
BeFree: a text mining system for the 

extraction of biomedical information from 

the literature  

Àlex Bravo Serrano 

TESI DOCTORAL UPF / 2016 

DIRECTOR DE LA TESI 

Dra. Laura I. Furlong

DEPARTAMENT DE CIÈNCIES EXPERIMENTALS I DE LA SALUT 



 ii

 

 

 

  



 iii

The research leading to these results has received support from 

Instituto de Salud Carlos III-Fondo Europeo de Desarrollo Regional 

(PI13/00082 and CP10/00524), the Innovative Medicines Initiative 

Joint Undertaking under grants agreements n° [115002] (eTOX) and 

n° [115191] (Open PHACTS)], resources of which are composed of 

financial contribution from the European Union’s Seventh 

Framework Programme (FP7/2007-2013) and EFPIA companies’ in 

kind contribution. The Research Programme on Biomedical 

Informatics (GRIB) is a node of the Spanish National Institute of 

Bioinformatics (INB). 

 

Printing of the PhD thesis has received support from the Institut 

Hospital del Mar d'Investigacions Mèdiques (IMIM) (Convocatòria 

d'ajuts 2016 per a la finalització de tesis doctorals de la Fundació 

IMIM). 

 

 

 

 

      

 

 

 

  



 iv

  



 v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Para mamá, papá e Iván. 

 

 

 

 

 

 



 vi

  



 vii

Acknowledgements 

Primero de todo, me gustaría agradecer y especialmente dedicar esta 

tesis a toda mi familia. Cuando pienso qué voy escribir en estos 

agradecimientos, me vienen muchas imágenes, recuerdos, 

sentimientos, emociones, mamá y papá… Ya hace mucho tiempo 

que os fuisteis, pero no ha habido día que no pensara en vosotros. 

Habéis estado muy cerca de mí en todo momento, en mis 

pensamientos, en mis actos y en mis sueños. Por eso, mis primeros 

agradecimientos son para vosotros. Por lo que me disteis, por lo que 

me enseñasteis, por vuestros sacrificios, por todo el apoyo que 

recibí y recibo de vosotros. Por todo esto y más, gracias. Os echo 

mucho de menos. Os quiero. 

 

Un especial agradecimiento a todos mis abuelos, con los que viví 

momentos maravillosos. Especialmente, me gustaría agradecer a mi 

abuelo Pepe, que estuvo muy ilusionado cuando empecé mi 

doctorado. Por causas de la vida, Pepe nos dejó. Pepe, sé que 

estarías muy feliz y orgulloso de verme llegar hasta aquí. Sé que lo 

estás. Gracias.  

 

Muchísimas gracias a mis tíos!!! Luisa, Ginés y Beaaa!!! Siempre, 

siempre y siempre me habéis apoyado en todo momento y habéis 

estado muy pendientes y atentos de mí y de mi trabajo. Siempre os 

estaré muy agradecido por ello. De verdad, muchísimas gracias! 

 

Y por último y no menos importante, me gustaría agradecer 

especialmente a mi hermano, Iván. Por todo, absolutamente todo lo 



 viii

que ha hecho por mí. Iván, no tengo palabras para describir lo 

agradecido y orgulloso que estoy por tenerte como hermano, y que 

tienes como compañera de vida a una persona igual de excepcional 

que tú. Siempre has sido y eres todo un referente para mí. Chiqui! 

Te quiero mucho! 

 

Chi l’avrebbe mai detto che durante il mio dottorato avrei 

conosciuto una delle persone più importanti della mia vita, 

Eleonora. Sei diventata la mia compagna, il mio motivo, il mio 

sogno, il mio futuro, la mia famiglia, la mia Eleonora. Lo sai quanto 

sono grato di averti nella mia vita, però adesso, voglio ringraziarti 

per tutto l’appoggio incondizionato che mi hai sempre dato e che mi 

è servito per andare avanti e finire questa tesi. Dopo di me, tu sei 

stata quella che più ha sofferto questa fase. Mi hai ascoltato, mi hai 

capito e motivato. Sei la persona che più ha creduto e crede in me e 

nel mio lavoro. Semplicemente, grazie per come sei amore mio. Ti 

amo tanto. Vorrei anche ringraziare tutta la tua famiglia perché mi 

ha sostenuto tantissimo, specialmente la tua mamma e tua sorella 

Virginia. 

 

Muchísimas gracias a todos mis amigos, que habéis estado 

apoyándome siempre. Sería muy complicado dedicaros unas frases 

a cada uno de vosotros, pero ya sabéis lo más importante. Estoy 

muy orgulloso y agradecido de teneros. Me habéis apoyado en 

muchos momentos de mi vida, y os considero parte de mi família. 

Muchas gracias a todos y cada uno de vosotros: Edu, Ramón, Puchi, 

Toni, Zurdo, Corral, Gerard, Carlos, Masters, Elton, Rodrigo y 



 ix

Abuelo. A los marines Dani, Capità, Koke, Ruiman, Kimet, 

Cunyao, Chus y Sebas. A toda la tropa de Can Dragó y Crossfit Can 

Dragó! De todo corazón, gracias! 

 

Un aspecto muy importante a tener en cuenta es, que esta tesis no la 

he hecho yo solo. Sin la ayuda incondicional, sin el apoyo constante 

y sin el trabajo duro de toda la gente que he conocido durante este 

periodo en el PRBB, difícilmente esta tesis podría haberse llevado a 

cabo. Chicos, nunca olvidéis que un trocito de esta tesis os 

pertenece a cada uno de vosotros! 

 

Primero de todo, me gustaría agradecer a Laura I. Furlong la 

oportunidad que me ofreció para poder realizar este doctorado. 

Laura, has sido mi jefa, mi supervisora y mi directora de tesis, pero 

has sido siempre tan cercana conmigo, que siempre te he visto como 

una compañera más. Gracias por el apoyo constante que siempre me 

has dado, por ayudarme en los momentos más difíciles y sobre todo 

por creer en mi trabajo más que yo mismo. Muchísimas gracias por 

todo Laura! 

 

També m’agradaria donar les gràcies en Ferran Sanz. Per a mi has 

estat i ets tota una referència. Encara que la teva agenda estigués 

ajustadíssima, sempre t’has implicat i m’has aportat bones idees per 

aplicar en el meu treball. I sobretot, sempre has considerat molt 

positivament el meu treball. Moltes gràcies! 

 



 x

Y ahora me gustaría agradecer a toda la gente con la que he 

compartido horas de trabajo, risas, desayunos, comidas, cafés y en 

general, buenos momentos. 

 

Estamos en un mundo laboral, donde frecuentemente la gente va y 

viene. Por eso, me gustaría seguir mis agradecimientos a aquellos 

que se fueron a probar nuevas oportunidades y que han compartido 

muchos momentos conmigo, como a Pau Carrió y Albert Antolín, y 

en particular a Montse, Solène y Núria. 

 

Montse! Moltes gràcies per tot!!! Sempre m’has ajudat moltíssim, 

t’has interessat pel meu treball i sobre tot, m’has recolzat molt!!! 

Moltes gràcies Montse!! Ah! I gràcies per involucrar-te i ajudar-me 

a publicar el meu primer article! 

 

Es hablar de Solène y… Pim, pam pum! Bocadillo de apuuum!!! 

(que no atún, porque no rima con pum). Solène!!! Sé que estás 

super contenta de ver que he llegado hasta aquí. Has sido una gran 

compañera y amiga, hemos compartido muchos buenos momentos 

en el trabajo y siempre me has apoyado a mí. Merci beaucoup pour 

tout Solène! 

 

Nurietaaaa!!! Que haig de dir de tu??? Ets la millor!!! Hem 

compartit molts moments, molts sopars, molts coffee breaks i 

sobretot molts riures!!! Sempre, sempre, sempre m’has recolzat, 

m’has animat i m’has motivat en tot. M’has ajudat molt per seguir 



 xi

endavant. Per tot això i moltíssimes coses més, moltes gràcies 

Núria!!! 

 

En los últimos momentos de tu tesis, cuando las dificultades afloran 

por sí solas, es cuando te das cuenta de lo geniales que son tus 

compañeros de trabajo (amigos). Especialmente muchas gracias a 

Alba y Alexia. Sabéis que no ha sido fácil, y sin pediros nada, 

habéis estado en todo momento a mi lado para ayudarme. 

 

Alba, te has involucrado muchísimo para ayudarme con esta tesis. 

Has dejado de hacer tus cosas, te has quedado hasta tarde e incluso 

me has acompañado fines de semana. Como profesional eres 

simplemente genial, pero aún eres más grande como persona. Me 

siento muy orgulloso de haber compartido esta etapa contigo. Sigue 

así, la gente necesita personas como tú. Muchísimas gracias por 

todo niñaaaa!!! También muchas gracias a tus padres por su apoyo 

y chuches. A Lierni por todo su apoyo que siempre me ha ofrecido 

y a Erika por su vital ayuda. 

 

Santa Alexia… Siempre te estaré muy agradecido. Lo que has 

hecho por mí es increíble. Sinceramente, no sé qué sería de esta 

tesis sin ti. Sin dudarlo, te has subido a mi tren a punto de 

estrellarse, y lo has llevado a destino. Me has ofrecido toda tu ayuda 

y has dedicado muchas horas y esfuerzo a revisar mi trabajo. Nunca 

podré agradecer todo lo que has hecho por mí. Pero sinceramente, 

gracias, Ευχαριστώ πολύ για όλα Αλεξία! 

 



 xii

Carinetaaaa, m’has recolzat moooolt! Gràcies! También a Maria y 

Martina! Gracias a mis ITs Alfons y Miguel por la paciencia de 

aguantarme. A los CRGs Rodny, Gabriel y Luís. Imma! Sempre 

m’has recolzat i has estat molt atenta per mi, moltes gràcies! 

Emilio, me has conocido en el final de mi etapa, aun así, siempre 

has estado ahí como si hubiéramos empezado juntos, me has 

animado, me has escuchado y me has apoyado, simplemente, 

gracias. 

 

I would like to thank also my language exchange partner, Catherine. 

Thank you very much for helping me to improve my terrible 

English. You have been very patient with me, and the truth is that 

with you I have improved a lot. Большое спасибо за вашу 

помощь! 

 

To conclude, I would like to thank the “Su Lab”, especially Toby, 

Ben and Andrew. You trusted in my work and offered me the 

opportunity to collaborate together to participate at the BC5 

challenge. Thanks to you I learned a lot and we published a new 

article. Thank you so much guys!!! 

  



 xiii

Abstract 

Current biomedical research needs to leverage the large amount of 

information reported in scientific publications. Automated text 

processing, commonly known as text mining, has become an 

indispensable tool to identify, extract, organize and analyze the 

relevant biomedical information from the literature. 

 

This thesis presents the BeFree system, a text mining tool for the 

extraction of biomedical information to support research in the 

genetic basis of disease and drug toxicity. BeFree can identify 

entities such as genes and diseases from a vast repository of 

biomedical text sources. Furthermore, by exploiting shallow and 

deep syntactic information of text, BeFree detects relationships 

between genes, diseases and drugs with a performance comparable 

to the state-of-the-art. 

 

As a result, BeFree has been used in various applications in the 

biomedical field, with the aim to provide structured biomedical 

information for the development of knowledge and corpora 

resources. Furthermore, these resources are available to the 

scientific community for the development of novel text mining 

tools. 
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Resum  

Avui dia, la recerca biomèdica ha d'aprofitar i explotar la gran 

quantitat d'informació inclosa en publicacions científiques. El 

processament automàtic de text, habitualment conegut com mineria 

de text o text mining, és una eina essencial per tal d'identificar, 

extreure, organitzar i analitzar la informació biomèdica més 

rellevant de la literatura. 

 

Aquesta tesi presenta el sistema BeFree, una eina de text mining per 

l’extracció d’informació biomèdica per donar suport a la recerca de 

les bases genètiques de les malalties i la toxicitat de fàrmacs. 

BeFree pot identificar gens i malalties des d’un gran repositori de 

text biomèdic. D’altra banda, mitjançant informació lingüística 

continguda al text, BeFree pot detectar relacions entre gens, 

malalties i fàrmacs amb uns resultats comparables a l’estat de l’art. 

 

Com a resultat, BeFree ha sigut utilitzat en diverses aplicacions del 

camp biomèdic, amb l’objectiu d’oferir informació biomèdica 

estructurada pel desenvolupament de recursos com base de dades i 

corpora. A més, aquests recursos estan disponibles per la comunitat 

científica pel desenvolupament de noves eines de text mining.  
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known to be knowledge-rich and biomedical facts and findings are 

being reported on millions of publications. In the undertaken PhD 

work, text mining methods have been used with the purpose of 

extracting relevant biomedical information from the literature and 

contributing with structured knowledge to the community. For this 

reason, the BeFree system has been developed and will be presented 

in this thesis. 

 

This thesis is organized as follows: the challenging task of 

extracting information from the continuously-growing scientific 

literature will be introduced in Chapter 1. Furthermore, the need of 

text mining methods for the extraction of relevant biomedical 

information will be discussed and current text mining solutions in 

life sciences will be described. In Chapter 2, the motivation and 

objectives of this thesis will be presented. The BeFree system will 

be introduced in Chapter 3, as a text mining tool for information 

extraction in the biomedical field. Complementary information, 

applications and results of the BeFree system will be presented in 

Chapter 4. In Chapter 5, a discussion of the work conducted in this 

thesis, together with limitations and future perspectives will be 

provided. Conclusions will be drawn in Chapter 6. Finally, selected 

publications, in which this work has been applied, will be listed in 

the Appendix 

 

 

 

 

 



 xvii

Table of contents 

Acknowledgements ........................................................................ vii 

Abstract   ........................................................................................ xiii 

Resum      ....................................................................................... xiv 

Preface     ........................................................................................ xv 

Table of contents .......................................................................... xvii 

List of figures ................................................................................ xxi 

List of tables ................................................................................. xxv 

1 Introduction ............................................................................. 1 

1.1 The scientific literature, an unstoppable colossus ............. 3 

1.2 Text mining, the researcher’s best friend ........................... 5 

1.3 Biomedical text mining ...................................................... 7 

1.3.1 Text mining solutions for life science ........................ 8 

1.3.2 Information retrieval ................................................. 10 

1.3.3 Information extraction .............................................. 10 

1.3.4 Knowledge discovery ............................................... 12 

1.3.5 Metrics to evaluate text mining approaches ............. 12 

1.4 Information extraction in the biomedical domain ............ 14 

1.4.1 Extraction of relevant biomedical information ......... 14 



 xviii

1.4.2 Natural Language Processing (NLP) ........................ 16 

1.4.3 Named entity recognition (NER) .............................. 19 

1.4.4 Relation Extraction (RE) .......................................... 34 

1.5 Corpora for text mining ................................................... 43 

1.5.1 Annotated corpora in the biomedical domain........... 43 

1.5.2 Gold Standards on genome medicine and 

pharmacogenomics ................................................................. 45 

2 Objectives .............................................................................. 51 

3 The Befree System ................................................................ 55 

3.1 The Named Entity Recognition ....................................... 57 

3.1.1 Implementation of NER ........................................... 57 

3.1.2 Abstracts as standard input ....................................... 59 

3.1.3 Dictionaries: building the basis of the NER ............. 60 

3.1.4 Terminology preprocessing for the matching task ... 66 

3.1.5 The NER process ...................................................... 72 

3.2 Relation Extraction .......................................................... 87 

3.2.1 RE based on a supervised learning approach ........... 87 

3.2.2 Linguistic Features ................................................... 89 

3.2.3 Models for detection of different associations ......... 93 

4 Applications and results ...................................................... 101 



 xix

4.1 A knowledge-driven approach to extract disease-related 

biomarkers from the literature .................................................. 103 

4.2 Extraction of relations between genes and diseases from 

text and large-scale data analysis: implications for translational 

research ..................................................................................... 117 

4.3 Combining machine learning, crowdsourcing and expert 

knowledge to detect chemical-induced diseases in text ........... 137 

4.4 Text mining and expert curation to develop a database on 

psychiatric diseases and their genes ......................................... 151 

5 Discussion ........................................................................... 161 

5.1 Overview ........................................................................ 163 

5.2 The ambiguity problem in NER ..................................... 164 

5.3 The desirable corpus for text mining applications ......... 168 

5.4 BeFree for accurate identification of a variety of 

biomedical relationships ........................................................... 171 

5.5 BeFree as a tool to identify actionable information ....... 174 

5.6 BeFree captures different facets of the relations............ 175 

5.7 Implications of the choice of document type and document 

section on the text mining results ............................................. 176 

5.8 Future perspectives ........................................................ 178 



 xx

6 Conclusions ......................................................................... 181 

7 Appendix ............................................................................. 185 

Appendix 1. DisGeNET: a discovery platform for the dynamical 

exploration of human diseases and their genes ........................ 187 

Appendix 2. PsyGeNET: a knowledge platform on psychiatric 

disorders and their genes .......................................................... 189 

Appendix 3. A crowdsourcing workflow for extracting chemical-

induced disease relations from free text ................................... 191 

Appendix 4. DisGeNET-RDF: harnessing the innovative power 

of the Semantic Web to explore the genetic basis of diseases .. 193 

Bibliography ................................................................................. 195 

 

  



 xxi

List of figures 

Figure 1.1. The number of articles published per year related to 

“Text Mining”. ........................................................................ 7 

Figure 1.2. A schematic illustrating the typical text-mining 

workflow applied to the scientific literature. .......................... 9 

Figure 1.3. (a) Graphical description of true positives (TP), true 

negatives (TN), false positives (FP) and false negatives (FN) 

used in the evaluation of IE systems. (b) Graphical definition 

of precision and recall. Figure obtained from 

https://en.wikipedia.org/wiki/Precision_and_recall. ............. 13 

Figure 1.4. The constituency tree structure of the sentence ‘Two 

homologues of the rhombotin gene have now been isolated’ 

from PMID:2034676. ............................................................ 17 

Figure 1.5. The dependency tree structure associated with the 

sentence of Figure 1.4. .......................................................... 18 

Figure 1.6. Classification of corpora according to the semantic 

annotations involved. ............................................................ 46 

Figure 3.1. Diagram illustrating the workflow of the integration 

process for the extraction of gene terminology in the case of 

Lipocalin-2. Three databases are used (NCBI Gene, Uniprot, 

HGNC) and the extracted terminology is integrated into a 

unique identifier (X-RUI “1984”). ........................................ 64 

Figure 3.2. Example of the BeFree NER code using Python. 

BeFreeNER is , initially, imported. Next, a list of PMIDs is 

defined for processing. Then, a path for the output file is 



 xxii

defined. Finally, the entity_extraction performs the 

recognition process of gene and disease names in abstracts. 72 

Figure 3.3. Pseudocode representing the entity_extraction 

function. ................................................................................ 73 

Figure 3.4. Workflow diagram of the Mention Extraction step 

implemented in the NER. The workflow begins with a 

sentence previously obtained from an abstract (PMID: 

22763603). Pattern Matching identifies three disease mentions 

(in green circles) and two gene mentions (in blue circles). 

Each entity is enriched with orthographic and context features 

in the Features Enrichment step. Next, Simple Entity Filtering 

step removes the “can” mention. The Acronym Learning 

locates a new acronym mention as a disease and is included in 

the additional acronym dictionary and results. Finally, all 

mentions are reviewed by an Overlapping Correction step and 

the resulting mentions are returned. The processes shown in 

orange are executed for each sentence and those shown in 

yellow, are executed for each entity mention........................ 80 

Figure 3.5. Information of the ATP7B gene provided by the HGNC 

database. The “Wilson disease” term (highlighted in a red 

box) is included as a proper synonym of the ATP7B gene. .. 84 

Figure 3.6.. Example of the syntactic dependency tree of a sentence 

(“Of the 16 genes tested,…”). “EHD3” and “MDD” are the 

candidate mentions to be related. All lines represent syntactic 

dependencies between words. Particularly, the solid lines 

represent the subgraph between the terms “EHD3” and 

“MDD”, while the term “associated” denotes the LCS. ....... 93 



 xxiii

Figure 5.1. Comparison between the development of manual and 

automatic corpora. ............................................................... 169 

Figure 5.2. Comparing annotation processes between domain-expert 

curators vs. non-expert curators. ......................................... 170 

 

  



 xxiv

  



 xxv

List of tables 

Table 1.1. List of corpora involving gene/protein, drug and disease 

entities. .................................................................................. 49 

Table 3.1. A list of the fields used for the extraction of gene 

terminology from the files downloaded for each database 

(NCBI Gene, Uniprot and HGNC). The fields used, contain 

information of vocabulary and synonyms for genes. ............ 63 

Table 3.2. Examples of UMLS concepts for non-human species. . 68 

Table 3.3. List of rules implemented in the preprocessing of 

terminology. .......................................................................... 70 

Table 3.4. Showing statistics of gene and diseases dictionaries. For 

each dictionary, the table contains the characterization of the 

raw and curated version. Specifically, for the disease 

dictionary, the contents and statistics of the resulting 

dictionary using Casper are included. ................................... 71 

Table 3.5. Description of the resulting columns of the generated text 

file by the recognition process. ............................................. 74 

Table 3.6. List of features used for the Mention Extraction step. .. 77 

Table 3.7. Examples of the detected mentions in the Acronym 

Learning step, based on the “AD” and “MD” terms. In the 

first and second row, “AD” is detected as Alzheimer Disease 

and Alcohol Dependence, respectively. “MD” is detected in 

the rest of examples representing Major Depression, Menkes 

Disease and Myotonic dystrophy, respectively. .................... 79 



 xxvi

Table 3.8. Showing four examples of sentences (last column) 

including ambiguity names between genes and diseases. The 

PMID number (first column), the detected mention (second 

column) and the corresponding identifiers (third column) can 

be seen for each sentence example........................................ 87 

Table 3.9. Performance for each available model in BeFree based 

on the following metrics: precision (P), recall (R) and F-score 

(F).  ........................................................................................ 94 

Table 3.10. Examples of the association types considered in the EU-

ADR corpus. .......................................................................... 95 

Table 3.11. Examples of the association types considered in the 

LHGND corpus. The last column shows both the number of 

associations included in the original LHGND and the final 

dataset. ................................................................................... 98 

Table 5.1. Comparison of corpora developed during this thesis. 

Note that EU-ADR was not developed in this work; however, 

it is included for comparison with a gold standard. ............ 168 

 
 



 

 1

1 Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“A month in the laboratory 

can save an hour in the library”  

Frank Westheimer (1912-2007) 
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1.1 The scientific literature, an unstoppable colossus 

From the earliest civilizations to the present, scientists have felt the 

necessity to communicate and share new discoveries, advances, 

findings and results to the world. Clay tablets, papyrus, letters, books 

and other written documents have been used by researchers as a way to 

record their investigations and establish the scientific literature.  

 

The rapid growth in biological data due to the constant development 

and advances in life sciences, coupled with the current digital age, has 

caused a significant accumulation of heterogeneous and complex 

biomedical data (1), including biomedical text. Nowadays, scientists 

are still producing biomedical text as a fundamental source of 

knowledge and millions of facts are published every year in different 

types of documents, such as scientific publications, patents, theses, 

conference abstracts, as well as, clinical and industry reports. For this 

reason, the biomedical literature constitutes a rich and diverse source of 

biomedical information that is essential for a variety of research fields 

in life sciences. However, its continuous and unstoppable growth 

imposes a barrier to exploring such a large volume of yearly-increasing 

data, with more than 3,000 articles published in biomedical journals per 

day (2). 

 

Fortunately, numerous bibliographic databases are, nowadays, available 

in the biomedical domain. One of the most important and most 

frequently-used repositories of scientific literature in the area of life 

sciences is MEDLINE (3). However, the fundamental limitation of 

MEDLINE is the huge amount of data that contains -comprising more 

than 26 million publications. A practical example is, subsequently, 
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presented in order to better understand the amount of biomedical text 

that needs to be processed and the human endeavor required for the 

extraction of a specific type of information. Consider the case where 

700,000 articles are retrieved from the MEDLINE repository, which are 

relevant to “biomarkers”. Let us assume that an individual requires 15 

minutes in order to manually process (read) an article and that he can 

dedicate 60 hours per week and 50 weeks per year for this task. Then, 

he would require more than 58 years in order to manually go over all 

700,000 extracted articles. It should be also noted that, this number 

involves only 2.7% of the total number of publications in MEDLINE. 

 

As it has been already pointed-out, the field of biomedical research is 

significantly wide. Specifically, thousands of biomolecules are being 

investigated around the world as potential biomarkers and the results 

are reported on hundreds of thousands of publications, thereby, 

hindering the task of performing a complete review on biomarkers. 

Obtaining all genes associated with a specific disease (i.e., breast 

cancer) is another example that demonstrates the limitations arising 

from manually processing the biomedical literature.  

 

Therefore, it results imperative that alternative ways be sought to 

process the huge amount of information available to the biomedical 

research community. For this reason, automated text-processing (also 

known as text mining) methods are investigated in order to identify, 

extract, organize and analyze the relevant biomedical text in a faster, 

more efficient and cost-effective manner. 
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1.2 Text mining, the researcher’s best friend 

Text mining is a field of research that has emerged due to the 

constantly-increasing amount of biomedical literature and the resulting 

need to automatically process it. Text mining methods aim at assisting 

the scientific community in automatically browsing the literature, as 

well as, in extracting, structuring and standardizing relevant biological 

information (4,5). 

 

The concept of “named entity” and its automatic identification in a 

piece of text (such as, names of people, organizations and locations) 

was first introduced in the early 1990’s (6,7). In the mid-1990’s, the 

term “text mining” was associated with its current meaning (as defined 

previously). Text mining was, subsequently, accepted and established 

as a new discipline, resulting in an explosion of conferences, 

workshops, books and community challenges. By the end of the 1990’s, 

text mining started to be applied to the biomedical domain (8), in order 

to extract, structure and analyze the biomedical literature. 

 

Nowadays, text mining tools and applications are frequently used in the 

biomedical domain. For example, one of most widely used text mining-

solutions in life sciences is the retrieval of relevant documents by 

querying large bibliographic repositories or the web itself, using search 

engines (such as PubMed (9), Scopus (10) and Google Scholar(11)). 

Notably, PubMed has been established as the most popular search 

engine in several TM applications and is based on publications that are 

included in the MEDLINE database. Furthermore, various important 

biological databases (such as the Comparative Toxicogenomics 

Database (CTD) (12), the Side Effect Resource (SIDER) (13) and the 
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Pharmacogenomics Knowledgebase (14)) have been developed by 

employing text mining techniques that are directly applied to 

biomedical text. 

 

As mentioned earlier, text mining describes the class of techniques that 

seek to automatically reveal information from available sources of 

scientific text, commonly termed as natural language text. This implies 

a high-complexity task, since natural language text is regarded as an 

unstructured type of data that has not been specifically designed for 

automatic processing. Furthermore, its complexity increases due to 

differences and continuous advances in vocabulary, terminology, 

language structure and style.  

 

On the same grounds, automated processing of biomedical text is a 

non-trivial task, mainly due to inhomogeneities encountered in the vast 

number of biomedical text sources. Specifically, each type of 

biomedical text contains information associated with a particular field 

of work (e.g., medical records describe the systematic documentation 

of medical histories of patients, while laboratory reports describe 

detailed experiments) in various formats (e.g., Word, PDF or XML 

documents) and structures (e.g., with/o sections, abstracts, tables or 

images). Moreover, biomedical text can be written following different 

controlled vocabularies or standards, or using local spelling variations, 

informal languages or jargons.  

 

Another factor of complexity is related to the different levels of 

accessibility of biomedical data. For example, clinical or laboratory 

documents are often more difficult to access than scientific literature, 
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due to privacy and confidentially issues, as well as, due to marketing 

and competition in the case of industry reports and patents. On the 

other hand, scientific literature can be much more easily accessed. For 

that reason, scientific publications are the most common types of 

biomedical text used in text mining applications. 

 

In summary, text mining can automatically detect and extract several 

types of information described in the scientific literature, thereby, 

providing us with structured information that would be hard to obtain 

otherwise, by manual processing. 

 

1.3 Biomedical text mining 

The development of text mining tools in life sciences has received a 

great interest in the last years due to their potential application in the 

extraction and discovery of biological knowledge locked in the 

biomedical literature (15). As shown in Figure 1.1, the number of 

published articles related to “text mining” experiences an exponential 

growth from the end of the 1990’s (8). 

 

 
Figure 1.1. The number of articles published per year related to “Text Mining”. 
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1.3.1 Text mining solutions for life science 

Text mining techniques can assist in automatically extracting a variety 

of information from text sources. This includes (i) detection of 

biological named entities (e.g., genes, diseases, drugs, side effects, 

etc.), as well as, their variants and synonyms (e.g., “Neutrophil 

gelatinase-associated lipocalin” and “NGAL” both refer to the 

Lipocalin-2 gene), (ii) identification of biomedical terms by mapping 

them to specific entries in databases (e.g., the Lipocalin-2 gene and its 

synonyms mentioned above can be directly mapped to the entry “3934” 

in the NCBI Gene database (16) and (iii) detection of semantic 

relationships between concepts (e.g., genes involved in schizophrenia, 

biomarkers of kidney toxicity, etc.). Furthermore, text mining can be 

used to find answers to a variety of research questions, such as: 

- Which genes cause lung cancer? 

- What are the metabolites of the drug warfarin? 

- Which proteins are targeted by the drug celecoxib? 

- What are the protein partners of survivin protein in colon cancer 

cells?  

 

In addition, during the past years, many community challenges have 

emerged (such as BioCreAtIvE (17–19), JNLPBA (20), CALBC 

(21,22), BioNLP (8,23–25) and LLL (26)) with the purpose of 

promoting text mining in the biomedical domain and advancing the 

state-of-the-art. These initiatives have fostered the development of 

novel tools and methods, databases, corpora, ontologies and a wide 

variety of semantic resources. 
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Currently, text mining applications can be organized in many 

categories according to their specific objectives: information retrieval, 

information extraction, knowledge discovery, question-answering, 

document classification and document summarization. In Figure 1.2, a 

schematic is shown to illustrate the different applications of text mining 

in life sciences. In the subsequent sections, the processes of information 

retrieval, information extraction and knowledge discovery will be 

described. Emphasis will be given on the part of information extraction, 

on which this thesis is mainly focused. In particular, the associated 

tasks of named entity recognition (NER) and relation extraction (RE) 

(see Figure 1.2) will be explained in more detail. 

 

 
Figure 1.2. A schematic illustrating the typical text-mining workflow applied to the 
scientific literature.  
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1.3.2 Information retrieval 

Usually, a text mining strategy begins with an information retrieval 

(IR) step (5,27). IR systems provide relevant documents extracted from 

a large bibliographic repository that focus on a specific topic and 

satisfy a certain type of input (typically introduced in the form of a 

query). Among publicly available IR tools, PubMed is widely used by 

the biomedical community (9). 

 

In order to answer the first question in page 8 (i.e., which genes cause 

lung cancer?), we could use PubMed by searching for the terms “lung 

cancer” and “genetics”. This would result in more than 22,000 citations 

(date of search Aug 2016). However, more advanced text mining tools 

are required in order to identify the individual genes that cause lung 

cancer from the corpus of 22,000 articles obtained. 

 

1.3.3 Information extraction 

Following the identification of relevant documents by IR tools, 

information extraction (IE) techniques are required to analyze the 

content of the retrieved documents. The IE is a crucial step in the 

identification, extraction and structuring of data available in the 

literature. The IE process is, commonly, composed of two tasks: named 

entity recognition (NER) and relation extraction (RE). 

 

In named entity recognition, a NER tool detects regions of text that 

make reference to particular biological entities (such as “Caspase 3”, 

“N-(2-Hydroxypropyl) methacrylamide” and “Parkinson's disease” 

referring to a gene, a chemical and a disease entity, respectively). 
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Subsequently, by applying named entity normalization, each biological 

entity can be identified with the corresponding entry in a specific 

biological database, ontology or terminology (e.g., the “Caspase 3” 

term is identified with the NCBI Gene Identifier “836” and the 

“Parkinson's disease” with the UMLS concept (or CUI) “C0030567” 

from the UMLS Metathesaurus (28)). 

 

NER is a challenging task due to the ambiguity of the named entities in 

the biomedical domain. The ambiguity of entities arises in the case 

where certain terms used to denote a biomedical entity are also used to 

refer to different entities (not necessarily a biological concept nor the 

same biological entity type). Five biomedical entities recognized from 

the literature (i.e., “PDK4”, “carcinoma”, “breast cancer”, “glucolysis” 

and “BRAF”) were shown in Figure 1.2.  

 

Once the entities have been detected and identified in the text, RE 

techniques are applied with the purpose of detecting semantic 

relationships between them. Typically, RE tools are aimed at 

identifying binary-associations between biomedical entities (e.g., 

protein-protein interactions and gene-disease associations). Three 

relationships were detected from all five biomedical entities associated 

with Figure 1.2 (i.e., “PDK4” with “glycolysis”, “breast cancer” with 

“BRAF” and “glycolysis” with “breast cancer”). 

 

However, several RE systems are able to detect more complex 

associations (involving more than two entities) and also, to recognize 

direction, type and nesting of biomedical events (such as regulation, 

binding, gene expression and phosphorylation). BioNLP’09 Shared 
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Task was the first community challenge that addressed the task of event 

extraction (23). 

 

1.3.4 Knowledge discovery 

After IE processing, the biomedical information extracted from the 

literature can be further processed and analyzed with the purpose of 

data integration with other resources, as well as, the development of 

databases, construction of ontologies, assistance of data curation and 

building of semantic networks. 

 

In recent years, knowledge discovery has emerged as a potential 

application after IE. IE extracts know facts (e.g., biomedical 

relationships) reported in the literature. Knowledge discovery focuses 

on the search of novel potential facts by inferring new relationships 

(29–35). For example, identifying genes related to diseases requires 

laborious experiments. Therefore, extracting candidate genes before 

experimental analysis could help to save time and effort (29). 

Knowledge discovery techniques can be applied for gene-disease 

associations in order to extract hidden relationships from the literature 

(e.g., in Figure 1.2, “glycolysis” with “BRAF” is an inferred relation) 

(29–31,35). 

 

1.3.5 Metrics to evaluate text mining approaches 

In the field of IE, text mining approaches are usually evaluated with a 

small group of related metrics. These metrics are: precision (P), recall 

(R) and the F-score (F) (36). In particular, these metrics are generally 
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based on true positives (TP), true negative (TN), false positives (FP) 

and false negative (FN) results. 

 

 
Figure 1.3. (a) Graphical description of true positives (TP), true negatives (TN), false 

positives (FP) and false negatives (FN) used in the evaluation of IE systems. (b) 
Graphical definition of precision and recall. Figure obtained from 
https://en.wikipedia.org/wiki/Precision_and_recall. 

 

Precision measures the number of correctly identified items (TP) as a 

percentage of the number of items identified (TP plus FP). In other 

words, it measures how many of the items that the system identified 

were correct. 

 

 

Recall measures the number of correctly identified items as a 

percentage of the total number of correct items. To put it more simply, 

it measures how many of the items that should have been identified 

really were identified by the system. 
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In simple terms, high P means that the system returned substantially 

more relevant results than irrelevant, while high R means that the 

system returned most of the relevant results. For instance, in the named 

gene recognition task, P is the total of correct gene names detected by 

the NER system divided by the total number of gene names detected by 

the NER system (correct and incorrect names). While R is the total of 

correct gene names detected by the NER system divided by the total 

number of gene names in the corpus. 

 

The F-score (F) is calculated as the harmonic mean of P and R and is 

described by:  

 

 

1.4 Information extraction in the biomedical domain 

1.4.1 Extraction of relevant biomedical information 

The completion of the Human Genome Project has led to a rapid 

increase in the number of publications in this area. This has also 

affected the IE domain, where the majority of text mining methods 

have been applied for the extraction and identification of gene/protein 

names and their relationships. 

 

Information regarding diseases has risen significant interest not only 

within the genomics community, where the “disease” is the highest 

non-bibliographic information requested from PubMed (37), but also in 

a broader community, as justified by the increasing number of diseases 
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tracked by using Google trends (38). It should be noted that, disease 

information is, typically, found to be queried together with 

chemical/drug or gene/protein information (39). 

 

In this context, defining the genetic architecture of diseases and 

understanding disease biology appear to be key goals in the field of 

genome medicine. On the other hand, understanding the influence of 

the genetic variation of genes on drug response and drug toxicity 

constitute key goals in the field of pharmacogenomics. IE techniques 

can be applied in both research areas, with the purpose of identifying, 

for example, disease candidate genes and the biological impact of 

disease sequence variants and also (29,40), detecting genetic variations 

on drug response (41).  

 

A considerable part of this thesis has focused on the area of IE with 

applications on genome biology and pharmacogenomics. Among the 

specific objectives (described in detail in Chapter 2) is the 

identification of human genes and their relationships with diseases, as 

well as, the relationships of genes and diseases with drugs. 

 

In the following sub-sections, the origin, motivation, methodologies 

and current state-of-the-art of named entity recognition (NER) will be 

described, with emphasis on genes and diseases. Furthermore, the task 

of relation extraction (RE) will be presented, by focusing on 

relationships between genes, diseases and drugs.  
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1.4.2 Natural Language Processing (NLP) 

Natural Language Processing (NLP) methods (15,42) are frequently 

used by IE approaches to extract a variety of linguistic information or 

features from the text, such as orthographic features (e.g., 

capitalizations, numbers and Greek letters), morphologic features (e.g., 

words, n-grams, suffixes and prefixes), syntactic features (e.g., part-of-

speech (POS), phrase structure and syntactic dependencies), context 

features (e.g., bad-of-words, word frequencies or distances) and 

semantic features (e.g., target names and key-words). 

 

NLP-based methods consist of a stack of linguistic analysis of 

increasing sophistication to progressively interpret language contained 

in text. Starting with the tokenization (43) to detect sentence and word 

boundaries and tagging the part-of-speech (e.g., noun or verb) for each 

word, progressing to semantic analysis for tagging of relevant entities 

(e.g., genes and diseases) or trigger-words (e.g., associated, activation, 

interaction and repression), and ending with the sentence structure (e.g., 

syntactic parsing) to represent the relationships (44). 

 

Multiple tools (known as parsers) have been designed in order to 

extract different linguistic information from sentences. Specifically, a 

parser is any algorithm that converts sentences (such as a simple string 

of characters) into a representation that describes the linguistic 

information contained (e.g., a graph or tree structure).  

 

Parsers are often used to construct the sentence structure (e.g., syntactic 

tree) representing syntactic relationships. According to the type of 

representation, parsers are commonly divided to constituency and 
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dependency parsing. Clegg and Shepherd et al (2007) presented a wide 

study on dependency parsing, including constituency parsing (45). 

 

Constituency parsing (or treebank parsers)  recursively break the 

sentence down into clauses and phrases and produce a tree structure, 

where the root represents the sentence as a whole, non-leaf nodes are 

constituents (e.g., noun-phrase, verb-phrase and prep-phrase) and the 

leaves represent words. From the first binary division (a sentence (S) is 

composed of noun-phrase (NP) and verb-phrase (VP)), constituency 

parsing generates a one-to-one-or-more correspondence between nodes. 

 

 

Figure 1.4. The constituency tree structure of the sentence ‘Two homologues of the 

rhombotin gene have now been isolated’ from PMID:2034676. 

 

In contrast, dependency parsing builds a different type of tree structure, 

where each node represents one word in a sentence and they are one-to-

one connected by syntactic dependencies. Additionally, edges in the 

tree are labeled by the relationship or syntactic dependency between 

words (e.g., noun singular (NN) and adverbial modifier (ADVMOD)). 
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Figure 1.5. The dependency tree structure associated with the sentence of Figure 1.4. 

 

Syntactic parsing can also be classified in shallow (or partial) and deep 

parsing. Shallow parsing (also known as chunking) typically identifies 

noun, verb, preposition phrases, and so forth in a sentence, while deep 

parsing builds complete trees representing a sentence.  

 

Some parsing tools have been developed and optimized for biomedical 

text. A majority of IE applications use the shallow parsing tools, such 

as Penn Treebank Tag Set (46), GENIA Tagger (47), Illinois Shallow 

Parser (48) and Apache OpenNLP (49) (note that not all shallow 

parsers identify the same type of phrases). However, the use of deep 

parsing techniques is gaining interest in biology applications. Several 

studies have reported the superiority of such techniques in extracting 

information from biomedical text, since they take into account the 

manner in which relations are represented in the text (50–52). Deep 

parsing tools include the Stanford Lexical Parser (53), Link Parser (54), 
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Enju Parser (55), Genia Dependency Parser (56) and Bikel Parser (57), 

among others. 

 

1.4.3 Named entity recognition (NER) 

1.4.3.1 Identifying biomedical entities in text 

The NER task allows the detection and identification of biomedical 

named entities in text. A named entity or mention is defined as a name 

or term used in a source of text that represents a specific entity, in this 

case, a biomedical entity (e.g., in the sentence ‘These results are 

discussed in relation to neuroprotection and toxicity of the age-related 

pathology of AD’ from PMID: 11391700, the mention “AD” represents 

the Alzheimer’s Disease entity or concept) (58). A biomedical entity 

(such as genes, proteins, drugs, tissues, diseases, mutations, pathways, 

species and chemicals, etc.) can be represented in the literature by 

several named entities or mentions. 

 

The major problems encountered in the NER task are the complexities, 

inconsistences, synonyms and ambiguities -associated with the 

biomedical vocabulary- that make the task of detecting biomedical 

entities very challenging. These problems are described below. 

 

First, the field of biomedicine is characterized by complex naming 

conventions and specialized terminology. For instance, 85% of the 

names in the biomedical field consists of more than one word (59) and 

frequent use of ad-hoc abbreviations (such as, the “TRADD” and 

“TRAF2” abbreviations found in the following piece of text 

‘Moreover, NF-κB activation induced by overexpression of the TNF 
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receptor–associated proteins, TNF receptor–associated death domain 

protein (TRADD), receptor interacting protein (RIP), and TNF 

receptor–associated factor 2 (TRAF2) was also inhibited by expression 

of A20…’ extracted from (60)). 

 

Second, the terminology used in the biomedical literature is often 

inconsistent. Chen et al., 2005 (61) reported that 75% of the gene 

mentions found in the literature did not follow established conventions 

(as official symbols or full names). Also, the terminology suffers from 

different spelling variations, such as morphological (e.g., “tumor” vs. 

“tumour” and “anemia” vs. “anaemia”), orthographic (e.g., “NF-kB”, 

“NFkappaB”, “NF-kappa-B” are some variations of the “NF-kappa 

beta” term) and composed variations (e.g., “cardiac and respiratory 

complications” refer to two concepts, “cardiac complication” and 

“respiratory complication”). 

 

Third, the biomedical entities comprise a large amount of terminology 

including a lot of synonyms constantly evolving. For example, 

“Neutrophil gelatinase-associated lipocalin”, “Oncogene 24p3”, 

“NGAL” and “LCN2” are synonyms referring to the Lipocalin-2 gene; 

or “Hepatolenticular degeneration”, “Progressive lenticular 

degeneration” are synonyms related to Wilson’s disease. 

 

Finally, the most controversial issue affecting the NER task is the high 

ambiguity involved in the biomedical terminology. Ambiguity is a 

linguistic phenomenon of a term, which can represent different 

meanings. As seen in the previous example, the ambiguity may cover 

distinct cases: 
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(1) Some entities contain terminology that coincides with common 

English words (e.g., “can” refers to a verb or a synonym of the 

NUP214 gene). 

 

(2) Different biomedical entity types may share terminology (e.g., 

the “PSA” term can refer to “Prostate-specific antigen” protein, 

“Puromycin-sensitive aminopeptidase” protein, “Protein S 

alpha” gene and “Psoriatic arthritis” disease). This issue is 

particularly tackled in this thesis, in order to disambiguate 

mentions between genes and diseases that may share a potential 

overlap in their terminology. 

 

(3) Furthermore, several terms referring to biomedical entities may 

coincide with terms with a completely different meaning (e.g., 

the “PSA” term can refer to “Pharmaceutical Society of 

Australia” or “Political Studies Association”). 

 

(4) In addition, new biomedical entities are constantly being 

discovered and assigned to names, which could be already in 

use or coincide with common English words. 

 

With regard to the entity normalization process, ambiguity arises when 

a mention is linked to multiple identifiers, that is, several biomedical 

entities of the same type may share terminology. In the previous 

example, if “PSA” was classified as a protein, it could be mapped to 

“P07288” (“Prostate-specific antigen”) and “P55786” (“Puromycin-

sensitive aminopeptidase”) entries from the UniProt database (62). 
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1.4.3.2 NER approaches 

During the past years, several NER systems have been developed in 

order to identify one or multiple biological entities in the scientific 

literature. The main approaches used for the detection of biological 

entities can be divided into three categories: dictionary-based approach, 

rule-based approach and supervised learning approach (63). 

 

The dictionary-based approach is the most common technique in the 

biomedical NER domain. Dictionaries are large collections of terms 

representing biomedical entities. Different kinds of algorithms are 

applied to look-up matches between a piece of text and a term from the 

dictionary. 

 

The major advantages of this approach are that it is straightforward and 

facilitates the entity normalization, by linking each term to the 

corresponding database identifier. The entity normalization process is a 

crucial requirement in the majority of text mining applications in the 

biomedical domain. Specifically, it permits the integration of the 

information extracted in the literature with related knowledge from 

other biomedical resources using standard identifiers. However, 

dictionary-based approaches are limited to detecting only terms that are 

included in the dictionaries (64). 

 

The rule-approach consists of a set of decision rules previously 

structured that satisfy each biological entity. These rules describe 

naming structures for different entities by using linguistic information 

(such as orthographical, morphological and syntactic information, for 

more detail see Section 1.4.2). Rules can be manually defined (65), 
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although several algorithms have been developed in order to 

automatically obtain rules from text or terminology (66,67). 

 

Decision rules have greater freedom than dictionaries, in order to detect 

unseen or newly-discovered entities (e.g., the detection of protein by 

noun-phrases including the final word “receptor”). In contrast, decision 

rules are usually based on specific corpora and are often not effective in 

all cases (64).  

 

The supervised learning approach uses annotated data or corpora (see 

Section 1.5 for more detail) to “learn” useful information (e.g., 

linguistic features) in order to subsequently detect mentions in text. 

Supervised learning approaches learn linguistic features involving 

entities, that is, the manner in which language represents biomedical 

entities in the literature. So, these approaches have a greater flexibility 

to detect unseen or newly-discovered entities. In contrast, they require 

correctly labeled corpora, thereby, requiring an enormous effort to 

build them, frequently by manual annotation (21). 

 

From the earliest learning-based text mining systems to the present day, 

different supervised approaches have been developed in order to detect 

biomedical entities: Support Vector Machines (SVMs) (68,69), Hidden 

Markov Models (HMMs) (70,71), Maximum Entropy (ME) (72,73), 

Naïve Bayes (67), Conditional Random Fields (CRFs) (64,74) and 

others learning approaches (75–77).  

 

Hybrid approaches are often used to take advantage of different 

techniques (64,67). Specifically, dictionary-based are often combined 
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with rule-based approaches (78) or machine learning approaches (79), 

because only dictionaries can resolve the entity normalization process 

between named entities and their identification. 

 

1.4.3.3 Named gene recognition (NGR) 

The Named Gene Recognition (NGR) process involves the Gene 

Mention (GM) task for the detection of gene and protein mentions (or 

names) and the Gene Normalization (GN) task for the normalization of 

mentions with the corresponding unique identifier. 

 

In late 1990’s, the first works on biomedical text mining were focused 

on the detection of gene/protein names in the biomedical literature 

(66,80,81). Until nowadays, new methodologies and strategies are 

being developed with the purpose of improving the detection of genes. 

 

Although several efforts were, initially, proposed to establish and 

promote the use of a standard nomenclature for genes (such as the 

‘Guidelines for Formatting Gene and Protein Names’ (82), or the 

guidelines for human gene nomenclature from the Human Gene 

Nomenclature Committee (HGNC) (83)), only 25% of the gene names 

mentioned in the literature follow these conventions (as official 

symbols or full names) (61). This ‘creative’ approach followed by the 

authors has resulted in a wide variety of gene terminology without clear 

rules concerning gene nomenclature, thereby, exacerbating the 

ambiguity issue. 
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In addition, gene and protein entities often share similar terminology 

and also, nomenclature guidelines are not widely adopted by authors, 

such that, a strict distinction between them is not commonly made, 

thereby, leading to the use of gene and protein names interchangeably. 

This, in turn, may cause problems in distinguishing the two entities in 

the literature. Therefore, it results difficult for a reader, as well as, for 

an automatic system, to determine whether the specific mention refers 

to a gene or to its corresponding protein. Consequently, most of NGR 

systems detect gene/proteins as one single biomedical entity. 

 

Significant ambiguity is encountered in the gene names associated with 

different animal species (known as orthologous genes). This affects 

mainly the GN task. For example, the Interleukin 6 gene can be linked 

to more than 150 entries in the NCBI Gene database depending on the 

species under study (e.g., the entries “3569”, “399500” and “403985” 

correspond to human, pig and dog species, respectively). 

 

The first NER strategies and systems that extracted gene and protein 

names from the literature were focused only on the GM task (such as 

PROPER (66), Yapex (84), AbGene (67), GAPSCORE (69) and 

BANNER (85)). 

 

It was not until 2004, that the BioCreAtIvE (17) challenge started to 

address the identification of gene/protein names in text. BioCreAtIvE 

proposed a NGR challenge, involving the GM task (86) and the GN 

task (87). Both tasks were focused on three specific species: yeast, fly 

and mouse. In summary, 4 teams achieved an F-score (see Section 

1.3.5) greater than 80% with respect to the GM task, while the results 
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obtained for the GN task were also high (F-scores of 92% , 82% and 

79% were achieved, respectively, for yeast, fly and mouse). 

 

In 2007, BioCreAtIvE II (18) was organized with a GN task focused on 

human genes (88). Furthermore, it included a GM task that achieved a 

total F-score of 87%. The GN task was an important reference point in 

the detection and identification of human genes in the literature. 

Twenty teams participated in the GN challenge. In most cases, the 

teams adapted their developed and evaluated systems for the GM task 

or other well-known systems (such as BANNER (85) and ABNER 

(89)), including additional processing steps to address the GN task. 

 

The best performance in the GN task was an F-score of 81% achieved 

by Hakenberg et al. (2007) (90), while the median result between all 

twenty participating teams was 73%. In their work, Hakenberg et al. 

(2007) (90) enriched the provided lexical resource with additional 

synonyms from NCBI Gene. The terminology was processed to 

generate new variations and fixed rules. The rules were matched 

against the text in order to extract gene mentions and each mention was 

assigned different candidate identifiers. Subsequently, the erroneous 

results (or false positives, see Section 1.3.5) were eliminated using an 

alternative score (in this case, based on the frequency with which the 

term appears) and regular expressions to detect mentions referring to 

tissues, cell lines, molecules, etc. Finally, for the identifier 

disambiguation task, they used a scoring approach. The context of the 

identified mention in the abstract was compared to the contextual 

information of the gene obtained from different resources (such as Go 
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annotations, functions, locations, mutations, GeneRIFs, UniProt 

keywords and diseases). 

 

BioCreAtIvE promoted new text mining systems and strategies in the 

NGR domain, contributing to advances of the state-of-the-art. These 

systems and strategies established the foundation of the detection and 

identification of any biomedical entity and are based, mainly, on four 

steps:  

 

(1) Detecting regions in the text (GM task) as mentions of gene and 

protein names. This was achieved using different approaches, 

such as, building specific rules (90), developing a dictionary of 

terms in order to find matches against the text, combining exact 

and approximate matching (91), (92), or using machine learning 

approaches in the detection process (93). 

 

(2) Applying a mapping approach to link detected gene mentions to 

a gene identifier list. 

 

(3) Developing strategies to deal with the ambiguity problem 

between gene identifiers (known as Word Sense 

Disambiguation (WSD) strategies). Different approaches were 

applied in this step, such as scoring approach (90), alternative 

dictionaries (91) and context-based approach (92).  

 

(4) Applying a post-filtering process in order to remove false 

positive results reported by the NGR process. In the majority of 

the presented works, the post-filtering step is based on 
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different/various scoring methods (90,94), or rule-based 

approaches (91). 

 

After BioCreAtIvE challenges (including BioCreAtIvE III with a new 

GN challenge (95)), various works were developed to address the entire 

NGR task. The great majority of these works were evaluated based on 

BioCreAtIvE II GN corpus, as it will be described below. 

 

Hakenberg et al. (2008) presented the GNAT system, an updated 

version of the winner approach in the BioCreAtIvE II GN task. They 

extended the system with a machine learning approach, specifically the 

CRF approach , 85.4% F-score (93), by combining machine learning 

(using orthographic, morphologic and shallow parsing features), rules 

and dictionaries. 

 

Wermter et al. (2009) developed GeNo, a high-performing system for 

gene name identification. Their system is based on scoring approaches 

to resolve ambiguous gene names. Moreover, their system was 

evaluated against the BioCreAtIvE II GN corpus, obtaining 86.4% of 

F-score. 

 

Lately, Hu et al. (2012) achieved a performance of 83.5% of F-score. 

Although this was lower than the previously reported scores, their 

approach was developed based on their GM system that had achieved 

the highest performance in the BioCreAtIvE II GM task (89% of F-

score).  
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Recently, two important systems have been presented. Li et al. (2013) 

(96) reported the highest performance on the BioCreAtIvE II GN 

corpus (90.1%. of F-score) and Wei et al. (2015) (97) presented one of 

the best performing systems for gene name disambiguation across 

species. In particular, Li et al. (2013) described a creative combination 

of approaches to achieve the best result in the BioCreAtIvE II GM task. 

They, initially, applied this previously developed gene mention tagger 

(98) to detect gene names. The normalization step was based on 

dictionary matching. They combined exact-matching with soft-

matching to get candidate identifiers for each gene name. Then, a 

similarity semantic algorithm was applied to select the correct 

identifier. Finally, a filter step based on Wikipedia knowledge was 

applied to remove false positives. 

 

Wei et al. (2015) implemented a supervised learning approach based on 

CRF. Their CRF-based approach was trained with shallow and context 

linguistic information to detect gene names in text. For the gene name 

disambiguation, several rules were applied to the CRF results (e.g., for 

long form-abbreviation pairs, the features of the long form mention are 

prioritized) to remove erroneous gene names. For the normalization 

step, they applied their previous tool (99,100), which was based on a 

statistical inference network model. In the human gene normalization 

task (BioCreAtIvE II GN), an F-score of 86.7% was obtained. 

Additionally, their system was developed to normalize genes across 

species. In this context, their system achieved 50.1% of F-score in the 

cross species gene normalization task (BioCreAtIvE III GN), 

demonstrating that gene name disambiguation across species is still an 

unsolved problem.  
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1.4.3.4 Named disease recognition (NDR) 

Compared to the identification of genes, the identification of diseases 

has received less attention in the text mining community (101,102). In 

comparison with genomic domain, a lower number of disease 

resources, providing rich information, are available.  

 

The named disease recognition task shares many issues and challenges 

reported in the named gene recognition task. In contrast, the disease 

entity is a diffuse biomedical category, which involves and represents a 

wide range of medical aspects (such as diseases, disorders, symptoms, 

sings, treatments and adverse effects). For example, works on disease 

recognition may be focused only on particular concepts as drug adverse 

effect (103) or considering all diseases (104). This situation is also 

reflected in terminological resources available for diseases, which can 

focus on a specific disease category or domain (such as cancer or 

clinical domain), some of which are described below: 

 

(1) The MeSH (Medical Subject Headings) is a controlled 

vocabulary used for indexing articles in PubMed and provides a 

wide branch for disease terminology (105). 

 

(2) The Systematized Nomenclature of Medicine – Clinical Terms 

(Snomed CT) is a comprehensive and precise clinical health 

terminology (106). 

 

(3) The International Classification of Diseases (ICD) is the 

medical coding and classification standard to gather information 

about different health conditions. ICD defines diseases, injuries, 



 

 31

sign and symptoms and further related health circumstances 

(107). 

 

(4) The OMIM (Online Mendelian Inheritance in Man) database is 

a manually-curated database, based on diseases information 

(including terminology) and their involved genes (108).  

 

(5) The UMLS (Unified Medical Language System) is a broad 

terminological resource that integrates several biomedical 

vocabularies and ontologies in a single source (28). 

 

Several tools have been developed for the recognition of diseases in the 

clinical domain driven by community challenges, such as the i2b2 

Challenge (109), ShARe/CLEF eHealth (110) and SemEval task 7 

(111). However, there are significant differences between the clinical 

text and biomedical literature (112). 

 

Biomedical literature is composed of books, publications, abstracts, 

posters, etc. In contrast, clinical text is written by clinicians in the 

clinical setting (describing for example, patients, their pathologies and 

their personal, social, and medical histories). Meystre et al. (2008) 

(112) reported all languages differences found in clinical text, pointing 

out divergent characteristics such as misspellings, ungrammaticality, 

the use of shorthand, informal templates and diversity of input sources 

(113). 

 

TM-solutions have been developed for the disease mention (DM) and 

disease normalization (DN) of disease names in the biomedical 
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literature. Currently, a large number of studies focused on the DM task 

can be encountered (such as (114), (85), (115), (89), (103), (116), 

(117), (102), (118) and (119)), while much fewer on the DN task (such 

as (116) and (104)).  

 

In the DM domain, the initial studies were based on gene name 

recognition systems, which were adapted for the detection of disease 

names in the literature (e.g., ABNER, Lingpipe and BANNER with 

obtained F-scores of 53.44% (89), 51.15% (115) and 54.84% (85), 

respectively, on the BioText corpus). Later, Leaman et al. 2009 

improved the BANNER performance, by developing a new BANNER 

version to detect disease names and achieved 79.9% of F-score on 

ADZC corpus (114). 

 

In the same ADZC corpus, Chowdhury et al. (2010) showed a machine 

learning approach (CRF), combining a full set of linguistic information 

(such as orthographic and syntactic dependency features). Their results 

with respect to the DM task, exhibited a slight improvement with 81% 

of F-score (117). 

 

Gurulingappa et al. (2010) adapted ProMiner with dictionaries from 

different terminological resources (such as MeSH, ICD-10 and 

SNOMED-CT) to identify diseases and adverse effects in biomedical 

literature (103). They made use of their own corpus to evaluate the 

performance and reported higher F-scores in disease and adverse effect 

matching (i.e., 80% and 71%, respectively). 
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Doğan & Lu (2012) evaluated BANNER in their newly developed 

NCBI disease corpus and achieved a higher performance (84% of F-

score) in comparison with ADZC corpus. 

 

Recently, Huang et al. 2013 improved the results previously obtained 

on BioText corpus. They proposed a machine learning approach based 

on CRF, trained with linguistic features extracted by non-deep parsing. 

They reported a slight improvement with 56.67% of F-score. 

 

On the other hand, fewer works have been presented including DN. 

Kang et al. (2012) developed a rule-based NLP approach to improve 

disease normalization systems (116). They compared the performance 

of two known biomedical normalization systems, MetaMap (120) and 

Peregrine (121), applying their additional rule-based NLP approach. 

The evaluation of DM and DN tasks were carried out against the 

AZDC corpus. The results showed a significant improvement in the 

system performance when the rule-based NLP approach was also 

applied. Specifically, in the DM task, Metamap and Peregrine obtained 

73% and 78% of F-scores. In the DN task, the F-scores were calculated 

to be equal to 66.2% and 69.8%, respectively. 

 

More recently, Leaman et al. (2013) presented DNorm system for 

disease name normalization (104). DNorm was evaluated together with 

other approaches using a subset of the NCBI Disease corpus (122). 

Based on BANNER, DNorm applied a machine-learning approach (for 

DN) in order to compute similarities between mentions and concept 

names, and finally, achieved the highest F-score (80.9%). 
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1.4.4 Relation Extraction (RE) 

Once the entities have been identified in the text, the following step of 

a text mining method is to identify relationships (or associations) 

between entities by using RE tools. 

 

1.4.4.1 Identifying relationships between biomedical entities 

In the context of biomedical literature, RE tools allow us to identify 

relationships between biomedical entities. In its simplest form, an 

association is defined between two biomedical entities or a binary 

relationship (such as drug-disease and gene-disease associations). RE 

can classify associations in more detail. For example, drug-disease 

associations can, further, include drug indications (123) and side-

effects (124–126). Furthermore, as commented previously, associations 

can involve more than two entities and are usually characterized by 

specific actions or events that may represent fundamental molecular 

processes (e.g., binding and phosphorylation). 

 

In comparison with the NER task, RE shares many common challenges 

and motivations, such as the creation of high quality annotated corpora, 

with the purpose of training and evaluating systems. It should be noted 

that, many works on RE have been widely applied on the 

genetic/proteomic field. This interest has been also promoted through 

community challenges (such as the LLL in the detection of genic 

interactions (127) or BioCreAtIvE II in the protein-protein interaction 

(PPI) task (128)). 
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In contrast, the detection of relationships is significantly more difficult 

than the detection of biological entities, because relationships are 

generally expressed in a discontinuous way (129). Specifically, a 

relation can be expressed in a single sentence or at the document level 

(e.g., spanning multiple sentences). Although recently, several works 

have focused on relations that span multiple sentences (for example, the 

BioCreAtIvE V designed a specific task for chemical-induced disease 

(CID) relations at the abstract-level (130)), most RE systems are, 

typically, based on relations expressed in a single sentence. 

 

An overview of RE approaches will be performed in the subsequent 

sub-sections and emphasis will be given on the extraction of binary 

associations between genes, diseases and drugs. 

 

1.4.4.2 RE approaches 

Several strategies, techniques and methodologies have been described 

to address the problem of extracting relationships between entities from 

the biological literature. From systems based only on simple co-

occurrences to more complex systems using linguistic analysis, RE 

approaches can be commonly organized in three classes: co-

occurrence-based statistics, pattern-based and supervised learning 

approaches (131). However, several authors classify the RE strategies 

in co-occurrence-based and NLP-based approaches, since pattern and 

learning approaches are, mainly, developed by NLP-based methods 

(44,132). 
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Co-occurrence-based statistics constitute the simplest approach to 

detect relationships between biomedical entities (33,133,134). It 

assumes that two entities are associated if they are mentioned together 

in the same piece of text (typically a sentence). As it can be deduced, 

not all couples of entities mentioned together are related. For example, 

Chun et al. (2006) reported that only 30% of protein pairs co-occurring 

in the same sentences have an actual interaction (40). Then, statistical 

methods are applied to rank co-occurrences and to select the best 

potential relationships, mainly based on frequency scoring 

(31,135,136). 

 

However, co-occurrence methods often report a poor precision 

(generating many false positives), are unable to detect the direction of 

the relationship and also, exhibit difficulties in the distinction between 

direct and indirect associations (44,137–139). The fundamental reason 

causing these limitations is the fact that co-occurrence does not take 

into account any linguistic information regarding the relationship. On 

the other hand, co-occurrence approaches are straightforward and thus, 

it is easier to obtain candidate relationships between entities without the 

need of more complex linguistic analysis. For this reason, most of the 

RE approaches are applied from co-occurrences (hybrid approaches) 

(40,140,141). 

 

As it was seen in the previous section, NLP-based methods extract 

linguistic information, which is exploited by NLP-based approaches in 

order to extract specific structures representing relationships (e.g., 

formal grammars that specify relationship or entities connected by 

syntactic dependencies) (142,143). 
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Linguistic analysis/information is frequently used in pattern-based and 

supervised learning approaches. Principally, pattern-based approaches 

work with patterns constructed from the linguistically annotated text, 

which are matched against unseen text to detect relationships (note that 

the unseen text should be processed by NLP-methods to extract the 

necessary linguistic information). The patterns can be defined manually 

(144–148) or can be automatically constructed from annotated corpora 

(127,149–151). 

 

Systems based on manually developed patterns, frequently, use specific 

rules and can achieve high precision. On the other side, many 

relationships are missed when compared with systems that are based on 

automatically constructed patterns (146). However, both approaches 

require a laborious manual effort to build patterns or to annotate a large 

corpus (44). Nevertheless, pattern forms can be too rigid to capture 

semantic/syntactic paraphrases or long-range relations (152,153). 

 

Supervised learning approaches also use annotated corpora to learn 

linguistic information representing relationships, in order to detect new 

relationships from biomedical literature (30,154,155). However, 

availability of annotated corpora is the major limitation of such 

approaches and consequently, they are often significantly tailored to the 

specific corpus used for development. They have reported good 

performance in cross-validation evaluations, but the performance is 

often reduced when detection is scaled to other corpora (129,156). 

 

During the last decade, supervised learning approaches have been 

widely presented as an appropriate alternative for relation extraction, 
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reporting a better performance compared to simple co-occurrence-

based approaches (23). 

 

It should be noted that, most of the supervised learning approaches 

previously described are based on kernel methods (KMs) 

(141,144,152,153,157–164), conditional random fields (CRFs) (30) and 

maximum entropy (ME) (165). Specifically, KM have been proposed 

as the most popular learning approaches for relation extraction, being 

the nearest neighbor classification (NNC) and especially support vector 

machines (SVMs) the most popular examples (164). 

 

1.4.4.3 Relations in the genome medicine and pharmacogenomics 

areas 

Most of the efforts in the task of relation extraction have been devoted, 

so far, to the identification of interactions between proteins (PPIs). 

Besides the scientific interest, this can be also explained by the 

availability of corpora and the push driven by specific text mining 

challenges (5). In contrast, less attention has been paid to the 

identification of relationships between entities of biomedical interest 

such as diseases, drugs, genes and their sequence variants. 

 

In the past years, this trend has, favorably, changed and there is much 

more interest shown in extracting such type of information (166). The 

first RE systems for non-PPI relationships were based on strategies or 

tools, originally, developed for PPIs extraction. 
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In particular, Giuliano et al. (2006) presented a machine learning 

approach using kernel methods based solely on shallow linguistic 

information for PPI extraction (157). Subsequently, this work was 

adapted to extract drug interactions (160) and drug-side effects (126). 

Buyko et al. (2012) also adapted the JReX system, originally developed 

for PPI extraction, for the extraction of multiple biomedical binary-

relationships between genes, drugs and diseases (167). 

 

There are examples of systems developed for identification of drug 

targets (168,169), interactions between drugs (160,170–172), drug 

indications (123,173), drug adverse effects (126,174), gene-disease 

associations (29,30,40) and also, others covering different types of 

relationships (41,167). Furthermore, alternative text mining systems 

have been presented that detect connections between triplets of entities 

(e.g., chemical-protein/gene-disease connections (175,176)). 

 

Although machine learning approaches exhibit good performance when 

shallow linguistic parsing (126,160) is used, there have been works 

reporting a superior RE performance when dependency parsing (or 

syntactic parsing) is applied -especially when syntactic dependencies 

are combined with shallow linguistic information (177–179). Both 

supervised learning and rule-based approaches have demonstrated good 

performance by exploiting both shallow and dependency information 

(23,144). 

 

Regarding the identification of associations between diseases and genes 

from the literature, a growing interest has been observed during the 

recent years, specifically for human diseases (29,30,40,41,180). In 



 

 40

comparison with PPIs, drug-disease associations (e.g., drug indications 

and adverse drug events) or drug interactions, there are still a few text 

mining works aimed at extracting genetic disease information (where 

many of them study a specific disease such as cancer (29,40,181)). 

Other approaches in this area use data mining to discover diseases 

associated with genes, by combining data extracted from different 

databases (35,181) and applying simple text mining approaches.  

 

Co-occurrences-based statistics approaches were the first text mining 

techniques applied in order to extract gene-disease associations 

(40,138,182–184). Although various text mining techniques based on 

co-occurrences statistics have been, so far, presented (136), most of the 

current systems use NLP techniques and machine learning approaches 

(30,40). 

 

Chun et al. (2006) presented an early work to extract relevant genes 

associated with prostate cancer from MEDLINE abstracts, based on co-

occurrences (40). In order to improve their results, a maximum-entropy 

approach was applied in order to remove erroneous gene mentions, 

using shallow linguistics and syntactic-dependency features. Their 

system was evaluated using a dataset composed of 1,000 sentences and 

an F-score of 82.5% was obtained. 

 

Later, Chun and collages extended their work in order to classify the 

prostate-cancer-gene relationships in six categories (such as genetic 

variation, gene expression and clinical marker) (185). Specifically, they 

developed a machine learning-based topic-classified relation, based on 
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ME. They classified each relationship category with an F-score 

between 55% and 75%. 

 

Bundschus et al. (2008) proposed a machine learning approach to 

extract gene-disease associations with the purpose of developing a 

gene-disease network from the GeneRIF database (30). Specifically, 

their work was centered in the extraction of GDAs and the 

characterization of relationships between genes and diseases (such as 

altered expression, genetic variation and regulatory modification). The 

learning approach that they proposed, was based on CRF and only 

simple features derived from words were used (no higher level 

linguistic information, such as POS tags or phrase structures, was 

used). By 10-fold cross-validation on a subset from GeneRIF sentences, 

they obtained a performance of F-scores of 78% in the detection of 

genes, diseases and their relationships and 78% in the semantic 

classification task. 

 

Özgür et al. (2008) described a combined approach based on text 

mining techniques (with syntactic parsing) and network analysis 

methods to extract genes associated with breast cancer from the 

literature (29). They evaluated their system from a list of fifteen known 

genes related to prostate cancer. Initially, a set of abstracts were mined 

with Genia Tagger to detect genes in sentences. Subsequently, only 

sentences with gene co-occurrences and specific key-words (such as 

“coactive” and “localize”) were taken. Finally, a kernel-based approach 

was trained with dependency information between candidate genes. 

Once the network was constructed, different metrics were used to 

evaluate the centrality of genes related to prostate cancer in the 
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network. They demonstrated a high precision of 90% for the most 

central ten genes and 80% of precision for the top twenty genes. 

 

Hakenberg et al. 2012 presented a system for extracting twelve types of 

binary relationships (such as gene-drug, gene-disease, gene-variant and 

drug-disease) based on co-occurrence between them (41). Their system 

was evaluated on their own corpus and demonstrated a performance of 

76%, 84% and 83% for drug-disease, gene-disease and drug-target 

associations, respectively. 

 

Also, Buyko et al. (2012) adapted their previously developed system 

(186) with the purpose of extracting gene-disease, gene-drug and drug-

disease (167). They compared two machine-learning-based approaches 

for relation extraction: a feature-based approach (ME) with shallow 

linguistic information and a kernel-based approach (SVM) with 

dependency information. They demonstrated superior performance 

when the feature-based approach was used (reporting total F-scores 

approximately equal to 80%). 

 

Hou et al. (2013) described an automatic rule extraction for gene-

disease relationship extraction from a set of MEDLINE abstracts (2,000 

sentences). Specifically, they built rules from 2,000 sentences and 

evaluated them on a test dataset composed of 400 sentences. An F-

score of 66.9% was achieved (180). 

 

Most recently, Pletscher-Frankild et al. (2015) presented a text mining 

application to extract and integrate gene-disease associations (136). 

They, initially, used dictionaries to detect gene and disease mentions in 
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sentences and subsequently, the extracted co-occurrences were ranked 

by the scoring scheme previously presented in (187).  

 

Xu et al. (2016) developed a complete framework to extract GDAs 

from literature. In the RE step, they used a SVM approach to train a 

model by combining lexical features and syntactic features. 

Subsequently, GDAs were ranked by co-occurrence frequency, paper 

citations and author information. They achieved a performance of 86% 

using their own corpus (188). 

 

1.5 Corpora for text mining 

In the context of biomedical text mining, a corpus is defined as a set of 

annotated documents, that is, a set of documents enriched with labeled 

biomedical information. Such annotated documents, usually, focus on a 

specific topic and can appear in the form of a full text (189,190), an 

abstract (191,192) or a sentence (193). Corpora can contain one or 

various types of annotations, usually biomedical entity names (e.g., 

genes (192), diseases (114) or chemicals (194)) and relationships 

between entities (e.g., drug-drug interactions (195), chemical-induce 

diseases (130), etc.). 

 

1.5.1 Annotated corpora in the biomedical domain 

The availability of annotated corpora is a basic requirement for 

developing new methods in text mining, in particular for supervised 

learning and pattern-based approaches. Furthermore, annotated corpora 

are frequently used to evaluate the performance of text mining systems 

(usually in values of precision (P), recall (R) and F-score (F), see 
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Section 1.3.5), thereby, allowing the comparison between different text 

mining systems that address a particular task. 

 

Corpora are usually developed by manual curation, mainly by experts 

in a particular domain. In the TM area, a “Gold Standard” is a corpus 

developed by one or more human experts. Alternatively, if annotations 

are automatically derived, the corpus is defined as a “Silver Standard” 

(22). 

 

The development of a Gold Standard Corpus requires tremendous 

human efforts; consequently, this task should be supported with 

different resources with the purpose of guiding and assisting the 

manual annotation (196). Mainly these resources are: 

 

(1) Guidelines describing all biomedical and technical details 

involving the particular annotation task. 

 

(2) An annotation tool is an essential component to facilitate the 

annotation task. The annotation tool should be user-friendly in 

order to focus the attention of the annotators on the particular 

annotation task. 

 

(3) A training stage for annotators following the guidelines and 

using the annotation tool to prepare them for the annotation 

task, and most importantly, to obtain feedback and to 

understand possible discrepancies between annotators.  
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(4) An inter-annotator agreement value in order to assess the 

consensus achieved between annotators. 

 

Text mining techniques are usually applied providing automatic 

annotations before the manual annotation task (e.g., EU-ADR (191)). In 

this case, the manual annotation task is defined as the validation or 

curation process of annotations automatically generated. In addition, 

the curation process not only reviews annotations, which were 

automatically extracted by text mining techniques, but it, also, carefully 

browses the text in order to detect if they are missing (191,197). 

 

1.5.2 Gold Standards on genome medicine and 

pharmacogenomics 

Neves (2014) presented a comprehensive overview about corpora 

available in the biomedical domain, showing the limited availability of 

annotated corpora regarding gene and disease associations (196). 

Figure 1.6 shows the most popular available corpora according to the 

biological mentions contained, as presented by Neves (2014). 

 

There are several corpora publicly available with annotations on genes 

or diseases. Table 1.1 shows a wide list of corpora focusing on the 

genome medicine and pharmacogenomics areas, including annotations 

of genes/proteins, drugs and diseases, as well as, their relationships in 

several cases. 
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Figure 1.6. Classification of corpora according to the semantic annotations involved. 

 

In 1999, the Genia project was launched to develop a corpus annotated 

with different biological entities (protein, DNA, RNA, cell line and cell 

type, among others) (192). The corpus, released in 2003, was 

developed by combining text mining and expert curation. It contained 

almost 100,000 annotations from 2,000 MEDLINE abstracts focused 

on molecular biology (198). A variety of studies based on Genia have 

been presented thereafter (69,89,199,200). In 2002, Franzén et al. 

(2002) presented the Yapex corpus as an alternative to the GENIA 

corpus that addressed, only, protein annotations (84). It consisted of 

101 annotated MEDLINE abstracts annotated by domain experts. 

 

It should be noted that, the above corpora did not contain any 

annotation of normalized entities. As mentioned in Section 1.4.3.3, the 

BioCreAtIvE (17) challenge initiated the identification of gene/protein 
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names in text, by focusing on three specific species: yeast, fly and 

mouse (87). An annotated corpus was provided for the evaluation of 

text mining systems. Later, in 2007, the BioCreAtIvE II (18) was 

organized with a Gene Normalization (GN) task aimed at human genes 

(88) and an annotated corpus for human gene identification was 

provided (201). 

 

There are also some corpora available with annotations on diseases. In 

2004, the BioText Corpus (202) and PennBioIE Oncology Corpus 

(203) were the first developed corpora with disease annotations. The 

former included annotations of diseases and treatments, while the latter 

treated oncology and cytochrome P450 enzymes. 

 

In 2009, the Arizona Disease Corpus (AZDC) was developed by two 

expert annotators, following specific annotation guidelines (204), in 

order to perform proper annotations (114). The AZDC corpus consists 

of 2,783 sentences from 793 MEDLINE abstracts with more than 3,000 

annotations of disease names, including disease name boundaries 

linked to their corresponding UMLS concept identifiers. Naturally, the 

AZDC corpus became an important Gold Standard for development 

and evaluation of both, DM and DN systems (116,117). 

 

Gurulingappa et al. (2010) presented a work focused on the 

identification of diseases and adverse effects in biomedical literature, 

and developed a new corpus called SCAI Disease corpus (103). The 

corpus was based on 400 randomly selected MEDLINE abstracts from 

a set of documents focused on diseases and adverse effects. Various 
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experts in the field annotated 1,428 diseases and 813 adverse effects 

mentions without performing normalization. 

 

Doğan & Lu (2012) described their efforts in improving the AZDC 

corpus by building a richer, broader and more complete diseases name 

corpus (39). More recently, they presented an updated corpus (NCBI 

Disease corpus) (122) to include concept annotations by MeSH 

identifiers. It was annotated by twelve experts (two experts per 

abstract), thereby, guaranteeing a more representative view of the 

disease entity. In addition, the disease mentions were classified 

according to the following categories: (i) Disease Class, (ii) Specific 

Diseases, (iii) Composite Mention and (iv) Modifier. The NCBI 

Disease corpus consisted of 793 MEDLINE abstracts with a total of 

6,900 disease mentions identified with MeSH concepts. 

 

With respect to the annotated corpora on gene-disease associations, it 

should be noted that, only a small number of works have been reported 

(196). Craven et al. (1999) presented a corpus with PPIs and gene-

disease association annotations (mentions are not identified) (135), 

which was, afterwards, used for the development of systems that detect 

binary relationships. 

 

Van Mulligen et al. (2012) developed a corpus with annotations 

between genes, drugs and diseases (linked to their corresponding 

identifier), by including binary associations between them (191). This 

corpus was composed of 300 abstracts. 
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Table 1.1. List of corpora involving gene/protein, drug and disease entities. 

Corpora Year 
Entity 

Mention 

Entity 

Normalization 
Relationships 

Number of 

Documents 

Craven 1999 
Proteins, 
genes and 
diseases 

- 
PPIs and gene-

disease 
associations 

1,677 
abstracts 

EDGAR 2000 
Genes, 

drugs and 
cells 

- 

Gene-drug, 
gene-cell and 

drug-cell 
associations 

103 
abstracts 

Yapex 2002 Proteins - - 
101 

abstracts 

Genia 2003 
Proteins 
among 
others 

- - 
2,000 

abstracts 

BioText  2004 Diseases - - 
3,655 

sentences 

PennBioIE  2004 Diseases - - 
2,514 

abstracts 

AIMed 2005 Proteins - PPIs 
200 

abstracts 

BioInfer 2007 Proteins - PPIs 
1,100 

sentences 

HPRD50 2007 Proteins - PPIs 50 abstracts 

BioCreAtIvE 
II GM 

2007 Genes - - 
15,000 

sentences 
BioCreAtIvE 

II GN 
2007 Genes NCBI Gene - 

543 
abstracts 

EU-ADR 2008 
Genes, 

drugs and 
diseases 

- 

Drug-target, 
drug-disease 
and target-

disease 

300 
abstracts 

OSIRIS 2008 

Genes 
and 

sequence 
variants 

NCBI Gene, 
dbSNP 

- 
105 

abstracts 

AZDC 2008 Diseases UMLS - 
2,783 

sentences 

SCAI 
Disease 

2011 Diseases - - 
400 

abstracts 
NCBI 

Disease 
2012 Diseases UMLS - 

793 
abstracts 
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2 Objectives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“A goal without a plan 

is just a wish” 

Antoine de Saint-Exupery (1900-1944) 
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The application of high throughput technologies in life sciences based 

on the success of the Human Genome Project has led to a massive 

growth of biomedical data. This growth has been accompanied by a 

parallel increase of biomedical publications. Text mining approaches 

have emerged as indispensable tools to support scientists in identifying, 

extracting and structuring relevant biomedical data. This is particularly 

evident in areas such as genome medicine and pharmacogenomics, 

where thousands of articles are published each year. 

 

The general aim of this thesis is to develop a text mining system for the 

extraction of information relevant to genome medicine and 

pharmacogenomics. In particular, the specific goals are: 

 

(1) To develop a NER to identify genes and diseases from the 

scientific literature. 

 

(2) To develop a RE to identify associations between genes, 

diseases and drugs. 

 

(3) To apply the text mining system to different projects in the area 

of genome medicine and pharmacogenetics, including the 

development of knowledge resources. 

 

(4) To evaluate the text mining approach in a text mining 

community challenge. 
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3 The BefBefBefBefreereereeree System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Everyone should know 

 how to program a computer 

 because it teaches you how to think” 

Steve Jobs (1955-2011) 
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As an objective of this thesis, the Bio-Entity Finder and RElation 

Extraction (BeFree) system was developed. BeFree is a text mining 

tool that involves two main applications related to the IE task: (i) 

named entity recognition (NER) and (ii) relation extraction (RE). 

Different techniques and approaches have been developed for each of 

the above applications, in order to achieve the fundamental and 

continuously evolving objectives of this thesis. In this chapter, it will be 

described how the BeFree tool addresses the above two applications 

(NER and RE). 

 

3.1 The Named Entity Recognition 

BeFree implements a NER based on dictionary and rule-based 

approaches. A dictionary-based approach focuses on the detection of 

biomedical entity names and a rule-based approach on the elimination 

of erroneous detections. In the following sections, the NER approach is 

explained in more detail. In particular, the biomedical text used for 

mining, the development of the dictionaries (for gene and disease 

names) and the procedure followed for the NER task are described. 

 

3.1.1 Implementation of NER 

The NER approach is mainly focused on human genes and diseases. In 

addition, alternative NERs can be used to detect different kinds of 

entities and to complement the information extracted by BeFree. For 

example, SETH (205) and tmChem (206) NERs have been used 

together with BeFree for the detection of mutation (e.g., “Gly82Ser”, 

“S455N”, “6310C>T” and “rs3750805”) and chemical (e.g., 
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“Nafcillin”, “3-O-(2'-acetoxy)benzoyl-2-glucopyranose” and “aspirin”) 

names, respectively. 

 

The NER is implemented in Python 2.7.0 release (207). Python is a 

high-level scripting language, thus strong in text processing. 

Nowadays, Python is used for a great variety of applications, in 

particular, for text processing. Fast tools for data analysis in Python 

often use C or FORTRAN in order to optimize common operations. 

Finally, the main characteristic of a Python code is that it is user-

friendly. 

 

Many tools and packages have been developed to assist text processing 

in Python. The Natural Language Tool Kit (NLTK) (208) is, probably, 

the most frequently used package in Python for human language data 

processing. Specific functions included in NLTK package are used for 

text processing in the NER. 

 

Furthermore, the “regex” package (209) was used to create the patterns 

for the matching task. “Regex” is an alternative package to the 

Python’s current regular expression (“re”) module implementation, 

which is possibly the best performing regular expression engine 

available in a mainstream programming language. The “regex” package 

combines some of the advanced features of .NET (such as capture 

collections and right-to-left matching) with some of the advanced 

features of Perl, PCRE and Ruby (subroutines and recursion). The most 

important characteristic for the development of the NER is that ‘regex’ 

allows and efficiently manages a huge list of terms, compiled in a 

unique and large pattern, for matching task in text. 
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3.1.2 Abstracts as standard input 

As discussed in Introduction (see Chapter 1), scientific literature is 

much more accessible than other types of biomedical text (e.g., clinical 

reports, etc.). Another important aspect to take into account about the 

use of abstracts is that they describe in a concise manner the main 

findings of a study. This aspect allows for large scale data processing 

covering different studies. 

 

Abstracts, specifically from MEDLINE, are the most commonly used 

type of documents for biomedical text mining applications. MEDLINE 

allows open access to them. In contrast, the access to the full-text 

article requires a license, together with a possible requirement for the 

processing of PDF files with its inherent difficulties. Nevertheless, 

there are currently several free repositories of full-text biomedical 

articles, such as PubMed Central (PMC) (210), where 3.8 million 

articles are archived. This is significantly lower number compared to 

those available on MEDLINE (more than 26 million abstracts). For this 

reason, most of the BeFree applications developed in this thesis work 

are based on MEDLINE abstracts. 

 

It should be noted that, BeFree does not implement a document 

retrieval system (see Section 1.3.2). Therefore, the PubMed search 

engine is queried with the purpose of retrieving relevant publications 

from MEDLINE. By using a set of keywords based on MeSH terms, 

PubMed returns a collection of publications dealing with a specific 

topic(s) of interest, which can be easily downloaded. 
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In order to efficiently access all required abstracts, a local repository of 

MEDLINE has been developed. The abstracts were stored by keeping a 

similar XML structure of MEDLINE abstracts.  

 

3.1.3 Dictionaries: building the basis of the NER 

3.1.3.1 Defining dictionaries 

BeFree implements a dictionary-based approach to detect gene and 

disease names from the literature. Dictionaries are large collections of 

terms representing biomedical entities. Additionally, each term can be 

linked to a unique identifier, which represents a biomedical concept. 

 

Matching processes are applied to look-up matches between text and 

terms included in dictionaries and as discussed in Section 1.4.3, 

dictionary-based approaches are limited to finding only terms that are 

included in the dictionary. 

 

Subsequently, a dictionary (e.g., dictionary of gene or disease names) 

should cover the maximum number of terms, which can be associated 

with vocabulary, as well as, with linguistic variations (e.g., 

abbreviations, spelling and morphological variations). In this context, 

dictionaries involving gene and disease entities should consist of 

thousands of identifiers linked to hundreds of thousands terms. 

 

A dictionary should have a wide variability of terms representing a 

concept. However, different concepts could share terminology causing 

an ambiguity. The ambiguity index can be used as defined in (211) to 

quantify the fraction of terms that refer to different concepts and 
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therefore identifiers, while the variability index quantifies the average 

number of terms for each concept (211). The variability index and 

ambiguity index of a dictionary are potential indicatives of its 

performance. 

 

The dictionary-based approach implemented in BeFree covers the 

maximum number of terminology based on two phases: (i) by 

collecting the maximum number of terms for each biomedical entity 

(genes and diseases) from different biomedical resources that contain 

terminological information and (ii) by ensuring the detection of 

linguistic variations in the matching task. 

 

Specifically, the matching task applied in BeFree is based on a 

preprocessing step of the dictionaries in order to populate them with a 

large extension of linguistic variations. For example, the term “breast 

tumor” could appear in a text as “breast tumors”, “breast tumour” and 

“breast tumours” or “tumor of breast” including its variations. 

 

BeFree preprocesses all terms collected from different terminological 

resources in order to satisfy a wide coverage of linguistic variations. 

Then, the “regex” package is applied with a large regular expression, 

previously compiled allowing a fuzzy- or soft-matching. 

 

In the following sections, the development and extension processes of 

the dictionaries of genes and diseases are described in more detail.  
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3.1.3.2 The gene dictionary 

The gene dictionary should cover the large number of genes and 

proteins present in current catalogs. Three important biological 

databases referring to genes and proteins are used to collect the highest 

number of terms: (i) NCBI Gene (16), (ii) UniProt (62) and (iii) HGNC 

(212). 

 

Specifically, NCBI Gene integrates gene information from a wide 

range of species (note that only the human species is taken in account). 

UniProt is a comprehensive, high-quality and freely accessible database 

of protein sequence and functional information. It represents a rich 

resource on nomenclature about proteins. HGNC is responsible for 

approving unique symbols and names for genes to allow unambiguous 

scientific communication. 

 

These databases share many terms to define genes, where each term 

includes specific vocabulary and synonyms. Consequently, it is 

required to integrate terminology for all genes in each database. 

 

Initially, for each database, the files containing, among other things, 

information about nomenclature for genes are downloaded. Files 

include approved or official nomenclature. An example of the files 

downloaded for each of the above three databases, together with the 

fields used is shown in Table 3.1. 
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Table 3.1. A list of the fields used for the extraction of gene terminology from the 
files downloaded for each database (NCBI Gene, Uniprot and HGNC). The fields 
used, contain information of vocabulary and synonyms for genes. 

Database Filename Fields 

NCBI Gene 
gene_info.gz 

(213) 

‘symbol’ 
‘synonyms’ 
‘description’ 

‘symbol from nomenclature 
authority’ 

‘other designations’ 

Uniprot 
uniprot_sprot_human.dat.gz 

(214) 

‘recommended name’ 
‘alternative name’ 

‘gene name’ 

HGNC 
hgnc_complete_set.txt 

(215) 

‘approved symbol’ 
‘approved name’ 

‘previous symbols’ 
‘previous names’ 

‘synonyms’ 
‘name synonyms’ 

 

By cross-reference information between databases, the terminology 

provided for each database can be integrated for the same gene. In 

particular, NCBI Gene contains cross-references to HGNC, UniProt to 

NCBI Gene and HGNC to the other two databases. 

 

In more detail, a unique identifier is created to map identifiers from 

each biological database. This new identifier is called cross-reference 

unique identifier (X-RUI). An X-RUI can refer to one or multiple 

NCBI Gene, UniProt or/and HGNC identifiers. 

 

Figure 3.1 illustrates an example of the integration task with reference 

to the Lipocalin-2 gene. Note that the same names can be used to refer 

to the protein (e.g., “Neutrophil-gelatinase associated lipocalin” in 

UniProt) and to the gene (e.g., “Neutrophil-gelatinase associated 
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lipocalin” in NCBI Gene), since both types of entities share, in general, 

their terminology. Thus, for the sake of simplicity, we refer to genes 

and proteins as genes.  

 

Finally, the terms and synonyms are combined and linked with the 

corresponding X-RUI identifier, thereby, generating a raw dictionary of 

genes. 

 
Figure 3.1. Diagram illustrating the workflow of the integration process for the 
extraction of gene terminology in the case of Lipocalin-2. Three databases are used 
(NCBI Gene, Uniprot, HGNC) and the extracted terminology is integrated into a 
unique identifier (X-RUI “1984”).  
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3.1.3.3 The disease dictionary 

The Unified Medical Language System (UMLS) Metathesaurus (28) is 

a large, multipurpose and multilingual thesaurus that contains millions 

of biomedical and health-related concepts, their synonymous names, 

and their known relationships. In particular, the UMLS covers a wide 

range of vocabularies related to diseases from many resources (such as 

MeSH, OMIM, SNOMED-CT, ICD9-CM, etc.). 

 

For this reason, the UMLS Metathesaurus has been used as an 

integrated resource of disease terminology. The UMLS provides many 

files, which have been designed for an easy integration in a MySQL 

database (specifically, the UMLS 2014AB release was used). 

 

Specifically, the MRCONSO and the MRSTY tables were used for the 

vocabulary extraction. The MRCONSO table contains records with 

terminological information, and the semantic type for each record is 

included in the MRSTY table (such as ‘Anatomical Structure’, ‘Disease 

or Syndrome’, ‘Drug Delivery Device’, ‘Laboratory or Test Result’, 

‘Population Group’ and ‘Social Behavior’).  

 

First, from 133 semantic types included in the MRSTY table, only those 

related to diseases were selected. In particular: ‘Congenital 

Abnormality’, ‘Acquired Abnormality’, ‘Disease or Syndrome’, ‘Mental 

or Behavioral Dysfunction’, ‘Experimental Model of Disease’, ‘Sign or 

Symptom’, ‘Anatomical Abnormality’, and ‘Neoplastic Process’.  

 

Subsequently, all records referring to the previously defined semantic 

types (only in English language) were selected from the MRCONSO 
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table, thus, generating a raw dictionary of disease names, where terms 

are linked to a Concept Unique Identifier (CUI). 

 

3.1.4 Terminology preprocessing for the matching task 

From the terminology included in the raw dictionaries, erroneous or 

undesired terms (or characters) can be found. Furthermore, raw 

dictionaries do not cover all vocabulary variations used in publications, 

therefore presenting a major obstacle to effectively detecting 

biomedical entities in text. 

 

In order to face this limitation several processes to clean (or curate), 

extend (or generate) and simplify (or normalize) the terminology 

contained in dictionaries are applied to facilitate the matching task. 

 

In brief, a curation process “cleans” the terminology from undesirable 

and spurious terms. Terms normalization allows mapping variants of a 

term to a single, standardized form. Furthermore, terms can be 

processed with the purpose of automatically generating additional 

variants to cover a wide range of vocabulary variations that are not 

originally contained in the dictionaries. 

 

Moreover, an additional process can be required before or after 

preprocessing methods, depending on terminological resources or the 

type of biomedical entity. 

 



 

 67

In this scenario, BeFree applies preprocessing methods, based on 

multiple rules, to both dictionaries in order to face the coverage and 

matching limitations. 

 

However, before applying any defined rule, additional processes are 

applied in the case of the disease dictionary. As noted earlier, BeFree is 

focused in the detection of human genes and diseases. In this context, 

the gene dictionary was collected from databases containing specific 

gene information for humans. However, terms included for the disease 

dictionary were only selected by semantic types from a huge 

metathesaurus (not by human specification). 

  

The semantic types do not indicate if a disease is for human or any 

other species, since a disease can be, typically, suffered by different 

species. As a consequence, specific diseases for non-human species are 

also included in the dictionary. Table 3.2 shows examples of disease 

concepts (CUIs) referring to non-human diseases.  

 

In order to remove these diseases, an exhaustive search in the diseases 

dictionary was applied to detect non-human species in the terminology, 

to obtain a list of disease candidates to be excluded. Then, a manual 

inspection of the list was required to ensure an appropriate suppression 

of diseases. As a result, 1,939 disease concepts were defined as non-

human diseases, and subsequently removed. 
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Table 3.2. Examples of UMLS concepts for non-human species. 

UMLS Concept (CUI) Term 

C0276479 Mouse hepatitis 

C0276477 Sialodacryoadenitis of rat 

C0041307 Tuberculosis in cattle 

C0275614 Ovine bihead 

C2349765 Bovine stomatitis 

C0271942 Goat milk anemia 

C0263462 Feline acne 

C0334680 Veterinary tumor 

C0392661 Dog tapeworm infection 

 

Furthermore, the Casper tool (216) was applied in the dictionary of 

diseases. Casper is a UMLS-oriented rule-based tool (for this reason, 

Casper was not used for the genes dictionary.). Specifically, Casper 

suppresses undesired terms (e.g., repeated terms) and generates 

additional synonyms and spelling variations (e.g., “renal 

hyperchloremic acidosis”, “immune deficiency syndrome acquired”, 

“parotid neoplasm”, “peripheral nervous system Disorder” and “RTK” 

are variations generated from the following original terms: “acidosis, 

renal hyperchloremic”, “acquired immune deficiency syndrome”, 

“neoplasm of Parotid”, “Disorder of the peripheral nervous system” 

and “Rhabdoid Tumor of Kidney (RTK)”, respectively). 

 

Subsequently, the disease dictionary can be preprocessed by BeFree. 

Table 3.3 shows the multiple rules defined in BeFree to carry out the 

curation, extension, generation and normalization processes. Each 

dictionary implements a different order of rules, according to the best 
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ambiguity index and variability index values, similarly to the study 

presented by Tsuruoka et al. (2008) (211). 

 

The terminology extracted directly from biological databases can be 

regarded as raw vocabulary. Some terms can be considered as 

undesirable (e.g., terms referring to general concepts as “receptor”, 

“gene”, “disease”, “infection” and “complications”), spurious (e.g., 

terms with less than three characters or including only 

numeric/punctuation characters), or they can contain some mistakes or 

undesirable characters (e.g., terms with annotations not used in free text 

as “[X]Dementia in Alzheimer's disease (disorder)”). Then, curation 

rules are applied ‘to clean’ the raw terminology, thereby, facilitating 

the matching task in the literature. 

 

Rules for extending and generating new variations are also applied. For 

example, from the “IL 2r” term, replacing Arabic with Roman numbers 

can generate a new variant of a term (e.g., “IL II”), while an extension 

rule can replace “r” by “receptor” (e.g., “IL 2 receptor”). 

 

An important step in the preparation of the vocabulary is the 

normalization process and is performed with the aim of simplification, 

such that variants of a term can be mapped to a single one (e.g., “IL 2”, 

“IL(2)” and “IL-2” terms are simplified to “IL 2” by removing 

punctuation marks). 

 

In order to illustrate the effect of the normalization process, Table 3.4 

shows the number of concepts, the number of terms, the ambiguity 
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index and the variability index, before and after the normalization 

process for both disease and gene dictionaries. 

 

Table 3.3. List of rules implemented in the preprocessing of terminology.  

Rule Example 

Removing additional 
annotations 

“[X]Gastric neurosis[Disease/Finding]” � “Gastric 
neurosis” 

Removing incorrect 
terms 

“23.44” or “;” � removed 

Removing punctuation 
marks 

“Interleukin-2” � “Interleukin 2” 

Removing terms smaller 
than 3 characters 

“AD” � removed 

Converting to lower 
case 

“FALDH deficiency” � “faldh deficiency” 

Applying char-digit split “chromobox5” � “chromobox 5” 

Converting to Greek 
letters 

“HP1-beta” � “HP1-β” 

Converting to Roman 
numbers 

“Interleukin 2” � “interleukin II” 

Simplifying Latin letters 
“Sjögren-Larsson syndrome” � “Sjogren-Larsson 

syndrome” 

Spelling variation “Breast cancer tumor” � “Breast cancer tumour” 

Extending terms “IL 2r” � “IL 2 receptor” 

 

It is important to emphasize, herein, that each dictionary has its own 

distinctive features; for example, the gene dictionary has a high 

prevalence of acronyms (including numbers, punctuation marks, Greek 

letters, etc.) referring to genes (e.g., “A2MP1”, “NOTCH1”, and 

“SF3B1”), whereas long terms and acronyms with characters are 

prevalent in the disease dictionary (i.e., “Alzheimer’s disease”, “Acute 

lymphoblastic leukemia”, “Primary eosinophilic endomyocardial 

restrictive cardiomyopathy” and “Rheumatic tricuspid stenosis and 
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insufficiency”). Consequently, not all rules obtain the same effect in 

each dictionary. 

 

The best normalization process is the one that improves the variability 

index by minimizing the ambiguity index of dictionaries. In the case of 

the gene dictionary, the number of terms between raw and curated 

dictionaries increases by 19% with a slight effect in ambiguity. In the 

case of the disease dictionary, there are no major changes in ambiguity 

and variability indexes after the dictionary curation process. Moreover, 

the final number of terms decreases significantly and this could be 

explained by the high number of repeated terms included in the UMLS 

and those generated by Casper. 

 

Table 3.4. Showing statistics of gene and diseases dictionaries. For each dictionary, 
the table contains the characterization of the raw and curated version. Specifically, for 
the disease dictionary, the contents and statistics of the resulting dictionary using 
Casper are included. 

Dictionary 
Number 

of concepts 

Number 

of terms 

Ambiguity 

index 

Variability 

index 

Gene raw 51,429 576,784 1.53 6.12 

Gene curated 51,429 705,525 1.48 13.72 

Disease raw* 87,910 355,147 1.01 4.04 

Disease Casper 77,366 306,009 1.01 3.96 

Disease Casper & curated 77,366 298,879 1.02 3.86 

*In this dictionary, the general and non-human concepts have been removed. 
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3.1.5 The NER process 

3.1.5.1 Basic principles 

All implemented functions for the NER have been included in a 

Python’s project called BeFreeNER. This project can be imported from 

other Python’s modules using the import command. 

 

The main function in the BeFreeNER project is entity_extraction where a 

list of PMIDs, an output file and the type of entity for identification, are 

the input parameters. Figure 3.2 shows an example of how to apply the 

BeFree NER for the detection of genes and diseases in a set of four 

abstracts. 

 

 

 

 

 

 

 

The entity_extraction function is composed of four main steps, which 

process and extract information from a given abstract. Specifically, 

these steps are Document Processing, Mention Extraction, Acronym 

Filtering and Entity Disambiguation (see Figure 3.3 for a schematic 

pseudocode of the entity_extraction function). Each step is, briefly, 

described below. A more detailed description will be provided in the 

following sections. 

 

 

import BeFreeNER 

pmid_list = [‘25162549’, ‘25416513’, ‘2548710’, ‘25791637’] 

output_path = “result.txt” 

entity_extraction(pmid_list, output_path) 

Figure 3.2. Example of the BeFree NER code using Python. BeFreeNER is , 
initially, imported. Next, a list of PMIDs is defined for processing. Then, a path for 
the output file is defined. Finally, the entity_extraction performs the recognition 
process of gene and disease names in abstracts. 
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In the beginning, BeFree should be initialized, that is, structures and 

classes requiring initializations are loaded. The Sentence Splitter tool 

implements an algorithm that allows breaking a text into sentences. 

Particularly, the Sentence Splitter tool used is included in the NLTK. 

This Sentence Splitter implements a supervised algorithm, which needs 

trained data to split sentences. Specifically, the 

‘tokenizers/punkt/english.pickle’ model included in the NLTK package 

is used for Sentence Splitter initialization. 

 

At the same time, the BeFree NER structure is initialized. BeFree 

collects all terminology contained in previously processed dictionaries 

(see Section 3.1.4). Next, the “regex” package compiles a large pattern, 

which will be applied in each sentence. 

 

The Abstract Processing step retrieves the abstract information from a 

PMID. This information is processed and structured in order to 

facilitate the subsequent steps. 

 

function entity_extraction(docid_list, output_path){ 

BeFree_inicializations() 

for each doc_id in docid_list{ 

 doc_structure = document_processing(doc_id) 

 results = mention_extraction(doc_structure) 

 acronym_filtering(results) 

 entity_disambiguation(results) 

 write_results(results) 

} 

} 

Figure 3.3. Pseudocode representing the entity_extraction function. 
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The Mention Extraction step implements a sequence of subroutines (see 

Section 3.1.5.3), which are sequentially executed on each document. 

This step extracts the maximum number of mentions potentially 

referring to gene and disease names. Furthermore, additional filtering 

steps are applied for the removal of erroneous (false positive) results, 

specifically, the Acronym Filtering and Entity Disambiguation steps.  

 

Table 3.5. Description of the resulting columns of the generated text file by the 
recognition process. 

Field Example 

Document identifier PMID:26775353 

Publication year 2016 

Journal name Eur. J. Gynaecol. Oncol 

ISSN number 0392-2936 

Abstract section CONCLUSION 

Section number 4 

Sentence number 7 

Mention identifier XRUI:5587|XRUI:5310 

Mention text PKD1 

Mention offset 27:31 

Long term referenced 
before 

Protein kinase D1 (in sentence #1, offset 40:57) 

Sentence 
The authors confirmed that PKD1 was downregulated in 
invasive breast cancer. 

 

Finally, the entity_extraction function generates a tabular text file by 

default. The resulting file is composed of 12 fields, including 

information of the abstract (such as PMID, year of publication and 

name of the journal) and the mentions found (mention contained in the 
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sentence, the offsets and the sentence). An example of a row contained 

in the resulting file is shown in Table 3.5. 

 

3.1.5.2 Document Processing 

In this step, the abstract information is retrieved by the PMID identifier 

from the local repository. Then, in order to facilitate the matching task, 

each abstract is processed and organized in an abstract structure. 

 

The abstracts are, often, presented in sections (such as introduction, 

methods, results and conclusions) and this information is included in 

the abstract structure in order to indicate the section in which the NER 

finds information. If the abstract is not structured in sections, the NER 

divides the abstract in three parts, including an introduction, a body and 

conclusions. For example, in Section 4.1 this information was taken 

into consideration to score disease biomarkers associations, assuming 

that the title or the last part of the abstract tends to express more 

concisely the final message of the publication, whereas the rest of the 

abstract contains background information and more hypothetical 

discourses as contextual information of the study. 

 

In the end, each section is divided into sentences using the sentence 

splitting previously mentioned. Then, each sentence is pre-processed 

for cleaning. This occurs, for example, in the case where the sentences 

have been retrieved from XML documents, such that, they can contain 

XML tags and thereby, leading to problems with the position of text 

characters (such as “&amp;”, “&mgr;” and “&gt;” are converted to 

“&”, “mu” and “>”, respectively). Furthermore, some expressions can 
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be “hidden” in the text in order to prevent errors of detection, such as 

units of measurement (e.g., a real number followed by “mg” or 

“µmol/L”) or percentage values (e.g., “8%”, “34.56%” and “.34%”). 

 

3.1.5.3 Mention Extraction 

Mention extraction is the most important step in the process of 

detection and identification of entities. The aim of this step is to find 

the maximum number of mentions that refer to a specific entity (a gene 

or a disease). Mention Extraction processes sentences sequentially and 

the information extracted is stored in a structure. 

 

The compiled pattern (using the “regex” package), initially, processes 

the sentence in order to obtain a set of the longest matched mention in 

the Pattern Matching step. Each mention includes specific information, 

such as the mention text itself, a character offset determining the text’s 

position in the sentence and the unique database identifiers.  

 

Next, each mention is enriched with more information based on context 

features. This involves a Features Enrichment step, which searches for 

orthographic and context features associated with the mention. For 

example, if the term is an acronym, it is written in plural or includes a 

key word for genes or diseases (such as “receptor” or “dystrophy”, 

respectively). These features play an important role in the detection of 

errors and disambiguation of entities. Table 3.6 shows the list of 

features that a mention can include. 
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Table 3.6. List of features used for the Mention Extraction step. 

Feature Description 

SYMBOL (S) 

Indicates that the mention is an acronym or symbol. 

Example 1 (PMID:25439727): 
Mutations in PEX7, GNPAT, and AGPS, all involved in the plasmalogen-

biosynthesis pathway, have been described in individuals with RCDP. 

LONG TERM (L) 

Indicates that the mention is a long term or definition. 

Example 2 (PMID:25298246): 

Our previous studies also demonstrated that AQP5 was highly expressed in 

epithelial ovarian cancer and contributed to the progress of ovarian cancer. 

DICTIONARY (D) The mention is included in the dictionary. 

ACRONYM 
EXTRACTED (E) 

The mention is an acronym, which makes reference to a long term previously 
mentioned. It is detected in the Acronym Learning step. If the acronym is in the 
dictionary, it is also included the DICTIONARY feature.  

Example 3 (PMID: 26770982): 
Type II diabetes mellitus (T2D) is a chronic metabolic disorder that results from 

defects in both insulin secretion and insulin action. 

 

Example 4 (PMID: 26770982): 
Lactate dehydrogenase A (LDHA) is one of such genes. 

NUMBER OR 
GREEK LETTER (N) 

A digit is included in the detected mention. 

Example 5 (PMID: 25230976): 
Quantitative RT-PCR analysis revealed that the mRNA expression levels for the 
MMACHC, PTER, EPC2, ATXN7, FHIT, KIFAP3, CPEB1, MINPP1, 
TEX264, FAM107A, UPF3A, CDC16, MCCC1, CPSF3, and ASAP2 genes, 
being partner genes involved in the chimeric transcripts in the initial cohort… 
 
Example (PMID: 25594371): 
An α-synuclein gene (SNCA) polymorphism moderates the association of PTSD 

symptomatology with hazardous alcohol use, but not with aggression-related 

measures. 

GENE (Ge) 

The context of the mention includes a gene keyword (such as gene, protein, 
receptor, promoter, target and biological marker). The location of the keyword in 
reference to mention is also included. 

Example 6 (PMID: 23670889): 

Association of dopamine D2 receptor and leptin receptor genes with clinically 

severe obesity. 
 
Example 7 (PMID: 17508011): 

Therefore, we studied the association of single nucleotide polymorphism (SNP) in 

the IL-6 gene (IL6) promoter with plasma levels of fibrinogen, CRP and 

hypertension. 
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DISEASE (Di) 

The context of the mention includes a disease keyword (such as disease, 

pathology, infection, disorder, syndrome and symptom). The location of the 

keyword in reference to mention is included. 

Example 8 (PMID: 26591157): 

Here we present a case of 55 year old male who presented with lower 

respiratory tract infection and clinical findings of systolic murmur… 

 

Example 9 (PMID: 26468204): 

These findings further suggest that therapeutic manipulation of S6K1 could be a 
valid approach to mitigate AD pathology. 

PLURAL (P) 

The mention appears in plural. 

Example 10 (PMID: 26468198): 
Adolescence is characterized by drastic behavioral adaptations and comprises a 
particularly vulnerable period for the emergence of various psychiatric 

disorders. 
 
Example 11 (PMID: 25533828): 
MMPs and TIMPs play important roles in tumor angiogenesis and invasion. 

 

Next, a quick filter is applied to remove mentions involved in common 

English words (such as “can”, “back”, “are”, “but” and “full”). 

 

Then, the Acronym Learning step helps to reference acronym terms 

with the long term previously mentioned in the abstract (adding the 

‘ACRONYM EXTRACTED (E)’ feature, see Table 3.6). Also, by 

detecting an acronym-definition structure (such as ‘DEFINTION 

(ACRONYM)’), acronym terms not included in the dictionaries can be 

detected. For example, the dictionaries do not contain terms with less 

than three characters; consequently they cannot be detected using the 

information contained in the dictionaries (see Table 3.7). 
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Table 3.7. Examples of the detected mentions in the Acronym Learning step, based 
on the “AD” and “MD” terms. In the first and second row, “AD” is detected as 
Alzheimer Disease and Alcohol Dependence, respectively. “MD” is detected in the 
rest of examples representing Major Depression, Menkes Disease and Myotonic 
dystrophy, respectively. 

PMID Sentence Description 

11391700 
These results are discussed in relation to 

neuroprotection and toxicity of the age-

related pathology of AD. 

AD mention is detected as 
Alzheimer disease. 
(CUI: C0002395) 

17217931 

A blunting of GH responses in abstinent 

AD men was observed only among those 

with the most common HTR1B promoter 

diplotype. 

AD mention is detected as 
Alcohol dependence. 
(CUI: C0001973) 

16165107 
Haplotype analysis indicates that TPH-1 

associates with MD. 

MD mention is detected as 
Major depression. 
(CUI: C0041696) 

15923132 
The precise reasons for 

neurodegeneration in MD are poorly 

understood. 

MD mention is detected as 
Menkes disease. 
(CUI: C0022716) 

10999804 

We studied the diurnal rhythmicity of 

cytokines and cortisol, ACTH, and 

dehydroepiandrosterone in 18 men with 

adult onset MD and 18 controls. 

MD mention is detected as 
Myotonic dystrophy. 
(CUI: C0022716) 

 

In other words, the Acronym Learning step also detects the case where 

the mention is followed by an acronym or symbol, which will be 

always referenced to the mention in the current abstract. This acronym 

may not be included in the dictionary. For the purpose of detecting the 

new acronym in the rest of the abstract, it is included as a new acronym 

term in an additional acronym dictionary associated with the current 

abstract. This dictionary is also applied to the sentence, such that the 

new inferred acronyms are detected (similarly to the Pattern Matching 

step). 
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Figure 3.4. Workflow diagram of the Mention Extraction step implemented in the 
NER. The workflow begins with a sentence previously obtained from an abstract 
(PMID: 22763603). Pattern Matching identifies three disease mentions (in green 
circles) and two gene mentions (in blue circles). Each entity is enriched with 
orthographic and context features in the Features Enrichment step. Next, Simple 
Entity Filtering step removes the “can” mention. The Acronym Learning locates a 
new acronym mention as a disease and is included in the additional acronym 
dictionary and results. Finally, all mentions are reviewed by an Overlapping 
Correction step and the resulting mentions are returned. The processes shown in 
orange are executed for each sentence and those shown in yellow, are executed for 
each entity mention. 
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Finally, an Overlapping Correction step is applied in order to select a 

mention in the case of an overlap. In general, the longest mention is 

always preferred, although in some cases the selection is based on the 

acquired features. 

  

3.1.5.4 Acronym Filtering 

The acronyms or symbols are the most likely terms to cause errors. 

This is because many acronyms included in the dictionaries may 

represent different meanings. Accordingly, it is necessary to perform a 

filtering step in order to detect the incorrect acronyms found by the 

mention extraction step. 

 

For example, in the sentence ‘Recombinant human OCT expressed in 

E. coli was used as an antigen to obtain the monoclonal antibodies for 

this assay’ (from PMID: 16445902), “OCT” is correctly detected as a 

gene (NCBI Gene identifier “5362”). On the contrary, in the sentence 

‘OCT and red-free imaging are helpful in identifying amyloid deposits 

in the retina’ (from PMID: 24480837), “OCT” is not referring to a 

gene, but to a medical imaging technique called Optical Coherence 

Tomography. By applying an acronym filtering step, only the first 

example is reported as a correct result, filtering out the second one. 

 

In order to carry out the Acronym Filtering step, the Schwartz & Hearts 

algorithm (217) is used in this filtering step. Schwartz & Hearts 

implemented a simple algorithm for identifying acronyms and their 

definitions focused on biomedical text. The previously described 

Acronym Learning step in the Mention Extraction procedure finds only 
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acronyms for identified long terms. In comparison, the Acronym 

Filtering step detects all types of definition-acronym pairs (referring to 

biological entities or not). 

 

The Schwartz & Hearts algorithm returns a list of acronyms-definitions 

pairs from a text. This list is used to detect the acronyms and 

definitions found by the NER that refer to other meanings. 

 

The abstract is, initially, processed in order to obtain all acronyms or 

symbols with their respective long terms or definitions. If the long 

term, referring to an acronym, is found by Mention Extraction or is 

normalized by the dictionaries, the acronym is kept. Otherwise, the 

acronym is referred to another concept or meaning in the current 

abstract and thus, it is removed from results. 

 

Note that the long term detected by the Schwartz & Hearts algorithm 

may not be exactly the same as that detected by the Mention Extraction 

step, but they may both share an offset overlap. Furthermore, the 

Schwartz & Hearts algorithm could detect a long term not included in 

the dictionaries that may contain additional features (see Table 3.6), 

such that it could be considered an entity of interest. In these cases, the 

entities are exhaustively reviewed, by considering the features included 

in the long and acronym terms during the current abstract, in order to 

decide which mentions refer to a biological concept. 
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3.1.5.5 Entity Disambiguation 

Initial evaluations of the BeFree NER detected ambiguities in the 

normalization process and in particular, with respect to symbol names 

(e.g., the “NAP1” relates to at least five genes). This problem was 

directly addressed by using acronym definitions, which significantly 

improved performance. Frequently, an acronym appears after the long 

term is defined in the text. In this case, the list of concept identifiers of 

both mentions (acronym, long form) is checked using the features 

extracted from the Features Enrichment step, in order to determine if 

the acronym refers to the long form,. For example, in the sentence 

‘Selective gene targeting using the carcinoembryonic antigen (CEA) 

promoter is useful in gene therapy for gastrointestinal cancer’ (from 

PMID: 11053994), BeFree NER detects the long form expression 

“carcinoembryonic antigen” as a gene with NCBI Gene Id “1048”,and 

the acronym “CEA” as four different gene entities (with four NCBI 

Gene Identifiers “1087”, “5670”, “1084” and “1048”). The concept 

identifier in common between the two entities (NCBI Gene Identifier 

“1048”) is kept as the right annotation. If there is more than one 

common concept identifiers, the similarity of the terms of each concept 

is examined in order to select the right identifier or the concept-

frequency in the document. 

 

In addition, by analyzing the initial gene-disease associations extracted 

by BeFree (e.g., in the work presented in the Section 4.1), an important 

source of ambiguity was observed, resulting from the wrong 

identification of entities due to ambiguities in the terminology of 

diseases and genes or to overlapping mentions. This is also particularly 
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problematic in the case of acronyms, where the same symbol can be 

used to refer to a disease or a gene. 

 

As commented in Section 1.4.3, there is a potential overlap between the 

terminology involved in both gene and disease entities. The inclusion 

of disease synonyms as gene names (and vice versa) in the standard 

databases causes an ambiguity problem between both kinds of entities. 

Figure 3.5 reflects this problem for the ATP7B gene in HGNC, where 

the “Wilson disease” term is included as a valid synonym. 

 

 
Figure 3.5. Information of the ATP7B gene provided by the HGNC database. The 
“Wilson disease” term (highlighted in a red box) is included as a proper synonym of 
the ATP7B gene. 

 

This ambiguity problem is significant when the set of documents to be 

mined deals with the genetic basis of human diseases (i.e., documents 

including both gene and diseases names), in which ambiguity can be 
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frequently found between genes and diseases. For this reason, the entity 

disambiguation between gene and disease is also addressed by BeFree, 

in order to identify when a mention refers to a disease or gene entity in 

a case of ambiguity. 

 

The previously applied steps could, indirectly, resolve this problem in 

several cases. However, in this phase, it is more important to review all 

overlapping mentions between the gene and disease results. 

 

Specifically, a rule-based approach is implemented to resolve the 

ambiguity generated between gene and disease mentions. The approach 

is based on orthographic and context features previously acquired by 

the detected mentions. If the document presents keywords representing 

the contained information (e.g., most MEDLINE abstracts include 

MeSH terms), they can be, also, used as context features.  

 

Table 3.8 shows examples of sentences where this problem is 

identified. Below it will be described in more detail how the Entity 

Disambiguation step resolves each case. 

 

In the first example (PMID: 23922488), two acronym mentions are 

found by the NER; “CHED2” is detected as a gene and a disease 

(NCBI Gene Identifier “83959” and UMLS CUI “C1857569”, 

respectively) and “SLC4A11” is only detected as a gene (NCBI Gene 

Identifier “83959”). 

 

In this case, the “CHED2” mention as a gene does not contain decisive 

features included in the Entity Enrichment step, while the “CHED2” 
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mention as a disease includes a fundamental feature, which refers to the 

“Congenital hereditary endothelial dystrophy 2” mention as the 

definition. This feature was obtained in the first sentence of the abstract 

(i.e., ‘Congenital hereditary endothelial dystrophy 2 (CHED2) is an 

autosomal recessive disorder caused by mutations in the solute carrier 

family 4, sodium borate transporter, member 11 (SLC4A11) gene.’). 

Consequently, the “CHED2” mention is removed from gene results. 

 

The second and third examples show the ambiguity problem related to 

a long form term (i.e., “Wilson disease”). As commented before, 

sometimes genes are named using the involved disease name. When, 

the long term or definition coincides with both kinds of entities, authors 

tend to use some specifications. If the mention contains a ‘DISEASE’ 

feature, as in the second example (“Wilson disease”), this is annotated 

as a disease. On the contrary, in the third example the mention 

terminates with a ‘GENE’ feature, (“Wilson disease gene”), so it is 

annotated as a gene.  

 

The last example demonstrates the ambiguity problem by combining, in 

the same sentence, the two previously described cases. The “Alzheimer 

disease” mention is detected as a disease and the “AD” acronym is 

extracted as its symbol in this abstract. However, it should be noted 

that, not always the “AD” mention is referred to the disease, as it 

happens when the mention includes, in the same abstract, a ‘GENE’ 

feature as a last feature. In such case, the second “AD” mention found 

in the sentence refers to the gene involved in the Alzheimer disease. 
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Table 3.8. Showing four examples of sentences (last column) including ambiguity 
names between genes and diseases. The PMID number (first column), the detected 
mention (second column) and the corresponding identifiers (third column) can be seen 
for each sentence example.  

PMID Mention Identifiers Sentence 

23922488 
CHED2 

GID*: 83959 

CUI: C1857569 
The purpose of this study was to identify the genetic 

cause of CHED2 in six Indian families and catalog all 

known mutations in the SLC4A11 gene. SLC4A11 GID: 83959 

6846733 
Wilson 

disease 

GID: 570 

CUI: C0019202 

Serial changes of cranial computerized tomographic 

findings in Wilson disease during D-penicillamine 

therapy. 

15554419 
Wilson 

disease 

GID: 570 

CUI: C0019202 

More than 200 mutations of Wilson disease gene were 

found, the most common ones being H1069Q (in Europe) 

and R778L (in Asia). 

11464541 

Alzheimer 

disease (AD) 

GID: 351 

CUI: C0002395 Almost 100 years since the first clinical report of a case 

of Alzheimer disease (AD), three early-onset and two 

late-onset AD genes have been identified. AD 
GID: 351 

CUI: C0002395 

*GID: Gene ID Identifier 

3.2 Relation Extraction 

As mentioned earlier, a key application developed on BeFree is the 

relation extraction (RE) between entities. Particularly, RE detects if two 

mentions co-occurring in the same sentence are semantically 

associated. In comparison with the NER, the RE implements the 

detection of any type of entity, such as gene-disease, drug-disease and 

drug-target.  

 

3.2.1 RE based on a supervised learning approach 

A co-occurrence is widely used as an indicator of association, assuming 

that two entities are potentially associated if they are mentioned 
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together in the same sentence. Accordingly, for the objectives of this 

thesis, several co-occurrence measures have been established in order 

to provide a degree of association. Specifically, a score was calculated 

based on the part of the abstract where the association is located (title, 

body or conclusion) and the frequency in the literature represented (see 

Section 4.1). 

 

However, the RE application implemented on BeFree goes far beyond 

the simple co-occurrence at the sentence-level. It incorporates a 

supervised learning system trained with linguistic information extracted 

by NLP-based methods from sentences. Specifically, the supervised 

learning approach processes the linguistic information involving both 

entities of interest (e.g., a drug and a disease) co-occurring in the same 

sentence, such that semantic relationships between them are detected. 

 

The RE was developed in JAVA and uses multiple NLP-based tools 

methods to exploit linguistic information from sentences. On the other 

hand, the supervised learning approach is based on the Java tool for RE 

(also known as jSRE) (218), which is aimed at semantic relation 

extraction between entities at the sentence-level. 

 

The jSRE is based on SVM, incorporating the Library for SVM 

(LIBSVM) (219,220). In addition, jSRE is released as open source 

(under the terms of the Apache License, Version 2.0), allowing easy 

modifications and new implementations. 

As a rule, a supervised learning system needs corpora or annotated data 

“to learn” a classification task, for example, to decide if a sentence 

contains a real association between two candidate mentions. In order to 
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optimize the full potential of the jSRE, multiple corpora containing 

sentences with annotations on entities and their relations have been 

processed to train models for RE. 

 

How these linguistic features are organized, processed and learned by 

the supervised learning approach, in order to train a model to detect 

semantic relationships, is widely explained in Section 0.  

 

In the following sections, the other two important aspects involved in 

the BeFree RE approach are described in more detail. Specifically, the 

extraction of linguistic features from sentences involving potential 

associations is, initially, discussed, by using NLP-based methods 

(Section 3.2.2). Furthermore, all models available on BeFree for 

detection of relationships are rigorously explained, including the 

corpora used for the development of each model and the type of 

relationship they identify (Section 3.2.3). 

 

3.2.2 Linguistic Features 

The supervised learning approach used to detect relationships between 

entities depends on multiples linguistic features of the sentences. These 

features, which are extracted by using NLP-based methods, are detailed 

below. 

 

The linguistic features are based on orthographic, morphologic, 

syntactic and semantic features. Specifically, the orthographic features 

are simple annotations included in each word (e.g., if the word is 

formatted in lowercase, uppercase or capitalized, or if the word 
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contains any number or punctuation mark, etc.). As semantic features, 

the information of target names (or role) is also considered (e.g., if this 

word is a gene). 

 

Based on morphologic information, many features are also extracted 

and are described below: 

 

(1) Tokens: are words, phrases, symbols, or other meaningful 

elements, as punctuation marks, that make up a sentence. A 

tokenizer is an algorithm or application that allows breaking a 

sentence into tokens, in a process called tokenization. BeFree 

system includes the JULIE Lab Token Boundary Detector 

(JTBD) (221) as tokenizer, a machine learning-based approach, 

developed and optimized for handling life scientific literature. 

The resulting tokens are based on words. 

 

(2) POS: is a lexical category of words with grammatical 

properties, such as noun, verb, adjective, adverb, pronoun, 

preposition, conjunction and determiner. POS tagging is the 

process of assigning a word or token to its corresponding POS, 

in a sentence-context. BeFree uses the POS tagger implemented 

in the OpenNLP project (222) to assign a POS category to each 

token. This tagger is based on a supervised approach and thus, 

needs annotated corpus for proper operation. In this case, the 

PennBioIE Oncology Corpus (203) was used as training data for 

the POS tagger. This corpus consists of 1,414 PubMed abstracts 

focused on cancer, concentrating on molecular genetics and 

comprising approximately 327,000 words of biomedical text, 
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which are annotated, among other features, with the POS 

category. 

 

(3) Stem: is the normalized form of a word that reduces all inflected 

forms to the same word. In other words, a stem is the part of the 

word that never changes even when morphologically inflected. 

In English, “produc-“ is the stem of the following words: 

“production”, “products”, “produce” and “producing”. The 

Porter stemming algorithm (223) is very widely known and 

became the standard algorithm used for English stemming, 

which have been included on BeFree. 

 

(4) Lemma: a lemma is the canonical form or base form of a 

word. For instance, “be”, “are”, “is”, “was”, “were” and “being” 

are forms of the same lexeme, with “be” as the lemma. In 

comparison, “ar” and “wa” are the stems of “are” and “was2, 

respectively. Often the stem and the lemma can be the same for 

example, the words “wait” and “run2 are both lemmas and 

stems. BioLemmatizer is a domain-specific lemmatization tool 

for the morphological analysis of biomedical literature (224). 

This specialized tool is used by BeFree to extract lemma 

information from scientific text.  

 

In addition, BeFree exploits syntactic dependencies from sentences. In 

particular, BeFree uses deep parsing to extract a syntactic dependency 

tree from sentences. 
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The syntactic dependency tree of a sentence consists of words linked by 

binary asymmetric relations called dependencies. The syntactic 

structure can indicate if two candidate mentions are connected (as a 

potential relationship) through syntactic dependencies (for more details 

see Section 1.4.2). 

 

Many tools have been developed to extract syntactic dependencies from 

a sentence. In this case, BeFree includes the Stanford lexical parser tool 

(3.3.0 release), which is a well-known tool for obtaining the syntactic 

dependencies from a sentence as a dependency graph. This graph 

provides a simple description of the syntactic relationships in a 

sentence that can be easily processed to extract any textual relations. 

Figure 3.6 shows an example of dependency graph obtained by the 

Stanford lexical parser. 

 

Sometimes, the syntactic dependency graph tends to be complex and 

provides information about many syntactic relations between words in 

the sentence, including candidate mentions. Using all available 

information provided by the Stanford lexical parser can be imprecise 

and has a high computing cost. 

 

In this scenario, BeFree considers only the dependency graph involving 

the candidate mentions, extracting a subgraph based on Least Common 

Subsumer (LCS). In particular, this subgraph represents the shortest 

path between the two candidate mentions co-occurring in the sentence 

and the LCS is the common governor word between both (see Figure 

3.6). Many works based on syntactic dependency trees have performed 

a similar shortest path approach (29,153,225), because long or complex 
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sentences can be simplified in order to provide a better interpretation of 

the relationship between the two candidate mentions. 

 

 

 
Figure 3.6.. Example of the syntactic dependency tree of a sentence (“Of the 16 genes 

tested,…”). “EHD3” and “MDD” are the candidate mentions to be related. All lines 
represent syntactic dependencies between words. Particularly, the solid lines represent 
the subgraph between the terms “EHD3” and “MDD”, while the term “associated” 
denotes the LCS. 

 

3.2.3 Models for detection of different associations 

In comparison with the BeFree NER (which focuses on genes and 

diseases), the RE approach can detect multiple types of relationships. 

This happens because the BeFree RE depends on the training data (i.e., 

corpora). For this reason, BeFree RE has been trained with different 

corpora in order to detect multiple types of relationships. Specifically, 

BeFree RE is able to extract semantic relationships between genes, 

drugs and diseases. Most recently, BeFree RE was also used to detect 

chemical-induced disease relations. 

 

Models available in BeFree are detailed below. Table 3.9 shows the list 

of all available models, including the type of relationship detected. In 
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addition, the performance obtained by 10-fold cross-validation is also 

shown.  

 

Table 3.9. Performance for each available model in BeFree based on the following 
metrics: precision (P), recall (R) and F-score (F). 

Corpus Description 
Performance* 

P R F 

EU-ADR 

Drug-target 74.2 97.2 83.3 

Gene-disease 75.1 97.7 84.6 

Drug-disease 70.2 93.2 79.3 

GAD 
Gene-disease F/T 77.8 87.2 82.2 

Gene-disease F/P/N 66.0 73.8 69.6 

LHGDN Gene-disease classification 84.7 86.1 85.4 

Crow-CID Chemical-induced Disease 82.0 73.4 76.8 

*The results of 10-fold cross validation. 

 

3.2.3.1 EU-ADR corpus 

The EU-ADR corpus is a Gold Standard that contains annotations of 

different entities (drugs, diseases, and genes/proteins) and the 

relationships between them (191). In particular, the EU-ADR corpus is 

divided in three datasets containing annotations of relationships 

between drugs and diseases (drug-disease set), drugs and their protein 

targets (drug-target set) and genes and their association to diseases 

(gene-disease set). In addition, each relationship is classified according 

to its level of certainty, i.e.: positive association (PA), negative 

association (NA), speculative association (SA) and false association 

(FA). Table 3.10 demonstrates a few examples of the levels of certainty 

considered in the EU-ADR corpus. 
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Table 3.10. Examples of the association types considered in the EU-ADR corpus. 

Association Type Examples 

True 

Positive 

‘Vascular endothelial growth factor gene is associated 

with increased risk for Alzheimer's Disease.’ 

‘The DAOA gene has been found associated with 

schizophrenia.’ 

Speculative 

‘The results presented suggest that DDC may act as a 

minor susceptibility gene for bipolar affective disorder.’ 

‘Our results suggest that HCN1 protein could be a 

potential target for treatment of anxiety and depression 

disorders.’ 

Negative 

‘These results suggest that SLC25A12 is not a major 

contributor to autism risk in these families.’ 

‘Additionally, the PKLR and the NOS1AP genotypes 

were demonstrated not to have a major influence on 

diabetes.’ 

False  
‘We report association of ZNF804A with schizophrenia 

and CACNA1C with bipolar disorder.’ 

 

3.2.3.2 GAD corpus 

The Genetic Association Database (GAD) is an archive of human 

genetic association studies of complex diseases, including summary 

data extracted from publications on candidate gene and GWAS studies 

(226). 

 

The information contained in GAD was used for the development of an 

annotated corpus composed of associations between genes and diseases 

(downloaded on January 21st, 2013). 
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Specifically, GAD contains more than 130,000 records with 

information about specific gene-disease associations. For the work 

under consideration, a record of GAD can provide the following 

information: (i) a gene identifier (NCBI GeneID), (ii) a disease name 

(not identifier), (iii) if the gene is positively (Y) or negatively (N) 

associated with the disease and (iv) a piece of text supporting the 

associations. 

 

However, not all records provide the previously described information. 

Therefore, only records including information of interest were 

considered (it should be noted that, the piece of text should be in the 

form of a sentence). 

 

An interesting point is that GAD does not provide information about 

boundaries of gene and disease names in the piece of text, which are a 

requirement to train a model. Consequently, the BeFree NER was 

used to identify genes and diseases in sentences. 

 

The development of the dataset from the GAD database is described 

below. The disease term provided by GAD is, initially, normalized to 

its corresponding disease concept using dictionaries included in BeFree 

(with the purpose of obtaining all terms associated with the disease 

name). Next, for each record, the BeFree NER is applied for the 

detection of gene and disease mentions in the sentence. Subsequently, 

if both entities are identified by BeFree, the record is annotated as a 

true association (positive and negative). If the entities identified in the 

sentence are not supported by the record, then, the sentence is 
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annotated as a false association. Otherwise, the record is discarded 

(e.g., only one entity was detected). 

 

Finally, a set of 5,329 sentences was collected from the GAD database, 

containing 2,800 sentences with gene-disease associations (including 

1,833 positive and 967 negative associations) and 2,529 sentences with 

false associations. The dataset was used to train a BeFree model to 

detect gene-disease associations. 

 

In comparison with the EU-ADR corpus, the annotated corpus 

developed from GAD database contains a high number of examples 

reporting negative associations. Therefore, this corpus was also used to 

train a model to specifically detect between positive and negative gene-

disease associations. 

3.2.3.3 LHGDN corpus 

LHGDN (Literature-derived Human Gene-Disease Network) is a text 

mining derived database with focus on extracting and classifying gene-

disease associations with respect to several biomolecular conditions. 

Specifically, the textual source utilized here originates from the Entrez 

Gene's GeneRIF (Gene Reference Into Function) database (227).  

 

LHGDN was created based on a GeneRIF version (March 31st, 2009), 

consisting of 414,241 phrases. These phrases were further restricted to 

the species Homo sapiens, which resulted in a total of 178,004 phrases. 

LHGDN provided, overall, 59,200 distinct gene-disease associations 

grouped in four classes related to several biomolecular conditions, such 
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as Genetic Variation, Altered Expression, Biomarker and Post-

Translational Modification (see Table 3.11).  

 

Table 3.11. Examples of the association types considered in the LHGND corpus. The 
last column shows both the number of associations included in the original LHGND 
and the final dataset. 

Association 

Type 

Example Number of associations 

GeneID 

CUI 
Sentence Database 

Final 

dataset 

Genetic 
Variation 

540 
C0019202 

The researchers found a new mutation that 

is associated with Wilson’s disease. 
18,611 15,415 

Altered 
Expression 

4221 
C0025267 

MEN1-mediated caspase 8 expression in 

suppressing multiple endocrine neoplasia 

type 1 is reported 

20,890 15,965 

Biomarker 
6331 

C1142166 
Another gene other than the SCN5A may 

be associated with Brugada syndrome. 
18,582 12,908 

Post 
Translational 
Modification 

605 
C0079773 

Promoter hypermethylation of BCL7a is 

associated with cutaneous T-cell 

lymphoma 

1,117 1,034 

 

Records of the LHGDN data source are composed of the following 

fields: (i) the gene identifier from NCBI Gene, (ii) the disease identifier 

from UMLS, (iii) the association type involved in both entities (e.g., 

Genetic Variation) and (iv) the sentence supporting the evidence. As in 

the case of the GAD dataset (see Section 3.2.3.2), the exact location of 

the gene and disease mentions in the sentence is not available, such that 

the BeFree NER was also used to identify them. 

 

Table 3.11 shows the resulting number of associations (see last column) 

extracted by BeFree from the LHGDN database. As it can be noted, 

BeFree cannot extract all gene and disease mentions from all sentences 

included in the LHGDN database. There are several reasons that could 

explain this decrease: 
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(1) False positives corresponding to the BeFree NER. 

 

(2) Identifiers included in LHGDN database can be deprecated; 

consequently, BeFree cannot properly normalize the respective 

mentions. 

 

(3) Not all sentences from the LHGDN database that supports the 

evidence contain the reported entity concepts. For example, the 

first sentence seen in Table 3.11, contains only a mention for 

the UMLS concept “C0019202” (i.e., “Wilson’s disease”). 

 

(4) A UMLS concept reported by the LHGDN database is, 

sometimes, used to cover a set of related disease concepts. For 

example, BeFree has not detected any mentions related to the 

“C1458155” UMLS concept (i.e., “breast neoplasm”) on 3,007 

occasions. In this case, the ‘breast cancer’ mention, which 

corresponds to the “C0006142” and “C0678222” UMLS 

concepts, is identified with the “C1458155” UMLS concept by 

the LHGDN database. Fortunately, in order to deal with this 

issue, some records reporting the problem were automatically 

assigned with “complementary” UMLS concepts. Following the 

example, after correction, BeFree reported properly 3,003 

sentences from 3,007 related to the “C1458155” UMLS 

concept. 



 

 100

3.2.3.4 Crowd-CID relation corpus 

The crowd-CID relation corpus is a novel dataset developed in order to 

address the Task 3.B of BioCreAtIvE V challenge (BC5) that dealt with 

Chemical-induced Disease (CID) relations. 

 

The development involved a combined approach between text mining 

and manual annotation. Initially, the DNorm and the tmChem NERs 

were used to identify disease and chemical mentions with their 

corresponding MeSH identifiers (which were a requirement in the 

task). Subsequently, sentences including at least one co-occurrence 

between a chemical and a disease mention were selected for the 

annotation task. The annotation task was based on a novel 

crowdsourcing-approach with the purpose of adding manual 

annotations to the corpus. More details about the crowd-CID relation 

corpus development can be found in Section 0. 

 

The curators annotated sentences with chemical-disease associations as 

true examples, if the disease was caused by the chemical. Otherwise, 

associations were annotated as false examples (e.g.,chemical-treatments 

relationships). 
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4 Applications and results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Persistence guarantees 

that results are inevitable.” 

Paramahansa Yogananda (1893-1952) 
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4.1 A knowledge-driven approach to extract disease-

related biomarkers from the literature 

Thousands of biomolecules are being investigated as potential 

biomarkers. The results of the research conducted are, widely, reported 

on the biomedical literature. In particular, genomic biomarkers together 

with disease-related information are, frequently, studied. Thus, the 

biomedical literature contains valuable knowledge for those interested 

in gathering information on biomarkers. In order to identify, extract, 

and analyze this information from literature, automatic processing of 

the text sources is required. With this objective, a knowledge-driven 

text mining approach is presented, for the extraction of disease-related 

biomarker information from the literature. Specifically, this approach 

implements a named entity recognition method to identify genes and 

diseases of interest and co-occurrence-based statistics methods to detect 

disease-related biomarkers relations. As a result, the information 

extracted is integrated into a new disease-related biomarkers database.  

Bravo À, Cases M, Queralt-Rosinach N, Sanz F, Furlong LI. A 

knowledge-driven approach to extract disease-related 

biomarkers from the literature. BioMed research international. 

2014 Apr 16; 2014. 
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Bravo À, Cases M, Queralt-Rosinach N, Sanz F, Furlong LI. A knowledge-driven 
approach to extract disease-related biomarkers from the literature. Biomed Res Int. 
2014;2014:253128. doi: 10.1155/2014/253128

https://www.hindawi.com/journals/bmri/2014/253128/
u16319
Rectángulo
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4.2 Extraction of relations between genes and diseases 

from text and large-scale data analysis: implications 

for translational research 

Due to the increasing size of literature repositories, there is a strong 

need for tools that identify and gather the relevant information from the 

literature and place it in the context of current biomedical knowledge. 

In the past, most efforts in text mining of relationships have been 

devoted to the identification of interactions between proteins. In 

contrast, less attention has been paid to the identification of 

relationships involving other biomedical entities. In this context, the 

BeFree system is presented with the aim to identify relationships 

between diseases, drugs and genes, with a special focus on genes and 

the associated human diseases. BeFree implements a NER approach, 

based on the previously published work by Bravo et al. (2014) (see 

Section 4.1) and a RE approach, based on the exploitation of semantic 

and morpho-syntactic information from text. BeFree is assessed based 

on two real-life scenarios. Finally, the impact of this approach on 

translational research is widely discussed. 

  

Bravo À, Piñero J, Queralt-Rosinach N, Rautschka M, Furlong 

LI. Extraction of relations between genes and diseases from text 

and large-scale data analysis: implications for translational 

research. BMC bioinformatics. 2015 Feb 21; 16(1):1. 
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Bravo À, Piñero J, Queralt-Rosinach N, Rautschka M, Furlong LI. Extraction of 
relations between genes and diseases from text and large-scale data analysis : 
implications for translational research. BMC Bioinformatics. 2015 Feb 21;16:55. 
doi: 10.1186/s12859-015-0472-9.

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0472-9
u16319
Rectángulo
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4.3 Combining machine learning, crowdsourcing and 

expert knowledge to detect chemical-induced 

diseases in text 

This work addresses the goal of the BioCreAtIvE V community 

challenge (BC5), particularly, the Chemical-induced Disease (CID) 

relations task. This task involves the identification of diseases and 

chemicals to promote the development of text mining solutions for the 

study of drug side effects. In addition, BC5 CID task constitutes a new 

challenge since the relations are mentioned both at the sentence and at 

the whole-document level (i.e., spanning several sentences). In this 

scenario, a new text mining system is described for the identification of 

drug side effects from the literature. It consists of three approaches: 

BeFree RE, rule- and knowledge-based. For this purpose, a novel 

Crowd-CID relation corpus is developed to train BeFree. In the final 

evaluation setting, the system achieved the highest recall of the 

challenge (63%). By performing an error analysis, the main causes of 

misclassifications are identified. The need of employing consistent gold 

standards is highlighted, for the advancement of the state-of-the-art in 

text mining of drug side effects. 

 

  

Bravo À, Li TS, Su AI, Good BM, Furlong LI. Combining 

machine learning, crowdsourcing and expert knowledge to 

detect chemical-induced diseases in text. Database. 2016 May 

10; 2016:baw094. 



Bravo À, Li TS, Su AI, Good BM, Furlong LI. Combining machine learning, 
crowdsourcing and expert knowledge to detect chemical-induced diseases in text. 
Database (Oxford). 2016 Jun 15;2016. pii: baw094. doi: 10.1093/database/baw094.

http://database.oxfordjournals.org/content/2016/baw094
u16319
Rectángulo
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4.4 Text mining and expert curation to develop a 

database on psychiatric diseases and their genes 

During the past years, there has been a growing interest in the genetics 

of psychiatric disorders, the findings of which have been reported on 

hundreds of thousands of publications. In the following work, BeFree is 

applied to a large set of publications, in order to extract relationships 

between genes and psychiatric disorders. A curation workflow is, next, 

implemented for the validation of the text-mined information by 

experts. As a result, the curated information is used to populate 

PsyGeNET, which is curated resource for the exploratory analysis of 

psychiatric diseases and their associated genes.  

 

  

Gutiérrez-Sacristán A, Bravo À, et al. Text mining and expert 

curation to develop a database on psychiatric diseases and 

genes. Proceedings of the 7th International Symposium on 

Semantic Mining in Biomedicine, SMBM 2016, Potsdam, 

Germany, August 4-5, 2016. p.48-55. 
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Montagud-Romero S, Nadal R, Ortiz J, Pavon FJ, Perez E, Rodríguez-Arias M, Serrano 
A, Torrens M, Warnault V, Sanz F, Furlong LI. Text mining and expert curation to 
develop a database on psychiatric diseases and their genes. Dins: Proceedings of the 7th 
International Symposium on Semantic Mining in Biomedicine. Potsdam, Germany, 
August 4-5, 2016

http://ceur-ws.org/Vol-1650/smbm16GutierrezSacristan.pdf
u16319
Rectángulo
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5 Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“A person who never made a mistake 

never tried anything new” 

Albert Einstein (1879-1955) 
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5.1 Overview 

The unstoppable growth of articles published in the biomedical domain 

has generated a large accumulation of literature, containing valuable 

information for the scientific community. In order to automatically 

extract relevant information, various text mining techniques have been 

applied in biomedical text sources. For this purpose, several works and 

tools have been presented to address specific text mining challenges 

(see Section 1.4), such as NER (e.g., the detection of genes or the 

identification of adverse effects) or RE (e.g., the extraction of gene-

disease associations or chemical-induced disease relations). 

 

In this thesis work, the BeFree system was developed as a text mining 

system for the extraction of relevant information from the biomedical 

scientific literature. BeFree faces all challenges posed by Information 

Extraction, both at the named entity recognition and relation extraction 

levels, mainly for human genes and diseases. The presented system 

identifies gene and disease mentions in the literature and addresses the 

problem of entity ambiguity. In addition, BeFree detects relationships 

between genes, diseases and drugs and provides information about the 

semantics of relationship between entities. Furthermore, BeFree can 

identify other types of relationships, such as the side effects produced 

by a drug (drug-disease relationship) and the targets of the drug (drug-

gene relationship). 

 

An essential requirement for text mining solutions in the biomedical 

domain is the availability of annotated corpora. However, for certain IE 

tasks, there are no available corpora. Therefore, several corpora were 
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developed that addressed the emerging challenges throughout this 

doctoral work. 

 

BeFree has contributed with novel structured biomedical data from the 

literature to populate knowledge resources. The first application was on 

the identification of disease-related biomarkers from MEDLINE 

abstracts. The results are available in a publicly available database (see 

Section 4.1). Second, BeFree is currently used to populate DisGeNET, 

a database on human diseases and their genes. BeFree contributes with 

more than 90% of the gene-disease associations integrated in 

DisGeNET (see Section 0). In addition, the data provided to DisGeNET 

has been also published in the PubAnnotation project (228). Third, 

BeFree is also used to populate the PsyGeNET database, which focuses 

on psychiatric disorders and their genes (see Section 0). Specifically, 

the information provided by BeFree was curated by a team of experts 

following specifically defined guidelines. Fourth, we have participated 

in one of the most important text mining community challenges, that is, 

BioCreAtIvE V (see Section 0). In particular, we have participated in 

the chemical-induced diseases (CID) relations task designed to advance 

the state-of-the-art in the identification of drug side effects from the 

biomedical literature. 

 

5.2 The ambiguity problem in NER 

During the initial phase of this work, several NER tools were evaluated 

on the basis of their ability to detect and normalize genes and diseases 

and to handle the ambiguities between these entities.  
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At that time, only Metamap (120) was able to detect and normalize 

gene and disease names. However, although the vocabularies used for 

the detection of diseases were complete and allowed detection of 

different types of diseases, the coverage of gene entities was quite 

limited. 

 

Thus, the BeFree NER was designed based on a comprehensive 

dictionary of gene and disease names, developed by integrating 

different databases and a semi-automatic curation process was, 

subsequently, performed (see Section 3.1.3). 

 

The ambiguity of entities is an issue widely described in the biomedical 

text mining domain (229). Different types of ambiguity can be found in 

a named entity (for details see Section 1.4.3). For instance, it has been 

reported that 85.1% of mouse genes are ambiguous with other gene 

names (61). Most of the works addressing the ambiguity are focused on 

the gene name disambiguation. Today, the correct recognition of gene 

names remains a challenging task due to the sharing of terminology 

between genes across species but also in a single species, with common 

English words and other biomedical terms (e.g., disease names). 

 

In the context of the BioCreAtIvE II challenge, different approaches 

were used for the gene name disambiguation problem, such as the 

incorporation of background knowledge (90), the use of alternative 

dictionaries (91) and context-based approaches (92). Moreover, Word 

Sense Disambiguation (WSD) approaches, based on supervised 

learning, have been also developed, achieving competitive 

performance. For instance, Joshi et al. (2005) (230), Stevenson et al. 
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(2008) (231) and Leroy et al. (2005) (232) combined different linguistic 

features for training and reported a performance over 86% of F-score 

(using the same corpus annotated with unambiguous entities (233)). 

However, there are few corpora including a large number of 

unambiguous annotated entities, covering a small number of names and 

senses (233,234).  

 

An important ambiguity problem regarding genes appears when the 

same gene name is used in different animal species. Wei et al. (2015) 

presented a supervised learning approach based on CRF (97). Their 

system exploited shallow and context linguistic information for gene 

name disambiguation across species. Particularly, in the evaluation of 

cross species gene normalization (BioCreAtIvE III GN task), this 

system achieved 50.1% of F-score, showing that gene name 

disambiguation across species is still an unsolved problem.  

 

The NER module in BeFree was implemented based on dictionaries 

and a set of rules designed to disambiguate gene and disease names. 

Also, special emphasis was given to the development of a 

comprehensive dictionary for each type of entity, by generating 

linguistic variations and synonyms. The BeFree NER was evaluated on 

the BioCreAtIvE II GN corpus. When the disambiguation rules were 

not used, the NER achieved a high recall but a poor precision (P: 

48.1% R: 80.1% F: 60.1%). The performance was considerably 

improved when the disambiguation rule-based approach was applied 

(P: 74.0%, R: 76.2%, F: 75.0%).  
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Although, the disease name recognition has received less attention than 

the gene name recognition in the text mining field, some works have 

been presented to identify disease names (see Section 1.4.3.4). One of 

the most recent works, DNorm (104), is based on BANNER to detect 

disease names and applied a supervised learning approach to compute 

similarities between mentions and concept names. It achieves a high F-

score (80.9%) in the NCBI disease corpus. 

 

In the case of detecting and identifying disease names, the BeFree NER 

was evaluated using the AZDC corpus and achieved competitive results 

(P: 72.1% R: 64.4% F: 68.0%) compared to previous approaches 

(114,116). 

 

One of the main areas of application of BeFree in this thesis was the 

extraction of relationships between genes and diseases. The analysis of 

the first results of gene-disease associations extracted by BeFree (e.g., 

in the work presented in Section 4.1) showed that an important fraction 

of errors in RE were due to the ambiguity of entities. For this reason, it 

was very important to address the ambiguity between genes and 

diseases at the NER level to improve the results of the RE step. To the 

best of our knowledge, this ambiguity has not been addressed by any 

other text mining tool. In order to address this problem, the BeFree 

NER was extended with a set of rules to disambiguate between genes 

and diseases. Although a formal evaluation of the entity disambiguation 

step was not performed due to the lack of a suitable corpus, non-formal 

evaluations by the PsyGeNET and DisGeNET teams indicated that the 

results were considerably improved after the implementation of the 

disambiguation step. 
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5.3 The desirable corpus for text mining applications 

Annotated corpus is an important requirement to develop and evaluate 

text mining systems. In recent years, many successful efforts have been 

made to develop and contribute with novel corpora in the biomedical 

domain. However, the majority of them involves only gene/protein 

annotations (see Section 1.5) and only two corpora on gene-disease 

associations were available at the beginning of this thesis work 

(135,191). 

 

In order to overcome this limitation, four different annotated corpora 

were developed in this thesis, by using different strategies, namely: a) 

automatic annotation of data extracted from a database curated by 

experts; b) automatic annotation of data extracted from the literature 

(not curated by experts); c) curation of text-mined data by a group of 

domain experts; d) curation of text-mined data by a large group of 

citizens. Table 5.1 shows a comparison of the corpora contributed in 

this thesis. 

 

Table 5.1. Comparison of corpora developed during this thesis. Note that EU-ADR 
was not developed in this work; however, it is included for comparison with a gold 
standard. 

Corpus 
Initial 

document set 
Associations Curators 

Work by 

Curator 
Method 

Extra 

Cost 

EU-ADR 300 abst. 941 5 300 abts. Expert - 

GAD ~130K records 5,329 - - Automatic - 

LHGDN 59,2K records 45,322 - - Automatic - 

Crowd-CID 
relation 

3K abst. 3,068 134 ~150 sent. 
Crowd 

workers 
$763.92 

PsyGeNET ~1M abst. 2,507 20 ~400 Expert - 

 

 



 

 169

 
Figure 5.1. Comparison between the development of manual and automatic corpora. 

 

The development of a corpus curated by domain experts requires a 

larger effort and more resources than a corpus annotated by text mining 

(see Figure 5.1). An increasingly adopted approach is to combine 

automatic annotation with expert curation (168,235,236). In this 

manner, the expert curation workload is partially reduced, by providing 

annotations obtained by text mining systems. The curators can then 

focus on curation tasks that are more difficult to achieve accurately in 

an automatic manner. The use of user-friendly curation tools is also an 

important asset to aid the curators’ work. The development of text 

mining corpora by non-expert curators or “citizen scientists” has been 

proposed also as an alternative approach (see Figure 5.2) (237).  
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Figure 5.2. Comparing annotation processes between domain-expert curators vs. non-
expert curators. 

 

The above mentioned corpora was used to train the RE models for the 

identification of different types of relationships in the context if this 

thesis. As discussed in Section 0 and 4.3, different quality of 

annotations can lead to differences in performance in the RE step. For 

example, in the case of gene-disease associations, a model trained on 

the EU-ADR corpus (small in size but annotated by domain experts) 

exhibited a superior performance than a model trained on GAD (large 

in size but annotated by text mining from a database). However, it 

should be noted that, the model trained on GAD could still achieve a 

competitive performance. In addition, due to its larger size and balance 

between negative and positive examples, it allowed the development of 

a system capable of detecting both positive and negative associations.  
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5.4 BeFree for accurate identification of a variety of 

biomedical relationships  

In this thesis, a RE approach was presented based on kernel methods 

that exploit both shallow and deep syntactic information. The results 

described in Chapter 4 demonstrated that a kernel-based approach, 

leveraging both shallow and deep syntactic information, performs 

competitively for the identification of drug-disease, drug-target and 

gene-disease relationships from free text. However, several differences 

were observed in the performance depending on the association type to 

be identified. For example, while for the identification of drug-disease 

and gene-disease associations the best performance was achieved (in 

terms of F-score) by the KDEP kernel alone, for drug-target associations 

the best performance was obtained by combining both kernels. In the 

case of gene-disease associations, where the GAD corpus was used 

instead of the EU-ADR corpus, the best results were achieved with the 

KSL kernel, contrasting with the results obtained by using the EU-ADR 

corpus.  

 

It should be noted that, a RE system trained on shallow linguistic 

information alone is enough to produce competitive results on the 

associations considered in this thesis. This is an important result when 

considering the type of approach to be selected for a relation extraction 

task, in particular for large-scale analysis and/or when limited 

computing power is available. 

As reported in Section 0 (Section 0, Table 1), the performance of 

BeFree on the three relation types was on par of the recent work in the 

field. It is worth noting that the studies cited in Table 1 defined the 
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relationships in different ways and used different benchmarks and 

sometimes different metrics for evaluation. Therefore, the results of 

these comparisons need to be taken with caution. Unfortunately, there 

are no community challenges in this area (with the exception of the 

Drug-Drug interaction challenge (197) and the BioCreAtIvE V CID 

task, see below) to systematically and comparatively evaluate each of 

the RE tasks addressed in this thesis. 

To partially circumvent this limitation, the performance of another RE 

system was evaluated on the EU-ADR corpus and compared with the 

the performance of BeFree. More specifically, the SemRep system 

(142,238) was adapted for the identification of the three relationship 

types as defined in our RE task. SemRep identified these relationship 

types with high precision but lower recall than BeFree. Thus, 

compared to SemRep, BeFree achieved more balanced results in terms 

of P and R for the identification of the three entity types. 

The curation work performed by the PsyGeNET curation team on the 

gene-disease associations extracted by BeFree also allowed the 

estimation of the precision of BeFree RE. Using the data curated by the 

experts as a gold standard, BeFree achieved a high precision value 

(82%), leveraging only on shallow linguistic information.  

In addition, the performance of the RE was evaluated for the 

identification of protein-protein interactions and thus, it was compared 

against a larger body of literature. By using the AIMED corpus (239), 

the use of shallow linguistic information, as well as, syntactic 

information in the form of dependency walk features, lead to more 

accurate models for PPI relation extraction. The results were 
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comparable to those obtained with state-of-the-art approaches that were 

tested on the AIMED corpus (163). 

The drug-disease relation extraction task was also evaluated in the 

BioCreAtIvE V challenge. The BeFree model trained on the crowd-

CID relation corpus, a corpus created by crowd workers, achieved a 

high performance by 10-fold cross-validation (76.82% F-score). 

However, when assessing the performance of BeFree on the corpus 

provided by the task organizers, it dropped to 45% F-score, 

significantly lower than the one obtained on the crowd-CID relation 

corpus and on the EU-ADR corpus. These evaluation exercises, clearly, 

showed that the performance obtained by cross-validation often differ 

significantly from evaluations performed using independent data sets in 

real case scenarios. The error analysis performed on the BeFree results 

allowed the identification of some of the weak points of the system, 

such as the incorrect handling of negations, poor performance on long 

and complicated sentences with several potentially related entities, and 

incorrect distinction between therapeutic indication of the drug and 

SEs. Note that due to the processing time constraints of the BC5 

challenge, only shallow linguistic features were used to train the 

system. Thus, in future work we plan to evaluate if syntactic 

dependency features improves these results.  

Based on the results presented in this thesis and from works presented 

by others (141,144,152,153,160,162,240), we conclude that 

dependency features can improve a supervised learning approach, in 

this case based on kernel methods, for a variety of relationship types. 

However, shallow linguistic parsing methods are more widely extended 

(there is a great variety of automatic tools for shallow linguistic 
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analysis), cover a major range of natural languages and produce faster 

results with smaller error rates (with complex sentences, dependency 

parsing is less accurate) (157,240). Thus, we propose that shallow 

parsing approaches are an adequate alternative in terms of 

computational cost and performance. 

 

5.5 BeFree as a tool to identify actionable information 

Throughout this thesis, in addition to evaluating the performance of the 

RE system based on precision (P), recall (R) and F-score (F), that is 

common practice in the text mining domain (see Section 1.3.5), the 

ability of the BeFree system was assessed to identify information that 

could be used to answer real biomedical research questions. 

 

The ability of BeFree to identify information useful for biomedical 

research is illustrated by the following examples. First, gene-disease 

associations extracted by BeFree are used to populate DisGeNET 

(241,242), one of the most complete databases on human diseases and 

their genes. As of September 2016, the database received more than 

35,000 web users and has been used in different research projects and 

data mining companies. Of note, gene-disease associations extracted by 

BeFree represents more than 90% of the data available in this database. 

Another example was the extraction of information for the PsyGeNET 

platform (243,244). In this case, the gene-disease associations extracted 

by BeFree were subjected to curation by a team of 22 experts to collate 

the data that was, finally, used to populate the database. It is worth 

noting that only 18% of the data identified by BeFree was judged as 

errors by the consensus of two experts. Altogether, this data indicated 
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that BeFree was able to extract meaningful information from 

MEDLINE abstracts, regarding the genetic basis of human diseases.  

 

5.6 BeFree captures different facets of the relations  

In biomedicine, a relationship between two entities (e.g., between a 

gene and a disease) can be considered from different facets or 

perspectives. For example, a relationship can be unqualified or not 

specified at the semantic level (e.g., “The LOXL1 gene is associated 

with exfoliation glaucoma”), or, on the other hand, semantically 

specified (e.g., “The LOXL1 gene is overexpressed in exfoliation 

glaucoma”). It is evident that the second option will be the preferred 

one by a researcher, as it gives more information about how the gene 

relates to the disease, thereby, providing clues on the disease 

pathogenesis. The relationships can be, also, considered from the 

perspective of their level of certainty; that is, if the scientific statement 

is phrased as a proven experimental observation or fact or, 

alternatively, as a speculation or hypothesis (e.g., “The LOXL1 gene 

might be associated with exfoliation glaucoma”). Research in the area 

of discourse analysis has been applied to approach this latter 

perspective of RE (245–247). Finally, identification of negative 

findings from the literature, although not frequently reported, is also an 

important goal. 

 

In this thesis, various perspectives to classify a particular relation 

between two entities were addressed. The initial aim was to distinguish 

between true and false associations, without taking into account neither 

the level of certainty nor a more granular description of the association 
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type. Then, once a suitable corpus was developed, a RE system capable 

of identifying negations from true assertions was presented. In the 

particular case of gene-disease associations, a system to identify 

different association types was developed, according to the DisGeNET 

association type ontology. Finally, the identification of negative 

findings from the literature was addressed for the PsyGeNET project. 

Interestingly, 30% of the gene-disease associations, validated by 

experts, had at least one publication reporting negative findings on the 

association between the gene and the disease. This highlights the 

importance of identifying negative findings from the literature. On the 

other hand, the way in which the curation protocol was designed, 

allowed the creation of a corpus to train text mining systems for the 

detection of negative findings from the literature. 

 

A key point to association class typing, is the availability of corpora to 

train and validate the RE extraction systems. In this regard, the 

development of corpora by semi-automatic procedures from databases 

and text-mined datasets was particularly helpful. Finally, the results on 

the distinction between drug adverse effects from the therapeutic use of 

a drug, obtained at the BioCreAtIvE V challenge, showed the value of 

incorporating background knowledge at the RE step.  

 

5.7 Implications of the choice of document type and 

document section on the text mining results 

It has been suggested by several authors (248–250) that mining full text 

articles instead of abstracts is preferred, in order to extract all available 

information from the scientific publications (i.e., information that rarely 
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appears in abstracts, such as experimental measurements). In this 

thesis, only abstracts from publications were used, for the following 

reasons: a) abstracts are available for almost all publications in 

MEDLINE, while this is not the case for the complete article, b) 

abstracts contain the main findings of the publication, while identifying 

the relevant information can be more challenging in the full text article 

and c) abstracts are easy to process, while the full text might be 

cumbersome, especially for articles that are available only in PDF 

format. 

 

Interestingly, in the large-scale extraction of gene-disease associations 

from MEDLINE (Section 0), it was demonstrated that mining only a 

small fraction of MEDLINE resulted in a large dataset of gene-disease 

associations. Specifically, from 737,712 abstracts pertaining to human 

diseases and their genes (approximately 3% of the MEDLINE 

database), 530,347 associations were obtained between 14,777 genes 

and 12,650 diseases, which were reported in 355,976 publications. 

These figures support the notion that the abstracts constitute a rich 

source of information, at least on the genetic basis of human diseases. 

Although the potential value of extracting information from the full 

body of the article should not be underestimated, the issue of quality 

assessment of these large datasets should be taken into account in the 

context of database curation pipelines.  

 

Another important aspect in relation extraction involves the span of text 

considered for the identification of relations between entities. Although 

some preliminary works based on co-occurrences used entire 

paragraphs or the abstract, most recent RE systems based on linguistic 
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information, consider the RE problem at the sentence level. Although 

this approach can result in a more accurate detection of relations by 

minimizing the FP, the recall may not be optimal due to the use of co-

references and anaphoras in natural language. 

 

The BeFree system was designed to cope with relations stated in a 

single sentence. This limitation needed to be circumvented for the 

BioCreAtIvE V challenge, where the relations to be extracted crossed 

the sentence boundaries. The proposed approach involved the use of 

patterns and background knowledge (see Section 0). The BeFree CID-

based approach did not exhibit the highest performance in the challenge 

in terms of F-score, however, it achieved the best recall. The best 

performing (57.03% of F-score) system, presented by Xu et al. (2015) 

(251), applied two supervised learning approaches (i.e., two SVM-

based classifiers trained at the sentence- and document- level, 

respectively) to extract CID-relations. For the training of their 

classifiers, basic word-context information (such as bigram of words 

between the target chemical and disease entities), knowledge features 

from biomedical databases and document-context information (such as 

if the chemical or disease names occurred in the title) were employed. 

Lately, Le et al. (2016) (235) improved their own results obtained at the 

Bicreative V CID task (+4.13% of F-score), by applying a multi-pass 

sieve co-reference resolution approach.  

 

5.8 Future perspectives 

In this thesis, it was shown that the BeFree system is able to extract 

relevant biomedical information in the context of applied research 
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projects. However, there is still room for improvement regarding the 

performance of the system.  

 

At the level of NER, the disambiguation step could be, further, 

improved by the use of linguistic features and statistical methods that 

remove false positives. In addition, the system could be modified in 

order to identify composite mentions (e.g., “BRCA1/2” or “cardiac and 

respiratory complications”), as in (97). 

 

Furthermore, novel strategies could be investigated for the detection of 

gene/disease names. Specifically, a supervised learning approach could 

be implemented, which could be trained with our novel curated 

PsyGeNET corpus. It should be also noted that, the latter constitutes an 

important corpus that can be, also, used to train and improve the 

BeFree RE approach.  

 

At the level of RE, future work involves the implementation of 

approaches for co-reference and anaphora resolution and the extraction 

of information from full text articles. The presented approach, utilizing 

background knowledge, is valid yet limited by the fact that only known 

associations can be detected. In addition, it has to be taken into account 

that in BioCreAtIvE V, a fraction of the relationships obtained at the 

document level, was not expressed using anaphoras and co-references.  
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6 Conclusions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Talking about computers] 

“But they are useless. 

They can only give you answers” 

Pablo Ruiz Picasso (1881-1973) 
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The main achievements of this thesis are presented below. 

 

(1) The BeFree system was developed as a text mining tool to 

extract biomedical information from the literature.  

 

(2) A NER approach based on dictionaries and rules has been 

developed to detect and identify genes and diseases in text. 

 

(3) The ambiguity between gene and disease names has been 

addressed in order to properly identify these entities. 

 

(4) A RE approach, based on supervised learning, was developed to 

extract relationships between biomedical entities, by employing 

shallow and deep syntactic information. 

 

(5) BeFree achieved state-of-the-art performance for the 

identification of three different types of relationships relevant to 

the biomedical field: gene-disease, drug-disease and drug-target 

associations, as shown by the extensive evaluation performed 

using different gold standards and applications, including a 

community challenge. 

 

(6) An approach combining the RE module with background 

knowledge showed acceptable performance for the 

identification of drug-induced diseases and distinguishing them 

from drug therapeutic effects. 

 



 

 184

(7) We addressed the variety of perspectives that can be used to 

semantically classify a particular relation between two entities. 

 

(8) We have contributed with several annotated corpora and made 

them publicly available to support the development of text 

mining tools. 

 

(9) Automatically generated corpora are suitable for the 

development of text mining tools for biomedical literature. 

 

(10) BeFree was used to extract relevant biomedical information to 

develop knowledge resources. 
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7 Appendix  
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Appendix 1. DisGeNET: a discovery platform for the 

dynamical exploration of human diseases and their genes 

DisGeNET is a comprehensive discovery platform designed to address 

a variety of questions concerning the genetic underpinning of human 

diseases. DisGeNET contains over 380 000 associations between >16 

000 genes and 13 000 diseases, which makes it one of the largest 

repositories currently available of its kind. DisGeNET integrates 

expert-curated databases with text-mined data, covers information on 

Mendelian and complex diseases, and includes data from animal 

disease models. It features a score based on the supporting evidence to 

prioritize gene-disease associations. The web interface supports user-

friendly data exploration and navigation. DisGeNET data can also be 

analysed via the DisGeNET Cytoscape plugin, and enriched with the 

annotations of other plugins of this popular network analysis software 

suite. Finally, the information contained in DisGeNET can be expanded 

and complemented using Semantic Web technologies and linked to a 

variety of resources already present in the Linked Data cloud. Hence, 

DisGeNET offers one of the most comprehensive collections of human 

gene-disease associations and a valuable set of tools for investigating 

the molecular mechanisms underlying diseases of genetic origin, 

designed to fulfill the needs of different user profiles, including 

bioinformaticians, biologists and health-care practitioners. 

Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-

Mehren A, Baron M, Sanz F, Furlong LI. DisGeNET: a 

discovery platform for the dynamical exploration of human 

diseases and their genes. Database. 2015 Jan 1; 2015:bav028. 
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Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-
Mehren A, Baron M, Sanz F, Furlong LI. DisGeNET: a discovery 
platform for the dynamical exploration of human diseases and 
their genes. Database (Oxford). 2015 Apr 15;2015:bav028. 
doi: 10.1093/database/bav028

https://academic.oup.com/database/article-lookup/doi/10.1093/database/bav028
u16319
Rectángulo
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Appendix 2. PsyGeNET: a knowledge platform on 

psychiatric disorders and their genes 

PsyGeNET (Psychiatric disorders and Genes association NETwork) is 

a knowledge platform for the exploratory analysis of psychiatric 

diseasesand their associated genes. PsyGeNET is composed of a 

database and a web interface supporting data search, visualization, 

filtering and sharing. PsyGeNET integrates information from 

DisGeNET and data extracted from the literature by text mining, which 

has been curated by domain experts. It currently contains 2642 

associations between 1271 genes and 37 psychiatric disease concepts. 

In its first release, PsyGeNET is focused on three psychiatric disorders: 

major depression, alcohol and cocaine use disorders. PsyGeNET 

represents a comprehensive, open access resource for the analysis of 

the molecular mechanisms underpinning psychiatric disorders and their 

comorbidities. 

Gutiérrez-Sacristán A, Grosdidier S, Valverde O, Torrens M, 

Bravo À, Piñero J, Sanz F, Furlong LI. PsyGeNET: a knowledge 

platform on psychiatric disorders and their genes. 

Bioinformatics. 2015 May; 11:btv301. 
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Gutiérrez-Sacristán A, Grosdidier S, Valverde O, Torrens M, 
Bravo À, Piñero J, Sanz F, Furlong LI. PsyGeNET: a knowledge 
platform on psychiatric disorders and their genes. 
Bioinformatics. 2015 Sep 15;31(18):3075-7. 
doi: 10.1093/bioinformatics/btv301

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv301
u16319
Rectángulo
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Appendix 3. A crowdsourcing workflow for extracting 

chemical-induced disease relations from free text 

Relations between chemicals and diseases are one of the most queried 

biomedical interactions. Although expert manual curation is the 

standard method for extracting these relations from the literature, it is 

expensive and impractical to apply to large numbers of documents, and 

therefore alternative methods are required. We describe here a 

crowdsourcing workflow for extracting chemical-induced disease 

relations from free text as part of the BioCreative V Chemical Disease 

Relation challenge. Five non-expert workers on the CrowdFlower 

platform were shown each potential chemical-induced disease relation 

highlighted in the original source text and asked to make binary 

judgments about whether the text supported the relation. Worker 

responses were aggregated through voting, and relations receiving four 

or more votes were predicted as true. On the official evaluation dataset 

of 500 PubMed abstracts, the crowd attained a 0.505 F-score (0.475 

precision, 0.540 recall), with a maximum theoretical recall of 0.751 due 

to errors with named entity recognition. The total crowdsourcing cost 

was $1290.67 ($2.58 per abstract) and took a total of 7 h. A qualitative 

error analysis revealed that 46.66% of sampled errors were due to task 

limitations and gold standard errors, indicating that performance can 

still be improved. All code and results are publicly available at 

https://github.com/SuLab/crowd_cid_relex.  

 

  
Li TS, Bravo À, Furlong LI, Good BM, Su AI. A crowdsourcing 

workflow for extracting chemical-induced disease relations 

from free text. Database. 2016 Jan 1; 2016:baw051. 



Bravo À, Furlong LI, Good BM, Su AI. A crowdsourcing workflow for
extracting chemical-induced disease relations from free text. Database 
(Oxford). 2016 Apr 17;2016. pii: baw051. doi: 10.1093/database/baw051

http://database.oxfordjournals.org/content/2016/baw051
u16319
Rectángulo
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Appendix 4. DisGeNET-RDF: harnessing the innovative 

power of the Semantic Web to explore the genetic basis of 

diseases 

Motivation: DisGeNET-RDF makes available knowledge on the 

genetic basis of human diseases in the Semantic Web (SW). Gene-

disease associations (GDAs) and their provenance metadata are 

published as human-readable and machine-processable web resources. 

The information on GDAs included in DisGeNET-RDF is interlinked 

to other biomedical databases to support the development of 

bioinformatics approaches for translational research through evidence-

based exploitation of a rich and fully interconnected Linked Open Data 

(LOD). 

 

 

  

Queralt-Rosinach N, Piñero J, Bravo À, Sanz F, Furlong LI. 

DisGeNET-RDF: harnessing the innovative power of the 

Semantic Web to explore the genetic basis of diseases. 

Bioinformatics. 2016 Apr 22; btw214. 



Queralt-Rosinach N, Piñero J, Bravo À, Sanz F, Furlong LI. DisGeNET-
RDF: harnessing the innovative power of the Semantic Web to explore 
the genetic basis of diseases. Bioinformatics. 2016 Jul 15;32(14):2236-8. 
doi:10.1093/bioinformatics/btw214.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw214
u16319
Rectángulo
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