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Introduction

1 Introduction.

1.1 G-protein coupled receptors

G-protein coupled receptors (GPCRs) form a superfamily of membrane proteins
with current estimates of about 1,000 genes (2%-3% of the human proteome)
(1). These receptors, located at the cell surface, transduce extracellular signals
into the interior of the cell through second messenger cascades controlled by
different heterotrimeric guanine nucleotide-binding proteins (G-proteins)
coupled at their intracellular regions (1, 2). The GPCR family responds to sensory
signals of external origin such as light, odors, pheromones, or tastes; and
endogenous signals such as neurotransmitters, (neuro) peptides, lipids,
proteases, glycoprotein hormones, and purine ligands, among others (3). This
diversity makes GPCRs to be involved in many physiological processes such as
the regulation of the cardiovascular function, neurotransmission, and endocrine
signaling. Due to their accessibility from the extracellular environment, most of
the commercial drugs target GPCRs (4).

Based on sequence similarity methods, GPCRs have been grouped into five main
families named: Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2, and Secretin,
forming the GRAFS classification system (1). The Glutamate family is formed by
15 members, the Adhesion family is formed by 24 members, the Frizzled/taste
family is formed by 24 members, the Secretin family is formed by 15 members
and the Rhodopsin family, which is the largest group, is formed by 701 proteins
(Figure 1). Alternatively, GPCRs have also been classified into three major classes
or clans (5). Class A, B, C and F correspond to rhodopsin, adhesion and secretin,
glutamate, and Frizzled /taste families respectively.
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Figure 1:The resulting five families from Fredriksson classification (1, 6). These families can be
also divided in subfamilies according with the sequence similarity. Receptors are named with the gene
name used by the UniProt database. Highlighted structures are crystalized.

1.2 The structure of GPCRs

Significant advances in crystallization of GPCRs have permitted to elucidate the
crystal structures of many receptors (see Katrich 2012; Liapakis 2012) (Figure 2).
GPCRs share a common structural arrangement composed by seven trans-
membrane (TM, which also terms this family of proteins as 7TM receptors)
segments, with an extracellular amino terminus and an intracellular carboxyl
terminus. Membrane segments are joined by 3 intracellular and 3 extracellular

loops.




Introduction

To date, 142 GPCR crystal structures (81 of unique ligand-receptor complexes
and 37 of unique receptors) are deposited in the Protein Data Bank (7). Available
crystal structures include receptors from classes A, B (8), C (9), and F (10), in
complex with agonists, antagonists, inverse agonists (11), allosteric modulators
(12), or biased ligands (13), in complex with a G protein (14) or with beta-
arrestin (15), and in the form of monomers or homo-oligomers (10, 16-19).

Multiple sequence alignment has shown that, despite the percentage of sequence
identity is very low, there are highly conserved positions and motifs. This feature
was used by Ballesteros and Weinstein to define a general numbering scheme
based on the most conserved positions in the TM helices among the rhodopsin
(Class A) family (20). Each residue is defined by two numbers: the first (1
through 7) corresponds to the helix in which the amino acid of interest is located;
the second indicates its position relative to the most conserved residue in the
helix, arbitrarily assigned to 50. The Ballesteros-Weinstein notation allows an
easy comparison among residues in the TM segments of different receptors.

Crystallization of GPCRs has been possible thanks to the advances in protein
engineering techniques and crystallographic methods (21). These techniques
include creating receptor-T4 lysozyme and receptor-apocytochrome chimaeras,
co-crystallization with monoclonal antibody fragments, and thermo-stabilization.
However, despite this continuous increase of solved GPCRs structures and the
enormous advances in understanding GPCR structure-function relationships,
there are key limitations. First, crystal structures capture a static view of the
receptor, while GPCRs are known to exist in different conformational states (22).
Also, truncations of the N- and C-terminus, and key loops limit the understanding
of these parts in the structure-function relationships. Moreover, the use of
antibodies, mutations, and insertion of T4 lysozyme could bias the conformation
ensemble of the receptor (23).
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Figure 2. Distribution of available GPCR crystal structures along the past 16 years. Adapted
from gpcrdb (5)

Though different GPCRs classes share a conserved 7TM domain, there are
important key differences at the extracellular domains (ECD). Class B receptors
are characterized by a long TM 1 and a large N-terminal ECD involved in the
binding of the peptide ligand (Figure 3). Class C receptors are characterized by a
huge ECD, called Venus flytrap domain (VFD), which contains the orthosteric
binding site (24). Class C receptors exist as homo-dimers, which are covalently
linked via a disulfide bond in the VFD, forming the functional unit (Figure 3):
Class F shows an ECD formed by a cysteine rich domain (CRD) as well as a linker
domain (Figure 3). In contrast, class A GPCRs lacks a large ECD (Figure 3), with
some exceptions (glycoprotein hormone receptors also contain a large ECD for
hormone binding). The orthosteric binding site for the endogenous ligand varies
among the different families. In class A GPCRs, the endogenous ligand bind in a
cavity within the 7TM bundle, whereas in class B GPCRs, the endogenous ligand
(peptide) bind the ECD and the 7TM domain (8). In class C, the orthosteric site is
located in the VFDs. Finally, class F receptors are activated by the lipoprotein
WNT which binds the CRD (10).
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Figure 3. Representation of the GPCR classes and the mode of binding of the endogenous
ligand. For class A GPCRs, the endogenous ligand binds the 7TM domain. For class B, the endogenous
peptide ligand binds the 7TM and ECD domains. For class C, the endogenous ligands are recognized by
the VFDs. Finally, for class F, the lipoprotein WNT binds the CRD domain. Adapted from (24).

1.3 The transmembrane functional water molecules

The majority of the TM regions deviate from ideal a-helices, showing structural
anomalies like kinks and bulges. These distortions are energetically stabilized
through complementary intra- and inter- helical interactions involving polar side
chains, backbone carbonyls, and, in some cases, specific structural and functional
water molecules embedded in the TM bundle (25). Interestingly, as the resolution
of the crystal structures improves, the number of observed internal waters
increases (26). Recently, the publication of the adenosine A2a receptor in
complex with the antagonist ZM241385 (26) has shown a receptor practically
filled with water molecules (185 in total) where the ligand and G-protein binding
sites are connected through a quasi-continuous channel of waters (Figure 4).
Yuan et al. (27) have also shown that activation correlates with the formation of
this continuous internal water pathway. Similarly, the recent crystal structure of
the M2 muscarinic acetylcholine receptor has shown the presence of a
continuous aqueous channel extending from the extracellular surface to a depth
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of approximately the middle of the membrane (28). Moreover, water molecules
are also involved in ligand binding as shown in the crystal structure of A2a in
complex with ZM241385 (26) (Figure 4).

Figure 4. A) Water molecules present in the Adenosine A2a receptor (PDB id 4eiy). B) The binding of
the ZM241385 antagonist involves, in addition of receptor side chains, waters molecules.

1.4 Pharmacology and Signaling

Recent advances in G protein-coupled receptors have shown that the mechanism
they transduce extracellular signals is far more complex than previously
imagined. Indeed their pharmacological regulation now extends far beyond the
simple concept of agonism and antagonism to incorporate concepts of
constitutive activity, inverse agonism, allosteric modulation and signal bias.
Historically, GPCR receptors were believed to be in equilibrium between two
states (inactive and active) in which agonists stabilized the active conformation
while antagonist’'s stabilized the inactive conformation. New experimental
observations found that the efficacy of a panel of drugs may differ for different
intracellular signaling pathways, meaning a single ligand could act as agonist,
antagonist, inverse agonist or partial agonist on one pathway while having a
different efficacy in another (29-31), a phenomenon known as biased signaling,
functional selectivity, stimulus trafficking or collateral efficacy (29, 32, 33). This
remarkably versatility is incompatible with a simple on-off signaling model and is
more compatible with a complex system in which many different conformations

8
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of the receptor co-exist, and ligand binding stabilize one of them (22). Upon
agonist stimulation, GPCRs undergo conformational changes, the most relevant
being the outward movement of TM6, which open a cleft in the 7TM domain
allowing G-protein’s coupling. Binding of heterotrimeric G-protein leads to
exchange of GDP for GTP on the Go subunit initiating the dissociation of G-
protein a and Py dimers that act as signaling units and activate various effectors
such as cyclic monophosphate (cAMP), calcium ion, or phosphoinositides.
Agonist-occupied GPCRs, become substrate for G protein-coupled receptor
kinases (GRKs) that phosphorylate GPCRs, which become target of -arrestins. 3-
arrestins binding blocks further G-protein activation. This easy and linear
signaling pathway has been recently challenged by various experiments that
showed GPCRs can independently interact with other proteins (see Figure 5) as
B-arrestins and G protein-coupled receptor kinases (GRKs) (34-36), which also
led to the discovery of above discussed signal biased ligands.

Guos

|G-protein independent

signalling
Gollol — —
Endocytosis
G123 R @ @ ‘9 %\‘\L parr
-
)\ frarr

Clathrin

Figure 5. Representation of effectors pathways mediated by GPCRs.

1.5 Activation

The increasing number of crystal structures of GPCRs during the last decade,
have offered invaluable information to understand the complex world of GPCR
activation at the molecular level. Still crystal structures show a static picture of
the receptor and cannot unveil the complex activation mechanism of GPCRs.
Binding of ligands to specific sites in the receptor induces a series of small-scale

9
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conformational changes that lead to the TM6 outward movement and
subsequently G-protein binding and activation. The details of all these events are
still mostly unclear. Nonetheless intense use of biochemical (site-directed
mutagenesis, radio labeled residues, etc) and theoretical techniques, such as
sequence analysis and molecular dynamics simulations, have allowed the
identification of some highly conserved sequence regions involved in small-scale
conformational changes, named “molecular switches”, which have a key role in
receptor activation (37). GPCR’s ligand binding alters the conformation of
“molecular switches” inducing the activation of one or more signaling pathways.
Known switches include: 1) the hydrophobic core, 2) the “ionic lock” switch, 3)
the TM3-7 lock, and 4) the tyrosine toggle switch linked to the NPxxY motif in
TM7. Not all molecular switches are conserved among all classes indeed some of
them are specific to one or more sub-class. The hydrophobic core is the only
molecular switch conserved among all class A family members (38).

The hydrophobic core

The residues of the hydrophobic core associated to the inactive state anchoring
are: L343, F644 and X640 (38). The high conservation of these positions (see Figure
6) reveals their importance. L343 is conserved in around 75% of class A GPCRs
and is a hydrophobic bulky residue (Leu, Val, Ile, or Met) in approximately 95%
of them. Fé44 is conserved in around 80% of the receptors while residue at
position 6.40 is a bulky hydrophobic residue in more than 80% of class A
receptors. Agonist binding triggers a conformational rearrangement of the
hydrophobic core, which ultimately leads to the outward movement of TM5 and
TM6, and the inward movement of TM7 and TM3. Site-directed mutagenesis
studies shows that mutated residues enhancing the strength of hydrophobic
interactions decrease constitutive activity (inactive state more stable) while
unfavorable mutations has the opposite effect (increase basal activity, making
inactive state less stable), see figure 7A (37, 38).

10
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Figure 6. Distribution of residues in positions 3.43, 6.40 and 6.44 among class A GPCR families.

The TM3-TM7 switch

The TM3-7 switch is an interaction between TM3 and TM?7. In rhodopsin,
disruption of the interaction of K743 (covalent bonded to retinal) with E328 is the
first event occurring upon retinal isomerization. Though TM3-TM7 switch is
characteristic of rhodopsin, some aminergic receptors exhibit a similar
interaction (through D332 and Y743, see figure 7B) as revealed in the crystal
structures of histamine H1 receptor and dopamine D3 receptor in complex with
antagonists (39). Opioids receptors also present this interaction (16, 17, 40).

12
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NPXXY motif |

Figure 7. Molecular switches in class A GPCR activation (Adrenergic beta 2
receptor). Inactive and active conformations are colored in cyan and green
respectively. A) Residues involved in the hydrophobic core. B) TM3-TM?7 lock switch. C)
Superposition of active and inactive tyrosine toggle switch. D) Superposition of active
and inactive residues forming the ionic lock in adrenergic beta 2 receptor.
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The tyrosine switch

Inactive state-crystals show a hydrophobic region formed by Y753, Y558, V153, 243,
and 640, which isolate the residues of the “ionic lock” from the quasi-continuous
channel of waters that connect the orthosteric binding site to the cytoplasmic
part of the receptor. Outward movement and rotation of TM6 following agonist’s
binding leads to a conformational change of Y753 (from highly conserved NPxxY
motif) which open the gate to water entrance (27, 41), thus connecting the
cytosol with the orthosteric binding site by a continuous channel of water
molecules.

The ionic lock

The ionic lock is an ionic interaction between residues R350 of the conserved
(D/E)R(W/Y) sequence motif in TM3 and residues D/E630in TM6 (11, 42) . It is
present in trace amine, purinergic, somatostatin, opsin and aminergic subfamilies
of class A GPCRs. Despite the ionic lock interaction is important in a small set of
GPCRs, this interaction has been emphasized because the first resolved crystal
structures showed it. Disruption of the ionic lock is mandatory for maximal
receptor activation and is triggered by almost all agonists (43) of the above-
mentioned sub-families.

14
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2 Methods.

2.1 Computational Methods

Computational techniques can be applied to different disciplines including
chemistry, physics and biology, among others. All these studies have been
facilitated by the availability of experimental information, but also by a steady
increase in compute power which is provided either by continuous advancements
of hardware performance including GPUs, tailored computer architectures (1), or
cloud computing approaches (2). They take advantage of computer performance in
order to predict chemical, physical, and biological processes. Moreover, as
biological entities can be studied from a complex system point of view, and
everyday lots of new information come to light, the use of network analysis and big
data analysis have also become powerful tools. All together form a framework,
which complements and try to shed light at molecular level to the results obtained
from experiments.

The theoretical background behind each technique narrows down the size of
the system and accuracy of the calculation. Generally, the higher is the level of
theory of the technique, the smaller is the system. From a bottom-up view (the
smallest to the biggest), quantum-mechanical calculations involve explicit
consideration of electrons making them computationally expensive and hence only
suitable to small systems (hundred of atoms). Molecular mechanics uses classical
mechanics to model molecular systems. Atomistic molecular mechanics considers
each atom as a single particle while coarse-grain molecular mechanics simplifies
the system by treating groups of atoms as particles (3) allowing optimization of
systems over the million of atoms. Molecular dynamics simulations solve Newton
equations of motion providing information on the dynamical behavior of the
system (3). The range of molecular dynamics simulations applicability is wide and
does not depend only on the system size, but also on the desired time of simulation
and taken approximations. In our systems, integrated by a bilayer membrane, a
GPCR, a G-protein and waters, the number of atoms can reach hundred of
thousands.
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On the other hand, other computational techniques are based in the comparison of
available information rather than the application of chemical/physical formulas.
For example, virtual screening usually used to find possible drug candidates in
databases. Virtual screening can deal with million of compounds which can be
represented as atoms in molecular docking (applying a scoring function, see
section 2.5), pharmacophores (pharmacophore docking), descriptors (comparing
physicochemical properties), or even text (calculating similarity between text
chains) (4).

The following subsections describe the main techniques employed in this thesis in
a summarized form. These techniques are further detailed in results section.

2.2 Virtual screening

Virtual screening (VS) is a computational technique used to theoretically identify
possible molecules, called “hits”, prone to be starting points of a drug discovery
process. Hit compounds usually are submitted to modification in order to identify
“lead” compounds, which are the starting point to a both time and economic-
consuming process called “lead optimization”. It is been estimated that the process
from lead identification to clinical trials are costs about 800 million US dollars and
14 years (5). The advances during the 90’s decade in combinatorial chemistry and
high-throughput screening supposed important drug discovery acceleration.
Nevertheless, many of the identified leads fall in the lead optimization process due
to absorption, distribution, metabolism, excretion and toxicity (ADMET)
inadequacy. The need for cheaper methodology to refine lead selection, neglecting
unsuitable structures, opened the way to the development of virtual screening.

Virtual screening is based on the computational search of novel compounds in pre-
compiled libraries of compounds. There exist two main virtual screening
techniques: ligand-based (LBVS) and structure-based (SBVS) (6). Ligand based
virtual screening relies on the use of compounds of known activity and includes
approaches such as similarity and substructure searching, quantitative structure-
activity relationships (QSAR), pharmacophore and three-dimensional shape
matching (7, 8). On the other hand, SBVS uses the three-dimensional structure of a
biological target (determined experimentally or modeled) to dock (see section 2.5)
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a panel of new molecules and rank them based on their suitability according to
their predicted binding affinity and/or complementarity to the binding site.

Due to the historical difficulty to crystallize GPCRs (see introduction, section 1.2),
LBVS approaches were the most used to infer binding properties of new
compounds and despite the to-date availability of 142 crystal structures they still
are a top methodology thanks mainly to their low computational cost, which make
them the only suitable methodology to screen databases of millions of compounds.
Besides, they can be complemented with three-dimensional information from
structures or models (see section 2.5 and 2.6) in order to refine the results. As part
of this doctorate thesis we designed a new VS approach and created a web
application, LigandFinder, developed as a tool to perform LBVS for
computationally-untrained scientist.

2.3 Ab initio methods.

Computational chemistry is the branch of the chemistry that uses computer
science in order to theoretically solve chemistry problems. Among others, one of
the most exact calculations involves the use of quantum mechanics laws used to
solve chemical problems. The need of these methods arises from the impossibility
to analytically solve Schrodinger equation on systems with more than one electron.
Some of the properties these methods are able to calculate include structure,
absolute and relative energy, distribution of electronic charge, dipoles and
multipole momentums, vibrational frequencies, reactivity, UV-Vis spectrum
prediction, magnetic properties, transition states etc.

Many methods exist to implement the mentioned properties but those based on
molecular orbital theory achieve more realistic results. These are ab initio, semi-
empirical, and density functional theory methods. However, despite of the great
accuracy achieved by these methods, computational cost grows exponentially with
the size of the system. In this thesis, quantum chemistry methods have commonly
used in three-dimensional structure optimization of ligands, the parameterization
of ligands (needed to perform molecular dynamics simulations), and specially in
sulfur-containing amino acids where high level quantum calculations were used in
order to optimize and evaluate interaction energies of clustered geometries.
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2.4 Molecular dynamics simulations

Molecular dynamics (MD) permits to simulate the time-evolution of a molecular
system, which is represented classically considering a set of particles (atoms)
defined by their positions and momenta. This technique has provided many
insights related with the dynamical behavior of macromolecules such as
conformational changes, free energy of binding, and stability. This information,
often inaccessible to wet lab experiments, and certainly cheaper, complements
experimental data helping to understand macromolecules nature.

The first MD simulation was performed in the fifties. It described a system of 32
molecules interacting like billiard balls represented by a “hard sphere” model (9).
Martin Karplus, Michael Levitt, and Arieh Warshel, which were pioneer in the field,
got the Nobel Prize in Chemistry in 2013 “for the development of multiscale models
for complex chemical systems”. (10). Molecular dynamics importance is fast
growing thanks to the advances in computational power and algorithms.
Nowadays, it is possible to run simulations on systems of over a billion particles
for microseconds.

Starting from a coordinate set -taken for example from a crystal structure- and
assigning velocities to each atom -typically from a Boltzmann distribution at a
given temperature-, successive coordinates and velocities are obtained by
integrating the Newton’s equation for the motion in each coordinate direction. In
one dimension. The evolution of the system in both coordinates and velocities are
obtained by integrating the Newton’s equation for the motion in each coordinate
direction.

dzxi Fx

dtz m;

Formula 1. One dimension Newton’s equation for movement. m; and x; are the mass and the coordinate
for each atom. Fui is the derivative of the potential energy according to a force field equation.
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The forces on the atoms are estimated by the derivative of the energy. Once the
forces are assigned, the Newton law of motion can be used to solve the molecular
motion.

The calculation of the interaction energy within a classical description of a
molecular system requires a forcefield. A forcefield consists of a set of equations
used to generate the potential energies (and their derivatives, the forces) and the
parameters used in these equations. The basic functional form of potential energy
in molecular mechanics includes bonded interactions and non-bonded
interactions. Bonded interactions define bonds stretching, angle bending and
dihedrals rotation. Non-bonded interactions include an electrostatic term
(Coulomb's law) and a van der the van der Waals term (usually computed with a
Lennard-Jones potential) that accounts for both Pauli exclusion and dispersion.
Forefield parameters can be obtained from different techniques: 1) theoretical
such as ab initio or semi-empirical quantum mechanical calculations or 2)
experimental data such as x-ray, electron diffraction, and NMR, Raman and
neutron spectroscopy.

The majority of force fields rely on a simple potential energy function:
For bonded interactions:

ORI ACEI NS ko(0—60)" + D kyleostnp+ ) +1]
angles torsions

bonds
q:4; Ayj Cyj
5 o, Ay, &
. T T T
non—bonded pairs ij ij ij

For non-bonded interactions:

12 6
V) = Z &y (Rmin,ij) —2 s (Rmin,i}') + q:9;
non-bonded pairs 7"ij ri}' rij

Formula 2. General form of the potential energy function V(r). b is the interatomic
distance, k» and bo estimate the strength and the equilibrium length of the bond, & is the

angle formed by the two bond vectors, and O, and k, are characterizes the strength and
equilibrium geometry of the angle. The torsional potential in the equilibrium is given by
cosine function, where @ is the torsion angle, 6 is the phase, and n represents the dihedral
potential. The remaining part of the equation refers to the electrostatic interaction, where
€; is a parameter related with the two interacting atoms (ij), and q; and qi are the
effective charge on each atom. is the distance making Lennard-Jones equation energy
the minimum. A and C are the bending of angles.
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The total energy of the system is the sum of the kinetic and potential components
displayed in Formula 2. Hence, molecular dynamics simulations can be used to
optimize models generated by homology modeling, and dockings where the
stability of the ligand binding to the protein can bee analyzed along the time (11).
Because of the typically large number of atoms involved in calculations, Newton’s
equation can not be resolved analytically, and several algorithms using different
numerical methods have been developed to efficiently solve the equations (12).

The total energy is given by:

Etotal: Ebonded + Enon—bonded + Eother

Formula 3. Bonded and non-bonded total energy. Includes repulsive,
van der Waals, and coulombic interaction.

2.5 Molecular docking.

Molecular docking is a receptor-based technique that theoretically infers the
mode(s) of binding of a ligand in to a larger protein of known structure (either
crystal data or homology model). The simplest case, in which proteins residues are
maintained rigid,, obtaining the best pose for a compound imply the resolution of a
problem with six degrees of freedom, three translational and three rotational,
making clear that a complete conformational space screening must be performed
before the docking itself. Different methodologies have been developed in order to
get a reasonable sampling of conformational space in terms of energy and
geometric diversity (13). Once all conformations of all ligands have been fitted
within the binding site a scoring function evaluates the potential ligands poses in
order to create a rank of the most likely mode of binding. Most scoring functions
are physics-based and estimate the energy of each pose: the Gibbs free energy
(AG), which estimation is challenging because of the many contributions to the
interaction between small ligand and proteins. Depending on the contributors
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taken in consideration and the way their AGs are estimated, scoring functions are
generally divided in three types: force field based, empirical based and knowledge
based. The more a scoring function is accurate the more computationally
expensive is.

2.6 Structure prediction: homology modeling and de novo modeling

Homology modeling consists of building a structural model of a target receptor
based on the 3D structure of a phylogenetically related template. Despite of the
GPCRs low sequence identity, they share a common 7TM-helices core structure,
which facilitates homology modeling. It is been demonstrated the quality of a
model depends on the used template (14). Special attention has to be paid to
variable regions like receptor loops and ligand binding site. Intracellular and
extracellular loops connecting the helices present the higher variability among
GPCRs. They change in both space and sequence, making necessary to use more
advanced modeling techniques such as de novo modeling, knowledge methods or
their combination (15). The difficulty to achieve reliable loops was reflected in the
last three modeling competition DOCK (2008,2010, and 2013) where none of the
presented models reached an RMSD lower than 2 Angstroms for the extracellular
loop 2. On the other hand, a good representation of binding site is necessary to
obtain confident docking of compounds. As the number of available crystal
structures has increased during the last decade, multiple template homology
modeling has become more popular. Is been demonstrated multiple template can
improve results when no close receptor is available, but no further improvement
was found when close templates are available (14).

This was demonstrated in a docking experiment where the retrieve of active
compounds depended on the proximity of the model binding site to the crystal
structure (14).
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2.7 Databases

Available data from databases is essential for computational biochemistry and
bioinformatics research. Databases provide organized and ready to use data from
many sources. For example, all crystalized structures are uploaded to the Protein
data bank. Some of the most important databases are listed below:

-ZINC database (16): ZINC is a database that contains more than 35 millions of
purchasable compounds. This database has been used during the thesis many
times, especially to build up ligandfinder (see section 3.2).

-Protein data bank (PDB) (17): This database contains all crystalized structures. It
has been used repeatedly during this thesis.

-IUPHAR/BPS guide to pharmacology database (18): Contains information about
GPCRs among other receptors. It covers data such as gene information, names,
database links, ligands with biological data and structure, transduction
mechanisms, tissue distribution, assays and other. This database has also been
used in ligandfider build up.

-UniProt (19): Provides a collection of protein sequences and their annotations.
This database has been used to build up GPCR-SAS.
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3 Objectives

Computer-aided drug discovery techniques have played a major role in the
development of therapeutically important small molecules. These methods are
classified as either ligand-based or structure-based methods.

Ligand-based methods use only ligand information for predicting activity
depending on its similarity/dissimilarity to known structures. Thus, an objective
of the thesis is:

-The development of LigandFinder, a web-based virtual screening application.
The aim of this tool is to screen a library of compounds to find new,
commercially available, ligands similar to a given set of known structure. This
application aims to offer to the scientific community a free user-friendly tool
to seek potentially active drugs.

Structure-based methods can be used when both target and ligand structures are
known. These approaches mainly include homology modeling, ligand docking,
and structure-based pharmacophore modeling, among others. Recently, it has
become state of the art to use additional computational tools such as molecular
dynamics and molecular mechanics to simulate and evaluate the conformational
space of a protein. Thus, another objective of the thesis is:

-Design selective, versus the 5-HT1a receptor, ligands for the serotonin 5-HT>
receptor using homology modeling, ligand docking, and molecular dynamics
simulations.

For closely related protein families, key structurally conserved and functional
regions can be identified from multiple sequence analysis. Thus, in this thesis we
also aim at the:

-Development of GPCR-SAS, a web-based application for statistical analysis of
G protein-coupled receptor sequences (classes A, B, C, and F).

Over 60% of currently marketed drugs target membrane proteins. Due to the
lipidic environment of membrane proteins, dispersion forces (mainly aromatic-
aromatic, aromatic-aliphatic or aliphatic-aliphatic) are involved in stabilizing the
tertiary structure of the protein or in structural changes. Surprisingly, non-
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bonded interactions involving sulfur-containing amino acids (Met and Cys) have
received little attention, in contrast to interactions involving aromatic or
hydrophobic amino acids. Thus, in this thesis we aim to:

- Evaluate the occurrence of interactions involving Met and Cys side-chains in
crystal structures of membrane proteins and to characterize their strength in
small-molecule model systems at the ab-initio level.
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4 Results

4.1 Overview

Launching a new drug into the market is an extremely expensive (about 1 billion S)
and long (more than 10 years) process. In average, for every 10.000 compounds
tested, five enter clinical trials, and only one is eventually approved for patient use.
However, and in spite of these difficulties, the investigation in new drugs is intense,
since the economical and social benefits are very high. In fact, the top 50 pharma
companies accounted for $593.4 billion of prescription drug sales in 2010, and their
investment in research reached a record $65.3 billion in 2009.

Therefore, it is important to use new technologies in the R&D process of obtaining
new compounds. By means of theoretical studies of ligand-target interactions,
computational techniques have a fundamental role in this slow process as they help
speeding up the early stage of identify “hits compounds” (new compounds with
limited efficacy) and accelerate the “hit-to-lead” (lead compound is a chemically
optimized form of the hit compounds) process, reducing both costs and time of the
drug discovery and optimization. High-throughput virtual screening, where
chemical libraries of million of compounds are virtually tested against the target of
interest to find potential active molecules, is the first approximation of a
computational drug design study. LigandFinder is a tool designed to let
computationally unskilled scientists to easy perform 2D virtual screening. The
algorithm filters compounds from a database of more than 20 millions of molecules
to find the most similar according to a new concept “centrolD”.

Once potential hits are detected, the next step in the drug discovery pathway is a
more exhaustive screening procedure, using more computationally demanding
techniques. Molecular docking fits compounds into the binding site of the receptor.
The obtained docking poses are sorted by a scoring function that measures the
quality of the interactions between the ligand and the receptor. However, due to
the dynamic nature of proteins, it is insufficient to use a single static structure to
predict putative binding modes. Molecular dynamics simulations can be used for
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obtaining an ensemble of target conformations. We used these techniques to
explore the binding modes of designed ligands into the serotonin 5-HT; and 5-HT1,
receptors.

On the other hand, integral polytopic membrane proteins mediate the interaction
of the cell with its surroundings. Because of their relevance to cellular physiology
and their accessibility from the extracellular environment, membrane proteins
represent a significant portion of therapeutic drug targets. Particularly G protein-
coupled receptors (GPCRs), transport proteins and ion channels are among the
most prominent target families for the pharmaceutical industry. Biological function
of these membrane proteins involves conformational rearrangement of the
transmembrane (TM) regions. For example, activation of the GPCR family requires
the binding of the C-terminal a-helix of the G protein to the intracellular cavity that
is opened by the conformational rearrangement of TM 6. Similarly, multidrug
transporters are flexible proteins that switch from outward-open to inward-open
conformations, facilitating the release of the substrate. Such conformational
changes require disruption and formation of key inter-helical interactions. Here, we
have studied the role of sulfur-containing amino acids (Met and Cys) in forming
inter-helical interactions. These residues are unique as they are highly polarizable
due to the sulfur atom. Surprisingly, non-bonded interactions involving Met and Cys
have received little attention in contrast to interactions involving aromatic amino
acids.
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4.2 Summary and contribution

LigandFinder: A user-friendly virtual-screening web server. The objective of
this work is the development of a web-accessible tool to search for similar
compounds. Users can either introduce a list of compounds (smiles or by
drawing) or select them from a database of GPCRs ligands classified by receptor.
Selected compounds are fused in a “super-ligand” which integrates all properties.
This ligand is then confronted with a subset (size of the subset depends on the
super-ligand properties) and a list of compounds sorted by the similarity to the
super-ligand is returned. The application can be also used to explore GPCRs
ligands properties.

Ligandfinder is available at http://Imc.uab.cat/ligandfinder and the manuscript is

submitted to Bioinformatics journal.
Study of sulfur-containing amino acids

This work arose after finding the importance in binding affinities of sulfur-
containing amino acids in mutation experiments on cholecystokinin receptors
(CCK1R and CCK2R) (1, 2). First, we published a review about the prevalence of
these residues in GPCRs together with several examples found in literature
where the presence of these residues where critical for protein
functioning/ligand binding. During the analysis, we found that 47% of the
aromatic residues in GPCRs are interacting with sulfur-containing amino acids.
We then wondered if sulfur, the biggest essential element with fully filled 3p and
empty 3d orbitals, could be conferring additional properties to these residues
with respect to other residues. In order to further explore the nature of this
interactions in membrane proteins, we analyzed the complete Protein Data Bank
looking for interactions where these residues were involved, clustered them
geometrically, and applied quantum mechanical calculations to obtain energies.

This work resulted in two publications: Sulfur-containing amino acids in 7TMRs:
Molecular gears for pharmacology and function (3) and Analysis Of The
Interactions Of Sulfur-Containing Amino Acids in Membrane Proteins (4).
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GPCRSAS

GPCRSAS (G-protein coupled receptor sequence analysis and statistic) is a web
application, which takes advantage of the structural similarity among GPCRs
transmembrane regions to perform statistical analysis of sequence positions or
motifs within the transmembrane helices of GPCR A, B, C, and F classes. GPCRSAS
provides different types of analysis such as position/positions/range of positions
conservation, entropy, co-evolutionary (co-variance) and correlation analysis. All
this, applied to set of receptors selected through a hierarchical dropdown menu
with different scheme of classifications and their respective levels and sublevels.

The application is available at http://lmc.uab.cat/gpcrsas/ and the manuscript

“GPCR-SAS: G protein-coupled receptors Sequence Analysis and Statistics” is under
preparation for submission to Plos Computational Biology journal.

Selectivity in serotonin 5-HT7 receptor

The objective of this project was to determine the structural basis of selectivity of
a series of compounds towards 5-HT7. The difficulty to address this problem
comes from the high similarity between 5-HT7 and 5-HT1A receptors binding
site. Activation of 5-HT7 receptor has been related with nociceptive processing,
learning and memory. On the other hand, blockage of the receptor leads to an
antidepressant activity. The group of Maria L. Lopez-Rodriguez, from Universidad
Complutense de Madrid, synthetized the compounds and tested their affinity
towards 5-HT7 and 5-HT1A receptors. Compounds share two moieties and a
spacer of variable length. Results showed higher selectivity of the compounds
towards 5-HT7 receptor. Interestingly, compounds with spacer length equal or
longer than 6 carbons, become fully selective antagonists to 5-HT7. We proposed
these compounds are no longer able to occupy the whole orthosteric binding site,
triggering a reverse binding mode towards the extracellular entrance. This
binding mode, similar to the ergotamine binding in 5-HTip crystal structure,
involves the non-conserved extracellular part of the receptor thus providing full
selectivity. In order to further characterize the residues involved in recognition
as well as stability of the compounds, receptors were modeled, compounds
docked, and molecular dynamics simulations performed.
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This work resulted in a publication “The extracellular entrance provides selectivity
to serotonin 5-HT 7 receptor antagonists with antidepressant-like behavior in vivo”
published in Journal of Medicinal Chemistry (5).
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4.3 LigandFinder: A user-friendly virtual-screening web
server.

Abstract

LigandFinder is a flexible user-friendly web application that allows fast virtual
screening to find new (commercially available) compounds similar to a set of
compounds of known structure. It explores the chemical space of a database with
more than 20M compounds and has been designed for users with no
computational background, which can easily find new different compounds with
chemical features similar to the input compound(s). To our knowledge it is the
first free web service that allows the use of multiple ligands (instead of just one)
as input, of which it detects their shared chemical features and performs a 2D
virtual screening accordingly. Additionally, using the same tool a pre-computed
database of GPCRs ligands have been designed, thus allowing the users to quickly
explore new possible GPCRs ligands.

Introduction

The growth of available compounds databases and the advances in
computational performance has enhanced the role of virtual screening in the
process of the discovery of new pharmacologically active compounds. Indeed it
helps the drug discovery process to lower its cost and to boost the speed in
obtaining a hit compound (1, 2).

Virtual screening is generally classified in two main methods, depending on
whether the structure of the receptor is available (structure-based or SBVS) or
not (ligand-based or LBVS). SBVS involves the generation and docking of
hundreds of conformations of known ligands making the experiment efficient but
computationally expensive. On the other hand, among the ligand-based virtual
screening methods, which include pharmacophores, shaped-based similarity and
fingerprint similarity, those based on similarity comparison of compounds
properties (fingerprints) are computationally inexpensive and can be used to fast
explore huge databases (1). All these methods rely on the assumption that similar
molecules share a similar biological activity (3). Unfortunately all virtual

41




Development and application of computational
techniques to drug discovery and structure-function
relationships

screening methods need the use of often-expensive programs, designed to be
performed by users highly skilled in computational chemistry, making them
inaccessible to the vast scientific community.

Herein, we present a new web application, LigandFinder, which allows
computationally untrained chemists/biologists to perform a virtual screening of
the full ZINC database (4), the biggest free database of commercially available
compounds, using either one or a set of ligands as input. LigandFinder calculate
more than 150 chemical properties of each input ligand, detect those shared by
all input compounds and browse the full database in search of chemically similar
compounds. In few minutes a list of potential ligands is given as output, each one
identified by its ZINC id. The list of calculated parameters (see supplemental
table 2 for a detailed list) is highly focused on compounds’ chemical properties
and on their functional groups and includes constitutional descriptors, ring
descriptors and molecular properties. Advanced users will also be free to modify
the descriptors boundaries and adapt their search according to their knowledge
of the system. Additionally, a database of pre-calculated parameters for known
GPCRs ligands is available (classified by family, receptor and activity). This
database can be used to see statistics of ligand properties for desired receptors as
well as to search for similar, still unknown, compounds to a subset of receptor
ligands. This verified and known set of ligands was also used to validate our VS
algorithm, which performance is shown in supplementary table 1.

42




Results: LigandFinder

lLigandFinder is a flexible user-friendly virtual screening web application to find new ligands similar to one or more set of input compounds.
It explores the chemical space of a database of more than 20M commercially available compounds. Users can also explore pre-computed
IGPCRs ligands and search for similar compounds.
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SUBMIT SMILES

Figure 1. LigandFinder main page.

Methods
Dataset Building

3D structures were downloaded from ZINC database “ all clean” (2013-12-18)
and “all boutique” (2012-11-27) and parameterized using DRAGON6 (5)
(detailed list of parameters in Supplemental Material). The database was curated
removing erroneous molecules (duplicates and/or wrongly parameterized) and
by adding the formal charge to the parameter list. The GPCR database, was built
downloading ligands from IUPHAR/BPS database (October 2015) (6) and
organized by the receptor(s) they bind to, its sub-family, ligand activity (agonist
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or antagonist), type (small ligand or peptide). These ligands were converted to
3D structure using Babel (7), parameterized with DRAGON6 (5) and curated as
described above.

SUBMIT
PARAMETERS

BASIC

MW molecular weight ) Min Max
122.18 436.92

charge (lormal charge ) Min Max
1] 0

nBnz (number of benzene-like rings ) Min Max
1] 2

nHDon (number of donor atoms for H-bonds (N and O) ) Min Max
0 10

nHAcc (number of acceplor atoms for H-bonds (N,O.F) ) Min Max
1] 6

Figure 2. 3D structure and parameter limits for three example molecules.

Ligand Similarity Search

The set of input ligands allows building an “ideal ligand”, called centrolD, which
set of parameters will be used to browse our parameterized ZINC database (see
supplementary fig 1 and table 2). These parameters consist of ranges of values,
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based on observed input values. For example, input compound 1 has 3 hydrogen
acceptors (HA), compound 2 has 1 and compound 3 has 4: our centrolD’s HA
parameter will be 1-4 (2 being penalized since it is not observed). LigandFinder
allows the user to perform searches using three level of flexibility: strict, semi-

strict and flexible (with caveats in case the search’s output will results in too

many hits). For each parameter, strict search considers as range limits the lowest
and the maximum value observed in input compounds (as described in above

example).

S-14671

LY293284

lisuride

U92016A

3D STRUCTURE

LY293284

Parameter

MW
RBN
charge
nDB
nAB
nTB
nBnz

nHDon

238

117

LIGANDS STATISTICS

1.0

Parameter

Name
MW
RBN
charge
nDB
nAB
nTB

nBnz

SELECTED LIGAND PARAMETERS

Value

S-14671

396.580

Figure 3. Serotonin receptor A ligands summary. Top left square contains the list of ligands. Clicking
over the name changes right squares to the 3D structure (top) and parameter list (bottom) of the

selected ligand. Bottom left square shows average parameter values.
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Semi-strict search, suggested if strict search gives poor results, increases the
range limits of the five most likely parameters (probability of a parameter to be
different to zero) by * one unit. Finally, flexible search, suggested if the others
options give poor results or the user prefers a bigger list of compounds, modifies
all parameters limits by * one unit. Molecular weight is used as pre-filter to focus
the search due to computational resources performance. If the difference
between upper and lower molecular weight limits is less than 30M for strict
search, less than 50 for semi-strict search, and less than 60 for flexible search,
molecular weight limits are enhanced by *15M, #25M, and *30M from the
compounds’ MW means respectively.

Similarity

Global similarity between ligands and centrolD is calculated (equation a) as the
average of all parameters similarity. Single parameter similarity among hit
ligands and the centrolD is calculated as shown in eq. 1b, in which each
Tanimoto-like parameter’s similarity value is weighted by the distribution of
values observed in the input set of ligands.

S=%1"S @

S§=1-%(1—-L/nQi) * P ] )

Equation 1. a) Global similarity between a hit ligand and the centrolD (Query). b) Tanimoto similarity
weighted coefficient for each parameter comparison. Since centroid may have different values for each
property instead of a single one, parameter’s similarity must be weighed according to the values
observed in the query. P: is the theoretical probability for each event to occur in parameter i as
observed in the centrolD (Query), nQi is the sum of observed events for parameter i in query, and L is
the value of the event found in query ligand in parameter i. An Excel file with an example is provided in
Supplemental Material.
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Web interface

LigandFinder’s main page shows the general compound search option as default.
Ligands can be loaded both via a JSME chemical drawer (8) or pasted in smile
format. A window allows the user to define the type of search (strict, semi-strict,
and flexible), and sorting scheme of output ligands (by similarity or
dissimilarity). Once the ligands are submitted a new page with the 3D structure
representation of the molecules (9), their statistics and the CentrolD descriptors
limits is loaded. The user can either run the search or manually modify
descriptors’ limits. Once the calculation is finished, a list of ligands (up to 2000) is
given as result (2D sketch, ZINC id and link to zinc database) sorted either by
their similarity or dissimilarity with respect to the centrolD. Results are shown in
lists of 100 compounds, more molecules can be loaded clicking on “next 100”
button. Additionally, a pdf (with the molecules displayed on the page) and bash
(linus/MAC 0S) and microsoft vbscript scripts to download smiles or sdf files of
the whole search is provided to the user.
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Downioad sdf molecules -

RESULT

|
OH Et Me
Me ‘\/OH
OH

ZINC:01995128 SIMILARITY: 1.00 ZING:02031133 SIMILARITY: 1.00 ZINC01680785 SIMILARITY: 1.00

OH Me Me

OH
o

Et HO

ZINC:02506781 SIMILARITY: 1.00 ZINC:02039876 SIMILARITY: 1.00 ZING: 01680826 SIMILARITY: 1.00

Figure 4. Search results. Found ligands are sorted by their similarity with respect to the centrolD.

GPCRs’ “new hits” service offers the user the possibility to search for similar
compounds for GPCRs known ligands (small molecules). The user is required to
select the family, the receptor and ligand’s activity (agonist or antagonists). Upon
submission, a page with the available ligands, statistics, 3D conformer and
descriptors ranges for selected ligand is loaded. Users can select the ligands
required for the similarity search (if none is selected the search will run using all)
and select the type of search as previously described. The user can modify
centrolD’s limits or just submit the calculation. The result is given in the same
way as previously described. Once the configuration is set, the user can submit
advanced search to modify parameters limits or run directly the search.
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Conclusion

With LigandSuit we aim to offer the user the experience to run his own 2D virtual

screening without being specifically trained for it, still giving them the possibility

to modify all descriptors, which are simple, understandable and easy to set for

any user.
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Supplementary information

INPUT

{P1=x1; ..P150=X150} {P1=X1; ..Piso=X1s0} {P1=X1;..P1so=X1s0} {Py=x1; ..P1s0=Xus0}

{P1= min(x;)-max(x;); P2= min(x;)-max(xz); ... P1so=min(x1s¢)-max(Xise) }

CentrolD modifier

{s=3"5}

{si=1-Z[1-L/nQ;*P }

SIMILARITY

Supplementary Figure 1. Flowchart of LigandFinder virtual screening algorithm.
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agonists

agonists

ee]

11 14 18

antagonists

Supplementary tablel. Compound retrieval using 3, 6 and 9 randomly selected ligands as
training set from a total number of ligands (last column) reported by IUPHAR to bind 3
GPCR receptors (Adenosine receptor A2 agonists, adrenergic beta 2 agonists and
Tachykinin Receptor 1 antagonists).

Parameter Description

MW molecular weight

RBN number of rotatable bonds

charge formal charge

nDB number of double bonds

nAB number of aromatic bonds

nTB number of triple bonds

nBnz number of benzene-like rings
nHDon number of donor atoms for H-bonds (N and O)
nHAcc number of acceptor atoms for H-bonds (N,0,F)
nX number of halogen atoms

nR0O3 number of 3-membered rings

nR04 number of 4-membered rings

nRO5 number of 5-membered rings

nR06 number of 6-membered rings

nRO7 number of 7-membered rings

nR09 number of 9-membered rings

nR10 number of 10-membered rings
nR11 number of 11-membered rings
nR12 number of 12-membered rings
nR=Cp number of terminal primary C(sp2)
nR=Cs number of aliphatic secondary C(sp2)
nR=Ct number of aliphatic tertiary C(sp2)
n=C= number of allenes groups
nR#CH/X number of terminal C(sp)

nR#C- number of non-terminal C(sp)
nROCN number of cyanates (aliphatic)
nArOCN number of cyanates (aromatic)
nRNCO number of isocyanates (aliphatic)
nArNCO number of isocyanates (aromatic)
nRSCN number of thiocyanates (aliphatic)
nArSCN number of thiocyanates (aromatic)
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nRNCS number of isothiocyanates (aliphatic)
nArNCS number of isothiocyanates (aromatic)
nRCOOH number of carboxylic acids (aliphatic)
nArCOOH number of carboxylic acids (aromatic)
nRCOOR number of esters (aliphatic)

nArCOOR number of esters (aromatic)

nRCONH2 number of primary amides (aliphatic)
nArCONH2 number of primary amides (aromatic)
nRCONHR number of secondary amides (aliphatic)
nArCONHR number of secondary amides (aromatic)
nRCONR2 number of tertiary amides (aliphatic)
nArCONR2 number of tertiary amides (aromatic)
nROCON number of (thio-) carbamates (aliphatic)
nArOCON number of (thio-) carbamates (aromatic)
nRCOX number of acyl halogenides (aliphatic)
nArCOX number of acyl halogenides (aromatic)
nRCSOH number of thioacids (aliphatic)
nArCSOH number of thioacids (aromatic)

nRCSSH number of dithioacids (aliphatic)
nArCSSH number of dithioacids (aromatic)
nRCOSR number of thioesters (aliphatic)
nArCOSR number of thioesters (aromatic)
nRCSSR number of dithioesters (aliphatic)
nArCSSR number of dithioesters (aromatic)
nRCHO number of aldehydes (aliphatic)
nArCHO number of aldehydes (aromatic)

nRCO number of ketones (aliphatic)

nArCO number of ketones (aromatic)

nCONN number of urea (-thio) derivatives
nC=0(0)2 number of carbonate (-thio) derivatives
nN=C-N< number of amidine derivatives
nC(=N)N2 number of guanidine derivatives
nRC=N number of imines (aliphatic)

nArC=N number of imines (aromatic)

nRCNO number of oximes (aliphatic)

nArCNO number of oximes (aromatic)

nRNH2 number of primary amines (aliphatic)
nArNH2 number of primary amines (aromatic)
nRNHR number of secondary amines (aliphatic)
nArNHR number of secondary amines (aromatic)
nRNR2 number of tertiary amines (aliphatic)
nArNR2 number of tertiary amines (aromatic)
nN-N number of N hydrazines

nN=N number of N azo-derivatives

nRCN number of nitriles (aliphatic)

nArCN number of nitriles (aromatic)

nN+ number of positively charged N

nNq number of quaternary N

nRNHO number of hydroxylamines (aliphatic)
nArNHO number of hydroxylamines (aromatic)
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nRNNOx number of N-nitroso groups (aliphatic)
nArNNOx number of N-nitroso groups (aromatic)
nRNO number of nitroso groups (aliphatic)
nArNO number of nitroso groups (aromatic)
nRNO2 number of nitro groups (aliphatic)
nArNO2 number of nitro groups (aromatic)
nN(CO0)2 number of imides (-thio)

nC=N-N< number of hydrazones

nROH number of hydroxyl groups

nArOH number of aromatic hydroxyls

nOHp number of primary alcohols

nOHs number of secondary alcohols

nOHt number of tertiary alcohols

nROR number of ethers (aliphatic)

nArOR number of ethers (aromatic)

nROX number of hypohalogenides (aliphatic)
nArOX number of hypohalogenides (aromatic)
n0(C=0)2 number of anhydrides (-thio)

nH20 number of water molecules

nSH number of thiols

nC=S number of thioketones

nRSR number of sulfides

nRSSR number of disulfides

nSO number of sulfoxides

nS(=0)2 number of sulfones

nSOH number of sulfenic (thio-) acids

nSOOH number of sulfinic (thio-/dithio-) acids
nSO20H number of sulfonic (thio-/dithio-) acids
nSO30H number of sulfuric (thio-/dithio-) acids
nS02 number of sulfites (thio-/dithio-)

nS03 number of sulfonates (thio-/dithio-)
nS04 number of sulfates (thio-/dithio-)
nSO2N number of sulfonamides (thio-/dithio-)
nPO3 number of phosphites/thiophosphites
nP04 number of phosphates/thiophosphates
nPR3 number of phosphanes

nP(=0)02R number of phosphonates (thio-)
nP(=0)R3/nPR5 number of phosphoranes (thio-)
nCH2RX number of CH2RX

nCHR2X number of CHR2X

nCR3X number of CR3X

nR=CHX number of R=CHX

nR=CRX number of R=CRX

nR#CX number of R#CX

nCHRX2 number of CHRX2

nCR2X2 number of CR2X2

nR=CX2 number of R=CX2

nCRX3 number of CRX3

nArX number of X on aromatic ring
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nCXr

nCXr=

nCconjX
nAziridines
nOxiranes
nThiranes
nAzetidines
nOxetanes
nThioethanes
nBeta-Lactams
nPyrrolidines
nOxolanes
ntH-Thiophenes
nPyrroles
nPyrazoles
nlmidazoles
nFuranes
nThiophenes
nOxazoles
nlsoxazoles
nThiazoles
nlsothiazoles
nTriazoles
nPyridines
nPyridazines
nPyrimidines
nPyrazines
n135-Triazines
nl124-Triazines

number of X on ring C(sp3)
number of X on ring C(sp2)
number of X on exo-conjugated C
number of Aziridines
number of Oxiranes
number of Thiranes
number of Azetidines
number of Oxetanes
number of Thioethanes
number of Beta-Lactams
number of Pyrrolidines
number of Oxolanes
number of tetrahydro-thiophenes
number of Pyrroles
number of Pyrazoles
number of Imidazoles
number of Furanes
number of Thiophenes
number of Oxazoles
number of Isoxazoles
number of Thiazoles
number of Isothiazoles
number of Triazoles
number of Pyridines
number of Pyridazines
number of Pyrimidines
number of Pyrazines
number of 1-3-5-Triazines
number of 1-2-4-Triazines

Supplementary table 2. List of Dragon6’s parameters used as fingerprints in our database.

57




Development and application of computational
techniques to drug discovery and structure-function
relationships

58




Results: Sulfur-containing amino acids y\

Part |

4.4 Sulfur-containing amino acids

PART I

Sulfur-containing amino acids in 7TMRs: molecular gears
for pharmacology and function

Abstract

Seven-transmembrane receptors (7TMRs) mediate the majority of
physiological responses to hormones and neurotransmitters in higher organisms.
Tertiary structure stability and activation of these versatile membrane proteins
require formation or disruption of complex networks of well-recognized
interactions (such as H-bonds, ionic or aromatic-aromatic) but also of other type
of interactions which have been less studied. In this review article we compile
evidences from crystal structure, biophysical and site-directed mutagenesis data
that indicate or support the importance of interactions involving Met and Cys in
7TMRs in terms of pharmacology and function. We show examples of Met/Cys-
aromatic and Met-Met interactions participating in ligand binding, in tuning the
orientation of functionally important aromatic residues during activation or even
in modulating the type of signaling response. Collectively, data presented enlarge
the repertoire of interactions governing 7TMR functioning.

General considerations about structural features of 7TMRs

7TMRs, also known as G protein-coupled receptors (GPCRs), mediate
nearly all-human cellular responses to hormones and neurotransmitters.
Therefore, they are one of the most attractive target families for drug discovery
and already comprise about 30% of current therapeutic agents on the market
Overington et al. (1). Significant advances in crystallization of 7TMRs have
permitted elucidation of the structures of many receptors (2-22). These
represent invaluable tools for understanding how 7TMRs function at residue and
molecular levels. There is considerable evidence that, despite a remarkable
diversity in ligands, the ligand-encoded extracellular signal is propagated from
the binding site into intracellular domains through a common activation
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mechanism. These would subsequently trigger further signaling pathways. For
example, when 7TMRs activate G proteins, an outward tilt of the intracellular
part of transmembrane (TM) 6 occurs together with a movement of TM5 towards
TM6 and a side-chain extension of Arg350 within the (E/D)RY motif in TM3
towards the protein core, to interact with the highly conserved Tyr558 in TM5 and
with Tyr753 of the NPxxY motif in TM7 (superscripts refers to the Ballesteros and
Weinstein numbering scheme (23)) (24-28). All these steps require formation
and breakage of non-covalent interactions such as ionic, hydrogen bond and
dispersion-stabilized interactions (including aliphatic-aliphatic, aromatic-
aromatic, aromatic-aliphatic), most of which are well described (glossary and
Table 1). There are, however, other types of dispersive interactions present in
7TMRs that are yet not well characterized and less recognized. This is the case of
interactions involving sulfur-containing amino acids (Cys and Met) and in
particular between Met/Cys and aromatic and between two Met or Cys residues.
The nature of such interactions is primarily dispersive, although it is generally
considered to involve a significant electrostatic component as well (29). In fact,
the range of geometries observed for these interactions in crystal structures
reveals the existence of contributions with different physicochemical origin: S---m
(in Met-aromatic and Cys-aromatic), C-H---m interactions (in Met-aromatic), C-
H:--S hydrogen bonds (in Met-Met, Cys-aromatic and Met-aromatic), S-H:--S
hydrogen bonds (in Cys-Cys) and S-H:-m (in Cys-aromatic) (30-36). It is
important to outline that the large polarizability of sulfur enhances also the
interactions involving -CHz- and -CHs groups attached to sulfur compared to
aliphatic chains (as for instance in Ile or Leu).
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ion-ion ion charge 20-40 1/r -NH3z* -+ -00C-
ion-dipole ion charge, dipole ) . _
(H-bond) magnitude o2 L0 R galCecs
jipuie- ; dipole magnitude, 2 113 ) RS
b:)li:zi; (o electronegativity .

dipole- . q

e — Dol moeniude 0525 1/rt -OH - -CHs
e polarizability

dispersion polarizability 0.1-3 1/ré -CHz -+ -CH3

Table 1. Summary of Intermolecular Forces in Proteins

In the late ‘70s, Morgan and coworkers observed a high frequency of contacts
between sulfur containing residues and aromatic residues in proteins, and even
found large stacked arrangements composed of aromatic and Met or Cys residues
(37). Further studies also demonstrated that Cys/Met-aromatic interactions were
quite common in protein crystal structures and that Met was as likely as Phe or
Trp to be near another Trp, with the majority of the interactions facing the ring
(30-32). Recently, several attempts to determine binding energies for model
systems representing sulfur-aromatic interactions have been performed
(33,34,38). From experimental studies of modeled peptides in water, sulfur-
aromatic interactions were estimated to contribute up to ~2 kcal/mol (39).
However, these interactions are probably even stronger when they occur in non-
polar environments, as for instance the protein interior. Recent high-level ab
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initio calculations gave interaction energies up to ~3-3.5 kcal/mol for side-chain
analogs of Met-Phe, Cys-Phe, Cys-Cys and Met-Met interactions (Gémez-Tamayo,
J.C., et al,, in preparation). This puts these interactions at similar level (and even
higher) in terms of strength to other commonly accepted interactions types such
as aromatic-aromatic (the energy of interaction between two Phe residues is 2.4
kcal/mol (40-42)).

receptor Met-Aro | Met-Met H Cys-Aro ‘ Cys-Cys H Cys-Met ‘

rhodopsin bovine 1GZM® 25 2 17 0 1 45
rhodopsin squid 2273® 22 7 12 1 2 44
B2 adrenergic human 2RH16) 9 3 11 0 2 25
B1 adrenergic turkey 2VT4() 9 2 7 0 2 20
H1 histamine human 3RZE® 13 1 11 0 8] 28
D3 dopamine human 3PBL(®) 9 1 11 0 0 21
M2 muscarinic human 3UONCO) 9 3 12 1 1 26
M3 muscarinic rat 4DAJaD 8 0 10 1 0 19
KOR opioid human 4DJH(2) 18 0 14 0 2 34
1OR opioid R 4DKL(13) 18 0 15 0 2 35
S0R opioid R 4EA3014) 12 0 12 0 8] 27
NO/FQ opioid human 4EJ405) 14 0 10 0 1 25
Aza adenosine human 4EIY06) 12 1 18 0 1 32
CXCR4 chemokine human 30DU19) 3 0 10 0 0 13
S;Eiilgo“pi a Lo 3V2Y00 9 1 12 0 0 22
:gfritensin e 4GRVED 17 1 12 0 2 32
apgﬁlla:’:é’tease' human 3VW702) 9 0 16 0 0 25

Total 216 22 210 3 224 473

Table 2. List of all interactions involving sulfur containing amino acids in the crystal structures of
7TMRs.

Interactions involving sulfur-containing amino acids in 7TMR crystal
structures

The analysis of the seventeen 7TMR crystal structures corresponding to distinct
members of the family available revealed the existence of 216 Met-aromatic, 210
Cys-aromatic, 22 Met-Met, 22 Cys-Met and 3 Cys-Cys (excluding disulfide)
interactions (Table 2 and Table 3). This means that, on average, each receptor
contains 25 sulfur-aromatic and 3 sulfur-sulfur interactions. The low prevalence
of Cys-Cys interactions is due to involvement of Cys in disulfide bridges or
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hydrogen bond interactions and also to its shorter side-chain (and thus, smaller
surface accessibility) compared to Met. Remarkably, it turns out that 47% of the
aromatic residues present in 7TMRs are involved in interactions with Met and
Cys residues, mostly Met-Phe, Met-Tyr and Cys-Phe pairs. Furthermore, Met/Cys-
aromatic and Met/Cys-Met/Cys interactions in 7TMRs are often alternated with
aromatic-aromatic interactions, forming large stacked arrangements such as
those described by Morgan (37). Although their functional significance is not fully
understood in 7TMRs, it is likely that these may constitute molecular machineries
stabilizing specific receptor conformations or transmitting structural changes
from the extracellular to the cytoplasmic interface, promoting or inhibiting
binding to G proteins and/or other signaling proteins.

TM1
PDB id® PDB id®
1.3 M/W 1GZM 1.42 1.38 C/F 2773
1.34
7.4 C/F 3VW7 Cc/Y 3V2Y
2.57
1.31 M/W 2RH1 2VT4 M/F 4DJH
1.35 1.43
1.39 M/M 2RH1 2VT4 2.58 M/F 4GRV
1.35 M/M 2RH1 2VT4 7.4 C/W 3RZE
1.38 M/Y 1GZM 1.4 M/F 1GZM
1.44
2.57 M/Y 4DJH 1.47 M/F 1GZM
M/F 1GZM 1.44 M/F 1GZM
139 2.58 1.47
’ M/Y 3PBL 4GRV 2.51 C/F 2773
3UON 4DJH
M/F 1GZM 1.54 2.44 M/F 4EA3 4E}4
v M/W 2RH1 2VT4 2.43 M/F 3VW7
1.57
C/Y 3VW7 7.53 M/Y 30DU
Table 3 ....
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2.38 2.42 M/Y 30DU 1.39 M/Y 4DJH
2.4 M/Y 3V2Y c/Y 3V2Y
2.39 1.43
2.57
2.42 M/F 3V2Y M/F 4DJH
4.39 M/H 2773 3.32 M/Y 3V2Y
2.41 c/Y 3PBL 7.43 M/Y 4DJH
4.43 M/F 2773 1.39 M/F 1GZM
1.57 M/F 3VW7
2.43
7.53 M/Y 3VW7 2.53 M/F 1GZM
2.44 C/F 3UON 1.39 M/Y 3PBL 4GRV
248 3.38 M/F 2773 2.58 1.43 M/F 4GRV
3RZE 3UON
4.5 c/W 3UON 7.4 M/W 4DA]
3PBL 3RZE
2.58 M/F 1GZM 7.43 M/Y 3UON 4DA]
4GRV
3.31 M/F 1GZM 3.24 c/W 3PBL
2.53 2.60
6.48 M/W  1GZM 2RH1 3.28 M/W 3RZE
7.43 M/Y 2RH1 3.28 M/Y 2773
2.62
7.46 C/F 30DU 3VW7 7.4 M/M 2773
2.66 1.32 c/Y 2773
Table 3 ....
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323 C/H 4EIY 332 M/F 3VW7
3.22 c/C 4EIY 333  M/Y 3VW7 4DJH 4EJ4
3.25
C/F 2773 M/Y 3VW7
3.37
324 26 C/W 3PBL M/F 4DJH 4EA3 4EJ4
264 C/Y 3RZE 547 M/F 4EA3
c/C 4EIY 3.36 C/F 3PBL
3.22 6.44
C/F 2773 M/F 4EA3
3.25 c/W 2RH1 2VT4 c/W 3PBL
3.28
C/F 3PBL cag M/F 3VW7
C/H 30DU M/W 4DJH 4EA3 4EJ4
3.29
c/Y 4GRV C/F 3PBL
6.52
53  C/C 2RH1 2VT4 M/H 4DJH 4EJ4
330 537 C/Y 4EIY 248 M/F 2773
2.53 M/F 1GZM o BE5 NE
331 327 M/F 3RZE 45 M/W 2773
454 MJF 3RZE 3.44 C/W 3PBL
257 M/Y 3V2Y 3.45 M/M 2773
3.32
336 M/F 3VW7 341 448 M/F 2773
335 M/M 3PBL 449 C/F 3V2Y 4EIY
M/W 3PBL 452 M/W 2773
4.5
2 c/W 3VW7 M/W 1GZM
454 MJF 3PBL 6.44 M/F 2773 3VW7
3.43
461 M/Y 4E]4 6.48 M/F 3VW7
335 334 M/M 3PBL 3.44 341 C/W 3PBL
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338 M/F 2773 554 M/F 3RZE
C/W  2RH12VT4 4GRV M/F 2773
45 2.42
M/W 3PBL M/Y ADJH 4EJ4
345 341 M/M 2773
445 M/M 2773
448 M/F
242 MJY ADJH 4EA3 4EJ4
3.46
753 M/Y 4EA3
557 C/F 3RZE
3.47
558  C/Y 3RZE
354 351 M/Y 3v2Y
355 351 C/Y  1GZM 4EA3 4EJ4 4GRV

Table 3 ..
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TM4
PDB idb res.a PDB idb
4.37 2.42 M/F 2773 2VT4 3.41 M/F 2773
4.43 M/M 2773 49 3.45 M/F 2773
4.39 241 M/H 2773 3.41 C/F 3V2Y 4EIY
C/Y 3PBL 49 4.5 C/W 3v2y
241 M/F 2773 3.41 M/W 1GZM
M/M 3UON 4.52 4.48 M/F 1GZM
4.43 4.44
M/H 1GZM 5.46 M/H 1GZM
4.45 M/M 3UON 5.38 C/F 1GZM
2.42 M/F 2773 4.56 5.41 C/Y 1GZM
4.45 3.45 M/M 2773 5.46 C/H 1GZM
4.37 M/M 2773 4.54 C/F 3PBL
M/M 3UON 4.58 C/F 3PBL
441 4.62
4.44 M/H 1GZM M/F 2VT4
4.45 M/M 3UON 4.6 3.29 M/Y 4GRV
2.42 M/F 3UON 4DA] 3.23 M/H 4EIY
4.45 441 M/M 3UON 4.61 3.27 M/F 4EIY
4.44 M/M 3UON 3.34 M/Y 4E]4
2.42 C/Y 3Vw7 3.23 M/F 2VT4
4.46 2.45 C/H 3Vw7 4.62 C/F 3PBL
4.5 C/W 3Vw7 458 M/F 2VT4
4.63 5.38 M/F 4EA3
4.64 5.41 C/W 2773
Table 3 ....
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2.64 C/H 2RH1 3.33 C/F 3v2y
>3 3.28 C/W  2RH12VT4 5.39 c/Y 3v2y
5.38 M/M 4EIY 5.42 C/F 3v2y
5.35 6.59 M/F 4EIY >4 5.42 M/F 1GZM
7.29 M/H 4EIY 5.47 C/F 3v2y
5.38 3.33 M/Y 4DJH 6.56 C/F 4EIY
456 C/F 1GZM 5.4 M/F 30DU
4.63 M/F 4EA3 5.44 5.45 M/F 4GRV
5.35 M/M 4EIY 6.56 C/F 4EIY
M/F 4DJH 3.37 M/Y 4GRV
>37 M/Y 4EIY 5.41 c/p  ADIH4EA3
5.45 4EJ4
M/F 3RZE 5.44 M/F 4GRV
>4 C/F 4EA3 5.49 M/F 4GRV
5.42 M/F 1GZM 452 M/H 1GZM
6.52 M/H 4EIY 456 C/H 1GZM
456 C/W 2273 >4 5.41 C/F 4EIY
456 c/Y 1GZM 5.42 M/H 1GZM
4.64 C/W 2273 5.47 M/F 4GRV
M/W 3RZE >l 6.44 M/F 4GRV
>37 C/F 4DJH 3.44 M/F 3RZE
5.41
o M/F 3RZE 5.58 M/Y 2RH41Ef’$ ON
C/F 4EA3 5.54 6.41 M/M ZRglezg T4
2RH1 2VT4
5.42 M/Y 1GZM 6.44 M/F  3RZE 3UON
4DAJ
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4DJH 4EA3
5.45 C/F 4E}4 3.47 C/F 3RZE
1GZM 2773
5.46 C/F 4EIY C/Y  30DU4DJH
557 3.51 4EA3 4EJ4
3.37 M/F 2273 C/F 3VW7
5.38 M/F 1GZM 5.56 C/F  1GZIM2Z73
5.41 M/Y 1GZM 5.58 c/Y 4DJH
542 M/F 1GZM 3.51 M/Y 4DTE;¥fA3
5.43 5.61 DI 453
C/F 3v2Y 5.58 M/Y SE]4
5.46 M/H 1GZM 5.63 5.59 M/F 27273
Table 3 ...

PDB idb PDB idb
3UON
6.27 6.26 M/H 3RZE 6.51 M/Y o
6.4 M/M 1GZM 7.3 C/F 3RZE
1GZM
7.53 R . 7.34 M/Y 4DAJ
6.36 :
3UON
. M/M 1GZM 7.35 M/W o
: 4DJH 4EA3
M/F 3PBL 7.38 C/F e
6.4 6.36 M/M 1GZM 7.39 M/Y 3UON
2RH1
5.54 M/M oty 3o 5.43 C/F 4EIY
6.41 2RH1
5.58 M/Y SRZE e 5.44 C/F 4EIY
6.42 C/F 3VW7 5.48 M/Y 3RZE
6.42 6.41 C/F 3VW7 6.6 C/F 4EIY
1GZM
c/w  SPBL3V2Y 6.61 C/F 4EIY
6.47 6.48 4DJH 4EA3 | ¢ 57
4EJ4 4GRV
C/F 3VW7 7.3 M/F 4GRV
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7.41 C/F 1GZM 7.31 M/Y 4GRV
7.44 C/F 30DU 7.34 M/F 4GRV
c/Y 1GZM 5.35 M/F 4EIY
748 C/F 2RH1 6.59 6.58 C/F 4GRV
6.6 C/Y 4GRV
6.57 C/F 4EIY
6.61 6.6 C/F 3UON
7.29 c/C 3V2Y

70

5.35 M/H 4E1Y 1.43 c/W 3RZE
7.29 3RZE
6.61 c/C 3v2y 2.58 M/W 3UON
4DA]
7.35 M/H 4E1Y 2.62 M/M 2773
6.54 C/F 3RZE 7.36 M/W 3RZE
7.30
3UON
6.57 M/F 4GRV 6.48 c/W 4DAJ
3UON
6.51 M/Y 1GZM 7.42 6.51 c/Y 4DAJ
3UON
6.54 M/W 4DA] 7.39 c/Y 4DA]
7.35
30DU
7.29 M/H 4E1Y 2.53 C/F VW7
7.36 M/Y  4EIY4GRV | 746 7.43 C/F 30DU
7.33 M/Y 4GRV 7.45 C/H 30DU
M/Y 4E1Y 7.47 7.44 C/F 30DU
7.36 7.35
M/Y 4GRV 7.51 7.48 M/H 2773
7.4 M/W 3RZE 7.53 c/Y 3UON
7.52
4DJH 4EA3 3UON
6.54 C/F 7.56 c/C
738 / 4EJ4 / 4DA]
7.37 C/F 4DJH M/M 1GZM
7.56 6.36
7.4 1.34 C/F 3VW7 M/F 3PBL
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1.38 M/F 2773 6.39 C/F 3RZE
3UON
M/F 1GZM 7.52 c/C 4DAJ
1.39 2RH1
sy 2VT4
C/Y 3VW7

Table 3. List of all interactions involving sulfur containing amino acids in the crystal
structures of 7TMRs. @ Interactions were considered for all pairs of residues having at least
two side-chain atoms closer than 6.0 A. Such large distance cutoff is justified by the long-
range nature of interactions involving sulfur and aromatic group

One of the most remarkable examples of such a stacked arrangement can be
found in the 82 adrenergic receptor ($2AR). Specifically, a network of interactions
extends from Cys116335 to Trp32131 and involves consecutive Met-aromatic,
Met/Cys-Met and aromatic-aromatic interactions besides the ligand binding site
(Figure 1a). In the core of this network Tyr316743 participates in a Met-aromatic
interaction with Met82253 (see below) and also forms a hydrogen bond with
Asp113332, the most critical residue for ligand binding in amine receptors. This
suggests that this series of interaction could serve to modulate ligand binding,
being sensitive for instance to allosteric modulators (43). In the 31AR, M82253V
mutation in the analogous residue had a thermo-stabilizing effect and was
employed to successfully crystallize the receptor (44). This could be explained by
a different conformation of Tyr316743 that would restrain the receptor in an
inactive state. Interestingly, crystal structures of histamine H1, dopamine D3,
muscarinic M2, muscarinic M3 and kOR feature Met258 (instead of Met253)
interacting with Tyr743. Figure 1b shows that residue Met83258 in D3R structure
can clearly modulate the conformation of Tyr373743 in the same manner as
Met253in 31- and B2-ARs.

The crystal structure of squid rhodopsin contains also a large patch of
consecutive interactions involving various Met-Met extending across the
membrane along TM4 and reaching intracellular loop (ICL) 2 (Figure 1c). In the
same structure, a group of three Met residues connects C-terminal region of the
unusually large TM5 and ICL2 featuring a triangle of Met-Met interactions that
involves also H230 (Figure 1d).

In the following subsections we will show that interactions involving this type of
residues are often present in the available repertoire of crystal structures of
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7TMRs and are involved in critical aspects of receptor pharmacology and
functioning such as receptor-ligand interactions or activation micro-switches.

Met-aromatic interactions relevant for ligand binding

Various examples of Met-Aromatic interactions are involved in ligand
recognition. Figure 2a displays the binding of JDTic to the k-opioid receptor (OR)
as a representative model for OR/ligand complexes. It can be seen that besides
Asp138332 (the main anchoring point for opioid ligands), Met14233¢ forms a Met-
aromatic interaction with the ligand that might contribute significantly to binding
energy and might equally be important in setting ligand orientation.
Interestingly, Met336 is fully conserved in OR of all species and the four structures
for this subfamily of receptors available exhibit similar Met-aromatic interactions
with their respective ligands (12-15). In fact, it is known from structure/activity
relationship studies that the aromatic moiety of peptidic or non-peptidic opioid
ligands involved in this interaction is crucial for recognition by cognate receptors
(45,46). Sequence analysis of human Class A 7TMRs (performed with the
program GMoS, available at http://Imc.uab.cat/gmos) shows that Met336 is
present in 31 additional 7TMRs for peptides and 9 7TMRs for nucleotides. In the
human melanocyte-stimulating hormone receptor, Met128336L substitution
significantly decreased agonist potency for an endogenous peptide analog (47).
This suggests that the recognition of ligand aromatic residues by Met3:36 could
also be relevant in additional receptors.
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Figure 1. Examples of large Met/Cys-
aromatic and Met/Cys-Met interactions
patches taken from 7TMRs crystal
structures. a) A patch of interactions connect
Asp113332 (the most important ligand binding
element) and the extracellular parts of TMs 1
and 7 in B2AR bound to carazolol (light-grey;
PDB code: 2RH1 (5)) and BI-167107 (colored;
PDB code: 3SN6 (6)). b) The crystal structure of
D3R in complex with eticlopride reveals the
presence of two sulfur-aromatic interactions in
the vicinity of the ligand binding pocket:
Cys114336-Trp342648 and Met82258-Y316743
(PDB code: 3PBL (9)). ¢) A patch of interactions
in squid rhodopsin propagates along TM4
involving residues from TMs 2, 3 and 5 and
from ICL2 (PDB code: 2273 (4)). d) A cluster of
three Met-Met (involving also H230) in the
intracellular part of TM5 and ICL2 in squid
rhodopsin (PDB code: 2Z73 (4)). Pieces of TM
helices and loops are shown as cartoon,
relevant residues are shown as sticks and
sulfur-containing residues as balls and sticks.
The color code for helices and loops is TM1:
cyan, TM2: gold, TM3: red, TM5: green, TM6:
blue, TM7: pale-red, loops: grey). Ligands are
shown in pale-yellow with non-carbon atoms
colored by atom type.
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The large repertoire of A;a adenosine receptor structures offers also beautiful
examples of Met-aromatic interactions within the orthosteric binding sites
(17,18). Specifically, Met117538 and Met270735 interact with all crystallized A2aR
ligands. Figure 2b displays the binding mode for agonist ZM241385 to AzaR as a
representative case. Interestingly, M270735] mutation in dog AiR (the only A;R
receptor containing Met at this position) changed binding affinities of specific
agonist and antagonists ligands (48). The sequence analysis shows that Met538 is
conserved in 85% adenosine receptors and 12% purinoceptors, whereas Met7-35
is mostly found in A;-type receptors (92% conserved), in 13% peptide receptors
and 44% rhodopsins. In angiotensin II type 1 receptor, mutations of residue
Met284735 to Ala or Cys resulted in significantly impaired binding of antagonists
(49,50).

The structure of the sphingosine 1-phosphate receptor 1 (S1PR1) in complex
with a sphingolipid mimic (20) provides an additional example of Met-aromatic
interaction between receptor and ligand (Figure 2c). Here the ligand central
phenyl ring interacts with Met124332, The sequence analysis shows that this
amino acid is also present in most of prostanoid receptors, SIPR3, melatonin
MT},, and cholecystokinin receptors 1 and 2 (CCK1R and CCK2R). In CCK1R and
CCK2R Met3.32 is a critical residue for binding and activation (see below).

Met-Met and Met-aromatic interactions in 7TMR activation

In B2ARs, comparison between carazolol and BI-167107 bound structures
(representing inactive and active-like states, respectively) reveals a
rearrangement of TM5-TM6 interface that involves two Met residues (Met215554
and Met279641) that accompany TM6 opening during activation (5,6). These
residues are part of a network of aromatic-aromatic and Met-aromatic
interactions connecting residues Tyr219558 and Phe282644 This serves
ultimately to link the functionally relevant Trp286¢48 and Tyr219558, producing a
conformational change in Tyr219558 (Figure 3a). The importance of interactions
involving Met215554 and Met279¢4! is supported by their simultaneous presence
in more than one third of the amine receptor sequences and in more than half of
the chemokine receptors.
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(b) E169°

i
M117°%

F16

Az RIZM241385

S1PR1/MLO56

M2707.35

Figure 2. Met-aromatic interactions between
ligand and receptor in 7TMRs crystal
structures. a) The four opioid receptors
(kOR/]DTic displayed  as
representative) exhibit an interaction between
Met142336 and an aromatic group in the ligand
(PDB code: 4DKL (12)). b) Two Met-aromatic
interactions involving Met117538 and Met2707:35
are present in the A24/ZMA241385 complex (PDB
code: 4EIY (16)). c¢) The crystal structure of
S1PR1 in complex with a sphingolipid mimic
reveals the presence of an interaction between
Met124332 and an aromatic group in the ligand
(PDB code: 3V2Y (20)). Protein representations
and colors are the same as in Figure 1. The
inactive structure is shown in light-grey.

structure is

Despite Met554-Pheé44 pair is not present in rhodopsins, comparison between
dark-state bovine rhodopsin and metarhodopsin II structures reveals also
changes in Met-aromatic and Met-Met interactions between TMs 5 and 6 (Figure
3b) (2,3). In the dark-state structure, Met2536:36 interacts with Tyr3017:53 (of the
NPxxY motif), whereas Met257640 (located one turn after Met25363¢) does not
participate in any Met-aromatic interaction. In metarhodopsin II, Tyr3017:53 has
lost the interaction with Met253636 and becomes the partner of Met257649. In
turn, Met257640 interacts also with Tyr223558 and forms a Met-Met interaction
with Met253¢36, The importance of Met257640 is manifested by the observation
that M257640Y mutation is a constitutively active receptor (51). The recent
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crystal structure of this mutant receptor shows that the two residues (Met and
Tyr) are able to interact with Tyr223558 and Tyr301753 in a similar manner, with
only minor changes to the overall structure (52). This triad of residues has been
proposed to be responsible for breaking the Arg1353-50-Glu247¢30 ionic lock and
for opening up the G-protein binding site (27). The most notable difference is the
formation of a hydrogen bond between Tyr257640 and Arg135350 that would be
the responsible for displacing the equilibrium from inactive to active state.
Interestingly, the sequence analysis shows that Met6é3¢ and Met640 are
simultaneously present in 85% of vertebrate rhodopsins, a fact that reinforces
the functional role of the two amino acids. In addition, Met636 alone is present in
20% human 7TMRs, mostly peptide receptors.

(a) Wasshe Figure 3. Met-aromatic and Met-Met
N ’ interactions changing from inactive to active-

like crystal structures. a) Changes in the

F282¢% conformations of Met21555¢ and Met279641 in

3SN6 (6)). b, c) Changes on Met-Met and Met-
aromatic interactions (Met257640 and Met2536.36)
in rhodopsin structures in the cytoplasmic side of
B2AR Y¥219%% TMs 5-7 (b) and around retinal’s binding site
. (PDB codes: 1GZM (2) and 3PQR (3)). Protein
(b) representations and colors are the same as in
M257¢4 Figure 1. The inactive structures are shown with

light-grey
M253%%¢ ’J_,-
% Y3017

M B2AR crystal structures that could modulate the
g‘% Risias TM5/TM6 interface (PDB codes: 2RH1 (5) and

M279%4

¥22355%
bRho
m2887%%
)Yﬂn

F20854

Y268°5' G )
RS M26754
H21154¢

bRho/retinal
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Also in rhodopsin, Met207542 and Met2887:35 interact with various aromatic
residues surrounding retinal’s f-ionone ring (Figure 3c). The fact that Met735 is
common to AzaR and that the side-chain of Met207542 is able to reach the same
location as Met538 in A2aR suggests an analogous role for these residues in the
two receptors (see Figure 2b). In the inactive bovine rhodopsin structure,
Met207542 interacts with Phe208543 and Tyr191 in ECL2, whereas Met288735 is
surrounded by Tyr268651, Tyr190 and Tyr191. In metarhodopsin-II, Met207542
establishes a new interaction with His211546 to the detriment of previous

interactions with aromatic residues. In parallel, Met288735 loses the interactions
with Tyr268651. These changes are consistent with NMR signals associated to
Met288735 and with the suggestion that translation of Phe208543 after retinal’s [3-
ionone ring relocation favors the conformational change at the cytoplasmic side
of TM5 that ends in Tyr223558 (27,28). The sequence analysis shows that 53% of
the vertebrate rhodopsins have both Met542 and Met735. As an indication of
specific functional role of Met542, rhodopsins containing M542L, mutation give
pigments with blue-shifted Amax (53).

Met/Cys-aromatic interactions in 7TMRs suggested by biophysical
studies

At least two groups have recently employed biophysical techniques to elegantly
address the importance of interactions involving Met and Cys. First, fluorination
experiments were performed on the indole ring of Trp386648 in the dopamine D2
receptor (D2R), with the aim of characterizing the role of this residue in receptor
activation (54). Progressive fluorination of Trp386648 diminished the negative
electrostatic potential at the aromatic ring surface. The observed trend regarding
activation was indicative of a functionally important interaction at the face of the
aromatic ring. In particular, tetrafluorination of Trp386¢48 resulted in a 300-fold
shift in activation potency. Using the crystal structure of D3R in their search for
potential partners of Trp648 the authors identified Cys3-36 as the only residue that
could be responsible for the interaction impaired by Trp386648 fluorination.
Thus, it was proposed that this Cys-aromatic interaction between Cys118336 and
Trp338648 constituted a micro-domain regulating D2R activation (see Figure 1b,
corresponding to Cys114336 and Trp342648 in D3R).

As a second example, 1H-13C NMR resonances were utilized in two independent
reports to monitor signals from Met residues in the [32AR receptor (55,56). In
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these two works, the authors found that receptors occupied by pharmacologically
distinct ligands featured changes in chemical shifts and intensities in an efficacy-
dependent manner for the resonances corresponding to Met82253, Met215554 and
Met279641, Furthermore, their signals correlated with the changes on TM helices
5-7 from inactive to active crystal structures (Figure 1), supporting the view that
these residues participate in receptor activation. For Met82253 (whose
involvement in a large network of interactions has been discussed above, see
Figure 1a), comparison between inactive and active crystal structures shows a
conformational change where the interaction between Met82253 and Tyr316743 is
preferentially enabled in the carazolol bound structures, whereas Met82253-
Cys116335 interaction is enhanced in BI-167107 bound structure (Figure 2a).
Interestingly, changes on Met21555¢ and Met279641 resonances are also
compatible with the structural changes in the carazolol and BI-167107 crystal
structures discussed in the previous section.

Met-aromatic interactions suggested by site-directed mutagenesis
and molecular modeling

Several examples of Met-aromatic interactions in cholecystokinin receptors
(CCK1R and CCK2R) that have remarkable pharmacological and functional
importance were suggested on the basis of works from our group (23,57-59).
Cholecystokinin peptide (CCK) exhibits a posttranslational sulfation of a Tyr
residue. This sulfate moiety is essential for biological activity of CCK at the
CCK1R, contributing very strongly (500-1000 fold) to CCK binding to CCK1R high
affinity state. For receptors that have not yet been crystallized, it is still possible
to derive insights from models based on x-ray crystal structures. It is reasonable
to expect that these models will be accurate in the TM domains considering the
current status of 7TMRs molecular modeling (60). Site-directed mutagenesis
studies conducted in synergy with molecular modeling suggested that Tyr-SO3- of
CCK likely interacts with Arg197 (ECL2) of CCK1R. In addition, the Tyr side-chain
of this Tyr-SO3- of CCK was found to interact with Met195 in ECL2 (Figure 4a)
(57). The analysis of Met195-mutated CCK1R indicated that the exchange of Met
for Leu caused a minor decrease (3-fold) on the affinity of the high affinity sites
for CCK, but a strong drop (75%) on the number of sites, despite the number of
low-affinity binding sites remaining unchanged. Thus, Met195 is not important
for binding affinity of CCK but rather dramatically influenced the amount of
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CCK1R which could be converted to a high affinity state for CCK. A plausible
interpretation for these data was that this Met-aromatic interaction between
Met195 and Tyr-SOs- defined a specific positioning of the sulfate group relative to
Arg197, stabilizing ligand-bound CCK1R in a high affinity state. Again in the
CCK1R, Met131323 was suggested to interact with the C-terminal aromatic group
of agonist peptides since it appeared to be essential for Gq dependent production
of the second messengers, inositol phosphates (Figure 4a) (58).

Recently, we have shown in CCK2R that the interaction between Met134332 and
Tyr380743 governs the equilibrium between two CCK2R states: either coupling to
Gq or recruiting B-arrestin-2 (Figure 4b) (59). This conclusion was reached by
mutating Met134332 and Tyr380743, which dramatically affected CCK2R efficacy
to recruit B-arrestin-2 whereas the mutations did not affect CCK2R efficacy to
activate phospholipase-C. The existence of distinct CCK2R conformations
associated to G-protein-dependent or (-arrestin-2-dependent signaling pathways
was further pharmacologically demonstrated using a biased competitive
antagonist which inhibited G-protein-dependent signaling but not B-arrestin2-
dependent pathways.

As a third example, the thyroid-stimulating hormone receptor (TSHR) exhibits
elevated cAMP signaling in the basal state and becomes fully activated by
thyrotropin. Two independent studies reported Met mutations generating
constitutive active receptors (61,62). First, M626637] produced basal cAMP levels
13-fold higher than wild-type TSHR (61). TSHR structural models suggest that
Met626637 in TSHR likely participates in Met-aromatic interactions that switch
from the inactive to the active state (Figure 4c). More precisely, Met626637 would
interact with one face of Tyr601558 in the inactive state, whereas upon activation
(and the outward movement of TM6), it would interact with the opposite face of
Tyr601558. Thus, M626637] mutant would hinder these interactions. The second
constitutively active mutant was M637648W (62). All glycoprotein hormone
receptors contain Met648 instead of the conserved Trp present in 80% 7TMRs.
This mutant also displayed atypical pharmacology in that thyrotropin activated it
with the same potency as the wild-type, whereas the small non-peptide
NCGC00161870-01 agonist activated this mutant with a 14-fold decreased
potency. The authors proposed that M637648W was important for stabilizing the
active state by means of Met-aromatic interactions between residue Tyr6677:42
and an aromatic moiety in the ligand. Sequence analysis indicates that
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Met637648/Tyr667742 pair is conserved in glycoprotein hormone receptors,
suggesting that this interaction could have functional importance.

(a) (b) (C) Y667742 .

Y38074

M134332

M1213%2

CCK1R/CCK CCK2R TSHR

Figure 4. Molecular models for Met-aromatic interactions evidenced from site-directed
mutagenesis. a) CCK binding to CCKIR involves two Met-aromatic interactions between Phe/Tyr
residues of CCK and two Met residues Met195 (in ECL2) and Met121332, A ionic interaction is formed
between Arg197 and the sulfate group of CCK’s Tyr residue, whose aromatic side-chain participates in
the aromatic-sulphur interaction with Met195 (model CCKI1R 1, adapted from (57,58); see Suppl.
Data). b) The interaction Met134332 and Tyr380743 in CCK2R is required for receptor signaling
through B-arrestin2 recruitment but not through G-protein coupling (model CCK2R_1, adapted from
(59); see Suppl Data). c) Comparison between inactive (light-grey transparency) and active-like
(colored) TSHR models (TSHR_1 and TSHR 2; see Suppl Data) M6.48W and M6.371 are two
constitutively active mutations whose behavior could be due to sulfur aromatic interactions. Protein
representations and colors are the same as in Figure 1. The inactive structure is shown in light-grey.

Polymorphisms associated with introduction/disappearance of Met
residues

Various polymorphisms in 7TMRs that affect or introduce Met residues have
been described. Because of the specific interactions between Met and aromatic
residues, these polymorphisms are likely to modify receptor dynamics and thus
raise to significant changes in phenotype. T28074°M mutation in the CX3CR1
chemokine receptor constitutes a first example. Patients having this mutation
who were infected with HIV-1 virus showed a rapid progression to AIDS (63). A
homology model of CX3CR1 (Figure 5A) suggests that Met280740 would exhibit
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two Met-aromatic interactions with Phe37138 and Tyr38139 that may stabilize a
specific receptor conformation promoting activation.

In TSHR, M453243T and M463253V are two activating mutations causing non-
autoimmune hyperthyroidism (64,65). Homology models of the inactive TSHR
(Figure 5B) show that Met453243, located at the cytoplasmic side of TM2,
interacts with the conserved Tyr6787:53 and Phe685850. Thus, it is likely that the
M453243V mutation affects the equilibrium between inactive and active states,
leading to constitutive activity. By contrast, Met463253, located at the region of
closest contact between TMs 2, 3 and 7 could participate in a Met-aromatic
interaction with Tyr667742. This interaction could play a similar role as the
Met134332-Tyr380743 interaction in CCK2R, which was found to govern G-
protein-dependent signaling but not 3-arrestin2-dependent pathways.

Concluding remarks

7TMRs feature several examples of Met/Cys-aromatic and Met-Met interactions
that are, in some cases, responsible for important pharmacological, signaling or
functional events. In the present review we have described many examples of
such interactions occurring between natural or synthetic ligands and their
receptors, and between two or more residues within the receptor (see Figures 1-
4 and Table 4). In ligand-protein complexes, interactions involving Met and Cys
could, for instance, provide additional binding energy and also modulate ligand
orientation within the binding site. Within the receptor, we have shown that
these interactions might help to stabilize specific conformations. In fact, for
receptors for which an active crystal structure is available, comparison between
inactive and active structures shows changes associated to formation/breakage
of interactions involving Met residues. Met residues can easily change side-chain
conformation within a packed environment and, thus, offer extra versatility to
respond to structural changes compared to aromatic rings (66). In addition, the
intrinsic flexibility of Met might enable optimization towards energetically
favorable Met-Met or Met-aromatic arrangements. These interactions are more
directional than the interactions between aliphatic chains, a fact that makes them
very useful to keep aromatic residues in well-defined orientations. In terms of
strength, Met/Cys-aromatic and Met-Met interactions are stronger than other
already widely-accepted interactions such as those between two aromatic
residues.
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Analysis of crystal structures for the 17 members of the 7TMR family has
identified a large number of such interactions. Because of the relatively low
prevalence of positions containing Cys or Met in 7TMRs , the interactions
described in this report are highly subfamily-specific, suggesting that Met-Met
and Met/Cys-aromatic interaction are often employed for fine-tuning receptor
function within subfamilies. The Met554-Phe644 interaction is a remarkable
exception, being present in up to 25% of human Class A 7TMRs. Thus, this
constitutes the most representative example of a Met/Cys-aromatic interaction
associated to residues with known functional implication in 7TMRs. Also,
involvement of such interactions in ligand binding to 7TMRs, suggests that
exploiting this relatively unused Met-aromatic interaction may be an original way
to design new ligands that may have therapeutic interest. Finally, the recent
discovery of a Met-aromatic interaction in the CCK2R that was crucial for
selective stabilization of protein state associated with (-arrestin-2 recruitment
could be anticipating that interactions of moderate strength such as Met/Cys-
aromatic and Met-Met may play a role in selectively targeting specific signaling
pathways, such as those preferentially triggering G-protein-dependent or (-
arrestin-dependent signaling pathways.
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4.4 Sulfur-containing amino acids

PART II

Analysis of the interactions of sulfur-containing amino
acids in membrane proteins

Abstract

The interactions of Met and Cys with other amino acid side chains have received
little attention, in contrast to aromatic-aromatic, aromatic-aliphatic or/and
aliphatic-aliphatic interactions. Precisely, these are the only amino acids that
contain a sulfur atom, which is highly polarizable and, thus, likely to participate in
strong Van der Waals interactions. Analysis of the interactions present in
membrane protein crystal structures, together with the characterization of their
strength in small-molecule model systems at the ab-initio level, predicts that Met-
Met interactions are stronger than Met-Cys = Met-Phe = Cys-Phe interactions,
stronger than Phe-Phe = Phe-Leu interactions, stronger than the Met-Leu
interaction, and stronger than Leu-Leu = Cys-Leu interactions. These results
show that sulfur-containing amino acids form stronger interactions than
aromatic or aliphatic amino acids. Thus, these amino acids may provide
additional driving forces for maintaining the 3D structure of membrane proteins
and may provide functional specificity.

Introduction

Non-bonded interactions are crucial for protein stability, function and ligand
binding. These comprise electrostatic (including hydrogen bonds) and van der
Waals (dipole-dipole, dipole-induced dipole and induced dipole-induced dipole)
interactions (1). All these type of interactions have been extensively
characterized in terms of strength, directionality, and physicochemical
properties(2). However, their prevalence and importance vary depending on
whether or not they occur in membrane or globular proteins due to their
different environment. Both globular and membrane proteins position
hydrophobic amino acid side chains toward the protein core, and maximize
hydrogen bond interactions among backbone atoms. However, in contrast to
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soluble proteins, the hydrophobic nature of the lipid bilayer imposes that
residues pointing towards the membrane are also hydrophobic. Thus, dispersion
forces (mainly aromatic-aromatic, aromatic-aliphatic or aliphatic-aliphatic) are
involved in stabilizing the tertiary structure of the protein or in structural
changes (2-7).

As polarizabilities of the two interacting partners become larger, van der Waals
forces become stronger. For example, the aromatic ring of aromatic amino acids
has a quadrupole © system that is highly polarizable, providing strong aromatic-
aromatic dispersion interactions. Thus, aromatic side chains importantly
contribute to the folding and thermodynamic stability of proteins (8). Similarly,
sulfur-containing amino acids are also highly polarizable, as sulfur has filled 3p
and empty 3d orbitals and contain a permanent dipole (9). Surprisingly, non-
bonded interactions (dipole-induced dipole or dispersion) involving sulfur-
containing amino acids (Met and Cys) have received little attention (10-12) in
contrast to interactions involving aromatic amino acids (2). More than 30 years
ago, Morgan and coworkers observed a high frequency of contacts between
sulfur-containing residues and aromatic residues in proteins, and identified large
stacked arrangements composed of aromatic and Met or Cys residues (13).
Further studies also demonstrated that Cys- and Met-aromatic interactions were
fairly common in protein crystal structures (12,14,15).

In the present work we aim to evaluate the occurrence of interactions involving
Met and Cys side-chains in crystal structures of membrane proteins and to
characterize their strength in small-molecule model systems at the ab-initio level.
The employed level of theory improves previous calculations in analogous
systems.(16-19) Our results show that Met-Met, Met-Phe, Met-Leu and Cys-Phe
interactions are stronger in magnitude than Phe-Phe interactions.

Material and methods

Analysis of membrane protein structures

A non-redundant dataset of 327 a-helical transmembrane bundles were taken
from TMalphaDB (20). This data set consists of crystallographic structures
deposited in the Protein Data Bank (21) with resolution <3.5 A. Residues were
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classified, based on their circular variance (22) (CV) of vectors drawn from the
Ca atom of a given residue to the Ca atoms of neighbor residues, as exposed (CV >
0.7) or buried (CV < 0.7) to the membrane. Met-Met, Met-Phe, Met-Leu, Cys-Met,
Cys-Phe, and Cys-Leu interactions were considered if the distance d between the
two side-chains (measured as the distance between the atoms Ss of Met, S, of Cys
or C, of Leu or the centroid of the aromatic ring of Phe) was < 6A. At longer
distances the interaction energy becomes negligible (see Supplementary Figure
S1). The relative orientation of the interacting side-chains was defined by the
distance d, the angle P between side-chain planes (each plane defined by atoms
Cy, Ss and C¢ of Met; Cq, Cg and S, of Cys; Cs1, Cy and Cs2 of Leu; and the aromatic
ring of Phe), and the angle 6 between the plane defined by side-chain A and the
vector connecting the central atoms of each side-chain (A and B). Definitions of P
and 0 angles were those used by Chakrabarti et al. to describe benzene dimer
geometries (23). These interactions were clustered according to the
conformational space defined by the distance d and the angles P and 6 (see
Supplementary Tables S1-S3 for a detailed description).

Quantum mechanical calculations

For the representative structure of each cluster, the energy of interaction
between side chains was calculated using ab initio methods on small-molecule
models systems: Met was mimicked by dimethyl sulfide (DMS), Cys by
methanethiol (MT), Leu by propane (PRP), and Phe by benzene (BNZ). All chosen
model structures were optimized at the MP2/6-31+G(d,p) level of theory, which
has been shown to provide reasonably good geometries (24,25). Next, single
point energy calculations were performed at the CCSD(T)/6-311+G(3df,2p) level.
In order to minimize the basis set superposition error, counterpoise method by
Boys and Bernardi (26) was utilized. Moreover, in order to evaluate the ability of
the molecular mechanic AMBER force field to properly represent these
interactions, AMBER energies were calculated for optimized geometries
(Supplementary Figures S2-S6). All calculations were performed using
GAUSSIANO9 program (27).
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Results and discussion

Structural bioinformatics analysis of the presence of Cys and Met in
membrane proteins

Table 1 summarizes the occurrence of the most frequent amino acids, together
with Cys and Met, in the transmembrane region (i.e. excluding water-soluble
domains or loops) of a-helix bundles of membrane proteins with known crystal
structure (see Methods). Amino acids such as Leu, Ile, Val and Phe are the most
frequent at the membrane-embedded region, without preference for being
localized in the protein core or in the membrane-exposed region. In contrast,
sulfur-containing amino acids (i.e. Met and Cys) show lower frequencies and are
mostly found buried in the core of the protein. Analysis of inter-residue
interaction of Met and Cys reveals that a significant percentage of Met residues
form interactions with aliphatic residues (Leu, Ala, Ile, Val) and Phe, while a
smaller proportion interact with Met and Cys (Table 1). Thus, we aim to
determine the orientation and strength of these interactions of sulfur-containing
amino acids.

Amino acid distribution Side chain-side chain interactions

Total Buried Exposed Cys | Met | Phe |Val Ile Ala Leu
Leu | 8.896 (17%) | 3.787 (43%) 5.111 (57%) | 474 |1.129 | 2.415 | 3.427 | 2.491 | 3.764 | 2.319
Ala | 6.198 (12%) | 3.988 (64%) 2.209 (36%) | 396 | 795 | 1.616 |3.437 |2.42 |2.039
Ile |5.801(11%) | 2.493 (43%) 3.309 (57%) | 401 | 806 |1.671 | 2.126 | 723
Val | 5.761 (11%) | 2.826 (49%) 2.935 (51%) | 357 | 700 | 1.276 | 1.363
Phe | 4.651 (9%) | 2.464 (53%) 2.188 (47%) | 276 | 707 | 859
Met | 1.933 (4%) | 1.336 (69%) 597 (31%) | 111|199
Cys | 768 (1.4%) |557(73%) 211 (27%) |37

Table 1. Structural bioinformatics analysis of membrane proteins. Amino acid type distribution
(absolute frequencies and relative frequencies in percentage in parenthesis) observed in the survey
of transmembrane domains of a-helix bundles (the five most frequent residues and Met and Cys)
classified as buried or exposed to the membrane. The most significant side-side chain interactions of
the five most frequent amino acids and Met and Cys.
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The orientation and strength of Met-Phe interactions

The Met-Phe interactions identified in the crystal structures of membrane
proteins (a total of 707 pairs, Table 1) were clustered based on relative distances
and angles between the two amino acids (see Methods). Figure 1 shows the 2D
histograms with the distribution of the Met-Phe interactions projected on the
conformational space defined by P and 6 angles (see Methods and Supplementary
Table S1). In order to evaluate the magnitude of the energy of interaction
between both side chains, we performed high level ab initio calculations (see
Methods) in small-molecule models systems (Met and Phe were mimicked by
dimethyl sulfide (DMS) and the benzene ring (BNZ), respectively, Supplementary
Figure S2). Clusters I (containing 24% of the observed interactions) and II (37%)
reproduce the most favorable arrangements of the side chains (-2.9 kcal/mol) as
calculated in comparable model systems 1 and 2. Arabic numbers depict
optimized ab initio models whereas roman numbers represent clusters observed
in crystal structures. The two planes defined by DMS and BNZ molecules are
almost parallel in model 1 and perpendicular in 2, but in both cases a methyl
group of DMS is located on top of the negative charge density at the center of BNZ
ring (m electrons) and the sulfur atom on top of the positive charged density at
the exterior of BNZ ring (-CH groups). In Cluster III (12%) the CH atoms of Met
are pointing to the aromatic ring of Phe and the sulfur atom is pointing toward
opposite direction, which results in an interaction of -2.4 kcal/mol in model 3.
Finally, cluster IV (28%) accounts for interactions in which the sulfur atom of
Met acts as hydrogen bond acceptor for a -CH group from the phenyl ring of Phe,
being the interaction energy -2.0 kcal/mol in the comparable model 4.
Interestingly, these computed energies are of the same magnitude as the values
experimentally obtained for peptides in water (28).

In order to study the influence in the energy of interaction of the highly
polarizable sulfur, compared to oxygen or the methylene group, we performed
analogous ab initio calculations with model compounds that replace the sulfur
atom (dimethyl sulfide, DMS, mimicking Met) by oxygen (dimethyl ether, DME) or
-CH;- (propane, PRP, mimicking aliphatic amino acids) (Supplementary Figure
S2). Comparison of these energies of interactions of model compounds 1-4 in
DMS-BNZ complexes with analogous conformations of DME-BNZ shows that in all
cases the sulfur-containing molecule (DMS) interacts stronger with the aromatic
ring (BNZ) than in the oxygen-containing one (DME) with the exception of model
4. This suggests that the induced positive charge density on the methyl group,

93




— P
Development and application of computational techniques to
drug discovery and structure-function relationships o~ 7

involved in the interaction with the 1 electrons of the ring in models 1-3, is larger
in the presence of the sulfur atom than in the presence of oxygen. Reasonably,
because sulfur is a poorer hydrogen bond acceptor, in model 4 the sulfur atom
forms weaker S:--HC hydrogen bond interaction with the CH group of the ring
than oxygen (O---HC). Importantly, the energies of interactions of model
compounds 1-4 in DMS-BNZ complexes are always more stable than in PRP-BNZ
complexes, indicating that the interaction of aromatic rings with sulfur-
containing groups is always stronger than with aliphatic groups.
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Figure 1. The orientation and strength of Met-Phe interactions. 2D histograms of the
frequencies of occurrence of these interactions, clustered according to the conformational
space defined by the distance d and the angles P and 6 (see Supplementary Table S1 for a
detailed description). Roman and arabic numbers indicate the position in the 2D histogram of
the most representative structure in the cluster and the energy-minimized structure,
respectively. Ab initio geometry optimization at the MP2/6-31+G(d,p) level and calculated
energy of interaction at the CCSD(T)/6-311+G(3df,2p) level (see Methods) are shown inside
dotted circles as solid sticks. Representative structures obtained in the cluster analysis are
shown as transparent sticks.
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Because aromatic-aromatic interactions are considered key in the stability of
membrane proteins,(8) we next compared the energies of interaction in DMS-
BNZ complexes with those in BNZ-BNZ complexes. Comparison with the well-
characterized (29-32) lowest energy configurations of BNZ-BNZ (Supplementary
Figure S3), the T-shaped (-2.4 kcal/mol) and parallel displaced (-2.1 kcal/mol),
indicates that Met forms more stable interactions with aromatics rings (DMS-
BNZ) than aromatic-aromatic interactions (BNZ-BNZ).
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Figure 2. Influence of the distance on the interaction energy. Calculations were
done on the DMS-DMS (Met-Met), DMS-BNZ (Met-Phe), DMS-PRP (Met-Leu), PRP-PRP
(Leu-Leu), and PRP-BNZ (Leu-Phe) model systems with the lowest energy. d refers
either to the sulfur-sulfur or the sulfur-benzene (centroid) distance.
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The orientation and strength of Met-Met interactions

Clusters I-V in Figure 2, obtained from the 199 Met-Met interactions present in
membrane proteins (Table 1), are calculated in a similar way to the clusters of
Met-Phe (see above). Cluster I, containing 11% of the interactions, corresponds
to an anti-parallel orientation, exhibiting the largest interaction energy (-3.5
kcal/mol) in the comparable model system 1. The orientation of the Met side
chains in cluster II (46%) is in the T-shaped configuration, being the interaction
energy of -3.0 kcal/mol in the comparable model system 2. In these
configurations 1 and 2 each sulfur atom interacts respectively with four and
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Figure 3. The orientation and strength of Met-Met interactions. 2D histograms of
the frequencies of occurrence of these interactions, clustered according to the
conformational space defined by the distance d and the angles P and 6
(Supplementary Table S2). See Legend of Figure 1 for further details.
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three hydrogen atoms of the methyl groups (S::-HC interactions) that have
positive charge density. The Met side chains in cluster III (5%) are in a parallel-
displaced orientation, in a head-to-head configuration with both sulfur atoms
engaged in the interaction (-2.2 kcal/mol in model 3). Clusters IV (15%) and V
(25%) account for the least favored Met-Met interactions (-1.5 and -1.3 kcal/mol
in models 4 and 5, respectively). Models mimicking these clusters reproduce a
structure with a single sulfur atom interacting with four and two CH hydrogen
atoms (S---HC interactions), respectively. Cluster IV shows a parallel orientation
in a head-to-tail configuration of the Met side-chains, while cluster V shows a T-
shaped orientation in which the interactions occur through the methyl groups.

The influence of the highly polarizable sulfur atom in these interactions was
evaluated by performing analogous ab initio calculations with model compounds
that replace the sulfur atom (Supplementary Figure S4) (dimethyl sulfide, DMS)
by oxygen (dimethyl ether, DME). The anti-parallel orientation of model 1 (-3.5
vs. -2.7 kcal/mol) and the T-shaped configuration of model 2 (-3.0 vs. -2.8
kcal/mol) are more stable in the sulfur-containing DMS-DMS complex than in the
oxygen-containing DME-DME complex. The opposite is observed for models 3 (-
2.2 vs.-2.4 kcal/mol), 4 (-1.5 vs. -1.6 kcal/mol) and 5 (-1.3 vs. -1.5 kcal/mol).

The orientation and strength of Met-Leu interactions

We have selected Leu as a representative residue to study the interactions of Met
with aliphatic amino acids. The 1,129 Met-Leu interactions present in membrane
proteins (Table 1) were clustered in a similar manner as in Met-Met interactions
(see above). Because the C,, Ss and C; atoms of Met are analogous to the Cs1, Cy
and Csz atoms of Leu, the relative orientation of Met-Leu residues in clusters I-V
(Figure 3) were taken in analogy with clusters I-V of Met-Met (Figure 2).

The computed interaction energies in comparable model systems 1-5
(Supplementary Figure S5) show that the anti-parallel orientation in model 1
exhibits the largest interaction energy (-2.1 kcal/mol). Comparison of the
interaction energies in DMS-DMS (Met-Met clusters), DMS-PRP (Met-Leu
clusters) and PRP-PRP (Leu-Leu clusters, not shown) models allow us to study
the influence of the sulfur atom in the interaction energy. Clearly, the rank order
of energies on interaction is DMS-DMS (2 sulfur atoms) < DMS-PRP (1 sulfur
atom) < PRP-PRP (0 sulfur atom) in models 1 (-3.5 < -2.1 < -1.7 kcal/mol],
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respectively), 2 (-3.0 < -1.5 < -1.4 kcal/mol), 3 (-2.2 < -1.4 < -1.0 kcal/mol), 4 (-
1.5<-1.3 <-1.1 kcal/mol), and 5 (-1.3 < -1.2 < -1.0 kcal/mol).

Figure 4. The orientation and strength of Met-Leu interactions. 2D histograms of
the frequencies of occurrence of these interactions, clustered according to the
conformational space defined by the distance d and the angles P and 6 (Supplementary
Table S3). See Legend of Figure 1 for further details.

The interactions of Cys

Cys interacts with Phe (a total of 276 pairs), Met (111 pairs) and hydrophobic
amino acids such as Leu (474 pairs), Ala (396 pairs), lle (401 pairs), and Val (357
pairs) (Table 1). In addition, Cys can interact with other Cys through a covalent
disulfide bridge. Excluding disulfide bridges (S-S distances < 3A) only 37 Cys-Cys
pairs were observed in crystal structures (Table 1) in which Cys was acting as
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hydrogen bond donor and/or acceptor. These Cys-Cys interactions were not
further analyzed, as they belong to the common hydrogen bond interaction.
Analysis of the crystal structures of Cys-Phe interactions in membrane proteins
revealed three main interaction modes (Figure 4). In cluster I (12%) the sulfur S,
atom is located on top of the aromatic ring, in cluster II (49%) the Cg atom is
located on top of the ring, and in cluster III (39%) the sulfur S, atom is coplanar
to the phenyl ring. Ab initio energy optimizations of model compounds (Cys and
Phe were mimicked by methanethiol (MT) and the benzene ring (BNZ),
respectively, Supplementary Figure S6) positioned the sulthydryl hydrogen
absent in the crystal structures. In model 1 (-3.0 kcal/mol) MT forms a S-H--m
hydrogen bond with the phenyl ring, whereas in model 2 (-2.9 kcal/mol) the S
atom of MT is located on top of the positive charged density at the exterior of the
BNZ ring and the methyl group on top of the negative charge density at the center
of the ring. Importantly, ab initio energy minimization of model compound 3,
mimicking cluster III, led either to models 1 or 2.

Clustering of the 111 Cys-Met and 474 Cys-Leu interactions (Table 1) was
challenging due to the absence of the sulphydryl hydrogen in the crystal
structures. Thus, we performed ab initio energy optimizations of model
compounds (MT-DMS or MT-PRP, Supplementary Figure S6) in which one of the
methyl groups of DMS, in the reported Met-Met (DMS-DMS, Supplementary
Figure S4) and Met-Leu (DMS-PRP, Supplementary Figure S5) interactions, was
replaced by hydrogen. Comparison of these energies of interaction in MT-DMS
complexes (-3.0, -2.9, -1.4, -1.7, -1.3 kcal/mol for models 1-5, respectively) with
analogous conformations of DMS-DMS (-3.5, -3.0, -2.2, -1.5, -1.3 kcal/mol for 1-5,
respectively) shows that DMS-DMS interactions are stronger with the exception
of model 4.

Interaction energy comparison with the AMBER force field

We computed the interaction energies of the small-molecule model compounds
using the AMBER force field (33), with the aim of assessing the accuracy of this
force field in reproducing the interactions of Met or Cys (see Methods). The
results shown in Supplementary Figure S5 indicate a reasonable quantitative
agreement in the interactions of Cys (mimicked by MT) with Met (DMS), Leu
(PRP), and Phe (BNZ). The deviations are larger for Met (Supplementary Figures

99




— P
Development and application of computational techniques to
drug discovery and structure-function relationships o~ 7

S1, S3-S4) with an average difference relative to CCSD(T) of ~0.5 kcal/mol. The
larger deviations correspond to conformations in which sulphur atoms are in
close proximity or when the sulphur atom is located on top of the benzene ring.
Moreover, the rank order of Met-Phe interactions is not fully reproduced:
CCSD(T) predicts 1 = 2 < 3 <4 in DMS-BNZ models, while AMBER predicts 3 <1 <
2 < 4 (Supplementary Figure S1). Similarly, CCSD(T) predicts 1 <2 <3 <4 <5in
DMS-DMS models, while AMBER predicts 1 <2 <4 <3 =5 (Supplementary Figure
S3). In contrast, the interactions of Met with Leu are highly consistent, both in
magnitude and rank order (Supplementary Figure S4). Overall, these results are
in line with a recent report on m-m, CH/m, and SH/m interactions (34).
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Figure 5. The orientation and strength of Cys-Phe interactions. 2D
histograms of the frequencies of occurrence of these interactions, clustered
according to the conformational space defined by the distance d and the 0
angle. See Legend of Figure 1 for further details
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Conclusions

We and others have previously outlined the structural and functional role of Met-
aromatic and Met-Met interactions in the family of G protein-coupled receptors
(35-37). The present analysis of the inter-residue interactions in crystal
structures of membrane protein reveals that Met and Cys often interact with Leu,
Ile, Val, Phe, and other Met or Cys. The characterization of their strength using ab-
initio calculations in small-molecule model systems, predicts that Met-Met, Met-
Phe, Cys-Phe, Met-aliphatic and Cys-aliphatic interactions are stronger in
magnitude than aliphatic-aliphatic interactions. Remarkably, Met-Met, Met-Phe,
and Cys-Phe interactions are stronger than aromatic-aromatic. Thus, these types
of interactions, which have often been misled, need to be taken into account
when considering the forces that stabilize the overall fold in membrane proteins.
In addition to the stronger interactions of Met and Cys, their more flexible side-
chains may provide extra versatility and adaptation to conformational changes.
We believe that these interactions are also likely to be important in the interior of
globular proteins or in the formation of protein-ligand or protein-protein
complexes. However, further studies would be necessary in these regard.
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Cluster | Number P 0 Distance criteria
I 191 (24%) | 0-45° | 0-70° | d(R-S8) < d(R-Cy) v d(R-S8) < d(R-C)
1 131 (37%) | 45-90° | 0-70° | d(R-S8) < d(R-Cy) v d(R-S) < d(R-Ce)
111 181 (12%) | 0-90° | 0-90° | d(R-S&)> d(R-Cy) A d(R-S8) > d(R- C¢)
1A% 204 (28%) | 0-90° | 70-90° -

Table S1. Cluster analysis of Met-Phe interactions in crystal structures. Number
(and percentage) of Met-Phe interactions and values of P (angle between the planes
defined by C, S. and C. atoms of Met and the aromatic ring of Phe) and & (angle
between the normal vector of the plane defined by the aromatic ring of Phe and the
vector connecting the centroid R of the aromatic ring of Phe and S, of Met), and
distance criteria (R accounts for the centroid of the aromatic ring of Phe, and S,
Cyand Ce represent the atoms of the Met side-chain), in clusters I-1V (see Fig 1).
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Cluster | Number B 0 Distance criteria

[d(SO,-S85) < d(S8,-Cy.) v d(S,-S85) < d(SS,-Ce, )] A

I 26 (11%) 0-45° 0-60°
[d(S84-Sp, < d(S85.Cya ) v d(S8,-Sp) < d(Sd-Ce, )]
[d(SO,-S85) < d(S,-Cy.) v d(S,-S85) < d(Sd,-Ce, )] A

II 71 (46%) | 45°-90° 0-60°
[d(S84-SOp, < d(S85.Cya ) v d(S8,-Sp) < d(Sd-Ce, )]
[d(SO4-SO5) < d(SO,-Cy.) A d(SO,-SOp) < d(SO,-Ce, )] A

11T 12 (5%) 0-90° 60-90°
[d(S8,-Sdp < d(S85.Cya ) A d(S8,-S85) < d(SO5-Ce, )]
[d(SO,-SOg) > d(SO,-Cy.) v d(SO,-SOg) > d(SO,-Ce, )] A

v 43 (15%) 0-90° 60-90°
[d(S84-Sp, < d(S85.Cya ) v d(S8,-Sp) < d(Sd-Ce, )]
[d(S8,-S85) > d(S8,-Cy.) A d(SO,-S8p) > d(SS,-Ce, )] A

\ 47 (25%) 0-90° 0-90°
[d(S84-Sp,) > d(S85.Cya ) v d(S8,-Sp) > d(Sd-Ce, )]

Table S2. Cluster analysis of Met-Met interactions in crystal structures. Number (and
percentage) of Met-Met interactions and values of P (angle between the planes defined by C,
S.and C. atoms of Met) and € (angle between the normal vector of the plane defined by the C,
S, and C. atoms of Met and the vector connecting the S, atoms of Met), and distance criteria
(sub indexes A and B refer to atoms in distinct side-chains) in clusters I-V (see Fig 2).
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Cluster | Number B 0 Distance criteria

[d(S8,-S85) < d(S8,-Cy.) v d(S,-S85) < d(S8,-Ce. )] A

I 26 (11%) | 0-45° | 0-60°
[d(S8,-S85 < d(S85.Cy, ) v d(S8,-S85) < d(S5-Ce )]

[d(S8,-S85) < d(S8,-Cy.) v d(S8,-S85) < d(S8,-Ce. )] A
Il 71 (46%) | 45°-90° | 0-60°
[d(S8,-S83 < d(S85.Cy, ) v d(S8,-S85) < d(S5-Ce )]

[d(S8,-S8,) < d(SS,-Cy.) A d(SS,-S85) < d(S,-Ce. )] A
I 12(5%) | 0-90° [ 60-90°
[d(SO,-S8g, < d(S8;5.Cy, ) A d(S5,-S85) < d(S8,-Ce, )]

[d(S8,-S85) > d(S8,-Cy.) v d(S8,-S85) > d(S8,-Ce. )] A
1A% 43 (15%) | 0-90° | 60-90°
[d(S8,-S83 < d(S85.Cy, ) v d(S8,-S85) < d(S5-Ce )]

[d(S8,-S85) > d(SS,-Cy.) A d(SS,-S85) > d(S,-Ce. )] A
\% 47 25%) | 0-90° | 0-90°
[d(S8,-S83) > d(S85.Cya ) v d(S8,-S85) > d(S5-Ce )]

Table S3. Cluster analysis of Met-Leu interactions in crystal structures. Number (and
percentage) of Met-Leu interactions and values of P (angle between the planes defined by the
C. S, and C. atoms of Met and the C,, C, and C.. atoms of Leu), 6 (angle between the normal
vector of the plane defined by the C, S, and C. atoms of Met and the vector connecting the S,
atom of Met and the C, atom of Leu) and distance criteria (subindexes A and B refer to atoms
in distinct side-chains) in clusters 1-V (see Fig 3).
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Figure S1. Small-molecule models systems mimicking Met-Phe interactions. Geometry optimized, at the
ab-initio MP2/6-31+G(d,p) level of theory, of the interactions between benzene (BNZ, mimicking Phe)
and dimethyl sulfide (DMS, mimicking Met), dimethyl ether (DME), and propane (PRP, mimicking Leu).
Each optimized structure is designated by an arabic number that corresponds to a roman number of the
obtained clusters in crystal structures (see Fig 1). The values of d, P, and @ (see Suppl. Table 1 and Fig 1
for definition), and single point energy calculations at the ab-initio CCSD(T)/6-311+G(3df,2p) level of
theory (Eccsp) and by molecular mechanics using the AMBER99 forcefield (Eavger) are shown.
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DMS-BNZ DME-BNZ PRP-BNZ

d=43A P=6" B8=32°

Eccso= -2.9 keal/mol
Eawsen= -2.7 kealfmol

d=3.9A P=16" 8=36"

Eccso= -2.4 keal/mol

M

d=3.6 A P=10° 0=5°
Eccso= -2.4 kcal/mol
Eaeen= -2.2 keal/mol

NG
*

d=4.0A P=90° 8=33°
Eceso=  -2.9 keal/mol
Ewmeer= -1.8 kcal/mol

d=4.3 A P=90° 6=70°
Eceso= -2.3 kealfmol

Wr

d=3.6 A P=89° 8=1°
Eccso=  -1.8 kcal/mol
Eswser= -2.1 kcal/mol

L%

d=49A P=90° 8=1°
Eccso=  -2.4 keal/mol
Esmeza= -2.8 keal/mol

d=4.7 A P=90° B=17°

Eccso= -2.1 keal/mol

WK

d=4.7 A P=90° 8=18°
Eccso= -1.8 kcal/mol
Eamver= -2.4 kcal/mol

d=5.2 A P=90° 8=90°
Eceso= -2.0 kealimol
Esmmner= -1.3 kcal/mol

e

d=4.5A P=90° 8=90°

Eccso= -2.1 kcal/mol

d=5.3A P=90° 8=90°
Eccso= -1.4 kcal/mol
Eausea= -1.4 kcalfmol
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BNZ-BNZ

e
Parallel #

displaced

d=4.1A P=0° 0=28°
Eccso= -2.1 kcal/mol
Eamger= -2.2 kcal/mol

T-Shaped
d=5.0 A P=87° 0=9°
Eccso=  -2.4 kcal/mol
Eavesr= -2.3 kcal/mol

Figure S2. Small-molecule models systems mimicking Phe-Phe interactions. Geometry optimized
models, at the ab-initio MP2/6-31+G(d,p) level of theory, of benzene-benzene (BNZ, mimicking Phe)
interactions in the lowest parallel displaced and T-shaped energy configurations. The values of d
(calculated as the distance between the centroid R of the aromatic ring of BNZ), P (calculated as the
angle between the planes defined by the aromatic rings of BNZ), and 6 (angle between the normal vector
of the plane defined by the aromatic ring of Phe and the vector connecting the centroids R of the aromatic
rings of BNZ), and single point energy calculations at the ab-initio CCSD(T)/6-311+G(3df,2p) level of
theory (Eccsp) and by molecular mechanics using the AMBER99 forcefield (Eavger)-
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DMS-DMS DME-DME

7 ¢

d=4.0A P=0° 8=23° |d=3.3A P=2° 8=8°
Exsn=  -3.5 kealfmol

Ecso=  -2.7 kealimol
Ewmsn=_-3.0 keal/mol
d=39A4 P=90° §=24° |d=35A P=00° 0=24°
Ecso= -3.0 kealfmol

Eccse=  -2.8 kealimol
Eauusin= -2.0 kcal/mol

ded 2 A Pel® Bes4® |d=36A P=2°" ©=86°
Eccm= -2.2 kealimol

Eusss= -1.5 keal/mol

Ecoso= -2.4 kcalfmo

d=4.9A P=6" £=84"
Eccso=  -1.5 kealfmol

d=4.0A P=5" ©=83°

Eccso= -1.6 kealimal

Ewsen= -1.8 keal/mol

Frydry

d=56A P=89" §=13° |d=4.5A P=89° @=23"
Eceso=  -1.3 kealfmol

Eerso=  -1.5 kealimol

Ewsn= -1.5 keal/mol

Figure S3. Small-molecule models systems mimicking Met-Met interactions. Geometry optimized
models, at the ab-initio MP2/6-31+G(d,p) level of theory, of dimethyl sulfide (DMS, mimicking Met)-
DMS and dimethyl ether (DME)-DME interactions. Each energy-minimized structure is designated by an
arabic number that corresponds to a roman number of the obtained clusters in crystal structures (see Fig
2). The values of d, P, and 0 (see Suppl. Table 2 and Fig 2 for definition), and single point energy
calculations at the ab-initio CCSD(T)/6-311+G(3df,2p) level of theory (Eccsp) and by molecular
mechanics using the AMBER99 forcefield (Eamser) are shown.
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DMS-PRP

#

d=4.1A pP=3" B8=21°
Eccso= -2.1 kcal/mol
Esmper= -2.1 kcal/mol

d=4.6 A P=89" B8=38"
Eceso= -1.5 kealimol

Esunen= -1.4 kcal/mol

PRP-PRP

O

d=4.1A P=0°" @8=15°
Eccsv= -1.7 kealfmol
Emnm= -1.5 kealimol

d=4.4 A P=50° B8=11°
Eceso=  -1.4 kcalimol
Esnen= -1.2 keal/mol

X %

d=3.7A P=0° @=90°
Ecso=  -1.4 kcalimol

Espn= -1.2 kcal/mol

d=47 A P=2" ©=88"

Ecrso= -1.3 kealimol
Emmen= -1.3 kcalimol

¥ ry

d=5.6A P=90" @=20°
Eceso=  -1.2 kealfmol
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Figure S4. Small-molecule models systems mimicking Met-Leu interactions. Geometry optimized
models, at the ab-initio MP2/6-31+G(d,p) level of theory, of dimethyl sulfide (DMS, mimicking Met) and
propane (PRP, mimicking Leu) and PRP-PRP interactions. Each optimized structure is designated by an
arabic number that corresponds to a roman number of the obtained clusters in crystal structures (see Fig

3). The values of d, P, and 0 (see Suppl. Table 3 and Fig 3 for definition), and si

ngle point energy

calculations at the ab-initio CCSD(T)/6-311+G(3df,2p) level of theory (Eccsp) and by molecular

mechanics using the AMBER99 forcefield (Eamser) are shown.
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Figure S5. Small-molecule models systems mimicking Cys-Phe, Cys-Met and Cys-Leu interactions.
Geometry optimized models, at the ab-initio MP2/6-31+G(d,p) level of theory, of the interactions between
methanethiol (MT, mimicking Cys) and benzene (BNZ, mimicking Phe), dimethyl sulfide (DMS,
mimicking Met) and propane (PRP, mimicking Leu). The values of d (calculated as the distance between
S and Cy in PRP or the centroid R of the aromatic ring in BNZ, respectively) and 6 (angle between the
normal vector of the plane defined by the aromatic ring of Phe or the plane defined by Cg, S, and HS
atoms and the vector connecting the centroid R of the aromatic ring of BNZ or the central atom of the
side-chain to the center of the other side-chain), and single point energy calculations at the ab-initio
CCSD(T)/6-311+G(3df,2p) level of theory (Eccsp) and by molecular mechanics using the AMBER99

force field (Eamger)-
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4.5 GPCR-SAS: G protein-coupled receptors Sequence
Analysis and Statistics

Abstract

G protein coupled receptors (GPCRs) are one of the largest protein families in
mammals. They mediate signal transduction across cell membranes and are
important targets for the pharmaceutical industry. The GPCR-SAS web server
provides a set of tools to analyze conservation of residues or sequence motifs
across TM segments of GPCRs, identify correlations in substitutions and give
statistical information of such correlations in sequence alignments. Thus, GPCR-
SAS is a useful instrument that permits to study for instance family-specific
mechanisms of activation and ligand or G protein selectivity.

Introduction

G protein coupled receptors (GPCRs) are one of the most prevailing protein
families in mammalian genomes (1). They are involved in most signal
transduction processes across membranes, including the response to hormones
and neurotransmitters and the senses of sight, smell and taste. GPCRs transduce
extracellular signals across the cell membrane through G protein dependent but
also through G protein independent processes. GPCRs are classified according to
sequence similarities into six families or classes named A to F (2-4). Only classes
A, B, C and F are present in humans and class A or rhodopsin-like comprises, by
far, the largest number of members (5). The crystal structures showed a
conserved TM structure with a common fold formed by an extracellular N-
terminus, seven transmembrane helices (TM1-7), connected by alternating
intracellular (i1 to i3) and extracellular (el to e3) hydrophilic loops, and a
cytoplasmic C-terminus. In classes A, B and F the C-terminus contains an a-helix
(Hx8) parallel to the cell membrane (6-8).

The GPCR-SAS (GPCR Sequence Analysis and Statistics) server takes advantage of
this structural similarity in the TM domain and allows performing statistical
analysis of sequence positions or motifs within the TM helices and Hx8 of GPCRs
of classes A, B, C and F. This statistical analysis can be used to rationalize ligand
selectivity, G protein recognition or receptor activation, among others (9). The
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algorithm is able to classify the results according to the occurrence in GPCR
subfamilies.

Design and Implementation

GPCR-SAS is a web application freely accessible at http://lmc.uab.cat/gpcrsas/. It
is implemented in Python language and employs Django framework. The
application relies on a MySQL database that contains the sequence alignments
and various classification schemes. The main page shows two main sections (see
Figure 1): Positions and Sequence and Classification. Positions and Sequence
consists of four input forms (four boxes), two for positions and another two for
amino acids. Depending on the input provided in the panel Positions and
Sequence, GPCR-SAS can perform conservation, co-variance and correlation
analyses. Classification provides navigable multilevel hierarchical classification
systems of GPCRs in families and subfamilies according to different schemes (see
below).

GPCR-SAS SNAKEPLOT HOWTOUSE ABOUT

Position/s 150 Motif Wildcards ~

Pasition/s. Mout.

Organism:
HOmo sapens

Class: Include Olfactory:
A .

Branch: Branch Scheme:
Select (opuonal) . Chabbest

Subfamily: Subfamily Scheme:

Select (optonal v Fregriksson

Figure 1. GPCR-SAS main page. Main page consists in two sections: 1) receive position(s) and
motif{s) inputs and determines the type of calculation; 2) the hierarchical dropdown lists which
selects the receptor families in which to perform the analysis. The type of analysis to perform
depends on the fields which are filled (see below).
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Numbering scheme

GPCR-SAS uses the Ballesteros & Weinstein numbering scheme designed for class
A GPCRs (10), where the position of each residue is described by two numbers:
the helix in which the residue is located and the position relative to a conserved
residue in that helix, arbitrarily assigned to 50. In class A, these amino acids are:
N1.50 in TM1 (97.6% conserved in non-olfactory human class A), D2.50 in TM2
(92.1%), R3.50 in TM3 (94.8%), W4.50 in TM4 (95.8%), P5.50 in TM5 (76.0%),
P6.50 in TM6 (98.3%), and P7.50 in TM7 (93.7%). Although non-class A GPCRs
most often do not have such conserved amino acids at these positions (11),
extrapolation of the class A numbering-scheme is now possible thanks to
structure-based sequence alignment between classes (12,13). Due to the lack of
homology out of the TM domains GPCR-SAS cannot provide statistics for residues
located on loops. Valid search ranges for the helices in each family are displayed
in Table 1.

T™M1 1.23 1.61 39
TM2 2.37 2.72 36
TM3 3.23 3.63 41
TM4 4.40 4.71 32
TM5 5.33 5.69 37
TM6 6.28 6.61 34
T™M7 7.28 7.53 26
sH8 8.40 8.57 18

Table 1. Helix limits and length as implemented in GPCR-SAS
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Sequence alignment

Amino acid sequences for GPCRs belonging to classes A, B, C and F were retrieved
from the UniProtKB/Swiss-Prot database (http://www.uniprot.org). Alignments
were performed independently for the four classes using (see table 2) ClustalO
(14) as follows: i) Sequences corresponding to the available crystal structures
were used to determine the length of the TM helices and to generate a profile, ii)
Human sequences were aligned to the sequences of the crystal structures using a
gap-opening penalty of 40 and a gap extension penalty of 0.1 (these parameters
limit insertion of gaps in the TM segments). iii) The remaining vertebrate and
invertebrate sequences were subsequently aligned. At each step the alignment
was manually verified and no gaps were tolerated on TM regions other than
those previously described at TMs 2 and 5 (15,16), which can be extrapolated to
non-crystalized receptors without ambiguity, or those associated to trivial
deletions.

Table 2. Number of sequences for each class and subset of organism.
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Classification schemes

GPCR-SAS database contains a set of classification systems based on different
properties. Fredrikson classification system (17) is based on a phylogenetic
analysis of human GPCR sequences. GPCRdb (18) (gpcr database) uses a
pharmacologic classification of the receptors. BIAS-PROF GDS classification
system (19) is based on physicochemical properties of the sequence. Rognan
classification system (20) relies on the phylogenetic analysis of 30 residues
around the ligand binding site. Chabbert classification system (21) is obtained
from the calculation of Neighbor joining trees to sequence similarity of the class A
transmembrane helices.<

Default | Default | Default | Default

Table 3. Classification schemes available at GPCR-SAS.

Conservation analysis for a position or a set/range of positions.

If the given as input consists of only one single position (i.e. 3.50), consecutive
positions (i.e. 3.50-3.54) or non-consecutive positions (3.50, 4.50, 5.50) the
output is a list of amino acids or sequence motifs sorted by their occurrence on
the active receptor selection and (only for searches with one single position) a
bar plot that displays the amino acid distribution grouped by subfamilies. The
results page also shows the Shannon entropy for the requested position or motif
as a quantitative measure of variability (24). As a second step, the user may
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request to display the list of receptors that contain each of the amino acids or
motifs by clicking on “Click to show receptors” (see figure 2).

Position Conservation

watit Conservation Matches

I 39.2% 1141291 Chick 10 show receplorns
v 24.1% 707291 Chick 10 Show recepiors
L 11.3% a3z Chick 10 Show receptors
T T.2% 217291 Click 1o show receptors
A 6.2% 187291 Chick 10 show receplors
M 5.5% 167291 Chick 1o show receplors
- 2.4% 71201 Chick 10 show receplors
c La% 47291 Chick 1o show receplors
G 1.0% arzon Click 1D show receplors
F 0.7% 2/201 Click 1o show recephors
N 0.7% 271281 Click 10 show receplors
¥ 0.3% 17201 Click 1o show receplors

Statistics

[Entropy: 0.6 : The conservation of a position given by Shanom's entropy

H(X) = 3 P()I(z:) = — Y P(x) log, P(x:).

mwuwyc;mioommepoﬂ&onm-mvuhbllityhilsresidue"milel
py value close to 1 means high variability in its resid

Position distribution for A selection

Residues at Position: 3.40
E Amine
B MECA
Il Chemokine
100 B3 peptides
B Purin
S0 FFARs

== Glycoprotein
80 B3 s06
B Orphan
B MCH
W SREBs
60 3 opsin
- Acid
0 Melatonin
B prostaglandi
40 R MASrelated
R Oifsctory

20

0

-
LIVAPGMFYWSTCNQHKRDE

Figure 2. Example of GPCR-SAS conservation analysis.
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The user may provide both a positional input and an amino acid or sequence
motif. In this case the output consists of the observed frequency and two drop
down menus that help to compare the observed frequencies for the other (sub)
families at the chosen level of classification and the subfamilies one level below.

Covariance analysis of two positions

If two positions are given as input without specifying any amino acid, the
calculation returns a list of amino acid or motif pairs sorted by their percentage
of occurrence together with the entropy, the Observed Minus Expected Squared
(OMES) value for the positions, which is based on a a x2 test (25) Employing this
method Pelé et al. were able to identify evolutionary hubs between pairs of
residues in GPCRs (26). To evaluate the significance for the computed OMES
value, GPCR-SAS computes the Z-score and the associated p-value based on the
OMES values computed for all possible combinations of amino acids.

Correlation analysis

When the user provides data for all input fields (two positions and two amino
acids or motifs), the output is a table displaying how presence of the amino acid
or motif at the first position is associated with presence of the amino acid or
motif at the second position. The obtained values are used to compute an odds
ratio that estimates how strongly the presence/absence of one of the amino acids
is correlated with the presence/absence of the other amino acid. Two drop down
lists preview the same information for the other groups at the current level of
classification and one level below as the selection are displayed by clicking on the
respective titles.
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Position/s conservation

Motif Conservation Matches
WN 60.1% 1757291
FD 14.1% 41/291
WD 3.8% 11/291
FN 2.1% 6/291
ON 2.1% 6/291
YN 1.7% 5/291
wWT 1.4% 47291
AN 1.4% 4/291
GN 1.4% 47291
SD 1.4% 47291
WH 1.0% 3/291

Statistics

Entropy: 0.3 : The conservation of a position/s given by Shanon's entropy

H(X) = E P(x:)I(z:) = - Z P(x;) log, P(a;),

1 T
lan entropy close to 0 means the position has a low variability in its residues while a entropy value close to 1 means high variability
n its residues

IOMES: 12.6 the 1 tWO |
OMES (i, j N2% (i, j)— N (i, §))*
== jJZ( b (i) = NS (i)
IOMES (observed minius i) calcul the difference | the ok i and | of each

possible pair of amino acids (x,y) at posﬂlon: i and j of the alignment

Z-Score : 35.8

P-value < 0.001 P-value < 0.0

[z-score and P-value give the significance of the lation by ing the ined OMES for the two positions with the OMES
mean for all binati of two iti

Figure 2. Covariance analysis for positions 6.48 and 7.49 in class A human receptors.
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RESULT-QUERY

Selection Motf  Mouf2  Conservason Maiches Motifl and mouf2 Moof1 and not moet2 Motif2 and not motifl None of both mosts Odds rasio
A = e 2% 87291 8 mn 1 10 029 Ct: (0.03 10 2.58)
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- No~
(] 8 1
No@ mn 10
Do raio: 029 C1. (000102 54] 15 & measuse of S550GS0N betwesen two 15U, afach Can be Iferpréted i the Mumber Of Senes Bl & Fore el 1 Coserve A PAFICHN ME5K00¢ I 0N [OSEON Qven Archer hesidoe 1 Rt jouton
ot example: & valeo cf 2 maas e fhe presence of B sk ke a5 el e fresence of A A valoe of 1 means e presence of s nof eflect on A
1 & e corfidence rmerve
© SAME-LEVEL
Selection Motf  Mou2  Conservason Matches Motif] and moet2 Motf] and not motif2 Moatif2 and not motifl Nane of bath motifs 0DDs rato
8 e 0.0% 0/49 0 % 0 3
[ - i 0.0% oz 0 2 0 0
F -] S0.0% 18136 18 1 6 n 33.00Cl (34910311 85)
© SUB-LEVEL
Selection Motif  Motif2 Conservason Matches Motifl and motif2 Motif] and not moet2 Motif2 and not mostl None of both motifs 0DOs rato
Apha - o 10% 1/98 1 a 0 °
Gamma o 29% 2/68 2 64 0 3
Beta L] 7.9% 3/ 3 3% 0 0
Deta e 30% 2167 2 64 1 0 0

Figure 3. Correlation analysis example.

Snake-plot representations

GPCR-SAS can also provide snake-plot representations for a particular receptor
or for the consensus sequence of a group of selected receptors. In the consensus
snake-plots produced by GPCR-SAS, each residue is represented by a circle,
where both the amino acid letter and the countour are colored according to
conservation (blue and black gradients, respectively). In single receptor snake-
plots, if a residue does not match the most conserved residue for the active
selection (i.e. branch, subfamily ...) its circle is colored in green and the contour
indicated conservation of the consensus residue.
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Green backgroud means the residue does not match
with the most conserved residue for that position.

%

Figure 5. Snakeplot representation of dopamine 3 receptor. Blue scale and grey scale
maps the conservation of the position and the conservation of the specific residue in the
position. Green background corresponds to residues which does not match with the
consensus residue for the selected family.

126




Results: GPCR-SAS

Results

The examples below illustrate how GPCR-SAS can be used, for instance, to
speculate if some interactions observed in GPCR crystal structures are likely to
exist in other GPCRs, if residues involved in the binding site of a receptors are
common to others or not or to identify common activation elements.

The transmisson switch

In class A GPCRs, rearrangement of the packing between residues 3.40, 5.50 and
6.44 leads to a weakening of the TM5-TM6 interface and local conformational
changes that are transmitted towards the cytoplasmic ends of TM5 and TM6.
These residues form the named transmission switch (Deupi Biochem Soc Trans
40 2012 383). We know that in the beta2-adrenergic receptors the residues at
positions 3.40, 5.50 and 6.44 are Ile, Pro and Phe. Let us examine the content of
position 3.40 in (human-non olfactory) class A GPCRs. A GPCR-SAS search for
position 3.40 in the default sequence set (human-non olfactory class A GPCRs)
returns the frequencies for all the observed amino acids in the left panel. The
right panel displays the entropy of this position 0.6, which means a moderate
variability (entropy ranges between 0 and 1) and a histogram displaying the
distribution of the observed amino acids in the different subfamilies for this
position. For example we can observe that most Amine receptors feature Ile at
this position. Indeed, if we repeat the search selecting the subfamily Amine
(GPCRdb classification scheme) we see that the frequencies of Ile raises to 76.2%.
By clicking on “Show receptors” we can get the list of the receptors that contain
each of the amino acids. For instance, HRH3_HUMAN is the only Amine receptor
that contains Ala in this position.

Similar GPCR-SAS searches for positions 5.50 and 6.40 show that most receptors
class A receptors contain P5.50 (78.0%) and 6.44: F (80.4%). It looks like the
triad 3.40, 5.50 and 6.44 is highly conserved in class A GPCRs. We can search for
the three positions together to identify the most common triads. These are 13.40-
P5.50-F6.44 (32.3%), V3.40-P5.50-F6.44 (16.5%) and other triads with
frequencies < 5%.

Ile at position 3.40 with tells that 39.2% of the receptors contain Ile. Adding Ile in
the first motif input (one letter amino acid code) and updating the calculation
shows the conservation for Ile in the position 3.40. By clicking on the “Same-
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level” drop-down box we can compare to the other categories at the same level of
classification (in this case we have not selected any level and thus the comparison
is with the other classes). Ile is rarely/never found at position 3.40 in classes B, C
and F. By clicking on the “Sub-level” drop-down box we compare within the
subcategories of the parent category (in this case, Branches within class A).
Almost half of the receptors at the alpha branch according the Fredrikson contain
[le3.40. By contrast the beta branch is the category with less frequence of 1le3.40
(16.7%). We may repeat the search using the wildcard for apolar amino acids
instead of Ile. GPCR-SAS tells that the sum of frequencies for aliphatic residues
adds to 86.9%.

If we search for the frequencies of amino acids at position 5.50 in other families,
GPCR-SAS tells us that Pro is also the most conserved residue in the class F,
although there are no class B or class C receptors containing Pro at this position.
Still, we have suggested, based on mutagenesis studies, that 3.40 and 6.44 also
form a transmission switch in the class B B1 Peptide GPCRs (13). GPCR-SAS tells
us that 3.40 is a conserved aromatic position (Y:66.7% and F:33.3%), whereas
6.44 contain Ile (50.0%) and Phe (43.8%). Thus, B1 Peptide receptors have
switched residue types at positions 3.40 and 6.44 compared to class A receptors.
May this be a common feature of all class B GPCRs? GPCR-SAS suggests that there
is a significant correlation between presence of an aromatic residue at position
3.40 and an aliphatic residue at position 6.44, with an odds ratio of 22.0.

What happens with the 3.40-6.44 pair in the Class C? GPCR-SAS tells that 3.40
contains mostly aromatic residues {Y:50%, F:27%}. However, 6.44 has small
frequency of aromatic or aliphatic. The preferred residues are Thr (36.4%) and
Ser (18.2%). Interestingly the analysis of the correlation between both positions
in Class C shows a strong significant correlation (P-value < 0.001). This
correlation does not exist for class F (P-value < 0.001).
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From ligand binding to conformational changes

19.9% of human non-olfactory class A GPCRs exhibit D at position 3.32 -known to
constitute the main anchoring point of aminergic ligands- and 31.3% have Y at
position 7.43. For aminergic GPCRdb subfamily, a correlation analysis using
GPCR-SAS shows that having D3.32 is always associated with the presence of
either Y (93%) or W (7%) at position 7.43. This suggests that an aromatic residue
that can form a hydrogen bond with D3.32 is essential for some receptors. D-Y is
present not only in 90% of aminergic receptors, but also in 19% of peptide
receptors (using GPCRdb classification scheme) including, for example, all
somatostatin, opioid and urotensin Il receptors. On the other hand D-W is specific
of about half of the histamine and dopamine receptors. With an odds ratio of 71.5
(taking the whole class A human GPCRs set), the probability of having one of
these residues when the other is present is 71.5 times higher than without its
presence. The fact the anchoring point performed by these positions could form
an evolutionary hub in class A GPCRs was previously reported (27). In order to
estimate the probability of these positions forming an evolutionary hub, a co-
variance analysis was performed for class A human GPCRs. Resulting z-score
value for OMES calculation is 16. This value means the OMES value for this pair of
positions is shifted 16 standard deviations from the mean making it a high score
evolutionary hub as reported by Pelé et al (26).

The crystal structures of (:-adrenergic receptors revealed that two aromatic
residues in TM6 participate in the binding of both agonists and antagonists: F6.51
and F6.52. These two residues could be active modulators of the toggle switch
associated to CWxP (6.47-6.52). A GPCR-SAS search for CWxPFF shows that this
motif is present in 10.7% human non-olfactory class A GPCRs, in particular in
61.1% of the aminergic -including all adrenergic and dopamine- and 11.7% of the
peptide receptors.

Y5.58 and the NPXXY motif

Crystal structures of opsin and [z-adrenergic receptor bound to a G-protein (or a
peptide derived from the Ga C-terminus) revealed that Y5.58 and R3.50 exhibit
important conformational changes from the inactive to the active structures,
suggesting an important functional role for them (28,29). A GPRC-SAS search for
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CC
CC!
CC!

position 5.58 showed that Y5.58 is one of the most highly conserved residues in
TM5, being present in 74.9% of human sequences. 16,5% of human sequences
feature residues with hydrogen bonding capability (N, S, T, Q and H), which most
likely, would preserve the role of Y in the GPCR activation mechanism. F is the
non-polar most prevalent residue at this position. A subsequent detailed GPCR-
SAS analysis shows that F5.58 is conserved in the SREB subfamily. Consequently,
these receptors are likely to exhibit significant differences in the activation
mechanism through TM5.
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4.6 The extracellular entrance provides selectivity to 5-HT~
receptor antagonists with antidepressant -like behavior in
vivo.

Abstract

The finding that ergotamine binds serotonin receptors in a less conserved
extended binding pocket close to the extracellular entrance, in addition to the
orthosteric site, allowed us to obtain 5-HT;R antagonist 6 endowed with high
affinity (Ki = 0.7 nM) and significant 5-HT14R selectivity (ratio > 1428). Compound
6 exhibits in vivo antidepressant-like effect (1 mg/kg, ip) mediated by the 5-HT7R,
which reveals its interest as a putative research tool or pharmaceutical in
depression disorders.

Introduction

The serotonin (5-hydroxytryptamine, 5-HT) 5-HT7 receptor (5-HT7R), first cloned
in 1993,(1,2) is distributed in discrete areas of the brain and in the periphery.(3)
Within the central nervous system (CNS), particularly high levels have been
detected in thalamus, hippocampus and hypothalamus (especially within the
suprachiasmatic nucleus). To date, the functional role of the 5-HT7R in various
pathophysiological processes has been described.(3-6) For instance, activation of
the 5-HT7R is involved in nociceptive processing, and it has been proposed that
agonists of the receptor could be used as adjuvant drugs in pain treatment.(7,8)
Results from animal models of learning and memory have suggested that the 5-
HT7R represents a potential therapeutic target for the treatment of memory
dysfunction in cognitive disorders (schizophrenia, Alzheimer’s disease, and age-
related decline).(9,10) On the other hand, pharmacological blockade or genetic
inactivation of the 5-HT7R leads to an antidepressant-like behavioral profile in
vivo.(11,12) It has also been suggested that the clinically established
antidepressant effect of atypical antipsychotic drugs amisulpride and lurasidone is
due to their blockade of the 5-HT7R.(13,14)

Major depression is a common psychiatric disorder associated with high
symptomatic and functional burdens. Pharmacological treatment is often effective,
but there remain substantial unmet needs in the form of non-responders, delayed
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onset of clinical effect, and side effects. In recent decades, an increasing demand
has emerged for the discovery of new types of antidepressants. The therapy of this
psychiatric disease is dominated by selective serotonin reuptake inhibitor (SSRI)
antidepressants. However, the main drawback of this class of drugs is to produce a
therapeutic effect only after several weeks of treatment. Importantly, a recent
study showed that the pharmacological blockade of the 5-HT7R produces a faster
antidepressant-like response than the 5-HT uptake inhibitor fluoxetine, commonly
used as an antidepressant agent.(15) Therefore, 5-HT7R antagonists could
represent a possible alternative to SSRIs as antidepressant drugs with a faster
onset of action. All together, these studies have positioned the 5-HT;R as a
promising drug target in the search for new antidepressant agents. Indeed, several
antagonists of the receptor induce an antidepressant-like behavior in preclinical
models of depression.(16-18) Interestingly, 5-HT;R antagonist SB-269970 (3-
({(2R)-2-[2-(4-methylpiperidin-1-yl)ethyl]pyrrolidin-1-yl}sulfonyl)phenol)  also
potentiates the effect of clinically used antidepressants such as citalopram,
imipramine, desipramine, and moclobemide;(19,20) and JNJ-18038683 (3-(4-
chlorophenyl)-1,4,5,6,7,8-hexahydro-1-(phenylmethyl)pyrazolo[3,4-d]azepine  2-
hydroxy-1,2,3-propanetricarboxylate) has been evaluated in a clinical trial (phase
2) for the treatment of major depressive disorder.(21) This boosts the efforts
toward the development of new 5-HT;R antagonists that are still needed to
validate their suitability as therapeutic agents.

In this context, our research group has previously identified a structurally new
family of 5-HT7R ligands represented by 1 and 2 (Chart 1).(22,23) However, the
demonstrated close similarities between the binding sites of 5-HT; and 5-HTia
receptors have resulted in difficulties to develop selective 5-HT7R agents.(18,24-
26) Thus, in this work we have focused our efforts in obtaining ligands endowed
with 5-HT7/5-HT1a receptor selectivity. We took advantage of the increasing
number of available crystal structures of the G protein-coupled receptor (GPCR)
family,(27) to which 5-HT1a and 5-HT7 receptors belong. All these structures share
the common architecture of seven transmembrane domains (TMs),(28) forming a
water-filled binding-site crevice. Moreover, the recent crystal structures of
ergotamine bound to 5-HTig and 5-HT2g receptors have revealed a large ligand
binding cavity defined by the regular orthosteric pocket within TMs 3, 5, 6, 7 and
extracellular loop (ECL) 2, embedded deep in the 7TM core, and an extended
binding pocket close to the extracellular entrance.(29,30) Because this
extracellular entrance is less conserved than the orthosteric binding site,(31) this
finding opens the opportunity to obtain ligands with significant subtype selectivity.
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Compound 2, previously reported in our laboratory,(23) showed high binding
affinity for the 5-HT7R (K; = 7 nM) and moderate selectivity (5-HT7/5-HT14 ratio =
31). This compound was predicted to bind in the conserved orthosteric pocket
within TMs 3, 5, and 6.(23) Because the 7TM bundle limits the length of this
orthosteric pocket between TMs 3 (D3.32) and 5 (S5.42), we designed compounds
3-10 (Chart 1) that contain increasing number of methylene units in the spacer
with the aim of improving receptor selectivity. In particular, analogue 6 has been
characterized as a potent and selective 5-HT7R antagonist that exhibits in vivo
antidepressant activity in the tail suspension and the forced swim tests.

B o~ o
7 0N

N
0 D
3-6

0 1
7-10

Chart 1

Results and discussion

In the design of compounds 3-10 (Chart 1, Table 1), the main idea was that
derivatives with a small number of methylene units (short spacers) would fit the
protonated amine and the indolone moieties of the ligand within the orthosteric
site, showing moderate selectivity due to a conserved pocket (Fig. 1A, top panel).
In contrast, compounds with a large number of methylene units (long spacers)
would reverse the binding mode so that the protonated amine binds D3.32 in the
orthosteric site and the indolone moiety would expand toward the extracellular
entrance where sequence divergences between 5-HT7 and 5-HTia receptors are
observed (Fig. 1A, bottom panel).
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Target compounds 3-10 were synthesized starting from commercially available
1,3-dihydro-2H-indol-2-one. Alkylation with the appropriate dibromide derivative
in the presence of K,CO3 afforded bromoalkanes 11-15. These intermediates were
subsequently treated with 1,2,3,4-tetrahydroisoquinoline or (%)-trans-
decahydroisoquinoline using triethylamine and acetonitrile as solvent, to obtain
final compounds 3-6 or 7-10, respectively (Scheme 1).

Affinity of compounds 3-10 for studied serotonin receptors was evaluated by
radioligand competitive binding assays using membranes of CHO-K1 or HEK-293
cells transfected with human 5-HT7 or 5-HT14 receptors, and [3H]LSD or [3H]-8-OH-
DPAT, respectively. The affinity constants K; calculated from the inhibitory
concentration 50 (ICso) are shown in Table 1. All synthesized compounds bind the
5-HT7R and tetrahydroisoquinoline derivatives (2-6) display higher affinity than
the corresponding decahydroisoquinoline analogues (7-10). Notably, an increase
in the number of methylene units in the spacer in compounds 2-5 and 7-9 leads to
an improvement of the selectivity against the 5-HT:aR. Moreover, compounds 6
and 10 containing a 3-hexenylene spacer exhibit higher 5-HTR affinity (Ki = 0.7
and 2.7 nM, respectively) than a hexylene analogue 4 (K; = 24 nM). Clearly, 6 and
10 displayed the best profiles of both 5-HT7R affinity and 5-HT7/5-HT1a selectivity
(ratio > 1428 and 370, respectively). In these ligands the double bond of the spacer
mimics the planar conformation of the carboxamide group of ergotamine (Fig. 1B).
Thus, these experimental data suggest that 3-hexenylene spacer, as well as seven-
methylene units, trigger the reverse binding mode towards the extracellular
entrance. Moreover, the enhanced binding affinity of 6 (K; = 0.7 nM), relative to 2
(Ki = 7 nM), shows that the indolone moiety optimally binds this cavity. In an
attempt to characterize the amino acid residues of the extracellular entrance
involved in the recognition of the indolone moiety, we performed molecular
dynamics (MD) simulations of the complex between compound 6 and a 5-HT1gR-
based homology model of the 5-HT7R (see Experimental Section and Figure 1C).
Importantly, the interaction between the protonated amine and D3.32 remains
stable through the simulation time, while the indolone moiety accomplishes key
interactions with R6.58 and R7.36 at the extracellular entrance. The fact that the 5-
HT1aR replaces these charged amino acids by Leu and Ala, respectively, explains
the observed selectivity. In detail, E7.35 and Q2354 in ECL 2 maintain R6.58
toward the extracellular entrance to interact with the carbonyl group of the
indolone moiety, while the aromatic ring is located between L232i*1 and L7.32, and
forms a cation-p interaction with R7.36 (Figure 1D).
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Subsequently, functional characterization of selective ligands 6 and 10 was
assessed by evaluating their effect on adenylate cyclase (AC) activity in CHO cells
expressing the human 5-HT7R. Treatment with the ligand caused a dose-dependent
increase in cAMP levels, though a low effect in maximum activation was observed
in both cases (Emax = 21% and 36%, respectively, Table 2). After pre-treatment
with serotonin the new compounds induced a dose-dependent decrease of cAMP
concentration, and maximum inhibitory effects (Imax) of 81 and 66% were attained,
respectively (Table 2). The concentration values that produce half of that effect,
ICso, and the calculated dissociation constants, Kg, are shown in Table 2. These data
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indicate that ligands 6 and 10 exhibit in vitro antagonist character at the human 5-
HT7R, in the AC assay.

Altogether, the newly identified 5-HT7R antagonist 6 displays an optimized profile
in terms of affinity (K; = 0.7 nM), selectivity (5-HT7/5-HT1a ratio > 1428), and
functional activity (K = 84 nM, Inax = 81%).

A

Figure 1. MD simulations of the 5-HT7R in complex with compound 6. (A) Potential modes of
binding of ligands 2-10. Derivatives with short spacers would bind within the orthosteric site, between
TMs 2 and 5(22,23) (top panel), whereas derivatives with large spacers would bind both at the
orthosteric site and at the extracellular entrance (bottom panel). (B) Superimposition of ergotamine (in
green) and compound 6 (in white). The position of the double bond of 6, to mimic the planar
conformation of the carboxamide group of ergotamine, is shown in orange. (C) The structures of 6 (in
white) computed during the simulation (50 structures collected every 2 ns). Superimposition of
ergotamine (in purple), as found in the crystal structure of the 5-HT1gR, shows that both compounds
bind the receptor in a similar manner. (D) Detailed view of the interaction of 6 with D3.32, L232i*1 (at
position i+1 relative to the conserved C231! engaged in a disulfide bond with C3.25 in TM 3), R6.58,
L7.32, and R7.36.
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Table 1. 5-HT7 and 5-HT1A Receptors Affinities of New Synthesized Compounds 3-
10. a Values are the mean of two to four experiments performed in triplicate. b 5-CT
was used as a reference compound (Ki = 1.8 = 0.6 nM). ¢ 8-OH-DPAT was used as a
reference compound (Ki = 1.02 = 0.08 nM). d Value from ref 23.
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6 0.23 |21 22 | 84 81
10 0.06 |36 23 |88 66
5-HT 0.017 | — - - -
Mesulergine | — — 0.29 | 11 —

Table 2. Functional Activity of High-Affinity 5-HT7R Ligands

To further characterize compound 6, we assessed its antagonist character in vivo
by determining its effect on hypothermia induced by reference agonist 8-OH-
DPAT in mice. Core body temperature was measured using a rectal probe
thermometer. A basal value was measured, immediately before any
intraperitoneal (ip) injection, and changes in body temperature were determined
as peak effect (maximum change during the first 30 min) and overall effect (area
under the curve for the total registration period of 2 h). As shown in Figure 2, 8-
OH-DPAT (0.3 mg/kg, ip) induced hypothermia, as expected, in contrast to tested
compound 6 (0.3 and 1 mg/kg) that had no effect on body temperature by itself.
Importantly, the hypothermic effect of 8-OH-DPAT could be counteracted by
compound 6 when administered at the dose of 1 mg/kg 30 min before 8-OH-
DPAT (Figure 2). It has been previously found that at the dose used (0.3 mg/kg)
8-OH-DPAT acts mainly as a 5-HT7R agonist.32 Therefore, the ability of 6 to
inhibit the hypothermic effect of 8-OH-DPAT indicates that the high-affinity
ligand identified herein acts as a 5-HT7R antagonist in vivo.
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Figure 2. Peak and overall effects of compound 6 in the 8-OH-DPAT-induced
hypothermia assay in mice. *P < 0.05, **P < 0.01, ***P < 0.001; one-way analysis of
variance followed by Bonferroni's post-hoc test. N = 5-7 animals/group.

The pharmacological action of the new 5-HT7R antagonist 6 was evaluated in the
tail suspension and forced swim tests, two mouse models in which an
antidepressant behavior is attributed to a decrease in the immobility of the
animal. The tail suspension test was performed for 6 min as previously
described,(32,33) and the duration of immobility was determined for the last 4
min of the test. Immobility was defined as the absence of all except respiratory
movement of the mouse. Statistical analysis of the results revealed a significant
effect for treatment with tested compound 6, as shown in Figure 3A. Specifically,
ip administration of the antagonist at the dose of 1 mg/kg, but not at 10 mg/kg,
induced a decrease in the immobility compared to vehicle.
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Likewise, the forced swim test was conducted for 6 min as previously
described,(19,32) and the duration of immobility was scored for the last 4 min of
the test. In this assay, immobility was defined as the absence of all motion except
minor movement required for the mouse to keep its head above the water
surface. Again, compound 6 significantly reduced immobility at the dose of 1
mg/kg compared to vehicle (Figure 3B).
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Figure 3. Effects of compound 6 on mouse immobility in the tail suspension test (A) and the
forced swim test (B). **P < 0.01; one-way analysis of variance followed by Bonferroni's post-hoc test
or Student's two-tailed unpaired t-test, respectively. N = 7-9 animals/group.

Therefore, ip administration of compound 6 at the dose of 1 mg/kg induces a
decrease in the immobility of mice in the tail suspension and forced swim tests.
The observed effects indicate 5-HT7R antagonist-like properties for ligand 6, as
previous studies have shown that inhibition or inactivation of the 5-HT7R, using
selective antagonists or mice lacking the receptor, leads to reduced immobility in
these tests.(12,19,32,34) In addition, it appears that ligand 6 exhibits similar
behavior than other 5-HT;R antagonists in these in vivo models, where an
attenuation of the antidepressant activity was observed after administration of a
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higher dose.(13,19,34) It should also be pointed that 6 displays a high affinity for
the 5-HT7R (Ki = 0.7 nM), and is able to inhibit the in vivo hypothermic effect of 8-
OH-DPAT. The specificity of antagonist 6 was further confirmed by the
assessment of binding affinity toward other depression-related GPCRs such as the
serotonin transporter and 5-HT1g, 5-HT24, and 5-HT»c receptor subtypes, as well
as at melatonin MT1 and corticotropin releasing factor CRF1 receptors.35 Indeed,
in all cases compound 6 (at a concentration of 1 pM) displaced less than the 15%
of the corresponding radioligand binding (see data in Table S1 of the Supporting
Information), which supports that the observed antidepressant-like effect of
compound 6 is mediated by the 5-HT7R.

In conclusion, the promising in vivo properties exhibited by the new high-affinity
and selective 5-HT7R antagonist described herein reveal its interest as a putative
research tool or pharmaceutical in depression disorders.

Experimental section

Computational model of the complex between compound 6 and the 5-HT-R.

MODELLER v9.7(35) was used to build a homology model of human 5-HT7R
(Uniprot code P34969) using the crystal structure of human 5-HTiz (PDB code
41AR)(30) as template. Compound 6 was docked into the receptor model in such
a manner that the protonated amine of the ring forms an ionic interaction with
D3.32, while the indolone moiety expands toward the extracellular entrance. This
structure was placed in a rectangular box containing a lipid bilayer (183
molecules of POPC) with explicit solvent (14334 water molecules) and a 0.15 M
concentration of Na* and Cl- ions. This initial complex was energy-minimized and
subsequently subjected to a 10 ns MD equilibration, with positional restraints on
protein coordinates, to remove possible voids present in protein/lipids or
proteins/water interfaces. These restraints were released, and two different
replicas of 100 ns MD trajectories were produced at constant pressure and
temperature, using the particle mesh Ewald method to evaluate electrostatic
interactions. Computer simulations were performed with the GROMACS 4.6.3
simulation package,(36) using the AMBER99SB force field as implemented in
GROMALCS, Berger parameters for POPC lipids, and the general Amber force field
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(GAFF) and HF/6-31G*-derived RESP atomic charges for the ligand. This
procedure has been previously validated.(37)

General Procedure for the Synthesis of Intermediates 11-15.

To a stirred solution of 1,3-dihydro-2H-indol-2-one (0.80 g, 6 mmol) and the
appropriate dibromide derivative (8 mmol) in anhydrous acetonitrile (90 mL),
K>CO3 (1.66 g, 12 mmol) was added. The reaction mixture was heated at reflux
under an argon atmosphere for 20 h, then cooled to room temperature and
filtered. The resulting solution was evaporated under vacuum, and the crude
material was resuspended in water and extracted with dichloromethane (3 x 30
mL). The organic layers were dried (NazSO4), filtered and evaporated under
reduced pressure. The obtained residue was purified by column chromatography
using the appropriate eluent, to afford pure 11-15.
1-[(3E)-6-Bromohex-3-en-1-yl]-1,3-dihydro-2H-indol-2-one (15).

Obtained from 1,3-dihydro-2H-indol-2-one and (3E)-1,6-dibromohex-3-ene in
60% yield. Chromatography: hexane/EtOAc, from 9:1 to 8.5:1.5; IR (ATR) v 1711,
1614, 1489, 1466; 'H NMR (300 MHz, CDCl3) & 2.40 (app q, ] = 6.8, 2H, CH.CH=),
2.51 (app q, ] = 6.8, 2H, CH2CH=), 3.29 (t,J = 7.1, 2H, CH:Br), 3.53 (s, 2H, CH2CO),
3.75(t,J="7.2, 2H, CH;N), 5.29-5.60 (m, 2H, CH=CH), 6.82 (d, /= 7.7, 1H, CHa,), 7.02
(t, /= 7.6, 1H, CHar), 7.22-7.28 (m, 2H, 2CHa,); 13C NMR (50 MHz, CDCl3) & 29.7,
30.7, 32.4, 35.8, 39.6 (5CH2), 108.7, 122.2, 124.5 (3CH), 124.6 (C), 127.8, 129.3,
129.8 (3CH), 144.5 (C), 175.0 (CO).

General Procedure for the Synthesis of Final Compounds 3-10.

To a suspension of the corresponding intermediate 11-15 (0.9 mmol) and
1,2,3,4-tetrahydroisoquinoline or (*)-trans-decahydroisoquinoline (1.5 mmol) in
anhydrous acetonitrile (4 mL), triethylamine was added (0.2 mL, 1.5 mmol). The
reaction mixture was heated at 60 °C under an argon atmosphere for 24 h. Upon
cooling to room temperature, the solvent was evaporated under reduced
pressure and the crude material was resuspended in water and extracted with
dichloromethane (3 x 10 mL). The organic layers were dried (NaS0.), filtered
and evaporated, and the resulting oil was purified by column chromatography
using the appropriate eluent, to provide pure final compounds 3-10.

The free amine was characterized (yield, IR, NMR, MS), dissolved in anhydrous
Et20 (6 mL/mmol), and a commercial 1 M HCl(g)/Et,0 solution (1 mL/mmol)
was added. The hydrochloride salt was isolated by filtration or evaporation,
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washed with anhydrous Et;0, dried under high vacuum, and characterized (mp,
elemental analysis).

1-[(3E)-6-(3,4-Dihydroisoquinolin-2(1H)-yl)hex-3-en-1-yl]-1,3-dihydro-2H-
indol-2-one(6).

Obtained from 15 and 1,2,3,4-tetrahydroisoquinoline in 80% yield.
Chromatography: from EtOAc to EtOAc/EtOH, 9:1; mp 109-111 °C; IR (ATR) v
1712, 1614, 1489, 1466, 1464; 'H NMR (300 MHz, CDCl3) § 2.24-2.32 (m, 2H,
CH:CH=), 2.34-2.42 (m, 2H, CH:CH=), 2.50 (t, / = 6.7, 2H, NCHy), 2.73 (t, /] = 5.9, 2H,
CHaisoquin), 2.90 (t, J = 5.8, 2H, NCHzisoquin), 3.51 (s, 2H, CH2CO), 3.63 (s, 2H,
NCHazisoquin), 3.75 (t,J = 7.3, 2H, CHzNCO), 5.50-5.55 (m, 2H, CH=CH), 6.84 (d, /= 7.8,
1H, CHina), 7.00-7.05 (m, 2H, CHind, CHisoquin.), 7.08-7.16 (m, 3H, 3CHisoquin), 7.23-
7.31 (m, 2H, 2CHinq); 13C NMR (50 MHz, CDCl3) 6 29.0, 30.5, 30.8, 35.8, 39.8, 50.8,
56.0, 58.0 (8CH3), 108.5,122.1, 124.5 (3CH), 124.6 (C), 125.6,126.1, 126.6, 127.3,
127.8, 128.7, 131.0 (7CH), 134.3, 135.0, 144.6 (3C), 175.0 (CO); ESI-MS 347.3
(M+H)*. Anal. (C23H26N20-HCI-H;0) C, H, N.

In vivo Evaluation of Compound 6.

Male and female 8-12 weeks-old C57BL/6] mice obtained from the breeding
facilities of The Scripps Research Institute were used in all experiments. The
animals were group housed and had free access to standard food pellets and
water. The experiments were done in accordance with the Guide for the Care and
Use of Laboratory Animals as adopted and promulgated by the US National
Institutes of Health, and were approved by the Animal Care and Use Committee at
TSRI. Every effort was made to reduce the number of animals used and to
minimize potential suffering. Compound 6 was dissolved in a small amount of
DMSO and then in 0.9% saline. 8-OH-DPAT was dissolved in 0.9% saline. The
vehicle 0.9% saline was used as a control. The drugs were administered by single
ip injections in the doses indicated. All experiments were started at 9:00 h, and
are briefly detailed below.

Agonist-Induced Hypothermia Assay.

Core body temperature was measured using a rectal probe thermometer
(Physitemp BAT-7001H, Physitemp Instruments, Clifton, NJ) as previously
described.(33) A basal value was measured immediately before any injection and
measurements were then made 15 and 30 min after injection, and subsequently
every 30 min for a total registration period of 2 h. When the antagonistic
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properties of 6 were evaluated, it was administered 30 min before the agonist (8-
OH-DPAT). Changes in body temperature were determined as peak effect
(maximum change during the first 30 min) and overall effect (area under the
curve for the entire registration period).

Tail Suspension Test.(19,32)

An individual mouse was suspended from the tip of its tail attached with a piece
of tape to a metal bar placed horizontally 50 cm above the tabletop. The duration
of the test was 6 min and behavior was scored by a trained investigator. Duration
of immobility was determined for the last 4 min of the test. Immobility was
defined as the absence of all except respiratory movement. After the test the
animal was returned to its home cage.

Forced Swim Test.(19,32) An individual mouse was placed in a clear plastic
cylinder with a diameter of 16 cm. The height of the cylinder was 25 cm and it
was filled with 10 cm of clear water at 25 °C. The duration of the test was 6 min
and behavior was scored by a trained investigator. Duration of immobility was
determined for the last 4 min of the test. Immobility was defined as the absence
of all movement except minor movement required for the mouse to keep its head
above the surface. Afterward the mouse was towel dried and returned to its
home cage. The water was replaced between each animal.
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Conclusions

5 Conclusions

This thesis comprises both the development and application of computational
techniques. Web applications have become very useful tools for the scientific
community as they provide a platform-free ready-to-use interface. This thesis
presents two web applications, LigandFinder (virtual screening) and GPCR-SAS
(sequence analysis):

LigandFinder

LigandFinder is a flexible user-friendly web application that allows fast
virtual screening to find new (commercially available) compounds similar
to a set of compounds of known structure. It explores the chemical space of
a database with more than 20M compounds. It has been designed for users
with no computational background, who can easily find new compounds
with chemical features similar to the input compound(s). To our
knowledge, LigandFinder is the first free web service that allows the use of
multiple ligands (instead of just one) as input in the 2D virtual screening
exercise. Additionally, using the same tool, a pre-computed database of
GPCRs ligands have been designed, allowing the users to quickly explore
new possible GPCRs ligands.

GPCR-SAS

For closely related protein families, key structurally conserved and
functional regions can be identified from multiple sequence analysis. This
web application takes advantage of the structural similarity among GPCR
transmembrane regions to perform statistical analysis of key positions or
motifs of families A, B, C, and F of GPCRs. GPCR-SAS provides different
types of analysis such as the conservation of position(s) or range of
positions, as well as the entropy, co-evolutionary (co-variance) and
correlation analysis. Additionally, a snakeplot representation with this
information can be drawn.
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Conclusions

The knowledge of the structure of both the ligand and the target-protein
facilitates the drug-discovery process. We have applied structure-based methods
to design selective, versus the 5-HT1a receptor, ligands for the serotonin 5-HT7:

The extracellular entrance provides selectivity to 5-HT; receptor
antagonists with antidepressant-like behavior in vivo

The less conserved extracellular part of serotonin receptors is critical for ligand
selectivity. This work describes the binding mode of a designed selective 5HT>
receptor antagonist with antidepressant activity opening a gate for a new
generation of antidepressant drugs.

The biological function of membrane proteins, triggered or inhibited by drugs,
requires conformational rearrangement of the transmembrane regions. These
conformational changes require disruption and formation of key inter-helical
interactions. Here, we have studied the role of sulfur-containing amino acids (Met
and Cys) in forming inter-helical interactions.

The role of sulfur-containing amino acids in the structure and
function of membrane proteins

7TMRs feature several examples of Met/Cys-aromatic and Met-Met
interactions that are, in some cases, responsible for important
pharmacological, signaling or functional events. In the present review we
have described many examples of such interactions occurring between
natural or synthetic ligands and their receptors, and between two or more
residues within the receptor

The analysis of the inter-residue interactions in crystal structures of
membrane protein reveals that Met and Cys often interact with Leu, Ile, Val,
Phe, and other Met or Cys residues. The characterization of their strength
using ab-initio calculations in small-molecule model systems, predicts that
Met-Met, Met-Phe, Cys-Phe, Met-aliphatic and Cys-aliphatic interactions are
stronger in magnitude than aliphatic-aliphatic interactions. Remarkably,
Met-Met, Met-Phe, and Cys-Phe interactions are stronger than aromatic-
aromatic interactions.
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