to the density of the distilled 

water. Even though the foams presented a closed-cells characteristic, the density was lower than the 

density of distilled water. Therefore the density of foams was measured geometrically by direct 

measurement of volume, by means of the ration between the weight and the volume.  

 

2.3.2   Melt flow index measurements  

 

It has been reported that melt flow index (MFI) can be associated to the melt viscosity of 

polymeric materials and it has been reported that changes on the MFI can affect the final 

morphologies of polymer foams [23]. The addition of content of fillers can also affect the melt 

viscosity of composites [24], expecting to increase the melt viscosity of the composites when 

adding higher contents of fillers. Low viscosity is generally accompanied by low melt strength, 

which facilitates the occurrence of cell coalescence [24]. Therefore, the addition of high amount of 

fillers is expected to increase the melt viscosity and it could be observed as the decrease of MFI 

values. With this in mind, the melt flow index of the composites prepared were measured using a 

flow test apparatus 4106B Zwick Materialprüfung. 

 

2.3.2   Carbon dioxide diffusion experiments  

 

Desorption experiments were carried out in order to measure the CO2 diffusion coefficient 

in PC for the two different dissolution temperatures. As previously mentioned, the samples used in 

these experiments were directly obtained from the PC foam precursors by reducing their diameter to 

40 mm. After applying the conditions already indicated in Stage I of the foaming process, i.e., a sc-

CO2 dissolution temperature of 80 or 100 ºC and pressure of 140 or 170 bar for a total dissolution 

time of 210 min, samples were cooled down to room temperature, removed from the vessel and 

quickly transferred to a scale in order to record the evolution of CO2 mass loss with the desorption 

time. 
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The maximum concentration of CO2 in the samples after decompression (M0) was calculated 

by extrapolating to zero desorption time following the initial slope method [14]. Assuming one-

dimensional diffusion in a plane sheet, the CO2 diffusion coefficient (Dd) was determined by 

plotting Mt/M0 as a function of t/l2, where Mt is the CO2 concentration at time t and l is the thickness 

of the sample, according to the following equation [1]: 

 

𝑀𝑡

𝑀𝑜
= 1 −

8

𝜋2 𝑒𝑥𝑝 (
−𝐷𝑡

𝑙2 )           (2.2) 

The CO2 diffusion coefficient was determined from the slope of the Mt/M0 vs. t/l2 curve 

taking into account the last data range and the calculated value of M0. 

 

2.3.3   Cellular morphology characterization.  

 

2.3.3.1 Scanning electron microscopy (SEM) 

 

The cellular structure of the foams was analyzed from scanning electron microscopy images 

obtained using a JEOL JSM-5610 microscope applying a voltage of 15 kV and a working distance 

of 30 mm. Samples were previously prepared by fracturing at room temperature and depositing a 

thin layer of gold onto their surface in argon atmosphere using a BAL-TEC SCD005 Sputter 

Coater.  

The average cell sizes () in the vertical ( VD) and width ( WD) foaming directions were 

measured using the intercept counting method [25].  The cell aspect ratio (AR) was determined by 

dividing the value of the average cell size in the vertical direction by the value measured in the 

horizontal direction (AR = VD/WD). The cell density (Nf) was calculated using the following 

equation [26]: 

 

𝑁𝑓 = (
𝑛

𝐴
)

3

2
(

𝜌𝑠

𝜌𝑓
)                                                    (2.3) 

 

Where n is the number of cells per area, A (cm2), and ρs and ρf are respectively the solid and 

foam densities. 
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2.3.4 Microstructure characterization 

 

2.3.4.1 Wide angle X-rays scattering (WAXS) 

 

WAXS was carried out using a Panalytical diffractometer with Cu Kradiation (= 1.54 

Å), operating at 40 kV and 40 mA at room temperature, scanning from 2 to 60º using a step of 

0.02º.  By using the Bragg’s law the interplanar distance was determined. 

 

n . λ = 2d002 sin θ      (2.4) 

where n is an whole number y  the wave length of the beam used during the measurement. The 

Debye-Scherrer relationship was used to estimate the lamellar thickness (L’) in this case the 

graphene nanoplatelets thickness (L’). Where K is a shape constant of the crystal or the filler and 

the full width half maximum (FWHM). 

 

𝐹𝑊𝐻𝑀 =
𝐾.𝜆

𝐿 cos 𝜃
     (2.5) 

 

Once the interplanar distance (d002) and the FWHM were achieved by using the WAXS data, 

the K constant for flat morphologies used was 0.89 [27]  and the thickness of graphene stacks (L’) 

was calculated by the Debye-Scherrer relationship, the number of layers (n) in the stacks of 

graphene was achieved using the following equation. 

 

n =
L´

d002
          (2.6) 

 

The crystallinity percentage (Xc) was determined using the following equation: 

 

   c
c

c a

AX % 100
A A

 


                                    (2.7) 

 

Where Ac corresponds to the sum of the crystalline peak areas and Aa to the amorphous halo 

area.  
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2.3.4.2  Small angle x-ray scattering (SAXS) 

 

Small angle x-ray scattering was used to determine any density fluctuation in the materials 

and estimate the lamellar thickness of the bulk crystalline unfoamed and foamed polycarbonate and 

composites. Experiments were performed at room temperature using an Anton Paar SAXSess mc2 

Nanostructure Analyzer. The X-ray source consisted on a sealed-tube (line collimation) operating at 

40 kV and 50 mA, using a CuK radiation (1.54 Å). The incident X-ray beam was collimated 

by a block collimator, slits and a focusing graded multilayer mirror. The sample to detector distance 

was 261.2 mm. A semi-transparent beam stop was used. The total exposure time of each of the 

samples was 1 h. The scatter intensity was detected by an X-ray detector image-plate type for two 

dimensional data acquisition. The measurable scattering vector ranged from 0.08 to 28 nm-1. The 

scattering intensity I(q) and the scattering vector q data was acquired using a SAXSquant 2D 

software and plotted as scattering curves. The curves that displayed a signal at low vector q values 

were corrected using a Lorentz approach and the scattering vector corresponding to the maximum 

scattering intensity was used to calculate the long spacing. The long spacing, also known as long 

period (LB), is the sum of the distance corresponding to the crystalline (crystal thickness, lc) and 

amorphous (amorphous layer thickness, la) phases considering an ideal two-phase structure [28]. 

The long period was calculated from the maximum of the peak of the Lorentz-corrected SAXS 

profiles (qmax) using Bragg’s equation [29]: 

 

𝐿𝑏 =
2

𝑞𝑚𝑎𝑥
       (2.8) 

 

In order to determine the average thickness of both crystalline and amorphous phases the one-

dimensional correlation function approach was used. The correlation function is the Fourier 

transform of the scattering curve and may be analyzed in terms of an deal lamellar morphology 

[28]. The one-dimensional correlation function (Γ(r)) is related to the electron density fluctuation 

within the system. CORFUNC software was used in order to perform the correlation function from 

the obtained one-dimensional SAXS data [30]. Since the experimental q data is finite, extrapolation 

of intensity to both low and high values of q was necessary. Data was back-extrapolated to q = 0 by 

fitting the Vonk model to the first few genuine data points after beam stop (q = 0.08 nm-1), while 

tail-fitting data was extrapolated using Porod’s function [31]: 
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𝐼(𝑞) = 𝐵 +
𝐾

𝑞4       (2.9) 

 

where B is the Bonart thermal background and K is the so-called Porod’s constant. Once the 

extrapolation process was completed (back and tail fitting), we confirmed that the extrapolated data 

superimposed well to the original values.  

Once the extrapolation was successfully completed, the transformation process was carried out, 

which consisted initially on determining the one-dimensional correlation function (Γ(r)) [31]: 

 

𝛤(𝑟) =
1

𝑄
∫ 𝐼(𝑞)𝑞2 cos(𝑞𝑟)

∞

0
𝑑𝑞    (2.10) 

 

where I(q) is the scattering intensity obtained from the SAXS measurements, r is the direction of 

measurement of electron density, Q is the invariant of I(q), given by: 

 

𝑄 = ∫ 𝐼(𝑞)𝑞2∞

0
𝑑𝑞      (2.11) 

 

and q is the scattering vector: 

 

𝑞 =
4𝜋

𝜆
sin 𝜃                                                               (2.12) 

 

where λ is the wavelength and the scattering angle is 2. Once the one-dimensional correlation 

function was obtained, it was re-transformed back into a scattering curve and compared with the 

original data in order to make sure that the function tended to zero as q tended to infinity. Assuming 

a two-phase model, the one-dimensional correlation function was used in order to estimate the long 

period (LB) and lamellar thickness of both crystalline and amorphous phases (lc and la, respectively). 

Measurements of small angle X-ray scattering were also carried out at room temperature on a 

Bruker Nanostar-U instrument. In this case the X-ray source consisted of a rotating anode with a 

copper target and 0.1×1.0 mm spot focus filament operated at 50 kV and 24 mA. The SAXS 

detector was a multi–wire proportional counter (Bruker Hi-Star) with 1024 × 1024 pixels and a 

beryllium front window 11.5 cm across. The detector was placed approximately 105 cm from the 

sample allowing measurement of scattering angles (2) from 0.2 to 2.8º. Assuming a wavelength 
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that is a weighted average of Cu-K, this corresponds to q values in reciprocal Angstroms of 

approximately 0.01 to 0.20. 

 

2.3.4.3  Raman spectroscopy 

 

Raman spectroscopy was used because is a technique useful as an in situ, non-contact, non-

destructive measurement tool that can be used at room operating conditions, and it can provide 

information on chemical states of the materials and it is characterized for being fast with a short 

time used for sample preparation [32]. This optical technique can reveal information about material 

quality, thicknesses, doping and stress in crystal lattices among others due to its sensitivity to 

changes in bond angles or strength. This technique is commonly used for characterization of 

polymers [33-35] 

Raman spectroscopy is a vibrational technique based upon the Raman effect, which is a 

scattering phenomenon. Laser excitation on the sample takes place. The laser light is scattered by 

the molecules. Most of the scattered radiation will have the same energy that the original light 

possessed (light shifted from its originally frequency). This type of scattering is called Rayleigh 

scattering. The elastic scatter light is rejected using blocking filters. A very small part of the laser 

light undergoes a slight energy change, known as the Raman shift. The difference in energy 

between the incident laser excitation and the Raman scattered light is equal to a vibrational 

transition energy of the molecule. The inelastic scattering of light is usually associated with the 

emission (Stokes process) or absorption (anti-Stokes process) of phonons [32]. By knowing the 

energy shift of the scattered light relative to the incident light, which yields Raman spectra in cm−1, 

the phonon frequency can be obtained, which is useful for identifying the origin of an unknown 

structure of a newly discovered molecule or of a new material in chemistry [36].  

With this in mind a micro-Raman spectrometer Jobin-Yvon LabRam HR 800 was used at 532 nm 

with an incident power of 0.5 mW, 50x and 100X objectives were used with an incorporated optic 

microscope Olympus BXFM. The measurements were performed on the surface of the sample 

previously brittle fractured. 

  

2.3.4.4  Atomic Force Microscopy (AFM) 

 

This technique was used to carry out qualitative observations of the lamellar structures in the 

semi-crystalline samples and structures resulting from possible ordered of PC in the composites. 
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Also quantitative characterization was performed to study the morphology of the graphene 

nanoplatelets. For this an atomic force microscopy (Multimode 8 AFM head attached to a 

Nanoscope V electronics (Bruker)) was operated in tapping mode at room temperature using a 

silicon cantilever probe with a silicon oxide tip with a nominal spring constant of 0.35nN/nm and a 

vertical resolution (Z-axis) of 0,2 nm as brand new.  

The images were collected in height mode. Thus, enabling to estimate the number of layers relating 

the measured thickness of the nanoplatelets (L’) and the interplanar distance (d002) as it has been 

previously reported in the literature [3, 27]. 

 

n =
L´

d002
      (2.13) 

 

2.3.4.5  Transmission electron microscopy (TEM) 

 

For transmission electron microscopy (TEM) imaging, the samples were previously 

ultramicrotomed in the direction of foaming (cross section/through plane) to slices of approximately 

60-80 nm thickness using a diamond knife, then placed onto copper TEM grids (Ted Pella 400 

mesh). The microtome used was a PowerTome XL Ultramicrotome from Boeckeler Instruments, 

Inc. The TEM images were acquired on a JEOL JEM-2011 LaB6 TEM at 200 kV, using an AMT-

XR280 side mount camera. 

 

2.3.5   Thermal characterization 

 

2.3.5.1   Differential scanning calorimetry (DSC) 

 

Differential Scanning Calorimetry (DSC) was used for monitoring the possible thermal 

transitions of the materials studied. With this aim a Perkin Elmer, Pyris 1 model with a glycol-based 

Perkin Elmer Intracooler IIP differential scanning calorimeter was used at a heating rate of 10 

ºC/min, within a range of temperature of 30 - 300 ºC using samples weighing around 4.0 mg. This 

machine allows for the use of small quantities of sample due to the fair signal-noise ratio displaying 

fair results. The data is displayed in form of thermograms, plotting the variation of heat flow 

(dQ/dt) as a function of temperature. This is possible because there are two independent furnaces, 

therefore, two heat flows (dQ/dt) can be obtained as a function of temperature, one from the sample 
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and one from the “reference” (which is an empty sample holder). These are different because the 

sample and the reference are heated/cooled in each of the independent furnaces. Each furnace 

measures the temperature thus; any temperature difference can be detected, supplying then the heat 

flow necessary to the coldest furnace keeping the two furnaces at the same temperature. Therefore 

the endothermic or exothermic transition of the sample can be displayed as.  

 

Figure 2.5. Independent furnaces in the DSC 

 

The glass transition temperature (Tg) of samples was determined using the inflection point 

heat capacity method. The melting temperature (Tm) was determined as the maximum temperature 

of the melting peak appearing in the melting endotherm, while the heat of fusion (ΔHm) was 

obtained by direct integration of this peak. The crystallinity percentage (Xc) was calculated 

according to: 

 

𝜒𝑐 =
∆𝐻𝑚

∆𝐻𝑚
𝑜 𝑤𝑝

x100                    (2.14) 

where wp is the weight fraction of PC and H0
m is the theoretical 100% crystalline PC melting 

enthalpy (147.79 J/g [37]). 

 Also the thickness of the lamellar crystals (l) was estimated using the Gibbs-Thomson 

equation, which takes into account the experimental melting temperature (Tm) and the fold surface 

free energy (e = 94 erg/cm2) and equilibrium melting temperature of PC (T0m = 318 ºC [38]): 

𝑇𝑚 = 𝑇𝑚
𝑜 (1 −

2𝜎𝑒

𝑙x∆𝐻𝑚
𝑜 )      (2.15)  
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2.3.5.2   Dynamic-Mechanical-Thermal Analysis, (DMTA) 

 

The study of the dynamic mechanical behavior of the materials allowed us to study the 

viscoelastic properties as a function of temperature of the materials. The method used for this 

machine consists on sinusoidal stimuli that induce sample deformation. The ratio between the 

dynamic tension and deformation represents the complex modulus. Therefore the storage modulus 

which is the capacity of the sample to absorb energy (elastic component) and the loss modulus 

which is related to the absorbed energy due to molecular mobility (viscous/inelastic component) 

can be express as follow.  

 

𝐸∗ =
𝛿

𝜀
= 𝐸′ + 𝐸′′                                            (2.16) 

 

Where ε is the deformation and δ is the phase difference between the induced deformation 

and the tension. This phase difference δ, is determined by the ratio of the two aforementioned 

modulus components tan δ = E"/ E′ and it is known as tan delta, displaying the changes of the 

mechanical behavior of the sample throughout the thermal transitions. 

 

These measurements were carried out by using a dynamic mechanical thermal analysis test 

equipment (DMTA), DMA Q800 (TA Instruments) in a single cantilever configuration with a span 

of 17.5 mm under strain control (dynamic strain of 0.02%), constant frequency of 1 Hz and a 

temperature range from 30 to 180 ºC. A heating rate of 2 ºC/min was applied. The test equipment 

was previously calibrated according to the standard procedure. In each experiment the storage 

modulus (E’) and the loss factor (tan δ) were registered as a function of temperature. For the 

analysis, specimens cut directly from the solid discs and foams, with a nominal length of 35 mm, 

width of 13 mm and thickness between 3.0 and 3.5 mm, were used.  

 

2.3.5.3    Thermogravimetric analysis (TGA) 

 

The thermogravimetric analysis was carried out in order to study the thermal stability of the 

materials. It was performed in a TGA/DSC 1 Mettler Toledo Star System analyzer by heating 

samples of around 10.0 mg from 30 to 1000 ºC at a heating rate of 10 ºC/min under both nitrogen 

(constant 30 ml/min N2 flow) and air atmospheres (constant 60 ml/min air flow). The temperatures 

corresponding to mass losses of 1, 5 and 50%, as well as the mass of the final residue obtained at 
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1000 ºC, were reported for the unfoamed and foamed unfilled and graphene-reinforced 

polycarbonate composites. 

 

2.3.5.4  Thermal conductivity measurements  

 

The heat conductivity of the samples was measured using a steady state one-dimensional 

heat conduction method. The experimental setup consisted of an electrical heater, a heat sink and 

two thermocouples to measure the temperature gradient (Figure 2.6). To minimize the interface 

thermal resistance, fine diameter electrically insulated thermocouples were embedded into two soft 

indium layers to measure the temperature at both sides of the cylindrical samples (previously the 

samples were cut and sanded down from the original unfoamed and foamed samples to a typical 

diameter of 6 mm and thickness of 3 mm).  Pressure was applied using a screw mechanism that is 

thermally insulated from the sample by a thick Teflon block (insulation block) that would not 

deform easily during applying pressure. The rest of the set up was thermally insulated by a very low 

thermal conductivity material (~ 0.02 W.m-1.K-1) in order to reduce any heat loss by convection or 

radiation. Once the sample was in place and the set up ready to start the measurement, a dome was 

place on top of the entire set up to reduce the influence of any current of air that could affect the 

measurement. 

 

Figure 2.6. Scheme of the setup used for thermal resistance measurements. 
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The heat losses in the experimental setup were calibrated using glass samples of known 

conductivity. The thermal conductivity of neat polycarbonate was measured with this setup (K 

∼0.18 W/m.K) the result being very close to the value reported in the literature [39-40]. To measure 

K, the experimental thermal resistance was first obtained from the slope of the temperature 

difference across the sample as a function of heater power. Next, the calibrated heat loss (Rl) 

contribution was taken into account by using a parallel thermal resistance network arrangement. To 

find the intrinsic thermal conductivity (K), the interface thermal resistance (Ri) between the 

composite sample and the indium layer was subtracted from the overall conduction resistance (RT). 

This interface thermal resistance was determined by testing samples with different thicknesses, then 

extrapolating the plot of (Rs + Ri) Vs thickness to zero thickness using linear regression. The 

thermal resistance and conductivity of the sample are calculated using the following equations: 

 

𝑅𝑠 =
RT×Rl

Rl−RT
− Ri      (2.17) 

  𝐾 =
t

Rs×A
      (2.18) 

where t and A are the thickness and cross sectional area of the sample, respectively. The value of K 

was obtained using the aforementioned method for all the samples. 

  

2.3.6   Electrical characterization 

 

2.3.6.1   DC Electrical conductivity measurements 

  

The transverse dc conductivity, i.e., the through-plane electrical conductivity, of the 

composites was measured on samples having a nominal thickness of 1 mm. A pA meter/dc voltage 

source HP 4140B with a two-probe set was used. The connections were set up in the electrostatic 

light-shielded test box HP 16055A using electrolytic copper sheet electrodes. Samples were coated 

with silver paint in order to reduce the contact resistance. 

The samples used for transverse dc resistance were cut to 20 mm × 20 mm squares and their 

thickness was reduced to approximately 1 mm by using sandpaper. After reducing the thickness, a 

thin silver conductive paint layer with a resistance per area ranging from 0.01 to 0.1 /cm2 was 

deposited on both top and bottom surfaces of the sample in order to guarantee a good electrical 
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contact. A programmable dc voltage feature with a range of 0 V - 0.05 V and a voltage step of 0.01 

V, a hold time of 5 seconds and a step delay time of 5 seconds, was used. In order to obtain the 

value of the electrical resistance of the sample (R), a characteristic I-V curve was plotted for each 

sample, with R calculated as the slope of the I-V curve. The electrical resistivity (v) was 

determined by simply dividing the product of the resistance (R) and the surface area of each sample 

(A) by their respective thicknesses (t), as shown in equation 2.19. The electrical conductivity () 

was then calculated as the reciprocal of the electrical resistivity.  

𝜌𝑣 =
R×A

t
      (2.19) 

2.3.6.2   AC Electrical conductivity 

 

The ac electrical conductivity of the solid and respective foamed composites was measured 

between 10-3 and 106 Hz using a Novocontrol high resolution dielectric, conductivity and 

impedance modular measurement system. A typical sample thickness of 1 mm and a diameter of 20 

mm was used. The surfaces of the samples were coated with silver paint in order to reduce the 

interface electrical resistance due to contact. The samples were placed in the Novocontrol dielectric 

spectrometer between electrodes with a diameter of 20 mm. The measurements were carried out in 

the through-plane/cross section direction. 

 

2.3.7   Electromagnetic interference shielding effectiveness measurements 

 

The measurements for electromagnetic interference effectiveness (EMI SE) were carried out 

in the X-band frequency range (8.0-12.4 GHz) using a Anritsu 37397C vector network analyzer 

(VNA). The set up consisted of the mentioned VNA with two port test fixture connected to two 

WR-90 coaxial waveguides and a sample holder that was placed between the 2 waveguides. The 

port 1 side of the VNA was connected to the waveguide/transmission line. Then the transmission 

line was attached to the sample holder, subsequently the sample holder was fixed to a mirror-like 

arrangement to the port 2 of the VNA. The samples were cut to the opening dimension of the 

waveguide sample holder (22.9 mm x 10.2 mm) with thicknesses around 2 mm. A two-port VNA 

calibration was performed at the beginning of each measurement with no sample in the sample 

holder to be subtracted from the subsequent measurement. The energy generated in the VNA was 
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directed from the test port though the waveguide into the target test sample. The measured 

scattering parameters of S11 (forward reflection coefficient) and S21 (forward transmission 

coefficient), whose magnitudes are expressed in decibels (dB), were used for the analysis. 

To understand how the electromagnetic shielding can take place in a material, a brief 

explanation of the mechanisms taking place is presented. It can be said that when microwave 

radiation is incident on a shielding material, transmission, reflection, and absorption can be 

observed. Wave absorption and reflection are the major electromagnetic attenuation mechanisms; 

however the multiple reflections also can be detected (see Figure 2.7). The reflection is related to 

the impedance mismatch between air and absorber; the absorption can be regarded as the energy 

dissipation of the electromagnetic microwave in the absorber; and the multiple reflections are 

considered as the scattering effect of the inhomogeneity or heterogeneity within the materials[41]. 

 
Figure 2.7. Schematic representation of the mechanisms involved in the EMI shielding 

process. 

 

The EMI shielding effectiveness (SE) of a material is defined as the ratio between the 

incoming power (Pi) and outgoing/transmitted power (Pt) of an electromagnetic wave through a 

shielding material, which in other words is the addition of three contributions from absorption 

(SEA), reflection (SER)  and multiple reflections inside the material (SEM) [42-43]. In order to better 

understand the effect of foaming and the presence of GnP in polycarbonate on the shielding 

mechanisms, the contribution of absorption, multiple reflections and reflection mechanisms to the 

total SE (SET) were quantified. The utilized EMI SE characterization setup enabled determining the 

measured scattering parameters (i.e., forward transmission S21 and forward reflection S11), with 

these parameters it was possible to calculate the shielding effectiveness of transmitted power (SEt) 

and the shielding effectiveness of reflected power (SER) using the following equations [43-45]:  
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𝑆𝐸𝑇 = 20𝑙𝑜𝑔(𝑆21)     (2.20) 

 

𝑆𝐸𝑅 = 20𝑙𝑜𝑔(𝑆11)     (2.21) 

 

With this in mind the contribution of absorption (SEA) and multiple reflections (SEM) could 

be expressed as: 

𝑆𝐸𝐴 + 𝑆𝐸𝑀 = 𝑆𝐸𝑇 − 𝑆𝐸𝑅    (2.22) 

 

The maximum EMI shielding effectiveness at 8.5 GHz was chosen to be reported for 

composite foams prepared. With this, the power attenuation factor of the EM radiation is calculated 

from: 

𝑆𝐸 = 10. 𝐿𝑜𝑔
𝑃𝑖

𝑃𝑡
     (2.23) 

 

𝑃𝑖 = 10
𝑆𝐸

10 . 𝑃𝑡      (2.24) 

𝑃𝑜𝑤𝑒𝑟 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 10
𝑆𝐸

10    (2.25) 

 

The percentage of transmission (Pt) is then obtained from: 

𝑃𝑡 =
𝑃𝑖

10
𝑆𝐸
10

. 100     (2.26) 
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3.1 Summary. 

 

This chapter is focused on the effects that process variables have on the cellular morphology 

of foams. As a consequence, the final cellular morphology of these foams will play a key role in the 

behavior and functionalities of the final materials. With that in mind, this chapter displays the 

characterization and analysis of the cellular structure of Polycarbonate (PC) and Polycarbonate with 

graphene nanoparticles (PC-GnP) foams prepared by two different physical foaming processes 

using carbon dioxide in supercritical conditions (i.e., one-step and two-step as previously explained 

in chapter 2).  

 

The idea is to be able to prepare foams with a broad range of densities and different 

morphological characteristics (i.e. cell size, expansion ratio, aspect ratio), taking into consideration 

that the variation of  foaming processes and the selection of specific process parameters will enable 

the production of foams to satisfy a wide-range of applications [1].  In general, foams with different 

cellular structures and densities will have different final properties. For instance, the mechanical 

properties of polymeric foams will be expected to decrease due to the presence of the cellular 

structure (i.e. less solid fraction) [2]. In order to target the enhancing of foams’ properties, the 

addition of stiff fillers such as graphene nanoplatelets with high mechanical properties (such as 

stiffness and strength [3]) and high aspect ratios, will have the particular potential to enhance the 

physical performance of the final cellular composite [4].  However, the presence of fillers will be 

expected to modify the resulting cellular structure of the foams, which will be discussed and 

presented in this chapter. 

 

 

                                                            
1 Hansen R. Handbook of polymeric foams and foam technology, Daniel Klempner and Kurt C. Frisch, eds., Hanser 
Publishers, Munich, Germany, 1992, 442 pp. (Distributed in the U.S. and Canada by Oxford University Press, New 
York.). Journal of Polymer Science Part A: Polymer Chemistry. 1993;31(5):1344. 
2 Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G. Polymer nanocomposite foams. Composites Science and Technology. 
2005;65(15–16):2344-63. 
3 Young RJ, Kinloch IA, Gong L, Novoselov KS. The mechanics of graphene nanocomposites: A review. Composites 
Science and Technology. 2012;72(12):1459-76. 
4 Verdejo R, Saiz-Arroyo C, Carretero-Gonzalez J, Barroso-Bujans F, Rodriguez-Perez MA, Lopez-Manchado MA. 
Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets. European 
Polymer Journal. 2008;44(9):2790-7. 
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The studies presented in this chapter were based on different hypotheses that were thought 

through in order to establish the different objectives of the study. A first hypothesis takes into 

consideration that the presence of GnP could significantly modify the diffusivity behavior of CO2 

within the polymer. As a second hypothesis, it was thought that different foaming processes and the 

variation of foaming parameters such as temperature/pressure of foaming and time of CO2 

dissolution could enable the production of foams with a wide range of densities and different 

cellular morphologies. At the same time, the cellular morphology of foams can significantly be 

affected by the content of graphene nanoplatelets, affecting the cell nucleation and cells’ growth. 

Indeed, it was thought that foaming conditions applied could induce anisotropy in the cellular 

morphologies developed. While the combined effect of foaming conditions and the formation of 

anisotropic cellular morphologies could lead to orientation of GnP within the foams.  

 

After having discussed through the hypotheses displayed above, the main objective of this 

chapter was established, being to determine the influence of processing parameters and the presence 

of GnP on the final cellular morphology of foams prepared via two different foaming processes 

with carbon dioxide. For this end, four specific objectives were established. Firstly it was necessary 

to analyze the kinetics of diffusion of CO2 in Polycarbonate and PC-GnP composites. This was then 

linked to the final cellular structure of foams, after characterizing the cellular morphology of foams 

prepared via two foaming methods. Subsequently, the correlation of values such as temperature, 

time and pressure used during foaming with the final morphology characteristics of foams (i.e. 

relative densities, cell sizes, cell densities, aspect ratios, expansion ratios) was pursued [5,6]. This 

chapter was completed after investigating the influence of the presence of GnP contents on the final 

morphology of foams [7,8]. 

 

In order to satisfy the hypotheses and objectives established above, experiments and 

measurements of density, CO2 desorption in PC and composites, as well as scanning electron 

                                                            
5 Gedler G, Antunes M, Realinho V, Velasco JI. Characterization of polycarbonate foam structure prepared by one-step 
sc-CO2 dissolution process. Proceedings of the 10th International Conference on Foam Materials & Technology-SPE-
FOAMS 2012. 
6 Gedler G, Antunes M, Velasco JI. Polycarbonate foams with tailor-made cellular structures by controlling the 
dissolution temperature in a two-step supercritical carbon dioxide foaming process. The Journal of Supercritical Fluids. 
2014;88(0):66-73. 
7 Gedler G, Antunes M, Realinho V, Velasco JI. Novel polycarbonate-graphene nanocomposite foams prepared by CO2 
dissolution. IOP Conference Series: Materials Science and Engineering. 2012;31(1):012008. 
8 Gedler G, Antunes M, Velasco JI. Effects of graphene nanoplatelets on the morphology of polycarbonate–graphene 
composite foams prepared by supercritical carbon dioxide two-step foaming. The Journal of Supercritical Fluids. 
2015;100(0):167-74. 
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microscopy were carried out. The results have been analyzed and discussed in terms of the Fick’s 

law of diffusion [9,10], that takes into account that the flux will go from regions of high 

concentration to regions of low concentration, with a magnitude that is proportional to the 

concentration gradient. The diffusion of CO2 within the polymer was remarkably affected for 

contents of GnP of 5 wt.% when compared to contents of 0.5 and 2 wt.%., showing that large 

contents of GnP will restrict the diffusion of CO2 in the composites, which is known as the barrier 

effect. The diffusion of CO2 within the polymer under different conditions and content of GnP led 

to different quantities of gas dissolved in the material (i.e. varying from 3 to 7 wt.% CO2), which 

had an effect on cell nucleation when the system was seeking for a state of lower free energy after 

creating the thermodynamic instability (in our case achieved by lowering the solubility of the 

solution decreasing the pressure), for this end, the kinetics of nucleation [11,12] was used for the 

analysis of cellular morphology. Especially when introducing the presence of GnP into the system 

that promoted a faster cell nucleation, reducing the cell sizes from 160 m for neat PC foams to 30 

m for composites with 5 wt.% GnP in the case of foams prepared via the one-step foaming 

process, while for foams prepared via the two-step foaming process the cell sizes experienced a 

reduction from 700 m for neat PC foams to 7 m for composite foams with 5 wt.% GnP content. 

 

The use of CO2 as a foaming agent introduced the theory of the free volume [13] in this 

chapter, which was used to analyze the plasticizing effect of CO2 in supercritical conditions in PC 

and PC-GnP composites. That effect lowered the glass transition temperature of the systems 

promoting a larger difference between the foaming temperature and the actual lowered-Tg  of the 

systems, allowing the cell growth to larger extends until the molecular structure could freeze when 

the Tg of the system was reached. It needs to be pointed out that the systems experienced a fast 

temperature drop during depressurization in addition to the cooling applied to the foam 

environment. The temperature effect was evident in the composite foams prepared via the one-step 

foaming process, where the cell sizes increase from ~60m  to 150 m for foaming temperatures of 

200 oC and 213 oC respectively. The used of these theories allowed us to observed changes in the 

diffusion coefficient, the nucleation speed/cell sizes, as well as the plasticization effect of the CO2. 
                                                            
9 Crank J. The mathematics of diffusion. London: Oxford University Press; 1956. 
10 Mills N. Polymer Foams Handbook: Engineering and Biomechanics Applications and Design Guide: Elsevier 
Science; 2007. 
11 Gibson LJ, Ashby MF. Cellular Solids, Structure and Properties. 2nd ed. ed. Oxford: Pergamon Press; 1999. 
12 Park CB, Baldwin DF, Suh NP. Effect of the pressure drop rate on cell nucleation in continuous processing of 
microcellular polymers. Polymer Engineering & Science. 1995;35(5):432-40. 
13 Godwin A. Plasticizers. In: Craver CDC, Charles E., Jr, ed. Applied Polymer Science: 21st Century. Oxford: Elsevier 
Science. 2000. 
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From this chapter the following conclusions can be extracted:  

 

1) The one-step foaming process allowed the preparation of foams with relative densities 

ranging from 0.3-0.8 with cell sizes between 50m and 200 m.  

 

2) Low relative density foams (< 0.3) with large range of cell sizes (i.e. 7m and 700 m) 

were successfully prepared via the two-step foaming process. 

 

3) The foaming temperature was found to have a large effect on the final morphology of the 

foams prepared via the one-step foaming process, with foams increasing cell sizes from 50 m to 

200 m, when the foaming temperature was increased from 200 oC to 220 oC).  

 

Particularly, for the foams prepared via one-step, the resulted morphology was attributed to the 

combined effect of high temperatures which is related to the quantity of CO2 dissolved in the 

material in the absence of cell coalescence. 

 

4) In the case of the foams prepared via the two-step process, the morphology of the foams 

was found to be dependent on the quantity of CO2 dissolved in the material previous expansion. It 

was observed that cell sizes increased from 7 m to 700m while increasing the quantity of 

dissolved CO2 from 4 wt.% to 7 wt.%. The development of larger cell sizes was attributed to cell 

coalescence. 

 

5) The presence of graphene nanoplatelets promoted the increment of nucleation speed of 

cells thus increasing the cell density and reducing the cell sizes. For composite foams with 0.5 wt.% 

GnP (i.e. cell size 15m - 200 m), while for the 5 wt.% GnP a reduction of cell sizes (i.e. 7m-20 

m) was observed as a consequence of the combined effect of the heterogeneous nucleation and the 

restriction to the flow of polymer during foaming due to the presence of larger contents of GnP. 

 

3.2 Published articles. 

 

This chapter displays the analyses and results throughout four publications. The first one 

entitled Characterization of polycarbonate foam structure prepared by one-step sc-CO2 
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dissolution process published in the proceedings of the 10th International Conference on Foam 

Materials & Technology-SPE-FOAMS 2012, Barcelona, Spain, focuses on the analysis of the 

morphological structure of PC foams with medium relative densities (i.e.~0.3-0.5) prepared via one-

step process and displays their morphological characterization.  

 

The second publication entitled Novel polycarbonate-graphene nanocomposite foams 

prepared by CO2 dissolution published in IOP Conference Series: Materials Science and 

Engineering. 2012; 31(1):012008, focuses on the morphological analysis in a similar fashion than 

the first publication but in this case the foams studied were PC-GnP foams with medium-high 

densities (i.e.~0.3-0.8), also prepared via the one-step process.   

 

The third publication entitled Polycarbonate foams with tailor-made cellular structures by 

controlling the dissolution temperature in a two-step supercritical carbon dioxide foaming 

process, published in The Journal of Supercritical Fluids. 2014; 88(0):66-73, centered the 

analysis on the morphological analysis of neat PC foams in the low relative density range (< 0.3) 

prepared via the two-step process. 

 

In a similar fashion, the fourth publication entitled Effects of graphene nanoplatelets on the 

morphology of polycarbonate–graphene composite foams prepared by supercritical carbon 

dioxide two-step foaming, published in The Journal of Supercritical Fluids. 2015;100(0):167-

174, focuses on the morphological characterization of PC-GnP foams prepared via two-step 

foaming process ranging from low relative densities (i.e. < 0.3) to medium range relative densities 

(i.e. ~0.4-0.6). It is necessary to point out that complementary results regarding morphological 

characterization will be show in next chapters when necessary. 
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Abstract 

 
In this communication, polycarbonate foams were 

prepared by a supercritical CO2 dissolution one-step batch 
foaming process. Firstly, CO2 diffusion behavior in 
polycarbonate was studied by means of desorption 
experiments. The cellular structure of foams prepared 
under different foaming conditions was characterized 
through scanning electron microscopy. Different foaming 
temperatures as well as CO2 saturation pressures and 
times were applied. The foams displayed typical closed-
cell structures with cell densities ranging from 3×105 to 
6×106 cells/cm3 and cell average sizes from around 70 to 
150 m. Analysis by X-ray diffraction and differential 
scanning calorimetry seemed to suggest that slight 
crystallization took place because of the plasticizing effect 
of CO2 during saturation and foaming. Thermogravimetric 
analysis showed a higher thermal stability of the foams 
when compared to the compact polymer. 

 
The preliminary results shown in this work suggest 

the possibility of developing lightweight polycarbonate 
components with improved specific thermal properties 
through carefully controlling the foaming parameters. 
 

Introduction 
 

Polycarbonate (PC) is one of the most used 
engineering plastics and polymeric foams are currently 
used in industrial applications where lightness is a key 
factor [1]. The final properties of these foams depend on 
their cellular structure, which includes parameters such as 
the average cell size and size distribution, cell volume 
fraction and cell arrangement within the matrix [2]. 
Nevertheless, the use of polymer foams is somewhat 
limited due to the inherent reduction of their mechanical 
properties with foaming when compared to the unfoamed 
base material. These foams are known for displaying 
better specific properties when cell sizes are reduced to a 
micrometer scale, hence having the potential to 
significantly alter the way plastics are employed in a wide 
variety of applications [3]. One of the most common 
microcellular foaming processes uses a physical blowing 
agent that creates an evenly distributed micrometric-sized 
closed cell structure, which significantly improves the 
mechanical properties compared to more heterogeneous or 
open cell structures [4]. Supercritical carbon dioxide (sc-

CO2) is one of the most favorable foaming agents due to 
its combination of chemical inertness, non-flammability 
and mild supercritical conditions (Tc = 31 ºC, Pc = 7.38 
MPa) [5], also being environmentally benign [6]. One of 
the advantages of using physical blowing agents is that 
cell structure may be controlled through the processing 
temperature and pressure. Nevertheless, in order to 
optimize the foam properties, an overall understanding of 
the gas diffusion and the nucleation and growth 
mechanisms is required [2]. The influence of the foaming 
conditions has lately been considered, mainly focused in 
obtaining high performance foams by means of decreasing 
cell size [7].  

 
It is known that some polymers, when processed with 

CO2 undergo kinetically favorable configuration 
rearrangement of polymer chains, hence forming 
crystalline structures. For polycarbonate, the 
crystallization is very slow due to its inherent chain 
rigidity, which retards chain diffusion and ultimately 
inhibits crystallization at commonly used industrial 
processing conditions [8]. Thus, different strategies such 
as the addition of organic solvents [9], vapors [10], low 
melting point polymers [11], supercritical carbon dioxide 
[12], vapor-grown carbon fibres [13] or nano-sized fillers 
[14] have been used to induce the crystallization of 
polycarbonate. Therefore, foaming using sc-CO2 could 
have a significant effect in the possible crystallization of 
PC.  

 
The purpose of this study was to prepare 

polycarbonate foams through a physical sc-CO2 one-step 
batch foaming process and to characterize them in terms 
of the developed cellular structure morphology and 
observe the effect of the foaming process on the 
crystallinity of polycarbonate. 

  
Materials and foaming 

 
Polycarbonate (Lexan-123R-PC, supplied by Sabic), 

with a density of 1.2 g/cm3 and MFI of 17.5 dg/min, 
measured at 300 ºC and 1.2 kg, was melt-mixed using a 
Brabender Plasti-Corder internal mixer.  

 
Firstly, the PC pellets were slowly introduced in the 

internal mixer at a temperature of 180 ºC using a rotating 
speed of 30 rpm during 2 min. Then the rotating speed 
was increased to 60 rpm and 120 rpm for 1 and 3 min, 
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respectively. The material was cooled at room 
temperature, grinded and compression-moulded at 220 ºC 
and 4.5 MPa (45 bar) in a hot-plate press (IQAP LAP PL-
15) to discs with a thickness of 3.5 mm and diameter of 
74 mm in 3 steps. In the first step the upper hot plate was 
used to soften the material at a temperature of 220 ºC. The 
second step consisted in allowing air to escape the 
material by pulsating the upper plate in an up and down 
motion. The pressure applied from the upper plate was 4.5 
MPa (45 bar) at a temperature of 220 ºC during 1.5 min. 
For the third step the material was continuously 
compressed for 1 min at 220 ºC and 4.5 MPa. Lastly, the 
mould with the sample still inside was left to cool for 15 
min in the cooling station of the press applying a constant 
pressure of 4.5 MPa. The discs used in the CO2 desorption 
measurements were prepared by mechanically reducing 
the disc diameter to a typical value of 40 mm.  

 
The resulting compression-molded discs were used to 

prepare the foams by sc-CO2 dissolution using a one-step 
batch process that consisted in saturating the discs with 
CO2 inside the high pressure vessel at pressures varying 
from 13 to 22 MPa during time periods between 0 and 40 
min. The values of the saturation/foaming temperature 
varied between 200 and 213 ºC, and foaming was done in 
one-step by applying a sudden pressure drop, keeping 
residual pressure of 1 MPa (10 bar), as it was the optimal 
residual pressure to attain spherical-like cellular structures 
(AR = 1), found in one of our previous work [15]. 
 

Measurements and testing  
 

In order to determine both the solubility and diffusion 
coefficient of CO2 in the polycarbonate, CO2 desorption 
measurements were carried out. Samples were introduced 
in the high pressure vessel and heated up to 210 ºC at a 
CO2 pressure of 16 MPa. After reaching the saturation 
conditions, the samples were cooled to 40 ºC and the 
vessel was fully decompressed. Next, the saturated 
samples were removed from the vessel and quickly 
transferred to a digital balance (Mettler Toledo PB303 
DeltaRange, with a sensitivity of 1 mg) at room 
temperature and atmospheric pressure, in order to record 
the CO2 mass loss as a function of desorption time.  

 
The maximum concentration of CO2 in the samples 

after full decompression (Mo) was calculated by 
extrapolating to zero desorption time using the initial 
slope method [16]. Assuming one-dimensional diffusion 
in a plane sheet, the CO2 desorption diffusion coefficient 
(Dd) was determined by plotting Mt/Mo vs. t/l2, where Mt 
is the CO2 concentration at time t and l is the thickness of 
the sample, according to the following equation [17]: 
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The cellular structure of the foams was analyzed from 
scanning electron microscopy images obtained using a 
JEOL JSM-5610 microscope applying a voltage of 15 kV 
and a working distance of 30 mm. Samples were 
previously prepared by fracturing at room temperature and 
depositing a thin layer of gold onto their surface in argon 
atmosphere using a BAL-TEC SCD005 Sputter Coater.  

 
The average cell sizes () in the vertical (VD) and 

width (WD) foaming directions were measured using the 
intercept counting method [18]. The cell aspect ratio (AR) 
was determined by dividing the value of the average cell 
size in the vertical direction by that measured in the 
horizontal one (AR = VD/WD). The cell density (Nf) was 
calculated using the following equation [19]: 
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WAXS was carried out using a Panalytical 

diffractometer using Cu Kradiation with a = 1.54 Å 
operating at 40 KV and 40 mA at room temperature. 
Scans were taken from 2 to 60 deg (2) using a calibration 
with an accuracy of 0.02 deg. The crystallinity percentage 
(Xc) was determined taking into consideration the WAXS 
patterns according to: 
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100               (3) 

 
where Ac corresponds to the crystalline peak area and Aa 
to the amorphous halo area. 
 

DSC was carried out using a Perkin Elmer, Pyris 1 
model with a glycol-based Perkin Elmer Intracooler IIP 
calorimeter at a heating rate of 10 ºC/min from 30 to 300 
oC using samples weighting around 4.0 mg. The glass 
transition temperature (Tg) of the unfoamed and foamed 
polycarbonate was determined using the inflection point 
heat capacity method. The melting temperature (Tm) was 
determined as the maximum temperature of the melting 
peak appearing in the melting endotherm, while the heat 
of fusion (ΔH) was obtained by direct integration of the 
peak. The crystallinity percentage (Xc) was determined 
according to: 
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100          (4) 

 
where wp is the weight fraction of PC, ΔHm is the melting 
enthalpy of the sample obtained by DSC and ΔHm

o is the 
theoretical 100 % crystalline PC melting enthalpy (147.79 
J/g)[17]). 
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Thermogravimetric analysis was performed in a 
TGA/DSC 1 Mettler Toledo Star System analyzer by 
heating samples of around 10.0 mg from 30 to 1000 ºC at 
a heating rate of 10 ºC/min under both nitrogen (constant 
30 ml/min N2 flow) and air atmospheres (constant 60 
ml/min air flow). The temperatures corresponding to mass 
losses of 1, 5 and 50%, as well as the mass of the final 
residue obtained at 1000 ºC, were reported for the 
unfoamed and foamed polycarbonate. 

 
Results and discussion 

 
CO2 diffusion coefficient from desorption 
measurements 
 

The maximum concentration of CO2 dissolved into PC 
was calculated by extrapolating to zero desorption time 
from the desorption measurements show in figure 1, 
finding a value of 42.6 mg CO2/g material. As a result, the 
calculated diffusion coefficient (Dd) was 4.45×10-12 m2/s 
obtained from the slope of figure 1(see graph embedded in 
Figure 1).  

 

 
Figure 1. Results from the desorption study. 
 

This value of the CO2 diffusion coefficient in PC was 
found to be comparable to others presented in the 
literature, where Dd was found to be within 2.55×10-11 and 
4.60×10-12 m2/s [20] or between 1.55×10-12 and 6.93×10-12 
m2/s [21]. This result might suggest that the different in 
the values could be related to the degree of resistance that 
the CO2 may have when desorbing the material, which 
could be related to the degree of crystallinity. 
 
Cellular structure of PC foams  
 

Polycarbonate foams (PC-f) were characterized by 
analyzing several scanning electron micrographs at 
different magnifications for each foam (typical SEM 
micrographs are displayed in Figure 2). The average cell 
size was determined for each foam obtained at a given 

saturation/foaming temperature, resulting in a variation in 
the cell density value from 1.04×106 to 2.70×106 
cells/cm3. The relative densities of the PC-f ranged from 
0.33 to 0.46. As expected, a characteristic homogeneous 
microcellular structure was obtained due to the CO2 
saturation and sudden depressurization applied during 
foaming, with both the sudden pressure drop and time at 
saturation influencing the cell nucleation stage.  

 
 

 
 

Figure 2. Typical SEM micrographs of the PC foams 
obtained at different saturation/foaming temperatures: (a) 
200 ºC and (b) 205 ºC. 

 
Figure 3 shows how cell size was clearly affected by 

the saturation/foaming temperature. Generally speaking, 
cell size increased from 70 to 160 m with increasing the 
saturation/foaming temperature from 200 to 213 ºC, 
attributed to a higher concentration of CO2 dissolved in 
the material. Decreasing the foaming temperature 
restricted cell growth and resulted in foams with higher 
relative densities. During the sudden depressurization 
stage, the temperature of the growing sample decreased 
quickly, mainly due to the adiabatic expansion of the gas, 
and in a minor way due to the water cooling system of the 
vessel. Hence, this behavior can be explained by a faster 
rigidization of the softened material foamed at a lower 
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temperature during the depressurization stage, reaching 
faster the glass transition temperature of the polymer than 
the samples foamed at higher temperatures. 

 
Figure 3. Influence of the saturation/foaming temperature 
on the average cell size of the PC foams. Hollow symbols: 
VD; filled symbols: WD. The relative density is indicated. 
 
Crystalline structure of PC foams 

 
WAXS measurements revealed the presence of a 

crystalline structure with diffractograms characterized by 
one strong peak at 2 = 17.3º, corresponding to the 
monoclinic lattice reflections of (020),(201) of crystalline 
PC [22]. Figure 4a shows a broad amorphous halo for the 
unfoamed PC and the presence of crystallization in the 
PC-f. The PC-f samples presented different degrees of 
crystallization depending on the process parameters used 
during the saturation/foaming stage. The increment of the 
temperature, pressure and time at CO2 saturation 
conditions suggests the increment of crystallinity of the 
samples.  
 
Table 1. Values of crystallinity calculated by WAXS and 
DSC. 

 
It has been mentioned in the literature that crystalline 

PC may show other reflections as the (213) for a 
2of21.1º and the reflection of (222),(303),(223) around 
a 2of 25.3º [22, 23]. For the PC-f samples these 
aforementioned reflections were not very strong. 

However, very weak signals were noticed around 2 = 20º 
and 2=25.3º, similar to the values found in the literature. 

  
The differential scanning calorimetry analysis also 

showed that the PC-f samples obtained by sc-CO2 
dissolution presented melting peaks corresponding to PC 
crystallization (Figure 4(b)). The DSC study suggests that 
the saturation/foaming pressure might have an important 
effect on the crystallinity of the polycarbonate foams, 
showing a higher crystallinity for foams prepared with 
higher foaming pressures. Table 1 resumes the results of 
crystallinity calculated from WAXS and DSC 
measurements.  

 

 

 
Figure 4. (a)WAXS spectra and (b) DSC heating curves of 
PC-f with a relative density of 0.38 and the unfoamed PC. 
 
Enhanced thermal stability 
 

The TGA and respective DTG thermograms of the 
unfoamed and foamed polycarbonate (PC and PC-f 
respectively) were obtained under both nitrogen and air 
atmospheres. For instance, PC showed a characteristic 
one-step decomposition process with an onset temperature 
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at 1 wt% loss of 388 ºC and a Tmax, defined as the 
temperature at maximum mass loss rate in the DTG curve, 
of 430 ºC. It is well known that the main degradation 
pathways of polycarbonate can be classified into two 
categories: chain scission of isopropylidene bonds and 
hydrolysis/alcoholysis of carbonate bonds, including 
rearrangements of some carbonate bonds like 
decarboxylation or cross-linking upon heating, ultimately 
resulting in CO2, H2O and char [24]. 

 
The corresponding DTG thermogram suggested that 

two events could be occurring at different rates due to the 
shoulder observed in Figure 5(a), related to a smaller 
quantity of material undergoing the degradation process at 
that temperature. The PC-f samples showed a similar one-
step decomposition, where was a delay corresponding to 
the beginning of the process for a 1 wt% loss of about 34 
ºC and of 55 ºC for a 5 wt% loss when compared to the 
unfoamed material for a PC-f with a relative intensity of 
0.38. The DTG curve showed a Tmax shifted 70 ºC higher 
than for the unfoamed PC, however the degradation 
process occurred faster for the PC-f compared to the 
unfoamed material. The delay during the beginning of the 
degradation process was attributed to the material’s 
cellular structure, which acted as an improved thermal 
insulator, inhibiting heat transfer at the beginning of the 
thermal decomposition process. In general the process 
was delayed while decreasing the relative density due to 
the thermal insulator explained above and the presence of 
crystalline structure confirmed by WAXS and DSC. 
 

The thermal decomposition of PC in air occurred in 
three stages, as can be seen in Figure 5(b). The first stage 
corresponded to the thermo-oxidative decomposition of 
PC in air. The degradation process started with the chain 
scission of the isopropylidene bonds, including 
alcoholysis and hydrolysis of the carbonate bonds, similar 
to that under nitrogen atmosphere. The second stage 
(stage II) of the degradation process presented a slighter 
mass loss slope than the first main stage of degradation 
and had the shortest period of time of the three main 
degradation stages. This stage was attributed to the 
decomposition of the remaining polymer that was kept 
protected from burning due to the char layer formed 
during stage I, as well as the degradation of part of that 
previous char layer. Stage III was attributed to char 
oxidation produced in the previous stages. No solid 
residues were obtained after 1000 ºC, indicating a 
complete thermo-oxidative decomposition process of 
polycarbonate. 

 
PC-f under air presented a shift in the temperature 

corresponding to the first decomposition stage towards 
higher values when compared to the unfoamed PC; for 
instance, the 1 and 5 wt% loss temperatures were delayed 
in 25 and 30 ºC, respectively. The DTG showed how the 
degradation process occurred faster than for the unfoamed 

PC, with a Tmax shift of 16 ºC (see Figure 5(b)). The delay 
observed during the beginning of the degradation process 
was once again attributed to the cellular structure, which 
acted as a thermal insulator within the material, inhibiting 
heat transfer at the beginning of the thermal 
decomposition process, and to the presence of the 
crystalline phase [25]. 

 

 
 

 
 
Figure 5. TGA and DTG thermograms of the unfoamed 
PC (continuous line) and foamed polycarbonate (PC-f, 
relative intensity: 0.38, dashed line), (a) under nitrogen 
and (b) under air atmosphere. 
 

Conclusions 
 

Polycarbonate foams were prepared and characterized 
in terms of their cellular structure characteristics. The 
study of the desorption kinetics of CO2 out of PC showed 
similar values of the maximum CO2 concentration 
dissolved into the material compared to the values found 
in the literature. The small difference of those values 
could be related to the degree of crystallinity present in 
the material. 

 
 The saturation/foaming temperature had a large effect 

on the morphology of the foams, with foams displaying 
smaller cell sizes with decreasing this temperature. This 
was attributed to a fast cooling of the polymer, which 
stopped foam growth once the glass transition temperature 
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was reached, and due to the presence of crystalline 
structures confirmed by WAXS and DSC measurements. 
In addition to the saturation temperature, other foaming 
parameters that resulted relevant for the degree of 
achieved crystallinity were the pressure and the time at 
saturation conditions, which promoted the formation and 
perfection of crystals. The simultaneous presence of the 
cellular structure and crystals enhanced the thermal 
stability of polycarbonate, which increased while 
decreasing the relative density of the samples. 
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4.1 Summary. 

 

In the previous chapter the effects of two different foaming methods (i.e., one-step and two-

step foaming processes) on the cellular morphology of PC and PC-GnP foams were discussed. In 

this chapter the possible effects that those two foaming processes in the presence of carbon dioxide 

and graphene nanoplatelets can have on the final microstructure of PC, possible leading to the 

development of a crystalline phase in the PC foams are studied. Knowing that improvements in 

mechanical properties [1-2] and somewhat small enhancements of thermal stability [3-4] in 

polymeric materials can be associated to their microstructure; it is necessary to analyze and 

determine possible changes in the microstructure of our polymeric systems and correlate them with 

possible effects on their final properties, in this chapter, the thermal stability and viscoelasticity of 

foams will be the main focus. The goal is to be able to tune the processes in order to develop foams 

with different microstructures and a wide range of densities, making these foams to open up their 

range of applications in different markets. 

 

The analyses presented in this chapter were based on different hypothesis that were 

established taking into consideration the plasticizing effect of carbon dioxide, the presence of GnP 

with flat morphology and large aspect ratio (i.e. 15 m/7nm as reported by manufacturer) and 

different process conditions, which were observed to have an effect on PC microstructure in the 

preliminary results shown in chapter 3. The first hypothesis stated that the dissolution of CO2 could 

have an effect in the microstructure of the PC depending on the foaming process and the variation 

of foaming parameters. Taking into consideration that foaming takes place at temperatures higher 

than the Tg of PC which will promote molecular mobility (especially in the presence of CO2 as 

previously discussed), this could induce to the formation of ordered structures. In a similar fashion 

the combined presence of CO2 and graphene nanoplatelets could potentially modify the 
                                                            
1 Auras R, Harte B, Selke S. An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience. 
2004;4(9):835-64. 
2 Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: An overview. Progress in Polymer Science. 2007;32(4):455-
82. 
3 Hung C-Y, Wang C-C, Chen C-Y. Enhanced the thermal stability and crystallinity of polylactic acid (PLA) by 
incorporated reactive PS-b-PMMA-b-PGMA and PS-b-PGMA block copolymers as chain extenders. Polymer. 
2013;54(7):1860-6. 
4 Spoljaric S, Genovese A, Shanks RA. Polypropylene–microcrystalline cellulose composites with enhanced 
compatibility and properties. Composites Part A: Applied Science and Manufacturing. 2009;40(6–7):791-9. 
 



_______________________________________________________________________________________ 

104 
 

Chapter 4 

microstructure (i.e order/crystallinity) of PC in a larger scale during processing when compared 

with processing with CO2 but without GnP. Another hypothesis established that the presence of 

GnP with flat morphology and large aspect ratio could promote decrease in the diffusion of gas in 

composites via a mechanism known as gas tortuosity (i.e. gas barrier effect) that reduces the 

diffusion of gas within the polymer due to the presence of obstacles (i.e. particles), this could be 

beneficial for the thermal stability of the composites, delaying the thermal degradation process 

when compared with the neat PC. At the same time, the formation of a cellular structure would be 

expected to promote a decrease in the heat conduction, therefore delaying the thermal degradation 

of the foams. It was thought that the presence of GnP within the solid fraction of foams could 

promote enhancements on the viscoelastic behavior of composite foams. Enhancements in the 

elastic and viscous characteristics of the foams were expected throughout a range of temperature 

(i.e. 30 oC -180 oC). Special consideration will plan to take on the storage modulus and glass 

transition temperature (Tg) as the main viscoelastic characteristics.  

 

The main objective of this study was to characterize the microstructure, the thermal stability 

and viscoelastic behavior of foams prepared via two different foaming processes, paying special 

attention to the effects of the cellular morphology, microstructure of PC and the presence of GnP 

contents. For this end, different specific objectives were established. Firstly, the analysis of the 

microstructure of PC under the influence of CO2 foaming with and without GnP was needed. The 

microstructural characteristics that were looked in detail were non-crystalline ordering, crystallinity 

percentage and lamellar thickness [5]. Secondly, it was necessary to carry out a similar analysis but 

in this case, to observe the combined effect of GnP and CO2 on the microstructure of composites 

during foaming [5]. In order to  characterize and analyze the effects of density, cell sizes and the 

presence of GnP on thermal stability of foams prepared via one-step [6] and two-step foaming 

method [7], the thermogravimetric analysis under nitrogen and air atmospheres were set as 

objectives. As the last specific objective in this chapter, it was established to analyze and correlate 

the effect of density, cell sizes, microstructure and presence of GnP on the viscoelastic behavior of 

                                                            
5 Gedler G, Antunes M, Velasco JI. Graphene-induced crystallinity of bisphenol A polycarbonate in the presence of 
supercritical carbon dioxide. Polymer. 2013;54(23):6389-98. 
6 Gedler G, Antunes M, Realinho V, Velasco JI. Thermal stability of polycarbonate-graphene nanocomposite foams. 
Polymer Degradation and Stability. 2012;97(8):1297-304. 
7 Gedler G, Antunes M, Velasco JI. Low density polycarbonate–graphene nanocomposite foams produced by 
supercritical carbon dioxide two-step foaming. Thermal stability. Composites Part B: Engineering. 2016;92:299-306. 
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the foams prepared via the two different foaming methods [8]. In order to satisfy the hypotheses and 

objectives established above, a detailed analysis was carried out by means of Raman spectroscopy, 

wide angle X rays scattering (WAXS), small angle X rays scattering (SAXS), differential scanning 

calorimetry (DSC), scanning electron microscopy (SEM), atomic force microscopy (AFM), 

thermogravimetric analysis (TGA) and dynamic mechanical-thermal analysis (DMTA). 

 

Since it was observed that changes in the microstructure were taking place, the results were 

analyzed and discussed in terms of crystallization lamellar model using the Gibbs-Thomson 

equation [9], which allowed us to estimate the lamellar thickness of crystals by using the melting 

temperatures from the DSC study. From that study, the double melting behavior was detected, 

meaning two different melting signals were detected in the DSC analysis, this was attributed to the 

formation of crystals with different thermal stabilities that were nucleated at different times, 

therefore the use of primary and secondary nucleation model [10]  was used for this analysis. Since 

the formation of order non-crystalline was detected by means of Raman spectroscopy and SAXS 

and observed by AFM, the use of the Cahn–Hilliard model (spinodal decomposition) [11] was used 

in the analysis of signals detected by SAXS but not by WAXS for some of the samples. Therefore 

the separation of phases was considered; in which one of them can be forming an ordered structure 

in a long range but not reaching the 3D packing ordering necessary to be detected as crystallinity. 

Another model that was used in order to analyze the signals from SAXS was the finite lamellar 

stack model [12], which allowed us to estimate the lamellar thickness of crystals and compared 

them to the values obtained by the Gibbs-Thomson equation which used the melting temperatures 

of crystals as discussed above. In the case of GnP structural changes detected by WAXS, and 

observed by AFM, the Bragg’s law and Debye-Scherrer relationship [13,14] were used in order to 

estimate the thickness of these GnPs, as they are stacks of graphene monolayers, the changes in 

thickness was attributed to dispersion/partial exfoliation during foaming due to the interactions 

between the graphitic structure and the CO2 molecules. The presence of different microstructures 

                                                            
8 Gedler G, Antunes M, Velasco JI. Viscoelastic properties of polycarbonate-graphene nanoplatelets nanocomposite 
foams. Composites Part B: Engineering. 2016;93:143-52. 
9 Mandelkern L. Crystallization of Polymers. 2nd ed. Cambridge: Cambridge University Press; 2002. 
10 Mandelkern L. The Relation between Structure and Properties of Crystalline Polymers. Polym J. 1985;17(1):337-50. 
11 Cahn JW, Hilliard JE. Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical 
Physics. 1958;28(2):258-67. 
12 Ruland W. The evaluation of the small-angle scattering of lamellar two-phase systems by means of interface 
distribution functions. Colloid & Polymer Sci. 1977, 255(5):417-27. 
13 Guinebretière R. X-Ray Diffraction by Polycrystalline Materials: Wiley; 2007 
14 Chu B, Hsiao BS. Small-Angle X-ray Scattering of Polymers. Chemical Reviews. 2001;101(6):1727-62. 
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was analyzed taking into consideration the free volume theory [15] which was attributed in part to 

the high molecular mobility induced by the plasticizing effect of the CO2 on PC under the 

conditions studied.  

 

Regarding the thermal stability analyses, the degradation of polymers theories [16] was 

employed when characterizing the degradation mechanisms of the different foams study depending 

on the atmospheres in which the experiences were carried out. The delays in the degradation of 

different materials were attributed to reduction of heat conduction through the solid fraction due to 

the presence of a cellular structures with different cell sizes and densities, while in the case of 

composites the presence of GnP acted as obstacles to restrict the diffusion of decomposition 

products as well as restriction to oxygen diffusion into the material when the study was carried out 

under air atmosphere. Regarding the mechanical characterization of the foams prepared via the two 

different foaming processes, the Gibson–Ashby model [17] was used for the analysis, where the 

elastic and viscous contributions were correlated to the density of foams, their cell sizes, 

microstructure and the presence of GnP contents. The presence of crystallinity and GnP promoted 

enhancements to the elastic modulus when compared to the neat counterpart foams. Regarding the 

viscous contribution, the combined precense of PC crystalline fraction and GnP limited the mobility 

of PC molecules which promoted higher glass transition temperatures. In general, these theories 

allowed us to observe changes in the microstructure by means of crystallinity and ordered 

structures, changes in GnP morphology by means of changes in thickness of GnPs, enhancements 

on the thermal stability and viscoelastic behavior of the foams prepared. 

 

From this chapter the following conclusions can be extracted: 

 

1)  Raman spectroscopy allowed the correlations of changes in bands associated to 

intrachain (733 cm-1) and interchain (1235 cm-1) interactions due to regular arrangements in the 

structure of the materials prepared via one-step process. Especially in the presence of CO2 and GnP 

that promoted a synergetic effect that induced the mobility of PC molecules 

                                                            
15 Godwin A. Plasticizers. In: Craver CDC, Charles E., Jr, ed. Applied Polymer Science: 21st Century. Oxford: Elsevier 
Science. 2000. 
16 Beyler CL, Hirschler MM. Thermal decomposition of polymers. SFPE handbook of fire protection engineering. 
2002;2:110-31. 
17 Gibson LJ, Ashby MF. Cellular Solids, Structure and Properties. 2nd ed. ed. Oxford: Pergamon Press; 1999. 
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2)  The foams prepared via one-step foaming process developed enough quantity of order 

structures to be detected as crystallinity by WAXS and DSC (i.e crystallinities above 1 %). While 

the foams prepared via the two-step foaming process did not develop enough ordering to be 

detected as crystallinity by these techniques. This was attributed to the low energy used during the 

dissolution stage, where much lower temperatures (160 oC) and pressures (60 bar) where used 

compared with the one-step foaming process (> 200 oC, 150 bar). 

 

3)  Enhanced GnP dispersion/partial exfoliation was correlated to the reduction/almost 

disappearance of the characteristic (002) diffraction plane typical of the graphitic structure in the 

WAXS analysis. 

 

4)  The cellular structure played a thermal insulator role in the thermal stability of the foams 

studied due to the insulator mechanism promoted by the presence of cells (tortuosity to heat 

conduction). This mechanism delayed the thermal degradation process. Specifically, larger cell 

sizes (> 50 m) hindered the heatl conduction within the solid fraction of these foams, promoting a 

tortuous path when compared with foams with smaller cell sizes (< 30 m) (within foams with low 

densities). 

 

5) The presence of the enhanced dispersion of graphene nanoplatelets throughout the solid 

fraction enhanced the final thermal stability of composite foams, due to the gas tortuous effect for 

products of decomposition. 

 

6) The mechanical performance of foams was mainly driven by their relative density, as the 

relative storage modulus values of foams varied potentially with relative density. 

 

7) The addition of graphene nanoplatelets demonstrated the effective reinforcement effect by 

adding higher amount of GnP and displaying higher specific relative storage modulus. Foams 

prepared in two steps displayed a less dependency of GnP’s concentration when compared with the 

one-step foams, attributed to the little changes of the exponent “n” from the Gibson-Ashby 

relationship. 

 



_______________________________________________________________________________________ 

108 
 

Chapter 4 

8)  Foams prepared by one-step foaming presented higher Tg values when compared with 

the foams prepared in two steps. These differences of the viscous contribution were related to the 

presence of a PC crystalline fraction and the presence of GnP that combined, contributed to limit 

the mobility of PC molecules. 

 

4.2 Published articles. 

 

In this chapter the results and analyses are displayed in four publications. The first 

publication entitled Graphene-induced crystallinity of bisphenol A polycarbonate in the presence 

of supercritical carbon dioxide published in Polymer. 2013; 54(23):6389-98, focuses on 

elucidating the combined effect of CO2 and graphene nanoplatelets on the microstructure of PC. 

 

The second publication entitled Thermal stability of polycarbonate-graphene 

nanocomposite foams published in Polymer Degradation and Stability. 2012; 97(8):1297-304, 

focuses on displaying the analysis of thermal stability of PC and PC/graphene foams prepared via 

the one-step process, discussing in detail the enhancements of thermal stability and relating them to 

the different densities, cell sizes, the presence of graphene nanoplatelets. The third publication 

entitled Low density polycarbonate-graphene nanocomposite foams produced by supercritical 

carbon dioxide two-step foaming. Thermal stability published in Composites Part B: 

Engineering. 2016; 92:299-306, displays a similar analysis but in this case for foams prepared via 

the two-step foaming process. 

 

The fourth publication entitled Viscoelastic properties of polycarbonate-graphene 

nanoplatelets nanocomposite foams published in the Journal of Composites Part B: Engineering. 

2016; 93:143-52, displays the characterization of the viscoelastic properties of foams prepared by 

two different foaming processes, taking into consideration the densities, cell sizes and the presence 

of GnP and correlating these characteristics with the elastic and viscous contributions. 
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a  b  s  t  r  a  c  t   
 

Changes in the crystallinity of polycarbonate (PC) induced by the simultaneous presence of 0.5 wt% 
graphene nanoplatelets (GnP) and supercritical carbon dioxide (sc-CO2) were examined by means of 
Raman spectroscopy, WAXS, SAXS and DSC. Composites were prepared by melt-mixing, compression- 
molding and dissolving sc-CO2 at high pressure and temperature. It was found that dissolved CO2 

induced the formation of an ordered non-crystalline phase in PC during slow cooling under pressure. A 
fast depressurization and cooling did not cause such an effect in the resultant foams. GnP induced a 
higher crystallinity in PC, especially when combined with sc-CO2, even during fast depressurization and 
cooling. Raman spectroscopy enabled to correlate changes in the PC vibration modes with the presence 
of ordered phases, as well as to detect interactions between GnP and PC. Additionally, evidence of GnP 
exfoliation in the composites could be explained by the intensity reduction of the (002) graphite 
diffraction peak. 

© 2013 Elsevier Ltd. All rights reserved. 
 
 
 
 
 
 
 
 
 

 
ATTENTION ¡  

Pages 110 to 118 of the thesis are available at the editor’s web 

http://www.sciencedirect.com/science/article/pii/S0032386113009166 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

0032-3861/$ e see front matter © 2013 Elsevier Ltd. All rights reserved. 
http://dx.doi.org/10.1016/j.polymer.2013.09.050 

 
 

109 

http://www.elsevier.com/locate/polymer
http://www.sciencedirect.com/science/article/pii/S0032386113009166
http://dx.doi.org/10.1016/j.polymer.2013.09.050


119 
 

Supporting information 1 (S1). 

Crystallinity calculations 

Crystallinity by DSC 

 The glass transition temperature (Tg) of PC was determined using the inflection point heat 

capacity method. The melting temperature (Tm) was determined as the maximum temperature of the 

melting peak appearing in the melting endotherm, while the heat of fusion (ΔHm) was obtained by 

direct integration of this peak. The crystallinity percentage (Xc) was calculated according to: 

0 100
 


m
c

m f

H

H w
                                          (1) 

where wp is the weight fraction of PC and H0m is the theoretical 100% crystalline PC melting 

enthalpy (147.79 J/g). 

 

Crystallinity by WAXS 

 The crystallinity percentage (Xc) was determined by WAXS using the following equation: 

100 


c
c

c a

A

A A
                                                            (2) 

where Ac corresponds to the sum of the crystalline peak areas and Aa to the so-called amorphous 

halo area.  
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Supporting information 2 (S2). 

Sample preparation for the measurement of the CO2 diffusion coefficient  

The samples used in the CO2 desorption kinetics study were obtained by reducing the diameter 

of the foaming precursors to a typical value of 40 mm.  

 

Measurements and testing  

Dissolution/desorption experiments were carried out in order to measure the CO2 diffusion 

coefficient in PC and PC-GnP. The samples used in the CO2 desorption kinetics study were 

introduced in the high pressure vessel and heated to 210 ºC at a CO2 pressure of 160 bar. After 

reaching the dissolution conditions, the samples were cooled to 35 ºC and the CO2 was fully 

decompressed. After removing from the vessel, the samples containing CO2 were quickly placed in 

a balance and the CO2 mass loss was recorded as a function of desorption time.  

The maximum concentration of CO2 in the samples after decompression (M0) was calculated by 

extrapolating to zero desorption time following the initial slope method [1]. Assuming one-

dimensional diffusion in a plane sheet, the CO2 diffusion coefficient (Dd) was determined by 

plotting Mt/M0 as a function of t/l2, where Mt is the CO2 concentration at time t and l is the thickness 

of the sample, according to the following equation [2]: 

2 2
0

81  
   

 

t dM D t
exp

M l
                                    (1) 

 

Effects of GnP on the CO2 diffusion coefficient of polycarbonate  

The maximum solubility of CO2 in the unfilled PC and PC-GnP was found to be similar: 42.6 

mg/g for the neat PC and 43.0 mg/g for PC-GnP. Nevertheless, the CO2 desorption curves displayed 

in Fig. S2(a) showed abrupt differences regarding the weight loss rate of the neat PC and PC-GnP, 

resulting in a CO2 diffusion coefficient of 4.45 × 10-12 m2/s for the neat polymer and 6.69 × 10-11 

m2/s for the composite (see Fig. S2(b)). These results are comparable to those found in literature for 

neat PC, where Dd was found to be within 2.55 × 10-11 and 4.60 × 10-12 m2/s [3] or between 1.55 × 
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10-12 and 6.93 × 10-12 m2/s [4]. As can be seen, the presence of GnP made it easier for the CO2 to 

desorb from PC, which was related to the formation of preferential CO2 diffusion paths at the 

interface of the polymer-graphene nanoplatelets. 
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Figure S2. (a) CO2 desorption behavior and (b) fitted data used to determine the diffusion 

coefficient values. Hollow symbols correspond to neat PC and filled symbols to PC-GnP composite. 
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Supporting information 3 (S3). 

As can be seen in Fig. S3, relevant optical changes could be observed in PC after CO2 

dissolution at 210 ºC (PC-CO2) and subsequent slow cooling at 1.6 ºC/min until reaching room 

temperature. 

 

  

Figure S3. Polycarbonate (a) before (PC) and (b) after CO2 dissolution (PC-CO2). 

(a) (b) 
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A thermogravimetric study in both nitrogen and air atmospheres has been carried out on unfilled and 
graphene-reinforced  solid  and  foamed  polycarbonate.  Polycarbonate  foams  were  prepared  using 
a supercritical CO2 dissolution one-step batch foaming process. Results showed that polycarbonate 
displayed a characteristic one-step decomposition under nitrogen, while three-step degradation was 
observed in air. In addition, as-received pristine graphene nanoplatelets displayed a three-step degra- 
dation in air, compared to a mild degradation under nitrogen. It was found that the thermal stability 
remarkably improved for the foamed composites, related to a combination of a heat transfer reduction 
promoted by the insulating cellular structure and the presence of the platelet-like graphene, which 
helped create a physical barrier effect, delaying the escape of volatile products generated during 
decomposition. 

© 2012 Elsevier Ltd. All rights reserved. 
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The thermal stability of low density polycarbonateegraphene nanocomposite foams prepared by 
supercritical carbon dioxide two-step foaming was investigated. Unfilled polycarbonate foams showed 
improved thermal stabilities when compared to the unfoamed polycarbonate, as the cellular structure of 
foams effectively slowed down the heat transfer process. Comparatively, polycarbonate foams with larger 
cells exhibited the highest delays in the early stage of thermal decomposition. Low density polycarbonate 
egraphene nanocomposite foams (relative  densities  between  0.07 and 0.28)  displayed  even higher 
thermal stabilities, with enhancements of up to 70 o C in terms of the onset of decomposition when 
compared to the unfilled PC, which was attributed to a combination of a heat transfer reduction 
promoted by the cellular structure and the presence of the dispersed graphene nanoplatelets, which 
acted as a physical barrier to the release of volatile decomposition products. 
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The viscoelastic properties of polycarbonate (PC) nanocomposite foams containing graphene nano- 
platelets (GnP), prepared by one and two-step supercritical CO2 dissolution, were characterized by 
dynamic-mechanical-thermal analysis. Three factors were detected to influence the mechanical perfor- 
mance of foams: relative density, the eventual presence of a PC crystalline phase and GnP's amount. 
Relative density was found to be the most important one, with the storage modulus following a power- 
law behavior with increasing relative density. Foams prepared in one-step presented higher storage 
moduli than two-step foams even having bigger cells, explained by their higher relative density. The 
eventual presence of PC crystals in one-step foams, induced by the combination of high CO2 dissolution 
temperatures and GnP's presence during foaming, was found to be the cause of their higher storage 
moduli when compared to two-step foams at similar relative density. A slight effect of GnP could only be 
observed in two-step foams with 5% GnP, as these foams displayed storage moduli as high as one-step 
foams having lower relative densities. Regarding the viscous contribution, PC's glass transition tem- 
perature resulted higher in one-step foams, related to a restriction in the molecular mobility of PC 
induced by the presence of a PC crystalline fraction and GnP. 
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5.1 Summary. 

 

After analyzing in detail the effect of the process parameters and presence of graphene 

nanoplatelets on the cellular morphology, microstructure, thermal stability and viscoelasticity of the 

PC-GnP composite foams in the previous chapters, this chapter is focused on the analysis of 

functional characteristics such as electrical and thermal conductivities as well as the 

electromagnetic interference shielding effectiveness (EMI SE) of the composite foams, taking into 

consideration the effects that the cellular morphology and the presence of graphene nanoplatelets 

could have on these transport properties for the composite foams. Knowing that dispersion of 

conductive particles in polymer composites is essential to develop conductive paths along the 

material in order to enhance transport properties [1], the idea is to prepare composite foams with a 

broad range of transport characteristics, which may lead to new applications of polymeric 

lightweight materials with dispersed conductive particles in electrostatic dissipation (ESD), sensors 

and electromagnetic shielding interference (EMI) applications [2,3].  

 

It is well known that the incorporation of graphene into insulating polymeric materials 

benefits the enhancement of transport properties (i.e. electrical and thermal conductivities) of the 

new composite material, mainly due to the excellent transport properties of graphene (electron 

mobility at room temperature 250,000 cm2/Vs and exceptional thermal conductivity 3000-5000 

W.m−1.K−1 [4]). It has been shown that filled composite materials exhibit a non-linear increase of 

the electrical conductivity as a function of the filler concentration [5]. At certain loading fraction, 

known as percolation threshold, the fillers are able to form a network leading to a sudden rise of the 

electrical and possible thermal conductivities [6]. The use of graphene particles in development of 

composites could be used to target applications such as thermal interface materials and heat 

spreaders. However, since the production of monolayer graphene is not yet at large scale 

                                                            
1 Antunes M, Velasco JI. Multifunctional polymer foams with carbon nanoparticles. Progress in Polymer Science. 
2014;39(3):486-509. 
2 Chung DDL. Electrical applications of carbon materials. Journal of Materials Science. 2004;39(8):2645-61. 
3 Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, et al. Electromagnetic interference shielding of graphene/epoxy 
composites. Carbon. 2009;47(3):922-5. 
4 Young RJ, Kinloch IA, Gong L, Novoselov KS. The mechanics of graphene nanocomposites: A review. Composites 
Science and Technology. 2012;72(12):1459-76. 
5 Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite 
materials. Nature. 2006;442(7100):282-6. 
6 Kirkpatrick S. Percolation and Conduction. Reviews of Modern Physics. 1973;45(4):574-88. 
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production, there is increasing attention being paid to the use of exfoliated graphene-nanoplates 

(GNPs) in polymers to produce thermally conductive nanocomposites [7]. 

 

In particular, the dispersion of graphene particles in polymer foams has shown enhancement 

in applications such as electromagnetic interference shielding effectiveness (EMI SE) properties 

[8,9]. It needs to be pointed out that EMI consists of many unwanted radiated signals which can 

cause unacceptable system performance. These unwanted radiated signals are a consequence of the 

increasing complexity of electronic devices in the form of higher packing density for quick response 

[10]. These electromagnetic signals need to be shielded in order to protect electronic systems. 

Shielding effectiveness is used to measure the ratio of impinging energy to the residual energy. 

When an electromagnetic wave passes though a shield, absorption and reflection take place [11]. 

Therefore the content of well disperse graphene particles could enhance and homogenize the 

number of sites for prospect electromagnetic shielding. With all that in mind, the development of 

PC-GnP composite foams will be target to enhance the GnP dispersion and improve their final 

transport properties. 

 

The analyses displayed in this chapter resulted from three main hypotheses that were taken 

into consideration when establishing the objectives of this chapter, as the first hypothesis was 

thought that foaming could enhance the dispersion of GnP and possible leading to the formation of 

3D conductive networks in PC-GnP composites. With that, electrical and possible thermal 

conductivities could be increased. As a second hypothesis, which is closely related to the first one, 

we have that foaming will push the particles closer to each other within the solid fraction, 

promoting the reduction of particle-particle distance that could promote enhancements in electrical 

and/or thermal conductivities. As the third hypothesis, it was thought that since foaming was 

expected to enhance the dispersion of GnP and it was observed in the previous chapters that some 

degree of GnP exfoliation could be taking place, this will increase the homogeneous dispersed sites 

for shielding, then electromagnetic interference shielding effectiveness would be expected to be 

enhanced after foaming. 

                                                            
7 Kim H, Abdala AA, Macosko CW. Graphene/Polymer Nanocomposites. Macromolecules. 2010;43(16):6515-30. 
8 Zhang H-B, Yan Q, Zheng W-G, He Z, Yu Z-Z. Tough Graphene−Polymer Microcellular Foams for Electromagnetic 
Interference Shielding. ACS Applied Materials & Interfaces. 2011;3(3):918-24. 
9 Yan D-X, Ren P-G, Pang H, Fu Q, Yang M-B, Li Z-M. Efficient electromagnetic interference shielding of lightweight 
graphene/polystyrene composite. Journal of Materials Chemistry. 2012;22(36):18772-4. 
10 J. L. Norman Violette, Donald R. J. White, Violette. MF. Electromagnetic Compatibility Handbook. New York: Van 
Nostrand Reinhold Company; 1987. 
11 Geetha S, Satheesh Kumar KK, Rao CRK, Vijayan M, Trivedi DC. EMI shielding: Methods and materials—A 
review. Journal of Applied Polymer Science. 2009;112(4):2073-86 
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The main objective of this chapter is to determine the effects of the cellular morphology, 

content of graphene nanoplatelets and its dispersion on the transport properties and EMI shielding 

effectiveness of PC-GnP composites prepared via 2 different foaming processes. With this in mind, 

different specific objectives were established. Firstly it was necessary to analyze the effects of the 

foam densities and cell sizes on the electrical conductivity behavior of PC-GnP composites [12]. 

Subsequently, the next objective was established as to investigate the effects of the content of GnP, 

foam densities and cell sizes on the thermal conductivity behavior of neat PC and PC-GnP 

composites [13]. After this, the third objective was to determine the effects of the foam density, cell 

sizes and content of GnP on the EMI SE behavior of PC-GnP composites prepared via the one-step 

[14] and the two-step [15] foaming processes. With the aim to satisfy the hypotheses and objectives 

established above, experiments and measurements of electrical and thermal conductivities, 

electromagnetic shielding effectiveness, small angle/wide angle X-ray scattering (SAXS/WAXS), 

atomic force microscopy, scanning electron microscopy and transmission electron microscopy were 

carried out.  

 

In the previous chapters it was suggested that partial exfoliation of GnP was taking place 

during foaming, for this end the Debye–Scherrer relationship and Bragg’s law [16] were used to 

show the reduction of thickness of GnP observed after WAXS analysis. This analysis showed the 

reduction/disappearance of the graphitic structure signal (i.e. 002) from the spectra. With that in 

mind, if exfoliation was taking place, electrical conductivity and EMI shielding protection will be 

expected to be enhanced in foamed materials, because these properties would require well dispersed 

GnP at low contents in order to have enough particles to form a conductive network and to work as 

shielding sites for electromagnetic waves. With this in mind and taking into consideration the 

lowest content of GnP used in this thesis (i.e. 0.5 wt.%), the analysis and discussions of electrical 

conductivity measurements were carried out in terms of percolation threshold and tunneling theories 

                                                            
12 Gedler G, Antunes M, Velasco JI. Enhanced electrical conductivity in graphene-filled polycarbonate nanocomposites 
by microcellular foaming with sc-CO2. Journal of Adhesion Science and Technology. 2016;30(9):1017-29. 
13 Gedler G, Antunes M, Borca-Tasciuc T, Velasco JI, Ozisik R. Effects of graphene concentration, relative density and 
cellular morphology on the thermal conductivity of polycarbonate–graphene nanocomposite foams. European Polymer 
Journal. 2016;75:190-9. 
14 Gedler G, Antunes M, Velasco JI, Ozisik R. Enhanced electromagnetic interference shielding effectiveness of 
polycarbonate/graphene nanocomposites foamed via 1-step supercritical carbon dioxide process. Materials & Design. 
2016;90:906-14. 
15 Gedler G, Antunes M, Velasco JI, Ozisik R. Electromagnetic shielding effectiveness of polycarbonate/graphene 
nanocomposite foams processed in 2-steps with supercritical carbon dioxide. Materials Letters. 2015;160:41-4. 
16 Guinebretière R. X-Ray Diffraction by Polycrystalline Materials: Wiley; 2007. 
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[17,18], showing that the electrical conductivity of composite foams was enhance after foaming 

when compare with the unfoamed neat PC and PC-GnP composite. It was observed that this 

enhancement was strongly related to the cell sizes and foam density, suggesting that for certain cell 

sizes (i.e. 80m -150 m) the particles will be pushed closer to each other, until a point (i.e. cell 

sizes > 200 m) where the opposite effect could take place, this would be pushing the particles 

away from each other during cells’ growth, breaking any possible favorable network formed during 

foaming. The other case scenario possible would be that cell’s growth would not even reach a 

minimum cell size to actually push the particles closer to each other enough to enhance the 

electrical conductivity value of the foam (i.e. cell sizes < 80 m).  

 

For the case of electromagnetic shielding protection, the electromagnetic waves theory 

(plane wave shielding effectiveness) [19,20] was implemented, based on this theory the Schelkunoff 

decomposition expresses the plane wave shielding effectiveness as of three decibel loss terms: 

absorption loss (also called penetration loss), reflection loss, and multiple reflections loss (also 

called the correction term for internal reflections). However, taking into consideration that the 

mismatch loss and dissipation loss, are closely related to the reflectance/absorptance the 

calculations were based on the mismatch decomposition which expresses the plane wave shielding 

effectiveness as the sum of only two terms, the absorption (which includes the absorption and 

multiple reflections correction terms) and the reflection term. This allowed us to perform the 

calculations by directly using the values from the measurements. With this being said, after 

foaming, it was shown that the effectiveness of shielding was enhanced when compared with the 

unfoamed composite, which reinforced the previous results regarding the enhanced GnP dispersion 

and exfoliation taking place during foaming. This analysis puts in evidence that the larger and well 

dispersed number of sites for shielding promoted the EMI SE of the composite foams. Even though, 

there was GnP enhanced dispersion/exfoliation, the degree of conduction network for thermal 

conductivity to take place is expected to be very high. With that in mind the characterization of 

thermal conductivity was carried on. For this end, the steady state one-dimensional heat conduction 

[21] and heat conduction tortuosity [22] were the theories taking into consideration for the analysis. 

The presence of gas phase distributed in different volumes (i.e. cells sizes) and different solid 
                                                            
17 Rhodes SM. Electrically Conductive Polymer Composites: The University of Akron; 2007. 
18 Knauth P, Masquelier C, Traversa E, Wachsman ED. Solid State Ionics - 2004: Cambridge University Press; 2005. 
19 Schelkunoff SA. Electromagnetic Waves: Van Nostrand; 1943. 
20 McDowell AJ, Hubing TH. Analysis and Comparison of Plane Wave Shielding Effectiveness Decompositions. IEEE 
Transactions on Electromagnetic Compatibility. 2014;56(6):1711-4. 
21 Nield DA, Bejan A. Heat Transfer Through a Porous Medium.  Convection in Porous Media. New York, NY: 
Springer New York 1999, p. 23-31. 
22 Turns S. Thermal-Fluid Sciences: An Integrated Approach: Cambridge University Press; 2006. 
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fractions paths associated to the densities of the foams were strongly related to the final thermal 

conductivity of the foams. For instance for low density foams (relative densities < 0.3) the behavior 

translated into less solid fraction resulted into a hard/tortuous path for phonons to travel through. 

However, in PC-GnP composite foams the thermal conductivity was enhanced with the presence of 

GnP, which increased with the addition of larger quantities (from 0.5 to 5 wt.% GnP) when 

compared with their counterpart neat PC foams with similar densities.  

 

From this chapter the following conclusions can be extracted: 

 

1) Thermal conductivity behavior and the density/morphology of the foams were strongly 

associated, increasing the thermal conductivity while increasing the foam density. 

 

2) Thermal conductivity calculated for PC-GnP composite foams using a three-phase model 

displayed a better fit than when calculating using a two-phase model. This was attributed to the fact 

that this model takes into account the individual contribution of the gas phase, polymer phase and 

filler phase to calculate the thermal conductivity. 

 

3) The one-step foaming process enhanced the electrical conductivity in four order of 

magnitude of PC-GnP composites for cell sizes larger than 140 m when compared with values of 

the unfoamed composite. 

 

4) SAXS measurements revealed anisotropic features, showing a strong correlation between 

processing conditions, cellular morphology developed and final possible orientation of particles. 

The observation of orientation of particles was carried out on TEM images. 

 

 

5) Both the one-step and two-step foaming processes promoted the enhancement of 

electromagnetic interference shielding effectiveness. This was associated to the well dispersed GnPs 

and the effect of foaming, which pushed GnP closer to each other while maintaining and even 

distribution through the solid fraction, guaranteeing sites for shielding. 

 

6) Changes in GnPs morphology were associated to the (002) diffraction signal intensity, 

with this and the enhancements shown in transport properties and EMI SE values, the enhanced 

dispersion and partial exfoliation during foaming was demonstrated. 
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5.2 Published articles. 

 

 The first section of this chapter is focused in the analysis of transport properties of PC-

GnP foam systems aiming to determine their thermal and electrical conductivities. With this in 

mind, two publications are presented, first, Effects of graphene concentration, relative density and 

cellular morphology on the thermal conductivity of polycarbonate-graphene nanocomposite 

foams published in European Polymer Journal.  2016; 75:190-9, focuses on the thermal 

conductivity characterization of neat PC and PC-GnP composite foams; while a second publication 

entitled Enhanced electrical conductivity in graphene-filled polycarbonate nanocomposites by 

microcellular foaming with sc-CO2 published in Journal of Adhesion Science and Technology. 

2016; 30(9):1017-29, displays the electrical conductivity characterization of the composite foams 

prepared via one-step foaming process.  

 

 Furthermore, since conductive particle dispersion in composites ultimately may enhance 

EMI SE of some systems [1-4]. The results and analysis regarding EMI shielding properties are 

discussed and displayed in two publications. The first publication entitled Enhanced 

electromagnetic interference shielding effectiveness of polycarbonate/graphene nanocomposites 

foamed via 1-step supercritical carbon dioxide process published in Materials & Design. 2016; 

90: 906-914, displays the EMI SE study of foams prepared via the one-step foaming process, while 

a second publication entitled Electromagnetic shielding effectiveness of polycarbonate/graphene 

nanocomposite foams processed in 2-steps with supercritical carbon dioxide published in 

Materials Letters. 2015; 160:41-44, is focused on presenting the results and analysis of the PC-

GnP composite foams prepared via the two-step foaming process.  
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The thermal conductivity of polycarbonate–graphene nanocomposite foams was studied as 
a function of relative density, developed cellular structure and graphene concentration. 
Two types of supercritical CO2 foaming processes were employed to obtain foams with a 
wide range of relative densities and cellular morphologies. The thermal conductivity of 
unfoamed nanocomposites increased in more than two times upon addition of 5 wt% 
graphene. Foaming led to lowered thermal conductivity values, as low as 0.03 W/(m K), 
with thermal conductivity being mainly controlled by relative density and in a lower 
extent by graphene concentration. Higher thermal conductivities were obtained with 
increasing relative density and cell size, as well as with increasing graphene concentration, 
especially in those cases where improved graphene dispersion was achieved with foaming. 
Thermal conductivity values displayed a better fit when using a three-phase model when 
compared to the two-phase model previously proposed for polymer composite foams. 
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ABSTRACT 
Electrically conductive polycarbonate (PC) foams containing a low 
concentration of graphene nanoplatelets (0.5 wt.%) were produced 
with variable range of expansion ratio by applying a high-pressure 
batch  foaming  process  using  sc-CO2.  The  structure  of  the  foams 
was assessed by means of SEM, AFM and WAXS, and the electrical 
conductivity was measured in the foam growing direction. Results 
showed that electrical conductivity of PC composite foams remarkably 
increased when compared to that of non-foamed PC composite, with 
both the electrical conductivity and the main cell size of the foams 
being directly affected by the resultant expansion ratio of the foam. 
This interesting result could be explained by the development of 
an interconnected graphene nanoparticle network composed by 
increasingly well-dispersed and reoriented graphene nanoplatelets, 
which  was  developed  into  the  solid  fraction  of  the  foam  upon 
foaming by sudden depressurising of the plasticised CO2-saturated PC 
preform. Some evidences of morphological changes in the graphene 
nanoplatelets after foaming were obtained by analysing variations in 
graphene’s (0 0 2) diffraction plane, whose intensity decreased with 
foaming. A reduction of the average number of layers in the graphene 
nanoplatelets was also measured, both evidences indicating that 
improved dispersion  of graphene nanoparticles existed in the PC 
composite foams. As a result, foams with a proper combination of 
low density and enhanced electrical conductivity could be produced, 
enabling them to be used in applications such as electromagnetic 
interference shielding. 
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The dielectric and electromagnetic interference (EMI) shielding properties of polycarbonate/graphene nanocom- 
posites foamed using supercritical carbon dioxide were studied as a function of their cellular and composite mor- 
phology. Foamed polycarbonate filled with 0.5% (by weight) graphene exhibited enhanced EMI shielding 
effectiveness, which was found to depend on cellular and composite morphology in a complex manner. Foamed 
composites presented a maximum specific EMI shielding effectiveness of ~39 dB cm3/g, which is approximately 
35 times greater than that of unfoamed composite (1.1 dB cm3/g). In addition, the relative permittivity was found 
to increase up to 3.25 times. The results suggest that graphene filled polymer foams can enhance the performance 
of electronic devices, opening up the possibility of using these materials in electronic applications. 
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a b s t  r a c t  
 

The electromagnetic interference (EMI) shielding properties of  polycarbonate/graphene  composites 
foamed with supercritical carbon dioxide were investigated as a function of cellular morphology  and 
graphene particle dispersion. The 2-step foaming method used was found to improve  graphene  dis- 
persion and led to a different cellular structure compared to traditional 1-step foaming. Reflection was 
found to be the dominant EMI shielding mechanism and EMI shielding effectiveness was improved with 
large cell morphology that promoted isotropic/random orientation of  graphene  particles.  A  maximum 
EMI specific shielding effectiveness of '"" 78 dB cm3/g was achieved in foams, which was more than 70 
times higher than that  of the unfoamed polymer (1.1 dB cm3/g). The study shows that by controlling 
foaming process conditions and nanoparticle characteristics, it is possible to improve multiple properties 
while achieving lightweight materials suitable for various applications. 
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6.1 General discussion. 
 

This thesis addressed the preparation of polycarbonate and polycarbonate-graphene 

nanoplatelets foams via two different foaming processes. The main goal originally set was to 

establish a correlation between processing parameters with the final morphology, microstructure 

and properties of the foams prepared. The study focused on the understanding of these relationships 

while aiming to develop foams with a broad range of densities. With the addition of GnP, one of the 

specific targets was to provide the foams with multifunctional characteristics. Since 

multifunctionality refers to the ability of a single material to possess multiple engineering functions 

such as enhanced mechanical, thermal, transport properties, the correlation of the presence of GnP 

with the final characteristics of the foams was analyzed in detail. 

 

In Chapter 3 the characterization of the cellular structure of the foams was displayed and 

analyzed by means of SEM imaging analysis, aiming to correlate the cellular structure with the 

processing parameters. Firstly, the analysis focused on the final morphology of the foams prepared 

via the one-step foaming process. It was shown that the cellular structures developed were closed-

cell. This was attributed to the considerable good response of PC during expansion due to its melt 

strength under the particular foaming conditions. It was possible to use the one-step foaming 

process with changes in temperature (i.e. 200 oC – 220 oC) and time of dissolution (i.e. 40 min- 160 

min) to prepare PC rigid foams of medium relative densities (i.e. ~0.33-0.46). The addition of GnP 

made possible to prepare composite foams of mid-high relative densities ranging between ~0.34 and 

0.79. In addition on the higher end, PC-GnP foams prepared with 5 wt.% GnP were in the high 

relative density range (i.e. ~0.50-0.80).  

 

Particularly, the temperature had a large effect on the final morphology of the foams, 

increasing cell sizes from 70 m to 150 m when increasing the temperature from 200 oC to 213 oC 

. While the addition of 5 wt. % GnP showed that under the process conditions studied, the particles 

had a nucleation effect, reducing cell sizes from 160m to 30 m and increasing cell densities (i.e. 

from 4.64 x 105 cell/cm3 to 1.18 x 107 cell/cm3)  when compared with neat PC foams. This was 

attributed to the nucleation effect of GnP and the increment of the melt flow of the composite 

during foaming. It was also discussed that the residual pressure (i.e. remaining pressure after 

expansion and kept during cooling) played a key role when promoting isotropic cell morphology. 
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Displaying aspect ratios very close to 1 when using a residual pressure of 10 bar. This pressure 

helped to provide stability to the structure at the considerable high temperatures after expansion, 

specially taking into account that the Tg in the presence of CO2 was expected to be lower when 

compared to the Tg of PC (i.e. ~150 oC).  

 

The second section of Chapter 3 was dedicated to the analysis of the cellular morphology of 

the foams prepared via the two-step process. This foaming process promoted the formation of 

closed-cell morphology with low relative densities (i.e. down to 0.07) and a much broader range of 

cell sizes (i.e. 7-700 m) when compared to the foams prepared in one-step (i.e. 30-200 m). This 

was attributed to the long CO2 dissolution time (> 200 min) and the smaller pressure drop (~60 bar) 

at the moment of expansion when compared with the one-step process (>150 bar). It was discussed 

how tuning this foaming process enabled the preparation of PC foams of low relative densities (i.e. 

~0.07-0.15) and PC-GnP foams with 0.5 wt.%GnP of mid-low relative densities (i.e. ~0.08-0.30). In 

addition on the higher end PC-GnP foams with 5 wt.% GnP were in the mid relative densities range 

(i.e. ~0.40-0.50). This was attributed to the quantity of CO2 dissolved in the samples when using 

different dissolution temperatures (varying from 3 to 7 wt.% CO2). This variations in the process 

enabled the development of isotropic (i.e. dissolution temperatures of 80 oC) and anisotropic (i.e. 

dissolution temperatures of 100 oC) cellular morphologies with expansion ratios of up to 14. The 

use of the two-step foaming process also promoted the nucleation effect for larger contents of GnP, 

for instance, the most remarkable nucleation effect was observed for the dissolution temperature of 

100 oC, where cell sizes for the neat PC reached the hundreds of microns (i.e. 700 m) and for 

composite foams with 5 wt% GnP the cell size was reduced to a few microns (i.e. 7 m). 

Preliminary results in this chapter showed that the use of this foaming process allowed the 

preparation of foams that remained amorphous. This was analyzed by WAXS and DSC 

measurements, which was discussed in more detail in Chapter 4.  

 

After understanding the effect of the foaming processes on the foam’s cellular morphology, 

Chapter 4 focused on the study of the effects of process parameters and foams’ morphology on the 

microstructure, thermal stability and viscoelasticity of the final foams developed. Here, it was 

discussed that the use of long times of CO2 dissolution (i.e. 60 min) combined with high 

temperatures (> 200 oC) and high pressure of CO2 (i.e. 150 bar) was triggering crystallinity, which 

was confirmed by DSC, XRD and Raman spectroscopy for foams prepared via the one-step process. 
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This was attributed to the plasticizing effect of CO2, which under those particular conditions 

resulted beneficial for the formation of just a small amount of crystallinity for the neat PC foams. 

 

 In addition, the effect of GnP on the PC microstructure had a remarkable effect on the final 

microstructure of the foams. The synergetic effect of the graphene nanoplatelets and CO2 under 

foaming conditions via one-step process promoted a enhancement of PC crystallinity (i.e. 8 %) as 

compared to the PC foams (i.e. 1%). The double melting behavior observed in the DSC analysis for 

the composite foams was discussed; this was attributed to the presence of crystals with different 

thermal stabilities that had different nucleation speeds.  On the other hand, the 2-step foaming 

process guaranteed the development of PC and composite foams with amorphous characteristics, 

regardless the long times used to dissolve CO2 in the samples. This was attributed to the 

considerable lower dissolution temperature used (i.e. 80 oC and 100 oC) when compared with the 

temperature used in the 1-step process (i.e. > 200 oC), which did not enhance the molecular mobility 

of PC when compared with the conditions used in the one-step foaming process.  

 

Particularly, in this chapter the advantage of using Raman spectroscopy was discussed, as a 

powerful tool capable to detect and quantify the amount of crystallinity in the foams. The use of an 

empirical correlation was used to estimate values of crystallinity and compared with values 

calculated by WAXS and DSC. The correlation used the subtraction of the areas of bands from the 

composite foam (i.e. 733 cm-1 or 1235 cm-1) and the area from the “control” peak (i.e. 733 cm-1 or 

1235 cm-1 from neat PC), and then divide it by the area of the “control” band.  These values were 

fairly close to the values calculated from DSC and WAXS in some cases but in others they showed 

large differences. Those differences were attributed to the detection of ordered structures and not 

exclusively crystalline structures, the phase that did not crystallize but had some degree of order in 

its structure was also been detected. This led us to correlate those differences to non-crystalline 

phases as well. Interactions shown by particular bands (i.e. 480 cm-1, 733 cm-1, 1235 cm-1 and 2440 

cm-1) were then associated to these type if non-crystalline phases.  

 

Another section in Chapter 4 was dedicated to the discussion of the thermal stability of the 

foams. It was shown that the presence of cellular structures enhanced thermal stability of foams 

attributed to the delay of the early degradation process consequence of the inhibition of heat transfer 

through the material. The materials were acting as insulators, attributed to the presence of well 

distributed gaseous phase (i.e. homogeneous cellular structure). With the addition of GnP, the 
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stability was increase even more. The well dispersed graphene nanoplatelets, delayed the escape of 

volatile degradation products during decomposition. This promoted the contribution on thermal 

stability of foams composites associated to the restriction of gases to diffuse within the PC, known 

as gas tortuous path effect.   

 

Later in this chapter, the viscoelastic properties of the PC and PC-GnP foams were 

discussed. The materials exhibited cellular structure dependence, increasing the specific relative 

storage modulus from 0.1 to 0.6 when decreasing the cell sizes from 70 m to 7m in the case of 

foams prepared via the two-step foaming process. Different behaviors were observed for the foams 

prepared by one-step process and the foams prepared using the two-step foaming process. In the 

case of the foams prepared via the one-step process exhibited higher storage moduli (i.e. up to 

~1000 MPa) as compared to those prepared in two steps (i.e. < 100 MPa), it was suggested that the 

presence of a crystalline phase enhanced the mechanical behavior of the composites foams. In 

addition, the foams prepared in two steps exhibited a more drastic reduction of stiffness while 

reducing density.  

 

The addition of graphene nanoplatelets in conjunction with the presence of a crystalline 

phase counteracted the reduction of the glass transition temperature (contributing to limit the 

mobility of PC molecules) for foams prepared by a one-step process. However, for foams prepared 

via the two-step process with amorphous nature promoted the reduction of the maximum in the tan 

δ signal, this was attributed to the reduction of damping effect, causing the mechanical behavior of 

these foams less dependent on the graphene content. 

 

Chapter 5 was dedicated to characterize the multifunctional properties of the developed 

foams, with the main objective of supporting the initial hypothesis and preliminary results that 

showed the dispersion of GnP was taking place. For this, the thermal conductivity of composite 

foams was characterized. With the main goal of elucidating if the degree of GnP dispersion reached 

during foaming was enough to significantly enhance the thermal conductivity on the foams; 

knowing that remarkably high fillers’ dispersion will be required in order to improve high values of 

thermal conductivities. Results showed that thermal conductivity increased from 0.1 W.m-1.K-1 to 

0.3 W.m-1.K-1 when reducing cell sizes from 160m to 30 m in the case of foams prepared via 

one-step process, this was attributed to the heat conduction through the solid fraction which resulted 

in the shorting of the length of conduction paths. Remarkably reduction of density (~90 %) of pure 
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PC by using a two-step foaming process promoted a reduction of ~80 % of thermal conductivity as 

compared to the neat unfoamed PC. This was attributed to the larger cells and thinner walls (less 

solid fraction) that made the conduction path through the solid fraction slower.  

 

The effects of the addition of graphene nanoplatelets on the thermal conductivity of 

composites foams were also discussed. Particularly, the addition of 0.5 wt.% GnP promoted a 95 % 

enhancement  of the thermal conductivity as compared to neat PC foams with similar relative 

densities, these foams prepared using the one-step foaming process showed to induce an isotropic 

particle dispersion at high foaming temperatures. The well dispersed graphene nanoplatelets within 

the cell walls favored the thermal conductivity through the solid fraction of the composite foams. 

However, the values of thermal conductivity (i.e. ~ 0.18 W.m-1.K-1) were very similar when 

compared with the unfoamed PC (i.e. ~ 0.18 W.m-1.K-1). With that in mind, higher graphene 

nanoplatelets contents (5 wt. %) were used. This larger amount of GnP in the composite foams 

promoted higher thermal conductivity ~ 0.3 W.m-1.K-1 higher than the unfoamed PC and close to 

the unfoamed composite (5 wt. %) value of ~ 0.35 W.m-1.K-1, while reducing the density a 20 %. 

This was related to the high relative density of the foam (i.e. ~0.85) and the reduced inter-particle 

distance after foaming, mainly due to the larger amount of GnP used during the preparation of the 

composite material. Comparisons with theoretical predictions were carried out, showing that a 3-

phase model can make a closer prediction to the real thermal conductivity behavior of the foam 

when compared with a 2-phase model. This was attributed to the fact that the 3-phase model takes 

into consideration individual theoretical contributions of each of the phases in the nanocomposites 

(i.e. gas, polymer matrix and filler). 

 

In closing, transverse DC electrical conductivity behavior of composite foams prepared via 

one-step foaming process was characterized. This showed an increment up to four orders of 

magnitude of the electrical conductivity values in foams compared with the unfoamed composite. 

This was related to the increment of cell sizes (i.e. stretching of solid fraction) and the interaction 

between CO2 molecules and the initial graphitic-like structures. This suggested the space reduction 

between graphene nanoplatelets during foaming, ultimately resulting in the formation of a more 

effective electrically-conductive pseudo-network throughout the material. Even though the values 

of electrical conductivity increased up to four orders of magnitude, the conductive network was not 

enough to reach values of conductor materials. For transporting larger quantity of electrons needed 

for higher electrical conductivity values, a higher interconnected network will be needed. Similar 



_______________________________________________________________________________________ 

202 
 

Chapter 6 

results were observed for AC conductivity measurements. However, this increment in conductivity 

suggested that foaming improved the graphene nanoplatelets dispersion and possible exfoliation of 

the graphene stacks suggested by the (002) diffraction peak intensity signal reduction observed for 

the composite foams. 

 

TEM imaging analysis was used to observe the dispersion of graphene nanoplatelets in 

composite foams, which was suggested due to the enhancements observed in the composite foams 

properties previously discussed. Indeed, this dispersion was enough to promote the enhancement of 

electromagnetic interference shielding effectiveness of the materials, from ~1 dB before foaming to 

~15 dB after foaming in some cases at certain frequencies. Another hypothesis that was discussed 

was the possible orientation of GnP during foaming, since the stretching of the material during 

foaming might induce certain degree of orientation. With this in mind, SAXS measurements were 

used to reveal anisotropic features by means of azimuthal distribution analysis. It was discussed that 

depending on the cellular morphology developed slight orientation of particles degree was 

observed, finding that higher heating times during the two-step foaming process (i.e. 100 s) and low 

foaming temperatures in the one-step foaming process (i.e. 200 oC)  induced preferential orientation 

of particles. It was concluded that the EMI SE was enhanced after foaming, regardless the foaming 

process used. 

 

The discussions presented in this thesis focused on the effects of the processing variables 

and the use of GnP on the cellular morphology, microstructure and its correlation with the final 

properties of the materials. This led to the understanding of how the two foaming processes used in 

this work can be tuned in order to develop foams with a wide range of densities and 

multifunctionalities, improving the chances of polycarbonate to be considered as one of the 

engendering thermoplastics to be used in the preparation of multifunctional lightweight materials in 

industries such as aerospace, automotive, electronics and construction. 

 

 With this thesis it has been possible to prepare and characterize PC foams and PC/graphene 

foams with enhanced multifunctional properties. It was shown that multifunctional lightweight 

materials can be tuned in order to exhibit different properties. With the experiences carried out 

throughout this thesis, many experiments hasve been proposed and interesting questions are 

unanswered at the moment. Therefore some ideas that were discussed and some of them attempted 

to be carried out are proposed as future research. For instance, the variation of the 
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dissolution/foaming variables in the one- and two-step foaming process could be finely tuned in 

order to try to develop foams with smaller cell sizes (e.g. nanorange). Variables such as pressure 

and temperature that were shown to reduce the glass transition temperature under the presence of 

carbon dioxide in the foams, could be quantified for different polymers and composites. For this 

end a DSC high pressure chamber will be required. It would be very interesting to carry out a 

systematic preparation and characterization of composite foams by means of multiple expansions, 

in which monitoring the microstructure after each expansion will be of paramount importance, 

because the presence of crystallinity could restrict the diffusion of CO2 and as a consequence the 

formation of a homogeneous cellular structure and a more efficient filler dispersion.  Since it was 

shown that foaming promoted the dispersion of fillers within a composite, but still the formation of 

a very efficient conductive path was not form, it is suggested the addition of combined CNT and 

graphene into polymeric materials, which could be use with the aim to enhance the formation of 

conductive path and enhance the electrical and possible the thermal conductivity along with EMI 

SE of composite foams. In that study it would be suggested the use of different contents of GnP and 

CNT (independently and combined) in order to determine the percolation thresholds for electrical 

conductivity of the composite foams.  

 

6.2 Conclusions. 

 

After all the discussions presented in the different chapters, and taking into consideration the 

starting objectives of this thesis, the main conclusions are listed as following: 

 

1. The preparation of polymeric foams with a broad range of densities (~0.08-0.95) was 

successfully achieved by the use of two different foaming methods. 

 

2. The cellular morphology was remarkably dependant on processing parameters, 

especially on temperatures. High foaming and CO2 dissolution temperatures (> 213 oC) induced 

larger cell sizes (> 150 m), attributed to the increased molecule mobility in the presence of CO2 

under the foaming conditions. 

 

3. The increment of CO2 dissolution times and pressures combined with large temperatures 

of dissolution promoted larger amounts of CO2 dissolved in the sample (> 5 wt.%), which induced 
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larger cell sizes , in some cases promoted by cell coalescence (i.e. PC foams prepared via two-step 

process). 

 

4. The presence of GnP promoted the reduction of cell sizes, especially for high contents 

(i.e. 5wt.%). This was attributed to the cell nucleation effect and the restriction of cell growth 

during foaming. 

 

5. GnP promoted the gas barrier effect in composites (especially for 5 wt%.), slowing 

down CO2 diffusion from the sample while increasing GnP concentration. 

 

6. The presence of CO2 and GnP promoted a synergetic effect, increasing the mobility of 

PC molecules favoring the 3D order of lamellae structures detected as crystalline phase. The 

presence of GnP also promoted the heterogeneous nucleation of crystals developing two 

populations of crystals with different thermal stabilities. 

 

7. Raman spectroscopy was shown to be capable to detect  intrachain and interchain 

interactions which were correlated to regular arrangements in the structure (crystalline and non-

crystalline phases) 

 

8. Enhanced GnP dispersion was correlated to the reduction/almost disappearance of the 

characteristic (002) diffraction plane typical of the graphitic structure, attributed to the interactions 

of CO2 molecules and graphitic structures during CO2 dissolution and expansion. This was 

supported by the increment of electrical conductivity and EMI SE increments after foaming. 

 

9. The two-steps foaming process of PC-GnP composites did not promote relevant 

changes in microstructure, remaining amorphous under the process conditions used. This was 

related to the low temperature during CO2 dissolution (80 oC and 100 oC). 

 

10. An insulator mechanism promoted by the presence of cellular structures was 

demonstrated, which was one of the main factors to enhance the thermal stability of the materials. 

At the same time, linear relationships for the mass loss temperatures and the relative density were 

established. 

 



 _______________________________________________________________________________________ 
 

205 
 

Final discussions, conclusions and future suggestions 

11. The presence of the enhanced dispersion of graphene nanoplatelets throughout the solid 

fraction enhanced the final thermal stability of composite foams. 

 

12. The mechanical performance of foams was mainly driven by their relative density, as 

the relative storage modulus values of foams varied potentially with relative density.  

 

13. The presence of nanosized GnP promoted foams with enhanced specific elastic moduli, 

showing the efficiency of these fillers as reinforced elements. 

 

14. The foams prepared in two steps displayed a less dependency of GnP’s concentration 

when compared with the one-step foams. Attributed to the small changes of the exponent “n” from 

the Gibson-Ashby relationship. 

 

15. Foams prepared by one-step foaming presented higher Tg values when compared with 

the foams prepared in two steps. These differences of the viscous contribution were related to the 

presence of a PC crystalline fraction and the presence of GnP that combined, contributed to limit 

the mobility of PC molecules. 

 

16. Remarkably large density reduction of pure PC foams are achieved by two-step foaming 

process (i.e., ~94 %), considerable reducing the thermal conductivity as compared to the pure 

unfoamed PC. This improves the insulator behavior at the same time that the density is reduced. 

 

17. The thermal conductivity behavior and the density/morphology of the foams were 

strongly associated. However, the presence of GnP promoted enhanced conduction throughout the 

solid fraction of the samples, attributed to partial-path of particles in multiple sections of the 

sample, improving the transfer of heat through the solid fraction of the samples. 

 

18. The three-phase model displayed a better fit than the two-phase model for PC-GnP 

composite foams. This indicates that treating these materials as a three-phase system (gas phase, 

polymer phase and filler phase) is more appropriate along a broad range of densities. 
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19. The cellular structure was attributed as one of the main factor for the enhancement of 

the final electrical conductivity of the materials, not only enhancing the dispersion of GnP but also 

pushing them closer together partially improving the conductive networks within the solid fraction. 

 

20. EMI SE was enhanced based on both absorption and reflection shielding mechanisms. 

This was attributed to the well dispersed GnPs and the presence of the cellular structure, regardless 

the not very high electrical conductivity values of the composite foams. 
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