Chapter 2

A Strategic Analysis of Two
Different Types of Planning
Restrictions

1. Introduction

The use of urban planning instruments is common in most modern societies. Among
European countries, planning systems vary a great deal, but the presence of the public
sector is habitual along the several stages of the planning process. In Spain there has
been a long tradition of intervening the land market and the planning process, and in-
struments such as density levels and the delimitation of land suitable for development
are jointly used. The role of land-use controls as a means to guide urban development
and restrict urban growth has been long and widely analyzed in the literature. From
the viewpoint of resident households, the economic justification for the introduction of
growth controls lies mostly on the alleged relationship between urban size and the ex-
istence of external costs, related for instance to the appearance of congestion or to the
loss of outer landscapes. In this sense, restricting the urban size may lead to increases
in welfare. This is the approach followed by the so-called amenity—creation models, in
which planning restrictions tend to improve urban amenities, which ultimately trans-

lates into increases in land rents [Brueckner (1990); Engle et al. (1992)).
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However, in the theoretical urban economics literature it seems to predominate
the idea that actual planning restrictions are welfare-worsening, even though they
may correct externalities [Fischel (1990b); Anas et al. (1998)]. Even when they are
ultimately successful in preserving the urban environment, they are supposed to achieve
that end at too high a cost compared to alternative instruments such as taxes or
impact fees, that truly distort residents’ decisions [Brueckner (1997); Brueckner (2001)].
Recently, a new line of research has regarded urban planning decisions as the result
of the strategic interaction among cities. This approach allows for the emergence of
restricted city sizes even though urban growth does not involve external costs [Helsley

and Strange (1995), Brueckner (1998)].

In this chapter we analyze the welfare effects of planning restrictions, under different
scenarios. It uses the bid-rent framework to analyze two types of growth controls:
population regulations and a tax on housing consumption. It is assumed that the utility
function of residents is not affected by any urban characteristics such as density or city
size. Thus, utility only depends upon the consumption of land and all other private
non-land goods. The model consists of a closed system of three interdependent cities
where utility is determined endogenously. There are two types of households depending
on their income levels, and both types can freely and at zero cost migrate among cities.
The effects when one or two of the cities impose some type of regulation are analyzed,
and quantity and price instruments are considered, in the form of population controls
and a tax on housing consumption. In particular, cities may impose endogenous land
use regulations, in the sense that they maximize a given objective function for the local
planner. Local communities maximize the fiscal revenue arising either from population

controls or taxes.

Special attention is paid to the scenarios in which two of the cities may impose some
form of controls, which will be strategically chosen. The equilibrium strategies will be

obtained for the cases in which cities use population controls and taxes. Other authors
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have analyzed this case in a static setting; we extend here the analysis to a dynamic

context and, additionally, allow for the possibility of cooperation between jurisdictions.

The chapter is organized as follows. Section 2 describes the main features of the
model, and shows the equilibrium conditions in the case without planning restrictions.
In section 3, the effects of endogenous population controls are analyzed, distinguishing
between two scenarios: in the first case, a single city imposes the control; in the
second case, cities take into account the decisions of rival communities and decide
strategically. We characterize the equilibrium strategies both for a one-period and
a multi-period scenario. Section 4 considers the effects of price controls in the form
of taxes on housing. It covers again the case when decisions are taken separately or
considering other cities’ choices, in static and dynamic frameworks. Section 5 shows
the differences in tax collection outcomes that result from using population controls or

taxes. The final section summarizes the main results and conclusions of the analysis.

2. The basic model

The benchmark model here has 3 cities, denoted by subscript ¢, 2 = 1,2,3. Cities 1
and 2 may impose growth restrictions, while in all cases city 3 simply accommodates
all coming residents. Cities are supposed to be linear and with a width of 1. All
residents work at the Central Business District (CBD), located at an extreme of the
city. Individuals in city 4 must commute to the city centre at a cost T;(r), where r is the
distance from the residence to the CBD. Transportation costs are the same for all cities
and increase linearly with distance so that, for all i, T;(r) = tr. We will abstract from
differences in housing size, and assume that all households with the same income level
will end up by renting housing of the same size (which will be the same across cities),

and respond to utility differentials by costlessly migrating from one city to another.

All households have identical tastes, but may differ in income level. There are two
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levels of income: N# individuals have an income Y4, and N? individuals have YB,
with Y4 < YB. Income levels are supposed to be exogenous and the role of firms in
the city is not considered. Individuals spend their income between a composite good
2, housing space s, and transportation. The utility of an individual with income Y7

(j € {A, B}) that resides in city ¢ (¢ € {1,2,3}) is

wl = u(s!, 2)) (2.1)
The composite good z will be taken as the numéraire. The utility is strictly increasing

and strictly concave in both arguments (the first partial derivatives are strictly positive

and the hessian matrix is negative definite).

Housing consumption will be the same for individuals with the same income level,

regardless of the city they reside in. The housing size of higher income individuals

B
i

B

is normalized to s = s” = 1; lower income individuals will have a housing size

A A

s = 8" = o, with 0 < @ < 1. Since housing space is determined exogenously, the only

variables that affect the utility level achieved by households will be the consumption of
all other private goods different from housing, zZ . Residents in each city pay housing
rents to absentee landowners; the rental price of housing per period of time, which
depends on the size and location of the residence, is denoted R!(r). The housing

market is assumed to be competitive.

Given the fact that individuals have perfect mobility, in equilibrium all individuals
with the same income level will end up by achieving the same utility level, regardless
of the city they reside in; this in turn implies that their consumption of the composite
commodity, zf , will be the same. Our analysis will be greatly simplified if we introduce
those equilibrium conditions from the start. That is, all individuals with income level
j will end up by consuming zf = 77, and achieving a utility level w/. Taking this into

account, the budget constraint of a household with income level j residing in city ¢ at
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a distance r from the CBD can be expressed as:

VI = 2B(s7,u9) + s Ri(r) + tr (2.2)
That is,

VB =251,u®) + RE(r) +tr (2.3)

Y4 =24, u) + R (r) + tr, (2.3)

In terms of the housing bid-rents, the constraints can be expressed as:

RE(r)=YB —tr — 2% (2.4)
A_ . _ A
Rir) =TT (2.4)

Since transportation costs increase proportionally with distance, the housing rent
or housing bid-rent decreases linearly with distance to the CBD. For each income level,
there exists a family of housing bid-rent functions that correspond to different utility
levels. For individuals to be in equilibrium and indifferent among locations within
the city, housing rents must vary as described by the housing-bid rent function above.
Thus, at a larger distance from the CBD, higher transportation costs are compensated
by a smaller housing rent, so that all individuals belonging to the same income group
can attain identical utility levels independently of the particular location. The fact
that R; is steeper than R? implies that the low income individuals locate closer to the
CBD. The inner segment where the low income households locate has a radius of 7;.
High income residents locate in the outer segment comprised between radius 7; and r;,

where r; represents the edge of the city.

Housing is produced from land and capital, according to the production function
H(l, k) = lk; given a fixed amount of land [, the (restricted) production function thus
obtained displays constant returns to scale with respect to capital. Combining k£ units

of capital and [ units of land yields [k units of housing !. The rental price of capital is

! Accordingly, the variable k denotes density, since it refers to the number of housing units per unit
of land.
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denoted by P. It will be assumed that both types of housing require the same amount
of capital investment. Let L?(r) represent the rental price of land, which will also vary
with distance. If in one unit of land £ units of housing are built, this requires £ units of

capital; hence, the total rental price of housing can be assigned to the land and capital

factors:
kRI(r)=Li(r)+ Pk. (2.5)
That is,
Rl(r) = L?,f") +P, (2.6)
or
Li(r) = k [Ri(r) - P] = k [W _p|. (2.7)

In all cities, at radius 7; (the dividing point between low and high income housing)

the land rents must coincide, that is

1/'iA_t,”,.\i_zA

(67

k - P] = k[Y® —t7;, — 2% - P). (2.8)

At all locations, land is allocated to that activity yielding the highest return.

2.1 Equilibrium without planning restrictions

Equilibrium in the land market involves several conditions. Firstly, total population

N4 and NB must be accommodated within the boundaries of the cities.

In city 4, 7; units of land are allocated to low income households. If each unit of land
has £ units of housing, &/« households can be accomodated in it, since each household
occupies 1/« units of housing. Therefore, the total number of low income households

that will reside in 7 will be

b,
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Since the housing space occupied by each income category is the same across cities,

in equilibrium it must be the case that all N4 low income households get accomodation:

. .. .. aN4
T +re+73= L

(2.9)

The equilibrium condition for the high income households will be:
N? =k [(ri = 71) + (ra = 73) + (r3 = 73))]

Using the equilibrium condition for the low income households, we can rewrite the last
equality as

aN4 + NB

. (2.10)

7"1+7"2+7"3:

Secondly, if residents are perfectly mobile, the utility level achieved by each type
of household will be the same in all cities. Since housing consumption is fixed and
identical for individuals in the same income range, for them to be indifferent between

cities their consumption of non-housing goods must also be the same, that is zf = 2.

Finally, in a context without planning restrictions it is required that in all cities the
urban land rent equals the value of the best alternative use at the city limit, usually
considered to be agriculture. For simplicity, the value of land in agricultural use will

be normalized to zero. Then LZ(r;) = 0, or

YB—tr;— 2P —P=0. (2.11)

Equation 2.11 implies that r; = ro = r3 = r, and from 2.10, it results:

aN4 + NB
r=_— -

2 (2.12)

Thus, in the non-restricted equilibrium, population is equally distributed across

cities, and the low income households occupy an identical inner radius of

aNA
3k

P = (2.13)
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Combining 2.11 and 2.12, we find the amount of z consumed by individuals with

income Y B, which is:

t
P =YP-p- ﬁ[aNA + NP). (2.14)

To obtain 24, we use conditions 2.8, 2.13, and 2.14:

t
A=YA—qP— g‘—k[NA + NB). (2.15)
Notice that, in the absence of negative externalities caused by crowding, the higher
the density level the better households are, since higher density allows savings in trans-
portation costs and does not provoke any external costs. As we mentioned before, in

our model density is measured by the variable k.

The equilibrium utility levels are:

ut =y (a, Y4 —aP - ?O:—]:[NA + NB]> (2.16)
and
uﬁ:u<1,YB—P—% [aNA+NB]>. (2.17)

In the following sections we will ignore all externalities, and therefore the consump-
tion z of the composite good will allow us to measure how planning controls affect

utility levels.

3. The effects of population controls

In this section the planning instruments are population controls that restrict the city
size. The choice of the appropriate city size is endogenous in the sense that it maximizes

aggregate urban land rents, an objective function commonly considered in the urban
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literature. Two scenarios are considered. Firstly, the case where only one city in the
system restricts its size; secondly, two of the cities impose population controls and they

decide strategically.

3.1  Equilibrium with one controlling city

Assume now that city 1 imposes an urban population control that restricts city size,
and that all excluded households can be accommodated in cities 2 and 3. There, the
condition that urban land rent equals zero at the city limit continues to be valid. In
equilibrium, since low income households get accomodation closer to the CBD, for all
three cities land rents must still be equal at 7;, so 2.8 in page 14 still applies in the
restricted case. Now, using 2.10 it results

szYB—P—E [

aNA + NB
. 7—7"1], (2.1)

k

where 7, is now a choice variable for the local government in city 1.

Since the introduction of the population control does not alter the size of the inner

segment where the low income households live, we have that, for all cities

. aN4

In our model, when city 1 imposes an urban population control, the low income
residents continue to be equally split between the controlled and uncontrolled cities, and
the size of the inner segments does not vary. Although it has been assumed that both
types of households are mobile, the previous result implies that population controls
may affect unequally different types of households. In our case, population controls
affect only high income households, while low income households are not affected at all
in their actions, though, as we show next, their equilibrium utility will change. Since
the relative steepness of land-rents functions does not change in the regulated situation,

then 7; does not vary with the introduction of population controls.
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Using 2.9, we obtain

2
zAzYA—aP—a—t (@+2)

A B

With a population growth control in city 1, both 24 and zP are negatively affected.
The positive signs of the partial derivatives of 27 with respect to 7, show that the
consumption of goods other than housing increases with 7, that is, the less restrictive
the control is. Since housing consumption is exogenously determined, the population
control makes residents worse off in this simple context without environmental exter-

nalities.

The above results apply whatever the values of ;. Consider now the particular case
when the population control introduced is endogenous, in the sense that it maximizes
a particular objective function chosen by the local government. The objective function
will be the sum of all land rents in city 1, TR;. Remember that the land rents benefit
the absentee landowners. The rationale for this objective function can be that higher
land rents imply higher collection from property taxes, so the cities have more resources
available. The local planner chooses the value of r; that maximizes the objective
function TR, that is

1 YA _ _ A r1
max/ k [# — P] dr +/ kYB —tr — 2P — Pldr. (2.4)
0 7

1 (8

o~

1
The first order conditions of this maximization problem (obtained applying Leibniz’s
rule to differentiate the integral) result in a city limit 7; smaller than the market

equilibrium city size,

_ L onaL nB
7"1*—4k[aN + N7 (2.5)

Finally, 2% and 24 can be expressed in terms of the parameters:

3t
P =YP_p- @[aNA + N8|, (2.6)
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and

t 8
A=Y~ aP - ;‘—k %N“ +3NB|. (2.7)

It can be shown that, as should be expected, introducing the endogenous population
control makes both types of residents consume smaller amounts of 24 and 2%, and as

a result they attain smaller utility levels.

3.2 Equilibrium with two controlling cities

Assume now that cities 1 and 2 impose population controls so as to maximize total land
rents, and that each is aware of the other city’s policy and objective. That is, there
will be strategic interaction between both cities, which try to maximize land rents (a
proxy for property tax collection). In equilibrium, all households will end up by being
accommodated. This is possible thanks to the passive role played by city 3, which just

accomodates all households that go there.

Now 1 and 2 want to maximize their respective aggregate land rents, TR; and TRy,
but taking into account the rival’s choice of city size. This situation gives rise to a game
between the two cities, in which a Nash equilibrium will imply the choice of strategies
by the two cities which are best replies to each other. The decision variables for both
cities are their population controls, that is, the maximum size the city will be allowed

to have.

In the case in which only one city imposes population controls, we saw that the size
of the population of low income households was not affected by that policy. In this

case the same thing will happen, and exactly for the same reasons. That is, the size

of the low income household segment will be, for all cities, 7 = % Besides, in city 3

equation 2.11 in page 15 holds, and hence the equilibrium levels of 2® and 2z# will be
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given by:
N4+ NB
B_yB_p_¢ [04 ]:‘ —(r + TQ)] (2.8)
142
A=Y4—aP— %t [(J;JNA + NP —k(r + 7«2)] (2.9)

The expressions imply that, as in the case in which only one city imposes controls,
less stringent population controls lead to higher values of z® and 24, that is, to higher

utilities.

The objective of city 1 is to maximize aggregate land rents T'R;. However, 1 has
to consider 2’s choice of r,. This is achieved by combining 2? and z# in 2.8 and 2.9
together with the expression of TR; in 2.4. From the maximization of that expression,

we find the best reply function for city 1:
()= ——F—— -3 (2.10)

By symmetry, the expression of the best reply function of city 2 is:

aNA+NB r
7"2(7"1) = 73]{; - El (211)

Notice that the best reply r; for city 1 is decreasing in 7y, that is, the strategies of both
players are strategic substitutes.? Thus, if city 2 fixes a not too stringent (i.e. large) ro,
then city 1 benefits from choosing a smaller ;. The land rent sacrificed by excluding a
household is smaller the larger is the size chosen by the rival. A more stringent control
increases the opportunity cost of losing population, and as a result cities choose larger

sizes.

Solving the system with the best response functions for cities 1 and 2 yields smaller

sizes for cities 1 and 2, but a larger r3. The expressions for the Nash equilibrium r; and

2Like the strategies of Cournot competitors. See Bulow, Geanakoplos and Klemperer (1985).
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r9 coincide with the optimal choice of one city if it alone were imposing the control:

1
Tecomp =T1 = T2 = E [CVNA + NB] . (212)

However, the equilibrium utilities achieved are smaller. Since more cities in the
system impose population controls, this leads to a larger number of residents diverted
to city 3, and consequently to higher land rents. The equilibrium values of 2? and 24

in this simultaneous population control game are:

t
P=YP-pP- ﬂ[aNA + N5, (2.13)
and
2
zA=YA—aP—;‘—]: NB—i-%NA : (2.14)

Finally, we find the equilibrium land rents. Substituting 2.12 back into the expres-
sion for land rent in city 1 in 2.4, and considering that both 1 and 2 use optimal growth
controls, we obtain the expression for total land rents, denoted by TR,y (Where comp

stands for competitive):

¢
TReomp = m[l La(N? + 54aNA NP + 27(NP)? + 16aN4]. (2.15)

3.8 A cooperative framework

This subsection introduces the possibility of cooperation among jurisdictions. The lit-
erature based on the use of game theory as a means to explain urban growth controls
has so far used a noncooperative approach. Nevertheless, given the mutual advantages
of achieving cooperation, it is interesting to explore under what circumstances is coope-
ration sustainable. In this subsection these issues are considered, both in a static and

in a dynamic context.
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In this scenario without competition, the first information needed is the size that
cities would choose to maximize aggregate land rents. Since the a priori parameters
are symmetric, the maximizing choice of city sizes will also be symmetric, so we may
simplify by assuming that 7, = ry under the cooperation agreement. Let 7.0, denote

each individual city size with cooperation. The expressions for 24 and 2® will now be

1+ 2
ZA:YA_QP_%t [%

N4+ NB 2 rwo,,] (2.16)
and

aNA + NB

B_yB_p_—t
? k

—2 rwo,,] . (2.17)
To find the optimal cooperative city size it will be enough to maximize the total
land rents in one of the cities, given the symmetry assumptions. Thus, we solve the

problem

?coop YA _ t _ A Tcoop
max k (#4:) dr—i—/ k(YP —tr—2°—P)dr. (2.18)
0 -

T,
coop (8 Feoop

The first order conditions result in

1
Tcoop = Q[CVNA + NB] (219)

The maximum value of the total land rents is obtained by substituting the maximizing

value of 7.00p We just found:

t
TReoop = mpooﬂ(z\#‘)? + 90 NANB + 45(NB)% 4 250(N4)?). (2.20)
Although cooperation leads to the highest land rent attainable, it may well happen
that the equilibrium solution is such that cities have incentives to compete rather than

cooperate. Results vary when considering static or dynamic frameworks.

Cooperation in a static context For every city, the available strategies in the static case

are “cooperating” or “competing”. The cooperative strategy implies the choice of 7¢o0p
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described in equation 2.19. The competitive strategy consists of choosing according
to the best reply functions of the noncooperative framework, which can be found in

equation 2.10.

Figure 2.1 shows the relationship between aggregate land rents and city size under
the assumption that the population controls chosen by cities 1 and 2 are identical.
Since we know that both the noncooperative equilibria and the collusive solution are

symmetric, they are included in the graphic.

TR, (r

coop)

TR, (xr

comp )

TR, (r,)

coop rcomp

Figure 2.1. Total land rents with symmetric city sizes.

In order to formulate the “cooperation or competition” alternative as a game, we
must consider what are the players’ payoffs whenever one of them decides to compete
and the other to cooperate. If we view cooperation as the “focal point” players would
like to achieve, whenever one player chooses cooperation but the other is choosing its

competitive strategy, we can say that the second player is “deviating” from cooperation.

It can be shown that, as should be expected, T'Rsop is larger than T R omp. Now,
though T R.oop > TReomp, cities have an incentive to deviate from the cooperative

agreement, since 7o, is not their best city size choice when the other one cooperates.
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When 1 deviates while 2 cooperates, then 1’s best choice is given by

4
T1T = Tdey = —15k [O[NA + NB], (221)
and
1 A B
To = Tcoop = a[CYN + N ] (222)

Likewise, if the corresponding values of aggregate land rents are denoted by T R4, and

T Reoop , then:

TRyew = 45%[2?,(12(1\#‘)2 + 96aNANB + 48(NP)? + 250(N4)?, (2.23)
and
t
TRy = m[ma(z\ﬂ‘)? + 78aNAN® 4 39(NP)? + 250(N*)2). (2.24)

Logically, land rents are larger for the city that deviates from the cooperative agree-

ment, and they are also larger with respect to the cooperative solution. Thus,

TRdev > TRcoop > TRcomp > TRcoop’ .

Figure 2.2 depicts the normal form for the static game just described.

City 2
Cooperate Compete
Cooperate T Roop, T Reoop T Reoop s T Rew

Compete TRdezn TRcoop’ TRcomp: TRcomp

City 1

Figure 2.2. Static game with population controls with cooperation.

In a static context, there exists a single Nash equilibrium in pure strategies in
which both cities end up competing and do not cooperate. Actually, for each city if
is better to choose its competitive strategy irrespective of what the other city chooses,
that is, competition is a dominant strategy for each city. Notice that the equilibrium

payoffs of the players are Pareto dominated by another (non-equilibrium) outcome:
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the cooperative one. In this prisoners’ dilemma kind of game, a static framework does
not allow any possibilities for cooperation. That is, in a static context cooperation
is not a self-enforcing strategy, given the incentives the players have to deviate, and
the absence of punishments for breaking the cooperative agreements. However, in a
dynamic context punishments appear endogenously, given that, at any moment in time,
players have an interest in future cooperation, which raises their expected payoffs in

the future. We consider this possibility next.

Cooperation in a dynamic context Whenever the choices of the cities take place in
time, many new possibilities arise. The present choice of a city affects not only its
current payoffs, but also future payoffs, depending on how the other city is going to

react. This opens up possibilities for cooperation.

It is important to notice, nevertheless, the importance of having an indefinite time
horizon. If there is a very definite time horizon (that is, an end period for the possible
cooperation), which is commonly known to both parties, then the only reasonable
(technically, subgame-perfect) equilibrium is the repetition of the competitive strategies
in each period. This can be seen by using backward induction: in the last period, the
players have no future opportunities for cooperation, and therefore it is optimal for
them to compete; but then, in the previous period, knowing that what they do is not
going to influence the actions in the last period, it is again optimal for the players to
compete; the same procedure is repeated until we get a complete unravelling of the
time sequence. In the case of population controls, this commonly known ending of the
time horizon could be the end of the legislature, in case the current city government

does not expect its mandate to be renewed.

On the other hand, if there is not such a well-definite ending to the possibilities of
cooperation, then the backward induction argument cannot be made, and actually there

are ample opportunities for cooperation. Formally, one can model this indefinite ending



