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Abstract 

Microvascular endothelial cells at the Blood-Brain Barrier exhibit a protective phenotype, which is highly 

induced by biochemical and biomechanical stimuli. Amongst them, shear stress, a mechanical force 

prompted by circulation, enhances junctional tightness and limits transport at capillary-like levels. It has 

long been proven that abnormal flow patterns reduce functional features of macrovascular endothelium. 

Hemodynamic and structural alterations such as hypertension or arterial stiffness are examples of 

vascular conditions that increase shear stress and pulsatility, which reach and affect downstream at the 

neurovascular unit. Clinical studies have shown that such alterations are relevant in the pathogenesis of 

neurodegenerative diseases such as types of dementia and multiple sclerosis. In this work, the effects of 

high shear stress and pulsatile stimuli were evaluated at the cellular level of the Blood-Brain Barrier as the 

interface between the vascular and cerebral systems.  

A dynamic in vitro model of the Blood-Brain barrier was designed and characterized in order to allow 

exposure of microvascular endothelial cells to shear stress and soluble factors produced by neighboring 

cells in co-culture. Human brain microvascular endothelial cells were exposed to both physiological and 

pathological flow patterns. Physiologic shear upregulated the expression of tight junction markers Zonula 

Occludens 1 and Claudin-5. High shear stress and/or pulsatility, decreased their expression to basal levels 

and altered junctional morphology and P-glycoprotein efflux activity. Furthermore, cells were exposed to 

altered shear stress patterns followed by restoration of physiological capillary-like conditions. Reversible 

recovery on the expression of tight junction markers was observed. Flow conditions that disturb barrier 

phenotype commensurated with junctional signaling pathways. This finding suggests that if flow 

conditions are restored, the Blood-Brain Barrier functional features may be recovered. Recent evidence 

of effects of renal denervation in hypertension treatment and Blood-Brain Barrier markers makes this 

technology a suitable candidate for hemodynamic cerebrovascular restoration. 

Renal denervation is a novel technology for treatment of resistant hypertension by ablation of 

sympathetic nerves in renal arteries. While proven safe, efficacy results in clinical trials are still 

inconclusive. Understanding arterial microanatomy is critical to predict future efficacy outcomes. An in 

vivo study was performed to evaluate nerve and lymph node distributions around renal arteries and the 

effect of single and dual denervation treatments. Distal regions of the renal artery were identified as the 

optimal target locations, as they showed the highest nerve density close to the lumen and the lowest 

lymph node area. Dual treatment increased circumferential affected arc in renal arteries and have a higher 

probability to increase efficacy. 

Abnormal shear stress inherent to systemic vascular disease leads to Blood-Brain Barrier impairment, 

which could be reverted by hemodynamic interventions. Renal denervation is a potential therapy that 

needs to be further characterized in order to correlate its effects on blood pressure decrease and 

functional features of the Blood-Brain Barrier. 
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Resumen 

Las células endoteliales microvasculares cerebrales de la Barrera Hematoencefálica exhiben un fenotipo 

protector que está altamente inducido por estímulos bioquímicos y biomecánicos. Entre ellos, la tensión 

cortante es una fuerza mecánica provocada por la circulación que intensifica la unión celular y limita el 

transporte a nivel capilar. Distintos estudios han probado que los patrones de flujo anormales reducen las 

propiedades funcionales del endotelio macrovascular. Las alteraciones hemodinámicas y estructurales, 

como la hipertensión o la rigidez arterial, son algunos ejemplos de condiciones vasculares que aumentan 

la tensión cortante y la pulsatilidad, las cuales alcanzan y afectan aguas abajo en la unidad neurovascular. 

Otros estudios clínicos muestran que dichas alteraciones son relevantes en la patogénesis de 

enfermedades neurodegenerativas como algunos tipos de demencia y esclerosis múltiple. En este trabajo, 

se han evaluado los efectos del aumento de la tensión cortante y la pulsatilidad a nivel celular en la Barrera 

Hematoencefálica como interfaz entre el sistema vascular y cerebral. 

Se ha diseñado y caracterizado un modelo in vitro dinámico de la Barrera Hematoencefálica para permitir 

el cultivo de células endoteliales microvasculares y exponerlas a tensión cortante y a factores solubles 

producidos por células vecinas en cocultivo. Se han expuesto células endoteliales microvasculares 

cerebrales humanas a patrones de flujo fisiológicos y patológicos. El rango fisiológico aumentó la 

expresión de los marcadores de unión estrecha Zonula Occludens 1 y Claudina 5. Tanto la tensión cortante 

elevada como la pulsatilidad disminuyeron la expresión de dichos marcadores a niveles basales y alteraron 

la morfología de las uniones estrechas y la actividad del transportador activo P-glicoproteína. Además, se 

expusieron células a tensión cortante alterada seguida por condiciones fisiológicas y se observó una 

recuperación reversible de la expresión de marcadores de unión estrecha. También se constató que las 

condiciones hemodinámicas que alteran el fenotipo de barrera correlacionaron con vías de señalización 

relacionadas con las uniones estrechas. Estos hallazgos sugieren que, en caso de restauración de las 

condiciones de flujo, las propiedades funcionales de la Barrera Hematoencefálica podrían recuperarse. 

Evidencias recientes de los efectos de la denervación renal para el tratamiento de la hipertensión y de 

marcadores de Barrera Hematoencefálica hacen de esta tecnología un candidato apto para la restauración 

de la hemodinámica cerebrovascular. 

La denervación renal es una tecnología novedosa para el tratamiento de la hipertensión resistente que se 

basa en la ablación de los nervios simpáticos alrededor de las arterias renales. Aunque se ha demostrado 

su seguridad, los resultados de eficacia obtenidos en estudios clínicos son aún poco concluyentes. El 

entendimiento de la microanatomía arterial es esencial para predecir futuros resultados de eficacia. Se 

ha realizado un estudio in vivo para evaluar la distribución de nervios y ganglios linfáticos alrededor de 

arterias renales y el efecto de tratamientos de denervación sencillos y dobles. Se identificaron las regiones 

distales de la arteria renal como localizaciones óptimas para el tratamiento ya que estas presentaron 

mayor densidad de nervios cercanos a la pared arterial y la menor área de ganglios linfáticos. El 

tratamiento doble incrementó el arco circunferencial afectado en las arterias renales y por lo tanto 

presenta una mayor probabilidad para incrementar la eficacia. 

Los patrones de tensión cortante anormales, inherentes a enfermedades vasculares sistémicas, conducen 

al deterioro de la Barrera Hematoencefálica. Éste puede corregirse mediante intervenciones 

hemodinámicas. La denervación renal es un tratamiento con potencial que necesita una mayor 

caracterización para poder correlacionar sus efectos en la presión sanguínea y las propiedades funcionales 

de la Barrera Hematoencefálica. 
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Resum 

Les cèl·lules endotelials microvasculars cerebrals de la Barrera Hematoencefàlica exhibeixen un fenotip 

protector que està altament induït per estímuls bioquímics i biomecànics. Entre aquests, la tensió tallant 

és una força mecànica provocada per la circulació que intensifica la unió cel·lular i limita el transport a 

nivell capil·lar. Diferents estudis han provat que els patrons de flux anormals redueixen les propietats 

funcionals de l’endoteli macrovascular. Les alteracions hemodinàmiques i estructurals, com la hipertensió 

o la rigidesa arterial, són alguns exemples de condicions vasculars que augmenten la tensió tallant i la 

pulsatilitat, les quals arriben i afecten aigües avall a la unitat neurovascular. Altres estudis clínics mostren 

que aquestes alteracions son rellevants en la patogènesi de malalties neurodegeneratives com alguns 

tipus de demència i esclerosi múltiple. En aquest treball, s’han avaluat els efectes de l’augment de la 

tensió tallant i la pulsatilitat a nivell cel·lular a la Barrera Hematoencefàlica com a interfase entre el 

sistema vascular i cerebral. 

S’ha dissenyat i caracteritzat un model in vitro dinàmic de la Barrera Hematoencefàlica per a permetre el 

cultiu de cèl·lules endotelials microvasculars i exposar-les a tensió tallant i a factors solubles produïts per 

cèl·lules veïnes en cocultiu. S’han exposat cèl·lules endotelials microvasculars cerebrals humanes a 

patrons de flux fisiològics i patològics. El rang fisiològic va augmentar la expressió dels marcadors d’unió 

estreta Zonula Occludens 1 i Claudina 5. Tant la tensió tallant elevada com la pulsatilitat van disminuir 

l’expressió d’aquests marcadors al nivell basal i van alterar la morfologia de les unions estretes i la activitat 

del transportador actiu P-glicoproteïna. A més, es van exposar cèl·lules a tensió tallant seguida per 

condicions fisiològiques i es va observar una recuperació reversible de l’expressió dels marcadors d’unió 

estreta. També es va constatar que les condicions hemodinàmiques que alteren el fenotip de barrera van 

correlacionar amb vies de senyalització relacionades amb les unions estretes. Aquestes troballes 

suggereixen que, en cas de restauració de les condicions de flux, les propietats funcionals de la Barrera 

Hematoencefàlica podrien recuperar-se. Evidències recents dels efectes de la denervació renal pel 

tractament de la hipertensió i dels marcadors de Barrera Hematoencefàlica fan d’aquesta tecnologia un 

candidat apte per la restauració de la hemodinàmica cerebrovascular. 

La denervació renal és una tecnologia innovadora pel tractament de la hipertensió resistent que es basa 

en l’ablació dels nervis simpàtics al voltant de les arteries renals. Tot i que s’ha demostrat la seva 

seguretat, els resultats d’eficàcia obtinguts en estudis clínics són encara poc concloents. La comprensió 

de la microanatomia arterial és essencial per predir futurs resultats d’eficàcia. S’ha realitzat un estudi in 

vivo per avaluar la distribució de nervis i ganglis limfàtics al voltant d’arteries renals i l’efecte de 

tractaments de denervació senzills i dobles. Es van identificar les regions distals de l’arteria renal com a 

localitzacions òptimes pel tractament, donat que aquestes van presentar una major densitat de nervis 

propers a la paret arterial i una menor àrea de ganglis limfàtics. El tractament doble va incrementar l’arc 

circumferencial afectat en les arteries renals i per tant presenta una probabilitat més elevada per 

incrementar l’eficàcia. 

Els patrons de tensió tallant anormals, inherents a malalties vasculars sistèmiques, condueixen al 

deteriorament de la Barrera Hematoencefàlica. Aquest pot corregir-se mitjançant intervencions 

hemodinàmiques. La denervació renal és un tractament amb potencial que necessita una major 

caracterització per poder correlacionar els seus efectes a la pressió sanguínia i a les propietats funcionals 

de la Barrera Hematoencefàlica. 
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1.1. The Brain and the Blood-Brain Barrier 

1.1.1. The concept of the Blood-Brain Barrier 

While traditional neuroscience has focused on neurons as well as their interactions with the glial 

cells that support their function, increasing evidence has shifted the field of study towards a 

well-structured neurovascular unit (NVU). Such unit is involved in the regulation of the blood 

flow in the brain and adds the brain microvascular domain to the aforementioned neurons and 

glia. The endothelial cells that line cerebral microvessels form a selective barrier that separates 

the central nervous system (CNS) from the peripheral circulatory system. Historically, this 

biological barrier has been referred as the Blood-Brain Barrier (BBB) (Figure 1.1).1  

Paul Ehrlich provided the first experimental evidence of the existence of a BBB in 1885, when he 

reported that after a parental injection of a variety of dyes in adult animals, all organs were 

stained except the brain and the spinal cord.2 This fact, together with further phenomena 

observation, lead to the introduction of the term Bluthirnschranke, Blood-Brain Barrier, by Max 

Lewandowsky in 1900. 

 

Figure 1.1. Neurovacular unit at capillary level, showing the close association of the different cell 
types that compose it.3 

 

1.1.2. Functions of the Blood-Brain Barrier 

Several roles have been attributed to the BBB. One of the main functions of the BBB is the 

regulation of the nutrition of the brain. Specific transport systems ensure the appropriate 

nutrient supply providing the BBB with a low passive permeability to many essential hydrophilic 

metabolites and nutrients required by the CNS. The BBB also mediates the efflux of waste 

products from the brain to the blood and protects the brain from the entrance of neurotoxic 

compounds circulating in the blood. This protective function involves an active pumping of 
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endogenous metabolites or xenobiotics by ATP-binding cassette (ABC) transporters out of the 

CNS into the blood. Optimal ionic composition of the medium for neuronal function is ensured 

by the BBB by restricting ionic and fluid transport by specific solute-like carriers (SLC), such as 

ionic transporters and channels. This ionic regulation is essential to maintain the concentrations 

of Ca2+, K+, Na+ and Mg2+ in the narrow range required for proper synaptic neuronal signaling, as 

well as the pH. Ionic movement restriction leads to a transendothelial electrical resistance (TEER) 

higher than 1000 /cm2, in contrast to peripheral capillaries with 2 – 20 /cm2. 

The BBB also helps to keep separate the pools of neurotransmitters and neuroactive agents from 

central and peripheral nervous systems, allowing their use in both systems independently. 

Additionally, it controls neural tissue release of glutamate, a neuroexcitatory with high 

concentration fluctuation after ingestion and potential neurotoxic.1,4  The BBB is also a barrier 

for macromolecules traveling from the blood to the brain, such as albumin or plasminogen, 

proteins inducing cellular activation in the nervous tissue that can lead to cellular apoptosis.5 

This allows maintenance of total protein content on both sides of the barrier, with blood plasma 

concentration having a higher protein concentration than the cerebrospinal fluid (CSF). 

Overall, the BBB is an essential barrier for the homeostasis of the brain.6,7 

 

1.1.3. The endothelial frontier 

As in most endothelia, transcellular route of molecules across the BBB is forced as opposed to 

paracellular pathways. This is a consequence of the presence of complex tight junctions (TJ) 

existing between adjacent brain microvascular endothelial cells. Anatomically, endothelial cells 

in microcapillaries differ from those in the periphery by an increased mitochondrial content, lack 

of fenestrations, minimal pinocytotic activity and the presence of TJ.8 Small gaseous molecules 

such as CO2 or O2 and small lipophilic agents such as ethanol diffuse freely through the lipid 

membranes of endothelial cells. The traffic of small hydrophilic compounds is regulated by 

specific transport systems on both luminal and abluminal sides of the endothelium, thus 

providing a transport barrier that selectively facilitates the entry of nutrients and excludes or 

effluxes harmful compounds.3 In addition, intracellular and extracellular enzymes that 

metabolize bloodborne neuroactive solutes provide an additional metabolic barrier. In general, 

large hydrophilic compounds are transferred by specific receptor-mediated transcytosis or 

otherwise excluded.9 

a) Junctions of the BBB endothelium 
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The endothelium of the brain microvasculature is characterized by a junctional complex that 

includes adjerens junction (AJ) and TJ, which contribute to the paracellular permeability 

restriction across the BBB. AJ stabilize cell-cell interactions in the junctional zone, mediate 

contact inhibition during vascular remodeling and growth and initiate cell polarity. The principal 

component of AJ is VE-cadherin, which mediates adhesion between adjacent cells through Ca2+ 

regulation and is linked to the cytoskeleton via catenins. Another AJ protein, platelet-endothelial 

cell adhesion molecule (PECAM or CD31), has an important role in monocyte transmigration 

across the CNS endothelium even though it is not structurally associated with TJ.8 

The main molecular components of the TJ are classified into the integral transmembrane 

proteins and the cytoplasmic adaptor proteins, linked to the actin cytoskeleton, as depicted in 

Figure 1.2. 

 

Figure 1.2. Molecular composition of endothelial tight junctions and adherens junctions.1  

Transmembrane proteins are composed by junctional adhesion molecules (JAM), claudins and 

occludin. JAMs have been reported as the first members of the IgG superfamily to contribute to 

TJ and are believed to mediate the early attachment of adjacent cell membranes.10 Occludin was 

the first transmembrane TJ discovered11 and might have a function in TJ modulation but is not 

essential for its formation. Claudins establish barrier properties and form a family of more than 

20 member proteins12,13, whose selective expression and combinations is specific to certain 

tissues and determines the barrier function contributing to the TEER.14 

Adaptor cytoplasmic proteins, including members of the membrane-associated guanylate 

kinase-like (MAGUK) family,15 form large complexes known as the cytoplasmic plaque, anchoring 

transmembrane proteins with the cellular cytoskeleton. Three proteins in this family have been 

identified in the formation of TJ, the Zonula Occludens (ZO) family including ZO-1, ZO-2 and ZO-
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3. The dissociation of these proteins causes an increase in permeability as they stabilize TJ 

through the link of transmembrane proteins with the cytoplasm. ZO-1 acts as a signaling 

molecule and has been shown to localize to the nucleus in proliferation and injury conditions. 

Second order adaptor proteins include cingulin and afadin.16 

Besides the restriction of paracellular permeability, TJ play a key role in the polarization of the 

endothelium, segregating the cell membrane in apical and basal domains. Also, several 

intracellular signaling pathways regulate changes in expression, subcellular location, post-

translational modifications and protein-protein interaction under pathological and physiological 

conditions. The regulation of TJ organization and function at the BBB involves mainly calcium, 

phosphorylation and G-protein pathways.17 

b) BBB transport systems 

In addition to the structural elements that ensure the tightness of the BBB, different transport 

systems present in the endothelium are essential for the correct brain function (Figure 1.3). 

Brain nutrition relies on molecular carriers present at both apical and basolateral sides of the 

brain endothelium and selectively transport hexoses (glucose transporter 1 or GLUT1), 

aminoacids (large neutral amino acid transporters), monocarboxylic acids, nucleosides, amines 

and vitamins. Ionic transport is accomplished equally with selective ion transporters such as the 

Na+/K+ ATPase pump, which maintains high Na+ gradient at the BBB, and the Na+/H+ and Cl-

/HCO3
- exchangers, which play important roles regulating the pH. 

 

Figure 1.3. Transport pathways across the Blood-Brain Barrier.1 
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While TJ severely restrict the paracellular pathways for hydrophilic molecules, the large surface 

area of the endothelium membranes ensures an efficient transcellular route for lipophilic 

molecules, which is the entry route of most CNS drugs. A large number of molecules expected 

to penetrate into the CNS have a much lower entry rate than expected. These substances are 

actively effluxed from the brain by members of the ATP-binding cassette transporters (ABC 

transporters).18,19 Among these neuroprotective transporters, P-glycoprotein (P-gp), multidrug 

resistance-associated proteins (MRP) and breast cancer resistant proteins (BCRP) are the most 

abundant.6 While most of the studies specify that these efflux transporters are located in the 

luminal side of endothelial cells to transport molecules to the blood, there is some controversy 

regarding transporter polarization.20 Figure 1.4 depicts typical locations of common ABC 

transporters in the BBB, where only those located in the luminal side are relevant in efflux 

transport. Receptor-mediated transcytosis, which involves binding of a ligand to a specific 

receptor, take up large proteins such as insulin, low-density lipoprotein and transferring, as well 

as neuroactive peptides, cytokines and chemokines. Polycationic molecules binding to negative 

charges on the plasma membrane initiate absorptive-mediated endocytosis and transcytosis. 

The latter is the responsible of albumin uptake upon its cationization, otherwise being poorly 

transported.16 

 

Figure 1.4. Localization of selected ATP-binding cassette transporters in brain microvascular 
endothelial cells.21 
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1.1.4. Other components of the neurovascular unit 

While in larger vessels (arterioles, arteries and veins) there is a continuous layer of smooth 

muscle cells, brain capillaries are surrounded by astrocytes, pericytes, microglia and neuronal 

processes. It has long been thought that this close cell-cell association is responsible for the 

induction and/or maintenance of the BBB phenotype in the capillary brain endothelium. 

a) Astrocytes 

Astrocytes are complex and external stimuli sensitive cells which show over eleven distinct 

phenotypes, eight of which are specifically related with the brain microvascular environment. 

Their anatomy is characterized by abundant end-foot processes that come in contact with 

neuronal synapses and surround the cerebral microvascular endothelium. The purpose of this 

complex anatomy is thought to be the control of brain water and ionic homeostasis in order to 

optimize the interstitial space for synaptic transmission.22 Astrocytes are involved in the 

metabolism of neurotransmitters, regulation of extracellular pH and K+ concentration, 

immunoresponse and the structural and functional integrity of the BBB.23  

Several specialized features at the astrocytic endfeet are responsible of water and ion transport 

in the CNS, including a high density of orthogonal arrays of particles (OAPs), aquaporin water 

channel (AQP4) and the Kir 4.1 K+ channel. The polarization of these proteins correlates with the 

expression of agrin, a heparin sulfate proteoglycan on the basal lamina that accumulates in brain 

microvessels at the time of BBB tightening during development.16 The most common specific 

astrocytic marker is the glial fibrillary acidic protein (GFAP), which plays a role in cell-cell 

communication. 

Astrocytes are able to induce morphological, biochemical and functional barrier features of the 

BBB phenotype in endothelial cells in vitro. Several studies show that brain endothelial cells 

either co-cultured with astrocytes or exposed to astrocyte-conditioned medium (ACM) increase 

their TJ expression, TEER and enzymatic activity, and upregulate specific transporters such as 

GLUT1 or P-gp.24 These findings suggest an active role played by soluble factors secreted by 

astrocytes in BBB phenotype modulation. Several molecules have been associated with 

endothelial regulation such as glial-derived neurotrophic factor, transforming growth factor β-

1, basic fibroblast growth factor, interleukin 6 and angiopoietin 1.25 However, due to the 

dedifferentiation process experienced by mammalian cells when cultured in vitro, caution must 

be used in the interpretation of these results. In contrast to the in vitro evidence, several studies 

argue about the role of astrocytes in vivo. For example, certain aspects of the BBB become 

functional during development before the appearance of astrocytes.26 
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b) Pericytes 

Brain pericytes are associated with the stabilization of small blood vessel architecture, 

neurovascularization and angiogenesis. They are responsible for BBB gene specific expression 

patterns in brain endothelial cells and induce the polarization of the astrocytic endfoot 

processes.25 Pericytes play a key role in several CNS pathologies and release different growth 

factors and angiogenic molecules that regulate brain endothelium. They influence vascular 

blood flow through contraction and relaxation and are also involved in the immune responses 

at the BBB.27 Historically, astrocytes were considered the main barrier phenotype inductor at 

the BBB28, leading in vitro models to endothelial-astrocyte co-culture configurations. Later 

evidence of the importance of pericytes in BBB function29 has increased the number of models 

that include these cells in co- or tri-culture configurations.30,31 

c) Basal lamina 

In addition to the cellular components that contribute to the BBB, the extracellular matrix (ECM) 

of the basal lamina (BL) interacts with cells and separates them. Different extracellular matrix 

proteins such as collagen IV, fibronectin, laminin and proteoglycans form the BL. Besides cell-

cell interaction, cell-matrix plays a key role in BBB regulation. The BL exists as two distinct forms, 

either produced by astrocytes or by endothelial cells, or as a fusion of both, creating a BL 

composite.32 During angiogenesis, integrins that link cells to the ECM play a key role in mediating 

endothelial signaling, brain capillary formation and cell migration. Fibronectin, for instance, has 

shown significant benefits in in vitro cultures by inducing cell survival and proliferation33 and 

increasing TEER.34  An increase in permeability in the BBB in pathological states is strongly 

associated with a disruption of the BL.35 
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1.1.5. Alteration of the Blood-Brain Barrier in disease 

The failure of the BBB is involved in the progression of a great number of pathologies that affect 

the CNS.8,36 The relationship between pathology and barrier phenotype depends on the specific 

disease. In some cases, increased BBB permeability is consequence of the pathology, such as 

ischemic stroke,37,38 whereas in other cases it remains unclear whether BBB dysfunction plays a 

role in the onset of the disease, such as with multiple sclerosis (MS)39,40, epilepsy41 or Alzheimer’s 

disease (AD).42 Depending on the disease, different molecular mechanisms are involved in BBB 

disruption, including VEGF, MMPs, cytokines and reactive oxygen species (ROS).43  

During ischemic stroke and traumatic brain injury there is production of a mediator of 

inflammation, bradykinin, which stimulates the expression and secretion of IL-6 by astrocytes 

and increases BBB permeability.44 Not only the access of molecules to the CNS is increased, but 

also the entry of macrophages and neutrophils. BBB breakdown in multiple sclerosis is also 

associated to inflammation. MS is characterized by an autoimmune attack on CNS components 

that leads to impairment of motor and sensory functions. Progressive MS is mediated by an 

inflammatory response driven by immune cells trapped behind the BBB.45 TJ proteins are highly 

downregulated in active lesion areas but also in areas of normal-appearing white matter.46 

In the case of epilepsy, which is characterized by recurrent seizures, the expression level of key 

transport markers of the BBB is highly involved. GLUT1 deficiency can lead to epileptic 

syndrome47 and overexpression of P-gp and MDR hinder disease treatment.48 In infectious 

diseases such as bacterial meningitis and sepsis, the increase of BBB permeability is mainly 

caused by the effect of bacterial endotoxin lipopolysaccharide.49 

The main pathological features of Alzheimer’s disease are the presence and accumulation in the 

brain of amyloid-β (Aβ) peptides and neurofibrillary tangles. BBB disruption in AD is thought to 

be related to the low-density lipoprotein receptor-related protein-1 (LRP1)50, as the main 

responsible of Aβ brain clearance. Abnormal amyloid clearance across blood vessels is lower 

than the production rate, leading to higher plaque accumulations in the brain. Addition of 

hypoxic or ischemic insults in AD may accelerate the plaque accumulation process.51 

Biomechanical forces induced by blood circulation along the BBB are critical in the performance 

of the BBB in health and disease. As this is a major aspect in the hypothesis and development of 

this thesis, a detailed description of the link between vascular alterations and cerebral effects 

will be detailed in Chapter 1.2.2.  
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1.1.6. In vitro models of the Blood-Brain Barrier 

Neurological diseases affect millions of people worldwide. In 2015, the World Health 

Organization (WHO) estimated the prevalence of all sorts of neurological disorders to be 1050 

million worldwide. In the same year, 7.5 million deaths would be associated to such diseases. In 

2030, prevalence and mortality are projected to increase by 8% and 19%, respectively.52 

Currently, the CNS drug industry is the second largest therapeutic industry. The average time for 

a CNS drug to get to market (12 – 16 years) is 4 years higher than non-CNS drugs (10 – 12 years).24 

Discovery and development of CNS novel drugs takes longer because of the complexity of the 

brain and the insufficient CNS exposure to the drug due to the inability of drugs to cross the 

BBB.25 Among the different types of BBB models, in vitro modeling has become the fastest tool 

to evaluate drug permeability across the BBB53–56 in studies prior to preclinical animal models 

targeting the CNS. 

Reproducing the functional properties and physiological responses of the BBB in the 

microvascular environment is extremely challenging. Currently, no specific in vitro model of the 

BBB is used as a reference standard in the pharmaceutical industry. The phenotypic drift that 

cells undergo once isolated from their anatomical environment limits proper recapitulation of 

in vivo conditions. Brain microvascular endothelial cells rapidly lose their barrier phenotype and 

acquire generic endothelial cell properties with no tight junction formation.57,58 However, a wide 

variety of in vitro models have been developed as tools not only for drug permeability studies 

but also for the study of basic physiology, elucidation of drug interactions at the BBB and 

performance of physiopathological, toxicological and immunological studies.3,24,59–62  

The main features required for a useful BBB in vitro model are proper expression and localization 

of TJ, presence of specific transporters, functional efflux mechanisms, drug metabolizing 

enzymes as well as permeability and TEER values similar to the in vivo ones. Moreover, models 

should promote the exposure to biochemical and biomechanical stimuli that play a role in the 

modulation of the BBB both in physiological and pathological states. Finally, in vitro models 

should provide a reproducible, regulated and easy to establish and scale-up system.63 Different 

factors are considered in order to attempt to reestablish and maintain BBB features. 
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a) Cell source 

Primary human brain microvascular endothelial cells (HBMEC) are the ideal option to reproduce 

human in vivo conditions. However, the limited availability of these cells, the concern about the 

health of the brain source and the rapid loss of phenotype restrict its use for high throughput 

studies. The most established and well characterized BBB models incorporate primary animal 

brain cells from porcine, bovine, rat and mouse origin. The main inconvenient of extrapolating 

animal model data to human is the interspecies differences. As a consequence, considerable 

efforts have been made to establish stable human cell lines.24 The most characterized and widely 

used human cerebral endothelial cell lines is the hCMEC/D3, which is derived by a primary 

culture immortalized by lentiviral vector transduction with the catalytic subunit of the human 

telomerase and the oncogene SV40 large T antigen.64 Over 100 studies have been published with 

this cell line focused on different aspects of cerebral endothelial biology and pharmacology.65 

Another interesting approach has recently started to be studied regarding the use of human 

pluripotent stem cells. This approach involves an initial co-differentiation of both endothelial 

and neural cells, followed by a purification and further maturation of the endothelium in order 

to achieve a complete BBB phenotype.66,67  

b) Co-culture with other NVU components 

As above mentioned, other cellular components of the NVU play a crucial role in the barrier 

phenotype of HBMEC. Several models, incorporating astrocytes, pericytes and/or neurons, have 

been studied, characterized and validated. The most common setup for the establishment of co-

cultures is a porous membrane that allows endothelial cell exposure to astrocyte soluble factors 

and direct contact interactions depending on membrane porosity and thickness. Typical 

transwell inserts contain a porous membrane bottom and fit in standard culture well plates, 

dividing the well into two adjacent chambers. This setup allows different cell configurations 

(Figure 1.5), being the upper chamber the luminal side (apical side) and the bottom chamber the 

abluminal one (basolateral side). 
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Figure 1.5. Different in vitro model cell configurations in the transwell insert. 

The main advantages of this setup are the high throughput capacity, low cost and easiness to 

culture and perform TEER and permeability assays. This culture system, however, lacks of 

biomechanical stimuli such as shear stress and is built upon a 10-200 µm porous membrane, 

which is at least 80 times thicker than the basal lamina (40 – 120 nm).68 

c) Dynamic models 

Vascular endothelial cells express a wide range of mechanosensors, described in Chapter 1.2.2, 

that transduce the stimuli generated by flow-induced shear stress into biochemical signals.69,70 

Mechanosensor signaling pathways involve cell differentiation, division, apoptosis and 

migration patterns. Exposure of HBMEC to flow is a requirement to obtain and maintain a proper 

BBB phenotype.71 Current in vitro dynamic BBB models that enable exposure of HBMEC to flow 

include different flow exposure techniques, such as the parallel-plate flow chamber (PPFC), 

hollow fiber based bioreactors and microfluidic systems (Figure 1.6).  
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Figure 1.6. Current dynamic in vitro BBB models: (A) DIV-BBB,72 (B) BBB-on-chip,73 (C) Sym-BBB,74 
(D) µBBB,75 and (E) NVU on a chip.76 

PPFC allow study of physiological and morphological responses of HBMEC and are commonly 

used for the evaluation of transendothelial migration, chemotaxis and leukocyte-endothelial 

interactions.77 This type of device is imaging-compatible and allows a controlled and 

reproducible shear stress exposure. However, co-culture is not possible in the PPFC. 

Hollow fiber based in vitro models, such as the DIV-BBB, aim to mimic brain microvessels in 

porous polymeric capillaries with endothelial cells on the luminal side and glial cells on the outer 

surface. It provides better anatomical resemblance, proper exposure to flow and in situ TEER 

monitoring. Despite these benefits, the DIV-BBB does not allow cell imaging, it requires a large 

number of reagents and cells and capillary fibers have higher thicknesses than the porous 

membranes in static setups (>200µm). 

Over the last years, aiming towards a more physiologically relevant, dynamically monitored, low-

cost and high throughput platform, several unique microfluidic cerebrovascular models have 

been developed.73–76 They differ in complexity and functionality, but most of them are made of 

PDMS and still incorporate a porous membrane to enable glial co-culture. Even though further 

characterization of BBB markers is needed to improve the relevance of the models, microfluidics 

offer the alternative to current static and dynamic models in order to make a platform for 

suitable high throughput CNS drug-screening model. However, the size of this kind of model 

limits the yield of proteomic and genomic concentration for expression assays. 
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d) 3D cell culture 

Proper three dimensional (3D) cellular organization and structure are required for appropriate 

positioning effects, polarization, differentiation, cell-cell interactions and dynamics. However, 

the use of 3D scaffolds for BBB modeling is still limited. Development of scaffolds that are simple, 

reproducible and can withstand mechanical stimuli such as shear stress remains a challenge. 

Currently, the development of 3D platforms has different approaches. Collagen I78,79 is a typical 

biomaterial used in 3D hydrogel scaffolds, either by itself or in combination with hyaluronic 

acid80, alginate81 or electrospun nanofibers.82 Such models may allow study of the interaction 

between the NVU cellular components58,83 in compartmentalized areas.84 Some designs have 

combined microfluidic chips with 3D environments, creating microchannels within collagen I 

matrices populated with glial cells where endothelial cells were seeded and formed stable in 

vitro capillaries with significant low permeability.85,86 
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1.2. Hemodynamics 

1.2.1. Fluid dynamics in vasculature 

Hemodynamics is the branch of physiology that is concerned with the mechanical and 

physiological properties governing blood circulation through the body.87 The main parameters 

that dictate this vascular environment are blood pressure and flow (Q). The energy of blood as 

a fluid is exerted by blood pressure in three interchangeable forms, which is lateral pressure 

(force exerted on the walls of the vessel), kinetic energy and gravitational forces. Blood 

circulation occurs from a region of higher pressure towards a region of lower pressure (ΔP) and 

is inversely affected by the vessel resistance (R) to flow (Equation 1.1). 

 
R

ΔP
Q   

 
Equation 1.1 

Blood is not an ideal fluid, which is translated into a loss of pressure when blood flows through 

the vasculature. Resistance to flow depends on kinetic viscosity (µ), vessel radius (r) and length 

(L). Such relationship is known as the Hagen-Poiseuille law (Equation 1.2), which allows the 

estimation of blood flow after pressure measurements (Equation 1.3).  
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Equation 1.3 

However, this law is just an approximation as it is based on the assumptions that blood viscosity 

is constant, vessels are rigid, cylindrical and with a significantly high length/diameter ratio and 

flow is steady, non-pulsatile and non-turbulent. The dimensionless Reynolds number (Equation 

1.4) provides information on the regime of a flow in a pipe. Flow regimes with Reynolds number 

below 2000 are considered laminar and turbulence is reached beyond that number. 

μ

dvρ
Re


  

 

Equation 1.4 

Blood flow is typically laminar. A gradient of frictional wall resistance between fluid in contact 

with the wall and the center of the vessel generates a parabolic flow profile. When turbulence 

occurs in blood vessels, flow patterns are chaotic and linearity between flow and pressure is lost. 

In order to maintain flow, pressure gradients need to be larger. In complex vascular geometries 

such as arterial bifurcations or aneurysms, turbulent flows can develop and induce endothelial 

cell damage.88  
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1.2.2. Mechanotransduction: Effect of blood flow in the endothelium 

Blood circulation along the vascular tree leads to the development of different mechanical 

forces affecting vessel walls and cells within them (Figure 1.7). On one hand, pulse pressure 

variations induce circumferential stress, a normal force which is perpendicular to flow direction 

and induces stretching of all vessel cellular layers (intima, media and adventitia). On the other 

hand, shear stress (τ, Equation 1.5), a tangential force, is directly induced by blood flow and 

involves cellular deformation and stretching following flow direction in endothelial cells only.89 

 

Figure 1.7. Schematic representation of mechanical forces induced by blood flow.90 
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Equation 1.5 

It has been known for decades that mechanical forces induced by flow modulate endothelial 

functions.69,70,91 The concept of mechanotransduction describes how endothelial cells sense 

mechanical stimuli through membrane receptors. These components, also known as 

mechanosensors, include integrins92, receptor tyrosine kinases (RTK)93, G-protein coupled 

receptors (GPCR)94, ion channels95, primary cilia96 and glycocalyx.97 Following specific 

mechanisms, cells sense shear stress and activate signaling pathways related to a wide range of 

cellular aspects such as gene expression98,99, cell proliferation100, apoptosis101, adhesion102 or 

permeability103 (Figure 1.8). 

 

Figure 1.8. Schematic representation of mechanosensors and stress signaling pathways.90 
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However, mechanotransduction is not tuned equally in all vascular vessels. Endothelial cells 

along the whole arterial tree are highly heterogeneous at three different levels, structure, 

expression patterns and function.104 Depending on their location, endothelial cells have different 

neighboring cells and applied mechanical forces have different profile and magnitude. 

Physiological hemodynamic conditions change at different locations in the vasculature. 

Alterations of such conditions have significant implications in disease progression. Endothelial 

cells in systemic vasculature, for instance, are typically exposed to laminar pulsatile flow with 

average shear stress between 5 and 25 dyn/cm2.105 Arterial geometries such as obstructed 

vessels or bifurcations result in the presence of higher shear stress and/or oscillatory flow 

profiles. In these scenarios, endothelial cells show higher inflammatory, atherogenic and 

thrombotic responses.106–108 

In brain microvasculature, physiological hemodynamic conditions are complicated to measure 

due to capillary size. Yet, there is common agreement that flow through brain capillaries is 

steady and physiological shear stress levels are between 5 and 20 dyn/cm2.109,110 Brain 

microvascular endothelial cells respond to such dynamic patterns by enhancing BBB 

phenotype.111 Exposure of physiological shear in brain microvascular endothelial cells 

upregulates tight junctions, drug transporters and ion channel genes, among others.71 Shear 

stress has also proved to be a protective factor against inflammatory cytokines at the BBB.112,113 

While loss of shear stress in scenarios of ischemia leads to BBB failure114,115, less is known about 

the effect of increased shear stress and pulsatility in microvascular endothelial cells at the 

neurovascular unit. 

 

1.2.3. Hypertension and arterial stiffness 

Normal hemodynamic parameters are estimated in predetermined ranges. In healthy adults, 

arterial blood pressure should be below 120/80 mmHg (systolic/diastolic). Hypertension is 

defined as a medical condition in patients with permanently higher blood pressure, with greater 

risk when systolic or diastolic pressures are beyond 140 and 90 mmHg, respectively. There are 

two types of hypertensive patients based on etiology. Primary or essential hypertension is the 

most common case of hypertension (90 – 95%). The origin of primary hypertension is unclear 

but associated to the effect of genetic, environmental and lifestyle factors. In secondary 

hypertension, which accounts for 5 – 10% of hypertensive patients, high blood pressure is 

caused by renal and endocrine disorders, or by the consumption of exogenous substances such 

as contraceptives or glucocorticoids. 116 Prevalence of primary hypertension is affected by 



1. Introduction 

19 

increasing age, ethnic origin and sex. Salt intake, overweight, alcohol consumption, lack of 

exercise or stress are typical risk factors that increase the probability of high blood pressure. 

Hypertension itself is a risk factor in the development of several disease conditions affecting 

different organs and tissues, including stroke, vascular dementia, coronary heart disease, heart 

failure, large vessel arterial disease, renal disease and retinopathy.117 

Among the above-mentioned risk factors, increased blood pressure with age has also been 

associated for decades to arterial stiffness, an independent and progressive phenomenon 

developed in arterial vessels.118 The arterial system is not only in charge of irrigating organs and 

tissues in the body, but also acts as a cushion. Arteries reduce pulsations generated by the left 

ventricle and allow blood to reach peripheral vascular beds with steady pressure and flow.119 In 

young healthy adults, elastic arteries dilate and absorb energy from blood pressure. The 

resulting double peak pulse waveform results from the addition of the incident wave and 

reflected waves from points of wall resistance alterations or arterial bifurcations.120 Transmitted 

wave reduces its amplitude as blood flows through sequential bifurcations. During the aging 

process, arteries dilate and stiffen because of fatigue deterioration of elastin fibers and 

continuous recruitment of collagen fibers, stiffer than elastin (Figure 1.9).121 As a consequence 

of progressive stiffening, cushion capacity decreases, incident and reflected wave peaks align 

and generate higher pressure waves (Figure 1.10). 

 

Figure 1.9. Schematic diagram of an aorta section in young (left) and old (right) humans, showing 
fracture of elastin and muscle fibers and increase of collagen and mucoid.120 

Resulting high pressure waves from arterial stiffening move along the arterial tree with higher 

pulse wave velocity. While pressure and flow waveforms differ in shape, augmentation indexes 

measured in both show a linear correlation (Figure 1.11), which implies that blood flow is 

indirectly affected by the stiffening process.122  
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Figure 1.10. Pulsatile pressure changes in the vascular tree in young (left) and old (right) humans. 
Arterial stiffness extends pulsatility to microcirculation.120 

 

 

Figure 1.11. Linear relationship between augmentation of flow and pressure waves in the carotid 
artery.120,122 
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1.2.4. Vascular alterations in brain microcirculation 

When physiological hemodynamic conditions are altered through phenomena such as 

hypertension or arterial stiffening, the subsequent deleterious implications in peripheral organs 

are significant. Microcirculation in vital organs with permanently dilated arteries, such as brain 

and kidney, can be exposed to higher pulsatile stresses than other organs.123,124 

Vascular-related brain pathologies have been a concern due to the increased number of elder 

population. In 2015, the American Heart Association estimated the incidence of stroke to be 15 

million worldwide.125 Cerebrovascular disease is the fifth leading cause of death in the United 

States. In the case of non-fatal stroke, some subtypes may lead to increased probability of new 

vascular events.126 Moreover, vascular dementia, the second most common form of dementia, 

is 4 times more likely in patients after stroke.127 The statistics linking vascular impairment and 

cerebral disease are frightening, and motivated studies to show the relationship between flow 

alterations and cerebral diseases.  

In the last decade, clinical studies have been conducted showing clear trends between 

hemodynamic parameters and stroke development. Raise in pulse wave velocity and pulse 

pressure significantly increase the risk of stroke.128 More specifically, such conditions correlate 

with localized cerebral injuries such as white matter hyperintensities, lacunar infarcts and 

microbleeds in brain microcirculation.129,130 Similarly, dementia-related diseases show a linear 

trend between symptoms of cognitive decline and hemodynamic markers. Again, longitudinal 

clinical studies revealed that increased pulse wave velocity and pulse pressure induce a decline 

in verbal learning, memory, cognitive screening, processing speed.131–135 Under such 

circumstances, the risk of developing neurodegenerative diseases such as Alzheimer’s disease 

increases.136,137 

As described in Chapter 1.1.5, increasing evidence supports that endothelial state at the BBB is 

relevant in the development of different cerebral disease. As the interface between vascular and 

cerebral environments, interest grew in finding how vascular risk factors may be behind the 

underlying mechanisms that alter BBB phenotype in disease.138,139 A clinical study showed that 

brain microcirculation is a direct intermediate link between arterial stiffness and cerebral 

damage.140 In parallel, in vivo studies suggest BBB breakdown as the starting point in cerebral 

disease in hypertensive or stroke prone rodents.141–143 Clinical or in vivo studies have deeply 

studied the already established concept of vascular-cerebral pathological link. However, in vitro 

studies have not yet focused on studying endothelial behavior and mechanistic response to 

parametrical hemodynamic alterations at the neurovascular unit.  
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1.2.5. Treatments for hypertension – Renal denervation as an emerging therapy 

General guidelines for hypertension, established by different health organisms, have evolved 

during the last decades to provide standard protocols and steps to follow on the treatment of 

high blood pressure based on the existing knowledge. While the definition of blood pressure 

risks differs among different guidelines, they all share common principles and emphasize the 

achievement of a specific blood pressure target. Initial steps towards hypertension treatment 

include lifestyle interventions, such as weight reduction, diet modifications or reduction of 

alcohol/tobacco consumption. Prescription of antihypertensive drugs begins with the use of a 

single agent, whose type depends on the case. If blood pressure target is not achieved, the use 

of two or more combined drugs is encouraged.144–146 Antihypertensive drug types listed in Table 

1.1 reduce blood pressure through different methods of action.  

Table 1.1. Commonly prescribed antihypertensive drugs and methods of action. 

Drug type Method of action 

Diuretics Reduce sodium and water excess from blood. 

Beta-blockers Reduce heart rate and cardiac output. 

Angiotensin converting 
enzyme (ACE) inhibitors 

Inhibit the expression of angiotensin, inducing blood vessel relaxation. 

Angiontensin receptor 
blockers 

Block the action of angiotensin, inducing blood vessel relaxation. 

Calcium channel blockers Inhibit calcium access across smooth muscle cells in heart and vessels, 
inducing vasodilation and heart rate reduction. 

 

Despite the existence of different types of antihypertensive agents, pharmacological treatment 

does not always allows reaching the target blood pressure levels. Resistant hypertension is 

defined in hypertensive patients who do not reach target blood pressure after prescription of 

three or more antihypertensive drugs at the maximal tolerated doses or reach their target blood 

pressure after prescription of four or more drugs.147 The prevalence of resistant hypertension is 

estimated to be 10 – 15 % among hypertensive population.147,148 Given the major effects of 

hypertension in the development of vascular-related diseases and the fact that prevalence of 

resistant hypertension has increased over the last decades, device-based therapies for 

hypertension have recently emerged. Among them, renal denervation (RDN) therapy is the most 

revolutionary and promising therapeutic option. 

The basis of RDN derives from recent findings suggesting that hypertension has a neurogenic 
component. Hypertension is initiated and sustained by sympathetic nervous system overactivity.149 
Sympathetic outflow to the kidney is increased in hypertensive patients, which is evidenced by an 

increased release of renal norepinephrine, a neurotransmitter that raises blood pressure.150,151 
Surgical ablation of renal nerves in experimental models confirmed previous observations and 
showed a decrease in blood pressure.152 RDN therapy targets the sympathetic nervous system, 
which is ablated by delivering radiofrequency or ultrasonic energy into the lumen of both renal 
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arteries (Figure 1.12). While still not commercially available, several biomedical companies are 
currently developing RDN devices and performing clinical trials to assess their safety and efficacy 

( 

Table 1.2).153,154 

 

Figure 1.12. Graphic of catheter-based renal denervation procedure in distal renal artery.155 

 

Table 1.2. List of renal denervation systems.153 

Company Device Technology 

Medtronic Inc. (Mountain View, CA, USA) Symplicity Radiofrequency 

St. Jude Medical Inc. (St. Paul, MN, USA) EnligHTN Radiofrequency 

Vessix Vascular Inc. (Laguna Hills, CA, USA) &  
Boston Scientific, Inc. (Minneapolis, MN, USA) 

V2 Radiofrequency 

Covidien (Dublin, Ireland) OneShot Radiofrequency 

Biosense Webster Inc. (Diamond Bar, CA, USA) Celsius ThermoCool Radiofrequency 

Boston Scientific Inc. (Minneapolis, MN, USA) Chilli II Radiofrequency 

Renal Dynamics (Oviedo, FL, USA) ReDy Radiofrequency 

ReCor Medical Inc. (Ronkonkoma, NY, USA) PARADISE Ultrasound 

Cardiosonic Ltd. (Tel Aviv, Israel) TIVUS Ultrasound 

 

Significant short-term blood pressure reductions were achieved in the Symplicity HTN-1156 and 

Symplicity HTN-2157 randomized clinical trials, which recently reported a sustained effect at 

longer time points.158,159 However, in the latest Symplicity HTN-3160 controlled trial, RDN 

procedures did not achieve the expected efficacy and caused some concerns about this 

technology. Recent evidence suggests that variability in the response of patients to RDN may be 

caused by non-homogeneous arterial microanatomy surrounding renal arteries, including not 
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only nerves but neighboring veins and lymph nodes.161,162 Current treatments deliver the 

ablation energy in focal points instead of the whole lumen surface, and might miss regions 

where higher nerve densities are located. Computational modeling predicts ablation patterns 

and show that the presence of substructures with different thermal conductivity can alter 

energy distribution.163 

In a recent study, RDN efficacy was tested in brain-related pathological aspects using 

spontaneous hypertensive stroke prone rats (SHRSP). Results showed significant prevention of 

neurological deficit, cerebral blood flow correction, glial activation and, most importantly, 

inhibition of BBB disruption.164 Better understanding of the microanatomical environment of 

renal arteries is crucial to optimize renal denervation therapy to reduce hypertension, improve 

proper vascular activity and recover physiological conditions at the BBB. 
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1.3. Hypothesis and objectives 

The phenotype of endothelial cells along blood vessels is highly affected by hemodynamic 

parameters. When physiological conditions are altered, mechanisms are triggered inducing 

cellular damage with potential implications in the development of disease. Specific 

understanding of the effect of blood flow in microvascular endothelium at the Blood-Brain 

Barrier is missing. 

In the present thesis, it is hypothesized that brain microvascular endothelial cell state is affected 

by flow. Such cellular state plays a fundamental role in the performance of the BBB. Human brain 

microvascular cell (HBMEC) phenotype may be stimulated or silenced depending on the 

biomechanical conditions to which cells are exposed. In such scenario, hemodynamic repair 

might be a potential therapeutic target to optimize BBB phenotype. 

To address these hypotheses, the following objectives are defined: 

1) Analyze the effect of shear stress and pulsatile flow on the expression, functional and 

structural phenotype of brain microvascular endothelial cells. 

2) Evaluate Blood-Brain Barrier breakdown in animal models with different vascular conditions. 

3) Design and characterize a customizable in vitro Blood-Brain Barrier model allowing co-culture 

of brain microvascular endothelial cells with astrocytes and flow exposure. 

4) Provide new insights for optimization of renal denervation therapies by detection of patterns 

in renal artery microanatomy and correlation with ablation efficacy. 
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2.1. Introduction 

The following chapter focuses on the effect of flow and shear stress on human brain 

microvascular endothelium. Human brain microvascular endothelial cells (HBMEC) were 

cultured in tubular constructs, which have been previously used on endothelial cells, have a 

simple handling and tolerate high flow rates.108,165,166 Cell culture medium was fed into the 

system by using a flow perfusion bioreactor, which is described in detail in Chapter 5.4. 

Prior to the dynamic study of cerebral microvascular endothelium, it was necessary to establish 

the optimum experimental parameters to maximize BBB phenotype development. Chapter 2.2 

optimizes temporal development of BBB markers in static cultures. Then, Chapter 2.3 

establishes optimal dynamic conditions for subsequent experiments. Results on the effects of 

shear stress patterns in dynamic HBMEC cultures are shown from Chapter 2.4.1 to 2.4.6, 

including a study of cellular behavior upon shear stress reversibility. Key BBB markers were 

analyzed, Claudin 5 and Zonula Occludens 1 (ZO-1) as tight junction proteins, P-glycoprotein 

(P-gp) as a representative marker of ATP-binding cassette (ABC) efflux transporters and Glucose 

Transporter 1 (GLUT1) as a representative marker of solute-like carrier (SLC) transporters. 

Mechanistic insights linking proteomic alterations with flow are provided in Chapter 2.4.7. 

Finally, results found in in vitro experiments were evaluated in vivo in Chapter 2.5 using 

hypertensive rats. 
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2.2. Temporal barrier formation in static HBMEC/HA co-cultures 

HBMEC and HA were co-cultured in 6-well plate transwell inserts and grown for 1, 2, 4 and 

7 days. Cells were then lysed and protein expression of Claudin 5, P-gp and GLUT1 was analyzed 

as representative tight junction, efflux transport and SLC transport markers, respectively. Figure 

2.1 shows the evolution of those markers with time. 

 

Figure 2.1. Expression of Claudin 5, P-gp and GLUT1 in static HBMEC/HA co-cultures during 7 
days. 

The expression of Claudin 5 and P-gp increased significantly until day 4 (2.56±0.04-fold and 

1.79±0.08-fold, respectively), compared to day 1. Such increase was followed by a significant 

expression reduction at day 7. In the case of GLUT1, the expression remained constant during 

the whole experiment. Loss of Claudin 5 and P-gp levels may be associated with the rapid loss 

of phenotype that characterizes HBMEC in in vitro cultures.57,167 After the expression analysis, 

four days was chosen as the optimal time-point in order to maximize BBB phenotype.  

HBMEC morphology in Figure 2.2 showed confluent monolayers and positive localization of tight 

junction markers ZO-1 and Claudin 5. 

 

Figure 2.2. HBMEC confluent monolayer after 4 days of co-culture. (Green: ZO-1; Red: Claudin 5; 
Blue: nuclei; Scale bar = 2.5µm). 
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In order to confirm barrier formation, functional permeability assays were done in HBMEC/HA 

co-cultures in 24-well plate Transwell inserts using fluorescent-labeled dyes of different size (4, 

20 and 70 kDa FITC-Dextran, with Stokes radius of 1.4, 2.4 and 3.6 nm, respectively). 

Permeability coefficients of 4, 20 and 70 kDa dextrans in HBMEC/HA cultures were 2.41±0.08, 

1.10±0.11 and 0.05±0.03 x 10-6 cm/s, respectively (Figure 2.3). 

 

Figure 2.3. Permeability of HBMEC/HA co-culture and comparison with published in vivo and in 
vitro data. 

As expected, the permeabilities obtained are higher than in vivo data168, but have no significant 

difference with other published in vitro results.169 

 

2.3. HBMEC dynamic culture optimization and experimental setup 

Expression, localization and functional analysis of HBMEC/HA co-cultures were successful at 

4 days of culture. Temporal evaluation of barrier formation was also performed on dynamic 

HBMEC cultures where cells were seeded on the luminal wall of silicone rubber tubing for flow 

exposure. However, additional concerns became apparent in this scenario. First, in order to 

enhance BBB phenotype, the culture medium used in HBMEC cultures is depleted from 

vascularization factors and FBS percentage is lower.170 In the presence of flow-induced shear 

stress, cells might not resist and detach from tubes. Also, co-culture with astrocytes was not 

possible in tubes. As a consequence, astrocyte-conditioned medium (ACM), which is also known 

to induce barrier phenotype1,24, was used as a substitute. Endothelial growth medium was used 

to condition astrocytes, so an evaluation of astrocyte viability and morphology on endothelial 

medium was required, followed by an evaluation of ACM effectiveness. All previous problems 

were addressed before a final evaluation of HBMEC viability under the final experimental 

conditions. 
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2.3.1. Temporal tight junction formation in dynamic cultures 

HBMEC were cultured during 1, 4 and 7 days at 5 dyn/cm2 using the flow perfusion bioreactor 

described in Chapter 5.4. Tight junction marker ZO-1 was positively immunostained, showing 

that HBMEC morphology progressively oriented and aligned with flow direction (Figure 2.4.A-C). 

 

Figure 2.4. Evolution of HBMEC morphology and junctional localization of ZO-1 (A –C). Image 
intensity quantification (D) (Arrows: flow direction; Scale bar = 5 µm). 

ZO-1 junctional intensity was quantified (Figure 2.4.D). At day 4, ZO-1 was significantly 

upregulated (1.47±0.17-fold) compared to day 1. Such increase was maintained at day 7 

(1.53±0.06-fold), with no statistical significance between day 4 and 7. Results are in agreement 

with the static temporal study of BBB phenotype induction in Chapter 2.2. Further HBMEC 

dynamic cultures were performed for 4 days, prior to the execution of any analytical technique. 
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2.3.2. Resistance of HBMEC to depleted culture medium and shear stress 

HBMEC were cultured in tubes of equal dimensions at 5 dyn/cm2 with endothelial growth media 

depleted from vascularization factors and supplemented with 2.5 or 0% FBS. A static group of 

tubes with the same media and 2.5% FBS was used as a control. After 4 days, cells were 

trypsinized and counted. Figure 2.5 shows the number of cells in each group. 

  

Figure 2.5. Effect of vascular growth factors and FBS depletion on dynamic HBMEC cultures. 

Under dynamic conditions and 2.5% FBS, the cell count was 2.17±0.06·105 cells/tube, which was 

lower than the static control (2.67±0.21·105 cells/tube) but non-significantly. The combination 

of shear stress, removal of growth factors and decrease of FBS from the usually applied 5% to 

2.5% did not affect cell attachment in the surface of tubes. Total removal of FBS, however, 

affected cell attachment when stimulating cells with shear stress. The cell count was 

0.54±0.14·105 cells/tube and was significantly lower than both static and dynamic groups with 

2.5% FBS. Vascular growth factors were not added in cell culture medium and FBS was limited 

to 2.5% in dynamic experiments with HBMEC. 
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2.3.3. Viability and morphology of HA in endothelial growth medium 

ACM was collected by growing HA with endothelial growth medium (EGM-2) and incubating 

confluent plates with endothelial basal medium, as described in Chapter 5.3.6. Figure 2.6 shows 

a comparison of HA cell viability grown with EGM-2 and the manufacture-recommended and 

commonly used astrocyte medium (AM). 

 

Figure 2.6. HA viability in cultures with AM and EGM-2. 

The evolution of cell viability was equivalent in both cell culture media, with no statistical 

difference between them. EGM-2 did not alter HA growth. 

Cell morphology was also compared by immunofluorescent imaging of GFAP, a specific 

functional astrocytic marker.26 As seen in Figure 2.7, HA displayed in both cases the distinctive 

in vitro elongated morphology with the presence of astrocytic end-feet. No significant 

morphological differences were observed. 

 

Figure 2.7. Astrocyte morphology and GFAP immunostaining of HA grown with AM and EGM-2 
(Scale bar = 10 µm). 
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2.3.4. Effect of astrocyte-conditioned media on human brain and dermal microvascular 

endothelial cells  

After confirmation that cells withstand flow with depletion of vascular growth factors and FBS, 

and that ACM collection does not compromise HA growth and morphological behavior, a new 

cell culture media was adapted. Endothelial dynamic culture medium (EDCM) was prepared as 

a mixture with a 1:1 ratio between ACM and EGM-2, the latter without growth factors and 

5% FBS, so that the resulting media contained astrocyte secreted factors and 2.5% FBS. 

EDCM was tested to evaluate ACM barrier phenotype induction. HBMEC were cultured for 

4 days at 10 dyn/cm2 using EDCM containing either 50% ACM and 50% endothelial basal medium 

as a control. Additionally, the same culture media were used in human dermal microvascular 

cells (HDMEC), as non-BBB microvascular endothelial cells control groups. Figure 2.8 shows cell 

morphology and junctional presence of ZO-1 after exposure of flow.  

 

Figure 2.8. Morphology and junctional localization of ZO-1 in HBMEC (A, C) and HDMEC (B, D) 
dynamic cultures in the absence (A, B) or presence (C, D) of ACM (Arrows: flow direction; Scale 

bar = 5 µm). 

Again, endothelial cells aligned with flow direction. ZO-1 was positively detected in tight 

junctions in all groups, with an apparent higher intensity in HBMEC cultured with ACM. Intensity 

of junctional ZO-1 was quantified to confirm visual indications (Figure 2.9). 
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Figure 2.9. Junctional intensity of ZO-1 in human brain and derman microvascular endothelial cells 
in the presence or absence of astrocyte-conditioned medium. 

In the absence of ACM, both HBMEC and HDMEC displayed equal amounts of ZO-1 in 

intercellular junctions, with no statistical difference between them. However, while ZO-1 

presence remained at the same basal level in HDMEC with addition of ACM, HBMEC showed a 

significantly higher amount of ZO-1 at tight junctions (1.66±0.07-fold). Results from this 

experiment confirm that ACM is indeed a barrier phenotype inducer that, more interestingly, 

has selectivity on microvascular endothelial cells from the brain. 

 

2.3.5. HBMEC viability in dynamic cultures with EDCM 

Cell viability was measured in HBMEC cultured with EDCM in static conditions and at 10 dyn/cm2. 

Figure 2.10 shows that viability increases slightly in both cases with no significant difference 

between the static and dynamic groups. HBMEC viability was not compromised in any case, 

which confirmed EDCM suitability for the duration of dynamic experiments. 

 

Figure 2.10. Cell viability of HBMEC in static and dynamic cultures in endothelial dynamic culture 
medium.  
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2.4. Effect of shear stress on the BBB 

2.4.1. Shear stress extent selection 

When blood circulation reaches the surface of the brain through incoming arteries from the 

circle of Willis, blood penetrates into the brain parenchyma.171 After consecutive bifurcations, 

vessels become arteriole, pre-capillaries and, finally, capillaries. Capillaries have the smallest size 

in human vasculature, with an estimated diameter of 7 µm.110 Because of its microscopic size 

and location, shear stress in brain capillaries is extremely difficult to measure with non-invasive 

techniques. However, literature on shear stress brain capillaries is wide and estimates normal 

physiological range between 5 and 20 dyn/cm2.71,109,110 In future experiments, 10 and 20 dyn/cm2 

were selected as physiological shears.  

In patients with vascular conditions such as hypertension, shear stress may increase. Using a 

previously implemented computational platform172, a three-dimensional arteriolar ramification 

network was designed (Figure 2.11.A) using vessel diameters and lengths measured from human 

neuroangiographies. Ramification type was limited to bifurcation only, as it is the most common 

kind in the brain microvasculature.110 CFD simulations were performed, where pressure 

gradients generated along the whole structure (Figure 2.11.A) induced shear stress increase 

from the inlet of the model to the pre-capillary outlets (Figure 2.11.B-C). 

 

Figure 2.11. Computational fluid dynamics simulations of an arteriolar fractal tree model where 
pressure gradient in the geometry (A) induced a shear stress increase (B) from the inlet to the 

outlet pre-capillaries up to 40 dyn/cm2. 
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Outlet shear stress was measured at different pressure gradient levels in the model. Results in 

Figure 2.11.C show that, in a simple model with three levels of bifurcation, a pressure gradient 

increase from 5.3 to 10.7 mmHg can raise the outlet shear stress from 20 to 40 dyn/cm2. Carotid 

pulse pressure in hypertensive patients is at least 10 mmHg higher than normotensive 

patients173, which may lead to higher pressure gradients leading to shear stress of 40 dyn/cm2 

or higher entering the BBB region. An additional study group of 40 dyn/cm2 was included in the 

following experiments as a scenario of high pathological shear stress. 

HBMEC were exposed to the afore-mentioned shear stresses at both steady and pulsatile flow 

patterns, in order to simulate healthy hemodynamic circulation and altered high pulses 

potentially induced by hypertension and arterial stiffness. 
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2.4.2. Pulsatility and high shear stress downregulate the expression of critical tight junction 

markers  

HBMEC were cultured under static conditions (0 dyn/cm2) as a control, and up to six different 

flow conditions (10, 20 and 40 dyn/cm2 in steady and pulsatile flow patterns). After exposing 

HBMEC to laminar steady flow for 4 days, Western blot results support literature and confirm 

that, under physiological shear stress, expression of tight junction markers is upregulated (Figure 

2.12.A).  

 

Figure 2.12. Effect of shear stress on the expression of tight junction markers ZO-1 and Claudin 5. 

Densitometric quantification showed that the expression of ZO-1 (Figure 2.12.B) increased 

significantly in steady flow at 10 dyn/cm2 (1.71±0.23-fold) and 20 dyn/cm2 (1.68±0.06-fold). 

Interestingly, ZO-1 dropped, and was not different from the static control, at 40dyn/cm2 

(1.03±0.14-fold). Claudin-5 expression (Figure 2.12.C) showed a similar trend, with significant 

increase at 10 and 20 dyn/cm2 (2.14±0.05-fold and 2.45±0.15-fold, respectively). Again, 

40 dyn/cm2 steady flow (1.20±0.15-fold) brought Claudin-5 expression down to static basal 

expression. When cells were exposed to pulsatile flow, the expression of both junctional markers 

showed no significant difference as compared with the static control under any shear stress 

studied. It is important to remark that cells exposed to pulsatile flow patterns within the range 

of physiological shear stress levels revealed a significant downregulation of ZO-1 and Claudin-5 

when compared to steady patterns with the same average shear stress of 10 (1.42±0.32-fold 
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and 1.88±0.09-fold, respectively) and 20 dyn/cm2 (1.69±0.34-fold and 2.54±0.20-fold, 

respectively). 

In both steady and pulsatile flow patterns, the expression level of both ZO-1 and Claudin-5 at 

different shear stress showed linear correlation, of R2=0.97 according to Pearson’s correlation 

(Figure 2.13).  

 

Figure 2.13. Shear-independent linear correlation between the expression levels of ZO-1 and 
Claudin 5. 

Regardless of individual expression variations, our results suggest that the whole junctional 

structure formed by transmembrane domains (Claudin-5) and cytosolic anchorage (ZO-1) is 

affected concurrently. Flow regulation of ZO-1 and Claudin-5 are intrinsically connected 

independently of flow type or shear. 
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2.4.3. High shear stress disrupts tight junction morphology 

HBMEC were exposed to steady and pulsatile shear stress for 4 days and stained with specific 

antibodies against ZO-1 in order to accurately study cell and junctional morphology under 

different scenarios (Figure 2.14). Junctional and nuclear/cytosolic ZO-1 intensity was quantified 

and represented in Figure 2.15 and Figure 2.16, respectively.  

 

Figure 2.14. HBMEC morphology after exposure of 0 (A, B), 10 (C, D), 20 (E, F) and 40 (G, H) 
dyn/cm2 at steady (A, C, E, G) and pulsatile flow patterns (B, D, F, H) (White arrows: Flow direction; 

Yellow arrows: junctional saw-tooth patterns; Scale bar = 5 µm). 
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The static controls (Figure 2.14.A and B) showed a disorganized junctional morphology (yellow 

arrows). Tight junctions in static controls displayed discontinuous saw-tooth patterns. Such 

serrated patterns differed greatly from those observed in cells cultured under physiological 

steady shear stress (10-20 dyn/cm2, Figure 2.14.C and E), which had linear junctions aligned with 

flow. ZO-1 was especially intense and localized in the intercellular junctions of cells exposed to 

10 and 20 dyn/cm2. 

  

Figure 2.15. Effect of shear stress on ZO-1 junctional intensity (* P<0.05 between selected bars; #,& 
P<0.05 between steady (#) or pulsatile (&) shear stress compared to static control). 

Junctional ZO-1 intensity measured by immunofluorescence (Figure 2.15) was indeed 

significantly higher (1.21±0.06-fold) than in the static control. Contrarily, ZO-1 was translocated 

to the cytoplasm in cells exposed to abnormally high shear stress (40 dyn/cm2,Figure 2.14.D). 

ZO-1 junctional intensity decreased dramatically (0.41±0.04-fold) in these cells. These results 

showed similar trends to those previously analyzed by Western blot (Figure 2.12.B) and 

confirmed that abnormally high shear stress compromised barrier phenotype. 

Pulsatile flow (Figure 2.14.B, D, F and H) caused ZO-1 delocalization independently of the applied 

shear stress. The fluorescence intensity of ZO-1 was significantly lower (0.30±0.03-fold) than the 

static. In cells exposed to 10 dyn/cm2, ZO-1 junctional expression was 3.9±0.4-fold lower when 

flow was pulsatile than when cells were exposed to steady flow. Similarly, there was a 3.1±0.4-

fold difference between cells exposed to pulsatile flow versus cells exposed to steady flow at 20 

dyn/cm2. There was, however, no significant difference between cells exposed to pulsatile or 

steady 40 dyn/cm2 flow as ZO-1 was already low and translocated into the cytoplasm. 

Interestingly, the differences between steady and pulsatile shear stress at 10 and 20 dyn/cm2 

were significantly higher in junctional ZO-1 (Figure 2.15) than in total ZO-1 expression (Figure 
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2.12.B), suggesting that pulsatility triggers ZO-1 delocalization. Cytoplasmic/nuclear ZO-1 

intensity was quantified (Figure 2.16), showing significantly higher non-junctional ZO-1 for all 

pulsatile shear stresses (2.32±0.12-fold at 10 dyn/cm2, 2.03±0.11-fold at 20 dyn/cm2 and 

1.44±0.11-fold at 40 dyn/cm2). 

 

Figure 2.16. Effect of shear stress on ZO-1 cytoplasmic and nuclear intensity (* P<0.05 between 
selected bars; #,& P<0.05 between steady (#) or pulsatile (&) shear stress compared to static 

control). 

The ratio between junctional and cytoplasmic/nuclear ZO-1 was measured (Figure 2.17) for 

every shear stress, under steady or pulsatile flow. Under increasing steady shear stress, ZO-1 

localization shifted gradually from junctional to internal, as the ratio decayed significantly 

(0.58±0.05 and 0.27±0.03 at 20 and 40 dyn/cm2, respectively). This ratio was significantly lower 

for all pulsatile shear stresses (0.10±0.01 at 10 dyn/cm2, 0.09±0.01 at 20 dyn/cm2 and 0.13±0.01 

at 40 dyn/cm2). 

In conclusion, pulsatile flow jeopardized microvascular junction independently of shear stress. 

 

Figure 2.17. Ratio between junctional and cytosol/nuclear ZO-1 (* P<0.05 between selected bars; 
#,& P<0.05 between steady (#) or pulsatile (&) shear stress compared to static control).  
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2.4.4. Shear stress and pulsatility induce different expression profiles in transporters P-gp and 

GLUT1 

Western blotting of transport markers P-gp and GLUT1 was performed on cell lysates from 

HBMEC exposed to different shear stress values (Figure 2.18.A). The expression of P-gp (Figure 

2.18.B) was significantly increased between 1.5- and 1.6-fold in cells exposed to steady flow, 

independently of mean shear stress applied. No significant differences in expression of 

transporters were found between shear stress of 10, 20 and 40 dyn/cm2. The expression of P-gp 

in pulsatile cultures was in all cases lower than the steady analog, with a significant difference 

at 20 and 40 dyn/cm2. 

 

Figure 2.18. Effect of shear stress on the expression of P-gp and GLUT1. 

Thus, P-gp expression may be compromised when both pathological shear stress and pulsatile 

flow are present. Contrary to P-gp, the expression of GLUT-1 (Figure 2.18.C) showed no 

significant difference between steady and pulsatile flow. Both flow patterns showed the same 

tendency, where GLUT1 expression peaked significantly in cells exposed to steady 10 dyn/cm2 

(1.27±0.03-fold) and decreased afterwards. No significant differences were found compared to 

the static control, suggesting that GLUT1 expression is not governed by fluid dynamics. 
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2.4.5. P-glycoprotein efflux activity is decreased upon high shear stress exposure 

Although total cellular expression was constant under steady flow (Figure 2.18.B), P-gp efflux 

activity was tested using Rhodamine 123 (Rho123) as a fluorescent P-gp substrate.174 Results in 

Figure 2.19 show the concentration of secreted Rho123 into the culture media after exposure 

and incorporation of the substrate into the cells. 

 

Figure 2.19. Effect of shear stress on P-gp efflux activity. 

A significant activity peak was achieved at 10 dyn/cm2, which was 1.86±0.29-fold higher than 

the static control. Beyond 10 dyn/cm2, efflux activity decreased and resulted in lower 

concentrations of Rho123. A significant minimum activity was found at 40 dyn/cm2, where the 

measured Rho123 concentration was 2.00±0.36-fold lower than the peak at 10. This suggests 

that, although the expression of P-gp is constant under steady shear stress, its efflux activity can 

be modulated by flow. Some studies suggest that transmembrane active P-gp may be 

internalized and deactivated upon transport requirements.175 
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2.4.6. Tight junction markers can be recovered when physiological shear stress is 

reestablished 

After analyzing the effect of shear stress on tight junction and transport markers, microvascular 

endothelium response to temporary modifications of fluid dynamics was investigated. HBMEC 

were exposed to steady shear stress of 10 or 40 dyn/cm2 for 3 days. Then, as Figure 2.20 

illustrates, cells were either kept at their initial shear for three more days (Group A: 10 dyn/cm2; 

Group B: 40 dyn/cm2) or switched from one to the other (Group C: 10 → 40 dyn/cm2; Group D: 

40 → 10 dyn/cm2). HBMEC were lysed and tight junction markers were analyzed by Western 

blotting (Figure 2.21.A).  

 

Figure 2.20. Time plan for the study of shear stress induced effects reversibility. 

 

Figure 2.21. Shear stress reversibility effects on tight junction markers. 
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As expected, the expression of ZO-1 and Claudin-5 (Figure 2.21.B and C) showed a significant 

downregulation at 40 dyn/cm2 compared to 10 dyn/cm2 (0.41±0.09 and 0.43±0.12, respectively). 

Interestingly, when cells cultured at 40 dyn/cm2 were switched to 10 dyn/cm2, the expression 

of tight junction markers was significantly recovered and was comparable to the expression of 

cells maintained at 10 dyn/cm2 for the entire experiment (0.89±0.14 and 0.99±0.12 for ZO-1 and 

Claudin-5, respectively). This indicates that HBMEC may recover their BBB phenotype when the 

alteration of their normal fluid dynamic conditions is reversed. On the contrary cells exposed to 

10 dyn/cm2 and switched to 40 dyn/cm2 showed a significant ZO-1 downregulation (0.32±0.02) 

similar to the level of cells maintained at 40 dyn/cm2 (Figure 2.21.B). Under the same 

circumstances, Claudin-5 showed resistance to pathological shear exposure and its expression 

decreased non-significantly (Figure 2.21.C). 
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2.4.7. Effects induced by shear stress in HBMEC are modulated via the Src/ERK signaling 

pathway 

Phosphorylation analysis of Src and ERK1/2 was assessed by Western blotting after HBMEC 

exposure to flow (Figure 2.22.A). Under physiological conditions, Src and ERK1/2 are inhibited 

and upregulate tight junction markers. Results showed that ERK1/2 (Figure 2.22.B) and Src 

(Figure 2.22.C) are inhibited in cells stimulated with steady shear stress of 10 and 20 dyn/cm2. 

Both phosphorylation ratios decreased significantly compared to the static control (ERK1/2, 

0.25±0.07; Src, 0.77±0.03 at 20 dyn/cm2). Subsequent increase of shear stress to 40 dyn/cm2 

activated the Src/ERK pathway showing a significant increase in phosphorylation compared to 

capillary-like shear stress levels (ERK1/2, 2.3±0.6; Src, 1.2±0.05). When cells were stimulated 

with pulsatile flow, phosphorylation ratios were equivalent to high steady shear stress levels 

independently of the pulsatile shear stress applied. 

 

Figure 2.22. Effect of shear stress on the activation of Src and ERK1/2. 

Overall deviations from physiological dynamic conditions in HBMEC lead to the activation of 

stress signaling cascades Src and ERK, which in turn triggered a downregulation of tight junction 

markers (Figure 2.23). The proposed mechanism depicted in Figure 2.23 is originated by shear 

stress mechanosensing by G-coupled protein receptors (GPCR). This leads to activation of 

tyrosine-protein kinases (Src) and extracellular signal-regulated kinases (ERK1/2), which directly 

induces downregulation of the expression of tight junction markers. 
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Figure 2.23. Proposed mechanism for tight junction modulation induced by shear stress via 
Src/ERK signaling pathway. 
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2.5. Study of BBB markers and permeability in hypertensive rats 

Shear stress effects on the BBB found in Chapter 2.4 were evaluated in a small group of 

normotensive (Control; n = 2) and stroke-prone spontaneously hypertensive (SPSHR; n = 4) rats, 

with the latter as a model of altered shear stress with higher pulse pressure and blood velocity 

reaching the brain microcirculation. Tight junction markers ZO-1 and Claudin 5 were analyzed, 

followed by a permeability assay using Evans Blue dye (EBD), a common vascular permeability 

tracer in animal models.176,177 

 

2.5.1. ZO-1 and Claudin 5 expression in hypertensive rats 

Protein lysates from homogenized rat brains were analyzed with Western blot, where ZO-1 and 

Claudin 5 were detected and quantified (Figure 2.24).  

 

Figure 2.24. Expression of ZO-1 and Claudin 5 in normotensive and hypertensive rats. 

No significant differences were found on the expression of both ZO-1 and Claudin 5 between 

normotensive and hypertensive rats. 
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2.5.2. EBD permeability assay in hypertensive rats 

EBD was incorporated in the animal vasculature through intravenous tail vein injection. After 

2 hours, rats were euthanized and EBD concentration was measured in brain homogenates. 

Figure 2.25 shows EBD concentration in extravasated rat brains, showing no significant 

difference between the control and the hypertensive groups. 

 

Figure 2.25. Cerebral concentration of extravasated Evans Blue dye in hypertensive rats. 

 

2.5.3. Limitations and future improvements in animal experiments 

No significant difference was found on both the expression of tight junctional markers and 

permeability assay between normotensive and hypertensive groups. Statistical relevance in in 

vivo experimentation is typically harder to assess compared to in vitro research. Experimental 

groups need to be larger in order to detect patterns. The main limitation of our preliminary 

animal study was the small number of rats per group, which was only 2 and 4 in the control and 

hypertensive groups, respectively. As a preliminary study, the complex techniques performed 

had to be learned, adapted and tested for the first time in our research group. 

Furthermore, both techniques had additional limitations with potential error increases. First, 

protein lysis was done on whole brain. While ZO-1 and Claudin 5 are specific markers of 

microvascular endothelium, α-tubulin, which was used as a loading control, is present in all cells. 

Normalized junctional expressions resulted in lower ratios compared to the same technique in 

cell lysates. Endothelial cell purification from brain samples should be added as an additional 

step before sample lysis. In the case of permeability assays, longer EBD exposure time through 

brain vasculature might provide would allow detecting larger differences. 

Higher study groups and optimized techniques might allow a better evaluation of the effect of 

vascular alterations in the BBB.  
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2.6. Discussion 

Understanding the mechanisms underlying BBB phenotype is essential for the study of brain-

related diseases. Better drug candidates targeting the CNS may be developed if these 

mechanisms are fully understood. This study adds to our understanding of the pathophysiology 

of neurological diseases linked to BBB dysfunction caused by systemic hemodynamic factors. 

This chapter demonstrates that a biomechanical stimulus like shear stress is crucial to maintain 

a functional BBB. When physiological conditions are lost, a decrease of junction markers 

expression, an efflux activity reduction, and junctional widening is observed. The findings shown 

suggest that brain microvascular endothelial cells state is critical to cerebrovascular function. 

Abnormal flow patterns in the systemic vasculature may jeopardize endothelial behavior at the 

neurovascular unit, and impact transport at the BBB, resulting in a loss of functionality of the 

neurovascular unit. Results from this chapter show that high shear stress and pulsatile flow 

downregulated significantly the total expression of tight junction markers ZO-1 and Claudin-5. 

Moreover, abnormal flow induced ZO-1 delocalization from cell junctions towards cytoplasm 

and nuclei. 

Flow waveform corrections are limited by ageing-associated arterial stiffness, which transports 

increased pulse pressure to peripheral organs.120 While shear stress in healthy brain capillaries 

is mostly steady and typically lower than 20 dyn/cm2 71,109,110 higher levels and pulsatile patterns 

might reach the endothelium in patients with increased arterial stiffness. Similarly, patients who 

suffer stroke or trauma lose the signaling mechanisms that regulate microvessel hemodynamics 

in brain microcirculation.139 

Shear-induced effects on the endothelium have been widely studied in larger vessels108,178,179, 

but less is known about the consequences of shear stress alterations in the brain microvascular 

endothelium. Here, the dynamic vascular spectrum is extended beyond capillary-like rates at the 

BBB and hemodynamics at the cellular level in HBMEC are analyzed. It is shown how critical 

markers of tight junctions (ZO-1 and Claudin-5) or efflux transport (P-gp) are upregulated under 

capillary-like shear stress. Conversely, high shear stress (40 dyn/cm2) and pulsatile profiles 

downregulate the expression of tight junction markers and the efflux activity of P-gp. To date, 

studies using in vitro dynamic models of the neurovascular unit have focused on capillary-like 

shear stress only. Results using physiological conditions agree with previous reports as shear 

stress in such ranges promotes barrier phenotype. In a recent study, moderated shear stress 

(6.2 dyn/cm2) showed significant benefits in brain microvascular endothelial cells when 

compared to static cultures.71 Using a hollow-fiber based co-culture device, an upregulation was 
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observed in genes related to tight junctions, drug transporters, ion channels, adhesion 

molecules and integrins. As a difference to this study, the in vitro system used in this thesis 

allows cellular visualization, local protein expression quantification and a wide range of 

hemodynamic parameterization. The lack of astrocytes was corrected with the incorporation of 

human astrocyte-conditioned medium into the experimental setup, which enhanced tight 

junctional formation. Characterization of HBMEC in this series of experiments showed maximal 

total expression of BBB markers in static cultures after 96 hours, a duration that falls inside the 

duration range of other dynamic published studies.71,109,112,113 We repeated the same experiment 

under dynamic physiological conditions and, in agreement with the static data, total expression 

of BBB markers was also highest at 96 hours. Using this time point, we avoided the typical loss 

of phenotype due to long-term in vitro cultures. Although this model is not fully representative 

of the neurovascular unit, some of the BBB hallmarks were reproduced in a dynamic 

environment where barrier phenotype was altered by abnormal shear stress on the 

microvascular endothelium. 

The results presented indicate that BBB can be disrupted when cells are exposed to altered flow 

patterns. Barrier phenotype loss is critical to the etiology of different types of neurological 

diseases.36,180 Recent findings have shown how disruptive effects in HBMEC of tumor necrosis 

factor- (TNF-) and interleukin-6 (IL-6) can be relieved by capillary-like (8 dyn/cm2) shear 

stress.112,113 However, such protective effect may be lost under high shear stress and pulsatile 

flow patterns. 

Special attention must be paid on pulsatile flow reaching the brain microvasculature. 

Cerebrovascular damage can be caused by arterial stiffening and hypertension, which provoke 

high shear and/or pulsatile flow in brain capillaries.132,140 Here, we show that pulsatile flow in 

the microvasculature can cause tight junctional impairment and loss of barrier phenotype in 

brain microvascular endothelial cells. In the experiments performed, steady high shear stress 

and all pulsatile shear stresses deteriorated the endothelial barrier functionality. Pulsatile shear 

stress induced ZO-1 translocation significantly from cell-cell junctions towards the cytoplasm 

and nucleus. It has been proved in the past that nuclear presence of ZO-1 can be caused by tight 

junction immaturity in in vitro cultures.181 In our study, endothelial cells were in culture for a 

total of six days, two days during the seeding process and four days under flow. Despite 

observing some nuclear presence of ZO-1 under static conditions, we only observed significant 

translocation when we exposed our cells to high shear or pulsatile shear stress. Our results 

indicate then that high and pulsatile shear stress may be an impediment in cell-cell contacts 

formation and tight junction maturation. Our findings also suggest an inverse correlation of 
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phosphorylation ratio of Src and ERK1/2 with tight junction expression levels. This finding is in 

agreement with the literature that shows that this pathway is flow sensitive182–184 and how 

different insults to HBMEC lead to activation of Src185,186, ERK1/2187 and BBB alterations.188 

A novel finding of this study is that shear-induced damage in the microvascular endothelium 

may be reversed if regular cerebral blood flow is recovered. Using non microvascular endothelial 

cells, other authors proved that alterations of electrical impedance in endothelial monolayers 

were reversible between static and dynamic cultures.189,190 Here, loss of tight junction markers 

due to high shear stress was recovered if physiological conditions were restored. We have also 

observed that ZO-1 but not Claudin-5 was downregulated after imposing non-physiological flow. 

This observation is consistent with the reported plasticity of ZO-1 as rapid trigger of barrier 

phenotype loss, which should eventually be followed by Claudin-5 downregulation.191 As the 

interface separating blood and the CNS, hemodynamic repair (pharmacological or 

interventional) could improve the performance of the neurovascular unit and mitigate the 

progression of neurological diseases through stabilizing shear stress at the BBB. A recent study 

showed how renal denervation treatment lead to permeability decrease and recovery of 

occludin expression in hypertensive rats.164 The preliminary in vivo study performed on 

hypertensive rats did not show significant difference in both permeability assay and expression 

of ZO-1 and Claudin 5. Further technique optimization and increased study groups are required 

in order to evaluate the in vitro findings of this chapter in animal models. Carotid ligation surgery 

on a single brain hemisphere is a possibility that may induce increased vascular impairment in a 

specific region of the animal, allowing the assessment of functional BBB contrasts on each 

specimen directly. 

This chapter adds insight into how shear stress governs barrier phenotype in microvascular 

endothelial cells. Physiological shear stress promotes the expression of tight junctions and 

transport markers. When such conditions are lost, mechano-transductors activate stress 

signaling pathways leading to a decrease in the expression of tight junction markers and a 

reduction of the efflux activity. Preliminary evidence is provided supporting the hypothesis that 

shear-induced damage in the endothelium may be reversed if physiological cerebral blood flow 

is recovered. Correlations between flow patterns and endothelial cell state at the BBB might be 

of help for the diagnosis and treatment of neurological diseases. This study opens a new frame 

to better understand and model cerebral diseases in which hemodynamic disorders and BBB 

disruption are involved. 
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3.1. Device conception and requirements 

In Chapter 2, shear stress alterations on brain microvascular endothelial cells showed significant 

impact in dynamic HBMEC monocultures. While it was shown that astrocyte-conditioned 

medium (ACM) as a supplement for endothelial cultures enhanced tight junction formation, the 

model used was not fully representative of the BBB, as it lacked of the presence of astrocytes as 

neighboring cells providing biophysical support to the microvascular endothelium. Exposure of 

shear stress to brain microvascular endothelial cells in co-culture with astrocytes further 

promotes functional BBB phenotype in in vitro models.71 In the following chapter, a dynamic in 

vitro model of the BBB is designed and characterized with the aim of reproducing the results 

previously obtained in a more relevant biological environment. 

Given that commercially available culture systems that allow shear stress exposure and co-

culture are expensive and have a small size that limits genomic and proteomic assays, such 

requirements are often achieved by cell culture chambers custom-made for a given study. As 

described in Chapter 1.1.6, different approaches currently exist to include circulation in BBB in 

vitro models. Here, we designed a two-compartment parallel plate flow chamber (PPFC) system, 

based on a modified Boyden chamber device. Table 3.1 collects the main requirements of the 

PPFC after consideration of handling and post-process aspects. Figure 3.1 shows the final design 

of the chamber with its main components, including the abluminal/astrocytic and 

luminal/endothelial compartments (1, 2), a porous membrane separating them and allowing 

exchange of soluble factors with no cell migration between compartments (3), inlet and outlet 

ports (4) and two frames to hold the system together (5). 

Table 3.1. Parallel-plate flow chamber design requirements. 

Requirement Justification 

All PPFC components need to be 
autoclavable and transparent. 

The whole system needs to be sterile prior to cell culture and inside 
visibility must be guaranteed to check proper media coverage 
during experiments. 

Presence of two independent 
compartments separated by a porous 
membrane. 

Compartmentalized co-culture of endothelial cells and astrocytes 
on each side with continuous exchange of soluble factors and 
potential cell contact via membrane pores with no migration of 
cells from one side to the other. 

Presence of inlet/outlet ports on each 
compartment. 

Cell seeding, media perfusion for dynamic cultures and sample 
collection. 

High cell seeding area (50x18mm). Possibility to seed high cell number to perform proteomic and 
genomic assays. 

Height-to-width ratio higher than 20 
on the endothelial compartment. 

Controlled and constant shear stress along the chamber (Equation 
3.1). 
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Besides allowing compartmentalized co-culture, an additional benefit of this customized PPFC is 

that the membrane can be selected according to the assay that will be performed. Membrane 

pore size and thickness can be adapted for experimental techniques such as drug transport or 

permeability assays (small pore size)64,192 or cell migration, invasion and chemotaxis (larger pore 

size). 

 

Figure 3.1. Exploded view of the parallel-plate flow chamber assembly (A) and top and lateral views 
of the assembled device (B). 
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3.2. Device manufacture 

Negative Teflon molds were first manufactured (Figure 3.2.A), which allowed manufacturing of 

endothelial and astrocytic compartments with PDMS (Figure 3.2.B). Silicone tubing parts were 

placed in the circular protrusions on the endothelial negative mold prior to PDMS polymerization 

in order to integrate inlet and outlet ports. The resulting parts were coupled with a porous Teflon 

membrane in between. The membrane was first glued to the astrocytic side (Figure 3.2.C) and 

then both compartments were glued together (Figure 3.2.D). The final assembly was then 

autoclaved and ready to be used. 

 

Figure 3.2. Manufacture steps of the parallel-plate flow chamber.  
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3.3. Fluid dynamics validation 

Shear stress along a PPFC can be estimated assuming the fluid considered is Newtonian. 

Assuming steady flow (Q) in an infinitely wide flow channel, Equation 3.1 allows the estimation 

of shear stress () on the surface of the chamber. 

2hw

Qμ6




  

 
Equation 3.1 

Where w and h are the width and height of the channel and µ is the viscosity of the fluid. Flow 

profile is parabolic between both plates of the chamber, with a maximal and constant shear 

along the surface. Equation 3.1 is valid to evaluate the average and/or maximal shear stress with 

dynamic flow patterns in PPFC with a width-to-height ratio (w/h) higher than 20. The necessary 

distance for flow to develop in the chamber can also be estimated according to Equation 3.2. 

Reh0.04L e   
 

Equation 3.2 

In order to evaluate shear stress along the endothelial compartment of the designed PPFC, 

computational fluid dynamics (CFD) simulations were performed using a computer-aided design 

(CAD) model of the PPFC. For shear stresses of 10, 20 and 40 dyn/cm2, calculated velocities 

through the circular inlet of the channel were 7.7, 15.3 and 30.7 cm/s, respectively. Given those 

inlet velocities as boundary conditions of the model, steady state simulations provided velocity 

and shear stress profiles. Expected parabolic velocity profiles between plates (vertical direction 

in Figure 3.3) were observed in all scenarios. Constant shear stress was also observed along the 

surface of the PPFC (Figure 3.4), with the exception of inlet and outlet regions where shear stress 

is significantly higher due to the 90° flow direction change. 

 

Figure 3.3. Laminar parabolic velocity profiles between plates in half symmetric cross-sections of 
the parallel-plate flow chamber. 
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Figure 3.4. Shear stress profile in bottom endothelial plate of the parallel-plate flow chamber. 

Shear stress profiles were represented between the lower surface boundaries at the middle 

region of the PPFC (Figure 3.5), confirming constant profiles. 

 

Figure 3.5. Shear stress profiles along the lower surface of the parallel-plate flow chamber. 
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Despite having a high width-to-height ratio (w = 450 µm; h = 18 mm; w/h = 40), the expected 

theoretical forces (dashed lines) were not achieved and discrepancies increased with velocity. 

The vertical disposition of the inlet port might generate turbulences when flow enters the 

channel, resulting in a reduced shear stress after parabolic flow is developed. A linear trend 

between velocity and average surface shear stress (Figure 3.6) allowed calculating the target 

velocities that would provide the expected shear stress (Table 3.2). 

 

Figure 3.6. Linear correlation between 
theoretical velocity and average shear stress. 

 

Table 3.2. Computational fluid dynamics 
average shear stress and target velocities. 

Velocity 
(cm/s) 

Average 
shear stress 
(dyn/cm2) 

Expected 
shear stress 
(dyn/cm2) 

Target 
velocity 
(cm/s) 

7.7 8.1 10 9.5 

15.3 16.2 20 18.9 

30.7 32.5 40 37.7 

 

A second set of simulations using new velocities was run. Figure 3.7 shows that the expected 

constant shear stress profiles were reached using target velocities. Velocities calculated in Table 

3.2 will be used in future dynamic culture experiments with the PPFC. 

 

Figure 3.7. Corrected shear stress profiles along the lower surface of the parallel-plate flow 
chamber. 
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3.4. Cell seeding and attachment 

Before exposing cells to flow in the PPFC, proper cell seeding and attachment to the membrane 

needed to be ensured. Primary human brain microvascular endothelial cells (HBMEC) and 

human astrocytes (HA) were seeded on each side of the PPFC and fluorescent stains allowed the 

evaluation of cell coverage and confluence. 

 

3.4.1. HBMEC and HA mono-culture 

HBMEC and HA were first seeded independently on the porous membrane in their respective 

compartments in different PPFC. After 24 hours, cells were fixed and actin filaments were 

stained with phalloidin. Figure 3.8 shows successful cell attachment to the membrane for both 

cell types. However, confluence was not reached after 24 hours, with a lower abundance of non-

covered gaps in the case of HBMEC than in HA (Confluence of 87.9% and 49.2%, respectively). 

Longer static culture time lead to 100% cell confluence along the membrane. 

 

Figure 3.8. Mono-culture of HBMEC (A) and HA (B) on the membrane of the parallel-plate flow 
chamber. (Red: actin; Blue: nuclei; Scale bar = 20µm. 

 

3.4.2. HBMEC/HA co-culture 

HBMEC and HA were co-cultured on both device compartments of the PPFC to evaluate 

simultaneous cell attachment to opposite sides of the membrane. Phalloidin staining showed 

confluent monolayers of HBMEC (Figure 3.9.A-B) and HA (Figure 3.9.C-D) on each side of the 

membrane. The different cellular morphology displayed by stained actin filaments suggested 

the presence of both cellular entities on each side, with no cross-contamination between the 

PPFC compartments. 
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Figure 3.9. Co-culture of HBMEC (A, B) and HA (C, D) on the membrane of the parallel-plate flow 
chamber. (Red: actin; Blue: nuclei; Scale bar = 20µm (A, C) / 5 µm (B, D)). 

However, when confluent layers were focused on each side of the membrane (Figure 3.9), the 

layer behind could not be visualized under an epifluorescent microscopy. In order to evaluate 

the presence of each cell on its respective side simultaneously, unstained HBMEC and green cell 

tracker stained HA were co-cultured in a PPFC and allowed to attach with a short culture time 

avoiding confluence. Imaging of the same area allowed focusing at both sides of the membrane. 

Focused cell nuclei on the astrocytic compartment (Figure 3.10.A) became fuzzy when the focus 

was switched to the endothelial compartment (Figure 3.10.B) and vice versa. The distance 

between both focus points matched the thickness of the membrane (85 µm), corroborating that 

cells were attached on both sides. Furthermore, focused green cell tracker was only present on 

the astrocytic compartment, confirming optimal co-culture seeding with no cross-

contamination.  
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Figure 3.10. Co-culture of HBMEC and HA focusing the astrocytic (A) and endothelial (B) sides of 
the membrane (Green: astrocytes; Blue: nuclei; Scale bar = 10 µm). 

In order to confirm that cells were properly attached on its corresponding side of the membrane, 

an additional membrane was fixed, HA and HBMEC were stained with green cell-tracker and 

CD31, respectively, and observed under a confocal fluorescent microscope. Figure 3.11 shows 

that both cells are attached in opposite sides of the membrane validating again that no cross-

contamination occurred during the co-culture steps in the PPFC. 

 

Figure 3.11. Three-dimensional reconstruction of HBMEC and HA in co-culture on each side of the 
membrane in the parallel-plate flow chamber (Green: astrocytes; Red: HBMEC; Blue: nuclei; Scale 

bar = 1 µm). 
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3.4.3. Microvascular endothelial morphology 

Endothelial morphological verification is essential in order to perform in vitro BBB assays in any 

cell culture platform. Cell morphology and the expression of key endothelial markers were 

assessed in a PPFC where HBMEC were grown to confluence. Cells were immunostained with 

endothelial specific marker CD31193 and tight junction specific marker ZO-1.14 Figure 3.12 shows 

positive staining of both markers in a confluent monolayer of HBMEC. Cells displayed their 

typical endothelial cobblestone morphology with co-localization of gap junction and tight 

junction markers in intercellular contacts. 

 

Figure 3.12. Expression of CD31 (A, D, red) and ZO-1 (B, E, green) in HBMEC, co-localizing at cell-
cell junctions (C, F) (Scale bar = 20µm (A – C) / 5 µm (D – F)). 
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3.5. Assay development 

Immunofluorescence staining protocols in the PPFC are relatively simple to perform even for co-

culture in both sides of a membrane, as cells are fixed and attached. However, typical cell lysis 

protocols would result in a mix of protein or mRNA from different origin, given the presence of 

different cell types in porous membranes where reagents can easily diffuse. Techniques 

requiring cell lysis need to be properly defined in this type of culture device. 

 

3.5.1. Cell lysis techniques 

In order to obtain cell lysates from both sides of the membrane with no cross contamination, 

two different preliminary approaches (n=1) were followed after 24 hours of co-culture of HBMEC 

and HA in the PPFC. In the first case (method 1), the PPFC system was disassembled, membrane 

was extracted and lysis buffer was carefully added to each side, collecting lysates independently 

and keeping them in a centrifuge tube during incubation. The second option (method 2) 

consisted on harvesting cells from the assembled device by following the standard trypsinization 

protocol on each compartment and lysing cell pellets in centrifuge tubes. Western blots were 

performed on endothelial and astrocytic lysates from both techniques (Figure 3.13.A). Claudin 5 

and GFAP, specific markers of HBMEC13 and HA26, respectively, were studied. 

 

Figure 3.13. Expression of Claudin 5 and GFAP from HBMEC and HA lysates of the PPFC using 
different lysis techniques (n=1). 
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As seen in Figure 3.13.B endothelial and astrocytic lysates were positive and showed 

predominance on their respective analyte. However, impurities from the other side of the 

membrane were found in most cases. In the first method, GFAP blot intensity on the endothelial 

lysate represented 8% of the intensity on the astrocytic one, whereas Claudin 5 intensity on the 

astrocyte lysates was 29% of its endothelial counterpart. Lower impurity percentages were 

found on the second method where previous ratios were 0% and 7%, respectively. While the 

trypsinization method provided less contaminated samples, the total protein concentration of 

endothelial lysates was much lower compared to the in situ direct lysis procedure (0.2 mg/mL 

against 1.2 mg/mL). Further optimization of the direct lysis method was followed to obtain high 

protein concentration lysates with low impurities. 

 

3.5.2. In situ direct lysis on PPFC membrane 

Since microvascular endothelial cells are the main focus of study in dynamic BBB in vitro cultures, 

the following methods were developed to evaluate cell lysis efficiency from the endothelial 

compartment of the PPFC. Two cell separation methods were tested prior to cell lysis. On one 

hand, HA were scraped out of the membrane and lysis buffer was then poured in the membrane 

(method 1.1). On the other hand, HBMEC were first scraped and collected with PBS in a 

centrifuge tube followed by lysis buffer addition (method 1.2). HA were also lysed from the 

membrane in this case to compare GFAP expression with endothelial lysates from both methods. 

Again, both options yielded positive Claudin 5 and GFAP positive detections in Western blot 

(Figure 3.14.A). Both methods showed low GFAP impurities on the endothelial lysates of 

methods 1.1 and 1.2, with a total amount of 2% and 7%, respectively, compared to the GFAP 

amount in the astrocyte lysate (Figure 3.14.B). While both methods showed negligible cross-

contamination, method 1.2 had an additional protocol step resulting in a lower protein 

concentration (0.1 mg/mL) than method 1.1 (0.7 mg/mL). 

Previous results suggest that HBMEC lysis is more efficient when HA are scraped out and HBMEC 

are lysed directly on the membrane. When astrocytes are not only needed as a BBB phenotype 

inducer for HBMEC, but are also of interest for post-analysis, cell separation by trypsinization in 

each compartment can still yield pure cell lysates from both cell types, but with lower protein 

concentration. 
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Figure 3.14. Expression of Claudin 5 and GFAP from HBMEC and HA lysates of the PPFC using 
different in situ membrane lysis techniques (n=1). 

 

3.6. Exposure to flow 

HBMEC were grown on the endothelial compartment of the PPFC for 24 hours. Then, cells were 

exposed to shear stress from 5 to 40 dyn/cm2 for 48 hours. Unfortunately, the lowest shear 

stress chamber was the only to withstand the experiment. At 5 dyn/cm2, the PPFC showed no 

apparent damage and cells remained attached to the membrane and confluent (Figure 3.15).  

 

Figure 3.15. Nuclei labeling of HBMEC after 48 hours of exposure to 5 dyn/cm2 (Scale bar = 20µm). 

At higher flow rates, either no cells were on the membrane or both chamber compartments had 

detached and media had leaked out from the system. The performance of the device in such 
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dynamic conditions was then re-evaluated in non-sterile uncultured devices. Distilled water was 

used to perfuse through the system. When the system was filled with water, constant swelling 

of the endothelial compartment exposed to flow was clearly noticeable (Figure 3.16). After 

thorough inspection of the chamber, it was concluded that an over pressure was being 

generated inside the chamber by the fact that the membrane was not attached to the PDMS 

compartments tight enough and was very close to the inlet/outlet ports (0.45 mm). Both ports 

perfuse media on a 90° direction with respect to the PPFC flow direction which moves the outlet 

part of the membrane towards it, reduces the outlet section and increases pressure inside the 

device. 

  

Figure 3.16. Swelling of the endothelial compartment of the PPFC. (Green: Straight PPFC; Red: 
Swelled surface). 

Such overpressure causes three main problems. First, cells seeded on the PPFC would be 

exposed to undesired pressure inside the chamber, leading to cell detachment from the 

membrane. Secondly, at high flow rates the whole system might burst if the PDMS attaching 

both compartments is unable to resist the pressure. Finally, a higher and variable chamber 

height would lead to harder estimation of fluid dynamics inside the chamber, limiting the use of 

Equation 3.1. 

Pressure in the chamber was relieved by positioning the media reservoir above the PPFC and 

stretching the perfusion ports. However, this was not enough to allow the performance of 

dynamic experiments. A tighter membrane attachment and a different polymer formulation 

with lower elastic properties might lead to an improved PPFC performance in dynamic 

experiments. 
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3.7. Advantages, limitations and future improvements 

In this part of the work, a BBB dynamic in vitro system has been designed and characterized. The 

final configuration is a parallel-plate flow chamber with a double-compartment separated by a 

porous membrane. The manufacture protocol is simple and straightforward, with all parts 

composed of autoclavable materials. As opposed to other models73,74, this system enables co-

culture of two different cell types at the opposite sides of the membrane. HBMEC and HA 

attached successfully and reached confluent monolayers on both sides. The PPFC provides a 

tight seal with no fluid leaks when inserting culture media on the device and, most importantly, 

with no cross-contamination when seeding different cells on each compartment. 

An additional benefit from this system is that immunofluorescent staining can be performed on 

the system and the membrane can be removed and imaged. This allows evaluating cell seeding 

efficiency and morphological analysis after use, which cannot be done in some of previously 

published models.72 One of the future improvements of the PPFC will be to obtain bright surfaces 

with no roughness after polymerization, in order to enable in situ cell visualization during 

experiments. Moreover, the dimensions of the compartments allow the presence of a high cell 

number in the system, which can yield high concentrations for post-process techniques such as 

Western blot or RT-PCR. Such techniques require sufficient volume of highly concentrated 

protein or mRNA in order to analyze protein or gene expression. Dynamic models have a 

tendency to minimize the culture area, limiting the performance of such techniques.73,75,194 

The PPFC maintained HBMEC adhered on the PPFC for 48 hours at shear stress of 5 dyn/cm2 or 

lower. However, increased flow resulted in cell detachment and PDMS swelling due to 

overpressure inside the chamber. The lack of tightness of the attached membrane obstructed 

the outlet port, limiting fluid evacuation. A more rigid polymeric formulation needs to be tested 

on the chamber with a better system to keep the membrane on its natural position. With the 

afore-mentioned improvements, it is expected that the PPFC will be able to operate under 

dynamic conditions. 

While, HBMEC grown on the PPFC displayed endothelial morphology and expressed tight 

junction marker ZO-1, no other barrier phenotype evaluations could be performed within the 

duration of this thesis. After correction of the PPFC dynamic performance, permeability assays 

will be performed. Also, incorporation of electrode wire insertion ports will allow live TEER 

monitoring as an additional barrier formation parameter.71,72 

Overall, the designed PPFC is able to reproduce endothelial-astrocyte co-cultures and allows 

successful post-experimental cell visualization and cellular extraction. Shear stress exposure in 
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this model will allow the evaluation of the dual effect of HA and flow on BBB phenotype in both 

physiological and pathological conditions. The physical presence and the direct contact of 

astrocytic feet with the abluminal side of HBMEC instead of astrocyte-conditioned medium may 

add to the effect of hemodynamic alterations at the BBB. Also, the membrane of use can be 

adapted to the design of experiments. Study of dynamic effects on the BBB in disease will also 

be possible by adaptation of pore size in membranes. For instance, leukocyte migration or 

amyloid-β permeability assays, key components in the study of multiple sclerosis195,196 and 

Alzheimer’s disease197–199, will be possible by using larger or smaller pore size membranes. 
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4.1. Introduction 

Catheter based renal denervation (RDN) has emerged as a non-pharmacological treatment for 

resistant hypertension.156,157 A study in hypertensive rats showed that RDN might also be 

indirectly beneficial to the recovery of BBB behavior.164 However, RDN efficacy was not achieved 

as expected in the latest Symplicity HTN-3 controlled trial.160 While the reasons for the lack of 

efficacy in HTN-3 are still a matter of debate, it has been hypothesized that procedural issues 

limited the extent of actual nerve ablation and that this was compounded by the complexity and 

variability of the target anatomy.161 Focal delivery points may not achieve maximal efficacy if 

lymph nodes or veins are close and high nerve regions are missed.163 Better understanding of 

the microanatomical environment of renal arteries (RAs) is crucial to optimize RDN therapy to 

reduce hypertension, improve proper vascular activity and recover physiological conditions in 

peripheral entities such as the BBB, where the role of sympathetic nerves is also critical.200,201 

The following chapter aims to study anatomical patterns in RAs using swine as an animal model 

with a cardiovascular anatomy that closely represents the human.202 In Chapter 4.2, nerve 

distribution patterns using different geometrical parameters are analyzed along all directions of 

the RA; circumferential direction on a quadrant basis, axial direction at different subgroups 

located at different distances of the aortic ostium and radial direction as the distance from the 

RA lumen. Then, lymph nodes (LN) surrounding RA lumens are quantified in Chapter 4.3 

following the same directional analysis. The purpose of this multidimensional analysis allowed 

detecting the regions of high nerve density and low lymph node coverage and therefore those 

of highest interest as a target for RDN treatment. Veins were not analyzed in this study because 

of technical limitations; histology sectioning induced shape deformation on these. Finally, RDN 

ablation coverage is evaluated in Chapter 4.4 under different patterns of energy delivery. 

Affected nerves and LN presence in ablated areas are quantified. 

Figure 4.1 illustrates the counter-clockwise quadrant nomenclature followed along the Chapter 

based on the orientation of histological RA sections, the latter coming from tissue trimmed at 

different distances of the RA ostium (  0̴,   3̴,   6̴,   9̴,   1̴2,   1̴5 and   2̴1 mm). 
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Figure 4.1. Orientation and nomenclature followed in histological renal artery sections. 

 

4.2. Nerve distribution in renal arteries 

4.2.1. Nerve distribution in circumferential quadrants 

All nerves detected and analyzed in the histological section data set were represented in a 

composite normalized map, independently of their distance to the ostium (Figure 4.2).  

 

Figure 4.2. Composite overlay map of nerves around renal arteries in all histological sections 
analyzed. 

Figure 4.2 shows that nerves were present all around the RA. Visually, the anterior quadrants 

appeared to contain a higher population of nerves, compared to the posterior quadrants. 

Moreover, the density in anterior quadrants is higher at small distances from the lumen, while 

posterior quadrants are less dense and with nerves more spread deep in the tissue. 

The average number of nerves per quadrant and artery was calculated overall (Q) and in each 

specific sector (Q1 to Q4) (Figure 4.3). 
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Figure 4.3. Quadrant nerve density in renal arteries. 

The average number of nerves in any quadrant was 2.7±0.2. The superior-anterior quadrant (Q2) 

was the region containing the highest density of nerves (3.7±0.3/section), which was 

significantly higher than the general average. The opposite side of the RA, the inferior-posterior 

quadrant (Q4) was the area containing the lowest amount of nerves (2.0±0.4/section). While 

not significant compared to the general average, the difference between opposite quadrants Q2 

and Q4 was significant, suggesting that RDN therapy is more likely to succeed if the superior-

anterior quadrant is targeted. 
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4.2.2. Nerve distribution at different renal artery axial locations 

The average number of nerves per section was calculated overall and in each subset of sections 

corresponding to different distances from the aortic ostium (Figure 4.4). The average number of 

nerves per section was 10.7±0.7, independently of the distance. While no statistical significance 

was found, the average number of nerves per section decreased from the aortic ostium, with an 

above-average density of 12.3±1.6 nerves/section, towards a low nerve density region between 

3 and 12 mm, with the lowest density (6.7±1.2/section) at 6 mm. Then, nerve density increased 

at the farther regions reaching a maximal density of 13.7±2.5 at 21 mm. 

 

Figure 4.4. Nerve density at different locations of renal arteries.  
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4.2.3. Nerve distribution per quadrant at different renal artery locations 

All nerves detected and analyzed in each subgroup of ostium distant sections were individually 

represented in normalized maps (Figure 4.5).  

 

Figure 4.5. Composite overlay maps of nerves around renal arteries at different distances from the 
aortic ostium.  



4. Study of renal artery microanatomy to maximize efficacy of renal denervation 

80 

The finding that on average, nerves in anterior quadrants were more abundant carried through 

to individual representations of each RA sector. Generally, quadrants Q1 and Q2 were more 

populated with nerves of higher diameter (Figure 4.5). However, lower nerve densities 

compared to Figure 4.2 and variability in the sample number per group (ranging from 7 to 17) 

limited the quadrant contrast between RA locations. Figure 4.6 provides a quantified version of 

Figure 4.5, where the average number of nerves per quadrant and axial distance is shown. 

 

Figure 4.6. Quadrant nerve density at different locations of renal arteries. 

The superior-anterior quadrant Q2 was the predominant nerve containing region with all RA 

blocks containing more than 3.0 nerves/section (Figure 4.7). Also, quadrant Q2 is the least 

variable among all quadrants, with a difference of 1.4±1.9 nerves/section between the more 

and least abundant regions.  

 

Figure 4.7. Representative section of predominant nerve abundance in superior anterior quadrant 
(Q2) of a renal artery (black: renal artery; red: nerve). 
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By contrast, the inferior-posterior quadrant is the most variable quadrant, with a difference of 

2.4±1.8 nerves/section. Overall, all quadrants display the same pattern described in the 

circumferential nerve abundance in Figure 4.4. With increasing distance from the ostium, 

average nerve abundance first decreases down to a minimal density at a distance of 3 – 6 mm, 

and then increases reaching maximal abundances at distances of 15 – 21 mm (Figure 4.8).  

 

Figure 4.8. Representative sections of low and high nerve abundance in renal arteries at 3 mm (A) 
and 15 mm (B) of the aortic ostium (black: renal artery; red: nerve). 

While no statistical significance was found, the fact that the same pattern is observed in all 

quadrants suggests that there might be a common circumferential distribution of nerves 

reaching the renal artery towards the kidneys. 

 

4.2.4. Radial nerve distribution 

Radiofrequency catheter-based RDN treatment originates in the RA lumen and spreads into the 

tissue. Nerves surrounding the RA lumen are more susceptible to be targeted than distant 

nerves. When radial distribution along RAs was observed in Figure 4.5, two distribution areas 

were detected. On one hand, nerves at the aortic ostium and at 3 mm were more spread and 

distant, with a higher number of nerves far from the lumen. On the other hand, nerves in all 

regions beyond 3mm were closer to the wall. Moreover, bigger size nerves were generally 

located closer to the lumen than smaller ones. Cumulative radial nerve distributions were 

quantified using both nerve frequency and area in order to evaluate not only distributions but 

also any potential difference between number frequency and area radial presence. Results are 

shown in Figure 4.9 and Figure 4.10, respectively. 
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Figure 4.9. Cumulative radial distribution based on nerve frequency. 

 

Figure 4.10. Cumulative radial distribution based on nerve area. 

The same pattern was found in both cumulative nerve frequency and area distributions. 

Regardless of the group, distributions increased gradually with radial distance, following an 

inverse exponential growth tendency (Equation 4.1). At 0 and 3 mm away from the ostium, a 

higher nerve percentage was found at longer distances from the lumen, with the farthest nerve 

located at 13.6 mm. Cumulative frequencies in those two blocks were lower than the overall 

trend (black lines in Figure 4.9 and Figure 4.10). Beyond 3 mm, nerve accumulation was faster, 

with all nerves present below 10 mm of the RA wall. 

distance radialk

cumulative e1%   
 

Equation 4.1 
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Coefficient k in Equation 4.1 was fit by the least squares method in all curves, with all coefficients 

of determination (R2) above 0.85 (Table 4.1). Curve fitting allowed the evaluation of the radial 

distance including 80 % of nerves, based on number and area (Table 4.2). 

Table 4.1. Curve fitting parameters of cumulative 
radial distributions. 

 Frequency Area 

Distance 
(mm) 

k R2 k R2 

All 0.30 0.99 0.30 0.98 

0 0.20 0.93 0.21 0.94 

3 0.19 0.97 0.20 0.95 

6 0.48 1.00 0.47 0.97 

9 0.45 0.95 0.42 0.96 

12 0.58 0.96 0.63 0.85 

15 0.37 0.99 0.48 0.97 

21 0.47 0.98 0.52 0.97 

 

Table 4.2. Radial distances containing 80% 
of nerves. 

 Radial distance (mm) 

Distance 
(mm) 

Frequency Area 

All 5.3 5.4 

0 7.7 7.9 

3 8.2 8.4 

6 3.4 3.4 

9 3.8 3.5 

12 2.6 2.8 

15 3.3 4.3 

21 3.1 3.4 

 

As seen in Table 4.2, 80% of nerves are found below 5.4 mm away from the RA lumen. In the 

region closest to the aorta (3 mm or less), the same distance is of 7.9 and 8.1 mm, based on 

nerve frequency and area, respectively. Such distances were 2.5 and 2.3-fold higher than those 

in RA regions beyond 3 mm. Both frequency and area radial distributions showed equivalent 

results with no significant difference between them. 

 

4.2.5. Optimal renal artery target to maximize nerve ablation 

Morphometric nerve distribution around RAs was evaluated in a multi-dimensional manner by 

analysis of nerves in the circumferential (quadrant), axial (distance to the aortic ostium) and 

radial (distance to the wall) directions. Table 4.3 compiles the regions with highest and lowest 

nerve population based on the above-mentioned directions. 

Table 4.3. Regions along the renal artery with maximal and minimal nerve abundance on multiple 
dimensions. 

Direction High nerve density Low nerve density 

Quadrant (Circumferential) 
Superior-anterior 

quadrant (Q2) 
Inferior-posterior 

quadrant (Q4) 

Distance to the aortic ostium (Axial) 15 - 21 mm 3 - 6 mm 

Distance to the lumen wall (Radial) >3 mm 0 - 3 mm 

 

Optimal RDN treatments are located at distal regions from the RA bifurcation, where a higher 

and more concentrated nerve population was found at distances below 4 mm from the lumen.  
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4.3. Lymph node distribution in renal arteries 

The interest in lymph node (LN) distribution is motivated by suggestions that their presence has 

an effect on the distribution of RDN electric potential163 and to evaluate if their distribution 

affects the distribution of nerves. LN distribution was quantified along the same three directions 

followed in Chapter 4.2 in order to detect the regions with the lowest LN abundances that would 

allow a more efficient treatment. In this chapter, LN were quantified relative to their area. Their 

frequency based on number was low; each slide commonly displayed either one to two LN or 

none. It was decided that an area analysis would provide better distribution results. Moreover, 

LN extension can reach areas beyond RDN ablation areas, where the distribution analysis would 

be of no use. For that reason, the analysis was limited radially. All areas were measured inside a 

5 mm ring from the RA lumen. 

 

4.3.1. Lymph node distribution in circumferential quadrants 

All lymph nodes detected and analyzed in the histological section data-set were represented in 

a normalized map, independently of their distance to the ostium (Figure 4.11). 

 

Figure 4.11. Composite overlay map of lymph nodes around renal arteries in all histological 
sections analyzed. 

LN were present all around RAs, as seen in Figure 4.11 with a continuous green area surrounding 

the arterial lumen. Each lymph node was represented with a semi-transparent green area. When 

more than one LN is present at the same point, the green transparence is added. Therefore, the 

higher the green intensity, the higher the LN abundance was. The anterior quadrants (Q1 and 
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Q2) displayed more abundant LN presence compared to posterior quadrants (Q3 and Q4) (Figure 

4.12), which had a low LN presence between -135° and -45°. Interestingly, LN were not detected 

close to the RA, below 1 mm approximately.  

 

Figure 4.12. Representative section of predominant lymph node coverage in anterior quadrants of a 
renal artery (black: renal artery; green: lymph node). 

The average percentage of LN coverage per quadrant was calculated in each specific sector 

(Figure 4.13). 

 

Figure 4.13. Quadrant lymph node distribution in renal arteries 

As previously stated, average LN quantification showed a 1.5-fold higher LN area coverage in the 

anterior quadrants (9.2±1.8% and 9.0±1.9%), compared to the posterior quadrants (5.4±1.5% 

and 5.8±1.4%). However, the difference between Q1 and Q2 with Q3 and Q4 were not 

statistically significant.  
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4.3.2. Lymph node distribution at different renal artery axial locations 

All LN detected and analyzed in each subgroup of ostium distant sections were individually 

represented in normalized maps (Figure 4.14). 

 

Figure 4.14. Composite overlay maps of lymph nodes around renal arteries at different distances 
from the aortic ostium. 



4. Study of renal artery microanatomy to maximize efficacy of renal denervation 

87 

As opposed to the complex visual analysis of nerve density in Figure 4.5, LN coverage patterns 

along the axial direction of the RA were more detectable in normalized maps in Figure 4.14. 

Sections below 3 mm from the aortic ostium showed larger LN areas compared to farther 

regions.  

 

Figure 4.15. Lymph node coverage at different locations of renal arteries. 

Average area quantification in all subgroups (Figure 4.15) confirmed the previous statement. LN 

were most abundant and covered the largest area fraction (17.3±3.1%) 3 – 6 mm from the 

ostium. LN area decreased significantly 9 mm from the ostium and reached very low levels by 

15 and 21 mm (0.5±0.4% and 0.0±0.0%, respectively). Figure 4.16 illustrates the significant 

difference between maximal and minimal LN coverage locations. 

 

Figure 4.16. Representative sections of high and low lymph node coverage in renal arteries at 3 
mm (A) and 21 mm (B) of the aortic ostium (black: renal arteries; green: lymph node). 
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4.3.3. Lymph node distribution per quadrant at different renal artery locations 

The average LN coverage per quadrant and axial location is shown in Figure 4.17.  

 

Figure 4.17. Quadrant lymph node coverage at different locations of renal arteries. 

As in the overall results in Figure 4.15, individual quadrants had a higher presence of LN in 

regions between 0 and 6 mm from the ostium. Predominant quadrants, however, were variable 

in the subgroups included in that range. Anterior quadrants showed higher LN presence at 0 mm 

whereas LN primed in posterior quadrants at 6 mm. At 3 mm, all quadrants showed a similar 

area coverage. Regions farther than 6 mm showed a progressive decrease in LN area, all of them 

below their respective total average. While no clear pattern was found in circumferential 

heterogeneous distributions, results in Figure 4.17 suggest that larger distances from the ostium 

are an optimal target for RDN treatments, where lower LN abundance would allow a deeper 

spread of ablation areas. Further analysis of vein distribution will contribute to strengthen the 

previous statement. 
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4.3.4. Radial lymph node distribution 

LN area coverage was evaluated from the RA wall to 5 mm away from the lumen. Two subgroups 

were defined in that distance, separated at 2.5 mm. LN presence around RAs was evaluated in 

both subgroups and represented in Figure 4.18. Results showed a significantly lower LN 

presence from 0 to 2.5 mm of the RA (4.2±0.9%), compared to the 2.5 – 5 mm region (9.5±1.3%).  

 

Figure 4.18. Lymph node radial coverage below 5 mm. 

Given that LN coverage was significant lower below 2.5 mm and in order to detect the optimal 

region that also contained high nerve density, the percentage of nerves below 2.5 mm was 

evaluated for each axial group. Radial nerve distribution fitting curves from Table 4.1 were used 

to evaluate the nerve population between 0 and 2.5 mm away from the lumen (Error! Not a 

valid bookmark self-reference.). 

Table 4.4. Nerve population at a radial distance below 2.5 mm based on frequency and area. 

Distance to 
the ostium 

(mm) 

Frequency 
(%) 

Area (%) 

All 52.6 53.2 

0 39.8 40.6 

3 38.0 38.9 

6 69.6 69.1 

9 67.9 64.9 

12 76.8 79.3 

15 60.5 70.0 

21 69.5 73.1 

 

RDN treatment in RA positions beyond 6 mm from the aortic ostium would not only benefit from 

a lower LN presence but also with more than 70% of nerve population in narrow distances, which 

is higher than the nerve percentage reported to have a significant effect on reduction of 

norepinephrine levels.161  
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4.3.5. Optimal renal artery target to reach maximal nerve ablation with minimal lymph node 

presence 

Morphometric LN distribution around RAs was evaluated in a multi-dimensional manner by 

analysis of LN area coverage in the circumferential (quadrant), axial (distance to the aortic 

ostium) and radial (distance to the wall) directions. Table 4.5 compiles the regions with lowest 

and highest nerve population based on the above-mentioned directions. 

Table 4.5. Regions along the renal artery with minimal and maximal lymph node presence on 
multiple dimensions. 

Direction Low LN presence High LN presence 

Quadrant (Circumferential) 
Posterior quadrants 

(Q3 – Q4) 
Anterior quadrants 

(Q1 – Q2) 

Distance to the aortic ostium 
(Axial) 

9 - 21 mm 3 - 6 mm 

Distance to the lumen wall 
(Radial) 

0 – 2.5 mm 2.5 – 5 mm 

 

Regardless of circumferential differences, nerve density and LN presence were represented in 

Figure 4.19. In the different subgroups analyzed based on their distance to the ostium, the 

optimal distances to deploy RDN catheters are 15 and 21 mm, where nerve density is maximal 

and LN density is minimal.  

 

Figure 4.19. Average nerve density and lymph node area in axial groups studied. 
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4.4. Ablation efficacy on single and dual renal denervation treatments 

While it is critical to understand RA microanatomy by detecting regions with high nerve density 

and low LN coverage, it is of equal importance to deliver RDN treatment efficiently. Current 

designs of RDN electrode catheters operate by delivering radiofrequency or ultrasound energy 

at RA wall contact points of the electrode. Energy spreads from there and, as a consequence, 

ablation depth and efficacy is very dependent on nerves and lymph nodes present at those 

specific focal points. Norepinephrine (NEPI) levels may be significantly reduced by an extended 

area affecting a higher nerve percentage.163 Furthermore, previous studies have shown that 

nerve ablation at different RA axial locations may have an additive effect on NEPI levels.161 While 

histological sections are analyzed in two dimensions, ablation energy is spread three-

dimensionally from the contact points. In order to maximize overall circumferential ablation 

efficacy, a dual RDN treatment was evaluated as a novel protocol to increase ablation depth. 

While in single treatments the electrodes are kept intact the whole duration of the energy 

delivery, dual treatment divides time in two treatments with a 180° electrode circumferential 

rotation between them. 

 

4.4.1. Pilot evaluation of single/dual ablation penetration patterns with catheter 1 

Single and dual treatments were tested in two different animals and sections were extracted 

from RAs at different distances from the aortic ostium. Initial histological visualization showed 

examples of increase in ablation depth and area coverage (Figure 4.20). Dual treatment locations 

are visible in Figure 4.20.B, where double ablation spread and combined, resulting in an 

increased circumferential extent compared to the single treatment in Figure 4.20.A. 

 

Figure 4.20. Ablation circumferential coverage and depth increase from single (A) to dual (B) renal 
denervation treatment at 15 mm from the aorta (black: renal artery; blue: ablation area).  
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In order to evaluate additive circumferential extent between both treatments, histological 

sections from different RA locations were analyzed and ablation areas were represented in 

normalized maps (Figure 4.21). While average ablation depth and area coverage per section 

were not significantly different between both treatments (Table 4.6), overlaid maps in Figure 

4.21 showed a deeper additive ablation depth and area, with a 2.4-fold increase in 

circumferential luminal ablation. 

  

Figure 4.21. Composite normalized 5-electrode treatment maps of single (A) or dual (B) treatments 
with equal power and duration. (Color code: axial distance from the aortic ostium). 

 

Table 4.6. Renal denervation ablation extent parameters in pilot comparison between single and 
dual treatments. 

 Single Dual 

Depth (mm) 3.2 ± 0.9 3.3 ± 1.1 

Area (mm2) 7.7 ± 3.0 16.6 ± 10.8 

Circumferential 
coverage 

151.6° 360° 

 

Previous results showed that dual treatment had potential to provide a higher circumferential 

extent. 
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4.4.2. Ablation circumferential coverage in single and dual renal denervation treatments with 

catheter 2 

In this second study using catheter 2, two animals underwent single treatment and three 

animals underwent dual treatment. The same depth and area coverage metrics were measured 

(Table 4.7), showing no statistical difference between them. The duration of separate 

treatments in dual treated animals was half of the single treatment group. Maximal depth and 

area coverage were possibly limited by this lower duration, as each treatment spread at 

different focal points in the RA wall. 

Table 4.7. Ablation extent parameters are equivalent in single and dual treatments. 

 Single Dual 

Depth (mm) 4.4 ± 1.0 3.6 ± 0.3 

Area (mm2) 16.8 ± 4.1 16.5 ± 2.0 

 

The main interest in this study was to measure the additive circumferential coverage of single 

and dually treated arteries. As seen in Figure 4.20, affected lumen perimeter was higher in the 

second case. Here, histological sections showed that single treatments displayed low affected 

lumen while some dual treatment sections even showed total affected lumen perimeter (Figure 

4.22). 

 

Figure 4.22. Representative image of RA sections treated with single (A) and dual (B) treatment, the 
latter with all lumen perimeter affected by RDN treatment (black: RA; blue: ablation area). 

Additive circumferential extent was evaluated at the arterial lumen and at radial distances 

between 0 and 5 mm from the RA. For each subgroup, the whole circumference was divided in 

10° intervals resulting in 37 angularly equidistant points. At each radial distant, a point was 

considered affected if it was included in an ablation area in at least one section from that artery. 

Average affected circumferential arc is represented in Figure 4.23. 
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Figure 4.23. Circumferential arc affected by RDN single and dual treatments. 

Summation of ablation effects over multiple tissue sections revealed that a larger percentage of 

the total circumferential arc was affected by dual treatments compared to single treatments up 

to 3 mm from the lumen. The difference between single and dual treatments was particularly 

pronounced up to 1 mm away from the lumen (87.5±4.6% and 53.5±15.8% in dual and single 

treatments, respectively). Beyond 3 mm, both treatments displayed low affected arcs below 

20%. Results from Table 4.4 showed that radial distances below 2.5 mm displayed low LN 

presence and around 70% of nerves in distal regions beyond 6 mm from the aorta. Dual 

treatment provided a more effective circumferential ablation which would be translated into a 

higher effective ablation of nerves closely surrounding RA, independently of their angular 

position. 
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4.5. Discussion 

Catheter-based RDN is an emergent technique for the treatment of resistant hypertension by 

reducing sympathetic nerve activity, known to have a significant role in hypertension 

development.149,203 Initial European clinical trials on RDN showed promising results lowering 

blood pressure in patients.156–159,204 However, a later pivotal trial in the US failed to meet the 

expected efficacy results.160 While some of the causes for this lack of efficacy were attributed to 

uncontrolled procedural reasons, consideration was also given to heterogeneity in renal artery 

anatomy. From there, several studies have been published on histological renal nerve 

distributions in both human205,206 and animals.162 

Most studies on nerve distribution around RAs analyzed nerves in axial (distance to the aorta), 

circumferential (posterior/anterior, superior/inferior quadrants) and radial (distance to the 

lumen) directions. Axial distribution is typically distributed into proximal, middle and distal 

positions from the aorta.161,162,205,206 As a difference in the present chapter, divisions in the axial 

distribution were incremented from three to seven divisions as an attempt to increase the 

optimal catheter position for energy delivery in the RA. Results showed that nerves were more 

abundant in the superior-anterior region compared to the inferior-posterior. On the axial 

direction, nerve density decreased from the average amount at the ostium towards a lower peak 

in middle regions (3 – 6 mm), reaching its maximal density at distal regions between 15 and 21 

mm. Discrepancies were found in literature; while some studies showed higher nerves at 

proximal ostium distances162,205, others found the distal region to be more nerve abundant.206 

The total number of nerves counted in those studies was significantly higher than this study. 

Higher histological sections might be required to confirm the axial results showed in this chapter. 

Regarding radial nerve distribution, results shown agree with literature on the statement that 

nerves are closer to the RA at distal positions, where more than 70% of nerves can be found 

within 2.5 mm of the lumen. 

One of the limitations of this study is that nerves were identified from H&E and Masson’s 

trichrome histological stains. In such scenario, sympathetic efferent nerves could not be 

distinguished from parasympathetic or sensory afferent nerves and therefore the distributions 

obtained were from all nerves independently of their type. Immunohistochemical stainings such 

as labeling of tyrosine hydroxylase, a specific marker for sympathetic nerves, would be a suitable 

option for the specific morphometry analysis of RDN target nerves.207 A recent study, however, 

showed that sympathetic nerves were significantly predominant (73.5%) in human RAs, 

compared to parasympathetic (17.9%) and afferent nerves (8.7%).208 As a consequence of 
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sympathetic nerve predominance, the results showed in this study can be extrapolated to the 

nerves of interest. 

Despite the unavoidable interest in locating high nerve densities in RAs, it is of equivalent 

importance to detect other anatomical entities such as LN, skeletal muscle, fibrous sheaths or 

neighboring veins. A recent publication demonstrated that electrical and thermal conductivity 

differences between tissue types may lead to inefficient ablation spread.163 Computational 

modeling showed that the close presence of LN at RDN energy delivery locations decreased the 

ablation depth extent. The results exposed in this chapter show for the first time the distribution 

of LN around RAs. Interestingly, the LN analysis supported the results observed in the nerve 

analysis. LN distribution on the axial direction of the RA showed a higher but not significant 

presence on the middle blocks (3 – 6 mm) and the lowest area coverage at the distal blocks (9 – 

21 mm). Moreover, LN area was significantly higher beyond than below 2.5 mm of the lumen. 

Incidentally, areas richest in nerves showed the lowest LN presence. Unfortunately, no literature 

allowed the comparison of the results shown. 

RDN ablation are commonly analyzed by different morphometry parameters, such as ablation 

depth, width and area.207 A study recently reported that norepinephrine (NEPI) levels correlated 

with the percentage of affected nerves after RDN treatment, suggesting also that there is likely 

a minimal nerve percentage threshold to affect and that NEPI levels can be affected by an 

additive circumferential coverage of ablation areas.161 In the comparison between single and 

dual treatments using catheter 2, it was shown that both treatments were able to achieve 

equivalent ablation areas and depths. However, dual treatments showed a higher 

circumferential affected arc compared to the single treatment up to 3 mm from the lumen, with 

the highest difference at 1 mm (Single: 53.5±15.8% – Dual: 87.5±4.6%). Ongoing research will 

confirm whether circumferential coverage correlates with NEPI reduction levels.209 

Combination of the three components analyzed in this chapter suggest that RDN might be more 

efficient at distal regions where nerves are more abundant and closer to the aorta while LN are 

located farther. Additionally, most nerves were located at distance that were easily achieved in 

both single and dual RDN treatments performed. The dual treatment, however, showed more 

potential as it increased the circumferential coverage up to 3 mm from the lumen. While the 

study of RA microanatomy and the efficacy evaluation of single/dual treatments were 

performed independently, future studies will aim to achieve maximal RDN efficacy by targeting 

the optimal treatment areas detected in this chapter by performing single and dual treatments. 
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The therapeutic potential of RDN extends beyond resistant hypertension. Known to be a risk 

factor for several vascular-related diseases in peripheral organs117, reduction of blood-pressure 

by sympathetic nerve ablation could reduce the progression of such diseases. Clinical studies are 

still on the way of studying the safety and efficacy of the technology for resistant hypertension, 

which implies that the literature on the effect of RDN on other medical conditions is still poor. A 

recent study, however, showed key findings on BBB phenotype recovery in hypertensive rats 

treated with RDN.164 The relationship between BBB permeability and sympathetic nerve activity 

has been studied for decades.200,201 Further research combining the evaluation of RDN 

parameters, such as RA anatomical environment, NEPI levels and ablation circumferential 

extent, and BBB permeability markers will help elucidate the potential of such technology for 

neurological BBB-related diseases.  

Better understanding of the anatomical environment of renal artery is critical to optimize 

energy-delivery techniques and protocols for renal sympathetic nerve ablation. Renal 

denervation therapy has a promising future towards the treatment of resistant hypertension 

and its related consequences, including the recovery and functional stabilization of the Blood-

Brain Barrier. 
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5.1. Parallel-plate flow chamber manufacture 

The parallel-plate flow chamber (PPFC) developed was designed as a two-component device 

made by polymerization of polydymethylsiloxane (PDMS). In order to build the two components, 

Teflon molds of each compartment (Figure 5.1 and Figure 5.2) were machined using a computer 

numerical control (CNC) machine Fagor® 8055. 

 

Figure 5.1. Sized drawing of the endothelial 
compartment negative mold (unit: mm). 

 

Figure 5.2. Sized drawing of the astrocytic 
compartment negative mold (unit: mm) 

A Sylgard 184 Silicone Elastomer Kit (Dow Corning, USA) was used for PDMS polymerization. 

Monomer and curing agents were vigorously mixed in a 10:1 proportion and degasified in a 

vacuum chamber. Silicone tubing parts (3 mm ID, 2 cm long, Cole Parmer, USA) were cut and 

placed in the cylinders of the endothelial molds. The liquid monomer mixture was poured on 

the negative Teflon molds and those were then placed in a pre-heated oven at 100°C to 

accelerate the PDMS polymerization. After 2 hours, the molds were allowed to cool down and 

the polymerized parts were separated from the Teflon molds. A Teflon membrane (60 x 25 mm 

– 80 µm thickness – 0.4/1/5 µm pore size, Millipore, USA) was cut, placed and glued on top of 

the astrocytic compartment with additional liquid monomer mixture. After the membrane was 

fully attached, both compartments were joined with additional monomer mixture between 

them to avoid leaks after polymerization. Polyvinylidene fluoride (PVDF) connectors were placed 

on the outlet tube to allow cell seeding and connection to flow system. The final assembly was 

then sterilized in an autoclave.  
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5.2. Computational fluid dynamics 

Geometries used for computational fluid dynamics (CFD) simulations were generated with 

computer-aided design (CAD) software CATIA®. The geometry of the parallel-plate flow chamber 

(PPFC) was manually drawn using basic drawing steps (Figure 5.3).  

 

Figure 5.3. Three-dimensional geometry of the parallel-plate flow chamber. 

However, the complexity of the arteriolar bifurcation tree required automatic drawing with the 

help of a computational platform previously implemented for automatic generation of vascular 

fractal networks.172 Geometric parameters such as arteriolar diameters and segment lengths 

(Table 5.1) were extracted from human neuroangiographies of a healthy 53 year-old female 

(Figure 5.4) and introduced into the Blood-Brain Barrier Capillary Network Design interface 

(Figure 5.5). Execution of the script obtained automatically provided the final geometry (Figure 

5.6). 

 

 

Figure 5.4. Human neuroangiography. 

Table 5.1. Geometrical parameters of the 
vascular network model. 

N 3    

R (µm) 775    

RatioR 0.71    

ω (°) 45.00    
     

N LC (µm) LB (µm) αL (°) αR (°) 

0 19050 - - - 

1 40280 1310 20 60 

2 23580 1640 30 40 

3 19550 588 30 60 
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Figure 5.5. Blood-Brain Barrier Capillary Network Design user interface. 

 

Figure 5.6. Three-dimensional geometry of the vascular fractal tree. 

CAD geometries were saved as IGES files and imported in Tdyn CFD software. All simulated 

geometries were pre- and post- processed with GiD software, which is directly coupled to Tdyn. 

A series of boundary conditions and geometry meshing parameters need to be given to all 

geometries before running a CFD solver.   
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Table 5.2 and Table 5.3 show the parameters modified in the simulations for both the PPFC and 

the vascular tree models, respectively, the rest were left as default. The mesh parameters were 

adjusted so as to find the thinnest possible mesh providing accurate results with the least 

computational effort. The resulting meshes are shown in Figure 5.7 and Figure 5.8.  

When all simulation steps were run, visual color results and numerical data were extracted with 

GiD post-process tools.  
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Table 5.2. Tdyn parameters for parallel-plate flow chamber simulations. 

GID Command Value 

User defined problem 3D / Fluid flow 

Units 
Units system CGS 

Geometry mm 

Results Velocity, Pressure, Wall Shear Stress 

Fluid Solver 
Solver Stab Bi-Conjugate Gradient 

Tolerance 1.00E-09 

Fluid Properties 
Density 1 g/cm3 

Viscosity 0.01 g/(cm·s) 

Fluid boundaries 

Wall 
Boundary 

type 
VfixWall 

Object All surfaces except circular inlet/outlet 

Inlet 

Boundary 
type 

Inlet VelC 

Vel Z field -2·V·(1-(y^2+(x+21.825)^2)/1.5875^2) [cm/s] 

Object Circular inlet 

Outlet 

Boundary 
type 

Outlet Pres 

Pressure 
field 

0 Pa 

Object Circular outlet 

Analysis 
Steady state solver On 

Number of steps 100 

Output 
Output Step 10 

Output Start 1 

Mesh Generation 
Mesh Size 0.11 

Size Transition 0.3 

 

Table 5.3. Tdyn parameters for vascular network simulations. 

GID Command Value 

User defined problem 3D / Fluid flow 

Units 
Units system CGS 

Geometry µm 

Results Velocity, Pressure, Wall Shear Stress 

Fluid Solver 
Solver Stab Bi-Conjugate Gradient 

Tolerance 1.00E-07 

Fluid Properties 
Density 1.035 g/cm3 

Viscosity 0.035 g/(cm·s) 

Fluid boundaries 

Wall 

Boundary 
type 

VfixWall 

Object All surfaces except circular inlet/outlets 

Inlet 

Boundary 
type 

Inlet VelC 

Vel Z field V [cm/s] 

Object Circular inlets 

Outlet 

Boundary 
type 

Outlet Pres 

Pressure 
field 

3300 Pa 

Object Circular outlets 

Analysis 

Time increment 0.001 s 
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Figure 5.7. Mesh details in the three-dimensional geometry of the parallel-plate flow chamber. 
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Figure 5.8. Mesh details in the three-dimensional geometry of the vascular fractal tree. 
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5.3. Cell culture 

5.3.1. Materials and reagents 

ACM: Human astrocyte Conditioned Medium, EBM-2 with secreted factors from human 

astrocytes. 

AM: Astrocyte Medium (ScienCell, #1801, USA), supplemented with 2% FBS, 1% PS and 1% 

astrocyte growth supplement and sterile-filtered with a 0.22 µm filter. 

Dextran: Dextran from Leuconostoc mesenteroides (1.5 – 2.8 MDa) (Sigma, D5376, USA). 

DMEM: Dulbecco’s Modified Eagle Medium with low glucose (1 g/L), 110 mg/mL sodium 

pyruvate (Thermo Fisher, 11054-020, USA) with 5% FBS, 1% PSG and sterile-filtered with a 0.22 

µm filter. 

EBM-2: Endothelial cell Basal Medium-2 (Lonza, CC-3156, USA). 

EDCM: Endothelial dynamic culture medium, used for culture of HBMEC in dynamic conditions 

and prepared with EGM-2 and ACM in a 1:1 ratio. 

EGM-2: Endothelial cell Basal Medium-2 bulletkit (Lonza, CC-3162, USA) supplemented with 5% 

FBS, 1% PS, bFGF 10 ng/mL, ascorbic acid 1 µg/mL, and hydrocortisone 1 µg/mL and sterile-

filtered with a 0.22 µm filter. 

FBS: Fetal Bovine Serum (Thermo Fisher, 26140-079, USA). 

Fn: Fibronectin, bovine, stabilized solution (Alfa Aesar, J65696, USA). 

HA: Human astrocytes, cryopreserved cells (ScienCell, #1800, USA). 

HBMEC: Human brain microvascular endothelial cells, cryopreserved cells (Cell Systems, ACBRI 

376, USA). 

PLL: Poly-L-lysine solution (Sigma, P4707, USA). 

PS: Penicillin 10,000 units/mL penicillin G sodium with streptomycin 10 mg/mL streptomycin 

sulfate in 0.85% NaCl (Thermo Fisher, 15140-122, USA). 

PSG: PS with L-glutamine 200mM, 29.2 mg/mL in 0.85% NaCl (Thermo Fisher, 25030-081, USA). 

Trypsin: 0.05% Trypsin in 0.53 mM EDTA (Thermo Fisher, 25300-054, USA). 
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5.3.2. Equipment 

Cell Counter: Cellometer Auto X4 Cell Counter (Nexcelom Bioscience, USA). 

Centrifuge:Eppendorf 5702 (Eppendorf, USA), Max. Speed 3000 xg (4400 rpm). 

FM: Fluorescence Microscope, Nikon Eclipse Ti epifluorescence microscope (Nikon, USA) 

coupled to Hamamatsu CA 4742-95 camera (Hamamatsu Corporation, USA). 

OM: Optical Microscope, Nikon Diaphot inverted tissue culture microscope (Nikon, USA). 

 

5.3.3. Cell culture on plates 

Cryopreserved human brain microvascular endothelial cells (HBMEC) and human astrocytes (HA) 

were thawed, seeded, grown and passaged onto 150 mm tissue culture polystyrene plates 

(TCP150, Corning, USA) as follows. The same procedure was followed for each cell type. 15 mL 

of previously warmed EGM-2 or AM, for HBMEC and HA, respectively, were poured into a 

TCP150. Then, a 2 mL cryovial containing about 106 cells was thawed in a water bath at 37°C for 

less than 2 minutes and poured in the TCP 150. The TCP150 was placed in the incubator at 37°C, 

5% CO2 and 80% humidity. After 3-5 hours, cell attachment was visually confirmed under the 

optical microscope and culture medium was replaced with 15 mL of fresh medium. Every 2-3 

days, culture medium was replaced with 15 mL of fresh medium and cells’ health was visually 

checked under the optical microscope. Culture plates were kept in humidified CO2 incubator 

while not being manipulated. Once the cell surface coverage reached 95% of the plate, cells 

were split in a ratio 1:3 to continue culture. Supernatant was removed and cells were rinsed with 

15 mL PBS. After aspirating off PBS, 5 mL of trypsin were poured on the cells and incubated 

during 5 minutes. Then, trypsin was neutralized by addition of 10mL of DMEM. The content of 

the plate was transferred into a 50 mL Falcon® tube and the plate was rinsed with additional 5 

mL of DMEM, transferring again the content of the plate into the same tube. The cell suspension 

was centrifuged for 5 minutes at 2000 rpm and the supernatant medium was removed, keeping 

only the cell pellet. The pellet was resuspended in 45 mL of corresponding medium and split into 

three new TCP150. 
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5.3.4. Cell culture on Transwell inserts 

Static HBMEC/HA co-cultures were performed on 6- and 24-well plates using Transwell polyester 

(PET) permeable supports with a pore size of 0.4 µm. Before cell seeding, inserts were coated 

with PLL and Fn coating solutions. Inserts were placed upside down with sterile tweezers and 

coated with PLL solution (2 µg/cm2) on the basolateral side for 45 minutes at room temperature. 

Then, PLL was aspirated and inserts were flipped and placed in well plates containing PBS. Fn 

solution (5 µg/cm2) was added in the upper compartment to coat the apical side for 1 hour at 

37°C. Fn solution was aspirated off and coated inserts were inverted again. Meanwhile, a HA 

suspension was prepared and cells were seeded on top of the basolateral side with a density of 

2·104 cells/cm2. Cells were allowed to attach at room temperature inside a sterile hood. After 45 

minutes, the residual cell suspension was aspirated off, inserts were flipped and placed in well 

plates containing pre-warmed AM. Additional AM was poured on the apical side of the inserts 

and culture plates were kept in the incubator at 37°C, 5% CO2 and 80% humidity. HA were 

allowed to grow for 24 hours before HBMEC were seeded on the apical side. AM was substituted 

by EGM-2 media with 2.5% FBS and a HBMEC suspension was added in the top compartment of 

the inserts in order to seed at a density of 105 cells/cm2. HBMEC were allowed to grow for 

additional 24 hours before any further experiment. 

 

5.3.5. Cell culture on tubes 

Flow experiments required culturing cells on the luminal surface of tubes. After cell expansion 

on TCP150, cells were seeded and cultured on straight tubes following the procedure detailed 

below. Prior to cell seeding, tubes were washed in 0.2% sodium dodecyl sulfate (SDS) for 20 

minutes, rinsed twice with distilled water for 20 minutes and autoclaved. Sterile tubes were 

coated with fibronectin (Fn) 100 µg/mL in PBS overnight at 4°C. A cell suspension was prepared 

as described above and resuspended at 106 cells/mL. In order to ensure homogeneous 

distribution of cells along the inner surfaces of tubes, these were placed in a cylindrical, 25 cm 

diameter rotator turning at 3 rpm inside a 37°C, 5% CO2 humidified incubator. After 48 hours of 

static culture, tubes were ready to be connected to a perfusion bioreactor. During dynamic 

culture, HBMEC were cultured with EDCM. 
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5.3.6. Astrocyte conditioned medium collection 

HA were cultured in TCP150 with AM during the expansion phase. At confluence, supernatant 

was removed and cells were rinsed with 15 mL PBS. After aspirating off PBS, cells were incubated 

in EBM-2 for 48h. During that period of time, secreted cellular factors were released, 

conditioning the medium. Then, supernatant was collected and sterile-filtered to remove 

cellular debris.  Resulting astrocyte-conditioned media (ACM) was aliquoted and stored at -80°C 

until use. 

 

5.4. Perfusion bioreactor 

The perfusion bioreactor is a flow delivery system designed to provide the tubular constructs 

with any flow pattern (steady, pulsatile, oscillatory) and to enable study of how cells react to 

different flow stimuli. It was designed coupled to a humidified incubator (37°C, 5%CO2) where 

tubing and cell-seeded constructs are placed and connected to flow. Flow is driven by analogic 

peristaltic pumps consisting of a digital drive and a pump head with 12 channels and 8 rollers 

(MCP-Standard ISM 404, Ismatec, Vancouver, WA, USA). The setup used to propel flow through 

the cell-seeded tubes was organized as a sterile closed-system with a set of elements connected 

between them (Figure 5.9). Generally, the outlet of a glass reservoir was connected to two-stop 

pump Pharmed BPT tubing with the help of Silastic® tubing and PVDF straight connectors (Cole 

Parmer, USA). The outlet of the pump tube was followed by additional Silastic® tubing, the cell-

seeded tube (10-15 cm) and an additional Silastic® tube connected to the inlet of the glass 

reservoir, closing the dynamic loop. Static control loops consisted in Silastic® tubing connecting 

both extremes of the cell-seeded tubes. Cells were exposed to both steady and pulsatile (1 Hz) 

flow with an average shear stress ranging from 10 to 40 dyn/cm2. Prior to the experiments, flow 

profiles were validated by measuring flow using ultrasound flow probes (Transonic Systems, 

USA) coupled to a data acquisition system. The average shear stress applied to the cells and 

associated to the measured flow did not differ more than 5% from the theoretical shear stress 

in any of the flow patterns used (Figure 5.10). 
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Figure 5.9. General connection disposition and scheme of the bioreactor. 

 

 

Figure 5.10. Shear stress profiles of measured and idealized flow patterns. 

 

5.5. Permeability assay 

Permeability assays were performed on HBMEC/HA co-cultures in 24-well plate Transwell 

inserts. Stock solutions (1 mg/mL) of fluorescent-labeled dextrans (FITC-Dextran, Sigma) of 4, 20 

and 70 kDa were prepared. 10 µL of stock solutions were added per mL of cell culture media for 

a final experimental concentration of 10 µg/mL. Prior to the assay, media was changed from the 

bottom compartment of the inserts for 1 mL of fresh non-fluorescent media. Then, apical media 

was aspirated and 250 µL of fluorescent media were poured so that fluorescent dyes diffuse 
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from the apical to the basolateral side. Samples of 100 µL were taken from the basolateral side 

every 30 minutes for 2.5 hours and added to black 384-well plates where fluorescence was 

measured (excitation: 492 nm / emission: 520 nm). Permeability coefficients (Pe) were calculated 

from the slope of the linear regression between the amount of solute diffusing across the 

membrane and diffusion time, according to Equation 5.1. 

t60AP V
T

B
eB   Equation 5.1 

 

Where B and T are the raw fluorescence units from the bottom and top compartments, VB is the 

bottom compartment volume, A is the cross-sectional area of the membrane and t is time. In 

order to subtract the inherent permeability of the membrane, permeability from non-cultured 

insert controls was subtracted using the inverse relationship in Equation 5.2. 
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 Equation 5.2 

 

5.6. Cell viability assay (MTT) 

Cell viability assays were performed using the MTT assay (Thermo Fisher). Prior to any assay, a 

stock solution of MTT 5 mg/mL in PBS was prepared. At the time of the experiment, the medium 

was aspirated and cells were washed with PBS. Then, fresh medium supplemented with 10% 

(v/v) MTT stock solution was added and cells were incubated at 37°C. After 3 – 4 hours, an equal 

volume of MTT solubilization solution was added with gentle mixing to dissolve the formazan 

crystals formed. Absorbance and background absorbance were measured at wavelengths of 570 

and 690 nm, respectively. Cell viability was expressed as relative absorbance between study and 

control samples (Equation 5.3). 

CONTROLCONTROL 690570
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
  Equation 5.3 

 

5.7. Western Blot analysis in cell culture samples 

Cells were washed twice with ice-cold PBS and were lysed with radioimmunoprecipitation assay 

(RIPA, Sigma) buffer containing 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% NP-40, 0.5% 

deoxycholate, 0.1% SDS and 5mM EDTA. The buffer was supplemented with protease inhibitor 

cocktail (Sigma) containing 2 mM AEBSF, 1mM EDTA, 130 µM bestatin, 14 µM E-64, 1 µM 

leupeptin and 0.3 µM aprotinin. Lysates were centrifuged at 16000 g for 30 minutes at 4°C and 
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supernatants were stored at -80°C until use. Protein concentration was determined using the 

Pierce BCA Protein Assay Kit (Thermo Fisher). Sample volumes corresponding to 5g of total 

protein were dissolved with 1:10 v/v of sample reducing agent 10X (Thermo Fisher) containing 

500 mM dithiothreitol, 1:4 v/v of LDS sample buffer 4X (Thermo Fisher) and enough volume of 

distilled water to equal 25 µL of loading samples. 10% Bis-Tris polyacrylamide gels (Thermo 

Fisher) were used for protein separation. Gels were transferred to nitrocellulose membranes 

using the iBlot transfer system from Thermo Fisher. Membranes were blocked for 60 minutes 

with 5% non-fat dry milk (LabScientific) solution in PBS-T (PBS with 0.05% Tween-20, Thermo 

Fisher) and incubated overnight at 4°C and gentle rocking with primary antibody of interest 

diluted at their optimal concentration in PBS-T and 10% blocking buffer (Thermo Fisher). After 

washing twice with PBS-T, membranes were incubated for 1 hour at room temperature and 

gentle rocking with appropriate HRP-conjugated secondary antibodies at their optimal 

concentration in PBS-T and 10% blocking buffer. Then, membranes were washed twice with PBS-

T, and protein bands were detected after membrane incubation in LuminataTM Forte Western 

HRP substrate (Millipore, USA) with a chemiluminescent image analyzer ChemiDoc XRS+ System 

(BioRad, USA). Blots were quantified using Fiji imaging software (NIH). -actin and α-tubulin 

served as loading controls, depending on the molecular weight of the proteins of interest. 

 

5.8. Immunofluorescence 

Tissue culture plates or cell-seeded tubes were washed with PBS and fixed with 4% 

paraformaldehyde for 10 minutes at room temperature. Excessive aldehydes were quenched 

with 0.2 M glycine in PBS for 10 minutes. After washing with PBS, cells were permeabilized using 

0.5% Triton X-100 in PBS for 20 minutes at room temperature and blocked with 5% goat serum 

(Sigma) in PBS for 60 minutes at room temperature. Then, cells were labeled overnight at 4°C 

with primary antibodies diluted at their optimal concentration in 1.5% goat serum in PBS, 

followed by a 1.5-hour incubation at room temperature in secondary antibodies diluted at their 

optimal concentration in 1.5% goat serum in PBS. Two additional washes with PBS were 

performed to remove any unbound antibody. Nuclear staining with DAPI 1 µg/mL in PBS 

(Thermo Fisher) was also routinely conducted. Samples were imaged using an epifluorescence 

microscope Nikon Eclipse Ti-E. Antibody controls were included in all experiments. 
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5.9. Antibodies 

Table 5.4 and Table 5.5 summarize the primary and secondary antibodies used for Western Blot 

(WB) and immunofluorescence (IF) with their respective dilutions. 

Table 5.4. Primary antibodies used in WB and IF. 

Primary antibodies IF dilution WB dilution 

Mouse monoclonal anti-Claudin 5 (Thermo Fisher) N/A 1:2000 

Rabbit polyclonal anti-β actin (Cell Signaling) N/A 1:1000 

Rabbit polyclonal anti-CD31 (abcam) 1:200 N/A 

Rabbit polyclonal anti-ERK (Cell Signaling) N/A 1:1000 

Rabbit polyclonal anti-pERK (Cell Signaling) N/A 1:2000 

Rabbit polyclonal anti-GFAP (abcam) 1:1000 1:5000 

Rabbit polyclonal anti-GLUT1 (abcam) N/A 1:1000 

Rabbit polyclonal anti-P-glycoprotein (abcam) N/A 1:1000 

Rabbit polyclonal anti-Src (Cell Signaling) N/A 1:1000 

Rabbit polyclonal anti-pSrc (Cell Signaling) N/A 1:1000 

Mouse monoclonal anti-α-tubulin (Sigma) N/A 1:2000 

Rabbit polyclonal anti-ZO1 (Thermo Fisher) 1:50 1:1000 

 

Table 5.5. Secondary antibodies used in WB and IF. 

Secondary antibodies IF dilution WB dilution 

Alexa Fluor® 488 goat anti-mouse IgG (H+L) (Thermo Fisher) 1:100 N/A 

Alexa Fluor® 488 goat anti-rabbit IgG (H+L) (Thermo Fisher) 1:100 N/A 

Alexa Fluor® 568 goat anti-mouse IgG (H+L) (Thermo Fisher) 1:100 N/A 

Alexa Fluor® 568 goat anti-rabbit IgG (H+L) (Thermo Fisher) 1:100 N/A 

Alexa Fluor® 647 goat anti-mouse IgG (H+L) (Thermo Fisher) 1:100 N/A 

Alexa Fluor® 647 goat anti-rabbit IgG (H+L) (Thermo Fisher) 1:100 N/A 

HRP-conjugated goat anti-mouse IgG (H+L) (Bio-Rad) N/A 1:1000 

HRP-conjugated goat anti-rabbit IgG (H+L) (abcam) N/A 1:1000 
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5.10. Efflux activity assay 

Cell-seeded tubes were incubated with 10 µM Rhodamine-123 (Rho123, Thermo Fisher), a 

fluorescent dye and substrate of P-gp, in EGM-2 for 60 minutes. Then, cells were washed three 

times with PBS and incubated with fresh media for 60 minutes, period in which incorporated 

Rho123 is released by efflux activity. Conditioned supernatant was collected and cells were 

washed again three times with ice-cold PBS before lysis with 2% Triton X-100 in PBS 

supplemented with protease inhibitor cocktail. Total protein concentration was determined 

using the Pierce BCA Protein Assay Kit and Rho123 concentrations were obtained after 

fluorescent measurements (excitation: 490 nm / emission: 520 nm) against standard curves 

using a Varioskan Flash Multimode Reader (Thermo Fisher). Rho123 concentrations were 

normalized to total protein in cell lysates. 

 

5.11. Rat animal models 

The procedures that involved experimental animals with rats were conducted in accordance 

with the international European Guidelines in Use of Experimental Animals and were approved 

by the Ethic committee of Parc de Recerca Biomedica de Barcelona and Direcció General del 

Medi Natural i Biodiversitat Committee (IACUC) of Generalitat de Catalunya (Protocol reference: 

AOS-15-1712AE). Normotensive and stroke-prone spontaneously hypertensive (SPSHR) male 

Sprague-Dawley rats (250 g) were used in this study. The rats had free access to rat chow and 

water ad libitum prior to use in the experiments. 

 

5.12. Evans Blue dye permeability assay 

Evans Blue dye (EBD, Sigma) was dissolved in PBS at 4% (w/v). 1 mL of stock solution was injected 

in each rat through an intravenous (IV) tail vein injection. After 4 hours, animals were euthanized 

and a saline solution was perfused through the animal vasculature to clear blood vessels from 

residual EBD. Rat brains were extracted and allowed to dry for 48 hours before weighting the 

samples. EBD was extracted by addition of a 50% (w/v) solution of trichloroacetic acid (TCA) and 

tissue homogenization with the help of pellet pestles. Samples were centrifuged for 30 minutes 

at 10000 g and supernatant was collected. 30 µL of each sample were added to a black 96-well 

plate and were supplemented with 90 µL of 95% ethanol. EBD concentrations were obtained 

after fluorescent measurements (excitation: 620 nm / emission: 680 nm) against standard 

curves using a Varioskan Flash Multimode Reader (Thermo Fisher). EBD concentrations were 

normalized to dry-weight of samples.  



5. Materials and methods 

117 

5.13. Western Blot analysis in brain tissue samples 

Brains were extracted from euthanized animals and contained in microcentrifuge tubes. 300 µL 

of RIPA buffer (containing 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% NP-40, 0.5% deoxycholate, 

0.1% SDS and 5mM EDTA) were added in each tube. Then, tissue samples were homogenized 

manually using pellet pestles (Sigma) for 2 min at 4°C in order to allow cell lysis and protein 

dissolution into the buffer. Lysates were centrifuged at 16000 g for 30 minutes at 4°C and 

supernatants were stored at -80°C until use. Further steps were performed as indicated in 

Chapter 5.7. 

 

5.14. Renal artery microanatomy and renal denervation study 

5.14.1. Animal models and experimental overview 

All animal experiments with swine were performed at CBSET, Inc. (Lexington, Massachusetts, 

USA) and adhered to the Guide for the Care and Use of Laboratory Animals under an institutional 

animal care and use committee (IACUC)-approved protocol. In total, 30 renal arteries from 15 

castrated male Yorkshire swine (age 4.5 to 5.0 months) were assessed. 

Group 1 consisted of 8 pigs that did not undergo ostial RDN but were used to analyze nerve size 

and positional distribution at the same 7 distances from the aorta. 

Group 2 consisted of 2 pigs undergoing denervation with five electrodes of a prototype irrigated 

multi-electrode helical catheter (catheter 1).  

Group 3 consisted of 5 pigs undergoing denervation with eight electrodes of a prototype 

multi-electrode basket catheter (catheter 2).  

In animals undergoing renal denervation (Groups 2 and 3), a custom designed generator 

controlled the power of each electrode based on pre-specified power and temperature set 

points, and also controlled the irrigation rate of room temperature saline (  2̴3°C) via ports along 

each electrode. Arteries were ablated for 60 seconds and, in the case of group 2, with an 

irrigation rate of 30 mL/s. In one animal from Group 2 and three animals from Group 3, the 

catheter was rotated 180° between two consecutive 30 seconds treatments. Angiography was 

performed pre and post-treatment to identify and confirm treatment locations.  

All animals were euthanized on day 7 and a limited necropsy performed. Each renal artery with 

associated aorta and surrounding tissue was removed and fixed in neutral buffered formalin. 
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5.14.2. Histology of renal arteries 

Each renal artery (RA) with surrounding tissue was trimmed at intervals of 3 to 5 mm to yield 3 

cross sections at the aortic ostium. Anatomic orientation was preserved through tissue harvest 

and processing (e.g., via inking, tagging, and standardization of embedding and slide 

generation). One hematoxylin and eosin-stained slide and one elastin Masson’s trichrome-

stained slide were generated per paraffin-embedded section. 

 

5.14.3. Histopathology evaluation and nerve assessment of renal arteries 

A board-certified veterinary pathologist, using light microscopy, examined the histologic 

sections of the renal arteries and associated tissue. Tissue ablation areas were detected by 

visualization of coagulative or necrotic changes. Nerves were counted on a quadrant basis and 

their status with regard to treatment zone was determined. 

RA microanatomy was evaluated in histological sections located at 7 different distances from 

the RA aortic ostium (  0̴.0,   3̴.0,   6̴.0,   9̴.0,   1̴2.0,   1̴5.0,   2̴1.0 mm), where nerve distributions 

differ. Nerve size was defined by its shape area. Nerve location was defined by its distance from 

the RA luminal surface and angle relative to the lumen centroid. Lymph node and ablation areas 

were outlined by a set of points whose distance and angle relative to the lumen were evaluated 

as well. A set of semi-automatic ImageJ scripts (Annexes 8.1, 8.2 and 8.3) allowed measuring all 

metrics after manually outlining the RA lumen, nerves, lymph nodes and ablation areas (Figure 

5.11.A). 

Normalized illustrative maps were generated with MATLAB after shifting each individual depth 

by a representative RA lumen radius of 2.5 mm.210 As both left and right arteries contributed to 

the composite maps, the orientation of right arterial structures was shifted by 180° to maintain 

consistent orientation. Maps included overlays of nerves, lymph nodes and/or traced ablation 

areas (Figure 5.11.B). 
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Figure 5.11. Outlined histological section of porcine renal artery (A) and normalized illustrative map 
(B). 

 

5.15. Statistical analysis 

All in vitro experiments were performed on triplicate or quadruplicate specimens (n=3-4) and 

repeated at least in two independent experiments. Data from each experiment are expressed 

as mean ± standard error of the mean (SEM). Statistical differences were analyzed using 

GraphPad Prism 5 software. Difference between two measurements was tested using unpaired 

Student’s t-test. Difference between sets of measurements was tested using one-way analysis 

of variance (ANOVA), followed by Tukey´s post hoc comparison test. Values of P < 0.05 were 

considered statistically significant and are represented with an asterisk symbol (*) in graphical 

representations. 
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5.16. Permissions 

 Figure 1.1 was reproduced from Journal of Inherited Metabolic Disease, Blood-brain barrier 

structure and function and the challenges for CNS drug delivery, 2013, 36(3), 437 – 449, 

N.J. Abbott, with permission from Springer. 

 Figure 1.2 and Figure 1.3 were reprinted by permission from Macmillan Publishers Ltd: 

Nature Reviews Neuroscience, Astrocyte-endothelial interactions at the blood-brain barrier, 

2006, 7(1), 41 – 53, N.J. Abbott, L Röhnbäck, E. Hansson, copyright 2006. 

 Figure 1.4 was reprinted from NeuroRx, Blood-brain barrier active efflux transporters: ATP-

binding cassette gene family, 2005, 2(1), 86 – 98, W. Löscher, H. Potschka, with permission 

from Springer. 

 Figure 1.6 was reproduced from Journal of Cerebral Blood Flow & Metabolism, A dynamic in 

vitro BBB model for the study of immune cell trafficking into the central nervous system, 

2011, 31(2), 767 – 777, L. Cucullo, N. Marchi, M. Hossain, D. Janigro. 

 Figure 1.6.B was reproduced from Biomedical microdevices, BBB on chip: microfluidic 

platform to mechanically and biochemically modulate blood-brain barrier function, 2013, 

15(1), 145 – 50, L. Griep, F. Wolbers, B. de Wagenaar, P.M. ter Braak, B.B. Weksler, I. A. 

Romero, P.O. Couraud, I. Vermes, A.D. van der Meer, A. van der Berg, with permission from 

Springer. 

 Figure 1.6.C was reproduced from Lab on a Chip, Sym-BBB: A Microfluidic Blood-Brain Barrier 

Model, 2013, 13(6), 1093 – 1101, B. Prabhakarpandian, M. Shen, J.B. Nichols, I.R. Mills, M. 

Sidoryk-Wegrzynowicz, M. Aschner, K. Pant, with permission of The Royal Society of 

Chemistry. 

 Figure 1.6.D was reproduced from Lab on a Chip, Characterization of a microfluidic in vitro 

model of the blood-brain barrier (μBBB), 2012, 12(10), 1784 – 1792, R. Booth, H. Kim, with 

permission of The Royal Society of Chemistry. 

 Figure 1.6.E was reproduced from Lab on a Chip, A modular approach to create a 

neurovascular unit-on-a-chip, 2013, 13(4), 542 – 553, A. Achyuta, A. Conway, R. Crouse, E.C. 

Bannister, R.N. Lee, C.P. Katnik, A.A. Behensky, J. Cuevas, S.S. Sundaram, with permission of 

The Royal Society of Chemistry. 

 Figure 1.7 and Figure 1.8 were reproduced from American Journal of Physiology. Heart and 

Circulation Physiology, Mechanotransduction and endothelial cell homeostasis: the wisdom 

of the cell, 2007, 292(3), H1209 – H1224, S. Chien. 
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 Figure 1.9, Figure 1.10 and Figure 1.11 were reprinted from Journal of the American College 

of Cardiology, Mechanical factors in arterial aging: A clinical perspective, 2007, 50(1), 1 – 13, 

M. O’Rourke, J. Hashimoto, with permission from Elsevier. 

 Figure 1.12 was reproduced with permission from Wolters Kluwer: Circulation, H. Krum, P. 

Sobotka, F. Mahfoud, M. Böhm, M. Esler, M. Schlaich, Device-based antihypertensive 

therapy: Therapeutic modulation of the autonomic nervous system, 2011, 123(2), 209 – 215. 
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Conclusions 

The hypothesis that the performance of the Blood-Brain Barrier (BBB) is affected by vascular 

hemodynamics was tested in a series of in vitro experiments performed in human brain 

microvascular endothelial cells exposed to different shear stress levels and pulsatile flow. Renal 

artery denervation therapy was studied, as a potential recovery strategy of BBB phenotype. 

Human brain microvascular endothelial cells were exposed to physiological or abnormal flow 

patterns. Physiologic shear stress upregulated the expression of tight junction markers Zonula 

Occludens 1 (ZO-1) and Claudin-5. High shear stress and/or pulsatility, however, decreased their 

expression to basal levels and modified their cellular distribution. Junctional signaling pathways 

(Src/ERK) were affected analogously. While P-glycoprotein expression was only down-regulated 

by pulsatile flow, efflux activity significantly declined at high shear stress. When cells were 

exposed to pathological shear stress patterns followed by capillary-like conditions, results 

showed reversible recovery on the expression of tight junction markers, suggesting that 

hemodynamic repair is a potential therapeutic target for the recovery of BBB functional 

features. Overall, the exposure of human brain microvascular endothelial cells to an extensive 

fluid dynamic spectrum in vitro revealed that shear stress governs barrier phenotype at the BBB. 

The loss of physiological conditions showed significant damage at different aspects of the barrier 

phenotype of microvascular endothelium.  

Tight junction markers and permeability assays were performed in rat hypertensive models to 

validate in vitro findings. Results failed to show significant alterations compared to 

normotensive animals. Future animal experiments require larger study populations and 

optimized techniques. 

A dynamic in vitro model of the BBB was designed as a two-compartment parallel-plate flow 

chamber (PPFC) separated by a porous membrane. Computational fluid dynamics (CFD) 

validated shear stress distribution within the chamber. Proper attachment of human brain 

microvascular endothelial cells and human astrocytes was assessed in both PPFC. Flow exposure 

was successful at flow rates lower than 5 dyn/cm2, but higher rates lead to overpressure and cell 

detachment. Further improvements need to be considered to use the PPFC chamber as a tool 

for in vitro BBB research. 

Amongst the findings of this thesis, preliminary evidence showing that barrier phenotype is 

reversible upon physiological hemodynamic recovery is of special interest for the development 

of novel tools to repair such damage by patients’ vasculature. Renal denervation, a novel 

technology for the treatment of resistant hypertension, has the potential to correct vascular 
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alterations leading to BBB impairment based on published findings. Heterogeneous results in 

clinical trials suggest that knowledge of renal artery microanatomy is essential to optimize renal 

denervation treatments. An in vivo study in swine models was assessed to evaluate nerve 

distribution and, for the first time, lymph node distribution along circumferential, axial and radial 

directions of the renal artery. The superior-posterior region showed higher nerve density than 

the anterior-posterior. Distal locations of the renal artery were more rich in nerves than proximal 

and middle groups. Moreover, distal nerves were closer to the arterial lumen making them more 

susceptible to be affected by renal denervation. Lymph node analysis showed that optimal distal 

regions not only had minimal presence of lymph nodes but also that such presence was more 

abundant beyond 2.5 mm of the lumen. Single and dual renal denervation treatments were 

tested. Both treatments displayed equivalent ablation depths and affected are, but the 

circumferential affected arc along renal arteries was higher in dual treatments. Correlation of 

circumferential effect and norepinephrine level in treated animals will confirm if dual 

treatments increase renal denervation efficacy. Results from this study indicate that 

understanding the renal artery microanatomy is essential for proper renal denervation therapy 

and its therapeutic outcomes for not only hypertension but also its consequences in peripheral 

areas such as the BBB. 

This thesis adds new insight on vascular biology and its complicated environment, showing how 

hemodynamic alterations from upstream vessels may lead to downstream consequences, which 

can in return be corrected by targeting peripheral vessels. Here, abnormal shear stress inherent 

to systemic vascular disease leads to Blood-Brain Barrier impairment, which could be reverted 

by hemodynamic interventions. Renal denervation is a potential therapy that needs to be 

further characterized in order to correlate its effects on blood pressure decrease and functional 

features of the Blood-Brain Barrier. 
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8.1. Nerve morphometry in renal artery – ImageJ script 

macro nerveMapping{ 
 setBatchMode(true); 
 setOption("ExpandableArrays",true); 
 dirF="E:\\Nerve ablation plots\\Images\\"; 
 dirR="E:\\Nerve ablation plots\\ROIs nerve\\"; 
 filelistF=getFileList(dirF); 
 filelistR=getFileList(dirR); 
 nF=filelistF.length; 
 nR=filelistR.length; 
 if(nF==nR){ 
  for(i=0;i<nR;i++){ 
   showProgress(i/nR); 
   fileF=filelistF[i]; 
   fileR=filelistR[i]; 
   fileFsub=substring(fileF,0,indexOf(fileF,".jpg")); 
   fileRsub=substring(fileR,0,indexOf(fileR,".zip")); 
   if(fileFsub==fileRsub){ 
    mapping(dirF,fileF,dirR,fileR); 
   }else{ 
    waitForUser("Error"); 
   } 
  } 
  setBatchMode(false); 
  waitForUser("Execution completed"); 
 }else{ 
  waitForUser("Error");  
 } 
} 
 
function mapping(dirF,fileF,dirR,fileR){ 
 setBatchMode(true); 
 open(dirF+fileF); 
 run("ROI Manager..."); 
 roiManager("Open",dirR+fileR); 
 W=getWidth(); 
 H=getHeight(); 
 nl=0; 
 Xl=newArray(1); 
 Yl=newArray(1); 
 Rl=newArray(1); 
 sc=2/575*1000; 
 sc2=sc*sc; 
  
 //Orientation 
 roiManager("Select",1); 
 run("Set Measurements...", "  redirect=None decimal=3"); 
 run("Measure"); 
 ang=getResult("Angle",0); 
 selectWindow("Results"); 
 run("Close"); 
  
 //Nerve+ganglia count 
 nROI=roiManager("Count"); 
 selectionNG=newArray(1); 
 nNG=0; 
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 nN=0; 
 nG=0; 
 for(i=2;i<nROI;i++){ 
  roiManager("Select",i); 
  if(selectionType()==5){ 
   nN=i-2; 
   nG=nROI-i-1; 
  }else{ 
   selectionNG[nNG]=i; 
   nNG+=1; 
  } 
 } 
 if(nN==0){ 
  nN=nNG; 
 } 
  
 //Output arrays 
 typeNG=newArray(nNG); 
 areaNG=newArray(nNG); 
 XcNG=newArray(nNG); 
 YcNG=newArray(nNG); 
 lengthNG=newArray(nNG); 
 angleNG=newArray(nNG); 
  
 //Entiy type 
 for(i=0;i<nNG;i++){ 
  if(i<nN){ 
   typeNG[i]="N"; 
  }else{ 
   typeNG[i]="G"; 
  } 
 } 
  
 //Lumen outline + centroid and outline coordinate determination 
 run("Set Measurements...", "centroid redirect=None decimal=3"); 
 roiManager("Select",0); 
 roiManager("Measure"); 
 Xc=getResult("X",0); 
 Yc=getResult("Y",0); 
 selectWindow("Results"); 
 run("Close"); 
 roiManager("Deselect"); 
 newImage("Lumen outline", "8-bit white", W, H, 1); 
 roiManager("Select",0); 
 setForegroundColor(0,0,0); 
 run("Draw"); 
 for(i=0;i<H;i++){ 
  for(j=0;j<W;j++){ 
   if(getPixel(j,i)==0){ 
    Xl[nl]=j; 
    Yl[nl]=i; 
    Rl[nl]=-atan2(Yl[nl]-Yc,Xl[nl]-Xc)*180/PI; 
    nl++; 
   } 
  } 
 }  
 selectWindow("Lumen outline"); 
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 run("Close"); 
  Rlranks=Array.rankPositions(Rl); 
 Rl=Array.sort(Rl); 
 XlT=Array.copy(Xl); 
 YlT=Array.copy(Yl); 
 for(i=0;i<nl;i++){ 
  Xl[i]=XlT[Rlranks[i]]; 
  Yl[i]=YlT[Rlranks[i]]; 
 } 
  
 //Measurement of area and centroid per nerve 
 run("Set Measurements...", "area centroid redirect=None decimal=3"); 
 roiManager("Select",selectionNG); 
 roiManager("Measure"); 
 for(i=0;i<nNG;i++){ 
  areaNG[i]=getResult("Area",i)*(sc*sc/1e6); //Scaled to mm^2 
  XcNG[i]=getResult("X",i); //Unscaled 
  YcNG[i]=getResult("Y",i); //Unscaled 
 } 
 selectWindow("Results"); 
 run("Close"); 
  
 //Lumen outline + centroid and outline coordinate determination 
 for(i=0;i<nNG;i++){ 
  angleNG[i]=-atan2(YcNG[i]-Yc,XcNG[i]-Xc)*180/PI; 
  for(j=0;j<nl-1;j++){ 
   if((Rl[j]-angleNG[i])<0 && (Rl[j+1]-angleNG[i])>=0){ 
    lengthNG[i]=sqrt(pow(Xl[j]-XcNG[i],2)+pow(Yl[j]-YcNG[i],2)); 
    break 
   }else if(j==nl-2){ 
    lengthNG[i]=sqrt(pow(Xl[nl-1]-XcNG[i],2)+pow(Yl[nl-1]-YcNG[i],2)); 
    break 
   } 
  } 
  angleNG[i]-=ang; 
  if(angleNG[i]>180){ 
   angleNG[i]-=360; 
  } 
  XcNG[i]=(XcNG[i]-Xc)*sc/1000; 
  YcNG[i]=-(YcNG[i]-Yc)*sc/1000; 
  lengthNG[i]*=sc/1000; 
  setResult("Type",i,typeNG[i]); 
  setResult("Area",i,areaNG[i]); 
  setResult("X",i,XcNG[i]); 
  setResult("Y",i,YcNG[i]); 
  setResult("Angle",i,angleNG[i]); 
  setResult("Length",i,lengthNG[i]); 
  saveAs("Results", 
"E:Results\\Nerves\\"+substring(fileF,0,indexOf(fileF,".jpg"))+"_Results.txt"); 
  close(fileF); 
 } 
 roiManager("Deselect"); 
 roiManager("Delete"); 
} 
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8.2. Lymph node morphometry in renal artery – ImageJ script 

macro lymphNodeMapping{ 
 setBatchMode(true); 
 setOption("ExpandableArrays",true); 
 dirF="E:\\Images\\"; 
 dirR="E:\\ROIs lymph node\\"; 
 filelistF=getFileList(dirF); 
 filelistR=getFileList(dirR); 
 nF=filelistF.length; 
 nR=filelistR.length; 
 if(nF==nR){ 
  for(i=0;i<nR;i++){ 
   showProgress(i/nR); 
   fileF=filelistF[i]; 
   fileR=filelistR[i]; 
   fileFsub=substring(fileF,0,indexOf(fileF,".jpg")); 
   fileRsub=substring(fileR,0,indexOf(fileR,".zip")); 
   if(fileFsub==fileRsub){ 
    LNmapping(dirF,fileF,dirR,fileR); 
   }else{ 
    waitForUser("Error"); 
   } 
  } 
  setBatchMode(false); 
  waitForUser("Execution completed"); 
 }else{ 
  waitForUser("Error"); 
 } 
} 
 
function LNmapping(dirF,fileF,dirR,fileR){ 
 setBatchMode(true); 
 open(dirF+fileF); 
 run("ROI Manager..."); 
 roiManager("Open",dirR+fileR); 
 W=getWidth(); 
 H=getHeight(); 
 nl=0; 
 Xl=newArray(1); 
 Yl=newArray(1); 
 Rl=newArray(1); 
 deg=5; 
 ndeg=360/deg; 
 //If different scale in each image 
 dist=getNumber(fileR+" / Scale in mm:", 2); 
 px=getNumber(fileR+" / Scale in px:", 575); 
 sc=dist/px; 
 //If unique scale for all images 
 //sc=2/575; 
 sc2=sc*sc; 
  
 //Orientation 
 roiManager("Select",1); 
 run("Set Measurements...", "  redirect=None decimal=3"); 
 run("Measure"); 
 ang=getResult("Angle",0); 
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 selectWindow("Results"); 
 run("Close"); 
  
 //Lumen outline + centroid and outline coordinate determination 
 run("Set Measurements...", "centroid redirect=None decimal=3"); 
 roiManager("Select",0); 
 roiManager("Measure"); 
 Xc=getResult("X",0); 
 Yc=getResult("Y",0); 
 selectWindow("Results"); 
 run("Close"); 
 roiManager("Deselect"); 
 newImage("Lumen outline", "8-bit white", W, H, 1); 
 roiManager("Select",0); 
 setForegroundColor(0,0,0); 
 run("Draw"); 
 for(i=0;i<H;i++){ 
  for(j=0;j<W;j++){ 
   if(getPixel(j,i)==0){ 
    Xl[nl]=j; 
    Yl[nl]=i; 
    Rl[nl]=-atan2(Yl[nl]-Yc,Xl[nl]-Xc)*180/PI; 
    nl++; 
   } 
  } 
 }  
 selectWindow("Lumen outline"); 
 run("Close"); 
 Rlranks=Array.rankPositions(Rl); 
 Rl=Array.sort(Rl); 
 XlT=Array.copy(Xl); 
 YlT=Array.copy(Yl); 
 for(i=0;i<nl;i++){ 
  Xl[i]=XlT[Rlranks[i]]; 
  Yl[i]=YlT[Rlranks[i]]; 
 } 
 
 //LN outline coordinate list generation 
 nROI=roiManager("Count"); 
 nLN=nROI-2; 
 Rln2=newArray(ndeg); 
 for(i=0;i<Rln2.length;i++){ 
  Rln2[i]=-180+i*deg; 
 } 
 for(k=0;k<nLN;k++){ 
  newImage("LN outline", "8-bit white", W, H, 1); 
  run("Set Measurements...", "centroid redirect=None decimal=3"); 
  roiManager("Select",k+2); 
  roiManager("Measure"); 
  Xlnc=getResult("X",0); 
  Ylnc=getResult("Y",0); 
  selectWindow("Results"); 
  run("Close"); 
  setForegroundColor(0,0,0); 
  run("Draw"); 
  nln=0; 
  Xln=newArray(1); 
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  Yln=newArray(1); 
  Rln=newArray(1); 
  for(i=0;i<H;i++){ 
   for(j=0;j<W;j++){ 
    if(getPixel(j,i)==0){ 
     Xln[nln]=j; 
     Yln[nln]=i; 
     Rln[nln]=-atan2(Yln[nln]-Ylnc,Xln[nln]-Xlnc)*180/PI; 
     nln++; 
    } 
   } 
  } 
  selectWindow("LN outline"); 
  run("Close"); 
  //Angular ranking 
  Rlnranks=Array.rankPositions(Rln); 
  Rln=Array.sort(Rln); 
  XlnT=Array.copy(Xln); 
  YlnT=Array.copy(Yln); 
  for(i=0;i<nln;i++){ 
   Xln[i]=XlnT[Rlnranks[i]]; 
   Yln[i]=YlnT[Rlnranks[i]]; 
  } 
   
  //Point selection each 5deg 
  Xln1=newArray(ndeg); 
  Yln1=newArray(ndeg); 
  Rln1=newArray(ndeg); 
  deg2=0; 
  for(i=0;i<nln-1;i++){ 
   if(deg2==0){ 
    if(abs(Rln[i]+180)<=abs(Rln[nln-1]-180)){ 
     Xln1[deg2]=Xln[i]; 
     Yln1[deg2]=Yln[i]; 
    }else{ 
     Xln1[deg2]=Xln[i+1]; 
     Yln1[deg2]=Yln[i+1];    
    } 
    deg2+=1; 
   }else if(deg2==ndeg){ 
    break; 
   }else{ 
    if((Rln[i]-Rln2[deg2])<0 && (Rln[i+1]-Rln2[deg2])>=0){ 
     if(abs(Rln[i]-Rln2[deg2])<=abs(Rln[i+1]-Rln2[deg2])){ 
      Xln1[deg2]=Xln[i]; 
      Yln1[deg2]=Yln[i]; 
     }else{ 
      Xln1[deg2]=Xln[i+1]; 
      Yln1[deg2]=Yln[i+1]; 
     } 
     deg2+=1; 
    } 
   } 
  } 
  Rlnl=newArray(ndeg); 
  Lln=newArray(ndeg); 
  XlnB=newArray(ndeg); 
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  YlnB=newArray(ndeg); 
  for(i=0;i<ndeg;i++){ 
   Rlnl[i]=-atan2(Yln1[i]-Yc,Xln1[i]-Xc)*180/PI; 
   for(j=0;j<Xl.length-1;j++){ 
    if((Rl[j]-Rlnl[i])<0 && (Rl[j+1]-Rlnl[i])>=0){ 
     Lln[i]=sqrt(pow(Xl[j]-Xln1[i],2)+pow(Yl[j]-Yln1[i],2)); 
     Rlnl[i]-=ang; 
     break; 
    }else if(j==Xl.length-2){ 
     Lln[i]=sqrt(pow(Xl[j+1]-Xln1[i],2)+pow(Yl[j+1]-Yln1[i],2)); 
     Rlnl[i]-=ang; 
     break; 
    } 
   } 
   setResult("Angle"+d2s(k+1,0),i,Rlnl[i]); 
   setResult("Distance"+d2s(k+1,0),i,Lln[i]*sc); 
  } 
  saveAs("Results","E:\\Results\\Lymph 
Node\\"+substring(fileF,0,indexOf(fileF,".jpg"))+"_LN"+d2s(k+1,0)+".txt"); 
  if(k==nLN-1){ 
   close(fileF); 
  } 
 } 
 roiManager("Deselect"); 
 roiManager("Delete"); 
} 
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8.3. Nerve ablation morphometry in renal artery – ImageJ script 

macro AblationMapping{ 
 //Parameter definition 
 setOption("ExpandableArrays",true); 
 W=getWidth(); 
 H=getHeight(); 
 Xab=newArray(1); 
 Yab=newArray(1); 
 Xab2=newArray(1); 
 Yab2=newArray(1); 
 Rab=newArray(1); 
 Lab=newArray(1); 
 Xl=newArray(1); 
 Yl=newArray(1); 
 Rl=newArray(1); 
 nl=0; 
 nab=0; 
 sc=575/2; 
 //Lumen outline generation and centroid location 
 run("ROI Manager..."); 
 roiManager("Select",0); 
 run("Set Measurements...", "centroid redirect=None decimal=3"); 
 run("Measure");    
 Xc=getResult("X",0);  
 Yc=getResult("Y",0);  
 selectWindow("Results"); 
 run("Close"); 
  
 //Lumen outline coordinate list generation 
 newImage("Lumen outline", "8-bit white", W, H, 1); 
 roiManager("Select",0); 
 run("Draw"); 
 for(i=0;i<H;i++){ 
  for(j=0;j<W;j++){ 
   if(getPixel(j,i)==0){ 
    Xl[nl]=j; 
    Yl[nl]=i; 
    nl++; 
   } 
  } 
 }  
 selectWindow("Lumen outline"); 
 run("Close"); 
  
 //Orientation 
 roiManager("Select",1); 
 run("Set Measurements...", "  redirect=None decimal=3"); 
 run("Measure"); 
 ang=getResult("Angle",0); 
 selectWindow("Results"); 
 run("Close"); 
  
 //Ablation area outline coordinate list generation 
 roiManager("Select",2); 
 roiManager("Measure"); 
 for(i=0;i<nResults;i++){ 
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  Xab[i]=getResult("X",i); 
  Yab[i]=getResult("Y",i); 
  if(i==nResults-1){ 
   Xab[i+1]=Xab[0]; 
   Yab[i+1]=Yab[0]; 
  } 
 } 
 selectWindow("Results"); 
 run("Close"); 
  
 //Coordinate list sorting based on angle from centroid 
 for(i=0;i<Xab.length;i++){ 
  Rab[i]=atan2(Yab[i]-Yc,Xab[i]-Xc)*180/PI; 
 } 
 for(i=0;i<nl;i++){ 
  Rl[i]=atan2(Yl[i]-Yc,Xl[i]-Xc)*180/PI; 
 } 
 Rlranks=Array.rankPositions(Rl); 
 Rl=Array.sort(Rl); 
 XlT=Array.copy(Xl); 
 YlT=Array.copy(Yl); 
 for(i=0;i<nl;i++){ 
  Xl[i]=XlT[Rlranks[i]]; 
  Yl[i]=YlT[Rlranks[i]]; 
 } 
 for(i=0;i<Xab.length;i++){ 
  Rab[i]=atan2(Yab[i]-Yc,Xab[i]-Xc)*180/PI; 
  for(j=0;j<Xl.length-1;j++){ 
   if((Rl[j]-Rab[i])<0 && (Rl[j+1]-Rab[i])>=0){ 
    Lab[i]=sqrt(pow(Xl[j]-Xab[i],2)+pow(Yl[j]-Yab[i],2)); 
    Xab2[i]=(Lab[i]+sc*2.5)*cos(Rab[i]*PI/180); 
    Yab2[i]=-(Lab[i]+sc*2.5)*sin(Rab[i]*PI/180); 
    break; 
   } 
  } 
 } 
 for(i=0;i<Xab.length;i++){ 
  Xab[i]=(Xab[i]-Xc); 
  Yab[i]=-(Yab[i]-Yc); 
  setResult("X",i,Xab[i]/sc); 
  setResult("Y",i,Yab[i]/sc); 
  setResult("Angle",i,Rab[i]-ang); 
  setResult("Length",i,Lab[i]/sc); 
  setResult("X2",i,Xab2[i]/sc); 
  setResult("Y2",i,Yab2[i]/sc); 
 } 
} 
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8.4. Nerve ablation circumferential coverage evaluation – ImageJ script 

macro RadialAblationCoverage{ 
 //Parameter definition 
 H=getHeight(); 
 W=getWidth(); 
 Xl=newArray(1); 
 Yl=newArray(1); 
 Rl=newArray(1); 
 nl=0; 
 rad=1; 
 deg=10; 
 ndeg=360/deg; 
 X0=newArray(ndeg); 
 Y0=newArray(ndeg); 
 L0=newArray(ndeg); 
 Rl2=newArray(ndeg); 
 F0=newArray(ndeg); 
 F1=newArray(ndeg); 
 F2=newArray(ndeg); 
 F3=newArray(ndeg); 
 F4=newArray(ndeg); 
 F5=newArray(ndeg); 
  
 ringDepth=2.5; 
 waitForUser("Manual steps","1) Set mm/px scale.\n2) If necessary, crop image.\n3) Select lumen 
outline with Polygon Selection tool.\n4) Fit Spline\n5) Press OK"); 
 run("ROI Manager..."); 
 roiManager("Add"); 
 run("Set Scale...", "distance=287 known=1 unit=mm"); 
 setOption("ExpandableArrays",true); 
  
 //Ablation area generation 
 waitForUser("Manual steps","1) Fit polygon + spline to ablation zone.\n2) Add to the ROI 
Manager.\n3) Repeat steps 1 and 2 for each zone.\n4) Select all ablation zone ROI's, combine with OR 
operation.\n5) Add the final ROI and delete individual selections.\n6) Press OK"); 
 roiManager("Add");  
  
 //Lumen outline coordinate list generation 
 newImage("Lumen outline", "8-bit white", W, H, 1); 
 roiManager("Select",0); 
 run("Draw"); 
  
 //Centroid location 
 roiManager("Select",0); 
 run("Set Measurements...", "centroid redirect=None decimal=3"); 
 run("Measure"); 
 Xc=getResult("X",0); 
 Yc=getResult("Y",0); 
 selectWindow("Results"); 
 run("Close"); 
  
 //Lumen outline coordinate list generation 
 for(i=0;i<H;i++){ 
  for(j=0;j<W;j++){ 
   if(getPixel(j,i)==0){ 
    Xl[nl]=j; 
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    Yl[nl]=i; 
    Rl[nl]=atan2(Yl[nl]-Yc,Xl[nl]-Xc)*180/PI; 
    nl++; 
   } 
  } 
 } 
 selectWindow("Lumen outline"); 
 run("Close"); 
  
 //Coordinate list sorting based on angle from centroid 
 Rlranks=Array.rankPositions(Rl); 
 Rl=Array.sort(Rl); 
 XlT=Array.copy(Xl); 
 YlT=Array.copy(Yl); 
 for(i=0;i<nl;i++){ 
  Xl[i]=XlT[Rlranks[i]]; 
  Yl[i]=YlT[Rlranks[i]]; 
 } 
  
 //Finding lumen coordinates located at multiples of deg 
 for(i=0;i<Rl2.length;i++){ 
  Rl2[i]=-180+i*deg; 
 } 
 deg2=0; 
 for(i=0;i<nl-1;i++){ 
  if(deg2==0){ 
   if(abs(Rl[i]+180)<=abs(Rl[nl-1]-180)){ 
    X0[deg2]=Xl[i]; 
    Y0[deg2]=Yl[i]; 
   }else{ 
    X0[deg2]=Xl[i+1]; 
    Y0[deg2]=Yl[i+1];    
   } 
   deg2+=1; 
  }else if(deg2==ndeg){ 
   break; 
  }else{ 
   if((Rl[i]-Rl2[deg2])<0 && (Rl[i+1]-Rl2[deg2])>=0){ 
    if(abs(Rl[i]-Rl2[deg2])<=abs(Rl[i+1]-Rl2[deg2])){ 
     X0[deg2]=Xl[i]; 
     Y0[deg2]=Yl[i]; 
    }else{ 
     X0[deg2]=Xl[i+1]; 
     Y0[deg2]=Yl[i+1]; 
    } 
 
    deg2+=1; 
   } 
  } 
 } 
 toScaled(Xc,Yc); 
 
 //Determining the length from the centroid to the lumen in X0Y0 points 
 for(i=0;i<ndeg;i++){ 
  toScaled(X0[i],Y0[i]); 
  L0[i]=sqrt(pow(X0[i]-Xc,2)+pow(Y0[i]-Yc,2));  
 } 
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 //Radial/Angular point generation + Boolean location of ablation zone 
 roiManager("Select",1); 
 for(i=0;i<6;i++){ 
  for(j=0;j<ndeg;j++){ 
   if(i==0){ 
    X=X0[j]; 
    Y=Y0[j]; 
   }else{ 
    X=X0[j]+i*rad*cos(Rl2[j]*PI/180); 
    Y=Y0[j]+i*rad*sin(Rl2[j]*PI/180); 
   } 
   toUnscaled(X,Y); 
   roiManager("Select",1); 
   setResult(d2s(i,0)+"mm",j,selectionContains(X,Y)); 
   makePoint(X,Y); 
   roiManager("Add"); 
  } 
 } 

} 
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