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Summary

Introduction

The development of tools for the analysis of real-world complex networks has signif-

icantly advanced our understanding of complex systems in fields as diverse as molec-

ular and cell biology [6], neuroscience [11], biomedicine [5, 14], ecology [100, 85],

economics [92], anatomy [23] and sociology [9]. One of the main successes of the

complex networks approach has been to unravel the relationship between the modular

organization of interactions within a complex system [66], and the function and tempo-

ral evolution of the system [37, 4, 42, 2]. As a result, a large body of research has been

devoted to the detection of the modular structure (or community structure) of complex

networks, that is, to the division (partition) of the nodes of the network into densely

connected subgroups [28].

Stochastic block models (SBMs) [105, 46, 70] are a class of probabilistic genera-

tive network models that provide a more general description of the large-scale structure

of real-world networks than modular models. In SBMs, nodes are assumed to belong

to groups and connect to each other with probabilities that depend only on their group

memberships. The simple mathematical form of SBMs has enabled not only the iden-

tification of generalized community structures in networks [70, 50, 18, 91, 74, 76, 75,

56, 3, 108], but also to make network inference a predictive tool to detect missing and

spurious links in empirical network data [44], to predict human decisions [41, 39] and

the appearance of conflict in work teams [86], and for the identification of unknown

interactions between drugs [45].

While these approaches have pushed forward our understanding of complex net-

work structure, there are some limitations: (i) it is not clear which inference methodol-

ogy yields better predictions, (ii) they rely on the premise that there is a single mecha-

nism that describes the connectivity of the network. The goal of this thesis is to develop

novel inference approaches that will improve our understanding of complex systems,

decide which inference models to use and apply it to real world problems.
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10 Summary

Approaches to network inference with stochastic block models

The reliability of missing links is the likelihood that a link exists on a given network, it

can be compute by p(Aij = 1|AO) =
∫
M

dM p(Aij=1|M) p(AO|M) p(M)∫
M

dM p(AO|M) p(M)
[44], given an

observed network AO with an adjacency matrix Aij and integrating over all the family

of models M.

The most popular inference approach to estimate this equation focuses on finding

a single-point estimate for the most likely set of parameters [32, 13, 67, 18, 74, 75].

However, Bayesian inference theory suggests that the correct approach goes through

integrating the whole ensemble of possible sets of parameters [49]; we will refer to

single-point for the former method and sampling for the latter. The single-point method

is mostly used because the likelihood distribution is usually peaked around the optimal

single-point estimate, then the rest of non-optimal models are considered negligible. In

this chapter we investigate to what extent sampling over several models improves the

predictive power than considering the optimal set of parameters alone, hence quantify-

ing the error at estimating the equation when applying the single-point method.

To adress this question we adopt the definition of SBM described in Ref. [74] that

minimizes the entropy of SBM to find the most likely set of parameters, and we com-

pare it with an approach that samples several sets of likely parameters instead of scop-

ing for the optimal one. Although the approach is based on Ref. [44], it was never

applied before on the model defined in Ref. [74]. Then we apply both inference ap-

proaches on four real-world networks to tackle the same problem: the accuracy at

predicting missing links. Such accuracy measure is consistent with the model, since

we observed better accuracies for those partitions that are more likely. We discovered

that the sampling approach significatively outperforms the single-point, suggesting that

the error at estimating the equation when applying the single-point method is not neg-

ligible.

We also examine the predictive power of different SBM specializations found in the

literature (degree-corrected [50, 73] and hierarchical nested [76]). We observed that

the simple sampling approach predicts better missing links than the single-point for

each of the different model specializations. Furthermore, we noticed that the degree-

corrected version underperformed on some real world networks, suggesting that this

specialization should not always be used.

Suture fusion in normal and pathological development is constrained
by the network architecture of the human skull

To show the power of the inference methodology we apply it to a novel problem.

Sutures fuse as part of the normal developmental process of the skull when taking

place at the right time. However, deviations from the normal process of suture pattern

formation in the human skull usually cause birth defects, such as cleft palate and cran-

iosynostosis. We still do not know which factors predispose some sutures but no others

to fuse pathologically or to not form at all.

UNIVERSITAT ROVIRA I VIRGILI 
NETWORK INFERENCE BASED ON STOCHASTIC BLOCK MODELS: MODEL EXTENSIONS, INFERENCE APPROACHES 
AND APPLICATIONS 
Toni Vallès Català 
 



Summary 11

Here we address this question by modeling the skull as a network in which nodes

and links formalize bones and their articulations. Anatomical network models have

been used before, for example to model the growth of human skull bones [25]. We use

the reliability formalism [44] to infer the susceptibility of craniofacial sutures to be lost

in pathological conditions.

We found that sutures that normally fuse have significantly lower reliability scores

than those that do not, which is in agreement with our hypothesis that during normal

development there is a tendency to lose articulations that are topologically rare in the

newborn skull. Interestingly, we discovered that sutures associated with pathological

conditions have significantly lower reliability scores than sutures that are not, which

shows that sutures associated to pathological conditions are also unexpected from a

topological point of view.

Multilayer stochastic block models reveal the multilayer structure
of complex networks

In complex systems we often observe a network of interactions between systems com-

ponents that is the aggregate of the interactions that occur through different mecha-

nisms or layers (for example, social networks encompass relationships that arise on the

familiar layer and relationships that arise in the professional layer) [54]. Recent studies

reveal that the existence of multiple interaction layers can have a dramatic impact in

the dynamical processes occurring on these systems [79, 80, 34, 16, 15, 90]. However,

these studies assume that the interactions between systems components in each one

of the layers are known, while typically for real-world systems we do not have that

information. In this chapter, we address the issue of uncovering the different interac-

tion layers from aggregate data by introducing multilayer SBMs, a generalization of

single-layer SBMs that considers different mechanisms of layer aggregation.

First, we find the complete probabilistic solution to the problem of finding the op-

timal multilayer SBM for a given aggregate-observed network. Because this solution

is computationally intractable, we propose an approximation that enables us to verify

that multilayer SBMs are more predictive of network structure in real-world complex

systems. The aggregation of the two layers can also be represented as a single-layer

SBM, in which each group comprises the nodes that belong to the intersection of each

pairs of groups in layer 1 and layer 2. For each pair of groups, the resulting probabil-

ities of connection are therefore correlated; in our approximation, we assume that the

elements of the intersection are randomly drawn and independent of each other.

Our approximation multilayer SBMs yielded better predictions on real networks,

suggesting that these networks are likely the outcome of multilayer processes, despite

being observed as single-layer aggregates.

UNIVERSITAT ROVIRA I VIRGILI 
NETWORK INFERENCE BASED ON STOCHASTIC BLOCK MODELS: MODEL EXTENSIONS, INFERENCE APPROACHES 
AND APPLICATIONS 
Toni Vallès Català 
 



12 Summary

Conclusions

• We have found that sampling over models significatively improves the predictive

power than considering an optimal set of parameters alone, suggesting that the

error at estimating the reliability of missing links when applying the single-point

method is not negligible. Additionally, we noticed that the degree-corrected ver-

sion should not be used in all the networks, since it may retreat the predictions

in some cases.

• We discovered that sutures associated with pathological conditions have signifi-

cantly lower reliability scores than sutures that are not.

• Our results suggest that networks that are presented as single-layer may indeed

be projections of multilayer networks.
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1

Introduction

1.1 Networks unravel patterns in data

Science is based on empirical observations and therefore it depends on our ability to

interpret data. Precisely, from that knowledge the world has been modified to enhance

human welfare. Recent technological advances have enabled the generation and access

to increasing amounts of data, a phenomenon called Big Data; one of the objectives of

science is to use data to better comprehend a constantly changing reality, thus mantain-

ing and enhancing the welfare of society.

The availability of large amounts of data holds the promise of bringing the solu-

tions to problems in many fields (such as health). In fact, probability theory proves that

an increase in available information must help to diminish uncertainty [49]. However,

there is an ever increasing gap between information and knowledge, and appropiate

representations of data is necessary. Mathematical models are designed to encounter

patterns on data can help us to narrow the gap between information and knowledge.

A rather succesful approach is that of complex networks: a system of interconnected

items organize data properly, facilitating its analysis. A network consists of a set of

nodes (or vertices) connected through links (or edges), representing the relation be-

tween two nodes. By providing different meanings to nodes and their connections one

can get different types of networks. For instance, in social networks nodes may repre-

sent people that are connected if they know each other, and in protein-protein interac-

tion networks proteins are connected if they interact. Therefore, a network approach

can be applied to all those cases were one can relate a set of items, or even when this re-

lation is no that trivial -for instance, in metabolic networks chemical reactions connect

several metabolites, and the morphology of skulls can be studied from networks where

bones connect through sutures [26]-. The study of real-world networks have pushed

towards to the understanding of complex systems in a wide range of fields as molec-
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Introduction

ular and cell biology [6], neuroscience [11], biomedicine [5, 14], ecology [100, 85],

economics [92], and sociology [9].

The study of networks is able to find common behaviors in different fields [87]:

for instance, in social networks people tend to connect to more popular people, and in

cell biology highly connected proteins are more likely to obtain links from duplicated

genes [6]; appears a common tendency of highly connected nodes to assemble even

higher amounts of connections, a pattern so-called as preferential attachment. There-

fore, network science is able to disentangle universal properties that emerge from the

topology of the network, i.e. how links are distributed over the nodes. Thus we can

apply the same methods and models to different types of networks to obtain reliable

predictions, which later on can be used for specialists in each field.

One of the most succesfully studied problems in networks science is that of finding

the community structure, it consists in dividing the network into densely connected

groups to summarize the information contained inside the network. Recently, alter-

native generative models that generalize the idea of communities have been proposed.

These probabilistic models allow for the use of inference techniques to divide the nodes

into groups, not necessarily communities. Then arises the question of finding the best

model inference technique to use.

There are several types of networks [68]: directed networks with unidirectional

links, multigraph networks that may contain self-loops and multiple edges between a

pair of nodes, although the vast majority of networks studied are undirected and sim-

ple (without self-loops nor multiple edges). However, the assumption that systems can

be described by a single network is almost always an oversimplification, instead the

information is usually compressed throwing away crucial information. To overcome

such fact, multilayer/multiplex networks were recently defined as a set of intercon-

nected networks where many -or even all- nodes have a counterpart in different layers

[16], different layers enables the opportunity to study more accurately real-world net-

works (for instance, temporal networks [47, 30], social networks [98] or transportation

networks [79])

Figure 1.1: Multilayer network. A multilayer network with two disconnected layers, all nodes

appear in both layers but they contain different edges
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Moreover, it is increasingly clear that the multilayer structure of complex net-

works can have a dramatic impact on the dynamical processes that take place on

them [79, 80, 34, 16, 15, 90]. Nevertheless, in such studies layers are assumed to

be known, while generally real-world networks are presented to us as single-layered

networks. It remains as an open question whether the topology of single-layered real

world networks is actually affected by an intrinsic multilayer structure.

It is clear that networks enable a manageable representation of data in a wide va-

riety of fields, and that statistical inference on networks is a powerful predictive tool

concerning high interest recently. For such purpose, in this thesis we enhance this pre-

dictive power by introducing novel approaches on simple network inference, from a

single layer point of view and especially from a multilayer perspective. To adress this

topic, we will handle with a family of models that accurately capture the information

contained in complex systems, enabling a high flexibility for its wide appliance. Par-

ticularly, we will answer those questions by focusing on exploring a set of models that,

combined, yield better predictions that a single model alone. Our novel techniques will

enable further knowledge in a high variety of fields: molecular and cell biology, dis-

entangling the metabolic pathways to comprehend the whole genome; anatomy, model

the growth of human skull bones; neuroscience, quantifying the brain’s structural and

functional systems; ecology, managing the effects of biodiversity on ecosystem func-

tion and services; economics, reducing conflicts between individual interests and the

risk of global failure; and sociology, understanding social behavior.

1.2 The large-scale structure of complex networks

The high amounts of data that networks contain can be summarized by partition the

nodes into representative groups, methods are developed in the same way that cluster-

ing methods do but exploiting network topology instead.

Communities

A huge proportion of networks are composed of diverse communities of nodes: a net-

work can be partitioned in groups densely connected inside (communities) and loosely

connected inbetween them. This community structure (or modular structure) brings out

much information about the network; for instance, communities in metabolic networks

represent biological functions of the cell [6], and the community structure in neuronal

networks explain the interconnection between brain regions [11]. This fact is well

explained by the nodes tendency to a preferential attachment on some specific nodes

(hubs), creating an assortative structure that is well modeled with community structure

based models. Therefore, a large body of research has been devoted to develop the

detection of which communities comprise a given network [28, 66]. Typically, com-

munities are obtained through the modularity function introduced by [67], defined as
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Qmod =
∑

α

(eαα − (
∑

β

eαβ)
2) (1.1)

were eαβ are the fraction of edges that link vertices from communities α and β. It

quantifies the strenght of community structure.

Hierarchical structure

¡ Besides a community structure, networks may have a hierarchical structure with sev-

eral nested groupings of the nodes, were small clusters are included inside larger clus-

ters that in turn are included in larger ones. Examples where this structure is recognized

in real-world networks are the airport transportation networks [89], or the protein in-

teraction networks [59]. The classic algorithm to extract the hierarchical organization

of networks is the hierarchical clustering. First define a similarity measure between

nodes, then there are two choices: (i) aggloremative algorithms in which clusters are

iteratively merged until a cluster containing all the nodes is reached [78]; (ii) divisive

algorithms in which clusters are iteratively divided until all nodes are isolated [32]; the

merge/division is dependent on the previously defined measure which yields a dendo-

gram of the process; afterwards, a cut throughout the dendogram -a partition inbetween

the process of merging/division- is usually proposed as the more representative com-

munity partition.

Stochastic block models

At this point only models to detect community detection were proposed -the presented

hierarchical structures conceals nested communities-, but actually other sctructures ap-

pear in nature. Communities are not always enclosed hierarchicaly but they usually

overlap in social networks. Moreover, disassortative networks are poorly described by

communities, where a convenient representation abides a partition with sparse groups

that are densely connected between them. For instance, in the bipartite network of

prey-predators is more reasonable to group together predators that ate the same preys

although there are no connection between predators [88]. Furthermore, core-periphery

structures are commonly found in economic and social networks, they consist of a

dense core in contrast with a sparse periphery.

The major drawbacks concerning community detection models and hierarchical

clustering based models are its stubborn resiliance to exclusively detect the structure

they were defined for. In [81] is highlighted the need of a more precise definition of

community to sharpen the use of detection algorithms, yet they only discern between

weak or strong communities while in reality networks can have a continuum varieties of

structural organizations. Additionally, the number of clusters is commontly unknown a

priori and it is often added as an extra parameter of the model [69, 50, 17]. Regarding

hierarchical clustering methods, they are only accurate at a local level, the output is

always a hierarchical tree regardless of whether the system is indeed hierarchically or

not, and there is no statistically general criterion to determine the relevant levels on the
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hierarchy [89]. Hence a need for a flexible model that is capable to adapt to any kind

of structure (assortative, disassortative, core-periphery and mixed) surges.

Generative Bayesian models are a handfully family of models that consider the

whole set of data without structure constrictions, an inference approach that commu-

nities were not able to embrace. Stochastic Block Models (SBM) are the most used

generative models, enabling to capture all those possible variabilities of structural or-

ganizations, not only discerning between weak and strong communities but capturing

along the whole possible probability spectrum [44, 56, 76].

SBM were first formalized in the social sciences [105, 46, 70, 102], the goal of this

approach is to order the diversity of actor behaviors, each actor being a node in a social

network. It identifies actors that are structurally equivalent, i.e. actors that have the

same relationships to all other actors, and group them together into the same block ac-

tors. The notion of structurally equivalent actors is slightly relaxed into stochastically

equivalent in the sense that all members from a group do not need to have exactly the

same relationships but instead the same probability of connection; two stochastically

equivalent actors are exchangeable without modifying the topology of the network sig-

nificantly. This actor behavior diversity can be translated into pattern connection di-

versity, thus the same notion of stochastic block models can be generalized outside the

social science field and applied to any type of network to order the patterns of connec-

tion heterogeneity into blocks holding homogeneous patterns.

A SBM is totally determined by: (i) a partition P which distributes N nodes into

blocks; (ii) the matrix Q, whose elements qαβ indicate the probability of connection

between blocks α and β.

1.2.1 Model validation

Different models will inevitably lead to different predictions, a validation of the models

is required in order to distinguish models and trust in their predictions.

The first step towards a reliable validation usually initiates by building a synthetic

network imposing a known structure with random generation of links, where the ran-

domness factor enables some uncertainty degree over the choice of a proposed parti-

tion. As the structure was imposed on the beginning -but let unknown for the model-

the validation is straightforward when comparing the proposed partition with the im-

posed one.

This situation becomes intricate when validating real world networks, in the sense

that the structure is usually not known at before hand. Many studies overcome that sit-

uation by applying the model onto real networks with a known partition considered as

a ground truth. Karate club network [110] is the paradigm of real networks to validate

community structure, this social network consist of members of a karate classroom that

ended up splitting into two different academies, thus two communities are known in ad-

vance. Similar methodology can be applied on other real networks: a college football

teams network [32] were teams of american football of Division I connect depending

on the 2000 regular-season games, were teams are subjectively assigned to communi-
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Figure 1.2: Stochastic block models. A stochastic block model is fully specified by a partition

of nodes into groups and a matrix Q in which each element Qαβ represents the probability that a

node in group α connects to a node in group β. (A), A simple matrix of probabilities Q. Nodes

are divided in three groups (which contain 4, 5, and 6 nodes, respectively) and are represented

as squares, circles, and triangles depending on their group. The value of each element Qαβ

is indicated by the shade of green; for example, squares do not connect to other squares, and

connect to triangles with small probability, but squares connect to circles with high probability.

(B) A realization of the model in (A). In this realization, the number of links between the square

and the triangle group is n1 = 4, whereas the maximum possible number of links between these

groups is n = 24

ties lean on geographical location; or the political blogs network [1] enclosing blogs

about U.S. politics and the web links between them, the blogs have known political

leanings that represent the established communities.

Bayesian approaches are a more reliable alternative to test the model on real world

networks, its performance at inferring some particular property of the network is not

based in any assumed ground truth but probability theory, for instance the prediction of

missing/spurious links of the network that will be explained further in the introduction.

1.3 Inference methodology

Inference exploits logic reasoning to draw conclusions from existing knowledge. In

particular, statistical inference takes advantage of mathematical formulation (logic rea-

soning) to analyse an observed data (the existing knowledge) in order to obtain the

posterior probability (the conclusions drawn). Uncertainty emerges from observed

data due to our usual ignorance of the whole truth, therefore methods are required

to handle with such uncertainty and provide reliable posteriors. Identifying the under-

lying distribution of the observable data one can easily predict any particular posterior

feature related with the observable, hence is crucial to define a statistical model enclos-

ing parameters that shape the underlying distribution, where the parameters estimation

plays a key role on inference. Not all models have a fixed number of parameters, non-

parametric models are not a model without parameters but a model that enables the

amount of parameters to vary depending on the observable data.
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Traditional frequentists consider model parameters as unknown but fixed quantities,

then the likelihood function of a set of parameters θ of a specifyied model M(theta)
-that take values over the parameter space ΘM - is equal to the probability that the pa-

rameters yield the O observables: p(O|M(θ)), i.e., the likelihood measures how likely

are the observables to be generated from the model parameters. Some criticism arise

from the fact that traditional frequentism assume to know the frequencies which param-

eters are fixed [49]. Bayesian modeling circumvents this issue by introducing a degree

of belief about parameters, although parameters are still thought of as unknown fixed

quantities they are modeled as random variables. The uncertainty of the parameters

knowledge prior to the observed data is measured by a prior probability distribution

p(M(θ)).
Once the prior and the likelihood have been decided, the model is completely spec-

ified and the posterior distribution can be computed:

p(M(θ)|O) =
p(O|M(θ))p(M(θ))

∫

ΘM
dθp(O|M(θ))p(M(θ))

(1.2)

Such posterior probability quantifies the degree of belief about the model on fitting

the data. Finally, the general problem to solve is given a dataset O, find a model M(θ)
that predicts unobservables x. Then, the probability of the prediction is computed by

marginalizing over the parameter space as follows,

p(x|O,M(θ)) =

∫

ΘM

dθp(x|M(θ),O)p(M(θ)|O) (1.3)

Substituting Eq. 1.2 into Eq. 1.3 yields a similar expression obtained in [44]

p(x|O,M(θ)) =

∫

ΘM
dθp(x|M(θ),O)p(O|M(θ))p(M(θ))
∫

ΘM
dθp(O|M(θ))p(M(θ))

(1.4)

Such approach is followed by generative models, that benefit from the join proba-

bility p(O,M(θ)) and the Bayes rules to estimate the posterior probability p(M(θ)|O),
in contrast with discriminative models that directly model the conditional posterior

probability.

Often, large parameters space makes unfeasible to analitically compute Eq. 1.4,

therefore several methodologies have been developed to approximate this integral.

Some of them are based on statistical mechanics that is shortly explained in the fol-

lowing section.

1.3.1 Analogy between inference and statistical mechanics

Statistical mechanics is a branch of physics that is capable to deduce the behavior

of large systems by using probability theory. Usually items from a system can be in

different states: for instance electrons from a magnetic field may have positive charge

(spin-up) or negative charge (spin-down); or regarding an infectious disease where

people may be infected, susceptible or recovered. Then, a given system and its items
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possible states are constraining a finite probability phase space that include all the

possible combinations of the items different states. The same word state can be referred

to for an item or for the whole system, thus a state of the system will be a particular

configuration of the items. Surely some states will be more probable than others and

the entropy function is able to measure such probability -a distribution of electrons

with mixed spins (high entropy) is more expected than an all spins-up distribution (low

entropy)- To predict the behavior of large systems it would be useful to know the more

probable states, since the dynamical system will converge into one of those.

This measure of the probability of the states is anything but trivial. Statistical me-

chanics provides a function that associates each different state to a different value (so-

called Hamiltonian) that measures the energy of the system, and its existence inherently

determine a free-energy landscape of values representing all the possibles configura-

tions of the phase space. The second law of thermodynamics entangles energy with

entropy of a system at equilibrium, therefore the study of this free-energy landscape

is of high concern, since exploring the free-energy landscape in order to minimize the

Hamiltonian function allows to spot the ground state with maximum entropy, the most

probable configuration of the system.

From probability theory, the most probable distribution without any prior knowl-

edge is provided by the exponential function [49]. This theory agrees with the Boltz-

mann distribution, the probability distribution of particles in a system over various

possible states. It gives the probability that a system will be in a certain state as a

function of that state energy.

pi =
1

Z
· e

−εi
k·T (1.5)

where εi is the energy of state i, k is the Boltzmann constant, T is the temperature,

and Z =
∑M

i=1 e
−εi
k·T is the partition function that normalizes the probability over M

accessible states.

Several models were created in order to describe the free-energy of different sys-

tems: Ising model for systems with binary states items (to model an electron magnetic

field), or its generalized Potts model for systems with more than two possible states (to

model an infectious disease) [109].

Particularly, the aforementioned partitions of a network can be seen from a dynam-

ical systems point of view, to partition the nodes into disjoint groups is in fact a model

of the system, whose items states are defined for the different labels representing the

several groups a node can belongs to, therefore the state of the whole system coin-

cides with a particular partition. A change of the network’s state can be carried out

by changing nodes labellings. Following the statistical mechanics theory, by finding a

Hamiltonian that depends on the partition of the network one can scrutinize the free-

energy landscape to find an optimal state, that intuitively relates with the partition that

better fits the network [82].

Since the number of possible configurations of the model increases exponentially

with the number of nodes of a network, it is usually infeasible to compute all the
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possible values of the Hamiltonian even for small networks, hence a common practice

is to take use of statistical/stochastic methods to approximate the landscape of the free

energy associated to the Hamiltonian.

1.3.2 Markov Chain Monte Carlo methods

For those solutions of Eq. 1.4 that are computationaly untractable, Markov Chain

Monte Carlo methods (MCMC) generate draws from a desired probability distribu-

tion over the parameters θ in order to estimate it. Starting with an initial state θ(0) ,

MCMC computationaly simulates S transitions of a Markov chain in θ to explore the

whole parameter space Θ, finally obtaining an estimation for Eq. 1.4

I ≈ Î =
1

S

S
∑

i=1

f(θ(i)) (1.6)

MCMC takes use of randomness to explore and approximate the free-energy land-

scape of a system’s Hamiltonian. To ensure a fair MCMC convergent to a steady state,

the sampling must be ergodic -all accessible states of the parameter space are equiprob-

able over a long period of time-, and detailed balance must be guarantied -equilibrium

is invariant under time reversal, i.e., probability transition from state θi to state θj must

be equivalent to the inverse transition-. Without those properties, the sampling could

get stuck in some subgroup of states which could bias the sample.

In what follows, two specific MCMC methods to compute Eq. 1.6 are explained.

Metropolis-Hastings

The Metropolis-Hastings algorithm is probably the most generic scheme from the

MCMCs [60], each Markov chain transition is split into three steps: (i) from a given

state θ generate a proposal θ̃; (ii) Compute the acceptance distribution a(θ, θ̃) =

min
{

1, p(θ̃|O)
p(θ|O) ·

q(θ|θ̃)

q(θ̃|θ)

}

, with the proposal distribution q(θ̂|θ) which is the conditional

probability of proposing a state θ̂ given θ; (iii) With probability a replace θ with the

proposal θ̃. Otherwise, leave θ unchanged. Detailed balance causes a symmetry that

makes
q(θ|θ̃)

q(θ̃|θ)
to cancel out.

Gibbs sampling

The Gibbs sampling [31] is an special case of Metropolis-Hastings which advocates for

estimate a probability distribution by sampling from a conditional distribution, instead

of marginalizing by integrating over a joint distribution. The Gibbs sampler becomes

specially handy as in many statistical models the conditional posterior distributions

takes the form of some familiar distributions. The Gibbs sampling begins with some

initial parameter vector θ(0) = θ
(0)
1 , · · · , θ

(0)
n , then proceeds by iteratively generating
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from the conditional posterior distribution θ
(t+1)
j ∼ p(θj |θ

(t+1)
1 , · · · , θ

(t+1)
j−1 , θ

(t)
j+1, · · · , θ

(t)
n ,O),

for j = 1 · · ·n, and in repeating this process the samples will eventually converge to

an approximation of the posterior distribution p(θ|O) [91].

1.3.3 Maximal a posteriori

Maximal a posteriori (MAP) is a method to approximate Eq. 1.4 which, instead of

intensively exploring a likely subset of the parameter space, it leads directly towards

the specific set of parameters that maximize the posterior prior likelihood. While this

method is computationaly faster than the MCMC, it remains unclear whether a single

point estimate accurately predicts as well as sampling from a conditional distribution.

Several greedy algorithms follow the MAP approach.

Expectation-maximization

The expectation–maximization (EM) [20] algorithm is an iterative method used to lo-

cally find the maximum likelihood parameters of a statistical model in cases where the

equations cannot be solved directly. The EM iteration alternates between performing

an expectation (E) step -which estimates a posterior function evaluated with the current

parameters estimation- and a maximization (M) step -which search those parameters

that maximize the expected log-likelihood function from the E step-. Usually EM starts

with arbitrary estimates of parameters and the algorithm iterates until a fixed point is

reached.

Variational Bayesian method

Variational Bayes can be seen as an extension of the EM algorithm which computes

an approximation to the entire posterior distribution of all the variables, that enclose

not only the parameters (as EM) but also the unobserved variables. Specifically, while

EM computes optimum values of the parameters the variational approach first fit a

prior distribution to these parameters, iterativelly computing optimum values for the

hyperparameters of the prior distribution.

Simulated annealing

The method of simulated annealing [53] is an adaptation of the Metropolis-Hastings

algorithm for computing maximum likelihood parameters. It is particularly useful to

find the global optimum of a given function in a large search space, since it is more

resilient to get stuck on local optimum than other greedy algorithms. Specifically,

simulated annealing can estimate the ground state of a system, if the given function

is the probability of a state in a system (Eq. 1.5) and a state determines a specific

configuration of parameters. Temperature in Eq. 1.5 plays a crucial role in here, since

higher temperatures enable the algorithm to avoid local optimum energy and lower
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temperatures permit to locally find the optimum state, thus the algorithm must balance

between high and low temperature to find the global optimum.

1.4 Inference with Stochastic Block Models

The previously defined Stochastic Block Models (SBM) are a fammily of non-parametric

generative models that enables us to explore the whole configuration of possible parti-

tions from a given network, because its flexibility at capturing diferent partitions set-

tings does not constrain any specific configuration. For a given network, convenient

SBMs group nodes that have similar patterns of connection. Mathematically, we for-

malize this intuition in a non-parametric Bayesian framework as follows. A SBM is

totally determined by: (i) a partition P which distributes N nodes into blocks; (ii) the

matrix Q, whose elements qαβ indicate the probability of connection between blocks

α and β. It is non-parametric because we let the number of blocks to vary.

Once the model is set, Eq. 1.4 can be applied to predict a network property x where

the model M ranges over all possible SBMs M and the observable O corresponds

with the adjacency matrix AO of a given network -a simple network adjacency matrix

A consists in a binary matrix with 1 in the position Aij representing an edge between

nodes i and j and 0 otherwise-; since M(θ) = (P (θP ), Q(θQ)), the parameter space

Θ = P × Q consists in the cartesian product of all possible partitions P times all

possible probability matrices Q = qαβ ∈ [0, 1],∀α, β ∈ P × P . In particular, if the

property x is set to the probability that a link exists (reliability of a link) between two

particular nodes i, j within an adjacency matrix A, the equation becomes

p(Aij = 1|AO) =

∫

Θ
dθ p(Aij = 1|M(θ)) p(AO|M(θ)) p(M(θ))

∫

Θ
dθ p(AO|M(θ) p(M(θ))

. (1.7)

Here, p(AO|M(θ)) is the probability of the observed interactions given model

M(θ) and p(M(θ)) is the a priori probability of a model, which we assume to be

model-independent p(M(θ)) = const.

Thus, if i belongs to group σi and j to group σj then [39]

p(Aij = 1|M(θ)) = qσiσj
; (1.8)

and

p(AO|M(θ)) =
∏

α≤β

q
n1

αβ

αβ (1− q
n0

αβ

αβ ) , (1.9)

where n1
αβ is the number of links between nodes in groups α and β and n0

αβ is the

number of disconnections (no-links) between nodes in groups α and β.

The integral over all the parameters set Θ can be split into a discrete sum over all

possible partitions of nodes into groups, and a continuous integral over all possible
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values of each qαβ . Using this together with Eqs. (1.7), (1.8) and (1.9), and under the

assumption of no prior knowledge about the models (p(M(θ)) = const.), we have

p(Aij = 1|AO) = (1.10)

1

Z

∑

P∈P

∫ 1

0

dQ qσiσj

∏

α≤β

q
n1(α,β)
αβ (1− q

n0

αβ

αβ ) ,

where the integral is over all qαβ and Z is the normalizing constant (or partition func-

tion). Using these expressions in Eq. (1.11), one obtains the reliability of a link

Rij = p(Aij = 1|AO) =
1

Z

∑

P

(

n1
σiσj

+ 1

nσiσj
+ 2

)

exp(−H(P )) , (1.11)

where the sum is over all partitions of nodes into groups, nσiσj
= n1

σiσj
+ n0

σiσj
is the

total number of possible links between groups σi and σj , and H(P ) is a function that

depends uniquely on the partition

H(P ) =
∑

α≤β

[

ln(nαβ + 1) + ln

(

nαβ

n1
αβ

)

]

, (1.12)

To avoid overfitting with an unnecessary amount of parameters we include a penalty

therm into the Harmonic function, thus instead of H(P ) we use H ′(P ) = H(P ) −
log[(N − k)] with N the number of nodes and k the number of non-empty groups in

partition P , a similar Bayesian Information Criterion was used in [39].

In comparison with previous models, SBMs provides an accurate prediction on

estimating missing links in a network, Fig. 1.3 compares the SBM approach with pre-

viously defined models on predicting missing links: the Clauset et al. [13] and a local

algorithm based on the number of common neighbors between pairs of nodes [57].

1.5 Scope of the work

This thesis deepens in the statistical inference on complex networks, a better under-

standing of the mechanisms that govern systems interactions will enable us to design

proper models that accurately describe a given network. The main objective of this the-

sis is to improve the predictive power of complex networks via the family of Stochastic

Block Models (SBMs).

In Chapter 2 we revise previously defined approaches based on SBMs in order to

comprehend which ones perform better at predicting different real world networks. Par-

ticularly, we adress the open question of how to validate different models, and we prove

that the sampling methodology defined in Section 1.3.2 perform better predictions that

a greedy algorithm (Section 1.3.3).

Once we know which model is capable to describe better a given network, in Chap-

ter 3 we apply such method in a particular real world network case: a network based
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Figure 1.3: Identification of missing links in the European air transportation network. We

compare the SBM approach presented in [44] (black circles), to the approach of Clauset et al.

[13] (white squares) and to a local algorithm based on the number of common neighbors between

pairs of nodes [57] (white triangles). For each true network A we remove a fraction f of its links

to generate an observed network AO , calculate the link reliability Rij for each pair of nodes,

and rank pairs of nodes in order of decreasing reliability. The dashed line indicates the baseline

accuracy when false negatives and true negatives are randomly ranked

on the interactions/sutures between bones in newborn skulls. Statistical inference was

never applied before in such networks, under our knowledge. Notably, we discovered

that sutures fused due to a pathological disease in human newborn were less likely,

from a morphological point of view, that those sutures that fused under a normal de-

velopment.

Finally, from our observation on all the work done, we suspect that a single SBM

is not sufficient to fully describe all the mechanisms governing single-layered real

networks. Additionaly, recent research on multilayer networks has concluded that

the behavior of single-layered networks are different than those of multilayer ones;

notwhithstanding, real world networks are presented to us as single-layered networks.

Intuitively, it could be that such networks conceal a multilayered structure inside; and,

since multilayer networks behave differently than single-layered ones, this could ex-

plain why a single SBM is not sufficient to describe real-world networks. To prove so,

we design a novel approach where two separate SBMs simultaneously describe a given

single-layered network, and we importantly find that it predicts better missing/spurious

links that the single SBM approach.
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Approaches to network inference with Stochastic

Block Models

2.1 Introduction

One of the most interesting problems on data analysis consists on detecting missing

data (false positives), on complex networks this problem is translated into detect miss-

ing links. To tackle this problem Ref. [44] suggests to compute the reliability of a

link, that is the likelihood that a link exists on a given network; it can be compute by

eq. 1.7 in the introduction chapter 1. The most popular inference approach to estimate

eq. 1.7 focuses on finding a single-point estimate for the most likely set of parame-

ters [32, 13, 67, 18, 74, 75], following a Maximal A Posteriori (MAP) methodology.

However, Bayesian inference theory suggests that the correct approach goes through

integrating the whole ensemble of possible sets of parameters [49]; few approaches

have followed such methodology by sampling over all the ensemble of the parame-

ter space [44, 91, 95, 10]. We will refer to single-point for the former method and

sampling for the latter. The single-point method is mostly used because the likelihood

distribution is usually peaked around the optimal single-point estimate, then the rest of

non-optimal models are considered negligible. In this chapter we investigate to what

extent sampling over several models improves the predictive power than considering

the optimal set of parameters alone, hence quantifying the error at estimating eq. 1.7

when applying the single-point method.

To adress this question we adopt the definition of SBM described in Ref. [74] that

minimizes the entropy of SBM to find the most likely set of parameters, and we com-

pare it with an approach that samples several sets of likely parameters instead of scop-

ing for the optimal one. Although the approach is based on Ref. [44], it was never

applied before on the model defined in Ref. [74].
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2.2 Description length applied on Stochastic Block Models

We can parametrize a SBM as follows: N vertices are distributed into B blocks with

nα nodes in each block α ∈ [0, B − 1], the matrix eαβ indicates the number of edges

between blocks α and β (twice this number when α = β, for convenience). However,

the model does not specify which node in α is connected to a node in β, thus there are

different edge choices of the eαβ . Therefore, a SBM with specified parameters gener-

ates an ensemble of different graphs realizations, call Ω the cardinal of such ensemble

Ω =
∏

α≥β

Ωαβ , Ωαβ =

(

nα · nβ

eαβ

)

, Ωαα =

(

(

nα

2

)

eαα

2

)

. (2.1)

The microcanonical entropy is defined as the logarithm of all possible graphs generated

by a SBM S = lnΩ. Additionally, the log-likelihood function infers the most probable

SBM grouping, L = lnP , where P is the probability of observing a particular network

ocurrence. With no prior information an uniform distribution is commonly adopted,

hence P = 1
Ω and in such particular case L = −S. Therefore, the most likely partitions

(with maximum likelihood) are equivalent to those partitions with minimum entropy.

However, S becomes an strictly decreasing function of B and minimizing the entropy

unavoidably heads to the trivial partition B = N . Such overfitting can be evaded by

including a penalty therm in the minimizing function. In Ref.[74] they redefine the

entropy function into Eq. 2.2 introducing a penalty therm, the description lenght DL.

Σ = S +DL. (2.2)

The description length DL is the amount of information required to describe the

model. SBM is stablished by two parameters: the connectivity matrix eαβ and the

block partition bi. The eαβ matrix can be viewed as the adjacency matrix of a multi-

graph with B nodes and E edges, where the blocks are the nodes and self-loops are

allowed. The total number of eαβ matrices is then simply

(

(

((

B

2

))

E

)

)

, and the total

number of block partitions is BN . We obtain DL by multiplying these numbers and

taking the logarithm. Then the optimal partition can be found with the Occam’s razor

principle, in which the best hypothesis for a given set of data is the one that leads to the

best compression of the data, in our cases the minimum of Σ yields the most probable

partition (minimum entropy) with minimum description length.

In the Introduction chapter 1 a slightly different modelization of SBMs was em-

ployed: instead of the parameters set nα and eαβ we used a partition P and the prob-

ability matrix Q consisting in the probabilities of connection between the groups qαβ .

Both are equally valid generative models since < eαβ >= nαnβqαβ are constrained

on average, as long as the edge counts are sufficiently large they are fully equivalent

(Appendix A in Ref. [76])
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2.3 Specializations on SBM

2.3.1 Degree-corrected

The degree ki of a node i is the number of neighbours that this node is connected to.

A drawback of SBM suggested in the literature [50], indicates that in networks with

substantial degree heterogeneity SBM rathers to split networks into groups of high

and low degree. Logically, two nodes with sufficiently distinct degrees have actually

different patterns of connection, so they are reasonably grouped in different blocks for

the SBMs. Such partition does not coincide with the ground truth of some real networks

as they did in Fig. 2.1, yet from mosts networks a ground truth is not available.

Karate club network Political blogs network

Figure 2.1: Degree-corrected SBM divide networks in concordance with ground truth. Di-

visions of the karate club network [110] (left) and the political blogs network [1] found using the

uncorrected (top) and corrected (bottom) SBM in [50]. The size of each vertex is proportional

to its degree and the shading reflects inferred group membership. The dashed line indicates the

split observed in real life: the two academies that the class of karate split into and the division

between liberal and conservative blogs.

To overcome such deviation, Ref.[50, 73] propose a degree-corrected SBM version

of the model where the degree sequence ki is provided as an additional set of param-

eters. The actual degree sequence can be easily computed, but fixing it as an extra

parameter increases the complexity at counting the number of possible graphs realiza-
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tions Ω, in fact, even the simpler asymptotic counting of graphs with a uniform degree

sequence (ki = k,∀i) is an open problem in combinatorics [107].

Therefore, we will use the refinements on [50, 73] where the imposed degree on

each node is only an average over the ensemble Ω, and their values over sampled real-

izations are allowed to fluctuate. In the corrected version, each block is split in different

subgroups with the possible degrees averages, enabling the same block to confine de-

gree heterogeneity. Instead of ki for each node i, the needed set of parameters is the

fraction of nodes with degree k, qk. However, since the degrees are correlated with the

block partitions, it is rather convenient to use the parameter set qαk -the degree distribu-

tion of nodes belonging to block α- as suggested in Ref. [76].

Note that Eq. 2.2 must be adjusted to introduce the late parameter set qk in the

degree-corrected description lenght and the entropy corrected version in Ref. [73]

The degree-corrected version provides a partition that matches with the real-world

networks ground truth, on the other hand remains to be studied whether this corrected

version enhance or hinders the predictive power with respect to the uncorrected version.

2.3.2 Hierarchical priors

To this achieve the detection of much smaller blocks in very large networks, Ref. [76]

increased the resolution limit by designing a nested hierarchy of SBMs, where an upper

level of the hierarchy serves as prior information to a lower level, rather than assuming

that all possibilities should occur with the same probability.

The methodology to build the nested version resembles the idea of Ref. [8] by

iteratively transforming a simple network to a multigraph, where each block of the

network is converted to a node of the multigraph and the eαβ into multiple edges or

self-loops, the main difference in Ref. [76] lies on that each iteration is saved into

a different layer conforming a nested hierarchy. Since each multigraph may also be

described via a SBM of its own, from the block network on the lower level we obtain

another smaller block multigraph at a higher level, and so on recursively, until we

finally reach a model with only one block. This forms a nested stochastic block model

hierarchy, which describes a given network at detached resolution levels (Fig. 2.2).

In the degree-corrected version of the nested model, it is only required to specify

the degrees at the lowest level of the hierarchy.

2.4 Consistency of the Area Under the Curve (AUC) measure

In order to contrast between various models a reliable measure is required. Despite

some approaches take advantage of ground truth, this knowledge is not always avail-

able and the reliability of the ground truth is not always guaranteed, maybe causing

misleading conclusions particularly in those cases without such valuable information.

Rather measures involving predictive inference are preferred, without the need of as-

suming any ground truth. We will contrast the models on predicting missing links, an

approach regularly employed in the literature. To predict missing links you can ran-

domly remove some existing links in the network, then compute the reliability scores
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Figure 2.2: Nested stochastic block model. Example of a nested stochastic block model with

three levels, and its generated network at the bottom. Figure extracted from [76]

(Eq. 1.11) for all pairs of nodes not connected in the observed network, including those

you had removed. Therefore, we assume an error-free “true” network A, it is devided

into A = AO ∪ δA, where δA is a fraction of the edges in A. We observe AO and we

want to predict δA.

We consider two different measures at predicting missing links defined as follows:

The AUC

Sort the scores and quantify how much likely are removed links with respect to actual

no-links, i.e. count how many no-links scores lay beneath a removed link, for each re-

moved, obtaining an Area Under the Curve (AUC) measuring the accuracy at detecting

missing links.

If we treat this as a classification scenario, the AUC is

AUC =
1

|TP ||TN |

∑

(i,j)∈δA

∑

(u,v)∈Ā

Θ(qij − quv), (2.3)

where Θ(x) is the Heaviside step function counting how many removed edges (i, j) ∈
A have higher probability qij than actual no-links (u, v) ∈ Ā, normalized by |TP | =

E − EO and |TN | =
(

N
2

)

− E, where E and EO are the number of edges in A and

AO, respectively.

Bayesian predictive held-out likelihood

Given observed network AO, the reliability of a link is the difference in Σ ofrom Eq. 2.2

before and after adding such link on AO.
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The nonparametric model used to compute Σ is a joint distribution on the model

and its parameters, which allows us to compute a likelihood conditioned on the network

partition {bi}

p(AO|{bi}) =
∑

θ

p(AO|{bi}, θ)p(θ), (2.4)

where θ is the set of remaining model parameters. For instance, for the degree-

corrected model it corresponds to the edge counts {eαβ} and the degree sequence

{ki}. Based on this, we can write the likelihood of non-observed edges δA, given

the observed graph and its partition, which reads

p(δA|AO, {bi}) =

∑

θ p(A
O ∪ δA|{bi}, θ)p(θ)

∑

δA

∑

θ p(A
O ∪ δA|{bi}, θ)p(θ)

, (2.5)

where the denominator is a sum over all possible missing edges δA. Note that for

the microcanonical models, the sum over θ is trivial, since given any particular partition

of a graph, there is only one choice of θ that generates it with nonzero probability.

Therefore, we have simply

p(δA|AO, {bi}) =
p(AO ∪ δA|{bi}, θ̂)p(θ̂)

∑

δA p(AO ∪ δA|{bi}, θ̂)p(θ̂)
. (2.6)

Although the denominator can be computed numerically for the removal of a single

edge, it is not actually needed, since it is a just a multiplicative constant that does not

affect the AUC scores. We need only to compute the numerator, which is just the joint

likelihood of the data and parameters, conditioned on the partition.

Then the held-out likelihood is computed via the difference of Σ before and after

adding δA,

e−∆Σ = p(δA|AO, {bi}) (2.7)

Note that differently from the approximation of the previous section, the scores

computed like the above will never be strictly zero, even if the edge counts or degrees

in the observed network become zero. This is an important property of such Bayesian

methods, and this could in general give a better predictions than the previous scheme.

We should expect a consistency between model selection done by minimizing Σ
from Eq. 2.2 and the predictive performance as measured by AUC at least in some

limit of sufficient data. For that purpose, in Fig. 2.3 we can observe a consistency

between the AUC measure and the Σ, observe that in general, the larger the AUC the

smaller the Σ, thus such model specializations that get the minimum entropy (with

description length) are those that achieve higher accuracies at predicting missing links.

Note that the nested version usually outperforms the non-nested version, both in AUC

and Σ. Regarding the degree-corrected version, the improvement is larger than the

nested specification, however it is not applicable to all networks studied: observe that

in the neural network of the C. elegans it is preferible to use the non corrected version.
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Figure 2.3: Consistency of the AUC. We show the AUC at predicting missing links computed,

versus its Σ from Eq. 2.2 applied for each model specialization (nested: squares, non-nested:

triangles, degree-corrected: solid, non-degree-corrected: empty), on four different real networks:

the neural network of C. elegans [106], the email network within an organization [38], the web

links between U.S. political blogs [1], the worldwide air transportation network [43]. Observe a

tendency of larger AUC with smaller Σ, hence the AUC measure is consistent with minimal Σ.

2.5 Scoping for the best model strategy

Once the model is properly defined, we want to check whether there is an improvement

at predicting the same posterior probability when considering a bunch of likely param-

eters sets (sampling method) in comparison with a single but optimal set of parameters

(single-point).

To test the resemblance applying both methodologies we need a measure and some

datasets. In particular, we will test both methodologies at tackling the same problem:

predicting missing links. For the dataset, we consider four real world networks of

different types, sizes and degree-distributions: the neural network of Caenorhabditis

elegans [106], the Email network within a university [38], the web links between U.S.

political blogs [1], and the worldwide air transportation network [43].

We apply both methods based on the same SBM, and we observe on Fig. 2.4 that the

sampling methodology (dashed bars) outperforms the single-point (solid bars) when

predicting missing links on all datasets contemplated.

Furthermore, in Fig. 2.5 we can observe that even the simple sampling approach

without any specification performs better at predicting missing links than all single-

point approaches with sophistications. Indeed, we were able to compute a sampling

version of the degree-corrected SBM, note that such approach outperforms the simple

sampling, at least for those networks that degree-corrected SBM worked properly for

single-point approaches. However, to build a sampling nested version gets more intri-

cate because we have to decide how to do the sampling in all the levels of the hierarchy.
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Number Number Average Degrees

Network of nodes of edges degree standard deviation

Caenorhabditis elegans neural 297 2148 13.99 0.7425

Email 1133 5451 9.61 0.2775

Political blogs 1222 16714 27.36 1.0990

Worldwide air transportation 3227 19675 11.98 0.4493

Table 2.1: Real world networks of different types. Number of nodes and edges and degree

distributions comforming each network.

C. elegans 
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Email Political 
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Worldwide air 
 transportation
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Non degree-corrected

Sampling non degree-corrected

Figure 2.4: Performance of sampling and single-point methodologies. We show the perfor-

mance at predicting missing links for the sampling (dashed) and the single-point (solid) inference

applied onto different real networks: the neural network of C. elegans [106], the email network

within an organization [38], the web links between U.S. political blogs [1], the worldwide air

transportation network [43]. Note that sampling methodology provides better accuracies at pre-

dicting missing links than single-point methods.

Although statistical mechanics suggests that the optimal state is by far the most

likely, we found that a bunch of likely states result to be more predictible than the opti-

mal alone. A plausible explanation can be suggested if we analyze the sum in Eq. 1.11,

statistical mechanics demonstrates that the optimal state has the highest order in such

sum, say O(u), in contrast with the rest of the states that contribute on average with an

order of O(v) << O(u), such large difference may indicate that the sum is uniquely

determined by the optimal state, with neglibile contributions of all the rest lower or-

der states to the sum. However, we have found that exists a subset S of intermediate

states that contribute enough to be considered, each state s ∈ S contributes to the sum

with a higher order than the average O(v) << O(ws) but still much lower than the

optimal state O(u) > O(ws); nevertheless, the large amount of possible intermediate

states makes the cardinal |S| close to O(u − v), hence Eq. 1.11 is no longer uniquely
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Figure 2.5: Performance of sampling and single-point methodologies. We show the perfor-

mance at predicting missing links for the sampling (dashed) and the single-point (solid) infer-

ence, for several SBMs specializations (naive, light blue; degree-corrected, dark blue; nested,

light red; degree-corrected and nested, dark red) applied onto different real networks (the neu-

ral network of C. elegans [106], the email network within an organization [38], the web links

between U.S. political blogs [1], the worldwide air transportation network [43]). Note that sam-

pling methodology provides better accuracies at predicting missing links than single-point meth-

ods.

determined by the optimal state, but additionally with a small contribution of the whole

subset of intermediate states S.

2.6 Similarity between partitions sampled

To understand in more depth how the partitions varied throughout the sampling pro-

cess, we saved 100 partitions equidistant in time during the sampling. We additionally

compute the optimal partition to test its similarity between all partitions sampled. Then

we compute the Normalized Mutual Information (NMI) similarity measure for all pairs

of saved partitions, obtaining a NMI matrix for each sampling process. The NMI is de-

fined as 2I(bi, ci)/[H(bi) +H(ci)], where the mutual information of two partitions bi
and ci, with joint probability distribution pbc and marginal probabilities pb and pc, is

I(bi, ci) =
∑

α∈bi

∑

β∈ci
pbc(α, β)ln(pbc(α, β)/pb(α)pc(β)), and where the entropy

is H(bi) =
∑

α pb(α)lnpb(α).
Fig. 2.6 and Fig. 2.7 show the sampling process applied to the C. elegans net-

work [106] and the email network [38], respectively. We order the NMI matrices to

cluster the partitions by similarity (on the right side in Figs. 2.6,2.7), but keeping the

chronological order to understand the actual transition of the process (on the left side
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in Figs. 2.6,2.7) We repeat 20 independent realizations of the process for the C. ele-

gans network and 10 for the email network. Generally, we observe two differentiate

behaviors:

• the vast majority of partitions are quite similar, contrary with what one would

expect, the partitions explored are different from the partition with optimal like-

lihood (top in Figs. 2.6,2.7).

• the sampling transitate through several significativelly different partitions (bot-

tom in Figs. 2.6,2.7).

Therefore, the sampling explores around similar partitions occasionally transitating to

another different set of similar partitions, all of them different from the optimal one.

Furthermore, to understand the dissimilarity between the partitions sampled and

the optimal partition, we computed the number of groups for each of them. We obtain

a higher amount of groups for the partitions sampled than the optimal one (Table. ??.

Sampled Optimal Number of

Network partitions partition repetitions r
Caenorhabditis elegans neural (22.1, 23.7) (12.0, 13.4) 20

Email (28.0, 29.4) (19.6, 24.4) 10

Political blogs (30.2, 32.2) (17.8, 23.0) 5

Worldwide air transportation (55.9, 61.3) (33.8, 47.0) 5

Table 2.2: Confidence Interval (CI) of the mean number of groups in the partitions. For each

sampling we compute the mean number of groups over the partitions sampled, then we compute

the CI over the r independent samplings executed. For the optimal partition we compute the

CI for the number of groups over the r repetitions at finding an optimal partitions. We obtain a

higher amount of groups for the partitions sampled than the optimal one

Additionally, note that partitions in the email network (0.84 > NMI(bi, ci) >
0.72 for all pairs of partitions bi, ci) show lower similarity than the ones in the C. el-

egans network (0.95 > NMI(bi, ci) > 0.82 for all pairs of partitions bi, ci). Larger

networks have higher amounts of possible partitions, increasing the range of partitions

to be explored. The sampling approach is able to adapt to such large networks system-

atically and tend to explore more diverse partitions.

2.7 Discussion

We set out a novel question to compare the predictive power of two differentiate infer-

ence techniques:

• the vastly employed single-point estimation considers the most likely state (call

it single-point)

• the Bayesian approach rathers to contemplate a sample of likely states (call it

sampling).
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Figure 2.6: Normalized Mutual Information (NMI) for each pair of partitions sampled. We

apply a sampling approach to compute the reliability links for the neural network of C. elegans

[106]. From the total 10000 partitions sampled we save 100, one partition saved for every 100

sampled. We show the Normalized Mutual Information (NMI) similarity measure for all the pairs

of partitions saved, in two differentiate orderings: chronological order as the partitions appear

during the sampling (left), and reordering them depending on their similarity (right). We repeat

the process 20 times and we observe two clear behaviors. On the first behavior (top), the vast

majority of partitions are quite similar (0.95 > NMI(bi, ci) > 0.82 for all pairs of partitions

bi, ci), but all of them are different from the optimal partition. On the second behavior (bottom),

observe that the sampling transitate through several significativelly different partitions.
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Figure 2.7: Normalized Mutual Information (NMI) for each pair of partitions sampled.

We apply a sampling approach to compute the reliability links for the email network within an

organization [38]. From the total 10000 partitions sampled we save 100, one partition saved

for every 100 sampled. We show the Normalized Mutual Information (NMI) similarity measure

for all the pairs of partitions saved, in two differentiate orderings: chronological order as the

partitions appear during the sampling (left), and reordering them depending on their similarity

(right). We repeat the process 10 times and we observe two clear behaviors. On the first behavior

(top), the vast majority of partitions are quite similar (0.84 > NMI(bi, ci) > 0.72 for all pairs

of partitions bi, ci), but all of them are different from the optimal partition. On the second

behavior (bottom), observe that the sampling transitate through several significativelly different

partitions.
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To do so, we apply both techniques on the same family of models (SBMs) and adress-

ing the same predictive problem (detecting missing links in the same real networks).

We discovered that sampling over models significatively improves the predictive power

than considering an optimal set of parameters alone, suggesting that the error at esti-

mating eq. 1.7 when applying the single-point method is not negligible.

Moreover, we compare the predictive power of several specializations of the SBM

provided in the literature: degree-corrected [50, 73] and/or hierarchical nested [76].

We observe that even the simplest sampling approach (without specializations) outper-

forms the single-point with specializations.

Regarding the measure used (accuracy at predicting missing links), we verify its

consistency with Σ from Eq. 2.2. The optimal point-estimate has minimum Σ, so we

expect better accuracies for those partitions that are more likely. We observe that the

larger the accuracy the lower the Σ, for those real world networks considered.

Interestingly, we observed that the degree-corrected version defined in previous

studies underperform the uncorrected version in two out of four real world networks

considered, suggesting a further revision on which cases does this specification actually

fits better the data. Additionally, we shape the sampling inference with the degree-

corrected specialization, a similar improvement/retreat observed in the single-point is

confirmed with the sampling degree-corrected version.

Finally, we investigate further in the difference between the sampling and the single-

point. We examined in more detail the sampling process by observing the likely parti-

tions explored. The sampling explores around similar partitions occasionally transitat-

ing to another different set of similar partitions, all of them different from the optimal

one.

Our study provides a reliable framework to compare different methodologies.
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3

Suture fusion in normal and pathological

development is constrained by the network

architecture of the human skull

3.1 Introduction

Craniofacial sutures are primary sites of bone growth and remodeling; adequate for-

mation and maintenance of sutures is therefore important for a healthy development of

the head and brain. Sutures fuse as part of the normal developmental process of the

skull when taking place at the right time. However, deviations from the normal pro-

cess of suture pattern formation in the human skull usually cause birth defects, such as

cleft palate and craniosynostosis. The former is a condition in which the bones of the

hard palate (maxilla and palatine) fail to form the midpalatal suture, with a prevalence

of about 15 in 10,000 live births [103]; this condition is often associated with a cleft

lip, causing health and social problems for the child [103]. The latter is a condition in

which one or more sutures between cranial bones (frontal, parietal, temporal, and oc-

cipital) fuse prematurely, with a prevalence of about 5 in 10,000 live births [21]; when

these premature fusions are not treated surgically, they can cause head malformations

due to compensatory growth of other sutures [19], sometimes provoking severe brain

damage due to an increase of intracranial pressure [48]. Both conditions can occur

in isolation [29, 103], or as part of a variety of congenital disorders, such as Van der

Woude and X-linked intellectual disability syndromes [103], or Apert and Crouzon

syndromes [83].

Genetic and epigenetic factors participate in the formation and maintenance of

craniofacial sutures. The number of genes identified carrying mutations associated

with these two pathologies has grown in the last two decades [103, 101]. For example,

more than 60 genes are now known to carry mutations associated with craniosynostosis

[101]: some of them show specificity for a suture in the context of a syndrome (e.g.,

UNIVERSITAT ROVIRA I VIRGILI 
NETWORK INFERENCE BASED ON STOCHASTIC BLOCK MODELS: MODEL EXTENSIONS, INFERENCE APPROACHES 
AND APPLICATIONS 
Toni Vallès Català 
 



Suture fusion in normal and pathological development is constrained by the network architecture

of the human skull

ASXL1 and metopic suture in the Bohring-Opitz syndrome), others predispose to more

than one type of craniosynostosis (e.g., FGFR2 in coronal, sagittal, and multisuture

synostoses), while most of them are not specifically associated with suture develop-

ment, but to osteogenesis in general (e.g., ALX4, EFNA4, and TGFBR2). Epigenetic

factors include, among many others, bio-mechanical stress, hypoxia, and use of drugs

during pregnancy [71, 77, 103]. Epigenetic factors are even less specific than genetic

ones; for example, maternal smoking has been associated to a predisposition for both

cleft palate and some craniosynostoses [12, 93].

Only a small fraction of the more than 80 articulations that make up the human

skull before birth are associated with these birth defects. However, we still do not

know which factors predispose some sutures but no others to fuse pathologically or to

not form at all. Here we address this question by modeling the skull as a network in

which nodes and links formalize bones and their articulations (Fig. 3.1). We use the

reliability formalism developed for network models [44] to infer the susceptibility of

craniofacial sutures to be lost in pathological conditions.

Anatomical network models have been used before, for example, to identify de-

velopmental constraints in skull evolution [23, 24], analyze the evolution of tetrapod

disparity in morphospace across phylogeny [26], and model the growth of human skull

bones [25]. A recent comparison of network models of craniosynostosis conditions

showed that, despite the associated abnormal shape variation, skulls with different

types of craniosynostosis share a same general pattern of network modules [27].

Here, we want to investigate whether the topological arrangement of bones and ar-

ticulations predicts which sutures are more susceptible to be lost; in other words, we

want to assess if the architecture of the skull acts as an agent that constraints the for-

mation and fusion of sutures. A common feature of the topology of complex networks

such as the skull is that one can identify groups of nodes (bones) that have well-defined

patterns of connections (i.e., articulations) with other groups of nodes [44]. Such real-

ization allows one to identify links that are topologically unexpected. If the architecture

of the skull is driving the fusion of articulations, we surmise that there is a relationship

between the susceptibility of an articulation to fuse and the topological ’unexpected-

ness’ of such articulation. To quantify such susceptibility, we use the link reliability

score, that is the probability that a connection exists in the network given the observed

(newborn) topology of the skull [44]. A low score means that the presence of this ar-

ticulation is rare, that is, not commonly expected in the given arrangement of bones

(see Methods for details on how this is estimated). Importantly, the link reliability for-

malism has been used in other complex systems to accurately predicting missing and

spurious interactions in social, neural, and molecular networks [44], to predict harmful

interactions between pairs of drugs [45] and to predict the apparition of conflicts in

teams [86].

UNIVERSITAT ROVIRA I VIRGILI 
NETWORK INFERENCE BASED ON STOCHASTIC BLOCK MODELS: MODEL EXTENSIONS, INFERENCE APPROACHES 
AND APPLICATIONS 
Toni Vallès Català 
 



31

1

2

2

3

4

4

5

6

7

5

6

7

8

9

9

10

10

11

12

12

13

13
14

14

15

15

16

16

17

normal newborn

sagittal suture

synostosis

4/4

metopic suture

synostosis

10/10

lambdoidal suture

synostosis

4/6

bicoronal suture

synostosis

4/10 4/10

unicoronal suture

synostosis

4/10

cleft palate

(ventral view)

13_13

15_15

Figure 3.1: The arrangement of bones in the human skull at birth modeled as a network; nodes

and links represent bones and articulations (sutures and synchondroses). Red links indicate su-

tures associated with cleft palate and craniosynostosis conditions; dashed links are articulations

lost during the normal development due to fusion. Note that the metopic suture between the left

and right frontal bones fuses in pathological and normal development. Drawings illustrate the

shape of the head in some of the conditions studied. Labels: 1 basilar, 2 lateral occipital, 3 oc-

cipital plane, 4 parietal, 5 squama, 6 petromastoid, 7 tympanic ring , 8 sphenoidal, 9 zygomatic,

10 frontal, 11 ethmoidal, 12 nasal, 13 maxilla, 14 lacrimal, 15 palatine, 16 nasal concha, 17

vomer.

3.2 Methods

3.2.1 A network model of the skull

We built a network model of the human skull at birth based on anatomical descrip-

tions [35] and information of ossification timing and fusion events [96]. The nodes and
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links of the network model formalize the bones and articulations (sutures and synchon-

droses) of the skull, respectively (Fig. 3.1).

3.2.2 Statistical analysis

We divided the links of the network model of the skull into three groups: (group 1)

associated with cleft palate and craniosynostosis, (group 2) fused during a normal de-

velopment, and (group 3) not fused during normal development. Groups follow the

literature reviews listed in the references and common knowledge. TABLE 3.1 shows

the sutures most commonly associated with cleft palate and craniosynostosis, as well

as those sutures that fuse in a normal development of the human skull.

We performed an independent one-sided Mann-Whitney U test for the following

pairs of groups: group 2 vs. group 3, group 1 vs. group 3, and group 1 vs. group 2. We

tested the null hypothesis of equal distribution between groups against the alternative

hypothesis that:

1. sutures in group 2 have lower reliability scores than sutures in groups 1+3;

2. sutures in group 1 have lower reliability than those in group 3;

3. sutures in group 2 have lower reliability scores than those in group 1.

We estimated the median of the difference between groups and a non-parametric

95% confidence interval. The statistical analysis was performed with function wilcox.test

in R [99].

Table 3.1: Articulations modified during cleft palate, craniosynostosis, and normal devel-

opment.

Craniofacial joint Between Condition

intermaxillary left and right maxilla cleft palate

interpalatal left and right palatine cleft palate

sagittal left and right parietal craniosynostosis

coronal frontal and parietal craniosynostosis

lambdoid parietal and occipital plane craniosynostosis

occipitomastoid petromastoid and occipital plate craniosynostosis

petromastoid and lateral occipital

metopic left and right frontal craniosynostosis

normal development of the frontal bone

petrosquamosal petromastoid and squamosal normal development of the temporal bone

petrotympanic petromastoid and tympanic ring normal development of the temporal bone

squamotympanic squamosal and tympanic ring normal development of the temporal bone

basilateral basilar and lateral occipital normal development of the occipital bone

occipitolateral lateral occipital and occipital plane normal development of the occipital bone
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3.3 Results

First we investigated the relationship between the link reliability score and the suscep-

tibility of an articulation to fuse during normal development. To that end, we compared

the reliability score of those articulations that fuse during the normal development of

the skull to those that do not. We find that sutures that normally fuse have significantly

lower reliability scores than those that do not (Mann-Whitney-Wilcoxon: one sided

W=206.0, p-value = 0.0055; Mean(fused) = 0.3485; 95% CI (non-fused) = (0.4124,

inf))(Fig. 3.2); which is in agreement with our hypothesis that during normal develop-

ment there is a tendency to lose articulations that are topologically rare in the newborn

skull.

Next, we investigated whether sutures that fuse in pathological conditions are topo-

logically different from sutures that do not form (including no-links, i.e., articulations

that never appear among bones but that can be analyzed thanks to the network model of

the skull). To that end, we compared the reliability score of sutures that occur in cleft

palate and craniosynostosis conditions to that of those sutures that do not form or do

not fuse during the normal development of the skull (Fig. 3.2). We found that sutures

associated with pathological conditions have significantly lower reliability scores than

sutures that are not (one-sided, W = 116, p-value = 1.022E−4; Mean(pathological) =

0.3244; 95% CI (non-pathological and non-fused) = (0.4417, inf)); which shows that

sutures associated to pathological conditions are also unexpected from a topological

point of view.

Interestingly, we find no statistical difference between the reliability scores of su-

tures that are associated to pathological conditions and those that fuse during nor-

mal development (two-sided W = 44.5, p-value = 0.196; 95% CI (fused) = (0.3389,

0.3668)). This finding suggests that while skull architecture is an important factor in

the loss of sutures during both pathological and normal development, there are non-

topological factors that discriminate between normal and pathological loss of sutures.

3.4 Modularity

Modularity of the human skull is studied by establishing a priori developmental or func-

tional hypothesis, that is then tested by means of patterns of covariation and correlation

using different morphometric tools. Conversely, [22] suggested to use such morpholog-

ical information to build networks and recognize modules in the human skulls, without

a priori assumptions. We are interested whether if we can recover this modularity with

the SBM approach, a fact that will support the idea that SBM strongly capture the

structure of the human skull network.

When applying the approach suggested by [44] we group bones into different

blocks depending on their patterns of connection, during the whole process we ob-

tain a sample of several SBM. To find a fair partition of the bones into groups we count

the number of times two bones are grouped in the same block, the counting is done for

each possible pair of bones (shown in the co-classification matrix in Fig. 3.3). Then

a higher proportion of times that two bones are grouped together is represented in a
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Figure 3.2: Box plot comparing link reliability scores. Sutures associated with cleft palate and

craniosynostosis (CP+CS) have lower reliability than those that are not associated (left, white

panel). Sutures that fuse during normal development also have lower reliability than those that

not do so (right, gray panel).

more red color in Fig. 3.3, meaning that is fair to put those two bones into the same

group; on the other hand, a blue tendency represents that two bones are rarely grouped

together. Note that we obtain a partition of the bones into a modularity structure in two

groups (relative to cranial and facial), one of them integrating a hiearchical structure

with three subgroups, this finding is consistent with previous research on modularity in

the human skull [22].

Each pair of nodes represent a possible linkage, thus we can highlight those pair of

bones whose suture is associated with cleft palate and craniosynostosis (white squares)

and those fused during a normal development (black squares), we observe that bones

fused in normal development are grouped together a higher amount of times than su-

tures associated to the mentioned pathologies.

We have found a similar modularity than that previously yielded by [22] with hier-

archical clustering. Hence our approach is capable to describe closely the structure of

skulls networks, without any prior information except the given sutures itself.

3.5 Evolution

Given the influence of the skull topology on the susceptibilty of sutures to fuse, we

speculate on the topological relevance on animals skulls. “Willinston’s Law” is an

evolutionary theory which states that an organism tend to reduce into fewer parts more

specialised in function. Supporting this theory, the tetrapod skull has undergone a

simplification by loss and fusion of bones in all major lineages since the origin of
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Figure 3.3: Co-Classification matrix of the bones in the normal newborn skull. Blue to red

scale represents the amount of times two bones are grouped together during the whole sampling,

normalized by the total number of steps. White(black) squares enclose those sutures associated

with cleft palate and craniosynostosis (fused in normal development).

vertebrates, this reduction in the skull’s number of bones generated an evolutionary

trend toward an increase in morphological complexity [24]. We will apply our new

approach to study the topological effect on those tetrapod skull networks.

First we split all our available networks into extant ( 3.2) and extinct ( 3.3). Given

a network we can compute the reliability of both the links and the no-links, in Fig. 3.5

we provide the boxplots of the links scores for each network. Additionally, by joining

together all the scores of the links of extant species we consider the whole distribution

of extant species sutures as a whole, conversely we can analogously join all the extinct

species sutures (Fig. 3.4). We found that sutures in extant species have significantly

higher reliability scores than sutures from extinct species (two-sided, W = 1.432E6,

p-value = 3.887E−75; (95% CI(extant) (0.4045, 0.4172); 95% CI(extinct) (0.3199,
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Figure 3.4: Box plot comparing link reliability scores of all sutures from extant species

together versus all sutures from extinct species together. Sutures from extant species have a

higher reliability mean than those that are extinct.

0.3315)); which shows that sutures from extinct animals are more unexpected from a

topological point of view than those from extant animals.
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Figure 3.5: Box plot comparing link reliability scores of all the extant/extinct species. Su-

tures from extant species have a tendency to higher reliability than those that are extinct.
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Number Number

Tetrapod specie of nodes of edges

Anser anser (Greylag goose) 18 27

Canis lupus (Gray wolf) 29 90

Carettochelys insculpta (Pig-nosed turtle) 36 92

Chelodina longicollis 33 80

Chelydra serpentina (Common snapping turtle) 36 91

Crocodylus moreletii (Morelet’s crocodile) 39 97

Cynocephalus (Philippine flying lemur) 24 68

Didelphis virginiana (Virginia opossum) 26 66

Diplometopon zarudnyi 26 57

Epicrionops petersi (Peters’ caecilian) 23 51

Gastrotheca walkeri (Walker’s marsupial frog) 22 43

Gopherus polyphemus (Gopher tortoise) 36 90

Hemitheconyx caudicinctus (African fat-tailed gecko) 34 72

Homo sapiens 21 64

Iguana iguana (Green iguana) 42 12

Mus musculus (House mouse) 28 78

Ornithorhynchus anatinus (Platypus) 26 65

Pan troglodytes (Common chimpanzee) 23 60

Phascolarctos cinereus (Koala) 31 87

Podocnemis unifilis (Yellow-spotted river turtle) 34 90

Pteropus lylei (Lyle’s flying fox) 21 47

Python regius (Ball python) 35 68

Salamandra salamandra (Fire salamander) 25 52

Sphenodon punctatus (Tuatara) 38 78

Stenocercus guentheri 44 97

Testudo graeca (Spur-thighed tortoise) 34 94

Tupinambis teguixin (Gold tegu) 42 94

Tursiops truncatus (Common bottlenose dolphin) 32 99

Varanus salvator (Asian water monitor) 42 85

Table 3.2: Extant species from which skull networks are reconstructed. Number of nodes

and edges comforming each network.
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Geologic Number Number

Tetrapod specie period of nodes of edges

Chisternon sp Eocene 36 98

Corythosaurus casuarius Upper Cretaceous Period 33 77

Dimetrodon gigas Early Permian period, 45 11

Dromaeosaurus albertensis Late Cretaceous 41 99

Ennatosaurus tecton Wordian 52 12

Ichthyostega sp Upper Devonian 56 14

Kayentachelys aprix Early Jurassic 38 10

Jonkeria ingens Last Permian 51 13

Petrolacosaurus kansensis Late Carboniferous 55 13

Plateosaurus engelhardti Late Triassic period 49 11

Procolophon pricei Early Triassic 45 12

Proganochelys quenstedti Late Triassic 43 11

Rhamphorhynchus sp Late Jurassic 41 95

Seymouria baylorensis Early Permian 56 14

Stegosaurus armatus Late Jurassic 47 11

Thrinaxodon liorhinus Permian and mid-Triassic 44 10

Youngina capensis Late Permian 53 12

Table 3.3: Extinct species from which skull networks are reconstructed and the geological

period it belongs. Number of nodes and edges comforming each network.

3.6 Discussion

Our results suggest that the whole architecture of craniofacial articulations of the skull

might act itself as an epigenetic factor, making some sutures to be more susceptible

to be lost than others. That some regions of the skull act epigenetically (e.g., via bio-

mechanical signaling) to predispose sutures to a premature fusion was already proposed

by Moss in the context of the functional matrix hypothesis [64]. Here we show that

the most susceptible sutures to be prematurely fused (i.e., those with low reliability

scores) are precisely the ones associated with cleft palate and craniosynostosis. Thus,

we propose that the very arrangement of bones in the skull predisposes epigenetically

some sutures as targets of pathological conditions. We are not yet in a position to offer

a mechanistic explanation for the relationship reported here, which we believe may be

related to the same developmental mechanism that regulate compensatory growth of

bones after premature synostoses [19, 63, 58]. However, our results also suggest that

such mechanisms should not be different between normal and pathological conditions,

since sutures and synchondroses that are lost during normal development of the skull

also show low reliability scores.

If, as our results suggest, the system of articulations of skull bones is able to self-

regulate epigenetically the formation and maintenance of sutures and synchondroses,

this might have consequences also at an evolutionary scale. In craniosynostosis con-
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ditions, the number of bones is reduced due to the early suture fusions, much in the

same way as the net reduction in the number of bones during vertebrate evolution

[36, 94, 23]; as a consequence, it has been postulated that craniosynostosis could be

used as an informative model for skull evolution [84]. Our results suggest that this is

not a mere analogy, but that similar epigenetic processes might act in regulating the

configuration of bone arrangements in the skull both in development and in evolution.

Pathological conditions of the human skull, including cleft palate and craniosynos-

tosis, are a medical and social problem that needs special attention from the research

community. In addition, they represent medical examples of more general develop-

mental and evolutionary processes found in all tetrapods. Both aspects, the medical

and the biological, need and can be integrated in order to reach a better understand-

ing that could lead to improve treatments as well as to further our knowledge about

fundamental evolutionary questions.
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Multilayer stochastic block models reveal the

multilayer structure of complex networks

4.1 Introduction

In the introduction chapter 1 and previous chapters 2, 3, we highlighted the conve-

nience of using Stochastic Block Models (SBM) based approaches at modeling real-

world networks.

While these approaches have pushed forward our understanding of complex net-

work structure, a limitation is that they rely on the premise that there is a single mech-

anism that describes the connectivity of the network, even though we know that real-

world networks are often the result of processes occurring on different “layers” (for

example, social networks encompass relationships that arise on the familiar layer and

relationships that arise in the professional layer) [54]. Moreover, it is increasingly clear

that the multilayer structure of complex networks can have a dramatic impact on the

dynamical processes that take place on them [79, 80, 34, 16, 15, 90]. Unfortunately,

we often lack information about the different layers of interaction and can only observe

projections of these multilayer interactions into an aggregate network in which all links

are equivalent.

In this chapter we precisely address the problem of unraveling the underlying mul-

tilayer structure in real-world networks. First, we introduce the family of multilayer

SBMs that generalizes single-layer SBMs to situations where links arise in different

layers and are aggregated. Although there have been proposals to extend the concept

of modularity to multilayer networks [65], ours represents a pioneering attempt to ex-

tend generative group-based models to multilayer systems, and to study those models

rigorously using tools from statistical physics. Our approach is also different from so-

called latent feature models [61, 72, 52] in that SBMs allow to answer the fundamental
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question of whether an observed network is the outcome of a multilayer process, while

in latent feature models it is impossible to disentangle the contributions of each layer.

Second, we give the probabilistically complete solution to the problem of inferring

the optimal multilayer SBM for a given aggregate network. Because this solution is

computationally intractable, we propose an approximation which enables us to objec-

tively address the question of whether an observed network is likely to be the projection

of multiple layers. The analysis of complex networks from different contexts suggests

that many real-world networks are indeed projections.

4.2 Multilayer stochastic block models

In our approach, nodes interact in different layers. In each one of these layers ℓ =
1, . . . , L we define a SBM as follows: each node i belongs to a specific group σℓ

i , and

links between pairs of nodes belonging to groups α and β, respectively, in layer ℓ exist

with probability qℓαβ . The observed adjacency matrix AO is an aggregate that results

from the combination of the links in each of the layers, and where all information of

the layers has been lost (Fig. 4.1). We call this model the multilayer SBM.

Here we consider the simplest multilayer case and set L = 2. In such case, there

are two combinations with a plausible physical interpretation: i) the AND combination

of layers, in which AO
ij = 1 if, and only if, nodes i and j are connected in both layers

(Fig. 4.1(a)); ii) the OR combination of layers, in which AO
ij = 1 if i and j are con-

nected in at least one layer (Fig. 4.1(b)). For example, the AND model is a plausible

model for in vivo protein interactions, because in order for proteins to interact in the

cell it is necessary for them to be capable of physically interacting (that is, to be linked

in the layer of in vitro physical interactions) and to be expressed simultaneously in

the same cellular compartment (that is, to be linked in the co-expression layer). The

OR model is a plausible model for the effective on-line social network through which

memes spread [104], because some people use Facebook to share memes, others use

Twitter, and others use both.

In principle, we would like to identify which is the pair of partitions (P1,P2) (in

layers 1 and 2, respectively) that best describe the observed aggregate topology, which

has no information about the layers. The probabilistically complete way to solve this

problem is to obtain the joint probability p(P1,P2|A
O) that P1 and P2 are the true

partitions of the nodes given the aggregate observed network. This distribution is given

by

p(P1,P2|A
O) ∝ (4.1)

∫

DQ1

∫

DQ2 p(A
O|Q1, Q2,P1,P2)p(Q1, Q2,P1,P2)

where Qℓ is a matrix whose elements qℓαβ represent the probability that a link ex-

ists between a pair of nodes belonging to groups α and β in layer ℓ, and
∫

DQℓ ≡
∏

α≤β

∫ 1

0
dqℓαβ is the integral over all possible values of these probabilities.
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+AND+AND

+AND+AND+OR

(a)

(b)

Figure 4.1: Network aggregation mechanisms. In aggregated multi-layer networks, different

networks containing the same nodes but with different adjacency matrices are combined into

an observed network with adjacency matrix AO where all information about the original layers

has been lost. We consider two aggregation mechanisms of two-layer networks with adjacency

matrices A1 and A2: (a) AND aggregation, in which AO

ij = A1
ijA

2
ij so that AO = 1 if, and only

if, i and j are connected in both layers. (b) OR aggregation in which AO

ij = 1− (1−A1
ij)(1−

A2
ij), so that AO = 1 if i and j are connected in at least one layer.

This integral can be computed both for AND combinations and for OR combina-

tions of the two layers; for clarity, we first show the calculation for the AND model

and discuss the OR model in 4.2.3. Because in a SBM each link is independent of

each other and in the AND model a link has to be present in both layers to appear in

the observed aggregate network AO, the likelihood for an AND model is

pAND(A
O|Q1, Q2,P1,P2) =

=
∏

[α≤β
γ≤δ]

(

q1αβq
2
γδ

)n1

αβγδ
(

1− q1αβq
2
γδ

)n0

αβγδ , (4.2)

where n1
αβγδ is the number of links between pairs of nodes that are in groups α and

β respectively in layer 1, and in groups γ and δ respectively in layer 2 (n1
αβγδ =

∑

i<j A
O
ijδσ1

iα
δσ1

jβ
δσ2

i γ
δσ2

j δ
); and n0

αβγδ is the number of no-links between such pairs

of nodes (n0
αβγδ =

∑

i<j(1−AO
ij)δσ1

iα
δσ1

jβ
δσ2

i γ
δσ2

j δ
).

We can plug Eq. (4.2) into Eq. (4.1) and integrate for PAND(P1P2|A
O) over q1αβ

and q2γδ , assuming uniform distribution for the prior p(Q1, Q2,P1,P2) = const [44].

Other possibilities include choosing non-uniform priors for the connection probabilities

[74, 76, 91] or different priors for the partitions [18, 91, 74, 76, 75, 108]. To simplify

the notation, we introduce two indices r and s, so that r ≡ αβ and s ≡ γδ and we

drop the reference to layer 1 and 2 so that qr ≡ q1αβ , and qs ≡ q2γδ . In order to perform
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Multilayer stochastic block models reveal the multilayer structure of complex networks

the integration over qr, for example, we note that all the terms that contain qr have the

following form:

qr
∑

s n1

rs

∏

s

(1− qrqs)
n0

rs =

q
n1

r
r

∏

s

∑

mrs=0,...,n0
rs

(

n0
rs

mrs

)

(−)mrs(qrqs)
mrs (4.3)

where n1
r =

∑

s n
1
rs. Then for fixed values of {mrs} we have that the contribution to

the likelihood factorizes for every qr and qs as follows

∫

DQr

∫

DQs

∏

r,s

(

n0
rs

mrs

)

(−)mrs

∏

r

q
n1

r+mr
r

∏

s

q
n1

s+ms
s , (4.4)

where
∫

DQr =
∏

r

(

∫ 1

0
dqr

)

and mr ≡
∑

s mrs.

Integrating out the qrs and qss we obtain for the likelihood the expression in Eq. (4.5).

pAND(P1,P2|A
O) ∝ (4.5)

∑

[ {mrs}

mrs=0,...,n0
rs
]

∏

r,s(−1)mrs
(

n0

rs

mrs

)

∏

r(n
1
r +mr + 1)

∏

s(n
1
s +ms + 1)

where the summation is over all possible values of each mrs. Note that it is straight-

forward to apply the same formalism to directed networks by considering a bipartite

graph of nodes with incoming and outgoing connections. In this case, for each layer

we would have an SBM with to sets of block partitions, one for nodes with outgo-

ing connections and one for nodes with incoming connections, and a non-symmetric

connection probability matrix (see [86]).

Given Eq. (4.5), which is the complete probabilistic description of the multilayer

SBM, one could in principle find the partitionsP1 and P2 that maximize pAND(P1,P2|A
O).

If this were possible, one would be able to perfectly disentangle the two SBMs respon-

sible for the observed links, even though the observation did not have explicit informa-

tion about the layers. It would also be possible to compare regular SBMs to multilayer

SBMs to determine if a multilayer model is more or less appropriate to describe a

given network. Unfortunately, the expression above becomes numerically intractable

even for a small number of groups and therefore one needs to make approximations

that simplify the problem.

4.2.1 Computation of degeneracies

Our goal is to compute the number D(PI) of pairs (P1,P2) that have the same inter-

section partition PI , that is, the cardinality of the set {(Pi,Pj)|Pi ∩ Pj = PI}. We
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start by noting that a specific PI consists of n groups of nodes that we call “elements;”

we make explicit the number of such elements in an intersection partition and write

Pn
I = [E1][E2][E3] . . . [En]. By the definition of intersection partition we have that:

(i) all the nodes within an element must belong to the same group in both partitions

P1 and P2 (otherwise, they would not belong to the same element); (ii) two elements

cannot belong to the same group in both P1 and P2 (otherwise they would be a single

element). We compute the degeneracy in two steps (see Supplementary Material for

details): 1) We compute all the possible unique partitions P1 combining the elements

in Pn
I , group them in classes according to the numbers of elements combined, and

compute the multiplicity associated to each class; 2) For each class, we compute all the

possible partitions P2 that result in a specific intersection Pn
I .

4.2.2 Link reliability with approximate multilayer stochastic block models

We propose an approximation that makes it possible to work with multilayer SBMs.

We start by noting that any multilayer SBM can be represented as a single-layer SBM

(Fig. 4.2(a)). The reverse is also true, so the possible network models one can generate

with single-layer SBMs and multilayer SBMs are, in fact, identical. For instance, a

specific one-layer SBM is equivalent to a two-layer AND model in which one of the

layers has a single group and connection probability matrix with all entries equal to

1 and another layer equal to the single-layer SBM. However, it is important to note

that each of them gives different weights to different models, so that a model that is

relatively probable in the multilayer SBM family might be relatively rare in the single-

layer SBM family, and vice versa.

In the single-layer SBM, each group comprises the nodes that belong to the same

pair of groups α, γ in P1 and β, δ in P2 in the multilayer SBM (and only those); we

call the single-layer partition the intersection partition. Moreover, if group r in the

intersection partition corresponds to groups α in P1 and β in P2, and group s in the

intersection partition corresponds to groups γ in P1 and δ in P2, then the probability of

connection in the single-layer SBM is qAND
rs = q1αγq

2
βδ (for simplicity, we again focus

on the AND model and leave the OR model for Sec. 4.2.3). This fully determines the

single-layer SBM.

Here, we make the following approximation: we keep the information of the par-

titions P1 and P2 in the intersection partition, but consider that the matrix elements

qAND
rs , while each being the result of the product of two factors, are all independent

of each other (see Fig. 4.2(b)). Since this approximation is equivalent to integrating

separately every term with a different (α, β, γ, δ) combination in Eq. (4.2), it follows

that the integrated likelihood depends exclusively on the intersection partition. In other

words, within this approximation all pairs of partitions (P1,P2) with the same intersec-

tion partition PI are equally likely, and it is not possible anymore to uniquely determine

the multilayer SBM that best describes the observed topology.

Despite this limitation, our approximation still enables us to address the funda-

mental question of whether real-world networks are better described by single-layer

or multilayer models. Specifically, in what follows we compare the predictive power
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+AND

+AND

+AND

+AND

_

Exact ensemble integrated over all Qs Approximation ensemble over Qs
(b)

(a)

AND

1

0.8

0.5

0.2

0

AND

AND

AND

~

Figure 4.2: Exact and approximate multilayer SBM ensembles. (a) Two independent single-

layer SBMs aggregated using the AND mechanism. We represent each single-layer SBM by

its node-to-node connection probability matrix (indicated in the shades of green shown in the

colorbar; note that node ordering is different in each SBM). The aggregation of the two layers

can also be represented as a single-layer SBM, in which each group comprises the nodes that

belong to the same pair of groups α in layer 1 and γ in layer 2; this is the intersection partition

PI . Moreover, if group r in PI corresponds to groups α in P1 and γ in P2, and group s in PI

corresponds to groups β in P1 and δ in P2, then the probability of connection in the single-layer

SBM is qAND
rs = q1αβq

2

γδ . (b) For a fixed pair of partitions P1 and P2, we integrate over the

ensemble of all possible probability matrices Q1 and Q2 (Eq. (4.5)). For each pair (Q1, Q2), the

resulting qAND
rs are therefore correlated. In our approximation, we assume that the elements of

the intersection qAND
rs are randomly drawn and independent of each other.
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of single-layer and multilayer SBMs in the problem of detecting missing and spurious

links in noisy networks [44]. In fact, we argue that, if (approximate) multilayer SBMs

yield better predictions on real networks, then there is evidence (supported by our re-

sults) to suggest that these networks are likely the outcome of multilayer processes

(despite being observed as single-layer aggregates).

In the problem of assessing link reliability [13, 44], the goal is to compute the

probability p(Aij = 1|AO) that a link between nodes i and j truly exists (Aij = 1)

given a noisy network observation AO, which contains false positives (spurious inter-

actions that are reported but do not truly exist) and false negatives (missing interactions

that truly exist but are not reported). We call the probability Rij = p(Aij = 1|AO)
the reliability of the link. In general, for any set M of models (single-layer SBMs,

AND-multilayer SBMs or OR-multilayer SBMs), the reliability is [44]

RM
ij =

∫

M
dMp(Aij = 1|M)p(AO|M)p(M)

Z
, (4.6)

where Z is a normalization constant.

In the case of multilayer SBMs, the integral over the ensemble of models M re-

quires: i) the integration over the connection probabilities Q1 and Q2 (akin to what

we did to obtain Eq. (4.1)); ii) the sum over all pairs of partitions P1 and P2. Within

our approximation, the first step can be carried out analytically but the second cannot.

However, always within our approximation, one can exploit the fact that the integral

in Eq. (4.6) depends exclusively on the intersection partition PI and map the sum over

pairs of partitions onto a sum over a single partition. By doing so we obtain the follow-

ing expression for the link reliability (see Appendices for the analogous expression for

the OR model)

RAND
ij = (4.7)

1

Z

∑

PI

(

n1
σiσj

+ 1

nσiσj
+ 2

·

∑nσiσj
+2

k=n1
σiσj

+2
1
k

∑nσiσj
+1

k=n1
σiσj

+1
1
k

·D(PI) · e
−H(PI)

)

where the sum is over all possible intersection partitions (that is, all single-level parti-

tions), n1
αβ is the number of links between groups α and β in the intersection partition,

nαβ = n0
αβ + n1

αβ is the number of (possible links between) pairs of nodes in groups

α and β, and D(PI) the number of pairs (P1,P2) that have the same intersection

partition PI (the degeneracy of partition PI ; see Appendices). The energy H is

H(PI) = (4.8)

∑

α≤β

(

ln(nαβ + 1) + ln

(

nαβ

n1
αβ

)

− ln

( nαβ+1
∑

k=n1

αβ
+1

1

k

)

)

where the sum is over all distinct pairs of groups in PI .
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As in [44], the expression for the link reliability (Eq. (4.19)) is analogous to an

ensemble average of an observable in statistical mechanics, giving H(PI) the meaning

of an energy associated to a specific intersection partition. We can use a Markov chain

Monte Carlo algorithm to compute numerically Rij (see Appendices for details). Note

that, although Eqs. (4.19)-(4.8) are the exact solution to the link inference problem

with approximate multilayer stochastic block models, there is no mathematical guar-

antee that, in a finite amount of time, the Markov chain will sample the space of node

partitions with the desired probabilities. In particular, the energy landscape may be

rugged and the chain may get trapped in some region. However, we have performed

equilibration tests that suggest that the chain is, indeed, sampling the space correctly.

As it turns out, H(PI) is equal to the energy obtained assuming a single SBM (Eq.

(S2), [44]), plus a term that accounts for the product of two probabilities that generate

each element of the intersection probability matrix. In a Bayesian context, we can in-

terpret this term and the degeneracy D(PI) as non-uniform priors for the intersection

partitions.

4.2.3 OR combination of layers

For the OR model, one can obtain an expression for the likelihood by noticing that

the OR model is and AND model for the no-links, that is non-existing edges between

pairs. The likelihood of the observed topology AO given the model MOR assuming

two layers is then:

P (AO|MOR) =
∏

[α≤β
γ≤δ]

(

(1− qaαβ)(1− qbγδ)
)n0

αβγδ

×
(

1− (1− qaαβ)(1− qbγδ)
)n1

αβγδ , (4.9)

where all quantities have the same definition as in Eq. (4.2).

Following the same steps as in the AND model, we obtain the following expression

for POR(P1P2|A
O):

POR(P1,P2|A
O) ∝ (4.10)

∑

[ {mrs}

mrs=0,...,n1
rs
]

∏

r,s(−1)mrs
(

n1

rs

mrs

)

∏

r(n
0
r +mr + 1)

∏

s(n
0
s +ms + 1)

where we have used the notation r ≡ αβ and s ≡ γδ and all the quantities have already

been defined in the AND model.
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Finally, one can compute the reliability for an OR combination of two layers as

ROR
ij = 1− (4.11)

1

Z

∑

PI

(

n0
σiσj

+ 1

nσiσj
+ 2

·

∑nσiσj
+2

k=n0
σiσj

+2
1
k

∑nσiσj
+1

k=n0
σiσj

+1
1
k

·D(PI) · e
−H(PI)

)

H(PI) = (4.12)

∑

α≤β∈PI

(

ln(nαβ + 1) + ln

(

nαβ

n0
αβ

)

− ln

( nαβ+1
∑

k=n0

αβ
+1

1

k

)

)

where, as before, the sum is over all possible (intersection) partitions, Z is a normal-

ization constant and D(PI) is the number of pairs of partitions that have the same

intersection. In Eq. (4.12), the sum is over all distinct pairs of blocks within a fixed

partition, n1
αβ =

∑

i≤j Aijδσiαδσjβ , nαβ =
∑

i≤j δσiαδσjβ , n0
αβ = nαβ − n1

αβ , and

σi stands for the block to which node i belongs.

4.3 Validation of link reliability estimation in model networks

Now that we are able to estimate link reliabilities using our approximation to two-layer

(AND and OR) SBMs (Eq. (4.19)), as well as single-layer SBMs [44], we compare

the performance of these approaches at detecting missing and spurious interactions.

Our expectation is that if real-world networks are truly the result of the aggregation of

multiple layers, then assuming a two layer structure should result in a higher accuracy.

Note that, because single-layer and two-layer models are identical models with a

different prior, one may expect that they perform equally well in large enough net-

works. This is because when one has infinite available information about the system,

the prior has no effect on the inference and therefore single-layer and two-layer models

should be equally accurate. While this is indeed the case for simple modular SBMs

whose group sizes increase with network size (see Fig. 4.11), this is not necessarily the

case for real-world networks. Indeed, real-world networks have very heterogeneous

connectivity patterns and groups can be arbitrarily small regardless of network size,

which makes it impossible to gather infinite information about those groups. In that

case, the choice of prior does affect the inference protocol so that we expect a differ-

ence in accuracy between single and two-layer SBMs. As we show in what follows,

our results for all the real-world networks we study confirm that there are differences

between predictions based on single-layer and two-layer models.

To identify the limits of detectability in terms of the choice of two-layer SBM

model, we first construct a set of multilayer test networks that have a well-defined

block structure in each of the two layers, and that are aggregated using the AND or OR

models (see Fig. 4.3). We parametrize this ensemble of networks using two variables:

i) the low to high connectivity ratio λ; and ii) the average connectivity of nodes k. For
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a fixed value of k, we expect to obtain larger accuracies for the easy cases, that is for

networks with a more marked block structure (i.e. low values of λ).
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Figure 4.3: Performance of missing and spurious link identification on synthetic aggregated

two-layer networks. Each row shows results for the different sets of two-layer SBMs illustrated

in (a, d, g). We consider networks of N = 168 (a, d) and N = 240 (g) nodes divided into

uniform groups in each layer. In the connection probability matrices, dark green represents a high

connection probability ph and light green a low connection probability pl. We generate synthetic

networks varying two parameters: the low-to-high connectivity ratio λ = pl/ph < 1, and the

average connectivity k (see section ). To compare the performance of the different approaches

at detecting missing links (b, e, h), we randomly remove a fraction f = 0.25 of the links (false

negatives) from the real network and calculate the reliability of each unobserved link. Then we

calculate the AUC statistic, that is, we rank the links by decreasing reliability and calculate how

often a removed link (false negative) has a higher reliability that a link that is truly non-existent in

the real network (true negative). Analogously, to detect spurious links (c, f, i) we randomly add

a fraction f = 0.25 of links (false positives), calculate the reliability of the observed links, and

calculate how often an added link (false positive) has a lower reliability that a link that is truly

existent in the real network (true positive). For each pair of parameter values, we generate 30

different synthetic networks. We compare the average performance (AUC) at detecting missing

links (b, e, h) and spurious links (c, f, i) of the approximate multilayer SBM approach, AUC2L,

against that of the the single-layer SBM approach, AUC1L. The size of the circles represents the

AUC2L of the multilayer approach. The color of the circles represents the logarithm of the ratio
AUC2L

AUC1L
, so that blue circles correspond to instances where the multilayer approach outperforms

the single-layer approach, and conversely for red circles. (See Figs. 4.4, 4.5, 4.6, 4.7, 4.8, 4.9

for results for other values of f (fraction of false negatives/false positives) and for synthetic

networks generated for different numbers of nodes and/or groups).
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We consider the predictive power of each of the approaches at detecting [13, 44]: i)

missing links (we remove a fraction f of the links and compute the fraction of times that

a removed link has a higher reliability than a link not present in the original network,

that is the AUC statistic); ii) spurious links (we add a fraction f of links and compute

the fraction of times that an added link has a lower reliability than a link present in the

original network, that is the AUC statistic).

For AND networks (Fig. 4.3(a-f) and Figs. 4.4, 4.5, 4.6, 4.7) we find that, for the

detection of both missing and spurious links, the two-layer approach outperforms the

single-layer approach, especially: (i) when the number of distinct node groups in the

intersection partition and the connectivity grow; (ii) for small or moderate noise levels

(fraction of removed/added links). Only when the structure of the blocks becomes very

blurry do we observe that the single-layer approach works better (but in this region

both approaches do in fact work poorly).

For OR networks (Fig. 4.3(g-i) and Figs. 4.8, 4.9), the two-layer approach again

outperforms its single-layer counterpart in most situations. In this case, however, the

largest improvements in performance happen for the hard cases (low accuracy values)

with lower connectivity.

Note that the in the OR model the aggregated network is denser than each of the

layers, whereas in the AND model the aggregate is sparser than each of the original

layers. For this reason, we expect the AND model to produce better results in real-

world networks, which are sparse. In fact, we should expect the OR model to produce

better results only for networks obtained from our ensemble of OR two-layer stochastic

block models, that is, networks obtained from an OR aggregation of SBMs with inde-

pendent and uniformly distributed probabilities of connection between pairs of groups

(according to our prior). Our results in Fig. 4.12 for such an ensemble of networks

confirm that this is the case.
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Figure 4.4: Performance of missing link identification on an ensemble of synthetic aggregated

two-layer networks: AND Model; Topology A. Each panel corresponds to a different collec-

tion of two-layer SBMs, generated with fixed parameters denoted on each panel’s title as done

in Fig. 4.3. N : number of nodes; gi: number of groups in layer i; frem: probability of re-

moved/added links. Arrows going between panels indicate which parameter is varied: frem
(d,b,e), g1 (a,b,c), N (g,f). The top left legend denote the topology of the generated networks,

dark green corresponds to high connection probability ph and light green to low connection

probability pl.
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Figure 4.5: Performance of spurious link identification on an ensemble of synthetic aggregated

two-layer networks: AND Model; Topology A.

UNIVERSITAT ROVIRA I VIRGILI 
NETWORK INFERENCE BASED ON STOCHASTIC BLOCK MODELS: MODEL EXTENSIONS, INFERENCE APPROACHES 
AND APPLICATIONS 
Toni Vallès Català 
 



Multilayer stochastic block models reveal the multilayer structure of complex networks

7 8 9 10 11 12 13 14 15

0.00

0.05

0.10

0.15

−0.02

−0.01

0.00

0.01

0.02

Average connectivity k

7 8 9 10 11 12 13 14 15

0.00

0.05

0.10

0.15

0.20

−0.03

0.00

0.03

Average connectivity k

N=168 g1=8 g2=3 fre�=0.25N=168 g1=8 g2=3 fre�=0.05

7 8 9 10 11 12 13 14 15

0.00

0.05

0.10

0.15

0.20

−0.01

0.00

0.01

Average connectivity k

N=168 g1=8 g2=3 fre�=0.4

fre� fre�

7 8 9 10 11 12 13 14 15

0.00

0.05

0.10

0.15

0.20

0.25

−0.02

−0.01

0.00

0.01

0.02

Average connectivity k
log(AU

C
2L) - log(AU

C
1L)

N=168 g1=12 g2=3 fre�=0.25

7 8 9 10 11 12 13 14 15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

−0.01

0.00

0.01

Average connectivity k

N=168 g1=4 g2=3 fre�=0.25

g1
g1

AND+AND

(d)(c)

AND+AND

C

AND+AND

(b)

AND+AND

(d)B

7 8 9 10 11 12 13 14 15

0.00

0.05

0.10

0.15

−0.02

−0.01

0.00

0.01

0.02

Average connectivity k

7 8 9 10 11 12 13 14 15

0.00

0.05

0.10

0.15

0.20

0.25

−0.02

−0.01

0.00

0.01

0.02

Average connectivity k

N=168 g1=8 g2=3 fre�=0.25

N=168 g1=12 g2=3 fre�=0.25

7 8 9 10 11 12 13 14 15

0.00

0.02

0.04

0.06

0.08

0.10

0.12

−0.01

0.00

0.01

Average connectivity k

N=240 g1=8 g2=3 fre�=0.25

g1

7 8 9 10 11 12 13 14 15

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

−0.01

0.00

0.01

Average connectivity k

N=240 g1=12 g2=3 fre�=0.25

N

N

g1

N/g1 ~ const._

Missing          Topology B          AND

(a)

(b)

(c)

(d) (e)

(f)

(g)

(h)

(i)

Lo
w

 to
 h

ig
h 

co
nn

ec
ti

vi
ty

 ra
ti

o,
 λ

Lo
w

 to
 h

ig
h 

co
nn

ec
ti

vi
ty

 ra
ti

o,
 λ

Lo
w

 to
 h

ig
h 

co
nn

ec
ti

vi
ty

 ra
ti

o,
 λ

Lo
w

 to
 h

ig
h 

co
nn

ec
ti

vi
ty

 ra
ti

o,
 λ

Lo
w

 to
 h

ig
h 

co
nn

ec
ti

vi
ty

 ra
ti

o,
 λ

Lo
w

 to
 h

ig
h 

co
nn

ec
ti

vi
ty

 ra
ti

o,
 λ

Lo
w

 to
 h

ig
h 

co
nn

ec
ti

vi
ty

 ra
ti

o,
 λ

Lo
w

 to
 h

ig
h 

co
nn

ec
ti

vi
ty

 ra
ti

o,
 λ

Lo
w

 to
 h

ig
h 

co
nn

ec
ti

vi
ty

 ra
ti

o,
 λ

log(AU
C

2L) - log(AU
C

1L)

log(AU
C

2L) - log(AU
C

1L)

log(AU
C

2L) - log(AU
C

1L)

log(AU
C

2L) - log(AU
C

1L)

log(AU
C

2L) - log(AU
C

1L)

log(AU
C

2L) - log(AU
C

1L)

log(AU
C

2L) - log(AU
C

1L)

log(AU
C

2L) - log(AU
C

1L)

Figure 4.6: Performance of missing link identification on an ensemble of synthetic aggregated

two-layer networks: AND Model; Topology B.
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Figure 4.7: Performance of spurious link identification on an ensemble of synthetic aggregated

two-layer networks: AND Model; Topology B.
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Figure 4.8: Performance of missing link identification on an ensemble of synthetic aggregated

two-layer networks: OR Model; Topology C.
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Figure 4.9: Performance of spurious link identification on an ensemble of synthetic aggregated

two-layer networks: OR Model; Topology C.
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Multilayer stochastic block models reveal the multilayer structure of complex networks

4.3.1 Ensemble of two-layer synthetic networks

In order to validate our approximation, we define an ensemble of random networks

that result from a planted multi stochastic block model structure with two layers that

we aggregate using either the AND or the OR mechanism.

To generate the ensemble, we assume that we have two independent block models

that describe the connections between a set of N nodes. In layer l = 1, 2, nodes are

distributed into gl groups, so that σl
i, i = 1, . . . , N indicates the group to which node i

belongs in layer l, and pairs of nodes (i, j) belonging to groups (σl
i = α, σl

j = β) are

connected with probability qlαβ .

We expect that the existence of two layers will have the largest impact in the pre-

diction of missing/spurious links when the block models in each layer are as different

as possible in terms of the nodes they contain. Because there are a number of factors

that influence the topology of the network, we make the following choices to define

our ensemble:

1. For l = 1, we select g1 groups comprising the same number of nodes (N/g1);

for l = 2 , we select g2 ≤ g1 (Fig. 4.10).

2. We select only two different values for qlαβ ∈ {ph, pl}, such that ph > pl. The

ratio λ = pl

ph
characterizes the difference in density of connections between

highly and lowly interconnected pairs of groups and has a significant impact on

the topology of the single layer networks and on that of the aggregate network,

respectively.

3. We select an assortative (community-like) SBM for layer l = 1, so that q1αβ = ph
for α = β and q1αβ = pl otherwise. For layer l = 2, we select an SBM with a

different profile for each group (see Fig. 4.10).

Note that once N , g1, g2, ph, pl, the qlαβs and the mechanism of aggregation (AND

or OR) have been selected, the average connectivity in the aggregate network k is

automatically fixed.

To assess the range of parameters in which our approach to multi-layer SBMs per-

forms better than a single SBM at detecting missing and spurious links in synthetic

networks, we sample over the following parameters: i) λ, ii) k and iii) g1. The reason

we sample over these parameters is that we expect that the larger g1, the larger the

number of groups in the intersection; the smaller the value of λ, the better defined the

pattern of connections for each block; and, very small k (or k approaching the size of

the network) results in harder detection of missing/spurious links.

Generation of ensemble networks with fixed k

Suppose we have a set of N nodes. In order to generate a network with a two-layer

structure, we first generate two different networks for each layer and then we aggregate

the two layers into a single one using the AND or the OR mechanisms. In the AND

case, for a link to appear in the aggregated network it must exist in both layers; whilst
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Figure 4.10: Different collection of two-layer SBMs. Dark green corresponds to high connec-

tion probability ph and light green to low connection probability pl. (a) For l = 1, we select

g1 = g2 = 12 both assortative (b) For l = 1, we select g1 = 8 assortative and g2 = 3 disas-

sortative (c) For l = 1, we select g1 = 8 assortative and g2 = 3 a mix between assortative and

disassortative

in the OR case, for a link to exist in the aggregated network, it must appear in at least

one of the two layers.

First we select the aggregation mechanism. Then, we randomly assign the nodes to

a set of equally sized g1 blocks and a set of equally sized g2 blocks. We then select the

{qlαβ}s, that is the pattern of connections for each layer. Finally we select a value for

the average connectivity of the aggregate network k and a value for λ and obtain the

values of ph and pl that define the SBM.

To perform the last step, we need to obtain an expression for the average connec-

tivity k as a function of ph and pl. For instance, let us consider an AND aggregated

network from two assortative layers with g1 and g2 groups, so that qlγδ = ph ∀α =

β; l = 1, 2 and qlγδ = pl, otherwise. To obtain an expression for k, we consider the

intersection SBM (which for the AND case is the SBM resulting from the product

of the SBMs for l = 1 and 2). The intersection SBM will have g1 · g2 blocks with

nI = N/(g1 · g2) each one. The matrix elements qγβδǫ of the intersection will be as

follows:

1. q = qγβδǫ = ph · ph if α = β and δ = ǫ. There will be g1 · g2 matrix elements

like this one that will be placed along the diagonal of the intersection SBM.

2. qγβδǫ = ph ·pl if α = β and δ 6= ǫ. There will be g1 ·g2(g2−1) matrix elements

like this one.
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3. qγβδǫ = pl ·ph if α 6= β and δ = ǫ. There will be g2 ·g1(g1−1) matrix elements

like this one.

4. qγβδǫ = pl · pl if α 6= β and δ 6= ǫ. There will be g1(g1 − 1) · g2(g2 − 1) matrix

elements like this one.

The average number of links expected between each pair of intersection blocks will

be lγβδǫ = qγβδǫ ·np(γβδǫ), where np(γβδǫ) = nI(nI − 1)/2 for (γ = β, δ = ǫ) and

np(γβδǫ) = n2
I otherwise. Therefore the total number of expected links is

M =
∑

α≤β,δ≤ǫ

qγβδǫ · np(γβδǫ) =
1

2
p2h nI(nI − 1) g1g2

+
1

2
phpl n

2
I (g1(g1 − 1)g2 + g1g2(g2 − 1))

+
1

4
p2h n

2
Ig1(g1 − 1)g2(g2 − 1). (4.13)

From here, we can express the average degree in terms of g1, g2, ph and λ = pl/ph
as

k = p2h ·

(

(

N

g1 · g2
− 1

)

+
N

g1 · g2
· (g1 + g2 − 2) · λ+

+
N

g1 · g2
· (g1 − 1) · (g2 − 1) · λ2

)

. (4.14)

Note that we consider 0 ≤ λ ≤ 1, therefore not all possible combinations k, ph and

λ are possible, which explains the empty regions in Fig. 3 in the main text.

Systematic validation over synthetic networks with varying parameters

We are interested in understanding which parameter choice renders the multilayer

model more accurate at predicting missing and spurious links than the single-layer

SBM model. Therefore we sample over synthetically generated networks to observe

the influence of each parameter.

Our generation of a two-layer synthetic network depends on the following parame-

ters:

1. Number of nodes N

2. Number of groups of each layer g1, g2

3. Topology of the second layer (A mixed assortative/disassortative, B disassorta-

tive, C assortative). The first layer topology is fixed as assortative. (Fig. 4.10).
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4. Fraction of links removed frem (when predicting missing links), fraction of links

added fadd (when predicting spurious links).

5. Average connectivity k.

6. Low-to-high group connection probability ratio λ = pl

ph
.

For the AND model we use topologies that are not fully assortative in the second

layer, since both assortative layers would yield a clearly assortative intersection difficult

to distinguish from a pure single-layer SBM. For the OR model, the aggregated network

is too dense unless we use assortative topologies on both layers.

The low-to-high probability ratio clearly influences the accuracy of the prediction.

We show in Figs. 4.4-4.9 that the accuracy (size of the circles) increases as λ goes to

0, because as the difference between pl and ph increases the structure is less noisy and

more easily detectable. Furthermore, for low λ in both layers the two-layer structure

becomes clearer, so, in turn, λ → 0 favors the multilayer model against the single-layer

model. Note that in such networks where the accuracy is higher, the AND multilayer

model outperforms the single-layer approach when predicting both missing and spuri-

ous links. On the other hand, the OR multilayer model only outperforms the single-

layer model in networks where the overall accuracy is low and where pl and ph are

closer. This could be caused by the fact that the OR model tends to generate very dense

networks, whereas AND networks are sparser than the networks in each of the layers.

In general, we also observe that for moderate (but not too large) values of the av-

erage connectivity k, the multilayer model performs better than the single-layer SBM.

Since we constrain the connection pattern by fixing the topology of the second layer

as A, B, or C (point 3. above), adding more links make the structure of the two-layer

topology clearer. In any case, excessively high k may yield the appearance of cliques,

making the intersection of the two-layers similar to a one-layer network, favoring in

turn the single-layer model.

To evaluate the effect of the three remaining parameters (N , gi, and frem/add) we

keep two of them fixed and vary the other one to observe its influence on the perfor-

mance of both models in predicting missing and spurious links. First, as we show

in Figs. 4.4-4.9(d, b, e), an increase of the fraction of removed/added links frem/add

generally decreases the accuracy of the models (circles become smaller as frem/add

increases). Moreover, a frem/add increase also influences the two-to-one-layer accu-

racy ratio. Indeed, the AND model is comparatively better when frem/add decreases

(Figs. 4.4-4.7). Conversely the OR model is comparatively better when frem/add in-

creases (Figs. 4.8-4.9), that is, the OR model results seem more robust when remov-

ing/adding links that the single-layer model.

Second, if we fix all parameters but increase g1 (Figs. 4.4-4.7(a, b, c)), we have

a proliferation of smaller and smaller groups generally leading to smaller accuracy.

Larger groups also imply better relative performance of the two-layer SBM, because

the relevance of layer 1 vanishes when the groups in this layer become very small.

However, in the OR model, when g2 is increased from g2 = 4 to g2 = 12, the relative
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accuracy of the multilayer model increases (Figs. 4.8-4.9(b, c)) because the single-

layer SBM performance gets worse. Therefore, the OR model results are robust also

when varying the number of groups.

Finally, by increasing N (Figs. 4.4-4.7(f, g) and Figs. 4.8-4.9(a, b)), we observe

an overall improvement of missing/spurious link prediction, probably because there is

more data to exploit in fitting the models. As before, the AND model tend to become

relatively better with respect to the single-layer model when the overall performance

increases. On the contrary, the performance of the OR model becomes relatively better

when overall performance decreases.

4.4 Convergence in accuracy of single-layer and two-layer AND
models for sparse networks

In most of the situations we explore for real-world networks, the AND model performs

better than the OR model. We argue that this is because real-world networks are sparse,

which favours the AND model. Nonetheless, because single-layer and two-layer mod-

els can be seen as identical models with a different prior, we expect these models to

yield the same accuracies for cases in which we have gathered enough information

about the system. This is because, in a Bayesian framework, the probabilities that you

infer when you have infinite amounts of data about the system become independent of

the choice of prior for the models. In complex networks, gathering infinite information

about the system (or the undrlying SBM for the network), implies having a large ne-

towk with group sizes that scale with the network size. In this case, we would expect

one and two-layer models to yield exactly the same accuracies. Note that this is not

the typical case for real-world networks since dur to the irregularities in the patterns

of connections, group sizes can be artbitrarily small despite of network size. In that

case, the choice of prior has an effect int he accuracy of the inference as our results for

real-world complex networks show.

To assess whether our algorithm yields results that are consistent with our ex-

pectations, we have generated networks of sizes N = 200, 500, 1000, 5000 sampled

from a sparse SBM with 4 equally sized groups and in/out connection probability ra-

tios pl/ph = 0.05, 0.15, 0.25 with average connectivities k = 4, 7, 10. We generate

these networks and perform missing-link prediction experiments removing a fraction

f = 0.05 of the links. Note that we do not show results for k = 3 because most of

the networks we were obtaining would break into small components even when we

removed a small fraction of the links. For k = 4, the giant component remaining in

those experiments comprises at least 95% of the original nodes.

Figure 4.11 shows the AUCs obtained from those experiments for three different

models: i) two-layer AND SBM, ii) single-layer SBM and iii) a single-layer SBM with

a degeneracy factor; iv) the planted partition of the generative SBM. In a Bayesian

framework, these three models can be interpreted as the same model (a single-layer

SBM) with different priors. Our results show that:
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Figure 4.11: Missing link prediction on sparse synthetic networks. We generated 1000 dif-

ferent networks of size N = 200 (a,b,c), 600 networks with N = 500 (d,e,f), 200 networks with

N = 1000 (g,h,i) and 5 networks with N = 5000 (j,k,l). Nodes are distributed according to an

assortative stochastic block model with four equally sized groups, fixed average connectivity k,

and a high to low connectivity ratio pl/ph. Note that as pl/ph increases the structure becomes

less apparent. We restrict our analysis to those networks whose giant component comprises at

least 95% of the nodes. For each of the networks we removed a fraction f = 0.05 of the total

number of links to compare the average performance (AUC) of predicting missing links for three

different models: single-layer SBM (red line), two-layer AND (blue circles), single-layer SBM

with a degeneracy factor (purple squares), and the planted model of the synthetic network (green

line).

1. As expected, as the network size increases, the prior becomes irrelevant and the

the three different models yield the same accuracy. The larger the probability

ratio, the lower the size of the networks needed for the accuracies to converge.

For pl/ph = 0.15, 0.25, AUCs converge at a size N = 500, while for pl/ph =
0.05, we need to go to up to N = 5000 for the accuracies to converge. Note that

the convergence of accuracies at these particular network sizes happens for this

particular choice of SBM (that is uniform groups that scale with system size) but

is bound to be much large for networks generated from more inhomogenoeus

SBMs.
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Figure 4.12: Missing and spurious link prediction on two-layer OR generated synthetic

networks. We generate 10 different networks with N = 500 nodes, randomly distributed into

12 uniform groups in each of the two layers. Since all pairs of nodes have equal probability to be

connected there is no average connectivity parameter here; however, each layer will have about

k = N
2

, with an OR resulting network with about k = 3·N
4

.

2. The two-layer AND SBM has a better performance than a single-layer SBM with

a degeneracy factor and than a single-layer SBM for sparse networks. This is true

for all the model parameter values we consider for which the AUCs obtained for

the three different models have not converged. This result is consistent with

our previous expectation based on the fact that the AND model effectively has

a sparser prior than the single-layer SBM (with or without degeneracy factor).

Also note, that the single-layer SBM with a degeneracy factor, also produces

a better accuracy than the single-layer SBM. This is because while the planted

partition has only four groups, the sparsity and fluctuations within the network

are better described by SBMs with a larger number of groups.

3. The planted partition always works better.

4.4.1 Performance of the OR model in the ensemble of networks of our ap-
proach

In order for the OR model to work better than the AND model, we should consider

networks that are generated from the true OR model in our approach, which is in fact

not the set of models we investigate in Figs. 4.8 and 4.9. Specifically, because the

OR model is equivalent to an AND model for the non-existing links, the ensemble

of networks we assume in our approach consists of networks generated from a single

layer SBM with uncorrelated connection probabilities for the non-existing links. Note

that we also assume that while the probabilities of links not existing between pairs of

groups are uncorrelated, they are still the result of a product of two probabilites. Figure

4.12 shows that indeed the OR model yields better accuracies in missing and spurious

links experiment than the AND model for this ensemble of networks. The reason why

we do not use this model to investigate the detection limits in Figs. 4.8 and 4.9 is that

we think that this model is further from the structure of real-world networks than the

models in Figs. 4.8 and 4.9 are.
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4.5 Multilayer stochastic block models are more predictive for
real networks

After showing that our approach is indeed more appropriate for model multilayer net-

works, we consider a real multilayer protein-protein interaction network of yeast S.

cerevisiae. In particular, we consider two types of interactions reported in the BioGRID

database [97]: those detected using “Two-hybrid” experiments, and those obtained us-

ing “Affinity-Capture Western” experiments. We aggregate the two layers using the

AND mechanism; that is, we build an aggregate network comprising the interactions

that are detected by both types of experiments, and only those. As we show in Fig. 4.13,

the multilayer model is again more accurate than the single-layer model at detecting

missing and, especially, spurious interactions.
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Figure 4.13: Performance of missing and spurious link identification on a real multilayer

network. We show the accuracy at detecting (a) missing and (b) spurious interactions in the

protein-protein interaction network of S. cerevisiae, obtained from BioGRID database [97] by

aggregating two layers as described in the text. To compare the performance of the different

approaches at detecting missing links (a), we randomly remove a fraction of the links (false

negatives) from the real network and calculate the reliability of each unobserved link. Then we

calculate the AUC statistic, that is, we rank the links by decreasing reliability and calculate how

often a removed link (false negative) has a higher reliability that a link that is truly non-existent

in the real network (true negative). Analogously, to detect spurious links (b) we randomly add

a fraction of links (false positives), calculate the reliability of the observed links, and calculate

how often an added link (false positive) has a lower reliability that a link that is truly existent in

the real network (true positive).

Finally, we turn to the question of whether real networks that are observed as single-

layer networks are, in fact, better described as aggregates of multiple layers. Specif-

ically, we compare the performance of the single-layer and multilayer approaches on

eight real-world networks (Figs. 4.14): (i) the air transportation network in Eastern

Europe [40]; (ii) the neural network of C. elegans [106]; (iii) the email network within

a university [38]; (iv) the network of frequent co-purchasing of books about US politics

sold by the online bookseller Amazon.com during the 2004 presidential elections [55];

(v) the transcriptional regulation network of yeast S. cerevisiae [62]; (vi) the air trans-
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portation network in the USA [7]; (vii) the collaboration network of jazz musicians,

where two musicians are connected if they have played in the same band [33]; and

(viii) the network of American football games between colleges during regular season

Fall 2000 [32].
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Figure 4.14: Performance of missing and spurious link identification on real aggregated

networks. We proceed as in Fig. 4.13 to compare the performance of the different approaches

at detecting missing links (a, c, e, g, i, k, m, o) and spurious links (b, d, f, h, j, l, n, p).

We show results for eight real-world networks: (a, b) the air transportation network in Eastern

Europe [40]; (c, d) the neural network of C. elegans [106]; (e, f) the email network within an

organization [38]; (g, h) the network of books about US politics in 2004 elections [55]; (i, j)

the transcriptional regulation network of yeast S. cerevisiae [62]; (k, l) the air transportation

network in USA [7]; (m, n) the collaboration network of jazz musicians [33]; and (o, p) the

network of American football games [32]. Red lines represent the AUC1L obtained with single-

layer SBMs, blue circles correspond to AND two-layer SBMs, and green circles to OR two-layer

SBMs.

We use no prior information on how many groups we have on real networks, in-

stead we sample over different partitions implicitly varying the number of groups. In

Table 4.1 we show the mean of the number of groups over all the sampling, for each

real network studied in the main text plus the recently added. In Table 4.2 we show

the computation time at predicting missing/spurious links when removing/adding 5%
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a) Sampling with a single SBM approach

Network Fraction of links removed

0% 5% 25% 45% 65%

Air transportation network in Eastern Europe 9.78 9.79 8.44 7.66 6.82

Neural network of C. elegans 17.71 18.24 13.81 11.96 9.59

Email network within an organization 15.79 14.00 14.22 8.92 5.89

Network of books about USA politics 8.94 8.94 7.60 6.72 6.01

Transcriptional regulation network of yeast S. cerevisiae 11.99 11.36 16.60 12.57 9.99

Air transportation network in USA 16.81 15.47 11.06 9.89 9.50

Collaboration network of jazz musicians 25.05 22.70 18.68 15.15 10.94

American football games network between colleges 10.92 9.98 8.77 7.93 6.00

b) Sampling with Multilayer approach

Network Fraction of links removed

0% 5% 25% 45% 65%

Air transportation network in Eastern Europe 14.48 14.60 14.10 14.86 12.04

Neural network of C. elegans 33.04 32.52 28.28 21.05 17.45

Email network within an organization 28.57 29.97 20.78 19.41 15.29

Network of books about USA politics 16.37 15.14 15.19 13.17 12.78

Transcriptional regulation network of yeast S. cerevisiae 19.05 17.67 17.24 15.82 12.79

Air transportation network in USA 24.62 23.94 21.64 20.30 16.11

Collaboration network of jazz musicians 34.22 34.14 32.96 28.31 23.50

American football games network between colleges 16.74 16.80 14.98 14.12 11.89

Table 4.1: Table of the mean number of groups over all the sampling done under the single SBM

approach (a) and the Multilayer approach (b)

of the total number of links, for each real network studied in the main text plus the

recently added.

Our results in Figs. 4.14 show that the two-layer AND model provides a better

description of these real-world networks since both missing and spurious interactions

are consistently more accurately detected by the multilayer SBM approach, especially

for low observational noise.

As mentioned earlier, comparison of the two-layer approximation in Eq. (4.7) and

the single-layer model in Ref. [44] shows that the two-layer model differs from the one-

layer model in two ways. First, the AND model generates sparser networks than the

single-layer model. Second, the two-layer model includes a degeneracy factor D(PI)
that favors partitions with a larger number of groups than the single-layer model (Table

4.2). Our results in Figs. 4.15 show that neither of the two factors alone is responsible

for the improvement in accuracy we observe. In particular, we show that if we add

the degeneracy factor to the single-layer model, we already improve the accuracy at
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a) Computation time at predicting missing links

Network Computation time (min.)

1 Layer AND OR

Air transportation network in Eastern Europe 0.45 1.75 0.5

Neural network of C. elegans 7.15 26.98 4.92

Email network within an organization 66.4 116.83 62.25

Network of books about USA politics 0.37 1.95 0.27

Transcriptional regulation network of yeast S. cerevisiae 10.48 23.13 11.13

Air transportation network in USA 8.42 18.77 9.43

Collaboration network of jazz musicians 8.73 21.87 6.42

American football games network between colleges 0.58 2.18 0.23

b) Computation time at predicting spurious links

Network Computation time (min.)

1 Layer AND OR

Air transportation network in Eastern Europe 0.5 2.02 0.6

Neural network of C. elegans 7.62 27.0 5.97

Email network within an organization 71.0 131.33 67.73

Network of books about USA politics 0.42 2.48 0.37

Transcriptional regulation network of yeast S. cerevisiae 11.27 24.53 11.08

Air transportation network in USA 8.45 19.68 9.37

Collaboration network of jazz musicians 8.85 23.67 6.87

American football games network between colleges 0.73 2.63 0.33

Table 4.2: Table of the computation time in minutes for 5% links removal of links at predicting

missing links (a) and spurious links (b)

detecting missing and spurious links in most cases. From our results it follows that

sampling from partitions with a larger number of groups provides better models for

real-world networks. This may seem counterintuitive, since one may expect a better

model to have a lower number of parameters (groups in our case). However, because we

expect the intersection block model resulting from a layer aggregation process to have

a larger number of groups than the block models for each of the layers, this observation

further reinforces our hypothesis that most real-world networks are in fact the result of

an aggregation process.

4.5.1 Alternative approximation for multi-layer SBMs: A single layer SBM with

degeneracies

We propose an approximation to two-layer stochastic blockmodels that assumes that

the SBM resulting from the intersection of the two SBMs has independent matrix ele-
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ments qIαβγδ that are the result of the product qIαβγδ = q1αβq
2
γδ . As a result, if ℘ is the

ensemble of all possible partitions of nodes into blocks, instead of sampling over ℘×℘
pairs of partitions to compute the reliability of a link Rij , we need to sample only over

the space of possible intersection partitions ℘ and take into account the number of pairs

of partitions that result in the same intersection, or what we call degeneracy D(P) (see

Sec. A.2).

For the AND model the reliability of link lij is then given by Eq. 4.7,

RAND
ij =

1

Z

∑

PI∈℘

(

n1
σiσj

+ 1

nσiσj
+ 2

·

∑nσiσj
+2

k=n1
σiσj

+2
1
k

∑nσiσj
+1

k=n1
σiσj

+1
1
k

·D(PI) · e
−H(PI)

)

,(4.15)

where H(PI) =
∑

α≤β∈PI

(

ln(nαβ + 1) + ln

(

nαβ

n0
αβ

)

− ln

( nαβ+1
∑

k=n1

αβ
+1

1

k

)

)

,(4.16)

where the sum is over all possible single-layer partitions, n1
αβ is the number of links

between groups α and β in the partition, nαβ = n0
αβ + n1

αβ is the number of (possible

links between) pairs of nodes in groups α and β.

Note that if we consider a single SBM, we compute the reliability as [44]:

Rsingle
ij =

1

Z

∑

P∈℘

(

n1
σiσj

+ 1

nσiσj
+ 2

· e−H(P)

)

, (4.17)

where H(P) =
∑

α≤β∈PI

(

ln(nαβ + 1) + ln

(

nαβ

n0
αβ

)

)

. (4.18)

As shown in Fig. 4.14 of the main manuscript, our approximation assuming an

AND model provides a better description of real-world networks because it performs

better at detecting missing/spurious interactions. In order to assess the influence of

D(PI) in the prediction of missing and spurious links, we consider the case in which

the intersection block model is an SBM in which matrix elements are random variables

uniformly distributed in the interval [0, 1], rather than the product of two probabilities.

In such case, we still take into account that there are many pairs of partitions with the

same intersection partition, but the H associated to each partition is that of a single

SBM, so that we compute the reliability as

RDeg
ij =

1

Z

∑

P

(

n1
σiσj

+ 1

nσiσj
+ 2

·D(P) · e−H(P)

)

with H given by Eq. (4.18). Note that in this case, there is no distinction between OR
and AND models.

We observe in Fig. 4.15, that the model with only taking into account the degen-

eracies has a performance that is slightly better than that of the single-layer SBM, for
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real-world networks. This means that the overall performance of our approximate two-

layer AND SBM is a combination of the effect of the sparsity induced by assuming

that each q is in fact the product of two numbers and, to a lesser extent, the a priori

preference for partitions with more groups suggested by the multi-layer model.
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Figure 4.15: Performance of missing and spurious link identification on real aggregated

networks. Same as Fig. 4.14, but only comparing the performance of the single-layer SBM ap-

proach with an approximation to the two-layer SBM that only takes into account the degeneracies

of the intersection partition (Eqs. (4.19)).

4.6 Quantification of the preference for multilayer models

Our results demonstrate that the two-layer stochastic block model (with AND aggre-

gation) is more predictive for real-world complex networks, thus suggesting that real-

world complex networks may be the result of the projection of several layers onto a

single aggregate observation. To further quantify to what extent a two-layer model

provides a better description of real-world networks than a single-layer model, we use

Markov chain Monte Carlo sampling to compute the Bayes factor K of the models [49]
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4.6.1 Computation of the Bayes factor

To quantify up to what extent the network data we consider support more strongly the

two-layer SBM than the single-layer SBM, we follow a typical approach in Bayesian

model selection and compute the Bayes factor K [49]

K =
p(AO|M2)

p(AO|M1)
, (4.19)

where we have used the shorthand 2 :=two-layer and 1 :=single-layer.

To compute K we need to perform a sampling of the model space M = {M1} ∪
{M2} that consists in the union of model spaces for M1 and M2. In this case, for each

possible partition P of the nodes into groups, we have two possible models that we

sample with the following probabilities

p(M1,P) =
1

Z
e−(HI(P)−lnD(P)) ≡

1

Z
e−H2(P) (4.20)

p(M2,P) =
1

Z
e−H1(P) (4.21)

Z =
∑

P

e−H2(P) + e−H1(P) , (4.22)

where HI(P) is given by Eq. S7, D(P) is the degeneracy factor computed in

Sec. S1, and H1(P) is given by Eq. 4.18.

Note that while for some networks independent samplings of two-layer and single-

layer models might sample similar values of H1 and H2, these correspond in general

to different partitions, that is, for a specific partition there is a preferred model with a

much lower H. In the MC simulation, to avoid getting trapped in the subspace corre-

sponding to one of the models, we perform two simultaneous independent samplings of

M1 and M2. At each step, we attempt N individual node movements (see [44] for de-

tails) in each model, so that we have one partition (P1,P2) and one energy for each of

the models, H1(P1) and H2(P2), respectively. We use a variable that stores the model

that we are currently sampling (for instance model=2). Then, we propose a change

of model with acceptance probability p = min{1, exp(−[H1(P1)−H2(P2)])}. If we

accept the change, we set model=1.

With this setup, the Bayes factor is the ratio of the number of times we sample the

two-layer model with respect to the number of times we sample the single-layer model.

We follow the same procedure for the case in which we compare the single-layer model

and the single-layer plus degeneracy factor model introduced in Sec. S5.

4.6.2 Bayes factor quantifies the preference for multilayer models in real-
world networks

Figure 4.16 shows that for all the real-world networks we consider the Bayes factor

is larger than one. Using the qualitative scale proposed by Kass and Raftery to map

K values to human perception of evidence strength [51], we conclude that there is
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Figure 4.16: Model comparison using Bayes factors. We show the Bayes factor K (Eq. 4.19)

for all the real-world network examples we analyzed (see text). Black dots show results for the

Bayes factor considering the two-layer AND SBM and the single-layer SBM. Orange diamonds

show the Bayes factor considering the single-layer SBM with a degeneracy factor and the single-

layer SBM. The regions in different shades of gray indicate the qualitative scale introduced by

Kass and Raftery to map K values to human perceptions of strength of evidence [51] (“negative”:

K < 1; “not worth more than a bare mention”: 1 < K < 3; “positive”: 3 < K < 20; “strong”:

20 < K < 150; “very strong”: K > 150).

“very strong evidence” supporting the two-layer model for most of the networks; for

the S. cerevisiae protein-protein interaction network and for the networks of political

books the evidence is “strong.” Importantly, Fig. 4.16 also shows that the preference

for the two-layer model cannot be solely attributed to the sparsity induced by the AND

aggregation. Indeed, simply adding to the single-layer model the degeneracy factor

(which, as discussed above, introduces a preference for larger numbers of groups) also

results in a model that is better supported by the data than the single-layer model, in

all but one of the networks we consider (the protein-protein interaction network of S.

cerevisiae).

Interestingly, we find that there are some dicrepancies between the evidence we find

for the two air transportation networks we consider. While for the USA air transporta-

tion we find very strong evidence for the two-layer model, we find barely a positive

evidence for the European air transportation. From previous analyses, we know that air

transportation networks have a very strong modular component driven by geo-political
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factors [40, 89]; nonetheless, there is arguably a second layer that may arise from the

distinction between international hubs that connect to one another and local aiports

that connect to hubs. Our results suggest that while the US air transportation shows

strong evidence for those two layers, the European air transportation network (which

is smaller and has a much lower density, and where geography may play a stronger

role because of the presence of political borders) the evidence of the two layers is less

conclusive.

4.7 Discussion

We have introduced the family of multilayer SBMs, which generalizes single-layer

SBMs to situations where links arise in different layers and are aggregated through

different mechanisms. We have also given the probabilistically complete solution to

the problem of inferring the optimal multilayer SBM for a given aggregate network,

and proposed a tractable approximation which enables us to objectively address the

question of whether an observed network is best described as the projection of multiple

layers or as a single layer. Our results suggest that many real-world networks are indeed

projections.

Although, as mentioned above, there have been proposals to extend the concept of

modularity to multilayer networks [65], our approach represents a pioneering attempt

to extend stochastic block models to multilayer systems. In this regard, it is important

to stress that in this work we are concerned with the learning of multilayer models from

aggregate networks where all information about the layers has been lost; in this sense,

our work is different from previous attempts to do inference of stochastic block models

on multigraphs where the layers themselves are observed [39].

Our work is also different from works on link prediction using latent feature models

[61, 72, 52]. An important difference between latent feature approaches and ours is

that the latent feature model considers that the probability of existence of a link is a

function of the weighted sum of the interactions at the different layers; therefore, the

latent feature model does not allow a physical interpretation of what each layer is and

of how layers are combined. All in all, latent feature models are very well suited for the

inference of unobserved links, but due to the intricacies of the model and the difficulty

to interpret its “parameters,” it is not clear whether they are appropriate to address

the question of whether a real network is really the outcome of processes occuring in

different layers or not (and may also be prone to overfitting when observational data is

noisy).

Our multilayer SBM is the simplest group-based multilayer model one can propose.

Although our approach is not exempt of limitations (for example, is computationally

expensive and is therefore not suitable to handle extremely large networks) we believe

that its detailed analysis will open the door to better understand the structure of real

complex networks.
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Conclusions and perspectives

The effort devoted on this thesis deepens on the complex networks inference via Stochas-

tic Block Models (SBMs). Our analysis of the SBMs inference framework at the time

enables us to choose the best methodology to use. Such methodology can be applyied

to a high variety of fields, we prove so by applying it to a newborn skull network, a field

poorly studied from a complex systems point of view. Finally, the knowledge gained

during the work endows us to compose a novel multilayer SBM that sheds light on the

inner structure of real-world networks. The following conclusions can be drawn form

the work:

• We set the framework that enables us to compare, for the first time, the predictive

power of two well-known inference methodologies: the single-point estimation

of the set of parameters, and the Bayesian approach of pondering over several

sets of likely parameters. Such framework applies the same model (SBM) at per-

forming the same task (prediction of missing links) on the same four real-world

networks. We have found that sampling over models significatively improves the

predictive power than considering an optimal set of parameters alone, suggest-

ing that the error at estimating the reliability of missing links when applying the

single-point method is not negligible.

Additionally, we considered two specifications of the SBM (degree-corrected

version and the use of hierarchical priors) on the single-point estimation method-

ology. We discovered that the Bayesian approach inference is preferably than all

the combinations of the specifications in the single-point estimate method.

During the study, we noticed that the degree-corrected version should not be used

in all the networks, since it may retreat the predictions in some cases. On further

work, it may be interesting to investigate on which cases it is worth to apply such

correction.
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Moreover, since the specifications are not mutually exclusive from the Bayesian

methodology, we build a novel approach that applyies the Bayesian method to

the degree-corrected version of the SBM. This approach predicts better missing

links that the simple Bayesian approach, at least in those real-world networks

where it is worth to use the degree-corrected version.

• Our results suggest that sutures that normally fuse have significantly lower re-

liability scores than those that do not, which is in agreement with our hypoth-

esis that during normal development there is a tendency to lose articulations

that are topologically rare in the newborn skull. (Mann-Whitney-Wilcoxon: one

sided W=206.0, p-value = 0.0055; Mean(fused) = 0.3485; 95% CI (non-fused) =

(0.4124, inf))

Interestingly, we discovered that sutures associated with pathological conditions

have significantly lower reliability scores than sutures that are not, which shows

that sutures associated to pathological conditions are also unexpected from a

topological point of view. (one-sided, W = 116, p-value = 1.022E−4; Mean(pathological)

= 0.3244; 95% CI (non-pathological and non-fused) = (0.4417, inf))

Finally, we find no statistical difference between the reliability scores of sutures

that are associated to pathological conditions and those that fuse during normal

development (two-sided W = 44.5, p-value = 0.196; 95% CI (fused) = (0.3389,

0.3668))

• We have developed a new model for single aggregated networks, the multilayer

SBM. The model assumes that the single-layered network under study is the

outcome of two separate layers. The aggregate network can be the intersection of

the layers (AND model) or the union of them (OR model). We validate AND/OR

model with synthetic networks: the model detects better missing and spurious

links than the single-layer SBM. Additionaly, the AND model is validated with

a known aggregated real-world network: the protein-protein interaction network

of yeast S. cerevisiae, that is the AND aggregation of two techniques (“Two-

hybrid” and “Affinity-Capture Western”). We apply the models to eight single-

layer real-world networks from different fields and we get better predictions in

both missing and spurious links with the multilayer SBM AND model than single

SBM, then is more likely that the observed networks come from a multilayer

network than a single-layer.

Our results suggest that networks that are presented as single-layer may indeed

be projections of multilayer networks.

Our Multilayer model is defined with two layers, combined in an AND or an

OR way. However, the connections in real-world networks may arise from more

intricate mechanisms, maybe with more layers with AND and OR combinations.

Although a small increase in number of layers imply a large increase in com-

plexity, it may be fascinating to explore to what extent a generalised Multilayer

model with no fixed layers improve the predictive power on real-world networks.
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Since our model uses the intersection partition, we are not able to discern from

which layers a network is aggregated into. Another interesting further work

will be to disentangle which SBM are more likely from the possible ones that

conform the intersection partition, then, given a network it would be possible to

unravel which networks were aggregated and obtain a muliplex network.
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A

Appendices

A.1 Appendix A: Implementation details

The sum in Eq. (1.11) cannot be computed exactly because the number of possible

partitions is combinatorially large, but can be estimated using the Metropolis algorithm

[60, 44]. This amounts to generating a sequence of partitions in the following way.

Start from an initial partition P 0, a common practice is to start with each node in its

own group [78, 8]. From such current partition, select a random node and move it to a

random new group giving a new partition P 1. If H(P 1) < H(P 0), always accept the

move; otherwise, accept the move only with probability P = eH(P 0)−H(P 1).

By doing this, one gets a sequence of partitions {P i} such that one can approximate

the integral in 1.11 as [60]

p(Aij = 1|AO) ≈
1

S

∑

P∈{P i}

n1
σiσj

+ 1

nσiσj
+ 2

, (A.1)

where S is the number of sampled partitions in {P i}.

In practice, it is useful to “thin” the sample {P i}, that is, to consider only a small

fraction of evenly spaced partitions so as to avoid the computational cost of sampling

very similar partitions which provide very little additional information. Moreover,

one needs to make sure that sampling starts only when the sampler is “thermalized”,

that is, when sampled partitions are drawn from the desired probability distribution

(which in our case is given by Eq. (1.5, with T fixed to 1). The implementation

automatically determines a reasonable thinning of the sample, and only starts sam-

pling when certain thermalization conditions are met. Therefore, the whole process is

completely unsupervised. The source code of this implementation of the algorithm is

publicly available from //http://seeslab.info/downloads/network-c-libraries-rgraph/ and

http://github.com/seeslab/rgraph.
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A.2 Appendix B: Calculation of intersection partition degenera-
cies

To compute the number of pairs (P1,P2) that have the same intersection partition

PI = P1 ∩ P2, we note that a specific PI consists of n groups of nodes that we call

“elements;” we make explicit the number of such elements in an intersection partition

and write Pn
I = [E1][E2][E3] . . . [En]. From the definition of intersection partition we

have that: (i) all the nodes within an element must belong to the same group in both

partitions P1 and P2 (otherwise, they would not belong to the same element); (ii) two

elements cannot belong to the same group in both P1 and P2 (otherwise they would be

a single element).

Within this setup, our goal is to compute D(Pn
I ), the cardinality of the set {(Pi,Pj)|Pi∩

Pj = Pn
I }. We compute the degeneracy in two steps: 1) We compute all the possible

unique partitions P1 combining the elements in Pn
I , group them in classes accord-

ing to the number of elements combined, and compute the multiplicity associated to

each class; 2) For each class, we compute all the possible partitions P2 that result in a

specific intersection Pn
I .

Next, we give details of the exact calculation, and we illustrate how to compute

these degeneracies in an iterative manner.

A.2.1 Multiplicity of each partition class

We first make an exhaustive list of all possible partitions P1 for a given number of

elements n. For instance, for n = 4 we have four elements P4
I = [A][B][C][D]. Then,

we have the following classes of partitions for P1:

1. [4] ≡ [ABCD]: all elements belong to the same group;

2. [3, 1] ≡ [ABC][D] ≡ [ABD][C] ≡ [ACD][B] ≡ [BCD][A]: there are two

groups, one comprising three elements and another one comprising 1 element.

3. [2, 2] ≡ [AB][CD] ≡ [AC][BD] ≡ [AD][BC]: two groups of two elements

each.

4. [1, 1, 1, 1] ≡ [A][B][C][D]: all elements in different groups.

Note that we have introduced the notation [X1, . . . , Xk] for classes, that indicates

which elements of Pn
I are in each of the k groups of partition P1. Therefore, for

n = 4 the list of all the different partition classes is C4 = {[Xi, · · · , Xk]|
∑k

i=0 Xi =
n} = {[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]}.

Note that for any possible class [X1, . . . , Xk] there can be multiple possibilities of

grouping elements from PI , therefore, in order to compute the final degeneracy, we

need to take into account the class multiplicity as

mult([X1, . . . , Xk]) =

(

n
X1

)

Πk
l=2

(n−
∑l−1

i=1
Xi

Xl

)

ΠL
i=1|ℵi|!

, (A.2)
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where if L = {x1, . . . , xL} is the set of unique values of Xj in [X1, . . . , Xk] and L
is the cardinality of this set, ℵi = {Xl ∈ [X1, X2, . . . , Xk]|Xl = xi}, and |ℵi| is its

cardinality.

To illustrate how we compute a multiplicity of a class, we show the multiplicity for

three different classes:

• [3, 1]: In this case, n = 3 + 1 = 4, k = 2 and L = {x1 = 3, x2 = 1} so that

|ℵ1| = |ℵ2| = 1 and hence: mult([3, 1]) =
(41)(

1

1)
1!1! .

• [5, 3, 2]: In this case, n = 5+3+2 = 10, k = 3 and L = {x1 = 5, x2 = 3, x3 =

2} so that |ℵ1| = |ℵ2| = |ℵ3| = 1, and hence: mult([5, 3, 2]) =
(105 )(

5

3)(
2

2)
1!1!1! .

• [4, 4, 1]: In this case, n = 4 + 4 + 1 = 9, k = 3 and L = {x1 = 4, x2 = 1} so

that |ℵ1| = 2 and |ℵ2| = 1, and hence: mult([4, 4, 1]) =
(94)(

5

4)(
1

1)
2!1! .

A.2.2 Number of partitions P2 whose intersection with a fixed P1 is equal to

PI

Once we know how to generate all possible partition classes and their multiplicity for a

specific Pn
I , we fix an instance of a partition P1 for each class [X1, . . . , Xk] and obtain

deg([X1, . . . , Xk]), the number of partitions P2 such that P1 ∩ P2 = Pn
I . Note that

deg([X1, . . . , Xk]) is the degeneracy of a class (of the fixed partition), so that

D(Pn
I ) =

∑

c∈Cn

deg(c) ·mult(c), (A.3)

where the sum is over all possible partition classes for a given n, Cn.

For clarity, let us start with the case n = 1. In such case P1
I = [A], so for P1 there

is only one possible class C1 = {[A]} and P2 must be equal to [A] in order to fulfill

P1 ∩ P2 = [A]. Therefore, D(P1
I ) = 1.

For n = 2, P2
I = [A][B]. There exist two possible classes for P1: C2 = {[2], [1, 1]}.

For class [2] we fix P1 = [AB]. We then make a list of all possible P2s: P2 = [AB] or

P2 = [A][B]. Out of these two only [A][B]∩P1 = [A][B], therefore deg([2]) = 1. For

class [1, 1], we fix P1 : [A][B]. Note that both P2’s have the same intersection with P1:

P1 ∩ [AB] = P1 ∩ [A][B] = P2
I , therefore deg([1, 1]) = 2. Putting it all together into

Eq. (A.3), we obtain that D(P2
I ) = deg([2]) ·mult([2])+deg([1, 1]) ·mult([1, 1]) = 3,

since mult([2]) = mult([1, 1]) = 1.

In order to compute the degeneracies for increasing n our strategy is to compute

the degeneracies of a class iteratively from the degeneracies of previously computed

classes. For instance, for n = 3 we have that C3 = {[3], [2, 1], [1, 1, 1]}. For class [3],
we fix P1 = [ABC]. Note that whenever all the n elements are grouped together only

P2 = [A][B][C] (n = 3 in this case) results in an intersection equal to Pn
I , therefore

deg([n]) = 1 ∀n.

For class [2, 1] we fix P1 = [AB][C]. Note that we have previously computed

deg([AB]) = deg([2]) = 1, therefore all the cases in which element [C] is in its own
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group can be accounted for with the degeneracies we have already computed. In the

remaining cases, C is together with either A or B since in order for P2 to have the

expected intersection [A][B][C] with P1, A and B must be in different groups in P2.

Thus there are only two possibilities for P2, P2 = [CB][A] or P2 = [CA][B]. Since

C is never in its own group in this case, the degeneracy of P2 = [CB][A] is that of

class [1, 1]. Therefore deg([2, 1]) = deg([2]) + deg([1, 1]) = 3.

For class [1, 1, 1], we fix P1 = [A], [B], [C] and observe that every possible parti-

tion P2 will result in the desired intersection. The number of different groupings of n
elements (the number of groups going from 1 to n) is the Bell number B(n), so that

deg([1, 1, . . . , 1]) = B(n) and for n = 3, deg([1, 1, 1]) = 5.

All in all, for n = 3 we have that D(P3
I ) = deg([3]) · mult([3]) + deg([2, 1]) ·

mult([2, 1]) + deg([1, 1, 1]) ·mult([1, 1, 1]) = 1 · 1 + 3 · 3 + 5 · 1 = 15.

A.2.3 Pseudo code to compute higher order degeneracies

For illustration, we focus on the class [3, 2, 1] (n = 6), in which only one element is

grouped by itself and we assume that we have previous knowledge of all the degenera-

cies corresponding to all the classes with n ≤ 5 elements.

First we fix P1 = [ABC][DE][F ]. In the P2’s that have the target intersection with

P1, element F can be either by itself, grouped together with one element of [ABC],
grouped together with one element of [DE], or grouped together with one element

of [ABC] and one of [DE]. A good approach is to build a binary table Tij with the

groups of P1 as columns and all the possible P2configurations as rows. We let empty

the column of the element grouped by itself (in our case F ) and fill the rest of the table

with all the possible combinations of ones and zeroes. If Tij = 0, in partition i, element

F is not grouped with any element of another group. If Tij = 1, then in partition i,
element F is grouped together with one, and only one, of the elements of group j in

P1.

For the case we consider Table A.1 shows the binary table and the corresponding

degeneracy for each choice of P2.

P2 [ABC] [DE] [F ]
1 0 0 F is grouped by itself.

2 0 1 F is grouped only with one element in [DE]. 2 ·
3 1 0 F is grouped only with one element in [ABC]. 3 ·
4 1 1 F is grouped with one element in [ABC] and one element in [DE]. 6 ·

Table A.1: Degeneracies for each possible arrangement of element F in P2 considering P1 =
[ABC][DE][F ].

In what follows we use the row numbers in Table A.1 as labels for P2. For P2 = 1
, the degeneracy is equal to deg([3, 2]) because [F ] is by itself, i.e. we fix P1 =
[ABC][DE] and we look for all the P2’s that yield [A][B][C][D][E] as an intersection.

Because we assume that we know all degeneracies for n ≤ 5, we can immediately

compute this degeneracy as deg([3, 2]).
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In P2 = 2, F is either with E or D. For P2 to have the target intersection, [D]
and [E] must be in separate groups. If we fix, for instance, [DF ] in P2, we just need

to compute the degeneracy of [ABC][E], which is equal to deg([3, 1]), and also as-

sumed to be known. The same happens if we fix [EF ], so that we have that the total

degeneracy is 2 · deg([3, 1]).
In an analogous way, we reach the conclusion that the degeneracy of partitions in

which F is grouped with one element of [ABC] (P2 =3 in Table A.1) is equal to

3 · deg([2, 2]).
For P2 = 4, where F is with one element of [ABC] and one in [DE], we can

fix [ADF ]. In this case, the associated degeneracy is deg([BC][E]) = deg([2, 1]).
Because there are six different ways of grouping F with an element of [ABC] and an

element of [DE], the total degeneracy in this case is 6 · deg([2, 2]).
Therefore, deg([3, 2, 1]) = deg([3, 2])+2·deg([3, 1])+3·deg([2, 2])+deg([2, 1]).
This algorithm computes exact degeneracy values given the number of elements n

that appear in the intersection partition PI . Since the computational time to calculate

the degeneracies increase exponentially with n, we only computed the first 69 values

(see Table A.2). We extrapolated values for n > 69, by fitting a function using the

values for n ≤ 69, so that we use D(Pn
i ) = 1.4681 · n · (log(n)− 1) (see Fig. A.1)

n log(D(Pn
I )) n log(D(Pn

I )) n log(D(Pn
I ))

1 0.0 26 87.8750 51 219.3107

2 1.0986 27 92.6064 52 225.0314

3 2.7081 28 97.3919 53 230.7813

4 4.7274 29 102.2298 54 236.5599

5 7.0501 30 107.1182 55 242.3666

6 9.6241 31 112.0557 56 248.2009

7 12.4124 32 117.0408 57 254.0625

8 15.3873 33 122.0720 58 259.9508

9 18.5278 34 127.1480 59 265.8655

10 21.8172 35 132.2676 60 271.8060

11 25.2419 36 137.4297 61 277.7720

12 28.7908 37 142.6330 62 283.7630

13 32.4543 38 147.8767 63 289.7788

14 36.2243 39 153.1596 64 295.8189

15 40.0939 40 158.4808 65 301.8829

16 44.0569 41 163.8394 66 307.9706

17 48.1079 42 169.2345 67 314.0815

18 52.2421 43 174.6654 68 320.2153

19 56.4554 44 180.1312 69 326.3718
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Figure A.1: Extrapolation of degeneracy values. We use our algorithm to compute the actual

degeneracy values D(Pn
I ) for n = 1, . . . , 69 (green line). Since it is computationally too ex-

pensive to use the same algorithm for n > 69, we extrapolate D(Pn
I ) for n > 69 using the

following mathematical formula log(D(Pn
I )) = 1.4681 · n · (log(n)− 1) (blue line).
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