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either as an infinite time horizon, or as a stochastic one. The idea for implementing
cooperative solutions is based on the fact that now the players can “punish” each
other for not cooperating, by using competitive strategies in the future. Since both
players have an interest in future cooperation, because it gives them higher payoffs,
then cooperation is sustainable as a long-term strategy, as long as players attach enough

weight to the future.

We will illustrate this result by describing a pair of strategies which actually con-
stitute a subgame-perfect Nash equilibrium, when future payoffs are not discounted at
a very high rate. The simplest (among many other) strategies that lead to equilib-
ria that support cooperation are the so-called trigger strategies, by which each player
imposes on the other the harshest possible punishment when the latter has broken
the cooperation: whenever a player detects a noncompliance with cooperation, then
it reverts to the competitive strategy for all future periods. Let us show that if both
players follow trigger strategies, then a subgame-perfect Nash equilibrium ensues (if

the discount factor is large enough, i.e. the interest rate is low enough).

Let us assume that no deviation has taken place in the past. From one player’s
viewpoint, the decision about whether to deviate in the current period implies a trade-
off: there will be immediate gains in the current period (because deviating while the
other player cooperates yields the highest possible gain), but the gains in all future
periods will be those of competition, instead of the higher gains the player would get if
both continued to cooperate. How future gains (land rents) are discounted —together
with the number of cities in competition— is one of the key factors among the conditions
determining the equilibrium solution and the optimal strategy to be followed by each

city.

Given that cities will compete forever whenever a failure to cooperate is detected,

the present value of total land rents -PVTR- can be calculated for the different sce-
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narios that can occur. Namely, the PVTR has been calculated in the following three

instances:

e When cities always cooperate
e When cities always compete

e When one city deviates in the first period while the other one cooperates, and

both compete from that period on.

Let PVTR, ., denote the present value of land rents when both cities cooperate;
PV'T R omp, the present value of land rents when competition takes place; PVT Rge,, the
present value of rents resulting from deviating in the first period and competing in the
subsequent ones; and PVT Ry, the present value of rents when the city cooperates
in the first period when the other one deviates, and both compete in the remaining
periods. In figure 2.3 we represent a static game in which the choice of strategies by
each player corresponds to the problem faced by a player in the dynamic game with
infinitely many periods, when confronted with another player that is using a trigger
strategy; thus, the payoffs in this static game represent the present value of the flow of
land rents in the dynamic game, when a player is considering whether to deviate from

cooperation, when its opponent is using a trigger strategy.

City 2
Cooperate Compete
Cooperate PVT R oop, PVT Reoop PVTRoop, PVTRgey

Compete PVTRies, PVT Ry | PVTReomp, PVT Reomp

City 1

Figure 2.3. Static game corresponding to a dynamic game with population controls when cooperation
is allowed.

The worst possible scenario for a city in terms of the aggregate total land rents
occurs when it chooses the cooperative population control while the other city deviates

in the first period, since PVT Reoop < PVT R omp.
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Suppose first that city 1 chooses the population control according to its best re-
sponse function, that is, it chooses the strategy “compete”’. In this instance, the best
strategy for city 2 is to compete as well, since doing so yields higher land rents. Sim-
ilarly, that applies symmetrically to city 1 when it is city 2 the one that competes.

Then, the set if strategies (compete, compete) constitute a Nash equilibrium.

Suppose now that city 1 cooperates. City 2 can either cooperate as well, or deviate
from the cooperative solution and compete in all the remaining periods. To determine
which strategy is best, we must know which of the two leads to the highest payoff.
Comparing PVT R, against PVT Ry, we find that the optimal solution will depend

on the value of the discount factor. Cooperating is optimal whenever
PVTReoop > PVTRgey,

and comparing the two values of present value of land rents:
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where 7 here is the interest rate. The expression can be simplified to
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Concluding, the present value of land rents under cooperation exceeds that of deviation

as long as
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Equivalently, the discount factor 1/(1 + r) should be larger than approximately 0.63.

Let us remark that the same argument shows that, if the discount factor exceeds

the critical value, cooperation can be sustained as a subgame perfect equilibrium with
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trigger strategies. In order to show that a Nash equilibrium is subgame perfect, we
must show that the choice of strategies following any possible past history constitutes
a Nash equilibrium for the remainder of the game. Now, whenever failure to cooperate
has occurred in the past, then the pair of strategies call for each player to choose
competition forever, which is always a Nash equilibrium. On the other hand, if both
players have always cooperated in the past, the situation is similar to the one we just

analyzed.

We have illustrated here that trigger strategies can sustain cooperation as an equi-
librium, provided the discount factor is large enough. However, in real life situations
trigger strategies are far from reasonable. The motive is that they are not robust to
small uncertainties that might result, for instance, in one player interpreting that the
other has deviated when this has actually not happened. But in this case there are
other far more reasonable strategies which can be applied and allow cooperation to be
sustained as an equilibrium as well. For a nonformal discussion, see Dixit and Nalebuff

(1991).

Estimations performed in different countries and for different time periods, always
result in real interest rates very close to zero. Therefore, if the discount factors in our
model are those that derive from real interest rates, we can conclude that cooperation
is always sustainable as an equilibrium. On the other extreme, one might consider
self-interested politicians who care nothing about what happens when they quit office,
in which case the discount factor would be much smaller, most likely below the critical
level we have found. Most practical situations one might consider would be between

those two extreme cases.

If cooperation is sustainable as an equilibrium, this calls for cities to choose smaller
sizes, that is, to set more stringent population controls. On the other hand, more

competitive equilibria would result in larger city sizes, that is, less restrictive population
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controls.

4. The effects of a tax on housing consumption

Other possible instruments to constrict city size are taxes that modify housing bid-
rents of households, and consequently distort landowners’ decisions of converting land
from rural to urban. In this section we will consider a tax on housing. The rationale
for introducing such a tax is to levy revenues that the community might want to use
to finance public goods or services. We find that using this price instrument instead of

a quantity instrument (size controls) as before, has distributional consequences.

City ¢ will introduce a tax h;, 0 < h < 1, per unit of housing consumption. The

residents’ budget constraints will change to:
Vi =20 +tr+ 8 RI(r) + " b, (2.1)

or, expressed in terms of the housing bid-rents:
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The land bid-rent functions become:
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4.1  Equilibrium values when one city uses tazes

The new land rent functions differ from the one in the market situation because of the
new tax on housing, h;. In equilibrium, it must be true that L?(r;) = 0, independently

of whether or not the city uses a tax. Assume first that only 1 introduces the tax h;.
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Then 75 = r3 = r, and since in equilibrium 2? is common to all cities, we have:
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Since LB(r;) = 0, we can use 2.1 to express the size of 1 in terms of the tax hi:
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There is a linear and negative relationship between the tax and the size of the city.
Introducing a tax on housing consumption also reduces housing rents, and consequently
land rents, and therefore city 1 will be smaller. Now we can find the expressions for

2P and 24 in terms of the housing tax hi:
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We have again that r; =7 = —O‘é\;A. Examining the effect of h; on z4 and 2%, we see that

as the housing tax increases the consumption of 24 and z? decreases, as does utility.

A population constraint and a tax on housing consumption that result in the same
city size have the same negative effect on households, who in either situation reach
identical utility levels and the same consumption of z. The result is natural, since both
interventions affect households in the same way: the housing consumption tax acts as
an additional expense, while the population control causes housing rents to increase.

In both scenarios, the income that can be dedicated to non-land goods shrinks.

On the other hand, a tax on land instead of on housing would cause the city to
become smaller as well, and residents to attain higher utility levels, but land owning

would become less profitable in city 1.

Notice, however, that population controls and taxes have different distributional

consequences. With population controls, landowners of developed land receive higher
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land rents, while residents experience a reduction in their utility levels. When the
housing consumption tax is used, resident households experience a comparable decrease
in z and the utility level, but all landowners in the city lose too. Instead, the local

authority benefits from all aggregate housing consumption taxes.

What tax level would the local government choose if its objective were to maximize
the sum of aggregate taxes (Rh,) levied from residents in city 1?7 Since the tax affects
both the city size and the number of households, the objective function of the local
authority is

aN4 + NB  2p,
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Maximizing the above expression with respect to h; yields the optimal value, A}, which

1s
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This optimal tax corresponds to a city size

1
= [aN“ + NP]. (2.10)

After substituting 2.9 in the expressions of z? and 24 in 2.6 and 2.7, we obtain:
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Both levels of (private goods) consumption are smaller compared to the ones achieved
in the market situation. The effects on 2z would be identical if directly using a popula-
tion control leading to the city size achieved when using h]. Residents lose in a similar

way both with taxes and population controls. On the contrary, landowners gain with
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the introduction of the population control, but are worse off with the tax on hous-
ing that ultimately diminishes land rents. Likewise, landowners of undeveloped land
become worse with the tax. Local communities benefit, because they receive the tax

revenues.

4.2 Equilibrium values when two cities use tazres

As with the population growth control case, consider now that all cities in the system
except for the passive city 3 impose taxes on housing consumption. Thus, 1 and 2 enact
taxes h; and hy. In order to maximize the tax revenue, city 1 must now consider the
behaviour of all other active cities, and so must city 2. The expression for 2.8 in page
20 will determine the level of z? in the system, common to the three cities. Applying
the condition that LB(r;) = L?(ry) = 0, 2P can be expressed exclusively in terms of
the taxes applied by cities 1 and 2. Thus

P(hy hy) = VP — P — ;—k[aNA + NP - %[hl + hyl. (2.13)

And from the expressions in 2.8, we find that

24 (hi,hg) =Y4 —aP — ?O:—]:[NA + NB] - %[h1 + hy). (2.14)

The expression for r; is computed similarly:

aNA+ NB 1

T =
The objective of city 1 will be again to maximize tax revenues, but now taking into
account the decision adopted by city 2. Using the expression of r; in 2.15, we can write

the maximization problem for 1:

aNA+NB 1
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The solution is the best response function for city 1:

t(aN4+ NB) h

By symmetry, we can see that the best response function for city 2 is:

ha(ha) = W;—;NB) + % (2.18)

Notice that the sign of the partial derivatives of the reaction functions is positive.
Contrary to what happened in the population control game, now the best response
functions slope upward in the tax game. This means that taxes as growth control
instruments act as strategic complements rather than substitutes.> When 2 chooses a
relatively high tax, more households are diverted to the remaining cities in the system,
including 1, since the decision is made considering that h; remains fixed, but not the

population level in 1. By imposing a higher h; it is possible to increase the revenue

levied from those diverted households.

The equilibrium is found by solving the system of equations formed by the two
reaction functions. The equilibrium taxes are:

t

hcomp = hl = h2 = 3k

[aN* + NP|. (2.19)
The tax revenue that corresponds to the equilibrium taxes is

2t
Rh(heomp) = ﬂ[aNA + NP2 (2.20)

for any of the cities enacting taxes. The resulting city sizes are

2
(heomp) = 5N + N7] (2.21)

This city size is larger than in the one controlling city case, and it is smaller than the

size obtained in the population control game. However, comparisons must be carefully

3Like the strategies of Bertrand competitors. See Bulow et al. (1985).
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made, since different objective functions have been used for the population and the tax

control games. Alternatively, the total level of revenues should be compared.*

Other studies have shown that price instruments lead to higher equilibrium popu-
lations (Helsley and Strange, 1995). As for the levels of 24 and 2Z which ultimately

affect the levels of utility in the system, we find that

2P (heomp) = YP = P — S_Z N4 + NP, (2.92)
and
2 (Peomp) = Y4 — aP — g‘—]: [5N® + (3 4 2a)N4]. (2.23)

The consumption of non-land goods diminishes when introducing strategic interac-
tion between cities, for both types of households, again compared to the outcome in
which there is a single controlling city. As the number of cities using taxes increases,
the negative effects on z are more important, because the number of households that
are diverted from the controlling cities is larger. This causes housing and land rents in

the system to increase.

4.8 A cooperative framework with tazes

As in the population control scenario, we consider the possibility of cooperation between
jurisdictions in their tax decisions. Given the symmetry of the set up, the optimal
collusive choice will result in equal tax rates in both cities. Therefore, we can simplify

and express aggregate revenues from taxes for any of the active cities as:

aNA+NB 1
. _ho 2.24
Rh(lecoop) = heooph [~ ) (2.24)

4This comparison will be further explored in an upcoming section.
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Maximizing with respect to the tax level hgy,p, we find the optimal tax under coopera-

tion:

t
heoop = 57 [aN* + NP, (2.25)

The taxes are now larger than the Nash equilibrium tax level of the noncooperative

scenario, heoop > heomp- Accordingly, the resulting city size for the controlling cities is

1
7 (Peoop) = oI [aN* + N5, (2.26)

which is smaller than the size under competition.
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Figure 2.1. Tax revenues under symmetrical tax levels

Let Rh(heoop) denote the tax revenue when both cities cooperate. Likewise, RA(hcomp)
in equation 2.20 denotes the revenue under competition. It can be shown that Rh(heoop) > RA(Pcomp),
that is, tax revenues are larger under the cooperative framework. Assuming that one
city enacts the cooperative tax, the best tax level for the other city can be calculated
from the city’s best response function. Let hge, denote the tax chosen when deviating.

Then,

_ ;’—Z N4 + NP). (2.27)



Sec. 4. The effects of a tax on housing consumption 37

That is, the city that deviates from the agreement gains from imposing a lower tax rate.
The gains from the attraction of a larger number of residents offset the loss associated
with the collection of a smaller per capita tax. The overall tax revenue for the city

that breaks the cooperation agreement is

3t
Rh(hgey) = 39k [aN4 + NP2, (2.28)

while the city that enacts Ao, Obtains a diminished tax revenue of

Rh(Peoop' ) aN* 4+ NB)?, (2.29)

_

16k
where Rh(hco0p) denotes overall tax revenue for the city that chooses heopp. If only
revenues from a single period are considered, then the highest revenues are obtained
by the city that deviates from the cooperative agreement, while the other maintains

the cooperative tax hgoop. Thus,

Rh(haew) > Rhlhoosp) > Rh(beomp) > Rh(hoooy) (2.30)

Equilibrium in a static contert As in the case of population controls, we will find that

cooperation is not self-enforcing in a static one-period framework.

Consider the case in which the effects of the introduction of taxes are going to be
realized for a single period only. Then, as it happened in the population control case,
it is a dominant strategy for both cities to always choose to compete, and therefore the
equilibrium results in tax levels hgomp for both cities. The unique equilibrium is Pareto
dominated by the cooperative agreement, that is, although communities would be able
to attain higher revenues if they maintained the cooperative tax level, cooperating is

not an equilibrium.

The game is depicted in table 2.2. The fact that competition constitutes a dom-
inant strategy is a direct consequence of the inequalities among revenues shown in

equation 2.30. In equilibrium, both cities achieve an identical tax revenue of R(hcomp)-
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City 2
Cooperate Compete
Cooperate Rh(heoop), Rh(heoop) Rh(hcoop )s Rh(hgen)

Compete Rh(Pae), Rh(Peooy) | Rh(heomp), Rh(Peomp)

City 1

Figure 2.2. Static game with taxes when allowing for cooperation.

Equilibrium in a dynamic context We refer the reader to the discussion we made in
section 3.3, about the analysis of the possibilities for cooperation in the population

controls in a dynamic setting, because most of it applies here as well.

Again, a well-defined end period will cause competition to be the only (subgame-
perfect) equilibrium. But an indefinite time horizon allows sophisticated punishment
strategies in the case of deviations from a cooperative agreement, and therefore coope-
ration may be sustained as an equilibrium, provided both cities attach enough value

to future revenues.

As in the population controls case, we will show how trigger strategies allow coope-
ration to be sustained as an equilibrium, provided the discount factor is large enough.
In order to do that, we compute the present values of tax revenues in the three following
cases:

e Both cities cooperate for ever: PV Rp,(heoop)-

e Both cities compete for ever: PV Ry (hcomp)

e One city cooperates and the other deviates in the present period, and then both

compete for ever after: PV Ry, (heoop) and PV Rp(hgey), respectively.

For each case, the expressions for aggregate tax collections are shown below.

¢
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Rh(heomp) = ﬂ[aNA + NB? + L[aNA + NP2 (2.32)
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3t 2
Rh =— JaNA+ NB24+ " [aN*+ NB? 2.

Rh(heooy) = i[aNA + NB? + ﬂ[aNA + NP2 (2.34)
coop 16k 27k '

To find out whether cooperation can be sustained as an equilibrium, we must com-
pare aggregate tax revenues if cooperation prevails with those obtained by one player
when deviating. Deviation results in a larger revenue in the current period, but leads

to the smaller competition revenue levels from then on.

Once the cooperation agreement has been abandoned by one of the cities, competing
becomes the Nash equilibrium strategy in the subgame that results. The cooperative
solution is a Nash equilibrium as well if the present value of revenues under cooperation

exceeds the present value of revenues when deviating, that is

Rh(heoop) > Rh(hey), (2.35)
or
i[aNA + N8P 4 é[aNA + N5 >
12k 12kr(1+7) 5 36
ﬁ[aNA+NB]2+7[aNA+NB]2 ( . )
32k 27kr(1+ )

Operating the expression above and solving for r it results that cooperation is the

equilibrium solution as long as the interest rate satisfies

—3 + /41
< ot VAl

o~ 0.567. (2.37)

r
Equivalently, the discount factor should be larger than, approximately, 0.638.

The same reasoning we made in the case of population controls applies as well
here. To the extent that the legislatures are not myopic and look further enough into
the future, cooperation can be sustained as a (subgame-perfect) equilibrium, when the

time horizon is indefinite.
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5. Comparison of results with population controls and taxes

We have so far assumed that the housing tax and the population controls were en-
dogenous, in the sense that they maximize the respective objective functions set by
the local communities. In this section, aggregate taxes levied are compared depending
on the instrument used. Because households’ utility levels do not depend upon any
local public good or urban amenity, the expenditure side of the tax collection is being
ignored. It can be likewise argued that the positive effect on households’ utility of this
expenditure would be the same for a constant level of tax revenues, and then only the

negative effects associated with the particular source of the fiscal revenue matter.

To compare the different effects of using population controls or taxes for collection
purposes, we make the following assumption. Taxes on housing directly yield a certain
amount of tax revenue. As for the population control effect on fiscal revenues, two
extreme scenarios can be considered. Firstly, it could be the case that only increased
land rents were taxed, for instance if the whole increase in land rents was captured
by the local government. The second possibility consists of assuming that the local
community imposes a certain tax p on total land rents, not only on value increases. (For
instance, with p = 1 the local community would appropriate all land rents. Obviously,
such an extreme tax would cause landowners to lose all incentives to efficiently allocate

each plot of land to the highest bidder.)

The comparison of tax revenues under each instrument will be simpler if we repre-
sent each revenue level against the associated city size r1, as in figure 2.1. The graph
plots the revenue size associated with each city size, under three different scenarios:
housing tax competition, population controls such that the tax revenue equals the in-
creased land rents, and population controls such that the tax revenue equals all land

rents. In all cases only symmetric solutions are considered.
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Figure 2.1. Comparison of tax revenues with population controls and housing taxes

The relationship between land rents —or increased land rents— and city size is
straightforward, by rearranging the general expression of land rents in equation 2.4.
As for the relationship between housing tax revenues and city size, it can be easily
obtained by combining the expression of housing tax revenues in equation 2.8 with the
expression in equation 2.5 in page 31, that relates the housing tax level h; with the
city size r;. Each housing tax level is uniquely associated to a certain city size. As can
be observed, the three revenue curves have a Laffer type shape. Thus, a small city size
can represent either the utilization of a too stringent population control or the result of
a relatively high tax on housing consumption. A smaller city is associated then either
to a large increase in land rents or to to a higher housing tax. Both facts provoke
a greater per capita revenue, but a reduction in the base of the revenue due to the
fact that less residents remain in the city in equilibrium. Several city sizes have been
highlighted: r,,, which represents the city size corresponding to the market situation;
Tcomp, the equilibrium city size when competing with population controls; 7(hcomp), the
city size obtained when competing with housing taxes; 7o, the city size when cities

set cooperatively their population controls; and 7(hceep), the resulting city size when
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cities cooperate to fix their housing taxes.

A city size of r,, corresponds to a situation where there is no population control
or a tax hy = 0, and as a result Rh = 0 and ATR; = 0. Total land rents equal the

market value, that is TR,,.

When the increases in land rent values due to the introduction of population controls
are fully taxed, housing taxes are always superior to population controls, because
a fixed revenue level can be achieved at a smaller cost in terms of the decrease in
residents’ utility. The optimal city size when maximizing increased total land rents
ATR, is 7y = (1/5k)[aN* + NB] —the city size that maximizes aggregate land rents
TR;. The revenues arising from the implementation of a tax on housing leading to
the same city size are greater. Alternatively, the revenue obtained with this city size,
ATR, = ttzlaN* + NP2, could be attained with a housing tax level leading to a
greater city size —and as a result, with a smaller loss in residents’ utility. For values of
the city size greater than the optimal level 7, the diverting of population caused by a

direct population control provokes that total revenues begin to decline, up to the city

size 11 = g-(aN* + NB), which implies again that ATR; = 0.

Secondly, consider a tax that levies total land rents, and not only land rent rises.
Under this scenario, the comparison between housing taxes and population favors the
population control instrument, since total land rents are always superior to taxes in
terms of total revenue for identical city sizes. Under this total confiscation of land

rents, the problem is that landowners have no incentive to efficiently allocate their

land.

There exists an intermediate tax rate p that could be applied on total land rents,
that would lead to identical outcomes in terms of tax revenues. Analytically, this p
tax rate can be expressed in terms of the parameters, but its (complicated) expression

adds no further intuition.
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6. Conclusions

A recent trend in the urban economics literature has centered on the analysis of urban
regulations as the result of strategic interaction among local jurisdictions. We develop
in this chapter a framework to consider this problem. We use the framework to analyze
the influence of price and quantity instruments as strategic variables to manage urban
growth. We show that population controls are strategic substitutes, while taxes are
strategic complements. This distinction lies at the base of the differential impact of

those instruments.

We limit our analysis to two (active) cities, but it could easily be extended to n
cities. In this case, it can be shown that the equilibrium utilities of the residents are

smaller the larger is the number of cities using controls.

Measured in terms of residents’ utility, competing with population controls is de-
sirable because it leads to relatively greater city sizes and, consequently, to smaller
negative impacts on utilities. If measured in terms of total revenues, population con-
trols are superior to housing taxes only when all land rents are confiscated, but inferior

when only increased land rents constitute the tax revenue.

An interesting contribution in this chapter is the consideration of the possibility of
cooperation among jurisdictions. We show that, even though cities can gain by acting
cooperatively, they may not be able to enforce cooperation if the city authorities do
not care enough about the future, for instance if their planning horizon ends with
their mandate. On the contrary, whenever city authorities are long-sighted enough,

cooperation is self-enforcing.

Our framework opens up the possibility of future work to explore very interesting is-
sues, like the influence of density, or the differential effect of policies on the distribution

of income. We think that additional attention and a more careful analysis should be
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devoted to the distributional consequences of planning instruments. Another interest-
ing possibility is to consider the influence of externalities. The presence of externalities
is one of the reasons usually used to provide an economic justification of urban land
controls. Regarding this aspect, the model is flexible enough so as to easily incorporate
environmental externalities affecting households’ welfare, for instance in the form of

density levels.



