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Studying the genotype-phenotype map through general mathematical
models of embryonic development and its application on tooth
morphogenesis and evolution

by Miquel MARIN RIERA

One of the main challenges of evolutionary biology is to understand
how species change over generations. Phenotypic evolutionary change can
only be understood by knowing how natural selection acts on the pheno-
type and which heritable phenotypic variation arises in each generation
within populations. Heritable genetic variation is associated to the corre-
spondent phenotypic variation by means of the genotype-phenotype map
(GPM). In the case of morphological evolution, the GPM is determined by
embryonic development which consists on complex and dynamic networks
of interaction between genes, cells and tissues. The nature of the GPM tells
us the ensemble of phenotypes that can be produced by development and
also the specific genetic mutations that are required to reach a certain phe-
notype. In this thesis we use the computational approach to generate theo-
retical predictions on how the complexity of the GPM influences morpho-
logical variation arising from development and what effect has that on the
evolutionary dynamics of populations. We use the mammalian tooth as a
model system due to its high morphological complexity and ecological and
evolutionary relevance. By performing in silico evolution we find that se-
lective regimes that focus on all the details of the phenotype fail to drive
populations to phenotypic optimality. We also develop a general model of
animal development that is able to reproduce a wide range of developmen-
tal mechanisms. We then use this general model to extend the tooth de-
velopment model and we explore the morphological variation arising from
alterations in cell-cell adhesion and biomechanics. By simulating tooth de-
velopment and evolution by means of mathematical models we have been
able to make predictions on how a complex GPM arising from development
affects the distribution of phenotypic variation and the effective of natural
selection during adaptive evolution.
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evolucio de les dents

de Miquel MARIN RIERA

Entendre com les especies canvien al llarg de les generacions es un dels
principals desafiaments de la biologia evolutiva. Per tal d’entendre el canvi
evolutiu a nivell del fenotip és necessari coneixer quina variacié fenotipica
heretable és present a cada generaci6 i com la seleccio natural actua sobre el
fenotip. La variaci6 genetica heretable s’associa a la variaci6 fenotipica cor-
responent a través del mapa genotip-fenotip (MGF). En el cas de I'evolucié
morfologica, el MGF ve donat pel desenvolupament embrionari, que con-
sisteix en xarxes d’interaccié complexes i dinamiques entre gens, cel-lules
i teixits. El MGF ens indica el conjunt de fenotips que el desenvolupa-
ment pot produir i també les mutacions genétiques especiifiques que es re-
quereixen per aconseguir un determinat fenotip. En aquesta tesi utilitzem
I"aproximacié computacional per tal de generar prediccions teoriques sobre
com la complexitat del MGF influeix en la variacié morfologica resultant
del desenvolupament i quin efecte té en les dinamiques evolutives de les
poblacions. Utilitzem la dent de mamifer com a sistema model a causa de la
seva alta complexitat morfologica i la seva rellevancia ecologica i evolutiva.
Per mitja de la simulacié d’evoluci6 in silico trobem que els regims selec-
tius que es centren en tots els detalls del fenotip no aconsegueixen portar
les poblacions a 1'optimalitat fenotipica. També desenvolupem un model
general de desenvolupament animal que és capa¢ de reproduir un am-
pli ventall de mecanismes de desenvolupament. Després utilitzem aquest
model per extendre el model de desenvolupament de dents i explorem
la variacio morfologica provinent d’alteracions en ’adhesi6 i biomecanica
cel-lulars. Per mitja de la simulacié del desenvolupament de dents amb
models matematics hem pogut fer prediccions sobre com un MGF complex
afecta la distribuci6 de la variaci6 fenotipica i I’efecte de la seleccié natural
durant l’evoluci6 adaptativa.
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Chapter 1

Introduction

One of the main challenges of evolutionary biology is to understand how
organisms change over generations. Classically, natural selection acting on
phenotypic variation has been proposed to be the main driver of pheno-
typic change (Darwin, 1859). Thus, in order to predict phenotypic evolu-
tionary change one needs to understand both natural selection and which
heritable phenotypic variation arises in each generation in populations. Most
of this heritable phenotypic variation arises from genetic variation, but we
do not completely understand by which mechanisms specific genetic vari-
ants give rise to specific phenotypic variants. This is because an organ-
ism’s phenotype, especially its morphology, arises through, and because of,
a complex process of embryonic development based on complex networks
of interaction between genes, cells and tissues.

Development is a process in which a single cell transforms, over time,
into an organism composed of multiple cells and cell types arranged in
specific and complex spatial patterns. This process can be understood as
a series of transformations of specific spatial distribution of cell types, or
patterns, into other, usually more complex, distributions of cell types over
space. Any morphological difference between two individual organisms in
a species arises first as a difference in these transformations at some stage
during development. Each such pattern transformations in development
involves complex networks of genetic, cellular and tissue interactions over
time. Consequently, any morphological difference between two individuals
arises as a difference in some of these interactions. Thus, in order to under-
stand, for example, why some change in a specific gene leads to a specific
set of morphological changes we need to understand this genetic variant
in the context of the dynamic networks of interactions between genes, cells
and tissues in a specific pattern transformation in development. We call
“developmental mechanism” any gene network that regulates at least one
cell behaviour and is involved in a pattern transformation.

Generally, in order to understand how morphology in a population
changes over evolutionary time one needs to address two questions: 1)
which phenotypic variation appears at each generation and 2) which phe-
notypic variation is filtered out by ecological factors. To address question
1 it is necessary to understand development. A good understanding of the
development of a species or lineage at a certain point during evolution sig-
nificantly enhances the capacity to understand its evolutionary trajectory
(especially if something is known about question 2).

To address question 1 two aspects of development should be studied:

1. Variational properties (Salazar-Ciudad, 2006). They are defined as the
range of morphologies that can be produced by the development of
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an organism, or in a specific developmental mechanism when there
are changes in the environment or small genetic mutations. By small
we mean mutations that do not change the topology of the genetic
network of a developmental mechanism.

2. The genotype-phenotype map (GPM). It describes which specific ge-
netic changes are associated with which morphologies within the vari-
ational properties (Waddington, 2012).

In theory In nature In silico
Variational Phenotypic

- ’ o Model Phenotype
properties variation P

T

Genotype-Phenotype Development Model of development

map

T T T

< Genetic space Genetic Model parameter
variation space

FIGURE 1.1: Given a certain developmental process in an individual, a popula-
tion or a species, there is a limited amount of different phenotypes that can arise
through changes in the genotype. The ensemble of phenotypes that can arise
through a developmental process is called variational properties and the asso-
ciation between each genetic change and a phenotypic change is the genotype-
phenotype map. In nature, specific genetic changes are associated to specific phe-
notypic changes through development. The GPM can be reproduced in silico by
integrating our knowledge of development into a mathematical model. Variation
in the model parameters will result in different model phenotypes. By systemati-
cally exploring the model parameter space one can infer the variational properties
of that specific developmental system.

Variational properties and GPM are not independent of one another.
The range of morphologies that compose the variational properties entirely
depend on the nature of the GPM, since the latter determines which geno-
types will arise from each of the genotypes. In other words, the variational
properties describe what development, or a developmental mechanism, can
produce at the phenotypic level, whereas the GPM describes the distribu-
tion of those phenotypic variants with respect to all genetic variants (fig.
1.1). Both concepts can be used in the context of the development of a whole
organism, a part of an organism or a specific developmental mechanism in
a specific pattern transformation (fig. 1.1).

It is possible to estimate the GPM by statistical methods without un-
derstanding the underlying developmental dynamics (Lande and Arnold,
1983). One can empirically obtain variance-covariance matrices of trait val-
ues (P) and trait heritability (&) for a set of phenotypic traits in a popula-
tion. It has been shown that given a certain selection pressure (represented
as vector s on the set of traits (represented by vector z), one can predict the
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mean phenotype of the population after a selection event using the G and
P matrices as follows (Lande and Arnold, 1983),

Az=GP s (1.1)

where Az represents the difference of the mean phenotype before and
after the selection event. However, this method can only predict pheotypic
evolutionary change in short time scales since it cannot predict how the G
matrix changes over time. In order to be able to predict the latter, one needs
to mechanistically understand the underlying development.

There is usually abundant but incomplete experimental information about
those. Most morphologies are complex, that is composed of many mea-
surable traits, and variation on each trait is highly interdependent on the
others. Complex morphologies tend to have complex GPMs stemming
from development (Salazar-Ciudad and Jernvall, 2005; Salazar-Ciudad and
Marin-Riera, 2013), which means a single trait seldom shows gradual vari-
ation and that will covariate with other traits. This makes morphological
variation in complex structures very hard to predict unless one understands
the underlying GPM, which is the process of development. Most devel-
opmental processes involve complex dynamics consisting of extensive cell
movements and cell-cell communication happening simultaneously (Salazar-
Ciudad, 2010b).

Thus in order to be able to predict the variational properties and GPM
of development it is necessary to implement the understanding, or hy-
potheses, about how genes, cells and tissues interact during development
into mathematical models. These can then be used to understand the aris-
ing of subtle and complex morphological variation. Thus, mathematical
models can make quantitative predictions on the variational properties and
the GPM based on the causal links between each genotype and the corre-
sponding phenotype arising from development (Salazar-Ciudad and Jern-
vall, 2010). In addition, using mathematical models it is easier and cheaper
to explore the variational properties and inferring the underlying causes of
phenotypic variation because it can be done systematically.

The aim of this thesis is to provide theoretical predictions on how the
complexity of the GPM influences the morphological variation arising from
development and what effect that complexity has on the evolutionary dy-
namics of populations. We use the mammalian tooth as a model system
due to its high morphological complexity and ecological and evolutionary
relevance. Chapter 3 of this thesis describes a model of tooth evolution and
development that is used to infer which types of selective pressures facili-
tate or prevent adaptive change in complex tooth morphologies (question
2). Chapter 4 presents a general modelling framework for animal develop-
ment that is later used in Chapter 5 to design a new and extended model of
tooth development, which is used to study the phenotypic variation aris-
ing from tooth development (question 1) and provide predictions on which
aspects of morphogenesis account for variation in specific morphological
features of teeth.
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1.1 Mammalian tooth as model system for evolution-
ary developmental biology

The mammalian tooth has been and it is being extensively studied both in
the fields of development and evolution (Butler, 1983; Butler, 1995). From
the developmental point of view, it is an interesting system due to the com-
plexity of its dynamics, which combine cell signalling and extensive cell
movements (Salazar-Ciudad, 2008; Salazar-Ciudad, 2012). Teeth develop
in relative isolation from the rest of the body. That allows experimental ma-
nipulation of the developing tooth germ with minimal interference on the
morphogenesis of the whole embryo. From the ecological and evolution-
ary point of view, teeth are required for the breakdown of food in mam-
mals and thus tooth morphology is closely related with the animal’s diet
(Evans et al., 2007). Moreover, teeth are often the only traces left by extinct
mammalian species in the fossil record and so, tooth morphology is very
important in the study of mammalian evolution. For these reasons teeth
are an especially relevant organ system at the crossroads of the fields of de-
velopmental and evolutionary biology (evo-devo) (Salazar-Ciudad, 2012).
From the perspective of evo-devo, the question is not so much how a wild
type tooth is achieved, but rather how variation in its development will
result in different tooth morphologies (Harjunmaa et al., 2014).

Tooth development consists of the growth and folding of an epithe-
lial invagination, on the growth and condensation of an underlying mes-
enchyme (the dental papilla) and the differentiation of these tissues into the
different cell types of the tooth crown. Such a process involves inductive in-
teractions mediated by signalling in the epithelium, the mesenchyme and
between them. Different molecular signals diffusing in the complex spatial
context of the tooth germ determine the differentiation of non-proliferative
signalling centres called the enamel knots (EK) in specific positions, which
in turn regulate the patterning and positioning of tooth cusps (Jernvall,
2000). The most studied case of tooth development is that of the mouse
first molar, but most other molars seem to develop similarly (Kerdnen et
al., 1998).

At embryonic day 13 (E13), the prospective molar consists of a round
epithelial invagination surrounded by a mesenchymal condensation called
the tooth bud (fig. 1.2A). A non-proliferative signalling centre called the
primary enamel knot (PEK) appears at the distal tip of the bud (fig. 1.2B)
(Jernvall and Thesleff, 2000). At this stage the epithelial bud consists of
two cell populations, a basal layer of epithelial cells contacting the base-
ment membrane and expressing P-cadherin, and a suprabasal cell popula-
tion composing the bulk of the bud and expressing E-cadherin (Jussila et
al., 2015).

By E15 two epithelial folds, called the cervical loops, have emerged at
the buccal and lingual sides of the PEK, and the morphology is reminiscent
of a cap (fig. 1.2C). The cervical loops, which are composed of both basal
and suprabasal cells, first grow radically (i.e. in the direction where the
roots of the developed tooth will be, as opposed to occlusal) and later to-
wards the mid line of the tooth germ, effectively enveloping the mesenchy-
mal condensate. During the late cap stage, the PEK disappears and two
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FIGURE 1.2: A, by E13, an epithelial bud (blue and yellow) has invaginated from
the oral epithelium into the jaw mesenchyme and a mesenchymal condensate has
started to form (pink). B, soon after that, a signalling centre called the primary
enamel knot (PEK, red) appears at the distal tip of the bud and two epithelial
folds start to grow in the bucal and lingual sides of the tooth germ. C, by E15
the growing cervical loops have eventually surrounded part of the mesenchyme.
D, Between E15 and E16, the PEK disappears and new signalling centres called
secondary enamel knots (SEK, cyan) are induced while the cervical loops continue
to elongate.

secondary enamel knots (SEK) appear at its lingual and buccal sides (Jern-
vall and Thesleff, 2000). At the SEKs cell proliferation is downregulated
while it is upregulated in the surrounding epithelia through the action of
diffusible growth factors secreted by the SEKs (such as FGFs and SHH; Lau-
rikkala et al., 2001; Jernvall et al., 1994). As a consequence the epithelium
between SEKs grows and bends towards the dental mesenchyme forming
a valley (fig. 1.2D) (Jernvall, 1995). Since there is no downward growth in
the SEKSs these are left behind and, consequently, form the cusps (with each
SEK at the tip of each cusp) (Jernvall and Thesleff, 2000).

By E16 the position and shape of the first two cusps starts to become
evident and two more SEKs appear at a certain distance posterior to the de-
veloping cusps. At this stage the cervical loops separate the mesenchyme
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into two populations: the dental mesenchyme enclosed by the loops and the
follicular mesenchyme surrounding the whole of the tooth germ (Rothov4,
Peterkova, and Tucker, 2012). The former will give rise to the dentin form-
ing odontoblasts and to the tooth pulp while the latter will not become part
of the adult tooth. The suprabasal cells composing the bulk of the tooth
germ start to vacuolate and secrete extracellular matrix, and at this stage
they are called stellate reticulum (Butler, 1956). Two different epithelial
populations can also be distinguished; the inner enamel epithelium (IEE)
consisting of the epithelium enclosed between the two cervical loops, and
the outer enamel epithelium (OEE) consisting of the epithelium facing out-
wards of the tooth germ. The final shape of the tooth crown and cusps
corresponds to the shape of the IEE surface, since this is where the enamel
secreting ameloblasts will differentiate.

By E17 two additional SEKs appear anterior to the first two cusps and
two days later, at postnatal day 0 (P0), the shape of the tooth crown is al-
ready determined and the ameloblast and odontoblast layers can be distin-
guished.

1.2 Mathematical models of development as tools to
integrate experimental evidence and predict the out-
come of new experiments

There is a long list of realistic mathematical models of development involv-
ing both cell communication and morphogenesis by mechanical interac-
tions such as in teeth (Salazar-Ciudad and Jernvall, 2002; Salazar-Ciudad
and Jernvall, 2010), limbs (Hentschel et al., 2004; Raspopovic et al., 2014),
turtle shell formation (Moustakas-Verho et al., 2014), fly egg cover (Oster-
field et al., 2013), blood vessel development (Merks et al., 2008), pancreas
development (Setty et al., 2008), lung development (Guo et al., 2014 ; Men-
shykau, Kraemer, and Iber, 2012) to cite a few. Mathematical models of
development are based on experiments on specific developmental systems
(such as an organ or part of the embryo at a specific stage). These exper-
iments should allow to raise one or several hypotheses on the mechanism
driving development in the respective system and in the main morpho-
genetic (movement of cells and tissues) and inductive (spatial changes in
gene expression) events taking place during development.

The model is then built by formulating the mechanistic hypotheses in
mathematical terms. This involves determining the spatial and temporal
boundaries of the system, that is the cell layers that will be included and
the developmental stages that will be modelled. It is also necessary to pro-
pose a gene network that specifies the interactions between genes, but also
how certain genes regulate the cell behaviours involved in the development
of the system (such as cell proliferation, migration, cell adhesion, etc.). In
order to validate the model, and thus to accept or reject a mechanistic hy-
pothesis, the model should be used to reproduce the wild-type phenotype
of the system being studied and each of the developmental stages being
studied. For a more stringent and informative test, however, the model
should also be able to reproduce the phenotypic variation observed in the
system (which is part of its variational properties), either in mutants, exper-
imental manipulations of development or as natural phenotypic variation
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between individuals within a species or between species. If the outcome of
the model (the phenotype) matches the observed variation then the mecha-
nistic hypothesis cannot be rejected. Otherwise, the hypothesis has to be re-
jected and another one needs to be devised. Failure, however, is informative
about which aspects of the real dynamics are more poorly understood and,
thus, are helpful for orienting future experiments. Furthermore, a validated
model of development may be able to predict the outcome of experiments
that have not been carried out yet. Thus, good models of development can
become powerful tools to assist and guide experimental research programs.
Mathematical models of development usually include:

1. Initial conditions. Usually studies in development focus on a specific
time range limited by two developmental stages. The initial condi-
tions should reflect the developmental pattern observed in the real
system at the initial stage considered.

2. The basic mechanics of cells and tissues. The mechanical interactions
between different cells and between cells and the extracellular matrix
that take place in the developmental system under study should be
implemented in the model (e.g. regarding cell-cell adhesion, cell vol-
ume conservation and cell migration, to cite a few). Cell mechanics
can be ignored in systems where cells do not move.

3. Intracellular gene networks and extracellular signals diffusing between
cells (that can also be ignored in models where there is no cell-cell
communication). 4) Cell behaviours (such as cell division, cell death,
cell adhesion, cell contraction, etc.) and their regulation by the gene
network. In order to illustrate the structure and implementation of
a development model including all the previous elements, we will
describe the tooth development model (Salazar-Ciudad and Jernvall,
2010) (fig. 1.3).

1.2.1 The tooth development model

Tooth development consists of the growth and folding of the dental ep-
ithelium over a mesenchymal condensate. During this process, epithelial
signalling centres called secondary enamel knots are induced in specific
positions and regulate cell proliferation and differentiation through cell sig-
nalling to neighbouring cells. Epithelial proliferation is downregulated in
the enamel knots, but not in the space between them. As a result the ep-
ithelium grows and folds down between the knots, thus creating valleys
between them and the knots end up at the tips of what would become the
tooth cusps. The first knot is induced by the underlying mesenchymal con-
densate but, once formed, all knots secrete a second inhibitory signal that
will preclude the formation of new knots at a certain distance from the ex-
isting knots. The tooth model summarizes those processes by defining a
spatial context for cells, their mechanics, and a gene network that regulates
the cell behaviours of proliferation and differentiation (Salazar-Ciudad and
Jernvall, 2010).

In the tooth model, molecules are produced by cells and diffuse in the
extracellular space between them (from now on extracellular signals). The
model considers only three of those. 1) An activator signal that comes in
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FIGURE 1.3: A, depiction of cells and their mechanical interactions in the devel-
oping tooth epithelium. Epithelial surface depicts the concentration of activator
signal (in red), blue lines indicate cell borders, black lines depict mechanical inter-
actions between neighboring cells. B, schematization of the gene network inter-
actions, cell behaviours and mechanical parameters included in the model. Cell
growth and differentiation are regulated by a signalling network. Activator signal
Act promotes its own expression, the expression of Inh and Sec. Inhibitor signal
Inh inhibits the expression of Act. Secondary signal Sec promotes cell differenti-
ation in the epithelium and inhibits its growth (in absence of Sec epithelial cells
grow at a default rate) and also promotes growth in the mesenchyme. C, time se-
quence of a model simulation from a lateral view. A small flat epithelium starts
growing over the underlying mesenchyme. When some cells receive enough con-
centration of Act they differentiate into enamel knots, they stop growing and start
forming the tips of the cusps. New enamel knots arise at a certain distance of ex-
isting knots because of Inh being secreted by the differentiated knots. Inh prevents
the differentiation of cells close to the knots. The undiferentiated epithelium be-
tween existing knots continues growing downwards and form the valleys between
the cusps.

through the borders of the system and promotes its own synthesis and se-
cretion on epithelial cells. It also induces the differentiation of epithelial
cells into enamel knots and thus inhibits cell proliferation (fig. 1.3B). 2) An
inhibitor signal is only produced at the enamel knot cells and inhibits the
secretion of the activator in the cells that receive it (fig. 1.3B). 3) A third
extracellular signal is secreted from the enamel knots and induces cell dif-
ferentiation (fig. 1.3B). Although there are a several extracellular signals
expressed during tooth development (Salazar-Ciudad, 2008) they all have
one of the following roles: promotion of cell differentiation (BMP2), promo-
tion of knot differentiation (BMP4, Activin), inhibition of knot differentia-
tion (Shh) and cell proliferation (FGFs). Thus, for the sake of simplicity the
model only includes one signal for each role.

The model allows to simulate the real time dynamics of tooth develop-
ment (fig. 1.3C). The simulation starts with a small, flat epithelium above
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a block of mesenchyme (closely resembling the earliest stages in tooth de-
velopment). As a result of model dynamics the epithelium starts growing
downwards and soon the first enamel knot appears. As the tooth epithe-
lium keeps growing, new knots appear separated from the existing ones
and the growing epithelium between them becomes the valleys between the
cusps (fig. 1.3C). Thus, signalling and induction are taking place while the
shape of the tissues (where diffusion is taking place) is constantly chang-
ing. Only the initial conditions and the model parameters are specified
before the simulation. It is important to note that, the final tooth phenotype
and its change over developmental time arise as a result of the intrinsic
dynamics between cells and gene products during the course of the devel-
opmental simulations. The outcome or phenotype of the model is, at each
time in development, the morphology of the developing tooth, which is the
distribution of cells in three-dimensional space, and the concentration of
each molecule in them.

The model defines a number of parameters that quantify certain aspects
of the cellular and signalling interactions (fig. 1.3C), such as the growth
rate of cells, mechanical properties of cells, diffusivity constants of molecu-
lar signals and strength of regulatory interactions between genes. Different
values of these parameters will change the dynamics of development dur-
ing the simulation and thus alter its final outcome. For example, decreas-
ing the parameter value specifying the secretion rate of the inhibitor in the
enamel knots will reduce the distance between cusps in the final pheno-
type, and that happens because during the model simulation the amount
of inhibitor secreted around knots is smaller which allows for new knots to
differentiate closer to existing ones.

The model does not include all known genes and gene products in-
volved in tooth development (for simplicity, the only gene products con-
sidered are the extracellular signals themselves). In many cases we do not
know where are they located in the gene network of tooth development
and thus cannot be included in the model. In other cases, variation in these
genes produces variation in the tooth that is not interesting from the point
of view of evolution and the GPM. That is the case when, for example, the
mutation produces either no effect on tooth morphology or prevents teeth
from forming at all. Any gene relevant for the production of morphology
and its variation does so, necessarily, because it affects one or more of the
cell behaviours involved in tooth development (that is cell signalling, cell
division, cell adhesion and cell differentiation). For simplicity then the ef-
fect of these not-included genes can be encapsulated within the model pa-
rameters. For example the parameter specifying how much the activator
promotes its own secretion on cells is in fact dependent on large number
of gene products (this goes from this signal extracellular receptor to all the
genes involved in this signal transduction and in the synthesis and secre-
tion of the activator). Many of these developmental parameters are depen-
dent on specific sets of gene products and then are, in a way, genetically
encoded. Thus, instead of considering all these genes we can consider, for
simplicity and in a first step, that parameters can change gradually to take
any continuous value within a range. For the purpose of the GPM a genetic
change in these genes would manifest itself as mere quantitative changes in
a specific parameter. This means, in the context of GPMs, that these models
consider a developmental parameter space rather than a genetic parameter
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space sensu stricto.

The tooth model is a useful tool to predict evolutionary transitions from
the fossil record (Salazar-Ciudad and Jernvall, 2002) and to assist empiri-
cal research on tooth development (Harjunmaa et al., 2014). Perturbation
experiments or mutants that affect tooth development can be reproduced
in the model by changing parameter values from the wild type phenotype
(which could be seen as in silico mutations). For example, the inhibition
of the Shh signalling pathway in vivo and in vitro causes a shortening in
the separation distance between cusps, which results in an increase in their
number due to a tighter packing of the cusps (Harjunmaa et al., 2012). That
phenotype is reproduced in the model by decreasing the parameters affect-
ing the rate of inhibitor secretion at the knots, which suggests that Shh is
most likely acting as, or contributing to the pathway that inhibits the dif-
ferentiation of the enamel knots. It is important to note that in this case the
tooth model does not need to integrate any information from the Shh inhibi-
tion experiment in order to predict its outcome. Given a solid mechanistic
hypothesis of the developmental process under study, theoretical models
of development can provide predictions to the outcome of an experiment
before it is carried out.

1.3 Predicting the effectiveness of natural selection on
evolving populations in silico using models of de-
velopment

Evolutionary theory states that the phenotypes of individuals better adapted
to the environment will be more likely to be perpetuated due to a larger de-
scendence compared to other individuals. This can be imagined using the
metaphor of the adaptive landscape (Wright, 1932). Adaptive landscapes
are relief maps in which each point in the surface is a genotype, and the
height of the surface at that point is equal to its fitness. Populations at a cer-
tain point of the landscape can only move to the closest points in the land-
scape through mutation, but will only do so as long as it does not lead to
a decrease in fitness. Thus, in the landscape metaphor populations always
climb uphill and almost never downhill (stochastic drift may cause small
downhill movements). It has been theoretically argued that the shape of
an adaptive landscape has important implications for the ability of popu-
lations to adaptively evolve. Populations evolving on smooth landscapes
will easily reach maximum fitness (the highest adaptive peak), whereas in
rugged landscapes (i.e. with a rough surface and many fitness peaks) pop-
ulations will often get trapped in sub-optimal local peaks (fig. 1.4, Kauf-
mann, 1993a).

The fitness of an individual is determined by both its phenotype and
the environment (i.e. the ecological factors determining whether the phe-
notype is suitable for survival and/or reproduction). Then the adaptive
landscape can in fact be decomposed into two different landscapes (fig.
1.4). A phenotype-fitness landscape mapping all possible phenotypes and
their corresponding fitness (also called phenotype-fitness map or PFM) and
a genotype-phenotype landscape mapping all possible genotypes and their
corresponding phenotypes (the GPM). The structures of both landscapes
have important implications for evolutionary dynamics. Complex GPMs



Chapter 1. Introduction 11

Rugged landscape Smooth landscape

Adaptive landscape —>=|—

{

Genetic space —>

Phenotype-Fitness map
(PFM)

Variational properties

Genotype-Phenotype map
(GPM)

FIGURE 1.4: Two adaptive landscapes with their respective GPM and PFM are
depicted. An adaptive landscape is an abstract space, depicted here as a relief
surface, that determines the possible evolutionary trajectories of a population. The
height of the surface depends on the fitness of the phenotype, thus populations
will tend to climb uphill and seldom downhill. Once a peak is reached, adaptive
change is precluded since it is not possible to further increase fitness. Rugged
adaptive landscapes (left) consist in many peaks of different fitness values and
so populations are more likely to get trapped in peaks of low fitness. Smooth,
landscapes usually have fewer peaks, thus populations will often reach the peak
of maximum fitness (right).

have been suggested to be the most prevalent, since they are present from
the level of secondary RNA structure (Stadler, 2006) to the level of develop-
ing organisms (Salazar-Ciudad and Jernvall, 2005). It has also been shown
that complex GPMs may increase the complexity of the adaptive landscape
by increasing the disparity of morphological variation (Salazar-Ciudad and
Jernvall, 2005).

The complexity of the GPM depends on how disparate phenotypes are
when they are genetically similar. Let’s consider an arbitrary phenotype
within the variational properties and then consider a series of mutants that
differ from the “wild type” in one genetic mutation. If the mutant pheno-
types are similar to the wild type, that is the phenotypic change accom-
panying the mutations is small, then the GPM is simple. On the contrary
if the mutant phenotypes show a large morphological disparity with the
wild type, meaning that the small mutations have led to large phenotypic
changes, then the GPM is complex. To put it in other words, a high com-
plexity of the GPM is characterised by a low correlation between genetic
change and phenotypic change. Hence, a complex or uncorrelated GPM
may lead to an uncorrelated adaptive landscape and thus prevent adaptive
evolution (Salazar-Ciudad and Jernvall, 2005).

Even if most morphological structures have a complex GPM, they often
exhibit millions of years of adaptive evolution. Thus, there have to be, in
theory, other factors that counteract the effect of GPM complexity on the
ruggedness of the adaptive landscapes on the adaptability of populations.
This question has been addressed by simulating the evolution of popula-
tions in which the individual’s phenotype arises through a realistic model
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of development. Chapter 3 of this thesis presents the results of this study, in
which tooth evolution was simulated using the tooth development model
and the shape of the adaptive landscape was estimated in different selective
regimes (Salazar-Ciudad and Marin-Riera, 2013).

During the evolutionary simulations, individual fitness is determined
by a function assessing how much an individual phenotype resembles an
arbitrary target phenotype. In this evolutionary model, populations "walk"
on the adaptive landscape (technically they walk at the same time on the
phenotype-fitness landscape and the GPM), thus the evolutionary process
and the dynamics of adaptation can be monitored. The degree of rugged-
ness of the adaptive landscape can be inferred by measuring how often
populations reach the optimum (that is the target phenotype) in a series of
evolutionary simulations. Different functions can be used to calculate in-
dividual fitness based on the phenotype. By assessing the frequency with
which populations reach the optima under different fitness functions, we
can infer the shape of the adaptive landscape in different selective regimes.

In the same study we also explore the variational properties of the tooth
development model and analyse the distribution of complex phenotypes
within the parameter space.

1.4 Expanding models of animal morphogenesis in or-
der to analyse the properties of development across
systems

Mathematical models of development allow to systematically explore the
variational properties and the GPM, thus providing an understanding of
which phenotypic variation natural selection can act on at each generation.
Most models of development used in earlier studies either focus on one
specific organ, or simply do not include all the cell behaviours known to be
involved in animal development. Organ-specific models of development
have been shown to reproduce quite accurately the relationship between
genotype and phenotype of its real counterpart (Salazar-Ciudad and Jern-
vall, 2010; Zhu et al., 2010; Hentschel et al., 2004; Raspopovic et al., 2014;
Moustakas-Verho et al., 2014) which has allowed to make predictions about
evolutionary transitions. Thus, their application is restricted to a specific
system and cannot provide general predictions on the properties of devel-
opment in general. Moreover, the design of those models constrains them
to only reproduce the GPM of a single organ, so it is not possible to infer
evolutionary transitions between different organs (e.g. the transition be-
tween reptilian scales and avian feathers).

The next logical step in the modelling of developmental mechanisms
should be the design of models that are able to reproduce the develop-
ment of a variety of organs and structures. By reproducing the develop-
ment of different organs with the same model we could quantitatively com-
pare their differences at the level of development and infer which changes
would be required to evolve from one organ to the other. It is necessary to
devise more general and detailed models that include a wider range of cell
dynamics and cell behaviours in order to study the general properties of de-
velopment and the variational properties and GPM of a particular group of
organs. Recently, a number of modelling frameworks have been published
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that implement some of these cell behaviours (Swat et al., 2012; Starruf3 et
al., 2014b; Izaguirre et al., 2004; Farhadifar et al., 2007; Smith et al., 2012;
Pitt-Francis et al., 2009).

In order for a general model to predict the variational properties of de-
velopment it requires not only the inclusion of all cell behaviours, but also
to account for the different properties of epithelial and mesenchymal cells
and extracellular matrix. Epithelial and mesenchymal cells differ greatly
on the way they interact with other cells to form tissues and on how they
transmit mechanical forces. There are a number of models that are good at
representing epithelial cells (e.g. vertex model; Honda, Tanemura, and Na-
gai, 2004) and mesenchymal cells (e.g. subcellular elements model; New-
man, 2005, Cellular Potts model; Graner and Glazier, 1992), but very few
are good at representing both.

The Cellular Potts Model (CPM) is a regular lattice based model in which
each cell occupies several contiguous lattice positions (Graner and Glazier,
1992) (fig. 1.5). The model determines whether a cell spreads to, or retracts
from a specific lattice position by changing the identity of that specific po-
sition, which can then belong to a different cell or to the extracellular space,
and thus change cell and embryo morphology. A Monte Carlo method is
used to solve the temporal progression of the system. In this method, po-
tential energies are calculated for each lattice position (that is for each part
of the cell and extracellular space) based on the local stability of the system.
In order to calculate the potential energy at each position, a set of rules have
to be defined that can vary in different instantiations of the model. The most
common rules are based on cell volume and area conservation and cell-cell
adhesion. Changes in lattice positions are made asynchronously, that is one
position is chosen at random each time (fig. 1.5A). Then a change in the
identity of the lattice position is made that minimizes the potential energy
of the system. Energy minimization is also stochastic, that is, an identity
change that increases the energy of the system is less likely than one that
decreases it, but it is still possible. Usually a “temperature parameter” is
defined that determines the likelihood of positive energy changes in the
system. Several additional cell behaviours have been incorporated into this
model (Hogeweg, 2000). Recent versions of the model include cell division,
cell migration (by chemotaxis), apoptosis, and some form of extra-cellular
signaling in 2D and 3D (Cickovski et al., 2005, Marée, Grieneisen, and
Hogeweg, 2007). There are some user friendly interfaces that implement
this model (Swat et al., 2012; Starruf$ et al., 2014a). The CPM is specially
suitable for developmental systems in which cells change their neighbours
and shape in a rather dynamic way (such as in cell sorting and migration by
chemotaxis and haptotaxis, Steinberg, 1996, Cai and Montell, 2014), but it
is not good at predicting the transmission of mechanical forces across cells
and tissues.

In the Vertex model (Honda, Tanemura, and Nagai, 2004; Honda et al.,
2008) space is not discrete but continuous. Cells are defined by the contact
interfaces with their neighbours (fig. 1.5). This means cells are represented
as a mesh of polygons in the 2D case and of polyhedra in the 3D case. The
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FIGURE 1.5: A, the Cellular Potts is a lattice based model in which each lattice
position can take the identity of any cell in the system (blue or green in this case),
or of the extracellular space (grey). Each cell is represented by the ensemble of
lattice positions with their specific identity. Cell dynamics take place by changing
the identity of random lattice positions based on a set of specific rules (inset, red
square). B, the Vertex Model considers a continuous space and cells are defined
by the contact interfaces with other cells (i.e. vertices and edges). Each cell is de-
picted in a different color, but note that vertices and edges are usually shared by
multiple cells. Model dynamics can lead to cell rearrangements by shifting the rel-
ative position of vertices. The sequence at the bottom of B shows the process of
rearrangement in which cells b and d lose contact and a and ¢ come into contact.
C, the Immersed Boundaries Model uses a continuous space to model cell mem-
branes as articulated elastic bodies (blue) and a discretised lattice space to model
the rheology of cell cytoplasm and extracellular medium (grey). The two layers are
connected by an interpolation function (orange squares) that determines how the
flow velocity field in the lattice will exert a mechanical force in the cell membrane
(inset, yellow arrows) and how the forces arising from the elastic deformation of
the cell membrane (inset, green arrows) will affect the flow velocity field in the
lattice. D, the Subcellular Elements Model consider each cell composed of sev-
eral spherical elements in a continuous space. Each element has a volume defined
by an equilibrium radius (green and blue circles). When two elements are closer
than the equilibrium distance (overlapping circles), repulsive forces arise (yellow
lines), whereas if they are farther than that, attractive forces arise (red lines). Blue
and green represent elements from different cells, solid lines indicate interactions
within the same cell, dashed lines indicate intercellular interactions.

temporal progression of the system is determined by changes in vertex po-
sitions. These can be solved either by means of a system of equations of mo-
tion or with the Monte Carlo method. In both cases, the factors that deter-
mine the direction movement of vertices are cell surface area/volume con-
servation, cell membrane contractility, line tension at the contact interface
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between cells and cell-cell adhesion (Osterfield et al., 2013). Cell rearrange-
ments (i.e. changes in the neighbouring connections between cells) are pos-
sible in this model through the interchange of vertices between groups of
cells (Honda, Tanemura, and Nagai, 2004; Honda and Nagai, 2015, see fig.
1.5B). This model is especially suitable for modelling flat two dimensional
epithelia (i.e. that do not bend or fold in 3D) and highly packed three-
dimensional tissues with little extracellular space between cells (Honda et
al., 2008). Since all calculations, and cell shape itself, are defined at the con-
tact interface between cells this model does not easily accommodate pro-
cesses involving very dynamical cell contact changes (as in cell sorting and
convergent extension, Tada and Heisenberg, 2012), ECM and the interac-
tions between cells and ECM or with environment (such as in migration by
haptotaxis and chemotaxis, Paluch and Heisenberg, 2009).

The viscoelastic model or Immersed Boundaries Cell (IBCell) Model
(Rejniak, Kliman, and Fauci, 2004; Rejniak, 2007) combines an off-grid rep-
resentation of cells as elastic bodies with a lattice Boltzmann Method to
simulate cell cytoplasm and intercellular fluids (fig. 1.5C). Thus, each cell
is delimited in a continuous 2D space by a set of points connected by elas-
tic springs, conforming the cell membrane, whereas fluid rheology is cal-
culated on a regular grid in discrete space. Cell membranes separate the
medium inside the cells (the cytoplasm) from the one outside them (the ex-
tracellular environment). The model uses a Dirac delta function (Peskin,
1972) to link the mechanics of the elastic elements and the fluid medium.
Cell membrane movement and deformation is governed by the elastic forces
generated by the springs in the membrane and by the pressures coming
from the medium, which are interpolated based on the velocity field near
the cell membranes. Deformations originated at the cell membrane also
feed back to the fluid grid by affecting the fluid velocity field near the
cell membranes (fig. 1.5C). This allows to model not only the diffusion of
molecules in a context where cell membranes, cell cytoplasm and the extra-
cellular space are taken into account, but also the advection of fluids due
to cells moving and displacing the surrounding media. This implementa-
tion and level of detail makes the model very heavy computationally which
precludes, according to the authors (Tanaka, Sichau, and Iber, 2015), its ex-
tension to 3D problems. Several cell behaviours have been implemented,
such as cell proliferation (Rejniak, 2007), cell growth, differentiation and
cell-cell signalling (Merks et al., 2011). This model has been implemented
in several modelling frameworks (Merks et al., 2011; Tanaka, Sichau, and
Iber, 2015; Shapiro, Meyerowitz, and Mjolsness, 2013).

In the subcellular elements model (SEM) (Newman, 2005; Sandersius
and Newman, 2008) each cell is composed of several subcellular elements
that mechanically interact between each other as well as with elements be-
longing to other cells (fig. 1.5D). This model has the advantage over the
CPM that cells move in a continuous space and over the vertex model that
cells are defined by their volumes and not by their contact interfaces with
other cells. Each element occupies a certain volume in space, which is de-
termined by an equilibrium radius. If the distance between two adjacent el-
ements is shorter than the sum of their equilibrium radii, a repulsive force
will tend to separate them, whereas when distance is longer than that an
attractive force will tend to drive them closer to one another. A cut off
distance is determined for each element so it will only interact with the
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elements that are found within that distance. Physical integrity of cells is
kept in the model by making that the attractive force between elements of
the same cell is always larger than the one between elements from different
cells (Newman, 2005). This model allows a wide range of cell behaviours
to be implemented with ease. Cell growth and cell death are the result of
respectively adding or removing elements from a cell. Cell division is the
result of splitting the elements of a single cell into two new daughter cells.
Given that cells can be composed of a large number of elements, asymmet-
ric cell divisions can be implemented by distributing a different number
of elements to each daughter cell (see Chapter 4). Active cell deformation
(such as cell contraction) can be accomplished by modifying the equilib-
rium radius of the some of the cell’s elements, and passive cell deformations
will take place by a spatial rearrangement of the elements within a cell. Dif-
ferential cell adhesion can be modelled by assigning different values to the
attractive forces between elements from different cells. A modelling frame-
work based on the SEM has been recently developed (Delile, Doursat, and
Peyriéras, 2013). This work includes a number of cell behaviours such as
cell signalling, adhesion, division, active cell migration and simple boolean
gene networks, but doesn’t implement epithelial cells with cellular and me-
chanical properties different from mesenchymal cells.

Chapter 4 of this thesis introduces a new modelling framework that al-
lows to model the development of a wide range of systems involving ep-
ithelia, mesenchyme and extracellular matrix (Marin-Riera et al., 2016). The
modelling framework uses the concept of subcellular elements (Newman,
2005) for mesenchymal cells and extracellular matrix and a modified im-
plementation of that same concept for epithelial cells. That allows an in-
tegrative modelling of epithelial and mesenchymal cell mechanics and cell
adhesion. The framework also implements the entirety of cell behaviours
known to happen during animal development (Salazar-Ciudad, Jernvall,
and Newman, 2003) and customizable gene regulatory networks. All this
has been implemented in an open-source software called EmbryoMaker
(Marin-Riera et al., 2016).

1.5 Predicting phenotypic variation arising from de-
velopment and the developmental basis of evolu-
tionary transitions

Knowing the ensemble of phenotypic variation that a developmental pro-
cess can produce is relevant in order to make predictions on the evolution
of a lineage. The variational properties will tell us which phenotypic vari-
ants are present at each generation for natural selection to act on, so they tell
us in which directions the phenotype can change in evolution. The degree
of stringency of natural selection can also be inferred by assessing what
proportion of the phenotypes present in the variational properties are ab-
sent in observed natural phenotypic variation. This can be done at different
levels, from the whole variational properties of a species or a developmen-
tal mechanism, to the local variational properties accessible by single small
mutations from a given individual or a set of individuals within a popula-
tion.
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In order to know the variational properties of development in an organ-
ism, one ought to study all the genetic variants or mutants that are known
to affect the phenotype through that developmental process (either for a
whole species or for a population in a given generation). For most species
and organs this is likely to be difficult and quite time consuming. Math-
ematical models of development offer a cheaper and faster alternative for
exploring those variational properties. In addition, since models are built
on explicit hypotheses and assumptions it is often the case that we can un-
derstand why the model produces certain phenotypes (while this is never
the case in purely statistical approaches). The computational exploration
of the variational properties of development is often performed through a
parameter screening of the model. In a parameter screening a large num-
ber of parameter combinations are generated by changing all the parameter
values and fed to the model in order to get the set of possible morphologies
(Salazar-Ciudad and Jernvall, 2004; Prusinkiewicz et al., 2007) (fig. 1.1).

Even though variational properties are informative about what pheno-
types can be generated by development, they do not allow to make accu-
rate predictions about evolutionary change in populations. The variational
properties for a certain developmental process include all the phenotypes
resulting from genetic variants that do not alter the structure of the network
of molecular/cellular/tissue interactions. However, variational properties
do not provide information about the likelihood of a certain phenotype to
arise due to a genetic mutation in another phenotype. In natural popula-
tions it will most likely be the case that the phenotypic variation resulting
from the standing genetic variation does not account for the whole vari-
ational properties. In that situation, new phenotypes may appear in the
population through small mutations in existing phenotypes. In each gen-
eration only those phenotypes that are “one mutation away” from the ex-
isting genetic variants are likely to appear (fig. 1.6). Thus, in order to pre-
dict the direction of evolutionary change it is important not only to know
the variational properties of development, but also how phenotypes are
distributed with respect to all the genetic variants (that is, how different
phenotypes are connected by genetic mutations, Salazar-Ciudad and Jern-
vall, 2005; Huynen, Stadler, and Fontana, 1996). The distribution of pheno-
types with respect to the genetic variants is highly dependent on the GPM
(Salazar-Ciudad and Jernvall, 2004). This is especially relevant regarding
the emergence of novel traits or structures (Newman and Miiller, 2000;
Muller and Wagner, 1991). The fossil record shows proof of a large num-
ber of evolutionary novelties in the form of abrupt phenotypic changes in
many lineages (Gould and Eldredge, 1977). It can be interesting to find out
what changes in the genotype and in development have driven those tran-
sitions and which, if any, the intermediate phenotypes are. Computational
models of development can infer the genetic and developmental bases of
phenotypic transitions and their intermediate phenotypes. By finding the
sets of parameter combinations (the genotypes) that give rise to both the an-
cestral and novel phenotypes in the model, one can determine how many
and which changes in the parameters are needed to get from the former to
the latter through intermediate phenotypes. This will give us information
about which aspects of development need to change in order for that novel
phenotype to arise. Using a model of tooth development several evolution-
ary transitions present in the fossil record were reproduced (Salazar-Ciudad
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and Jernvall, 2002) and even though the phenotypic changes involved were
quite large, they required relatively small changes in one or two parame-
ters, suggesting that major evolutionary novelties do not require necessar-
ily extensive changes in genetic or developmental regulation. Similarly, a
model of limb development was used to reproduce the spatial bone pat-
terns of limbs of several early tetrapod species from the fossil record by
keeping the parameters of the core signaling network and only modifying
the rates of tissue growth (Zhu et al., 2010).

A

Genetic variation

Genetic variation

FIGURE 1.6: The variational properties of a certain structure are depicted as a dis-
tribution of phenotypes in the genotypic space. Each phenotype is connected to
other phenotypes by a single genetic mutation. Given that populations use to have
a limited amount of genetic variation, only a part of the total range of phenotypes
can be present in the population (green circle). Any new mutation will originate
from a genotype already existing in the population and thus the phenotype aris-
ing from the mutation will be either equal to the other existing phenotypes in the
population (yellow lines) or a new phenotype one mutation away from the popu-
lation’s standing genetic variation (white lines), but never one of the phenotypes
that are farther away (i.e. in the far right side of the variational properties). In
order to reach those phenotypes, the pool of genetic variation will need to shift
towards that direction, by means of natural selection or drift, until they are close
enough so they can arise by single genetic mutations.

Models of development can also be used to understand the specific de-
velopmental origin of the standing phenotypic variation within a popula-
tion. Gathering empirical data on how variable development is in a natural
population is methodologically challenging. Computational models of de-
velopment can be used to generate different sets of phenotypic variation by
making screenings of one model parameter each time, creating different in
silico populations. Then by assessing which in silico population resembles
most the natural population we can infer which parameters of develop-
ment may contribute to the natural phenotypic variation (Salazar-Ciudad
and Jernvall, 2010). When comparing virtual populations generated by the
tooth model with teeth from a natural population of seals, it was found that
variation stemming from the model parameters involved in the diffusivity
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of the inhibitor and the activation of the activator by itself were able to ex-
plain the largest part of the natural variation observed (Salazar-Ciudad and
Jernvall, 2010).

Earlier mathematical models of tooth development (Salazar-Ciudad and
Jernvall, 2002; Salazar-Ciudad and Jernvall, 2010) were able to predict the
spatial arrangement of tooth cusps and their shape, but considered only
the inner enamel epithelium (IEE) and the dental mesenchyme: the outer
enamel epithelium (OEE), the follicular mesenchyme and suprabasal layer
were not simulated. In these previous models the cervical loops were not
represented in their entirety (only the part corresponding to the IEE) and
the mechanics of their growth were implemented ad hoc: the cervical loops
were forced to grow towards the mesenchyme with a lateral component
that depended on the proliferation rate of the dental mesenchyme. An-
other model of tooth development (Takigawa-Imamura et al., 2015) imple-
mented slightly more realistic cell mechanics, but only in two-dimensions
and without considering neither the mesenchymal layer nor the presence
of signalling centres regulating cell proliferation. Thus, current models of
tooth development lack explanatory power regarding the aspects of mor-
phogenesis affecting the overall shape of the tooth crown and tooth cusps
and the role of cell mechanics on tooth morphogenesis. In order to achieve
a better understanding of how tooth crown and cusp height and sharpness
is determined a more realistic modelling of the mechanical interactions be-
tween the IEE, the OEE, the dental mesenchyme, the dental follicle and the
suprabasal layer is required.

Chapter 5 of this thesis presents a new 3-dimensional model of tooth de-
velopment that simulates the growth and mechanical interactions between
all the tissue types that compose the tooth germ. This new tooth model is
built as an application of a general model of embryonic development de-
scribed in Chapter 4 of this thesis and implemented in the EmbryoMaker
software (Marin-Riera et al., 2016). We use this model to explore the effect of
differential cell growth and differential cell adhesion on tooth morphogen-
esis, and more specifically on cervical loop growth, through the mechanical
forces exerted between cells during the period between bud stage and cap
stage. The model aims to predict how the mechanical forces originating
from growing tissues and cell adhesive contacts will affect the direction of
growth of the cervical loops and the shape of the cusps, which will have a
significant influence on the overall shape of the tooth crown. By analysing
the variational properties of this new model we will be able to predict the
role of cell adhesion and mechanics in the generation of morphological vari-
ation, something that was not accounted for in previous models.

The initial stage of the model is set after the induction of the PEK and
simulates the emergence of the cervical loops from the tooth bud and later
the formation of the first cusps within the tooth cap. The model predicts
the separation of the epithelium into IEE and OEE and the mesenchyme
into dental and follicular. Induction of the SEKs and Turing-like dynam-
ics are not included in the model because they take place at later stages
and are not required to address the questions raised in this study. Thus,
this model does not intent to predict the relative position of tooth cusps
within the tooth crown, as in earlier models (Salazar-Ciudad and Jernvall,
2002; Salazar-Ciudad and Jernvall, 2010), although these features will be
included in the future. Accordingly, the model is aimed to predict how the
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mechanical forces originated from growing tissues and cell adhesive con-
tacts will affect the direction of growth of the cervical loops and the shape
of the cusps, which will have a significant influence on the overall shape of
the tooth crown.
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Chapter 2

Objectives / Objectius

1. Provide theoretical predictions on how phenotypic variation and phe-
notypic complexity arise through the process of development, taking
the morphogenesis of mammalian tooth as a case study and using a
mathematical model of tooth development.

2. Provide theoretical predictions on how the complexity of the relation-
ship between genotype and phenotype coming from development
may affect the evolutionary dynamics of a population, taking tooth
morphology as the phenotype under selection.

3. Expand the current model of tooth development to include new as-
pects of development that may be relevant for the origin of pheno-
typic variation.

4. Provide theoretical predictions on how the inclusion of these new fea-
tures contribute to the generation of phenotypic variation in tooth de-
velopment.

1. Generar prediccions tedriques sobre com el desenvolupament pro-
dueix la variaci6 fenotipica i la complexitat morfologica, prenent la
morfogeénesi de la dent de mamifer com cas d’estudi i utilitzant mod-
els matematics del desenvolupament de la dent.

2. Generar prediccions tedriques sobre com la complexitat de la relacié
entre el genotip i el fenotip provinent del desenvolupament poden
afectar les dinamiques evolutives d'una poblaci6, prenent la morfolo-
gia de la dent com a fenotip sota seleccio.

3. Expandir 'actual model de desenvolupament de la dent per tal d"incloure
nous aspectes del desenvolupament que poden ser rellevants per en-
tendre l'origen de la variaci6 fenotipica.

4. Generar prediccions teoriques sobre com la inclusié d’aquests nous
aspectes del desenvolupament contribueix a la generaci6 de variacié
fenotipica en el desenvolupament de la dent.
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Chapter 3

Predicting the effectiveness of
natural selection on evolving
populations in silico using
models of development

The contents of this chapter were published in the form of a research article:

Salazar-Ciudad, Isaac and Miquel Marin-Riera (2013). “Adaptive dynam-
ics under development-based genotype-phenotype maps.” Nature 497.7449,
pp. 361-4.

3.1 Abstract

Is natural selection able to find any arbitrary phenotype that can be pro-
duced by genetic variation? There is a long-lasting debate about processes
limiting adaptation and, consequently, about how well adapted phenotypes
are. Here we examine how development may affect adaptation by decom-
posing the genotype-fitness map into two mappings: one from genotype
to morphology by means of a computational model of organ development,
and one from morphology to fitness. In the latter map, the fitness of each
individual is based on the similarity between realized morphology and op-
timal morphology. We use three different morphology-fitness maps based
on how similarity is calculated: similarity is calculated for each trait (in
terms of cell position individually), similarity is calculated for a large or a
small number of morphological landmarks, and similarity is calculated at
the level of the overall roughness of morphology. Evolution is simulated
by applying, in every generation, the genotype-phenotype map and one
phenotype-fitness map to each individual in the population, with muta-
tion and drift. We show that the complexity of the genotype-phenotype
map prevents substantial adaptation in some of these phenotype-fitness
maps: sustained adaptation is only possible by “roughness” or ”few-traits”
phenotype-fitness maps. Our work adds developmental understanding to
the long-standing question of which aspects of the phenotype can be effec-
tively optimized by natural selection.

3.2 Introduction

The relationship between genetic and phenotypic variation, or the genotype-
phenotype map (Wright, 1932; Waddington, 1957), has been argued to be
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complex at all levels of organization in which it has been studied: RNA
(Huynen, Stadler, and Fontana, 1996), proteins (Ferrada and Wagner, 2012)
and development (Alberch, 1982; Salazar-Ciudad, 2006). If this relationship
is complex, small genetic differences between a parent and a descendant do
not necessarily lead to small phenotypic differences between them. In other
words, genotypes producing adapted morphologies may not have any off-
spring with better-adapted morphologies. Then evolution by natural selec-
tion can often get trapped in local optima (Waddington, 1957; Kaufmann,
1993b).

There are a number of models of genotype-phenotype maps and adap-
tive dynamics (Wagner, 1994; Hansen and Wagner, 2001; Salazar-Ciudad
and Jernvall, 2004). At the level of protein and RNA secondary structure
(Huynen, Stadler, and Fontana, 1996) some models are able to provide real-
istic estimations of the map based on the rules of molecular interaction by
which these phenotypes arise. For morphological phenotypes, understand-
ing the genotype-phenotype map implies understanding the mechanisms
of development (Alberch, 1982). Development has been repeatedly argued
to constrain adaptation by affecting which morphological variation is pos-
sible and which is not, and by the complexity of the genotype-phenotype
map it entails (Alberch, 1982; Salazar-Ciudad and Jernvall, 2004). It seems
clear that development has an effect on adaptive dynamics but it is not
evident how strong that effect is. Here we explore how a realistic approxi-
mation of this genotype-phenotype map provides a richer and more quan-
titative understanding of the limitations that development may impose on
adaptation.

We employ a computational model of tooth development as an exam-
ple of a genotype-phenotype map for a complex organ morphology. The
tooth model mathematically summarizes the basic genetic and cellular in-
teractions regulating tooth shape development (Salazar-Ciudad and Jern-
vall, 2002). The strength of those interactions is encoded by the values of
the model parameters, and we take those values as a proxy for individual
genotypes (see Appendix A). The developmental model produces a pheno-
type, a 3-dimensional morphology, from the parameters in each individual.
As a result of model dynamics teeth with different parameter values can
have different numbers of cells and different number of identifiable mor-
phological landmarks such as tooth cusps. The model has previously been
used to reproduce morphological variation at the level of natural popula-
tions (Salazar-Ciudad and Jernvall, 2002), and thus, represents current un-
derstanding in this systems of how development leads to adult morphology
and its variation (a genotype-phenotype map). Thus, we take this model as
informative about the actual complexity of the genotype-phenotype maps
for a representative complex, functional organ.

We assume, for simplicity, that individual fitness is determined exclu-
sively by the morphology arising from the developmental model. We use
three kinds of phenotype-fitness maps, or natural selection criteria, to ex-
plore how and how much adaptation occurs, given our developmental genotype-
phenotype map. These criteria assign fitnesses to individuals on the bases
of three different ways of measuring the distance between each individual’s
morphology and a predetermined optimal morphology. Thus, the evolu-
tionary process is simulated by applying these two mappings, genotype-
morphology and morphology-fitness, to each individual. Each individual’s
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fitness determines its chances of contributing to the next generation. The
simulations also include random mutation and drift. Mutation is imple-
mented as changes in the developmental model parameters (see Appendix
A).

The first selection criterion (fig. 3.1A), the Euclidean Morphological Dis-
tance (EMD), considers all cell-level traits in each teeth: this is the position
of each cell in each three-dimensional tooth form. This is all the morpho-
logical resolution provided by the model: all other measurable traits are
derived from these cell-level traits and thus EMD can be seen as taking into
account all the morphological information or detail there is. In the EMD
criterion the value of each cell-level trait in a form is compared against the
value of the corresponding trait in an optimal morphology. These two mor-
phologies can have different numbers of traits (see section 3.4). The fit-
ness of each individual is then the sum of the fitness contribution of each
cell-level trait. An individual is optimal when, for each cell-level trait, the
distance to the optimum is close to zero (see section 3.4). Thus, all traits
contribute to fitness.

The landmark-based selection criteria (fig. 3.1B) are like the EMD but
based only on a small number of traits, the spatial coordinates of a small
set of landmarks shared by all morphologies considered. Landmarks are
chosen among the cusps present in teeth (see section 3.4). Different criteria
use different number of traits: the few-traits criteria use 2 or 4 traits and the
many-traits criteria use 8 or 13. These are chosen among the spatial coor-
dinates of the landmarks either arbitrarily or from a Principal Component
Analysis (PCA) of variation (see section 3.4).

In the Orientation Patch Count (OPC) selection criterion (fig. 3.1C) we
measure the high-level (Kaufmann, 1993a) overall ruggedness of the tooth
surface as the number of facets in the morphologies with different orienta-
tions in the x-y plane (fig. 3.1) (see Methods). Thus, fitness is not assigned
by comparing single traits between a morphology and the optimum mor-
phology but, instead, by comparing each trait with its neighbouring cell-
level traits in the same individual and comparing the resulting OPC with
that of the optimum (see section 3.4).

These three phenotype-fitness maps can be seen as lying on an idealized
spectrum of possibilities from all traits being selected, to some traits being
selected and to no traits being selected per se. They also represent three dif-
ferent views existing in the literature on phenotypic evolution. Optimality
theory proposes that natural selection is the dominant force in evolution
and that, consequently, one should expect most (Orzack and Sober, 1994),
or at least many (Maynard Smith, 1978), phenotypes to be optimal. The
EMD criterion is an extreme version of the idealized view that most pheno-
types are optimal and that this can be studied by decomposing phenotypes
into single traits that are themselves optimal (Gould and Lewontin, 1979;
Orzack and Sober, 1994). A much less extreme version is to select for a large
number of landmark-based traits to be optimal: the many-traits selection
criterion. In fact, morphological adaptation has been traditionally under-
stood by looking at a limited number of characters (Ji et al., 2002; Charles et
al., 2011) and landmarks (Klingenberg, 2002). The Orientation Patch Count
(OPCQ) (Evans et al., 2007) and other related measures (Bunn et al., 2011) are
alternative ways to understand adaptation that are not directly related to
specific landmarks but that yet consider all cell-level traits. More generally,
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FIGURE 3.1: A, EMD is a measure of sheer disparity between two morphologies.
It is defined as the sum of the distances of each cell in one morphology to the
closest cell in the other morphology, divided by the sum of the surfaces of the two
morphologies. The more a morphology resembles the optimal morphology, the
smaller is the EMD between them. The figure depicts two pairs of morphologies,
the optimal morphology in red, one in which EMD is small (left) and one in which
EMD is larger (right). B, In the landmarks-based criterion we define the tips of
five cusps on a morphology as landmarks and either take their coordinates (x,y
and z), or their scores in a Principal Component Analysis (PCA) of variation as
traits. Then the distances between these traits and the corresponding traits in the
optimum are measured. C, OPC is a measure of morphological roughness. The
orientation of the slope at each point is calculated and sets of adjacent points with
the same orientation are grouped into patches. The total count of these patches is
the OPC.

it has been suggested that phenotype-fitness maps should be degenerate,
or many-to-one, in the sense that many different phenotypes should have
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the same fitness (Alfaro, Bolnick, and Wainwright, 2005). Thus, we chose
to implement OPC because it is a degenerate measure that has been used
to study teeth previously (Evans et al., 2007; Santana, Strait, and Dumont,
2011; Godfrey et al., 2012).

3.3 Results and Discussion

Each evolutionary simulation started with all individuals having the same
randomly chosen initial morphology. The optimal morphology in each sim-
ulation was chosen to be at a distance of 20%, 40%, 60% or 80% from the
initial morphology (for each of the selection criterion; see Appendix A).

The simulations show that, initially, absolute fitness increases rapidly
by relatively large steps but over generations these steps become smaller
and less frequent (see Appendix A, fig. A.1). The EMD criterion does not
reach the optimum often and, mostly, do not exhibit substantial adaptation
(fitness does not increase much over evolutionary time) (fig. 3.2 and fig.
A.2). This is the case even in simulations in which the initial and optimal
teeth are only one mutation away. When the population is large (10000),
the EMD criterion does in some cases reach the optimum but only when
that optimum is at a phenotypic distance of 40% or less from the initial
morphology in the evolutionary simulation. This population size is on the
same order of magnitude than the estimated population sizes for mammals
(Charlesworth, 2009). Most informative is, moreover, that morphologies at
a 20% or 40% EMD from each other (fig. A.3, A.4) are barely distinguishable
and yet natural selection can not reach one from the other (unless very large
populations are considered). The many-traits criteria seldom reach the op-
timum (less than 40% of simulations for populations of 1000), but show
substantial adaptation on average, specially for large populations. How-
ever, progressively higher levels of adaptation are attained for fewer trait
selection criteria (see also fig. A.2).

Our results clearly indicate that adaptation for the EMD decreases rapidly
with the phenotypic distance between initial and optimal morphologies
(fig. 3.2C). The EMD only leads to substantial amounts of adaptation when
the initial and optimal teeth are very similar or when both are simple uni-
cuspid teeth (fig. 3.2D). In this case there is only a small amount of adaptive
morphological change. In contrast, with the OPC criterion high degrees of
adaptation are reached even for large distances between initial and optimal
teeth (fig. 3.2). In fact, the OPC selection criterion often reaches the opti-
mum, and leads to cumulative morphological changes that are larger, than
the ones reached when the EMD and many-traits criteria selection criteria
are employed (fig. A.6C).

We interpret our results to indicate that with complex genotype-phenotype
maps adaptation can only occur if the overall genotype-fitness map is suf-
ficiently simple. The OPC allows this by being degenerate, that is, the same
OPC values are found in forms that differ in their morphological details
(Evans et al., 2007). In figure 3.3 we have quantified the degeneracy in each
phenotype-fitness map (see fig. A.7, A.8, A.9, A.10 for related measures). In
degenerate maps, like OPC, genetically related individuals can have quite
different phenotypes because of the complex genotype-phenotype map but
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FIGURE 3.2: The EMD criterion rarely reaches the optimum and attains modest fit-
nesses. A, Average of the fitness reached in EMD and OPC simulations with differ-
ent population sizes (n=345 for EMD, n=309 for increasing OPC and n=309 for de-
creasing OPC). The simulations start with morphologies at a distance of 40% from
the optimum. For the landmark-based simulations progressively larger fitnesses
are obtained as fewer traits are considered. B, the same as A using the PCA-based
and non PCA-based landmark criteria for different number of traits (n=193 for raw
traits, n=64 for PCA-based traits). Fitness increases with population size and de-
creases with the phenotypic distance between initial and optimal morphologies.
C, Average final fitness in EMD and OPC simulations with optimal morphologies
at different distances from the initial morphology with different population sizes
(n=154 for EMD at population of 1000, n=60 for EMD at population 10000, n=47
for OPC at population 1000). D, average final fitness of EMD and OPC simulations
with initial morphologies of different complexity (n=63). Complexity is calculated
as the OPC.

can still have the same fitness. In this way, populations do not get easily
trapped in local adaptive peaks.

The EMD and landmark phenotype-fitness maps are simple and smooth:
there is a single peak phenotype and all other phenotypes have a fitness
smoothly proportional to the distance to that phenotype (fig. 3.3 and re-
lated measures in fig. A.7, A.8, A9, A.10). However, as these figures in-
dicate, degeneracy is low and, consequently, there is no simplifying effect
over the overall genotype-fitness map. Degeneracy is low because it is de-
fined at the level of the traits that contribute to fitness. This pertains to all
traits for OPC and EMD, many traits for the many-traits criterion and few
for the few traits landmark-based criteria. The few-traits criteria work bet-
ter for adaptive evolution simply because fewer traits need to be optimized.
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However, this occurs only with a complex genotype-phenotype map: with
a simple genotype-phenotype map the optimum is reached irrespectively
of the number of traits it contains (Tenaillon et al., 2007). With a complex
genotype-phenotype map, optimizing many traits implies moving farther
in the phenotypic space and increasing the chances of getting trapped.

Fitness (%)

(1]

Fitness (%)

80 100 0 20 40 60 80 100

Genetic distance to optimum (%)

FIGURE 3.3: Comparison between the different genotype-fitness maps resulting
from combining the genotype-phenotype map with the different phenotype-fitness
maps. A large number of mutant offspring were obtained by mutation from the
same initial individuals than in figure 3.2 (what we call the parents). Each mutant
was different from its parent in 1 or 5 parameters. A, Fitness of each mutant pheno-
type (measured by taking its parent as the optimum) using the EMD criterion ver-
sus genetic distance between parent and mutant, measured as parameter distances
between parent and mutant (see Appendix A). B, As in A but fitness measured by
the OPC criterion. C, As in A but fitness measured by the landmark-based crite-
rion with many traits (13) and, D, few traits (2). Linear regression equations: A,
y = —0,5871 + 87,70 r*> = 0,3511 (n=699); B, y = —0,3763z + 95,17 r? = 0, 06082
(n=699); C, y = 3,206z — 0,1429 r? = 0,2632 (n=242); D, y = 1,199z + 95,68
r? = 0,1997 (n=242). As it can be seen the genetic landscapes of EMD and land-
mark criteria are relatively well correlated (r? = 0, 3549, r* = 0, 2632 and 0,1897
respectively) in spite of the random mutation and the complexity of the pheno-
type. The genetic landscape induced by the OPC phenotype-fitness map on the
model genotype-phenotype map is more uncorrelated (r? = 0, 06082) and very de-
generated: many mutants have the same OPC than their parent, even mutants that
are genetically very distant from their parent. In fig. A.7 it can be seen that, in fact,
most mutants have the same OPC than their parent.

In the case of teeth, the OPC has been shown to correlate with diet in
rodents, carnivorans, primates and bats (Evans et al., 2007; Santana, Strait,
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and Dumont, 2011; Godfrey et al., 2012); low and high OPC values corre-
spond to animal and plant diets, respectively. It is still not known if this
applies to other mammalian groups. However, the evolutionary adaptive
transitions in tooth morphology have traditionally been understood on the
bases of detailed analysis of specific characters (Ji et al., 2002; Charles et
al., 2011) and landmarks (Klingenberg, 2002). Our suggestion is that the
correlation between the OPC and diet may not necessarily arise from spe-
cific OPC values being the optimal morphological solution to specific diets.
The OPC may just be the adaptive solution, among several possible ones,
with the degenerate phenotype-fitness map that allows substantial degrees
of adaptation despite the complexity of the genotype-phenotype map.

More in general, our results suggest that natural selection cannot find
adaptive morphologies with most, or even many, of their traits being adap-
tive (as in EMD) because real genotype-phenotype maps are far too com-
plex. Our analysis does not specifically take ecology into consideration:
it is possible that in certain environments maximal fitness requires a very
specific morphology characterized by a unique combination of many trait
values. But our results suggest that this is only achievable if the initial phe-
notypes in the population are very similar to the optimal one (Fig. 3.2, fig.
A.3, A4). In contrast, substantial sustained morphological adaptation may
have required degenerate phenotype-fitness maps, as in the OPC, or oc-
curred only with respect to a small subset of the traits, as in the few-traits
criteria. Our results should apply even when the selection criteria change
over time or when no selection occurs for long periods of time. Adaptation
should still mostly occur in the time periods when the OPC or the few-traits
selection criteria are in place.

Our results do not preclude natural selection from having a crucial ef-
fect in most morphological traits. Specific selective responses in most traits
in a morphology could occur because of correlations with few traits being
directly adaptive (Alberch, 1982; Lande and Arnold, 1983) or because of se-
lection on the overall roughness, or similarly degenerate properties, of mor-
phology. This degeneracy may also facilitate the evolution (in the specific
case of teeth) of upper and lower occlusion without affecting OPC (Polly, Le
Comber, and Burland, 2005). We propose that the diversity of forms in evo-
lution is in part result of the degenerate phenotype-fitness maps providing
multiple solutions to the same problems.

Degenerate maps have been found in models of RNA folding and evo-
lution (Huynen, Stadler, and Fontana, 1996). In these, the degeneracy oc-
curs in the genotype-phenotype map and not in the phenotype-fitness map
(some low level of degeneracy occurs also in our genotype-phenotype map).
For a RNA sequence of a given length, only a limited number of phenotypes
(that is secondary structure folds) occur and the number of these is much
smaller than the number of possible sequences. In our model, in contrast,
the phenotype has many more dimensions of variation than the genotype
(see Appendix A).

There has been some controversy in the study of adaptive landscapes
on how rugged or uncorrelated these landscapes are. Studies based on
gene networks tend to view such landscapes as uncorrelated (Kaufmann,
1993b) while some studies coming from population genetics assume that
those landscapes need to be correlated for adaptation to be possible (Orr,
2006). Our results present a potential point of connection between these
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two views. The genotype-phenotype map would indeed be complex or
rugged (as our current understanding of development indicates) but the
phenotype-fitness maps would be simple or degenerate, as in the few-traits
and OPC criteria (fig. 3.4). This effectively leads to an adaptive landscape
that is rugged but not too rugged for adaptation to occur.

3.4 Methods

We use a computational model of evolution that is based on a developmen-
tal computational model that gives rise to three-dimensional morphologies,
from genotypes represented by the values of the model parameters, and on
a set of criteria of selection on those morphologies. Thus, the evolution-
ary model is implemented in the context of a population of individuals that
perpetuates itself over generations and in which there is selection and mu-
tation on the parameters of the developmental model. The developmental
model is described in detail in the original publication where it was first
used (Salazar-Ciudad and Jernvall, 2010). In the Appendix A, however, we
describe how the evolutionary model deals with the aberrant morpholo-
gies that can arise from the developmental model when parameters get
extreme values by mutation and some other details about how the evo-
lutionary model uses the developmental model. The evolutionary model
is simply in charge of applying mutation on the model parameters (geno-
types) of individuals in the population, at a rateuper individual, calling
the developmental model for each individual genotype, applying one of
the three selection criteria in the phenotype (morphology) of each individ-
ual and determining which individuals contribute to the next generation
based on the individual relative fitness calculated by the selection criteria.
In brief, mutation is implemented by adding or subtracting a proportion
of the value of a parameter, randomly chosen, in an individual. Selection
is implemented by choosing each individual in a generation stochastically
from individuals in the previous generation and making the probability of
being chosen proportional to individual relative fitness. The details of how
mutation and selection are implemented are described in Appendix A. The
present article is specially focused in understanding the different evolution-
ary consequences of the selection criteria. The methods section describes
these criteria in detail.

3.4.1 Euclidean Morphological Distance (EMD)

EMD is a measure of sheer disparity between two forms or morphologies
(see figure 3.1A). This measure considers all cell-level traits (each cell posi-
tion in 3D). It is defined as the mean distance of one cell in one morphology
to the closest cell in the other morphology, corrected by size:

n n
D— Yoty dminizk + Dop2 dmin21k
ni + ng

(3.1)

Where D is the EMD between two morphologies (like an individual’s
morphology and the optimal morphology in a simulation), d,,in12x is the
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euclidean distance, in three-dimensional space, between cell k at morphol-
ogy 1 and the cell in morphology 2 that is closest to that cell (again in three-
dimensional space) and vice versa for dy,in21%- n1 and ng are the number
of cells in morphology 1 and 2 respectively. Notice that this phenotypic
distance can be applied to morphologies made of different number of cells.
This is important because different genotypes lead, in the model, to mor-
phologies with different number of cells and different number of morpho-
logical features (such as cusps). In each comparison morphologies are re-
scaled and rotated by a Procrustes algorithm, so that the final configuration
has the minimal EMD possible between the two morphologies. To correct
for size and make the distance dimensionless we divide the distance by the
square root of the sum of the surface areas of the two morphologies,

D
d T e—
EMD S1 4+ S

where dgyp is the final phenotypic distance, D is the distance result-
ing from the Procrustes algorithm and S; and Sy are the surface areas of
morphology 1 and 2 respectively.

The dgyrp resulting from comparing an individual’s morphology to an
optimal morphology is used to calculate the absolute fitness of that individ-
ual.

(3.2)

3.4.2 Landmark based distances

Landmarks are taken at tooth cusps. This criterion can thus only be applied
to teeth with enough number of cusps (see fig. A.11, type 4). The first
landmark is the height of the the highest cusp. We then divide the teeth into
four quadrants (anterior, posterior, buccal and lingual) (see fig. 3.1B). The
second, third, fourth and fifth landmarks are identified as the tallest cusps
in the anterior, posterior, bucal and lingual quadrants respectively. Teeth
with fewer cusps than required for measuring a given number of traits were
given 0 absolute fitness. The traits could be chosen by two criteria:

3.4.3 Raw landmark based traits

We identify up to 13 quantitative traits as the components (x, y and z) of
the position vectors of the 5 landmarks. Tooth developmental dynamics in
the model and in real systems (Jernvall, 2000) ensure that the highest cusp
forms in the center (it is also the first cusp to form). By taking this position
as the point (0,0,0) we ensure that all model morphologies are in the same
spatial reference system. For the central cusp, only the height is considered,
because its X and Y position never change as a result of the tooth model
dynamics. Simulations were run for a different number of traits, n, for 2,4,8
and 13. The phenotypic distance by the landmark criteria, d;q,,, from a tooth
to its optimum is calculated as the square root of the sum of differences
between each trait and that trait optimal value:

an = \/Z = 1p(cx — o0 33
k
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Where n; the number of traits under selection, ¢, is the trait value of the
k trait and oy, is the optimal value of the k trait. This measure is simply the
distance between two points in a n;-dimensional morphospace.

3.4.4 PCA based traits

We also defined the traits as the scores of the principal components (PC)
resulting from a Principal Component Analysis (PCA) of variation on the
landmarks. We calculate the PCA in a subset of the morphological space by
taking the initial phenotypes and generating 300 random mutants (chang-
ing one to three parameter values per individual) and using them as a pop-
ulation sample to perform the PCA. Note that this PCA is only representa-
tive of a small hypervolume of the parameter space (that around the initial
morphologies) not about the variation possible from the model in general
(that is too vast and multidimensional to be efficiently characterized by a
PCA). Note also that this method cannot be applied to the whole morphol-
ogy since the PCA can only use datasets of the same dimensionality (that
is the same number of landmarks), and different morphologies in the sam-
ple population often have different number of cells and different number
of cusps. Thus, as above, we take 5 different landmarks (and thus 13 traits)
and perform the PCA to get the principal components of variation. From
the 13 possible PCs, we only take into account the ones representing a sig-
nificant amount of variation (> 1%), that was 8 PCs. In the evolutionary
simulations the PC loadings were used to calculate the scores of a given
phenotype on the coordinate system of the PCs. The phenotypic distance
for a given phenotype was calculated as in the raw landmark-based dis-
tances, but using the PC scores as trait values and comparing them with
the optimal PC scores (as in equation 3.3). This way selection acts always,
and independently, on all the PCs. The PCA was done with the PAST soft-
ware (http:/ /folk.uio.no/ohammer/past/).

3.4.5 Orientation Patch Count (OPC)

OPC is a multivariate measure of tooth surface complexity (Evans et al.,
2007). It consists on classifying each cell-level trait on a surface by the ori-
entation of the projection of its normal vector (vector normal to the tooth
surface in that cell point) on the x-y plane, then grouping all adjacent cells
with the same orientation into patches. The count of all patches on the mor-
phology surface is the OPC value. We established 4 orientation classes cor-
responding to the 4 quadrants of the x-y plane (see figure 3.1C). A smooth-
ing algorithm was applied onto the normal vectors in order to erase random
noise from the morphology:

y
=AY ) (3.4)
j=1

where 7} is the smoothed normal vector, 17; is the original normal vec-
tor, A is a parameter of the smoothing algorithm, V' is the total number of
neighbour cells and nj is the normal vector of a neighbour cell. We always
ran the smoothing algorithm 5 times per phenotype with A=0,1.
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The phenotypic distance by the OPC criterion, dopc, is calculated as
the absolute value of the relative difference between the OPC value of a
morphology and the optimal OPC in each simulation,

c—co
dopc = ’Tpt| (3.5)

where cis the OPC value of a morphology, ¢, is the optimal OPC value
and ¢y is the OPC value of the morphology at the beginning of the simula-
tion.
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FIGURE 3.4: A, The three layers represent from below to above genetic variational
space, morphological variational space (morphospace) and fitness space, respec-
tively. An adaptive landscape is the direct mapping between the genetic space and
fitness. The arrows connecting each layer represent the mappings between geno-
type and morphology (development) and between morphology and fitness (selec-
tion criterion). When a non-degenerate phenotype-fitness map is used (left), the
complexity of the genotype-phenotype map gives rise to a highly rugged adaptive
landscape and populations often get trapped in local peaks (dashed lines) and sel-
dom reach the optimum (solid line). When a degenerate phenotype-fitness map is
used (right) the landscape is smoothed and thus populations can attain the global
optimum. B, Idealized representation in 2D of the tooth model parameter space.
Regions in different shades represent hypervolumes of the parameter space where
the resulting morphologies have similar complexity (for example the same num-
ber of cusps or the same OPC). The space occupied by complex morphologies is
small, but is in contact with more regions of different complexity, so it is easier to
change complexity by mutation when morphologies are complex (as indicated by
figure A.12.
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Chapter 4

Expanding models of animal
morphogenesis in order to
analyse the properties of
development across systems

The contents of this chapter were published in the form of a research article:

Marin-Riera, Miquel et al. (2016). “Computational modeling of develop-
ment by epithelia, mesenchyme and their interactions: a unified model.”
Bioinformatics (Oxford, England) 32.2, pp. 219-25.

4.1 Abstract

The transformation of the embryo during development requires complex
gene networks, cell signalling and gene regulated cell behaviours (division,
adhesion, polarization, apoptosis, contraction, extracellular matrix secre-
tion, signal secretion and reception, etc.). There are several models of de-
velopment implementing these phenomena, but none considers at the same
time the very different bio-mechanical properties of epithelia, mesenchyme,
extracellular matrix and their interactions.

Here we present a new computational model and accompanying open-
source software, EmbryoMaker, that allows the user to simulate custom de-
velopmental processes by designing custom gene networks capable of reg-
ulating cell signalling and all animal basic cell behaviours. We also include
an editor to implement different initial conditions, mutations and experi-
mental manipulations. We show the applicability of the model by simulat-
ing several complex examples of animal development.

The source code can be downloaded from:

http:/ /www.biocenter.helsinki.fi/salazar/software.html .

4.2 Introduction

Multi-scale computational models help in making the complexity of de-
velopment more amenable to the human mind. They may be conceived as
summaries of what is known about the development of an organ or embryo
part. Such summaries, however, should be built upon explicit mechanistic
hypotheses about how development works in these systems. Computa-
tional models can then provide explicit quantitative predictions about how
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an embryo changes over time according to each specific mechanistic hy-
pothesis. These quantitative predictions (e.g. quantitative morphology as
the position of each cell in space and the levels of expression of different
genes in space) can then be compared with experimental results to facilitate
the rejection or provisional acceptance of a hypothesis (further experiments
would be required for actual acceptance of an hypothesis).

There is a long list of models of pattern formation and morphogenesis
involving cell-cell communication and biomechanics. Some of them sim-
ulate the development of different organs, such as teeth (Salazar-Ciudad,
2008; Salazar-Ciudad, 2010a), limb (Hentschel et al., 2004), turtle shell’s
scutes (Moustakas-Verho et al., 2014), to cite a few. In other cases, processes
involving the whole embryo, such as gastrulation in the sea urchin, are re-
produced (Cummings, 1990; Cummings, 1994; Cummings, 2005; Davidson
et al., 1995). Others implement a framework of cell biomechanical interac-
tions and gene regulation, including one or several cell behaviors, namely:
cell division, apoptosis, growth, etc.

The Cellular Potts Model (CPM) (Graner and Glazier, 1992) defines a
regular lattice in which cells occupy several contiguous lattice positions.
Cells may extend to further lattice positions or retract from them by mini-
mizing a Hamiltonian energy function based on cell adhesion, volume con-
servation and other mechanical properties. The CPM is especially suitable
for developmental systems in which cells change their neighbors and shape
in rather dynamic ways (such as in cell sorting and migration by chemo-
taxis and haptotaxis). However, tissues in which forces can be transmitted
along a specific direction at long distances, such as in epithelia, may not be
so easily grasped by the CPM. There are several models based on CPM that
implement several cell behaviors such as cell division, cell migration (by
chemotaxis), apoptosis, and cell-cell signalling (Hogeweg, 2000; I1zaguirre
et al., 2004; Starrufs et al., 2014a).

In the vertex model (Honda, Tanemura, and Nagai, 2004) cells are de-
fined by the contact surfaces with other cells or the media. Each cell is a
polygon (or polyhedron in the 3D case) defined by a set of vertices and
edges (and faces in the 3D case). Forces are calculated based on over-
damped motion equations or a Monte Carlo algorithm. This model is suited
to simulate dynamics of densely packed tissues like epithelia, but are not
very well suited to simulate processes involving mesenchymal tissues or
processes in which cells move freely in the extracellular space and seldom
form tightly packed cell condensates. In some cases, cell signalling and
gene regulatory networks have been implemented as well (Farhadifar et
al., 2007; Smith et al., 2012; Pitt-Francis et al., 2009).

The viscoelastic model (or IBCell model) (Rejniak, 2007) combines an
off-grid representation of cells as elastic bodies with a lattice Boltzmann
Method to simulate intra and intercellular fluids. Thus, each cell is repre-
sented by a set of points forming an elastic body in a continuous 2D space
but chemical substance concentration is calculated on a regular grid in dis-
crete space. Then the position of each cell part on this grid has to be interpo-
lated every time to correctly calculate how fluid fluxes in the grid affect cell
shape. This implementation and level of detail makes the model computa-
tionally very costly and thus precludes, according to the authors (Tanaka,
Sichau, and Iber, 2015), its extension to 3D problems. Several cell behaviors
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have been implemented: cell proliferation (Rejniak, 2007), cell growth and
cell-cell signalling (Merks et al., 2011).

The subcellular element model (SEM) (Newman and Miiller, 2005; Sander-
sius and Newman, 2008) is an off-lattice model in which cells are made of
groups of point elements that interact mechanically based on a potential
equation. Motion is computed with Langevin overdamped dynamics. In
some cases cells are modeled with a single subcellular element, thus ap-
proximating Drasdo’s spheroid model (Drasdo, Hoehme, and Block, 2007;
Delile, 2013). The original model does not implement any cell behaviors
apart from cell-cell adhesion, but in a more recent implementation of the
model (Delile, 2013), cell division, polarization, cell signalling, migration
and some basic gene networks are implemented.

Here we present a new general multi-scale model of development, the
EmbryoMaker, that differs from previous models in a fundamental way:
the model recognizes that the bio-mechanical properties of epithelia, extra-
cellular matrix (ECM) and mesenchyme are crucial to correctly understand
many processes in early animal development and in organogenesis. Other
models are adequate for either mesenchymal cells or flat epithelia, but not
for both or for their interaction as it occurs in development (Biggs and
Mikkola, 2014).

The EmbryoMaker is based on the SEM for mesenchymal cells but not
for the epithelia and for the non-mechanical interactions. Epithelial cells are
instead assumed to be made of cylindrical subcellular elements rather than
spheres as cells in the SEM. In addition, epithelial-specific rules are used to
capture how epithelia interact with mesenchyme and ECM and, in general,
how they behave in development.

In addition, our model implements the most complete set of basic cell
behaviours used by cells in animal development (cell growth and division,
cell death, cell migration, polarization, ECM secretion, cell-cell adhesion,
cell-cell signalling, epithelial to mesenchymal transition). This is done by a
unified set of rules acting on the cells” subcellular elements. EmbryoMaker
includes also a detailed implementation of cell’s molecular mechanisms in-
volved in regulation and cell-cell communication. This includes transcrip-
tional and post-transcriptional gene networks and signalling by the diffu-
sion of gene products in the extra-cellular space and the binding to their
specific receptors. A fundamental aspect of the model is that the gene
products present in each subcellular element can regulate its mechanical
properties and activate or repress specific cell behaviours. This allows an
explicit multi-scale coupling between microscale regulatory molecular pro-
cesses and macroscale mechanical properties and cell behaviours.

4.3 Structure of the model

Our modelling framework is, thus, multi-scale; it includes cells, ECM, cell
parts and regulatory molecules that interact in intracellular networks and
molecules that diffuse between cells in the extracellular space and affect
gene expression in other cells (see fig. B.1). The parameters of the model
specify how much each molecule regulates those and also the intra and ex-
tracellular molecule regulatory network. The model allows to implement
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any arbitrary gene network and initial condition. Thus, different imple-
mentations of the model will have different number of parameters accord-
ing to how many genes and molecules it includes. The number of subcellu-
lar elements (also called nodes in here) in a cell and the number of cells can
change due to cell growth and cell division.

4.3.1 Biomechanics

Subcellular elements or nodes represent a physical part of a cell. Mesenchy-
mal nodes are spherical while epthelial nodes are cylindrical. Each cylinder
consists of two elements that move independently, an apical and a basal
one, which may have different mechanical properties. These two nodes are
tied by an elastic spring (fig. 4.1F). The ECM consists of spherical nodes
that do not belong to any cell.

Each node has a radius of interaction p*PP that defines the maximum
distance at which the node is in contact with other nodes and a radius of
equilibrium p¥ QD at which the mechanical interaction is at equilibrium (i.e.
the interaction force is zero). Nodes i and j will experience a repulsive force

EQD _ EQD 4 \EQDy

when they are closer than their equilibrium distance (d;;*~ = p; ™~ +p;

and an attractive force when their distance is longer than deD but closer
than d{}D P (fig. 4.1B and Appendix B). The modulus f4;; of the mechanical
force vector is calculated as,

faig = KEPP(di; — d20) if diy < dOP
aig = K5OV (dij — d7%P) if dij > di%" (4.1)
faij =0 if dij > dgPP

Note that the elastic coefficients (k‘gEP and k};OU ) may be different in
the repulsive and attractive case and depend on the mechanical properties
of the nodes ¢ and j (that in our model can be regulated by molecules). The
direction of force vectors differ between the mesenchymal-mesenchymal,
the epithelial-epithelial and the epithelial-mesenchymal interacion, since
vectors need to be normal to the contact interface between the two elements
(fig. 4.1C-E, see Appendix B). Our model, thus, makes the assumption, as in
the SEM, that cell shape can be represented with some degree of accuracy
by a set of movable points (the nodes) that adhere to each other (so that
each cell is a cohesive entity by the cohesion between its nodes). This way
adhesion between cells is represented also as adhesion between nodes. We
also assume that no two cells can occupy the same physical space and that,
thus, there would a repulsion force when two nodes get to close.

The model also assumes, in contrast to the SEM, that epithelial tissues
always tend to minimize local curvature (Forgacs and Newman, 2005) and
that epithelial cells always tend to orient their apical-basal axis normal to
the local tissue surface. In order to evaluate the local curvature between
apical nodes i and j we consider the vector ¢;;, connecting those two nodes,
si, and s;; as the vectors that define the elastic link to their basal counter-
parts and m;ji; as the sum of 53, and sj; which defines the vector normal
to the surface between i and j. The bending radial force tends to minimize
the local curvature of the epithelial sheet, while the bending rotational force
reorients the cylinders so that their longitudinal axis (5) is always normal
to the epithelial surface (fig. 4.1G, see also fig. B.4B,C). The bending radial
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FIGURE 4.1: A) Mechanical interactions between spherical elements are deter-
mined by the distance between their centres and their distance of equilibrium.
B, C, D) Mechanical interactions between two cylindrical elements or between a
cylindrical and a spheric one act along a vector normal to the surface of interaction
between the two elements. E) The two nodes composing a cylindrical element are
tied by an unbreakable elastic spring. F) Epithelial bending is regulated by two
different forces, a bending radial force and a bending rotational force. All arrows
represent force vectors.

force is defined by the vector ngTij and the bending rotational force by

fERTz’j/
my; kl G
fESTi; = kESTllT]n—Mlzjm”kl (4.2)
v
Sk Ci N
fERP'L_] kERP 7/| k|ljc j (4‘3)

Where k55T and k[P derive from node’s mechanical properties and
the circumflex denotes unit vector. Note that the force vector f EET,-J- will
be normal to the epithelial surface and frrp;; will be parallel to the vector
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connecting ¢ and j (see fig. 4.1G).

Motion is computed by an hybrid method, solving a system of PDEs
assuming Langevin overdamped dynamics (see Appendix B) and then ap-
plying Monte Carlo random displacements to a certain proportion of nodes
at each time step (see Appendix B). This way some stochasticity is intro-
duced into the model.

4.3.2 Gene and molecular regulation

The model assumes that all molecules are contained within the system’s
nodes, whether they belong to a cell or to ECM. Diffusion is then the trans-
port of molecules between nodes. Thus, both calculations of movement and
specific molecule concentrations occur only on nodes and molecules carried
by nodes respectively. We use the term regulatory molecules to refer to any
molecule irrespectively of whether a molecule is a gene product or not.
Each regulatory molecule has a set of intrinsic characteristics that are
assumed to be genetically encoded and thus do not change over model dy-
namics. We call those molecular parameters. For each regulatory molecule
these are: diffusivity coefficient, intrinsic rate of degradation, regulatory in-
teractions at the level of transcription and at the level of catalytic reactions,
regulation of each node property and regulation of cell behaviours and cell
properties (see Appendix B). Some regulatory molecules act as inter-cellular
adhesion molecules, for which there is a matrix that specifies the binding
affinity of each pair of adhesion molecules. Transcription occurs only in the
nuclear node of each cell and we assume it follows a saturating function
similar to Michaelis-Menten (as in many other previous models, Mjolsness,

Sharp, and Reinitz, 1991):
Ng
o (Z tleil)
=1

Ng
1+@ (E tleil)
I=1

Where @i, is the rate of transcription of gene k in node i, g; is the
amount of transcriptional factor [ in node i and ¢, is the strength by which
each specific transcriptional factor k activates (positive ¢, ) or inhibits (neg-
ative t;;,) the transcription of gene [. The sum is done through all the regula-
tory molecules and by definition only transcriptional factors have ¢;;, terms
different from zero. The set of ¢;;, values in a model constitute the matrix
T (whose size depends on the number of genes included in the model). ®
is a function that is equal to O for values of x smaller than 0 and equals to
x when z is greater than 0 (®(z) = 0if x < 0 and ®(z) = z if > 0).
This function is used to ensure that there is no such a thing as negative
transcription (although ¢, can be negative and thus repress transcription).

The model represents two states of the same protein as two different reg-
ulatory molecules with different molecular properties. Non-transcriptional
enzymatic reactions mediate the transformation of one regulatory molecule
into another. Thus:

Qik = (4.4)
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The first term defines the rate of production of regulatory molecule £ in
node ¢ due to the transformation of other molecule [ into k catalysed by j.
The second term defines the rate of loss of form £ due to its transformation
into molecule [ mediated by catalysis by j. Each element r;;;, specifies the
catalytic activity of regulatory molecule j on the transformation of regula-
tory molecule [ into regulatory molecule k. As before we assume Michaelis-
Menten kinetics similar to those known to occur in enzymatically catalysed
reactions. For simplicity we assume K); equals 1. As before the set of all
i values constitutes matrix R.

4.3.3 Molecular diffusion and signalling

We assume that regulatory molecules can diffuse between nodes in a cell.
Extracellular diffusible molecules can diffuse between nodes in different
cells. For these molecules its concentration in a node represents concentra-
tion in the extracellular space close to the node. Diffusion can not occur in
empty space but it can occur in aqueous media represented as ECM nodes.
This is implemented by applying Fick’s second law in the context of the
irregular and changing mesh made by all the nodes that are not too far
from each other (This distance is itself considered, see Appendix B for de-
tails). This method allows to implement diffusion in a way that is not com-
putationally very costly. Since molecules are only defined within nodes,
they cannot diffuse towards empty spaces or cavities. This limitation can
be overcome, if necessary, by filling empty spaces with ECM nodes. Dif-
fusible molecules may interact with membrane receptors. The model also
considers membrane tethered ligand and receptor complexes, such as in
the Notch-Delta signalling pathway (Meir, Munro, and Odell, 2002, see Ap-
pendix B).

4.3.4 Cell behaviors and regulation of node properties

The model is specifically designed to incorporate all animal cell behaviours
as simple rules on cell nodes (fig. 4.2, see Appendix B and fig. B.5, B.6,
B.7, B.8, B.9, B.10). This way the temporal and spatial scales of these rules
are compatible with each other. Growth is increase in the sizes of the ele-
ments in a cell, until a maximum element size is reached (fig. 4.2A and fig.
B.6). Only then a new small element is added to the cell, which can then
undergo further growth. The model allows to choose the number of ele-
ments a cell is made of (though that number may fluctuate due to growth,
division or death). Large number of elements per cell should be chosen
when cell shape changes are a driving force in development. Otherwise
cells can be chosen to comprise few, or even a single element. Cell division
is the splitting of a cell’s nodes between two daughter cells (fig. 4.2B and
fig. B.7, see Appendix B). Apoptosis is implemented as a gradual decrease
in the size of nodes in a cell (fig. 4.2C and fig. B.8, see Appendix B) until
nodes, and eventually the cell, disappear. Adhesion is implemented as the
strength of the attractive force between elements from different cells. Cell
contraction, or expansion, is simply a limited decrease, or increase, in the
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FIGURE 4.2: A) Cell growth. A new node (blue) is added in a random position
within a cell (non polar growth), or in a direction determined by the polarization
vector (polar growth). B) Cell division. The plane of division splits the cell into
two daughter cells. In asymmetric division an intracellular gradient determines
the relative size of daughter cells. C) Apoptosis. A node (in blue) decreases size
until it disappears. D) Extracellular matrix secretion. A free (non-cellular) ECM
node (blue) is secreted outside the cell in a random direction from a cellular node
(yellow). E) Epithelial-mesenchymal transition. Epithelial cylinders transform into
mesenchymal nodes. F) Cell polarization is defined as a 3D vector (green arrow)
determined by an intracellular molecular gradient.
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size of some elements in a cell. This can occur actively as a result of gene
expression changes. Nodes can also have some degree of plasticity, which
can be genetically regulated, and decrease or increase their size if put un-
der strong compressive or tensile forces respectively by surrounding nodes.
Migration is the result of random node movement (see Appendix B) biased
by differential adhesion or chemoattractant gradients (although the mobil-
ity of elements can be increased by gene regulation to simulate cell body
extensions like filopodia). Cell shape changes are the result of the relative
movements of the elements in a cell. Extra-cellular matrix (ECM) secre-
tion results from the production of ECM nodes by cells expressing a spe-
cific gene (fig. 4.2D and fig. B.9, see Appendix B). Cells can also undergo
epithelial-mesenchymal transitions (fig. 4.2E and fig. B.10, see Appendix
B).

An important aspect of our model is that all cell behaviours and ele-
ments’ bio-mechanical properties (such as adhesion) can be affected by the
regulatory molecules present in nodes. Specific equations apply for the
molecular regulation of each cell behaviour, see Appendix B for details.
Each column of matrix C specify how strongly each molecule positively
or negatively regulates a certain cell behaviour.

Regulation of node mechanical properties at each time step follows:

pi(t) = @ <P§(0) +(1=pP"> eleik) (4.6)
k=1

Where pi(t) is the value of node property [ in node i at time ¢ and pi(0)
is the value of that node property I in node ¢ when the node was created
(this is in the initial condition or when the node first arose through growth).
pPIE is the degree of differentiation in node i (differentiation slows down
changes in nodes). The effect of molecule k£ on node property [ is the model
parameter ej;, of matrix E.

A slightly different rule applies to node size, p?@P. At each time step
this property is equal to:

COD GRD PLD

D; =p; + D; + PYOD 4.7)

The first term is due to active contraction, the second to cell growth or
apoptosis, the third to cell mechanical plasticity and the fourth to volume
conservation. Cell contraction occurs when a molecule regulates negatively
the node property p“©P. Since contraction is happening in the nodes, cells
may have contraction in only part of its nodes, as it is necessary in a num-
ber of developmental processes such as in invagination by apical cell con-
traction. p®©P is calculated as in equation 4.7 above. The other terms are
explained in the Appendix B.

The cell behaviours described above are in fact the most basic animal
cells have. However, individual cells can do more complex behaviours
by differentially activating these basic cell behaviours in different parts of
the cell. This is possible in our model because different nodes in a cell
can have different concentrations of different regulatory molecules (since
transcription occurs in the nucleus node but other reactions and signalling
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occurs in all nodes). This allows a rich set of spatially polarized cell be-
haviours. Thus, for instance, the orientation of cell division plane is by de-
fault normal to the longest axis of the cell following Hertwig’s rule (Minc,
Burgess, and Chang, 2011) but can be oriented in the model by the direc-
tion of intra-cellular gene product gradients through the nodes in a cell
(that may arise from extra-cellular gradients through signalling, not affect-
ing transcription). In a similar manner, intra-cellular gradients can regulate
asymmetric division (Salazar-Ciudad, Jernvall, and Newman, 2003) quan-
titatively controlling how much larger is one daughter cell with respect to
the other. Similarly, intracellular differences in regulatory molecule con-
centrations can lead to contraction of only specific parts of a cell, as in the
apical contraction required for invagination of epithelia. Similarly cells can
migrate in a polarized manner by preferentially extending more filopodia
towards one side of the cell than to others. This can be reproduced in the
model by differentially regulating the mobility of nodes along the cell.

4.3.5 Initial conditions, model parameters and model structure

For the application of the model to the study of pattern formation and mor-
phogenesis in a specific experimental developmental system three sets of
developmental parameters need to be specified by the user: 1) The network
of interactions between regulatory molecules (the 7"and R matrices) 2) How
these regulatory molecules affect each node property (£ matrix) and cell be-
haviour (C' matrix) 3) The initial conditions as the spatial location of each
node and the quantity of each regulatory molecule in each of them.

4.4 Implementation

The EmbryoMaker software implements the model herein described and
provides a user-friendly environment to design and manipulate custom de-
velopmental systems. An editor allows the user to design cells, nodes and
gene expression in the initial conditions or at any time during a simula-
tion. The NetworkMaker software allows to design and edit gene network
topologies and set model parameters. A central panel displays each appli-
cation network. We use the Cell Behaviour Ontology (Sluka et al., 2014) for
the example model of sea urchin gastrulation (section 4.5). All software and
documentation can be downloaded from:
“http:/ /www.biocenter.helsinki.fi/salazar/software.html”.

4.5 Application examples

In this section we provide a set of examples of how the model can be ap-
plied to animal development. The aim in these examples is not to under-
stand their dynamics better, but to show that the model is realistic and gen-
eral enough to consider many different animal systems. We have started by
implementing a set of developmental mechanisms that have been proposed
to be the most basic ones in animal development (Salazar-Ciudad, Jernvall,
and Newman, 2003). This is the simpler developmental mechanisms able
to produce pattern formation by using only one cell behaviour (see fig. 4.3
and fig. B.11, B.12, B.13, B.14, B.15, B.16 for the genotype-phenotype maps).



Chapter 4. Expanding models of animal morphogenesis in order to

. 47
analyse the properties of development across systems

A Extracellular matrix secretion

™
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FIGURE 4.3: A) ECM (orange) secretion by epithelial cells (blue and green) in the
space between an epithelium (blue and purple) and a mesenchyme (pink), driving
the deformation of both tissues. B) Differential adhesion. Intercellular adhesion
molecules (blue shades and red-yellow shades) drive the rearrangement of cells in
space to maximize adhesivity contacts. C) Directed growth and division. Polar-
ized cell growth and division of individual cells lead to a tissue elongation in the
direction of a molecular gradient. Each cell is drawn in a different color or shade.
D) Apical contraction of groups of epithelial cells (green) produces invagination of
an epithelial sheet. The red shade represents the z axis. E) Cell migration. Mes-
enchymal cells (red, orange and yellow) show high adhesivity for the epithelial
adhesion molecule. This molecule is expressed on a concentration gradient on the
epithelium (light blue: high concentration, dark blue: low concentration). As a re-
sult mesenchymal cells progressively migrate, in a biased random walk, towards
the high concentration regions.
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We also apply the model to a paradigmatic example of animal morpho-
genesis: the sea urchin gastrulation (Lane et al., 1993). In this example we
do not intend to provide any new fundamental understanding about the
sea urchin development per se. Instead we use sea urchin gastrulation to
explain the steps by which the model is applied to a specific system.

At the onset of gastrulation, the sea urchin embryo consists of a hol-
low sphere of epithelial cells with some mesenchymal cells scattered in the
blastocoel cavity. At the vegetal pole of the embryo there is a group of
cells called the vegetal plate. The early invagination of the vegetal plate
arises from two combined processes: the apical constriction of the vegetal
plate cells and the secretion of ECM on their apical side (Lane et al., 1993).
Experiments by Lane et al. applied different drugs to sea urchin embryos
to specifically inhibit each of those two processes. By applying either one
drug or the other different degrees of invagination were achieved, with no
invagination when both drugs were applied.

The initial conditions assumed in the application of our model consist of
a hollow epithelial sphere surrounded by an external ECM layer acting as
the semi-rigid egg cover of the sea urchin (hyaline layer). It is known that
only cells in the vegetal plate are involved in apical constriction and ECM
secretion so we assume a molecule (from now on called molecule A) to be
present in the apical side of the most central vegetal cells in the embryo (in
black in fig. 4.4) to regulate those two processes. The model assumes that
actomyosin contraction in the apical cell cortex triggered by molecule A
results in a decrease of apical cell surface, which is translated as a decrease
in apical surface of the cell’s cylinders. The initial conditions were set with
the EmbryoMaker editor. We set the three different experimental conditions
using NetworkMaker. In the first we set a ej;, value different from zero and
negative so that A leads to apical contraction by decreasing the contraction
radius, p¢©P, as specified in equation 4.7 (with k being for contraction, and
[ being for molecule A). In the second experiment A promotes the secretion
of ECM in the nodes where it is present according to the equation for ECM
secretion:

ECM "9
aplait = Z CmiGim (48)

m=1

Where pFCM is the rate at which ECM accumulates around node i.
cECM ig the C' matrix element where the effect of molecule m (in this case
A) on ECM secretion is specified and g;y, is the concentration of m in node
i. Once pP“M reaches a value of one a ECM node is secreted near node i
(see Appendix B for the equations for the molecular regulation of other cell
behaviours). Thus, this equation simply assumes that the rate of secretion
of ECM is a linear function of the concentration of the regulatory molecules
that promotes this secretion.

In the third experiment, A promotes both processes at the same time.
The first experiment is the one in which an applied drug inhibits ECM se-
cretion, the second the one in which a drug inhibits apical contraction and
the third the one in which no drugs are applied. The experiments thus only
involve different values in the e4 cop and es gcn parameters. These were
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FIGURE 4.4: A) A hollow spherical epithelium surrounded by a rigid outer layer
of ECM. A group of cells in the vegetal pole of the embryo express a specific gene
product on their apical side (black). The “black gene product” may regulate cell
constriction, ECM secretion or both. B) Different degrees of invagination, mea-
sured as the depth of the archenteron (black arrow), are achieved using each one
of the mechanisms or both at the same time. All simulations were run 1500 time
steps. Parameter values for: active contraction e4 cop =-0.05, active ECM secre-
tion e4 gom = 0.9, inactive contraction e4 cop = 0.0 and inactive ECM secretion
ea ecm = 0.9 . Other node properties were set homogeneous among all nodes
for all simulations: p*¥¢=5.0 , pAPH=50, p¥357=10.0 , pPFF=10.0 , p¥¢P=0.15,

pAPP=0.27 . The latter are standard values in which epithelia are stable.
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manually set to match the morphologies observed in the two drug experi-
ments. When these two values are used at the same time, in the third exper-
iment, a deeper invagination resembling the one observed experimentally
(Lane et al., 1993), when drugs are not added is found in the model sim-
ulations (fig. 4.4B). There are several earlier modelling approaches on sea
urchin gastrulation (Cummings, 1990; Cummings, 1994; Cummings, 2005;
Davidson et al., 1995) that undergo a more analytical and systematic study
of the invagination process. However, as we mentioned above, our aim in
this example is only to show that our model can be applied to real develop-
mental systems.

The above examples consider only developmental mechanisms that in-
volve only one or two cell behaviours at the same time. An additional ex-
ample combines the regulation of several different cell behaviours to show
how from simple initial conditions (fig. 4.5) a more complex gastrula-like
embryo can be produced (see Appendix B section B.2 for a more detailed
explanation of the observed dynamics).

4.6 Discussion

Our model differs from previous ones in implementing all the cell behaviours
known in animal cells. In addition, it explicitly implements the molecular
quantitative regulation of all cell mechanical properties and cell behaviours.
Ours differs from previous models in explicitly considering the different
mechanical properties of epithelial and mesenchymal cells and ECM and
their interactions.
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TF1 is expressed in one cell

B node type GF2 concentration TF5 concentration

FIGURE 4.5: A) Initial conditions, hollow spheric epithelium with a single cell (yel-
low) expressing gene TF1. B) Outcome, after different number of iterations, of the
complex developmental mechanism applied on the initial conditions in A. The left
column shows, in section, the node types. Blue for basal side of cylinders, violet
for the apical side of cylinders, red for mesenchymal cells and orange for extracel-
lular matrix nodes. Middle and right column display concentrations of GF2 and
TF5 respectively (yellow for high concentration, blue for low concentration). See
Appendix B for details.
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Chapter 5

A new model of early tooth
development

5.1 Abstract

The mammalian tooth is a complex structure that shows great morpholog-
ical variation across the phylogenetic tree and has a great influence on a
species’ diet. Morphological variation in teeth is mostly originated during
development. Tooth morphogenesis involves mechanical forces mediated
by growth and adhesive properties of epithelial and mesenchymal cells. In
order to account for tooth morphology and its variation, we need to un-
derstand how moving cells and growing tissues exert mechanical forces on
its surroundings during morphogenesis. Mathematical models of develop-
ment integrate experimental knowledge and make quantitative predictions
on the phenotype given a genetic or environmental perturbation. Previous
mathematical models of tooth development did not implement the biome-
chanical aspects of tooth morphogenesis in detail. For that purpose we have
built a new model of tooth development that implements realistic cell me-
chanics at all the cell layers involved in early tooth development. We have
simulated tooth morphogenesis in a variety of scenarios assuming differ-
ent rates of growth in the different tissues composing a tooth and different
adhesive properties between them. The model predicts that the adhesive
properties of cells within and between tissue types contribute significantly
to the shaping of the tooth germ. More specifically, the model predicts that
there are two main opposing forces that drive the direction of growth of the
cervical loops (the two epithelial folds that will create the flanks of the tooth
crown). Adhesive interactions between epithelium and mesenchyme drive
the cervical loops to expand deeper into the jaw mesenchyme, whereas ad-
hesive interactions between epithelium and the suprabasal layer (epithelial
cells that compose the bulk of the tooth germ) drive the expansion of the
cervical loops in the buco-lingual direction. The combination of these two
processes determine the direction of growth of the cervical loops over time
and the overall shape of the tooth crown and the sharpness of cusps. Our
results provide new insights on how cell and tissue mechanics during tooth
development can generate phenotypic variation and thus lead to evolution-
ary change.

5.2 Introduction

The mammalian tooth has been and it is being extensively studied both in
the fields of development and evolution (Butler, 1983; Butler, 1995). From
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the developmental point of view, it is an interesting system due to the com-
plexity of its dynamics, which combine cell signalling and extensive cell
movements (Salazar-Ciudad, 2008; Salazar-Ciudad, 2012). Teeth develop
in relative isolation from the rest of the body. That allows experimental ma-
nipulation of the developing tooth germ with minimal interference on the
morphogenesis of the whole embryo. From the ecological and evolution-
ary point of view, teeth are required for the breakdown of food in mam-
mals and thus tooth morphology is closely related with the animal’s diet
(Evans et al., 2007). Moreover, teeth are often the only traces left by extinct
mammalian species and so tooth morphology is very important to study
the mammalian fossil record. For those reasons teeth are an especially rele-
vant organ system at the place where the fields of developmental and evo-
lutionary biology meet (evo-devo) (Salazar-Ciudad, 2012). From this latter
perspective, the question is not so much how a wild type tooth is achieved,
but rather how variation in its development will result in different tooth
morphologies (Harjunmaa et al., 2014).

Tooth development consists of the growth and folding of an epithe-
lial invagination, on the growth and condensation of an underlying mes-
enchyme (the dental papilla) and the differentiation of these tissues into the
different cell types of the tooth crown. Such a process involves reiterative
inductive interactions between epithelium and mesenchyme and the dif-
ferentiation of non-proliferative signalling centres called the enamel knots
(EK) that regulate the patterning and positioning of tooth cusps (Jernvall
and Thesleff, 2000). The most studied case of tooth development is that of
the mouse first molar, but most other molars seem to develop similarly.

At embryonic day 13 (E13), the prospective molar consists of a round
epithelial invagination surrounded by a mesenchymal condensation called
the tooth bud (fig. 5.1A left). A non-proliferative signalling centre called
the primary enamel knot (PEK) appears at the distal tip of the bud (Jernvall
and Thesleff, 2000). At this stage the epithelial bud consists of two cell pop-
ulations, a basal layer of epithelial cells contacting the basement membrane
and expressing P-cadherin, and a suprabasal cell population composing the
bulk of the bud and expressing E-cadherin (Jussila et al., 2015).

By E15 two epithelial folds, called the cervical loops, have emerged at
the bucal and lingual sides of the PEK, and the morphology is reminiscent
of a cap (fig. 5.1B top). The cervical loops, which are composed of both
basal and suprabasal cells, first grow radically (i.e. in the direction where
the roots of the developed tooth will be, as opposed to occlusal) and later to-
wards the mid line of the tooth germ, effectively enveloping the mesenchy-
mal condensate. During the late cap stage, the PEK disappears and two
secondary enamel knots (SEK) appear at its lingual and bucal sides (Jern-
vall and Thesleff, 2000). At the SEKs cell proliferation is downregulated
while it is upregulated in the surrounding epithelia through the action of
diffusible growth factors secreted by the SEKs (such as FGFs and SHH, Lau-
rikkala et al., 2001; Jernvall et al., 1994). As a consequence the epithelium
between SEKs grows and bends radically towards the dental mesenchyme
forming a valley (Jernvall, 1995). Since there is no downward growth in
the SEKSs these are left behind and, consequently, form the cusps (with each
SEK at the tip of each cusp).

By E16 the position and shape of the first two cusps starts to become
evident. At that stage the cervical loops separate the mesenchyme in two
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FIGURE 5.1: A, by E13, an epithelial bud (left, yellow) has invaginated from the
oral epithelium into the jaw mesenchyme and a mesenchymal condensate has
started to form (pink). Soon after that, a signalling centre called the primary
enamel knot (PEK, red) appears at the distal tip of the bud and two epithelial folds
start to grow in the bucal and lingual sides of the tooth germ. B, C, by E15 the grow-
ing cervical loops have eventually surrounded part of the mesenchyme (top). At
this point the PEK has disappeared and new signalling centres called secondary
enamel knots (SEK, cyan) are induced while the cervical loops continue to elon-
gate (bottom). The direction of growth of the cervical loops during cap stage (B,C
top) and later stages will determine the overall shape of the tooth crown and thus
will influence the relative positions of cusps (B,C bottom). Cervical loops growing
towards the jaw mesenchyme (B) will results in narrower and taller tooth crowns,

whereas loops growing mainly in the buco-lingual direction (C) will result in wider
and shorter tooth crowns.

populations: the dental mesenchyme enclosed by the loops (which will give
rise both to the dentin forming odontoblasts and the tooth pulp) and the
follicular mesenchyme surrounding the whole of the tooth germ (Rothova,
Peterkova, and Tucker, 2012). The former will give rise to the dentin form-
ing odontoblasts and to the tooth pulp while the latter will not become part
of the adult tooth. The suprabasal cells composing the bulk of the tooth
germ start to vacuolate and secrete extracellular matrix, and at this stage
they are called stellate reticulum. Two different epithelial populations can
also be distinguished; the inner enamel epithelium (IEE) consisting of the
epithelium enclosed between the two cervical loops, and the outer enamel
epithelium (OEE) consisting of the epithelium facing outwards of the tooth
germ. The final shape of the tooth crown and cusps corresponds to the
shape of the IEE surface (fig. 5.1B,C), since this surface is where the enamel
secreting ameloblasts will differentiate.

By E17 two additional SEKs appear anterior to the first two cusps and
two days later, at postnatal day 0 (P0), the shape of the tooth crown is al-
ready determined and the ameloblast and odontoblast layers can be distin-
guished.
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The overall morphology of the tooth is in most cases quite complex, but
its general features can be described by: the size and shape of the tooth
crown, the number and relative position of cusps and the specific shape of
each cusp.

Cusps differ on how blunt or sharp they are. The way the epithelial and
mesenchymal tissues grow and place themselves relative to one another
will determine the final shape of the cusp. This means that not only cell
signalling and gene expression changes, but also cell and tissue mechanics
will contribute to the shaping of cusps. It has been proposed that the rel-
ative growth of the epithelium and the mesenchyme around the SEK con-
tributes to cusp sharpness (Salazar-Ciudad, 2008). A high epithelial growth
rate would result in sharp cusps whereas a high mesenchymal growth rate
would result in blunt cusps (Salazar-Ciudad, 2008). In addition, the distal
tip of the cervical loops will contribute too to the shape of the lingual-most
and bucal-most cusps, thus the slope of the cervical loops will determine
the sharpness of these specific cusps.

It has been proposed that the spatial positioning of the tooth cusps
within the tooth crown is regulated through a combination of a Turing-like
reaction-diffusion system and differential growth and adhesion (Salazar-
Ciudad and Jernvall, 2002; Salazar-Ciudad and Jernvall, 2010). The height
of the SEKs in the oclusal-radical axis will depend on their moment of ap-
pearance, the younger ones being lower and while the older ones being
higher. This is the case because newer SEKs will appear at the edges of the
IEE, and the IEE grows mainly in the radical direction due to the orienta-
tion of the cervical loops. Given that once they appear, SEKs do not seem
to move in the oclusal-radical axis (Salazar-Ciudad, 2008), newer SEKs will
result in shorter cusps and older ones in taller cusps (Jernvall, 2000). In
that sense, the direction of growth of the cervical loop and consequently
the slope of the IEE in respect to the occlusal-radical axis will determine the
differences in height between cusps in a tooth. However, the mechanisms
that determine the angle of growth of the cervical loops still remain to be
elucidated.

The mechanical interactions between cervical loop epithelium, dental
mesenchyme, follicular mesenchyme and suprabasal cells may have a role
in determining the direction of growth of the cervical loop. On that account
we hypothesize that four different processes could explain the direction of
cervical loop and tooth morphogenesis between bud and cap stages.

1. Follicular mesenchyme or the jaw bone tissue might oppose a physi-
cal resistance to the growing tooth germ, thus preventing the cervical
loops to grow in the buco-lingual axis.

2. Adhesive interactions between cells in the dental mesenchyme may
regulate their level of compaction (i.e. the volume they occupy) and
thus provide more or less space for the cervical loops to grow in the
radical direction.

3. Adhesion between the dental mesenchyme and the enamel epithe-
lium would result in the latter surrounding the former. This may
create a pulling force initially directing the cervical loops radically
and later medially towards the tooth germ mid line (Salazar-Ciudad,
2008). Cells in the suprabasal layer layer express different adhesion
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molecules than the ones in the epithelium (Jussila et al., 2015; Zhao
etal., 2015), thus

4. Differential adhesion between suprabasal cells and the apical side of
the cervical loop epithelium may result in internal mechanical forces
pulling the epithelium towards the centre of the tooth germ.

Mathematical models that integrate experimental knowledge and im-
plement realistic dynamics of development can provide a preliminary frame-
work in which to explore the consistency and morphological implications
of mechanistic hypothesis and that can facilitate the understanding of such
complex dynamics (Raspopovic et al., 2014; Salazar-Ciudad and Jernvall,
2005; Zhu et al., 2010). Earlier mathematical models of tooth development
(Salazar-Ciudad and Jernvall, 2002; Salazar-Ciudad and Jernvall, 2010) were
able to predict the spatial arrangement of tooth cusps and their shape, but
considered only the IEE and the dental mesenchyme: the OEE, the follicu-
lar mesenchyme and suprabasal layer were not simulated. In these previ-
ous models the cervical loops were not represented in their entirety (only
the IEE part was) and the mechanics of their growth were implemented ad
hoc: the cervical loops were forced to grow in the radical direction with
a lateral component that depended on the proliferation rate of the dental
mesenchyme. Another model of tooth development (Takigawa-Imamura
et al., 2015) implemented slightly more realistic cell mechanics, but only in
two-dimensions and without considering neither the mesenchymal layer
nor the presence of signalling centres regulating cell proliferation. In or-
der to get a better understanding of how tooth crown and cusp height (and
sharpness) is determined a more realistic model of the mechanical interac-
tions between the IEE, the OEE, the dental mesenchyme, the dental follicle
and the suprabasal layer are required.

In this study we present a new three dimensional model of tooth de-
velopment that simulates the growth and mechanical interactions between
all the tissue types that compose the tooth germ. This new tooth model is
built as an application of a general model of embryonic development us-
ing the EmbryoMaker software (Marin-Riera et al., 2016) to address specific
questions about cell mechanics during tooth morphogenesis. We use this
model to explore the effect of differential cell growth and differential cell
adhesion on tooth morphogenesis, and more specifically on cervical loop
growth, through the mechanical forces exerted between cells during the
period between bud stage and cap stage.

The model starts after the induction of the PEK and simulates the emer-
gence of the cervical loops from the tooth bud and later the formation of
the first cusps within the tooth cap. The model predicts the separation of
the epithelium into IEE and OEE and the mesenchyme into dental and fol-
licular. Induction of the SEKs and Turing-like dynamics are not included
in the model because they take place at later stages and are not required to
address the questions raised in this study. Thus, this model does not intent
to predict the relative position of tooth cusps within the tooth crown, as
in earlier models (Salazar-Ciudad and Jernvall, 2002; Salazar-Ciudad and
Jernvall, 2010), although these features will be included in the future. Ac-
cordingly, the model is aimed to predict how the mechanical forces origi-
nated from growing tissues and cell adhesive contacts will affect the direc-
tion of growth of the cervical loops and the shape of the cusps, which will
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have a significant influence on the overall shape of the tooth crown. For that
purpose we have performed a parameter screening of the model focusing
on the parameters related to differential growth and cell adhesion, as well
as the effect of other mechanical parameters (such as cell incompressibility)
on the overall shape of the tooth germ. After that, we have performed a set
of in silico manipulations of tooth morphogenesis in order to test specific
hypotheses on the role of mechanical interactions in determining the shape
of the tooth crown and the tooth cusps.

5.3 Methods

5.3.1 Structure of the model

The tooth model was built using the EmbryoMaker modelling framework
(Marin-Riera et al., 2016).

EmbryoMaker implements generic bio-mechanics of epithelial, mesenchy-
mal cells and extracellular matrix (ECM), gene regulatory networks and a
wide range of cell behaviours (cell division, cell adhesion, cell contraction,
cell polarization, apoptosis, ECM secretion, etc.). In this model, each cell
is made of a set of sub-cellular elements, elastic bodies that have a differ-
ent shape depending on the cell type. Cells with no intrinsic polarization,
such as mesenchymal and suprabasal cells are made of spherical elements,
whereas epithelial cells, that have a marked apical-basal polarization due
to their contact with the basement membrane, are made of cylindrical ele-
ments (being the long axis of the cylinder the apical-basal axis). Each cylin-
der is composed of two parts one representing the apical portion of the cell
and the other the basal portion. By differentially applying forces onto each
one of those elements epithelial cells are allowed to tilt. The ECM is made
of spherical elements. Each element in mesenchymal cells or ECM and each
of the two portions of a cylinder are called nodes. In this article, for sim-
plicity, we chose each cell to be made of just one subcellular element, that
is two nodes for epithelial cells and one for the rest. Since embryonic cells
move in a highly viscous environment, we can assume overdamped motion
kinetics (Purcell, 1977). Thus, movement of nodes is directly proportional
to the mechanical forces exerted on them,

o <,
ot = Z S Aijui; (6.1)
j=1

where n, is the number of nodes in the embryo, r; is the position in
three-dimensional space of node i, t is time (the model uses continuous
time), fa;; is the force modulus and w;; is the unit vector between node i
and node j for spherical nodes and an analogous property for cylinders.
Nodes exert repulsive forces on surrounding nodes if the distance between
their centres is smaller than their equilibrium distance (dggp) and exert
attractive forces if the distance is larger than the equilibrium distance but
shorter than the interaction distance (d¢4PP) (fig. 5.2A). The modulus f Aij



Chapter 5. A new model of early tooth development 59

A B C

“ i

D E

111.1.

FIGURE 5.2: Epithelial (blue cylinders), mesenchymal and suprabasal layer (pur-
ple circles) cells are represented in the model as elastic bodies. A, when two cells
are in contact with each other, elastic forces tend to position both cell centres at
an equilibrium distance that is the sum of both cell radii (darker shade in the in-
ner part of the cell). Thus, if they are closer than that distance, a repulsive force
will apply, and if they are farther away than that an attractive force will apply.
B, epithelial cells are composed of two elements that define the apical and basal
portions of the cell and can move independently, but are connected through and
elastic spring. Attractive and repulsive forces between epithelial cells are always
applied in the direction normal to their lateral surfaces. C, attractive and repul-
sive forces between epithelial and mesenchymal cells are always applied in the
direction normal to the apical or basal side of epithelial cells. D, the apical-basal
length of epithelial cells is regulated by an elastic spring connecting the apical and
basal elements, and tends to maintain the distance between both at an equilibrium
value (specified as a property for each cell). E, epithelial bending forces contribute
to keeping the epithelial cells as a sheet. Two types of bending force are imple-
mented: radial (left) and rotational (right). Arrows indicate the direction of me-
chanical forces.

of the mechanical force vector is calculated as,

EQD . EQD
fais = KEPP (dgy — d%ZD) if di < d%zp
faig = k5OY(dij — dij°7) if dig > dy (5.2)
faig =0 if dij > djPP
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where d;; is the the distance between node ¢ and j, is the equi-
librium distance between node ¢ and node j, which arises from the sum
of the equilibrium radii, pEQD , of nodes i and j, and is the in-

EQD
d;,

teraction distance which is the sum of the node interaction radii pf‘D D and
pAD b kREP and kYOU are the elastic coefficients for repulsive and attrac-
t1ve forces respectlvely and they are determine by the mechanical proper-
ties of node ¢ and j. The direction of force vectors differ between mesenchy-
mal-mesenchymal, epithelial-epithelial and the epithelial-mesenchymal node
interactions, since vectors need to be normal to the contact interface be-
tween nodes and nodes have different shapes in epithelial cells and mes-
enchymal cells (fig. 5.2A,B,C, see Chapter 4 and Appendix B for a detailed
explanation). Attractive forces (fa;; > 0) represent the tendency of con-
tacting cells to stick together by means of adhesive contacts and the tension
exerted by the actomyosin skeleton, whereas repulsive forces (f4;; < 0)
represent the tendency of cells to restore their equilibrium volume when
they are compressed. The apical and basal nodes of epithelial cells are con-
nected by an elastic spring that opposes any departure from an equilibrium
distance between the apical and basal nodes of each cylinder (fig. 5.2D). The
force generated by the spring connecting both epithelial nodes is calculated
as follows,

Fsir = kHOO(diy, — pP9%)siy (5.3)

where k:g 00 HOO 4 pH 00 js the elastic coefficient of the spring

HOO in

=P
(which is determined by the sum of the mechanical parameter p
both nodes), d;; is the distance between node ¢ and j, ngS is the equi-
librium length of the spring between node i and j and sj; is the unit vec-
tor connecting the two epithelial nodes. Two additional force components
are required in epithelial cells in order for them to organize as one layered
sheets (fig. 5.2E). A radial force acts along the apical-basal axis of the cell
and tends to restore displacements in that axis in respect to neighbouring
cells in the epithelium, whereas a rotational force acts tangential to surface
of the epithelium and tends to orient the apical-basal axis of cells normal to

the epithelial plane. These forces are calculated as follows,

m C
fESTz] kESTM zjkl (54)
Ml
Sik * Cii .
fERP’L] = kERP Z‘S—» ‘l‘] cij (55)
ik

where frsr;; is the radial bending force and frgrpi; is the rotational
bending force. We define c;; as the vector connecting neighbouring node i
and j, s, and sj; as the vectors that connect each apical node to their basal
counterparts and m;jj; as the sum of s;;, and s;; which defines the vector
normal to the apical or basal surface between i and j. The radial bending
force always acts on the direction of m;j;; and is proportional to the devi-
ation of the angle formed by m;j,; and ¢j; from 90° (the angle found when
to cylinders are totally aligned). kg ST is the sum of the mechanical param-
eter p©57 of nodes i and j. (see Chapter 4 and Appendix B for a detailed
explanation). The rotational bending force is proportional to the deviation

of the angle formed by s}, and ¢;; from 90°, but in this case the direction of
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the force is parallel to ¢;;j, thus promoting a tilting of the epithelial cylinder
that reaches an equilibrium (that is the force modulus becomes 0) when the
apical-basal axis of the epithelial cylinder is normal to the apical /basal cell
surface. k7" is the sum of the mechanical parameter p”/** of nodes i and
Jj. (see Chapter 4 and Appendix B for a detailed explanation).

In summary, the forces acting on an epithelial node are:

87? . j:nd A . .
aftl = fsik Z faiji; + feEsTij + [ERP; (5.6)
=1

where k is the node in the same cylinder than i and the sum is made
over all the neighbouring nodes except for k.

Nodes are also containers of gene products. Gene products are pro-
duced by cells. Gene product transcription within a node is calculated as

follows,
Ng
¢ <Z tlkﬂil)
=1

g
1+@ <Z tlkgil)
I=1

where Q;; is the rate of transcription of gene k in node 4, g; is the
amount of transcriptional factor / in node i and each ¢;;, term is the strength
by which each specific transcriptional factor k activates (positive ¢;;, ) or in-
hibits (negative ¢;;) the transcription of gene I. ® is a function that is equal
to 0 for values of x smaller than 0 and equals to  when z is greater than 0
(®(x) =0if x < 0and ®(x) = =z if z > 0). This function is used to ensure
that there is not such a thing as negative transcription (although t;, can
be negative and thus repress transcription) (see Chapter 4 and Appendix
B for a detailed explanation). Extracellular signal diffusion follows Fick’s
second law and takes place between nodes (see Chapter 4 and Appendix B
for a detailed explanation). Because of that, we ensure that there are never
empty spaces within the tooth in the model system. Extracellular signals
can interact with their corresponding receptor to activate signal transduc-
tion. In order to model the kinetics of ligand receptor binding we consider
three different molecular species, the free ligand, the inactive receptor and
the receptor-ligand complex. The kinetics of receptor-ligand binding are as
follows,

Qir = (5.7)

Sic = a19i19ik — A—1ic (5.8)

where [ is the free ligand, k is the free receptor, c is the receptor-ligand
complex, S;. is the rate of production of ¢ on node i, g;,. is the concentration
of gene product z on node i, and a; and a_; are the forward and backward
constants for the ligand-receptor binding reaction respectively and are set
as model parameters. (see Chapter 4 and Appendix B for a detailed expla-
nation).

Gene products may affect the mechanical properties of cells and regu-
late cell behaviours. Given a mechanical property p, a gene product k will
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affect its value as follows,

pi(t) = @ (Pé(o) +(1=pP") Y 61k9¢k> (5.9)

k=1

where pl(t) is the value of node property [ in node i at time ¢ and p(0) is
the value of that node property [ in node i when the node was created (this
is in the initial condition or when the node first arose through growth). ®,
as in equation 5.7, function ensures that node properties can become very
small (or zero) but not negative.

Cell adhesion is mediated by a special type of gene product defined
as adhesion molecule. Cells may produce adhesion molecules following
equation equation 5.7. Given two neighbouring nodes, the strength of their
mutual adhesion depends on their intrinsic adhesivity plus the product of
the concentrations of each pair of adhesion molecule types expressed in
each node and their binding,

NMADH MADH

kO = pftPH 4 pPH Z Z (919j4B1q) (5.10)
=1 g=1

where k};OU is the elastic coefficient defined in equation 5.2, napy is
the number of different types of adhesion molecules, g;; is the amount of
adhesion molecule [ in node i, gj, is the amount of adhesion molecule ¢ in
node j and By, is the affinity coefficient between adhesion molecules [ and
q (genetic parameter).

Cell proliferation is implemented as the splitting of one cell into two
daughter cells of equal size. Each cell has a cell cycle variable PP#4 that can
take values from 0 to 1. All cells divide when P"#4 = 1 and that variable
resets to 0 in both daughter cells after they divide. Cell cycle progression
depends on the presence of certain gene products that are set to regulate
the cell cycle. Cell cycle progression is calculated as follows,

g

PHA "h
8Ph = 1h Z Z CmdZ9im (511)

ot n

i=1 m=1

where h is the cell index, ¢, specifies the ability of gene product m to
regulate the cell cycle and g;,, is the concentration of gene product m in
node i (belonging to cell ). ny, is the number of nodes composing cell A (1
for mesenchymal and suprabasal cells and 2 for epithelial cells). Dividing
the term by 7, ensures that cells with more nodes do not divide faster.

5.3.2 Model setup and initial conditions

The tooth model considers three tissues. 1) The enamel epithelium is com-
posed of epithelial cells, each made of a cylinder, in contact with the mes-
enchyme; 2) the suprabasal layer is composed of cells consisting of single
spherical nodes and they are located at the apical side of the epithelium and
3) mesenchymal cells, each made of a spherical node, located at the basal
side of the epithelium (fig. 5.3A). Even though at later stages of tooth de-
velopment the suprabasal cells become vacuolated cells and secrete a large
amount of ECM, in the stages considered for this model the suprabasal
layer consists of compact tissue (Sasaki et al., 1984).
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FIGURE 5.3: In the model 3 types of cells are specified: epithelial (blue cylinders),
suprabasal (yellow spheres) and mesenchymal (purple spheres). A, differential
cell proliferation in the model. An oblique view of a frontal section of the simu-
lated tooth germ is shown. A group of epithelial cells is specified as a signalling
centre (red cylinders), and secrete a growth factor that diffuses to the nearby tis-
sues. Epithelial, suprabasal and mesenchymal cells that are within the diffusive
range of the signal (green, cyan and orange) will divide at a certain rate. White
arrows indicate the different spatial axes, occlusal (up), radical (down), bucal (left)
and lingual (right). B, differential adhesion in the model. Each cell type expresses
one specific type of adhesion molecule. Each couple of adhesion molecule types
has a different binding affinity that is specified by model parameters. Color bars
depict the different kind of adhesive interactions, epithelial homotypic (cyan),
epithelial-suprabasal (orange), epithelial-mesenchymal (green), suprabasal homo-
typic (black) and mesenchyme homotypic (white). C, the resulting phenotype of
different simulations is shown in which the mesenchymal proliferation rate was
varied and the other parameters were kept constant. High values of mesenchymal
proliferation lead to blunt, flat cusps while low values lead to thin, sharp ones.
Epithelial and suprabasal proliferation rate are set to 0,25 and 0,03 respectively. D,
the resulting phenotype of different simulations is shown in which the epithelial-
mesenchymal adhesion was varied and the other parameters were kept constant.
An effect on tooth germ shape similar to the one seen in C can be observed. All
other adhesion parameters were set to 1,0.
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All cells in a tissue express a specific gene product that acts as a tran-
scription factor. All cells in a tissue express a tissue-specific adhesion molecule
and a specific receptor for growth factors. In vivo, epithelial cells express
different types of cadherins, a type of adhesion molecule that mediates cell-
cell contacts. Cells in the enamel epithelium express a different type of
cadherin than the ones in the suprabasal layer (Jussila et al., 2015; Zhao et
al., 2015), but also integrins, a type of adhesion molecule that mediates cell-
ECM contacts. Since mesenchymal cells are mostly surrounded by ECM
they mostly express integrins, and thus strictly there is no such thing as
cell-cell adhesion in the mesenchyme. However, for simplicity we assume
that adhesion contacts between mesenchymal cells and between epithelium
and mesenchyme are mediated by the ECM. In other words, the adhesion
between two mesenchymal cells or between a mesenchymal and an epithe-
lial cell considers the binding affinity of cell surface adhesion molecules
(such as integrins) to the ECM and the adhesivity between the components
of the ECM between both cells. By making each tissue express a different
type of adhesion molecule in the model we can test hypotheses on how
the differential adhesion between tissues affects tooth morphogenesis (fig.
5.3B).

In the model a group of epithelial cells is specified as a signalling centre
reminiscent of the PEK by expressing a specific transcription factor. That
transcription factor promotes the transcription and secretion of an extracel-
lular signal (from now on the growth factor) that diffuses to the surround-
ing cells and interacts with each tissue-specific receptor. The binding be-
tween the growth factor an each type of receptor promotes the transcrip-
tion of specific effector genes that regulate the progression of the cell cycle
in each tissue. Thus, in the model only cells close to the signalling centre
proliferate, while the rest remain non proliferative. This way we make sure
cell proliferation takes places only in the inner enamel epithelium (IEE) and
the dental mesenchyme, while the outer enamel epithelium (OEE) and the
follicular mesenchyme remain non-proliferative, in accordance with exper-
imental observations (Rothova, Peterkovd, and Tucker, 2012). We imple-
ment this simple signalling system in which each tissue expresses a specific
effector molecule to systematically explore the effects of the proliferation
rates in each different tissue on tooth morphology. The signalling centre
transcription factor inhibits the transcription of growth factor receptors,
thus those cells are insensitive to the growth factor they produce and never
proliferate.

The period of tooth development considered in this study goes from
the bud stage (E13) to the cap stage (E15). The initial conditions consist
of an epithelial bud elongated in the anterior-posterior direction, covered
by a layer of mesenchymal cells on the epithelial basal side. Cells at the
borders of the epithelium are unable to move since they are mechanically
attached to the oral epithelium. A horizontal unsurpassable barrier is put
just above the edge of the tooth germ, emulating the boundary between the
oral epithelium and the oral cavity. The temporal progression of the model
has been solved using the Euler method (see Chapter 4 and Appendix B)
and each simulation has been solved for 20000 time steps with a step size
of 0,01.
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Model parameter screening. Parameter screenings were carried out by
simulating the transition from bud to cap stage with different parameter
values. In each parameter screening some parameters were chosen to get
different values and the rest were kept constant. A range of 3 or 5 different
values were chosen for the selected parameters and all the combinations
between them were generated and run in the model.

Tissue separation assays. Partial mesenchyme removal. At the bud stage
initial conditions, all mesenchymal cells above a certain value of the z axis
were removed, leaving only the ones closer to the signalling centre and the
ones that presumably will form the dental papilla. After that the simulation
was run normally.

Whole mesenchyme removal. A simulation was run from normal initial
conditions until cap stage. Then all mesenchymal cells were removed, cell
proliferation was repressed and then the simulation was further run until
the tissue reached mechanical equilibrium.

5.4 Results

5.4.1 Mesenchymal cell proliferation and epithelial-mesenchymal
adhesion contribute to the shape of the cusps

Figure 5.3A shows a frontal section of a simulated mouse molar at cap stage.
Figure C.1A shows the developmental time sequence of the model molar
until late cap stage (E15). A parameter screening on the rates of cell prolifer-
ation on the epithelium, suprabasal layer and mesenchyme was carried out
in order to find the range of parameters for which wild-type molar pheno-
types arises (fig. C.1B). Tooth morphogenesis was simulated starting from
the bud stage and different values for the rates of cell proliferation in the
basal epithelium, suprabasal layer and mesenchyme were set in each case.
Wild type tooth phenotypes arose only for a restricted range of cell pro-
liferation rates (fig. C.1B). In simulations where the rate of epithelial cell
proliferation is high, the epithelium between the two cervical loops folds
at one or several points, resulting in shapes reminiscent of tooth cusps (fig.
C.1C). Figure 5.3C shows the effect of differential growth in the shape of
cusps. Since mesenchymal proliferation only takes place under the sig-
nalling centre in the model, a high rate of mesenchymal cell proliferation
will contribute positively to the final volume of the dental mesenchyme,
which makes the tooth crown flatter and tooth cusps blunter (fig. 5.3D, first
two pictures from the right). A low rate of mesenchymal proliferation, in
contrast, will result in a high curvature at the tips of the cusps (i.e. sharp
cusps, fig. 5.3C, first two from the left). A similar effect on tooth cusp mor-
phology can be observed when the heterotypic adhesion strength between
epithelium and mesenchyme is varied (fig. 5.3C). Tooth crowns with low
value of epithelial-mesenchymal adhesion will tend to have sharper cusps
while high values will result in blunter cusps. It has to be noted, however,
that the heterotypic adhesion of epithelium and mesenchyme has an effect
on how much the cervical loops envelope the dental mesenchyme. When
the adhesion is lowest (fig. 5.3D first from left) the cervical loops don’t
entirely surround the mesenchyme under the signalling centre, leaving a
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significant part of it outside the tooth crown. That means the amount of
mesenchymal cells enclosed within the IEE and thus the size of the dental
mesenchyme is dependent on the epithelial-mesenchymal heterotypic ad-
hesive strength, which in turn may affect the bluntness of cusps the same
way mesenchymal cell proliferation does.

5.4.2 Strong adhesion within the follicular mesenchyme and high
epithelial-mesenchymal adhesion affects the angle of cervi-
cal loop growth

In order to assess the effect of mesenchymal cell adhesion on the direction
of growth of the cervical loops in the model, we performed a parameter
screening modifying the parameters related to the binding affinities be-
tween the adhesion molecules expressed in the epithelium and the mes-
enchyme. Figure 5.4A shows that simulations in which the homotypic
adhesion strength between mesenchymal cells was high resulted in tooth
germs that were narrow, with the cervical loops pointing downwards, whereas
in simulations where mesenchymal homotypic adhesion was low, tooth
germs were wide and cervical loops grew in the buco-lingual direction.
No apparent differences were observed when the heterotypic adhesion be-
tween epithelium and mesenchyme was varied across simulations (fig. 5.4A).

In order to assess whether the effect of mesenchymal cell adhesion on
the phenotype was mediated only by the follicular mesenchyme cells or
also by the dental mesenchyme, we ran a set of simulations with the same
parameter values as in figure 5.4A, but removing the prospective follicu-
lar mesenchyme at the initial conditions (fig. 5.4B). This allows to explore
in isolation the effect of the dental mesenchyme itself on the direction of
growth of the cervical loops. Removal of the follicular mesenchyme re-
sulted in tooth germs that were wider in the buco-lingual axis compared to
the ones that kept it (fig. 5.4A,B). In the simulations where follicular mes-
enchyme was missing, a high homotypic adhesion in the mesenchyme led
the cervical loops to point radically, but that effect was more marked when
the heterotypic adhesion between epithelium and mesenchyme was high
(tig. 5.4B top right). Thus in the model, both a high homotypic adhesion
of the dental mesenchyme plus a high adhesion between it and the inner
enamel epithelium can drive the cervical loops to grow radically.

5.4.3 High homotypic adhesion strength of suprabasal cells re-
sults in buco-lingual orientation of the cervical loops

Figure 5.4 shows that in tooth simulations where there is neither homo-
typic mesenchymal nor heterotypic epithelial-mesenchymal adhesion (fig.
5.4 bottom left image both in A and B), the cervical loops tend to grow in the
buco-lingual axis and barely in the occlusal-radical axis. That is, in absence
of adhesion-mediated mechanical forces in the mesenchyme, the cervical
loops mostly grow in the buco-lingual axis.

That led us to wonder what are the effects of epithelial and suprabasal
cell adhesion in the shaping of the tooth germ. Figure 5.5A shows a set of
simulations run with different values of homotypic adhesion of the suprabasal
layer and heterotypic adhesion between epithelium and suprabasal cells. It
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FIGURE 5.4: A, the resulting phenotype of different simulations is shown in which
the mesenchymal homotypic adhesion and heterotypic epithelial-mesenchymal
adhesion were varied and the other parameters were kept constant. Picture at
the top indicates the initial conditions at bud stage. A strong adhesion between
mesenchymal cells results in narrower tooth germs and cervical loops pointing
radically. B, a set of simulations using the same parameter values as in A were
run, but in this case the upper part of the mesenchyme was removed from the
initial conditions (top picture), in order to simulate tooth morphogenesis in ab-
sence of follicular mesenchyme. Simulated tooth germs in absence of follicular
mesenchyme are wider than the ones in A, especially when the adhesion strength
in the mesenchyme is high. A high adhesion strength in the mesenchyme and
between epithelium and mesenchyme is required for the cervical loops to point
radically. Epithelial cells depicted in blue, suprabasal in yellow, mesenchymal
cells in purple and epithelial signalling cells in red. All simulations were run for
20000 time steps. Epithelial homotypic adhesion, epithelial-suprabasal adhesion
and suprabasal homotypic adhesion were set to 1.0 in all the simulations.

can be observed that, as long as there is a mechanical coupling between ep-
ithelium and suprabasal layer (i.e. heterotypic epithelial-suprabasal adhe-
sion greater than 0), higher values of homotypic adhesion of the suprabasal
layer will result in cervical loops growing in the buco-lingual direction
rather than in the radical direction. This effect is more marked when the
mesenchymal homotypic adhesion is equal to 0 (fig. 5.5B). It is worth not-
ing that when there is no heterotypic adhesion between epithelium and
suprabasal layer the cervical loops consistently grow radically (fig. 5.5A,B
left columns). In other words, the cervical loop epithelia need to be mechan-
ically attached to the suprabasal layer in order to grow in the buco-lingual
direction. In addition, when simulations run with high and low values of
epithelial homotypic adhesion were compared, no significant differences
were observed (fig. C.2). We also observed the same effect of suprabasal
layer homotypic adhesion on the orientation of the cervical loops for other
tooth germ shapes (i.e. tooth germs with thicker cervical loops, fig. C.3).
Thus, in the model the direction of growth of the cervical loops is greatly
influenced by the adhesive properties of the suprabasal layer, but not by
the ones of the epithelium.
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In order to understand why does the increasing of the homotypic adhe-
sion in the suprabasal layer results in cervical loops growing in the buco-
lingual direction, we analysed in more detail the mechanical forces at the
cell level both in the epithelium and in the suprabasal layer in the model. In
order to isolate the effect of forces acting on the epithelium and suprabasal
layer only, we took simulated teeth at cap stage, removed the mesenchyme
entirely and observed how the tooth germ would deform as a result of me-
chanical relaxation. In order to observe the effect of differential adhesion
in epithelium and suprabasal layer during tissue relaxation, multiple sep-
aration assays were simulated by using the same cap stage tooth (simu-
lation time = 8000, adhesion parameters used: epithelial-epithelial = 1.0
, epithelial-suprabasal = 1.0 , epithelial-mesenchymal = 1.0 , suprabasal-
suprabasal = 1.0, mesenchyma-mesenchymal = 1.0) and varying the param-
eters of epithelial-suprabasal heterotypic adhesion and suprabasal layer ho-
motypic adhesion before separation of the mesenchyme and relaxation (fig.
5.5C,D). Using the same initial conditions allowed us to compare the de-
formation observed between the different separation assays. The way we
change the adhesive properties of the tissue before separation of the mes-
enchyme and relaxation would be analogous to an experimental setting in
which tooth germs are treated with drugs that affect the stability of ad-
herens junctions and their coupling to the cytoskeleton for the different ad-
hesion molecules expressed in the epithelium and the suprabasal layer. Cell
proliferation was inhibited during these simulations in order to observe the
sole effect of the mechanical relaxation in the tooth germ. In the model, both
epithelium and mesenchyme are under a certain degree of compression
exerted by the surrounding follicular mesenchyme during growth. Thus,
when the mesenchyme is removed, the tooth epithelium tends to expand
and the cervical loops elongate up to a certain degree (fig. 5.5C).

Our results show that when the suprabasal homotypic adhesion is high
the cervical loops bend towards the buco-lingual axis. The same tendency
can be observed for other combinations of mechanical parameters, such as
epithelial homotypic adhesion and cell incompressibility (fig. C.4). During
the mechanical relaxation, average cell mechanical stress (f4;;, calculated
as in equation 5.2 and 5.10, see section 5.3.1) in the epithelium and in the
suprabasal layer were measured at each time step. Figure 5.5D shows the
mechanical stress profiles during relaxation for the simulations depicted
in fig. 5.5C. Both suprabasal layer and epithelium started with negative
mechanical stresses (i.e. compression) that rapidly increased and reached
a steady state, meaning that the system had reached a global mechanical
equilibrium. Note that a global mechanical equilibrium means that the sum
of all forces in the system equals 0, but at the same time the local sum of
forces in a small region or over a specific tissue it’s not necessarily 0. In the
simulations without adhesion between the epithelium and the suprabasal
layer (5.5D left column) both tissues reached mechanical equilibrium at 0
mechanical stress (i.e. neither compression nor tension). In contrast, when
both tissues were mechanically coupled through heterotypic adhesion con-
tacts (fig. 5.4D middle and right columns) epithelial cells only reached
0 mechanical stress when homotypic adhesion strength in the suprabasal
layer was 0 (fig. 5.5D bottom row). When the suprabasal homotypic ad-
hesion was high (fig. 5.5D top row), a steady state was reached in which
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suprabasal cells had a positive mechanical stress (i.e. tension) and epithe-
lial cells had a negative stress (i.e. compression). Thus, in the simula-
tions where a high homotypic adhesion of the suprabasal layer was set and
the cervical loops were more aligned with the buco-lingual axis, a global
mechanical equilibrium was achieved in which epithelium and suprabasal
layer were under compression and tension respectively along the length of
the cervical loop, but they balanced each other through heterotypic adhe-
sion contacts between them.

5.4.4 Cell incompressibility and other mechanical parameters do
not qualitatively affect the shaping of the tooth germ in sim-
ulated teeth

Variation in other mechanical parameters within the model was explored in
order to identify other possible factors that influenced the shaping of the de-
veloping tooth germ (fig. C.5). Tooth development was simulated varying
cell incompressibility in epithelia, suprabasal layer and mesenchyme inde-
pendently (fig. C.5A, B, C). It can be observed that high cell incompressibil-
ity in the suprabasal layer results in a larger volume of that tissue compared
with the cases where incompressibility is low. High incompressibility in the
epithelium results in a larger epithelial surface and longer cervical loops
(compare images between fig. C.5A, B and C). No effect is observed when
cell incompressibility is varied in the mesenchyme. That accounts for the
fact that epithelium and suprabasal cells, but not mesenchymal, are under
compression during morphogenesis in the model (tig. C.6). Variation in
parameters related to epithelial bending forces didn’t show any effect on
tooth germ shape except when they were set to 0, in which case cells lost
the ability to remain aligned in the epithelial plane and the tooth epithelium
broke (fig. C.5D).

5.5 Discussion

We have built a model of tooth development that implements realistic cell
mechanics of all the cell layers of the tooth germ, and it has provided pre-
dictions on how mechanical forces mediated by cell-cell adhesion may in-
fluence the growth of the cervical loops and the shaping of the tooth cusps
in the model. Tooth morphogenesis is achieved in the model through the
differential growth and adhesion of epithelia, mesenchyme and suprabasal
layer, mediated by extracellular signalling from a non-proliferative epithe-
lial signalling centre reminiscent of the primary enamel knot (PEK).

Earlier models of tooth development implemented the induction and
patterning of the secondary enamel knots (SEK) through a Turing-like sig-
nalling network (Salazar-Ciudad and Jernvall, 2002; Salazar-Ciudad and
Jernvall, 2010). Even though it is not possible to determine the final shape
of the tooth crown without considering that process, it was out of the scope
this study to implement the induction of the SEKs and the Turing-like dy-
namics, since they were not required for addressing the questions raised
in this study, which focus on the orientation of the cervical loops during
morphogenesis.
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Recently, a two-dimensional model of tooth development has been pre-
sented that simulates the mechanical interactions between IEE, OEE and
suprabasal layer during the transition from bud to cap stages (Takigawa-
Imamura et al., 2015). The authors propose a mechanism by which two or
more epithelial folds, reminiscent of cervical loops and tooth cusps, emerge
from the tooth bud due to the mechanical instability created by the differ-
ential growth between epithelium and suprabasal layer. However, mor-
phologies in the model seldom resembled real tooth morphologies. This
was probably due to the fact that they did not include a signalling centre
that would regulate localized growth and they did not include any kind of
mesenchymal tissue, which did not allow to model any kind of mechanical
interaction between epithelium and mesenchyme. Although their predic-
tions regarding the emergence of epithelial folds are in accordance with our
predictions on the same aspect (see section 5.4, fig. C.1), in our model the
location of cell proliferation in specific regions has a large effect on how me-
chanical forces are distributed across tissues, which makes our model more
realistic and more suited to address the questions related to tissue mechan-
ics and cell adhesion raised in this study:.

Differential growth between IEE and dental mesenchyme regulates the
sharpness of tooth cusps. The model provides predictions about how dif-
ferential cell growth contribute to the shape of the cusps. Our model sup-
ports the hypothesis that higher ratios of epithelial to mesenchymal growth
rates will lead to sharper cusps and vice versa. Epithelial and mesenchymal
growth rates determine the resulting surface area and volume of the tooth
cusp respectively, thus high ratios of epithelial to mesenchymal growth will
translate into high surface area to volume ratios of the cusp which means
they will be sharp (fig. 5.3C). In contrast, model predictions on the effect
of epithelial-mesenchymal cell adhesion on cusp shape are rather contro-
versial. According to the differential adhesion hypothesis (Townes and
Holtfreter, 1955) high heterotypic adhesion between epithelium and mes-
enchyme relative to mesenchymal homotypic adhesion should lead to high
level of contact surface area between epithelium and mesenchyme relative
to mesenchymal volume, which would result in sharp cusps. However, that
is in contradiction with model predictions. In the model, higher heterotypic
adhesion strengths result in the cervical loops surrounding a larger num-
ber of mesenchymal cells, which means the resulting dental mesenchyme
will have a greater volume, thus mimicking the effect of increased mes-
enchymal proliferation on cusp shape (fig. 5.3D). It has been proposed
that polarized cell division and directed cell rearrangements and migra-
tion in the mesenchyme play an important role in the morphogenesis of
some developing systems such as the vertebrate limb (Boehm et al., 2010;
Linde-Medina, Hallgrimsson, and Marcucio, 2015). Even though these cell
behaviours were not included in this model for the sake of simplicity, we ac-
knowledge they might have a role in determining the shape of tooth cusps.

Homotypic adhesion within the mesenchyme and heterotypic adhesion
with the epithelium directs the growth of the cervical loops in the rad-
ical direction. The model predictions support our hypotheses regarding
the role of cell adhesion in the follicular mesenchyme, dental mesenchyme
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and suprabasal layer in determining the direction of growth of the cervi-
cal loops. Since follicular mesenchyme cells don’t proliferate in the model
(and neither they do in vivo, Peterkova et al., 2014), the overall growth of
the tooth germ leads to a stretch of the follicular mesenchymal cell layer
(fig. C.6A). That will result in the adhesive bonds between follicular mes-
enchyme cells generating tensile forces tangential to the surface of the OEE
(fig. C.6) that oppose a mechanical resistance to the growth of the tooth
germ in the bucal and lingual direction. The fact that in the model cervical
loops grow in the bucal-lingual direction in the absence of adhesion in the
mesenchyme (fig. 5.4A) and that simulated tooth germs are wider when the
follicular mesenchyme is removed at the starting stage (fig. 5.4B) support
that hypothesis. If that is case in vivo, we should expect cells within the
tooth germ to be under compression and cells in the follicular mesenchyme
to be under tension. It has been shown, although at earlier stages, that the
cells conforming the mesenchymal condensate under the tooth bud are un-
der mechanical compression (Mammoto et al., 2011), however there is not
to our knowledge any evidence of the follicular mesenchyme to be under
tension. Even though direct measurements of mechanical stresses during
development have not been yet achieved on teeth, the presence of tensile
forces could be inferred by assuming that a directional mechanical stress
should result in cells being stretched in the same direction (Panousopoulou
and Green, 2016). Additionally, at the stages of tooth development con-
sidered, the jaw mesenchyme is starting to differentiate into bone. Since
mineralized bone tissue will present a rigid barrier to the growth of the
tooth germ, we would expect it to have the same effect on the growth of the
cervical loops as the compression exerted by the follicular mesenchyme.

The model predicts that the heterotypic adhesion between IEE and den-
tal mesenchyme contributes to the growth of the cervical loops in the rad-
ical direction. By means of homotypic adhesive bonds, mesenchymal cells
form a cohesive mass under the signalling centre, while cells at the edges
of this mass will pull the IEE (and thus the cervical loop) radically through
heterotypic adhesive interactions. As the cervical loops grow longer, they
keep enveloping the dental mesenchyme and start growing towards the
mid line of the tooth germ (fig. 5.4B). Thus, the model predicts that both
the adhesion of the dental mesenchyme to the IEE and the compression
that the follicular mesenchyme exerts on the cervical loops drive their di-
rection of growth in the same manner. In order to experimentally test these
two hypotheses, it would be necessary to isolate the effects of follicular and
dental mesenchyme by removing the follicular mesenchyme but not the
dental mesenchyme, as we did in the model (fig. 5.4B).

Homotypic adhesion of the suprabasal cells directs the growth of the cer-
vical loops in the bucal-lingual axis. According to the model, mechani-
cal stresses in the suprabasal layer mediated by homotypic and heterotypic
bonds also have an effect on the direction of growth of the cervical loops
(fig. 5.5). During the elongation of the loops, suprabasal cells attached
to the apical side of the cervical loop epithelium are stretched (fig. 5.5D),
so as long as there is homotypic adhesive bonds between suprabasal cells
they will pull the cervical loop towards the body of the tooth germ. This
is supported by the fact that in the simulations where adhesion between
epithelium and suprabasal layer is 0, but homotypic suprabasal adhesion is
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greater than 0, the suprabasal cells don’t follow the tip of the cervical loops,
but instead remain in the centre of the tooth germ conforming a more or
less round mass (fig. 5.5A,B left columns). Thus, stronger homotypic adhe-
sive bonds in the suprabasal cells will result in larger mechanical tensions
along the cervical loops as a result of the tendency of those cells to form a
round body. That tension will act like an elastic cable running from tip to
tip of the cervical loops through the main body of the tooth germ, forcing
them to become straight and reducing the overall curvature of the IEE (fig.
5.5C,D, C.6B). Thus, the model predicts that as long as cervical loops form
in the tooth bud and the suprabasal homotypic adhesion and epithelium-
suprabasal heterotypic adhesion are greater than 0, the suprabasal cells will
exert a tensile force along the length of the cervical loops. In order to exert
this kind of mechanical stresses in vivo, suprabasal cells should be in close
contact and have strong adhesive bonds with each other, thus we expect
these mechanical forces to take place before suprabasal cells start to vacuo-
late and secrete extracellular matrix. As mentioned above, the presence of
mechanical tension in the suprabasal layer could be inferred by assessing
whether cells are elongated in the direction of growth of the cervical loop.

The direction of growth of the cervical loops is regulated by a balance
of forces exerted between mesenchyme, epithelium and suprabasal cells.
Our model suggests that the direction of growth of the cervical loops is
greatly influenced by mechanical forces exerted by cells in the epithelium,
mesenchyme and suprabasal layer by means of intercellular adhesive in-
teractions. The range of orientations of the cervical loops spans from being
close to parallel to the buco-lingual axis to being aligned with the occlusal-
radical axis and even pointing towards the tooth germ mid line. In the
model we have identified three factors that play antagonistic effects in de-
termining that orientation. On the one hand, buco-lingual compression of
the follicular mesenchyme and pulling of the cervical loops by the dental
mesenchyme contribute to the radical and towards the mid-line growth of
the cervical loops (fig. 5.1B). In the other hand, internal mechanical tensions
from the suprabasal layer contribute to the growth of the cervical loops par-
allel to the buco-lingual axis (fig. 5.1C). Thus, the model predicts that the
balance between these three factors will determine the direction of growth
of the cervical loops and the overall shape of the tooth crown. We have
checked the effect of other model parameters not related to cell adhesion
on tooth germ shape, but variation in none of them contributes significantly
this aspect of tooth germ shape (fig. C.5).

It has been shown in some invaginated epithelial organs, such as sali-
vary and mammary glands (Gjorevski and Nelson, 2012; Larsen, Wei, and
Yamada, 2006; Shih et al., 2015), that active cell migration at the tips of ep-
ithelial buds plays an important role in driving organ morphogenesis. It is
not known yet whether cells at the tip of the cervical loops actively migrate
towards the mesenchyme or are passively driven by tissue growth. Even
if cells at the tips of the loops were actively migrating towards the mes-
enchyme by following some kind of spatial cues, we argue that they would
still be greatly influenced by the mechanical forces exerted by the mes-
enchyme and the suprabasal layer and thus the predictions of this model
would still be valid.
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Taken together, this new model sheds some light into the less known,
biomechanical aspects of tooth morphogenesis and their role in the emer-
gence of some morphological features not usually considered in studies of
tooth development. Even though the cervical loops are a transient struc-
ture in tooth development, their specific morphology will determine the
overall shape of the tooth crown and influence the relative positions of the
tooth cusps (fig. 5.1B,C). This model and the predictions provided by it thus
emphasize the importance of the biomechanical aspects of development in
order to account for phenotypic variation and evolutionary change.
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FIGURE 5.5: A, the resulting phenotype of different simulations is shown in which
the mesenchymal homotypic adhesion and heterotypic epithelial-mesenchymal
adhesion were varied and the other parameters were kept constant. Mesenchy-
mal homotypic adhesion is set at 1.0 . A strong adhesion between suprabasal cells
results in cervical loops growing in the buco-lingual direction. B, a set of sim-
ulations was run using the same parameter values, except for the mesenchymal
homotypic adhesion that was set to 0. The effect on the direction of growth of the
cervical loops is more marked than in A. All simulations were run for 20000 time
steps in A and B. Epithelial homotypic adhesion was set to 1.0 and cell incom-
pressibility to 0.5 for simulations in A and B. C, a simulated tooth at cap stage (top
picture, 16000 time steps) was taken and all the mesenchyme was removed. Then
the remaining epithelium was allowed to mechanically relax. The shape of the
tooth germ is shown after relaxation for different values of suprabasal homotypic
adhesion and epithelium-suprabasal heterotypic adhesion. The angle formed by
the cervical loops respect the occlusal-radical axis increases after relaxation when
the homotypic adhesion of the suprabasal cells is high. Epithelial homotypic ad-
hesion is set to 1.0 and cell incompressibility is set to 3.0 for these simulations. D,
for each simulation depicted in C, a temporal profile of the average cell mechanical
stress in the epithelium (red) and suprabasal layer (green). Negative values mean
compression and positive values mean tension. Higher homotypic adhesion in the
suprabasal layer results in suprabasal cells being in a state of mechanical tension
while the epithelium is in compression. Tissues were allowed to relax for 30000
time steps.
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Chapter 6

Discussion

In this thesis we have studied the role of the genotype-phenotype map
(GPM) in the distribution of phenotypic variation arising from develop-
ment and its effect on the evolutionary dynamics of populations. By using
the mammalian tooth as a model system, which is characterized by high
complexity at both the level of phenotype and at the level of the GPM, we
have simulated its development and evolution by means of mathematical
models. This has provided us with predictions on how the complexity of
the GPM affects the distribution of phenotypic complexity (see Chapter 3,
Salazar-Ciudad and Marin-Riera, 2013) and morphological variation (see
Chapter 5) with respect to genetic variation and and also predictions on
how the GPM affects the effectiveness of natural selection in driving popu-
lations to an adaptive optimum (see Chapter 3, Salazar-Ciudad and Marin-
Riera, 2013).

This has been achieved first by using a tooth development model previ-
ously published (Salazar-Ciudad and Jernvall, 2010) that accounted for the
inductive (changes in gene expression patterning due to cell signalling) and
morphogenetic (cell movements) events taking place in the inner enamel
epithelium (IEE) of the developing tooth. Even though this model is able to
reproduce realistic morphological variation regarding the positioning and
shape of the tooth cusps, there are some aspects of tooth development that
were not explicitly considered in this model, and so were implemented ad
hoc. That imposes a number of limitations on the explanatory power of that
model regarding the effect of mechanical interactions between the different
cell layers of the tooth germ on the final shape of the tooth crown and tooth
cusps.

Thus, in order to increase the predictive power and the level of real-
ism not only of the tooth model, but also of other models of development,
we designed a general modelling framework accounting for the dynam-
ics of epithelia, mesenchyme and extracellular matrix (ECM) (Marin-Riera
et al., 2016). This new modelling framework implements basic cell me-
chanics of epithelial, mesenchymal cells and ECM, the majority of cell be-
haviours known to happen during development (Salazar-Ciudad, Jernvall,
and Newman, 2003) and custom gene regulatory networks. The modelling
framework was shown to be able to predict the GPM and variational prop-
erties of the most basic developmental mechanisms (Salazar-Ciudad, Jern-
vall, and Newman, 2003) and also for other complex mechanisms arising
from a combination of the basic ones (fig. 4.5, see Chapter 5).

Taking advantage of the new modelling framework we remade the tooth
development model, now including all the cell layers involved and ac-
counting for differential cell growth and cell adhesion between different
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cell types and also for cell mechanics. By exploring the variational prop-
erties and GPM of the new tooth model we were able to make predictions
on how the tooth crown is originates through the emergence of the cervical
loops (see Chapter 1) and also on the role of cell adhesion and mechanics in
the shaping of the tooth crown.

6.1 Complex GPMs preclude adaptation when there is
selection on every morphological detail of the phe-
notype

The results presented in Chapter 3 (Salazar-Ciudad and Marin-Riera, 2013)
predict that, contrary to some classic views in population genetics (Orzack
and Sober, 1994; Maynard Smith, 1978), natural selection is generally un-
able to fine-tune a complex phenotype based on an optimal morphology.
In other words, given enough time, natural selection can sculpt all aspects
of the phenotype (Charlesworth, Lande, and Slatkin, 1982). The selection
criterion of EMD (the one that takes into account all the details of the phe-
notype, see Chapter 3) represents exactly the optimality point of view, the
search for a specific morphology characterized precisely on the bases of the
values of all its morphological traits. This does not mean that there is no
selection nor that selection is not a crucial force determining the direction
of evolutionary change. This simply indicates that natural selection can-
not "look" at morphology in a trait-per-trait basis and that, in any case, it
should be "looking" at morphology in a different way in order for adaptive
change to occur. Our model predicts that natural selection sees morphology
on the basis of a complex holistic measure of the overall shape (such as the
OPC, see Chapter 3). Notice that in tooth a change in the OPC value can be
reached alternatively through changes in different parts of the phenotype
and so it is not dependent on any specific morphological features, such as
landmarks.

The conclusions of this study regarding the role of a complex GPM on
adaptive evolution are summarized in figure 3.4A. Our model predicts that
as long as the GPM is complex, the mapping between morphology and
fitness needs to be degenerate, or many-to-one (Alfaro, Bolnick, and Wain-
wright, 2005) for adaptive change to occur. Our suggestion that natural
selection is not looking at individual traits is not totally new. Classic work
by Gould and Lewontin, already point out that natural selection does not
act on individual traits (nor on alleles) but on the whole organism (Gould
and Lewontin, 1979; Alfaro, Bolnick, and Wainwright, 2005). Our work
reaches similar conclusions but from different lines of evidence; develop-
ment and GPMs, with focus on functional organs and not on the whole
organism as such. In addition, our model provides quantitative predictions
on how much adaptive change a population can sustain under different
selection regimes and at different levels of phenotypic complexity.

Even though the properties of both rugged and smooth adaptive land-
scapes have been extensively studied, there is little knowledge about whether
the former or the latter are more frequent in nature. Theoretical predictions
coming from the study of development (Alberch, 1982; Salazar-Ciudad and
Jernvall, 2004; Salazar-Ciudad and Jernvall, 2005) point in the direction that
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rugged landscapes are more prevalent due to the complexity of the underly-
ing GPM. Our results however suggest a middle ground between the preva-
lence of either rugged or smooth landscapes in nature. GPMs tend to be
complex and lead to rather rugged landscapes (as it is suggested from our
present understanding of development), but this would force the mapping
between phenotype and fitness to be relatively smooth so as to allow evo-
lution by natural selection in globally not-so-rugged adaptive landscapes
(such as in OPC).

The results on evolution by EMD from simple teeth (or by selection in
a small number of landmarks) indicate that the fine-tuning of morphology
may actually be possible in the case of very simple morphologies, which
generally have simple GPMs. This suggests that in those lineages in which
an increase in morphological complexity has occurred, there has probably
been a change of how the phenotype is being selected (from fine-tuning
selection to more OPC-like selection for more complex morphologies).

Our analysis of the variational properties also point out that simple uni-
cuspid teeth are more likely to arise than complex multicuspid teeth when
random parameters are given to the model (fig. A.12A) or when an existing
tooth is mutated by changes in their model parameters (fig. A.12B). In the
latter case it is also noticeable that while mutants originated from unicuspid
teeth tend to have roughly the same complexity as the original phenotype,
mutants originated from complex teeth show a large range of complexities.
This is consistent with the larger disparity of mutant phenotypes arising
from complex tooth morphologies in the model (Salazar-Ciudad and Jern-
vall, 2005). Experimentally it has recently been shown (Harjunmaa et al.,
2012) that whereas mutations on single signalling pathways lead to a sim-
plification of tooth morphology (in terms of OPC) one has to experimen-
tally perturb multiple pathways at the same time in order to obtain mutants
with higher morphological complexity. Our predictions are consistent with
that. The question is then why are simple morphologies more likely to arise
through mutations?. Is this a specific property of this model or something
more general?.

In our model and in developing teeth, once a cusp starts forming it in-
hibits the formation of new cusps in its surroundings, which means it is rel-
atively unlikely to develop a high number of cusps in a small tooth crown.
In development this is due to lateral inhibition between cusps mediated
by specific extracellularly diffusible molecular signals. OPC is not a direct
measure of cusp number but it largely correlates with it. Since only some of
the parameters of the model lead to a direct and overall increase in size and
only large teeth can have many cusps it is to be expected that most combi-
nations of parameter values produce relatively simple teeth. In fact, to fit a
large number of cusps in a single tooth, the radius of lateral inhibition has
to be decreased (for example by changes in the diffusivity or activity of the
diffusing inhibitory signal) while at the same time the patterns of growth
have to be changed so that cusps forming close to one another do not fuse.
Both in the model and in real teeth, this involves tinkering the values of
several parameters at the same time (Harjunmaa et al., 2012).

We expect that this anisotropy in the distribution of simple and complex
phenotypes is also general, as it has been argued before (Salazar-Ciudad
and Jernvall, 2005). This is expected because, in brief, morphology in de-
velopment arises because cells interchange molecular signals and undergo
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biomechanical changes that transform some early spatial distributions of
cell types into different ones. The more interchanges of signals there are,
the more the respective spatial patterns can differ from prior ones. Since
the egg cell and the early embryo are spatially simple it is natural that to
increase phenotypic complexity a large number of gene interactions are re-
quired. Since genetic mutations most often consist in one gene or gene in-
teraction being defective it is to be expected that most mutations lead to
a simplification of the genetic networks and of the phenotype (Harjunmaa
et al., 2012).

In summary, the modelling of tooth development and evolution has
provided interesting predictions on how morphological complexity can arise
through changes in development, and how that same process can hinder
evolutionary change unless a specific type of natural selection is at play.

6.2 A general modelling framework for epithelia, mes-
enchyme and ECM allows to reproduce a wide range
of basic developmental mechanisms and, by exten-
sion, a wide range of complex developmental sys-
tems

The general modelling framework presented in Chapter 3 and implemented
in the EmbryoMaker software (Marin-Riera et al., 2016) has been shown to
reproduce the most basic developmental mechanisms (as in any gene net-
work that regulates at least one cell behaviour and is involved in pattern
transformation, fig. 4.3, Salazar-Ciudad, Jernvall, and Newman, 2003), that
is a mechanism involving at least one cell behaviour and that is capable
of pattern transformation (i.e. a change in the spatial distribution of cell
types). We were able to use the modelling framework to explore the varia-
tional properties and GPM of each of these basic mechanisms in isolation.
We have shown that it is possible to model complex developmental mech-
anisms as a combination of some of the basic ones (see fig. 4.4, 4.5 and
Chapter 5). It is also important to note the fact that the framework consid-
ers epithelial and mesenchymal cells as different cell types with different
mechanical properties, since most developmental systems that have been
studied (especially in vertebrates) require the interaction between epithelia
and mesenchyme (Biggs and Mikkola, 2014).

We argue that the ability of our model to reproduce the GPM of a wide
range of both simple and complex developmental mechanisms, including
epithelia, mesenchyme and extracellular matrix, comes from the way we
implemented cell types, cell mechanics and cell behaviours, and now we
will discuss why other types of model are not as suitable as ours in doing
all this.

The Cellular Potts Model (Graner and Glazier, 1992; Izaguirre et al.,
2004; Starruf3 et al., 2014a) can effectively model a wide variety of cell be-
haviours and very detailed changes in cell shape, as well as being capable
of modelling both epithelial and mesenchymal cells. However, the method
used to numerically solve these models is restricted to the Monte Carlo
method only. In this method, potential energies are calculated for each part
of the cell and extracellular space based on the local stability of the system.
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Changes in cell shape happen asynchronously, one random lattice position
at a time. Changes are stochastic but biased towards minimizing the en-
ergy locally (Graner and Glazier, 1992). The use of this method guarantees
that the system reaches the equilibrium state (i.e. the end of development),
but it cannot provide predictions on the real time dynamics that lead to the
equilibrium state. This means that this model cannot predict the mechani-
cal forces acting on cells and the extracellular matrix during development.
In our model this is not a problem, since the cell movement and mechanical
forces are defined as a system of partial differential equations. By numeri-
cally solving the system of equations we do not only obtain the equilibrium
state of the system, but also realistic predictions on the temporal dynamics
and the mechanical forces that act along the whole process.

The Vertex Model (Honda, Tanemura, and Nagai, 2004; Farhadifar et
al., 2007; Smith et al., 2012; Pitt-Francis et al., 2009) is very effective at mod-
elling the dynamics of cell shape changes, cell rearrangements and both
cellular and supracellular scale biomechanics of densely packed tissues (see
Chapter 1, Section 1.4). This means that vertex models are exceedingly good
at modelling epithelial cells and tissues, but they are not so good at mod-
elling mesenchymal tissues and extracellular matrix, since the vertex im-
plementation relies on the fact that all cells are in close contact, with no
extracellular spaces between them. In our model, cells are not defined by
their contact interfaces (i.e. vertices and edges) but by their centres and cell-
cell contacts are represented as interactions that are totally dependent on
the relative distance and position of cells. This allows to implement highly
dynamic cell rearrangements in 3D with minimal mathematical complexity,
as well as it allows cells to lose all their contacts and separate from the tis-
sue. Moreover, the vertex model is good at modelling some cell behaviours
such as small cell rearrangements, cell shape changes and polarized cell
divisions, but not others like epithelial-mesenchymal transitions and indi-
vidual cell migration.

The viscoelastic or Immersed Boundary Cell Model (IBCell) (Rejniak,
2007; Tanaka, Sichau, and Iber, 2015) can effectively model cell shapes with
high detail and thus a wide variety of cell behaviours related to both epithe-
lial and mesenchymal cells can be potentially implemented (see Chapter 1,
Section 1.4). Moreover, the immersed boundary method allows to model
the extracellular environment in a quite realistic way, making it possible
to simulate the dynamics of mesenchymal tissues as well as realistic dif-
fusive and advective molecular dynamics. This model has the advantage
over the vertex model that the cell-cell contacts can be dynamic, since single
cell membranes are modelled separately and then dynamic adhesion con-
tacts between different cell membranes can be implemented (Rejniak, 2007).
However, that requires for the IBCell model to define cell membranes with
a high level of detail, which means a high number of vertices for each cell.
The high level of detail of cell membranes added to the fact that the flow
dynamics are solved by means of a lattice means that a lot of computational
power will be required to model large systems. This is not a problem in our
model, since the level of detail of cells can be adjusted by setting the num-
ber of elements cells are composed of, up to the point that a whole cell may
be represented by a single element. Thus, the large computational require-
ments of the IBCell model constitute a limitation on the size of the system
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it can model. The high level of detail of the IBCell model also makes its im-
plementation in 3D computationally heavy, thus most instantiations of this
model are restricted to 2D (Rejniak, 2007; Tanaka, Sichau, and Iber, 2015).

The subcellular elements model (SEM, Newman, 2005) can model cell
shapes and cell deformation with high detail, as well as a variety of cell
behaviours and realistic cell mechanics. However, in the original version
of the model cells are intrinsically amorphous, which means that they can-
not assume a consistent apico-basal polarisation and therefore cannot have
different cellular properties in different sides of the cell. In other words,
there is no robust way to specify apical, basal and lateral sides of the cell
with specific cellular properties (thus, they cannot organise in monolayered
sheets characteristic of epithelia). Therefore, the original SEM is suitable
for modelling mesenchymal-like tissues but not epithelia (Newman, 2005;
Delile, Doursat, and Peyriéras, 2013). In our model we use the original im-
plementation of the SEM to model mesenchymal cells and a different im-
plementation to model epithelial cells. Epithelial cells are also made up of
subcellular elements, but instead of being spherical as in the original SEM,
they are cylindrical. Each cylinder conforms a portion of the cell stretch-
ing from the apical to the basal side, so an epithelial cell is composed of a
group of cylinders placed next to one another. The bottom and top faces of
the cylinder represent a portion of the apical and basal side of the epithe-
lial cell respectively, and the lateral face accounts for the inner part of the
cell, or part of the lateral cell membrane if the cylinder is at the edge of the
cell. The lateral faces of cylinders can only interact with the lateral faces of
other cylinders, whereas the apical and basal faces can interact with apical
and basal sides of other cylinders or with mesenchymal or ECM elements.
The assumed shape of the epithelial elements ensures that epithelial cells
keep a consistent apical-basal polarisation and they organise as monolay-
ered sheets. Our framework is the first one to use an extended implemen-
tation of the SEM that is able to model epithelial cells. In addition to that,
our modelling framework implements a wide range of cell behaviours that
were not present in the original SEM.

The SEM and, by extension, our model present some limitations com-
pared to the models described above. Individual cells are defined by the
spatial distribution of elements conforming the cell body. It is assumed
that the elements located at the outermost part of the cell represent, at least
partially, the cytoplasmic membrane. Since elements within a cell can be
rearranged, the cell membrane may not always be represented by the same
elements. This means the SEM is not very good at modelling phenomena
that involve a detailed representation of the cell membrane and quantifi-
cation of its properties, such as cell deformation by means of membrane
surface tension. It is in theory possible in the model to infer the cell mem-
brane by identifying which elements are located in the surface of the cell,
although it would involve additional calculations and it actually presents
several implementation challenges. Nonetheless, these membrane related
phenomena tend to become irrelevant for the behaviour of the system at
tissue level scales. Another limitation of the SEM is that, being an off-lattice
model, the regions where there are no cell elements are basically void. This
means diffusion of molecules cannot be calculated in those regions. This
can be overcome in our model by filling the space between cells with ex-
tracellular matrix, which is represented in the model by a special type of
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subcellular element. This way, molecules can diffuse both within cells be-
tween cellular elements and between cells through the extracellular matrix
elements.

The EmbryoMaker framework aims to be a widespread platform for
modelling morphogenesis of a variety of organs and systems. So far it has
proved to be able to successfully model systems as different as tooth de-
velopment (see Chapter 5) and early spiralian cleavage (Brun-Usan, Marin-
Riera and Salazar-Ciudad, in preparation). This shows the potential of such
a general framework to replace the classic idea of designing organ-specific
models by the idea of designing models that can simulate multiple types of
organs with different parameter settings. That will allow precise and quan-
titative comparisons between different systems within the same model, and
will also allow to make predictions on the origin of evolutionary transitions
between different types of organs (e.g. the transition from reptilian scales
to avian feathers, Chang et al., 2009; Chuong et al., 2000).

6.3 A new and more detailed model of tooth develop-
ment sheds light on the effect of differential cell
adhesion and cell mechanics on the variational prop-
erties of teeth and its GPM

By applying the general modelling framework described on Chapter 4 to
the case of tooth development, we have created a new model that includes
a number of features that were lacking in previous models of tooth devel-
opment (Salazar-Ciudad and Jernvall, 2002; Salazar-Ciudad and Jernvall,
2010), such as multiple cell layers of the tooth germ (fig. 5.1) and realistic
cell mechanics.

Earlier models of tooth development implemented the induction and
patterning of the secondary enamel knots (SEK) through a Turing-like, reaction-
diffusion signalling network (Salazar-Ciudad and Jernvall, 2002; Salazar-
Ciudad and Jernvall, 2010). Even though it is not possible to determine the
final shape of the tooth crown without considering the number and rela-
tive position of the tooth cusps, they were not required for addressing the
questions raised in this study, which focused on explaining morphological
variation on the overall shape of the tooth crown. The reaction-diffusion
signalling network is indispensable in order for the model to account for
the patterning of the SEKs and the positioning of the tooth cusps in the
tooth crown. Thus, it is planned that future versions of the model will in-
clude the reaction diffusion network and the patterning of tooth cusps.

So far, our model contributes with new predictions that the earlier mod-
els could not provide, regarding the emergence of the cervical loops from
the tooth bud (see Chapter 1 Section 1.2.1) and the effect of differential cell
adhesion on the direction of growth of the cervical loops and its role on
determining the overall shape of the tooth crown.

Our model predicts that the transition between bud and cap stage (see
section 1.2.1), in which the cervical loops emerge and envelop the dental
mesenchyme, occurs due to a combination of differential cell growth and
adhesion between the different cell types. A parameter screening focused
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on the rates of cell proliferation in the different tissues indicates that the cer-
vical loops only originate for a range of parameter values, characterized by
a much higher rate of proliferation in the basal epithelium (cell layer con-
tacting the mesenchyme) relative to the suprabasal layer (cells composing
the bulk of the tooth germ) (see Section 5.4, fig. C.1). A two-dimensional
model of tooth development, which simulated the mechanical interactions
between IEE, OEE and suprabasal layer during the transition from bud to
cap stages, was recently published (Takigawa-Imamura et al., 2015). The
authors propose a mechanism by which two or more epithelial folds, rem-
iniscent of cervical loops and tooth cusps, emerge from the tooth bud due
to the mechanical instability created by the differential growth between ep-
ithelium and suprabasal layer. However, morphologies in the model sel-
dom resembled real tooth morphologies. This was probably due to the fact
that they did not include a signalling centre that would regulate localized
growth and they did not include any kind of mesenchymal tissue, which
did not allow to model any kind of mechanical interaction between ep-
ithelium and mesenchyme. Although their predictions regarding the emer-
gence of epithelial folds are in accordance with our predictions on the same
aspect, in our model the location of cell proliferation in specific regions has
a large effect on how mechanical forces are distributed across tissues, which
makes our model more realistic and more suited to address the questions
related to tissue mechanics and cell adhesion raised in this study.

Our model also predicts that the direction of growth of the cervical loops
is greatly influenced by mechanical forces exerted by cells in the epithelium,
mesenchyme and suprabasal layer by means of intercellular adhesive inter-
actions. The range of orientations of the cervical loops spans from being
close to parallel to the buco-lingual axis to being aligned with the occlusal-
radical axis and even pointing towards the tooth germ mid line. In the
model we have identified three factors that play antagonistic effects in de-
termining that orientation. On the one hand, buco-lingual compression of
the follicular mesenchyme and pulling of the cervical loops by the dental
mesenchyme contribute to the radical and towards the mid-line growth of
the cervical loops (fig. 5.1B). In the other hand, internal mechanical tensions
from the suprabasal layer contribute to orienting the cervical loops parallel
to the buco-lingual axis (fig. 5.1C). Thus, the model predicts that the bal-
ance between these three factors will determine the direction of growth of
the cervical loops and the overall shape of the tooth crown.

Surprisingly, the exploration of the variational properties of the new
tooth model showed mostly gradual phenotypic variation when parame-
ters were gradually varied (fig. 5.4, 5.5). This would suggest that the GPM
for this model is quite simple, which might seem contradictory to the fact
that the earlier tooth models, despite being less detailed than the current
one, show a much more complex GPM characteristic of a morphodynamic
mechanism (Salazar-Ciudad and Jernvall, 2004; Salazar-Ciudad and Jern-
vall, 2005; Salazar-Ciudad and Marin-Riera, 2013). This can be explained
by the fact that one of the aspects of tooth development that contributes
most to the complexity of the GPM is the reaction-diffusion signalling net-
work, which is actually lacking in the current model. This could lead us to
think that the aspects of tooth development related to differential cell adhe-
sion and mechanics alone have a simple GPM and thus do not contribute
to the complexity of the whole GPM of tooth. Nonetheless, this might not
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be necessarily the case, since we have shown that differential cell adhe-
sion controls the direction of growth of the cervical loops, which greatly
determines the overall shape of the tooth crown, making it either tall and
narrow or short and broad. Since the patterning of tooth cusps is dynam-
ically determined by a reaction-diffusion mechanism, it is very sensitive
on the shape of the patterning field (in this case the inner enamel epithe-
lium). This, in turn, will affect the effective reach of the diffusing molecules
that determine the induction of new SEKs and the positioning of new cusps
in the developing tooth crown. Taking this into account, we propose that
differential cell adhesion does not have a simple contribution to the GPM,
but feeds into and increases the complexity of the GPM coming from the
reaction-diffusion dynamics.

Taken together, this new model sheds some light into the less known
biomechanical aspects of tooth morphogenesis and their role in the emer-
gence of some morphological features not usually considered in studies of
tooth development. This model and the predictions provided by it thus
emphasize the importance of the biomechanical aspects of development in
order to account for phenotypic variation and evolutionary change.
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Chapter 7

Conclusions

1. Phenotypic complexity tends to be anisotropically distributed with
respect to genetic variation in complex GPMs. In other words, it is
more likely to get a simple phenotype rather than a complex one only
by chance, and it is also more likely that complexity decreases rather
than increase by a random mutation once the phenotype is already
complex.

2. Complex GPMs stemming from development lead to rugged adap-
tive landscapes and consequently hinder adaptive evolution when
the phenotype-fitness map (i.e. fitness function) considers all the de-
tails of the phenotype. In contrast, a many-to-one phenotype-fitness
mapping results in a smoothening of the adaptive landscape, thus fa-
cilitating adaptive change.

3. It is possible to design a general 3-dimensional model of develop-
ment including epithelia, mesenchyme and extracellular matrix and
the majority of cell behaviours, and which is capable of reproducing
the most basic developmental mechanisms that lead to pattern trans-
formation, as well as their variational properties.

4. Mathematical modelling of tooth development predicts that differen-
tial tissue growth between the dental epithelium and the suprabasal
layer is responsible for the emergence of the cervical loops, which are
indispensable for the formation of the tooth crown.

5. Mathematical modelling of tooth development predicts that differen-
tial mechanical forces mediated by differential cell adhesion control
the direction of growth of the cervical loops, which has a direct ef-
fect on the overall shape of the tooth crown and by extent on the way
tooth cusps are patterned.

1. La complexitat fenotipica tendeix a estar distribuida de forma anisotropica
respecte la variacié genética en MGF complexes. Es a dir, és més
probable que el desenvolupament produeixi un fenotip simple que
un de complex per pur atzar, i també és més probable que una mu-
tacié genetica aleatoria en un fenotip complex comporti una reduccié
de complexitat més que un increment.
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. MGFs complexes provinents del desenvolupament causen ’aparicié
de paisatges adaptatius rugosos i en conseqiiencia obstaculitzen 1’evolucié

adaptativa quan el mapa fenotip-fitness (és a dir, la funcié de fitness)
té en compte tots els detalls del fenotip. Per altra banda, la presencia
d’un mapa fenotip-fitness "many-to-one" causa el suavitzament de la
superficie del paisatge adaptatiu, cosa que facilita el canvi adaptatiu.

. Es possible dissenyar un model general 3D del desenvolupament que

inclogui epiteli, mesenquima i matriu extracel-lular i la majoria de
comportaments cel-lulars, i que sigui capag¢ de reproduir els mecan-
ismes de desenvolupament més basics capagos d'una transformacié
de patr¢, aixi com les seves propietats variacionals.

. El modelatge matematic del desenvolupament de la dent prediu que

el creixement diferencial entre 'epiteli dental i la capa suprabasal és
el responsable de I’aparici6 dels bucles cervicals, els quals sén indis-
pensables per a la formaci6 de la corona dental.

. El modelatge matematic del desenvolupament de la dent prediu que

les diferencies en les forces mecaniques mediades per 1’adhesi6 difer-
encial entre les cel-lules controlen la direccié de creixement dels bubles
cervicals, la qual cosa té un efecte directe en el la forma global de la
corona dental i per extensi6 en el patré espacial de les ctspides.
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Chapter 3

A.1 Genotype-phenotype map: Developmental model

The genotype-phenotype map is implemented through a model of tooth
morphogenesis. The model mathematically summarizes the basic genetic
and cellular interactions experimentally known to be important when the
model was build (Salazar-Ciudad and Jernvall, 2010) and the overall logic
by which these are coordinated to lead to final adult morphologies. The
model has previously been used to produce the final morphology of seal
teeth and its natural populational variation in three-dimensions. Thus the
model can be taken as a state-of-the-art representation of what is currently
understood about the developmental origin of complex morphologies and
their variation.

The model involves a set of parameters (n=21) related to physical prop-
erties of the cells and tissues, the extracellular signal diffusivity and the
strength by which these signals regulate each others expression. The ge-
netic and physical (mechanical) interactions in the model are known to exist
experimentally. Any mutation on a gene affecting one of these parameters
will lead to a change on the parameter value, so we then take the parame-
ters of the tooth model as a proxy for the genotype.

The model can be run under different parameter values. Its output, or
morphology, is the position, in three dimensions (x,y and z) of each cell in
the enamel epithelium, that is tooth surface, and the list of which epithelial
cells are in direct contact.

All simulations start with the same simple spatial initial conditions: a
small flat enamel epithelium ubiquitously expressing BMP4 at low levels
(as in Salazar-Ciudad and Jernvall, 2010). It is important to note that phe-
notypic features like cell number, cusp number or morphology are not pre-
determined (this is not a geometric model), they just arise from develop-
mental dynamics. For a detailed account of the experimental evidence on
which the model is based, for a more detailed description of the model itself
and for the actual algorithm and freely available code we refer the reader to
the original publication presenting the model(Salazar-Ciudad and Jernvall,
2010).

The tooth model is specially suited for the questions addressed in this
work. Most computational models of development focus only on single
wild-type morphologies, or their lab mutants, and do not consider mi-
croevolutionary level variation (Shvartsman, Muratov, and Lauffenburger,
2002; Jaeger et al., 2004; Honda et al., 2008; Zhu et al., 2010; Hester et al.,
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2011; Tamulonis et al., 2011). Most of these models consider only morpho-
logical transformations occurring in early or mid development and, thus,
not on the morphologies more readily seen by natural selection. There
are also several genotype-phenotype map models that are not based on
development biology but are used to address valuable evolutionary ques-
tions (Kaufmann, 1993b; Wagner, 1994; Hansen and Wagner, 2001; Alvarez-
Castro and Carlborg, 2007; Jarvis and Cheverud, 2009; Wagner, 2011; Bar-
ton and Turelli, 2004). Some consider only univariate morphologies while
others consider gene network-like models in which the level of expression
of each gene is treated as a trait. Most of those models do not consider
extracellular cell signalling, extracellular signal diffusion in space, space
itself or mechanical interactions between cells. All these epigenetic inter-
actions and factors have repeatedly been argued (Newman and Comper,
1990; Newman and Miiller, 2000) to confer a very specific set of varia-
tional properties and genotype-phenotype maps to actual embryonic de-
velopment that are not present in mere gene network models (Wagner,
1994; Salazar-Ciudad, Garcia-Ferndndez, and Solé, 2000). Many of these
interactions are, however, included in the tooth model. These other mod-
els do not actually propose how the genotype-phenotype map is. They
represent, instead, a convenient way to implement a whole class of pre-
sumably possible genotype-phenotype mappings without having to pre-
cisely specify which of them are actually encountered in real systems and
which ones are not. That is very convenient for a number of evolutionary
questions (Fontana, 2002; Newman and Miiller, 2000; Carter, Hermisson,
and Hansen, 2005; Borenstein and Krakauer, 2008; Gjuvsland et al., 2007;
Fierst and Hansen, 2010; Kaneko, 2012; Draghi et al., 2010) but for the ques-
tions addressed here, however, it is crucial to consider only as-realistic-as-
possible genotype-phenotype maps. This is because we are not concerned
on whether the map is complex but on how complex it is and on how that
level of complexity precludes, or favours, some phenotype-fitness maps in
having an important role in morphological evolution.

Another advantage of our model for the questions addressed in here
is that the morphological dimensionality of the morphology is not pre-
specified but arises from model’s dynamics. Different combinations of the
model parameters lead to morphologies characterized by different number
of cells, landmarks and cusps. This is a consequence of having cell prolif-
eration and movement in the model. This does not occur in gene network
models that identify each gene’s expression as a phenotypic trait. It does
not occur either in genetic landscape models that take each loci as being
responsible for a distinct phenotypic trait (thus in these models genotypic
and phenotypic space have the same dimensionality). Growth in our model
produces that the parameter space, our proxy for the genetic space or geno-
type, can often have less dimensions than the morphological space since
each cell accounts for 3 traits, its position in the x,y and z coordinates, and
thus 3 dimensions. Not all variation in this space is possible, that is deter-
mined by the model dynamics. In the tooth model and in real teeth (Salazar-
Ciudad and Jernvall, 2010), for example, the highest cusps are always the
tirst to form and thus are roughly around the center of the tooth. In gen-
eral, as it can be seen in figure A.12, simple teeth with one or few cusps
arise much more easily in the model. That is probably a general property
of models with growth and signalling leading to complex morphologies.
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Many dimensions of change are possible but most variants tend to clus-
ter in the part of the morphospace with the simplest morphologies. Since
there is lateral inhibition in the model cusps can not form very close to each
other. Thus, there are relatively few parameter combinations that lead to
many cusps in a tooth: the inhibitor activity, diffusivity and its effect on
the activator have to be low but not to low for cusps to fuse and at the
same time the growth parameters have to be such that cusps are separated
by enough growth in between them. In general it is likely that producing
progressively more complex teeth requires a progressively more accurate
fine-tuning of the model parameter values.

A.2 Evolutionary model

The evolutionary model (see figure A.13) starts with a constant sized, genet-
ically homogeneous population. Then random mutations are generated in
each generation at a rate p (probability of mutation per individual; double
mutations occur with probability u?). For each different genotype in each
generation, the morphology is calculated through the tooth developmental
model. Next, in each generation an absolute fitness is calculated for each in-
dividual morphology accordingly to how closely that individual morphol-
ogy resembles that of an arbitrary optimal morphology. A different op-
timal morphology is used in different simulations and that optimum does
not change over generations (each simulation between each initial and opti-
mal morphologies was repeated three times with different random number
seeds). Three different types of criteria or phenotype-fitness maps are used:
the EMD criterion, landmark-based criteria (raw for 2 to 5 landmarks corre-
sponding to 2,4,8 and 13 traits respectively and PCA-based for 5 landmarks)
and the OPC criterion (the same single criterion is used through each sim-
ulation). Finally each individual fitness is used to determine which indi-
viduals in a generation contribute to the next generation. Reproduction is
implemented by choosing, for each individual of the next generation, which
individual of the current generation will be his parent. The probability of
being chosen is equal to the individual’s relative fitness. This way one in-
dividual, especially if it has high relative fitness, can be the parent of more
than one individual in the next generation. This way also, there is genetic
drift, but individuals with a higher relative fitness have a higher probability
of having descendants in each generation (see figure A.1).

A size limit of 600 cells was put on the tooth development model in
order to prevent the development of too large teeth, since teeth have a lim-
ited space in the jaw to develop. A minimum size was also established (50
cells). Thus, teeth having more than 600 cells or fewer than 50 were con-
sidered non-viable and a 0 fitness was assigned to them. All simulations of
evolution were run with the same mutation rate, thatis 1 = 10~ mutations
individual ' generation™!.

Random mutations are generated by selecting one of the 22 parameters
of the tooth model at random and modifying its value k; in the following
way:

K, = kj+ kM (A1)
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where £’ is the "mutated” value of the parameter j, k; is the original
value and M is a random variable with a uniform distribution between [-
0.1,0.1].

We use a fitness function that is linear with the phenotypic distance of
each individual ¢, d;, to the optimal morphology. The way this distance is
calculated is different for each selection criterion (dgprp, djan O dopc), as
explained above, see below. The absolute fitness W; of an individual ¢ is:

W, = @ (Sd) +1 (A2)
do

Where @ is a Heaviside function (& = 0if z < 0 and ® = x otherwise),
s is the selection coefficient and dj is the phenotypical distance between
the morphology at the beginning of the simulation and the optimum. s de-
termines the slope of the fitness function. For most of the simulations we
used an s of 0.5, thus the absolute fitness of the initial morphology is 0.5
and the maximum fitness (when the population reaches the optimum) is 1.
However, in further discussions and in figures we scale absolute fitness as
the percentage of fitness attained relative to the difference between initial
and maximum absolute fitness (from 0 to 100%). Other simulations were
run with different values of s (see section A.10 and figure A.14). Note that
in this model we select for a specific optimal morphology, and not for in-
creases or decreases in a set of traits. Thus, absolute fitness has a maximal
value of 1.

The relative fitness for each individual (w;) is:

Wi

= — (A.3)
25:1 W;

Wy

A.3 Simulation dynamics and stagnancy criterion

A simulation was considered to attain the optimum when the most frequent
morphology on the population had a d of 0 for OPC, equal or less than 6%
for EMD and less or equal than 5% for the landmarks based criterion.

In many simulations the optimal morphology is not reached. The pop-
ulation, instead, settles in a non-optimal morphology, what we call a stasis
morphology. The stagnancy criterion, as described below was used to de-
cide when to stop those simulations.

The evolution of populational average fitness in our simulation can be
described as periods of change, what we call adaptive leaps, and periods of
stasis (see figure A.1).

In each generation, during a stasis period, we record the total number of
mutants, m;, that have arisen since the last adaptive leap and the number of
those that are fitter than the stasis morphology, m;. Most of the fitter mu-
tants represent such a small increase in fitness that they are lost by genetic
drift. In each generation we calculate 7, :

_ Z’djnt_ ds‘ (A.4)

T'm

Where d; is distance between a mutant morphology and the optimum
and d, is the distance between the stasis morphology and the optimum.
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For that calculation only mutants that are fitter than the stasis morphol-
ogy are considered. 7, is calculated at every generation as long as m; is
equal or greater than 10000. Trials were made to assess that a minimum
of 10000 random mutations was enough to explore all the possible mutant
morphologies that could arise from a stasis morphology before the stag-
nancy criterion was applied. If r,, is lower than 3 - 1079 the stagnancy cri-
terion is satisfied and the simulation is stopped. With this r,, value we
ensure that the simulation does not stop if there is at least one mutant (for
every 1000 mutants tried) that has a distance to the optimum that is 0,3%
larger than that of the stasis morphology to the optimum. If an adaptive
leap event happens, m; and m  are reset to 0 and the counting starts again.

Due to computational time constraints, we ran only a set of simulations
(n=24 for EMD, n=48 for OPC, n=40 for the landmark-based simulations)
using the stagnancy criterion. The rest of the simulations (n=321 for EMD,
n=570 for OPC, half for OPC increase and half for decrease, n=153 for the
landmark-based simulations) were run for 20000 generations and the ones
with small population sizes (10 and 100) were run for 50000 generations. We
checked all simulations individually in order to be sure that there weren’t
significant increases of fitness since long before the simulation was stopped.

A.4 Optimal phenotypes

Twenty different teeth were chosen as initial morphologies for the evolu-
tion simulations. The initial teeth was chosen to belong to four idealized
morphological types (see figure A.11) that represent simple and common
cusp spatial arrangements arising in the model. In the case of the landmark
based criterion we only used type 4 teeth (see figure A.11) as initial mor-
phologies because they are the only ones that have enough cusps to allow
to define 5 landmarks.

We wanted to ensure that the optima are not developmentally impos-
sible morphologies: that they are within the variational properties of the
developmental model. This is because the purpose of this study is to assess
the effect of a realistic genotype-phenotype map on adaptive dynamics, not
the variational properties of the model itself. For this purpose, random
mutants were created from each initial morphology. Then EMD, OPC and
landmark-based phenotypic distances (for 2, 4, 8 and 13 traits) were cal-
culated between each initial morphology and their mutants. As optimal
morphologies for the OPC and EMD criterion we chose one parameter mu-
tants that were at a distance of 20% and 40%. For 60% distances the optima
had to be chosen among mutants in 5 parameters (since no phenotypes at
these distances could be found by less mutations), and for distances of 80%
among mutants in 10 parameters. For the PCA landmark-based criterion
the optima were set by taking the scores of the initial phenotype and in-
creasing or decreasing scores of all the PCs equally so the final phenotypic
distance between the initial and the optimal phenotype was 40% or 80%
(we also checked that these morphologies were possible from the develop-
mental model).
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A.5 Mutational screening

We used the following method to generate random phenotypic variation
and measure some properties of the genotype-phenotype map and phenotype-
titness maps. Each initial morphology were taken as a “parent’, and a cer-
tain number of random mutants were generated from them. Each mutant
was generated as in the evolutionary simulations (See section A.2, equa-
tion A.1), changing one or several of the model parameters of the parent at
once. Then we could take measures on each mutant phenotype and com-
pare them to the parent phenotype, or to an arbitrary optimum. This way
we could also compare the model parameter differences between parents
and mutants.

A.6 Distribution of complex phenotypes in the tooth
model parameter space

Two approaches were used to assess how complexity was distributed on
the parameter space of the tooth development model.

The first is a global sampling of the parameter space. This provides
a general estimation of how likely are complex and simple morphologies
from different zones of the parameter space. We took all the initial geno-
types (n=25) used in all previous simulations and recorded the maximum
and minimum value of each parameter. Then the range formed by the
minimum and maximum value for each parameter was doubled and these
ranges were used to delimit the parameter ranges for the global sampling of
the parameter space. We created 300 random combinations of the 22 devel-
opmental parameters. For each combination of parameters the tooth model
was run and the complexity was measured. We used OPC also as a measure
of morphological complexity (as in Evans et al., 2007).

The second approach is a local sampling of the parameter space, done
by means of a one parameter mutational screening (See section A.5), using
all the initial morphologies that were used in our evolutionary simulations
(25), which have OPC values ranging from 4 to 30. 300 mutants per parent
phenotype were generated. The complexity of the mutant in relation to the
complexity of the parent morphology was recorded (see figure A.12).

A.7 Measurement of the phenotype-fitness map degen-
eracy

In order to assess the properties of the different phenotype-fitness maps
used in this study we performed one parameter and five parameters muta-
tional screenings (see Section A.5) on the 25 initial morphologies used in the
selection experiments. For each mutant, we calculated the genetic distance

to the parent, dy.,, as,
dgen = \/Z =17, < = > (A.5)

%

where n,,, is the number of parameters of the tooth model, £; is the
value of parameter ¢ in the mutant morphology and K; is the value of the
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same parameter in the parent. We also calculated the phenotypic distances
on the bases of the phenotypic similarity between mutant and parent,with
the EMD (dgasp), the raw trait landmark-based (d;,,,) and the OPC criteria
(dopc). We then calculated the absolute fitness for each mutant taking its
parent as the optimal morphology. Fitness is 0 when the phenotypic dis-
tance is 100%. Figure 3.3A, B show the distribution of fitness for EMD and
OPC, respectively, as a function of the genetic distance to the parent. The
correlation coefficient (r? = 0, 3549 for EMD, r? = 0, 06082 for OPC) gives
an idea of the degree of degeneracy of each phenotype-fitness mapping, the
lower it is, the more morphologies at different genetic distances can be at
the same or similar phenotypic distance to the parent. Figure 3.3C, D shows
the same results for the many and few traits landmark-based criteria.

Figure A.8A shows the dg/p plotted against do pc of each mutant mor-
phology in relation to the parent morphology. The degeneracy of the OPC
phenotype-fitness map can also be seen here, as morphologies at the same
distance in terms of OPC can be at quite disparate EMD distances from the
parent.

In order to see how the different phenotype-fitness maps affect the to-
pography of the whole genotype-fitness landscape, we took the phenotypes
from the mutational screening, chose one of them as an arbitrary optimum
(at 20%, 40% and 60% distance from the parent) and calculated the fitness
of all of them in relation to that optima (Figure A.10).

A.8 Analysis of neutral networks in different phenotype-
fitness maps

In order to further assess the degree of degeneracy of each phenotype-
fitness map we performed a set of neutral-walk experiments similar to those
in (Schuster et al., 1994). In each experiment we start with a parent mor-
phology and submit it to successive rounds of mutation. At each round we
mutate one of its parameters at random (see equation A.1) and evaluate the
phenotypic distance to the initial morphology with one of the phenotype-
fitness maps used in this study (dgyp ,dopc,dian1s OF dian2). If the distance
of the mutant to the parent is lower than a certain threshold value we keep it
and mutate it on the next round of mutation, if not we discard the mutant,
keep the previous one and mutate that in the next round. We performed
each walk for 100 rounds of mutation and then the genetic distance be-
tween the final and the initial morphologies was taken as a measure of how
far away in the genetic space the walk proceeded. The threshold values
for the EMD walks was of 6% and 1%. For the landmark-based walks the
thresholds were of 5% and 1%. The threshold for the OPC walks was 0, that
is the mutant had to have the same OPC value than the parent phenotype.
For the EMD and OPC criteria 5 initial morphologies ranging from sim-
ple unicuspid teeth to complex multicuspid ones were used. 10 indepen-
dent walks of 100 steps each were performed per initial morphology (figure
A.9A). One initial morphology was used for the landmark-based criterion
looking at different numbers of traits (2, 4, 8 and 13). 10 independent walks
were performed for each number of traits.
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A.9 Evaluation of final fitness of the simulations in
terms of all selection criteria

In order to understand the relationships between the different phenotype-
fitness maps used in this study we took each selection experiment with each
phenotype-fitness map and calculated the fitness achieved at the end of the
simulation in terms of the other fitness criteria. Thus, we evaluated the
OPC-fitness in EMD simulations and the EMD-fitness of the OPC simula-
tions (figure A.6A). We also evaluated the OPC-fitness and the EMD-fitness
of the many trait and few trait landmark-based simulations (figure A.6B).
We could not evaluate the landmark-based fitness of the EMD and OPC
simulations because the landmark-based criterion can only be applied to a
particular morphological category (see figure A.11, category 4) with enough
number of cusps. To evaluate the OPC-based fitness of the EMD simula-
tions we simply calculated the phenotypic distance, dopc, as in equation
3.1 (see section 3.4.5), taking the OPC of the initial phenotype as the initial
OPC value and the OPC of the optimal morphology as the optimal OPC
value. To evaluate the EMD-based fitness of the OPC simulations, as no
specific morphology was chosen as optimum, we chose a random mutant
(1 parameter changed) from the initial phenotype that had the optimal OPC
value for that simulation and took it as an arbitrary optimum for the EMD
criterion to be calculated. Then the phenotypic distance, dEMD, was cal-
culated as in equation 1 and 2 (see section 3.4.1) taking this arbitrary mor-
phology as the optimum for the EMD criterion. To evaluate the EMD-based
fitness of the landmark-based simulations, as the optimum in these ones is
a specific morphology, we took it as the optimum for calculating the pheno-
typic distance, dgarp, as in equation 1 and 2 (see section 3.4.1). To evaluate
the OPC-based fitness in the landmark-based simulations we did the same
as described above for the EMD simulations.

A.10 Variation in the coefficient of selection

We ran a small set of simulations using the EMD and the raw landmark-
based criteria with different values of the selection coefficient, s (see section
A2, equation A.2). Some were run with a smaller coefficient (s=1/4) and
others with a greater one (s=4/3 and s=1). Selection coefficients of 1/4 and
1/8 made drift so important as to drive change and lead to the fixation of
greatly maladaptive phenotypes, so we didn’t try smaller selection coeffi-
cients. Population size was set to 100 and 20 different initial phenotypes
were used. Optima at 40% phenotypic distance were used. Figure A.14
shows the mean absolute fitness achieved with different values of s. Note
that in this figure, as in all others, absolute fitness is scaled as described in
section A.2, thatis all fitness values range between 0 and 100, being 0 the fit-
ness of the initial condition and 100 the fitness at the optimum. There are no
significant differences between the fitness attained with coefficients of selec-
tion ranging from 1/4 to 1 (Kruskal-Wallis test for EMD, n=160, K=0,7824,
p=0,8537; many traits, n=75 K=0,4963, p=0,9196; few traits, n=75, K=0,3507,
p=0,9502).

These results are not surprising since s has an effect on how fast a pop-
ulation can climb a fitness peak but not on the relative height of peaks (that
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latter thing being what determines the final fitness). That relative height is
a property of the shape of the adaptive landscape itself and thus it comes
from the shape of the genotype-phenotype and phenotype-fitness maps.
Note that a population would tend to climb towards the steepest of the fit-
ness peaks near its location in the landscape but that in complex landscape,
like in figure 3.4A, the steepest peak is not necessarily the tallest (and thus
s has no effect on adaptation in the EMD and many landmark simulations).

A.11 PCA-based criterion. Response of single PCs to
selection

The average response to selection for each PC in the PCA-based simula-
tions is shown in figure A.5A. The response to selection is calculated as in
equation A.2 for each PC, using the distance between the score at the end
of the simulation and the optimal score and s=1. Note that a negative re-
sponse means that the distance at the end of the simulation is greater than
the initial distance. The response on higher rank order PCs (1 and 2) is
significantly higher than in lower rank order ones (3 to 8) (Mann-Whitney
test pairwise comparisons between PC1 and PC3 to PC8 gives a p<0,05,
the same for comparisons between PC2 and PC3 to PC8; Mann-Whitney
test between PC1 and PC2 gives a p=0,9037). Figure A.5B shows average
population fitness and average response to selection for the eight PCs over
simulation time (in generations) for a single simulation. Sudden changes in
fitness correspond to the fixation of an adaptive variant in the population,
which correlates with changes in several PCs. These changes normally de-
crease the distance to the optimum in some PC and increases it in others.
This produces substantial variation in the level of adaptation in each PC in
the different simulations (as seen in figure A.5A). This means that, while
a PCA defines dimensions of variation that do not statistically covary be-
tween them in the sample population, that doesn’t imply that there is a sim-
ple and modular genotype to phenotype relationship beneath them. That
is, most mutations will affect the scores of several PCs at once (simply the
PCA can not grasp all the complexity of the genotype-phenotype map).
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FIGURE A.1: Long periods of stasis and short periods of adaptive leap are ob-
served. A, simulation using the EMD criterion selecting for an optimum at a dis-
tance of 40%. From left to right, the initial, final and optimal morphology are
depicted respectively. B, simulation using the OPC criterion selecting for a higher
optimum at a distance of 40%. From left to right, the initial morphology and the
final morphology are depicted respectively. Note that the optimum is character-
ized by a single OPC value and that there are many morphologies that can have
the same OPC.



Appendix A. Supplementary Information Chapter 3 97

FIGURE A.2: A, the proportion of OPC simulations that arrive to the optimum

is significantly higher than the proportion of EMD simulations, being the former

close to 100%. It is also easier to arrive to the optimum when the distance from the

initial morphology to the optimum is 20% than when it is 40%. B, The same for the

raw landmark criteria simulations. When selection acts on few traits (i.e. 2 and 4)

almost all simulations reach the optimum. When selection acts on a larger number
of traits (8 and 13) most simulations remain trapped at a distance from it.



98 Appendix A. Supplementary Information Chapter 3

EMD

parent tooth

OPC

parent tooth

FIGURE A.3: A, distance relationships using the EMD criterion between some mu-
tants and their parent morphology (in the center). These morphologies can be very
different so the EMD between them may be large. This means that the distance be-
tween a morphology at a distance of 80% from the optimum and a morphology at
a distance of 40% from the optimum need not be 40% and it rarely is. B, distance
relationships using the OPC criterion (relative increases of the OPC value). In this
case, morphologies at the same distance to the optimum are at a distance of 0 be-
tween them and morphologies at a distance of 80% and 40% from the optimum
respectively are exactly at a distance of 40% between them.
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FIGURE A.4: Note that the distance is between each morphology in the left most
column and morphologies in each column and that it is not implied, and it would
rarely be the case, that morphologies in a column are at a proportional distance
to morphologies in a column other that the left most. For example morphologies
in the 20% EMD column are at 20% EMD to the left most column but not to the
column to their right, the 40% EMD column (as it should be clear from figure A.3).
Thus, that optimal adaptation can occur for optima at 20% and 40% EMD from
an initial morphology does not imply that adaptation to more distant optima (lets
say at morphology B at 80% EMD from that initial morphology) can occur by se-
lecting for successive optima at 20% EMD from each other (as the artificial linear
arrangement in this figure may seem to indicate).
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FIGURE A.5: Response to selection is calculated as the proportion of the distance
between the initial score value and the optimal value attained at the end of the
simulation (see section 11 Appendix A), which is 0 if the final value is the same
as the initial value and 100 if is equal to the optimal value. A, average response
to selection for each PC for a population size of 100, 1000 and 10000. B, average
response to selection in an example simulation (population size = 10000) over sim-
ulation time (generations), average absolute fitness is also plotted. In this figure it
can be seen that there are a number of adaptive leaps consisting in changes in the
distance from a PC score and its optimal value. An increase in one PC tends to lead
to decreases in the other PCs (although the overall fitness increases the adaptation
at each PC does not increase linearly with time).
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FIGURE A.6: Each cluster of columns corresponds to the set of simulations run
under a certain phenotype-fitness map. A, B, evaluation in terms of fitness (see
section 9 of Appendix A). Each column within a cluster indicates the average fit-
ness attained when evaluated for a certain phenotype-fitness map (not necessarily
the one that was actually used during the simulation). A, simulations selecting
for EMD and OPC, evaluated only for EMD and OPC. B, simulations selecting
for many and few landmark-based traits, evaluated for landmark-based distances,
EMD and OPC. C, D, The same but evaluated in terms of relative amount of phe-
notypic change at the end of the simulation. This is measured as the phenotypic
distance (dgyp, dopc and diq,) between the final phenotype and the initial phe-
notype. C, simulations selecting for EMD and OPC, evaluated only for dgy/p and
dopc. D, simulations selecting for many and few landmark-based traits, evaluated
for dju., deyp and do pe. The fitness values attained for the different criteria (A,B)
in the EMD and many traits simulations are similar, because the number of traits
under selection is high. In contrast, the EMD-fitness for the OPC and few traits
simulations is low, because there are few traits or no specific traits at all (OPC) un-
der selection and thus there are lots of morphologies equally adaptive other than
an specific morphological optimum. The amount of change in terms of OPC is
low in the EMD and many traits simulations because teeth at a given EMD dis-
tance may, or may not, be different in the number and orientation of cusps and
thus, may , or may not, be different in the OPC. In fact, of the many morphological
differences that give a given EMD only some of them change the OPC.
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FIGURE A.7: The cartesian space is divided into a regular square grid and the color

of each square cell corresponds to the number of data points falling within it. This

way it is easier to see that a great portion of mutants have the same OPC value

than its parent morphology (that is 100% fitness in B) even if there’s a long genetic

distance between them, showing a high degeneracy of the OPC phenotype-fitness
map.
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FIGURE A.8: A, EMD phenotypic distance (dgp) against OPC phenotypic dis-
tance (dopc) (n=670). B, many-traits (d;qn13) phenotypic distance against few-
traits (dqn2) phenotypic distance (n=100). C, dj4n2 against dgarp (n=100). D, djgn2
against dopc (n=100). E, dign13 against dgayrp (n=100). F dj4n13 against dopc
(n=100). The degeneracy of the OPC phenotype-fitness map can also be seen here,
as morphologies at the same distance in terms of OPC can be at quite disparate
EMD distances from the parent. Note that several morphologies, even if they suf-
fered 5 mutations, are at an OPC distance of 0, that is, have the same OPC as the
parent . This means the OPC phenotype-fitness map creates a neutral network
of genotypes that may lead to rather disparate morphologies in terms of EMD.
A similar thing occurs for the relationship between OPC and the landmark dis-
tances. This does not occur for the relationship between EMD and the landmark
distances. In this case there is a relatively high linear correlation between these
measures (specially for the many-landmarks distances).
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FIGURE A.9: A, using the EMD and OPC criterion, B using the raw-traits
landmark-based criterion (see section 3.4.3). Final genetic distance from starting
genotype is shown relative to the OPC (used as a proxy of tooth complexity) (A),
or number of traits taken into account (B). Each point represents a neutral walk
simulation (n=50 for EMD, n=50 for OPC and n=40 for landmarks-based), solid
lines are logarithmic regressions fit to the sample points. For the OPC criterion,
the walk was done along phenotypes of the same OPC value. For the EMD and
landmark-based criteria, the walk was done along phenotypes at a distance equal
or less than 5% or 1% from the initial phenotypes. It can be readily seen that the
neutral walks by the OPC criterion go much further than the rest. This indicates
that the this phenotype-fitness map is degenerate while the others, where only
small distances are attained, are not.
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FIGURE A.10: Fitness is measured using the EMD criterion (A, C), the OPC cri-
terion (B, D), many traits (E) or few traits (F). Optima at different distances were
chosen: at 20% (A,B) and 60% (C,D) for OPC and EMD and 40% (E,F) for landmark-
based. For optima at 20 and 40% mutants with one parameter changed (n=500 for
OPC and EMD, n=300 for landmark-based). A fitness value of 0 is assigned to the
phenotypes that are at the same distance to the optimum than the initial pheno-
type, and negative fitness if they are further from the optimum. It can be readily
seen that for the OPC criterion there are some mutants that are in the optimum
already for short genetic distances from the parent. This is also the case, to some
extent, for the few landmarks criteria. It can be readily seen that this is not the case
for the EMD and many landmark criteria.
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FIGURE A.11: Category 1 includes unicuspid teeth, category 2 three-cusped teeth
in which cusps are roughly arranged in a straight line when projected in the x-
y plane, category 3 includes four-cusped teeth roughly arranged in a equilateral
triangle when projected in the x-y plane (the tallest cusp being in the middle),
category 4 includes five-cusped teeth roughly arranged in a cross when projected
in the x-y plane (the tallest cusp being in the middle) These differ in the number
of tooth cusps and the way cusps are positioned around the central cusp. The
upper schemes represent an upper view of the , the black dots represent the tips of
the cusps. These categories are the most frequent morphologies produced by the
model and thus a good representation of a big region of the tooth model available
morphospace.
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FIGURE A.12: A, global sampling of the tooth model parameter space: the plot
shows the frequency of morphologies of different OPC values when giving ran-
dom values to the tooth model parameters. Most of the morphologies arising from
the model are simple, 30% of the sample are one cusp morphologies. In other
words, there is a great number of combinations of parameters that give rise to low
OPC morphologies and only a small number of combinations that result in high
OPC morphologies. B, Local exploration of the tooth model parameter space. Mor-
phologies of different OPC were taken as parents (X axis) and mutant offspring
were generated from them, recording their OPC (Y axis). The shade in each point
represents the frequency of mutant offspring of a certain OPC originated from a
parent of a certain OPC (in boxes in the x-y plane). The diagonal line indicates the
points where the OPC of mutants and parent morphologies are the same. For low
OPC morphologies we see that most mutants have an OPC equal or similar to that
of their parents. In contrast, high OPC morphologies give rise to offspring with a
large range of OPC values (both higher and lower).
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FIGURE A.13: Then the morphology is calculated from the genotype by the tooth

development model. A criterion of natural selection evaluates the morphology and

assigns an absolute fitness value to the individual. When this is done for all indi-

viduals, a stochastic selection algorithm that takes into account the relative fitness

values of all the individuals determines, for each individual of the next generation

which individual of the current generation will be its parent. The probability of
being chosen as parent depends on the individual’s relative fitness.



Appendix A. Supplementary Information Chapter 3 109

FIGURE A.14: A, simulations using the EMD criterion (n=61). B, simulations using

the many traits and few traits landmark-based criteria (n=84). Simulations were

run with a population size of 100, initial distance to the optimum of 20% and 40%

for EMD simulations and of 40% for landmark-based simulations. The different s
values were s=1/4,s=1/2,s=4/3 and s=1.
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B.1 Introduction

This model considers cells, cell parts, extra-cellular matrix (ECM), gene
products and other molecules involved in gene regulation. The model in-
cludes in a unified framework bio-mechanical and gene product interac-
tions in development. The model also includes all basic cell behaviours
known in animal cells (Salazar-Ciudad, Jernvall, and Newman, 2003). These
are: cell growth (polar and non-polar), cell division (directed and non-
directed), apoptosis, secretion of ECM and signalling molecules, reception
of extracellular signals, cell contraction, cell adhesion and movement and
shape change as a consequence of those.

The model includes mesenchymal cells, epithelial cells and ECM. Each
cell can further differentiate to adopt a specific morphology and patterns
of gene expression due to signalling and mechanical forces. Mesenchymal
cells and ECM are made of spherical nodes while epithelial cells are made
of cylinders. Each cylinder is made of two nodes, an apical and a basal
one. The number, size and position (in a continuous 3D space) of nodes
changes via model dynamics. As a result cells move and change their size
and form. Changes in the spatial location and shape of cells configure the
overall changes in an embryo’s morphology.

All calculations, including molecule concentrations and diffusion, are
made exclusively on the nodes but allowing diffusion of some molecules
between nodes within and between cells (see below). The spatial distribu-
tion of those nodes represents the embryo’s morphology and within each
cell it represents cell shape. Each node has a set of mechanical properties
and can accumulate different types of molecules. These properties are nu-
merical values that affect the forces acting between nodes and are affected
by the molecules present in nodes. Cells also have properties whose values
are affected by the molecules present in each of its nodes.

In addition, the model includes some global parameters and a gene net-
work that can be different depending on the organ or embryo part being
studied. The gene network is specified by a n, x n, matrix (matrix 7'), a
ng X Ng X ng matrix (matrix R), a ng X ng, matrix (matrix ) and a ngy X ng
matrix (matrix C). ng is the number of different molecules the model con-
siders (a value specified by the user), ny, is the number of node properties
plus the number of cell properties and ng, is the number of cell behaviours
considered in the model. Each element, ¢;;, in the 7" matrix specifies how
strongly gene j activates (positive value) or inhibits (negative value) the
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transcription of gene i. Each element, r;;, in the R matrix specifies how
strongly molecule 7 catalyses the production of molecule k£ from molecule
j. Thus, our model considers both transcription of genes and the modifica-
tion of molecules that may be gene products (for example post-translational
modifications of gene products) or not (such as many secondary messen-
gers). We refer to both the gene products and other molecules that affect
gene expression as regulatory molecules. Each element, e;;, in the £ ma-
trix specifies how strongly molecule 7 increases or decreases node property
J in the nodes where this molecule is present. Each element, c;;, in the C
matrix specifies how strongly gene i promotes or inhibits cell behaviour j
in the nodes where it is expressed. In addition each molecule has its own
intrinsic rate of degradation and diffusion. Regulatory molecules can (i)
diffuse between any of the nodes of a cell, (ii) only between the apical or
basal nodes of an epithelial cell, or, (iii) in the case of growth factors, in the
space between cells.

Cells also have properties whose values are affected by the regulatory
molecules present in each of its nodes. Cell behaviours are implemented in
the model as specific rules of manipulation of these nodes and their distri-
bution between cells. Which behaviour a cell performs in a given instant of
time is affected by the regulatory molecules present in it (in a way specified
by the user).

Our model does not impose any specific gene network but is a com-
putational framework in which any arbitrary network can be implemented
and in which these can regulate cell behaviours with realistic biomechanics.
Thus, it is the user that decides which gene network and initial conditions
the model uses according to the specific developmental system the user
wants to study. The embryo editor and gene network software provide an
easy way to do that without needing to program or understand the code
(only the biological bases of the model need to be understood for that).

B.2 List of model elements

B.2.1 Subcellular elements and nodes

Subcellular elements are the smallest functional entities implemented in the
model. They represent a physical portion of a cell. Mesenchymal subcellu-
lar elements are implemented as spherical elastic volumes, as has been done
in the Subcellular Elements Model or SEM (Newman, 2005), and from now
on they will be called mesenchymal nodes. In contrast, epithelial cells are
made of sub-cellular elements with cylindrical shape. Each cylinder rep-
resents a portion of the cell extending from the apical surface to the basal
surface. Thus, there are 3 different surfaces in each cylinder: apical and
basal surfaces, which are in contact with the extracellular space or with
mesenchymal nodes, and a lateral surface, which contacts the lateral sur-
face of other cylinders from the same cell or the ones from other cells (fig.
B.3). Each epithelial cylinder consists of two nodes, an apical and a basal
one, which may have different properties. These two nodes are tied by an
elastic spring (see section B.3.2). In order to represent the ECM a third type
of subcellular element is implemented as spherical nodes that do not belong
to any cell (see section B.3.3).
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Node properties are named by a lower case p and a three letter su-
perindex specific of each property and a second subindex for the specific
node (e.g: pf @D is the property “equilibirum distance” for node i; notice
the superindex is not p; multiplied EQD times).

B.2.2 Cells

Cells are functional entities in the model that can change their shape and
perform a wide range of cell behaviours (see section B.6). Cell properties
are named by a upper case P and a three letter superindex specific of each
property and a second subindex for the specific cell. Thus, for example,
PPHA g property “PHA” of cell i. Each cell is composed of one or several
subcellular elements and the shape of the cell, thus, is given by the rela-
tive positions of those elements. The number of nodes in a cell in a given
moment depends on how many nodes it had initially, on how much has it
grown, on whether it has divided or not and on two cell properties. The
first, PMIN  specifies the minimal number of nodes in a cell, this precludes
cell divisions leading to any daughter cell with less than that number. The
other one, PMAX specifies the maximal number of nodes a cell can have
(beyond that number the cell may divide, if it is in right cell cycle stage,
or stop growing). In those developmental systems where cell shape is not
important the user can choose to have mesenchymal cells made of a max-
imum of only one node and epithelial cells of two nodes, a cylinder (this
requires, in addition, setting the logical model parameter, L;, to 1). These
cell properties, like all other properties, can be genetically regulated. Each
cell has one node specified as the nucleus, which only differs from the other
nodes in that it’s the only node in which transcription takes place. The fact
that cells are made of nodes permits cells to have internal spatial asymme-
tries, that is, different nodes in a cell can have different properties (either
different mechanical properties or different amounts of different regulatory
molecules).

B.2.3 Gene products, regulatory molecules and genetic parame-
ters

The amount of a regulatory molecule at a node can change during sim-
ulation time due to gene product transcription, diffusion between nodes,
biochemical reactions and degradation (see section B.4). Each regulatory
molecule has a set of properties, which we call generically gene param-
eters even if not all the regulatory molecules are necessarily gene prod-
ucts. These properties are actual model parameters in the sense that they
are assumed to be genetically encoded and, thus, do not change during
the simulation. Chemical transformation of regulatory molecules is imple-
mented in the model as the transition of one type of molecule to another
one by regulated catalysis. Thus, transformed molecules are not consid-
ered to have changed properties but abundance (this abundance of each
molecular species being a property of each node). The only difference the
model considers between gene products and other regulatory molecules is
that gene products can be transcribed and translated while other regulatory
molecules can only be transformed (we include different equations for tran-
scription and catalysis of each chemical transformation). Transcription and
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translation can be considered together by the transcription equations or can
be considered separately by using the non-transcription catalysis equations
for translation. Gene products can also be modified post-translationally by
reaction catalysed by other regulatory molecules. In this model we treat
each one of these modifications as a different gene product that can have
its own genetic parameters. A specific gene product modification may be
present or not in a node depending on the model dynamics and on the ini-
tial conditions.

These molecular parameters include diffusivity, rate of degradation, the
ability to interact with other molecules (chosen by the user according to the
system being studied) as specified in the 7" and R matrices and their reg-
ulation of node properties (E matrix) and cell behaviours (C matrix). In
addition, the model includes a B matrix that specifies the affinity of mem-
brane molecules that mediate cell-cell adhesion. By choosing the values of
those parameters, for example by using the NetworkMaker software, the
user can implement the number of genes and the the gene network he/she
wants to study and how that affects node properties and cell properties and
behaviours.

B.2.4 Global model paramenters

These are numerical values which, like the molecular parameters, do not
change during a model simulation but that can be set to different values in
different simulations of the model and do not have a direct correspondence
with anything genetic. These include things such as the temperature and
logic model parameters that specify some details about how the model is
actually numerically implemented. These logic model parameters are iden-
tified by an L with a subindex specific to each parameter. Other model
parameters are represented by an M with a subindex specific to each pa-
rameter (see section B.9).

B.2.5 Initial conditions

Those are the numerical values of all the nodes, and all the node and cell
properties at time zero of a simulation (thus includes its location in 3D space
and the amount of each regulatory molecule present in each node). These
can be changed from simulation to simulation (with the embryo editor soft-
ware or by manually editing the files that contain them). They are simply
the stage in development from which we want to start to simulate develop-
ment. This can be from a single cell with some internal spatial asymmetries
(e.g., a zygote), or any arbitrary later stage in development (for example the
second instar wing disc of Drosophila). Each initial condition is thus what
we call a developmental pattern (Salazar-Ciudad, Jernvall, and Newman,
2003) and the model dynamics transform the initial pattern into a different
later pattern according to the genetic parameters and model parameters.
These parameters (e.g., the genes and gene networks that regulate which
cell behaviours) and the initial conditions are subject to change between
simulations depending on the question and the developmental system be-
ing studied by the user.
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B.3 Mechanical forces

B.3.1 Node neighbouring and basic biomechanical interactions

Nodes have a size, specified by a radius in both spheres and cylinders. Two
nodes adhere to each other if they come into contact (fig. B.3A), that is, if
their distance is smaller than the sum of their radii. The radius is a node
property, pAPP. Adhesion brings these nodes closer, further decreasing
their distance until the equilibrium distance between nodes is reached. This
represents the generic property of cell adhesion. If the nodes are from dif-
ferent cells this adhesion can be increased or decreased by adhesion molecules
expressed at the nodes, as we will later explain.

Cell parts such as nodes represent physical objects and thus two nodes
cannot occupy the same spatial location. Nodes, thus, have a second ra-
dius, node property p”@P, and two nodes start repelling each other if the
distance between them is shorter that the sum of their p©@P (fig. B.3A). If
the distance between two nodes is exactly equal to the sum of their p?@?
radii then an equilibrium is reached in which these nodes neither attract
nor repel each other.

From these forces the movement of node i due to its interaction with
other nodes is,

(97“1 =n
Z fA'L]Uz] (Bl)

Where ny4 is the number of nodes in the embryo, r; is the position in
three-dimensional space of node i, t is time (the model uses continuous
time), fai; is the force modulus and v;; is the unit vector between node ¢
and node j for spherical nodes and an analogous property for cylinders.
We assume that most developmental processes happen within highly vis-
cous media (Purcell, 1977), thus we calculate movement through an over-
damped equation of motion.

The force modulus between node 7 and j is,

Faij = KEEP(dy; — d5OP) if diy < dOP
faij = k;ijOU (dij — EQD) if dig > d 2" (B.2)
faij =0 if dij > djPP

where d;; is the distance at between node i and j, df.QD is the equilib-
rium distance between node i and node j (simply the sum of the equilib-

rium radii, EQD, node properties of nodes i and j, fig. B.3A) and d{}D Dis
the sum of the node property ADD of node 7 and j,
kREP — pREP 4 pREP
kzlj/OU pl YOU +pYOU (B3)
EQD QD :
di?” = p " vy
déDD = p! ADD +p ADD
pR*PP and p¥OU are biomechanical properties of the nodes that specify

how strong per unit distance are the repulsion and elasticity forces respec-
tively between a pair of nodes. If i and j belong to different cells, k4PH
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is used instead of kYU and kPEC is used instead of k*E¥. That is, we
implement intercellular adhesion as an elastic force between cells. pf¥¢
is different from p®¥? because naturally cells may more strongly resist in-
coming matter from other cells than from the same cell. Between cells, in
addition to the generic adhesion between nodes, there is an adhesion term
that depends on which adhesion molecules are expressed in each of the
nodes.

J B.4

kPH = pAPH o pADH 4 N IADH S THADH (g1 Byg) B4

Where, nappn is the number of different types of adhesion molecules

(a model parameter), g;; is the amount of adhesion molecule ! in node 4,
giq is the amount of adhesion molecule ¢ in node j and By, is the affinity
coefficient between adhesion molecules | and ¢ (genetic parameter). Notice
that homotypic adhesion is allowed between different nodes. B,, can be
negative causing cells which express the p and q adhesion molecules to
repel each other (as happens with some semaphorins (Bagnard et al., 1998),
and ephrins (Wang and Anderson, 1997). Thus, the adhesion force is simply
the product of how many adhesion molecules there are of each binding pair
of a given type and the affinity of each pair of types of adhesion molecules.
If node density in space and the piAD D of nodes are both large it be-
comes possible that two nodes could interact even if there are nodes be-
tween them. To avoid that unrealistic situation the model allows for three
alternative algorithms to determine which nodes can effectively interact.
Each simulation should be run with only one of these alternative methods:

{ kgEc _ pZREC + plEC

1. Simple method. As described above, any node j that is at a distance
(in 3D space) smaller than p/PP + p}»“D P from a given node (node i) is

interacting with it.

2. Delaunay method. A tesselation of the 3D space is performed by the
Delaunay triangulation algorithm, taking each node as a vertex. Then
only the nodes that are connected by an edge in this tesselation and
are at a distance smaller than the sum of their pAPP, as above, interact.

3. Gabriel graph method. Similar to method 1, but for every two nodes
at the right distance an additional criterion needs to be fulfilled. A
sphere of a diameter equal to the distance between the two nodes is
put in the mid-line between them. If there is any node within this
sphere then those two nodes do not interact.

Method 1 is computationally faster and is the one used in the SEM
(Newman, 2005). Method 3 is used in some similar models (Delile, Dour-
sat, and Peyriéras, 2013). In most situations these three methods provide
very similar results. Only when nodes extensively overlap in space (be-
cause overall large values in the pPP property in respect to node density
in space) it is more realistic to use method 2 or 3 (method 3 being compu-
tationally more advantageous for only a slightly lower degree of realism).
These two last methods simply preclude the interaction between two nodes
that are close enough if there are other nodes in between. In that sense they
implement a screening between nodes. These alternatives are specified, re-
spectively by the logic model parameters L3 and L;.
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B.3.2 Forces in epithelial nodes

In epithelia, the above forces work in a different way (although the rules
to define neighbourhood, which nodes interact with which, is the same).
Equations B.1 and B.2 are the ones used to calculate the forces in cylinders
but the uj;, the direction of the force, and d;; the distance between elements
is calculated differently to take into account that epithelial elements have a
cylindrical shape.

Direction of the mechanical interactions between epithelial cylinders

Epithelial cylinders have two types of surface: apical/basal and lateral.
Those surfaces are defined by the orientation of the cylinder vector (sjx)
connecting the two epithelial nodes (i and k) composing a cylinder.

Sik = T; — Th (B.5)

Where 7; and 7, are the position vectors of nodes ¢ and k respectively.
Apical/basal surfaces can interact with mesenchymal or ECM nodes or
with the apical/basal surface of other epithelial cylinders. Lateral surfaces
can only interact with lateral surfaces of other cylinders. (fig. B.3B, C, D).

Case 1. Apical/basal cylinder surface against spheric node (fig. B.3C).
Uik = —Sik (B.6)

In this case equation B.1 applies but u;; is calculated with equation B.6.
This simply reflects the fact that the contact area between the apical /basal
side of the cylinder and the spheric node is always parallel to the api-
cal/basal surface of the cylinder (fig. 4.1C).

Case 2. Apical/basal surface against apical/basal surface of different cylin-
ders (fig. B.3D). In this case the interaction is calculated in a more compli-
cated way. Let m;j;; be a vector contained within the plane defined by the
contact surface between the two cylinders (fig. B.3D). m;jy; is calculated as
the sum of the spring vectors from the two cylinders (s;;, and sj;),

Mijkl = Sik + 1 (B.7)

where i and k are the nodes composing the first cylinder and j and [ the
nodes composing the second cylinder. u;; has to be normal to the contact
surface plane and at the same time has to be contained within the plane
defined by m;j;,; and ¢;; (fig. B.3D),
Mijkl * Cij

—

Uij = Cij — Mijkl

= (B.8)
mijr|?
where ¢} is the vector connecting the two interacting nodes ¢ and j (that
is between nodes in the two different cylinders) (fig. 4.1D). The w;; cal-
culated in equation B.8 is then divided by its modulus (to become a unit
vector) and then fed into equation B.1 to calculate the force as before.
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There is a special case, when s;;, and sj; are parallel and opposite in
orientation, then m;j;; is equal to 0. In that case, since the contact surface is
normal to both sj, and s5;, equation B.6 is used.

Case 3. Cylinder lateral surface against cylinder lateral surface (fig. B.3B).
This case is similar to case 2, since my;jj,; is contained within the contact
surface plane and ¢;; has to be orthogonal to m;j;; and contained in the
plane defined by m;j;; and ¢;j. Thus in this case u;; follows equation B.8.

Note that, following Newton’s third Law, the force acting on j must have
the same modulus but opposite sign. Thus, in all cases,

Ui = —Uj; (B.9)

Distance between cylinders and between cylinders and spheres

Since the vector u;; used to calculate mechanical forces is not always equal
to ¢, the distance measure, d;;, used to calculate the force modulus cannot
be the actual distance between nodes i and j, which is the length of ¢j;. That
is why the effective distance d;; in equation B.2 is calculated in the case of
cylinder as the projection of ¢;j; over u;; (fig. B.3).

Cij - Uij

dij =

(B.10)

Juij|
This simply reflects that in a cylinder the distances between interacting
nodes are different (due to the cylindrical shape, fig. B.3).

Additional forces in epithelial cylinders
In addition epithelial nodes have two additional forces that are not present

in other types of nodes.

Spring (fig. B.4A). The spring exerts an elastic force on the two nodes
depending on the distance between them,

Fsit = KOO (di — pi %) si (B.11)
Where kg 00 = pHOO 4 pf 00 is the elastic coefficient of the spring (note
p"99 is a node property), piEQS is the equilibrium length of the spring be-

tween node i and j (note pf @5 = prS ) and sj; is the cylinder vector, the
unit vector in the direction between both nodes in a cylinder. d;; is simply
the distance between node i and j.

Epithelial bending forces (fig. B.4B, C). We define two different forces
that deal with bending of epithelial sheets. Due to external forces (e.g. a
punctual force pushing one cylinder from the basal side) the apical or basal
side of a given cylinders may slide in the apical-basal direction respect
neighbouring cylinders (fig. B.4B, C). If we consider the relative position
of the apical/basal nodes as a discrete representation of the continuous api-
cal/basal epithelial surface, any displacement in the apical-basal direction
will imply a local curvature of the epithelium. Thus, a radial force has to be
defined that reduce local curvature. We define ¢j; as the vector connecting
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neighbouring node i and j, s;; and s;; as the vectors that define the elastic
link to their basal counterparts and m;ji; as the sum of sj;, and sj; which de-
fines the vector normal to the apical or basal surface between i and j. The
force vector frsri; is calculated as,

S _ LESTMkCij, o~ cp MijELCiy -
fESTz] = k}'j il Mkl if [mizil] > MAMX‘CU| (B 12)
- . M5kl Cij — :
fesTij =0 if ‘,@igklf < Manx|cijl

This force always acts on the direction of m;j;; and is proportional to
the deviation of the angle formed by m;ji; and ¢;; from 90° (the angle found
when to cylinders are totally aligned). kgST is derived from a specific node
property (k:g»ST = pEsT —|—pfST).

In order to minimize the sensitivity to small perturbations, we set a min-
imal value of the projection of ¢;j over mji; to apply ngTij, that is when
the projection of ¢;; over mjj, is less than the product of the distance be-
tween the two nodes and Ma)rx, a model parameter, no surface tension
force is applied.

If the force generating the local curvature is persistent, the epithelial sur-
face will remain curved, and thus the epithelial cylinders will have to reori-
ent in order to make their apical-basal vector s normal to the local epithelial
surface, which is approximated by the vectors connecting the apical/basal
node with their apical/basal neighbours. This is accomplished by applying
a rotational force that will rotate the cylinders until their apical-basal vector
§is normal to the surface plane at that position. The force vector frgrp;; is
calculated as,

= .. — LERPSik Ac -~ ¢ LERP Sik ACi; >
Terpg = ki =g 6 i kT = Mavclesl gy
feRPij =0 if kfTPE = < Manx|cjl

This force is proportional to the deviation of the angle formed by sjj,
and ¢;j from 90°, but in this case the direction of the force is parallel to ¢},
thus promoting a tilting of the epithelial cylinder that reaches an equilib-
rium (that is the force modulus becomes 0) when the apical-basal axis of

the epithelial cylinder is normal to the apical/basal cell surface. k:gRP is
derived from a specific node property (k7" = pfRP 4 pFEP),

In order to minimize the sensitivity to small perturbations, we set a min-
imal value of the projection of ¢;; over s;j, to apply fg R pij, that is when the
projection of ¢;; over s, is less than the product of the distance between
the two nodes and M 4)rx, a model parameter, no surface tension force is
applied.

Note that these forces act equally between any cylinders irrespective of
whether these cylinders belong to the same cell or not. In that sense this
force is a property of the epithelium as such.

In summary, thus, the forces acting on an epithelial node are,

— Jj=ng
a’l“i

T fsik Z faijiiij + fE;Tij + fERPij (B.14)
=
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where £ is the node in the same cylinder than i and the sum is made
over all the neighbouring nodes except for k.

This initial arrangement and the forces just described allow these cells
to mechanically behave as epithelia for a broad range of realistic model
parameters and initial conditions. Thus, epithelia behave as in two and a
half dimensions, they can fold in complex ways in three-dimensional space
but they retain a basically two dimensional structure with all cells in an
epithelium binding to each other in their lateral sides (the apical and basal
sides can bind to non-epithelial nodes or to nodes from different epithelium
or even to a fold of the same epithelium).

B.3.3 Extracellular matrix

The ECM is represented by spherical nodes that do not belong to a cell.
They interact with other nodes in the same fashion as mesenchymal nodes.
ECM is usually composed of large proteoglycans and glycoproteins that
swell the extracellular fluids and behave as a gel. Therefore by implement-
ing the ECM as free nodes we capture their most relevant mechanical prop-
erties. ECM nodes can be secreted by cells (see below), they can also contain
regulatory molecules and can harbour catalysis (but not transcription).

B.3.4 Node movement and noise

In addition to the movement equation defined at equation B.14 there is
some noise in node movements. At each time step, a proportion Myor
(a model parameter) of the nodes are chosen at random and are tentatively
moved in a random direction for a random distance between 0 and pZD MO 5
mechanical property of each node. For each node the potential mechanical
energy is calculated, by integrating the same force equations shown in sec-
tion B.3.1 and B.3.2, in the new position. If the potential energy in the new
position is smaller than in the old position the movement is accepted. If
not, the movement is accepted with a probability proportional to the differ-
ence in potential energy between the new and old positions and inversely
proportionally to a temperature parameter, model parameter Mrgys, plus
a node property defining the node’s propensity to movement (p©"),

_ Ua.fter_Ubefore
MOV
— M +p;
Paccept =€ TEM TP,

if Uafter - Ubefore >0 (B15)
Paccept =1 Zf Uafter - Ubefore <0

where P,..cp: is the probability of realization of the movement, Uy fore is
the potential energy in the node position before movement and U,y is the
potential energy after the movement. If the movement is not accepted the
node is put back to its old position. This energy biased noise reflects the fact
that noise can affect nodes” positions but it is unlikely to bring nodes into
very energetically unfavorable positions (e.g. noise is very unlikely to bring
anode from a cell inside another cell). This is a standard way to implement
noise in many physical and biological systems (such as in SEM and in the
Pott’s model (Graner and Glazier, 1992).

At the level of cells and nodes this noise property, p , reflects in
part the tendency of cells, especially mesenchymal cells, to temporarily

MOV
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extent and retract cytoplasmatic projections (filopodia, pseudopodia and
related structures) into the extracellular space. The likelihood of a pseu-
dopodium retracting after being extended depends on whether it finds a
suitable strong binding site (either in other cells or in the substrate). Also
different types of cells tend to have pseudopodia of different lengths and
tend to extend them with different frequencies. In individually migrating
cells, in addition, the binding of those extensions is also relatively unstable
so that cells can dynamically move over space. In our model this is cap-
tured by the pM°V and pP”M© node properties. The movement of a node
by noise can be represented as this node being the tip of a pseudopodium.
pPMO specifies how long pseudopodia can extend before being retracted
and pMOV specifies how labile this node binding is (the effect is simply to
add to noise in equation B.15). Each node would then bind according to its
pAPH | plus the amount adhesion molecules expressed both in that node
and in the one it is making contact with.

Noise allows the migration of individual cells over space (this is not pos-
sible in the model without noise). The two corresponding node properties
are affected, as are all other node properties, by the regulatory molecules
contained in nodes. This allows the implementation of individual cell chemo-
taxis. Basically, extracellular signal gradients induce intracellular regula-
tory gradients that differentially affect various properties within the cell.
Similarly, haptotaxis is implemented given a spatial gradient adhesion molecules
since motile cells will migrate towards regions where the concentration of
adhesion molecules is higher (see fig. 4.5).

B.4 Gene expression, regulatory molecules and gene
networks

Each regulatory molecule has a set of properties associated with it (which
we call genetic parameters even if not all the molecules considered are gene
products). These include the diffusivity of the molecule (D;) and its intrin-
sic degradation rate (u;) and how they affect transcription, catalysis, node
properties and cell behaviours. Each molecule, thus, has one row of its own
in the T, R, E¥ and C matrices.

The T, R, E and C matrices are the quantitative specification of the de-
velopmental mechanism used in a simulation (and thus would be different
depending on the developmental system being simulated with the model).

In the model molecules can affect the concentration of each other in a
node in two ways. Some regulatory molecules can affect the production de
novo of gene products by affecting the transcription of genes and the trans-
lation of transcripts (these two processes can be considered together or sep-
arately with translation being a different kind of reaction). Some regulatory
molecules can catalyse the reactions by which a certain type of molecule is
transformed into another type of molecule. These latter reactions can be
seen either as post-translational modifications of proteins, reactions involv-
ing non-protein molecules or simple binding of molecules leading to con-
formational changes in those (that then can change the properties of those
molecules). Each different molecule can have different genetic parameters
(e.g. they can affect other regulatory molecules in different ways or reg-
ulate different node properties or cell behaviours). Thus, for example, in
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the model a certain protein and the same protein in a phosphorylated state
are two distinct regulatory molecules that can have different genetic and
regulatory properties (specified in different rows in the T, R, £ and C).
The same can happen when a regulatory molecule is bound to some other
molecules. Binding can lead to conformational changes that may drive
changes on the interactions of that regulatory molecule with other molecule
and thus the bound form is considered to be a different molecule than the
unbound form and then can have different genetic parameters (such as in
T, R, E and C). This is often the case for receptors, the ligand unbound and
bound forms of a receptor often can interact with different molecules.

B.4.1 Types of regulatory molecules

In our model the function of a regulatory molecule is specified by their
genetic parameter matrices. Thus transcription factors are gene products
that affect transcription of other genes. This implies that they have non-
zero elements in their row in the 7" matrix specifying which gene products
regulate other genes’ transcription.

Enzymes are regulatory molecules that have at least one non-zero ele-
ment in their row in the R matrix. These can represent regulatory molecules
involved in signal transduction such as kinases, proteases, lipases, etc. or
metabolic enzymes. The R matrix specifies which regulatory molecules
catalyse the reaction between which regulatory molecules and with which
activity per molecule. Regulatory molecules that catalyse the binding be-
tween molecules can also have non-zero elements in their row in the R ma-
trix.

Regulatory molecules with a non-zero element in their row in the E
matrix are regulating node properties. They can be for example myosins
affecting contraction and thus piEQD in specific nodes or molecules binding
to the cytoskeleton to make nodes more stiff (p} ©V), etc.

In the same way regulatory molecules with non-zero elements in the C'
matrix are involved in regulating cell behaviours. These can be activators
of mitosis, apoptosis, matrix secretion, etc.

Membrane adhesion molecules have a non-zero element in the first col-
umn of the F matrix. This element indicates the index of the adhesion
molecule this regulatory molecule is. Then the B matrix indicates the affin-
ity of binding between each adhesion molecule (each element in the B ma-
trix is thus a model parameter as is the case for the other matrices).

There is nothing in the model restricting a regulatory molecule from
being a transcription factor and an adhesion molecule at the same time or an
enzyme and a transcription factor. All these functions are simply specified
by the values in the 7', R, E and C matrices. In addition, there is a genetic
property called type. Each regulatory molecule can be of only one type.
These are the following.

Extracellular diffusible signals or growth factors. These are regulatory
molecules that can diffuse between nodes in different cells or between ECM
nodes, as well as between adjacent nodes belonging to the same cell in con-
tact with the cell surface. The amount of an extracellular signal in a node
in the model does not represent how much of it there is the node but how
much of it there is the extra-cellular space around the node. They cannot
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diffuse across the apical basal axis of epithelial cells, that is between an api-
cal node and a basal node of the same cylinder. These diffusible signals
affect expression in a cell only be binding to specific membrane receptors.
The bound forms may have different genetic parameters than the unbound
form (for example it may have a different catalytic specificity or directly af-
fect some node property). Note that mesenchymal cells tend to have rather
irregular, fibroblast-like, shapes and thus most nodes should be expected
to have some contact with the extra-cellular space. In the case of epithelial
cells all nodes are in contact with the extra-cellular space, but extracellular
signals cannot diffuse between nodes within the same cylinder.

Ligand binding receptors. They can only diffuse between adjacent nodes
of the same cell in contact with the cell surface. Thus they cannot diffuse
across the apical-basal axis of an epithelial cell. They can bind to extracel-
lular diffusible signals located in the same node (if they are specified to do
s0) and form a receptor-ligand complex. The receptor-ligand complex may
have different genetic parameters than the free receptor form.

Membrane tethered regulatory molecules. They can only diffuse between
adjacent nodes of the same cell in contact with the cell surface. Thus they
cannot diffuse across the apical-basal axis of an epithelial cell. They can me-
diate signalling by cell contact, thus they can interact and bind to membrane
bound receptors located in adjacent nodes belonging to different cells.

Apically or basally localized molecules. These are intracellular regula-
tory molecules that are continuously being transported from one side of an
epithelial cell (apical or basal) to the other. Molecules being transported
to the apical side can freely diffuse between adjacent nodes from the same
side, but are only transported along the the apical-basal axis of the cylinder
when they are in the basal side. Molecules being transported to the basal
side can diffuse freely between adjacent nodes from the same side, but are
only transported along the apical-basal axis of the cylinder if they are in the
apical side.

All other molecules. All other molecules can diffuse between all the nodes
in a cell, but not between nodes of different cells.
B.4.2 Transcription

Transcription can only happen in the cell nucleus, which is located in a
specific node within the cell. The rate of transcription of gene % in node ¢
(provided that i is a nuclear node) is,

Ng
¢ (Z tlk9ﬂ>
=1
g
1+@ <Z tlkgil)
I=1

Where Q;1, is the rate of transcription of gene k in node i, g; is the
amount of transcriptional factor / in node i and each ¢;;, term is the strength

Qik = (B.16)
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by which each specific transcriptional factor £ activates (positive ¢;;,) or in-
hibits (negative t;;) the transcription of gene [ (each of them is an element
of matrix 7). The sum is done through all the regulatory molecules and
by definition only transcriptional factors have t;;, terms different from zero.
® is a function that is equal to 0 for values of x smaller than 0 and equals
to z when z is greater than 0 (®(z) = 0if x < 0 and ®(z) = z if z > 0).
This function is used to ensure that there is not such a thing as negative
transcription (although ¢;;, can be negative and thus repress transcription).

Equation B.16 represents the binding of several transcriptional factors
to the promoter of gene k. This is a saturating process that, for simplicity, is
represented by a Hill equation of order 1. This means that when there are
few activator factors the rate of transcription increases with the amount of
these factors. But when there are many of these factors the rate of transcrip-
tion does not increase as much with the amount of activator factors since
the binding sites for each of them in the promoter are likely to be already
occupied by them. The same (Salazar-Ciudad, Garcia-Ferndndez, and Solé,
2000; Salazar-Ciudad, Newman, and Solé, 2001) or similar (Reinitz and
Sharp, 1995) equation has been used in previous models of gene networks
in development.

B.4.3 Non-transcriptional catalysis

The rate of production of a regulatory molecule in a node depends on the
product of the amount of each regulatory molecule that gives rise to it by
the amount of each regulatory molecule that promotes this catalysis (all
within the same node). The rate of production of a regulatory molecule k
in node 7 is thus,

Ng MNg Ng MNg
gil ik
Sik = 5 TikGij T — 5 rikgij——— (B.17)
’ ll;J Y1+ ga l1;j Y1+ gik

The first term W;;, defines the rate of production regulatory molecule &
in node i due to the transformation of other forms [ into £ catalysed by j.
The second term Uy, defines the rate of loss of form & due to its transfor-
mation into other forms [ mediated by catalyzation from j. The R matrix
element 7, specifies the catalytic activity of regulatory molecule j on the
transformation of regulatory molecule ! into regulatory molecule k. Each
term follows Michaelis-Menten kinetics in which Kj; = 1.

B.4.4 Receptor-ligand binding

The kinetics of receptor-ligand binding need to be implemented differently,
since in this case the two reactants (receptor and ligand) give rise to a single
product (the receptor-ligand complex). Thus, the receptor-ligand complex
is represented by a single regulatory molecule ¢ which can be formed by
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binding the ligand ! and the receptor £ and can also be dissociated giving
rise to [ and k. The rate of change of ¢ on node i is,

Sic = a19i19ik — a-19ic
a1 = Tcle = Tcke (818)
A—1 = Teel = Teck

Where a1 and a_1 are the forward and backward reaction constants re-
spectively. Note that this equation will be applied instead of B.17 only for
molecules that have been specified as receptors, which is set as a gene prop-
erty.

The kinetics of binding between receptors and membrane tethered lig-
ands are implemented differently, since the binding happens in the interface
between different cells and thus receptor and ligand are located in different
nodes. For that reason the receptor-ligand complex is not represented by
a single regulatory molecule, but by two. If ligand [ is expressed in node ¢
and receptor k is expressed in node j, then the receptor-ligand complex will
be represented by the ligand bound form o in node ¢ and receptor bound
form p in node j. The rate of change of 0o and [ in nodes 7 and j respectively
is,

Sio = Sjp = a19i19jk — a—19ioYjp
a1 = Tklo = Tikp (B.19)

-1 = Tkol = Tipk

B.4.5 Molecule degradation

In addition all molecules have a basal degradation rate. That is calculated
as,

Mk = prgik (B.20)

where iy, is the intrinsic rate of degradation of molecule % (a model ge-
netic parameter).

Enzyme dependent degradation (in the sense of a molecule promoting
the degradation of another molecule, i.e. protease) can be implemented by
defining a regulatory molecule k£ corresponding to a molecule labelled for
degradation and having a second regulatory molecule (the enzyme catalysing
degradation) capable of transforming other molecules into this molecule &.
This molecule might then have a large .

B.4.6 Diffusion

Diffusion is implemented as transfers of molecules between nodes (includ-
ing ECM nodes). This transport follows Fick’s second law of diffusion,
dq

= = _DV? B.21
T Vg (B.21)

Where ¢ is concentration of a molecule, D is the diffusion coefficient
of that molecule and V?¢ is the second derivative of the concentration in
3D space. We calculate transfers of matter between pairs of nodes. Since
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we only make calculations in the nodes diffusion is essentially discrete (al-
though non-uniformly) and this equation is roughly approximated by,

O =Dy (gi’“;_g""‘) (B.22)
j=1 v

Where g;;. is the amount of molecule % in node ¢, ¢ is time, D, is the
diffusivity coefficient of molecule k, n, is the number of nodes within the
maximum radius of diffusion from node i and d;; is the distance between
node ¢ and j. Both this distance and n, depend on how nodes are arranged
in space. The maximum radius of diffusion is two times the maximal p4°?
in the embryo in a given iteration multiplied by Mp;r, a model parameter.
This ensures an optimal accuracy even if there are changes in the sizes of
the nodes in the embryo over time.

We only consider diffusion between nodes that are closer than the max-
imum radius of diffusion. The amount of molecules interchanged between
two nodes in each instant of time decreases with the distance between these
two nodes. Thus, after some distance this diffusion becomes negligible. In-
creasing this distance exponentially increases the number of node pairs to
be considered, thus making the calculations very expensive computation-
ally for a small gain in accuracy. Mp;r is a model parameter that will usu-
ally take values between one and few node radii.

Since diffusion is only calculated between existing nodes, it cannot hap-
pen within empty cavities (without cells but filled with fluid) in the embryo,
such as blastocoels. To ensure effective diffusion of molecules across those
cavities, ECM nodes need to be added in order to fill them. In growing em-
bryos those cavities will most likely grow, or decrease, so ECM should be
actively secreted and/or degraded by cells (see section B.6.8).

The same node neighbourhood used for mechanical interactions is used
to determine which nodes will transfer molecules between them (see sec-
tion B.3.1).

In some cases we might want to simulate a developing system with
open boundary conditions, where diffusive molecules would be lost through
the borders. In those cases, the nodes making the boundary of the system
can be set as boundary nodes, p?“% node property, and then they will tend
lose intercellular diffusing molecules at a rate,

<= ( Gik — Yjk
Ojk(boundary) = Di | > <d‘j ’ ) — gik (B.23)
=1 ‘

B.4.7 Total amount of a molecule in a node

In summary, the rate of change of the amount of primary gene product %
(produced by transcription) in node 7 is,

Jg;
gtk = Qir — M + Oy, (B.24)
For other molecules this is,
d9;
Ik Su — My, + Ok (B.25)

ot
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B.5 Regulation of node properties

B.5.1 Node properties

Most node properties have already been described when describing me-
chanical forces. See section B.5.7 for a list and summary of those. Each of
these values can be modified by the amounts of specific regulatory molecules
in a node. Each element e, in the £ matrix describes the effect of regula-
tory molecule m on node property [. The value of node property [ at time ¢
in node ¢ is then,

g

pi(t) = @ <pé(0> +(1=pP"F) Y elkgik> (B.26)

k=1

where pl(t) is the value of node property [ in node i at time ¢ and p(0) is
the value of that node property / in node ¢ when the node was created (this
is in the initial condition or when the node first arose through growth).
®, as in equation B.16, function ensures that node properties can become
very small (or zero) but not negative. pP/¥" is the degree of differentiation
in node i (differentiation slows down changes in nodes). The amount of
change in node properties is then related to how much of the molecules
regulating these properties there is in a node and how strongly they regu-
late them, as specified in each element e in the £ matrix. For simplicity, this
regulation is supposed to be instantaneous compared with the rate at which
nodes move or with the rate at which regulatory molecules are catalysed.
Equation B.25 applies to all node properties except for prD and pP!F that
are explained later.

B.5.2 Node and cell differentiation

In this model cell differentiation is defined as the process leading a cell
to stop any developmental cell behaviour or cell movement. Thus, the
moment when all cells in the embryo are differentiated marks the end of
the developmental process in our model. The level of differentiation in a
node depends on the expression of certain regulatory molecules, its rate of
change is,

opPIF g
pét =V (Z emagim> (827)

m=1

where a is the index of the column in matrix E specifying how regu-
latory molecules regulate differentiation and W(x) is a function that is 1 if
x > 1 and it’s equal to x if x < 1. As stated in equation B.26, the effect of
regulatory molecules on node properties is diminished by the level of dif-
ferentiation of the node, being 0 when the differentiation level reaches 1. At
the moment all nodes reach a differentiation level of 1, the developmental
process has ended and thus the simulation stops.
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B.5.3 Regulation of node radii

The pP@P of a node is the sum of four other node properties that correspond
to four different cell processes.
EQD
pi @0 = p{OP 4 pIhP
EQD

PLD

+ pPLP 4 pVOD (B.28)

The value of p in each node is updated in each iteration according
to the values of these other four node properties. The first term is com-
ing from node active contraction (due to myosin and related molecules),
the second is coming from cell growth and apoptosis, the third from cell
mechanical plasticity and the fourth from cylinder volume conservation.
Having p”@P determined by four independent terms allows contraction,
growth, plasticity and volume conservation to occur at the same time in a
cell. For example it is important that parts of the cell can contract while the
cell is growing (and that would not be possible if growth and contraction
would act directly on p¥ QD since one growth would increase p” QP and con-
traction would decrease it: so there may not be much change overall). Cell
contraction is realized when a regulatory molecule regulates negatively the
node property p“©P. Since contraction is happening in the nodes, cells may
have contraction in only part of its nodes, as it is necessary in a number of
developmental processes such as in invagination by apical cell contraction.
p©OP is calculated as in equation B.26 above. The other terms are explained
in the following sections and when explaining cell growth.

In addition, the model includes a minimum and a maximum for any
pF@P  these are model parameters Mgyrr and Mgy, but those can be set
arbitrarily small or large (so that they have no effect on the model dynam-
ics).

Special rules also apply to pP”. Any decrease or increase in pP@P
during a time step is also applied to p”P so that the difference between
pP@P and pAPP does not change because of changes in p?@P. This way the
two node properties defining their effective size change together.

B.5.4 Node and cell plasticity

Cells are not totally elastic. They are also viscous, as explained in section
above, and can also accommodate incoming pressures by actively or pas-
sively changing the cytoskeleton. This is specially relevant in the case of the
highly packed cells encountered in epithelia. With plasticity (that can be to-
tally deactivated by setting logical model parameter Lg to zero) epitehlial
nodes accommodate to compression from other nodes by reducing their
pP@P . For each node i compression is calculated as the mean difference be-
tween the distance to its neighbours and the equilibrium distance to them,

™ (dy; — dEQP
Zi _ Z]_l( J i ) (B29)

Ny

Where n, is the number of neighbours in contact with ¢ and diEjQD is as
in equation B.2. If Z; is smaller than 0 then the node is under compression.

Then the change in p/’? per unit time is,

(2

8prD
=5 =0""Z (B.30)
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where p/’t4 is a node property (that can be directly regulated by regu-
latory molecules) specifying how plastic node i is.

B.5.5 Volume conservation in cylinders

The two nodes that compose an epithelial cylinder are mostly independent
from one another, nonetheless they together represent a single subcellular
element and thus certain mechanical deformations in one node may affect
the other node. For instance, if an epithelial cell contracts its apical surface
(for example by means of actomyosin activity on the cell cortex) the volume
of the apical half of the cell would decrease and, by volume conservation,
the basal half should increase in volume. This kind of deformation can also
occur if an epithelial sheet bends passively (from forces generated some-
where else than in the bending part; Lane et al., 1993). In this case, cells can
accommodate by adopting slightly wedged shapes.

Epithelial cylinder volume conservation is implemented in the model
as transfers of volume between the apical and basal nodes of the cylinder,
depending on the level of compression and/or tension there is on each side.
In order to make effective the transfer of volume between sides pVOD ,1s de-
fined as a component of p?” due to volume conservation of the cylinder,
that will tend to correct any deviations from the equilibrium volume due to
deformation. Its rate of change over time is,

GRD GRD EQD EQD
ap}/OD _  voc (pi +pj —D; —D; >

5 ; 5 (B.31)

Where j is the other node belonging to the same cylinder as ¢. This is
essentially the average difference between pPeP and p“fP in a cylinder
multiplied by the node property pY 9 (py 0% = p}/oc)_ Note that the sum
of p“fP (the contribution coming from growth) from the two nodes as an
equilibrium volume of the cylinder.

B.5.6 Spatial fixation of nodes

The model allows to simulate an embryo part or organ and consider the
rest of the embryo in a simpler way. This is done by simulation only the
organ and having some special conditions in its boundary to represent the
rest of the embryo. For example, if the system is expanding it should feel a
restorative force in the boundaries, due to the resistance to compression of
the tissues beyond the system.

This is accomplished by setting the node property pX to either 1 (elas-
tic fixation) or 2 (complete fixation) in the nodes in the borders. A node with
pf X of 1 will be tied to an elastic spring anchored to the position of that
same node at time 0 of the simulation and with an equilibrium length of 0.
Thus, an additional force component will act on these nodes,

frr = pEFL (7 (t) — 7(0)) (B.32)

Where p¥7 is a node property that determines the elastic constant of
the spring in the border that multiples the vector going from the actual
position of node i to the position it had at time 0. A node with a p/X
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of 2 will be completely fixed on space, thus making the boundaries of the
system totally rigid.

B.5.7 Summary of node properties
e Intercellular adhesion: pAPH

e Intracellular elasticity: p* ©V

e Cell compressibility between nodes of the same cell: p#&”

e Cell compressibility between nodes of different cells: pfF¢

e Filopodia extensibility: p?M©

e Filopodia instability: pM "

e Node plasticity: pt4

e Degree of differentiation: p?/¥’

e Equilibrium radius: p?@P

EQD. ,COD

EQD. ,GRD

e Contraction component of p

e Contraction component of p

EQD.  PLD

e Contraction component of p p

e Amount of ECM stored: p#¢M

e Fixation of node in space: pAPP

e Elastic constant of fixation: p £/

e Open boundary node: p?9%

e Rotational bending force coefficient: pP%¥

e Radial bending force coefficient: p”>7

e Apical-basal elasticity: p/9¢

e Apical-basal equilibrium distance: p¥@%

EQD. ,,VOD

e Volume conservation component of p P

B.6 Cell behaviours

B.6.1 Cell shape change and contraction

Cell morphology is determined in this model by the size and relative posi-
tion of the nodes composing a cell. Thus, cell morphology can change due
to passive processes, such as deformation by mechanical stresses, or due
to active processes, like genetically regulated contraction or expansion of
nodes within the cell.

Cell contraction occurs as explained in section B.5.3. Contraction by
changes in pP@P is a way for cells to produce intrinsic forces than then
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can spread and affect neighbouring cells. Note that changes in pP@? can
be both increases and decreases and that even decreases will induce forces
if the shrinking nodes are bound to other nodes (as it would often be the
case).

B.6.2 Cell polarisation and internal cell asymmetries (fig. B.5)

Epithelial cells are by definition polarized in the apical-basal axis but can
also have a polarization in the plane of the epithelium (what is often call
planar cell polarity (Simons and Mlodzik, 2008). Mesenchymal cells can
also be polarized. In our model the polarization of a cell i is described by

a 3D vector, P,{S OL a cell property. This vector arises from the asymmetri-
cal distribution of regulatory molecules within the nodes in a cell. First, a
polarization score sy; is calculated for each node i in cell A,

g
Shi = Z CmaZim (833)
m=1

where a is the index of the column in the C' matrix corresponding to the
effect of regulatory molecules on cell polarity (see fig. B.5). The polarization
vector is then,

Nh
PPOL = " (shi — sne)7i (B.34)

i=1
Where s;,. is the score of the node closest to the centroid of cell h, ny, is
the number of nodes in cell i and is the position vector of node 7. This is
simply an average of each node position weighted by its score, compared to
that of the most central node. This vector is then divided by its module to

find the polarization vector itself (the unit vector Pf OL), Polarization, thus,
arises from asymmetries in the distribution of some molecules within the
cell. These asymmetries can be present already in the initial conditions or
arise during development. In development, and in our model, these asym-
metries can arise by signalling between cells (or between cells and the envi-
ronment) that do not lead to changes in gene expression. For example, a cell
can secrete a growth factor that then, by diffusion, reaches some nodes in
a neighbouring cell with high concentration and some, more distant nodes
of the same cell, with a lower concentration. If this signal elicits a signal
transduction that promotes the catalysis of some regulatory molecule (for
example the phosporylation of some protein) then there would be a gra-
dient in the amount of this regulatory molecule within the cell (as in fig.
B.5). Signalling without changes in transcription are implemented in the
model by extracellular signals activating the catalysis of specific regulatory
molecules (without transcription) that then reproduce this gradient inside
the cell. Note this is more difficult to produce if the signal leads to transcrip-
tion since transcription occurs in the nucleus and from there diffuses in all
directions within the cell (the gradient is thus from the nucleus irrespective
of the direction of the gradient of the extracellular signal).
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B.6.3 Cell growth (fig. B.6)

Cell growth is implemented as a progressive addition of nodes within a cell.
This can happen only if the nodes within a cell are not too compressed, this
is if,

np,
Z Zin < Myco (B.35)
i=1
Where ny, is the number of nodes in cell h. Z;j, is the level of compression
on node ¢ of cell h. Calculated for equation B.28. New nodes are added one
at a time and with a small size Mj;;p, a model parameter. Then, as long as
the nodes have a p??P smaller than M4z, @ model parameter, they will
grow at a rate,

PpeRD 2 o
L= D Coubim (B.36)

i=1 m=1

Where ny, is the number of nodes belonging to cell & and ¢, is the effect
of regulatory molecule m on cell growth (column b in the C' matrix). Only
when all nodes in the cell have p&#P equal to Mysar a new node is added
to cell h. Even though growth is a process at a cell level, there is only one
node increasing at a time, thus the rate of growth of that node depends
on the amount of growth-inducing molecules located throughout all the
cell (more than one node per iteration can be added if the logical model
parameter Li¢ is set to 1). The node properties of the new node are set as
the initial node properties of a random node from the same cell. Gene and
molecule expression in the new node is set the same value than the node
closest to it (this way the the smoothness of spacial molecular gradients is
not perturbed by cell growth). Depending on where the new nodes are put
in space we distinguish between non-polar and polar cell growth.

Non-polar cell growth In mesenchymal cells the position of the new node
is chosen at random within the boundaries of the cell. In the case of epithe-
lial cells, a new cylinder is added in a random position within the bound-
aries of the cell, but its orientation in the apical-basal axis is the same as that
of the cylinders closest to it (to the three closest ones or to all the cylinders
in a cell if there is less than three cylinders in the cell).

Polar cell growth Polar growth occurs with a probability,

np - Mg

Ph(polar) = ,rjh Z Z CmdYim (B.37)

i=1 m=1
where d is the index of the column in the C' matrix corresponding to
the effect of regulatory molecule m on the probability of polar growth (see
tig. B.5). The position of the new node along the polarization axis is deter-
mined by finding the node which is farthest from the cell centroid and at
the same time closest to the direction of polarization of the cell. This is done

by calculating the dot products between the polarization vector P,fT OL and
the vector connecting the cell centroid with each node. The node giving the
largest dot product will determine the direction in which the new node will
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be added. The new node is added at a position in the line between the cell
centroid and this node and at a distance that is 80% of the distance between
the centroid and this node.

B.6.4 Cell division (fig. B.7)

Symmetric cell division. Cell division is implemented by splitting an ex-
isting cell into two new daughter cells. In symmetric division both daugh-
ter cells inherit roughly the same number of nodes.

The triggering of division in a cell depends on two factors: the progres-
sion of the cell cycle and the number of nodes in the cell. Progression of the
cell cycle is specified by the cell property P”#4 and can take values from
0 to 1 (being 1 when division takes place). The rate of increase in PP#4 on
any cell h is,

oprHA 1 Zn e
gt = nih Z Z CmdY9im (838)
i=1 m=1

Where d is the index of the column in the C' matrix corresponding to
the effect of regulatory molecules on cell phase progression. ny, is diving
the sum to ensure that just having more nodes does not affect phase pro-
gression. This is thus the sum of the contributions of all the regulatory
molecules affecting that cell behaviour in all the nodes of a cell. In addi-
tion, for a cell to divide it is also required that it has at least Py;;y nodes
(a cell property). Also if a cell has more than Pys4x (another cell property)
it divides irrespectively of its phase (Pyr4x can, however, be set to be arbi-
trarily large). As we later explain the values of these cell properties, as all
other ones, can be modified by regulatory molecules.

In nature, it is often the case that the plane of division is normal to the
longest axis of the cell, what is commonly referred as Hertwig’s rule (Minc,
Burgess, and Chang, 2011), or normal to the polarization axis of the cell (as
specified in section B.6.2). The longest cell axis (Hertwig vector: PFEE fig.
B.8) is calculated by means of a 3D linear regression of nodes” positions.
The actual division vector (the vector normal to the plane of division) is
calculated as a weighted average of the Hertwig and polarization vectors,

PPV = (1 — wy,)PPOL 4w, PHER (B.39)

The weighing factor for any cell &, wy, is calculated as a function of the
concentration of regulatory molecules in cell h that affect this weight. This
is,

1
2:21 :lng:l CmeZim
Where e is the index of the column in the C' matrix corresponding to the
effect of regulatory molecules on polarized cell division. Thus, if W), = 1

the division vector is equal to the Hertwig vector and if W}, = 0 it is equal
to the polarization vector.

(B.40)

Wwh =

The actual plane of division is normal to the division vector PPTV and is
passes through the centroid of the cell. This plane splits the cell in two and
nodes in one side are assigned to one daughter cell and nodes in the other
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to the other. The former nucleus of the cell loses its identity (it becomes a
normal node), and after the division the most central node (the node closest
to the new centroids) of each new cell is chosen as the nucleus.

Asymmetric cell division. Inasymmetric division the size of the two daugh-
ter cells is different (one daughter cell has more nodes than the other). In

this case, the position of the division plane along the division vector P}? v
does not pass by the physical center of the cell (the centroid), but depends
on the spatial distribution of certain regulatory molecules within the cell.
Each node i in cell  gets a score determined by summing all the molecules
affecting the asymmetry of division,

g
s¥ = Cmfim (B.41)
m=1

Where f is the index of the column in the C' matrix corresponding to
the effect of regulatory molecules on asymmetric cell division. Then the
division plane is placed at the point in the axis defined by PPV where the
sums of the scores of nodes at each side of the plane are equal. Thus, the
more skewed the distribution of those molecules, the more asymmetric is
the cell division. If the gene product distribution is uniform then the plane
of division appears on the centroid of the cell.

If the division is very asymmetric and the cell has not a very regular
shape then daughter cells with isolated nodes can be produced (that is
nodes in a cell not having physical contact with each other). Since this
situation is biologically unrealistic outcome of cell division, the physical
integrity of potential daughter cells is checked before cell division. If a
daughter cell has unconnected nodes, the division plane is moved again
to a position closer to the centroid, until the two new cells have all their
nodes connected.

B.6.5 Cell death (fig. B.8)

Cell death or apoptosis is implemented in this model as inverted cell growth,
that is when a cell is dying nodes start to decrease in size (p&fP) until a min-
imum size is reached, then the node is deleted from the simulation. When
all nodes belonging to a cell disappear then the cell also does so. The rate

of decrease of p©1iP and pAPP are equal to,
apZGRD apleD i
= = — Cmggl‘m (B.42)
ot ot —

where g is the index of the column in the C' matrix corresponding to the
effect of regulatory molecules on apoptosis.

B.6.6 Cell adhesion

Cell adhesion is integrated in the mechanical part the model (see section
B.3). Each node has a basal adhesivity plus the one given by the expres-
sion of adhesion molecules, which depends on the affinity of the adhesion
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molecules expressed in each node. As discussed in section B.3, this includes
also the possibility to implement repulsion between cells.

B.6.7 Epithelial-mesenchymal transition (EMT) (fig. B.9)

EMT is implemented as a discrete transformation of an epithelial cell to
a mesenchymal one. Each epithelial cylinder is converted into two mes-
enchymal nodes by changing the identity of the two epithelial nodes and
removing the elastic spring between them. Before that, in order to keep the
spatial continuity of the future mesenchymal cell, the apical and basal sides
of the epithelial cell are brought closer to each other by reducing the length
of the elastic springs. The transition is regulated by a cell property PFMT
that is progressively increased due to gene expression,

opEMT 1
= — ; B.43
ot - mz:l CmkJim ( )

where £ is the index of the column in the C' matrix corresponding to the
effect of regulatory molecules on EMT. n, is diving the sum to ensure that
just having more nodes does not affect PFM7. When PFMT reaches a value
of 1, the transition is realized.

B.6.8 Secretion

ECM secretion (fig. B.10) ECM is represented as free spheric nodes, which
can be secreted by any type of cell provided that there is expression of
molecules regulating its secretion. Given that ECM nodes in the model
represent finite amounts of large fibrous extracellular molecules like pro-
teoglycans or collagen, those have to first accumulate within the cell before
being secreted as one ECM node. The rate at which those products accu-
mulate within a node is,

8pECM "9

lat = Z CmiY9im (844)

m=1

where [ is the index of the column in the C' matrix corresponding to the
effect of regulatory molecules on ECM secretion and p#“™ is the amount of
accumulated ECM products within node i. Once p“M reaches a value of
the model parameter Mgc ) a node is secreted near node ¢ and prM is set
back to 0. The p&iiP of the ECM node will be equal to Mgc, correlating
in a way the amount of ECM components and the volume of the node. The
other components of pPQD will be set to zero. The p*¥C and pAPP of a new
ECM node i are determined at the moment of secretion depending on gene
expression in the node that secreted it,

g
szEC = Z CmrGi'm (B45)
m=1

g
EQD
piADD =D; @ + Z Cms9i'm (B.46)
m=1
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Where 7’ is the node that secreted node i, r is the index of the column
in the C matrix corresponding to the effect of regulatory molecule m on
the amount of ECM matter secreted, s is the index of the column in the C
matrix corresponding to the effect of regulatory molecule m on the amount
of adhesive ECM matter. Note that ECM nodes can not have p¥ ©Y or pt¥Fr
since they do not belong to a cell.

Some regulatory molecules expressed in the cell may be secreted along
the ECM, such as adhesion molecules or other compounds that are tightly
bound to the ECM fibrous components. Those molecules will be transferred
to the ECM node at the time it is secreted. The molecules secreted this way
can not diffuse between nodes but can react with molecules that are diffus-
ing between ECM nodes (e.g. bind to extracellular signals). The proportion
of regulatory molecule m that would be secreted with the node i and the
proportion that would remain in the original node i’ are,

(B.47)

9im = CmtGi'm
Gi'm = (1 - Cmt)gi’m

where ¢ is the index of the column in the C' matrix corresponding to the
propensity of regulatory molecules to be secreted.

In epithelial cells, the new ECM node is placed at a small distance of
the node that secreted it, in the direction of the apical-basal axis (either api-
cal and basal epithelial nodes can secrete ECM). In mesenchymal cells the
ECM node is placed in at a random position in the line going from the cell
centroid to the node that is secreting the node (see fig. B.10). If the cell has
only one node then the ECM node is secreted in a random direction (at a
short distance).

ECM degradation can be specified as a gene property in the C' matrix.
The degradation of ECM nodes is implemented similarly as in the case of
cell death. The presence of a gene product specified as an extracellular pro-
teases in an ECM node will promote a decrease in the node’s size at a certain
rate. When the ECM node reaches a minimum size, it disappears. The rate
at which an ECM node shrinks due to protease mediated degradation is,

apGRD B apADD "9

i i = N g BA
ot ot D cma (B.48)

m=1

Where g is the index of the column in the C' matrix corresponding to the
effect of regulatory molecules on ECM degradation.

Diffusible extracellular signals. The process of secretion of extracellu-
lar diffusible molecules happens when an intracellular gene form is trans-
formed via catalytic activity into an extracellular form. The latter will im-
mediately start to diffuse to other cells or to the ECM. Extracellular dif-
fusible molecules can act as extra-cellular signals by binding to cell surface
receptors or by affecting the mechanical properties of the ECM nodes and
even mediate its degradation, acting as extracellular proteases (Shapiro,
1998).
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B.7 Regulation of cell properties

In the following section we explain how the cell properties proL (cell po-
larity), PPHA (cell cycle progression), PEMT (EMT transition) are changed.

The cell centroid is also a cell property, it is simply the average of the
positions of each of its nodes in 3D space (it is thus a 3D vector). This
centroid is calculated in each iteration. PM!N and PMAX are regulated by
regulatory molecules,

8PMIN np Mg

= — = Z Z CmqTim (B49)

i=1 m=1

Where ¢ is the index of the column in the C' matrix corresponding to
the effect of regulatory molecules on the minimal number of nodes for cell
division PMIN  pn; is the number of nodes in cell , and it is diving the sum

to ensure that just having more nodes does not affect PM7V,
aPMAX np  Ng
i=1 m=1

where w is the index of the column in the C' matrix corresponding to the
effect of regulatory molecules on the maximal number of nodes allowed
before cell division PMAX. p, is the number of nodes in cell b, and it is
diving the sum to ensure that just having more nodes does not affect PM4X.

B.8 Numerical integration

Differential equations are numerically integrated by the explicit Euler method
or, optionally, by the explicit fourth-order Runge-Kutta method. These
methods can be used with a fixed time step, with an adaptive time step
or by a dynamic time step. The logic model parameters L7, Lip and Li5
specify how the numerical integrations are performed.

The adaptive step-size integration is done by the standard step-doubling
procedure. When the integration is not adaptive the value of §, the integra-
tion time step, can be either set constant (when logical model parameter
L7 = 1) or dynamic (default, L7y = 0) over time, depending on the max-
imum node movement length at each time step. The dynamic § value is
calculated as,

M
§, = Y.DDA

(B.51)
’rmax’

where 4, is the value of § at time ¢, |ry,4,| is the length of the longest
movement vector in the system at that time and Mpp 4 is a model parame-
ter that specifies the value of §; when |75, | is unity. This ensures that when
changes in node positions occur very fast (large |2 |) the calculations are
done with higher accuracy (smaller J;). In that sense Mpp4 also specifies
how accurate the calculations are (higher accuracy when low Mpp4 val-
ues).

We further control the value of § by setting its maximum value, model
parameter Mpar4. If § is larger than that value, 0 is set equal to that value.
At the same time if § is smaller than the model parameter Mpys; (a model
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parameter) then 0 is set equal to that value. Real time increases by J; per
time iteration.

The numerical integrations can also be done with a constant § by setting
the logical parameter L to 1. In that case J is equal to Mpas;.

B.9

Model parameters

B.9.1 Numerical model parameters

Mrgym. Temperature analogue, this is how much noisy movements
that are energetically unfavourable are likely to happen (see section
B.3.4).

Mnyor. Proportion of nodes to which noise is applied in each iteration.
If § is dynamic this proportion is weighted by d; (see section B.3.4)

Mpyrco. Maximal compression allowed in a cell to allow growth in it
(see section B.6.3).

EQD

Mgysr. Minimal p allowed.

EQD

Mgy 4. Maximal p allowed.

Myag. pPPP all nodes in a cell should have before adding a new

node.

Implementation model parameters. These are parameters controlling
the numerical implementation of the model, this is the accuracy of the
model. They have no biological meaning as such.

Mprr. Maximum radius of diffusion. By default its value is equal
to 2. Values larger than that have a negligible effect on accuracy and
largely decrease the speed of the model.

Mrp. pP@P given to the new added nodes by growth. Any value
that is small compared to the average p”” of nodes (or compared to
M ar) would produce the same model dynamics.

Mgcoy. Amount of extra-cellular matrix that has to accumulate in a
node before an ECM node is secreted. This essentially controls how
much ECM there needs to be for the model to consider that ECM as a
node.

Mpprr. Minimum 4. In any case, the numerical integration step may
not be below this value. The lower this value is, the more accurate
are model calculations but the slower the model would be. This pa-
rameter is only meaningful if delta is dynamic (L7 = 0, that is the
default).

Mppa. Accuracy of the numerical integration. This parameter is only
meaningful if § is dynamic (L7 = 0, that is the default).

Mpara. Maximal value of § allowed. This parameter is only mean-
ingful if § is dynamic (L7 = 0, that is the default).
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o My nn. Maximal number of nodes any node can interact with. If
there is more than that number the program crashes. These is no opti-
mal way to avoid that effect, since these neighbours need to be stored
in a temporary matrix and there are system restrictions in the size of
those. In addition, there is no way to predict how many nodes a node
will interact with since this is a result of model dynamics. If this value
is large the program would run slower.

o My x. Inthe mechanical interaction between two cylinders, the min-
imum curvature in order to apply the epithelial rotational force and
the epithelial surface tension force (see section B.3.2).

o Mpgara. Maximum node length of movement when § is dynamic (L7 =
0).

o Mprany. Maximum number of nodes allowed in a simulation. Only
applicable when (Ly = 1).

o Maap. Sets the size of the exclusion sphere when using the Gabriel
method to build the node’s neighbourhood (only when L3 = 1).

e Mprg. Maximum pF@P

mation (see section B.5.3)

allowed for an epithelial node due to defor-

There also some model parameters that only apply if some logical model
parameters are set to 1. This is they have no meaning in the default version
of the model but are relevant for some alternative versions of the model ac-
tivated by some logical model parameters. They are explained in the next
section.

B.9.2 Logic model parameters

Here we describe their non-default values and how these change the func-
tioning of the model. All logical model parameters are by default set to 0
and that defines the canonical version of the model. By setting any of those
parameters equal to 1 different variations of the model can be activated (all
of them are only small variations). These options can be manually altered
in the input and output files or can be edited through the gene network
viewer.

e L;. If setto 1 the model considers that each mesenchymal cell is made
of a single node and each epithelial cell is made of a single cylinder.
The initial conditions have to be designed consistent with that (each
mesenchymal cell should have a single node and each epithelial cell a
single cylinder). When this is the case slightly different rules apply in
some cell behaviours.

In the case when cells are composed of one node/cylinder, internal
asymmetries cannot arise (except in epithelial cells, but only in the
apical-basal axis), thus polarization has to be determined by the molecules
present in the surrounding cells. In this case, the cell will polarize in
the direction of a tissue-level molecular gradient. Thus, the s scores
(equation B.33) are not calculated for the nodes within the same cell
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(since there is only one, or two) but for the nodes of the neighbour-

ing cells. Then, PFOL is calculated as in equation B.34 for the non
single-node case using the s scores of the neighbouring cells.

Cells are normally supposed to double their size before dividing. Thus,
in the case when cells are composed of one node/cylinder they only
need to add one node/cylinder before dividing. In this case, cell
growth happens at the same time as cell division, by adding a new
node/cylinder and then splitting the cell in two (see section B.6.4).

In the case when cells are composed of one node/cylinder, they doesn’t
need to reach a minimum size nor a maximum size in order to divide.
When PFH4 reaches the value of one, a new node/cylinder is added
in the direction of the division vector and the cell is split in two, each
node/cylinder belonging to a different cell.

The division vector, as explained above, depends on the weighted

sum of PPOL and PH! ER and in this case PHER has to be calculated
differently, since the shape of the cell cannot be determined by the
relative position of its nodes (since there is only one). In this case
we assume the shape is determined by the distances between the cell
and its neighbours. If the distance between the cell and some of its
neighbours is longer in a certain direction we assume that the cell is
elongated in that direction. Thus, for simplicity, P/7E® will be equal
to the vector connecting the two neighboring cells which are farthest
from one another.

Chemotaxis cannot be implemented as explained above when cells
are composed of one node/cylinder. In this case, cells may move in a
random fashion, but biased by the direction of cell polarization. Ex-
pression of certain regulatory molecules may determine the strength
of this bias,

rnoise = X 4+ PO N ngcopgim (B.52)

)
m=1

where 7{“?“6 is the movement vector of node i by noise, X isarandom
unit vector with a spherical distribution, P/’°” is the cell’s polariza-
tion vector, ¢, is the element of the C' matrix specifying the effect
of regulatory molecule j on chemotaxis and g;,, is the expression of
regulatory molecule m on node i.

L. If set to 1 stops the simulation after a threshold number of nodes
are reached. This number is an optional model parameter, My an.

L. If set to 1 the Gabriel algorithm to determine which nodes interact
with each other is used. This allows nodes to screen the interaction
between other nodes (as explained in above). This option is often
used combined with Lq; set to 1.

L. If set to 1 it disables epithelial bending forces.

Ls. If set to 1 stops the simulation when any node gets a p“%? or

pAPP value three times larger than its original value.
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o L. If set to 1 forces apoptosis of all cellular nodes that are not inter-
acting with any other one after a number of iterations determined by
Mt 41, a model parameter.

o L;. If set to 0 it uses explicit Euler method for the numerical inte-
gration, if set to 1 it uses explicit fourth-order Runge-Kutta for node
movement and explicit Euler for the rest of equations. If set to 2 it uses
explicit Runge-Kutta for node movement and regulatory molecule
equations.

o Lg. If set to 1 stop the simulation once all cells are fully differentiated.
o Ly. If set to 1 it allows node plasticity.
o L. If set to 1 fixed value § is used instead of dynamic 4.

o Ly If set to 1 calculates the neighbourhood between nodes by using
the Delaunay tesselation (see section B.3.1). Otherwise neighbour-
hood is determined simply by distance.

o Ly If set to 0, the mechanical interaction between two cylinders from
the apical/basal side is calculated as described in section B.3. If set to
1 it is calculated as if they were two mesenchymal nodes (see section
B.3).

e L;3. If set to 1 volume conservation in cylinders is implemented.

e L14. If set to 1 the diffusion of pP“P components is allowed. This

is there is diffusion of p“fP, p©OP and p"'LP between mesenchymal
nodes from the same cell and between epithelial nodes from the same
side. This simply reflects that since the cytosol and membrane of dif-
ferent parts of a cell communicate there would be a natural redistribu-
tion of matter between cell parts, this is between nodes. This redistri-
bution process is analogous to a diffusion in the sense that the flux of
matter would be from nodes with higher values on those properties
to nodes with lower values. The diffusivity of that process is model

parameter, Mp;p.

o L;5. If setto 1 uses adaptive step-size and fourth-order explicit Runge-
Kutta numerical integration for node movement. If set to 2 it uses it
also for regulatory molecules equations.

e L. If set to 1 the simulations are run by allowing more than one
node to be added per cell per iteration due to growth.

e Ly7. If set to 1 and dynamic ¢ is used returns the control to the user
in the embryo display after the number of real time units that have
been run (by default returns the control after the specified number of
iterations and not of real time units). This option is only valid if the
model is run with the user graphical interface (see EmbryoMaker user
manual).

o Lig. If set to 1 noise is implemented without considering energies.
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e Lyg. If set to 1 runs the model only by energy biased noise (Monte
Carlo Method). This in general does not change model outcomes but
makes the simulations much more slower.

o Lyg. If set to 1, epithelial nodes from one side may consider as neigh-
bours epithelial nodes from the opposing side. By default those neigh-
bour connections are not considered. This may be relevant when two
different epithelial surfaces are close to each other, but it is not nec-
essary when the same epithelium folds over itself, since the nodes in
contact belong to the same surface.

e L. By default (L2 = 0) single element cells divide by adding a new,
full sized cell next to it. When L9, = 1 the new cell has a smaller size
and then gradually grows until it has full size.

B.10 Implementation of the model in the EmbryoMaker
software

B.10.1 Structure of the code

The source code is written in fortran90 and is organized in different func-
tional fortran modules. The most relevant modules are listed below.

o general.mod.f90. Declarations of the main variables that are used in
common by the rest of the modules. These are global model param-
eters and node and cell properties. The set of all node properties are
declared in a derived type fortran 90 variable. The same occurs for
cell properties. The main variables used by the other modules are a
matrix of nodes and cells properties (one element per cell and node).
Essentially the rest of the code is mostly operations on those matrices
(including re-dimensioning them).

o model.mod.f90. Manages the temporal progression of the developmen-
tal simulations and calls the subroutines in the neighbouring, bio-
mechanical, genetic and nexus modules (once per iteration with Euler
and several times with Runge-Kutta).

o neighboring.mod.f90. Contains the subroutines to calculate the neigh-
bour relations between nodes.

o biomechanic.mod.f90. Contains the subroutines that calculate the me-
chanic interactions and displacement of nodes.

o energy.mod.f90. Contains the subroutines that calculate energy poten-
tials for nodes that are used in energy-biased random movements.

o genetic.mod.f90. Declares the regulatory molecules and their param-
eters used in a specific instance of the model. It also contains the
subroutines for transcription and non-transcriptional regulation.

o nexus.mod.f03. Contains the subroutines that implement the molecu-
lar regulation of node and cell properties and the calls to the cell be-
haviours. It also contains subroutines for some simple cell behaviours.



Appendix B. Supplementary Information Chapter 4 143

o growth.mod.f90. Contains the subroutines that implement cell growth.

o death.mod.f90. Contains the subroutines that implement cell death or
apoptosis.

e mitosis.mod.f90. Contains the subroutines that implement cell divi-
sion.

o ecm.mod.f90. Contains the subroutines that implement secretion of ex-
tracellular matrix.

o single_node.mod.f90. Contains certain subroutines that are used in the
case cells are composed of one node.

o pinta.mod.f90. This file contains two modules: a view_modifier mod-
ule to control how the embryo is seen (rotation, zooming, sectioning,
etc.) and a function_plotter module that contains all the subroutines
that draw nodes and controls the menu. This latter module is the one
including the OpenGl and glut calls.

o editor.mod.f90. Contains the code required to manually edit the em-
bryo.

e ic.mod.f90. Contains a set of subroutine for simple initial conditions.
o initial.mod.f90. Contains several initialization subroutines.
e i0.mod.f90. Contains the hard-disc input/output subroutines.

e OpenGl_gl.f90, OpenGI_glu.f90 and OpenGl_glut.f90 define fortran in-
terfaces for the OpenGl, GLU and glut functions, and have been taken
from the f03gl project (http://www-stone.ch.cam.ac.uk/pub/
f03gl/index.xhtml).

B.10.2 Input/Output format

EmbryoMaker and NetworkMaker use a custom I/O format. The same file
written by the program as output can be read as input file as well. It is
basically a text file listing all the model parameters and variables that are
used by the software, including node positions and gene expression levels.
The names of the parameters and variables are indicated in the file, so it is
possible to edit the file manually. In that sense, both the editor tools of Em-
bryoMaker and NetworkMaker can be used to edit Input/Output files with
a more intuitive graphic interface. By default, as explained in the manual,
EmbryoMaker writes all the output files from a given run into a folder with
a number (a different number for each run) within a folder called output.

B.11 Detailed explanation of the developmental mech-
anism shown in figure 4.5

Figure 4.5 shows an example of a combination of basic developmental mech-
anisms (contraction, polar growth, ECM secretion and hierarchic inductive
mechanisms). The figure shows how from the network depicted in the left
and the initial conditions in the center left (time zero) the patterns in the


http://www-stone.ch.cam.ac.uk/pub/f03gl/index.xhtml
http://www-stone.ch.cam.ac.uk/pub/f03gl/index.xhtml
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right of the figure will arise over time. It is important to note that nothing
else than this network and the initial conditions are specified to the model
(there are no pre-patterns or changes in the rules of the model over time).
The developmental patterns shown in the right of the figure simply arise
from model dynamics. These pattern transformations can be explained
qualitatively. The initial pattern consists of a hollow spherical epithelium
(in the simulation shown in the figure each element is a cell) in which one
cell expresses transcription factor 1 (TF1) (all other regulatory molecules
are either not expresses or expressed homogeneously in all cells in the ini-
tial condition). TF1 promotes an epithelial-mesenchymal transition (EMT)
and thus the single cell expressing that gene detaches from the epithelium
and moves randomly in the interior of the blastula. TF1 activates the tran-
scription of TF6, a gene that promotes cell motility, cell proliferation and
extracellular matrix secretion. TF1 promotes the production and secretion
of growth factor 1 (GF1). As a result, while this EMT is still taking place,
GF1 reaches the nearby epithelial inner surface. All epithelial cells express
a receptor for GF1 (R1) at the same level in the initial conditions. Thus, GF1
bind its receptor in the epithelial cells that are close enough to the prolif-
erating mesenchymal cells (daughters of the cell originally expressing TF1
and that thus also express GF1). The activated receptor (RGF1) activates the
transcription of TF2. TF2 activates cell contraction in the outer surface of the
epithelium (this is a decrease in the pPQP in these nodes), thus mediating a
slight invagination in the epithelium next to where the mesenchymal cells
are. TF2 also mediates the production of a second growth factor (GF2). In
this case, GF2 is only secreted in the outer surface of the epithelial that end
up expressing it. GF2 binds to receptor R2 which is expressed in all epithe-
lial cells from the initial conditions. The activated receptor RGF2 activates
the transcription of TF3, which mediates the increase in size of the outer
side of the epithelial cells where it becomes expressed. Since TF2 strongly
inhibits transcription of TF3, this one will be expressed only around the ter-
ritory where TF2 is expressed, but without overlap. This means that while
contraction in the TF2 territory promotes a concavity in the epithelium, TF3
mediated expansion in the surrounding cells will have the opposite effect,
promoting a convex curvature surrounding the TF2 mediated concavity.
Also, since TF3 expression relies on GF2 signalling, this means that the far-
ther from the TF2 territory (GF2 source) the lower the concentration of TF3,
thus creating a gradient of TF3 along the whole epithelium, being highest
close to the TF2 territory and lowest at the opposite side. TF3 also promotes
cell cycle progression where it is expressed, meaning that cells close to the
TF2 territory will divide more rapidly than the ones farther from it, but not
the ones within the concavity. TF3 also inhibits the transcription of another
transcription factor (TF5) that is homogeneously expressed in all the ep-
ithelium. Thus, TF5 forms a gradient opposite to the one formed by TF3,
meaning that is lowest near the TF2 territory and highest in the opposite
side. TF5 also promotes polarization of cells, meaning that cells will be-
come polarized along the gradient formed by TF5. This means that the cells
located on the opposite side of the TF2 territory will divide in the direc-
tion of this gradient, thus promoting an elongation of the whole embryo in
that direction. Close and within the invagination this oriented proliferation
leads to a deepening of the invagination towards the inside of the embryo.



Appendix B. Supplementary Information Chapter 4 145

pmmmmmmm——
- '~

o

R

-
e

node property

PPHA = cell property

FIGURE B.1: On the macroscale, cells are represented by sets of integrated mechan-
ical bodies (subcellular elements) that physically interact with each other by means
of different mechanic equations. The mechanic coefficients used in these equations
are affected quantitatively by the amount of certain regulatory molecules present
on each node. The amount of different types of regulatory molecules within each
node is determined by the microscale dynamics, which include gene transcription,
enzymatic reactions, spatial diffusion and molecule degradation. Here, two differ-
ent cells are shown. Subcellular elements, or nodes, are represented as spheres. All
nodes belonging to the same cell are enveloped by a dashed line. The red node in
each cell contains the cell nucleus, thus only in those nodes transcription will take
place. Regulatory molecules are indicated as coloured circles with a letter and a
number: G for a generic regulatory molecule, GF for a secreted growth factor, R for
a receptor of secreted growth factors and R* for the activated receptor (the receptor
bound to its growth factor ligand). Node properties are indicated with a lowercase
p within a rectangle and cell properties are indicated with an uppercase P within
a rectangle. In the figure we put the example that the PF*¥“ node property and
PPHA cell properties are affected. Green arrows represent transcriptional regula-
tory interactions (see equation 4.4 in the main text), red arrows indicate enzymatic
reactions (see equation 4.5 in Chapter 4), black solid arrows represent regulation of
node or cell properties (see equation 4.6 in Chapter 4) and doted arrows indicate
diffusion between nodes (equations B.21 and B.22).
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A

Epithelial cells
displayed as
nodes and
springs

Epithelial cells
displayed as
cylinders

Mesenchymal
cells displayed
as nodes

FIGURE B.2: A, a small epithelial sheet made up of 7 epithelial cells, each one made

up of 14 nodes. Spheres represent nodes and green lines represent the springs

connecting two nodes forming a cylinder. Nodes of the same color belong to a

single cell. B, the same as A, but displaying the form of the cylinders. C, a small
group of 7 mesenchymal cells made up of 10 nodes each cell.
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FIGURE B.3: A, when two spheric nodes (either mesenchymal or ECM) are at a
distance closer than d4PP they feel either an attractive force if they are closer than
dEQP  or a repulsive force if they are farther than d¥@P. The direction of the force
goes from the center of one node to the center of the other. B, D, when two cylin-
ders interact the same repulsive and attractive forces act, but the direction of the
force is always normal to the contact surface of the cylinders. C, When a spheric
node interacts with a cylinder apical or basal face, the direction of the force is al-
ways parallel to the apical-basal axis of the cylinder.
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A Epithelial spring
elastic force

fSk\
d < d°9 dii = df%%, dy > dE9S,

B Epithelial bending radial force

C Epithelial bending rotational force

FIGURE B.4: A, the two nodes composing a cylinder are connected by an unbreak-

able spring. Elastic forces will always follow the direction of that spring. B, C,

epithelial bending forces tend to put two cylinders in a position in which the angle

between the vector connecting the two apical (or basal) nodes and the apical-basal

axis is 7/2. B, The bending radial force applies on a direction normal to the api-

cal/basal surface. C, The bending rotational force applies in the direction connect-
ing the two epithelial nodes from the same side.
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FIGURE B.5: Polarization is calculated as the sum of node-centroid vectors

weighted by the difference in molecular concentration respect the actual geomet-

rical centroid of the cell. In other words, the polarization vector (green arrow) will

mostly point towards the part of the cell where the concentration of the molecule

is higher (A and B, blue shaded nodes). As B shows, polarization vector is inde-
pendent of cell shape.
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Cell growth o Cell's centroid

New node added
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FIGURE B.6: A, non polar growth. A new node (blue) is added in a random place

within the cell. B, polar growth. The most external node in the direction of the

polarization vector is chosen. Then a new node is added at 80% of the distance

from the cell’s centroid to that node. In epithelial cells the same is done, but just

using the basal layer of nodes, and then completing the cylinder adding one more
node to the corresponding position in the apical layer.
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FIGURE B.7: A, symmetric, non-directed. The plane of division passes through
the cell’s center of mass, or centroid (small red solid ball) and the vector normal to
that plane (yellow arrow) is the longest axis of the cell (Hertwig’s or shape vector,
black arrow). B. Directed mitosis. The plane of division passes through the cell’s
centroid, but the direction of the plane is the weighted sum of two vectors, a cell
polarity dependent vector (green arrow), and the Hertwig vector. C, in assymetric
cell division, once the vector normal to the division plane (yellow arrow) has been
established, the plane of division is set away from the centroid of the cell so one
daughter cell is larger than the other. The displacement of the plane depends on
the direction and intensity of a particular spatial molecular gradient within the
cell. B and C can be combined to get directed assymetric mitosis. In all cases, once
the plane is set, the nodes at each side of it will be assigned to a single daughter
cell.
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Cell shrinking (apoptosis)

FIGURE B.8: When there are gene products promoting apoptosis within a cell there

is a continued decrease in size by shrinking one node at a time (in blue). When

the node reaches a minimum size (a model parameter) it disappears and another

random node begins to shrink (rightmost picture). This process keeps going until
the last node in the cell disappears and so does the cell.

Epithelial to mesenchymal transition

FIGURE B.9: An epithelial cell, represented as a set of cylinders is transformed into

a mesenchymal cell by turning each cylinder into a pair of spheric nodes. Since

any spring or surface tension forces are exerted on the nodes once they undergo

the EMT, the nodes lack the typical arrangement of epithelial cells and become
more irregular (right).
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Extracellular matrix secretion
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. ECM node added === \/ector from centroid to node

A Epithelial cells
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B Mesenchymal cells

FIGURE B.10: ECM is represented as free spheric nodes (depicted in blue) that can
be secreted by cells. A, when an epithelial cell secretes an ECM node, it appears
close to the tip of the cylinder (in yellow) where the ECM products were accumu-
lating. B, when a mesenchymal cell secretes an ECM node, a vector from the node
to the centroid of the cell is chosen (red arrow), next the node closest to that vector
and farthest from the centroid (in yellow) is selected. Then, an ECM node is added
close to that node and in the opposite direction from the centroid of the cell. That
way, intracellular deposition of ECM is prevented.
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FIGURE B.11: Different simulations were run starting from the same initial con-
ditions (left picture) except for one parameter that was modified. Each column
shows the final phenotype when a single parameter is modified by a percentatge
relative to the value of the wildtype (central row of pictures). Seven non-adjacent
cells of an epithelial sheet, each one composed of seven cylinders, express an apop-
totic factor (marked in orange in the initial conditions) promoting cell death. After
the cell death, the existence and shape of the resultant gaps in the final patterns
depend of many parameters. For example, we show in this simplified parameter
space that the remaining cells are able to close the gaps if the node’s radius (p”PP)
is large enough as to interact with the nodes in the other side of the gap. Variations
in the remaining node properties (intracellular adhesion, radius and filopodia un-
stability, respectively pAPH, pAPD and pM©V) do not seem to have a strong effect
on final phenotypes. In this genotype map, as well as in many following ones,
the lack of final phenotypes corresponding to -60% and -90% decreases of maxi-
mum radius of interaction between nodes stems from the fact that in those cases,
the radius of interaction is lower than the radius of equilibrium, thus preventing
interactions between nodes.
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FIGURE B.12: Different simulations where run starting from the same initial con-
ditions (left picture) except for one parameter that was modified. Each column
shows the final phenotype when a single parameter is modified by a percentage
relative to the value of the wild type (central row of pictures). A small epithelial
sheet composed of seven cells (each one depicted in a different colour) is allowed
to grow in a medium displaying a chemical gradient (from left to right, not shown).
When cells grow, new nodes are preferentially added in the direction of the gra-
dient and, when cells divide, the plane of cell division is also oriented according
to that gradient. The combined effects of these mechanisms produces that epithe-
lium gets elongated in the same direction of the gradient. This elongation is more
pronounced under some parameter combinations, but fades out under others (e.g.
reduced cell-cell adhesion: pAP# < wild type pAPH). Trregular cell shapes found
in (pY V< 60%) stem from the fact that in these cases the intracellular adhesion
between nodes practically equals extracellular one, so the cohesive forces keeping
cell integrity vanish.
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FIGURE B.13: Different simulations where run starting from the same initial con-
ditions (left picture) except for one parameter that was modified. Each column
shows the final phenotype when a single parameter is modified by a percentage
relative to the value of the wild type (central row of pictures). An hexagonal ep-
ithelial sheet invaginates when cells located in its central area perform apical cell
contraction. However, the depth of such invagination varies according to many pa-
rameters (in this plot, the deeper nodes are from their initial conditions position,
the more yellow they are coloured). Under some parameter combinations, invagi-
nation does not occur. This happen when apical contraction is too low (pP@P <
90%), or when epithelial cells lack cohesivity between them (either by decreased
cell-cell adhesion (pAPH < 90%), or by extreme apical contraction (p£%P > 90%)).
Radial component of epithelial surface tension (p?*T) and equilibrium distance
(pP?P) seem to have only a mild effect on apical contraction, at least for the range
of values presented in here.
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FIGURE B.14: Different simulations where run starting from the same initial con-
ditions (left picture) except for one parameter that was modified. Each column
shows the final phenotype when a single parameter is modified by a percentage
relative to the value of the wild type (central row of pictures). In these simulations,
extracellular matrix (orange nodes) is secreted by epithelial cells (in blue) in an ex-
tracellular space previously occupied by mesenchymal cells (pink). A section of the
system is depicted for a better visualization. The mechanical forces resulting as a
result of ECM secretion deform both the epithelial sheet and the underlying mes-
enchyme, but the relative magnitudes of such deformations depend on many pa-
rameters. When heterotypic adhesion is high, ECM nodes tend to spread between
epithelial and mesenchymal cells, but they tend to form a rounded aggregate when
this adhesion diminishes. Not surprisingly, deformation also strongly depends on
the rate of ECM secretion, even deformation is not accomplished if the rate is too
low. When the bending accommodation force (p?#F) diminishes, epithelial cells
become less adaptive to bending, so epithelia is only slightly deformed.
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Cell migration
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FIGURE B.15: Different simulations were run starting from the same initial condi-
tions (left picture) except for one parameter that was modified. Each column shows
the final phenotype when a single parameter is modified by a percentage relative
to the value of the wildtype (central row of pictures). A mass of three mesenchymal
cells (green) migrates over a hexagonal epithelial sheet that has a gradient in the
expression of its adhesion molecles. Thus, by means of noise and differential ad-
hesion, mesenchymal cells get displaced, from upper right part of the epithelium,
towards areas with high concentration of adhesion molecules (yellowish nodes).
Notice that effective cell migration is only promoted by some parameter combina-
tions (e.g. very short pseudopodia (pP?M© < wild type pPM©) prevents migration).
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FIGURE B.16: Different simulations, changing one parameter at a time, where run
starting from the same initial conditions (left picture). Each column shows the final
pattern when a single parameter is modified by a percentage relative to the value
of the wild-type (central row of pictures). The parameters explored are, from left to
right: heterotypic affinity between the two types of adhesion molecules, the max-
imum radius of interaction between nodes, the maximum length of movement
by noise per time step, and the likelihood of the node to make an unfavourable
movement by noise. The lack of final phenotypes corresponding to -60% and -90%
decreases of maximum radius of interaction between nodes stems from the fact
that in those cases, the radius of interaction is lower than the radius of equilib-
rium, thus preventing interactions between nodes (cells fail to keep their internal
cohesion).
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FIGURE B.17: A) Schema of the gene regulatory network. TF transcription fac-
tor, pGE, Growth factor transcript, GF, secreted growth factor, R, receptor, RGF,
receptor-ligand complex. Solid green and red arrows depict positive and neg-
ative transcriptional regulation respectively. Solid blue arrows depict chemical
reactions. Yellow dashed arrows indicate catalysis. Green dashed lines indicate
regulation of cell behaviours or node properties. B) Initial conditions, single cell
(yellow) expresses gene TF1. C) Outcome, after different number of iterations, of
the developmental mechanism in A on the initial conditions in B. The left column
shows, in section, the node types. Blue for basal side of cylinders, violet for the api-
cal side of cylinders, red for mesenchymal cells and orange for extracellular matrix
nodes. Middle and lower row display concentrations of GF2 and TF5 respectively
(yellow for high concentration, blue for low concentration). See section B.11 for
details.
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FIGURE B.18: A growing epithelial bud is in contact with a growing mesenchymal
condensation. In this simulation each cell is made of a single element. Mesenchy-
mal cells express a transcriptional factor that activates its own transcription and
the transcription of a growth factor precursor. This precursor requires a chemical
modification to become a growth factor that diffuses between cells in the extra-
cellular space. This reaction is catalysed by the transcriptional factor. The growth
factor diffuses in the extracellular space and binds to its receptor. This receptor is
expressed only in the epithelium (where an auto-activatory transcriptional factor
promotes its expression). The activated receptor enhances cell division in the ep-
ithelium. This leads to the bending of the epithelium close to the mesenchyme and
finally enclosing the mesenchymal condensate (since there is an adhesion affinity
between both tissues). Each row shows a time sequence. First row simulates de-
velopment without bead addition, second to fifth show the same simulation but
adding a bead at time step 10000 that releases the same growth factor the mes-
enchyme is secreting (beads with different concentrations of the growth factor). At
the highest concentrations an ectopic epithelial bud can be seen beneath the bead.
All pictures show a section of a three-dimensional system.
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Default model parameters and node properties.

In all simulations, cells were represented with one single node (basal
epithelial cells were composed on a single cylinder, that consists of two
nodes).

The cell neighbouring method used was based on a Gabriel tessellation
(Chapter 5).

Epithelial cell plasticity (i.e. permanent deformation mediated by me-
chanical forces, see Chapter 5) was deactivated in all simulations, thus all
cells behaved like ideal elastic bodies.

Time progression was solved in all simulations by the Euler method,
using a fixed time step size. Random cell movements via a Monte-Carlo
method were not included in the simulations.

Node properties (see Chapter 5) for all cell types were set to the follow-
ing values unless indicated otherwise.

o pPRDP = 0,25
e pAPD =050
o pREC =050
e pEST =100
. pERP =1,00

o pPRS = 0,125
° pHOO =5,00
° pMOV =0,00

° pDMO =0,00

Gene network and characterization of cell types.
A total of 31 gene products were specified in the system, with several
gene-gene gene-cell behaviour interactions.

e Gene product 1: Epithelial marker. Gene expressed in all epithelial
cells at a constant level. Regulates the expression of epithelial specific
adhesion molecule. Promotes its own expression. Promotes expres-
sion of epithelial adhesion molecule.
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e Gene product 2: Suprabasal cell marker. Gene expressed in all suprabasal
cells at a constant level. Regulates the expression of suprabasal cell
specific adhesion molecule. Promotes its own expression. Promotes
expression of suprabasal adhesion molecule.

e Gene product 3: Mesenchymal cell marker. Gene expressed in all
mesenchymal cells at a constant level. Regulates the expression of
mesenchymal cell specific adhesion molecule. Promotes its own ex-
pression. Promotes expression of epithelial adhesion molecule.

e Gene product 4: Epithelial organ marker. Gene specifying the ep-
ithelial territory corresponding to the tooth germ. Promotes its own
expression. Promotes expression of epithelial and suprabasal growth
factor receptor.

e Gene product 5: Oral epithelium marker. Gene specifying the epithe-
lial territory surrounding the tooth germ corresponding to the oral
epithelium. Promotes its own expression.

e Gene product 6: Mesenchymal organ marker. Gene specifying the
mesenchymal territory corresponding to the tooth germ. Promotes its
own expression. Promotes expression of mesenchymal growth factor
receptor.

e Gene product 7: Jaw mesenchyme marker. Gene specifying the mes-
enchymal territory outside the tooth germ. Promotes its own expres-
sion.

e Gene product 8: Epithelial adhesion molecule. Adhesion molecule
expressed only in basal epithelial cells.

e Gene product 9: Suprabasal adhesion molecule. Adhesion molecule
expressed only in suprabasal cells.

e Gene product 10: Mesenchymal adhesion molecule. Adhesion molecule
expressed only in mesenchymal cells.

e Gene product 11: Signalling centre initial marker. Gene specifying a
small group of epithelial cells at the tip of the tooth bud as signalling
centre cells. These cells are specified at the initial conditions. The ini-
tial territory sends a signal that elicits the specification of surrounding
cells as signalling centre, making it grow larger. Promotes its own ex-
pression.

e Gene product 12: Growth factor. Signalling molecule secreted by the
signalling centre. Interacts with epithelial, suprabasal and mesenchy-
mal receptors.

e Gene product 13: Epithelial receptor: inactive. Inactive form of the
epithelial receptor for the growth factor.

e Gene product 14: Suprabasal receptor: inactive. Inactive form of the
suprabasal receptor for the growth factor.

e Gene product 15: Mesenchymal receptor: inactive. Inactive form of
the mesenchymal receptor for the growth factor.
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e Gene product 16: Epithelial receptor: activated. Activated form of the
epithelial receptor that results from the interaction with the growth
factor.

e Gene product 17: Suprabasal receptor: activated. Activated form
of the suprabasal receptor that results from the interaction with the
growth factor.

e Gene product 18: Mesenchymal receptor: activated. Activated form
of the mesenchymal receptor that results from the interaction with the
growth factor.

e Gene product 19: Epithelial growth effector. Gene product that is ac-
tivated as a result of the activation of the epithelial growth factor re-
ceptor. It promotes cell cycle progression at a certain rate.

e Gene product 20: Suprabasal growth effector. Gene product that is
activated as a result of the activation of the suprabasal growth factor
receptor. It promotes cell cycle progression at a certain rate.

e Gene product 21: Mesenchymal growth effector. Gene product that
is activated as a result of the activation of the mesenchymal growth
factor receptor. It promotes cell cycle progression at a certain rate.

e Gene product 22: Not used.
e Gene product 23: Not used.
e Gene product 24: Not used.

e Gene product 25: Signalling centre expanding signal. Signal secreted
by the initial population of signalling centre cells. It promotes the
specification of surrounding cells to signalling centre fate. This signal
is only secreted by the initial population of cells, but not by the newly
specified signalling centre cells, thus the signalling centre territory ex-
pands only as far as the reach of the diffusing signal.

e Gene product 26: Expanded signalling centre marker (epithelial). Gene
product expressed by cells receiving the signalling centre expanding
signal. Cells that express this gene will secrete the growth factor sig-
nal. The expression of this product will strongly inhibit expression of
any growth factor receptor.

e Gene product 27: Expanded signalling centre marker (suprabasal).
Gene product expressed by cells receiving the signalling centre ex-
panding signal. Cells that express this gene will secrete the growth
factor signal. The expression of this product will strongly inhibit ex-
pression of any growth factor receptor.

e Gene product 28: Signalling centre receptor (epithelial) inactive. Inac-
tive form of the epithelial receptor signalling centre expanding signal.

e Gene product 29: Signalling centre receptor (suprabasal) inactive. In-
active form of the epithelial receptor signalling centre expanding sig-
nal.
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e Gene product 30: Signalling centre receptor (epithelial): activated.
Activated form of the signalling centre receptor that results from the
interaction with the signalling centre expanding signal. The activa-
tion of this receptor activates the expression of the expanded signalling
centre marker.

e Gene product 31: Signalling centre receptor (suprabasal): activated.
Activated form of the signalling centre receptor that results from the
interaction with the signalling centre expanding signal. The activa-
tion of this receptor activates the expression of the expanded signalling
centre marker.

Degradation rate was set to 0.5 for all gene products and diffusion coef-
ficient was set to 0.5 for all diffusive signals.

Varying the diffusion coefficient for the growth factor had the effect of
varying the number of proliferative cells in the different tissues, thus it had
the same effect as varying the rate of proliferation of cells which received
the growth factor.

Varying the diffusion coefficient of the signalling centre expanding sig-
nal had the effect of varying the size of the signalling centre, which in turn
meant varying the quantity and reach of the growth factor being secreted.
Thus in only influenced the relative proliferation rates between cell types.
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FIGURE C.1: A, time sequence of tooth morphogenesis in the model (frontal sec-
tion). B, frontal sections of model tooth germs are shown as a result of running
simulations with different proliferation rates in the epithelium (blue), suprabasal
layer (yellow) while keeping the rest of the parameters constant. Epithelial cells
composing the signalling centre are depicted in red. A high proliferation rate of
epithelial cells in the developing tooth tends to promote the formation of epithelial
folds, whereas high proliferation rates at the suprabasal layer preclude the forma-
tion of those, leading to tooth germs that look like enlarged bulbous buds. An in-
termediate range of values of the ratio of epithelial to suprabasal proliferation rates
results in wild-type looking tooth germs, with two well defined cervical loops that
separate the dental from the follicular mesenchyme. All simulations were run for
20000 time steps.
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FIGURE C.2: The resulting phenotype of different simulations is shown in which
the suprabasal homotypic adhesion, heterotypic epithelial-suprabasal adhesion
and epithelial homotypic adhesion were varied while the other parameters were
kept constant. Picture at the top indicates the initial conditions at bud stage. A,
variation in suprabasal homotypic adhesion and epithelial-suprabasal heterotypic
adhesion when epithelial homotypic adhesion is low. B, variation in suprabasal
homotypic adhesion and epithelial-suprabasal heterotypic adhesion when epithe-
lial homotypic adhesion is high. Slight differences in the shape of the cervical loops
can be observed when epithelial homotypic adhesion is varied, but than accounts
for the fact that higher epithelial homotypic adhesion will result in a higher ten-
dency of epithelial sheets to reduce their curvature. Epithelial cells depicted in
blue, suprabasal in yellow, mesenchymal cells in purple and epithelial signalling
cells in red. All simulations were run for 20000 time steps. Epithelial-mesenchymal
homotypic adhesion and mesenchymal homotypic adhesion were set to 1.0 in all
simulations.
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FIGURE C.3: A, B show the same parameter exploration as in figure 5.5A, B. C, D
show the result of the same parameter exploration shown in figure A and B in tooth
germs that developed thicker cervical loops. That was achieved by increasing the
parameter that regulated the proliferation rate of the suprabasal layer in C and
D compared to the tooth germs shown in A and B. It can be observed that when
the cervical loops contain a larger number of suprabasal layer cells the effect of
suprabasal layer homotypic adhesion on the orientation of the cervical loops is
even more marked. Epithelial cells depicted in blue, suprabasal layer in yellow,
mesenchymal cells in purple and epithelial signalling cells in red. All simulations

were run for 20000 time steps.
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FIGURE C.4: Mesenchyme separation experiments as shown in figure 5.5C, were

run for different combinations of parameter values for epithelial homotypic ad-

hesion and cell incompressibility. A, epithelial homotypic adhesion set to 1.0, cell

incompressibility set to 0.50. B, epithelial homotypic adhesion set to 1.0, cell incom-

pressibility set to 3.00. C, epithelial homotypic adhesion set to 5.0, cell incompress-

ibility set to 0.50. D, epithelial homotypic adhesion set to 5.0, cell incompressibility
set to 3.00.



Appendix C. Supplementary Information Chapter 5 171

epithelial pRE¢ = 0.25 epithelial pR&¢ = 0.50
A A
o] e
o o
[} o
© ©
€ €
> >
° <
9] 19)
C C
[ [
(7] wn
(] (]
€ €
0.25 0.5 0.75 - 0.25 0.5 0.75 -
stelllate reticulum pREC stelllate reticulum pREC
epithelial pRE¢ = 0.75
A
o g
3 o
g 2
o o
= 2
©
s 3
S 0 s
c O [)]
g £
[ ©
£ 5
L
n IMQ_
N
o

Y

0.0 3.0 6.0
pEsT (bendmg rotational component)

0.5 0.
stelllate reticulum pREC

FIGURE C.5: The resulting phenotype of different simulations is shown in cell im-
compressibility is varied independently in the epithelium, suprabasal layer and
mesenchyme (A, B, C) while the other parameters were kept constant, as well as
the cell mechanical parameters related to epithelial bending forces (D). A, B, C
show the results of varying cell imcompressibility in the suprabasal layer and the
mesenchyme for low (A), intermediate (B) and high (C) values of epithelial in-
compressibility. High incompressibility in the epithelium often results in longer
cervical loops whereas high incompressibility in the suprabasal layer leads to a
larger volume of the tooth germ. Incompressibility in the mesenchyme doesn’t
have an apparent effect on tooth germ shape. D, variation in the mechanical pa-
rameters related to epithelial bending forces is shown. Tooth germ shape is highly
disturbed in the cases when one of the parameters is set to 0, since bending forces
are required to keep the integrity of the epithelial tissue when it is bent. Variation
in the parameters result in slight variations in tooth germ shape. Epithelial cells
depicted in blue, suprabasal in yellow, mesenchymal cells in purple and epithelial
signalling cells in red. All simulations were run for 20000 time steps.
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FIGURE C.6: Tooth germ sections are shown in which the colour of each cell is
related to the intensity and sign of their mechanical stress. Negative values mean
compression and positive values mean tension. A, Current cell mechanical stress
in tooth germs at cap stage, run with different values of mesenchymal homotypic
adhesion. High values of mesenchymal adhesion result in higher tensile stresses
in the follicular mesenchyme and higher compression in the interior of the tooth
germ. All other adhesion strengths were set to 1.0 . B, Cell mechanical tension at
different time points during the relaxation after mesenchyme separation as in fig-
ure 5.5C. Three simulations are shown with different values of suprabasal homo-
typic adhesion (corresponding to the right most column in figure 5.5C). The whole
tooth germ is show but only suprabasal cells are depicted. Higher suprabasal ho-
motypic adhesion results in larger tensile stresses in suprabasal cells leading to
cervical loops oriented in the buco-lingual direction. Tooth germs are oriented so
the radical side is shown.
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