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Abstract

The smart grid (SG) is the enhancement of the traditional electricity grid that allows bidi-

rectional flow of electricity and information through the integration of advanced monitoring,

communication and control technologies. With these technologies, the SG is expected to yield

efficiency, reliability and robustness in generation, transmission and distribution of energy, as

well as to reduce costs and carbon emissions. In this thesis, we focus on important design

problems affecting particularly two critical enabling components of the SG infrastructure that

facilitate these monitoring and communication capabilities : smart meters (SMs) and wireless

sensor networks (WSNs).

SMs measure the energy consumption of the users and transmit their readings to the utility

provider in almost real-time. Fine-grained SM readings enable real-time optimization of load

management. However, possible misuse of SM readings raises serious privacy concerns for

the users. The challenge is thus to design techniques that can increase the privacy of the users

while maintaining the critical monitoring and control capabilities SMs provide. Demand-side

energy management (EM), achieved thanks to the utilization of storage units and alternative

energy sources, has emerged as a potential technique to tackle this challenge.

WSNs consist of a large number of low power sensor nodes, which monitor physical pa-

rameters and transmit their measurements to control centers (CCs) over wireless links. CCs

utilize these measurements to reconstruct the system state. For the reliable and efficient man-

agement of the SG, near real-time and accurate reconstruction of the system state at the CC is

crucial. Thus, low complexity delay-constrained transmission strategies, which enable sensors

to accurately transmit their measurements to CCs, should be investigated rigorously.

To address these challenges, this dissertation investigates and designs privacy-preserving

EM techniques for SMs and delay-constrained transmission strategies for WSNs. The pro-

posed EM techniques provide privacy to SM users while maintaining the operational benefits

SMs provide. On the other hand, the proposed transmission strategies enable WSNs to meet

low latency transmission requirements, which in turn, facilitate real-time and accurate state
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reconstruction; and hence, the efficient and robust management of the SG.

First, we consider an SM system with energy harvesting and storage units. Represent-

ing the system with a discrete-time finite state model, we study stochastic EM policies from

a privacy-energy efficiency trade-off perspective, where privacy is measured by information

leakage rate and energy efficiency is measured by wasted energy rate. We propose EM policies

that take stochastic output load decisions based on the harvested energy, the input load and

the state of the battery. For the proposed policies, we characterize the fundamental trade-off

between user’s privacy and energy efficiency.

Second, we consider an SM system with a storage unit. Considering a discrete-time power

consumption and pricing model, we study EM policies from a privacy-cost trade-off perspec-

tive, where privacy is measured by the load variance as well as mutual information between

the input and output loads. Assuming non-causal knowledge of the power demand profile

and prices, we characterize the optimal EM policy based on the solution of an optimization

problem. Then, assuming that the power demand profile is known only causally, we obtain the

optimal EM policy based on dynamic programming, and also propose a low complexity heuris-

tic policy inspired from the optimal offline policy. For the proposed policies, we characterize

the trade-off between user’s privacy and energy cost.

Finally, we consider the problem of transmitting delay-sensitive sensor measurements for

state reconstruction in a SG. We study the delay-constrained linear transmission (LT) of com-

posite Gaussian measurements from a sensor to a CC over a point-to-point fading channel.

Assuming that the channel state information (CSI) is known by both the encoder and decoder,

we propose the optimal LT strategy in terms of the average mean-square error (MSE) distortion

under a strict delay constraint, and two LT strategies under general delay constraints. Assuming

that the CSI is known only by the decoder, we propose the optimal LT strategy in terms of the

average MSE distortion under a strict delay constraint.

viii



Resum

La xarxa d’energia intel·ligent, en anglès Smart Grid (SG), és la millora de la xarxa elèctrica

tradicional. La SG permet el flux bidireccional d’informació i incorpora tecnologies avançades

de supervisió, comunicació i control per a la millor gestió de la xarxa. Amb aquestes tecnolo-

gies, la SG pretén incrementar l’eficiència, confiabilitat i robustesa de la generació, transmissió

i distribució de l’energia, aixı́ com reduir els costos i les emissions de gasos d’efecte hiverna-

cle. En aquesta tesi, ens enfoquem en les diferents problemàtiques associades al disseny de

dos dels components més crı́tics de la infraestructura de la SG i responsables, en gran part, de

les capacitats de supervisió i comunicació d’aquesta: els mesuradors de consum intel·ligents,

en anglès Smart Meters (SMs), i les xarxes de sensors sense fils, en anglès Wireless Sensor

Networks, (WSNs).

Els SMs mesuren el consum d’energia dels usuaris i transmeten les seves mesures al

proveı̈dor de servei gairebé en temps real. L’alta granularitat amb la qual els SM obtenen

aquesta informació permet l’optimització en temps real de la gestió de càrrega a la xarxa. No

obstant això, el possible mal ús d’aquestes mesures planteja preocupacions greus en quant a

la privacitat dels usuaris. El desafiament és, per tant, dissenyar tècniques que puguin aug-

mentar la privadesa dels usuaris mantenint les capacitats crı́tiques de supervisió i control que

proveeixen els SMs. Una solució tecnològica a aquest desafiament és el disseny de sistemes de

gestió d’energia, en anglès Energy Management (EM), intel·ligents compostos per dispositius

d’emmagatzematge i generació alternativa d’energia.

Les WSNs es componen d’un gran nombre de sensors de baixa potència, que mesuren

paràmetres fı́sics i transmeten les seves mesures als centres de control (CCs) mitjançant enllaços

sense fils. Els CCs utilitzen aquestes mesures per estimar l’estat del sistema. Per a una gestió

eficient i fiable de la SG, una bona reconstrucció de l’estat del sistema en temps real és crucial.

Per això, cal investigar estratègies de transmissió per a aquestes xarxes de sensors amb estrictes

requisits de complexitat i limitacions de latència.

Amb l’objectiu d’afrontar aquests desafiaments, aquesta tesi doctoral investiga i dissenya,
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d’una banda, tècniques d’EM per preservar la privacitat de les dades procedents dels SMs, i

d’altra banda, estratègies de transmissió per WSNs amb limitacions de latència. Les tècniques

d’EM propostes proporcionen privacitats als consumidors d’energia mantenint els beneficis

operacionals per la SG. Aixı́ mateix, les estratègies de transmissió proposades permeten a les

WSNs satisfer els requisits de baixa latència necessaris per a la reconstrucció precisa de l’estat

de la xarxa en temps real; i per tant, la gestió eficient i robusta de la SG.

En primer lloc, considerem el disseny d’un sistema d’EM compost per un SM i una

unitat d’emmagatzematge i generació d’energia renovable. Representant el sistema amb un

model d’estats finits i de temps discret, estudiem polı́tiques estocàstiques d’EM. En particu-

lar, proposem polı́tiques d’EM que prenen decisions estocàstiques sobre la càrrega sol·licitada

la xarxa en funció de l’energia recol·lectada, la demanda dels usuaris i l’estat de la bateria.

Per a les polı́tiques propostes, caracteritzem la relació fonamental existent entre la privadesa

i l’eficiència d’energia de l’usuari, on la privacitat es mesura mitjançant la taxa de fugida

d’informació i l’eficiència d’energia es mesura mitjançant la taxa d’energia perduda.

En segon lloc, considerem el disseny d’un sistema EM compost per un SM i una uni-

tat d’emmagatzematge. Considerant un model de temps discret per al consum i el preu de

l’energia, estudiem en aquest cas la relació existent entre la privacitat el cost de l’energia, on la

privacitat es mesura per la variació de la càrrega, aixı́ com mitjançant la informació mútua. En

primer lloc, suposant que la corba de la demanda d’energia i els preus són coneguts per enda-

vant, caracteritzem la polı́tica d’EM òptima. En segon lloc, suposant que la demanda d’energia

és coneguda només per al temps actual, obtenim la polı́tica d’EM òptima mitjançant progra-

mació dinàmica, i proposem una polı́tica heurı́stica de baixa complexitat. Per a les polı́tiques

propostes, caracteritzem la relació existent entre la privacitat i el cost d’energia de l’usuari.

Finalment, considerem el problema d’estimar l’estat de la SG mitjançant la transmissió de

les mesures dels sensors amb limitacions estrictes de latència. En particular, considerem el dis-

seny d’estratègies de transmissió lineal (LT) de mesures Gaussianes compostes des d’un sensor

a un CC sobre un canal punt a punt amb esvaı̈ments. Suposant que la informació de l’estat

del canal (CSI) és coneguda tant pel transmissor com pel receptor, proposem l’estratègia de LT

òptima en termes de la distorsió d’error quadràtic mitjà (MSE) sota una restricció de latència

estricta. A més, proposem dues estratègies de LT per a restriccions de latència arbitràries. Fi-

nalment, suposant que la CSI és coneguda només en el receptor, proposem l’estratègia de LT

òptima en termes de la distorsió de MSE sota una restricció de latència estricta.
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Resumen

La red de energı́a inteligente, en inglés Smart Grid, (SG) es la mejora de la red eléctrica tradi-

cional. La SG permite el flujo bidireccional de información y incorpora tecnologı́as avanzadas

de supervisión, comunicación y control para la mejor gestión de la red. Con estas tecnologı́as,

la SG pretende incrementar la eficiencia, confiabilidad y robustez de la generación, transmisión

y distribución de la energı́a, ası́ como reducir los costes y las emisiones de gases de efecto in-

vernadero. En esta tesis, nos enfocamos en las diferentes problemáticas asociadas al diseño

de dos de los componentes más crı́ticos de la infraestructura de la SG y responsables, en gran

medida, de las capacidades de supervisión y comunicación de esta : los medidores inteligentes,

en inglés Smart Meters, (SMs) y las redes de sensores inalámbricos, en inglés Wireless Sensor

Networks, (WSNs).

Los SMs miden el consumo de energı́a de los usuarios y transmiten sus medidas al provee-

dor de servicio casi en tiempo real. La alta granularidad con la que los SM obtienen esta infor-

mación permite la optimización en tiempo real de la gestión de carga en la red. Sin embargo,

el posible mal uso de estas medidas plantea preocupaciones graves en cuanto a la privacidad

de los usuarios. El desafı́o es, por lo tanto, diseñar técnicas que puedan aumentar la privacidad

de los usuarios manteniendo las capacidades crı́ticas de supervisión y control que proveen los

SMs. Una solución tecnológica a este desafı́o es el diseño de sistemas de gestión de energı́a, en

inglés Energy Management (EM), inteligentes compuestos por dispositivos de almacenamiento

y generación alternativa de energı́a.

Las WSNs se componen de un gran número de sensores de baja potencia, que miden

parámetros fı́sicos y transmiten sus mediciones a los centros de control (CCs) mediante enlaces

inalámbricos. Los CCs utilizan estas mediciones para estimar el estado del sistema. Para una

gestión eficiente y fiable de la SG, una buena reconstrucción del estado del sistema en tiempo

real es crucial. Por ello, es preciso investigar estrategias de transmisión para estas redes de

sensores con estrictos requisitos de complejidad y limitaciones de latencia.

Con el objetivo de afrontar estos desafı́os, esta tesis doctoral investiga y diseña, por un
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lado, técnicas de EM para preservar la privacidad de los datos procedentes de los SMs, y por

otro lado, estrategias de transmisión para WSNs con limitaciones de latencia. Las técnicas de

EM propuestas proporcionan privacidad a los consumidores de energı́a manteniendo los ben-

eficios operacionales para la SG. Ası́ mismo, las estrategias de transmisión propuestas permiten

a las WSNs satisfacer los requisitos de baja latencia necesarios para la reconstrucción precisa

del estado de la red en tiempo real; y por lo tanto, la gestión eficiente y robusta de la SG.

En primer lugar, consideramos el diseño de un sistema de EM compuesto por un SM y una

unidad de almacenamiento y generación de energı́a renovable. Representando el sistema con

un modelo de estados finitos y de tiempo discreto, estudiamos polı́ticas estocásticas de EM. En

particular, proponemos polı́ticas de EM que toman decisiones estocásticas acerca de la carga

demandada a la red en función de la energı́a recolectada, la demanda de los usuarios y el estado

de la baterı́a. Para las polı́ticas propuestas, caracterizamos la relación fundamental existente

entre la privacidad y la eficiencia de energı́a del usuario, donde la privacidad se mide mediante

la tasa de fuga de información y la eficiencia de energı́a se mide mediante la tasa de energı́a

perdida.

En segundo lugar, consideramos el diseño de un sistema EM compuesto por un SM y una

unidad de almacenamiento. Considerando un modelo de tiempo discreto para el consumo y

el precio de la energı́a, estudiamos en este caso la relación existente entre la privacidad y el

coste de la energı́a, donde la privacidad se mide por la variación de la carga, ası́ como la in-

formación mutua. En primer lugar, suponiendo que el perfil de la demanda de energı́a y los

precios son conocidos de antemano, caracterizamos la polı́tica de EM óptima. En segundo lu-

gar, suponiendo que la demanda de energı́a es conocida sólo para el tiempo actual, obtenemos la

polı́tica de EM óptima mediante programación dinámica, y proponemos una polı́tica heurı́stica

de baja complejidad. Para las polı́ticas propuestas, caracterizamos la relación existente entre la

privacidad y el coste de energı́a del usuario.

Finalmente, consideramos el problema de estimar el estado de la SG mediante la trans-

misión de las mediciones de los sensores con limitaciones estrictas de latencia. En particular,

consideramos el diseño de estrategias de transmisión lineal (LT) de mediciones Gaussianas

compuestas desde un sensor a un CC sobre un canal punto a punto con desvanecimientos.

Suponiendo que la información del estado del canal (CSI) es conocida tanto por el trasmisor

como por el receptor, proponemos la estrategia de LT óptima en términos de la distorsión de

error cuadrático medio (MSE) bajo una restricción de latencia estricta. Además, proponemos

dos estrategias de LT para restricciones de latencia arbitrarias. Suponiendo que la CSI es cono-

cida sólo en el receptor, proponemos la estrategia de LT óptima en términos de la distorsión de

MSE bajo una restricción de latencia estricta.
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Chapter 1
Introduction

1.1 Motivation

Technology has been evolving rapidly over the past decades, leading to significant changes in

our lives and posing many new challenges to be tackled. One of the significant challenges to

be addressed in the 21th century will be the upgrading of the conventional electrical grid [1–4].

The electrical grid is an interconnected network of power plants, transmission and distribution

lines, substations, transformers and more, for delivering the electricity from suppliers to a

myriad of consumers. However, the grid with its aging infrastructure necessitates to undergo a

profound change to meet the actual requirements of the information age efficiently [5–8].

With a rapidly growing population, there has been a huge growth and variation in electric-

ity demand over the past decades, which has further increased and varied the existing load on

the grid infrastructure. According to the U.S. Department of Energy report, the electricity de-

mand has been increasing perpetually by 2.5% per year over the last few decades [9]. The grid

has difficulties in forecasting the changing conditions, diagnosing and responding to potential

problems arising from the load growth and variation since it suffers from the lack of advanced

and pervasive monitoring, communication and control capabilities. As a result, the grid has

been facing serious problems, such as increased congestion, major blackouts, various system

failures and their cascading effects, high cost energy generation, waste at peak time periods,

and increased carbon emissions with massive damage to the environment and major impact

to the climate change. The European Council has been discussing some of these problems,

and has reported the paramount importance of reducing the greenhouse carbon emissions for

the future of the world. All these factors have in turn encouraged governments to upgrade the

existing grid so as to reduce carbon emissions and energy costs, provide energy efficiency and

sustainability, reliability and robustness by 2020 [10]. Introducing alternative energy sources

and energy storage devices into the user premises and the grid will significantly reduce the load
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Figure 1.1: A depiction of the smart grid (SG) [16].

on the grid and play a key role for achieving these goals [11]. For instance, renewable en-

ergy sources can be integrated into the user premises through energy harvesting (EH) devices,

which can harvest energy from ambient sources such as solar, thermal or wind, and reduce the

users’ dependence on the grid [12], [13]. Similarly, the users can become more involved in

the grid operation through the usage of plug-in electric vehicles (EVs), hybrid and battery cars

etc., which can be used for distributed energy storage on the distribution grid by means of their

rechargeable batteries (RBs) [14]. Hence, all these suggest that new technologies for monitor-

ing, management and control will need to be developed evolving conventional electrical grid

into a more intelligent grid.

The smart grid (SG) is the next generation, modernized enhancement of the traditional

power grid that allows bidirectional flow of electricity and information by the integration

of computer, monitoring, communication and automation technologies [15]. As depicted in

Fig. 1.1, the SG is composed of energy and data networks. To efficiently manage and control

such a complex network and deliver its potential benefits, advanced and pervasive monitoring,

metering and control technologies are essential. This in turn has prompted the deployment of

emerging metering and monitoring technologies such as smart meter (SMs) and wireless sensor

networks (WSNs).
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Figure 1.2: A commercial SM platform of General Electric.

1.1.1 Smart Meters (SMs)

SMs are metering and communication devices that measure the energy consumption of a user

in a household and transmit their readings to the utility provider (UP) over wired or wireless

links [17]. Currently, a typical SM reports the energy consumption readings to the UP every 15

minutes; however, the measuring frequency is expected to increase in the near future to provide

near real-time energy consumption data to the UP. An example of a commercial SM platform

produced by General Electric can be seen in Fig. 1.2. The communication infrastructure of SMs

enable bidirectional transmission of data between the SM and the UP [17–19]. This allows the

UP to closely monitor the grid load and manage user demands with the goal of providing poten-

tial benefits [20–22]. For instance, electricity supplier can support dynamic electricity pricing

with incentive tariffs for the users and encourage the users to shift and/or reduce their demands

at peak times with the promise of reducing their energy costs [23]. In this way, the users can

get more involved in the grid operation. Accurate electricity bills can be generated in real-time

based on fine-grained consumption data and provided to users through in-home display units

as in the example of a display produced by British Gas shown in Fig. 1.3. This enables users

to monitor their bills in real-time and manage their electricity consumption efficiently. Signifi-

cant energy savings have been reported even solely based on the user’s increased awareness of

his/her real time energy consumption [24]. Besides, the UP can forecast the grid capacity by

means of collected SM data, which allows the UP to do longer term energy generation contracts

with low generation costs [25]. Furthermore, the UP can detect and prevent fraud attempts by

analyzing aggregated consumption patterns through SMs [26]. Therefore, many governments

in Europe and United States support the deployment of SMs at households. For example, the
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Figure 1.3: An in-home display of British Gas.

U.K. government has already launched the installation of SMs at many households in Britain,

with the goal of every home having an SM by 2020 [27].

Despite all potential benefits mentioned above, possible misuse of SM readings raises im-

portant privacy and security threats for the users [28–33]. Potential privacy and security vulner-

abilities of SGs have been reported by the U.S. National Institute for Standards and Technology

(NIST) [34], and specifically, advanced metering infrastructure (AMI) security requirements

have been published in OpenSG [35]. According to these reports, SM data can be misused by

authorized and non-authorized third parties. On the one hand, authorized third parties, such as

energy companies may use SM data for marketing or advertising issues. Additionally, govern-

ments may require access to SM data for law enforcement purposes or criminal issues. On the

other hand, non-authorized parties can access SM data through illegitimate methods such as

hacking, and analyze fine-grained data by employing various privacy-invasive techniques. By

doing so, non-authorized parties can extract and deduce private user activities, such as residen-

tial occupancy, personal behaviours, life-styles, preferences [36], and appliance usage patterns,

such as detecting the television (TV) channel that is being watched [37]. Even the indication

of illnesses or life-style changes of an individual can be inferred through long retention of SM

data [28–30]. Hence, solid privacy assurances should be provided to users both at legal and

technical levels. Regarding legislative frameworks of governments, there are guideline reports

such as the one published by NIST [34]. However, there still lacks standardization for the de-

velopment of robust privacy regulations and policies. For instance, the protection of personal

information currently count on the rules of companies and regulators. This is overwhelmingly

weak protection since these rules rely solely upon the honesty of all parties. Therefore, privacy

regulations and policies should be considered more seriously in the near future. On the other

hand, providing privacy assurances at the technical level is also very crucial. This gives rise
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to an urgent need for studying and designing privacy-preserving technologies, that can provide

solid and robust privacy assurances to users, as well as maintain the operational benefits SMs

provide to the SG. Demand-side energy management (EM), achieved thanks to the utilization of

storage units and alternative energy sources, is an emerging technique to tackle this challenge.

Hence, these techniques should be investigated rigorously in the near future.

1.1.2 Wireless Sensor Networks (WSNs)

Another enabling technology for advanced monitoring and control of the SG is WSN [38–42].

As opposed to the traditional wired monitoring systems, which require high installation and

maintenance costs for communication cables [43], WSNs bring significant benefits such as

rapid deployment, low cost installation and maintenance of wireless sensor nodes [44]. To

that end, WSNs have been deployed in the SG to monitor various physical parameters, such

as voltage, current, active/reactive power values, and transmit their measurements to control

centers (CCs) over wireless links. CCs exploit these measurements to reconstruct and update

the system state. To enable the robust, reliable and efficient management of the grid, with rapid

diagnosis and self-healing of potential system faults, near real-time and accurate reconstruction

of the system state at the CC become critical. In this regard, wireless sensors should be able to

realize near real-time, reliable and accurate transmission of their measurements to CCs.

Transmission of rich sources over wireless networks has been already enabled by recent

advances in communication and hardware technology. For their applicability to the SG sce-

nario, it’s crucial to identify system limitations and performance metrics, and design wireless

system that satisfies the end-to-end average distortion and delay requirements within the power

constraint of the transmitter. In this context, low latency and low complexity are critical quality

of service requirements that need to be met in the design of wireless transmission strategies

for the SG [45], [46]. For instance, the U.S. Department of Energy identifies six major com-

munication requirements for SG technologies in [47], and low latency is mentioned in five of

them. All these suggest that the design of low complexity, delay-sensitive transmission strate-

gies for WSNs is needed in order to provide advanced monitoring and control capabilities to

SG, and enable, in turn, the robust and efficient management of the SG. Linear transmission

(LT) emerges as an attractive strategy for this problem since it reduces both the delay and en-

coding complexity significantly; and accordingly limits the cost and energy requirements of

the sensors. Hence, these strategies should be investigated thoroughly.

In summary, the study and design of privacy-preserving EM techniques for SMs are re-

quired in order to provide privacy assurances to SM users while maintaining the operational

benefits SMs provide to the SG. In addition, delay-sensitive transmission strategies for WSNs
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should be studied and designed so as to enable sensors to accurately transmit their measure-

ments to CCs in near real-time, and facilitate, in turn, real-time and accurate state reconstruc-

tion; and hence, the robust and efficient management of the SG.

1.2 Dissertation Outline and Research Contributions

This dissertation investigates privacy-preserving EM techniques for SMs and delay-sensitive

transmission strategies for WSNs. The proposed EM techniques aim at coping with privacy

concerns of SM users while retaining the operational benefits SMs provide to the SG. On the

other hand, the proposed transmission strategies aim at enabling WSNs to accommodate low

complexity, low latency transmission requirements, and maintaining, in turn, the critical moni-

toring and control capabilities WSNs provide to the SG. The thesis is structured in six chapters.

The current chapter motivates the conducted research and presents the outline and research con-

tributions. Chapter 2 provides a brief state of the art on privacy-invasive and privacy-preserving

techniques, as well as on LT strategies. The technical content of the dissertation is organized

into three main chapters, namely, Chapters 3, 4 and 5. Chapters 3 and 4 focus on an SM system

and study the fundamental trade-offs between privacy and energy efficiency, and privacy and

energy cost, respectively. Chapter 5 considers the problem of transmitting delay-sensitive sen-

sor measurements for state reconstruction in SG, and studies delay-constrained LT strategies

in a point-to-point communication problem. Finally, Chapter 6 concludes the dissertation and

points out some possible future research directions.

Chapter 3 studies privacy in an SM system from an information theoretic perspective in

the presence of EH and storage units. Focusing on a discrete-time system model, we investi-

gate stochastic battery policies at the energy management unit (EMU) based on the harvested

energy, energy demand of the appliances and the state of the storage unit. We show that EH

provides increased privacy by diversifying the energy source, while a storage device can be

used to increase both the energy efficiency and the privacy of the user. For given input load

and EH rates, which denote the probability of having one unit of energy demand and harvested

energy, respectively, it is shown that there exists a trade-off between the information leakage

rate, which is used to measure the privacy of the user, and the wasted energy rate, which is a

measure of the energy-efficiency. The impact of the EH rate and the size of the storage device

on this trade-off is also studied. For very sensitive applications, the impact of wasting of grid

energy on fulfilling the increased privacy requirements of the user is also investigated. The

main contributions of Chapter 3 are :

• We investigate stochastic EM policies that provide both privacy and energy efficiency to

the user for an SM system with an EH device and an RB.
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• For given input load and EH rates, we show that the proposed EM policies lead to an

energy efficiency-privacy trade-off.

• We study the impact of EH rate on the energy efficiency-privacy trade-off, and show that

the privacy of the user improves significantly as the EH rate increases. On the other hand,

this also increases the amount of wasted energy.

• We numerically investigate the impact of the battery capacity on the information leakage

rate, and show that the information leakage rate can significantly be reduced by increas-

ing the RB capacity.

• For very sensitive applications, we show that even with a finite capacity RB, increased

privacy can be achieved by wasting more energy from the grid.

The contributions of Chapter 3 were published in one journal publication [48] and two

international conferences [49], [50] :

• O. Tan, D. Gündüz and H. V. Poor, “Increasing smart meter privacy through energy

harvesting and storage devices,” IEEE Journal on Selected Areas in Communications

(J-SAC), Vol. 31, No. 7, pp. 1331 - 1341, July 2013.

• D. Gündüz, J. Gómez-Vilardebó, O. Tan and H. V. Poor, “Information theoretic privacy

for smart meters,” in Proceedings of the Information Theory and Applications Workshop

(ITA), San Diego, CA, USA, Feb. 2013, pp. 1–7.

• O. Tan, D. Gündüz and H. V. Poor, “Smart meter privacy in the presence of energy

harvesting and storage devices,” in Proceedings of the IEEE International Conference

on Smart Grid Communications (SmartGridComm), Tainan City, Taiwan, Nov. 2012,

pp. 664–669.

Chapter 4 studies demand-side EM from a privacy-cost trade-off perspective for an SM

system with an RB. Time-of-use pricing is considered, and privacy is measured as the variation

of the output load from a fixed target value, namely, load variance. Assuming non-causal

knowledge of the household’s aggregate power demand profile and the electricity prices at

the EMU, the privacy-cost trade-off is formulated as a convex optimization problem, and the

optimal EM policy is characterized in the offline setting. Based on the necessary optimal

conditions, a low complexity backward water-filling algorithm is proposed to compute the

optimal EM policy. While the energy cost is reduced by requesting more energy when the

prices are lower, privacy is achieved by a smoother output load. It is shown that both gains can

be achieved simultaneously by exploiting an energy storage unit, while the actual privacy-cost
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trade-off depends on the available storage capacity. Next, the problem is studied in the online

setting assuming that the power demand profile is known to the EMU only causally, and the

optimal EM policy is obtained numerically through dynamic programming (DP). Due to the

high computational cost of DP, a low complexity heuristic EM policy with a performance close

to the optimal online solution is also proposed based on the water-filling algorithm obtained

in the offline setting. As an alternative, information theoretic leakage rate between the input

and output load sequences is also evaluated, and it is shown to follow a similar trend as the

load variance, which further supports the validity of the load variance as a measure of privacy.

Finally, the privacy-cost trade-off, and the impact of the size of the storage unit on this trade-

off are studied through numerical simulations using real SM data in both the offline and online

settings. The main contributions of Chapter 4 are :

• We study EM policies that aim at providing both privacy and energy cost saving to the

user for an SM system with an RB.

• Assuming that the user’s power demands and the electricity prices are known non-causally

at the EMU, we formulate the optimal privacy-cost trade-off in the offline setting as a

convex optimization problem. We identify the structure of the optimal solution for this

convex optimization problem and provide a backward water-filling algorithm for com-

puting the optimal EM policy.

• Assuming that the user’s power demands are known only causally at the EMU, we pro-

pose the optimal EM policy by means of DP solution. We also provide an efficient

heuristic algorithm.

• We characterize the information leakage rate between the user’s power demand profile

and the SM readings, and show that it follows a similar trend as the load variance.

• We study the trade-off between the user’s privacy and energy cost as well as the impact

of the RB capacity on this trade-off for the proposed offline and online policies.

The contributions of Chapter 4 were published in one international conference [51] and

were submitted for a journal publication [52] :

• O. Tan, J. Gómez-Vilardebó and D. Gündüz, “Privacy-cost trade-offs in demand-side

management with storage,” submitted to IEEE Transactions on Information Forensics

and Security, 2016.
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• O. Tan, D. Gündüz and J. Gómez-Vilardebó, “Optimal privacy-cost trade-off in demand-

side management with storage,” in Proceedings of the IEEE International Workshop on

Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, Sweden,

June-July 2015, pp. 370–374.

Chapter 5 considers delay-constrained LT strategies for the transmission of composite

Gaussian measurements over an additive white Gaussian noise (AWGN) fading channel under

an average power constraint. If the channel state information (CSI) is known by both the en-

coder and decoder, the optimal LT scheme in terms of the average mean-square error (MSE)

distortion is characterized under a strict delay constraint, and a graphical interpretation of the

optimal power allocation strategy is presented. Then, for general delay constraints, two LT

strategies are proposed based on the solution to a particular multiple measurements-parallel

channels scenario. We show that the distortion decreases as the delay constraint is relaxed,

and when the delay constraint is completely removed, both strategies achieve the optimal per-

formance under certain matching conditions. If the CSI is known only by the decoder, the

optimal LT strategy is derived under a strict delay constraint. The extension to general delay

constraints is elusive. As a first step towards understanding the structure of the optimal scheme

in this case, we show that for the multiple measurements-parallel channels scenario, any LT

scheme that uses only a one-to-one linear mapping between measurements and channels is

suboptimal in general. The main contributions of Chapter 5 are :

• We study delay-constrained LT strategies for the transmission of composite Gaussian

measurements from a sensor to a CC over an AWGN fading channel. In a composite

Gaussian source model, the source samples follow Gaussian distributions with different

variance values. To the best of our knowledge, this source model has not been considered

before in an LT framework.

• Assuming that both the encoder and decoder know the CSI, we characterize the optimal

LT scheme under a strict delay constraint, and provide a graphical interpretation for the

optimal power allocation scheme.

• We propose two LT strategies for arbitrary delay constraints, and show that the distortion

decreases as the delay constraint is relaxed, and when the delay constraint is completely

removed, both strategies achieve the optimal performance under certain matching condi-

tions.

• Assuming that the CSI is known only at the decoder, we derive the optimal LT strategy

under a strict delay constraint.
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• We show that for the multiple measurements-parallel channels scenario, any LT scheme

that uses only a one-to-one linear mapping between measurements and channels is sub-

optimal in general.

The contributions of Chapter 5 were published in one journal publication [53] and two

international conferences [54], [55] :

• O. Tan, D. Gündüz and J. Gómez-Vilardebó, “Linear transmission of composite Gaus-

sian measurements over a fading channel under delay constraints,” IEEE Transactions

on Wireless Communications, Vol. 15, No. 6, pp. 4335 - 4347, May 2016.

• O. Tan, D. Gündüz and J. Gómez-Vilardebó, “Delay constrained linear transmission

of a mixture of Gaussian measurements over a fading channel,” in Proceedings of the

IEEE International Conference on Communications (ICC), London, UK, June 2015, pp.

4107–4112.

• O. Tan, D. Gündüz and J. Gómez-Vilardebó, “Delay constrained linear transmission of

random state measurements,” in Proceedings of the IEEE Sensor Array and Multichannel

Signal Processing Workshop (SAM), A Coruña, Spain, June 2014, pp. 53–56.
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Chapter 2
State of the Art

This chapter is divided into three parts: while the first and second part give a brief overview of

privacy-invasive and privacy-preserving techniques, respectively, the third part briefly overviews

LT strategies.

2.1 Privacy-Invasive Techniques

2.1.1 Non-Intrusive Appliance Load Monitoring (NALM)

Non-intrusive appliance load monitoring (NALM) has been proposed as a set of techniques

that analyze the aggregated power consumption data with the goal of identifying and tracking

detailed appliance usage patterns in a household [56]. NALM techniques are called as non-

intrusive since they only need to gather the aggregated power consumption data contrary to the

intrusive techniques, which need to gather the power consumption data of individual appliances

by connecting intrusive sensors to them. Hence, NALM techniques eliminate the need for

deployment of expensive and intrusive sensors.

NALM techniques can be used for various purposes such as forecasting the load, detect-

ing failures and enabling demand-side load management with the goal of reducing the energy

demand. These potential benefits lead to further research in NALM techniques for extracting

individual appliance signatures from the aggregated power consumption. Accordingly, the au-

thors in [57] study the pattern recognition techniques in which energy consumption patterns

of domestic appliances can be accurately identified from daily aggregated energy consumption

taken at household’s meter every 15 minutes. The authors in [58] present a feasibility study

showing that the recognition and identification of a particular appliance from the aggregate

current load is possible. The authors in [59] evaluate the performance of an energy monitoring

system that recognizes active appliances based on their acoustic signatures, and provide device-
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Figure 2.1: Appliance detection in an electricity demand profile obtained at a household with
a time resolution of 30 seconds [5].

level power consumption profiles by using the correlation between the acoustic signatures and

the overall power consumption data obtained from a meter. According to their experiments, the

power consumption of individual appliances can be reported within a 10% margin.

To extract the trends of a power consumption signal, a data mining algorithm based on

an empirical probability distribution is proposed in [60]. The authors consider two types of

signals, namely, unprotected signals which are not protected, and protected signals which are

protected by a specific privacy algorithm. The authors applied the proposed method both to un-

protected and protected signals with the goal of analysing the operation of a set of appliances

and evaluating the privacy. They consider different sampling frequencies from 30 seconds to 30

minutes, and observe that the privacy of personal behaviours can be exposed even in the pres-

ence of a low sampling rate. They observe that the specific privacy protection algorithm used

for protecting the signal leads to a great variation in the empirical probability distribution of

the protected signal compared to that of the unprotected signal. They use the proposed method

in order to provide a better insight for the performance of the privacy protection algorithm.

The authors in [61] study the representation of load characteristics and construction of

load taxonomy using the measured voltage and current waveforms of appliances in a house-

hold. They propose a taxonomy methodology, which constructs the load signatures as two
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dimensional voltage-current trajectories, extracts shape features, and clusters the appliances by

applying hierarchical clustering methods. Then, they compare their taxonomy methodology

with the taxonomy methodologies based on the traditional power metrics, and observe that

voltage-current trajectories reveal better results in classifying the loads.

An example of appliance detection in an aggregated power consumption data is given in

Fig. 2.1 [5]. As it can be seen in the figure, active appliances with their unique power signa-

tures can be detected and disaggregated from the total power consumption data. The potential

benefits of NALM techniques can be provided through these extracted consumption signatures.

However, the possible misuse of the extracted power consumption of individual appliances can

raise privacy concerns. These concerns were first expressed by G.W. Hart in [62]. He claimed

that NALM techniques could be potentially used as an adverse surveillance technique. For

example, burglars can use NALM mechanisms in order to extract the time slots (TSs) in which

the users are not at home, and can plan their burglaries.

2.1.2 Use-Mode Detection

Use-mode detection techniques go one step beyond and try to recognize the actual activities

of particular appliances. As a striking example, the authors in [63] illustrate the possibility of

identifying the video being displayed on a TV by analyzing the electro-magnetic interference

(EMI) signals being produced by that TV on the power line. The authors conducted an exten-

sive analysis over 8 different TV sets from 3 sizes and 3 manufacturers. They observe that EMI

traces produced by the same video are repeatable on the same TV set and highly correlated

between different TV sets. They show that movies out of a pool of 1200 known movies can

be identified with high accuracy from EMI traces. This gives rise to the identification of TV

channels for a known programme and time. Finally, the authors analyze 20 movies in an exper-

imental setting and show that the EMI signature model of an arbitrary TV can be dynamically

learned from a known video content without requiring access to that TV.

The authors in [37] propose another approach for detecting the channel displayed on a TV

and even identifying the content. Using the 0.5Hz SM readings, the authors develop a function

that predicts the power consumption of a dynamic back lighting liquid crystal display (LCD)

monitor, which is related to the brightness of the content displayed on the TV. They carry out

an experiment with three movies displayed on a TV and observe a high correlation between the

actual and predicted power consumptions. Then, they show how their approach can be used for

identifying the audiovisual content that is displayed on a TV set with dynamic backlighting.

The identification of the browsing activity of the user is studied in [64]. Monitoring the

computer’s alternating current (AC) power consumption with a sampling rate 1kHz, the authors
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investigate the detection of the website, out of the collection of 8 websites, that a computer

is rendering on the browser. They show that a very good accurracy can be achieved on the

identification of the website thanks to the different classification techniques. They also analyze

the performance of these classification techniques with website changes.

In [65], an interesting approach is proposed to recognize and infer the use-mode of kitchen

appliances from their power consumption. Sensors are being installed for monitoring the ap-

pliances. First, the authors extract characteristic features of appliances in different operating

modes. To do so, they measure the power consumption of appliances in different use-mode

scenarios, such as the juicer with different amount of orange, the cutting machine cutting

bread, coffee machine with different size of coffee, etc. Based on these measurements, the

authors propose classification algorithms for infering the use-mode of the appliances. They

carry out multi-user experiments to validate their approach, and show that 80-90% accuracy

can be achieved in the prediction of the use-mode of the appliances.

2.1.3 Behaviour Deduction

SM readings can be analyzed for deducing the personal behaviours of the consumers. In this

context, a behaviour extraction algorithm is proposed in [66]. The authors conducted an ex-

periment in a flat and gathered both electrical and video data. Their proposed system detects

several events from the electrical data and extracts behaviours of the consumers categorized as

presence, sleep/wake schedule, appliance use, meal times, etc. They evaluate the performance

of their behaviour extraction algorithm by using the reference video data. For the degree of

disclosure of the categorized behaviours, they provide a metric that measures the performance

of their behaviour extraction algorithm in revealing those behaviours.

In addition to SM electricity readings, gas or water consumption traces can also be used

to infer occupant’s behaviour. In [67], a pressure-sensor is employed in home’s water infras-

tructure to measure the amount of water usage. Based on the water consumption readings, the

authors show that activities at individual water fixtures such as particular toilet, a kitchen sink,

can be inferred.

The authors in [68] show the privacy implications that can occur when both electricity and

water consumption data are collected synchronously. In their experiments, they use a matched

filter mechanism, and reveal several water and electrical events happening in the house. For

example, they observe someone that flushes the toilet twice and discover another that flushes

only once and does not use the sink. At the same time, they expose that one does not use the

bathroom light while the other switches the bathroom light on.
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2.2 Privacy-Preserving Techniques

2.2.1 Anonymization

Anonymization techniques are based on the idea of thwarting the UP or a third party, to asso-

ciate the information obtained from the SM data with a specific SM user. The UP can process

the anonymized data to deduce energy consumption traces aggregated from a specific location;

however, these deductions can not be associated with particular users.

In this respect, the authors in [69] study SM data anonymization. They consider two types

of data that can be generated by SMs, namely, high-frequency metering data sampled on the or-

der of few minutes and low-frequency metering data sampled on the order of weeks or months.

The authors assume that high-frequency data can be used to infer consumption patterns of spe-

cific electrical appliances in the household; and hence, it may expose private information. They

also assume that low frequency data is attributable to specific users for billing and account man-

agement. Under these assumptions, the authors propose an escrow protocol for anonymizing

the high-frequency metering data without compromising the operations of the utility and distri-

bution network. In this protocol, the identity relation between the anonymized high-frequency

data and the low-frequency data is assumed to be known only by an escrow service or trusted

third party (TTP).

An SM privacy model based on a cryptographic game is presented in [70]. The authors

assume that an aggregated energy consumption of a group of users, as well as the sum of the

electricity consumption of a single user during a billing period are sent to the UP. They propose

two solutions with and without TTP. In the first solution, TTP as an aggregation proxy, realizes

anonymization through arbitrary aggregation of energy consumptions of different users and

forwards the aggregated consumption data to the UP. In the second solution, every user adds a

random noise to his/her readings in order to mask their own values. Then, the perturbed data

of different users are aggregated and sent to the UP. The authors show that they can provide

perfect privacy by using their solution with TTP.

The authors in [36] propose a zero-knowledge protocol to provide privacy, while allowing

the UP to achieve metering operations such as billing. In their system, the consumption data

is sent to neighbourhood gateways without identity information, and then forwarded to the UP.

Therefore, their protocol aims at hiding the origin of data. The authors show how their protocol

allows an SM to report its computed bill, while hiding how or when electricity was used.

The authors in [71] propose a protocol which uses the grid operator to anonymize the

data. Accordingly, the users sign their data with pseudoynms and certificates provided by a

TTP. They send the signed consumption data to the grid operator. The grid operator as a data
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collector checks the authenticity of the signature and the certicificate, and removes them from

the message. Then, it forwards the data without signatures to the UP. Since the UP does not

receive the consumption data directly from SMs, it can only link this data to a city. The authors

assume that the grid operator is thrustworthy. Despite this assumption, the authors indicate that

the grid operator does not pose any privacy threats as it only sees encrypted data.

In [72], a protocol that provides privacy to consumers based on anonymous reporting is

presented. As opposed to other existing solutions, a TTP is not needed for key and group

management, which makes their solution more interesting for realistic implementations. The

authors indicate that the protocol has been implemented on hardware platforms and perfor-

mance results are provided.

The authors in [73] show the lack of the user privacy guarantees achieved by anonymiza-

tion techniques. The authors expose the possibility of inferring the identity of the user or dis-

tinguishing between users, when the attacker can access to an external indicator in addition to

anonymized data. They develop two attacks threating the privacy of pseudonymized consump-

tion traces. In the first attack, it is shown that the identity of a household and its consumption

trace can be linked by correlating anomalies, which are series of unusual consumer behaviors

that are reflected in the energy consumption. This enables the attacker to deduce the behaviour

of the household. In the second attack, it is demonstrated that the origin of a consumption

trace can be tracked across re-pseudonymization or different databases by exploiting patterns

in the electricity consumption. The authors provide a data analysis framework that allows to

apply these attacks to consumption databases, and then evaluate these attacks by conducting

experiments on real consumption traces.

2.2.2 Trusted Computation

In trusted computation, either the user himself or an additional entity, i.e., TTP, performs the

aggregation of the data. The UP does not know the personal power consumption data, but the

aggregated consumption data. The privacy guarantees depend directly on the assumption of the

protocol regarding the trustworthiness of the entity. If the entity can be trusted, the UP is not

able to deduce the individual power consumption traces from the aggregate information even

though this aggregate is sufficiently accurate.

The authors in [74] consider a distributed data aggregation solution over all users involved

in the route from the source to the destination. In the aggregation tree construction, each node

(user) collects data from its children, aggregates them with its own data and sends the result

to the parent node. Homomorphic encryption is used to protect the privacy of the data in the

route. Hence, users cannot see the intermediate or final aggregates in the route; however, the
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aggregation is still performed correctly. The authors mention that the possible manipulation

of aggregation by any adversary needs to be detected so as to prevent false data aggregations.

They also mention that their approach provides efficient data aggregation with encryption while

protecting the privacy of the user.

A secure architecture integrating privacy-preserving data aggregation and access control

is proposed in [75]. In this scheme, users encrypt their readings using homomorphic encryp-

tion technique with the public key of the TTP and transmit them to the TTP at the root of

aggregation tree. The measurements of each user have specific attributes. At each node of the

aggregation tree, encrypted measurements of the same attributes are aggregated. The TTP first

decrypts the aggregated measurements of each attribute, and then encrypts it using an attribute-

based encryption for achieving the access control to the stored consumer data. Several key

distribution centers distribute cryptographic keys to users, TTP and UP in order to provide a

distributed access control.

2.2.3 Cryptographic Computation

Cryptographic computation protocols are based on homomorphism in the encryption schemes

or secret sharing schemes. These protocols allow the UP to decrypt the aggregate of consump-

tion data. On the other hand, the individual consumption data can not be decrypted.

In this context, the authors in [76] propose protocols combining the use of additive homo-

morphic encryption and additive secret sharing. For the current SM infrastructure, they assume

a multilateral architecture in which the SMs have a trusted component and enjoy a certain level

of autonomy. They mention that guarantees about the measurements for both grid operators

and consumers should be provided by a trustworthy system. They show that several tasks like

billing, grid optimization, etc., can be realized in a privacy-friendly manner with the proposed

protocols. They also indicate that the proposed protocols can be implemented in practical sce-

narios.

The authors in [77] define an SM infrastucture with trusted privacy-preserving nodes.

Each user masks its consumption data by means of a secret sharing scheme with homomor-

phic propoperties, and send the masked data to privacy-preserving nodes. The masked data

with different spatial and temporal granularities is aggregated in the privacy-preserving nodes

according to some rules identified by the configurator. The UP and market operators can ob-

tain aggregated measurements, but can not access to the personal information of any user. The

authors evaluate the scability of the proposed framework using an integer linear programming

formulation and a greedy algorithm.

A family of comparison protocols that provide the private aggregation of the SM readings
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without disclosing the raw metering data is presented in [78]. The authors mention that these

protocols allow fraud and leakage detection as well as further processing of meter readings.

The proposed protocols use different approaches to compute secret shares and to mask their

readings before they are aggregated.

2.2.4 Verifiable Computation

In verifiable computation, the aggregator provides a proof together with the aggregated data

in order to verify the correctness of the aggregation calculation. Thus, this kind of protocols

can guarantee the integrity of the aggregation result even when the aggregation is performed

by untrusted aggregators. The integrity and accuracy guarantees of these protocols make them

a good canditate for providing billing capabilities. These protocols adopt the zero-knowledge

proof system, in which the prover and the verifier, as two parties of the system, interact with

each other. The verifier only knows the statement of the prover, which the prover intends

to prove without revealing any additional information. For example, an SM user computes

the aggregation of its electricity consumption, and sends this result to the UP. The UP can be

persuaded about the validity of this result by the user, without being disclosed with fine-grained

SM data.

2.2.5 Perturbation

Perturbation techniques are based on the idea of deliberately adding noise into individual or

aggregated consumption data with the goal of preserving the privacy of the user at the expense

of decreasing the utility of the data required by the UP.

A privacy-preserving SM system with a cluster of users is presented in [79]. The authors

propose a private and distributed solution under the differential privacy model. Accordingly,

each individual user in the cluster adds random noise to its readings according to Gamma distri-

butions and sends them to the UP. This leads to Laplancian noise in the aggregated consumption

of the cluster, which provides differential privacy to each user of the cluster, while maintaining

the utility for the UP. That is, the UP can compute the perturbed and aggregated consumption

of the cluster for utility purposes; however, it can not access to individual consumption values.

The authors mention that they do not need to use a TTP thanks to the proposed solution. More-

over, they indicate that their scheme with differential privacy model is simple and practical,

and provides strong and provable privacy guarantees.

The authors in [80] consider an untrusted aggregator that collects consumption data from a

group of users with the goal of estimating statistics of the aggregarate. They propose a protocol

that allows the aggregator to accurately estimate statistics even in the presence of user failures,
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while providing differential privacy guarantees for users against the untrusted aggregator. The

binary-tree techniques is used on the construction of the aggregation, which helps to achieve

fault tolerance. Moreover, the authors indicate that their approach supports dynamic joins and

leaves.

In [81], the authors propose an aggregation protocol in which an untrusted aggregator can

decrypt aggregate statistics without compromising privacy of the individual users. Accordingly,

each individual user adds random noise to their consumption data from a geometric distribu-

tion and sends it to an untrusted aggregator. The proposed protocol allows the aggregator to

compute the aggregate of the users’ consumptions and desired statistics. On the other hand, the

proposed scheme is aggregator oblivious, which implies that the aggregator can not learn any

information regarding the consumption of individual users. Moreover, the protocol guarantees

the differential privacy for the aggregate result, even when the aggregator has some auxiliary

knowledge about user’s consumption data.

In [82], the authors propose a differentially private aggregation scheme for distributed

time-series data which might be highly correlated. An untrusted third party aggregates user

data and runs queries on the aggregate data. The proposed protocol uses fourier perturbation

algorithm in order to ensure differential privacy for temporally correlated time-series data. To

achieve differential privacy in a distributed setting, the proposed protocol uses the distributed

laplace perturbation algorithm which adds noise in a distributed manner. According to the

results of the experiments carried out with real data sets, the authors indicate that the proposed

method yields accurate answers for query sequences and also scales with large number of users.

The authors in [83] provide a fault-tolerant, privacy-preserving aggregation protocol that

allows an aggregator to forecast energy consumption over aggregated and encrypted data. The

proposed protocol use homomorphic encryption and distributed key managing authority for

aggregation. Key managing authority provides differentially private decryption services to the

aggregator. The authors indicate that the proposed protocol is also secure against malicious

aggregators. The authors compare their protocol with the existing procols and observe that it

provides higher accuracy in the calculation of desired statistics even in the presence of failures.

In [84], the authors propose a practical privacy-preserving SM system that can support

both billing and load monitoring. The proposed method provides privacy by using a trusted

platform module in SMs which supports pseudorandom number generator. Accordingly, users

encrpyt their readings and store them in a central storage system. The UP can access the storage

system for billing and load monitoring. For billing, the UP can only access aggregate of SM

readings over a time period. For load monitoring, the UP can only access aggregate of SM

readings in a particular area at some recent time. The authors indicate that their proposed

method provide privacy guarantees for individual SM readings when the UP realizes queries
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for billing and load monitoring. Moreover, they mention that the proposed method does not

tolerate failures of users.

2.2.6 Demand-Side Energy Management (EM) Techniques

In the aforementioned privacy-preserving techniques, privacy is provided by tampering the

SM readings before being reported to the UP. As opposed to these techniques, demand-side

EM is an emerging technique that can provide privacy to the consumer without tampering the

SM readings. Demand-side EM techniques utilize storage units, such as RBs, and alterna-

tive energy sources, such as a solar panel, to partially mask the energy usage patterns of the

consumers against the UP. Moreover, since the SM readings are reported to the UP without

tampering, these techniques maintain unaltered the operational utility of the SM readings.

Various EM algorithms have been proposed in the literature to provide privacy to users. In

this regard, [85] proposes the best effort algorithm, which intends to hide the load signatures

of the consumer from the UP with the utilization of RB. The proposed algorithm charges and

discharges the RB in order to maintain a constant SM load level so that appliance usage events

cannot be detected. The authors consider three different privacy metrics, namely, relative en-

tropy, cluster classification and correlation/regression analysis, to measure the privacy provided

by the proposed algorithm. In [86], a power mixing algorithm is proposed to protect energy

consumption events of selected appliances with the utilization of RB. The authors consider the

privacy metrics mentioned above and evaluate the performance of the proposed algorithm by

using the SM data collected from individual home appliances. The authors indicate that some

major factors, such as battery capacity and power, can have an effect on the performance of the

proposed algorithm.

In [87], a simple RB system is studied. The authors consider a discrete-time system model

with binary input-output loads and battery states, and propose stochastic battery policies to pro-

vide privacy to the users. Mutual information between the input and output loads is considered

as a measure of privacy. The authors compute the mutual information applying a trellis algo-

rithm on the finite state model (FSM). They consider two types of stochastic policies, namely,

battery-conditioned policies and battery/output-conditioned policies, and indicate that these

policies can leak 26% less information than the algorithm proposed in [85].

In [88], the authors propose a novel technique for hiding sensitive power consumption

signatures of the appliances in the total power consumption load of a household. The proposed

method modifies the power consumption of the household through the utilization of RB con-

nected to the household’s power supply, with the goal of providing privacy assurances in terms

of differential privacy. The authors consider capacity and throughput constraints of batteries
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in realistic scenarios, and propose an integrated method of noise cascading that maintains the

differential privacy.

The authors in [89] propose a non-intrusive load leveling (NILL) algorithm to protect

privacy of the user against the potential privacy invasion that can stem from NALM techniques.

The proposed algorithm is used to flatten the consumption of the user to a constant target load,

with the goal of removing appliances’ features. NILL uses RBs to flatten the power consumed

by appliances. When an appliance turns to ON state, the exerted load exceeds the target load;

and thus, NILL discharges the battery for partially satisfying the exerted load and maintaining

the target load. Similarly, when an appliance turns to OFF state, the exerted load falls below

the target load; and hence, NILM charges the battery with the energy drawn from the UP and

maintains the target load. The proposed NILL system comprises an RB along with a control

system that charges or discharges the RB based on the present load and battery state.

In [90], the authors propose three techniques, namely, fuzzing, targeted entropy maximiza-

tion and targeted fuzzing. The proposed techniques intend to mask individual load changes with

the utilization of RB. These techniques have different ways of choosing load offsets. The first

proposed technique is fuzzing. This technique changes the observed load to a desired observed

signal, which is chosen randomly over an interval by using a uniform distribution. At first

glance, uniform distribution would seem to create the greatest obfuscation for an actual signal

change. However, since the sampling interval is built around the actual load change, there are

cases where this technique can choose an output signal value that has only one possible under-

lying actual event. This would lead to the fact that there is no obfuscation at all. The second

proposed technique is targeted entropy maximization. This technique chooses the desired load

level that maximizes the entropy of possible individual events. To do so, the proposed tech-

nique uses the information about the individual loads that contribute to the aggregate signal, and

picks up an offset value to minimize the ability of the third parties to deduce any information

about the individual appliances in the aggregate load. This technique assumes that the observer

is unaware of the masking technique, the battery capacity and the charging/discharging rate.

The authors indicate that this technique might fail in providing privacy if this information is

available at the observer side, in which case the observer could decode the observed signal to

reveal the original signal. The third technique is targeted fuzzing. This technique builds a prob-

ability distribution for an observed event taking into account the fact that how this event can

be interpreted by an observer. The distribution has bias towards samples that larger numbers of

possible actual events can explain. This technique randomly samples an observed change from

this distribution, while eliminating any samples that only one actual event can explain. The

authors mention that the targeted fuzzing technique prevents the deficiencies of the previous

techniques against potential attacks.
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In [91], the authors propose battery-based load hiding methods to hide appliance loads.

They first evaluate the performance of two well-known battery control algorithms, namely, best

effort [85] and NILL [89], against the attack of an intruder, and reveal privacy vulnerabilities

of these algorithms. Then, they propose a stepping-based algorithms based on maximizing

the error between the input and output loads under the RB capacity and charging/discharging

rate constraints. They use the mutual information as the privacy measure, and compare the

performances of the proposed stepping algorithms against the best effort and NILL algorithms.

Using a real energy consumption data, they show that their methods outperform the best effort

and NILL algorithms in general.

The authors in [92] propose a stochastic control method that jointly decorrelates the SM

readings from the user’s actual usage and reduces the energy cost of the user with the utilization

of RB. The proposed method is founded based on a stochastic DP. The authors indicate that

their method reduces the correlation between the SM readings and the user’s real consumption

while maximizing the energy savings of the users. The cost savings are achieved by charg-

ing the battery in the low-price zone and satisfy the energy demand from the stored battery

energy in the high-price zone. According to their experiments, the authors indicate that the

proposed technique achieves higher privacy and cost savings in the presence of low-frequency

components in the load profile of the user.

In [93], the authors study a DP framework that jointly provides SM data privacy and

reduces the energy cost of the user. Assuming that the energy demands and prices are known

causally, they reformulate the original problem so that it can be solved by using only the current

demand and price information. Then, they propose a low complexity online algorithm based

on the Lyapunov optimization technique. The proposed algorithm is parametrized by a positive

value, which enables to quantify the impact of the battery capacity on its performance. Using

a real energy demand data, the authors demonstrate that their algorithm can provide privacy to

the user in a cost-effective manner.

2.3 Linear Transmission (LT) Strategies

Shannon’s source-channel separation theorem states that the optimal end-to-end distortion is

achieved by concatenating the optimal source and channel codes when there is no delay or

complexity constraints, and the source and channel distributions are ergodic [94]. However, if

the delay and complexity are considered as system constraints, the optimality of this theorem

fails. This gives rise to the need of designing transmission strategies that can accommodate

low latency and low complexity constraints. In this regard, LT emerges as a promising strategy,

since it reduces both the delay and encoding complexity significantly.
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2.3.1 Linear Coding

In [95], the authors obtain the optimal linear coding solution for the transmission of a vector

of sources over a vector channel. They consider the problem of designing the optimal linear

vector coding method to transmit an r-dimensional vector signal over a k-dimensional AWGN

vector channel under a given power constraint and MSE distortion criterion. They assume an

r-dimensional discrete-time memoryless Gaussian vector source and a k-dimensional discrete-

time memoryless AWGN vector channel. They also assume that the source signal and the

channel noise are independent from each other, while the individual samples of the source and

the channel noise vectors are correlated, i.e., the covariance matrices of the source and noise

signals are not necessarily diagonal. They design the linear encoder and decoder that minimize

the weighted MSE distortion under the total channel power constraint. In the first step of the

optimal linear transformation strategy, the correlated source signal vector and the correlated

channel noise vector are transformed into uncorrelated source signal and channel noise vectors;

and hence, the original problem is reduced to an equivalent vector signal transmission system

with uncorrelated source and noise sequences. In this equivalent system, the optimal decoder is

the linear minimum mean-square error (MMSE) estimator, whereas the optimal linear encoder

is found based on the following linear transformation steps. In the first step, considering the

eigenvalues of the source and channel noise covariance matrices, the source and noise samples

are sorted in descending and ascending orders, respectively. The authors measure the quality

of the source and the channel noise samples through the eigenvalues of the source and channel

noise covariance matrices, i.e., the better source sample implies the larger eigenvalue of the

source covariance matrix and the better channel implies the smaller eigenvalue of the channel

noise covariance matrix, respectively. Then, the sorted source signal vector is matched to

the sorted channel vector in such a way that the largest eigenvalue of the source covariance

matrix is assigned to the smallest eigenvalue of the channel noise covariance matrix, and the

second largest eigenvalue of the source covariance matrix to the second smallest eigenvalue

of the channel noise covariance matrix, and so on so forth. In this optimal matching, each

source sample is scaled by its corresponding encoder constant and transmitted through the

corresponding channel. The authors also derive the optimal encoder for the special case in

which each subchannel has its individual power constraint.

In [96], the authors study the transmission of delay-sensitive SG system state measure-

ments over wireless channels. In the SG system under consideration, wireless sensors obtain

noisy observations of the system state measurements and deliver them to CCs with the goal

of monitoring and controlling the grid. Since the state measurements are delay-sensitive, the

authors focus on low complexity memoryless linear coding and decoding strategies under the

channel power constraint and MSE distortion criterion. Assuming fading channel, the authors
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propose the optimal power allocation strategy over the system state measurements and the fad-

ing channels. If there is only one system state measurement, the optimal power allocation over

time (fading states) is found as the sticky water-filling solution, which is a modified version

of the well-known water-filling solution, with a main difference that the water level changes

for different values of the fading state. For the multiple system state measurements, the au-

thors consider two cases, namely, the diagonal observation matrix and the general observation

matrix. If the observation matrix is diagonal, the optimal power allocation over time is shown

to be the sticky water-filling solution. On the other hand, the authors show that the optimal

power allocation over the system state measurements is to allocate all available power to the

most important measurement. For the general observation matrix, the authors propose a power

allocation scheme, which is shown to be asymptotically optimal.

In [97], the authors study linear coding for a discrete memoryless Gaussian source trans-

mitted over a discrete memoryless AWGN fading channel under average power constraint and

MSE distortion criterion. In linear coding, the encoder linearly maps the source symbols into

the channel symbols. The authors analyze the performance of linear coding under the system

model mentioned above, and show that among all single-letter codes, linear coding achieves

the optimal performance. If the CSI is known both by the transmitter and the receiver, the op-

timal power allocation is provided in terms of the channel fading state and the average power

constraint. If the CSI is known only by the receiver, the optimal power allocation is shown to

be uniform over fading states. The authors indicate that increasing the block length does not

provide any gain in the performance of linear coding. Hence, the Shannon’s theoretical bound

can not be achieved with linear coding in general. However, if the magnitude of the fading gain

is constant, then linear coding is shown to achieve the Shannon’s theoretical bound. The gap

between the performance of linear coding and the Shannon’s theoretical bound is bounded in

terms of the channel fading state and the average power constraint. In the numerical simula-

tions, the authors observe that this gap becomes negligible if the average power constraint or

the variance of the channel fading state is relatively small.

In [98], the authors study LT of correlated Gaussian vector sources over multi-antenna

channels. For static multi-antenna channels, they derive the necessary and sufficient conditions

for the optimality of linear coding in terms of MSE and show that the linear coding is optimal

when the signal-to-noise ratio (SNR) is below a threshold. Then, the authors consider fast

fading multi-antenna channels, and show that the optimal decay rate of the average distortion

in the low SNR regime can be achieved by linear coding. They also show that linear coding

achieves the optimal exponential decay rate of the average distortion in the high SNR regime

under certain settings.

In [99], the authors study linear coding of vector Gaussian sources transmitted over fading
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multi-antenna channels under average power constraint and MSE distortion criterion. Assum-

ing that the CSI is known only by the receiver, they derive the optimal linear coding solution

for the encoder and decoder, and compare its performance with the theoretically achievable op-

timal performance. For the Rayleigh fading channel model, the authors show that linear coding

is suboptimal in general. However, they prove that the performance of linear coding is close

to the theoretically achievable optimal performance in the low SNR regime. For some special

cases, they prove the same for the Rician fading channel model as well.
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Chapter 3
Increasing Smart Meter Privacy Through

Energy Harvesting and Storage Devices

3.1 Introduction

As it has been argued previously, SM data can be easily analyzed for surveillance purposes by

tracking appliance usage patterns, employing non-intrusive appliance load monitors and data

mining algorithms [56], [60], [61]. At the very least, through SM readings it is possible to infer

whether a user is at home or not. But, through more advanced pattern recognition techniques,

energy consumption patterns of individual appliances can be identified with high accuracy even

when the SM can read only the aggregated household energy consumption [57]. As a striking

example, [37] illustrates the possibility of detecting the channel displayed on a TV, and even

identifying the content, just by analyzing the power profile of the household. Even assuming

that the SM readings are transmitted to the UP in an encrypted manner, preventing third parties

from accessing the user’s private energy consumption data, the UP will receive significant

personal information about the user. Thus, even if only partially, assuring the privacy of the

household’s electrical load profile is essential for users.

In this chapter, we study SM privacy from the fundamental information theoretic perspec-

tive. We measure the privacy of the user’s energy profile with respect to the UP in terms of

the information leakage rate, which denotes the mutual information rate between the real en-

ergy consumption of the appliances and the SM readings. Using Shannon entropy to measure

privacy is not new. Minimizing the information leakage rate is equivalent to maximizing the

equivocation, which was introduced by Shannon in [100] in the context of secure commu-

nications. Mutual information has previously been proposed as a measure of privacy in SM

systems and several works in [48–50, 52, 86, 87, 89–91, 101–108]. Modeling the input load as
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Figure 3.1: An SM system diagram with energy and information flows. The user, in addition
to its connection to the energy grid, also has an EH device and an RB at its use. The energy
flow in the system is managed by the EMU. The SM reads only the energy that is supplied by
the UP at each interval. The readings are reported to the UP correctly without any tampering,
but potentially in an encrypted manner.

a discrete-time random process, the information leakage rate measures the amount of informa-

tion the UP learns about the input load after observing the output load, i.e., the energy requested

by the user. We assume that the UP may know the statistics of the input load as well as the

stochastic behavior of the EM policy; however, it cannot observe the input load or harvested

energy directly. The UP has to estimate the realization of the input load based on its statistical

knowledge and its observation of the output load. The user wants to minimize the information

leakage rate to achieve the highest level of privacy. While cryptographic algorithms rely on

mathematical operations and the complexity of their computation by using encryption keys,

information theoretic security does not depend on encryption keys and assures reliable privacy

regardless of the computational power of an intruder, the UP in our case [109].

We study the privacy of an SM system from the perspective of a single user. In our system

model, depicted in Fig. 3.1, we integrate an EH device as an alternative energy source and an

RB as an energy storage unit. The energy flow is managed by the EMU. We consider a discrete-

time system. At each time instant i, the appliances request a certain amount of energy, denoted
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by Xi. This amount is reported to the EMU which is responsible for providing this exact

amount to the appliances; that is, we do not allow energy outages or rescheduling of appliance

operations in this work. We also consider only the real power consumption of the devices and

assume that the SM only reads and reports this quantity. Moreover, we also ignore inefficiencies

and mismatches in providing the energy requirement of the appliances from different energy

sources, and consider only the energy that is consumed by the appliances. The EMU has access

to three different energy sources : the energy grid, the EH device and the energy storage unit.

At any time instant it can provide the energy requested by the appliances from one or more of

these sources. The goal of the EMU is to increase both the energy efficiency of the system and

the privacy of the user.

We employ stochastic battery policies based on the harvested energy, energy demand of the

appliances and the state of the storage unit. We model the energy generation profile of an EH

device as a stochastic process whose behavior depends on the characteristics of the underlying

energy source and the device itself. Therefore, it is likely that the harvested energy sometimes

does not match the energy required by the system and the extra energy would be wasted if not

stored. Introducing an RB for energy storage into the system is essential for better utilization

of the harvested energy. On the other hand, considering the increasing use of alternative en-

ergy sources (such as solar panels) by households, and the availability of rechargeable storage

units (such as EVs) with significantly large storage capacities, it is meaningful to exploit these

devices not only to decrease the dependency on the SG and to increase the energy efficiency,

but also to provide additional privacy for the users. The equivocation of the UP about the real

energy consumption can be manipulated by charging and discharging the RB and by using the

harvested energy. Hence, the benefits of the RB are twofold : i) it can increase the energy ef-

ficiency of the system by storing extra harvested energy; and ii) it can increase the privacy of

the user by hiding the energy consumption profile from the UP. We show in this chapter that

there exists a trade-off between energy efficiency and privacy for the optimal EMU operation,

and the operating point on this trade-off can be chosen based on the privacy sensitivity of the

underlying input load and the cost of energy.

As it has been presented in the state of the art in Chapter 2, various techniques have

recently been proposed to provide a certain level of privacy for SM users. Anonymization [69],

aggregation [70], homomorphism [76] and obfuscation [110] are some of the techniques that

have been studied in the literature. In [88], the authors present a method for establishing privacy

assurances in terms of differential privacy, i.e., RB is used to modify the energy consumption by

adding or subtracting noise and thereby, the energy consumption of the individual appliances

can be hidden. Moreover, they also consider various constraints on the RB such as capacity

and throughput. In [89] a method to provide privacy against potential NALM techniques is
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proposed. A NILL algorithm is used to flatten the consumption of the user by means of an

RB. Similarly, [90] proposes three techniques, i.e., fuzzing, targeted entropy maximization and

targeted fuzzing. The authors intend to obfuscate the load by masking the individual loads with

the use of an RB. Basically, fuzzing changes the load randomly over an interval, the targeted

entropy maximization technique chooses the desired load level that maximizes the entropy of

possible individual events, and targeted fuzzing builds a probability distribution to do so.

Most of the earlier work on SM privacy assumes that the user has control over the SM

readings and can manipulate these readings before sending the data to the UP. For example,

Bohli et al. [70] propose sending the aggregated energy consumption of a group of users to the

UP. Li et al. [19] consider using compressed sensing techniques for the transmission of the SM

readings of active users based on the assumption that SM data transmission is bursty. Bartoli et

al. [111] propose data aggregation together with encryption to forward SM readings. Marmol et

al. [112] propose using “additively homomorphic encryption”, which allows the UP to decode

only the total energy consumption of a group of users while keeping the individual readings

secure. Rajagopalan et al. [113] propose compression of the SM data before being transmitted

to the UP. Unlike this line of research, we assume that the SM reads the amount of energy that

the user gets from the grid at each time interval and the meter readings are reported to the UP

without being tampered by the user. Hence, privacy in our model is achieved by differentiating

the output load, i.e., the energy received from the UP, from the input load, i.e., the real energy

consumption of the user, as much as possible.

A similar approach has been taken in some other previous work as well. RBs have been

proposed to partially obscure the energy consumption of the user in [85–89]. The main goal of

the proposed EM algorithms in these works is to protect the privacy of the user. References [85]

and [86] study variational distance, cluster similarity and regression analysis to measure privacy

and propose various heuristic techniques, such as the power mixing and best-effort algorithms.

A discrete-time system model is considered in [87] and stochastic battery policies are studied

with mutual information between the input and output loads as the measure of privacy. In [104]

a similar information theoretic privacy analysis is carried out in the presence of an EH device

that can provide energy limited by peak and average power constraints.

The main contributions of this chapter can be summarized as follows :

• We introduce an energy efficiency-privacy trade-off in an SM system considering the

availability of an EH device and an RB. To the best of our knowledge, this is the first

work that provides an analytical study on the effect of an alternative energy source on

SM privacy.

• Focusing on a discrete-time system model, we investigate stochastic EM policies that
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provide both privacy and energy efficiency to the user.

• We study the effect of EH rate on the energy efficiency-privacy trade-off, and observe

that as the EH rate increases, the information leakage rate decreases significantly.

• We illustrate numerically that the increased battery capacity significantly reduces the

information leakage rate.

• While no grid energy is allowed to be wasted in the above analysis, we also study the

increased privacy that can be achieved by wasting the grid energy for very sensitive

applications.

We use the following notation in the rest of the chapter. Random variables (r.v.s.) are

denoted with uppercase letters, e.g.,X , and their realizations are denoted with lowercase letters,

e.g., x. A r.v. takes values from a finite set X following a probability mass function pX(x). The

subscript X will be omitted when it is obvious from the context. An n-length random sequence

is denoted by Xn = X1, . . . , Xn. E[X] denotes the expectation of the r.v. X . The entropy of a

r.v. X is defined by :

H(X) , −
∑
x∈X

p(x) log p(x). (3.1)

H(·|·) and H(·, ·) denote conditional entropy and joint entropy, respectively, which are defined

similarly. The mutual information between r.v.s. X and Y is defined as :

I(X;Y ) = H(X)−H(X|Y ). (3.2)

The rest of the chapter is organized as follows. In Section 3.2, we introduce the system

model. Section 3.3 describes the technique to compute the information leakage rate. In Sec-

tion 3.4, we present our results and compare them with the existing results in the literature.

Finally, we conclude the chapter in Section 3.5.

3.2 System Model

We study the energy input/output system illustrated in Fig. 3.1 under a discrete-time system

model. The input load Xi represents the total energy demand of the appliances at time instant

i. The output load Yi denotes the amount of energy that the system requests from the UP,
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while Zi denotes the amount of harvested energy at time instant i. We assume that there is a

minimum unit of energy; and hence, at each time instant i, the input load, harvested energy

and output load are all integer multiples of this energy unit. Over time, we assume that the

input load Xn = X1, X2, . . . , Xn is an independent and identically distributed (i.i.d.) sequence

with marginal distribution pX over X = {0, 1, . . . , N}. The harvested energy is also modelled

as a discrete-time stochastic process, where Zn = Z1, Z2, . . . , Zn is an i.i.d. sequence with

marginal distribution pZ over Z = {0, 1, . . . ,M}. The characteristics of the EH distribution,

pZ , depend on the design of the energy harvester. For example, for a solar energy harvester

the average harvested energy can be increased by scaling the size and the efficiency of the

solar panel. Note that the energy consumed by the appliances and the harvested energy are

independent of each other.

The output load is the amount of energy that is demanded from the UP, and is denoted by

Y n = Y1, Y2, . . . , Yn with Yi taking values in Y = {0, 1, . . . , L}. We denote the energy in the

battery at time instant i by Bi. We assume that the RB has a maximum capacity of K energy

units, i.e., Bi ≤ K, ∀i, while the system is not bounded by the maximum amount of energy

that can be provided by the UP, i.e., L ≥ (N +K)1.

We consider stochastic EM policies at the EMU that depend on the instantaneous input

load, harvested energy and the battery state. An EM policy maps the energy requested by the

appliances, Xi, the harvested energy, Zi, and the battery state, Bi−1, to the output load, Yi, and

the next battery state, Bi. Note that in general a larger set of EM policies is possible. The

EMU can decide its actions based on all the past input/output loads, harvested energy amounts

and the battery states. For example [87] considers policies that take into account the previous

output load, Yi−1. Similarly, the best effort policy proposed in [85], in which the EMU aims to

keep the output load value as stable as possible, is simply a special case of the battery/output

load conditioned policies in [87]. To keep the complexity of possible EM policies simple, we

restrict our attention to EM policies that depend only on (Xi, Zi, Bi−1), and satisfy,

Zi + (Bi −Bi−1) + Yi ≥ Xi, (3.3)

which guarantees that the energy demand of the appliances is always satisfied.

1The energy we consider in this model is the real energy measured by the SM and we ignore the reactive
power or the power factor which can also be used to make deductions about the input load. Moreover, we also
assume that the energy demand of the appliances is satisfied by transferring an equivalent amount of energy from
the RB, EH unit or UP; that is, we do not consider the effect of the supply voltage, frequency or the characteristics
of the appliances on the amount of energy that needs to be requested from the corresponding energy source. Such
quantities could also be incorporated into our model by considering vector-valued measurements, but this added
complexity is not necessary for studying the fundamental trade-offs considered here.
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We assume that the SM provides the output load Yi at each time instant to the UP perfectly.

That is, we do not allow the user to manipulate the SM reading. Moreover, we also assume

that pX and pZ are known by the UP, whereas no information about the realizations of either

the input process xn, or the EH process zn, is available at the UP, which observes only the

output load, yn. The equivocation, H(Xn|Y n), measures the uncertainty of the UP about the

real energy consumption after observing the output load. We have,

H(Xn|Y n) = H(Xn)− I(Xn;Y n). (3.4)

SinceH(Xn) is a characteristic of the appliances and is assumed to be known, the EMU tries to

minimize I(Xn;Y n) in order to maximize the equivocation. Accordingly, the privacy achieved

by an EM policy is measured by the information leakage rate, defined as :

Ip , lim
n→∞

1

n
I(Xn;Y n), (3.5)

where Xn = (X1, X2, . . . , Xn), Y n = (Y1, Y2, . . . , Yn), and I(Xn;Y n) is the mutual informa-

tion between vectors Xn and Y n.

Due to the finite capacity of the RB and the stochastic nature of the input and EH processes,

some of the harvested energy will be wasted. To measure the proportion of the energy wasted

by an EM policy, we define the wasted energy rate as follows :

Ew , lim
n→∞

1

n

n∑
i=1

(Zi + Yi −Xi). (3.6)

We say that an information leakage-wasted energy rate pair (Ip, Ew) is achievable if there

exists an EM policy satisfying (3.5) and (3.6). The closure of the set of all achievable rate pairs

is called the rate region Γ. In general the EM policy that minimizes the information leakage

rate does not necessarily minimize the wasted energy rate. From the classical time-sharing

arguments [94] we can readily see that the rate region Γ is convex. Since the region is also

closed by definition, it is sufficient to identify the boundary of region Γ, which characterizes

the optimal trade-off between privacy and energy efficiency.

To illustrate the privacy benefits of having an EH device, we first consider a system without

an RB. In this case, the EMU uses as much as possible from the harvested energy, and asks for

energy from the UP only when the harvested energy is not sufficient. Therefore, we can define

Yi as a deterministic function of Xi and Zi as follows :
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Yi = (Xi − Zi)+ ,

{
Xi − Zi, if Xi − Zi > 0,

0, if Xi − Zi ≤ 0.
(3.7)

In general, it is possible to ask for energy from the UP even when Xi = 0. This will

increase the privacy by confusing the UP, but waste energy. We do not allow wasting energy

from the UP unless otherwise stated, as this would be costly in practical systems. Obviously,

when there is no harvested energy, i.e., Pr{Z = 0} = 1, then we have Yi = Xi for ∀i, and

Ip = 1
n
H(Xn) = H(X), i.e., the UP knows the input load perfectly. On the other hand, if

there is always harvested energy sufficient to supply the appliances, i.e., M = N and Pr{Z =

N} = 1, then Yi = 0 for ∀i, and we have Ip = 0. When Ip = 0 we say that perfect privacy

is achieved. Basically, as we harvest more and more energy, we reduce our dependence on the

grid energy, and decrease the information leaked to the UP about our real energy consumption.

However, note that, at each time instant harvested energy that is not used by the consumer is

wasted. For example, when Pr{Z = N} = 1, we have Ew = N − E[X] while Ew = 0 when

Pr{Z = 0} = 1. In other words, there is a trade-off between privacy and energy efficiency

provided by the EH unit. Introducing an RB into this system will have a dual use and improve

this trade-off. RBs can act as a filter for the energy usage profile and decrease Ip further while

reducing the wasted energy at the same time.

Due to the discrete-time nature of the system, it can be represented by an FSM [87]. The

FSM representation of the system with all the transitions and states evolving as a Markov chain

depends on the input load level N , the output load level L, the harvested energy level M and

the RB capacity K. As we have mentioned earlier, we consider EM policies that depend only

on the current input load Xi, harvested energy Zi, and the previous battery state Bi−1
2. We

have s , (K + 1) states in our FSM, where state bi denotes the state of the RB, i.e., the

amount of energy stored in the RB at time i. We assume b0 = 0. The battery-conditioned

transitions occur from state bi to bi+1 depending on the battery state bi, the input load xi+1 and

the harvested energy zi+1. The FSM is simply a Markov chain, and the transitions specify the

map to proceed in the chain. Possible transitions are depicted in Fig. 3.2 for different (x, z, y)

triplets and transition probabilities.

2In [87] in addition to battery-conditioned policies, battery/output load conditioned policies are also studied.
However, the authors indicate that they have not found any battery/output load conditioned policy that performs
better than the optimal policy that acts solely based on the battery state. We have made the same observation in
our numerical analysis.
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3.2.1 A Simplified Binary Model

Similarly to [87] to keep the presentation and the numerical analysis simple, we initially con-

sider a binary model; that is, we assume N = L = M = K = 1. However, we note here that

the following arguments and evaluation techniques extend to non-binary models directly. From

a practical perspective, this binary model corresponds to a system with a single appliance that

can be ON or OFF at various time instants with a certain probability, and both the capacity of

the RB and the energy generated by the EH are equivalent to the energy used by this device

when it is ON. In Sections 3.4.3 and 3.4.4 we will consider non-binary battery capacity cases

as well.

While the EM policies can be time-varying in general, we consider time-invariant fixed

policies in which the transition probabilities and parameters of the policy are fixed throughout

the operation. The probability distributions of the input load and the harvested energy are

chosen as Bernoulli distributions, i.e., Pr{X = 1} = px and Pr{Z = 1} = pz, respectively.

The output load Y n is also a binary sequence which can provide 0 or 1 units of energy to

the input load at any time instant i. Battery state bi = 0 denotes that the RB is empty while

bi = 1 denotes that the RB is fully charged at time instant i. We assume that within each

time duration, i to i + 1, the RB can be charged to battery state, bi = 1, discharged to battery

state, bi = 0, or remain in the same state depending on the transition probabilities. We do not

take into consideration the charging and discharging rates of the RB, and assume that this time

duration is enough for fully charging or discharging.

Let the RB be discharged at time instant i, i.e., bi = 0. There are six possible transitions

that can occur as illustrated in Fig. 3.2. If the appliances demand zero energy and no energy

is harvested, i.e., (xi+1 = 0, zi+1 = 0), the EMU chooses either to charge the RB by asking

energy from the UP, i.e., (yi+1 = 1, bi+1 = 1) with probability pa01, or keeps the RB discharged,

i.e., (yi+1 = 0, bi+1 = 0) with probability (1− pa01). If the appliances demand zero energy and

one unit of energy is harvested, i.e., (xi+1 = 0, zi+1 = 1), the UP does not provide any energy

to prevent waste and the RB is charged with harvested energy, i.e., (yi+1 = 0, bi+1 = 1). If the

appliances demand one unit of energy and no energy is harvested, i.e., (xi+1 = 1, zi+1 = 0), the

UP must provide one unit of energy to fulfill the energy demand and the RB remains discharged,

i.e., (yi+1 = 1, bi+1 = 0). If the appliances demand one unit of energy and one unit of energy

is harvested at the same time, i.e., (xi+1 = 1, zi+1 = 1), either the RB is charged by means of

the output load, i.e., (yi+1 = 1, bi+1 = 1) with probability pb01, or it remains discharged, i.e.,

(yi+1 = 0, bi+1 = 0) with probability (1− pb01).

Similarly, let the RB be charged at time instant i, i.e., bi = 1. In this case, there are five

possible transitions that can occur as depicted in Fig. 3.2. If the appliances demand zero energy

and no energy is harvested, i.e., (xi+1 = 0, zi+1 = 0), the UP does not provide energy so as
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not to cause waste and the RB remains charged, i.e., (yi+1 = 0, bi+1 = 1). If the appliances

demand zero energy and one unit of energy is harvested, i.e., (xi+1 = 0, zi+1 = 1), the UP is

not expected to provide any energy and the RB remains charged, i.e., (yi+1 = 0, bi+1 = 1),

while the harvested energy is wasted in this situation. If the appliances demand one unit of

energy and no energy is harvested, i.e., (xi+1 = 1, zi+1 = 0), the EMU chooses between

keeping the RB charged, i.e., (yi+1 = 1, bi+1 = 1) with probability (1− p10), or discharging it,

i.e., (yi+1 = 0, bi+1 = 0) with probability p10. If the appliances demand one unit of energy and

one unit of energy is harvested, i.e., (xi+1 = 1, zi+1 = 1), there is no need to ask for energy

from the UP and the RB remains charged, i.e., (yi+1 = 0, bi+1 = 1).

3.3 Information Leakage Rate Computation

In this section we focus on the computation of the information leakage rate, Ip. From an in-

formation theoretic perspective the operation of the EMU which decides on the energy flow in

the system using the EH and RB units resembles data compression where the compression is

accomplished through a finite state machine. In this analogy, the input load Xn corresponds

to an i.i.d. data sequence to be compressed, and the output load Y n is the compressed ver-

sion. The problem is similar to a rate-distortion problem in which the goal is to minimize the

mutual information between the source sequence and the compressed version while satisfying

the distortion requirement. In our model, the energy provided from the EH device is similar

to a distortion requirement. While we want to minimize the mutual information between the

original data sequence and the compressed version, we are limited by the allowed distortion,

the available harvested energy in our case. A different rate-distortion approach for the SM

privacy problem is taken in [113]. In [113] the SM is allowed to introduce a certain amount

of distortion to its readings before reporting them to the UP, while in our setting distortion is

introduced on the real energy consumption values, making the rate-distortion formulation less

explicit. See [104] for more on the connection with the rate-distortion theory, where a single-

letter information theoretic expression is obtained for the optimal privacy in the absence of an

RB. Due to the memory introduced into the system through the battery, a single letter expres-

sion is elusive for our problem. However, for a fixed EMU policy, the information leakage rate

Ip between the input and the output loads can be estimated numerically using the computation

method studied in [114]. In the following we summarize this computation method.

We first set the values for the transition probabilities and the number of states s in the

FSM. For instance, we specify {pa01, p
b
01, p10} labeled on Fig. 3.2 for s = 2, i.e., bi ∈ {0, 1}.

Afterwards, we sample very long sequences (large n) of Xn, Zn and Y n by using the FSM. We

then compute p(y1, y2, · · · , yn) and p(x1, x2, · · · , xn, y1, y2, · · · , yn). Finally, the information
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leakage rate Ip between Xn and Y n is estimated as follows :

Ip =
1

n

[
H(Xn) +H(Y n)−H(Xn, Y n)

]
≈ H(X)− 1

n
log p(y1, y2, · · · , yn)

+
1

n
log p(x1, x2, · · · , xn, y1, y2, · · · , yn). (3.8)

The FSM can be represented as a trellis diagram with the state sequence {s0, s1, · · · , sn}
for the computation of the probabilities p(y1, y2, · · · , yn) and p(x1, x2, · · · , xn, y1, y2, · · · , yn).

This computation is basically the forward sum-product recursion of the BCJR algorithm [115].

We define the state metrics as follows :

µk(sk) , p(sk, y1, y2, · · · , yk), (3.9)

νk(sk) , p(sk, x1, x2, · · · , xk, y1, y2, · · · , yk). (3.10)

Initially, we set the state metrics as follows:

µ0(0) = 1,

ν0(0) = 1,

µ0(m) = 0, for m 6= 0,

ν0(m) = 0, for m 6= 0.

Here, we emphasize that the initial values of the state metrics do not affect the final val-

ues of p(y1, y2, · · · , yn) and p(x1, x2, · · · , xn, y1, y2, · · · , yn) due to the convergence for long

sequences.

We then compute the state metrics recursively using the transition probabilities

p(xk+1, zk+1, yk+1, sk+1|sk). For the binary system we use the transition probabilities labeled

in Fig. 3.2. We have,
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µk+1(sk+1) =
∑
zk+1

∑
xk+1

∑
sk

µk(sk)p(xk+1, zk+1, yk+1, sk+1|sk), (3.11)

νk+1(sk+1) =
∑
zk+1

∑
sk

νk(sk)p(xk+1, zk+1, yk+1, sk+1|sk). (3.12)

We can compute the probabilities p(y1, y2, · · · , yn) and p(x1, x2, · · · , xn, y1, y2, · · · , yn) as the

sum of all the final state metrics as follows :

p(y1, y2, · · · , yn) =
∑
sn

µn(sn), (3.13)

p(x1, x2, · · · , xn, y1, y2, · · · , yn) =
∑
sn

νn(sn). (3.14)

For large n values, the state metrics µk(·) and νk(·) tend to zero. Therefore, in practice the

recursion is computed with scale factors as follows :

µk+1(sk+1) = λµk+1

∑
zk+1

∑
xk+1

∑
sk

µk(sk)p(xk+1, zk+1, yk+1, sk+1|sk), (3.15)

νk+1(sk+1) = λνk+1

∑
zk+1

∑
sk

νk(sk)p(xk+1, zk+1, yk+1, sk+1|sk), (3.16)

where positive scale factors {λµ1 , λµ2 , · · · , λµn} and {λν1 , λν2 , · · · , λνn} are chosen such that,

∑
sn

µn(sn) = 1, (3.17)∑
sn

νn(sn) = 1. (3.18)

Finally, the joint probabilities can be computed from the following equations:

− 1

n
log p(y1, y2, · · · , yn) =

1

n

n∑
i=1

log λµi , (3.19)

− 1

n
log p(x1, x2, · · · , xn, y1, y2, · · · , yn) =

1

n

n∑
i=1

log λνi . (3.20)

We note here that this computation method applies to any discrete model, including an
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input load with memory, and is not limited to the binary system model considered in this

chapter. However, identification of the optimal system parameters becomes computationally

intractable with an increase in the size of the input and output alphabets, or the battery size.

3.4 Numerical Results and Observations

In this section, we analyze the trade-off between the information leakage rate and energy ef-

ficiency numerically using the computation method presented in Section 3.3. Based on these

numerical results we provide various observations and conclusions regarding the optimal op-

eration of the EMU from a joint privacy-energy efficiency perspective. In our simulations we

focus on the binary model illustrated in Fig. 3.2. We focus on a binary system for its simplicity,

as otherwise, the transitions in the state diagram get very complicated and the numerical com-

putation outlined in Section 3.3 becomes intractable. Later in Section 3.4.3 we also consider

the system with K > 2 in the absence of an EH unit, and study the effects of the battery capac-

ity on the performance. Furthermore, in Section 3.4.4 we consider a system with high privacy

requirements in the absence of an EH unit, and allow the user to waste grid energy in order to

increase privacy. In our simulations, we perform an exhaustive search by varying the transition

probabilities in Fig. 3.2 with 0.1 increments and calculate the information leakage rate for each

EMU policy. We use n = 106 for the computations.

3.4.1 Effects of Energy Harvesting Rate on Privacy and Energy Effi-
ciency

We illustrate the effects of EH rate on both privacy and energy efficiency for an EH system with

and without an RB, and also show how privacy and energy efficiency change in the presence

of an RB. Fig. 3.3 illustrates the minimum information leakage rate Ip and the corresponding

wasted energy rateEw with respect to the EH rate pz for an EH system with and without an RB.

The results are obtained for an equiprobable input load px = 0.5 and different pz values. In a

system with an EH device the privacy improves with increasing values of pz. This is expected

since more energy is provided from the energy harvester as pz increases; and hence, the UP can

learn less about the actual energy consumption of the user. On the other hand, an increase in the

EH rate leads to an increase in the wasted energy rate as well. This is due to the independence

of the energy generation process and the input load. When the EH device harvests a unit of

energy, if there is no demand from the appliances and the RB is already charged, this harvested

energy will be wasted. Therefore, we can easily notice the trade-off between the information

leakage rate Ip and the wasted energy rate Ew in the system when there is no storage unit.
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Figure 3.3: Minimum information leakage rate, Ip, and the corresponding wasted energy rate,
Ew, with respect to harvested energy rate for an EH system with and without an RB.

Comparing the two curves in Fig. 3.3, we observe that introducing an RB into the system

improves the trade-off to a certain extent. It reduces both the minimum information leakage

rate Ip and the corresponding wasted energy rate Ew. When there is no EH, i.e, pz = 0, the

system reduces to the model studied in [87]. In this case, the minimum information leakage rate

is found to be Ip = 0.5 for px = 0.5. However, when there is an alternative energy source in

the system, i.e., pz 6= 0, the information leakage rate can be reduced significantly. The EH rate

can be considered as a system parameter that defines the achievable privacy-energy efficiency

trade-off, and needs to be chosen by the system designer depending on the input load and the

desired operating point.

3.4.2 Privacy-Energy Efficiency Trade-Off

In Section 3.4.1 we have found the wasted energy rate corresponding to the battery policy that

minimizes the information leakage rate. Here, we characterize the whole trade-off between the

privacy and energy efficiency for given EH rates. The trade-off for the values of px = pz = 0.5

is illustrated in Fig. 3.4. Each circle in the figure marks an
(
Ip, Ew

)
pair that can be achieved

by assigning different transition probabilities labeled on Fig. 3.2. The Pareto optimal trade-off
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Figure 3.4: Information leakage rate, Ip, versus wasted energy rate, Ew, for px = 0.5 and
pz = 0.5.

curve is the one that is formed by the points on the lower-left corner of the figure, i.e., the points

for which Ip and Ew cannot be improved simultaneously. The minimum information leakage

rate value is Ip = 0.088 for which we have Ew = 0.163. The minimum wasted energy rate is

Ew = 0.125 for which we have Ip = 0.171. These two pairs correspond to the corner points

of the trade-off curve in Fig. 3.4. According to the requirements of the system, the operating

point can be chosen anywhere on the trade-off curve. Note that, we can apply a convexification

operation on the set of achievable (Ip, Ew) pairs using time-sharing arguments.

We also study the trade-off between the information leakage rate, Ip, and the wasted energy

rate, Ew, for different pz values to observe the effect of the EH rate on the achievable privacy-

energy efficiency trade-off. Fig. 3.5 illustrates the Pareto optimal
(
Ip, Ew

)
pairs for px = 0.5

and for different pz values. Each marker in the figure marks an
(
Ip, Ew

)
pair achieved by

assigning different transition probabilities, and we include only the points that are not Pareto

dominated by any other point. We obtain a different privacy-energy efficiency trade-off for

each pz value as illustrated in Fig. 3.5. The corner points of these trade-off curves are listed in

Table 4.1 for different pz values. Since there is no harvested energy in the system for pz = 0,

there is no wasted energy and as a result, the optimal operating point is found as the minimum

information leakage rate, Ip = 0.5 and wasted energy rate, Ew = 0, which is the same as the
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Ip, Ew
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pairs for different pz values are illustrated with different markers.

model studied in [87]. Note that while the minimum information leakage rate decreases with

increasing values of pz, the minimum wasted energy rate increases. When energy is harvested

with pz = 1, the optimal point is found to be Ip = 0 and Ew = 0.5, that is, perfect privacy

can be achieved at the expense of wasting half of the harvested energy on average. In this case,

there is no information leakage since the user never asks energy from the UP and the wasted

energy rate converges to Pr{X = 0} = 1− px.

We also study biased input loads by considering the two cases with px = 0.89 and px =

0.11, which we call the heavy load and light load scenarios. The entropy rate of the input

load for both the heavy and light load cases is H(X) = 0.5. Note that the input load is biased

towardsX = 1 for the heavy load system, i.e., the appliances are more likely to demand energy.

For the heavy load case when we do not have an EH unit in the system, i.e., pz = 0, we find

the minimum information leakage rate to be Ip = 0.23 [87]. When there is an energy harvester

in the system with pz = 0.5, the minimum information leakage rate reduces significantly to

Ip = 0.026 while the corresponding wasted energy rate is Ew = 0.043. The minimum wasted

energy rate is obtained as Ew = 0.011 for which we have Ip = 0.105. It is obvious that

wasting energy is less likely in the heavy load case. The energy is wasted only when we have

bi = 1, xi+1 = 0, zi+1 = 1 as shown in Fig. 3.2. Thus, when the appliances have higher energy
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the computation of the minimum information leakage rate in case of an equiprobable input
load, i.e., px = 0.5.
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Table 3.1: RESULTS FROM THE TRADE-OFF PAIRS FOR DIFFERENT pz VALUES

pz min Ip Ew for min Ip minEw Ip for minEw

0 0.5 0 0 0.5
0.2 0.213 0.055 0.02 0.462
0.4 0.118 0.12 0.081 0.243
0.6 0.062 0.213 0.185 0.088
0.8 0.02 0.332 0.32 0.032
1 0 0.5 0.5 0

demands, the user is less likely to face the condition for energy wasting. Similarly, in the

light load case, i.e., px = 0.11, Ew increases as less energy is required by the appliances. For

example, the minimum information leakage rate is found to be Ip = 0.027 with Ew = 0.088,

and the minimum wasted energy rate is found to be Ew = 0.087 for Ip = 0.03. We observe that

both the heavy and light load systems can achieve almost the same level of maximum privacy

while the wasted energy rate of the light load system is double the rate of the heavy load system

at this point of operation.

3.4.3 Effects of Battery Capacity on Privacy

We have observed that alternative energy sources can help reduce the information leakage rate

significantly while RBs help improve the energy efficiency as well as privacy. Next, we study

the effects of the RB capacity on privacy. It is expected that if we increase the RB capacity

K, the trade-off curve illustrated in Fig. 3.4 will move toward the origin, i.e., the privacy and

energy efficiency will be improved simultaneously. For example, in the asymptotic limit of

infinite storage capacity, perfect privacy can be achieved by charging the battery initially, and

never asking for any energy from the UP afterwards. To highlight the effects of the battery ca-

pacity on the achievable privacy we consider an RB with capacity K, and no EH device. While

the complexity of the numerical analysis grows quickly with the battery size, we have observed

that for an equiprobable input load, i.e., px = 0.5, there is a symmetry and complementar-

ity among the optimal transition probabilities in the finite state diagram which significantly

reduces the computation time of the minimum information leakage rate. The minimum infor-

mation leakage rate is achieved when, 1) the sum of transition probabilities between two states

is equal to one, and 2) there is a symmetry in the transition probabilities of the two sides of

the finite state diagram separated by the line of symmetry. Fig. 3.6 depicts this symmetry and
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Figure 3.7: Minimum information leakage rate, Ip, versus battery capacity, K.

complementarity on a finite state diagram for battery capacity K = 3 and K = 4, respectively.

Using this observation which reduces the complexity of the computation, we have increased

the battery capacity K and obtained the minimum information leakage rates corresponding to

different values ofK. For moderate battery capacity values Fig. 3.7 illustrates the effects of the

battery capacity on the minimum information leakage rate Ip for px = 0.5. The minimum in-

formation leakage rate falls below 0.1 even with an RB of 6 units of capacity. This result shows

that even a small increase in the RB capacity leads to a significant reduction in the minimum

information leakage rate. As RB capacity increases more, the minimum information leakage

rate Ip continues to decrease, but with a decreasing slope.

3.4.4 Privacy at the Expense of Wasting Grid Energy

We have already shown that whenever the user has higher privacy requirements, the system

with EH and RB units can provide strong privacy assurances by simply increasing the EH rate,

pz. When there is no EH unit in the system, we need to increase the capacity of the RB to cope

with high privacy requirements. However, increasing the capacity of the RB can be costly or

even physically impossible. In this case the privacy of the user can be improved by allowing the

user to demand energy from the UP even when there is no energy demand from the appliances,
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Figure 3.8: Information leakage rate, Ip, versus wasted energy rate, Ew, for the case of wasting
grid energy.

i.e., xi = 0, and the RB is already full, i.e., bi = K. Through wasting additional energy from

the UP, which is likely to be more expensive than the harvested energy, the energy consumption

profile of the appliances can be further hidden from the UP and privacy can be increased up to

perfect privacy by increasing the energy waste level.

To study the effects of wasting grid energy on privacy, we consider battery-conditioned

policies with binary input/output load values and an RB with capacity of K units. Let RB be

fully charged at time instant i, i.e., bi = K. Even if the appliances do not consume any energy at

time instant i+ 1, i.e., xi+1 = 0, we allow the EMU to demand energy from the UP, i.e., yi+1 =

1, with probability pw, and yi+1 = 0 with probability (1−pw). In other words, we allow wasting

the grid energy with probability pw, by which we obscure the information of the UP about the

real energy consumption. Fig. 3.8 illustrates the achievable points on the
(
Ip, Ew

)
trade-off,

obtained for an equiprobable input load, px = 0.5, and for increasing RB capacity values,

K = 1, K = 2, and K = 3. In this simulation, to keep the simulation time reasonable we find

the achievable points for each capacity value K, by considering only complementary transition

probabilities as depicted in Fig. 3.6, such that the sum of the transition probabilities between

two states is equal to 1. Moreover, we compute the wasted energy rate by using Eqn. (3.6), but

we choose Zi = 0 in the equation since there is no EH unit in the current scenario. We can
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see that the privacy can be significantly improved by wasting more energy, i.e., by increasing

pw. For instance, when perfect privacy is required by the system, the information leakage rate

can be reduced to zero by wasting energy with pw = 1. The wasted energy rate converges to

Pr{X = 0} = 1 − px on average for pw = 1, i.e., Ew = 0.5, because we waste energy only

when the RB is fully charged, bi = K, and there is no input load, Xi = 0. If we increase the

RB capacity K, as we can see in Fig. 3.8, both the information leakage rate and the wasted

energy rate are improved for the same energy waste probability, pw. The operating point on the

trade-off curve can be chosen according to the privacy requirement of the system and the cost

of energy provided by the UP.

3.5 Conclusions

In this chapter, we have studied the privacy-energy efficiency trade-off for SM systems in the

presence of EH and storage units. We have considered an EH unit that provides energy packets

at each time instant in an i.i.d. fashion, and a finite capacity RB that provides both energy

efficiency by storing extra energy for future use, and increased privacy by hiding the load

signature of the appliances from the UP. We have used an FSM to represent the whole system,

and studied the information leakage rate between the input and output loads to measure the

privacy of the user from an information theoretic perspective.

We have used a numerical method to calculate the information leakage rate. Due to the

memory introduced by the RB, obtaining a closed-form expression for the information leakage

rate is elusive. For the sake of simplicity, we have considered binary input and output loads

and focused on battery-dependent EM policies in our simulations, and numerically searched

for the EM strategy that achieves the best trade-off between privacy and energy-efficiency. We

have shown that the information leakage rate can be significantly reduced when both an energy

harvester and an RB are present. As the EH rate increases, we have observed that the privacy of

the system significantly improves. On the other hand, this also increases the amount of wasted

energy. For a fixed EH rate, we have numerically obtained the optimal trade-off curve between

the achievable information leakage and wasted energy rates. Different points on this trade-off

curve can be achieved by changing the stochastic battery policy used by the EMU. According

to the needs and priorities of the system, an operating point can be chosen on this trade-off

curve. We have also obtained the corresponding trade-off curves for different EH rates.

We have studied the effects of the battery capacity on the achievable privacy by focusing

on a system with only an RB. We have observed that increasing the capacity of the RB has a

significant impact on the reduction of the information leakage rate, and thereby, on the privacy.

Moreover, we have examined the wasting of grid energy to fulfill the increased privacy require-
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ments of the user when there is only an RB in the system. We have observed that even in the

absence of an EH device and with a finite capacity RB, the privacy level can be increased up to

perfect privacy by wasting more energy from the grid.
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Chapter 4
Privacy-Cost Trade-offs in Demand-Side

Management with Storage

4.1 Introduction

In the previous chapter, we studied an SM system in the presence of EH and storage units,

where the storage unit was utilized to increase the privacy of the user by hiding the energy

consumption profile from the UP and increase the energy efficiency of the system by storing

extra harvested energy. Demand-side EM with the help of a storage device can also be used to

provide cost benefits to users. For example, the UPs can support time-of-use electricity pricing

based on fine-grained SM readings and encourage the users to dynamically shift their demands

to off-peak hours with the promise of reducing their energy costs. Demand shifting can also

help avoid peak-to-average ratio in energy consumption, which typically increases the cost of

energy generation and distribution. Accordingly, in this chapter we consider the scenario, in

which the storage unit is utilized to provide privacy and energy cost savings to the user.

We consider the SM system depicted in Fig. 4.1. The power flow is managed by the EMU.

Considering the real power flows through the system, the EMU satisfies the power demands of

the appliances, Xi, from the power grid and the RB. We do not allow any outages or shifting

of user demands. The SM realizes the information flow between the user and the UP, that is,

it measures the output load, Yi, and reports it to the UP at certain time instants without any

tampering. Assuming that the electricity price is time-varying, the EMU utilizes the RB to

reduce the user’s energy consumption cost, as well as to mask the power consumption profile

of the user from the UP and other third parties. We assume that perfect privacy can be achieved

if a constant SM reading is reported to the UP over time [85]. Consequently, we measure user

privacy in terms of the variation of the output load, Yi, from a constant target consumption value
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Figure 4.1: An SM system diagram with an EMU and an RB at the user’s household. The
EMU manages the power flows (solid lines) among the power grid, the appliances and the RB.
The SM realizes the information flow (dashed line) by reporting its power readings to the UP
at certain time instants.

over the period of interest. In addition to the load variance, we evaluate an information theoretic

privacy measure, the information leakage rate, which is defined as the mutual information rate

between the power demands of the appliances and the SM readings. Mutual information has

previously been proposed as a measure of privacy in SM systems and several works in [48–

50, 52, 86, 87, 89–91, 101–108]. Note that information theoretic privacy takes into account the

statistics of the input load,Xi. Hence, the information leakage rate, which measures the average

mutual information between the input and output loads, is also studied as a complementary

privacy measure in order to support the validity of the load variance as a valid and robust

privacy measure. On the other hand, the average energy cost is measured with a time-varying

time-of-use electricity pricing model. Our goal here is to characterize EM policies that jointly

increase the privacy of the user and reduce the energy cost over a given period of time under

an RB capacity constraint.

We first characterize the optimal EM policy under the offline optimization framework

which assumes that the energy demands as well as the electricity prices are known non-causally

by the EMU over the period of interest. We formulate the joint privacy-energy cost minimiza-

tion as a convex optimization problem. We identify the structure of the optimal EM policy by

solving this convex optimization problem, and based on this structure, we provide a backward

water-filling algorithm, which efficiently finds the optimal EM policy. For ease of exposure,

we provide a graphical interpretation for the proposed algorithm, in which the energy received

from the grid can only be shifted to earlier TSs, and the water levels can be equalized to the

extend the RB capacity allows.

We next study the online optimization problem considering only causal knowledge of the

52



4.1. Introduction

power demands at the EMU, that is, the EMU knows only the energy demand at the current

TS. We characterize the optimal online policy using DP. Since DP algorithms are prohibitively

complex, we propose a simple yet efficient heuristic online algorithm based on the backward

water-filling algorithm obtained in the offline setting. Finally, we numerically evaluate the load

variance and the information leakage rate privacy measures, and characterize the trade-off be-

tween the user’s privacy and energy cost resulting from the proposed offline and online EM

policies. The operating points on this trade-off can be chosen based on the user’s require-

ments on privacy and energy cost. We also investigate the impact of the RB capacity on the

performance of the proposed EM policies.

As it has presented in the state of the art in Chapter 2, several techniques have been stud-

ied in the literature to provide a certain level of privacy to SM users. On the one hand, privacy

can be provided by tampering the SM readings before being reported to the UP. Following this

approach, [101] proposes the compression of SM data, [70] considers sending the aggregated

energy consumption of a group of users, and [116] considers adding random noise to the SM

readings to protect user’s privacy. On the other hand, without tampering the SM readings, pri-

vacy can also be achieved by demand-side management with the utilization of storage units,

such as RBs [48–52,85,87,89,91–93,102], and alternative energy sources, such as a renewable

energy source like a solar panel [48–50], [103], [104]. In [48] and [50] user’s privacy is pro-

tected by using an RB and a renewable energy source from an information theoretic perspective.

Heuristic algorithms are proposed in [85], [89] and [91]. The joint optimization of privacy and

energy cost for SMs with the utilization of an RB is addressed in [92], [93] and [102]. The au-

thors in [92] and [93] propose online control algorithms based on stochastic DP and Lyapunov

optimization techniques, respectively. The authors in [102] and [108] study a stochastic control

model, formulated as a partially observeable Markov decision process. The optimal stochas-

tic strategy is computationally challenging to obtain due to the continuous state-action space;

while approximate solutions can be obtained numerically through discretization, or upper and

lower bounds can be derived.

The main contributions of this chapter are summarized next :

• We consider the SM system illustrated in Fig. 4.1, and study the design of EM policies

that aim at minimizing a joint privacy-cost objective.

• Assuming non-causal knowledge of the user’s power demands and the electricity prices

at the EMU, we formulate the optimal privacy-cost trade-off in the offline setting as a

convex optimization problem. We identify the structure of the optimal solution, and

provide a backward water-filling algorithm for computing it.

• Assuming causal knowledge of the user’s power demands at the EMU, we solve the on-
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line optimization problem by means of DP. Additionally, we provide an efficient heuristic

algorithm that uses the optimal offline algorithm to solve a particular subproblem con-

structed at each iteration.

• The information leakage rate between the user’s power demand profile, i.e., the input

load XN , and the SM readings, i.e., the output load Y N , is evaluated and compared to

the load variance as a privacy measure. Finally, the performances of the proposed offline

and online EM policies are assessed through numerical simulations, using a real power

consumption data set. The trade-off between the user’s privacy and the energy cost, as

well as the impact of the RB capacity on this trade-off are characterized for the proposed

policies.

The remainder of the chapter is structured as follows. In Section 4.2, we describe the

system model. In Section 4.3, we characterize the optimal offline EM policy and provide the

backward water-filling algorithm. The optimal and heuristic online EM policies are proposed

in Section 4.4. In Section 4.5, we explain how to characterize the information leakage rate.

In Section 4.6, extensive numerical results are presented. Finally, Section 4.7 concludes the

chapter.

4.2 System Model

We consider a discrete-time power consumption model in a household (see Fig. 4.2(a)). In this

model, each appliance consumes constant power for an arbitrary duration when it is active.

Appliances can be in active or inactive state at any time. Let tp0 = 0 < tp1 < · · · < tp(K−1) < T

be the time instants at which there is a change in the state of at least one appliance. We denote

the total power consumption within [tp(k−1), t
p
k] by Xp

k (kW) for k = {1, 2, . . . , K}.
We also consider a time-varying electricity pricing model in which the cost per unit energy

changes over time at certain time instants, and remains constant in between (see Fig. 4.2(b)).

Let tc0 = 0 < tc1 < · · · < tc(M−1) < T be the time instants at which the cost of energy

changes. We denote the cost per unit energy within [tc(m−1), t
c
m] by Cc

m (cent/kWh) for m =

{1, 2, . . . ,M}. We can combine the time instants at which the power consumption or the cost

per unit energy changes into a single time series t0 = 0 < t1 < · · · < tN−1 < tN = T

(see Fig. 4.2(c)). The duration of the TS between two consecutive time instants is denoted by

τi , ti − ti−1 (sec), for i = 1, 2, . . . , N . We denote the total power consumption and the cost

per unit energy within TS i as Xi (kW) and Ci (cent/kWh), respectively. Note that for any

two consecutive TSs, either the power demand or the cost per unit energy, or both may change,

whereas they remain constant within each TS. In our model, TSs do not necessarily have the
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Figure 4.2: Illustration of the timelines for the total power demand of the household, and the
cost per unit energy. The total power demand, i.e., the input load, changes at time instants
tp1, t

p
2, . . . , t

p
6, while the price of energy changes at time instants tc1, t

c
2, t

c
3, t

c
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same duration.

Following the discrete-time power consumption and pricing model illustrated in Fig. 4.2,

we study the power input/output system depicted in Fig. 4.1. The input load Xi (kW) and the

output load Yi (kW) denote the real power consumption of appliances and the real power drawn

from the grid at TS i, respectively. We consider an SM that reports the output load, Yi, to the UP

at each TS i, correctly without any tampering1. We integrate an RB with a finite capacity Bmax

(kWh), and an EMU which manages the power flow among the grid, the appliances and the

RB. The EMU can use both the power grid and the RB to satisfy the user’s power demand Xi,

as Xi = Yi + Pi, where Pi (kW) is the power charged to (Pi < 0), or discharged from (Pi > 0)

the RB during TS i, and Yi ∈ R+, where R+ denotes the set of nonnegative real numbers.

In this framework, we consider EM policies that jointly increases the privacy and reduces the

energy cost of the user within the time frame [0, T ] by utilizing the RB. Let us define the input

and output load vectors as XN = (X1, X2, . . . , XN) and Y N = (Y1, Y2, . . . , YN), respectively.

Note that an EM policy corresponds to the vector of output loads Y N .

We assume that perfect privacy is achieved if the output load Yi is equal to a constant

value Ē within [0, T ]. Ideally, if the user has a flat power demand from the grid at all times, we

1We assume that Yi remains constant within each TS i. In the sequel, we will show that this assumption is
indeed optimal. Accordingly, there is no loss of information on the UP side by SM reporting once per TS.
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assume that the UP cannot learn anything about the user’s energy consumption behaviour [85].

Accordingly, the privacy of an EM policy is measured by the load variance, defined as :

V ,
1

T

N∑
i=1

τi · (Yi − Ē)2. (4.1)

Observe that perfect privacy is achieved when V = 0, in which case Yi = Ē for ∀i.
The average energy cost of an EM policy is defined as :

C , 1

T

N∑
i=1

τi · Yi · Ci. (4.2)

We assume that all the energy demands of appliances must be satisfied at the time that

they are requested, i.e., we guarantee that the appliances do not incur any outages, and we do

not allow rescheduling; hence, assuming that the RB is empty at t = 0, the output load values

have to satisfy the following constraints :

i∑
j=1

τj ·Xj ≤
i∑

j=1

τj · Yj, i = 1, . . . , N. (4.3)

On the other hand, the energy that has been drawn prior to the demand of the appliances

needs to be stored in the RB. Since the RB capacity is finite, the battery energy at TS i should

satisfy :

Bi ,
i∑

j=1

τj · (Yj −Xj) ≤ Bmax, i = 1, . . . , N. (4.4)

We note here that the constraint in (4.4) assumes that energy cannot be drawn from the

grid to be wasted solely for the sake of privacy. However, we do not constraint the final battery

state to be empty; therefore, more energy than requested by the appliances can be drawn to be

left in the battery at the end of TS N .

It is possible to show that the set of all achievable (V , C) pairs under constraints (4.3)

and (4.4) form a convex region. Then the optimal operating points are characterized by the

Pareto boundary of this region. Hence, we use the weighted average of V and C to identify

all the points on the Pareto boundary. The convex optimization problem can be written as

follows :
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minimize
Yi≥0

N∑
i=1

[
θ · τi ·

(
Yi − Ē

)2
+ (1− θ) · τi · Yi · Ci

]
subject to

i∑
j=1

τj · (Xj − Yj) ≤ 0, i = 1, . . . , N,

i∑
j=1

τj · (Yj −Xj) ≤ Bmax, i = 1, . . . , N, (4.5)

where 0 < θ ≤ 1 is the parameter that adjusts the trade-off between privacy and energy cost.

The value of θ can be set in advance by the user. If θ = 1, then the user is interested only in

maximizing the privacy; and if θ = 0, the user aims at only minimizing the energy cost. Since

the cost per unit energy and the input load remain constant over each TS, it follows from the

convexity of the objective function in (4.5) that the optimal output load must remain constant

within a TS [117]. Hence, the assumption of having the SM report only once per TS does not

lead to any loss of information on the UP side.

In Section 4.3, we identify the optimal offline EM policy as the optimal solution to (4.5), in

which all power demands and prices are known non-causally by the EMU in advance at t0 = 0.

While non-causal knowledge of the user’s future energy consumption may not be realistic for

certain appliances, activity patterns of majority of appliances, such as refrigerators, heating,

programmable washing machines and dish washers, electrical vehicle charging, etc., are either

deterministic or highly predictable during their operation periods [118]. Alternatively, we will

also study the online optimization of the EM policy in Section 4.4.

4.3 Optimal Offline Energy Management (EM) Policy

We provide the optimal offline EM policy as the solution to the convex optimization problem

in (4.5) for 0 < θ ≤ 1. We define the Lagrangian function [119] with Lagrangian multipliers

λi ≥ 0, µi ≥ 0 and vi ≥ 0, i = 1, . . . , N , as follows :
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L =
N∑
i=1

[
θτi
(
Yi − Ē

)2
+ (1− θ)τiYiCi

]
+

N∑
i=1

λi

( i∑
j=1

τj(Xj − Yj)
)

+
N∑
i=1

µi

(( i∑
j=1

τj(Yj −Xj)
)
−Bmax

)

−
N∑
i=1

viYi. (4.6)

Corresponding complementary slackness conditions are :

λi

( i∑
j=1

τj(Xj − Yj)
)

= 0, i = 1, . . . , N, (4.7)

µi

(( i∑
j=1

τj(Yj −Xj)
)
−Bmax

)
= 0, i = 1, . . . , N, (4.8)

viYi = 0, i = 1, . . . , N. (4.9)

We apply the Karush Kuhn Tucker (KKT) necessary conditions on the Lagrangian function :

∂L
∂Yi

= 2θτi
(
Y ∗i − Ē

)
+ (1− θ)τiCi + τi

N∑
j=i

(µj − λj)− vi = 0. (4.10)

Then the optimal output load at TS i, Y ∗i , is found in terms of the Lagrange multipliers, the

weighted cost level, C̄i, and the trade-off parameter θ, as follows :

Y ∗i =

[( N∑
j=i

(λj − µj)

2θ
+ Ē

)
− C̄i

]+

, ∀i, (4.11)

where [x]+ is equal to x if x ≥ 0, and 0 otherwise, and the weighted cost level, C̄i, at TS i is

defined as :
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C̄i ,
(1− θ)Ci

2θ
, ∀i. (4.12)

We note that the solution in (4.11) resembles the classical waterfilling solution [94], where

Yi + C̄i corresponds to the water level in TS i. With this correspondence, one can interpret

the optimal EM policy as pouring water over TSs. In our model water corresponds to the

energy allocated to each TS, and it has to satisfy certain conditions. We next identify some

properties of the optimal EM policy based on the KKT conditions in (4.7)-(4.10), which are

both necessary and sufficient due to the convexity of the optimization problem in (4.5). Then,

we discuss the implications of these properties.

Lemma 4.1. In the optimal EM policy, given Yi > 0 ∀i, whenever the water level, i.e., Yi + C̄i,

increases (decreases) from TS i to TS i+1, i.e., Yi+ C̄i < Yi+1 + C̄i+1 (Yi+ C̄i > Yi+1 + C̄i+1),

the RB must be full (empty) at TS i, i.e., Bi = Bmax (Bi = 0). Moreover, if the RB is neither

empty nor full at TS i, i.e., 0 < Bi < Bmax, then the water level does not change from TS i to

TS i+ 1, i.e., Yi + C̄i = Yi+1 + C̄i+1.

Proof. From the slackness conditions in (4.7) and (4.8), we can argue that the RB is full when-

ever λi = 0 and µi > 0, and the RB is empty whenever λi > 0 and µi = 0. Note that λi and

µi cannot be positive simultaneously. This is because whenever the i-th constraint in (4.4) is

satisfied with equality, i.e., µi > 0, the i-th constraint in (4.3) cannot be satisfied with equality,

i.e., λi = 0, and vice versa. From (4.11), we see that Yi + C̄i < Yi+1 + C̄i+1 implies λi = 0 and

µi > 0, and Yi + C̄i > Yi+1 + C̄i+1 implies λi > 0 and µi = 0. Therefore, we can conclude

that whenever the water level increases (decreases) from TS i to TS i+ 1, the RB must be full

(empty) at TS i. Moreover, if the RB is neither empty nor full at TS i, i.e., 0 < Bi < Bmax,

the i-th constraints in (4.3) and (4.4) are satisfied with strict inequality. This implies from the

slackness conditions in (4.7) and (4.8) that λi = 0 and µi = 0. From (4.11), we can conclude

that the water level does not change from TS i to TS i + 1, i.e., Yi + C̄i = Yi+1 + C̄i+1, if the

RB is neither empty nor full at TS i.

Lemma 4.2. In the optimal EM policy, given Y ∗i > 0 ∀i, if the RB is never full from TS i to TS

N , i.e., Bj < Bmax for j = i, i + 1, . . . , N , then the optimum water levels from TS i to TS N ,

i.e., Y ∗j + C̄j , for j = i, i+ 1, . . . , N , must satisfy Y ∗j + C̄j ≥ Ē. If the RB is neither empty nor

full from TS i to TS N , i.e., 0 < Bj < Bmax, for j = i, i + 1, . . . , N , then the optimum water

levels from TS i to TS N should be equal to Ē, i.e., Y ∗j + C̄j = Ē, for j = i, i+ 1, . . . , N .

Proof. If the RB is never full from TS i to TS N , i.e., Bj < Bmax for j = i, i + 1, . . . , N , the

constraints in (4.4) are satisfied with strict inequality. It follows from the slackness conditions
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in (4.8) that µj = 0, for j = i, i + 1, . . . , N . From (4.11), this implies that Y ∗j + C̄j ≥ Ē,

and we can conclude that, if the RB is never full from TS i to TS N , the optimum water levels

from TS i to TS N should satisfy Y ∗j + C̄j ≥ Ē, for j = i, i + 1, . . . , N . If the RB is neither

empty nor full from TS i to TS N , i.e., 0 < Bj < Bmax, for j = i, i+ 1, . . . , N , the constraints

in (4.3) and (4.4) are satisfied with strict inequality. It follows from the slackness conditions

in (4.7) and (4.8) that λj = 0 and µj = 0, for j = i, i + 1, . . . , N . From (4.11), this implies

that Y ∗j + C̄j = Ē, and we can conclude that, if the RB is neither empty nor full from TS i to

TS N , the optimum water levels from TS i to TS N should be equal to Ē, i.e., Y ∗j + C̄j = Ē,

for j = i, i+ 1, . . . , N .

4.3.1 Implications of Lemmas

Here we discuss the implications of Lemma 4.1 and Lemma 4.2 on the optimal solution. For

clarity, we first consider the solution for the infinite RB case, and then discuss the finite RB

solution. If Bmax is infinite, the RB is never full and the constraints in (4.4) are never satisfied

with equality, i.e., µi = 0, ∀i. Then, it follows from Lemma 4.1 that the water level is mono-

tonically decreasing from one TS to the next. This is because the water (energy) can only flow

backwards in our model, i.e., the output load can be assigned only to previous TSs, rather than

the future ones. Accordingly, whenever the constraint in (4.3) is not satisfied with equality at

TS i, i.e., λi = 0, then some energy for future use is drawn in advance within current TS i; in

other words, some future output load is allocated to the current TS. Hence if, in the optimal

EM policy, some output load is transferred from future TSs to the current one, the water level

remains the same from the current TS to the next. Conversely, when there is a water level

decrease from the current TS to the next, that is, if λi > 0, no output load is allocated from

future TSs to the current, i.e., the RB is empty at TS i, as argued in Lemma 4.1. Moreover,

from Lemma 4.2, we can conclude that all optimal water levels, i.e., Y ∗i + C̄i, ∀i, must satisfy

Y ∗i + C̄i ≥ Ē, ∀i, since the RB is never full.

If Bmax is finite, the amount of energy drawn for future use within TS i is limited by the

remaining RB capacity at TS i, i.e., Bmax − Bi. When the energy transferred from future TSs

to the current one is less than Bmax − Bi, the constraints in (4.3) and (4.4) are satisfied with

strict inequality, i.e., λi = 0 and µi = 0, respectively, and the water level does not change from

TS i to TS i+1, as argued in Lemma 4.1. Conversely, when there is a water level increase from

TS i to TS i+ 1, that is, if λi = 0 and µi > 0, the amount of energy allocated from future TSs

to the current one is equal to Bmax − Bi, which implies that the RB is full at TS i. Note that

when the RB is full at current TS, this implies that no energy can be allocated from future TSs

to the current and previous TSs anymore due to the RB capacity limitation. When there is a

water level decrease from TS i to TS i+ 1, that is, if λi > 0 and µi = 0, no energy is allocated
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from future TSs to the current one, i.e., the RB is empty at TS i, as argued in Lemma 4.1.

If the RB is never full from TS i to TS N , i.e., Bj < Bmax for j = i, i + 1, . . . , N , we can

conclude from Lemma 4.2 that the optimum water levels from TS i to TS N , i.e., Y ∗j + C̄j , for

j = i, i+ 1, . . . , N , must satisfy Y ∗j + C̄j ≥ Ē, for j = i, i+ 1, . . . , N .

4.3.2 Backward Water-Filling Algorithm

All the aforementioned implications of Lemma 4.1 and Lemma 4.2 suggest that, we can satisfy

each input load by backward power allocation over the current and previous TSs, starting from

the first non-zero input load to the last, under the RB capacity constraint. The RB capacity in-

troduces an upper bound on the output load at each TS, and the water levels can be equalized to

the extent the previous water levels and the RB constraints allow. Based on these observations,

we next describe the backward water-filling algorithm through an example in Fig. 4.3. The

height of the white rectangles correspond to the weighted cost levels, C̄i’s, while their widths

correspond to the TS durations, τi’s, for i = 1, 2, 3. We also fix a target consumption value Ē

illustrated in Fig. 4.3. Fig. 4.3(a) depicts the input loads, Xi, as the height of the corresponding

filled areas on top of the white rectangles. Thus, the initial water levels are given by Xi + C̄i,

∀i. Observe that the RB is initially empty at every TS. Observe also that the trade-off between

privacy and energy cost can be adjusted through the parameter θ, which affects the value of the

weighted cost levels. Accordingly, when θ → 1, the significance of user’s energy cost dimin-

ishes, i.e., the weighted cost levels become smaller, and when θ → 0, the significance of user’s

energy cost increases, i.e., the weighted cost levels become larger. Considering the example

in Fig. 4.3(a), in Fig. 4.3(b) and Fig. 4.3(c) we illustrate the optimal offline EM policy in the

presence of an infinite and a finite capacity RB, respectively.

In the infinite RB case, the first power demand X1 is satisfied from the grid within the

first TS, as seen in the first plot of Fig. 4.3(b). For the input load X2, the algorithm allocates

the output load from the second TS to the first by using the water-filling in reverse direction.

Since the electricity price is relatively more expensive in the second TS, part of X2 is drawn in

advance within the first TS, and stored in the RB as seen in the second plot in Fig. 4.3(b). The

rest ofX2 is drawn from the grid within the second TS. Hence, X2 is fulfilled from both the RB

and the grid. Observe that the RB is not empty at the end of first TS; and hence, the water level

does not change from the first TS to the second as argued in Lemma 4.1. For the input demand

X3, the algorithm allocates the output load from the third TS to the second and first TSs as

seen in the third plot in Fig. 4.3(b). This implies that part of X3 is drawn in advance within

the first and second TSs and stored in the RB. Hence, X3 is satisfied from both the RB and the

grid. Observe that the RB is not empty at the end of first and second TSs; and hence, all water

levels are equalized as argued in Lemma 4.1. On the other hand, the RB is empty at the end
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of the third TS. If the current water levels satisfy the conditions argued in Lemma 4.2 in this

step, the algorithm leads to the optimal solution. As depicted in the third plot in Fig. 4.3(b),

all water levels are smaller than the target value Ē; and hence, Lemma 4.2 is not satisfied.

To eliminate this contradiction, the algorithm needs to allocate further grid energy to all TSs.

Accordingly, all water levels are raised up to Ē as seen in the fourth plot in Fig. 4.3(b), leading

to the optimal output loads Y ∗i , as the height of the filled areas above C̄i, ∀i. Observe that the

optimal output load in the first TS, Y ∗1 , depends on the input loads and the weighted cost levels

in the following TSs. For N TSs, the optimal output load values can be obtained by N + 1

iterations of the backward water-filling algorithm.

Fig. 4.3(c) depicts the optimal backward water-filling solution and the optimal output load

values, Y ∗i , in the presence of a finite capacity RB. The first power demand X1 is satisfied from

the grid within the first TS, and the RB is empty at the end of the first TS, as seen in the first

plot of Fig. 4.3(c). In contrast to the infinite capacity RB case, the portion of the input load,

X2, drawn in advance within the first TS is limited by the RB capacity Bmax, as seen in the

second plot in Fig. 4.3(c). In other words, the energy allocated from the second TS to the first is

equal to Bmax, which leads to the fact that the RB gets full at the end of first TS. This explains

the water level increase from the first TS to the second as argued in Lemma 4.1. For the input

demand X3, the algorithm allocates the output load from the third TS only to the second TS

since the RB is full at the end of the first TS as seen in the third plot in Fig. 4.3(c). This implies

that the part of X3 is drawn in advance within the second TS and stored in the RB. Hence,

X3 is satisfied from both the RB and the grid. Observe that the RB is neither empty nor full

at the end of the second TS; and hence, the water level does not change from the second TS

to the third as argued in Lemma 4.1. Similarly to the infinite RB capacity case, if the current

water levels satisfy the conditions argued in Lemma 4.2 in this step, the algorithm leads to the

optimal solution. As seen in the third plot in Fig. 4.3(c), all water levels are smaller than Ē.

Observe that the RB is full at the end of the first TS; and hence, the water level at the first TS

can not be raised further due to the RB capacity limitation. On the other hand, the water levels

at the second and third TSs do not satisfy the optimality conditions argued in Lemma 4.2 as

the RB is neither empty nor full at the second TS, and empty at the third TS. Therefore, the

algorithm needs to allocate further grid energy to the second and third TSs. As depicted in the

fourth plot of Fig. 4.3(c), the algorithm allocates the same amount of energy to the second and

third TSs, and raises water levels, leading to the optimal output loads, Y ∗i , ∀i. Observe that the

water levels at the second and third TSs are raised in accordance with Lemma 4.1 satisfying

the RB capacity constraint. Accordingly, the RB gets neither empty nor full at the end of the

second TS; and hence, the water level does not change from the second TS to the third. The

water levels at the second and third TSs do not reach Ē, since the RB gets full at the end of the
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third TS.

4.4 Online Energy Management (EM) Policies

In this section, we consider causal (online) knowledge of the input load at the EMU. As in

the previous section, we consider non-causal knowledge of the electricity prices at the EMU2.

First we provide the optimal online EM policy by solving the associated DP problem [120]. As

DP algorithms quickly become computationally intractable with the increasing size of the state

space of the problem, we also propose an efficient heuristic online policy that iteratively uses

the offline backward water-filling algorithm developed in the previous section. For simplicity

in this case, we assume unit TS durations, i.e., τi = 1, ∀i. Similarly to the offline setting, we

assume that the target value Ē is a constant parameter and is known by the online EM policies

in advance.

4.4.1 Optimal Online Policy

The state of the system at the beginning of TS i is determined by the energy demand, Xi ∈ X ,

and the battery state, Bi−1 ∈ B. The sets X and B are finite discrete sets generated by dis-

cretizing the feasible state spaces of the energy demand and battery state with particular energy

quantizers, which are detailed in Section 4.6. We assume that the discrete energy demands fol-

low a stationary first-order Markov relation, with transition probabilities qmn between energy

demand states xm and xn, i.e., qmn = Pr{Xi+1 = xn|Xi = xm}. The online EM policy at TS i,

i.e., πi(Xi, Bi−1), maps each state to an output load, Yi, that is selected from the finite discrete

set Yi, i.e., πi : X × B → Yi. The battery state at the end of TS i, Bi, is given by :

Bi = Bi−1 + Yi −Xi. (4.13)

Following (4.13), Yi can be defined as the set of feasible decisions under the energy de-

mand, Xi, and the battery state, Bi−1, at the beginning of TS i :

Yi = {Yi ∈ R+|Yi = Bi −Bi−1 +Xi, Bi ∈ B}. (4.14)

2Since the prices do not change in real-time in the current SG structure, they can be reported to the consumer
in advance.
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4.4. Online Energy Management (EM) Policies

The EMU is not allowed to waste any energy by limiting the battery state Bi to be lower

thanBmax. Following the objective function in (4.5), we can write the cost function for decision

Yi as follows :

gi(Yi) ,
[
θ ·
(
Yi − Ē

)2
+ (1− θ) · Yi · Ci

]
. (4.15)

We aim at minimizing the average cost overN TSs. The optimal online policy is a collection of

decision functions, i.e., π∗ = {π∗1, π∗2, . . . , π∗N}, which leads to the optimal output load values

Y ∗i = π∗i (Xi, Bi−1), and is found as the solution to the following optimization problem :

minimize
πi

N∑
i=1

E
[
gi(πi(Xi, Bi−1))

]
subject to πi(Xi, Bi−1) ≥ 0, i = 1, . . . , N

Bi−1 + πi(Xi, Bi−1)−Xi ≥ 0, i = 1, . . . , N,

Bi−1 + πi(Xi, Bi−1)−Xi ≤ Bmax, i = 1, . . . , N,

(4.16)

where the expectation is taken with respect to the statistics of the input load. The optimal online

policy, π∗i (Xi, Bi−1), can be obtained through DP by proceeding backwards from the N -th TS

to the first as follows :

J∗N(XN , BN−1) , minimize
YN∈πN (XN ,BN−1)

gN(YN),

J∗i (Xi, Bi−1) , minimize
Yi∈πi(Xi,Bi−1)

E
[
gi(Yi) + J∗i+1(Xi+1, Bi)

]
,

= minimize
Yi

{
gi(Yi) +

∑
n

qmnJ
∗
i+1(xn, Bi−1 + Yi − xm)

}
,

i = N − 1, . . . , 1, (4.17)

where J∗i denotes the optimal cost function at TS i that assigns to the energy demand, Xi,

and the battery state, Bi−1, the optimal cost J∗i (Xi, Bi−1). We recursively solve (4.17) and

generate the optimal policy π∗i (Xi, Bi−1), ∀i. The EMU records this function as a look-up

table. Whenever the EMU receives an energy demand Xi, it checks the battery state Bi−1, and

uses this look-up table to decide the optimal output load Y ∗i to be withdrawn from the grid.

65



Chapter 4. Privacy-Cost Trade-offs in Demand-Side Management with Storage

Algorithm 4.1 Heuristic Online Policy
B0 ← 0 . Initially battery is empty

for i = 1 to N do . TS i

1. Subproblem Construction:
Set the power demands for two TSs

X̂1 ← [Xi −Bi−1]+, X̂2 ← 3Ē

Set the battery energies for two TSs

B̂1 ← [Bi−1 −Xi]
+, B̂2 ← B̂1

Set the electricity prices for two TSs

Ĉ1 ← Ci, Ĉ2 ← 1
N

N∑
i=1

Ci

2. Subproblem Solution:
Solve the constructed subproblem by using the backward water-filling algorithm.

Feed the optimal output load, Ŷ ∗1 , into the real timeline.

3. Output Load Decision:
Yi ← Ŷ ∗1 . Set the output load at TS i

Bi ← Bi−1 + (Yi −Xi) . Update the battery energy

end for

4.4.2 Heuristic Online Policy

Due to the high computational complexity of DP solutions, here we propose a low complexity

heuristic online algorithm described in Algorithm 4.1. At each TS i, this algorithm creates a

two-TS subproblem. Accordingly, each subproblem consists of the power demands, the elec-

tricity prices and the battery states for two TSs, which are denoted as (X̂1, X̂2), (Ĉ1, Ĉ2) and

(B̂1, B̂2), respectively. At each subproblem, the first TS is representative for the past and

present information, while the second TS is representative for future information. In accor-

dance with this, the parameters for the first TS of the subproblem, i.e., X̂1, Ĉ1, B̂1, are set

based on the current information available at the EMU, such as, the current power demand,

Xi, the current electricity price, Ci, and the battery state, Bi−1. The algorithm sets X̂1 as the

part of the current power demand, Xi, which can not be satisfied from the available energy in

the battery, [Xi − Bi−1]+, B̂1 as the remaining energy in the battery after satisfying part of the

current power demand, [Bi−1 − Xi]
+, and Ĉ1 as the current electricity price, Ci. The param-

eters for the second TS of the subproblem, i.e., X̂2, Ĉ2, B̂2, are set as follows. The algorithm

sets X̂2 as three times the target power demand3 Ē, Ĉ2 as the mean of the electricity prices,

3We set X̂2 more than the target power demand Ē in order to consider a future peak demand in the subproblem.
This allows the algorithm to charge the RB further, so that any possible peak demand that can occur in future TSs
can be tackled.
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and B̂2 as B̂1. At each step, the algorithm optimally solves the constructed subproblem using

the backward water-filling algorithm developed in Section 4.3.2. The output loads arising from

the optimal solution for the first and second TSs are denoted by Ŷ ∗1 and Ŷ ∗2 , respectively. The

algorithm is only interested in the optimal solution for the first TS, i.e., Ŷ ∗1 . Therefore, the

algorithm sets the output load decision Yi at TS i as Ŷ ∗1 . Finally, it updates the battery state, Bi,

by using Bi−1, Xi and Yi. Note that since the algorithm considers the available battery energy

at the construction of each subproblem, the output load decisions will always satisfy the RB

capacity constraint. Numerical comparisons of the optimal offline and online policies as well

as the proposed heuristic online policy will be provided in Section 4.6.

4.5 Information Leakage Rate

In the previous sections, we have considered the load variance, V , in (4.1) as the privacy mea-

sure. An information theoretic privacy measure is the information leakage rate [48], which is

defined as the average mutual information between the input and output load sequences :

Ip ,
1

N
I(XN ;Y N). (4.18)

Although the load variance can be considered as a privacy measure, the information leak-

age rate can be argued to be more accurate privacy measure as it takes into account the statisti-

cal behaviour of the input load. Note that the information leakage rate measures the reduction

in the UP’s uncertainty (entropy) about user’s energy consumption, XN , after receiving me-

ter readings, Y N , as we have Ip = 1
N

[
H(XN)−H(XN |Y N)

]
. As an information theoretic

privacy measure, the information leakage rate provides privacy guarantees regardless of the

computational power of the attacker. However, the optimal decision policy in terms of the

information leakage rate is significantly harder to characterize [108]. In this section, we pro-

vide a computational expression for the information leakage rate. In the next section, we will

numerically evaluate and compare the load variance and the information leakage rate privacy

measures, and demonstrate that the two follow similar trends.

As a first step towards computing the information leakage rate, we quantize the input and

output load vectors. Let X̃N = (X̃1, X̃2, . . . , X̃N) and Ỹ N = (Ỹ1, Ỹ2, . . . , ỸN) denote the

quantized versions of XN and Y N , respectively. The samples of X̃N and Ỹ N take values from

finite discrete sets X̃ and Ỹ , respectively. For simplicity, we assume that the samples in X̃N

and the joint samples in (X̃N , Ỹ N) follow stationary first-order Markov relations, with which

we can write the distribution of X̃N and the joint distribution of (X̃N , Ỹ N) as follows :
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p(X̃N) = p(X̃1)
N∏
i=2

p(X̃i|X̃i−1), (4.19a)

p(X̃N , Ỹ N) = p(X̃1, Ỹ1)
N∏
i=2

p(X̃i, Ỹi|X̃i−1, Ỹi−1). (4.19b)

Note that the condition (4.19b) holds when (4.19a) holds, and the output load at time

i, Yi, depends only on the current input load, Xi, and the previous input and output loads,

(Xi−1, Yi−1). Under these two assumptions, we derive an upper bound on the information

leakage rate, Ip, as follows :

Ip =
1

N
I(X̃N ; Ỹ N),

=
1

N

(
H(X̃N) +H(Ỹ N)−H(X̃N , Ỹ N)

)
,

(a)
=

1

N

N∑
i=1

(
H(X̃i|X̃ i−1) +H(Ỹi|Ỹ i−1)−H(X̃i, Ỹi|X̃ i−1, Ỹ i−1)

)
,

(b)
≤ 1

N

N∑
i=1

(
H(X̃i|X̃i−1) +H(Ỹi|Ỹi−1)−H(X̃i, Ỹi|X̃i−1, Ỹi−1)

)
,

(c)
=

1

N

N∑
i=1

(
H(X̃i|X̃i−1) +H(Ỹi|Ỹi−1)−

(
H(X̃i|X̃i−1, Ỹi, Ỹi−1) +H(Ỹi|X̃i−1, Ỹi−1)

))
,

(d)
=

1

N

N∑
i=1

(
H(X̃i|X̃i−1) +H(Ỹi|Ỹi−1)

−
(
H(X̃i, X̃i−1|Ỹi, Ỹi−1)−H(X̃i−1|Ỹi, Ỹi−1) +H(Ỹi|X̃i−1, Ỹi−1)

))
=

1

N

N∑
i=1

(
H(X̃i|X̃i−1) +H(Ỹi|Ỹi−1)−H(X̃i, X̃i−1|Ỹi, Ỹi−1)

−
(
H(Ỹi|X̃i−1, Ỹi−1)−H(X̃i−1|Ỹi, Ỹi−1)

))
,

(e)
=

1

N

N∑
i=1

(
H(X̃i|X̃i−1) +H(Ỹi|Ỹi−1)−H(X̃i, X̃i−1|Ỹi, Ỹi−1)

−
(
H(Ỹi, X̃i−1|Ỹi−1)−H(X̃i−1|Ỹi−1)−

(
H(Ỹi, X̃i−1|Ỹi−1)−H(Ỹi|Ỹi−1)

)))

=
1

N

N∑
i=1

(
H(X̃i|X̃i−1)−H(X̃i, X̃i−1|Ỹi, Ỹi−1) +H(X̃i−1|Ỹi−1)

)
,
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(f)
=

1

N

N∑
i=1

(
H(X̃i, X̃i−1)−H(X̃i−1)−H(X̃i, X̃i−1|Ỹi, Ỹi−1) +H(X̃i−1|Ỹi−1)

)

=
1

N

N∑
i=1

((
H(X̃i, X̃i−1)−H(X̃i, X̃i−1|Ỹi, Ỹi−1)

)
−
(
H(X̃i−1)−H(X̃i−1|Ỹi−1)

))
,

(g)
=

1

N

(
N∑
i=2

(
H(X̃i, X̃i−1)−H(X̃i, X̃i−1|Ỹi, Ỹi−1)

)
−

N∑
i=3

(
H(X̃i−1)−H(X̃i−1|Ỹi−1)

))
,

(h)
=

1

N

(
N∑
i=2

I(X̃i, X̃i−1; Ỹi, Ỹi−1)−
N∑
i=3

I(X̃i−1; Ỹi−1)

)
,

where (a) follows from the chain rule of entropy; (b) follows from the first-order Markov as-

sumption for X̃i and (X̃i, Ỹi) in (4.19) and the fact that conditioning reduces entropy; (c) fol-

lows from the chain rule applied to H(X̃i, Ỹi|X̃i−1, Ỹi−1) in (b); (d) follows from replacing

the term H(X̃i|X̃i−1, Ỹi, Ỹi−1) in (c) with its equal expression, i.e., H(X̃i|X̃i−1, Ỹi, Ỹi−1) =

H(X̃i, X̃i−1|Ỹi, Ỹi−1) − H(X̃i−1|Ỹi, Ỹi−1), where this equality is arising from the chain rule

applied to H(X̃i, X̃i−1|Ỹi, Ỹi−1); (e) follows from first replacing H(Ỹi|X̃i−1, Ỹi−1) and

H(X̃i−1|Ỹi, Ỹi−1) in (d) with their equal expressions, i.e.,H(Ỹi|X̃i−1, Ỹi−1) = H(Ỹi, X̃i−1|Ỹi−1)

−H(X̃i−1|Ỹi−1) and H(X̃i−1|Ỹi, Ỹi−1) = H(Ỹi, X̃i−1|Ỹi−1)−H(Ỹi|Ỹi−1), where these equal-

ities are arising from the chain rule applied to H(Ỹi, X̃i−1|Ỹi−1) and H(Ỹi, X̃i−1|Ỹi−1), respec-

tively, and then doing the necessary cancellations; (f) follows from replacing H(X̃i|X̃i−1) in

(e) with its equal expression, i.e., H(X̃i|X̃i−1) = H(X̃i, X̃i−1)−H(X̃i−1), where this equality

is arising from the chain rule applied to H(X̃i, X̃i−1); (g) is obtained by reorganizing (f), and

(h) follows from the definition of the mutual information.

We note that (b) holds with equality if we assume that the output load sequence Ỹ N is also

a stationary first-order Markov process. This assumption has been made in [91] for the compu-

tation of the information leakage rate; however, adding this extra Markov assumption together

with the initial ones may not lead to any realistic model or non-trivial EM strategy. Accord-

ingly, the information leakage rate upper bound obtained above will be evaluated numerically

as a measure of the information theoretical privacy leakage for the EM policies derived in

Section 4.3 and Section 4.4.

To numerically evaluate the mutual information expressions for given input and output

load sequences, we can explicitly write the information leakage rate Ip, as follows :
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Ip =
1

N

(
N∑
i=2

∑
xi−1∈X̃
ỹi−1∈Ỹ

∑
xi∈X̃
ỹi∈Ỹ

p(x̃i, x̃i−1, ỹi, ỹi−1) log
p(x̃i, x̃i−1, ỹi, ỹi−1)

p(x̃i, x̃i−1)p(ỹi, ỹi−1)

−
N∑
i=3

∑
xi−1∈X̃
ỹi−1∈Ỹ

p(x̃i−1, ỹi−1) log
p(x̃i−1, ỹi−1)

p(x̃i−1)p(ỹi−1)

)
, (4.20)

We can compute Ip by estimating all the joint and marginal distibutions in (4.20). We use

emprical distributions as the estimates for these distributions, i.e., we count the number of joint

or single appearances over all realizations, and normalize them to obtain the corresponding

probabilities.

Note that, when there is no RB in the system, i.e., Bmax = 0, we have Ỹi = X̃i, ∀i,
and Ip = 1

N
H(X̃N), i.e., the UP knows the input load perfectly. In this case, the information

leakage rate Ip simplifies to :

Ip =
1

N
H(X̃N),

(a)
=

1

N

N∑
i=1

H(X̃i|X̃i−1),

(b)
=

1

N

N∑
i=1

∑
x̃i−1∈X̃

∑
x̃i∈X̃

−p(x̃i−1, x̃i) log p(x̃i|x̃i−1), (4.21)

where (a) follows from the chain rule of entropy and the first-order Markov assumption for X̃i,

and (b) follows from the definition of the conditional entropy.

4.6 Numerical Results and Observations

In this section, we provide further insights into the proposed offline and online EM policies

through numerical simulations. We analyze the trade-off between the user’s privacy and en-

ergy cost as well as the effect of the RB capacity on this trade-off. We use the real SM readings

obtained from [121] with a time resolution on the order of three seconds. For our simulations

we consider the readings from one household for a period of one month and convert the load

profile to a time resolution of one-minute. Particularly, the simulations results illustrated in

Fig. 4.8 and Fig. 4.9 are obtained by considering a whole-day power consumption data. To
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be consistent with our power consumption model, we assume that the discrete-time instants

in Fig. 4.2(a) correspond to the sampling times of the SM. We set the electricity price in our

simulations based on the real pricing tariffs [122] : the off-peak price is 5 cent per kWh during

00:00 to 12:00, the on-peak price is 20 cent per kWh during 12:00 to 20:00, and the medium-

peak price is 10 cent per kWh during 20:00 to 00:00. For the simulations, we consider the

target value Ē as the average power demand of the user, i.e., Ē = 1
T

N∑
i=1

τi · Xi.4To discretize

the state space for the online problem, we use a 4-bit non-uniform mu-law quantizer for the

energy demand, and a 2-bit uniform quantizer for the battery state, respectively. For the char-

acterization of the information leakage rate, we discretize the input and output load sequences

resulting from the proposed policies by using a 5-bit non-uniform mu-law quantizer.

In Fig. 4.4, we illustrate the trade-offs between the user’s privacy and energy cost resulting

from the proposed offline and online EM policies with an RB capacity Bmax = 0.5 kWh. The

Pareto optimal trade-off curves between the load variance, V , and the average energy cost, C, in

Fig. 4.4(a), and the trade-off curves between the information leakage rate, Ip, and the average

energy cost, C, in Fig. 4.4(b), are formed by varying θ values. For all the proposed policies,

the average energy cost increases, while the load variance and the information leakage rate

diminish as θ increases. According to the requirements of the system, the operating point

can be chosen anywhere on the trade-off curve. We observe that the load variance and the

information leakage rate behave similarly for all the policies. Based on this observation, we

can argue that the load variance can be used as a meaningful privacy measure for SM systems.

The corner points of the trade-off curves for the proposed policies in Fig. 4.4 are given in

Table 4.1. Observe that the heuristic online policy performs close to the optimal online policy

both at the maximum privacy and the minimum cost corner points, while the optimal offline

policy outperforms both of them as expected.

Next, we investigate the effect of the battery capacity on the maximum privacy and min-

imum cost achieved by the proposed policies, respectively. Regarding the maximum privacy,

we plot the load variance, V , versus the RB capacity, Bmax, in Fig. 4.5(a), and the information

leakage rate versus Bmax in Fig. 4.5(b), resulting from the proposed offline and online policies

for θ = 1. Observe that both the load variance and the information leakage rate diminish as

RB capacity increases. Similar behaviours of the load variance and the information leakage

rate with respect to the RB capacity further consolidates the argument that the load variance

can be used as a proxy for the information leakage rate in SM systems. When there is no RB

in the system, i.e., Bmax = 0, the UP knows the input load sequence perfectly, and the infor-

mation leakage rate reduces to the entropy rate of the input load sequence, which is found to

be Ip = 0.952. Observe that the information leakage rate achieved by the optimal offline and

4The target value Ē is known by the offline and online policies in advance.

71



Chapter 4. Privacy-Cost Trade-offs in Demand-Side Management with Storage

Table 4.1: CORNER POINTS OF THE TRADE-OFF CURVES in Fig. 4.4

Heuristic Optimal Online Optimal Offline
Policy Policy Policy

minV 0.157 0.139 0.085
min Ip 0.612 0.481 0.19
C 0.792 0.796 0.801
V 0.204 0.178 0.103
Ip 0.758 0.536 0.249

min C 0.721 0.715 0.702

online policies drops very quickly with even a small RB capacity. While the information leak-

age rate achieved by the optimal offline policy saturates to its minimum value, the information

leakage rates achieved by the optimal and heuristic online policies decrease smoothly as the RB

capacity increases. Observe that the heuristic online policy performs close the optimal online

policy for both privacy measures. The gain on the performances of the proposed policies can

be achieved by virtue of the degree-of-freedom provided by the RB. When Bmax = 1.5 (kWh),

the information leakage rate of the heuristic online policy is found to be Ip = 0.49, and that of

the optimal online and offline policies are found to be Ip = 0.354 and Ip = 0.141, respectively.

These results show that a moderate RB capacity leads to a significant reduction in the informa-

tion leakage rate. For RB capacities beyond 1.5 kWh, we do not expect a significant privacy

gain. We also expect that the information leakage rate of the heuristic policy approaches to the

optimal online policy when RB capacity becomes sufficiently large.

Fig. 4.6 illustrates the average energy cost, C, versus the RB capacity, Bmax, resulting

from the proposed offline and online policies under θ = 0.001, which corresponds to the

scenario in which the consumer is more interested in minimizing the cost of energy rather

than privacy. When there is no RB in the system, i.e., Bmax = 0, the consumer has no degree-

of-freedom to reduce the energy cost. The highest value for the average energy cost is found to

be C = 0.778 (euro/day). The average energy cost decreases with the increasing RB capacity.

Observe that the heuristic online policy performs very close to the optimal online policy. When

Bmax = 1.5 (kWh), the average energy cost of the heuristic online policy is found to be C =

0.624 (euro/day), and that of the optimal online and offline policies are found to be C = 0.61

(euro/day) and C = 0.57 (euro/day), respectively. We see that the user can reduce his/her

energy consumption cost significantly with the proposed policies in the presence of a moderate

capacity RB.
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We compare the original load profile with the output load profiles resulting from the pro-

posed offline and online EM policies with an RB of capacity, Bmax = 1.5 kWh, and θ = 1

and θ = 0.001 values, in Fig. 4.7(a) and (b), respectively. When θ = 1, the proposed policies

intend to maximize the privacy of the user. That is, they intend to generate smooth output load

profiles in order to mask the peaks in the original load profile. Observe in Fig. 4.7(a) that the

optimal offline policy generates a smoother output load profile than the optimal and heuristic

online policies as expected. Particularly, if we focus on the peak power of the original load

profile between 20.00 and 22.00, we can see that the optimal offline policy masks most of the

peak signal, while the optimal and heuristic online policies still have significant peaks in their

output loads. On the other hand, they both perform well in masking the peak values at other

times of the day. When θ = 0.001, the proposed policies intend to minimize the energy cost

of the user. As seen in Fig. 4.7(b), the proposed policies store extra energy in the RB during

the off-peak price period, and satisfy the demand of the peak period from the RB in order to

reduce the cost. Observe that, in the peak period between 12.00 and 20.00, the optimal offline

policy draws nearly constant power from the grid, and satisfies the rest of the demand from

the RB; on the other hand, the optimal and heuristic online policies satisfy the demand more

from the RB between 12.00 and 16.00, and more from the grid between 16.00 and 20.00. We

can envision that as the RB capacity increases, the optimal and heuristic online policies can

store more energy in the battery to be used in the peak period, which would reduce the average

energy cost.

In Fig. 4.8, we characterize the trade-off between the user’s privacy and energy cost result-

ing from the proposed offline policy for RB capacities B = {1, 1.5, 2} kWhs, respectively, and

investigate the effect of the RB capacity on this trade-off. The Pareto optimal trade-off curves

between the load variance and the average energy cost are formed by varying θ values. For the

proposed offline policy, the average energy cost increases, while the load variance diminishes

as θ increases. When θ = 1, the load variance achieves its minimum value; on the other hand,

the average energy cost achieves its minimum value as θ becomes close to 0. According to the

requirements of the system, the operating point can be chosen anywhere on the trade-off curve.

Observe that the Pareto optimal trade-off curve moves towards the origin as the RB capacity

increases. This implies that with increasing RB capacity, the load variance can be reduced

further under a fixed average energy cost, and the average energy cost can be reduced further

under a fixed load variance. Both gains can be achieved by virtue of the degree-of-freedom

provided by the RB.

Finally, we investigate the impact of the SM resolution on the trade-off between the user’s

privacy and energy cost in Fig. 4.9. To that end, we modify the original load profile into new

load profiles with lower resolutions. Accordingly, the new load profiles have time resolutions
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varying on the order of 5, 10, 15 minutes, and 1 hour, respectively. We then characterize the

Pareto optimal trade-off between the total load variance, NV , and the average energy cost, C,

for the load profiles with given resolutions and the RB capacity B = 1.5 kWh in Fig. 4.9.

We see that the Pareto optimal trade-off curve moves downwards as the SM resolution gets

lower. This implies that with a decreasing resolution, the EM policy can provide higher energy

consumption privacy under a fixed average energy cost. This is due to the fact that a load

sampled at a lower-resolution is smoother, and has a smaller variance compared to the same

load sampled at a higher-resolution.
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Figure 4.4: (a) The load variance, V , versus the average energy cost, C, and (b) the information
leakage rate, Ip, versus the average energy cost, C, resulting from the proposed offline and
online EM policies under the RB capacity, Bmax = 0.5 kWh.
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Figure 4.5: (a) The load variance, V , versus battery capacity, Bmax, and (b) the information
leakage rate, Ip, versus battery capacity, Bmax, for the proposed offline and online EM policies
under θ = 1.
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Figure 4.6: The average energy cost, C, versus battery capacity, Bmax, resulting from the
proposed offline and online EM policies under θ = 0.001.
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Figure 4.7: Comparison of the original input load profile with the output load profiles resulting
from the proposed offline and online EM policies under the RB capacity, Bmax = 1.5 kWh,
and, (a) θ = 1, (b) θ = 0.001, respectively.
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B = 1.5 kWh, and the load profiles with a time resolution varying on the order of 5, 10, 15
minutes, and 1 hour, respectively.
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4.7 Conclusions

In this chapter, we have studied demand-side EM policies from a joint privacy-energy cost

optimization perspective for an SM system with a finite-capacity energy storage unit. We have

considered a discrete-time energy consumption model, in which both the power consumption

of the consumer and the electricity prices vary over time. We have considered the variance

of the output load around a predetermined constant target value as a measure of privacy for

the consumer. First, assuming that the user’s energy demand profile and the electricity prices

are known non-causally, we have formulated the optimal privacy-cost trade-off as a convex

optimization problem, and identified the properties of the optimal offline EM policy. Then,

we have proposed a backward water-filling algorithm which efficiently computes the optimal

offline EM policy. We have observed that the energy cost can be reduced by requesting more

energy when the prices are lower, and the privacy is obtained by generating a smoother output

load. Both gains can be achieved simultaneously by utilizing the available RB intelligently.

Next, assuming that the user’s power consumption profile is known only causally, we have

characterized the optimal online policy using DP. We have also proposed a low complexity

heuristic online algorithm, and have shown through numerical simulations that, it performs

close to the optimal online solution. In addition to the output load variance, we have also char-

acterized the information leakage rate between the input and output load sequences. Extensive

numerical simulations have been presented using real SM consumption data to illustrate the

trade-offs between privacy and energy cost resulting from the proposed offline and online poli-

cies. Our results indicate that the privacy-cost trade-offs for the output load variance and the

information leakage rate have very similar behaviours; and therefore, the output load variance

can be used as a privacy measure for SM systems. These numerical results have shown that the

proposed heuristic online algorithm performs very close to the optimal solution based on DP,

which requires significantly higher computational complexity. We have also shown that most

of the privacy gains can be obtained with a relatively small capacity RB.
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Chapter 5
Linear Transmission of Composite Gaussian

Measurements over a Fading Channel under

Delay Constraints

5.1 Introduction

In Chapters 3 and 4, we have considered EM techniques for SM systems, which can provide

privacy assurances to the SM users and retain the operational benefits SMs provide to the SG.

In this chapter, we turn our focus to another key technology deployed in SGs, namely, WSNs.

As it has been argued previously, near real-time monitoring of a physical phenomena is of great

significance to many emerging SG functionalities, such as monitoring of voltage, current mag-

nitudes, active/reactive power values in SGs [1]. To this end, wireless sensors are deployed

throughout SG, and the sensor measurements are delivered to a CC over wireless links. For the

robust, reliable and efficient management of the SG, near real-time and accurate reconstruction

of the measurements at the CC becomes imperative. For example, in conventional state estima-

tion for the electricity grid, measurements are collected once every two to four seconds and the

state is updated once every few minutes [45], [46], [123], [124]. However, more frequent state

measurements and estimations are required for modern SGs, which inevitably imposes strict

delay constraints on the transmission of measurements. Thus, zero-delay LT, rather than ad-

vanced compression and channel coding techniques that span large codewords, is an attractive

strategy for the transmission of sensor measurements in intelligent networks. This is because

LT restricts the encoding and decoding functions to be zero-delay linear transformations, which

in turn, allows to reduce both the delay and encoding complexity significantly; and accordingly

to limit the cost and energy requirements of the sensors.
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Accordingly, in this chapter, we aim at exploring LT strategies, with which sensors can

accommodate low latency and low complexity transmission requirements, and in turn, can pro-

vide advanced control and monitoring capabilities to SGs; and hence, can facilitate real-time

and accurate state reconstruction, and the efficient management of the SG. We consider a wire-

less sensor node that collects measurements from J Gaussian parameters. We discretize time

into TSs, and assume that the CC asks for a measurement of a particular parameter from the sen-

sor at each TS. The sensor takes one sample of the requested parameter at each TS, and trans-

mits these samples to the CC over an AWGN fading channel under a given delay constraint.

Note that, in contrast to multi-dimensional Gaussian source models studied in [95], [99], [125],

where the sensor has the measurements of all the J Gaussian parameters at the beginning of a

TS, we assume that only one measurement is taken from the requested parameter at each TS.

We assume that each measurement must be delivered within d TSs. Thereby, after each

transmission, the CC estimates the measurement whose deadline is just about to expire. We

assume that the channel gain from the sensor to the CC is i.i.d. over TSs. We consider two

different scenarios regarding the CSI : In the first scenario, the CSI is assumed to be available

to both the encoder and decoder, while in the second scenario, only the decoder has CSI. Our

goal is to estimate all the requested measurements at the CC within their delay constraints with

the minimum MSE distortion.

We focus explicitly on LT strategies. Assuming that the CSI is known by both the encoder

and decoder, we first derive the optimal LT strategy under a strict delay constraint (d = 1), and

show that the optimal power allocation and the corresponding distortion can be interpreted as

water-filling reflected on a reciprocal mirror. Exploiting the results of [95], we also derive the

optimal LT strategy under a strict delay constraint for a particular scenario in which the sensor

transmits the measurement vector over parallel AWGN fading channels at each TS. Then, ex-

ploiting the optimal LT strategy derived for multiple measurements-parallel channels scenario

above, we propose two LT strategies for general delay constraints. In both strategies, measure-

ments are first collected and stored in a buffer whose size depends on the delay constraint, and

then, are transmitted to the CC over multiple channel accesses within the delay constraint. The

two strategies consider different measurement selection criterias, which are used to select the

appropriate stored measurement to be transmitted at each channel access. We then derive the

theoretical lower bound (TLB) and the LT lower bound (LLB) on the achievable MSE distor-

tion. We characterize the MSE distortion achieved by the proposed LT schemes, as well as the

TLB and the LLB under various power and delay constraints. We show that the MSE distortion

diminishes as the delay constraint is relaxed if the sensor is capable of measuring more than

one system parameter, i.e., J > 1. However, if J = 1, then relaxing the delay constraint does

not provide any improvement in LT performance as argued in [95]. When the fading channel
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follows a discrete distribution and the delay constraint is completely removed, we show that the

proposed LT strategies meet the TLB under certain matching conditions between the channel

states and the paramater variances; and hence, achieve the optimal performance.

When the CSI is known only by the decoder, we first derive the optimal LT strategy under a

strict delay constraint. Then, we consider the multiple measurements-parallel channels scenario

under a strict delay constraint and J > 1 assumption, and show that the optimal LT performance

cannot be achieved by an LT scheme that is constrained to use only a one-to-one linear mapping

between measurements and channels, as opposed to the J = 1 case [97], and the CSI is known

by both the encoder and decoder [95], respectively. Since the optimal LT strategy is elusive

for J > 1, we do not consider LT strategies for larger delay constraints. Finally, we derive the

TLB on the achievable MSE distortion.

As it has been presented in the state of the art in Chapter 2, LT of Gaussian sources has

been extensively studied in the literature. Goblick showed in [126] that zero-delay LT of a

Gaussian source over an AWGN channel achieves the optimal MSE distortion. In [95], the

optimal LT scheme that matches an r-dimensional Gaussian signal to a k-dimensional AWGN

vector channel is characterized. It is shown that the optimal LT performance can be achieved

by mapping ordered sources to ordered channels in a one-to-one fashion. LT of a Gaussian

source over a fading AWGN channel is studied in [97]. It is shown that the optimal LT per-

formance can be achieved by symbol-by-symbol processing, and increasing the block length

does not provide any gain, as opposed to nonlinear coding schemes. In [96], LT of noisy vector

measurements over a fading AWGN channel is studied under diagonal and general observa-

tion matrices. LT of vector Gaussian sources over static and fading multi-antenna channels is

studied in [98] and [99], respectively. There is also growing interest in the performance of LT

for multi-user systems. For example, zero-delay LT of bivariate Gaussian source and noisy

Gaussian observations over Gaussian multiple access channels are studied in [127] and [128],

respectively. The optimality of zero-delay LT holds in these models as well, up to a certain

SNR threshold in the former, and at all SNR values in the latter.

The main contributions of this chapter can be summarized as follows :

• We study delay-constrained LT strategies for the transmission of composite Gaussian

measurements from a sensor to a CC over an AWGN fading channel.

• Assuming that both the encoder and decoder know the CSI, we characterize the optimal

LT scheme under a strict delay constraint, and provide a graphical interpretation for the

optimal power allocation scheme.

• We propose two LT strategies for general delay constraints, and show that the distortion

decreases as the delay constraint is relaxed. When the delay constraint is completely
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removed, both strategies achieve the optimal performance under certain matching condi-

tions.

• Assuming that the CSI is known only at the decoder, we derive the optimal LT strategy

under a strict delay consraint.

• Then, we show that for the multiple measurements-parallel channels scenario, any LT

scheme that uses only a one-to-one linear mapping between measurements and channels

is suboptimal in general.

The rest of the chapter is structured as follows. The system model is presented in Sec-

tion 5.2. In Sections 5.3 to 5.5 CSI is assumed at both the encoder and decoder. In Section 5.3,

we study the optimal LT strategy under a strict delay constraint. Two LT strategies are pro-

posed for general delay constraints in Section 5.4. In Section 5.5, we characterize the TLB

and LLB on the achievable MSE distortion. In Section 5.6, the optimal LT strategy is derived

under a strict delay constraint along with the TLB, when the CSI is known only by the decoder.

In Section 5.7, we consider a particular symmetric scenario with multiple sensors and parallel

channels. Section 5.8 presents extensive numerical results, and finally, Section 5.9 concludes

the chapter.

5.2 System Model

We consider a CC that monitors the operation of a system through a wireless sensor (Fig. 5.1),

which is capable of measuring J distinct system parameters. The jth system parameter is

modelled as a zero-mean Gaussian r.v. with variance σ2
j , i.e., N (0, σ2

j ), for j ∈ [1:J ], where

[1:J ] denotes the set {1, 2, . . . , J}. These system parameters are independent from each other,

and their realizations are i.i.d. over time. In order to monitor the network operation, the CC

requests the measurement of one system parameter from the sensor at each TS. The index of

the requested system parameter at each TS is a r.v. denoted by M ∈ [1:J ], with distribution

pM(m), which is also i.i.d. over time. Based on these requests, the sensor takes one mea-

surement of the requested parameter m at each TS. Thereby, the model is that of a composite

source introduced in Chapter 6 of [129]. The source S can be described as a composite source

comprised of J distinct components (subsources), each operating independently of the others.

In our model, each component produces data according to a Gaussian probability distribution

P (·|m) = N (0, σ2
m). The set G of all subsources comprises the composite source. In our case,

G =
[
N (0, σ2

1),N (0, σ2
2), . . . ,N (0, σ2

J)
]
. (5.1)
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Figure 5.1: The illustration of the transmission model from the perspective of the sensor with
multiple channel accesses.

The index of the requested system parameter m generates the sequence of positions as-

sumed by the switch in Fig. 5.1. In our model both the encoder and the decoder possess the

exact knowledge of this sequence. Notice that, in the particular case in which the encoder and

decoder are uninformed about this sequence, the composite source is equivalent to a mixture of

Gaussian distributions, i.e., PS(s) =
∑J

m=1 PM(m)PS|M(s|m).

We assume that the CC imposes a maximum delay constraint of d ∈ Z+ on the measure-

ments, that is, the measurement requested in a TS needs to be transmitted within the following

d TSs; otherwise, it becomes stale. The collected sensor measurements are transmitted to the

CC over a fading channel with zero-mean and unit variance AWGN. The channel output at TS

i is given by :

yi = hixi + zi,

where xi is the channel input, zi is the additive noise with Z ∼ N (0, 1), and hi is the fading

state of the channel. We consider a fading channel model, and assume that the fading coefficient

Hi ∈ R is modelled as a r.v. i.i.d. over time with probability distribution pH(h).

We define ml
i = [mi,mi+1, . . . ,ml] as the sequence of indices of requested parameters at

TSs [i:l] for i ≤ l. The measurement sequence is defined similarly as sli = [si, . . . , sl], where

the i-th entry si is the measured value of the requested parameter mi at TS i. Therefore, the

sequence sli has independent entries, where the i-th entry comes from a Gaussian distribution

with variance σ2
mi

. Note that in our composite Gaussian measurements model, conditioned on

the requested parameter index, which is known by both the encoder and decoder, the source

samples follow Gaussian distributions with different variance values.

The channel state and the output sequences at TSs [i:l] are similarly defined as
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hli = [hi, . . . , hl] and yli = [yi, . . . , yl], respectively. We assume that both the encoder and

decoder at TS i know all the past channel states, hi−1
1 , and the indices of requested parameters,

mi
1, as well as the statistics of the measured parameters, σ2

m, the parameter requests, pM(m),

and the channel, pH(h). In the first part of this chapter we assume that both the encoder

and decoder know the current channel state, hi. Note that this assumption might be hard to

realize for a fast fading channel model; on the other hand, our system model can be considered

as instances of a slow fading channel. Typically, there will be a large number of sensors in

the system, and each sensor is going to be scheduled only once in a while; and hence, each

TS in our system model can be considered as one instance of a slow fading channel when a

particular sensor is scheduled to transmit. Since these instances are separated from each other

due to the transmission of other sensors, corresponding channel states are modeled as i.i.d.,

and are assumed to be known by both the encoder and decoder, as channel estimation and CSI

feedback can be carried out between two transmissions of the same sensor. In Section 5.6 we

will consider the scenario in which the CSI is known only by the decoder.

Encoding Function

The encoding function f̂i : Ri × Ri × Ri → R, maps si1, hi1, and mi
1 to a channel input xi

at each TS i, i.e., xi = f̂i(s
i
1,h

i
1,m

i
1). An average power constraint of P is imposed on the

encoding function :

P̄ , lim
n→∞

1

n

n∑
i=1

EM,H,S

[
|Xi|2

]
≤ P,

where EM,H,S [·] denotes the expectation over M , H and S. For any generic transmission

policy, the encoding function f̂i, at TS i, may consider to use any combination of si1, hi1, and

mi
1 to generate xi. This gives rise to a time-varying encoding scheme.

Decoding Function

At the end of TS i, the goal of the CC is to estimate with the minimum MSE distortion, the

measurement si−d+1, which has been requested exactly d − 1 TSs ago, and is about to expire.

The decoding function ĝi : Ri × Ri × Ri → R, estimates ŝi−d+1 based on yi1, hi1, and mi
1, i.e.,

ŝi−d+1 = ĝi(y
i
1,h

i
1,m

i
1). The MSE distortion is given by :

D̄ , lim
n→∞

1

n

n∑
i=d

EM,H,S,Z

[
|Si−d+1 − Ŝi−d+1|2

]
.

The decoding function ĝi, at TS i, reconstructs the measurement using yi1, hi1, and mi
1.
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Hence, similarly to the encoder, the decoder may be time-varying.

We are interested only in LT policies in which f̂i’s are restricted to be linear functions

of the sensor measurements, si’s, i.e., f̂i(si1,h
i
1,m

i
1) , fi(h

i
1,m

i
1)si1, where fi(hi1,m

i
1) is a

vector. Under this linearity constraint, the optimal estimators at the receiver, ĝi’s, are also linear

functions of the channel outputs, yi’s, i.e., ĝi(yi1,h
i
1,m

i
1) , gi(h

i
1,m

i
1)yi1, where gi(hi1,m

i
1) is

a vector. Hereafter, we will refer to fi and gi for the encoding and decoding functions at TS i,

respectively.

5.3 Strict Delay Constraint

We first derive the optimal LT strategy under a strict delay constraint (d = 1), and characterize

the minimum achievable MSE distortion. In this scenario, optimal LT performance is achieved

by transmitting only the most recent measurement since all the previous measurements have

expired, and transmitting an expired measurement cannot help the estimation of the current

measurement since the measurements are independent. Then the encoding function fi(hi,mi)

at TS i is a scalar. Given the encoding function, the decoding function gi(hi,mi) that minimizes

the MSE for Gaussian r.v.s is the linear MMSE estimator [130], and is also a scalar.

In particular, for a measurement si with variance σ2
mi

, and channel output

yi = hifi(hi,mi)si + zi at TS i, the decoding function can be written explicitly as :

gi(hi,mi) =
ES,Z [SiYi]

ES,Z [Y 2
i ]

=
|hi|fi(hi,mi)σ

2
mi

|hi|2fi(hi,mi)2σ2
mi

+ 1
. (5.2)

In the following lemma we show that there is no loss of optimality by limiting the encoding

function to be time-invariant.

Lemma 5.1. Under a strict delay constraint there is no loss of optimality by considering only

time-invariant encoding functions, i.e., fi(hi,mi) = f(hi,mi) ∀i.

Proof.

D̄ = lim
n→∞

1

n

n∑
i=1

EM,H,S,Z

[
|Si − Ŝi|2

]
,

= lim
n→∞

1

n

n∑
i=1

EM,H

[
σ2
m

|h|2fi(h,m)2σ2
m + 1

]
, (5.3)

≥ EM,H

[
σ2
m

|h|2f(h,m)2σ2
m + 1

]
, (5.4)
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where (5.3) is the average MSE distortion under a strict delay constraint (d = 1); and defin-

ing f(h,m)2 , limn→∞
1
n

n∑
i=1

fi(h,m)2 such that f(h,m) satisfies the average power con-

straint P , (5.4) follows from the convexity of the function EM,H

[
σ2
m

|h|2fi(h,m)2σ2
m+1

]
in terms of

fi(h,m)2, and the equality holds iff fi(h,m) = f(h,m) for ∀i and due to the strict convexity

of the aforementioned function. Thus, the time-invariant encoding function f(h,m), which is

a function of only h and σ2
m, does not lead to any loss in optimality.

The time-invariant encoding function f(h,m) leads to a time-invariant decoding function

g(h,m). In the rest of this chapter, we will consider time-invariant encoding and decoding

functions without loss of optimality. Then, the MSE distortion, D̄ = EM,H,S,Z [|S − Ŝ|2], and

the average power, P̄ = EM,H,S[|X|2], can be written explicitly as functions of h and σ2
m, as

follows :

D̄ =
J∑

m=1

pM(m)

∫
R

σ2
m

|h|2f(h,m)2σ2
m + 1

pH(h)dh, (5.5)

P̄ =
J∑

m=1

pM(m)

∫
R
f(h,m)2σ2

mpH(h)dh. (5.6)

The optimal linear encoding function f ∗(h,m) is found as the solution to the convex op-

timization problem D̄∗ , minimize
f(h,m)

D̄, subject to the average power constraint P̄ ≤ P , which

can be written explicitly as follows :

D̄∗ , minimize
f(h,m)

J∑
m=1

pM(m)

∫
R

σ2
m

|h|2f(h,m)2σ2
m + 1

pH(h)dh

subject to
J∑

m=1

pM(m)

∫
R
f(h,m)2σ2

mpH(h)dh ≤ P.

(5.7)

From the KKT optimality conditions [119], we obtain :

f ∗(h,m) =

√[
λ∗

|h|σm
− 1

|h|2σ2
m

]+

, (5.8)

where λ∗ is the optimal Lagrange multiplier, such that P̄ = P .
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Figure 5.2: Water-filling reflected on a reciprocal mirror.

The optimal power allocation and the corresponding distortion are given by :

P ∗(h,m) =
σm
|h|

[
λ∗ − 1

|h|σm

]+

, (5.9)

D∗(h,m) =
σm
|h| min

(
1

λ∗
, |h|σm

)
, (5.10)

where D̄∗ = EM,H [D∗(h,m)] and EM,H [P ∗(h,m)] = P .

In Fig. 5.2, we present a graphical interpretation of the optimal power allocation and the

corresponding distortion for J = 2 parameters with variances σ2
1 and σ2

2 , which are requested

with probabilities pM(1), pM(2), respectively. We also consider a discrete fading channel with

three states, where the kth state, ĥk, is observed with probability pH(ĥk), k = 1, 2, 3. Fig. 5.2

depicts rectangles that are placed upon a mirror surface and their reciprocally scaled images

below. Rectangles represent all possible source-channel pairs {σm, ĥk}, where lkm , 1

|ĥk|σm
and wkm , σm

|ĥk|
indicate the height and width of the rectangles, respectively. The total power is

poured above the level lkm up to the water level λ∗ across the rectangles placed upon the mirror.

The optimal power allocated to the source-channel pair {σm, ĥk} is given by the shaded area

below the water level and above lkm. The corresponding distortion values are found by simply

looking at the reciprocally scaled reflections of the rectangles and the water level on the mirror.

If 1
lkm

> 1
λ∗

, distortion is given by the width wkm times the reciprocal of the water level 1
λ∗

, and

if 1
lkm
≤ 1

λ∗
, distortion is σ2

m, which are illustrated as dashed areas in Fig. 5.2. We call this as

water-filling reflected on a reciprocal mirror.
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5.3.1 Multiple Measurements and Parallel Channels

Next, we assume that the CC requests N > 1 measurements from the sensor at each TS,

and the sensor transmits a length-N measurement vector over N parallel orthogonal AWGN

fading channels under a strict delay constraint (d = 1). For this scenario, we characterize the

optimal LT strategy by generalizing the results of [95] derived for Gaussian vector sources to

our composite Gaussian measurements model. This scenario differs from the system model

defined in Section 5.2, since we allow to take N measurements at each TS as opposed to taking

only one measurement at each TS. However, we will exploit the optimal LT strategy in this

setting for the construction of the proposed transmission strategies in Section 5.4, as well as for

characterizing the LLB in Section 5.5.2.

Only for this scenario, we define m = [m1, . . . ,mN ] as the vector of indices of N re-

quested parameters at a particular TS. Then, the sensor takes the length-N measurement vector

s = [s1, . . . , sN ] according to the parameters indicated by m, i.e., s1 is the measured value of

parameter m1. For a strict delay constraint (d = 1), the optimal LT performance is achieved

by transmitting only the most recent measurement vector. We assume that the N channels are

i.i.d with distribution pH(h), and H is defined as the N × N diagonal channel matrix. The

diagonal elements of H are denoted by a channel vector h = [h1, . . . , hN ] at a particular TS.

Similarly to Lemma 5.1, the encoding function can be limited to a time-invariantN×N square

matrix Fh,m without loss of optimality, where subscripts h and m indicate the dependence of

the encoding matrix on the realizations of h and m. The length-N channel output vector at that

particular TS is given by :

y = Hx + z,

where x is the length-N channel input vector and z is the length-N additive noise vector with

z ∼ N (0, I).

The encoder at any TS maps its measurement vector s, to a channel input vector x, i.e.,

x = Fh,ms. An average power constraint of P is imposed on the encoding function :

P̄ =
1

N
Tr
{

EM,H,S[xxT ]
}
,

=
1

N
Tr
{

EM,H [Fh,mCsF
T
h,m]

}
≤ P, (5.11)

where Cs = ES[ssT ].
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Given the encoding function, the decoding function that minimizes the MSE for a Gaussian

random vector is the N × N linear MMSE estimator matrix Gh,m [130], which is also time-

invariant. Similarly to Fh,m, subscripts h and m indicate the dependence of the decoding

matrix on the realizations of h and m. For the measurement vector s, and the channel output

vector y, at any TS, we have :

Gh,m = CsyC−1y = CsF
T
h,mHTΦ, (5.12)

where Csy = ES,Z [syT ], Cy = ES,Z [yyT ] and Φ , (HFh,mCsF
T
h,mHT + I)−1.

At any TS, the CC estimates the most recent measurement vector s as ŝ, i.e., ŝ = Gh,my.

The MSE distortion is given by :

D̄ =
1

N
Tr
{

EM,H,S,Z [
(
s− ŝ)(s− ŝ)T

] }
,

=
1

N
Tr
{

EM,H [Cs −CsF
T
h,mHTΦHFh,mCs]

}
. (5.13)

The optimal linear encoding matrix F∗h,m, is found as the solution to the convex optimiza-

tion problem D̄∗ , minimize
Fh,m

D̄, subject to the average power constraint P̄ ≤ P , which can be

written explicitly as follows :

D̄∗ , minimize
Fh,m

1

N
Tr
{

EM,H [Cs −CsF
T
h,mHTΦHFh,mCs]

}
subject to

1

N
Tr
{

EM,H [Fh,mCsF
T
h,m]

}
≤ P.

(5.14)

For a set of static parallel AWGN channels and Gaussian vector sources, the optimal linear

encoding matrix transmits one measurement over each channel [95]. The optimal mapping be-

tween channels and measurements is as follows: We first reorder the measurement vector s to

obtain s̄ = [s(1), . . . , s(N)], such that σ2
m(1)
≤ σ2

m(2)
≤ · · · ≤ σ2

m(N)
, and reorder the channel vec-

tor h to obtain h̄ =
[
h(1), . . . , h(N)

]
, such that |h(1)| ≤ |h(2)| ≤ · · · ≤ |h(N)|. Then, the optimal

linear encoding matrix F∗h,m is diagonal with entries
[
f(1)(h(1),m(1)), . . . , f(N)(h(N),m(N))

]
,

and it maps the ordered measurements to ordered channel states. In order to find the diagonal

entries of F∗h,m, we can explicitly rewrite the convex optimization problem in (5.14) by using

the optimal mappings derived in [95], as follows :
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D̄∗ , minimize
f(t)(h(t),m(t))

EM(t),H(t)

[
1

N

N∑
t=1

σ2
m(t)

|h(t)|2f(t)(h(t),m(t))2σ2
m(t)

+ 1

]

subject to EM(t),H(t)

[
1

N

N∑
t=1

f(t)(h(t),m(t))
2σ2

m(t)

]
≤ P,

(5.15)

where the expectation is taken over M(t) and H(t) for t ∈ [1:N ]. The t-th smallest entry of the

requested parameter vector m = [m1,m2, . . . ,mN ], is denoted by the r.v. M(t) ∈ [1:J ] with

the order statistics pM(t)
(m). Without loss of generality, we assume that ordering the entries

of m in ascending order, i.e., m(1) ≤ m(2) ≤ · · · ≤ m(N), implies ordering the entries of the

measurement vector s in ascending variances, i.e., σ2
m(1)
≤ σ2

m(2)
≤ · · · ≤ σ2

m(N)
. Similarly, the

t-th smallest entry of the channel vector h = [h1, h2, . . . , hN ] is denoted by the r.v. H(t) ∈ R
with the order statistics pH(t)

(h).

The optimal linear encoding matrix F∗h,m with diagonal entries f ∗(t)(h(t),m(t)) for t ∈
[1:N ], can be found from the Lagrange and the KKT conditions as follows :

f ∗(t)(h(t),m(t)) =

√√√√[ δ∗

|h(t)|σm(t)

− 1

|h(t)|2σ2
m(t)

]+

, (5.16)

where δ∗ is the optimal Lagrange multiplier, such that P̄ = P in (5.15).

Similarly, the optimal power allocation and the corresponding distortion can be found by

using the water-filling reflected on a reciprocal mirror interpretation. The optimal Lagrange

multiplier δ∗ depends on pM(t)
(m) and pH(t)

(h), which can be found explicitly by using the

order statistics. In the following lemma, we give the t-th order statistics pM(t)
(m) and pH(t)

(h),

for t ∈ [1:N ].

Lemma 5.2. Let FM(m) and FH(h) denote the cumulative distribution functions of pM(m)

and pH(h), respectively. Given FM(m), pM(m), FH(h), pH(h) and N , the t-th order statistics

pM(t)
(m) and pH(t)

(h), t ∈ [1:N ], are found as :

pH(t)
(h) = tpH(h)

(
N

t

)
(FH(h))t−1(1− FH(h))N−t, (5.17)

pM(t)
(m) =

N∑
b=t

(
N

b

)[
FM(m)b(1− FM(m))N−b − FM(m− 1)b(1− FM(m− 1))N−b

]
.

(5.18)
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Proof. The proof is trivial and achieved through the definition of the cumulative distribution

functions of H(t) and M(t).

FH(t)
(h) = Pr{H(t) ≤ h} = Pr{at least t of H’s are ≤ h}, (5.19)

=
N∑
b=t

N !

(N − b)!b!FH(h)b(1− FH(h))N−b, (5.20)

where (5.19) implies a binomial distribution with at least t successes and can be formulated

as (5.20). The t-th order statistics pH(t)
(h) is found by taking the derivative of (5.20) with

respect to h. The same proof holds for M(t).

5.4 LT Strategies

In this section, we propose two LT strategies for general delay constraints d ≥ 1. The block

diagram of the proposed LT strategies is illustrated in Fig. 5.3. Both strategies are composed

of two main blocks, namely, storage and transmission blocks. There are two buffers of size d̄

measurements, namely, the measurement buffer (MB) and the transmission buffer (TB). Here,

we present these two schemes for an odd delay constraint, i.e., d ∈ {1, 3, 5, . . .}, but they can

be easily adapted to the case when d is even. In the storage block, given a delay constraint of

d = 2d̄ − 1 for d̄ ∈ [1:∞], the sensor collects a block of d̄ consecutive measurements after d̄

consecutive TSs, and stores them in the MB. The consecutive blocks of d̄ measurements, taken

over successive time intervals, are indexed by k̄ = {1, 2, . . .}. Then, the k̄-th block consists

of the measurements taken within TSs [(1 + (k̄ − 1)d̄):k̄d̄], i.e., sk̄d̄
(1+(k̄−1)d̄)

. When the MB

gets full with the d̄ measurements of the k̄-th block, the sensor removes sk̄d̄
(1+(k̄−1)d̄)

from the

MB and loads them into the TB. Then, for the next consecutive d̄ TSs [k̄d̄:((k̄ + 1)d̄− 1)], the

sensor accesses the channel and transmits a linear function of the measurements in the TB, i.e.,

sk̄d̄
(1+(k̄−1)d̄)

, over the channel states h
((k̄+1)d̄−1)

k̄d̄
satisfying the delay constraint d. The specifics

of these linear functions will be explained below.

Note that, while the sensor transmits the measurements in the TB, it starts refilling the MB

with new measurements s
(k̄d̄+d̄)

(k̄d̄+1)
. After d̄ channel accesses within TSs [k̄d̄:((k̄ + 1)d̄− 1)], the

MB gets full again and its new d̄ measurements are transferred to the TB for transmission over

the next d̄ TSs.

The proposed transmission strategies consist of two sub-blocks, namely, the measurement

selection and scaling sub-blocks. This division is motivated by the results of [95] presented in

Section 5.3.1, in which N ordered measurements are mapped one-to-one to N ordered chan-
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nels, and each measurement is transmitted over its corresponding channel. Hence, we assume

that, at each channel access, the sensor selects only one measurement and scales it to a channel

input value. However, in this case, we cannot directly use the optimal LT scheme in [95] and

guarantee that the selected measurement and the channel state satisfy the optimal matching.

This is because even though d̄ measurements are available in the TB in advance, the states of

the next d̄ channels are not available to the transmitter as in the parallel channel model of [95];

and instead, they become available over time. The two proposed LT strategies differ in the way

they choose the measurement to be transmitted at each TS.

Algorithm 5.1 LTHM and LTSM
Initialization :

Load measurements of MB, sk̄d̄
(1+(k̄−1)d̄)

, into TB and update b.

1: for i = k̄d̄ to (k̄ + 1)d̄− 1 do . TSs for d̄ channel accesses

2: if |hi| ∈ Hm and bm 6= 0 then . LTHM and LTSM

Measurement selection :

Select one measurement of parameter m from TB.

Scaling :

Transmit the measurement over |hi| with an allocated power of Eqn. (5.21).

bm ← bm − 1 . update b

3: else if |hi| ∈ Hm and bm = 0 then . only LTSM

Find ς by solving min
bς 6=0

∣∣|hi| − h′ς∣∣ .
Measurement selection :

Select one measurement of parameter ς from TB.

Scaling :

Transmit the measurement over |hi| with an allocated power of Eqn. (5.21).

bm ← bm − 1 . update b

4: end if

5: end for

k̄ ← k̄ + 1 and go to Initialization
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5.4.1 Linear Transmission Scheme with Hard Matching (LTHM)

This transmission scheme has the following measurement selection criteria. Assume, without

loss of generality, that parameters are ordered such that σ2
1 > σ2

2 > · · · > σ2
J . We divide

the channel magnitude space (R+) into J ordered channel intervals as, Hm = [H ′m, H
′
(m−1)),

where H ′m < H ′(m−1) for m ∈ [1:J ]. The boundary values are chosen as H ′0 = ∞, H ′J = 0

and H ′m = F−1
H (1 −

m∑
j=1

pM(j)), for m ∈ [1:(J − 1)], where F−1
H (·) denotes the inverse of the

cumulative distribution function of the channel magnitude |h|, FH(|h|). Observe that according

to this choice, the probability of the channel magnitude belonging to Hm is Pr{|h| ∈ Hm} =

pM(m).1

The algorithmic description of LTHM is given in Algorithm 5.1. Let b = [b1, b2, . . . , bJ ]

be a J-length vector, where the m-th entry, bm ∈ [0:d̄], denotes the number of measurements

of parameter m in the TB, for m ∈ [1:J ]. At each channel access, if |h| ∈ Hm and bm 6= 0,

then the sensor selects one measurement of the parameter type m from the TB and feeds it to

the scaling sub-block. If there are multiple measurements of the same parameter type m in the

TB, i.e., bm > 1, then the sensor selects one of them randomly. The selected measurement

is removed from the TB and b is updated by reducing the m-th entry, bm, by one. Thereby,

each measurement is transmitted only once. On the other hand, if |h| ∈ Hm and bm = 0,

no measurement is transmitted in that TS. Hence, LTHM considers a hard matching condition

for selecting measurements, in which each parameter has a corresponding interval of channel

states, and only measurements of that parameter can be transmitted over a channel state from

that interval. Note that, since the channel state is known at the receiver, it also knows which

type of measurement is transmitted at each TS.

For the scaling sub-block we use the power allocation strategy derived in Section 5.3.

Thus, the selected measurement of the parameter type m is transmitted at the current channel

state |h| ∈ Hm, for m ∈ [1:J ], by allocating power P (h,m), leading to distortion D(h,m) :

1If channel fading follows a discrete distribution, we define sets of channel states as opposed to intervals.
With abuse of notation, we denote the mth set as Hm, for m ∈ [1:J ]. Suppose that the discrete channel states
are ordered as |ĥ1| > |ĥ2| > |ĥ3| > · · · . We allocate the discrete states into J sets such that the probability
of channel state falling into set Hm is pM (m). However, it may be possible that the channel states cannot be
grouped to satisfy this equality exactly for all m. In that case we create virtual states to satisfy these equalities, as
explained below.

Let j be the minimum index for which
∑j

i=1 pH(|h| = ĥi) > pM (1). Define p1M = pM (1)−∑j−1
i=1 pH(|h| =

ĥi). We define a new virtual channel state ĥ1
j , whose gain is equivalent to ĥj . Whenever the real channel state is

ĥj , we randomly assign the channel state to ĥ1
j with probability p1M/pH(ĥj). We let H1 = {ĥ1, . . . , ĥj−1, ĥ1

j}.
We repeat the same process for pM (2), starting with channel state ĥj whose probability is now pH(ĥj)− p1M .
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P (h,m) =


[
µσm
|h| − 1

|h|2

]+

, if hard matching holds,

0, otherwise.
(5.21)

D(h,m) =


σ2
m

|h|2P (h,m)+1
, if hard matching holds,

σ2
m, otherwise,

(5.22)

where µ is chosen such that the average power constraint is satisfied.

After every transmission, the CC estimates the transmitted measurement s by using the

channel output y. It is noteworthy that after d̄ channel accesses, we may have untransmitted

measurements in the TB. TB is emptied anyway since these measurements have expired, and

they are estimated with the maximum distortion σ2
m. As we show next, the average number

of untransmitted measurements decreases with the increasing delay constraint d. However, for

a finite delay constraint the untransmitted measurements dominate the distortion even for a

high average transmission power constraint. In order to combat this drawback, we propose an

alternative LT scheme.

5.4.2 Linear Transmission Scheme with Soft Matching (LTSM)

The algorithmic description of LTSM is given in Algorithm 5.1. The LTSM retains the hard

matching condition of LTHM, i.e., at each channel access, if |h| ∈ Hm and bm 6= 0 for m ∈
[1:J ], LTSM selects one measurement of the parameter type m from the TB. Hence, LTSM

also gives the highest selection priority to the measurement of the parameter type that satisfies

the hard matching condition with the channel state. However, if |h| ∈ Hm and bm = 0, LTSM

does not waste the channel state; and instead, selects one measurement based on the following

measurement selection criteria :

Assume that each intervalHm is further divided into two equally probable intervals by the

boundary value h′m = F−1
H

(
FH(H′

(m−1)
)+FH(H′m)

2

)
, for ∀m ∈ [1:J ]2. If |h| ∈ Hm and bm = 0,

then LTSM selects one measurement of parameter ς , which is the parameter that minimizes the

following distance metric :

min
bς 6=0

∣∣|h| − h′ς∣∣ . (5.23)

2If the channel follows a discrete fading distribution, we find h′m by taking the mean value of all elements of
channel setHm.
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When the hard matching condition is not satisfied, the LTSM considers a soft matching

condition for selecting measurements; that is, among all parameter types of the measurements

in the TB, it selects a measurement of the parameter whose corresponding interval of channel

states has the value h′ς closest to the channel state magnitude |h|. If two distinct ς values

satisfy the solution of Eqn. (5.23), then LTSM chooses the smallest value of ς . LTSM allocates

the power as in Eqn. (5.21), and transmits the selected measurement, leading to distortion in

Eqn. (5.22). Note that the optimal Lagrange multiplier µ is chosen such that the average power

constraint is satisfied. At the end of d̄ channel accesses, the sensor will have transmitted all the

measurements in the TB, albeit some might have been allocated zero power as a result of the

water-filling algorithm.

5.5 Distortion Lower Bounds

We characterize two lower bounds on the MSE distortion, namely, the TLB and the LLB.

While the TLB is the theoretical performance bound derived without any delay or complexity

constraints on the transmission, the LLB is a performance lower bound only for LT strategies.

We also prove that the proposed LT strategies meet the TLB under infinite delay and certain

matching conditions between the channel states and parameter variances.

5.5.1 The Theoretical Lower Bound (TLB)

Shannon’s source-channel separation theorem states that the optimal end-to-end distortion is

achieved by concatenating the optimal source and channel codes when there is no delay or

complexity constraints, and the source and channel distributions are ergodic [94]. When we

remove the delay and linear encoding constraints in our system model, then the sensor can

transmit to the CC at the ergodic capacity, C̄e, of the underlying fading channel, while the

minimum distortion, D̄e, is found by evaluating the distortion-rate function for a composite

Gaussian source model at the ergodic capacity.

Since the channel state is known by both the transmitter and receiver, the ergodic capacity,

in terms of the optimal power allocation scheme P ∗e (h), is given by :

C̄e , EH

[
1

2
log
(
1 + |h|2P ∗e (h)

)]
, (5.24)

where P ∗e (h) is found by the water-filling algorithm as :
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P ∗e (h) =

[
α∗ − 1

|h|2
]+

, (5.25)

where α∗ is chosen to satisfy P̄e , EH [P ∗e (h)] = P .

From Eqn. (6.1.21) of [129], the distortion-rate function of a composite Gaussian source

with m components, N (0, σ2
m), each of which is observed with probability pM(m) for m ∈

[1:J ], is defined as :

D̄e , EM

[
σ2
m2−2R∗e(σm)

]
, (5.26)

where the optimal rate allocated to sourcem,R∗e(σm), and the corresponding distortion,D∗e(σm),

are given by :

R∗e(σm) =
1

2

[
log

(
σ2
m

β∗

)]+

, (5.27)

D∗e(σm) = min
(
β∗, σ2

m

)
, (5.28)

where β∗ is chosen such that R̄e , EM [R∗e(σm)] = C̄e.

Hence, the optimal distortion is found as D̄e = EM [D∗e(σm)], which is the TLB on the

achievable MSE distortion by any transmission strategy. Note that we have removed both the

delay constraint and the linearity requirement on the encoder and decoder.

Asymptotic Optimality of LT

In general, the TLB cannot be achieved by LT strategies even if the delay constraint is re-

moved. However, it can be shown that LTHM and LTSM meet this lower bound when the

delay constraint is removed under certain matching conditions between the channel states and

the parameter variances.

Assume that the channel follows a discrete fading distribution, where the channel state h

can take one of the J values ĥm with probability pH(ĥm) for m ∈ [1:J ]. The discrete values

are ordered as |ĥ1| > |ĥ2| > · · · > |ĥJ |. The next theorem states the necessary conditions

in this discrete channel model under which LTHM and LTSM achieve the optimal distortion
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performance when the delay constraint is removed.

Theorem 5.1. For the discrete AWGN fading channel model, if the parameter variances and the

discrete channel states satisfy σ1

|ĥ1|
= · · · = σJ

|ĥJ |
, and pM(m) = pH(ĥm), for ∀m ∈ [1:J ], then

the TLB is achieved by LTHM and LTSM when the delay constraint is removed, i.e., d→∞.

Proof. The proof can be found in Appendix.

5.5.2 The Linear Transmission Lower Bound (LLB)

We next derive a lower bound on the achievable MSE distortion as a function of the delay and

power constraints for any LT strategy. In order to derive this lower bound, we relax the assump-

tion on the causal knowledge of the measurements and channel states, and instead assume that

the sensor has the offline (non-causal) knowledge of a certain number of future measurements

and channel states. Accordingly, we assume that at any TS the sensor non-causally knows the

length-ū measurement vector, i.e., s = [s1, . . . , sū], taken over the next ū TSs. Observe that,

for a delay constraint d, each measurement of s can only be transmitted over the following d

channel states observed after it is taken, thus the transmission of the vector s spans the fol-

lowing c̄ = (d + ū − 1) channel states observed after the first measurement s1 is taken. We

further assume that the sensor non-causally knows the length-c̄ channel vector h = [h1, . . . , hc̄].

Henceforth, the problem is reduced to optimally transmitting ū measurements over c̄ parallel

channels, which is attained by using the optimal LT scheme presented in Section 5.3.1. Ac-

cordingly, we first reorder s to get s̄ = [s(1), . . . , s(ū)], where the variances of the ordered

measurements satisfy σ2
m(1)
≤ σ2

m(2)
≤ · · · ≤ σ2

m(ū)
, and reorder h to get h̄ =

[
h(1), . . . , h(c̄)

]
,

such that the ordered fading states satisfy |h(1)| ≤ |h(2)| ≤ · · · ≤ |h(c̄)|. Then, the c̄ × ū

optimal linear encoding matrix F∗h,m consists of a ū × ū size diagonal partition with entries[
f(1)(h(1+ē),m(1)), . . . , f(ū)(h(ū+ē),m(ū))

]
, and a ē × ū size partition with zero entries, where

ē = c̄ − ū, and it maps ū ordered measurements to the ū channels with the largest gains.

The optimal entries of F∗h,m are found as the solution of the following convex optimization

problem :

D̄∗(d, ū, P ) , minimize
f(t)(h(t+ē),m(t))

EM(t),H(t+ē)

[
1

ū

ū∑
t=1

σ2
m(t)

|h(t+ē)|2f(t)(h(t+ē),m(t))2σ2
m(t)

+ 1

]

subject to P̄ , EM(t),H(t+ē)

[
1

ū

ū∑
t=1

f(t)(h(t+ē),m(t))
2σ2

m(t)

]
≤ P,

(5.29)

where the expectation is taken over M(t) and H(t+ē) for t ∈ [1:ū]. The t-th and (t+ ē)-th order
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statistics pM(t)
(m) and pH(t+ē)

(h), are given by Lemma 5.2. The optimal linear encoding matrix

with diagonal entries is found as :

f ∗(t)(h(t+ē),m(t)) =

√√√√[ ζ∗

|h(t+ē)|σm(t)

− 1

|h(t+ē)|2σ2
m(t)

]+

, (5.30)

where ζ∗ is the optimal Lagrange multiplier, such that P̄ = P in (5.29).

Assuming non-causal knowledge of ū measurements and c̄ channel states under the delay

constraint d and the average power constraint P , we obtain the optimal distortion D̄∗(d, ū, P )

for any LT strategy. Then, the LLB is derived by finding the ū value, which maximizes

D̄∗(d, ū, P ) :

D̄l(d, P ) , max
ū
D̄∗(d, ū, P ). (5.31)

Note that we have relaxed the constraint for the causal knowledge of measurements and

channel states both at the encoder and decoder. The numerical comparisons of the LLB with

the proposed schemes will be presented in Section 5.8.

5.6 No CSI at the Encoder

In this section, we assume that the CSI is known only at the decoder. We derive the optimal

LT strategy under a strict delay constraint (d = 1), as well as the TLB on the achievable

MSE distortion. Additionally, for the multiple measurements-parallel channels scenario studied

in Section 5.3.1, we show that if the CSI is available only at the receiver, any LT scheme

that is limited to a one-to-one linear mapping from the measurements to the channel input is

suboptimal in general. The optimal LT strategy is elusive and it will be a non-trivial function

of the source variances and the channel distribution.

5.6.1 Strict Delay Constraint

Under a strict delay constraint, the most recent measurement is transmitted at each TS. By

applying Lemma 5.1 to this scenario, we can similarly show that there is no loss of optimality

by considering time-invariant encoding functions, i.e., fi(m) = f(m), ∀i. Hence, the encoding

function f(m) is a scalar and time-invariant. The decoding function g(h,m) that minimizes

the MSE is the linear MMSE estimator [130], and is also a scalar and time-invariant. Then,
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the MSE distortion, D̄ = EM,H,S,Z [|S − Ŝ|2], and the average power, P̄ = EM,S[|X|2], can be

written explicitly as :

D̄ =
J∑

m=1

pM(m)

∫
R

σ2
m

|h|2f(m)2σ2
m + 1

pH(h)dh, (5.32)

P̄ =
J∑

m=1

pM(m)f(m)2σ2
m, (5.33)

where P (m) , f(m)2σ2
m. The optimal linear encoding function, f ∗(m), is found as the so-

lution to the convex optimization problem D̄∗ , minimize
f(m)

D̄, subject to the average power

constraint P̄ ≤ P , which can be written explicitly as follows :

D̄∗ , minimize
f(m)

J∑
m=1

pM(m)

∫
R

σ2
m

|h|2f(m)2σ2
m + 1

pH(h)dh

subject to
J∑

m=1

pM(m)f(m)2σ2
m ≤ P.

(5.34)

From the KKT conditions [119], we have :

f ∗(m) =

√√√√[Ψ−1( λ
∗

σ2
m

)
]+

σ2
m

, (5.35)

where Ψ−1 : R → R is the inverse of the function Ψ : R → R, that is defined as, Ψ(P (m)) ,∫
R

|h|2
(|h|2P (m)+1)2pH(h)dh. The optimal Lagrange multiplier λ∗ is chosen such that P̄ = P

in (5.34).

5.6.2 Multiple Measurements and Parallel Channels

Next we consider the multiple measurements-parallel channels scenario studied in Section 5.3.1,

under the strict delay constraint and the assumption that the CSI is known only at the decoder,

and J > 1. In such a scenario, the optimal LT scheme of [95], in which the ordered mea-

surements are mapped one-to-one to ordered channel states, cannot be used directly. This is

because, even though the encoder knows the N measurements, it does not know any of the

channel states, and hence; cannot order them. For the special case where N measurements are

observed from a single Gaussian source (J = 1), in [97] the authors show that the optimal
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performance is achieved by transmitting one measurement over each channel. When J = 1,

since N measurements all have the same variance, all orderings are equivalent, and the optimal

LT performance is achieved by an LT scheme that uses only a one-to-one mapping between

measurements and channels. However, this is not the case in general when J > 1. Since N

measurements follow a composite Gaussian source model, the encoder can have measurements

with different variances; and hence, we can exploit the diversity of the fading channel by trans-

mitting a single measurement over multiple channels, instead of transmitting each measurement

only once. Depending on the source variances, the former may surpass the best LT performance

achieved by using only a one-to-one linear mapping. This is shown in the following lemma by

considering a particular example.

Lemma 5.3. Consider the LT of N measurements of a composite Gaussian source with J > 1

components over N parallel AWGN fading channels. If the CSI is known only by the decoder,

then the LT scheme that uses a one-to-one linear mapping between measurements and channels

is suboptimal in general.

Proof. The proof can be found in Appendix.

5.6.3 The Theoretical Lower Bound (TLB)

Similarly to Section 5.5.1, we derive the TLB on the achievable MSE distortion by using Shan-

non’s source-channel separation theorem. If the CSI is available only at the decoder and the

average power constraint is P , then the ergodic capacity is given by :

C̄e , EH

[
1

2
log
(
1 + |h|2P

)]
. (5.36)

The distortion-rate function of a composite Gaussian source is defined as in Eqn. (5.26) of

Section 5.5.1, which leads to the optimal rate allocated to source m, R∗e(σm), as in Eqn. (5.27)

and the corresponding distortion, D∗e(σm), as in Eqn. (5.28), respectively. The Lagrangian

multiplier β∗ for this case is chosen such that EM [R∗e(σm)] is equal to the ergodic capacity C̄e
in (5.36). Then the TLB on the achievable MSE distortion by any strategy when the encoder

does not have the CSI is given by D̄e = EM [D∗e(σm)].
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5.7 Multiple Sensors and Parallel Channels

Following the system model introduced in Section 5.2, here we consider a particular symmetric

scenario with multiple sensors and parallel channels. In this symmetric scenario, there are N

sensors, each capable of measuring J distinct system parameters locally, and N orthogonal

fading channels for the transmission of the requested measurements. The jth system parameter

is modelled as a zero-mean Gaussian r.v. with variance σ2
j , i.e., ∼ N (0, σ2

j ), for j ∈ [1:J ].

These system parameters are independent from each other, and their realizations are i.i.d. over

time and sensors. In order to monitor the network operation, the CC requests the measurement

of one system parameter from each sensor at each TS. The index of the requested system

parameter at each TS is a r.v. denoted by M ∈ [1:J ], with distribution pM(m), which is also

i.i.d. over time and sensors. Based on these requests, each sensor takes one measurement of the

requested parameter m at each TS. As in Section 5.2, the encoder and the decoder possess the

exact knowledge of the index of the requested system parameter of each sensor; and thereby,

the model is that of a composite source introduced in Chapter 6 of [129].

The maximum delay in transmitting a measurement to the CC is d ∈ Z+, which is same

for all the sensors and parameters. There are N orthogonal fading channels available. Let

h = [h1, . . . , hN ] denote the channel vector at any TS, whose entries are i.i.d. with probabil-

ity distribution pH(h). The channels have AWGN with zero-mean and unit-variance. In this

symmetric system model, we assume that the statistics of the measured parameters, σ2
m, the

measurement requests, pM(m), and the channels, pH(h), are all i.i.d. over sensors. We assume

that both the encoder and decoder know all the past and current channel states and the indices

of requested parameters, as well as the statistics of the measured parameters, the parameter

requests, and the channels.

Scheduling of channels to sensors is done in advance; i.e., it cannot depend on the real-

izations of the measurements or the channel states. At each scheduled TS for transmission,

a sensor transmits all its samples that have been taken within the last d TSs. We are inter-

ested only in LT policies in which encoding and decoding functions are restricted to be linear

functions of the sensor measurements. We consider an average power constraint of P at each

sensor. The goal is to have an estimate of each requested measurement at the CC within the

delay constraint. The performance measure is the total MSE distortion for the requested mea-

surements.

5.7.1 Scheduling Algorithm

In this scenario, we consider a round-robin scheduling algorithm. Given a delay constraint

d, assuming N is an integer multiple of d, we group sensors into N/d groups. Each group
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Figure 5.4: Illustration of the round-robin scheduling policy for different delay constraints.

is assigned d orthogonal channels. Each sensor transmits once every d TSs, using all the d

channels assigned to its own group, and transmits all its measurements from the last d TSs.

This round-robin scheduling of channels provides additional degrees-of-freedom to the sensors

to match their measurements to a larger number of channels at each transmission round. Fig. 5.4

depicts an example of how N = 6 channels are scheduled to N = 6 sensors for different delay

constraints d = {1, 2, 3, 6}. Notice that for d = 1, one channel is assigned to each sensor for

all the TSs; hence, the sensor has no control on matching the measurements to the channel

states. On the other hand, for d > 1, at each transmission round, a sensor can reorder its

measurements to match them to the available channels in an optimal manner, or transmit their

linear combinations.

In this symmetric model, the system performance can be analyzed for a single sensor. Due

to symmetry, results will apply to all the sensors. For a delay constraint d, the sensor collects

d measurements to be transmitted over d orthogonal fading AWGN channels. The optimal LT

strategies under strict and general delay constraints, and the TLB can be obtained by using the

solutions proposed in Section 5.3, Section 5.3.1 and Section 5.5.1, respectively.

5.8 Numerical Results and Observations

Here we provide numerical results to compare the performances of LTHM and LTSM with the

lower bounds, and to analyze the impact of the delay and power constraints on the performance.

In our simulations, we consider J = 4 Gaussian parameters with variances {10, 5, 1, 0.5},
which are requested with probabilities {0.1, 0.3, 0.4, 0.2}, respectively. For a continuous fading

channel, we consider Rayleigh distribution with mean value 3
√

π
2
, and for a discrete fading

channel, we consider four states {
√

10,
√

5, 1,
√

0.5}, which are observed with probabilities
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Figure 5.5: Achievable MSE distortion with LTHM with respect to average power for different
delay constraints in the discrete fading channel model.

{0.1, 0.3, 0.4, 0.2}, respectively.

We illustrate the achievable MSE distortion versus average power under various delay

constraints with LTHM in the discrete channel setting in Fig. 5.5. We observe that the MSE

distortion diminishes as the delay constraint is relaxed. This is because a relaxed delay con-

straint provides a larger number of measurements in the TB; and hence, more flexibility for

the sensor in selecting the appropriate measurement for each TS. We note that this statement

does not hold when J = 1, in which case increasing the block length does not provide any

improvement [95]. As it can be seen in Fig. 5.5, the MSE distortion converges to a fixed value

as the average power value increases. This is due to the additional distortion brought in by the

untransmitted measurements in the TB. The average number of untransmitted measurements

and their effect on the MSE distortion decreases as the delay constraint is relaxed, since having

a larger number of measurements in the TB increases the probability of finding a measurement

that satisfies the hard matching condition. In particular, when the delay constraint is removed,

as seen in Fig. 5.5, LTHM achieves the TLB, and becomes the optimal LT scheme, since the

source-channel matching conditions in Theorem 5.1 are satisfied for the setup considered here.

In Fig. 5.6, we illustrate the achievable MSE distortion with LTSM with respect to average

power under various delay constraints in the continuous channel model. Similarly to LTHM,

the MSE distortion diminishes as the delay constraint increases. On the other hand, as opposed
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Figure 5.6: Achievable MSE distortion with LTSM with respect to average power for various
delay constraints in the continuous fading channel model.

to LTHM, the MSE distortion achieved by LTSM decreases monotonically with the average

power as illustrated in Fig. 5.6. This is because the performance of LTSM does not suffer from

a fixed distortion component due to the untransmitted measurements. In addition, LTSM also

approaches the TLB as the delay constraint is relaxed. Although we do not expect the LTSM

to meet the TLB in this setting since the matching conditions of Theorem 5.1 do not hold, we

observe in Fig. 5.6 that it is very close to the TLB.

Next, we compare the performances of LTHM and LTSM with each other and with the

TLB and the LLB. Fig. 5.7 shows the achievable MSE distortion of LTHM, LTSM, the LLB

and the TLB with respect to delay constraint in the continuous fading channel model for an

average power constraint P̄ = 10 dB. As seen in the figure, the performance of the TLB

is constant since it is derived by completely removing the delay and complexity constraints.

On the other hand, the LLB decays slowly as the delay constraint increases. As expected, the

MSE distortion of LTHM and LTSM decrease as the delay constraint increases. We can see that

LTSM meets the LLB under the strict delay constraint. As expected, LTSM always outperforms

LTHM, while the gap between the two schemes decreases with the increasing delay constraint.

The gap between the TLB and two schemes also decreases with the increasing delay constraint

even though we do not expect either of the schemes converge to the TLB in this setting since

the matching conditions of Theorem 5.1 do not hold.
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Figure 5.7: MSE distortion versus delay constraint, d, in the continuous fading channel model
for an average power constraint P̄ = 10 dB.
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Figure 5.8: The achievable MSE distortion of LT and the TLB with respect to average power
in the discrete fading channel model with and without encoder CSI.
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5.9. Conclusions

Finally, in Fig. 5.8, we illustrate the achievable MSE distortion of LT and the TLB with

respect to average power in the discrete channel model for the scenarios in which the CSI is

known only by the decoder, and by both the encoder and decoder. The MSE distortion of

LT under strict delay constraint of d = 1 for both scenarios diminishes as the average power

increases. However, there is a constant gap between the optimal performances achieved with

and without encoder CSI at higher P̄ values. On the other hand, the TLB for both scenarios

meet as the average power increases since the gain from the optimal power allocation over

different channel states disappears in the high power regime.

5.9 Conclusions

In this chapter, we have studied the delay-constrained LT of composite Gaussian measurements

from a sensor to a CC over an AWGN fading channel. We have considered a wireless sensor

that can collect measurements from J distinct Gaussian parameters. The CC asks for a mea-

surement of a particular parameter from the sensor with a certain probability at each TS. In this

framework, we have presented the optimal LT strategy under a strict delay constraint, and have

given a graphical interpretation for the optimal power allocation scheme and the corresponding

distortion value. Then, we have proposed two LT strategies, called LTHM and LTSM, under

general delay constraints, and have provided numerical results to investigate the impact of the

delay and average power constraints on the performance. We have seen that, if the number

of parameters, J , is more than one, the MSE distortion decreases as the delay constraint is

relaxed. We have also derived lower bounds on the achievable MSE distortion for generic and

LT strategies. While LTSM outperforms LTHM at all delay constraints, we have shown ana-

lytically that both strategies meet the lower bound when the delay constraint is removed, under

certain matching conditions between the parameter and the channel statistics.

We have also studied the scenario in which the CSI is known only by the decoder. We have

presented the optimal LT strategy under a strict delay constraint. We have derived a TLB on the

achievable MSE distortion by relaxing the delay constraint and the linearity requirement. We

have also considered the multiple measurements-parallel channels scenario under a strict delay

constraint, and have shown that the optimal LT performance cannot be achieved by using only

a one-to-one linear mapping between measurements and channels, as opposed to the results

derived in [95] and [97]. The design of the optimal LT strategy for the multiple measurements-

parallel channels scenario for arbitrary delay constraints is elusive, and is left as future work.
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5.10 Appendix

5.11 Proof of Theorem 1

Given a delay constraint d = 2d̄−1, let the r.v. Z̄m, m ∈ [1:J ], denote the total number of mea-

surements of parameter m among d̄ measurements loaded into the TB. Z̄m follows a Binomial

distribution with parameters d̄ and pM(m). Hence, the probability of having k̄ measurements

of parameter m in the TB is given by :

pZ̄m
(k̄) = Pr{Z̄m = k̄},

=

(
d̄

k̄

)
pM(m)k̄(1− pM(m))d̄−k̄. (5.37)

Similarly, considering the discrete fading model presented in Section 5.5.1, let the r.v. Ẑm,

m ∈ [1:J ], denote the total number of channels with state ĥm, after d̄ channel accesses. Ẑm
also follows a Binomial distribution with parameters d̄ and pH(ĥm). Hence, the probability of

observing k̂ channels with state ĥm is given by :

pẐm
(k̂) = Pr{Ẑm = k̂},

=

(
d̄

k̂

)
pH(ĥm)k̂(1− pH(ĥm))d̄−k̂. (5.38)

Observe that after d̄ channel accesses, the number of transmitted measurements selected

from the TB with LTHM is given by min{Z̄m, Ẑm}. On the other hand, the number of untrans-

mitted measurements remained in the TB is given by [Z̄m − Ẑm]+. Then, the average power,

P̄∞, and the achievable MSE distortion, D̄∞, of LTHM when d̄→∞ are given by :

P̄∞ , lim
d̄→∞

1

d̄

J∑
m=1

EZ̄m,Ẑm

[
min

{
Z̄m, Ẑm

}]
P (ĥm,m), (5.39)

D̄∞ , lim
d̄→∞

1

d̄

J∑
m=1

{
EZ̄m,Ẑm

[
[Z̄m − Ẑm]+

]
σ2
m + EZ̄m,Ẑm

[
min

{
Z̄m, Ẑm

}]
D(ĥm,m)

}
,

(5.40)
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where the allocated power P (ĥm,m) and the distortion D(ĥm,m) are chosen as in Eqn. (5.21)

and Eqn. (5.22), respectively :

P (ĥm,m) =

[
µσm

|ĥm|
− 1

|ĥm|2

]+

, (5.41)

D(ĥm,m) =
σ2
m

|ĥm|2
[
µσm
|ĥm|
− 1

|ĥm|2

]+

+ 1
. (5.42)

In the rest of the proof, we use p(m) to refer to the condition of Theorem 5.1, i.e.,

pM(m) = pH(ĥm) = p(m), ∀m. Under this condition, the expected value and variance of

Z̄m and Ẑm can be found respectively as :

E[Z̄m] = E[Ẑm] = d̄ · p(m), (5.43)

Var[Z̄m] = Var[Ẑm] = σ2
Zm

= d̄ · p(m) · (1− p(m)). (5.44)

Let ε > 0 be any positive number. Then, the Chebyshev’s inequality leads to the following

inequalities,

Pr{|Z̄m − d̄ · p(m)| ≥ ε · σZm} ≤
1

ε2
,

Pr{|Ẑm − d̄ · p(m)| ≥ ε · σZm} ≤
1

ε2
.

We define the interval I on the real line as,

I = [d̄ · p(m)− ε · σZm , d̄ · p(m) + ε · σZm ].

Next, we compute (5.39) and (5.40) by finding upper and lower bounds on the expectation

terms under the matching condition. Observe that,
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lim
d̄→∞

1

d̄
EZ̄m,Ẑm

[
min

{
Z̄m, Ẑm

}]
, (5.45)

≤ lim
d̄→∞

1

d̄
EZ̄m,Ẑm

[
Z̄m
]
,

= p(m). (5.46)

We can also lower bound this term as,

lim
d̄→∞

1

d̄
EZ̄m,Ẑm

[
min

{
Z̄m, Ẑm

}]
,

≥ lim
d̄→∞

1

d̄
EZ̄m,Ẑm

[
min

{
Z̄m, Ẑm

} ∣∣∣Z̄m∈I,
Ẑm∈I

]
Pr
{
Z̄m ∈ I, Ẑm ∈ I

}
, (5.47)

≥ lim
d̄→∞

1

d̄

(
d̄p(m)− εσZm

)(
1− 1

ε2

)2

, (5.48)

= lim
d̄→∞

(
p(m)−

√
p(m)(1− p(m))

d̄
1
6

)(
1− 1

d̄
2
3

)2

,

= p(m), (5.49)

where (5.47) follows from the law of total expectation; (5.48) follows from the definition of I,

and the Chebyshev’s inequality; and (5.49) is obtained by setting ε = d̄
1
3 . Since the upper and

lower bounds in (5.46) and (5.49) are equal, we have shown that (5.45) converges to p(m) as

d̄→∞.

Similarly,

lim
d̄→∞

1

d̄
EZ̄m,Ẑm

[
[Z̄m − Ẑm]+

]
, (5.50)

= lim
d̄→∞

1

d̄

{
EZ̄m,Ẑm

[
[Z̄m − Ẑm]+

∣∣∣Z̄m∈I,
Ẑm∈I

]
Pr
{
Z̄m ∈ I, Ẑm ∈ I

}
+EZ̄m,Ẑm

[
[Z̄m − Ẑm]+

∣∣∣Z̄m 6∈I
or

Ẑm 6∈I

]
Pr{Z̄m 6∈ I or Ẑm 6∈ I}

}
, (5.51)

≤ lim
d̄→∞

1

d̄

{
2εσZm +

(
2

ε2
+

1

ε4

)
d̄

}
, (5.52)

= lim
d̄→∞

{(
2
√
p(m)(1− p(m))

d̄
1
6

)
+

(
2

d̄
2
3

+
1

d̄
4
3

)}
,

=0, (5.53)
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where (5.51) follows from the law of total expectation; (5.52) follows from the from the def-

inition of I, and the Chebyshev’s inequality; and (5.53) is obtained by setting ε = d̄
1
3 . This

proves that (5.50) indeed converges to zero as d̄ → ∞. This also implies that as d̄ → ∞,

all selected measurements by the LTSM strategy satisfy the hard matching condition. Hence,

LTSM and LTHM are equivalent in the asymptotic of d̄→∞ under the matching condition of

Theorem 5.1.

Finally, we can rewrite P̄∞ and D̄∞ for both LTHM and LTSM as :

P̄∞ =
J∑

m=1

[
µ∗q − 1

|ĥm|2

]+

p(m), (5.54)

D̄∞ =
J∑

m=1

[
σ2
m

|ĥm|2
[
µ∗q − 1

|ĥm|2

]+

+ 1

]
p(m), (5.55)

where we use q , σm
|ĥm|

, ∀m, from Theorem 5.1, and µ∗ is chosen to satisfy P̄∞ = P .

Next, we show that (P̄∞, D̄∞) pair above, obtained under the conditions of Theorem 5.1,

achieve the TLB pair (P̄e, D̄e), derived in Section 5.5.1. First, under the matching condition,

observe that µ∗q = α∗, and thus, P̄∞ = P̄e = P . Moreover, under the matching condi-

tion, R̄e = C̄e in TLB implies α∗ = q2

β∗
. Combining the two equalities, we obtain µ∗ = q

β∗
.

Substituting this into Eqn. (5.26) together with the matching condition, we can show that

D̄e =
J∑

m=1

min
(
q
µ∗
, σ2

m

)
p(m) = D̄∞, which concludes the proof of Theorem 5.1.

5.12 Proof of Lemma 3

In order to prove Lemma 5.3, we construct a counter-example. We argue that the achievable

MSE distortion of a particular LT scheme that is not constrained to use only a one-to-one

mapping between measurements and channels can be smaller than the minimum achievable

MSE distortion of all possible LT schemes that use only a one-to-one mapping, i.e., a diagonal

encoding matrix. Suppose we have J = 2 zero-mean Gaussian parameters with variances σ2
1

and σ2
2 , which are requested with probabilities pM(1) = p1 and pM(2) = p2 = (1 − p1),

respectively, and assume an extreme case, where σ2
1 > 0 and σ2

2 = 0. Suppose we have a

discrete fading channel with two states, which are observed with probabilities pH1(ĥ1) = p1

and pH2(ĥ2) = p2, respectively, and assume that the channel states are ĥ1 > 0 and ĥ2 = 0. We

aim at linearly transmitting N = 2 measurements of parameters m1 ∈ [1:2] and m2 ∈ [1:2],

over N = 2 channel states h1 ∈ {ĥ1, ĥ2} and h2 ∈ {ĥ1, ĥ2}.
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We first characterize the minimum achievable MSE distortion, D̄1, for all possible LT

schemes with a diagonal encoding matrix. According to Eqn. (5.11), the encoding function

needs to satisfy the average power constraint P , i.e., 1
2

[P11p
2
1 + P12p1p2 + P21p1p2 + P22p

2
2] =

P , where Pm1m2 is the allocated power for the pair of measurements of parameters m1 and m2,

respectively. We have P22 = 0, since σ2
2 = 0. Then, by using Eqn. (5.13), the MSE distortion

D̄1 can be written explicitly as follows :

D̄1 =
1

2

{
p2

1

(
EH1

[
σ2

1

|h1|2 P11

2
+ 1

]
+ EH2

[
σ2

1

|h2|2 P11

2
+ 1

])

+ p1p2

(
EH1

[
σ2

1

|h1|2P12 + 1

]
+ EH2

[
σ2

1

|h2|2P21 + 1

])}
,

= p2
1

(
p1

σ2
1

|ĥ1|2 P11

2
+ 1

+ p2σ
2
1

)
+
p1p2

2

(
p1

σ2
1

|ĥ1|2P12 + 1
+ p1

σ2
1

|ĥ1|2P21 + 1
+ 2p2σ

2
1

)
,

(5.56)

where the minimum distortion is achieved by dividing the power, i.e., P11, equally between

measurements if two measurements are observed from parameter 1, i.e., m1 = m2 = 1. If one

measurement is requested from each parameter, i.e., (m1 = 1,m2 = 2) or (m1 = 2,m2 = 1),

then the minimum distortion is achieved by allocating the entire power, i.e., P12 or P21, to the

measurement of parameter 1, since σ2
2 = 0.

Assuming the average power constraint P is satisfied as in the above scheme, we next con-

sider a particular LT scheme. This scheme uses a diagonal encoding matrix if both measure-

ments are observed from the same parameter; otherwise, it uses a non-diagonal matrix, where

the measurement of parameter 1 is transmitted over two channels. Then, from Eqn. (5.13), the

MSE distortion D̄2 can be written as follows :

D̄2 =
1

2

{
p2

1

(
EH1

[
σ2

1

|h1|2 P11

2
+ 1

]
+ EH2

[
σ2

1

|h2|2 P11

2
+ 1

])

+p1p2

(
EH1,H2

[
σ2

1

(|h1|2 + |h2|2)P12

2
+ 1

]
+ EH1,H2

[
σ2

1

(|h1|2 + |h2|2)P21

2
+ 1

])}
,

= p2
1

(
p1

σ2
1

|ĥ1|2 P11

2
+ 1

+ p2σ
2
1

)
+
p1p2

2

(
2p2

2σ
2
1 + p2

1

σ2
1

|ĥ1|2P12 + 1
+ p2

1

σ2
1

|ĥ1|2P21 + 1

+ 2p1p2
σ2

1

|ĥ1|2 P12

2
+ 1

+ 2p1p2
σ2

1

|ĥ1|2 P21

2
+ 1

)
,

(5.57)
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where the minimum distortion can be achieved by dividing the power, i.e., P11, equally be-

tween measurements if two measurements are observed from parameter 1, i.e., m1 = m2 = 1,

similarly to the above scheme. If one measurement is requested from each parameter, i.e.,

(m1 = 1,m2 = 2) or (m1 = 2,m2 = 1), then this particular scheme divides the power, i.e.,

P12 or P21, equally between two channels h1 and h2 for the transmission of the measurement

of parameter 1, as seen in the term multiplied by p1p2 in (5.57). If two measurements are ob-

served from parameter 2, i.e., m1 = m2 = 2, then we do not allocate power, i.e., P22 = 0, since

σ2
2 = 0.

We can easily see that D̄2 < D̄1 for all P11, P12 and P21. This implies that the minimum

achievable MSE distortion of LT schemes constrained to one-to-one mapping can be improved

by utilizing non-diagonal encoding matrices, which concludes the proof of Lemma 5.3.
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6.1 Conclusions

This dissertation has focused on two enabling technologies that provide advanced monitoring

and control capabilities to SGs, namely, SMs and WSNs, and studied the design of privacy-

preserving EM techniques for SMs and delay-sensitive transmission strategies for WSNs. The

proposed EM techniques have been shown to provide privacy to SM users while maintain-

ing unaltered the operational utility of the SM readings for the SG. In addition to privacy, the

proposed EM techniques have taken into account two benefits, namely, energy efficiency and

energy cost saving, which have been provided to users thanks to the utilization of storage units,

and then explored the fundamental trade-offs between user’s privacy and energy efficiency, and

user’s privacy and energy cost, respectively. On the other hand, the proposed LT strategies

have been shown to enable wireless sensors to meet low latency, low complexity transmis-

sion requirements for real-time and accurate state reconstruction; and thus, efficient and robust

management of the SG.

In Chapter 3, we have considered an SM system in the presence of EH and storage units,

and studied the fundamental trade-off between user’s privacy and energy efficiency. We have

integrated an EH unit as an alternative energy source, an RB as an energy storage unit and an

EMU as the management unit of the energy flow. The EH unit provides energy packets to the

energy consumer at each time instant in an i.i.d. fashion and the finite capacity RB provides

both energy efficiency by storing extra energy for future use and increased privacy by masking

the load signature of the appliances from the UP. We have considered a discrete-time FSM

to represent the whole system, and investigated stochastic EM policies at the EMU based on

the harvested energy, energy demand of the appliances and the state of the storage unit. We

have measured the privacy of the user from an information theoretic perspective by using the

information leakage rate between the input load, i.e., the user’s energy demand profile, and the
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output load, i.e., the SM readings, and the energy efficiency of the user by using the wasted

energy rate.

We have calculated the information leakage rate by using a numerical method. For the

sake of simplicity, we have considered binary input and output loads. We have studied battery-

dependent EM policies and numerically searched for the EM technique that achieves the best

trade-off between user’s privacy and energy-efficiency. We have observed that the information

leakage rate can be significantly reduced in the presence of an energy harvester and an RB. As

the EH rate increases, we have observed that the privacy of the user improves. On the other

hand, this also increases the amount of wasted energy. For a given input load and EH rates, we

have numerically characterized the optimal trade-off curve between the achievable information

leakage and wasted energy rates. The whole trade-off curve can be characterized by changing

the stochastic EM policy used by the EMU. According to the needs of the user, an operating

point can be chosen on this trade-off curve. We have also characterized the trade-off curves

for different EH rates. Focusing on a system with only an RB, we have studied the impact of

the RB capacity on the achievable privacy. We have observed that the information leakage rate

can significantly be reduced by increasing the RB capacity. For the system with only an RB,

we have also studied the impact of wasting of grid energy on fulfilling the increased privacy

requirements of the user. We have observed that even with a finite capacity RB, the higher

privacy levels can be provided to the user by wasting more energy from the grid.

In Chapter 4, we have considered an SM system in the presence of a finite-capacity

energy storage unit, and studied demand-side EM policies from a joint privacy-energy cost

optimization perspective. We have considered a discrete-time energy consumption model, in

which both the energy consumption and the electricity prices vary over time. We have measured

the privacy of the user as the variance of the output load around a predetermined constant target

value, and the energy cost by using a time-varying electricity pricing model. First, assuming

that the user’s energy demand profile and the electricity prices are known non-causally at the

EMU, we have formulated the optimal privacy-cost trade-off as a convex optimization problem,

and identified the properties of the optimal offline EM policy. Then, using the implications of

these properties on the optimal solution, we have proposed a backward water-filling algorithm

which efficiently computes the optimal offline EM policy. We have observed that the energy

cost can be reduced by requesting more energy when the prices are lower, and the privacy is

obtained by generating a smoother output load. We have shown that both gains can be achieved

simultaneously by utilizing the available RB intelligently.

Next, assuming that the user’s power consumption profile is known only causally, we

have characterized the optimal online policy using DP. Since DP algorithms are prohibitively

complex, we have also proposed a low complexity heuristic online EM policy based on the
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water-filling algorithm for the offline setting. In addition to the output load variance, we have

also characterized the information leakage rate between the input and output load sequences.

We have assessed the performances of the proposed offline and online EM policies through

extensive numerical results using real SM consumption data. We have numerically evaluated

both the load variance and the information leakage rate as privacy measures and characterized

the trade-offs between privacy and energy cost resulting from offline and online policies. Our

results indicate that the privacy-cost trade-offs for output load variance and information leak-

age rate have very similar behaviours; and therefore, output load variance can be used as a

privacy measure for SM systems. The operating point on the trade-offs can be chosen based on

the user’s requirements on privacy and energy cost. We have shown through these numerical

results that the proposed heuristic online algorithm performs very close to the optimal solution

based on DP, which requires significantly higher computational complexity. We have investi-

gated the impact of the RB capacity on the trade-off between privacy and energy cost for the

proposed EM policies. We have also shown that most of the privacy gains can be obtained with

a relatively small capacity RB.

In Chapter 5, we have studied the delay-constrained LT strategies for the transmission of

composite Gaussian measurements from a sensor to a CC over an AWGN fading channel in a

point-to-point communication problem. We have considered a wireless sensor node that can

collect measurements from J distinct Gaussian system parameters. Discretizing time into TSs,

we have assumed that the CC asks for a measurement of a particular parameter from the sensor

with a certain probability at each TS. If the CSI is known by both the encoder and decoder, we

have presented the optimal LT strategy in terms of the average MSE distortion under a strict

delay constraint, and have given a graphical interpretation for the optimal power allocation

scheme and the corresponding distortion value. Then, for general constraints, we have proposed

two LT strategies, called LTHM and LTSM, based on the solution to a particular multiple

measurements-parallel channels scenario, and have provided numerical results to investigate

the impact of the delay and average power constraints on the performance. We have observed

that if the number of parameters is more than one, i.e., J > 1, the MSE distortion decreases

as the delay constraint is relaxed. We have also derived lower bounds on the achievable MSE

distortion for generic and LT strategies. We have observed that LTSM outperforms LTHM at

all delay constraints. When the fading channel follows a discrete distribution and the delay

constraint is completely removed, we have shown analytically that both strategies meet the

lower bound under certain matching conditions between the channel states and the paramater

variances; and hence, achieve the optimal performance.

We have also considered the case in which the CSI is known only by the decoder, and

presented the optimal LT strategy in terms of the average MSE distortion under a strict delay
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constraint. We have derived a lower bound on the achievable MSE distortion for generic LT

strategies by relaxing the delay constraint and the linearity requirement. The design of the

optimal LT strategy for arbitrary delay constraints is elusive. For this argument, we have con-

sidered the multiple measurements-parallel channels scenario under a strict delay constraint

and J > 1 assumption, and have shown that the optimal LT performance cannot be achieved

by an LT scheme that is limited to use only a one-to-one linear mapping between measurements

and channels, as opposed to the results derived in [95] and [97].

6.2 Future Work

There are several possible research directions that can be considered to extend the results and

findings of this thesis. From a practical standpoint, future work should extend the theoreti-

cal and numerical results of this thesis by considering more complex models. Some of the

extensions are pointed out below :

Regarding the SM systems considered in Chapters 3 and 4,

• Numerous practical issues can be incorporated to the problem formulation with more

complex models, i.e., storage inefficiencies, battery leakages, battery charging/discharging

rates, the cost of repeated charging and discharging on the battery’s lifetime, processing

energy costs, voltage and frequency differences between different energy sources, etc.

• In the analysis of the proposed EM techniques, we consider SMs that only report the

real power consumption of the user. However, SMs can also report variables such as the

reactive power, the power factor or various harmonics, which can also be used to make

deductions about the input load. These variables can be included to extend the analysis

conducted for the proposed EM techniques.

• In the analysis, we assume that the energy demand of the appliances is satisfied by trans-

ferring an equivalent amount of energy from the RB, EH unit or UP. This model can

be extended by considering the effect of the supply voltage, frequency or the charac-

teristics of the appliances on the amount of energy that needs to be requested from the

corresponding energy source.

• Introducing plug-in EVs, hybrid and battery-run cars, which can be used for distributed

energy storage by means of their RBs, would increase the total storage capacity of the

system. As an extension, it would be interesting to see the affect of these devices on the

user’s privacy, energy efficiency and energy cost.
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• Another interesting extension would be to allow the user to sell his surplus stored or

renewable energy to the UP, and see its impact on the performance metrics of the SM

systems.

Regarding the WSN system considered in Chapter 5,

• An important extension would be to come up with advanced transmission techniques that

can better approach the TLB for the scenario in which the sensors do not have the CSI. In

particular, the design of the optimal LT strategy for the multiple measurements-parallel

channels scenario for arbitrary delay constraints would be an interesting and challenging

future work.

• Another challenging future work would be to study the optimal scheduling scheme in the

presence of multiple sensors and parallel channels.
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