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Abstract 
 

This dissertation describes the development of a biotechnological process to obtain polyunsaturated fatty 

acids (PUFA) by heterotrophic microalgae. The selected heterotrophic microorganism was 

Aurantiochytrium limacinum SR21 due to its capacity to produce PUFA, grow with different carbon sources 

and tolerate high salinity. During the thesis investigation diverse analytical methods have been developed 

in order to monitor A. limacinum growth. Moreover, different experimental design strategies/tools, such 

us Taguchi orthogonal matrices, Artificial neural network, Response surface methodology, etc. have been 

used to develop a growth medium specifically optimized for A. limacinum. Instead of using traditional 

carbon sources, the process has been developed to grow A. limacinum with crude glycerol, an industrial 

by‐product.  

The same experimental design tools served to find the best oxygen supply conditions to stimulate either 

biomass or DHA production. Batch, fed‐batch, continuous and multi‐stage continuous bioreactors have 

been studied to find the most prolific strategy. Batch and Fed‐batch reactor generated the highest DHA 

yields. However, continuous cultivations produced higher DHA productivity values, especially the multi‐

stage strategy. In a multi‐stage continuous bioreactor, the first tank/s were dedicated to biomass 

production whereas the following tanks were set to stimulate DHA production.  

DHA products currently in market are formulated as DHA methyl esters or re‐esterified triglycerides, but 

not as unmodified triglycerides. In this thesis, an approach for preparative and process scale 

chromatography purification of unmodified triglycerides containing DHA has been developed.  



 1.1.Introduction to a bioprocess 

 

 

5 

Preface 
 

This thesis marks the completion of 4 years of research, which included more than 7000 hours of 

cultivation and several litres of an artificial seawater medium, all for the sake of Biotechnology. This 

report will explain the full development of bioprocess engineering, including the development of 

analytical chemistry, the production process and the purification steps required.  The knowledge 

recorded in the following pages will explain the very best way (to the best knowledge of the author), 

to produce a common bioproduct while seeking sustainability at every step. Sustainability is not a 

new idea; however, it is necessary for future generations who will require individual complex 

solutions such as the one presented in this dissertation. Although this may not be a definitive 

solution, it is hoped that this work will stimulate further research that will produce even better 

solutions in biotechnology and similar fields.  

This thesis has been written not only to document the research but also to help new bioprocess 

engineering students/researchers in the bioengineering department, of Institut Químic de Sarrià. 

The chapters of this thesis will explain many different tools, modelling and statistical techniques that 

have been applied during different phases of the research process. Conducting this research and 

writing this thesis has also offered the author many opportunities for professional and personal 

scientific growth. Every important technique has been introduced in the correspondingly applied 

chapter. Therefore, it might be advisable to read this thesis as a linear story for better 

understanding.  

This dissertation is an original, intellectual product of the author, and has been completed with many 

priceless contributions. First, the advisors of this doctoral project; Dr. Antoni Planas and Dr. Xavier 

Turon provided invaluable advice and tutelage during this process. Second, the MSc students and 

undergraduate students who offered many valuable contributions. Many thanks to all of the 

students. In addition, MSc thesis students contributed to different sections of the project. Francesc 

Padrès Angelats, Carme Carnicé Bullich and Nuria Abajo Lima contributed to the medium 

development. Klaus Pellicer Allborch contributed to the downstream research. Alba Farnós Viñals 

helped with the investigation of potential contaminants in the developed medium, which was part 

of her final bachelor project.  

This report cannot express the many long days spent in the lab, battling shoulder to shoulder with 

my fellow scientists and friends, the joy of science, the exciting anticipation of positive results and 

the deep disappointment and exhaustion that was felt with each failed attempt. No part of this 

project would have been possible without the confidence of and financial support from InterQuim 

S.A., which was generously provided from the very beginning of this complicated but valuable 

project.  
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1.1 Introduction to a bioprocess 
The role of bioprocess engineering in biotechnology 

Biotechnology involves environmental resource adaptation to meet human needs, involving 

food, beverages and medicines. Biotechnology has been used for millennia to make bread and 

beer, and mouldy soybean curd was used 5000 years ago to treat skin infections in China [1]. It is 

currently a science that is full of potential and that embodies the future of mankind. 

Biotechnology has faced the deadliest illnesses, it is used in the fight to satisfy the world’s food 

demands and it has offered innovation for countless industrial processes. However, the benefits 

of biotechnology could not be a reality without bioprocess engineering and bioseparation 

engineering. These disciplines define the two main blocks of productive biotechnology, without 

which the creation and purification of biotechnologically derived products would not be possible 

on a large scale (Box 1 shows an historical example). The aforementioned, derived products can 

be classified as biopharmaceuticals; including all 

molecules with therapeutic value and bioproducts; 

including non‐pharmaceutical products such as nutritional 

supplements, biofuels, biocatalysts for industry, building 

blocks for biodegradable products, etc. In this thesis, an 

innovative, biotechnological production of an existing 

bioproduct will be proposed.  

With nine calories per gram compared to proteins and 

carbohydrates that have four calories per gram, lipids 

were traditionally considered to have a negative impact on 

human health. Currently, lipids are seen as compounds 

that are essential for human health but it is now known that they are more intricate than simply 

good vs. bad. Although omega fatty acids families are a small part of the complex world of lipids, 

they are an important asset for the human diet and are only abundant in certain foods. With 

omega‐3, omega‐6 and omega‐9 variations, only 3 and 6 are essential.  Omega‐9 can be produced 

by the human body[2].  On the other hand, omega‐6 fatty acids are present in many vegetable‐

based foods and omega‐3 is only available from flaxseed, walnuts and fish. Nevertheless, long 

chain polyunsaturated fatty acids omega‐3s (n‐3 long chain PUFA) such as docosahexaenoic 

(DHA) and eicosapentaenoic (EPA) acid are mainly introduced into the diet through fish [3]. Being 

among the scarcer fatty acids in nature, their health benefits are claimed to be diverse and 

orientated against many human disorders. Omega‐3 fatty acid supplement products are obtained 

from a diverse range of sources, with fish oil as the traditional commercial source.  

However, fish oil is susceptible to contamination with lipophilic organic chemicals that are now 

ubiquitous contaminants of marine ecosystems [4]. The increasing market demand for 

contaminant‐free and concentrated omega‐3 products has led to the search for new sources and 

development of new processes for the production of omega‐3 fatty acids. Marine 

microorganisms and transgenic plants are potential sustainable sources of contaminant‐free n‐3 

 

The discovery of the insulin potential, 
and the expression of the insulin gene in 
bacteria is an historical achievement of 
general biotechnology. The first 
marketed recombinant human insulin 

was marketed by Lilly in 1982. It 
required 31 major processing steps. 

Bioprocess engineering allows this 
process to be done in 10 steps making it 
more cost effective and accessible to 

patients around the world.  

Box 1.1. Human insulin production 
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long chain PUFA [5–8]. It is for this reason that bioprocess engineering must find a cost effective 

and ecologically responsible way to produce contaminant‐free, concentrated n‐3 long chain 

PUFA. Currently, the most productive of these alternative options is the use of heterotrophic 

marine microorganisms as a source of  n‐3 long chain PUFA [8,9], which offer the potential for 

increased productivity. The fish oil industry is well developed with lower costs than the 

aforementioned alternatives but the purification from contaminants has a negative impact on 

the cost of the process. Despite purification, commercial products are still highly contaminated 

[10,11] and may not be suitable for long‐term human consumption.   

Supplementation with fish oils may impair a person’s subsequent metabolic ability to convert α‐

linolenic acid (ALA) to EPA [4,12]. ALA is present in many vegetable oils and is more abundant 

than EPA and DHA. In light of this fact, DHA is considered the most valued and scarcer of the n‐3 

PUFA, which can be produced by marine microorganisms. In general, heterotrophic 

microorganisms offer increased productivity due to higher growth rates when compared to 

autotrophic microalgae. Thraustochytrids, a cluster of eukaryotic heterotrophic marine 

microorganisms, have a fatty acid profile that is rich in DHA commonly accounting for 20 to 40% 

of total fatty acids. Depending on the strain, they might accumulate low amounts of arachidonic 

acid (AA), EPA [13] and other PUFA [14–17]. Thraustochytrids allow the substitution of a 

traditional carbon source (glucose), for cheaper sources (i.e. glycerol, crude glycerol, molasses, 

whey and food waste, etc.), which would have a positive impact on the economics of the 

bioprocess. Cost reduction for growth media with minimal undesired effects is crucial for a 

potential industrial implementation.  

A complete bioprocess for the production and purification of DHA through A. limacinum cultures 

using glycerol as a carbon source will be described in this dissertation. This process has been fully 

developed, taking into consideration the large‐scale production implications, and has established 

the basic knowledge regarding Thraustochytrids cultivation. New analytical methodologies have 

been designed to carry out the upstream and downstream steps of this process. Researchers in 

this dissertation put forth significant effort to develop a cost effective media and adjust culture 

parameters while maintaining productivity. The main bioprocess strategies (batch, fed‐batch and 

continuous) have been investigated to elucidate the most prolific operation mode. The fully 

developed biotechnological process can serve as an approach for the production of other added‐

value metabolites such as natural pigments, organic acids and squalene. In fact, part of the 

presented research was focused on the purification of these other molecules. 

Bioprocess engineering allows the production of DHA, other fatty acids, pigments, organic acids 

and squalene in an alternative biotechnological way, avoiding lipophilic contaminants. Products 

obtained through the developed process are not dependent on the seasons or the annual 

fluctuations of fish oil production. In addition, photosynthetic equipment is not required. On the 

other hand, bioseparation technologies allow the purification of DHA and astaxanthin on a large 

scale as described in many procedures, as either ethyl esters, phospholipids or re‐esterified 
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triglycerides. Moreover, in the work presented here, an approach to purify unmodified 

triglycerides1 directly from thraustochytrids is presented.  

 

1.2 Motivation for the project 
Valorisation of crude glycerol while avoiding Omega‐3 contaminants 

This project originally sought a way to valorise the crude glycerol excess that was experienced 

during 2008‐2011. Glycerol is the main by‐product of the conversion of vegetable oils 

(generally) into biodiesel. The progressive increase of biodiesel production has in turn caused a 

sudden increase in crude glycerol. After the transesterification reaction that is performed to 

produce biodiesel2, roughly 10% of the feedstock was converted into glycerol [18–20]. The total 

EU27 biodiesel production for 2010 was over 21 million metric tons. Between 2009 and 2010, a 

production increase of 233% was achieved. The steady annual increase of biodiesel production 

in Europe, as well as in America and Asia, caused a sudden increase in the generation of crude 

glycerol. Between 2003 and 2010, biodiesel experienced a dramatic, worldwide annual growth 

in consumption as well. Studies showed an increase of 39% per year, as illustrated in Figure 1.1. 

Thus, any possible valorisation of crude glycerol, raising the value of the current biodiesel 

product, might have a notable contribution. The viability of biodiesel without subsidies is 

doubtful with the current world economic situation [21].  

Traditionally glycerol was purified to a technical grade or pharma‐grade (pure) glycerol 

depending to the contaminants removed. However, according to the feedstock and the process 

used to produce biodiesel, crude glycerol has different compounds that are considered 

                                                           
1 Currently marketed Triglycerides (TG) are in fact re‐esterified triglycerides. Their moieties were previously 
modified to be purified, and were then enzymatically re‐esterified into TGs. 
2 Reaction performed to produce biodiesel from natural residues. 
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contaminants. The most common contaminants are methanol and soap [20,21], but a high 

salinity content is also typically present due to the catalyst used in the process. Purified glycerol 

was primarily used in the pharmaceutical, food or cosmetic industries, however the cost of 

purification at such a large scale makes its utilization economically unviable [22,23]. As a 

consequence, tons of raw glycerol needed to be valorised, which lowered the production costs 

of different transformation opportunities due to its low cost per Kg.  

Since purified glycerol is a commercially available chemical that has thousands of potential uses, 

crude glycerol presents great opportunities for new applications. Recently, the possibility of using 

crude glycerol in feed has been investigated because of the increase in the price of corn [24]. 

Nevertheless, chemicals produced via biological conversion or through conventional catalytic 

conversion offer the largest number of potential applications.  

For example, Himmi et al. (1998)  [25] studied batch fermentations using Clostridium butyricum 

to produce 1,3‐propanediol. C. butyricum F2b was found to be suitable for waste glycerol 

conversion; yielding 0.50 g of 1,3‐propanediol per gram of glycerol. Later, studies using Klebsiella 

pneumoniae obtained a yield of 0.86 g 1,3‐propanediol per gram of glycerol. Additionally, 

Cardona et al. [26] observed a 1,3‐ propanediol production by K. pneumoniae in aerobic and 

anaerobic conditions yielding 0.51 g/g and 0.52 g/g, respectively. 1,3‐propanediol is used in 

composite materials, adhesives, laminates, powder and UV‐cured coatings, mouldings, novel 

aliphatic polyesters, co‐polyesters, solvents, and anti‐freeze [27]. Therefore, it has a great 

potential to absorb a large amount of the crude glycerol. Another example includes 

dihydroxyacetone, which is a simple three‐carbon sugar that is non‐toxic, and is used in the 

cosmetics industry. Immobilized Acetobacter xylinum A‐9 is used to oxidize glycerol to 

dihydroxyacetone [28]. This added‐value metabolite is synthesized by Gluconobacter oxydans 

using glycerol as the carbon source [29,30]. Another possibility is the production of succinic acid. 

It is typically used to obtain synthetic resins, biodegradable polymers and as an intermediate for 

chemical synthesis. This could be produced by the fermentation of Actinobacillus succinogenes, 

Basfia succinoproducens and Anaerobiospirillum sp. in which a maximum yield of 1.33 g of 

succinic acid per gram of glycerol is obtained [31]. Citric acid was satisfactorily produced by 

acetate mutants of Yarrowia lipolytica reaching concentrations of 139 g/L of product. Crude‐

glycerol growth media has also been used to produce pigments such as β‐carotene. For example, 

Blakeslea trispora [32] showed a yield of 15 mg β‐carotene per gram of biomass. Another widely 

used food supplement is the cyanobacteria Spirulina platensis3, which has been shown to 

successfully grow on crude glycerol based media [33].  Polyhydroxyalkanoates are the last 

example. They represent a complex class of naturally occurring bacterial polyesters that have 

been recognized as good substitutes for non‐biodegradable petroleum derived polymers. 

Cupriavidus necator DSM 545 was used to accumulate poly (3‐hydroxybutyrate) (P(3HB)) with a 

final productivity of 0.84 gPHB / L· h.  

                                                           
3 This is  a cyanobacteria that can be consumed by animals and humans either as a dietary supplement or as a 
whole food. 
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Table 1.1 shows products that have been obtained via the biological conversion of crude glycerol 

and their market values. Undoubtedly, PUFA are the most valuable molecules derived from crude 

glycerol and could be the key to biodiesel viability. There are many works that discuss the 

production of different PUFA by using diverse microorganisms growing on crude glycerol as 

carbon sources. Crypthecodinium cohnii and Nitzschia closterium are known for their ability to 

accumulate lipids, especially DHA [13,34–36]. Other strong PUFA producer microorganisms are 

Skelotema costatum, Pythium ultimum, Pythium irregulare, Mortiriella alpine, Nannochloropsis 

salina and various species of Codium sp. [35,37–44], among many other marine microorganisms. 

However, there is a family of marine eukaryotic microorganisms with an extraordinary PUFA 

accumulation capacity, eclipsing all others.  

In 1969, the special fingerprint of a marine microorganism cluster in terms of the fatty acid profile 

and DHA content had already been highlighted by Ellenbogen et al. (1969) [45]. This cluster was 

the Thraustochytrids family. It belongs to Labyrinthumycetes, of the kingdom of Chromista (also 

known as Straminopila). Thraustochytrids are heterotrophic marine protists phylogenetically 

considered microalgae. In the last decade, researchers have become aware of its potential to 

lead to new biotechnological applications [34,46–48].   

Thraustochytrids produce significant amounts of DHA. Their high ratio of DHA, combined with 

lower amounts of structurally related PUFA (compared to other species) simplifies the separation 

and purification processes [49,50]. The potential for PUFA production, especially n‐3 PUFA, with 

this family of microorganisms was incontestable. Many thraustochytrid strains accumulate 

considerable amounts of triacylglycerides with a high proportion of long chain PUFA, particularly 

DHA and docosapentanoic acid (DPA)4. DHA commonly accounts for 20 to 50% of total fatty acids. 

Depending on the strain, they might also accumulate lower amounts of AA5 , EPA [13] and other 

                                                           
4 Docosapentanoic acid is an n‐3 PUFA with 5 double bonds:  22:5 7, 10,13,16,19 n‐3.  
5 Arachidonic acid is another interesting PUFA for human health: 20:4 5, 8, 11, 14 n‐6 

Table 1.1 Summary of all components produced by biological transformation of crude glycerol. Price 
calculations are made from Sigma‐Aldrich considering the same purity (97 % ‐ 98%) and the smallest 
quantity for each product between 2009 and 2011.It is evident that the prices shown are not 
representative of large scale suppliers. However, it shows the difference of value between each 
product.  Product Price (€/g)

1,3‐propanediol 0.302

dihydroxyacetone 55.3
Succinic acid 0.1648

Citric acid 5.8

ß‐carotene 16.92
EPA 1860

DHA 1670

poly (3‐hydroxybutyrate) 10.5
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PUFA [14–16]. Thraustochytrium, Schizochytrium and Aurantiochytrium are the species with the 

highest DHA productivity [9,48,49,51–56]. Comparing results of different strains (detailed in 

section 1.3, table 4), it is clear that Aurantiochytrium shows the largest production values of DHA; 

specifically, Aurantiochytrium limacinum.  

With the aim of establishing the knowledge base of thraustochytrid cultivation and PUFA 

production, the objective of this project is to produce DHA through a specific strain of this family 

using industrial byproducts as a substrate (i.e crude glycerol). The process must be robust, 

allowing other strains of thraustochytrids to grow and produce either PUFA or other added‐value 

metabolites. Moreover, the substitution of a traditional carbon source for cheaper sources has a 

positive impact on the economics of a bioprocess with minimal undesired effects.  

Producing DHA in a controlled culture opens an opportunity to overcome lipophilic 

contamination of n‐3 PUFA from fish oil, sustainable, season independent and invariable source 

of DHA. As mentioned above, fish oil is susceptible to contamination with lipophilic organic 

chemicals that are now ubiquitous contaminants of marine ecosystems [4,57,58]. There are many 

types of lipophilic contaminants that are bio cumulated in fish. These contaminants, together 

with dangerous heavy metals, represent the current concern about fish oil (comprehensively 

explained in section 1.3.2). In addition to contamination, the usage of fish oil has become 

unpopular due to its unpleasant smell and taste, poor oxidative stability and expensive 

purification process.  

Thraustochytrids are a powerful tool for valorising industrial byproducts (e.g. crude glycerol) 

while producing added‐value metabolites in a biotechnological way as an alternative to 

overcoming current problems (Figure 1.2). This solution offers new perspectives on waste 

Figure 1.2. Thraustochytrids can provide a clean PUFA source as well as grow with industrial byproducts 
as a carbon source. 
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minimization and cost reduction. Thus, competing with fish oil traditional production. It is done 

by using a cheap carbon source, while offering a highly concentrated6 and contaminant free DHA.  

 

1.3 Polyunsaturated fatty acids omega-3 
 Basic definitions 

Lipids7 of all higher organisms contain appreciable quantities of polyunsaturated fatty acids 

(PUFA) with two or more double bonds of the cis‐configuration separated by a single methylene 

group. PUFA are less abundant than other unsaturated varieties, but they are especially 

important conferring distinctive properties to microorganisms and higher organisms, which will 

be discussed in upcoming sections. 

Fatty acids are compounds that are synthesized in nature via the condensation of malonyl co‐A 

units with a fatty acid synthase complex. They are carboxylic acids with a long aliphatic tail (chain) 

usually containing even numbers of carbon atoms in straight chains (commonly C4 to C24 

according to IUPAC, but can be both shorter and longer). Odd‐numbered fatty acids are mostly 

frequently found in bacteria and lower plants or animals but are significantly less abundant [59]. 

When a PUFA has a chain length from 2 to 6 it is called short‐chain, from 8 to 12 it is a medium‐

chain, from 12 to 22 it is considered a long‐chain fatty acid, and above 22 it is called a very long 

                                                           
6 Some thraustochytrids have a high specificity in DHA and contains a 50% of lipids, generating a huge amount of 
DHA.  
7 Any substance of biological origin that is soluble in nonpolar solvents [232]. 

 

In 1964, Holman RT proposed a new numbering system for the unsaturation of fatty acids, the "omega 

nomenclature". In this system, the double bonds are counted from the methyl group, determining the metabolic 
family, noted by n-x (n for the total number of carbon, x being the position of the distal double bond).  Based on 

this, IUPAC defined a simplified nomenclature specifies the chain length, number of double bonds and position of 
double bonds. The molecule shown below is docosahexaenoic acid or DHA, 22:6, with 22 carbons and 6 double 

bonds. Positions of double bonds are indicated by  and the number of the first carbon atom that form the double 

bond, counting from the carboxyl group carbon as number one. The 6 double bonds in DHA are located at the 

4th, 7th, 10th, 13th, 16th and 19th carbons, so one simplified nomenclature is 22:6 4,7,10,13,16,19. Double bonds 

of the most abundant unsaturated fatty acids are in cis configuration and contain double bonds at three carbon 

intervals. Therefore, double bonds are separated by a methylene group. Because of this organisation, most 

common polyunsaturated fatty acids can also be described simply by indicating the number of double bonds 

closest to the terminal methyl group. With this nomenclature, DHA is termed 22:6n3. Once the bond closest to 

the omega carbon is identified, the remainder of the double bond can be inferred.  

 Box 1.2 . PUFA nomenclature 

Adapted from 

Wallis et al. (2002) 

[233] 
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chain. Several hundreds of forms have been identified, but the number occurring frequently in 

the common lipids is much fewer; from 10 in plants to approximately 20 in animal tissues. 

Fatty acids (FA) can be subdivided into well‐defined families whose physical and biological 

properties are related. 

□ The simplest are referred to as saturated fatty acids (SFA). These have no unsaturated 

linkages and cannot be altered by hydrogenation or halogenation.  

□ When double bonds are present, fatty acids are said to be unsaturated or monounsaturated 

(monounsaturated fatty acids, MUFA) if only one double bond is present and 

polyunsaturated (polyunsaturated fatty acids, PUFA) if they have two or more double bonds 

generally separated by a single methylene group (methylene‐interrupted fatty acids). 

□ Some uncommon polyunsaturated fatty acids have two adjacent double bonds separated by 

more than one methylene group. When this occurs, they are called polymethylene-

interrupted fatty acids.  

SFA components make up 40% of the total fatty acids in most natural lipids. the most common 

SFA in animal and plant tissues are Myristic (14:0, M) Palmitic (16:0, P) and Stearic (18:0, S) acid, 

but all of the possible odd and even‐numbered homologues with 2 to 36 carbon atoms have been 

found in nature in an esterified form. PUFA constitute a large group of FAs and are generally 

synthesized by the modification of SFA precursors (explained in section 1.4.3). In higher plants, 

the number of double bonds in FA only rarely exceeds three, but in algae and animals, this can 

be up to six. Two principal families of PUFA occur in nature that are derived biosynthetically from 

linoleic acid (18:2 9, 12) and ALA. A PUFA cluster contains both omega‐3 (Table 1.2), omega‐6, 

omega‐9 and conjugated components. Unique structural characteristics of PUFA are 

distinguished by their functions not only in regulating cell physiology but also in modulating the 

expression of certain genes, and their deficiencies lead to abnormalities [60]. Specifically, some 

members of the omega‐3 family (listed in Table 1.2) are essential for humans due to their 

functions in the brain and the retina [61,62] (See section 1.3.1 for more information).  

Common name Lipid name Chemical name 

Hexadecatrienoic acid (HTA) 16:3 (n‐3) 16:3 7,10,13 
α‐Linolenic acid (ALA) 18:3 (n‐3) 18:3 9,12,15 
Stearidonic acid (SDA) 18:4 (n‐3) 18:4 6,9,12,15 

Eicosatrienoic acid (ETE) 20:3 (n‐3) 20:3 11,14,17 
Eicosatetraenoic acid (ETA) 20:4 (n‐3) 20:4 8,11,14,17 
Eicosapentaenoic acid (EPA) 20:5 (n‐3) 20:5 5,8,11,14,17 

Heneicosapentaenoic acid (HPA) 21:5 (n‐3) 21:5 6,9,12,15,18 
Docosapentaenoic acid (DPA) 22:5 (n‐3) 22:5 7,10,13,16,19 
Docosahexaenoic acid (DHA) 22:6 (n‐3) 22:6 4,7,10,13,16,19 

Tetracosapentaenoic acid (TCA) 24:5 (n‐3) 24:5 9,12,15,18,21 
Tetracosahexaenoic acid (THA) 24:6 (n‐3) 24:6 6,9,12,15,18,21 

Table 1.2. List of omega‐3 polyunsaturated fatty acids found in nature. 
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DHA and EPA (Table 1.2) are the most important components of the omega‐3 family whereas ALA 

is the most abundant. Algae, marine microorganisms are primary producers of both DHA and 

EPA. These n‐3 PUFA are more abundant in cold ecosystems where omega‐3s help to fluidize 

living systems, due to its lower solidification temperature compared to SFAs [63]. They are 

derived biosynthetically by the elongation of the C20 and C22 polyunsaturated precursors. DHA 

is considered the most valued and scarcer of n‐3 PUFA from an industrial standpoint. AA, ALA, 

and EPA can be obtained from different sources, but DHA can only be absorbed through the diet. 

DPA can also be decomposed into EPA or synthesized from ALA [3]. 

1.3.1 Health benefits of long chain n-3 PUFA 
Truth and lies 

Studies of fish oil effects in human serum cholesterol concentration were first performed in the 

1950s, but they were not given the attention they deserved. Before the 1970s, omega‐3 fatty 

acids were not adequately investigated. In 1972 when Bang and Dyerberg [64] reported their 

findings about Eskimos who had low rates of cardiovascular disorders or cancer, despite their 

high‐fat diet. Many studies demonstrating that n‐3 PUFA had a positive effect on human health 

were published shortly after Band and Dyeberg’s work [65]. In the 1980s, knowledge about the 

benefits of omega‐3s increased dramatically. In 1985, a conference called Health Effects of 

Polyunsaturated Fatty Acids in Seafoods established the fact that n‐3 PUFA of marine origin, EPA 

and DHA play important roles in prostaglandins8 metabolism, thrombosis and atherosclerosis, 

immunology and inflammation, and membrane function. Since this statement, the number of 

studies on n‐3 PUFA has increased dramatically. Currently, the interest in omega‐3s, as either 

ingredients or supplements has exploded, creating a major market with products of different 

sources.  

Omega‐3 supplementation offers a number of potentially heart‐healthy effects, including 

reducing triglyceride levels, slightly raising levels of HDL cholesterol9, reducing levels of 

homocysteine10 and reducing blood pressure. There is strong evidence of blood pressure 

reduction when a patient is supplemented with n‐3 PUFA and they are considered a complement 

to the fight against hypertension disorders [65]. Any other potential cardiovascular benefit of 

supplementation may be limited to people who do not regularly consume fish in their diets and 

who do not take other medications for heart disease. Interestingly, contrary to common belief, 

research does not support fish oil supplementation for preventing heart attacks or strokes in 

people who have heart disease or who are at risk for heart disease. Moreover, there is no reliable 

                                                           
8 Prostaglandins are a group of physiologically active lipid compounds that have diverse hormone‐like effects in 
animals. They sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory 
response.  
9 High‐density lipoproteins acting as cholesterol scavengers, picking up excess cholesterol in the blood and taking it 
back to the liver where it is broken down. 
10 A high level of homocysteine in the blood makes a person more prone to endothelial cell injury, which leads to 
inflammation in the blood vessels 
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evidence that fish oil supplements prevent heart disease in healthy people who are not at risk 

[66–72].  

Increased intake of the n‐3 PUFA stimulates the production of substances known as 

prostaglandins, and consequently reduce some forms of inflammation. On the basis of this, EPA 

and DHA have been tried in the treatment of symptoms of rheumatoid arthritis with considerable 

success. A study of several thousand women in Sweden found that, consistent long‐term intake 

(averaging more than 210 mg per day of n‐3 PUFA) from eating fish was associated with a 52% 

lower risk of developing rheumatoid arthritis compared with lower intake over the period of the 

study (7.5 years) [73]. The anti‐inflammatory effects of EPA and DHA have also caused 

researchers to investigate the possible benefits of fish oil for the treatment of menstrual cramps, 

inflammatory bowel disease, lupus, and IgA nephropathy11. For each of these conditions, at least 

one double‐blind study has obtained positive results. A large European study  [66] showed that 

people with the highest consumption of DHA had a 77% reduction in the risk of developing 

ulcerative colitis, over an average period of four years than those consuming the lowest amount.  

The number of publications regarding the use of n‐3 PUFA in cancer studies in animals has 

increased exponentially in recent years. A positive relation between omega‐3 supplementation 

and cancer reduction has been found for specific type of cancers [74]. Use of fish oil is associated 

with a 32% reduction in the risk of breast cancer. However, supplementation cannot be 

recommended for breast cancer prevention if the patient is undergoing chemotherapy. Omega‐

3s may interfere with chemotherapy by enhancing white blood cells leading to a resistance to 

chemotherapy [75]. Results of other studies have shown that n‐3 PUFA delayed tumour 

appearance and decreased both the rate of growth and the size and number of tumours. In these 

models, calorie restriction potentiated the effect of n‐3 PUFA whereas n‐6 PUFA in the form of 

corn oil increased tumour formation, size, and number [65].  Therefore, n‐3 PUFA 

supplementation can be considered a preventive support for cancer treatments unless the 

patient is undergoing chemotherapy. 

Analyses of dietary intakes of n‐3 PUFA show that participants who reported the highest intake 

of EPA and DHA were 30% less likely to develop diseases of the retina12 compared to those with 

the lowest intake [76]. A study of over 30,000 female health professionals show that those 

consuming at least one serving per week of fish had a 42% reduction in risk of developing a 

disease of the retina compared to those eating less than one serving per month [76].  

For reasons that are less clear, n‐3 PUFA seem to help with depression, bipolar disorder, and 

schizophrenia, according to a number of double‐blind trials. A recent study shows that 

participants who took a high dose of n‐3 PUFA had a remission of depression compared to 16.7% 

of those taking a placebo [77]. It has been shown that when omega‐3 supplementation is given 

                                                           
11 Disease related to a deposition of immunoglobulin A in the kidneys, causing inflammation and malfunction of 
these organs. 
12 Neovascular age‐related macular degeneration (AMD) and central geographic atrophy (CGA) 



 1.3.Polyunsaturated fatty acids omega‐3 

 

 

31 

to participants suffering from severe to moderate depression, but not mild depression, the 

patient has shown a significant improvement. This was also evident with elderly patients whose 

depression was characterized by a very low levels of n‐3 PUFA [78]. Furthermore, an analysis of 

blood samples from 1600 military personnel showed that those who committed suicide had 

significantly lower blood levels of DHA than personnel who did not commit suicide [79]. Other 

studies showed a 20% reduction in anxiety, stress and epilepsy episodes. Many other studies 

have investigated the benefits of omega‐3 supplementation for memory‐enhancement, strength 

training, muscle pain and inflammation after training, acne, etc.  

Moreover, DHA is very important for normal brain and retina development as well as overall 

development of the fetus and infants. For this reason, it is thought that pregnant or nursing 

mothers may benefit from supplementation. It is recommended that pregnant women should 

consume 200 mg of DHA per day, from either a supplement or low‐mercury fish, but the benefit 

of higher intake remains unclear. This is why the present study is so important; it is essential that 

a highly pure and non‐contaminated source of DHA can be created for very susceptible patients 

or receptors. The effects of a PUFA deficiency on the developing brain have been widely 

documented. After 30 weeks of gestation, there is a preferential desaturation of the long chain 

n‐3 PUFA in the brain. In the retina, the proportion of n‐3 PUFA increase whereas that of n‐6 

PUFA decrease throughout development. Postnatally malnourished infants show an unusual 

concentration of DPA in the retina, as a compensatory mechanism of DHA deficiency [65].  

Some current common health disorders might be caused or influenced by the changes in the 

human diet, as illustrated in Figure 1.3. Recent studies indicate that modern agriculture and 

aquaculture, as well as the industrial revolution, have led to changes in the production of both 

Figure 1.3.  Fatty acid composition of the human diet over the years; adapted from Leaf and 
Weber [80]. TF=total fats in human nutrition indicated as % fats from nutrition. 
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plants and animals.  This has caused changes in the composition of the food supply in Western 

societies. Interestingly, the amount of n‐6 PUFA intake has increased, due to new trends 

regarding vegetable oils nutrition. Conversely, n‐3 PUFA consumption has decreased.  During  

human evolution there has been a change in ratio of 1:1 (n‐6:n‐3) to 20:1 [65]. Humans survived 

for one hundred thousand years on a diet that was much lower in SFE than is today’s diet (Figure 

1.3). The SFA content of industrial foods was dramatically increased due to modern food 

processing, as was predicted by Leaf and Weber [80]. In relation to this incidence, new studies 

are investigating whether the ratios between different omega families of PUFA are as important 

as the presence of n‐3 PUFA. The use of an incorrect or non‐evolutionary 1:1 (n‐6:n3) ratio may 

be the cause of some contradictions in different n‐3 PUFA supplementation studies.  

Considering all the benefits potentially provided by n‐3 PUFA a contaminant‐free source of DHA 

and n‐3 PUFA is needed. It is equally important to maintain a regular intake of these nutrients 

throughout life. 

1.3.2 Current issues with n-3 PUFA supplementation products 
A lipophilic contaminant vector and the negative effect on human health  

Fisheries byproducts are one of the major sources of n‐3 PUFA for marketed omega‐3 

supplements. This is a limited source with a substantial variability in composition and quality. 

Such fish oil can present relatively high concentrations of persistent organic pollutants (POPs)13, 

such as polychlorodibenzodioxins (PCDDs) and polychlorodibenzofurans (PCDFs) commonly 

named dioxins or PCDD/Fs, polychlorinated biphenyls (PCBs), polychlorinated naphthalenes 

(PCNs), polybrominated diphenyl ethers (PDBDEs) organochlorine pesticides (OCPs) commonly 

named PCBs, and heavy metals, such as mercury, arsenic, cadmium and lead [4,10,11,58,81,82]. 

Dietary intake of fish is the major contributor of human exposure to these contaminants and 

omega‐3 supplementation from the same source is an unnecessary risk [83,84]. In contrast, such 

contaminants are minimal/absent in vegetable oils [4]. Therefore, this is an oceanic 

environmental problem. 

The negative impact that PCBs have on human health has been demonstrated [85]. In addition 

to contamination, the usage of fish oil has become unpopular due to the unpleasant smell and 

taste, poor oxidative stability and expensive purification. Furthermore, the price of fish oil has 

been rapidly increasing due to a flat supply and increased global demand for this commodity. 

Contaminant purification can cause a significant increase in the price. The Food and Agriculture 

Organization (FAO, United Nations) predicts that the demand for fish oil will reach 145% of the 

historical global production capacity by next year. Such a situation establishes the need for an 

alternative source to obtain PUFA.  The search for new methods of production is a new field to 

explore.  

                                                           
13 In some publications this is called Persistent Environmental Pollutants (PEPs) 
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PCBs, PCDDs and PCDFs are three families of organo‐halogenated pollutants (Box 1.3), which 

cause a great deal of concern. They are classified as part of the twelve toxic POPs that where 

targeted by the Stockholm Convention in 2001 for reduction and eventual elimination [86]. While 

the risk level varies from one compound to another, they share the following properties: 

persistence, ubiquity, bioaccumulation, biomagnification and most importantly, toxicity. Their 

toxicity resides in a biochemical process that implies the union of the POP to a protein 

cytoplasmic receptor [87]. POP are present in very low concentration, but only a fraction of the 

large number of compounds that exist for each family is toxic. Because of this complexity, their 

determination is subjected to a long analytical method that must be performed on every batch. 

This increases the cost of the decontamination process for a fish oil supplement (and the 

procedure is not always performed properly). For example, Nevado et al. (2010) [11] reported 

that marketed products contain significant amounts of contaminants, that in some cases exceed 

EU legislation.  

The main problem with PCDD/Fs is that the bioaccumulation and biomagnification in 

aquatic organisms is comparatively higher than in terrestrial organisms.  Such process causes the 

contaminants to be transported and transferred throughout the food chain. Even though the 

poison is first dispersed widely and thinly, it gradually concentrates up to the highest trophic 

levels (bioaccumulation and biomagnification). Some fish can concentrate PCDD/Fs up to 10000 

times the level of their surrounding environment. These contaminants are accumulated in fatty 

tissues due to their lipophilic character, their low solubility in water, and their resistance to 

degradation. In contrast, seals, higher marine organisms, apparently possess a biodegradative 

mechanism, which limits the amount of PCDD/F they accumulate in comparison with their 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 1.3. PCDD/Fs and PCBs basic definitions PCBs are a family of halogenated aromatic hydrocarbons that 

comprises 209 compounds. They can have a different 

chlorination grade, from 1 to 10 chlorine atoms, where the 

chlorine atoms can be in different positions. The most 

common nomenclature for them consists of giving a PCB 

number to each structure in a systematic way, according to 

Bacher and Ballschmiter (1992).  Contrary to PCDD/Fs, PCBs 

are not strictly planar molecules, as the simple bond between 

the rings can rotate. Due to the specific substituted positions 

of the aromatic rings, PCBs can adopt a more planar 

configuration. This is the case with PCBs that have no chlorine 

atoms in ortopositions, and chlorine‐substituted in both 

para‐ and at least one meta‐ position (PCB 77, PCB 81, PCB 

126 and PCB 169)  [234]. 

PCDDs/Fs are constituted by two benzene rings linked by 

two oxygen atoms, for PCDDs, or by one oxygen atom and 

a carbon‐carbon bond as for PCDFs, which provides them 

with a quasi‐planar configuration. Each ring may present a 

maximum chlorination degree of 8. According to the US‐

EPA nomenclature, a congener is each compound 

belonging to the same determined class of substances: 

there are 75 congeners of PCDD and 135 congeners of 

PCDF. A homologue refers to the compounds having the 

same degree of chlorination, and, within the same 

homologue group, isomers differ from the positions at 

which chlorine atoms are bonded to the molecular body.  

One specific congener is named after the number of 

chlorine atoms and their position along the body molecule, 

name of the homologue group and the class of compound 

to which this congener belongs. Another nomenclature 

gives a systematic number to each structure, which was 

proposed by Bacher and Ballschmiter in 1992 similar to the 

PCB nomenclature [234].                  
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expected dietary intake of contaminated fish. As for plants, PCDD/Fs have been found due to 

superficial contamination by particle deposition on the leaves.  

The effects of dioxin‐like compounds are thought to be mediated by the cytosolic receptor Ah 

(Aryl hydrocarbon receptor)14 [88–90]. The Ah receptor is an intracellular protein that acts as a 

signal transducer and a transcription factor, similar to steroid hormones. It binds to lipophilic 

chemicals (exogens) known as ligands, such as plants flavonoids and polyphenols. Unfortunately, 

PCDD/Fs and PCBs acts as ligands as well. The result of its activation with those undesired ligands, 

is a modification of the genetic transcription. Dioxin exposure arises with the induction of 

cytochrome P450 1A1 (CYP1A1), which belongs to a protein family that serves as detoxifier or 

activator of endogenic or exogenic chemicals.  

The binding affinity to the Ah receptor and the potency of a chemical to induce CYP1A1T serves 

as an indicator (how harmful it is). Actually, the term Toxic Equivalency Factor (TEF) is basically a 

measurement of such affinity. For example, the most potent dioxin is the 2,3,7,8‐TCDD. Other 

dioxins may cause the same effects as 2,3,7,8‐TCDD but they require higher doses due to their 

lower affinity to the Ah receptor [91]. The proposed alternative n‐3 PUFA source will allow infants 

and pregnant women to have daily safe intake of these nutrients. This could be used for other 

kind of patients as well.   

1.3.3 Omega-3 Market 
Future and new applications 

It is important to establish the economic impact of n‐3 PUFA in the world market. The rise in 

recognition and popularity of it has led to their introduction in a multitude of functional foods 

and beverages. Consumers are seeking additional supplementation through forms such as fish 

and flax seed oil. Fish oil sales increased by 8.1 percent in 2012. Products supplemented with fish 

oil are growing thanks to a number of scientific studies that have indicated their effectiveness for 

reducing health risks, as explained in section 1.3.1. Euromonitor reports that from 2011 to 2016, 

global retail value sales for the combined categories of fish oils and n‐3 PUFA supplements are 

expected to increase by 5 percent annually up to $3.9 billion worldwide. 

When marketing to vegetarians, flax seed is an alternative to fish oil, although it is much less 

efficient and requires a larger dosing (in terms of health benefits). Flax seed and fish oil are also 

already included in many fortified foods and beverages, resulting in a greater number of 

consumers being able to incorporate n‐3 PUFA into their diets. Interestingly, n‐3 PUFA from 

microalgae could be a satisfactory substitute for flax seed products (regarding n‐3 PUFA 

supplementation). It even surpasses productivity values.  

Algae and non‐algae n‐3 PUFA products are expected to experience an increasing in use, and 

sales could reach 7.32 billion USD by 2020, according to a new study by Grand View Research, 

                                                           
14 The aryl hydrocarbon receptor is a ligand‐activated (protein) transcription factor involved in the regulation of 
biological responses to planar aromatic hydrocarbons. 
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Inc. The Marine Ingredients Organization reported that Europe was the largest consumer of 

omega‐3 ingredients in 2013, which accounts for over 60% of global consumption and is expected 

to maintain that leadership position until 2020. Consumer perception regarding fish oil smell, and 

the lack of standardization of this product in terms of labelling and registration, are expected to 

be key challenges for market participants in the future. 

 

1.4 Thraustochytrids: The perfect tool for PUFA production 
 Prolific linage of PUFA producers 

Several established works [9,38,47,92–109] have reported a wide range of photosynthetic 

(autotrophic) and heterotrophic microorganisms that would be a potential commercial source of 

EPA and DHA. As can be seen in Figure 1.4, there are many photosynthetic microorganisms that 

produce important amount of PUFA and n‐3 PUFA. Pavlova sp. is widely used due to its capacity 

to produce both EPA and DHA. On the other hand, Eustigmatophytes is a good candidate for ARA 

and EPA production. However, autotrophic microorganism growth rates are certainly low which 

results in low productivity for industrial processes.  

For this reason, particular attention has been given to the thraustochytrids, due to their capacity 

to accumulate lipid and proportionately large quantities of DHA [108,109]. These properties 

indicate an important industrial potential. For example, some Aurantiochytrium strains are able 

to accumulate DHA for over 30% of the total FA [110]. In addition, the content of C18 and C20 

(precursors of n‐3 PUFA) in Aurantiochytrium were much lower than those in the genera 

Figure 1.4. PUFA production of different photosynthetic microalgae [107]. AA is equal to ARA in the present 
thesis nomenclature.  
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Thraustochytrium and Schizochytrium [111], while maintaining the greatest production of DHA. 

This makes Aurantiochytrium very special for the specific production of DHA which follows a 

different synthesis pathway than the traditional eukaryote biosynthesis pathway [112] 

(extensively explained in section 1.4.3).  

In addition, the oil content of Schizochytrium sp. shown in Table 1.3, reveals the real potential of 

thraustochytrids to produce lipids compared to any other microorganism. Moreover, 

thraustochytrids do not require photosynthetic equipment, they can grow in regular bioreactors. 

And most importantly, they have an important specificity for ARA, EPA and DHA [56], and a basal 

capacity to accumulate lipids. Those three characteristics made the thraustochytrids family the 

perfect n‐3 PUFA cell factories to establish a biotechnological production.   

1.4.1 The place of thraustochytrids in the tree of life 
Controversial  heterotrophic microalgae 

The family of thraustochytrids was established by Sparrow (1943) [113] for chytrid‐like15, 

eucarpic16 and epi17 and endobiotic18 marine fungi attached to a substrate by an ectoplasmic net 

(see Box 1.3) while producing biflagellate zoospores (extensively explained in Chapter 2). 

Thraustochytrids belong to the phylogenic group of labyrinthulomicetes [114], which are marine 

heterotrophic fungus‐like protists and belong to the eukaryotic kingdom of Stramenopiles [115]. 

Labyrinthulomicetes are important in nutrient recycling in different marine ecosystems. Recent 

studies have revealed their potential for squalene and carotenoid production in addition to PUFA 

[47,116–119]. The Stramenopiles kingdom accommodates the photosynthetic ochrophytes19, 

along with the non‐photosynthetic bioeceans and oomycetes20, which are well known as plant 

pathogens. Labyrinthulomicetes share the stramenopile characteristics of having a cell wall of 

thin scales, tubular mitochondria, and biflagellate zoospores. Together with the alveolate 

relatives, which includes the apicomplexan21, ciliates22 and dinoflagellates23 form the super‐

kingdom of Chromalveolata [120].  The ancestors of this super‐kingdom were mixotrophic 

(photosynthetic and pathogenic) [121,122]. Therefore, photosynthesis capacity was lost in the 

common ancestor to labyrinthulomicetes and other non‐photosynthetic organisms of 

Chromalveolata. Furthermore, phagotrophy is conserved in labyrinthulomicetes and may have 

preceded the development of an ectoplasm (see section 1.3.2) and cell wall. It is well established 

that plastids of all photosynthetic Stramenopiles were originated from a single common ancestor. 

                                                           
15 Any of the simple, algae‐like fungi constituting the class of aquatic and soil environments, having flagellated 
zoospores and little or no mycelium.  
16 Part of the cell becomes a sporangium.  
17 Relating to an organism that lives, usually parasitically, both on the surface and within the body of its host. 
18 Relating to an organism that exists as a parasite or symbiont entirely within the tissues of a host organism.  
19 Ochrophytes are the class of photosynthetic heterokonts. 
20 Filamentous fungus‐like eukaryotic microorganisms. Most of oomycetes produced zoospores.  
21 Large phylum of parasitic protists. 
22 Any protozoan of the phylum Ciliophora. Ciliates are probably the best known and the most frequently observed 
of the microscopic unicellular marine microorganisms. 
23 Large group of photosynthetic and phagotrophic of flagellate protists. 
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The identification of a plastid derived gene in a photosynthetic algae of the kingdom, supports 

the idea of the photosynthetic ancestor [123].  

Many thraustochytrids produce n‐3 PUFA using desaturases and elongases. This process 

generally take place in chloroplasts in normal algae. A few members of labyrinthulomicetes have 

been described as phototactic and some present an eyespot24, which may mark the remains of 

an ancestral chloroplast. These are believed to be derived from a chloroplast that underwent 

evolutionary reduction. Interestingly, in some zoospores the eyespots are located near the base 

of flagella, which could be related to current phototactic behavior [124–126]. As will be fully 

explained in Chapter 2, these eyespots store TG containing DHA, which supports the idea of an 

evolutionary reduction of chloroplasts. 

Depending on the interest of the investigator, thraustochytrids were commonly called 

microalgae or marine fungae. Currently it is known as just one thing or the other. Figure 1.5 shows 

the heterogeneity of the kingdom, which is believed to be caused by a lack of knowledge about 

this kingdom of marine microorganisms.  

Future discoveries could generate a new taxonomic rearrangement. By now, it is currently 

established that Stramenopiles include autotrophic species (ochrophytes and dinoflagellates) 

that are phylogenetically related to labyrinthulomycetes. Together with other photosynthetic 

related evidence explained above, it is not wrong to consider labyrintulomycetes as microalgae. 

                                                           
24 An eyespot, also called stigma, is a heavily pigmented region in certain one‐celled organisms that apparently 
functions in light reception. 

Table 1.3. The oil of some microalgae species used for FA production. Harun et al. (2010) [235]  
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Although the basic definition of algae includes autotrophy as the main characteristic, modern 

definitions already include non‐autotrophic organisms.  

1.4.2 Morphological and life cycle stage classification 
Phylogenetic relationship within labyrinthulomycetes 

As indicated in Figure 1.5, labyrinthulomycetes are composed of two main linages, 

thraustochytrids and labyrinthulids. Thraustochytrids are composed of nine genera: 

Aurantiochytrium, Thraustochytrium, Schizochytrium, Ulkenia, Parietichytrium, Aplanochytrium, 

Sicyoidochytrium, Oblongichytrium, Japonochytrium and Botryochytrium. Initially, they were only 

composed of two generas; Schizochytrium and Ulkenia [110,127]. For this reason, some genera 

of the linage may be confused in old publications (e.g., Aurantiochytrium was formerly called 

Schizochytrium, however both genera currently coexist independently). Different genera can be 

distinguished by a combination of morphological characteristics, profiles of polyunsaturated fatty 

acids and carotenoid pigments (as well as by the multi‐staged life cycles). 

Figure 1.5. A schematic summary of Chromalveolata super‐kingdom based on Riisberg et al. Riisberg 
(2009), Tsui et al. (2009) and Yokoyama et al. (2007) [110,125,127,236]. Aplanochytrium is included in 
both major linages. 
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Both linages are known for generating an ectoplasmic net from an organelle called 

sagenogenetosome (Box 1.3). Labyrinthulids can glide and move along the ectoplasmic net while 

thraustochytrids do not use an ectoplasmic net to glide. Labyrinthulomycetes share a life cycle 

phase with vegetative cells despite presenting important differences within linages. 

Labyrinthulids form single‐shaped vegetative cells that glide inside the ectoplasmic net, whereas 

the thraustochytrid’s vegetative stages for most of the genera consist of granular cells, which are 

globose to subglobose, measuring 4–20 μm in diameter [110,127,128], and in specific situations 

even more. Aplanochytrium, which is shared for both linages (Box 1.3) presents the greatest 

divergences. All labyrinthulomycetes produce zoospores25 while Aplanochytrium produce 

aplanospores26. On the other hand, Aplanochytrium vegetative cells are solitary contrary to what 

occurs with other labyrinthulomycetes, where vegetative cells are organized in settlements or 

colonies. When vegetative cells are grouped in a location, it is commonly called settlement.  

From an eco‐physiological standpoint, when labyrinthulomycetes are in a vegetative stage, 

wether generating an ectoplasmic net or not, it is because the environment is rich in nutrients.  

When relocation is needed to find a new source of nutrition, zoospores are produced. In this way, 

zoospores move along the marine ecosystem until they find a potential source of substrate, 

which is the beginning of a new settlement. In general, to enhance nutrient absorption, an 

ectoplasmic net is created despite the fact that some species of thraustochytrids do not create 

well‐developed nets. Thraustochytrids multiply by mitotic division in the vegetative stage and 

reproduce by forming zoosporangium. When a zoosporangium is mature, it releases biflagellate 

zoospores, possessing a long anterior tinsel flagellum along with a short posterior whiplash 

flagellum [128,129].  

The flagellum, which consists of lateral hair‐like projections along its length, is called a tinsel 

flagellum. These hair‐like projections are called fimmers or mastigonemes. These filaments 

change the flagellar action so that a wave coming down the filament towards the tip propels the 

                                                           
25 An asexual spore produced by certain algae and some fungi, capable of moving about by means of flagella. 
26 A non‐motile, asexual spore formed within a cell, the wall of which is distinct from that of the parent cell. 

 

 

 

 

 

 

 

 

 Box 1.3 . Sagenogenetosome or bothrosome 

Almost all species of thraustochytrids develop 

ectoplasmic extensions from one (sometimes more) 

points on the cell. This branched network of plasma 

membrane extensions is generated by an organelle 

named sagenogenetosome or bothrosome, which is 

located at the periphery of the cell. It is a unique 

organelle of thraustochytrids that is capable of 

secreting a rizhoid membrane outside their cells. The 

ectoplasmic network appears to help cells to adhere to 

and penetrate substrates, and secrete digestive 

enzymes that are required to solubilize nutrients that 

can be absorbed by the cells [15,163,237,238].  

  

A (left): Image of A. 

limacinum SR21 vegetative 

cells obtained at IQS. Optical 

microscope (x1000) with 

violet staining.  

B (below): Common structure 

of thraustochytrids with 

electron microscope image of 

a sagenoegenetosome of 

Aplanochytrium sp. SEK 349  
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cell instead of pushing it. The naked flagellum is referred to as whiplash flagellum. It consists of 

two parts, a long lower portion and a short and flexible upper portion. The mode of zoospore 

production is part of the basis for genus differentiation within thraustochytrids. The cytoplasmic 

content of a vegetative cell develops into a zoosporangium, and then divides directly into 

zoospores in the genus thraustochytrium. The cytoplasm escapes as an amoeboid mass, prior to 

the zoospore division in Ulkenia. Interestingly, Schizochytrium is characterized by the successive 

bipartition of a vegetative cell resulting in the formation of the stages called the diad, tetrad and 

sometimes triad27. Then, the cells in these symmetrical structures become an individual 

zoosporangium. This zoosporangium phenomenon is shared with Aurantiochytrium. However, 

this last genera had been separated from the Schizochytrium species due to significant 

differences in PUFA profile and organelles organization [127]. These types of characteristics are 

used for complex thraustochytrids classification.  

1.4.3 The secret pathway 
Marine bacteria heritage 

Two different n‐3 PUFA biosynthetic pathways are the secret feature of thraustochytrids. There 

is a great deal of evidence to suggest that the presence of two synthetic pathways for PUFA in 

thraustochytrids, i.e. polyketide synthase (PKS)-like and the desaturase/elongase based 

standard pathway [112]. Matsuda et al. (2012) [112] clearly showed that both the standard 

pathway to produce PUFA and the PKS‐like are present in thraustochytrids. In Matsuda et al. 

work, a gene encoding a putative 12‐fatty acid desaturase from Thraustochytrium aureum was 

investigated. When this gene was introduced into a Yeast genome, oleic acid was converted into 

ALA. On the other hand, when this gene was disrupted in T.aureum, oleic acid was accumulated, 

whereas the content of the DHA increased. These data indicate that the mechanism responsible 

for DHA production in thraustochytrids might be a different pathway from the eukaryotic 

standard one. Hence, the PKS‐like pathway may be causing the characteristic DHA specificity of 

some thraustochytrids (such as Aurantiochytrium strains).  

Figure 1.6 shows the biosynthetic pathway of eukaryote microorganisms as well as the PKS‐like 

pathway. The second pathway is still not well known. Interestingly, the standard pathway is 

oxygen dependent while the PSK‐like can function without oxygen (as studied in Chapter 4). This 

difference can be a powerful tool to trigger DHA production in thraustochytrids. However, every 

                                                           
27 Symmetrical structure of two cells (diad), three cells (triad) and four cells (tetrad). Triad is much less common. 
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genus in thraustochytrids have very different FA profiles and the parameters to trigger n‐3 PUFA 

production might be different as well.  

1.4.4 Aurantiochytrium limacinum SR21  
Industrial candidate for DHA production  

After a review regarding thraustochytrids that produce DHA (Table 1.4), A. limacinum SR2128 and 

mh0186, Aurantiochytrium sp T66 and Schizochytrium sp. are clearly the most prolific producers 

(reported) of n‐3 PUFA. These strains have great growth rates compared to other large, 

unicellular heterotrophic microorganisms, which benefits n‐3 PUFA productivity. As published in 

the review of Advanced Biotechnology in 2012, Table 1.4 offers a list of different thraustochytrid 

strains and their DHA productivity and yield. These works include cultures based on glycerol, 

crude glycerol and glucose as a carbon source. There is a consistent evidence of the DHA 

                                                           
28 A. limacinum SR21 and ATCC MYA‐1381 are the same strain. 

Figure 1.6. Biosynthetic pathway of PUFA from eukaryote microorganisms in chloroplast and 
Endoplasmic reticulum. At the upper right, the PKS‐like pathway directly produces DHA & DPA. Adapted 
from Martin et al. (2013) and Matsuda et al. (2012) [103,112] 

Palmitic acid 

(C16:0) 
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production potential of A. limacinum strain. Either SR21 or mh0186 show positive productivities. 

For this reason, this has been the most or one of the most investigated thraustochytrids. 

It might seem that glycerol cultivations should give lower productivities in terms of biomass and 

DHA. However, the usage of glycerol is not a handicap for such bioprocesses as shown in Table 

1.5 that list some Aurantiochytrium and Schizochytrium cultivations using both glycerol types. 

Therefore, according to the current state of the art, glycerol and glucose can lead to comparable 

yields (Investigated in Chapter 3). DHA concentrations and yields obtained from crude glycerol 

cultures were comparable or higher than pure glycerol [93,130,131]. The final biomass 

concentration is typically higher in studies using pure glycerol, with similar fermentation times. 

This might indicate that harvesting time have a greater impact on DHA yields than the carbon 

source used (investigated in Chapter 2).  

The great performance when growing thraustochytrids in crude glycerol is very unique. Other 

microorganisms are generally affected by the high salinity and other impurities such as soap and 

methanol (which crude glycerol contains). However, thraustochytrids are well adapted to a wide 

range of salinities.  A good example of this, are A. mangrove strains. These strains have been 

Table 1.4. Overview of growth and DHA yields according to the microorganism used as published in the 
review of Advanced Biotechnology 2012 [8]. Literature works based on glycerol, crude glycerol and glucose 
cultures. 
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isolated from environments where salinity and temperature levels fluctuate daily, monthly and 

seasonally. A series of ecological and physiological investigations have been conducted with 

various isolates of thraustochytrids, found in subtropical mangroves, where  salinity levels could 

vary between 5 and 35 ‰ in summer and winter[132]. Interestingly, Shabala et al. (2009) 

provided the proof of the thraustochytrids’ osmotic adjustment capacity,  and demonstrated the 

importance of the plasma membrane ion transport activity, for this process, under hypoosmotic 

conditions [133]. When cells are affected by hypoosmotic stress, they are subject to substantial 

inward flows of water. A decrease in the external solute concentration from 250 mM to nearly 

zero would increase the intracellular pressure by more than six atmospheres. These drastic forces 

will cause the cell rupture.  

In a study by Shabala et al., it was verified that thraustochytrids can grow in a wide range (0‐500 

Mm) of NaCl concentrations in certain conditions. It was shown that using a sugar alcohol (i.e 

mannitol, glycerol, etc.) in the media helps to prevent osmotic stress allowing thraustochytrids 

to grow normally, as shown in Figure 1.7. These results also suggest the possibility of cultivation 

using low NaCl concentration. This would be beneficial for industrialization of the culture, 

because higher salinities lead to corrosion of steel bioreactors.  

Salinity adaptability of thraustochytrids opens a potential opportunity to develop an industrial 

biotechnological production of n‐3 PUFA using crude glycerol.   

Figure 1.7.  Left‐ The performance of a thraustochytrium culture using different salinities in the media. 
Right – The same experiment with mannitol. Data from Shabala et al. (2009) [133]. 

Table 1.5. Summary of studies using pure and crude glycerol to be transformed into DHA, by A. limacinum.
X stands for dry cell weight. P – Concentration of DHA. Data presented as published in the review of Advance 
Biotechnology 2012  [8]. 
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1.5 Crude glycerol as a carbon source 
Make DHA biotechnological production cost effective 

Although several factors impact a bioprocess upstream cost (e.g. oxygen supply, power, etc.), the 

carbon source could typically represent more than 50% of the total direct cost of production. In 

other words, the yield of a process (g product/g substrate) is “a strong driver of cost”. Industrial 

R&D efforts often aim at the optimization of the product yield (part of the objectives of this work, 

detailed in chapter 3 and 4). According to the bibliography, a maximum (theoretical) yield of 0.20 

– 0.24 g DHA / g glycerol29 could be obtained in bioreactors. In flask cultures the yield might be 

much higher as reported in Table 1.4.  

Almost equally important is the ability of a microorganism to utilize different carbon sources. 

While corn syrup is still the major carbon source for industrial processes in the United States, 

carbon sources elsewhere are sucrose from sugar cane, sugar beet, or molasses. Alternatives 

such as whey from the soymilk industry or crude glycerol from biodiesel productions currently 

complete the list. At the same time, adaptability to carbon sources opens the possibility of 

changing the feedstock depending on different renewable feedstock values in the market. This 

adaptability gives a singular robustness to the DHA production process as well as a reduced cost, 

which would help for an industrial implementation. 

Further efforts to lower carbon source costs play an important role in the overall development 

of the biorefinery concept30. Much knowledge has been gained, and significant progress has been 

made on the saccharification of cellulosic biomass to fermentable sugars for their subsequent 

bioconversion to chemicals. As a result, such processes are coming closer to commercial reality, 

which will provide a new, renewable feedstock for bioprocess.  

Crude glycerol can be used directly as it comes out of the production plant, or after a simple 

purification step to eliminate soap and methanol as reported in different works [131] (explained 

in Chapter 3). Although it has been described in this introduction and in many bibliographic works 

[8], that crude glycerol can support the growth and DHA production using A. limacinum (12). In 

general, the composition of crude glycerol varies from plant to plant. Although the biodiesel 

manufacturing process does not involve any heavy metals, the oil feedstock may contain trace 

amounts of heavy metals, which may eventually end up in algal cells [93].  

 

                                                           
29 According to bibliography, 0.3 g of DHA / g of biomass represents a natural limit. On the other hand, and a 
maximum yield of 0.8 g biomass / g glycerol leads to 0.24 g DHA / g glycerol as a theoretical limit.  
30 Biorefining refers to fractionating biomass into various separated products that possibly undergo a further 
biological, (bio)chemical, physical and/or thermal chemical processing and separation. By means of co‐producing 
relatively (high) value chemicals (e.g. fine chemicals, pharmaceuticals, polymers) the production costs of secondary 
energy carriers (e.g. transport fuels, heat, power) potentially could become market competitive 
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1.5.1.1 Effects of impurities in waste glycerol 
Crude‐glycerol as a model to face of industrial waste stream valorization.  

Crude glycerol is synthesized as a by‐product of biodiesel production. The main impurities of 

crude glycerol are methanol, soap, salts and free fatty acids. Biodiesel refineries typically use an 

excess of methanol as a co‐reactant, resulting in higher transesterification reaction productivity 

in terms of methyl esters (biodiesel). Soap is commonly generated due to a side reaction involving 

the free fatty acids in the feedstock [134,135]. Salts represent another common contaminant in 

crude glycerol. Many monovalent salts coming from the catalyst are accumulated in the crude 

glycerol. When used for cultivations, it decreases van der Waals force in lipid membranes and 

cause swelling of the cell membrane [136]. Other contaminants might be found in waste‐glycerol, 

but in lower amounts or traces depending on the feedstock used [20,93,131]. Calcium, 

potassium, magnesium, phosphorous, sulfur and sodium are common examples. The remaining 

free fatty acids present in the crude glycerol are normally absorbed by thraustochytrids. Biodiesel 

obtained from vegetable oils generates a waste‐glycerol that is rich in palmitic, oleic and linoleic 

acid. Some microorganisms can use such long fatty acids as a substrate to ultimately obtain 

longer polyunsaturated fatty acids such as DHA [137,138].  

In some cases, crude glycerol is contaminated with ethanol. Surprisingly, it was found to be 

beneficial, stimulating the growth of some microalgae dedicated to PUFA production [139]. 

Nevertheless, biodiesel production using ethanol as a co‐reactant is less efficient than methanol. 

Unfortunately, methanol negatively affects both microalgae growth and PUFA production. When 

methanol effects were investigated, the maximum dry cell weight, biomass productivity and cell 

yield decreased as the alcohol concentration was increased. However, the fatty acids profile or 

DHA/total fatty acids ratio remained constant [131]. Therefore, it is strongly recommended to 

eliminate methanol from the media. It is possible to evaporate methanol when autoclaving the 

media at lab scales. In large‐scale production, methanol could also be evaporated during the 

sterilization process conveniently venting the reactor. Soap impurities have been shown to 

significantly impact cell growth and fatty acid composition, which has been observed by 

comparing soap‐containing and soap‐free cultures. However, soap impurities can be potentially 

removed with the addition of a strong acid during the media preparation coupled with a filtration 

process (as described in Chapter 2).  
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1.6 General objectives 
 

The aim of this thesis was to develop a biotechnological process to provide contaminant‐free n‐3 PUFA 

through Auranitochytrium limacinum cultivation, while using industrial byproducts as carbon source.  Four 

stages compose the thesis that are grouped in chapters.  

The first stage included the procurement of basic knowledge and the development of tools for 

thraustochytrids bioprocess development (Described in Chapter 2). Establishing the knowledge base for 

the heterotrophic microorganisms handling and its cultivation. Moreover, the identification of cell cycle 

characteristics of Aurantiochytrium limacinum SR21 in bench scale bioreactors was an important 

requirement. According to bibliography, thraustochytrids can produce other added‐value metabolites and 

in this thesis it was investigated. 

Monitoring tools are very important in order to develop any bioprocess. Therefore, the second part of the 

first stage consisted in:  

 Developing and validating a high throughput screening like methodology to quantify DHA 

production from large amounts of samples.  

 Developing and validating a fast and cheap method for glycerol consumption monitoring.  

Once the basic tools and knowledge was set up, next objective was to develop a DHA prolific production 

and cost effective medium for thraustochytrids (Described in Chapter 3). The medium had to be suitable 

for large scale production. The medium development includes: 

 Comparing different carbon sources with crude glycerol. 

 Modeling and optimization of carbon / nitrogen ratio considering cost and DHA productivity.  

 Investigation of vitamin requirements. 

 Substitution of TRIS by an affordable buffer at industrial scale. 

 Adjustment of salt composition considering cost and DHA productivity, while maintaining 

scalability and viability of the process.  

When the media was established, developing the upstream bioprocess was the next step – Batch and 

Continuous production of DHA and its implications using Aurantiochytrium limacinum SR21 (Described in 

Chapter 4). This stage included the following objectives: 

 Exploring different bioprocess strategies to find the most prolific operating system: Batch, Fed‐

batch, continuous or multi‐stage continuous. 
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 Modeling best agitation and aeration parameters for biomass and DHA production. 

 Determination of proper temperature and pH cultivation.  

 Determination of Aurantiochytrium limacinum SR21 implications for a better production of DHA.  

 

DHA purification was the last step. The objective was to establish an approach for a green‐like process 

scale purification process of unmodified triglycerides containing DHA. Thus, representing a source of a 

novel unmodified DHA‐TG (Described in Chapter 5). This stage is composed of the following objectives:  

 Developing a purification method for unmodified TG (containing DHA) purification, in order to 

produce the very first standard of those TG. 

 Developing a scalable downstream approach of process chromatography for DHA purification.  

 Comparison of A. limacinum extracted oil and commercial oil contaminants content.  
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Chapter 2: Knowledge base for thraustochytrids bioprocess 

development  
 Thraustochytrids handling and analytical methodology 
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2.1 Introduction 
Only a few labs in the world have ever worked and investigated thraustochytrids. Even now, long 

after many references have certified their potential as cell factories, thraustochytrids are still not 

well characterized. Only a few countries have laboratories in which the investigation of 

thraustochytrids industrialization is currently taking place. The United States and China are 

strongly active in this regard.  Some companies in these countries have already started marketing 

omega‐3 oils that are made from Schizochytrium sp. and Ulkenia  sp. [103].  

Chapter 1 of this paper described the specific capacity of thraustochytrids to produce n‐3 PUFA 

and revalorize crude glycerol, specifically A. limacinum. However, the cultivation of 

thraustochytrids brings new challenges. Thraustochytrids are marine eukaryotic microorganisms, 

which means that cultivation requirements are drastically different from typical bacteria and 

yeast cultures. Slower growth rates, significant medium requirements, different parameters, 

different morphology; everything was new for a laboratory that was used to working only with 

yeasts and bacteria.  

In the early phases of the research for this study, it was not possible to find anyone in the area 

who was familiar with these types of microorganisms. It was necessary to investigate basic 

procedures and equipment that was discussed in the literature, to maintain, grow and work with 

thraustochytrids. Once the equipment had been acquired and prepared and a basic procedure 

established, six different thraustochytrids were purchased; Thraustochytrium aureaum, 

Aurantiochytrium limacinum, Aurantiochytrium mangrovei, Ulkenia amoeboide, 

Sicyoidochytrium minutum and Botryochytrium radiatum. These thraustochytrids were selected 

as potential producers of added‐value metabolites such as PUFA, pigments and squalene. As 

discussed in Chapter 1, A. limacinum was selected because it appears to be the most prolific 

producer of DHA, which is the main objective of this thesis.  

Basic analytical methodologies are essential for proper bioprocess development. Analytical 

chemistry allows the evaluation and monitoring of any investigation. Like many other bioprocess 

engineering developments, this study required the measurement of substrate consumption, 

product formation and the analysis of microorganism morphology and behavior. In the literature, 

many classical methodologies can be found regarding substrate consumption monitoring, none 

of which referred to a saline medium, or offered quick methods to process several samples 

simultaneously. Therefore, analytical methodology was needed to quantify glycerol consumption 

during cultures.  

Monitoring substrates help the kinetic characterization of the microorganisms, but the product 

is what governs the entire development. Therefore, FA and DHA quantification methods were 

needed. Almost all of the documented methodologies about FA quantification, are based on old 

and unsuitable methods such as the Bligh and Dyer lipid extraction procedure [16,44,49,51,140–

146]. Many other methods only refer to FA as a percentage of the gas chromatography signal31, 

                                                           
31 Not considering that the method might not be sensitive enough for all FA species in the profile.  



 2.1.Introduction 

 

 

51 

without quantification. Because the biotechnological process developed in this study requires a 

very precise and reliable method to quantify DHA, a new and customized technique has been 

developed.  

Thraustochytrids certainly have a complex life cycle that needs to be considered for an industrial 

process. In order to learn, monitor and investigate A. limacinum life cycles during bioreactor 

cultivations, certain basic microbiology procedures (i.e. microscopy) have been combined with 

image processing techniques. A Matlab®® algorithm has been adapted to analyze the cell 

phenotypes of A. limacinum as well as to measure cell dimensions.  

The main objective of this thesis is to document a bioprocess development. The present work 

provides information about different optimization techniques such as general DoE, Taguchi 

methods, artificial neural networks (ANN) and response surface methodology (RSM).  These 

techniques are detailed in Appendix A.  

2.1.1 Glycerol quantification and monitoring 

Thraustochytrids growth kinetics are substrate‐dependent, therefore the calculation of growth 

related parameters that are essential for bioprocess engineering require a carbon source 

quantification. Currently, many labs and companies determine glycerol concentrations using 

techniques based on separation (liquid chromatography), enzymatic techniques and 

potentiometric methods [147]. When developing a bioprocess, monitoring carbon source 

requires reliable, inexpensive and particularly rapid methodologies to quantify the residual 

glycerol. A large number of samples are typically generated, and monitoring is crucial to the 

decision‐making process during batch, fed‐batch or continuous operations.  

High performance liquid chromatography (HPLC) is widely used to analyse glycerol content in 

fermentation media because it offers high accuracy. Enzymatic based kits are also popular in 

glycerol based fermentations [38,52,93,148]. Enzymatic kits might offer less accuracy compared 

to HPLC, and could result in a direct cost per sample analysed. Both methods are time consuming 

with a delayed response. Current HPLC methodologies take approximately 30 minutes, from 

sample preparation injection to peak analysis. Depending on the column, the time can be 

reduced from 30 minutes down to 15 minutes per sample. Enzymatic kits work faster than HPLC 

methods, but the cost per each assay is relatively high. Cost might discourage an exhaustive 

monitoring due to the number of samples. Potentiometric methodologies are simple and cheaper 

than HPLC and enzymatic kits. However, these methodologies require sample volumes and would 

not be suitable for simultaneous monitoring of different cultures. The nature of the samples to 

be analysed can be crucial when selecting the method. Medium composition (e.g. high salinity 

and organic compounds) or metabolites that are generated may introduce errors or invalidate 

the methodology. For the specific case of enzymatic kits, the interference of the metals present 

in the medium could also mislead the determination. Potentiometric methods would not be 

applicable in the presence of organic compounds (e.g. yeast extract or metabolites produced) 

containing more than two hydroxyl groups on adjacent carbon atoms [149].  
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This dissertation introduces a method that was developed to monitor either pure or crude 

glycerol residual concentration from thraustochytrids cultivation samples. This method relies on 

a Dot Blot assay (DB)32 coupled with image processing algorithms using Matlab®® R2011a (The 

MathWorks Inc., Natick, MA, 2000). The method was reported to quantify residual glycerol in 

biodiesel samples, using Thin Layer Chromatography (TLC), presenting several analogies [150]. In 

this study, the simple DB developed assay had specific staining adapted and validated for a 

bioprocess development in an aqueous medium with high salinity. Subsequent image processing 

and analysis has the advantage of rapid output with enough accuracy for bioprocess monitoring 

with a short response time. The new method was proofed during crude glycerol fermentations, 

comparing the three methods (HPLC, enzymatic kit and DB coupled with image processing 

method).  

2.1.2 Fatty acids determination and quantification 

There is a large number of bibliographic references describing fatty acids profile determination 

and the DHA quantification. Despite this, the development of an adapted analytical method is 

critical. It is essential to have an exhaustive, reliable, efficient and precise analysis. In this case, 

the method needed to be reliable in all of the steps, starting with the sample preparation and its 

posterior analysis. As a new method, every initial assumption was made based on the literature, 

such as the estimated product concentration, extraction, FA derivatization33 and analysis process.  

There are many well‐documented procedures to extract and analyse fatty acids from different 

matrices, but only a few focused on microalgae. Indeed, it was not possible to find any well 

documented procedures to extract fatty acids from thraustochytrids. Some of the methods were 

based on Bligh and Dyer [151], but imprecise. The developed method is used exclusively for 

thraustochytrid analysis and its validation will be thoroughly discussed in this chapter. 

The most extensive, straightforward and well‐documented FA analysis procedures are based on 

gas chromatography (GC).  FA are not volatile enough to be analyzed by GC, and require a 

derivatization, which includes a transesterification. Transesterification is the general term used 

to describe the important class of organic reactions in which an ester is transformed into another 

through the interchange of the alkoxy moiety34. When working with TG in a transesterification 

reaction, FA react with an alcohol in the presence of a strong acid or base, producing a mixture 

of fatty acids, alkyl esters and glycerol. The overall process is a sequence of three consecutive 

and reversible reactions, in which diglycerides and monoglycerides are formed as intermediates. 

The stoichiometric reaction requires 1 mol of a triglyceride and 3 mols of the alcohol. Generally, 

an excess of the alcohol is used to increase the yields of the alkyl esters, and to allow a phase 

separation from the glycerol formed. In this thesis, Fischer‐Speier esterification was selected, due 

to its relative simplicity Box 2.4.  

                                                           
32 Dot Blot Is a technique that is used to detect biomolecules with a single sample droplet. In a Dot Blot, the 
biomolecules to be detected are not first separated by chromatography, such as in a TLC. 
33 The transesterification of fatty acids to fatty acid methyl esters is using an alkylation derivatization reagent. 
34 An alkyl (carbon and hydrogen chain) group singularly bonded to oxygen. 
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During bioprocess development, a large number of samples are generated, and rapid monitoring 

is crucial to decision‐making in the upstream. In the case of fatty acids determination (which will 

be discussed in upcoming sections in this chapter), a minimum of steps are required due to the 

intracellular condition of major FA in thraustochytrids and the derivatization required to analyse 

them by chromatography. The initial development steps were based on work from Indarti et al. 

(2005) [152]. Indarti et al. reported a method that was used to quantify every FA from fish 

samples. This also included the extraction of FA and its derivatization using glass balloons in a 

silicon oil bath. After this step, the resultant derivatized sample needed to be purified using a 

decantation funnel. This method, which is based on glassware, requires a whole process cycle 

per sample. In other words, all of the steps must be performed to process a single sample, which 

becomes a very time consuming method.  

In this thesis, a “4 steps in 1” method has been developed. It includes cell disruption, release of 

TG, release of fatty acids from TG, derivatization of released fatty acids into methyl esters and 

the purification from the sample matrix. All this steps are performed in the same recipient. This 

is a significant improvement on the initial Indarti et al. method. More importantly, this new 

method can handle several samples at the same time. This allows the analysis of “all samples” 

from a bioreactor to be performed under the exact same conditions. Moreover, it was developed 

for a HTS‐like procedure. Instead of large volume glassware, the method uses 1.5 mL vials per 

sample. In order to find near‐optimal conditions to perform the whole sample preparation 

process, different Taguchi methods (see Appendix A) were applied.  

2.1.3 Life cycle characterization in batch cultures 

Generally, a bioprocess implies the production of biopharmaceuticals or bioproducts by using 

microorganisms with simple and plain life cycles. The most widely used microorganisms are E. 

coli (many different strains) and S. cerevisae together with CHO mammalian cells, which do not 

require life cycle biology. The new interest in complex microorganisms such as thraustochytrids 

requires a deeper investigation on their life cycle during batch and continuous reactors, thus 

adding to the basic knowledge of thraustochytrids. Moreover, every life cycle stage can serve as 

an indicator of alterations during the bioprocess. In this chapter, the characterization of A. 

 

Fischer‐Speier esterification commonly called Fischer reaction is a special type of esterification by refluxing a 
carboxylic acid and an alcohol in the presence of an acid catalyst. The reaction was first described by Emil Fischer 
and Arthur Speier in 1985  [239]. Most carboxylic acids are suitable for the reaction, but the alcohol should 
generally be a primary or secondary alkyl. Methanol and ethanol are more commonly used than any other 
alcohol for PUFA esterification. Sulphuric and tosylic acids are commonly used as catalysts. The reaction is 
commonly carried out without a solvent but for the application of the work described here, a non‐polar solvent 
is used to facilitate subsequent steps.  The figure below shows generic reaction performed in this work, for 
analytical purposes.  

Box 2.4. Fischer-Speier esterification 
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limacinum will be discussed (section 2.2.3), focusing on growth rates and the stage with the 

highest amount of accumulated DHA.  

2.1.3.1 Matlab® image processing as a tool to assist bioprocess development 

MATLAB®® is a high‐level language and interactive environment that is used by millions of 

engineers and scientists worldwide. It allows researchers to explore and visualize ideas across 

many disciplines including image processing. Matlab® has been used during this study as a 

support tool to precisely analyse Dot Blot and microscopy images. Matlab® that is applied to Dot 

Blot allows researchers to perform a precise and rapid calculation of glycerol consumption during 

a bioreactor [147] Appendix B.  A second Matlab® script has been used to measure cell 

dimensions from microscope observations Appendix C.  

2.1.4 Other added-value metabolites produced by A. limacinum 

Thraustochytrids are known for having a great capacity to produce n‐3PUFA in general. However, 

this family of microorganisms have the capacity to produce other added‐value metabolites such 

as squalene, astaxanthin and carboxylic acids. 

Squalene (2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,-22-hexane; C30H50) is a 

biosynthesized triterpene hydrocarbon and a precursor for all steroids in animals and 

plants[118]. Squalene is an important intermediate in the endogenous synthesis of cholesterol, 

and it is known to be a natural antioxidant and possesses cancer‐preventive properties [153]. It 

is currently used as an important ingredient in the cosmetic industry because of its effectiveness. 

Squalene is also used in the pharmaceutical and medical industry because it increases cellular 

and non‐specific immune functions, decreases serum cholesterol levels, protects against gamma 

rays, and suppresses tumour proliferation  [118]. Liver oils of deep‐sea sharks represent the 

richest source of squalene and are still the major commercial source of this product. The 

continuous supply and availability of the liver oils, however, are in doubt because of the concerns 

over the preservation of marine wildlife and fishery. Therefore, thraustochytrids offer a new 

opportunity for a clean and sustainable source of squalene.  

Astaxanthin (3,3’‐dihydroxy‐β,β‐carotene‐4,4’dione) is a carotenoid that is specifically found in 

marine crustaceans (absorbed through microalgae). Astaxanthin is a natural antioxidant, which 

prevents the oxidation of surrounding molecules. It is generally added to food products and is 

the preferred pigment that is used in the feed for salmonid fish such as trout and salmon. 

Schizochytrium aggregatum  and Thraustochytrium CHN-1, have both been found to contain this 

pigment [47]. However, this study has demonstrated that A. limacinum SR21 can produce 

astaxanthin under specific culture conditions. Other microorganisms, such as Haematococcus 

pluvialis produce massive amounts of astaxanthin in well‐established industrial processes 

[154,155].  

Carboxylic acids such as Pyruvic acid and Oxalic acid production was detected when A. limacinum 

is grown in continuous bioreactors (see section 2.3.4). These organic acids have different 

industrial applications. Oxalic acid has many applications such as for beekeeping [156] and 
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extractive metallurgy [157]. Pyruvic acid has not yet been applied on a large scale. However, a 

derivative bromopyruvic acid is being studied for potential cancer treatment applications by 

researchers at Johns Hopkins [158]. 

2.2 Results and discussion  
2.2.1 Quantification and rapid monitoring of glycerol/crude-glycerol in A. limacinum 

cultures 

A general method to analyse residual free glycerol in harsh conditions (artificial seawater and 

usage of byproducts) has not been documented. In this work, a Dot Blot methodology that 

enables glycerol detection and quantification has been developed and compared to conventional 

HPLC and enzymatic methods [147]. The results from the sample and reagents preparation, as 

well as sample processing were evaluated in terms of assay attributes as explained in Appendix 

A. Initially, an artificial sea water medium with known crude glycerol concentrations was tested 

to validate the methods. Then, the three methods were simultaneously used to monitor the 

residual crude glycerol concentration from a culture using an artificial seawater medium in a 

benchscale bioreactor.  

 

2.2.1.1 Glycerol determination using HPLC  

A typical chromatogram corresponding to a known concentration of crude glycerol in an artificial 

sea water medium (without cells), has a peak at a retention time of 11.2 minutes, which can be 

attributed to salts and other compounds in the artificial seawater medium. The peak appearing 

at 20.8 minutes corresponds to glycerol (see supplementary material S1). The glycerol peak is 

separated with near‐baseline resolution, without any interference from other components of the 

medium. Therefore, this is a specific and selective method of identifying crude glycerol. Then, in 

order to evaluate specificity and selectivity, samples were compared in terms of the recovery % 

(Table 2.6). No significant interference was detected. Thus, the method could be considered 

specific and selective for glycerol regardless of the source and medium composition.  

To evaluate the linearity, accuracy and repeatability of the entire sample processing and HPLC‐

RID analysis, a calibration curve of eight different glycerol concentrations (triplicates) was 

performed. Artificial sea water medium with crude glycerol samples where quantified and found 

Table 2.6. Specificity and selectivity of HPLC‐RID for glycerol determination, comparing 
recovery values (%) with different conditions. 

 

%Recovery StD %CV

Commercial glycerol + H2O 99.8 0.6 0.6

H
P

L
C

-R
ID

Crude glycerol + H2O 97.6 1.1 1.1

Commercial glycerol + Medium 98.3 0.9 0.9

Crude glycerol + Medium 96.9 1.5 1.5
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to be linear (R2>0.999). Table 2.7 summarizes the results of Response Units (RIU) vs. glycerol 

concentration (g/l) calibration curve. The slope ± standard error was found 171259 ± 2150 and 

the intercept ± standard error 54940 ± 12059. The method is linear in the range of 0.68 g/L to 

12.5 g/L. In order to evaluate its accuracy, the mean bias (%RE) was calculated. %RE corresponds 

to the percentage difference between the value determined with the analytical method and the 

known concentration (weighted) of the standard used. The mean bias was between 1.2% and 

11.6%. The repeatability was examined by measuring the variation between 6 replicas at each 

concentration (Table 2.7). Repeatability ranged between 0.4 and 2.3% (CV) at low and high 

glycerol concentrations respectively. The detection limit was found to be 0.2 g/L and the 

quantification limit 0.68 g/L of crude glycerol. Consequently, this method can detect and quantify 

minimal glycerol concentrations from a culture and detect the complete depletion of the carbon 

source.  

HPLC is an excellent technique in terms of precision and accuracy. However, it requires 

considerable time to analyse each sample. The HPLC‐RID methodology that has been discussed 

in this study, typically takes 30 minutes per sample. When monitoring cultures that might last 

several days, many samples need to be collected and analysed, which delays the outcome when 

quick decision‐making is required. The chromatographic time can be reduced to 15 minutes using 

a different stationary phase (not available for this work). The HPLC‐RID method showed suitable 

performance when analysing high salinity samples. Additionally, the contaminants present in 

crude glycerol did not interfere with the analysis.  

 

2.2.1.2 Glycerol determination using an enzymatic kit  

Many labs currently prefer to use a glycerol detection kit, which is based on enzymatic reactions. 

These kits offer faster quantifications than those based on HPLC methods. In this work, a K‐GCROL 

(Megazyme International) kit was used. In approximately 20 minutes, the residual glycerol 

concentration of a cultivation sample can be determined. In order to compare the results 

obtained with HPLC determinations, the enzymatic method was validated in the same manner. 

 Table 2.7 Precision and accuracy for glycerol quantification by HPLC‐RID.    
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The results from sample and reagent preparation, as well as sample processing were evaluated 

in terms of assay attributes as described in section 2.1.1.2.2.  

Specificity and selectivity were evaluated by comparing the results of the same concentration of 

crude and pure glycerol diluted (dilution factor 1:100) in Milli‐Q water. A positive agreement was 

observed in the results (Table 2.9), which showed good recovery values. The method was found 

to be linear in the range of 0.01 g/L to 0.1 g/L of crude glycerol (R2>0.998). Therefore, cultivation 

samples needed to be conveniently diluted in order to fall into this range. The slope ± standard 

error was found 0.0101 ± 0.0003 and the intercept ± standard error was ‐0.0003 ± 0.0018 

Absorbance Units (AU) vs. glycerol concentration (g/l). The enzymatic kit was found to be specific 

for glycerol, but it was not originally conceived to test high salinity media samples. However, the 

dilution required to fall into the analysis range allows acceptable conditions to host the enzymatic 

process and no evidence of interference with the enzymatic reactions was detected (Table 2.8). 

Accuracy and repeatability were also evaluated. The %RE was always ≤ 4.58. The maximum 

variability was found to be 0.71%. This corresponds to a variation of 0.008 g/L for the most diluted 

samples. The detection limit was set to 0.008 g/L, and the limit of quantification to 0.1 g/L. Thus, 

the enzymatic kit could be considered as an accurate and precise method under the conditions 

assayed.  

While offering similar performance, enzymatic kits work faster than HPLC methodologies and do 

not require special equipment. Nevertheless, considerable manual sample processing is required, 

which dissuades the usage of kits when a large number of samples need to be analysed. The kits 

Table 2.8. Precision and accuracy for glycerol quantification using a commercial kit. 

 Table 2.9 Specificity and selectivity of the enzymatic kit for glycerol determination, comparing 
recovery values (%) with different conditions.    
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are a good option for punctual glycerol determination, but have drawbacks for bioprocess 

development and fermentation monitoring. The cost of enzymatic kits for glycerol determination 

might represent an additional drawback. This is especially true for studies that are focused on 

media, strains screening, or bioprocess development, in which sampling and analysis are 

extensive.  

2.2.1.3 DotBlot assay validation 

As an alternative, a thin silica gel layer was used as a support to perform a DotBlot assay. In a 

DotBlot, the typical TLC35 elution is not performed due to the absence of unsaturated compounds 

or alcohols secreted by the microorganisms used. To visualize the spots, a permanganate solution 

was chosen, which oxidized glycerol and formed yellow spots (Table 2.10). In order to accelerate 

the reaction, the spots were heated to 100ºC.The intensity and size of the spot was found to be 

proportional to the glycerol concentration.  

Once the DotBlot was stained, it was scanned and the image obtained was analysed using 

Matlab®® (script can be found in Appendix B). The analysis of the image f(x,y) was divided into 

three differentiated stages: normalization, segmentation and calculation. Normalization 

prepares the image for the segmentation process over the spots and guarantees repeatability to 

the method. The normalization results are strongly dependent on the quality of the staining 

process. Therefore, it is important to use the same permanganate solution in every batch. For 

this reason, the same permanganate solution was used and preserved using potassium carbonate 

to ensure freshness until the end of the culture. Once the normalization was done, a 

segmentation was performed. Segmentation is typically needed to apply the suitable Matlab®® 

function to calculate the area and intensity of each spot. The segmentation process differentiates 

the spots from the background of the image f(x,y) (Equation 1.1) based on a global threshold (T 

value).  

�′(�, �) =  �
1 �� �(�, �)  ≥ �

0 �� �(�, �) < �
� Equation 1.1 

                                                           
35 Thin layer chromatography 

Table 2.10. Specificity and selectivity of the DotBlot assay for glycerol determination, 
comparing recovery values (%) with different conditions. 
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Finally, the calculation step determines the 

area and intensity values of each labelled spot. 

The method needed to be experimentally 

calibrated and validated using known 

concentrations of glycerol (using standard 

samples such as those in Figure 2.8). 

The validation was performed with crude 

glycerol. As seen in Figure 2.8, the first row 

belongs to samples of 10 g/L glycerol, 

generating the brightest spots. The next rows 

of spots correspond to the decreasing 

concentrations of glycerol. The last row of 

spots corresponds to samples of artificial 

seawater in which the glycerol was already depleted (no colour change). Consequently, the 

methodology could be considered specific for glycerol, without interference from other 

components of the growth media. The results are detailed in Table 2.11. Furthermore, the 

specificity was evaluated by comparing the samples using pure glycerol and purified crude 

glycerol diluted in water or medium. The recovery % (Table 2.6,Table 2.9 and Table 2.10) values 

were stable for all samples, which confirms the specificity and selectivity of the methodology.  

The DotBlot assay was found to be linear from 1.5 g/L to 10 g/L (R2>0.998). The slope ± standard 

error was 0.428 ± 0.012 and the intercept ± standard error was 3.471 ± 0.075 in response to 

arbitrary units vs. glycerol concentration (g/l). Table 2.11 summarises the results by evaluating the 

repeatability and accuracy between replicas and the calculated mean bias. The maximum 

variability among samples was below 7% (e.g. variation for the most diluted samples would be 

equal to 0.141 g/L). The %RE was ≤ 5.3% for samples above 2.5 g/L glycerol. The limit of detection 

was 0.5 g/L and the quantification limit was 1.5 g/L of glycerol. Below the threshold of 1.5 g/L, 

the method became less accurate in terms of quantification, but it was still sufficient to monitor 

glycerol during a fermentation. 

 

Figure 2.8 Dot Blot assay of crude glycerol 
standards (triplicates), stained with sodium 
permanganate. 

Table 2.11 Precision and accuracy for glycerol quantification using a commercial Kit. 
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2.2.1.4 Method comparison using fermentation broth 

In order to evaluate whether the DotBlot capabilities were the same as the HPLC and the kit 

methodologies, A. limacinum crude glycerol consumption was monitored during the 

fermentation process. Several samples were taken at different times during the cultivation. 

Samples were analysed independently using each methodology. All samples were processed at 

the same time to reduce the variability.  

As can be seen in Figure 2.9, all methods resulted in similar values of residual glycerol. The DotBlot 

assay gave slightly lower values towards the end of the culture, compared to the HPLC‐RID and 

the kit. The total time needed to analyse all of the samples with HPLC‐RID was 6 hours, 3 hours 

were needed using the enzymatic kits, whereas the DotBlot method required only 15 minutes. 

Thus, the three methods offer similar results, but the Dotblot offers faster and cheaper 

determinations and reduces sample manipulation.  

 

2.2.2 Fatty acid determination and DHA quantification with High Resolution Gas 

Chromatography (HRGC) 

For the development of this specific bioprocess a DHA quantification capacity was considered 

essential. Every improvement that will be applied in the successive chapters of this thesis, is 

mainly based on biomass and DHA measurements. For this reason, it is of vital importance that 

a fast, reliable and precise method is developed to quantify one of the most important PUFA. 

Figure 2.9 Substrate consumption measurements using three different methods. HPLC‐RID, enzymatic 
kit and Dot Blot assay. 
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2.2.2.1 Initial method: single sample per run 

The first step was to determine the basic conditions needed to extract and transesterificate fatty 

acids contained in A. limacinum biomass. Indarti et al. (2005) [152] was chosen as the basis for 

this development, because their method was able to extract TG and transesterificate FA from fish 

samples. Therefore, a similar performance could be expected with microalgae biomass. The main 

feature of Indarti et al’s work is the transesterification mixture (1.7:0.3:2.0 v/v/v) together with 

the heating process. For this study, different ranges of time and temperature were chosen. To 

complete this study, a full factorial DoE was performed. The range of the investigated 

temperatures was from 70 to 100 ºC during 30, 40, 50 and 60 minutes. The responses used 

corresponded to the relative abundance36 of DHA as measured by the FID detector. Every sample 

was processed equally and injected using the same volume. This way, the difference in 

concentrations could only be attributed to the investigated factors. The retention time of DHA 

was previously determined using a methyl ester standard (Sigma‐Aldrich, ref. 05832). The 

standard was analysed with the same method. Results are depicted in Figure 2.10.  

As can be seen in Figure 2.10, there is a positive correlation between the amounts of DHA detected 

(response) and the time of reaction. This value reached a plateau after 50 minutes of reaction, 

which indicates that the optimal time of reaction is near 50 minutes; somewhere between 40 

                                                           
36 Refers to the area of the DHA peak compared to other extractions.  

Figure 2.10 Summary of the results obtained in the full factorial experiment. The table shows the 
experimental table, with different times and temperatures. The response is equivalent to the mean value 
of 48 experiments (3 replicates). The plot above shows the values of every mean response among the 
time of reaction.  Each set of data corresponds to a reaction temperature. 
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and 60 minutes. The optimum temperature appears to be around 80 ‐ 90 ºC. These results are in 

concordance with the data found in the study by Indarti et al. [152] in which the optimum values 

are approximately 50 minutes of reaction with a temperature of 90 ºC. On the other hand, there 

was a reduction in the values after 50 minutes if the reaction temperature was above 90 ºC. This 

might indicate that some FAME experienced a process of degradation. In the research from 

Indarti et. al., a similar phenomenon was reported. There was a reduction in the recovery of 

FAME. As suggested by the results indicated in Figure 2.10, the samples needed to be processed 

at 90 ºC for 50 minutes. 

At this point in the research, the sample preparation and analysis method of FA and DHA were 

sufficiently precise (but not fast) for the initial bioprocess development. This included the 

preliminary flask cultures and other bench scale investigations. Because the derivatization 

reaction was conducted in a 10 mL glass balloon with exhaust refrigeration, it only allowed one 

sample to be processed per run. This appeared to be a significant problem because A. limacinum 

culture experiments began to generate multiple samples. At a certain point, the sample 

preparation became a bottleneck to the development.  

2.2.2.2 Development of an HTS –like method for the analysis of FA and DHA 

When the research started requiring several samples per experiment, due to an increase in the 

amount of A. limacinum cultures, the original method caused a bottleneck. An individual culture 

required 4 or 5 samples. Because there were 3 replicates per sample, this meant that a single 

flask generated a minimum of 12 samples. At that moment, it was essential to develop a method 

that functioned in the same way as an HTS‐like method, enabling to process different samples at 

the same time. Modifications were made to the number of samples, the equipment and 

consumables used. The previous method used 4 mL of the mixture reaction for 20 mg of 

lyophilized biomass. For the new method, 2 and 4 mg of biomass were evaluated in a reaction 

volume of 500 µL. This was sufficient volume to avoid surface tension interferences in a 1.5 mL 

vial while leaving a 1mL air space to allow the solvents to expand. It is important, because the 

reaction that was previously performed in balloons was instead performed in small vials. Sealed 

with aluminum stamp caps, these vials avoided solvent evaporation, which helped to maintain 

sample concentrations. Moreover, vials resistant to the high pressures generated by the reaction 

(data not shown). Small vials allow simultaneous sample processing and accurate temperature.  

Once the innovations were applied, the optimal reaction conditions needed to be determined 

again. In order to investigate the different factors of the sample preparation method, as well as 

to investigate the interactions between them, a Taguchi matrix was applied. Time, temperature 

and load of sample were the factors explored in this experiment. Every factor level explored was 

the same as in the previous experiment: 70, 80, 90 and 100 ºC and 30, 40, 50 and 60 minutes. 

The factors were investigated for a third factor; the amount of weighted biomass. As previously 

mentioned, the interaction between the factors are important for these investigations, which 

require several experiments with replicates. Taguchi’s orthogonal matrices (see Appendix A) 

allow this to be done economically. Two factors consisting of four levels, combined with a factor 
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of two levels required a specially modified matrix. L16 (215) was modified37 to became L16 (29, 42) 

which can be allocated to those factors. 

ANOVA was the statistical method used to interpret the experimental data. The resultant analysis 

of variance can be seen in Table 2.12. According to F‐test (see Appendix A) only the temperature 

and the time of reaction are significant. It is clear that factor A, the temperature, is the most 

relevant factor contributing 68% of the transesterification of FA into FAME. It was clear that the 

time of reaction as well as the biomass load are less important, as the contribution is very low. 

The biomass load (C factor) and its interactions did not indicate important contributions. In this 

table, every column represents a factor in which the average response per level is listed. These 

average values are plotted in Figure 2.11. 

                                                           
37 Other, well‐documented procedures exist to modify OA with statistical guarantees to maintain its properties.  

Table 2.12 ANOVA for the Taguchi matrix L16 (29, 42). Temperature (A), time (B) and biomass load (C) are 
the main factors, being AxC and BxC the interaction of both main factors with biomass load. The error is 
indicated as e. Sum of squares (SS); degrees of freedom (df); Mean square (MS); Computed value of F (Fo) 
which needed to be compared with F‐table, F0.05, 3, 2=9.55; F0.05,1,2=199.5 

Factors A B C AxC BxC e
1 1423 1819 1754 1999 1889 1954

2 1846 1864 2236 1991 2101 2048

3 2481 2162

4 2231 2136

SS 2567255 382869 232742 57 45105 8811

df 3 3 1 3 3 1

MS 855752 127623 232742 19 15035 8811

C (%) 69 10 19 0 1 1

Fo 232.21 37.34 66.25 0.023 4.47 ‐

Le
ve

ls

        69                       10                            19                              0                         1                       1  

Figure 2.11 Average value of every factor level. 
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The Biomass load factor was introduced to evaluate whether the reaction mixture could become 

saturated with FAME, within this range of biomass concentration. The mean responses from 

every factor’s level are illustrated in Figure 2.12. After analysing the mean response for the two 

different levels of the biomass factor, it was clear that the response increase in the second level. 

This indicates that using a biomass load of 2 mg (first or lower level)38 did not saturate the 

reaction. This plot reveals the best level for temperature and time, which appeared to be the 

third for both of them. It is significant that the fourth temperature level undergoes a response 

decrease. The maximum level is less clear in the case of reaction time. The evolution of the fourth 

levels of this factor, appear to show a plateau after the third level.  

The Taguchi matrix used above has an important blind spot; the interaction between 

temperature and time. This was not considered in the transformed L16. Most likely, the 

contribution of this interaction would have been more important and the combined levels may 

have shown a different maximum than that indicated. On the other hand, weighing small 

amounts of biomass could be a logistical constraint. For the developed method a scale that has 

an error of 0.1 mg was used. Thus, as long as the weighted sample was much higher than the 

error, the measure was reliable. In other words, starting with a higher amount of biomass would 

be better for the method repeatability. The analysis of the previous data provided some insight 

that helped develop a process for sample preparation to analyse fatty acids. However, the 

experimental design results added new interrogates which required new experiments.   

                                                           
38 When discussing two levels per factor, these are commonly referred to as lower and higher level. When looking 
at more than two levels per factor, these are referred to by the number.  

Factors A B C AxB AxC BxC e

1 1219 1278 1097 954 1228 1322 1194

2 1253 1199 1262 1199 1256 1140 1236

3 1337 1579 1372 1579 1247 1270 1303

SS 22260 240750 114627 593601 1213 52739 18057

df 2 2 2 2 2 2 8

MS 11130 120375 57313 559305 7490 38329 13251

C (%) 1.4 14.9 7.1 69.3 0.9 4.7 1.6

Fo 0.8 9.1 4.3 42.2 0.0 0.6 0.0

Le
ve

ls

Table 2.13 ANOVA for the Taguchi’s OA L16 (29, 42). Temperature (A), time (B) and biomass load (C) are 
the main factors, and AxB, BxC and AxC are their interactions. The error is indicated as e. Sum of squares 
(SS); degrees of freedom (df); Mean square (MS); Computed value of F (Fo) which are compared with F‐
table (AppendixA), F0.05, 2, 8 = 19.37.  

        1.4                 14.9                 7.1                 69.3                  0.9                  4.7                   1.6  
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A second Taguchi matrix was proposed in order to investigate the factor levels within the most 

relevant ranges from the previous experimental design. The new array was the L27 (313). This array 

made it possible to investigate different factors with three levels and the interactions between 

them. Therefore, the experimentation can be allocated with three levels of temperature, time 

and biomass load. Again, the biomass factor is an extra to evaluate the method capacity to handle 

higher amounts of biomass, as well as a control to highlight significant factors in the experiment. 

The investigated levels are 35, 40 and 45 minutes of reaction time, 80, 82.5, 85 ºC for 

temperature and 4, 6 and 8 mg of biomass load. Figure 2.12 shows the range of time and 

temperature explored by both of Taguchi’s experimental designs.  

L27 consisted of 27 runs and allowed researchers to study the interaction effects. In this case, only 

two replicates were performed due to the large number of samples required. Every sample was 

processed in the same conditions and in the heating bath simultaneously. The injection volumes 

in the HRGC were set at 1 µL instead of 2 µL, and for this reason the response values were lower 

from this point. The analysis of the results is detailed in the ANOVA, which is shown in Table 2.13. 

The percent contribution indicates the contribution of each factor and interaction to the total 

variation. In the L27 ANOVA, the interaction between temperature and reaction time, with a 

contribution of almost 70% appears to be extremely important. By controlling both factors at the 

levels at which the interaction had a greater positive impact would lead to near optimal definitive 

improvement. The contribution of the error indicates the accuracy of the experiment, which is 

substantially good.  

Observing ANOVA computed F values (Table 2.13) shows that the interaction between 
temperature and time is the most important factor. From this standpoint, only the combined 
levels of these factors had to be analyzed. As illustrated in Figure 2.13, the combined levels of 
temperature and time can be found. As seen in the figure, the maximum extraction values are 
given when the samples were run for 45 minutes at 80 ºC as well as for 35 minutes at 85 ºC.  The 
difference was minimal, which indicates that the optimum values are within these ranges as 
shown in Figure 2.12. The selected sample preparation method was 85 ºC for 35 minutes. This 
way, the new method reduces the time of the original method and also allows parallel samples 
to be processed.  

Figure 2.12 Differential window of temperature and time levels explored by both orthogonal arrays.  
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As the sample preparation is a fundamental tool enabling the DHA biotechnological production 

development, it was exhaustively validated. In addition to linearity and LOD and LOQ, method 

was validated in terms of repeatability and precision. The next section will explain the validation 

process of the DHA quantification method. 

2.2.2.3 Validation of trans-esterification (sample preparation) method  

The new method consists of different steps that occur during the reaction in the 1.5 mL vials. The 

sample preparation process must be validated.  First, the release of FA from TG. The next stage 

is the transesterification of FA and finally the purification by phase separation. In order to ensure 

precise measurement, the DHA recovery percentage was also determined. In addition to proving 

that the method would scrupulously provide precise values of DHA during the project, 

discovering the percent of recovery of the method is important so the researchers can know the 

maximum DHA value possible. Of the steps mentioned above, the first presents the most 

difficulty.   

An unambiguous validation could be performed for the following steps. Glyceril tripalmitate 

(PPP) is a triglyceride that contains three palmitic acids (P), which is one of the most abundant 

FA in A. limacinum. PPP is available as a standard and can be used to validate the remaining steps 

of the sample preparation method. Using the developed method, PPP would first release P 

moieties.   

Then the released P would be esterified and finally the samples could be purified and analysed 

with HRGC‐FID. Measuring the total amount of P extracted, and comparing it with the amount of 

Figure 2.13. Response graph of every level from temperature and reaction time. 
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PPP added at the beginning, would provide the recovery percent of the entire process. This would 

show the method attributes to be validated as well as provide a recovery percent value of the 

transesterification process. Regarding DHA quantification, a standard of this free FA was used to 

perform a standard curve as well as to validate statistical attributes. 

In order to achieve this, generating a calibration curve of P would be the first step. This would 

allow the quantification of P, which is the most abundant FA of A. limacinum, (together with DHA) 

and is the sole constituent of the TG standard, PPP. Therefore, knowing the response factor (Fr)39 

of P can be used to know the recovery percent of the procedure with PPP. For development 

purposes, the methyl ester of P (palmitic acid methyl ester, MP) was also analysed. MP was not 

processed through the sample preparation method. It was directly analysed by HRGC to ensure 

that the value of trans‐esterified P is the maximum. This allowed to determine if there is any loss 

during the analyisis by HRGC‐FID. The results of the three standards introduced above are shown 

in Table 2.14.   

From Table 2.14, it is clear that the response factor (Fr) was equivalent for every standard, 

indicating that the previous method optimization allows a complete recovery of P from the 

reaction. The CV (%) values showed a high reliability because the higher CV (%) value as below 

5%. In most cases, it was even below 1 %. The same happened with CVf (%) values, whose highest 

value was 4% in P standards. Most importantly, the recovery percent listed as R in Table 2.14, 

indicates almost perfect values, which is further evidence that the method processed all of the P 

units. P transesterification showed a recovery of 99.7% relative to MP, and PPP exhibited a 

recovery of 100.3%. Finally, the R’ shows the recovery percent of PPP relative to P, with a value 

of 100.7%, which indicates that the method is not losing standards during the sample preparation 

process.  

Therefore, the current optimized method of extraction and transesterification of FA from A. 

limacinum guarantees the highest transesterification. 

Considering the previous CV (%) and CVf (%) values, the entire method (sample preparation and 

analysis) could be considered reliable due to excellent accuracy and precision, which thus 

indicates a good repeatability.  

                                                           
39 Fr is the ratio between a signal produced by an analyte, and the quantity of analyte which produces the signal. 
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LOD and LOQ were calculated (Appendix A) based on the residual standard deviation (RSD) of the 

response, and its regression versus the standard concentration. LOD and LOQ for palmitic acid 

were 0.41 g/L and 1.38 g/L, respectively. Thus, between 1.38‐12.5 g/L accurate and precise P 

quantification could be achieved. The method was proven to be linear within this range. The 

evaluated range is broad enough, because biomass samples would only contain P concentrations 

between 2 and 4 g/L. The equation used to calculate a P concentration provided by a sample of 

A. limacinum in the following chapters was y = 766.29 x, as shown in Figure 2.14.  

Table 2.14. Calibration curves of MP, P and PPP. The value of the area is the mean of three area measurements 
with the corresponding CV (%) showing the reliability of the measures. On the right, the response factor (Fr) 
is defined as the ratio between the concentration of the compound being analysed and the response of the 
detector to that compound. Fr statistics are listed below its column. The indicated mean value is the average 
of all the values with the corresponding standard deviation (SD). CVf (%) is the Fr variation coefficient. P and 
PPP R (%) indicates the recovery of each, relative to the MP standard. On the other hand, R’ (%) indicates the 
recovery of PPP relative to P.  

[MP] Area CV (%) Fr [P] Area CV (%) Fr [PPP] Area CV (%) Fr

2.84 2043 0.2 719.4 2.5 1752 4.5 701 2.5 1754 0.8 702

5.2 3599 0.7 692.1 5 3661 2.8 732 5 3695 0.9 739

7.28 5149 0.2 707.2 7.5 5260 3.2 701 7.5 5312 0.2 708

10.2 7541 0.5 739.3 10 7702 0.1 770 10 7322 1.3 732

12.6 8954 0.2 710.6 12.5 8995 0.9 720 12.5 8745 1.3 700

Mean 713.7 Mean 711 Mean 716.1

SD 17.4 SD 28.6 SD 18.2

CVf (%) 2.4 CVf (%) 4.0 CVf (%) 2.5

R (%) 99.7 R (%) 100.3

R' (%) 100.7

Fr
 s

ta
ts

Fr
 s
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Fr
 s
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Figure 2.14. Calibration line of palmitic acid (P).  
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The developed method has shown the capacity to measure the amount of FA such as P, and to 

perform a full release and trans‐esterification, as evidenced by the standards. Observing the FA 

profile from A. limacinum (obtained using the current method), as illustrated in Figure 2.15, P was 

satisfactorily separated from other FA species that come from this microorganism. Thus, the 

method shows excellent specificity and selectivity. In Figure 2.15, two standards were included in 

the processed sample in order to evaluate their selectivity relative to DHA and DPA. Tricosanoic 

acid, which is the internal standard (ISt) and EPA. As previously explained, together with DHA, 

EPA is the most important n‐3 PUFA for biology and human health. The validated method shows 

good selectivity for FA. This shows the suitability of the method to define the FA profile of other 

thraustochytrids. This way, any EPA produced would be detected by this method. This same 

method can also be applied to determine DHA sample abundance from A. limacinum. However, 

the method would need to be validated and calibrated specifically for DHA, in order to be able to 

quantify it. The following section details the assessment of statistical attributes for the 

quantification of DHA. 

  

2.2.2.4 Validation of DHA quantification 

The same method used to define the FA profile of thraustochytrids has enough selectivity to 

quantify DHA without any interference, as observed in Figure 2.15. The profile clearly indicates 

good selectivity of this method for DHA that comes from A. limacinum samples.  

Figure 2.15. Fatty acid profile of A. limacinum processed with the current method. P is palmitic acid; M is 
myristic acid; O is oleic acid; ISt is the internal standard (tricosanoic acid; C23:0); EPA was added as a 
standard and corresponds to eicosapentaenoic acid; DPA is docosapentaenoic acid and DHA is 
docosahexaenoic acid. Every peak was identified by injecting Sigma 37 FAME standard.  
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To execute the validation of the remaining statistical attributes, a DHA standard (a free FA form, 

not in a methylated form40) was used. Thraustochytrids can have between 20 to 50 % of lipids 

and almost 50 % of the total lipids are DHA. This means that, if the current method uses between 

4 and 6 mg of biomass, every sample would have between 0.8 to 3 mg of lipids. And 0.4 to 1.5 

mg of DHA. These values are very important when considering the range of curve calibration.   

The DHA standard was necessary to evaluate the whole method process (sample preparation and 

HRGC analysis). As DHA contains 6 double bonds, it is susceptible to oxidation, boosted by the 

presence of oxygen and light. For this reason, DHA is more delicate than SFA, such as P, and needs 

special considerations. Therefore, processing DHA in 30 minutes of Fischer‐Speier reaction may 

be too harsh for it. Accordingly, the same amount of sample was evaluated for different times of 

reaction. The results of this experiment are listed in Table 2.1541.  

Observation of the data in Table 2.14 surprisingly reveals that the DHA was more resistant than 

expected in the reaction environment. As can be seen in Table 2.15, it resisted the reaction for at 

least 30 minutes, even giving the maximum mean response. These results are in concordance 

with the optimization performed in section 2.2.2.3, in which the maximum was around 30 to 40 

minutes. Nevertheless, 15 minutes is enough to convert 99 % of the DHA standard into a methyl 

ester. The stability of the recovery values while changing an important factor (time) is evidence 

of the process robustness. It is worthwhile to note that DHA coming from biomass requires 35 

minutes, while a DHA standard only needs 15 minutes.  

                                                           
40 This form is more stable and makes FA generally easier to handle. In the literature, DHA is generally used as a 
methyl ester to perform a calibration curve.  
41 Data in this table was generated using a Supelco SP™‐2380 (60 m × 250 µm, df 0.20 μm) column over more than 
10 years. In some experiments, a new one was used with the same characteristics but with better performance. This 
will be indicated as necessary.  

Table 2.15 Results and statistics of the sample preparation process applied to a DHA standard with 
different times of reaction. Experiments were performed at 85 ºC. SD stands for standard deviation; CV 
stands for Variation coefficient; Fr stands for response factor. R30 corresponds to the recovery % relative 
to 30 minutes’ experiment. Mean response equals mean area.  

 
Time (min) [DHA] (g/L) Mean SD CV (%) Fr R30(%)

5 3 2952 43.8 1.49 984 96.3

10 3 3064 22.6 0.74 1021 98.3

15 3 3116 4.9 0.16 1039 99.0

20 3 3146 7.1 0.22 1049 99.4

25 3 3165 2.1 0.07 1055 99.9

30 3 3168 0.7 0.02 1056 100.0

35 3 3136 8.0 0.00 1045 99.0
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A change in the HRGC column required a re‐calibration. It is plotted in Figure 2.16, where figure a 

shows the calibration using the new column and b corresponds to the old column. As can be 

seen, despite the fact that the Fr experienced a slight change, the LOD and LOQ are basically the 

same. The calibration curve was reworked every 4 or 5 months during the research. GC columns 

tend to lose stationary phase material after every run and it was important to keep the method 

calibrated. The range of work was reduced from a maximum of 12 mg/mL of DHA to less than 7 

mg/mL, because the real samples never reached such high concentrations.  

As already mentioned, the method has shown perfect specificity to distinguish DHA from other 

fatty acids. The DHA quantification method was found to be linear from0.4 g/L to 6.5 g/l using 

the new column and 0.19 g/L to 11.5 g/L using the old column. Regression lines were plotted in 

Figure 2.16. LOD and LOQ for the new column are 0.15 g/L and 0.5 g/L, respectively. For the old 

column, LOD and LOQ are 0.17 g/L and 0.58 g/L respectively. The slope was 783.4 and the 

intercept was 45.7 in the mean DHA area vs. the DHA concentration (in the reaction mixture, g/l), 

for the new column. For the old column, the slope is 606.18 and the intercept was 74.2 in the 

mean DHA area vs. DHA concentration (in the reaction mixture, g/l). Table 2.16 summarizes the 

results, evaluating the repeatability and the accuracy between replicas and the calculated mean 

bias. The maximum variability among samples was 5 %. The mean bias (%) was 15 % for samples 

of 0.4 g DHA /L. Therefore, the method lost accuracy with the new column, when the 

concentrations were equal to or below 0.4 g DHA/L. Any degradation of the sample would be 

easily noticed in low concentrations, which is another influencing factor. The old calibration curve 

shows good repeatability as well as low variability.  

Figure 2.16 a) Calibration curve of DHA using a new column. b) Calibration curve of DHA using an old 
column. LOD and LOQ stand for the limit of detection and the limit of quantification, respectively. RSD 
stands for residual standard deviation and Fr for response factor. Final volume of samples, 500 µL. 
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The current DHA quantification methodology provides a statistical guarantee that the 

measurements are precise. Therefore, DHA values can govern the thraustochytrids bioprocess 

development. The DHA method together with the glycerol method composes the necessary 

analytical toolbox to proceed with the basic knowledge about A. limacinum behaviour and life 

cycle.  

2.2.3 A. limacinum life cycle in batch and continuous bioreactor 

Thraustochytrids have a complex life cycle that is not fully known and can change dramatically 
from strain to strain. In fact, the classification of thraustochytrids genera is based on 
morphological differences at various stages during their life cycle. For this reason, a microscopic 
coupled with an image processing algorithm was used to monitor cells morphology and sizes. The 
physiological composition of this microorganism also changes drastically during different 
morphological stages. Because this study used A. limacinum both as a thraustochytrid model and 
as a tool for a bioprocess development to produce DHA, further investigations were required. A. 
limacinum life stages have been investigated during regular batch culture in flasks and in a 
bioreactor. Observations of every stage have been made with confocal microscopy and processed 
with a Matlab® algorithm (see Appendix C).  In order to calibrate the algorithm, different pictures 
of known distance objects, (e.g. the Neubabuer) chamber were processed. This allowed for 
unequivocal measurement of cell size to be done for different cell stages. Every microscope 
augmentation required calibration. 

Table 2.16 Precision calculations for the whole DHA quantification method (sample preparation and 
analysis) according to both columns. SD stands for standard deviation; CV stands for Variation coefficient; 
Fr stands for response factor. Mean stands for the average value of area measurements. 
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2.2.3.1 A. limacinum as a model of thraustochytrids complex life cycle 

A. limacinum is a great example of thraustochytrids cell cycle complexity. Besides gaining 
knowledge about how A. limacinum and thraustochytrids behave in a batch reactor, observations 
can set “default” cycle characteristics. This default behavior provides an understanding of the 
microorganism adaptation to media changes. Interestingly, every cellular stage has a different FA 
profile. In some of these stages, the production of lipids and/or PUFA such as DHA are enhanced. 
Important scientists in thraustochytrids biology like Perkins, Porter, Moss, Gaertner A., and most 
recently S. Raghukumar, Daiske Honda and their colleagues have examined and recorded the 
general life cycle of different strains of thraustochytrids. This section offers the description of this 
life cycle in a lab scale bioreactor, the changes in the life cycle (as shown in Figure 2.17) and the 
changes of DHA during cultures (see Figure 2.25 from section 2.2.2.3). DHA values can indicate the 
best harvesting time to maximize productivity. 

A. limacinum stages in batch, changes depending on carbon source availability during a batch 
bioreactor as shown in Figure 2.17. The figure illustrates the sequence of the main and most 
abundant stages during a batch, however there are a few other stages that normally co‐exist with 
the main ones. In some cases, there are cell types that only last for a few hours, representing a 
transient step. Interestingly, A. limacinum growing at steady state (in a continuous mode) only 
generates vegetative cells. Vegetative cells can present different characteristics in terms of size, 
shape and biochemical composition, depending on the environmental conditions as shown in 
Figure 2.17. The vegetative stage is the most abundant in many situations. An amoeba’s final stage 

Figure 2.18 Conforocal microscopy picture (400x) from a culture of A. 
limacinum, showing different cell morphologies of the same strain. 

Figure 2.17 A. limacinum life stage in different carbon source availability scenarios, as observed in 
this thesis. Each cellular stage is described in section 2.3.3.2 and 2.3.3.3. 
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is rarely formed because the cells are generally harvested shortly after carbon source depletion. 
Amoebas as well as zoospores are the consequence of strong morphological transformations. 
Both stages are related to low DHA accumulation. These transformations are detailed further in 
this section.  

During a normal culture, different cell type populations co‐exist. This, together with the 
significant morphological variability of every stage, shows the complexity of growing 

thraustochytrids in a bioreactor. Figure 2.18 evidences the heterogeneity of this strain. In this 
picture, a zoospore, a cell that is metamorphosing after a zoospore stage, amoebe cells, 
vegetative cells and cell remnants (envelopes) of broken sporangium coexist. A supplementary 
video included in the thesis shows the movement of the cells. Contrary to what can be seen in 
Figure 2.19, vegetative cells are generally grouped in what is called settlement or large clusters. 
As introduced previously, the vegetative phase is the most common.  

In their natural environment, thraustochytrids became vegetative cells in substrate rich 
environments, using zoospores and amoebas to move around, looking for new nutrient sources. 
For this reason, thraustochytrid cell clusters are called settlements, because they settle together 
until nutrient depletion. Then, they return to some of the stages with motility. Vegetative cells 
stay together to protect themselves from the environment as well as to “collaborate” in the 
nutrient obtention process. As introduced in Chapter 1, thraustochytrids have a very singular 
organelle called sagenogenetosome. This organelle is responsible for secreting an ectoplasmic 
network, which is a radiating matrix of cytoplasm bound by a plasma membrane [159]. The 
ectoplasmic network apparently help cells adhere to and penetrate substrates, and it secretes 
the digestive enzymes required to solubilize nutrients that can be absorbed by cells [128]. In the 
lab, when the reactor is poorly agitated, this ectoplasmic net can appear and impede the culture 
homogeneity (Figure 2.19). Despite that, the ectoplasmic net is a sign of a healthy cell and 
therefore of good adaptation to the media. On the other hand, this phenotype promotes enzyme 
synthesis which could be of interest due to their role in decomposing leaves and vegetable debris 
[160]. Therefore, if required, the production of potential hydrolytic enzymes could be promoted 
by growing thraustochytrids at a very low (or zero) agitation. 

2.2.3.2 Main life stages 

At the starting point of the culture, inoculum, the cells are in a vegetative stage. This inoculum 
has experienced the whole growing process until the final vegetative stage (Figure 2.17), which is 
far before the amoeboid stage. When these cells are introduced into a fresh medium, they start 

Figure 2.19 Conforocal microscopy picture (400x) from a culture of A. 
limacinum with crystal violet staining. The staining has revealed the 
ectoplasmic network which is barely visible without the dye. 

 



 2.2.Results and discussion 

 

 

75 

to show ultrastructural42 evidence of metabolism “acceleration”. When a vegetative cell is rich in 
“black dots” (Box 2.5), it means that they have accumulated a large quantity of TG (with an 

important number of PUFA), according to Larsson’s triple chain‐length model for mixed 
triglycerides. Thraustochytrids tend to accumulate triglycerides in oil bodies and in vesicles  
[127,161,162]. TG accumulation is more common at the end of the culture, because they tend to 
store energy if carbon source and nutrients are depleting [161]. Therefore, at the end of a culture, 
thraustochytrids should accumulate these small black dots.  

Shortly after the introduction of these cells in a fresh medium, they tend to obtain energy from 
their stored TG to develop and express the metabolic machinery, as can be observed in Figure 

2.25. Thus, obtaining energy enough to secrete the required enzymes to process nutrients. In 
their challenging natural environment, thraustochytrids have to compete with faster 
microorganisms. From an evolutionary standpoint, this extra stored energy, in the form of a non‐
processed carbon source in the cytoplasm, makes the difference, allowing the perpetuation of 
the strain. For this reason, the number of visible black dots tends to decrease after inoculation 
when compared with a finished culture, as shown in the Figure 2.21. Morita et al. (2006) [161] 
reported the same behaviour. This initial burst is concluded by the metamorphosis into a 

                                                           
42 The ultrastructure of a microorganism can be defined as the close detail of a cell, with all visible organelles that 
can be seen by microscopy. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Box 2.5: Larsson’s triple‐layer structure model, evidence of “black spots” 

Many studies have suggested different molecular distribution structures of TG 

containing DHA and DPA based on computational models and crystals of this 

individual FA.  Most recently, Ashford et al. [162] suggested that TG 

accumulation in thraustochytrids might be following Larsson’s triple chain‐

length model for mixed TG. They propose that TG with PUFA n‐3 like DHA and 

possibly DPA n‐6 may be segregated into an interlocking, dark‐staining layer 

and that the saturated and less unsaturated FA chains may be segregated end‐

to‐end to form light‐staining layers. This type of arrangement may have been 

facilitated by the predominance of the long‐chain, highly unsaturated fatty 

acids DHA and DPA n‐6 in the sn‐2 position of TG. Thus, following Larsson’s 

triple chain‐length model for mixed TG, the suggested secondary structure of 

the TG in Schizochytrium sp. may be illustrated by the model presented in the 

figure at the right.  

This model was previously confirmed indirectly in milk samples, and now in 

thraustochytrids lipid bodies. The Triple‐layer structure may be the native 

conformation of triacylglycerols in the cells prior to freezing.   In order to show 

that this pattern is not an artefact of an electron microscopy sample 

preparation, Ashford et al. analysed oil‐body structure in other algal and algae‐

like microorganisms with a variety of FA profiles. The results show that only 

thraustochytrids from the microorganisms evaluated show oil bodies with black 

spots. When observed closely, as in the picture in the lower right, it shows this 

light – dark phenotype.  This interpretation is supported by two main 

statements: the thickness of the light and dark bands corresponds to known 

lengths of FA, and the fact that this pattern only appears when these lipid 

bodies contain either two fold PUFA relative to saturated FA, or viceversa. 
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zoosporangium stage, which is illustrated in Figure 2.22 a. and b. The zoosporangium stage is 
relatively short compared with the vegetative stage and with the unique purpose of gestating 
zoospores. The size of this zoosporangiums can be approximately 10 – 30 µm and there can be 
between 8 to 32 zoospores with an initial size of 2‐3 µm. This stage has a characteristic globular 
morphology that resembles a sphere containing many smaller spheres. In fact, after zoospores 
emerge from the zoosporangium, the remaining membrane will preserve the shape (Figure 2.18).  

Zoospores are very high energy consuming cells with an ovoid morphology and having 
extraordinary motility [126,163]. A. limacinum release 2 ‐ 5 µm biflagellate zoospores. A smooth 
flagellum (posterior flagellum), which is the main source of motility. On the other hand, the one 
that bears tripartite tubular hairs (anterior flagellum) leads the zoospores and changes the 
direction (Figure 2.20). In their natural environment, the zoospore stage with a speed of 160 µm/s 
[126] allows them to find new settlement areas with resources and cover the maximum. 
Otherwise, as vegetative cells, they can only move when carried by the stream. This high motility 
stage has a poor lipid content and expends very large amounts of energy, in their formation and 
activity. Considering that after the zoosporangium phase, 32 offspring cells are released from the 
original vegetative cell, the growth rate is very high. From a bioprocess standpoint, a high growth 
rate could potentially help in reaching greater productivity. In Chapters 3 and 4, the growth rate 
will be explained and a description will be given to show how this could benefit an industrial 
process.  

 

Figure 2.21 Oil immersion conforocal microscopy picture 
(1000x) from a culture of A. limacinum. The organelles like 
the one tagged with an arrow, are black dots. 

Figure 2.20 a. and b. Zoomed (1000x) confocal microscopy picture of an A. limacinum zoospore. b. 
Negative image of a, that allows a better view of flagellums. c. Zoospore image from Yokoyama et al. 
[127]. 
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In a batch reactor, A. limacinum grow without any competing population as they do in nature 
rich environment with homogeneous agitation. However, having no means to identify a well 
agitated environment (obviously) they spontaneously generate zoospores to cover the maximum 
area of nutrition. Interestingly, in a bioreactor there is only one stage of zoospore. Shortly after 
the first zoospores are released and start becoming small growing vegetative cells, biomass 
concentration increases dramatically. This high concentration of cells may be inhibiting a new 
zoospore stage. As a result, cells remain in a vegetative stage only proliferating with bipartition 
or in a proliferative stage (described below). During this period, the cells tend to accumulate FA 
grouped in TG that are stored in the black dots or dense bodies (see Box 2.5). This is interesting 
because bipartition processes are carried out symmetrically, resulting in the formation of the 
stages called the diad and the tetrad and in some cases triads [125], as shown in Figure 2.24. 

The bipartition process does not prevent the accumulation of TG inside the black dots. The 
accumulation is supposed to be triggered by a low concentration of a carbon source, specific 
nutrients in the medium and/or other environmental parameters (fully investigated in Chapters 
3 and 4). Accumulating TG is a common way to store energy in eukaryotic cells. For A. limacinum, 

Figure 2.22 Confocal microscopy picture (400x) of A. limacinum 
zoosporangiums of a 12 h culture. a. Shows full sporangiums b. 
Shows some of the sporangiums realesing zoospores.  

 

a b 

Figure 2.23 Frame of a video recorded by a confocal 
microscope (100x) of zoospores moving around the plane. The 
darkest sections of the image are grouped vegetative cells. The 
full video can be found in the supplementary CD.  

Figure 2.24 Confocal microscopy picture (400x) of A. 
limacinum vegetative cells with a high content of black dots. 
Cells present symmetrical bipartition with clusters of 2, 3 or 4 
cells. The black arrow shows a tetrad configuration while the 
white arrow tags a triad.  
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this guarantees a long term source of energy, but what makes this strain special is the high 
amount of DHA accumulated, as TG moieties. Therefore, monitoring the DHA yield gives an idea 
of TG accumulation. Figure 2.25 shows the evolution of DHA yield between culture time and the 
evidence and accumulation of TG from the middle to the end. On the other hand, comparing this 
with the specific growth rate provides more data about lipids accumulation in each stage.  

During the initial hours of A. limacinum cultivation, the growth rate value dramatically increases 
after 15 hours. This peak corresponds to the zoospore release (see Figure 2.25). Comparing DHA 
values of the same time lapse shows the lack of lipids during zoospore release. The growth rate 
then drops drastically when the zoospores become vegetative cells. In this situation, the DHA 
values start to increase lineally as the growth rate remains constant between 0.04 and 0.05 h‐1. 
After 40 to 50 hours, the DHA yield stabilizes whereas the growth rate was reduced. During the 
last period there is slight growth rate fluctuation. This could be attributed to either minor carbon 
sources from complex ingredients of the media, or some of the minority A. limacinum life stages. 
These special life stages will be explained in the following section. Furthermore, the Figure 2.25 
profile indicates that the best moment for cell harvesting is when the cells are at a vegetative 
stage with sizes of 10‐20 µm. This will ensure that the maximum amount of DHA can be 
accumulated.  

While in batch mode there is a zoospore stage in a continuous reactor A. limacinum only grows 
with successive bipartition or by releasing a small copy of the cell (as shown in Figure 2.27). In a 
continuous reactor, only vegetative cells appear, thus dramatically reducing the growth rate 
(extensively discussed in Chapter 4).  

Figure 2.25 Plot of the evolution of the specific growth rate (µg) of A. limacinum and its DHA content, 
over time. DHA content is expressed as a yield of DHA g per every g of biomass (Y p/x).  
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2.2.3.3 Minority cell stages 

There are two life stages that may appear during the end of a batch culture. When the carbon 
source is completely and long since depleted, A. limacinum generates the amoeboid cells. It is 
not clear if the amoeboid cells appear as a low energy alternative to a zoospore due to its low 
motility, or as a way of degrading the remains of other cells in order to survive. In fact, it has been 
reported that some thraustochytrid species present bacterivory activity (phagocytic) [164,165]. 
Until now, only Thraustochytrium aureum and Aurantiochytrium mangrovei43 have been 
unambiguously shown to phagocitate bacteria. This phagocytic activity might be an evidence of 
its capacity to degrade the cell remains of their own strain, or of a desperate search for nutrients. 

Figure 2.26 shows three pictures of amoeboid cells with different shapes.  

There are a few more stages of the A. limacinum life cycle that are worth mentioning. These have 
been detected during microscope observations and have also been reported for other 
thraustochytrids [110,127,163]. When the carbon source is scarcer, the cell generally behaves as 
a vegetative cell storing TG, but in some cases they can become semiproliferative cells. This 
occurs in a cell that remains in the vegetative cell stage while releasing either a small number of 
zoospores or just smaller cells Figure 2.27. These smaller cells may be converted into amoeboid 
cells as reported in the bibliography [163,164].  

2.2.4 A. limacinum as a source of other added-value metabolites 

As outlined in section 2.1.5 of this dissertation, A. limacinum is capable of producing astaxanthin and/or 

squalene, while releasing oxalic acid and pyruvic acid. All of these are added–value biomolecules which 

could be produced in parallel with DHA production, making the process even more cost effective. In the 

following section, preliminary investigations about these metabolites are detailed. 

 

Squalene 

                                                           
43 Formerly (until 2007) Schizochytrium mangrovei 

Figure 2.26 Three zoomed A. limacinum pictures of three amoeboid cells without 
size calibration. The approximate longitudinal size is about 20 µm. The colour 
difference is caused by the difference in light and image processing parameters, 
when the pictures were taken.  

Figure 2.27 Pictures a. and b. show two vegetative cells that are 
releasing small cells. Pictures c. and d. show two vegetative cells 
that are releasing what looks like smaller zoospores. Bars a. and b. 
= 15 µm c. and d. 10 µm 
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Squalene (2,6,10,15,19,23‐hexamethyltetracosa‐2,6,10,14,18,22‐hexaene), is a dehydrotriterpenic 

hydrocarbon (C30H50) with six double bonds. It is typically marketed as shark liver oil. In addition to its 

uses in cosmetics and pharmaceuticals (additive in some vaccines), squalene is also used as a health 

supplement for cancer and heart health [119,142,166]. Though they look promising, the benefits of 

squalene have yet to stand the test of time and further scientific testing. Squalene is a large molecule that 

cannot be synthetized chemically and is generally extracted from shark liver. Figure 2.28 shows the 

production of DHA and squalene from A. limacinum in a batch culture. It clearly shows that A. limacinum 

has a great potential for producing squalene in a bioreactor. Interestingly, squalene is only produced 

during the initial stages of growth. Peak production appears after 24 hours of culture. After 48 hours of 

growth, the squalene content drops radically, maintaining a constant reduction during the following 

hours. The time recorded might indicate that after zoospore release (which generally occurs after 24 hours 

in a batch reactor), squalene is consumed to produce other molecules, because squalene is a known 

precursor of many other biomolecules. Therefore, during the vegetative stage squalene content is scarce.  

From the thraustochytrids collection of IQS, A. mangrovei stands out by producing 50% more squalene 

than any other according to literature [118,119,142,167–169]. Table 2.17 shows the production of A. 
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Figure 2.28 Evolution of DHA and squalene content in an A. limacinum during a bioreactor 
culture. Data obtained from a batch bioreactor with 10 g/L of glycerol. Data from C. Carnicé 
Master Thesis 

A. limacinum 0.55 This study

A. mangrovei 1.09 This study

A. mangrovei 0.16 Jiang et al. [43]

A. mangrovei 0.38 Fen et al. [44]

Strain
Squalene     

(mg / g biomass)
Reference

Table 2.17 Comparison of the squalene production of A. limacinum and A. mangrovei from 
this thesis and two other literary works.   
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limacinum and A. mangrovei using a medium with improved nitrogen sources (see Chapter 3 for more 

information). As can be seen, both cultures produce more squalene, especially A. mangrovei. 

Organic acids 

As can be seen in the chromatograms shown in Figure 2.29 (RID signal), thraustochytrids can 
release Oxalic and Pyruvic acid during growth. Therefore, a contaminant‐free pyruvic acid 
production could be achieved with thraustochytrids. It is worth mentioning that thraustochytrids 
only secrete significant amounts of organic acids when they are grown in continuously operating 
cultures (as seen in this thesis). The production profile changes depending on the substrate 
concentration maintained in the reactor, as shown in Figure 2.29.  

Astaxanthin 

Astaxanthin is a carotenoid pigment (3,3’‐dihydroxy‐β, β’‐carotene‐4,4’‐dione). It is added to 

food products and use as a colorant for cultured fish, poultry and shrimp. It also acts as a 

Figure 2.29 Chromatograms showing the production of two organic acids when growing in continuous 
mode. Each sample chromatogram shows the profile where glycerol concentrations drop due to A. 
limacinum growth. Below the samples, standard chromatograms are shown. 
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scavenger of free oxygen radicals which damage DNA and oxidizes proteins [117,170]. Nowadays, 

Haematococcus pluvialis is the main source of this molecule.  However, it has been reported that 

thraustochytrids can produce astaxhantin as well. Only Yokoyama et al. [171] mentioned  that A. 

limacinum can produce  this pigment. This has been shown in the present thesis.   

Aurantiochytrium limacinum starts to produce astaxanthin after 20 hours of cultivation. As well 

as DHA, astaxanthin production can be enhanced under specific conditions (explained in chapter 

3 and 4). For astaxanthin stimulation a high concentration of monosodium glutamate (5‐10 g/L), 

a low N/C ratio (0.5) and the addition of FeSO4 (0.8‐1 g/L) into the media. Nuria Abajo Lima work 

(Master thesis, Bioengineering department, IQS) contains detailed information about the 

parameters investigation on specific stimulation of astaxanthin. 
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2.3 Chapter achievements 
 

In summary, Chapter 2 has presented a great deal of information about A. limacinum and about 

the analytical techniques required to perform a DHA producing bioprocess development.  

 

During this chapter, different analytical methodologies have been investigated in order to find 

the fastest method, while being able to process several samples at the same time. These 

methodologies have two main goals; to monitor glycerol consumption and to facilitate DHA 

quantification in thraustochytrids bioreactors. 

The DotBlot assay was clearly the fastest method to quantify glycerol in fermentation samples. 

Moreover, it is the cheapest method that also ensures proper precision and accuracy. It enables 

the glycerol concentration determination in approximately a minute. The cost of the DotBlot 

assay is low compared to HPLC and enzymatic kits. In addition, a high number of replicas can be 

processed at the same time using the DotBlot, due to the low volume needed for this assay (only 

2 µL per replica).  The method can also be applied to other types of microbial cultures that use 

glycerol as carbon source. In screening as well as in process development, a relatively large 

number of cultures take place simultaneously. The DotBlot assay allows the simultaneous 

quantification of glycerol from the different cultures. HPLC‐RID methodology is accurate and 

precise, but it is slower and requires a higher investment in equipment. The kits are faster than 

HPLC methods and presented the lowest LOD and LOQ of the three methods compared. 

 

FA, PUFA and DHA determination and this quantification method has been developed, and 

validated. FA and PUFA analysis method includes the sample preparation and the HRGC‐FID 

analysis. Sample preparation methodology can extract and process 100% of the FA content of 

the samples, as validated using three different palmitic standards. The DHA quantification 

method has been validated allowing an unmistakable quantification during thraustochytrid 

cultures or any similar microorganism. This can be applied to every sample of the bioprocess 

developed.  

The basic tools for the thraustochytrids bioprocess development in order to produce DHA have 

been determined. Thraustochytrids needs a marine medium and grow slower than major 

bacteria. It has been shown, using A. limacinum as a model, that thraustochytrids have a complex 

life cycle during batch growth. Between different life stages, zoospores revealed the highest 

growth rate while the vegetative cell stage appears to contain the highest amount of DHA. The 

latter feature is especially important for the bioprocess development, because it defines the best 

harvesting time to maximize DHA production.  

 

All the information presented in chapter 2 will act as a toolbox that can be used to introduce the 

medium optimization (Chapter 3), culture strategies investigation (Chapter 4) and the 

bioseparation of DHA and TGs containing DHA (Chapter 5). 
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Chapter 3: DHA prolific production & cost effective medium optimization 
Formulation of a medium to assess large scale viability 
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3.1 Introduction 
The next step after analytical methodologies development and A. limacinum characterization was the 

investigation of growth media. Some recent studies, already investigated media compositions for different 

thraustochytrids including A. limacinum SR2144. However, the formulation was still incomplete and 

showed some contradictions between different papers. Every reported media has not considered the 

implications of large scale production, where some medium components are not easy to apply. Apart from 

a few studies, no research work has used an experimental design procedure to investigate every factor. 

When working with black boxes like thraustochytrids (relatively new in bioprocess investigation), it is very 

important to use statistically focused experimental designs.  

Every medium element from bibliography have been considered in this chapter. Moreover, the 

development has focused on the possibility to apply the medium in a large scale production. The medium 

was developed by monitoring the values of biomass production, cost of every medium version, the 

scalability of each one of the components tested, and most importantly the production of DHA. This 

chapter covers the materials required for the preparation of artificial sea water, the main recipes of stock 

solutions of trace elements and some complex ingredients. Methods and precautions that are required in 

its preparation were covered as well. The formulation of a medium for a marine microorganism is a very 

old science with many difficulties still present nowadays.  

3.1.1 Artificial sea water history 
The culture of marine microorganisms, especially autotrophic and heterotrophic eukaryote 

microorganism, has presented many challenges since their discovery. In 1850 Ferdinand Cohn, a 

Germanborn scientist working in Poland, was the first in keeping a unicellular marine microorganism 

(flagellate Haematocoocus) in his laboratory for some time. He called this procedure cultivation, and this 

work was the first published report of algal culture. However, Cohn did not isolate the marine 

microorganism from other organisms, he did not use a culture medium, and he did not establish an 

indefinitely maintained culture. It was just the beginning. The science and technology for algae and algae‐

like microorganism has been developed since the late 19th century facing different challenges. Culture 

media was the main source of difficulties. 

The initial bottle‐neck was the basic formulation of the media to enable algae growth. For many years, 

every artificial marine media had precipitation issues during sterilization. In order to avoid precipitations, 

media were sterilized for a few seconds to 120 ºC. This resulted in almost every culture until the mid‐20th 

century being bacterized. Even during the culture itself it was easily contaminated due to the inability to 

avoid any prokaryote population invading the cultures. For this reason, for many years algal culture 

investigation were bacterized45. Moreover, the presence of precipitates was a way to provide a non‐toxic 

reservoir of nutrients as well as providing very low reproducibility procedures.  

                                                           
44 This is the exact same strain used in the present thesis. 
45 Meaning that undetermined bacteria were always present during algal cultures.  
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The first report of pure axenic46 cultures of algae stems from the Dutch microbiologist Beijerinck (1890). 

He adopted the bacteriological technique introduced by Robert Koch, 10 years earlier, and mixed the 

sampled water, or the medium, with gelatin. Beijerinck was the first to isolate free‐living Chlorella sp. and 

Scenedesmus sp. in allegedly bacteria‐free cultures. He also successfully isolated symbiotic green algae, 

shortly after Pierre Miquel (1890) established the bases of artificial seawater [172]. He was the first to 

isolate and perform axenic cultures of Diatoms. During his work, he observed that the waters of lakes, 

ponds and seas could not support laboratory continued growth of algae. Natural waters had to be 

enriched by the addition of some mineral salts that he compounded in the famous solutions A and B [173] 

Figure 3.30. Both solutions were used to create the first artificial seawater ever described while avoiding 

precipitation problems. Solution A could be sterilized by heat and the B by filtration, putting both together 

after the process to create the final medium. Twenty years later solution A was replaced by sea water and 

the new formula of Allen and Nelson (1910).  

Allen and Nelson [174] found that using natural sea water with KNO3 (20 g/L) was enough since sea water 

brings other minor salts. Solution B has been used for several years with minor changes getting other 

novel axenic cultures [173]. Allen and Nelson started the first mass cultures (somehow a scale up to the 

large scale of their epoch) attempts, encountering new problems. In the first place, the light limitations in 

larger vessels when growing with photo‐autotrophic microorganisms and, that it was not possible to use 

sea water due to the amount of pollutants.  

In 1912 Ernst G.  Pringsheim [175] proposed the use of distilled water from condensers and he also started 

to use soil extracts, obtaining better growths. Shortly after Foyn (1934) [172] formulated the Erd‐Schreiber 

medium which was a combination of Schreiber’s (1927) [172] mineral sea water enrichment and the soil 

                                                           
46 Axenic describes the state of a culture in which only a single species, variety, or strain of organism is present and 
entirely free of all other contaminating organisms. 

Figure 3.30 Solutions formulated by Pierre Miquel to enrich simple water culture to harbour algae life. 
The table comes from a 100 years old paper about marine microorganism cultivation. 
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extract from Pingersheim. It was a real step forward. Many 

algal strains were able to grow in this medium and even 

new strains (never reported) were detected. Moreover, by 

this time there appeared the concept of aged water (Box 

3.6) providing a new source of sterile water, as it was 

believed. Probably, what happened is that bacterial 

activity replenished the water with products of their 

metabolism and lysis, some of which may be growth 

factors. This kind of water is no longer used nowadays. 

Some years after, it was established that a few milliliters of natural sea water were needed to guarantee 

a proper algal growth. Any composition tested was not generating the same growth as when a minimum 

volume of natural sea water was added. Several simple experiments pointed to an organic substance as 

the cause of greater growth. When using a diluted water extract of a microalgae for the growth of another, 

it grew significantly more than when the culture was prepared by using the ashes of the same extract. 

This indicated that some organic molecules were contributing significantly to the growth. After this new 

current in the media definition, Allen and Nelson suggested that organic micronutrients similar to the 

vitamins where always needed, especially for eukaryotic microorganisms. Specifically Allen [174,176] 

noticed that the differences in productivity in coastal and oceanic waters may be due to the auxotrophy 

of algae and their need of organic molecules, micronutrients or oligonutrients. He was idiomatic and set 

the beginning of the complex nutrients incorporation, in many modern media. As will be seen in this 

chapter, nowadays yeast extract and peptone (or triptone) are essential complex ingredients, especially 

for thraustochytrids.  

During 1950s many laboratories around the world joined in the investigation of algal and algal‐like 

microorganisms, offering works on different salt and metal compositions. Helen Vishniac (1953) [177] 

developed the first medium formulation oriented to Labyrinthula47 (see chapter 1) growth. Interestingly, 

this resulted in a good all‐purpose medium for several marine fungi. The next significant step was set by 

L. Provasoli and his colleagues (1957) [173] who were developing artificial culture media for about 40 

years and performed the first algal culture using antibiotic. Prior to these experiments, they had 

performed many experiments on vitamin requirements and most importantly introduced the use of 

Ethylenediaminetetraacetic acid (EDTA) as a metabolically inert chelator, to replace organic chelators such 

as citrate. EDTA permitted the development of both enriched artificial media and enriched natural 

seawater media that were more reproducible than those depending on additions of soil extract.  

Over the next 20 years Starr, a North American investigator, started to establish a major culture collection 

of algae at Indiana University, which was then transferred to Texas University at Austin. The collection 

was named as the UTEX culture collection of algae.  Then Starr and Zeikus’ (1993) [178] published the 

content of the collection which contained 2.300 strains of 200 different genera. Data published contained 

information about every strain and their requirements in terms of salts and metal traces. Starr and Zeikus 

work has been used as a starting point for every marine medium or enriched artificial seawater formulated 

in recent years, including the work presented here.  

                                                           
47 Labyrinthula belongs to the brother linage of thraustochytrids, the Labyrinthulids. See chapter 1 for more 
information. 

 Box 3.6. Aged sea water 

The aged sea water that Barker and 

Sweeney (1935) porposed is ordinary sea 

water which has stood in large glass bottles 

in the dark for months or years. The authors 

believe that during this period a complete 

mineralization occurs as a result of bacterial 

activity.  
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3.1.2 Marine culture media 
Natural sea water is a complex medium containing more than 50 known elements and a large and variable 

number of organic compounds. For any culture of marine microorganisms the use of natural sea water is 

acceptable, but it contains many other contaminants which have to be avoided, and is not an option. 

Without the addition of further nutrients and trace metals, the yield would not be suitable for an industrial 

production process. Even by enriching the natural sea water, the variations of the water composition 

throughout the seasons and even the years would be hardly reproducible. 

For these many reasons, this project worked with a completely artificial sea water enriched medium. In 

modern marine culture media investigation, the main concern is making a complete autoclavable medium 

without precipitation. This lead to the following extensive modifications in the formula:  

 Addition of synthetic metal chelators such as EDTA or nitriliotriacetic acid (NTA) to decrease metal 

precipitation. 

 Addition of a pH buffer such as Tris(hydroxymethyl)aminomethane (TRIS) or glycylglycine with a 

range of 7 to 8.5, because the amount of precipitate increases as the pH rises during autoclaving.  

 Reduction in salinity, thereby reducing the amount of salts available for precipitation. 

 Replacement of Mg2+ and Ca2+ with more soluble univalent salts. 

 Replacement of inorganic phosphorous with an organic source to avoid the precipitation 

Ca3(PO4)2.  

 Introduction of weak solubilizers, which are acids having highly soluble salts with calcium, such as 

citric acid. 

The general modifications detailed above are included in all the media reported in bibliography (for 

thraustochytrids or not). Nevertheless, as mentioned in the early introduction, some of these 

modifications are not viable for a large scale process (e.g. TRIS as buffer), or even not required for the 

medium explained in this chapter. In the following subsections the basic elements for a proper medium 

formulation are explained.  

3.1.2.1 Macronutrients or major nutrient requirements 
Besides carbon, macronutrients are generally considered to be nitrogen, phosphorus and for some 

autotrophic microalgae, silicon. Therefore, thraustochytrids only need to collect nitrogen and phosphorus 

from the medium. These macronutrients are generally required in a ratio of 16:1 of nitrogen:phosphorus 

(N/P), when the nitrogen source is inorganic (Redfield ratio). Working with organic nitrogen makes ratio 

identification impossible. On the other hand, carbon:nitrogen (C/N) ratios are rarely considered. This is a 

huge mistake when working with thraustochytrids (accumulate very large amounts of long carbon chains 

in fatty acid form). The present work has primarily focused on C/N ratio. The average C/N ratio of 

phytoplankton is 6.7:1 and this is expected to be greater for thraustochytrids.  

Nitrate and phosphate are normally added as NaNO3 and NaHPO4 · H20 which represent the most common 

source when formulating marine media. Ammonium added as NH4Cl is a very popular alternative nitrogen 

source or even added together with nitrate. Ammonium at concentrations between 100 to 250 µM, may 

be inhibitory to some coastal species. Thraustochytrids are most abundant in coastal areas, therefore, this 

must be considered. In some special cases, urea is another form of nitrogen, but is less used because it 

gets decomposed when heated. Inorganic nitrogen sources need to be reduced to the level of NH2 for 
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their incorporation into protein molecules. Thus, the less reductant form is available for energy 

generation. 

When organic nitrogen sources like amino acids are included in the culture media, they may serve as a 

pre‐fabricated carbon skeleton and give high apparent growth yield on glucose or glycerol. Then the 

remaining amino acids can be catabolized as a regular energy source. Even if the final yield is similar, using 

an organic nitrogen source would make a culture show a higher growth rate. This makes organic nitrogen 

sources very attractive for an industrial biotechnological process. Specially knowing that the bioproduct 

or the biopharmaceutical product depend on the enzymatic machinery of the microorganism. Complex 

substrates are often used in bioprocess. These are usually by‐products of the food industry, such as: 

molasses from sugar refinery, malt extract from brewery, starchy waste from starch manufacturing, yeast 

extract from autolysis of baker’s or brewery yeasts at 50‐55 ºC, peptones as a product of acid or enzymatic 

hydrolysis of animal or plant residues and soy meal from soybean oil factory.  

Those highlighted in bold are the main organic nitrogen complex sources widely used in many processes. 

The others are commonly considered carbon sources and can be used to substitute crude and technical 

glycerol, for the process developed in this work. Many providers of medium ingredients offer standardized 

Table 3.19 Typical composition of yeast extract produced by 
autolysis. It can vary depending on the yeast and the extract 
preparation process [240]. 

Table 3.18 Typical composition of 
tryptone. It can vary depending on the 
source and hydrolysis process. [240] 
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products of yeast extract and peptone ensuring reproducibility, which is very important for a 

biotechnological industrial process. Yeast extract (Table 3.19) and especially peptone are present in many 

variations. The most used peptone in eukaryotes cultivation is called tryptone (Table 3.18), the 

assortment of peptides formed by the digestion of casein 48 by trypsin. It has specific distribution of 

peptides and amino acids that are more favourable for eukaryote microorganism. Another popular 

variation of peptone, called bacteriopeptone, offers a bacterial favorable distribution of amino acids.  

In general, yeast extract and tryptone are the most used complex substrates in biotechnology. The 

challenge is always to find the proper and most prolific C/N ratio considering growth rate, growth yield 

and product yield. In the results and discussion section of this chapter the importance, ratio and 

optimization of this nutrients, for DHA production, is discussed.  

The importance of the nitrogen sources is not different for thraustochytrids cultures [50,51]. It has been 

reported that between 14 to 20% of Aurantiochytrium cell weight is nitrogen [179]. Although nitrogen 

sources have been optimized individually [180], the C/N has hardly been investigated.  

3.1.2.2 Seawater salts 
Depending on where the seawater is collected, the salinity varies, especially within different seasons. For 

this reason, most marine microorganisms have evolved to be able to grow in a wide range of salinities.  

Knowing the isolation origin is important to establish a proper salinity medium. Most abundant ions in 

natural seawater are chloride and sodium which represent  55% and 31% of the total ion composition, 

respectively. Sulfate, calcium, potassium and magnesium are a step below in abundance totaling a 13.7%. 

This generally causes confusion between salinity and NaCl concentration.  

                                                           
48 Very common protein in milk.  

Figure 3.31 Proportion of salt to seawater (right) and chemical composition of sea 
salt (left). Diagram values are calculated as wt/wt. Originally created by Hannes 
Grobe (2007). 
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Depending on the buffer used49 it can generate solubility issues with minority ions. Nevertheless, a limiting 

amount of any of these ions would affect growth negatively.  Accordingly, the amount of every salt species 

has to be accurately selected for any specific microorganism.   

3.1.2.3 Trace metals 
Trace metals are essential for any cell type growth. Only needed at very low concentration, they can 

become toxic at high concentrations. Trace metals are prepared separately and in a highly concentrated 

stock solution (weighing of reasonable amounts). Typical trace metal stock solution may consist of 

chloride or sulphate salts of Zn, Co, Cu, Mn, and Ni.  These salts are generally kept in a solution containing 

a chelator such as EDTA. Fe is usually kept as a separate solution, and it should be chelated as well. Iron is 

either added as chloride or sulphate, as happens with the other metals. When working with artificial 

seawater, as is the case, boron should be added.  

Of all the trace metals, iron is the most important limiting nutrient in the ocean. This is the micronutrient 

required in greatest quantity by marine microorganisms. Together with other trace metals it has a role in 

the cell respiration process. Many enzymes involved in the whole respiration process require metal atoms 

to reach a stable conformation with the proper activity. It also has the most complex speciation50 

chemistry, which often can be difficult to quantify and control in culture experiments. For this reason, iron 

is one of the most investigated trace metals in microorganism cultivations.  

Iron forms insoluble hydrous ferric oxide precipitates that are unavailable to microorganisms. These ferric 

oxide precipitates absorb other essential metals and lower their availability. Due to these difficulties, 

providing an adequate and nontoxic supply of essential trace metals to marine microorganisms in a batch 

has presented a considerable challenge to scientists. Initially it was solved by adding soil extract, as 

explained before in section 3.1.1. Then many chelating or solubilizing agents have been added until the 

discovery of the EDTA potential.  

3.1.2.4 Ethylenediaminetetraacetic acid - EDTA 
Chelate: metal ratios 1.5:1 to 3:1 are commonly used. EDTA is the most common chelator and is usually 

purchased as the disodium salt Na2EDTA·2H2O which is very soluble in water. EDTA was first introduced 

as a replacement for soil extract in 1950 [181] and 7 years later was introduced as a metal buffering agent 

in seawater media. Nowadays it is essential for almost every medium whatever the cultured 

microorganism. Contrary to what is generally believed, EDTA + metal complexes are not directly available 

for the microorganism, but it creates an equilibrium between free metal ions and the complexes with it. 

This equilibrium phenomenon is represented by the Zn2+ shown below. 

EDTA reacts creating complexes with the ions present in the medium while maintaining an equilibrium 

between free ions and its complexes. The non‐chelated forms of the metal, including free ions and 

inorganic metal complexes such as ZnCl+ are available to microorganisms. As these are removed by the 

activity of the microorganism, they are readily replaced by dissociation of an equivalent concentration of 

the metal chelate (complex with EDTA). Therefore, EDTA acts as a metal ion buffer and regulates the 

                                                           
49 Buffers with  
50 Chemical speciation refers to the distribution of an element amongst chemical species in a system. 

Zn2+ + EDTA   ZnEDTA 
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availability of metal ions in culture, such as pH buffer regulates the availability of hydrogen ions. This 

buffering system solves both the limitation (due to low solubility) and the potential toxicity of metals.  

EDTA has been noted to inhibit the growth of some oceanic species, and could be substituted by 

Nitrilotriacetic acid (NTA) and citric acid. However, these are less effective than EDTA. 

3.1.2.5 Vitamins 
 After many historical investigations about vitamin requirements for marine microorganisms three of 

them stand out as the most important: cyanocobalamine (also known as vitamine B12), thiamine and 

biotin. Very few algae need all three vitamins.  The focus has never been put on these components when 

growing thraustochytrids as it has been in this chapter (more information see results section 3.2.5).  

3.1.2.6 pH buffers 
The proper functioning of biological systems requires control of pH, since most metabolic processes are 

inactivated outside a certain range of hydrogen ion concentration. A buffer is a system containing either 

a weak acid and its salt or a weak base and its salt, which resists changes in pH upon addition of acid or 

base. Therefore, a proper industrial bioprocess needs a buffer guarantee A. limacinum growth but at the 

lowest possible cost.   

Two common pH buffers are used to prevent or reduce precipitiation as well as to maintain the pH range 

desired. TRIS buffer is the most common. Loeblich [182] compared the growth of marine dinoflagellate in 

several buffers. Dinoflagellates are in the chromoalveolates super‐kingdom as thraustochytrids. In his 

work MOPS51, HEPES52, TRIS, glycylglycine and TAPS53 were used as buffers and concluded that TRIS and 

TAPS provided maximal growth with minimal pH change. However, this buffer would not offer a suitable 

economic performance in a large scale process. For this reason, in this thesis a new buffer has been 

selected, as explained in section 3.3.4. 

The buffer should not be able to permeate biological membranes, preventing concentration in the cell or 

organelles. Tris has a relatively high degree of fat solubility and may therefore permeate membranes. This 

also explains its toxicity for many mammalian cells in culture. On the other hand, the buffer should also 

not alter the ionic strength of the system as far as possible. The physiological ionic strength is between 

100 – 200 mM KCl or NaCl. This can be very important, because the ionic strength of the solution is a 

measure of the ionic milieu, which may also affect the catalytic activity of an enzyme. At a pH of 7.5, for 

example, phosphate buffers add about 7x more ions to the medium than zwitterionic Tricine buffers at 

the same pH (Good & Izawa 1972). 

3.1.3 Carbon sources and oxygen supply 
In photosynthetic cultivations the carbon required for biomass production is generally pumped into the 

media as CO2. Nevertheless, a heterotrophic microorganism needs a source of carbon dissolved in the 

media available to be catalyzed. The carbon substrate in the medium is the main energy source for an 

heterotrophic microorganism. The energy content of different substrates varies. A sample of different 

carbon sources energy content is shown in Table 3.20. Organic acids like oxalic acid have the lowest energy 

content with 2.4 Kcal/g carbon among the substrates listed in Table 3.20, and the maximum growth yield 

                                                           
51 3‐(N‐morpholino)propanesulfonic acid 
52 4‐(2‐hydroxyethyl)‐1‐piperazineethanesulfonic acid 
53 N‐Tris(hydroxymethyl)methyl‐3‐aminopropanesulfonic acid 
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reported is the lowest as well (0.14 g biomass / g carbon). As the 

energetic content increases, so does the growth yield. In addition to a 

higher energy content, the substitution of a traditional carbon source, 

such as glucose by crude or technical54 glycerol, a less costly source has 

a positive impact on the economics of the bioprocess. Cost reduction on 

growth media with minimal undesired effects is crucial for a potential 

industrial implementation. In this scenario, crude glycerol as an 

industrial byproduct available in large amounts, seems an ideal match 

[183] (explained in chapter 1).  

The oxygen content and other culture parameters determine the 

pathways of which a carbon/energy substrate is metabolized to yield 

different amounts of biochemically available energy in the form of ATP55. 

For example, 30 ATP moles are generated from a mole of glucose via oxidative phosphorylation, but only 

1–3 moles of ATP are generated in anaerobic condition via the various pathways. This is not different for 

glycerol and other heterotrophic cultivations. Therefore, a well‐developed medium for thraustochytrids 

cultivation would only work as intended in the proper oxygen conditions. Actually, oxygen supply has 

other singular effects on thraustochytrids that are discussed in the next chapter.  

3.1.4 Medium formulation and optimization workflow 
Once the basic requirements are defined the formulation of the medium can be started. Starting with the 

carbon source, the main energy source, glycerol and crude glycerol performance has to be compared with 

glucose cultivations. In this chapter a set of different bioreactors comparing these three carbon sources 

was reported and explained. These cultivations have been carried out with literature medium 

formulations as the starting point. The next step was the nitrogen source requirement characterization 

and the determination of the perfect C/N ratio. To define this ratio, both, DHA, biomass production and 

economic viability was considered. To do so, Artificial Neural Network (Appendix A) a family of statistical 

learning models allowing an exhaustive investigation over the desired factors have been used. Nitrogen 

source candidates were NaNO3 and NH3HCl as inorganic sources, whereas yeast extract and tryptone 

were the organic candidates.  Then the research focused on the buffer (TRIS) and salts (NaCl, MgSO4, 

CaCl2, KCl and CH3COONa). Vitamins requirements have been investigated as well (Vitamin B12).  

The work presented here investigated the full composition considering its viability to be applied in an 

industrial process. The objective has been the formulation of a cost effective medium allowing 

thraustochytrids to offer the maximum productivity of DHA. 

 

 

 

                                                           
54 Partially purified. 
55 Adenosine triphosphate (ATP) is a nucleoside triphosphate used in cells as a coenzyme often called the 
"molecular unit of currency" of intracellular energy transfer. 

Table 3.20 Energy content of 
different carbon sources 
[240]. 
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3.2 Results and discussion 
The starting thraustochytrids medium was generated based on the work of Starr and Zeikus (1993) [178].  

As explained in the chapter introduction, Starr and Zeikus accumulated, over the years, several marine 

species (not only thraustochytrids) in their collection as well as the information related with it, such as 

medium composition and conservation / cultivation 

techniques. Other groups around the world started their 

own medium investigation following Starr and Zeikus work 

indications. The increasing interest in thraustochytrids as 

prolific producers of PUFA has generated many works 

referred to their medium. The standard medium 

elaborated based on bibliography is listed in Table 3.21. 

Moreover, this medium can set the basics for other 

thraustochytrids medium, ensuring significant 

productivities, as will be discussed. The optimization 

presented here investigated different carbon sources, 

nitrogen sources and their concentration, the salts 

composition, the buffer, vitamin requirements and 

investigated some of the trace elements porposed by Starr 

& Zeikus.  

This section first visits the capacity of A. limacinum to grow 

in a bioreactor using glycerol and crude glycerol as carbon 

source, with a standard medium, compared to glucose. The 

data obtained from these experiments have been used to 

define basic kinetic parameters of the microorganism, 

which will then be compared with the kinetics obtained 

with batch cultures using the optimized medium described 

in the following section, starting with the carbon source. 

3.2.1 Carbon sources and A. limacinum kinetic 

characterization in Batch cultures.  
With the aim of exploring the industrial potential of thraustochytrids strains as heterotrophic microalgae 
for the enhanced production of PUFA (mainly DHA), the project was initiated by evaluating the 
performance of these microorganisms in bioreactors. A comparison using the three main carbon sources 
in parallel to report their growth kinetic parameters in fermenters has not been published. The first step 
was to determine the relationship between biomass dry cell weight (DCW) and OD (600 nm). Figure 3.32 
illustrates this relationship, and allows the interpolation of absorbance values to dry weight using pure 
glycerol. The linear relationship was y = 1.55x  0.47, with a posi�ve correlation of 0.92. Cultivations using 
glucose and crude glycerol showed identical values for the absorbance‐dry weight curve. A full 
characterization in terms of typical growth kinetics and DHA production was then performed using each 
carbon source. With the aim of exploring the industrial potential of thraustochytrid strains as 
heterotrophic microalgae for the enhanced production of PUFA (mainly DHA), the project started 
evaluating the performance of the microorganism in bioreactors using simple literature medium and three 
carbon sources. To the best of the author knowledge a comparison using in parallel the three main carbon 
sources reporting their growth kinetic parameters in fermenters has not been published. 

Component Concentration

Tris 1 g/L

CH3COONH4 1 g/L

NaCl 18 g/L

MgSO4·7H2O 2.5 g/L

CaCl2 0.3 g/L

KCl 0.6 g/L

NaNO3 1 g/L

NH4Cl 0.03 g/L

KH2PO4 0.05 g/L

Yeast Extract 1 g/L

Tryptone 1 g/L

Vitamina B12 0.15 µg/L

Carbon source
Between 10 g/L and 

100 g/L

Na2EDTA·2H2O 0.20 mM

H3BO3 1 mM

MnSO4·H2O 0.097 mM

ZnSO4·7H2O 7 µM

CoCl2·6H2O 2 µm

FeSO4·7H2O 0.83 mg/L

FeCl3·6H2O* 0.018 mM

Table 3.21 Starting medium composition. 
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The first characterization step was the relationship biomass dry cell weight (DCW) and OD (600nm). Figure 

3.32 illustrates such a relationship allowing the interpolation of absorbance values to dry weight using 

pure glycerol. The linear relationship is y = 1.55x – 0.47, having a positive nearly perfect correlation of 

0.92. Cultivations using glucose and crude glycerol showed identical values for absorbance‐dry weight 

curve (data not shown).  

 

3.2.1.1 Growth rate 
The complex life cycle of A. limacinum can be simplified classifying it into a zoospore phase and a 

vegetative phase. The strain used in the present work, can release up to 32 zoospores. Figure 3.33 shows 

a sporangium cell which is about to release zoospores. In A. limacinum the release of zoospores generates 

a peak in the growth rate, probably defining µmax values in batch cultures. Cultures using glucose (0.21 ± 

0.02 h‐1) as carbon source showed higher maximum growth rates than glycerol (0.18 ± 0.01 h‐1) and crude 

glycerol (0.19 ± 0.02 h‐1). On the other hand, when A. limacinum is growing in a vegetative phase only 

performing some bipartitions, the growth rate is much slower. Net growth rate were slightly higher in 

glycerol cultures (0.12 ± 0.01 h‐1) compared to glucose (0.10 ± 0.002 h‐1) and crude glycerol (0.10 ± 0.01 h‐

1). Thus, indicating that growth in glycerol and crude glycerol have a more constant growth rate, as 

observable in Figure 3.34. The presence of impurities (at the concentration used in crude glycerol cultures) 

was not inhibiting the growth.  

Figure 3.32 Dry cell weight vs. OD curve. The linear relationship was used to determine dry cell weight of 
the fermentations performed in the present work. 

Figure 3.33 Image of A. limacinum sporangium full of zoospores ready 
to be released. 
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3.2.1.2 Growth yield 
In terms of growth yield (Yx/s), pure glycerol has the lower values. Glucose and crude glycerol have 

rendered similar yields, the latter having the highest value of the carbon sources assayed. Interestingly, it 

has increased the final yield compared to the cultures with glucose and glycerol as carbon source. Figure 

3.35 shows the growth yield graphical calculation of crude glycerol cultivations, showing a lower value 

(0.79 g/g) than those calculated with batch cultivations (Table 3.22, next page). The slope of the 

calibration curve (Figure 3.35) reveals the amount of biomass exclusively generated by the crude glycerol. 

The difference indicates that other carbon sources in the crude glycerol and the complex ingredients are 

contributing to biomass formation. In addition, some oligoelements coming from vegetal feedstock of 

biodiesel production could be contributing to the growth. In the bibliography, the disparity of values 

reported is quite high, ranging from low values as 0.2‐0.3 g DCW/g carbon source [49,52,93,131], to higher 

values 0.6‐0.8 g DCW/g carbon source [16,56,184]. Thus an equal performance comparison of different 

carbon sources should contribute to a global understanding of the process. Nitrogen source has an 

important role in growth and a lack of nitrogen can reduce the carbon source yield. Organic nitrogen 

Figure 3.34 Cultivation of A. limacinum using 10 g/l of carbon source: glucose (), pure glycerol () and 
crude glycerol (). 

y = 0.7855x
R² = 0.97

0

5

10

15

20

0 5 10 15 20 25

D
C

W
 (

g/
L

)

Initial substrate concentration (g/L)

Figure 3.35 Linear relationship between final DCW and initial substrate concentration. The slope reveals 
the “real” biomass / glycerol yield without other energy sources from complex ingredients (Yeast extract 
and tryptone).  
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sources are preferred in thraustochytrids cultivations [93,185]. Yx/s obtained in the present study are 

comparable to the highest yields reported in bibliography.  

3.2.1.3 Saturation constant (Ks) 
The saturation constant is (typically) the hardest growth parameter to characterize in batch reactors, 

presenting more inaccuracies. Ks shows the affinity of the strain to a specific substrate and is expressed 

as g of substrate/L. In this study, the cultivation of a eukaryotic species with a complex life cycle added 

more difficulties. As seen in Table 3.22, A. limacinum has higher affinity, 2.48 ± 0.5 gS/L towards glucose 

compared to pure 5.03 ± 1.9 gS/L and crude glycerol 8.07 ± 1.1 g S/L. A. limacinum shows a lower affinity 

for crude glycerol compared to pure glycerol and glucose. This might be a consequence of interference 

from other carbon sources, oligoelements and contaminants introduced with the crude glycerol. Growth 

rates and yields are not affected by different values of KS. The KS is an important parameter when 

designing continuous cultures, as it is in this study. However, the different cell cycles taking place in batch 

and continuous reactors have to be considered. Ks values could change drastically when calculated from 

a steady state of a chemostat, where only vegetative cells are present.  

3.2.1.4 DHA yield (YP/X) 
Finally, the DHA yield or YP/X refers to the amount of DHA per each gram of biomass, expressed as g DHA/g. 

The values obtained show a slight advantage when glycerol‐based fermentations are used. Crude and 

pure glycerol yielded 0.15 ± 0.02 g DHA / g. Glucose cultures yielded an average of 0.14 ± 0.02 g/g. DHA 

content was monitored during the cultivation (shown in Figure 3.36). In the conditions presented in this 

work, the DHA production was found to be linked to growth. The plot indicates that at the beginning, 

triglycerides are consumed to get extra energy for zoospore phase. When the microorganism changes 

back to the vegetative state, it accumulates lipids again accumulating DHA as well. As indicated in the 

bibliography, zoospores spend a high amount of energy [56,127]. The results reported here render a 

concentration of 1.24 g DHA/L using glucose, 1.23 g DHA/L pure glycerol, and 1.33 g DHA/L using crude 

glycerol. The results indicated that DHA production was not affected by the carbon source used.  

X (g/L) 8.83 ±0.15 8.21 ±0.17 8.86 ±0.11

Y X/S  (g/g) 0.84 ±0.04 0.74 ±0.04 0.85 ±0.1

µ max (h
-1

) 0.21 ±0.02 0.18 ±0.01 0.19 ±0.02

µ net (h
-1

) 0.10 ±0.002 0.12 ±0.01 0.10 ±0.01

K s  (g/L) 2.48 ±0.5 5.03 ±1.9 8.07 ±1.1

m s  (g/g·h) 0.03 ±0.001 0.06 ±0.01 0.07 ±0.01

Y P/X (g/g) 0.14 ±0.02 0.15 ±0.04 0.15 ±0.02

Glucose Glycerol Crude Glycerol

Table 3.22 Summary of the growth kinetics parameters using different carbon sources. 
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The current state of the art shows a remarkable variability in terms of DHA productivity, especially in 

glycerol cultures. Cultures using glucose reported yields of 0.23‐0.26 g DHA/g glucose [9,186,187]. 

Cultivation using pure and crude glycerol reported variable yields of DHA. The strain used, but especially 

the glycerol source and process parameters cause notable variations in the obtained yield. Optimized 

growth media, and fatty acids stimulation via oxygen deprivation and carbon to nitrogen ratio (C/N) also 

increase the final DHA yield. Jakobsen et al. obtained a high productivity of 90 mg DHA/l‐h using pure 

glycerol and stressing cells using nitrogen starvation [16]. Studies using glucose and batch reactor 

reported productivities ranging from 116 to 129 mg DHA l‐1 h‐1 [9,186,187]. Using pure glycerol 

productivities reported were from 38 to 90 mg DHA l‐1 h‐1 [16,49]. Crude glycerol references reported DHA 

productivities from 21 to 23 mg DHA l‐1 h‐1 [29,52,93]. Glucose‐based fermentations reporting superior 

productivities rely on higher initial substrate concentration, and so final higher cell concentration reached. 

Crude glycerol fermentations typically use lower initial amounts of glycerol, in order to avoid accumulation 

of toxic compounds. This leads to lower final cell concentration and lower productivities. The 

productivities obtained in the present study (with equal initial substrate concentration) are lower using 

glucose and pure glycerol, 55 mg DHA l‐1 h‐1, compared to crude glycerol, 60 mg DHA l‐1 h‐1 as reported in 

Abad and Turon 2015 [188].  

Therefore, it was confirmed that DHA production is affected by other parameters different from the used 

carbon source. An optimization of the growth media and operational parameters are supposed to still 

increase the productivity of this system. These parameters will be discussed in Chapter 4.  

3.2.2 Nitrogen source investigation – C/N ratio 
To the best knowledge of this work’s author, there are 92 (up to date) literature works talking about 

thraustochytrids cultivation and factors of the medium. Only 6 of these publications analyzed, in different 

ways, the medium composition for A. limacinum cultivation. Only a few have investigated nitrogen 

sources. Chi et al. (2007) [93] investigated three different nitrogen sources, CH3COONH4, NaNO3 and 

NH4Cl, based on Starr & Zeikus work. Huang et al. (2012) [189] reported the importance of the C/N ratio 

testing two yeast extract and tryptone combinations. Rosa et al. (2010) [9] tested three different C/N 

Figure 3.36 Evolution of DHA yield and biomass concentration over time during a batch reactor.  
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ratios increasing lipid productivity. Zhou et al. (2007) [190] tested different yeast extract, tryptone and 

corn steep liquor concentrations.  

Nitrogen sources demonstrated to have an important effect on microorganism growth as well as on lipid 

molecules accumulation. However, none of the literature works mentioned has ever performed a deep 

investigation. The effect of organic nitrogen and inorganic nitrogen sources over thraustochytrids growth 

has been compared in any of this publications. In this thesis it was decided to perform an exhaustive 

investigation of nitrogen requirements of A. limacinum. Four nitrogen sources were selected for different 

reasons. Ammonium acetate and sodium nitrate as inorganic nitrogen source, initially purposed in Starr 

& Zeikus [178] work whereas Chi et al. (2007) [93] suggested 1 g/L of ammonium acetate as optimum for 

A. limacinum growth. On the other hand, tryptone and yeast extract were selected as the sources of 

organic nitrogen. These organic complex mixtures also provide powerful oligo elements that might be 

very important for eukaryote growth. Especially yeast extract which contains growth factors, vitamins, 

etc.  

The investigation of these four nitrogen sources was performed sequentially using different Taguchi 

matrices. After every group of experiments, data was validated performing a bioreactor cultivation. In 

order to be able to compare the large number (100 experiments approximately) of experiments generated 

in this section, the growth was measured between 4 and 34 hours of culture. Every culture was carried 

out in 250 mL Erlenmeyer flask with a culture volume of 70 mL. Starting OD was set to 0.5 points for every 

culture56. Measurements of DHA were performed on samples collected after 34 hours of culture. The 

starting medium composition was as detailed in Table 3.21, section 3.2, with 8 g/L glycerol as carbon 

source.   

3.2.2.1 Nitrogen sources investigation through DoE 
Several DoE have been carried out using flask cultures to obtain enough data to train and check the 

artificial neural networks (Appendix E). Also, the significant effects of each of the nitrogen sources have 

been evaluated using ANOVA.  The following sections are divided by DoE indicated as Ni (where i 

corresponds to the number of the experiment) together with the response factor considered. Every DoE 

was analyzed by ANOVA. 

Design of experiments N1- Response: growth 

The project was initially seeking a reduction of organic nitrogen source concentration due to their higher 

cost. Therefore, only two levels of every factor (nitrogen substrate), yeast extract and tryptone were set 

at 0.6 and 1 g/L, whereas nitrate and ammonium were investigated between 1 to 3 g/L. The selected 

Taguchi matrix was a L16 (215) guiding every experiment variation.  Results are shown in Figure 3.37.  It is 

clear that nitrate has a null contribution to growth, whereas the other three factors have a significant 

influence. Level plots indicate the proper concentration from each factor. 

A.limacinum growth was reduced in the presence of higher ammonium concentrations whereas, the  

response is increased in the presence of higher concentrations of both tryptone and yeast extract. The 

interaction between both organic sources was positive and increases at higher levels. Ammonium was 

contributing positively at the lower concentration. This factor gives the highest response value when it is 

combined with yeast extract higher level (as indicated in the lower table of the Figure 3.37).  Results 

                                                           
56 The inoculum OD was calculated to determine the volume needed to start every culture at 0.5 OD points. 
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indicate nitrate was not affecting the growth in any level studied. Ammonium concentrations of 3g/L 

appear to be negatively affecting growth, while showing the highest response in the design when its 

concentration was above 1 g/L. These data are in concordance with those reported by Chi et al. (2007) 

organic nitrogen investigation [93].  

Ammonium and yeast extract revealed an important contribution on biomass growth. Tryptone showed 

a modest effect and nitrate did not enhance the growth in any studied situation. For this reason, the next 

DoE was designed with the following modifications: 

 Tryptone – Two levels, 0 and 0.25 g/L. Justification: tryptone and yeast extract have a similar role, 

and the following DoE wanted to elucidate if this can be avoided in the medium. 

 Nitrate – Four levels, 0, 2, 3 and 5 g/L. Justification: Increasing the concentration range might 

show if this nitrogen source could become important outside the ranges investigated before.  

Figure 3.37. Histogram on the top of the figure indicates the contribution of every factor to the final values. 
The three plots show the response of every level from every factor. The small tables in the bottom right of 
the figure indicates the effect of every level from the significant interactions indicated in the histogram. T 
stand for tryptone, N for nitrate, Y for yeast extract and A for ammonium. 
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 Yeast extract – Four levels, 0.1, 0.2, 0.6 and 1 g/L. Justification: Broadening the concentrations 

will show if this is essential.  

 Ammonium – Two levels, 1 and 3 g/L. Justification: This nitrogen source is fixed in order to 

investigate the others.  

Design of experiments N2 - Response: growth 

In order to allocate two levels with four factors and two more with two levels a L16(215) matrix was 

modified into a L16(29 x 42) using a multilevel formatting technique57. Results of the second DoE are shown 

in Figure 3.38. 

In the current frame of concentrations, yeast extract showed a massive contribution with a 95%. The 

effect increased compared to the previous experiment. According to the levels plot (Figure 3.38), there is 

room for improvement by increasing yeast extract concentration. Nitrate did not show any effect on A. 

limacinum growth despite the concentration increase. This time nor tryptone and ammonium generated 

any contribution. This indicates that the effect of yeast extract for the microorganism growth is very high 

and masks the other three factors. Thus, yeast extract might be the solution to simplify the medium 

                                                           
57 One of many techniques which allows transforming the levels of any column while maintaining the 
orthogonality. 

Figure 3.38 Results of the second nitrogen investigation (DoE) based on a L16 (29 x 42) OA. The plot above 
shows the contribution of every factor. The plot below shows level effects of yeast extract. T stand for 
tryptone, N for nitrate, Y for yeast extract and A for ammonium. 
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composition by only adding it in a higher concentration.  According to these results and with the aim of 

determining the effect provided by any of the nitrogen source without yeast extract, next DoE 

modifications are purposed as following: 

 Tryptone – Three levels, 1, 1.5 and 2 g/L. Justification: Investigate if tryptone might have powerful 

effects at higher concentrations. Just as happens with yeast extract. 

 Nitrate – Three levels, 4, 6, 8 g/L. Justification: Increase even more the concentration of this salt 

to determine if there could exist any effect on A. limacinum growth.  

 Yeast extract – 0 g/L. Justification: Avoid masking other factors in this experiment. 

 Ammonium – Set at 1 g/L. Justification: This concentration of ammonium was near its optimal 

effect and will allowed to discover if any other of the factors (besides yeast extract) can surpass 

its importance.  

Design of experiments N3 - Response: growth 

This experiment was carried out following a L9 (34) matrix which allows the investigation of two factors 

with three levels as well as their interaction. The results are shown in Figure 3.39. None of the factors are 

contributing individually. Only their interaction showed the main contribution to an increase of growth 

and observing the table (two factor level interaction) show that both factor’s maximum level generated 

the best result.  However, growth values are drastically lower than those showed in the previous 

experiments. This data was in concordance with previous results, indicating that nitrate influence was 

negligible within the range of concentrations studied so far. As a final experiment, a DoE including only 

inorganic nitrogen sources was purposed.  

Next DoE modifications are as following: 

Figure 3.39 Results of the third experimental design. Top histogram indicates the % contribution of 
every factor. Table shows the response (OD at 600 nm) when different factor levels are combined. 



S. Abad Sánchez Ph.D. Thesis 

 

104 

 Tryptone – Set at 0 g/L. Justification: Investigate only inorganic sources.  

 Nitrate – Three levels, 4, 6, 8 g/L. Justification: Increased even more, the concentration of this salt 

to determine if any effect on A. limacinum growth may exist as well as studying it in combination 

with ammonium.  

 Yeast extract – 0 g/L. Justification: Investigate only inorganic sources.  

 Ammonium – Three levels, 0, 0.75 and 1.5 g/L. Justification: The optimum of ammonium 

contribution was known to be around a concentration of 1 g/L, but in this work the range was 

wider to investigate the combination effect with nitrate.  

 

Design of experiment N4 - Response: growth 

Similar to the previous experiment, this DoE generated a noticeable lower response compared to 

experiments with organic nitrogen sources. Growth values (OD at 600 nm) were much lower than previous 

results (Figure 3.40). The contribution of ammonium and nitrate is 57% and 43% respectively. Their 

interaction is noncontributing as shown in the histogram from Figure 3.40. Level plots indicated that lower 

concentration of both factors is better for growth. These results add more evidence that yeast extract is 

essential for A.limacinum growth. In order to support this hypothesis, the following experiment focused 

on yeast extract.  

Figure 3.40 Results of the fourth nitrogen source design of experiments. Top histogram indicates the % 
contribution of every factor. Below level plots of every important factor from the set of experiments.  

                    Nitrate (g/L)                  Ammonium (g/L) 
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Yeast extract experiment – Response: growth & DHA yield 

The following experiment set 0 g/L of tryptone, 1 g/L of nitrate and 0.75 g/L of ammonium while increased 

sequentially yeast extract concentration from 0.1 up to 0.9 in 9 different flasks. Since the DHA analytical 

methodology was implemented DHA yield was monitored. Results of yeast extract supplementation 

(Figure 3.41) clearly show a positive relationship between increasing yeast extract concentration and 

growth of A. limacinum. This data supports the importance of this organic nitrogen source as stated 

before.  

DHA yield followed the same tendency as the growth. Maximum yield values of 0.105 g DHA / g biomass 

were obtained at the highest yeast extract concentration experimented here. Being maximum values at 

one side of the data, it might indicate that both the OD and the DHA yield can increase even more. For 

this reason, the next experiment was again based in a L9(34) matrix with higher yeast extract 

concentrations and the following modifications: 

 Tryptone – Set at 0 g/L. Justification: Investigate only yeast extract as organic source.  

 Nitrate – Set at 0 g/L. Justification: Investigate only ammonium as inorganic source.  

 Yeast extract – Three levels, 0, 1 and 2 g/L. Justification: Investigate this factor at higher 

concentrations than before.  

 Ammonium – Three levels, 0, 0.75 and 1.5 g/L. Justification: The optimum of ammonium 

contribution is known to be around a concentration of 1 g/L. In this work the range was wider to 

investigate the combination effect with yeast extract. 

 

 

Figure 3.41 Results of A. limacinum growth and DHA yield among increasing yeast 
extract concentration. Bars ‐ biomass growth; line – DHA yield.  
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Design of experiment N5 - Response: growth  

Growth values in this experiment generated very interesting data as can be seen in Figure 3.42. OD values 

reached almost 7, which is higher than previous experiments in flask. Yeast extract showed a 90% 

contribution for the best growth of A. limacinum. Definitely this organic nitrogen source has a dominant 

impact on growth.  The level plot also shown in Figure 3.42 indicates that the highest concentration of 

yeast extract generates the maximum growth in the conditions studied.   

A last DoE was purposed to investigate different tryptone concentration in combination with ammonium 

concentrations. The next DoE consisted of the following modifications: 

 Tryptone – Three levels, 0, 1 and 2 g/L. Justification: Investigate tryptone as organic source.  

 Nitrate – Set at 0 g/L. Justification: Investigate only ammonium as inorganic source.  

 Yeast extract – Set at 0 g/L. Justification: Investigate tryptone as organic source.   

 Ammonium – Three levels, 0, 0.75 and 1.5 g/L. Justification: The optimum of ammonium 

contribution was known to be around a concentration of 1 g/L. In this work, the range was wider 

to investigate the combination effect with tryptone. 

 

Figure 3.42 Results of the fifth nitrogen source DoE. Top histogram indicates the % contribution of every factor. 
Below level plots of every important factor from the set of experiments, which in this case is only yeast extract. 

Yeast extract (g/L) 
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Design of experiment N6 - Response: growth & DHA yield 

These experiments were carried out in L9(34) matrix. Data displayed in Figure 3.43  support the hypothesis 

of the exceptional effect of organic nitrogen sources on A. limacinum growth. Tryptone has shown a 

significant positive impact on the culture with a 79% contribution. Even though the growth is significantly 

poor compared with the experiments with yeast extract, it shows a maximum in the cultures with the 

middle level concentration. In other words, 1 g/L of tryptone would be enough to reach its maximum 

effect but this effect was lower than which yeast extract generated (Figure 3.41).  

Results concerning DHA yield showed a different output. In this case, ammonium appears to be slightly 

more important than tryptone although the interaction of both factors has proved to be the most 

important one with a contribution of 68%. In concordance with previous experiments from this section, 

Figure 3.43 Results of the sixth DoE experiments regarding both responses, increase of OD and DHA 
yield, as indicated in the figure. Histograms show the % contribution of every factor on each one of 
the responses. Both set of results contain a level plot from the most important factor in each case. 
Bottom table show the tryptone ammonium interaction results regarding DHA yield. 
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ammonium showed the better result when the concentration was the lowest. Therefore, reported 

contribution is negative. The table of interaction levels contradict the data by placing one of the maximum 

yield values when the ammonium concentration is the highest and there is no tryptone. On the other 

hand, the yield is maximum when there is no ammonium in the medium and the concentration of tryptone 

is 1 g/L. Both yield values of 0.12 g DHA / g biomass.  

In order to evaluate the effect of yeast extract and ammonium on DHA production, which showed the 

best results for biomass production, the very last nitrogen source DoE is purposed. According to DoE N4, 

yeast extract effect could be above 2 g/L. For this reason, this DoE includes higher concentrations of yeast 

extract. The experimental design included the following conditions: 

 Tryptone – Set at 0 g/L. Justification: Investigate only yeast extract as organic source.  

 Nitrate – Set at 0 g/L. Justification: Investigate only ammonium as inorganic source.  

 Yeast extract – Three levels, 2, 3 and 4 g/L. Justification: Investigate this factor with higher 

concentrations in combination with ammonium. 

 Ammonium – Three levels, 0, 0.75 and 1.5 g/L. Justification: The optimum of ammonium 

contribution is known to be around a concentration of 1 g/L. In this work the range is wider to 

investigate the combination effect with yeast extract. 

Design of experiment N7 - Response: growth & DHA yield 

In this last DoE, guided by a L9 (34), ammonium and yeast extract were investigated. Results are shown in 

Figure 3.44 Results of the last (seventh) nitrogen source DoE of the thesis. The results from every response 

are clustered with a gray line ( OD results) and a black line (DHA yield results). Histograms show the 

contribution of every factor regarding each response. Factor level plots are shown for every important 

factor. Top level plots correspond to OD results while bottom level plots show the results from DHA yield 

results. Figure 3.44 and clustered in two groups according (DHA and growth).  According to growth data, 

ammonium had an important effect compared to yeast extract. This is in concordance with previous 

results reported in DoE N1, unless the ammonium concentration exceeded 1.5 g/L as in the case of DoE 

N2. When the concentration of ammonium was too high, yeast extract showed a higher effect. In any 

case, the effect of ammonium was negative above 1 g/L. In this present case, the contribution represents 

a 74 %. Optimal growth was found at 0.75 g/L. This result is in concordance with the work of Chi et al. 

(2007) [93] as well. Chi have reported that the optimum ammonium concentration was 1 g/L.  

On the other hand, yeast extract only showed a 26 % contribution. Yeast extract effect is always positive, 

as reported in previous experiment. In the present experiment, it showed a maximum growth at 4 g/L. 

Therefore, the best composition to maximize growth would be a combination of 0.75 g/L ammonium 

acetate and 4 g/L yeast extract.  

Results concerning DHA yield did not show the same output. It is clear that the factor contribution is the 

same for both response types (DHA and growth). Checking the level plots (bottom Figure 3.44) show that 

both factors were affecting negatively the production of DHA, as both ingredients increase the 

concentration. In other words, the best production scenario appears to be at the lower levels. 

Interestingly, the lower level of ammonium was 0 g/L and 2 g/L for yeast extract. Therefore, there is a 

proper medium composition for growth and another for DHA enhancement.  
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The presence of yeast extract is essential for the proper growth of A. limacinum.  A lack of this organic 

nitrogen source causes weak growth as repeatedly showed in the previous DoE. The combination of DoE 

N5 and DoE N7 indicates that the optimal concentration would be equal or greater than 4 g/L. However, 

as shown in the last DoE (N7) these concentrations of yeast extract cause a reduction in DHA 

accumulation. The opposite effect on growth and DHA production may be causing the divergences 

between literature works, reporting different suitable concentrations of nitrogen sources 

[9,93,187,189,190]. Tryptone just showed a slight increase of growth compared to those experiments only 

using inorganic nitrogen sources (DoE N4).  

Also ammonium is important for growth in a concentration between 0.75 and 1 g/L. As mentioned before, 

Chi et al. [93] reported this feature as well. However, this nitrogen salt only showed its beneficial effect 

when combined with a minimum concentration of yeast extract. Moreover, it was detrimental for DHA 

production as elucidated in the last DoE (N7). In the absence of this salt, A. limacinum showed the best 

Figure 3.44 Results of the last (seventh) nitrogen source DoE of the thesis. The results from every response 
are clustered with a gray line ( OD results) and a black line (DHA yield results). Histograms show the 
contribution of every factor regarding each response. Factor level plots are shown for every important 
factor. Top level plots correspond to OD results while bottom level plots show the results from DHA yield 
results. 
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yield. Nitrate did not show any effect either over the microorganism growth or the DHA production. 

Therefore, it can be eliminated from the medium composition  

After several experiments about yeast extract, tryptone, nitrate and ammonium effects on A. limacinum 

performance to produce DHA, there is a clear winner. Yeast extract showed a positive and considerable 

effect on A.limacnium and DHA production, within the studied concentrations (0‐4 g/L). Moreover, its 

omission resulted in a dramatic reduction of growth. Yeast extract is absolutely essential for A.limacinum 

growth and DHA production. Nevertheless, if the concentration of yeast extract is equal to 3g/L or 

superior, it could produce a reduction in DHA accumulation, as seen in the experiment N7. This was 

probably caused by a reduction of the C/N ratio that reduced general lipid accumulation. This result is in 

concordance with literature works investigating medium compositions for other thraustochytrids. Wu et 

al. (2005) [180] have seen the same effect on Schizochytrium sp. S31. Chen et al. (2010) [179] have 

reported that the best yeast extract concentration for Aurantiochytrium sp. growth was 3 g/L. However, 

a consensus concentration is required (considering growth and DHA), which is investigated in the 

following section.  

Ammonium has been revealed to have a positive effect, being the optimal concertation 0.75 g/l. 

Unfortunately, ammonium undoubtedly exhibited a negative effect on DHA production. This is coherent 

with Chi et al. (2007) [93] and Yokochi et al. (1998) results. Both have shown that high concentrations of 

this salt caused a reduction in DHA accumulation even though this nitrogen source is positive for the 

microorganism growth. In this work as well as in literature, ammonium showed better results when it was 

the unique nitrogen source. This might be indicating that the composition of organic nitrogen sources is 

preferable for A. limacinum growth.  

Nitrate and tryptone have shown lower effects. In the nitrate case the effect is negligible while tryptone 

exhibited a noticeable positive effect. Chu et al. (2010) and Wu et al. (2005) have shown that using 

tryptone as the sole nitrogen source, the microorganism grew satisfactorily although below yeast extract 

results.  

In order to find an optimal concentration to maximize productivity of DHA, a model based on all the 

heterogeneous set of samples generated during the previous experiments was built. In addition, other 

experiments performed during the medium development were used to complement the existing set of 

samples. ANN is an excellent modeling technique in a heterogeneous scenario (Modeling process is 

explained in the section 3.3.3).  

As discussed previously, yeast extract and tryptone are not only acting as nitrogen sources but also 

providing many other oligoelements. These complex ingredients contain amino acids which can be used 

as building blocks for the enzymatic machinery of the microorganism. Yeast extract also contain vitamins, 

growth factors and many other things helping to reach higher growth rates. For this reason, some 

bioreactor cultures are performed to validate DoE data before ANN. These bioreactor experiments were 

carried out to confirm the results obtained in flasks.  

Bioreactor nitrogen source experiments 

Bioreactor results are gathered in Table 3.23. A first set of control bioreactor were performed in order to 

evaluate medium modifications. The set N1 with a low amount of tryptone and yeast extract showed the 

lowest net growth rate. It took 45 hours to reach the stationary phase with an optical density of 15. 
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Interestingly, the lowest concentration of total organic nitrogen sources generated a slower growth. In 

the following set of bioreactors (N2 & N3) A. limacinum exhibited high growth rates. The N3 set, containing 

the highest amount of yeast extract, showed a net growth rate of 0.17 h‐1. This evidence supports the 

hypothesis that A. limacinum growth is faster in the presence of organic/complex nitrogen sources using 

bioreactors.  

Final biomass values were approximately the same whereas DHA yield showed differences. Product yields 

are comparable to control bioreactor, except from the set of bioreactors containing 1.5 g/L yeast extract 

in the medium which yielded 0.11 g DHA / g biomass.  

3.2.2.2 Nitrogen composition modeling - Optimization 
Two models have been built using ANN to fit the data obtained by previous DoE. This was focused on 

finding the optimal nitrogen source concentration. The first model was fitted using each nitrogen source 

concentration as input and OD (4‐34 h) 58 as target of the model. The designed ANN was composed by 

                                                           
58 The same response used in previous DoE. 

Table 3.23 Bioreactor experiments with different combinations of nitrogen sources. Net growth rate has 
been calculated including the lag and stationary phase. Time indicates when the culture reaches the 
stationary phase. Values are the average values of 2 reactors. Initial substrate concentration = 10 g/L of 
crude glycerol.  

Bioreactor Tryptone Nitrate Yeast extract Ammonium µnet (h
-1

) Time (h) OD (600 nm)
g DHA / g 

Biomass

Control 1 1 1 1 0.11 30 13 0.09

N1 0.1 3 0.6 1 0.06 45 15 0.09

N2 1 5 0.1 1 0.11 30 13 0.08

N3 0.1 1 1.5 1 0.17 25 14 0.11

Figure 3.45 Artificial neural network structure used to investigate nitrogen source and A. limacinum 
performance in growth and DHA production.  
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four inputs (four different nitrogen sources), two hidden layers with three neurons each one (Hik), and 

finally the modeled response (different for each model). Moreover, neurons placed in the first layer are 

connected with the inputs (H1k), and those placed in the second layer (H2k), are connected with the 

previous ones as well as with the output node. Every connection has a parameter which defines it, called 

weight (Wj). Weights are the variables which, together with the intercepts59, are modified while the 

system is learning. This configuration describes a fully connected structure which is represented in Figure 

3.45. A Visual Basic application has been developed (Frances Padrès Master thesis) to compute this neural 

construction. Using this application, the 27 weights and 7 intercepts (31 total parameters) were adjusted.  

 OD (3-34 h) based model 
Of the total experimental points, 65 have been used to train the ANN and 16 experimental points to 

validate the model. All used points are represented in the 4D plot‐like (3D plot with a discrete variable) 

found in Figure 3.46. Once trained, an average relative error of 10.93% was obtained in the training set 

and an average relative error of 13.75% in the validation points. Note that, within cultivation repetitions, 

a variation coefficient average of 7.94% was obtained, which already conforms the error of the model.  

                                                           
59 The intercepts are the interaction of the neurons connections.  

Figure 3.46 Data points used to train ANN. Three factors plot with a fourth factor represented as a discrete 
variable (4 Dimension‐like plot).  
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To be able to interpret the results of the model, these have been represented as different response 

surfaces. One surface per each pair of variables. In other words, two variables/factors have to be fixed, 

while the two remaining are plotted with the corresponding response. Figure 3.48 shows the first 

response surface based on the model, which clearly prove the positive effect of yeast extract previously 

revealed by Taguchi’s DoE. A dramatic decrease can be observed when yeast extract is scarcer. Moreover, 

Figure 3.48 show that tryptone has a positive extra effect when is combined with yeast extract, and only 

Figure 3.48 Response surface based on the OD (3‐34) model built. Fixed variables are indicating on mesh 
top.  

Figure 3.47 Response surface based on DHA yield response in the second model.  Fixed variables are indicated 
on top of the figure. 
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when yeast extract concentration is high. Response surface also revealed that a minimum of tryptone 

(0.2‐0.3 g/L) is essential. 

On the other hand, as can be observed in Figure 3.49 nitrate has a different output in the built model. It 

has a positive effect on growth contrary to what was concluded from DoE. Especially when ammonium 

concentration was near 0 g/L, which was actually found by DoE experiments. Moreover, the mesh shows 

the negative effect of high concentrations of ammonium, revealing an optimum around 0.4 g/L. Despite 

the divergences, this plot considers the contribution of both yeast extract and tryptone. Therefore, as 

pointed out in the previous subsection discussion, inorganic nitrogen sources would not show this 

performance when yeast extract and tryptone are omitted.  

 DHA yield (g DHA / g dry biomass) based model 
The second model was fitted to DHA production using each nitrogen source concentration as input and 

product yield YDHA / dry biomass (g/g) as response. For this new model 34 experimental values have been 

used to train the ANN and 9 experimental points to validate the model. Once trained, an average relative 

error of 11.6% was obtained in the training set and an average relative error of 7.6% in validation points. 

Note that, in culture repetitions a variation coefficient average of 6.9% has been obtained, which already 

conforms model’s error. The second model revealed that the optimum DHA production occurs when 

nitrate and ammonium are omitted as indicated in Figure 3.47. Thus, demonstrating that only organic 

nitrogen sources are contributing positively on DHA accumulation into cells. Second model results are in 

concordance with those obtained in previous flask experiments.  

 Final optimization 
In order to find a consensus response between growth and DHA production, a third model was 

constructed using the final DHA concentration (g DHA/L). This was calculated using the output of both 

Figure 3.49 Response surface based on the OD (3‐34) model built. Fixed variables are indicating on 
mesh top.  
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previous models. The new model exposed a maximum when the concentrations of nitrogen sources were 

the following: 0.4 g/l of tryptone, 2.3 g/l of yeast extract, 0 g/l of ammonium acetate and 0 g/l of sodium 

nitrate (Figure 3.50). These concentrations are in concordance with the ANOVA preliminary analysis. The 

results showed that growth and DHA production are strongly dependent of the nitrogen sources’ 

composition. Yeast extract, besides being an important source of nitrogen, is also rich in many other 

biomolecules and oligo‐elements, which might be contributing positively. Moreover, to consider a defined 

media for this kind of microorganism while obtaining good amounts of DHA seems difficult.  

The purposed composition was optimized for media containing 10 g/L of carbon source. When the initial 

carbon source concertation is increased, nitrogen source needs to be increased correspondingly. 

Therefore, the optimization defines the following equation: 

Nitrogen source = [(2.3 g yeast extract) · C/10] + [(0.4 g tryptone) · C/10]                              Equation 3.1 

C being the initial concentration of carbon source.  This C/N will allow an effective compromise between 

growth and DHA accumulation, obtaining the optimum DHA production.  

 Bioreactor validation 
With the aim of validating the medium developed until this point, a set of bioreactors were performed 

with four different nitrogen source combinations and 10 g/L of carbon source. Every bioreactor had two 

replicates with the following nitrogen source composition:  

Figure 3.50 Response surface of both ANN models product, obtaining the concentration of 
DHA after 34 hours of culture. 
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 First (Original) ‐ Standard medium: 1 g/L yeast extract, 1 g/L tryptone, 1 g/L NaNO3 and 1 g/L 

CH3COONH4.  

 Second (1g/L Trp., 5 g/L NaNO3) ‐ 0 g/L yeast extract, 1 g/L tryptone, 5 g/L NaNO3 and 0 g/L 

CH3COONH4. 

 Third (Y. extract 1.5 g/L) – 1.5 g/L yeast extract, 0 g/L tryptone, 0 g/L NaNO3 and 0 g/L CH3COONH4. 

 Fourth (Optimized) – 2.3 g/L yeast extract, 0.4 g/L tryptone, 0 g/L NaNO3 and 0 g/L CH3COONH4. 

The results of the set of bioreactors are listed in Table 3.24. Original medium evidently generated the 

worst results, lower yield, lower growth rate and consequently lower productivities. Bioreactors with 

only tryptone and nitrate showed even worst results. It can be assumed that the lack of yeast extract 

is the reason. When the concentration of yeast extract is slightly increased and inorganic source 

eliminated, the yield raises. Interestingly, even the growth rate has increased. Bioreactors with the 

optimized composition of organic nitrogen sources showed the best results. The yield is twofold 

higher. Even though growth rate dropped compared to the previous medium, productivities are 

greater. Again, the evidence suggeste that yeast extract plays a very important role in A. limacinum 

performance and its DHA productivity.   

 

3.2.3 Sodium chloride concentration 
Yaguchi et al. (1997) [187] work was the first publication of A. limacinum. As already discussed in previous 

chapters its former name was Schizochytrium limacinum.  According to Yaguchi et al. salinities 50% to 

200% greater than natural seawater salinity (17.5 g/L to 70 g/L) can be used to grow the mentioned 

thraustochytrid. Ten years later, Zhu et al. (2007) [191] reported experiments with a different strain of 

A.limacinum were the highest biomass and DHA production using medium with NaCl between 18 ‐ 27 g/L. 

Kim et al. (2012) [192] reported similar optimal salinity ranges (15 – 20 g/L) for thraustochytrids. Kim’s 

work suggests that thraustochytrids could grow with near 0 g/L salinity values in determined media [192]. 

Shortly after, K. Chuang et al. (2012) [193] published a revision about some A. mangrovei growth media 

Medium Y p/x (g/g) µnet (h
-1

)

Volumetric 

productivity               

(m DHA / L ·h)

Productivity            

(mg/day)

Original 0.09 ± 0.001 0.11 ± 0.01 12.3 ± 1 442.8

1g/L Trp., 5 g/L NO3 0.07 ± 0.001 0.11 ± 0.02 10.3 ± 2.1 370.8

Y. extract 1.5 g/L 0.11 ± 0.001 0.19 ± 0.008 18.6 ± 0.1 669.6

Optimized 0.21 ± 0.02 0.13 ± 0.005 33.6 ± 1 1209.6

Table 3.24 Mean kinetic values of validation bioreactors. Bioreactors were maintained at 20º, with an 
airflow of 1.5 l/h and 500 rpm. Two replicates per bioreactor. Final volume of 1.5 L.  
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components. In this work they have reported significantly good growth between 1 – 30 g/L but the 

cultures showed optimal DHA production when using 5 g/L NaCl.  

Earlier in 2009, Shabala et al. [194] suggested that thraustochytrids salinity requirements, specifically Na+ 

and Cl‐, may be explained by their requirement for optimal osmotic adjustment. They have showed that 

Thraustochytrium sp. can grow with very low salinity mediums in presence of a polyol (i.e. mannitol) (Box 

3.7). In this section of the thesis, sodium chloride concentration for A.limacinum culture was investigated 

as the main contributor to medium salinity60. Other important salts but less abundant, are investigated in 

section 3.2.6.  

In this work, it was sought to study A. limacinum behavior within a NaCl concentration range from 0 to 

60 g/L. Many microalgae cultivations are made in very high salinity conditions, preventing opportunist 

microorganisms from contaminating the culture. According to the literature [187], other thraustochytrids 

could grow at very high salinity concentrations as well. Twelve concentrations were investigated within 

this range focused on concentrations between 10 to 20 g/L of NaCl where A. limacinum should show its 

optimal growth.  

A. limacinum has shown a remarkable growth with every NaCl concentration as displayed in Figure 3.51. 

Growth was not severely affected by low NaCl concentrations in concordance with similar results found 

in literature. For example, Shabala et al. (2009) [133] have already shown that thraustochytrids could grow 

without NaCl in the correct medium. On the other hand, Zhu et al. (2007) [54] have shown that despite 

the versatility of these microorganisms, optimum conditions are above 10 g/L.  The strain of 

Aurantiochytrium used for the thesis described here, showed a similar behavior to other genera of this 

superfamily. Figure 3.51 consistently shows that biomass production increases until reaching NaCl 

                                                           
60 Sodium and chloride represent 85% of the total ion composition in seawater. In the starting artificial medium 
with 18 g/L sodium chloride, this salt was accounted for 90 % of the ion composition. Yeast extract and tryptone 
salts are not considered.  

 

The figures below are extracted from Shabala et al. (2009) showing the difference of Thraustochytrium sp. growth in 
presence of mannitol. The difference between both experiments clearly show the effect of this polyol.  

 

 Box 3.7. Difference in Thraustochytrium sp. growth in presence of mannitol. 
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concentrations of 18 g/L. Cultures containing between 18 to 25 g/L of NaCl showed the highest values of 

growth. These concentrations of salt are above natural seawater concentrations (~ 35 g/L).  

DHA production profile is slightly different, especially when working with extreme values of NaCl. 

Concentrations below 10 g/L of sodium chloride generated a significantly lower values of DHA. The values 

of this FA drop even more when NaCl concentration is above 30‐40 g/L. Generally speaking, A. limacinum 

can grow adequately and satisfactorily produce DHA when the sodium chloride concentration is between 

14 and 30 g/L. Therefore, this microorganism offers even more versatility.  A. limacinum can grow either 

without NaCl or grow in open ponds61 with high salinity. This ability could permit open pond cultivations 

and reduce costs by avoiding antibiotic utilization. Furthermore, if A. limacinum can grow with very low 

NaCl concentrations it would avoid corrosion problems with steel equipment. 

Cell dimensions in different NaCl concentration. 

Complementary experiments using laser scattering (Digisizer technology) elucidated cell size variations 

depending on NaCl concentration. Thraustochytrids are generally big microorganisms as explained in 

chapter 2. Greater dimensions offer more space to store DHA. Therefore, when the experiment was 

designed a relationship between DHA accumulation and cell diameter was expected.  However, the cell 

contains less DHA in those situations in where diameters were higher (Figure 3.52). Considering data 

                                                           
61 Open pond systems are suitable for very large scale production. This system uses high salinity mediums to avoid 
any opportunist microorganism shift algae population.  

Figure 3.51 Biomass and DHA production after 72 hours of culture.  Grey stacked area indicate the final 
DHA concentration after every experiment. The bars show the final biomass reached using each one of 
medium salinities. Biomass is indicated as dry cell weight (DCW). Dotted line indicates sweater salinity 
threshold. Error bars indicate standard deviation. 
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generated in this section A. limacinum DHA accumulation is not governed by salinity. Interestingly, when 

the medium salinity is higher, cell diameters are smaller due to osmotic pressure [133].  

In this situation, the concentration of NaCl remains unchanged being 18 g/L the apparent optimal value. 

It should be said that complex ingredients such as yeast extract and tryptone contain salts, especially NaCl, 

but their concentration is less than 1 g. Therefore, this concentration can be used both for 10 g/L and 100 

g/L of initial carbon source concentration. As indicated in the previous section, if initial carbon source is 

increased, nitrogen sources have to be increased ensuring proper growth. In any case, 18 g/L has to be 

NaCl concentration in the medium.  

3.2.4 Buffer investigation 
At present, only a few works have studied the best conditions for thraustochytrids cultivation and there 

is no data about buffer usage growing this microorganism. The last report about marine microorganisms 

and buffers dates from 1975 [182]. Loeblich (1975) compared the growth of marine dinoflagellate in 

several buffers. Dinoflagellates are in the chromoalveolates super‐kingdom as thraustochytrids. In his 

work MOPS62, HEPES63, TRIS, glycylglycine and TAPS64 were used as buffers and concluded that TRIS and 

TAPS provided maximal growth with minimal pH change. In fact, TRIS buffer is perfect for A. limacinum or 

any other thraustochytrid. This was demonstrated in all the works already mention in this chapter, 

because all of them used TRIS buffer to control the pH of their cultures. Nevertheless, growing A. 

limacinum at large scales would spend large buffer amounts and this ingredient needs to be cost effective.  

TRIS is an expensive buffer not suitable for large scale cultivations. 

                                                           
62 3‐(N‐morpholino)propanesulfonic acid 
63 4‐(2‐hydroxyethyl)‐1‐piperazineethanesulfonic acid 
64 N‐Tris(hydroxymethyl)methyl‐3‐aminopropanesulfonic acid 

Figure 3.52 Effect of sodium chloride 
concentration on A. limacinum cell 
diameter (ø).  

Table 3.25 Table of buffer suitable for thraustochytrids growth. Prices have been 
calculated using the cheapest pack of each one, from the same vendor.  
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There are many salts which either individually or in combination with another can regulate the amount of 

protons dissolved in the medium. After an exhaustive search throughout different providers two stand 

out above other products. The search has followed two main parameters, cost and pH range. The selected 

buffers were KH2PO4 + NaOH and H2CO3 + NaHCO3 as indicated in Table 3.25. However, H2CO3 + NaHCO3 

was finally rejected due to the limited pH range.  

KH2PO4 + NaOH has many advantages. First, KH2PO4 releases K+ into the medium which makes it available 

for A. limacinum (more information in section 3.1.2.2 and 3.2.6.2). Therefore, the buffer is not only 

controlling the pH but also adding an important component of seawater making the buffer more cost 

effective. The other big advantage is the reduced cost compared with TRIS buffer. Interestingly, TRIS could 

be toxic for some microorganisms while KH2PO4 not. This would allow using this buffer with other 

thraustochytrids without risk. NaOH was added to adjust dissociation equilibrium65 of H2PO4
‐ fixing the 

medium pH value. Different buffering situations were evaluated at a pH of 7.5. KH2PO4 + NaOH buffer was 

evaluated in A. limacinum flask cultures compared to TRIS and unbuffered mediums (Figure 3.53).  

Similar growth was observed, as can be seen in Figure 3.53.  Regarding pH values, cultures with buffer 

remained near pH 7. Experiments using no buffer suffered a pH reduction down to 6.4. Despite medium 

acidification in the unbuffered cultures, A. limacinum has grown normally. The pH tolerance of these 

organisms is quite broad as certified by several studies. Ranging from 5 to 8 where optimal pH is 6.5–7.5 

for high DHA yields [49,56,93,140,161,195]. DHA was monitored for each culture and the results are 

shown in Figure 3.54. While differences in buffer did not affect biomass production, DHA accumulation 

was reduced when A.limacinum was cultivated without buffer. It is important to remark that results in 

Figure 3.54 are indicated as yields. Yield might seem just slightly different, but if they are translated into 

final concentration, unbuffered cultures produced a lower amount. Therefore, a reduction in the pH 

                                                           
65 KH2PO4  K+ +  H2PO4

‐   ;   H2PO4
‐  H+  + HPO4

2‐    

Figure 3.53 Buffer effects on pH values and biomass production in A. limacinum cultures. Biomass 
production is expressed as dry cell weight per liter.  
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during a culture could affect DHA accumulation. Anyway, the medium described in this chapter has been 

designed to sustain A. limacinum cultures with very high biomass concentration. A culture without any 

buffer in this scenario would generate a risk of variability. Considering the results just discussed, KH2PO4 

+ NaOH is an appropriate buffer for DHA production through a biotechnological process.  

Buffer solubility in seawater mediums could be a problem, as already discussed in the introduction of this 

chapter (3.1.2.6). Autoclaving all the components together, is one of the important features of the 

medium developed. However, unlike most other compounds, the solubility level of Ca(H2PO4)2 becomes 

lower as temperature increases. Thus heating causes precipitation. In this investigation it has been found 

that when KH2PO4 is added at a concentration greater than 1.25 g/L it generates a precipitate. Accordingly, 

only three concentrations of the selected buffer were investigated in order to elucidate if a variation of 

Figure 3.54. Medium buffer effects on DHA production, which is indicated as a 
yield, g DHA per every g of biomass dry cell weight.  

Figure 3.55 Effects of different concentrations on A. limacinum growth.  Biomass is indicated as dry cell weight. 
First set of experiments had a concentration of 1 g/L KH2PO4 + 0.27 g/L NaOH, the second 0.5 g/L KH2PO4 + 0.14 
g/L NaOH and the third 0.25 g/L KH2PO4 + 0.07 g/L NaOH. 



S. Abad Sánchez Ph.D. Thesis 

 

122 

buffer concentration could affect growth.  Every experiment was carried out using KH2PO4 concentrations 

below 1.25 g/L limit concentration. Results can be observed in Figure 3.55.  

For this experiment, not only different concentrations of KH2PO4 + NaOH were investigated. This 

experiment was also used to investigate what happens if the biomass concentration is higher66. In the first 

buffer experiment the final DCW values were 6‐7 g/L, whereas in the second they are between 10 and 12 

g/L.  This biomass increase has a bigger impact on the pH. Actually, a higher biomass concentration 

lowered the pH value down to 6.5. Considering that a concentration of 12 g/L of biomass in a flask is quite 

high, the buffer alleviated the effect of the proton increase. Again, a set of samples showed similar 

behavior both in biomass production and pH values. Therefore, buffer concentration is not affecting A. 

limacinum growth.  

As CaCl2 concentration was not optimized yet, and Ca3(PO4)2 tends to precipitate, it was decided to use a 

concentration of 0.85 g/L KH2PO4 + 0.14 g/L. This concentration would tolerate a CaCl2 concentration 

increase if required. Moreover, if this medium is used for high biomass concentration cultures, buffer 

must have enough ionic strength to alleviate protonation of the culture. For this reason, unbuffered media 

were discarded. It is worth mention that pH control of bioreactor units will help maintaining the pH value.   

An H2SO4 solution and a NaOH solution were selected as control acid and control base, respectively. 

Sulphate does not affect A. limacinum growth because yeast extract contains high concentrations of this 

salt (SO4
2‐), and extra additions would not alter the concentration. In addition, NaOH will not affect the 

growth either. Sodium ion additions will not affect the current concentration of it already in the medium.  

3.2.5 Vitamins: Focus on cyanocobalamin (Vitamin B12) requirements 
Vitamins have been extensively used in artificial seawater medium formulations. As mentioned in the 

introduction, vitamin load of marine media prepared in the lab is mainly composed of thiamine, biotin, 

cyanocobalamin also called Vitamin B12, and in some cases riboflavin. Vitamin complementation for 

thraustochytrids cultures has only been investigated in a few works, especially cyanocobalamin. Almost 

every work applied to thraustochytrids used different concentrations of this vitamin, as can be observed 

in the Table 3.26.  

Vitamin B12 supplementation started with Bajpai and Ward’s work of 1991 [51] in which they introduced 

Vitamin B12 enhancing T. aureum growth (based on original artificial seawater media). They formulated a 

medium containing 10 µg/L thiamine and 1 µg/L Vitamin B12 obtaining better results than previous works 

with the same strain [196]. Iida et al. (1996) investigated many different vitamins finding thiamine, vitamin 

B12 (0.01 µg/L), pantothenic acid sodium salt, nicotinic acid, riboflavin and biotin to be essential for better 

T. aureum growth. However, the final biomass values of their work were lower than the ones obtained by 

Bajpai and Ward. Later in 2002, Hur et al. (2002) included only 4 µg/L Vitamin B12 to investigate T. aureum 

DHA productions. This work was focused on other parameters different from vitamins but is an example 

of vitamin concentration divergences among literature data.  

                                                           
66 If the substrate initial concentration is increased, the culture can reach higher biomass concentrations unless a 
different ingredient becames limiting.  
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Unagul et al. (2007) investigated the same combination of vitamins as 

in Iida et al. but for S. mangrovei SK‐0267 cultures. However, 

concentrations of vitamins were very high (1 mg/L cyanocobalamin) 

compared to the previous works described above. Results indicated 

that vitamin solution has no effect either on S. mangrovei growth or 

n‐3 PUFA production. Jakobsen et al. (2007) included 5 µg/L of 

cyanocobalamin in their medium growing a Schizochytrium strain. The 

same year, Chi et al. investigated two different Vitamin B12 

concentrations in S. limacinum68 cultures, 0.1 µM and 0.2 µM. This 

study was made based on a DoE investigation of other factors at the 

same time. They found that 0.1 µM cyanocobalamin was better for 

the strain used. In 2009 two new works not directly related with 

vitamin contribution on thraustochytrids growth, evidenced again the 

inconsistency of vitamin concentrations. Lippmeier et al. (2009) used 

100 µg/mL calcium pantothenate, 50 mg/mL vitamin B12 and 100 

µg/mL in a fatty acid characterization of Schizochytrium sp. On the 

other hand, Lian et al. (2009) used 10 mg/L cyanocobalamine, 1 mg/L 

biotin and 50 mg/L thiamin for a different research using 

Schizochytrium sp.  

Quilodran et al. (2010) is the only work that has focused investigation on the effect of vitamins. They 

worked with an unclassified thraustochytrids (strain name: AS4‐A1) and saw that 1mg/L thiamine, 0.0005 

mg/L biotin and 0.0005 mg/L cyanocobalamine, stimulates ARA, EPA and DHA production. According to 

this data, vitamins might affect eukaryote biosynthetic pathway. Otherwise if PKS-like 69 was stimulated 

it would produce only more DHA (PKS‐like pathway is specific to DPA and DHA production as explained 

in chapter 1 section 1.3.3).  

Flask experiments 

The medium developed in this chapter contains yeast extract and tryptone (see section 3.2.2), which 

typically70 contains thiamine, riboflavin, pyridoxine, niacinamide and pantothenic acid but not Vitamin B12. 

Therefore, only vitamin B12 needed to be investigated. The effect of five different concentrations of 

Vitamin B12 on A. limacinum SR21 growth, DHA production and cell size were investigated. Vitamin B12 has 

shown no positive effect on the thraustochytrids investigated here. Experiments were initially carried out 

in Erlenmeyer flasks. Results are summarized in Figure 3.56 a and b.  

Figure 3.56a clearly indicate a negative connection between cyanocobalamin concentration and final 

DCW. Cultivating A. limacinum with 10 µM vitamin B12 resulted in 27% decrease in the final DCW. This 

might be caused by a toxic effect from either the vitamin itself or the HEPES buffer provided by the vitamin 

stock solution, which could be causing a growth inhibition.  The difference in final biomass between 0.01 

µM and 0 µM was minimal indicating that low concentrations of Vitamin B12 had no effect on A. limacinum 

growth. Even a concentration of 0.1 µM, which was recommended as the ideal concentration by Chi et al. 

                                                           
67 Nowadays classified as A. mangrovei SK‐02 
68 Nowadays classified as A. limacinum, the main strain of this thesis. 
69 Polyketide synthase (PKS)‐like synthesis of fatty acids 
70 Especially yeast extract. 

Table 3.26 Cyanocobalamin 
concentrations investigated for 
thraustochytrids growth.  
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(2007) [93], showed a decrease not higher than 10%. Analyzing DHA results, displayed in Figure 3.56b, 

was in concordance with the hypothesis that cyanocobalamin was not benefiting A. limacinum in any case.  

As can be seen, DHA yield was identical for each experiment. DHA yields and final biomass values indicate 

that a flask culture without Vitamin B12, would render the best productivity of DHA.  

The fact that cyanocobalamin does not affect DHA production was expected, because it had been reported 

that this vitamin only affects the regular FA biosynthetic pathway [47]. It is known that A. limacinum DHA 

specificity relies on the PKS‐like pathway. In other words, the dominant PKS‐like DHA synthesis pathway 

in A. limacinum is not affected by cyanocobalamin.   

There is an interesting output not affecting DHA productivity, but worth mentions it, which is the 

reduction of cell size while the concentration of the cyanocobalamin is reduced (Figure 3.56a). Using the 

microscopy + Matlab® technique described in the previous chapter, a difference in zoospore production 

could be detected. Those cultures with higher concentration of Vitamin B12 showed a lower amount of 

zoospores (data not shown). Thus A. limacinum stayed in a vegetative stage for longer time, leading to 

larger cell size. This should be the cause of the different cell diameter displayed in Figure 3.56a.  

Bioreactor experiments 

Figure 3.56  Effect of cyanocobalamin or Vitamin B12 on A.limacinum flask cultures. a. Growth indicated 
as dry cell weight (DCW) and mean cell diameter results regarding different vitamin concentrations. b. 
DHA production expressed in yield with different vitamin concentrations. Both sets of data were obtained 
after 80 h of culture at 20ºC. Medium composition based on previous section improvements. Initial 
substrate concentration was 10 g/L of crude glycerol. Four replicates per sample. 

a 

b 
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Using the same conditions from flask experiments, bioreactor cultures were carried out with the 

concentration range of cyanocobalamin from 0 to 10 µM. This experiments were willing to elucidate if 

vitamin B12 had the same effect in bioreactor cultures. Results of A.limacinum performance in bioreactor 

are given in Table 3.27. Similarly to what happened with flask cultures, the bioreactor without vitamin 

showed the best production of both biomass and final DHA (not DHA yield). If the cyanocobalamin 

concentration is increased the final biomass concentration is reduced. This data correlates with flask 

experiments results and supports the hypothesis that cyanocobalamin could inhibit A.limacinum growth. 

As mentioned above, this could be an indirect cause of zoospore formation inhibition. 

DHA yieds exhibited a greater variability as can be observed in Table 3.27. For example, the bioreactor 

using a concentration of 1 µM Vitamin B12.  Yield variability might be caused by other parameters during 

the bioreactor culture such as harvesting time, oxygen demand, inoculum variability71, etc. Due to logistic 

limitations, every bioreactor was carried out during different weeks and different random situations could 

be the unexpected cause of variabilities. The most common variability source is the inoculum and the 

harvest time. In other words, if the culture spends more time in the lag phase, due to a weak inoculum, 

then the growth would be slower and the harvest time at a different cell stage. However, even with a 

lower DHA yield, the first bioreactor (0 µM) is produces more DHA.  

Despite the variability of DHA yield among different bioreactors, data consistently points to an 

insignificant effect of cyanocobalamine on A. limacinum growth and DHA production performance. Thus, 

the vitamin is eliminated from the formulation of the medium. Flask and bioreactors data suggest that 

high concentrations of cyanocobalamin could be inhibiting zoospore formation. Consequently, the growth 

is limited.  

3.2.6 Medium minority salts composition  
Considering the established initial composition (detailed in Table 3.21 section 3.2), there are three salts 

which needed a revision. These salts are MgSO4, CaCl2 and KCl. There is not much information about this 

salt and its contribution for thraustrochytrids cultivation. What is known is that sulphate (7.7 %), 

magnesium (3.7%), calcium (1.2%) and potassium (1.1%) are important components of seawater. The 

effect of MgSO4, CaCl2 and KCl was the aim of upcoming sections.   

                                                           
71 Inoculums did not contain vitamin B12.  

Table 3.27 A.limacinum growth performance in 2L bioreactor using different Vitamin B12 concentrations. Data 
was obtained after 60 h of culture 20ºC; 1 L/min of compressed air and 500 rpm. Medium composition based 
on previous section improvements. Initial substrate concentration was 10 g/L of crude glycerol. No replicates. 
* Overestimated yields caused by the carbon charge of yeast extract, tryptone and crude glycerol others than 
glycerol. Yields are calculated only considering initial glycerol.  

 [Vit. B12] DCW (g/L) Yx/s DHA (g/L) Yp/x

0 µM 11.01 ± 0.35 1.06* 1.66 0.151

0.01 µM 9.50 ± 0.01 0.84* 1.57 0.165

0.1 µM 6.34 ± 0.14 0.56 0.91 0.144

1 µM 7.36 ± 0.42 0.66 1.35 0.183

10 µM 6.11 ± 0.07 0.54 0.76 0.125
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3.2.6.1 Magnesium sulphate 

The usage of MgSO4 for thraustochytrids cultivation was purposed by Bajpai and Ward  (1991) [51]. 

Previous works only used this salt as a mere ingredient of seawater but Bajpai and Ward used mediums 

containing 5 g/L MgSO4. Interestingly, Unagul et al. (2005) [92]  performed an experiment where every 

salt was replaced by NaCl causing a significant reduction of T. aureum growth. Thus, indicating that other 

salts must have a role for this thraustochytrid strain. Nagano et al. (2009) [197] went further and 

investigated what happens when each one of the salts commonly composing seawater is omitted. They 

have found that for A. limacinum mh106 MgSO4 is essential but MgCl2 not. Chi et al. (2007) [93], contrary 

to Nagano et al. work, investigated two MgSO4 concentration in A. limacinum SR21 finding no influence 

on its performance.  Therefore, the influence might be caused by other factors in the medium. For this 

reason, a wide range of MgSO4 concentration was investigated for A. limacinum cultures in the present 

section. MgCl was discarded because NaCl provides enough chloride, which in higher concentrations could 

generate corrosion in bioreactors [92]. 

0

2

4

6

0,1 1,0 3,0 5,0 7,0 9,0

D
C

W
 (

g/
L)

MgSO4 (g/L)

DCW

Figure 3.58 Effect of different MgSO4 concentrations on A. limacinum growth. Data was obtained 
after 72 h of culture at 20ºC. Medium composition based on previous section improvements. 
Initial substrate concentration was 8 g/L of crude glycerol. Four replicates per sample. 
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Figure 3.57 Effect of different MgSO4 concentrations on DHA production, which is indicated as 
DHA yield ( g DHA / g DCW of A.limacinum).  Data was obtained after 72 h of culture at 20ºC. 
Medium composition based on previous section improvements. Initial substrate concentration 
was 8 g/L of crude glycerol. Four replicates per sample. 
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MgSO4 effect on A. limacinum was investigated for 6 different concentrations, 0.1, 1, 3, 5, 7 and 9 g/L 

using the medium here developed. Biomass results are displayed in Figure 3.58. The effect of this salt on 

A. limacinum growth is not significant despite the slightly decreasing tendency described when the 

concentration increases.  On the other hand, MgSO4 addition neither have shown any impact on DHA 

production as shown in Figure 3.57. Yields are fairly the same, even compared with other experiment in 

this chapter. 

Nagano et al. unequivocally showed a lack of MgCl2 does not impair thraustochytrids performance, 

whereas a lack of MgSO4 generated dramatically low biomass concentrations. This could indicate that the 

important ion provided by MgSO4 is S042‐. Results in Figure 3.58 are evidence reinforcing this hypothesis. 

Moreover, yeast extract (and yeast extract in general) contains a small amount of magnesium (0.5 g/L 

aprox.) [92] and in some cases a huge amount of S04
2‐ (5 g/L aprox.). This might explain why an extra 

addition of MgSO4 is not affecting A.limacinum with the current medium. Therefore, this is an important 

consideration for medium preparation. Actually, literature works are performing optimizations on salt 

composition without considering their complex components.  

According to the results and discussion, it was decided to keep 0.1 g/L of MgSO4 in the medium recipe. 

In order to avoid any problem with magnesium limitation in highly concentrated cultures of A. limacinum. 

The amount of sulphate provided by yeast extract avoids any risk of limitation at high density cultures. 

Furthermore, 5 g/L of MgSO4 would be added in case of using a free sulphate yeast extract.  

3.2.6.2 Calcium chloride and potassium chloride 
Calcium chloride and potassium chloride were investigated together looking for an optimum 

concentration of both salts. Thus, seeking a better culture performance and a reduction of chloride ions. 

Information about these salts either on A.limacinum or thraustochytrids is limited. In many works 

different concentrations are just used without criteria. In many cases the medium just follows the Starr 

and Zeikus [178] medium composition. Only two works cursorily investigated the effect in two salts. Chi 

et al. (2007) investigated two concentrations of both salts within a single DoE together with other many 

factors. They found that CaCl2 and KCl have no important effects on A. limacinum. These results are 
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Figure 3.59 Contribution of CaCl2, KCl and error on A. limacinum performance.  Data 
was obtained after 72 h of culture at 20ºC. Medium composition based on previous 
section improvements. Initial substrate concentration was 10 g/L of crude glycerol. 
Four replicates per sample. 
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consistent with Nagano et al. (2009) [197], where they suggest that these salts are not essential for A. 

limacinum.  

In this thesis a Taguchi matrix based DoE was performed in order to discover the best combination of 

CaCl2 and KCl concentration. In this case, the selected matrix was an unmodified L9(34) which allowed the 

analysis of four factors with 3 levels. As there were only two factors, remaining columns of the matrix 

gathered the error contribution.  

The investigated concentrations were 0, 0.3 and 0.6 g/L for CaCl2, and 0, 0.5 and 1 g/L for KCl. Results were 

analyzed by ANOVA and the contribution of every factor is displayed in Figure 3.59. As can be observed, 

only CaCl2 had an effect on A. limacinum growth, whereas KCl showed no impact. It was expected because 

Cl‐ ions are already provided by NaCl, and the buffer (KH2PO4 – NaOH) is providing enough K+ ions72. CaCl2 

is contributing positively to A. limacinum growth (data not shown). In order to find an optimum CaCl2 

concentration, both factors were collected to perform a quadratic multiple regression (using polynomial 

and interaction terms). The second order regression allowed fitting a response surface to find the 

optimum value of CaCl2, which is displayed in Figure 3.60. The mesh clearly indicate that the optimum 

                                                           
72 K+ ions don’t have any role in pH buffering.  

Figure 3.60 Response surface based on a second order regression performed using the 
points from the previous experiment. Black dots show the results from the raw data. 
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DCW values are obtained when the KCl concentration is 0 and CaCl2 concentration is between 0.18 and 

0.4 g/L. Due to a risk of solubility issues, final chosen CaCl2 concentration was 0.19 g/L.  

3.2.7 Final medium composition 
The optimized seawater medium offers the best performance for A. limacinum growth and DHA 

production. The new medium can be autoclaved without any special requirement while avoids any 

precipitation. It uses a scalable (cost effective) buffer such as phosphate buffer. The medium avoids the 

use of cobalt without affecting growth performance. Moreover, the new medium has a lower cost.  The 

original medium has a cost of 1.68 € / L whereas the new medium has a cost of 1.27 € / L, based on prices 

from the same. Bulk provision would lead to a more reduced cost. Finally, as evident by observing Table 

3.29 organic nitrogen source supposed a significant increase in biomass production as well as in DHA 

accumulation (DHA yield). Thus, it resulted in a higher volumetric productivity of DHA. Furthermore, the 

remaining medium components supposed an extra increase in both parameters.  

The final medium composition is indicated in Table 3.28. Left columns indicate the components that have 

been optimized. Trace metals composition (right column in Table 3.28) was formulated based on Starr 

and Zeikus [178] formulation. For this thesis only cobalt had been eliminated. Three batch reactors were 

carried out and show the differences between the original medium, the nitrogen source optimization and 

the final media composition. The results of these bioreactors are shown in Table 3.29. As can be observed, 

the main difference lies in the DHA yield. It shows an increase of 150% or more. Final biomass 

Table 3.29 Comparison of different medium performance in batch 
bioreactors A. limacinum cultivations. 10 g/L carbon source.   

Component Concentration Component Concentration

KH2PO4 0.85 g/L Na2EDTA·2H2O 0.20 mM

NaOH 0.14 g/L H3BO3 1 mM

NaCl 18 g/L MnSO4·H2O 0.097 mM

CaCl2 0.19 g/L ZnSO4·7H2O 7 µM

MgSO4 0.1 g/L FeSO4·7H2O 0.83 mg/L

Yeast Extract 2.3·(C/10)

Tryptone 0.4·(C/10)

Carbon source ( C )
C value could be between 

10 g/L y 100 g/L

Final medium 

composition

Table 3.28 Comparison of different medium performance in batch bioreactors A. 
limacinum cultivations. 10 g/L carbon source.   
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concentration also showed an increase while using the improved media. Considering the yield and the 

biomass concentration, the productivity showed a notable difference.  

 

  

  



 3.3.Chapter achievements 

 

 

131 

3.3 Chapter achievements 
 

Chapter 3 offered a complete bibliographic and experimental revision of A. limacinum cultivation medium. 

Carbon source, nitrogen sources, salts, buffer and vitamins have been investigated in Chapter 3 seeking 

an optimal A. limacinum growth.  

It has been shown that glycerol is an excellent carbon font. Data obtained in this chapter showed a similar 

performance between glucose and glycerol cultivations. Moreover, A. limacinum has been characterized 

using different carbon sources (10 g/L) in batch reactors. This study generated the basic kinetic 

parameters which are important for the bioprocess development. Growth rate, growth yield and 

saturation give information about A. limacinum requirements in batch cultures. Furthermore, it has been 

shown that DHA yield increase is related with biomass growth in batch reactors at 20ºC.   

Nitrogen source is also a key component in A. limacinum medium. Few DoE have been used to investigate 

the contribution from four different nitrogen sources. These nitrogen sources were selected after an 

exhaustive revision of bibliography. Yeast extract and tryptone were selected as organic nitrogen sources 

and ammonium and nitrate as inorganic nitrogen sources. When A. limacinum was grown using organic 

nitrogen sources it showed better DHA yields. On the other hand, both nitrogen source types generated 

similar growth yield. In order to determine the optimum nitrogen composition two models have been 

built using ANN. Several flask culture results were introduced into ANN to generate both models 

considering final biomass and DHA yield.  Both models lead to a defined composition to maximize DHA 

production, with 2.3 g/L and 0.4 g/L (per every 10 g/L of carbon source) for yeast extract and tryptone, 

respectively. Nitrate and ammonium can be avoided from the formula.  

The concentration of sodium chloride has been investigated as it has the main contribution to salts 

composition in the developed medium. A. limacinum can grow adequately and satisfactorily produce DHA 

when the sodium chloride concentration is between 14 and 30 g/L, showing a great versatility for different 

crude glycerol salinity.  

In literature, different vitamins have been used to enhance thraustochytrids growth. From the vitamins 

described in the bibliography Cyanocobalamin is not present in yeast extract. For this reason, different 

vitamin B12 were investigated in this chapter. After investigating different cyanocobalamin concentrations 

results showed an insignificant effect of cyanocobalamin on A. limacinum growth and DHA production. 

Thus, this vitamin was eliminated from the medium. 

Tris was used as buffer in the initial composition of the medium. However, it is an expensive buffer. In this 

chapter KH2PO4 + NaOH buffer was selected according to price and pH range. After this, MgSO4, CaCl2 and 

KCl concentration was investigated. The best final concentration was determined to be 0.1 g/L MgS04 and 

0.19 g/L CaCl2, whereas KCl was excluded from the medium.  
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Chapter 4: Growth characterization and production strategies 

investigation 
 Implications of A. l imacinum in the cultures strategies 
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4.1 Introduction 
Two main pillars constitute upstream bioprocess development. The first is the proper medium for a 

specific microorganism and the second is the cultivation parameters and operation mode.  Culture 

medium for thraustochytrids has been already defined in Chapter 3. This medium has simply been tested 

in Erlenmeyer flasks and bioreactors with “standard” parameters. Initial pH and the ratio between air and 

volume are the only parameters that can be set, not even controlled, in a flask culture. In the literature, 

just some bioreactor runs were performed to validate flask data. The choice of reactor and operating 

strategy determines product concentration, number and types of impurities, degree of substrate 

conversion, yields, and whether sustainable, reliable performance can be achieved [198]. This thesis 

addresses operating considerations including key parameters for thraustochytrids. 

Bioreactors are important tools for biotechnology. They can be used to investigate and characterize 

microorganisms as well as serve as precise equipment to produce constant quality products in the 

industry. By definition a bioreactor is a vessel in which a biochemical process is carried out, which involves 

organisms (mainly microorganisms) or biochemically active substances derived from such organisms. 

Cultivating a microorganism in a bioreactor allows a very narrow control of the culture environment. 

Generally equipped with an agitator73, bioreactors ensure better substrate mixing easing mass transfer 

such as, gas / liquid, liquid / liquid, gas /solid and liquid / solid, and heat transfer. These major type of 

reactor are called stirred tank reactors (STR), and are by far the most common type of bioreactors used in 

industry. Most importantly, it provides a containment protecting the environment of the reaction, 

avoiding contamination from opportunist microorganism the culture. Nowadays, these bioreactor vessels 

are coupled with control devices which monitor many different parameters. Most common controlled 

parameters are pH, oxygen supply, oxygen concentration in the liquid phase, temperature and can 

monitor biomass concentration.  

Three operation modes of STR have been investigated in chapter 4 for thraustochytrids growth and DHA 

production. Two unsteady state processes which are batch and fed-batch, and a steady state (with a 

transient interval) that is the continuous stirred tank reactor (CSTR) or chemostat. 

4.1.1 Different operating strategies 
Each operation mode has specific characteristics, with advantages and disadvantages which defines its 

suitability for a specific process.  

4.1.1.1 Batch reactor 
A batch operation refers to a culture with a specific initial substrate concentration that is not altered. 

Because nutrients are not added, nor waste products removed during incubation, batch cultures can only 

complete a limited number of life cycles before nutrients are consumed and growth stops. This form of 

cultivation is simple and widely used. It is versatile; the same equipment can be used for different 

reactions. This operating system can complete substrate consumption. Finalized the culture, batch is easy 

to shut down and clean for fouling service. 

                                                           
73 Stirred tank reactors are the most common type of bioreactors which are evidently agitated. However, there are 
many other types of reactors which do not use a de facto agitator. As only stirred tank reactors were used for this 
thesis development, other reactor types are not addressed in this chapter, nor throughout the thesis. 
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In industry, batch reactors are larger and capital cost is usually high. It requires skilled labor, which is 

mainly required for downtime (Figure 4.61) between reactions. Downtime includes harvesting, cleaning, 

sterilization, inoculum growth and load between reactions. As batch is an unsteady state operation it 

entails exhaustive process control. It is more difficult to obtain product uniformity. Moreover, 

downstream equipment coupled to batch reactors works normally continuously and with reduced 

volume. Therefore, products need to be stored and buffered for a specific amount of time, and might not 

be suitable for labile products.  

Any microorganism grown in batch describes the same behaviour in conditions of substrate limitation 

(with a single carbon source). Any culture includes lag phase, exponential growth phase, deceleration 

phase, stationary phase and death phase. The lag phase occurs immediately after inoculation. During lag 

phase the microorganism cultivated experiences an adaptation to the new environment. Adaptation time 

is variable and depends on the age74 and size of the inoculum. Usually the lag phase is longer with old 

inoculums and faster with fresh inoculums. The exponential growth phase is also known as the maximum 

growth phase, where the cells have their metabolism adjusted and multiply themselves at maximum rate. 

Therefore, during this phase the growth rate is “constant” and a kinetic model can be established.  

                        rX = µnet · X      Equation 4.2 

                                                           
74 How long the cells have been growing in a flask/reactor, and how long they have been maintained after carbon 
source depletion. 

Figure 4.61 Comparison of batch and continuous operation. 
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Equation 4.1 describes the exponential law of any population, in this case it is referred to cell 

concentration X. Specific (net) growth rate (µnet (h‐1)) is constant during growth phase. In a batch reaction 

the rate of change of X is the same as the rate of generation of biomass according to the typical batch 

mass balance. Integration of the mass balance with 4.1 gives: 

   ��
�

��
=  μ��� · �     Equation 4.3 

Isolating X gives the following equation: 

   � =  �� · �����·�     Equation 4.4 

Where X and Xo are biomass concentration at time t and initial time t=0, respectively. Using this equation 

biomass concentration or growth rate can be calculated. Moreover, using equation 4.2 a specific (defined 

time interval) growth rate can be calculated using a finite difference scheme (subdivision of the growth in 

short time intervals), maximum growth rate can be obtained. 

Growth yield (Yx/s) is the ratio of the amount of biomass produced to the amount of substrate consumed 

(g biomass/g substrate) [199]. This can be defined as  

��/� =  
����

����
      Equation 4.5 

Where S and So are substrate concentration at time t and initial time t=0, respectively. This relates 

biomass and substrate for a specific microorganism. However, any of the equations offered cannot relate 

growth rate, biomass and substrate as Monod equation does. Monod expression serves as an approximate 

growth kinetics model.  

Enzymatic reactions are in general explained by Michaelis‐Menten kinetics. Cell metabolism involves 

numerous pathways and reaction steps. Each reaction step along the metabolic pathway of a 

microorganism corresponds to a single enzymatic reaction. Therefore, quantifying cell growth with all the 

governing parameters following all metabolic pathways would make the computation tedious. For this 

reason, a simplification of the kinetics is necessary and is what Monod did. Monod model derives from 

the premise that a single enzyme system with Michaelis‐Menten kinetics is responsible for uptake of 

substrate and its activity is sufficiently low to be growth rate limiting. In other words, the microorganism 

is as fast as the slowest enzyme reaction involved in substrate uptake metabolism. Thus, Monod model is 

a transformation of Michaelis‐Menten kinetics to approximate growth behavior in a controlled culture. 

Monod equation is the following:  

μ� =  
��·�

����
      Equation 4.6 

where µm is the maximum specific growth rate, in general when S ≫ Ks. The constant Ks is known as the 

saturation constant and it is equal to the concentration of the rate‐limiting substrate when the specific 

rate of growth is equal to 1/2 of the maximum (Ks = S when µg= ½ µm). With all described equations below, 

an investigator can monitor the parameters of any microorganism growing in batch mode. 

Thraustochytrids kinetic parameters calculation procedure is detailed in Material and Methods section.  
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4.1.1.2 CSTR or chemostat reactor 
In a CSTR or chemostat75 culture, fresh medium76 is continually supplied to a well‐stirred culture, where 

products and cells are simultaneously withdrawn. Growth and product formation can be maintained for 

prolonged periods in continuous cultureFigure 4.61. In CSTR systems, the required equipment volume is 

lower compared to batch and fed‐batch making capital cost usually relatively lower.  

Downtime is dramatically reduced, only expected for maintenance work. This reduces labor cost and 

increases utilization of the equipment, making it more cost effective. Generally, long term productivities 

are higher than any other operating mode.  Recent advances in technology automation are very appealing 

for CSTR systems, which would reduce even more labor cost and variabilities (it might increase initial 

investment cost). Downstream process equipment must be adjusted to CSTR flow. Continuous 

downstream generally uses reduced volume equipment, which makes product purification even more 

cost effective. 

Flow control is vital in CSTR operation, it defines the growth rate and the steady state. Even if the flow is 

controlled satisfactorily, long period cultures increase the risk of failing due to contamination as well as 

spontaneous mutation of microorganism (Box 4.1). In the particular situation of this thesis, 

thraustochytrids are cultured without any genetic manipulation. Wild type strains are genetically more 

stable. As thraustochytrids are generally slower than yeasts and bacteria, an opportunist microorganism 

population could shift thraustochytrids population rapidly. This may cause a shutdown causing a loss of 

production.  

A chemostat material balance on biomass is shown: 

��� �� +  ��μ��  ����� =  ��
��

��
     Equation 4.7 

where F is the volumetric flow rate (L/h), VR is the final volume (L) and Kd is the cell mass loss rate (h‐1). 

Mass balance 4.6 can be rearranged as  

��

��
= ��� + �μ

�
 �� ��  �    Equation 4.8 

where D is the dilution rate and is defined as D = F/VR.  However, three factors simplify even more 

equation 4.7. 

 Feeding is always sterile (X0 = 0).  

 Cell mass loss rate is tipically negligible compared to the growth rate (kd ≪µg). 

                                                           
75 The word chemostat implies that “the chemistry should be constant or stationary”. Therefore, by definition a 
chemostat is a CSTR only during steady state period. Not including transients state.  
76 Nutrients or fresh medium with all required components. 

 Box 4.1. Mutations during continuous cultures  
Natural mutations can take place in a chemsotat culture. Errors in DNA replication can take place with an 

average frequency of about 10‐5 to 10‐8 genes per generation. The vast majority of natural mutations in a 

chemostat are of little significance, unless it alters the function of a protein involved in growth. If the specific 

growth rate of the mutant is larger than that of the wild type, then the mutation outgrows the wild type in a 

chemostat [241].  
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 The system is in a steady state (dX/dt = 0). 

Therefore, in a chemostat the specific growth rate is equal to dilution rate (µg = D) if (kd ≪µg). This property 

allows the manipulation of the growth rate as an independent parameter. As D is governing the growth 

rate of the culture, Monod equation for continuous cultures can be expressed as following. 

� =  
��·�

����
      Equation 4.9 

where S is the substrate concentration inside/leaving the culture, not the feeding concentration So. Yield 

equation 4.4 can be applied identically to a chemostat. Thraustochytrids kinetic parameters calculation 

procedure is detailed in Material and Methods chapter.  

4.1.1.3 Fed-batch operation 
In fed‐batch, feeding is continuously or semicontinuously supplied until reaching the final volume of the 

reactor. The advantage of the fed‐batch culture is that one can control concentration of fed‐substrate in 

the culture liquid at arbitrarily desired levels. In some cases, effluent is removed discontinuously and is 

called repeated fed-batch operation. In a repeated fed‐batch the content is partially removed, and the 

rest is left in the bioreactor to serve as the inoculum for the next cycle. Fed‐batch is mainly used to 

overcome substrate and/or product inhibition, or catabolite repression by intermittent addition of 

substrate. On the other hand, it can be used as a scenario for induction of product formation not related 

with the microorganism growth. Somehow, fed‐batch is an extended batch reaction. Hence, it combines 

the advantages of batch and continuous operation. Fed‐batch is excellent for control and optimization of 

a given production criterion and allows a superior control of environmental conditions (compared to 

batch). It is the most common operation system in industrial biotechnology.  

As happen with CSTR, fed‐batch requires feeding and most importantly, flow control. Downtime after a 

production require the same procedures as batch, whereas it has the same contamination risks from 

feeding. Fed‐batch never reaches a steady state and product uniformity is harder to obtain. Coupling with 

continuous downstream processing requires storage and buffering tanks, as happens with batch 

reactions.  

4.1.1.4 Multi-stage CSTR reactor 
In some microorganism cultures, particularly for secondary metabolite production, the growth and 

product formation steps need to be separated, since optimal conditions for each step are different. 

Conditions such as temperature, pH, and limiting nutrients may be varied in each stage, resulting in 

different cell physiology and cellular products in multistage systems. Besides the advantages mentioned 

above, it obviously has the same features and drawbacks as a single tank CSTR (see section 4.1.1.2).   

This type of operation could be a powerful tool enhancing DHA production through thraustochytrids 

cultivation. Thraustochytrids optimal growth conditions are very different from DHA yield optimal 

conditions. In Chapter 4, there is an in‐depth investigation about these conditions and how to meet the 

perfect consensus production. Multistage continuous cultivation as a strategy to produce DHA is a novel 

solution described in the present thesis.  

4.1.2 A. limacinum cultivation: state of the art 
The vast majority of literature works about thraustochytrids cultivation have been carried out in flask. 

Differently from medium optimization, only bibliographic investigation performed with bioreactors has 
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been considered for Chapter 4. Flask cultivation conditions and parameters cannot be directly 

extrapolated to bioreactor. From 126 publications reporting thraustochytrids production of n‐3 PUFA, 

only 14 reported investigations about operating strategies. 

For batch bioreactors 4 publications have been found (2006‐2013). Chi et al. (2009) [200] investigated the 

aeration influence on A. limacinum in a 5 L bioreactor, as well as having previously developed in Chi et al. 

(2007) [93].  They have clearly shown that oxygen is a limiting factor in Erlenmeyer flask cultures. Oxygen 

limitation causes an increase in DHA accumulation due to PKS‐like synthase pathway (as explained in 

Chapter 1 and 2), whereas oxygen abundance enhances biomass growth. This might explain why in flask 

cultures DHA yields are generally higher than in bioreactor. Rosa et al. (2010) [9] investigates two media 

compositions for differential biomass and DHA enhancement. In other words, one medium is used to grow 

(300 mL) A. limacinum that are then centrifuged and cultivated in a bioreactor with a second medium. 

The second medium seeks DHA stimulation. Two years later, Prabu et al. (2012) [201] investigated the 

possibility of replacing NaCl by Na2SO3 to avoid high chlorine ion concentration and possible corrosion 

problems with stainless steel vessels. The last reported batch culture of thraustochytrids was from Qu et 

al. (2013) [202] where they investigated three different strategies for DHA production through 

Schizochytrium sp. These strategies are batch, fed‐batch and repeated fed‐batch. This work reveals that a 

fed‐batch approach is more effective than batch. Reported batch productivities are very variable, because 

they depend on the interval time selected by the investigator (including inoculum, downtime, etc.). The 

values oscillate between 20 to 150 mg DHA /L ·h.  

Jackobsen et al. (2009) work was the first purposing a fed‐batch to increase DHA productivity. 

Aurantiochytrium sp. T66 was grown and reported a productivity of 93 mg/ L·h. In Qu et al. (2013) [202] a 

fed‐batch and a repeated fed‐batch showed higher productivities, with a maximum of 138 mg DHA/ L ·h 

in 136 hours cycle.  The same group published two more works about fed‐batch cultivation of 

Schizochytrium sp. [203]. They have investigated different aeration procedures during fed‐batch 

cultivation obtaining a maximum productivity of 148 mg DHA/L · h [204,205]. Ganuza et al. (2008) [206] 

used a fed‐batch distinguishing two main phases. First, the initial batch cultivation set an ammonium rich 

environment, to finally use a feeding stage to create nitrogen starvation. Results show that the second 

stage did not accumulate enough DHA to justify this approach. However, batch stage generated a notable 

amount of biomass. This data is in concordance with what has been reported in Chapter 3 (this study) 

about ammonium polar effect, and its negative impact on lipids accumulation but positive impact on cell 

growth.  

A different group of investigators from South Korea have investigated different fed‐batch strategies for a 

new strain, Aurantiochytrium sp. KRS101 [141,192,207]. What stands out about these works is the use of 

fed‐batch to switch C/N ratio, seeking an increase of lipid accumulation. Their maximum DHA productivity 

was 125 mg DHA / L ·h. Chang et al. (2013) investigated another new strain, Aurantiochytrium sp. TC20. 

They have investigated different carbon sources in a fed‐batch, to obtain a productivity of 102 mg/L·h 

(including inoculum time) [208]. Similarly, to batch, productivities depend on the cultivation time intervals 

considered. 

Only two publications working with thraustochytrids in a continuous reactor have been found. Ganuza et 

al. (2007) investigated a continuous DHA production with Schizochytrium G13/2S. Using glucose, their 

work reported 39 mg DHA / L ·h produced continuously. Some years later, only one investigation on 

continuous production has been published. Ethier et al. (2011) studied A. limacinum SR21 in a continuous 
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reactor, obtaining a productivity of 21.6 mg DHA / L ·h.  Reported A. limacinum continuous productivities 

are very low compared to batch and fed‐batch, but there are many things to consider. First, 

thraustochytrids cell cycle is different in batch than in continuous (see section 4.1.3 of Chapter 4). Second, 

thraustochytrids growth and DHA enhancing conditions are different. A continuous culture cannot switch 

between conditions; otherwise steady state is lost. Accordingly, a single tank continuous reactor could 

not compete with batch or fed‐batch. However, a multi‐stage continuous culture could combine batch 

and fed‐batch advantages conditions while producing DHA continuously.  

4.1.3 A. limacinum implications and further investigations 
In many ways, A. limacinum is a very special microorganism. As explained in Chapter 1 and 2, it has a 

complex cell cycle and metabolism that behaves differently depending on the conditions fixed during the 

culture. This happens with many strains of thraustochytrids, generating the huge divergence that can be 

found in literature. Thraustochytrids are still just black boxes and all the information is based on empirical 

statements (with some exceptions, e.g. Matsuda et al. (2012) [112]). Just the implication of oxygen and 

temperature are well known and explained in the present section. Other parameters like carbon source 

concentration or residence time in a continuous reactor are not considered. 

Temperature is an important factor affecting cell performance. Temperature and thraustochytrids 

relationship is very well established. Growing this eukaryote microorganism at low temperatures77 (e.g. 

20 ºC) causes an increase in lipid accumulation. Specially PUFA because they confer fluidity to 

thraustochytrids membrane at lower temperatures [63,209]. Contrary, when temperatures are high78 (e.g. 

30 ºC) microorganisms accumulate less lipids but growth rates are significantly higher. Temperatures 

above 40 ºC could cause thermal death. Interestingly, Taoka et al. (2011) investigated both the growth of 

A. limacinum at very low temperatures (10 ºC) and a cold shock by storing biomass at 4ºC after carbon 

source depletion, but have not seen a DHA or lipids increase. Probably due to a reduced growth rate and 

metabolic activity at this temperature, likewise a lack of carbon source to build up new FA. There are 

several other works investigating different temperatures for different strains, where growth and DHA 

were monitored. In all cases the behaviour followed the same trend, cold is good for lipids and warm for 

biomass development.  

During any culture, pH affects the activity of enzymes and therefore the microbial growth rate. The 

optimal pH for growth may be different from that for product formation. As explained in Chapter 3, 

thraustochytrids are especially versatile. This allows them to grow in a wide range of pH values. Unagul et 

al. (2007) [92] have shown that A. mangrovei can grow well with pH values between 5 and 7. Moreover, 

Arafiles et al. (2011) [210] have revealed that Thraustochytrium sp. can grow well in media with either pH 

4 or pH 8. In the same work, they suggest that Schizochytrium sp. (phylogenetically closer to A. limacinum) 

can only grow in media with pH values between 5 and 8, never above 8. Different pH values with the 

current medium to cultivate A. limacinum are explored in this chapter. 

Dissolved Oxygen (DO) is an important parameter in bioreactors and may be a limiting element, since 

oxygen gas is sparingly soluble in water. Oxygen effect on DHA accumulation in thraustochytrids has been 

widely studied. Literature works agree that oxygen has an important effect specifically on DHA 

production.  As explained in Chapter 1 (section 1.3.3), many thraustochytrids have two FA biosynthetic 

                                                           
77Temperatures below room temperature (25 ºC). 
78 Temperatures above room temperature (25 ºC). 
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pathways. One of them, the standard pathway79 is oxygen dependent, while the PKS‐like synthase is not. 

Interestingly, the standard one produces different PUFA nonspecifically, but the PKS‐like synthase has a 

great specificity for DPA and DHA production. Therefore, a reduction of available oxygen would cause the 

FA profile of thraustochytrids to shift towards DPA and DHA (Figure 2.7, Chapter 2).  

It is worth mentioning three publications out of the great amount of oxygen investigations on 

thraustochytrids, because suggested good ideas about differential production between biomass and DHA. 

Chi et al. (2008) have explored a two stage cultivation of A. limacinum. The first stage consists of a simple 

fed‐batch, while the second stage involves putting the biomass in a sealed flask to avoid any oxygen 

supply. They found 21% increase in DHA content.  Qu et al. (2010) and Ren et al. (2010) have studied the 

effect of oxygen on Aurantiochytrium sp. They have investigated three different volumetric mass‐transfer 

coefficient (KLa)80 values, setting a high one during first part of fed‐batch (batch) and a lower one for the 

second part of fed‐batch. They report the same result, a low KLa enhances DHA production. kLa is 

influenced by many variables. Factors include everything from a bioreactor’s size and design to the 

sparging of gas, mixing, cell line, media type, temperature, pH, salt content, and antifoaming agents [19].  

Residence time is a key parameter for a repeated fed‐batch and a CSTR. Thraustochytrids in a CSTR or 

repeated fed‐batch, need a minimum residence time to accumulate the desired amount of DHA. 

Therefore, in a continuous production of DHA, residence time is a parameter to consider.  

Carbon source starvation or high C/N ratio could be an important factor in the accumulation of lipid in 

thraustochytrids as well. Some experiments carried out in this thesis pointed to the fact that carbon 

source at lower concentrations could stimulate a nonspecific accumulation of lipids. This will be discussed 

in the following sections.  

All the factors discussed above open a great opportunity to create a multi stage CSTR system to produce 

DHA continuously with high productivities.  

4.1.4 A. limacinum kinetic characterization in CSTR 

4.1.5 Multi-stage for DHA production  
According to the factors highlighted and advantages of CSTR production, a multi‐stage CSTR with shifting 

conditions seems a good idea. However, it has many logistic implications as well as some parameters 

which need to be modeled. In the first place, the best temperature for A. limacinum growth using the 

developed medium was examined.  Furthermore, agitation and inlet airflow was modeled according to 

two responses: DHA production and DCW maximization. Thus, allowed setting the best conditions for 

each stage of the multi‐stage CSTR. In order to explore different residence times, dilution rate (D) was 

varied in different experiments. Finally, some experiments have been addressed in order to elucidate if a 

low carbon concentration has any effect on A. limacinum DHA accumulation.  These experiments would 

define the viability of a multi‐stage CSTR with thraustochytrids.  

 

                                                           
79 Common in eukaryotic microorganisms. 
80 kLa is the volumetric mass‐transfer coefficient that describes the efficiency with which oxygen can be delivered 
to a bioreactor for a given set of operating conditions 



S. Abad Sánchez Ph.D. Thesis 

 

142 

4.2 Results and Discussion  
With the aim of exploring the industrial potential of A. limacinum for the enhanced production of PUFA 

(mainly DHA), a personalized medium has been developed (Chapter 3). After the formulation of the 

medium, the project initiated the exploration of different cultivation strategies and key parameters, such 

as aeration, oxygen supply, temperature, pH and residence time. The first step was adjusting the best 

temperature and oxygen conditions. Temperature, which has been extensively studied, only required a 

few experiments to validate the values using the current medium. An optimization of agitation and oxygen 

is essential to control DHA stimulation. Optimization was achieved applying a special DoE (CCD, see 

Appendix A) using biomass and DHA production as responses.  

The cultivation pH ranging from 5.8 to 8 was regulated by the phosphate buffer. Low pH values benefit 

the solubility and availability of some nutrients, for any microorganism cultivated. On the other hand, it 

has been reported in many literature works that some thraustochytrids are affected by pH values equal 

or above 8. Accordingly, A. limacinum has been cultivated within a pH range between 6.5 and 7.5. After 

the parametric adjustment and optimization different operating strategies have been investigated.  The 

investigation started with batch cultivations using the new medium and a few runs of fed-batch 

cultivation, to investigate low carbon concentration effect. Then, a few continuous reactors and multi-

stage continuous reactors with shifting conditions were investigated.  

4.2.1 Optimum temperature for A. limacinum growth 
In order to evaluate temperature influence on A. limacinum, a set of experiments using 250mL Erlenmeyer 

flask with 85 mL of medium was performed. Temperatures investigated ranged from 15 up to 33 ºC, with 

six different values. Considering that low temperatures favour oxygen solubility, the cultures were 

agitated at 200 rpm, generating the same oxygen availability. Thus, culture differences would be only 

derivable from temperature differences.  
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Figure 4.62 DHA and Biomass (DCW) profile of A. limacinum grown at different temperatures. 
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For the majority of microorganisms grown at suitable temperatures and without nutrient limitation, the 

maximal growth rate can be described solely as a function of temperature. Inspection of Figure 4.63¡Error! 

No se encuentra el origen de la referencia. indicates that temperatures between 20 and 28 ºC represent 

thraustochytrids ideal growth range. Temperatures of 15ºC caused an important decrease in the final 

biomass, whereas the cultures incubated at 30‐33 ºC showed better growth than 15ºC, but not the 

maximum. Therefore, 30 º C would be the upper limit of A. limacinum using the current medium. Final 

biomass values from temperature experiments fit in a polynomial model, as indicated in Figure 4.62. The 

polynomial line suggests that maximum biomass values would be obtained in cultures incubated between 

28 and 29 ºC. This temperature boosts enzymatic activity of A. limacinum making them growth faster. 

Generally, an A. limacinum culture which has been incubated at 15 ºC it would reach the same final OD 

values as another cultivated at 20ºC. The difference is that at 15 ºC would need much more time, as 

understood from Figure 4.64. This data is in concordance with other temperature revisions in the 

literature [54,92,99,209]. 

Temperature has a different effect on PUFA accumulation, especially on DHA. As illustrated in Figure 4.62, 

DHA yield (g DHA / g biomass) showed a negative tendency when cultivation temperature was increased, 

suggesting that DHA production decreases more, above 33 ºC. Thus, maximum DHA yield was obtained at 

15 ºC, and might be increased at even lower temperature. PUFA are generally liquid at room temperature 

due to their chemical characteristics (double bonds). When A. limacinum is in a low temperature 

environment, the extra DHA (and other PUFA) produced might be helping the membranes to fluidize as 

reported by Singh et al. (1996) [49]. Membranes are mainly composed of phospholids, which are 

diacylglycerols with a phosphate group (head) and two fatty acids (tails). At low temperature (low energy), 

a membrane with a lack of unsaturated FA would cause the membrane to enter into a crystallized state. 

Nevertheless, if the membrane is rich in unsaturated FA, double bonds would keep FA (from 

phospholipids) separated maintaining the fluidity even at low temperatures. Accordingly, producing PUFA 

could be an evolutionary and a natural response to colder environments, for thraustochytrids and many 

other organisms. 

At this point it is clear that temperature affect very differently DHA and biomass production. As outlined 

in the introduction (section 4.1.3) a final cold shock does not increase DHA accumulation significantly 

[211], and a batch with a final switch to lower temperatures would not work. Therefore, a consensus 

value, an intermediate temperature assured both a good DHA and biomass production would be suitable 

for a batch operation. Figure 4.63 offers the computed value of the product between DHA yield and final 
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biomass concentration. These data indicate that the consensus temperature is between 20 and 25 ºC. 

Accordingly, 20 ºC was the selected temperature for every single tank culture strategy (batch, fed‐batch 

and CSTR) performed in this thesis81. In the case of a multi‐stage CSTR, different temperatures can be set. 

However, it needs further investigation because if part of DHA accumulation increase is due to membrane 

fluidization, those DHA moieties will not be extracted with the technique presented in Chapter 5.   

Data presented in this section, only corresponds to the current medium developed in Chapter 3, any 

variations in the medium could vary the temperature output presented above.   

4.2.2 Aeration and agitation modelling 
Oxygen can become a limiting parameter in a badly agitated and/or aerated bioreactor. Oxygen is 

essential for many enzymatic reactions that power the cells, and a low availability could affect A. 

limacinum growth as well. Moreover, as discussed in section 4.1.3, dissolved oxygen could be the key in 

thraustochytrids to produce more DHA [112]. Because low oxygen concentrations enhance the specific 

accumulation of DHA, as reported in many works [16,184,189,200,212]. Therefore, A. limacinum 

cultivation brings another parametric contradiction which could be solved using a multi‐stage CSTR 

(section 4.3.3). Factors which govern kLa, and consequently the amount of transferred oxygen in a CSTR 

were investigated. Such factors are agitation and aeration. Aeration provides sterile air rich in oxygen and 

agitation is responsible for breaking air bubbles down, increasing transfer area. Other factors can help 

dissolving the oxygen into the medium, but in a reactor are generally fixed, becoming just a constant. 

Agitation and aeration parameters can be controlled in a bioreactor. Using a Central composite design 

(CCD) 5 levels per factor have been investigated. Agitation in a range between 298 and 1003 rpm, and 

aeration in a range between 0.1 and 3.5 L/min (0.06 and 2.05 in v/v·m [volume O2 / volume of liquid · 

                                                           
81 With the exception of the section 4.3.2 experiment which has been carried out at 25 ºC.  
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min]). All these parameters were sequentially applied in a single tank CSTR (25ºC and pH 7) with a feeding 

of optimized medium containing 20 g/L of purified crude glycerol (see glycerol purification procedure in 

Materials and Methods chapter). The reactor was stabilized 3 days after every applied change and 

measuring DHA yield and DCW. The whole CSTR system was maintained for six weeks without any 

contamination.   

Applying a two factor CCD has permitted the construction of two (biomass and DHA yield) second‐order 

models (containing 5 central points, 4 factorial points and 4 axial points, see Appendix A). The 

experimental matrix with codified levels is shown in Table 4.30. Every experimental point had two or three 

repetitions. Both models were then fitted according DHA and growth responses. DCW second‐order 

model is shown in equation 4.9 and DHA second‐order model is shown in equation 4.10,  

��� (
� �������

�
) = 17.16 0.24�+1.01� 1.47�2 0.48�2+0.62��    Equation 4. 10 

��� (
� �������

�
) = 17.16 0.24� + 1.01� 1.47�� 0.48�� + 0.62��    Equation 4. 10 

���  �
� ���

� �������
� = 0.175 0.020� 0.025� + 0.005�� + 0.002� � 0.003��   Equation 4. 11 

where S corresponds to agitation coded values and A to aeration coded values. Determination coefficient 

R2 of both models was >0.9 suggesting that more than 90% of points can be explained with the models. 

The statistical significance of equations 4.9 and 4.10 were checked by F‐test. ANOVA used to perform an 

analysis of both quadratic models is detailed in Table 4.31.  It is evident from F‐value82 that both models 

are highly significant. Furthermore, a response surface has been plotted, illustrated in Figure 4.65. Three‐

dimensional plots help to understand how aeration and agitation affect growth and biomass production. 

                                                           
82 F values above 2 are considered significant 

Experiment
Agitació 

(RPM)

Aeració 

(L/min)

1 ‐1 ‐1

2 1 ‐1

3 ‐1 1

4 1 1

5 ‐1.4142 0

6 1.4142 0

7 0 ‐1.4142

8 0 1.4142

9 0 0

10 0 0

11 0 0

12 0 0

13 0 0

Table 4.30 Experimental matrix of second order CCD. Agitation codification (from – 1.42 to 1.42) = 298, 
400, 650, 900 and 1003 rpm. Aeration codification (from – 1.42 to 1.42) = 0.1, 0.55, 1.8, 3 and 3.5. 

 Agitation Aeration 

  (RPM)  (L/min) 
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The analysis of the plots allows the identification of the optimal values. Setting agitation at 680 rpm and 

an airflow of 3 L/m (1.76 vvm83) would ensure a maximum production of biomass. These results are in 

concordance with Song et al. (2007) [191] where they have reported a similar behaviour of A. limacinum 

OUC88. However, the exact values are not comparable because Song et al. worked with very low agitation 

values. Optimal agitation and aeration found in this dissertation, would be slightly high for an industrial 

implementation, especially for batch cultures. Industrial scale batch reactors are generally bigger and 

require a lot of energy for the stirring system. Agitation energy requirements increase exponentially with 

the scale. Inspection of the DCW response surface in Figure 4.65  indicates that the agitation could be 

reduced 400 – 500 rpm without a great sacrifice in biomass productivity. On the other hand, an airflow of 

3 L/min might be critical at large scale. As happens with agitation, the value can be reduced without a 

significant impact on biomass production, down to 1.5‐2 L/min. 

Optimal parameters for DHA yield response are different. An agitation of 200 rpm and an airflow of 0.1 

L/min would maximize the yield of DHA. These are the lowest levels considered in the response surface, 

                                                           
83 The unit 'vvm' is used for bioreactor culture. The first 'v' stands for volume of air (e.g. liter) ; the second 'v' stands 
for per unit of medium (e.g. liter); 'm' stands for per unit of time (e.g. minute). For example, 2 vvm (l/l/m) means in 
1 minute time there is 2 liter of air passing through 1 liter of medium. 

Table 4.31 ANOVA for the second‐order models. 

Figure 4.65 Response surface plot of DCW model (right) and DHA model (left). 
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suggesting that even lower values could enhance a greater DHA accumulation. According to the model 

the yield would be higher than 0.24 g DHA / g biomass, which is the maximum yield obtained in a reactor 

(in this study). Therefore, those values of DHA are in concordance with the data presented in this thesis, 

where a yield of more than 0.24 g DHA / g biomass is commonly found in flask cultures where the oxygen 

transfer is low. From an industrial standpoint, an agitation of 200 rpm and an aeration of 0.1 L/min 

conditions would be easy and cheap to reproduce.  

Using a multi‐stage CSTR optimized aeration and agitation conditions have been investigated in section 

4.2.3.4, including different temperatures per tank. Furthermore, in order to find a consensus optimal 

values for future single tank experiments performed in upcoming sections, a response surface using the 

product of both models was calculated. The product plot is illustrated in Figure 4.66. Observing the mesh, 

it is clear that aeration has a key role on DHA final concentration, while the effect of the agitation is lower. 

Despite the fitting of this third model is less accurate than the previous, 500 rpm and 1L/min were selected 

as intermediate values for a better production of DHA.   

4.2.3 Investigating culture strategies 

4.2.3.1 Batch bioreactors (carbon source concentration) 
Bioreactors operating in batch mode are commonly used, mainly because it is a flexible and simple way 

to produce many bioproducts. Thraustochytrids cultivation is not different, and is commonly carried out 

in batch reactors. Furthermore, in this thesis the main goal was to find the most productive way to 

produce DHA through A. limacinum cultivation. As detailed in the introduction, many literature works 

have already reported batch bioreactor cultivations [9,130,200–202,213]. Furthermore, Chapter 3 

undoubtedly showed that A. limacinum grow well in batch reactors.  In this section, batch reactors are 

used to explore the effects and viability of using higher carbon source concentration in A. limacinum 

Figure 4.66 Response surface of the product of both models. F value of the model 
= 5.7. 
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cultures growing in the optimized medium from Chapter 3. Accordingly, a set of bioreactors (six different 

initial carbon source concentrations) were performed with 4 replicates per experiment. Concentrations 

investigated were 80, 60, 40, 30, 20 and 10 g/L.   

Yield and productivity calculations were done at the end of exponential time.  Figure 4.67 shows the 

output of a 20 g/L batch bioreactor which yielded a final biomass of more than 16 g/L and a DHA yield of 

0.24 g/g, while all the substrate has been consumed. Calculated growth rate shows the typical two stage 

life cycle of a batch reactor with thraustochytrids. There was a first drastic increase in growth rate during 

zoospore release followed by a steady linear growth during vegetative stage. During a batch, other life 

stages are manifested (see more information in section 2.3.3) but zoospores and vegetative stage are the 

dominant ones (> 80 % of cell stage types). Every reactor was carried out with the same conditions except 

the carbon source initial concentration and the corresponding nitrogen source.  

Table 4.32 gather the results of the set of batch bioreactors from S0 10 to 80 g/L. Mean biomass value 

follows a positive tendency while increasing glycerol concentration. By growing A. limacinum at 20 ºC or 

lower, enhanced DHA accumulation as observed in every reactor listed in Table 4.32. Obviously, a culture 

needs more time to reach higher biomass concentrations as well as to accumulate enough DHA. 

Cultivation time should be proportional to the amount of carbon source included at the beginning of the 

culture. There is a reduction in the substrate / biomass yield from 60 g/L (S0).  

This growth efficiency reduction might be caused by the increased viscosity. Increased viscosity reduces 

oxygen transference coefficient and hinders nutrient diffusion. Pyle et al. (2008)  [131] already reported 

an inhibition behavior when the concentration of glycerol reached 100 g/L. Crude glycerol unknown 

contaminants might be another cause of growth inhibition. For example, residual soap and methanol re‐

concentrated as S0 increases could be affecting A. limacinum negatively. On the other hand, it might be a 

matter of nutrient limitation rather than carbon source.  For instance, a salt component of the medium 

or a trace metal. Contrarily, when the concentration of initial carbon source was low, substrate / biomass 

yields are very high (e.g. S0= 10 g/L gives Yx/s =0.9). This might be caused by the abundance of some 

elements in the organic nitrogen sources that are acting as carbon source as well (e.g. amino acids which 

have not been used as building blocks for peptides). Plotting all the batch reactors with different S0 versus 

final biomass gives the “real” carbon source yield. The slope generated is equivalent to the amount of 

Figure 4.67 Monitoring profile from a 20 g/L (S0) batch bioreactor of A. limacinum. 20 º C; pH 6.5‐7. 
Agitation of 500 rpm and 1L/min of air supply. 
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glycerol dedicated to produce biomass. The slope does not include other carbon sources which could be 

present in the medium. Therefore, it can be considered that per each gram of glycerol 0.73 g of biomass 

were generated.  

The cultures with a higher DHA productivity (rDHA) are those with 40 and 60 g/L as S0, with a maximum peak 

of 76.9 mg DHA /L·h.  Chi et al. (2009) have reported a productivity of 23.3 mg DHA /L·h using glycerol as 

carbon source, whereas the maximum yield reported with glucose has been 124 mg DHA /L·h in the work 

of Yaguchi et al. (1997) [187]. There is another publication reporting batch bioreactor cultivating 

thraustochytrids [9] with similar productivities but it was a two stage batch84. Therefore, in a single and 

simple batch medium and parameters investigated in this study shows high productivities. Different 

                                                           
84 Two batch phases with switching conditions and medium. 
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Figure 4.68 Linear regression between initial carbon source concentration and the final biomass 
obtained. Points collected from different bioreactor experiments, using the following conditions: 20 ºC; 
pH 6.5‐7; 500 rpm; 1 L air /min. 

Table 4.32 Results of A. limacinum batch cultures using different concentrations of carbon source. Every 
reactor was carried out at the following conditions: 20 ºC; pH 6.5‐7; 500 rpm; 1 L air /min. * Mean biomass 
value. ** Volumetric productivity of DHA. 
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culture strategies are investigated in the following sections, and will be compared at the end of this 

chapter to elucidate which one is the most prolific way to synthesise DHA.  

Every factor discussed below has an effect on the final DHA productivity (r DHA) as can be seen in Table 

4.32. 

4.2.3.2 Fed-batch bioreactors 
Fed‐batch bioreactors were planned in order to investigate if a sustained low amount of carbon source 

triggers unspecific triglycerides accumulation. When the carbon source is scarcer, thraustochytrids tend 

to accumulate a major amount of triglycerides, as happens at the end of every batch. Specific experiments 

were designed to investigate this phenomenon. These experiments indicated that adding a low amount 

of carbon source in a culture with depleted substrate increased the lipid and subsequently the DHA 

accumulation. An example of these experiments is shown in Box 4.8, where it can be observed that 

temperature and low carbon concentration have an effect on DHA accumulation. However, it is clear that 

a low amount of carbon source concentration causes a major increase in DHA final yield (Box 4.8).  

Two replicates of a fed‐batch operation were performed in order to evaluate if this phenomenon could 

increase the final yield of DHA.  Fed‐batch was initiated after the complete depletion of carbon source in 

the initial batch85, as can be seen in Figure 4.69. The feeding consisted of an optimized medium with 27 

g/L of purified crude glycerol at an average flow of 0.032 L/h. The feeding was maintained until a final 

volume of 1.95 and the culture was carried out at 20 ºC. This flow guaranteed a carbon source 

concentration between 0 and 1 g/L (Figure 4.69).  After fed‐batch started, biomass remained constant 

(20‐21 g/L) while the DHA yield increased progressively until reaching 0.23‐0.24 g DHA / g biomass. The 

fed‐batch final yield was not as high as expected from the experiments shown in Box 4.8. It seems that in 

flask cultures the accumulation of DHA was always higher, this may be caused by a low availability of 

oxygen. Considering only the fed‐batch culture time, an r DHA of 105 mg DHA / L·h was obtained. 

                                                           
85 Considering that thraustochytrids keep glycerol in their cytoplasm until it is processed, when the concentration 
of substrate is 0, they still have substrate and the metabolism is not collapsed.  

 Box 4.8. Carbon source experiment 
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Fed‐batch was seeking to reproduce an extra accumulation of DHA as high as in flask cultures. However, 

fed‐batch showed similar results to batch bioreactors. Considering the conditions established in the fed‐

batch experiment, DHA stimulation might be only triggered by temperature and oxygen limitation.  It is a 

common issue in literature, bioreactor cultures reported lower yields than flask cultures where oxygen is 

a limiting element [186,197,214]. Oxygen limitation implications were investigated in CSTR experiments. 

Furthermore, in a hypothetical situation of performing an 80 g/L carbon source feeding fed‐batch rDHA 

values would be between 81 mg/L· h and 72 mg/L· h. Such productivities are approximately the same as 

80 g/L (S0) batch bioreactors.  

4.2.3.3 CSTR reactors 
The objective of this section is to show the investigation on cell growth kinetics and A. limacinum SR21 

DHA production through a CSTR culture. The present work seeks the kinetic characterization of A. 

limacinum growing with the medium developed. This way can be compared with those values obtained 

from batch reactors. A chemostat86 is a powerful tool to study and calculate kinetic parameters of a 

microorganism by investigating the effects of environmental changes during the culture. It is generally 

more precise than batch reactors. It is worth mentioning that using a chemostat to investigate A. 

limacinum will only reveal vegetative cells kinetic parameters. As explained in Chapter 2, A. limacinum do 

not manifest zoospore life cycle during a continuous culture.  

Chemostat as a tool to determine A. limacinum kinetics.  

                                                           
86 It is a CSTR in a steady state situation. 
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Two chemostat reactors were purposed in order to investigate A. limacinum kinetics. The first started 

from a batch reactor of 20 g/L (S0) and the second from a 25 g/L (S0) one, with a feeding of 25 g/L and 27 

g/L of carbon source (including the developed medium), respectively. Kinetic parameters were calculated 

as explained in materials and methods section, by applying different D87 on the CSTR. The investigation 

started from the lowest D value. With a low dilution rate, the culture reached the highest biomass 

concentration of the experiment (as expected). Then, D was slightly increased and left for 3 days allowing 

the culture to stabilize. D was then increased until it reached a low biomass concentration.  The results of 

one of those CSTR bioreactors are plotted in Figure 4.70.  

Saturation constant (ks), maximum growth rate (µm), cell 

mass loss rate (kd) and maintenance coefficient (ms) were 

calculated analysing data obtained from both plots (the 

same procedure for both bioreactors). Using these type of 

plots, the kinetic parameters were calculated and the average 

result is shown in Table 4.33. Ks defines the affinity of the 

microorganism for a specific carbon source. Ks value found of 

A. limacinum for crude glycerol was 13.6 g/L. This value is 

higher than those obtained in batch cultures (8.1 g/L). The difference is significant, but it can be attributed 

to the alteration of A. limacinum life cycle during a continuous reactor. Life cycle divergence impairs 

growth rates as well, thus giving lower µm for continuous reactors when compared with batch reactors. A. 

                                                           
87 Reminder: D stand for dilution rate (h‐1) 

Figure 4.70 Graphical calculation from A. limacinum kinetic parameters growing in a continuous mode and 
glycerol as carbon source. CSTR with a feeding of optimized medium containing 27 g/L of purified glycerol. 
Plot a correlates specific growth rate and dilution rate divided by one. Plot b correlates dilution rate and 
carbon concentration divided by one. 

a 

b 

Ks (g S / L) 13.6 ± 0.45

µmax (h
-1

) 0.07 ± 0.006

ms (g S / g X ·h) 0.0045 ± 0.001

kd (h
-1

) 0.0058 ± 0.002

Table 4.33  Mean values from calculated 
parameters as indicated. 
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limacinum growing in a vegetative stage gave a µm of 0.07 h‐1 whereas batch reactors showed µm values 

of 0.20 h‐1. Again, this is attributable to the lack of zoospores in a continuous reactor.  

Finally, ms and kd could be calculated using the plot indicated in Figure 4.70a (see materials and methods) 

which represent the amount of substrate used for biomass maintenance per hour and the rate of cell mass 

loss. As ms and kd showed low values indicates that the microorganism was well adapted to parameters 

and medium conditions. Moreover, a prediction of biomass and substrate concentration as well as a 

biomass volumetric productivity could be predicted for every D applied, using the four determined 

parameters (plotted in Figure 4.71). D value ensuring the maximal productivity (while safely avoiding a 

wash ¡out phenomenon) is 0.04 h‐1. Above this value the cells would come out from the bioreactor too 

fast, whereas at much lower D would result in a productivity loss. Discovered kinetic parameters, the 

prediction shown and some logistical constraints defined the high time consuming investigation about 

CSTR cultivation as well as its variations (multi‐stage CSTR).  

Single tank CSTR runs  

Four single tank CSTR were performed using the developed medium. The substrate concentration in the 

feeding solution (Sf) was kept at 60 g/L and 80 g/L. The results are summarized in Table 4.34.  

Ethier et al. (2010) [37] and Ganuza et al. (2007) [30] already investigated single tank CSTR with S. 

limacinum SR21 and Schizochytrium sp. G13/S2, respectively. Ethier et al. used a standard medium 

reported by Chi et al. (2007) [93], and feeding glycerol concentrations between 60‐90 g/L of crude glycerol 

to perform a CSTR bioreactor with A. limacinum. In their work a yield of 0.3‐0.4 g biomass/g substrate was 

reported which is lower than the 0.6 g/g yield found in the present thesis for single tank CSTR (results 

shown in Table 4.34).  A 10 mL centrifuged sample of the culture leaves an important pellet as can be seen 

in Figure 4.72. These results add evidences of the great growth yield obtained with the current medium 

and parameters. 

Figure 4.71 Prediction of biomass, substrate and volumetric productivity for 
different dilution rates (D) in a CSTR bioreactor with A. limacinum.  
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In this study it has been demonstrated that the organic nitrogen source has to be increased parallel to 

carbon source concentration (extensively explained in Chapter 3). Therefore, the difference on medium 

composition and optimized oxygen supply (aeration and agitation) might be impairing glycerol uptake and 

its transformation to biomass and DHA, in Either et al. work.  For the same reason, A. limacinum showed 

a lower affinity for crude glycerol as evident by Ks values reported in Ethier et al. [52]. They have reported 

a Ks of 45 g/L which is larger than the value of 13.6 ± 0.45 g/L reported in Table 4.33  of this study. Finally, 

µm value in Ethier et al. [52] was 0.029 h‐1 whereas the experiments performed in this study gave a µm of 

0.07 ± 0.006 h‐1. The divergence appearing in both cases is probably caused by a difference in growth 

parameters and especially medium composition.  

Presumably, Either et al. [52]work was oriented to kinetic parameters 

investigation instead of seeking a maximum productivity. Contrary to 

Ganuza et al. (2007) [213], who investigated the possibility of producing 

lipids using Schizochytrium sp. in a continuous bioreactor. Ganuza et al. 

[213] have obtained an rDHA value of 40 mg/L·h using a feeding of 40 g 

glucose /L. Therefore, they would be able to obtain a productivity of 80 

mg/L·h approximately, in hypothetical situation using 80 g/L of glucose.  This 

value is similar to those obtained in this study, where a maximum rDHA of 135 

mg DHA /L·h has been obtained.  

Carbon source feeding concentration is important to reach high biomass 

densities (Figure 4.72) resulting in a higher amount of DHA; obvious when 

observing rDHA values from Table 4.34  These values are closer to Rosa et al. 

(2010) [9] “double” batch rDHA of 154 mg DHA /L·h. Accordingly, multi‐stage 

CSTR purposed in the following section would be able to reach these 

productivities.  

In the last single CSTR culture the residence time (τ) was varied by increasing 

the final volume. However, residence time has not altered the DHA 

accumulation as can be seen in Table 4.34. Higher DHA yield was expected from the CSTR bioreactor with 

higher residence time. Using optimized parameters from section 4.2.2 might be masking residence time 

effects. Because the optimized parameters for dissolved O2 have already shown near maximum DHA 

yields.  Nevertheless, residence time should be important in the following section were multi‐stage CSTR 

is investigated. Initial tanks would enhance biomass production, and the cells would need time to 

accumulate DHA in the subsequent tanks.  

Table 4.34 Single tank CSTR results. Cultivation maintained at 20 ºC and pH between 6.5 and 7.  500 rpm 
and 1L/h. Feeding flow rate of 0.00264 L/h. Residence time τ was varied by increasing the final volume. Sf

stands for substrate concentration in the feeding solution. Yp/s stands for DHA yield. In this case the first 
and the last tank. The cut line separate 60 g/L bioreactors from 80 g/L ones. 

τ (h‐1) D (h
-1

) Sf (g/L) X (g/L) Yp/s  (g/g) Yx/s  (g/g) r DHA (mg/L·h)

64 0.0151 60 34.7 0.23 0.58 120.4

64 0.0151 60 33.5 0.18 0.56 91.0

64 0.0151 80 47.7 0.19 0.6 136.7

197 0.0151 80 46.8 0.19 0.59 134.1

Figure 4.72 Figure of 10 mL 
centrifuged samples of 
high OD A. limacinum 
cultures.  
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Thinking about a multi‐stage CSTR, a first reactor being able to grow continuously A. limacinum zoospores 

would enhance the final productivity of the total process. Leaving the following steps to let vegetative 

cells develop and accumulate DHA. This possibility has been investigated during this study without any 

clear conclusion (data not shown). Therefore, it would require future investigations.  

4.2.3.4 Multi-stage CSTR 
Multi‐stage CSTR system producing DHA through a thraustochytrids was purposed in this study 

considering the results described in previous sections. The first bioreactor/stage sets the best conditions 

for A. limacinum growth, as optimized in section 4.2.1 and 4.2.2. Therefore, the first tank was maintained 

at 28ºC, 681 rpm and 3 L/h of aeration. The outlet flow from the first bioreactor fed the second tank, 

where growth was low because it was maintained between 15‐20 ºC. Cold conditions trigger a higher lipid 

accumulation, including DHA. Oxygen supply was limited by a low agitation (200 rpm) and aeration (0.1 

L/h) in the second stage. The parameters in the second stage are the basic to keep the cells alive while 

producing DHA specifically, as explained in section 4.2.2. Therefore, the steps following (2 or 3) the first 

tank are considered as polishing steps.  

In order to guarantee that A. limacinum had enough time to accumulate DHA, the residence time was 

increased. To do so, two or more tanks (coupled with the first tank; biomass producing one) comprised 

1 
2 3 

Figure 4.73 Illustration of a triple tank system used in this study. Number 1 shows the first bioreactor with a 
volume of 1.7 L, and number 2 and 3 indicate the polishing bioreactors to produce DHA with a total volume 
of 9 L.  

CSTR systems Tank Temp. (Cº)
Agitation 

(rpm)

Aeration 

(L/h)
pH

20 375 0.4 7

3 15 200 0.1 7

20 200 0.1 7

1 28 681 3 6.5

20 500 1 7

1 28 681 3 6.5

Single tank

Two‐stage

Three‐stage

1

2

2

Table 4.35 Environmental parameters used during CSTR investigations. 
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more than the 85% of the system total volume. This way, the same flow for the whole system, assured a 

lower D in the biggest tanks which increased the residence time as well. Furthermore, the possibility of 

using more than two tanks allowed a progressive adaptation of the microorganism from the first tank 

conditions to the final polishing ones. Likewise, this system configuration allowed a higher final volume 

and resulted in a higher residence time. Figure 4.73 shows a picture of a three‐stage system used in this 

thesis. Below the bioreactor tagged with a number 3, there was always a refrigerated collector to 

accumulate the DHA containing biomass. This collector was maintained between 15 and 20 ºC in sterile 

conditions. In a real industrial process, a downstream processing system could be connected to the system 

avoiding storage steps.  

Due to time limitations, only five CSTR runs were connected to at least one more tank to enhance DHA 

production. The parameters of every reactor investigated in this section are listed in Table 4.35.  Results 

of these five CSTR are listed in Table 4.36. The table includes flow rate values, because it became 

important for the final productivity. Interestingly, run 1 and 3 showed a lower rDHA than the run 2 with 

119.1 mg/L·h, which had the highest feeding flow rate. Therefore, this result indicates that the higher 

feeding resulted in an increased rDHA. In any of the two‐stage CSTR the polishing phase produced a good 

amount of DHA, giving a yield of 0.2 g/g. The yield is not as high as in batch bioreactors but the sustained 

production generates a greater final rDHA. Accordingly, for three‐stage CSTRs (run 4 and 5) the highest 

flowrate from previous experiments (run 1, 2 and 3) was selected, 0.0264 L/h. Moreover, the total system 

volume was increased by adding a third bioreactor to the system, thus increasing the residence time up 

to almost 400 hours. With an increased residence time a slight increase of rDHA was expected. However, 

results listed in Table 4.36 show that DHA yields were mainly the same maintaining an average value of 

0.2 g/g. On the other hand, rDHA were much higher than expected. The maximum productivity from run 5 

multi‐stage CSTR was 152.6 mg DHA /L·h. This value is much larger than those previously reported by 

single CSTR reactors reported in literature.  

Remarkably, single tank CSTR reported in this dissertation obtained high productivities by applying a flow 

rate of 0.0264 L/h as well. According to these results and the prediction made in section 4.2.3.3 indicates 

that, increasing the flowrate would increase final productivities Moreover, increased requirement of 

manipulation (caused by an often feeding bottle replacement) would increase the risk of contamination.  

Table 4.36 Results from two‐stage (1, 2 and 3) and three‐stage (4 and 5) CSTR bioreactors of A. limacinum. 
The cut line separate two‐stage results from three‐stage results. Residence time τ correspond to the total 
residence time of the system. Sf stands for substrate concentration in the feeding solution. Yp/s stands for 
DHA yield. In this case the first and the last tank.  

Run F (L/h) τ (h‐1) D (h
-1

) Sf (g/L) X (g/L) Yp/s  (g/g) Yx/s  (g/g) r DHA (mg/L·h)

1 0.0158 392 0.0090 60 37.5 0.2 0.63 71.2

2 0.0264 235 0.0151 60 38.3 0.2 0.64 119.1

3 0.0211 294 0.0121 80 50.8 0.2 0.64 82.2

4 0.0264 398 0.0151 80 45.0 0.19 0.56 123.3

5 0.0264 398 0.0151 80 53.0 0.2 0.66 152.6
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During three‐stage CSTR experiments, the biomass in polishing steps (stage 2 and 3) turned orange‐red 

colour when it normally has a brown‐yellow colour as shown in Figure 4.74. Biomass investigation 

revealed two main discoveries. Firstly, the orange colour was produced by astaxanthin and secondly, A. 

limacinum produced two carboxylic acids, namely oxalic and pyruvic acid. Both productions are explained 

in Chapter 2 (section 2.3.4) where A. limacinum characterization is described. Astaxanthin production was 

investigated in the MSc Thesis of Nuria Abajo. 

As already outlined in the introduction, A. limacinum could not compete with H. pluvialis. Despite being a 

photosynthetic organism it is easily grown at very large scales [215–217] as well as yielding very high 

astaxanthin productivities. Nevertheless, it can be used to protect PUFA produced by A. limacinum 

because astaxanthin is a powerful antioxidant [218]. For example, it could help avoid DHA oxidation during 

downstream processing steps. Furthermore, microalgae product could be offered as a new nutraceutical 

product containing astaxanthin and omega‐3 PUFA.  

4.2.4 Comparing culture strategies for the highest DHA productivity 
Volumetric productivity indicates the amount of product generated per hour allowing the comparison 

between different scale reactors.  Table 4.37 displays every publication reporting different cultures 

strategies for thraustochytrids, aiming a high volumetric productivity of DHA. Thaustochytrids have been 

studied for more than 50 years. However, in 1996 [214]a prolific DHA producing strain was discovered, 

opening a new opportunity for industrial omega‐3 synthesis. It is evident that Aurantiochytrium strains 

are the most prolific ones. This is evident by observing, in Table 4.36,  the difference between bioreactor 

productivity reported by Bajpai and Ward in 1991 and other cultures. The maximum rDHA obtained with A. 

limacinum SR21 operating in batch has been reported in this dissertation showing a value of 76.9 mg DHA 

/ L · h.  This is nearly twofold higher than those reported by Pyle et al. in 2008. The difference in 

productivity might be indicating that the medium developed in this thesis plays an important role in 

reaching high rDHA with the strain SR21. Nevertheless, Burja et al. (2006) reported an rDHA from a batch 

bioreactor growing Thraustochytrium sp. ONC‐T18 (which is a mutant of an isolated thraustochytrid) of 

88.5 mg DHA /L·h.  

 

 

Figure 4.74 Image of lyophilized biomass coming from three different tanks, from a three‐stage CSTR. 
From left to right, first, second and third bioreactor biomass, respectively. The last step show biomass 
with a strong orange colour.  
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Table 4.37 List of productivities from every work reporting thraustochytrids cultivation to produce DHA. 
Culture strategy nomenclature: Batch (B), double batch (dB), fed‐batch (F), repeated fed‐batch,(RF),  CSTR 
(C) and multi‐stage CSTR (mC).  

 

Culture 
strategy 

Reference Year rDHA (mg/L·h) Strain 

B Bajpai and Ward [51] 1991 7.2 T. aureum ATCC 34304 

B Pooksawang et al. [130] 2009 25.8 A. limacinum SR21 

C Ethier et al. [52] 2010 27.8 A. limacinum SR21 

F Ryu et al. [95] 2013 32.3 Aurantiochytrium sp. KRS101 

B Yamasaki et al. [219] 2006 35.4 Schizochytrium sp. KH105 

B Pyle et al. [131] 2008 38.5 A. limacinum SR21 

B This study 2015 76.9 A. limacinum SR21 

C Ganuza et al. [213] 2007 79.7 Schizochytrium sp. G13/2S 

B Nagano et al. [197] 2009 83.9 A. limacinum mh0186 

B Burja et al. [14] 2006 88.5 Thraustochytrium sp. ONC‐T18 

F Jakobsen et al. [16] 2008 92.9 Aurantiochytrium sp. T66 

F This study 2015 105 A. limacinum SR21 

F Qu et al. [184] 2010 111.0 Schizochytrium sp. HX‐308 

RF Huang et al. [189] 2012 122.6 A. limacinum SR21 

dB Rosa et al. [9] 2010 136.1 A. limacinum SR21 

C This study 2015 136.7 A. limacinum SR21 

RF Qu et al. [202] 2013 138.8 Schizochytrium sp. 

F Kim et al. [192] 2013 140.3 Aurantiochytrium sp. KRS102 

F Ren et al. [203] 2010 145.8 Schizochytrium sp. 

B Hong et al. [220] 2013 150 Aurantiochytrium sp. KRS101 

mC This study 2015 152.6 A. limacinum SR21 

RF Chang et al. [208] 2013 204.3 Aurantiochytrium sp. TC20 

 

Fed‐batch bioreactors to produce DHA through thraustochytrids increased its popularity in the last 5 

years. Many different groups in the world started investigating these culture strategies to increase batch 

rDHA with positive results. As can be seen in Table 4.37 fed‐batch strategies offered higher rDHA , even in the 

one reported in this study which showed 105 mg DHA /L·h. Interestingly, there are no other works 

reporting fed‐batch cultures with A. limacinum SR21 but literature is full of different trhaustochytrid fed‐

batch works. Ren et al. (2010) revealed the highest rDHA (145.8 mg DHA / L· h) growing a Schizochytrium 

sp. strain operating in fed‐batch. Generally, repeated fed‐batch (explained in 4.1.1.3) showed greater rDHA 

than regular fed‐batch in literature. Remarkably, this type of operation generated the highest rDHA 

reported in Chang et al. (2013) as displayed in Table 4.37. They have obtained an rDHA of 204.3 mg DHA / 

L ·h cultivating a new strain, Aurantiochytrium sp. TC20. In their work a surprisingly fast growth was 

reported. This might be because in repeated fed‐batch reactors, the productivity is calculated based on 

every cycle. In every cycle, the final biomass is considered to calculate the productivity together with the 

short time (that a cycle takes). However, not all the biomass is harvested because it is used as the inoculum 
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of the next cycle.  In other words, productivity is calculated considering the biomass left in the reactor to 

serve as inoculum for the next cycle.  

Finally, publications regarding continuous reactors are very rare. Only two investigations about DHA 

production through thraustochytrids have been published. As already introduced in section 4.2.3.3 these 

publications are Ganuza et al. (2008) [213] and Ethier et al. (2010) [52] works. Ethier et al. reported an 

rDHA of 27.8 mg DHA / L· h cultivating A. limacinum SR21. This value is significantly lower than the one 

reported in this dissertation, which is an rDHA of 136.7 mg DHA /L·h. The value obtained in this thesis is 

even higher than batch and fed‐batch investigated as explained in section 4.2.3.3 and 4.2.3.4. Ganuza et 

al. work showed a rDHA of 79.7 mg DHA /L ·h growing Schizochytrium sp. G13/2S. Probably due to the 

developed medium formulation and parameters optimization the rDHA is twofold higher than those 

reported in Ethier et al. and Ganuza et al. (operating in continuous). Additionally, using the developed 

medium allows reaching very high cell densities that is directly boosting the final rDHA. These three main 

factors might be causing the difference in productivity, as happens with batch and fed‐batch reactors 

presented in this dissertation.  

Multi‐stage CSTR reactors was the final step of continuous culture strategy investigation. Such strategy is 

not common but in this case it has an important role. Multi‐stage CSTR strategy allows a first step 

enhancing biomass production coupled with a second polishing or DHA triggering stage. During the second 

stage the growth is negligible. This strategy allows fast and continuous production while maintaining a 

good DHA yield, as explained in section 4.2.3.4. There are no similar strategies reported in the 

bibliography. The multi-stage CSTR generated a maximum rDHA of 152.6 mg DHA / L · h, only below Chang 

et al. work which used a different strain. Lastly it is worth mentioning that there is a work reporting a 

productivity of 337 mg DHA / L ·s [221]. However, in this work they are reporting a DHA yield of 0.39 g 

DHA / g biomass as well as an 80% cell weight being lipids, which is impossible. 

Undoubtedly, new thraustochytrid strains might be discovered during the following years. Some of these 

new strains could possibly grow faster and produce more DHA. However, the bioprocess purposed in this 

dissertation could be applied on new strains, reaching higher rDHA. Moreover, it could be applied to 

enhance the production of other FA and/or added value metabolites. It is hoped that this work will 

stimulate the scale up work to industry scale as well as to stimulate further research about 

thraustochytrids and PUFA. 

 

 

 

 

  



S. Abad Sánchez Ph.D. Thesis 

 

160 

 

 

4.3 Chapter achievements 
 

Culture temperature, aeration, agitation and three operation modes of STR have been investigated in 

chapter 4 for A. limacinum growth and DHA production. Two unsteady state processes which are batch 

and fed‐batch, and a steady state (with a transient interval) that is the continuous stirred tank reactor 

(CSTR) or chemostat were investigated.  

A set of experiments have been performed to evaluate temperature influence on A. limacinum. The data 

indicates that the consensus temperature is between 20 and 25 ºC. The best temperature for DHA 

production was 15 ºC while the best for biomass production was 28 ºC. 

Low oxygen concentration enhances the specific accumulation of DHA whereas impairs biomass 

production. For this reason, the two main factor governing oxygen transference, aeration and agitation, 

were investigated. Using a CCD design 5 levels from each factor were investigated operating in a 

continuous mode. An agitation of 200 rpm and an airflow of 0.1 L/min would maximize the yield of DHA. 

Setting agitation at 680 rpm and an airflow of 3 L/m would ensure a maximum production of biomass. 

Furthermore, in order to find a consensus optimal values for single tank productions, a response surface 

was calculated by using both previous models. 500 rpm and 1L/min have been selected as intermediate 

values.  

The main goal of chapter 4 was to determine the best strategy to produce DHA. Different initial carbon 

source concentrations were investigated operating in batch. The cultures with 40 and 60 g/L So that 

generated a higher rDHA, with a maximum peak of 76.9 mg DHA/L·h. Fed‐batch cultures were evaluated to 

investigate if a sustained low amount of carbon source triggers unspecific triglycerides accumulation. Data 

obtained indicate that DHA yield was the same than in batch reactors. However, rDHA was higher reaching 

a value of 105 mg DHA/L·h.  

Two different continuous reactors strategies to enhance rDHA were investigated. Single tank continuous 

reactor gave a maximum rDHA of 135 mg DHA/L·h. The maximum rDHA obtained with A. limacinum SR21 

operating in Multi‐stage CSTR was 152.6 mg DHA/L·h. Using multi‐stage strategy produces large quantities 

of biomass at the beginning while stimulating DHA production in later tanks. Moreover, A. limacinum 

produces a natural antioxidant called Astaxanthin, which protects DHA during downstream.   
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Chapter 5: A scalable process for recovery and purification of DHA  
Scale up work and industrial viability evaluation 
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5.1 Introduction 
The increasing market demand for contaminant‐free and concentrated n‐3 PUFA products has led to the 

search for new sources and development of new processes for its production. Currently, A. limacinum is 

the most promising source of n‐3 PUFA [4–7]. A. limacinum produce DHA rich TG in an unmodified form. 

The n‐3 PUFA present in fish are almost exclusively TG, which have been in the human food chain for 

approximately for million years. Therefore, the human body has evolved to process TG. In fact, fats are 

stored and transported in the body as TG [9]. 

Despite the wide range of marketed omega‐3 supplements, no one offers a product with unmodified TG 

containing n‐ PUFA like DHA and EPA. Unmodified TG rich in n‐3 PUFA offer a number of advantages over 

other forms of omega‐3 products. Recent studies provide strong evidence that TG have superior 

bioavailability and significantly raise n‐3 PUFA cellular levels [10–13]. In other words, they are more 

efficiently absorbed than other product types such as ethyl esters. Currently, the n‐3 PUFA in TG form 

being used in nutraceutical products are derived from a process of re‐esterification. In this process desired 

fatty acids are purified in ethyl ester form and then re‐esterified to produce a TG. However, the enzymatic 

process of converting ethyl ester back to re‐esterified TG (re‐TG) is expensive and adds more steps, during 

which the n‐3 PUFA can be oxidized.  

To produce unmodified TGs from microalgae, a scalable process to recover and purify TG is needed. 

Recovery involves separating the TG from the microalgae and purification involves separating individual 

TG and cellular components from each other. 

Because TG production in microalgae is intracellular, recovery begins with lysis of cells followed by 

extraction.  Cell lysis can be carried out by a number of different methods, including bead beating, 

sonication, high‐pressure homogenization, high temperature treatment (microwave, autoclave), and even 

laser disruption [14–18]. In studies comparing several disruption methods for release of TG from 

microalgae, sonication has been reported to be effective [15,17,18].  The resulting lysate must be clarified 

(i.e., cellular debris removed) as part of the recovery process.  Bacterial bioprocesses commonly use any 

number of operations for clarification, including centrifugation, depth filtration, and tangential flow 

microfiltration.  These operations should be suitable for microalgae as well. 

Purification (i.e., separation of n‐3 PUFA from cell components and other TG) has been demonstrated 

using a number of methods, including crystallization [19], urea complexation [20,21], enzymatic 

concentration [22–24], winterization [26‐27,32–34], molecular distillation [28–32], and supercritical fluid 

extraction (SFE) [33–41]. However, there are no methods currently used at large scale to purify TG 

containing n‐3 PUFA individually from a complex mixture. 

Chromatography has been shown to be effective for separating mixtures of TG. The most widely reported 

chromatographic methods are immobilized‐metal affinity chromatography (IMAC) and reversed‐phase 

chromatography (RPC) [42–45].  Both methods are capable of producing excellent separation of FA‐based 

compounds; however, most work has involved the use of chromatography for analysis, not production. 

This work focuses on the development of a scalable process for recovery and purification of TG containing 

n3‐PUFA produced by A. limacinum SR21, with a focus on cell lysis and chromatography steps. We recover 

TG by sonicating the biomass. Sonication is the method of choice because it is scalable, is compatible with 
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organic solvents, and does not require addition of any chemical agents. Lysate clarification is 

accomplished by filtration or centrifugation, both scalable operations.  Given the hydrophobic nature of 

TG, we chose to focus on use of reversed‐phase chromatography as the primary purification step to 

separate TG from cellular components and other TG.  

5.1.1 Sample models 
Development of a methodology to separate different TG has been carried out using two different sample 

models. One model was based on pure TG standards from Sigma‐Aldrich. The second was based in two 

commercial products such as omega‐3 pills and Palm cooking oil. These two models were selected 

considering the basic attributes which define TG. The total carbon number (CN) is the sum of the alkyl 

chain lengths of each of the 3 FA in a TG. The degree of unsaturation in each FA.  

These attributes can be converted into the Equivalent Carbon Number (ECN) system [32,222]. ECN is 

equivalent to the CN of the TG minus two times the total amount of double bonds of the same TG. 

Moreover, there is a linear relationship between ECN and k’ factor (retention factor), which can be used 

to predict the retention time of a specific TG.   

Both models were selected considering the ECN values of A. limacinum TG. According to profiles described 

of similar species [108] and the fatty acid profile (defined by HRGC in chapter 2) the TG profile of A. 

limacinum might have an 80% of TGs with at least one moiety unsaturated. The TG distribution of both 

samples are detailed in Material and Methods section. The combination of omega‐3 pills content with 

palm oil was equivalent to a sample with a complex mix of saturated, monounsaturated and 

polyunsaturated TG. Palm oil TG profile is well known [223] and is represented in Materials and Methods. 

On the other hand, the commercial omega‐3 TG are in fact re‐esterified TG.  

Both sample models were key tools in order to develop TG separation and purification from A. limacinum 

clarified lysate.  

 

5.2 Results and Discussion 

5.2.1 Selection of the solvent for TG separation 
The strong hydrophobic nature of TGs suggests the use of organic solvents in the process. There are a 

number of factors to be considered when selecting organic solvents for use, including solubility of the TG, 

performance in reversed‐phase chromatography, and the ability to remove the solvent at the end of the 

process to produce a solvent‐free TG.  In addition, environmental impact is a concern, and because the 

TGs produced by A. limacinum are targeted for nutraceutical use, health and safety are primary 

considerations to ensure that the TGs produced are safe for human consumption. 

There are numerous organic solvents to choose from.  Among the “best” from an environmental, health, 

and safety perspective are ethanol, methanol, hexane, isopropanol and 1,3‐propanediol [224–227]. These 

are the solvents we initially considered in this work. 
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To provide an initial determination of the feasibility of using these organic solvents and/or water in the 

process, the solubility of a saturated TG – glyceryl tripalmitate (PPP) – was assessed. PPP, which is a solid 

at room temperature, was chosen due to its strong hydrophobic nature. This qualitative study was 

executed by adding PPP to a level of 3 mg/mL at the various conditions and visually observing the degree 

of dissolution.  The results are shown in Table 3. As expected, PPP is not soluble in water at any 

temperature.  As can be seen, at room temperature PPP is completely soluble only in hexane and the 

hexane/ethanol and hexane/methanol mixtures. There is only limited solubility with the other solvents 

and solvent/water mixtures.  As temperature increases, improvements in solubility are observed, as 

shown in Table 3.  Because we want the process to operate at room temperature, we removed both water 

and 1,3‐propanediol from consideration.  The limited solubility of PPP in each, especially at the lower 

temperatures studied, would likely result in processing challenges. 

Both non‐polar solvents, hexane and 2‐propanol, showed good solubility of PPP. Therefore, due to an 

environmental, health and safety index (EHS) score[227], 2‐propanol was discarded. Hexane, methanol 

and ethanol where the best in this index as well as showed good solubility. 

 

5.2.2 Cell disruption: Sonication of A. limacinum 
To quantify the extent of lysis during sonication of A. limacinum, the concentration of a reference TG was 

monitored by HPLC‐UV. The TG PDHADHA88 is one of the most abundant TG from A. limacinum according 

                                                           
88 Composed of palmitic acid and two DHA chains.  

Solvent 
Temperature (C) 

25 30 40 50 

Water _ _ _ _ _ _ _ _ 

1,3-Propanediol _ _ _ _ _ ++ ++ ++ 

Methanol + + + ++ + ++ ++ ++ 

Ethanol + + + + + ++ ++ ++ 

Hexane NA ++ NA ++ NA ++ NA ++ 

2-Propanol + + + ++ ++ ++ ++ ++ 

Hexane/ Ethanol 
(50%) 

+ ++ ++ ++ ++ ++ ++ ++ 

Hexane/ Methanol 
(50%) 

+ ++ ++ ++ ++ ++ ++ ++ 

 50% 
water 

No water 50% 
water 

No water 50% 
water 

No water 50% 
water 

No water 

Table 5.38 Solubility of PPP in different solvents at different temperatures. – indicates that PPP is not 
soluble; + indicates that PPP is partially soluble, showing some white particles in the solvent; ++ indicates 
that PPP is fully soluble. 
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to this study (showed later in this chapter) and Nakahara et al. [108]. It is one of the most valuable TG as 

well, because it contains two DHA moieties. For this reason, this specific TG was selected as a reference. 

A. limacinum clarified lysate was sonicated at 0, 100, 250, 500, 750, 1000, 1500, 2000, 3000 and 3500 

J/mL to determine the energy input that led to maximum TG recovery. The amount of reference TG 

extracted was monitored. A plot showing the peak height (measured as UV absorbance at 200 nm) of the 

reference TG against sonicator input energy is shown in Figure 5.75.Figure 5.75 PDHADHA extracted from 

A. limacinum as a function of sonicator energy input.  The amount of PDHADHA extracted is represented 

by the absorbance units of the peak height from HPLC analysis of the lysate. 

Every extraction consisted of a sonication process on biomass suspended in methanol at a concentration 

of 7.5%.  As can be seen in Figure 5.75, the first extraction recovers the majority of TG. Recovery increases 

as more energy is applied. During the first extraction, astaxanthin was recovered as well, giving the extract 

an orange color. The second extraction shows a considerably lower amount of PDHADHA obtained. The 

first extraction obtains 90% of the important TG.  Comparing the first extraction with the total amount of 

TG extracted (Figure 5.75) makes it clear. Above 1500 J/mL, HPLC peak height values plateau at 

approximately 3.7x106 AU, which suggests that all TG have been extracted from A. limacinum.  Data from 

the second extraction supports this hypothesis as UV absorbance values for those samples processed at 

higher energy input actually decrease, due to the absence of TG available to be extracted.   

To further confirm that all TG have been extracted, gravimetric quantification of extracted compounds 

was performed, and values reached a plateau at energy levels of 2000 J/mL as well (data not shown), 

similar to results obtained with HPLC measurements.  Additionally, third extractions on lysed cells were 

performed with chloroform to test whether the relatively polar nature of methanol inhibits extraction of 

hydrophobic TG from A. limacinum.  The results showed only negligible amounts of additional TG being 

extracted (data not shown). 

Based on these experiments, a sonicator operated at approximately 2000 J/mL is appropriate for 

extracting nearly 100% of intracellular TG from A. limacinum, in less than 20 minutes. It is worth noting 

that the second extraction showed no additional recovery of TG. Therefore, this should not be 

Figure 5.75 PDHADHA extracted from A. limacinum as a function of sonicator energy input.  The 
amount of PDHADHA extracted is represented by the absorbance units of the peak height from HPLC 
analysis of the lysate. 
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implemented in a production process.  And while these results demonstrate the feasibility of sonication 

as a lysis method for TG recovery from A. limacinum, scaling up would likely require use of a continuous 

flow sonicator, which are currently available from a number of vendors. 

5.2.3 Composition of A. limacinum lysate 
Gas chromatography was used to analyze A. limacinum lysate for fatty acids using HRGC‐RID method.  As 

indicate in the chromatogram (Figure 5.76 Gas chromatography analysis of fatty acids from A. limacinum 

SR21. ), the following fatty acids are present: myristic acid (M), P, DHA, docosapentanoic acid (DPA), and 

stearidonic acid (S) are present.  In separate experiments, a sample of A. limacinum clarified lysate was 

also analyzed using HPLC‐ tandem mass spectrometry (HPLC‐MS/MS). FA identified using this method are 

in agreement with the fatty acid profile measured by HRGC‐RID. 

Using an HPLC method developed for downstream investigation (detailed in Materials and Methods), the 

TG profile present in A. limacinum clarified lysate was determined. The results are shown in Table 4. In 

addition, based on gravimetric analysis (described in the Materials and Methods section), it was 

determined that the amount of extracted matter is 4.6 g/L.  Based on HPLC chromatograms, 

approximately 30% of total peak area is TG. Therefore, a TG concentration of 1.38 g TG/L in clarified lysate 

was obtained.  

 Table 5.39  TGs from A.limacinum based on HPLC analysis of clarified lysate.   

Triglyceride ECN 

PDHADHA 36 

PDPADHA 38 

MPDHA 40 

PPDHA 42 

PPDPA 44 

MPP 46 

PPP 48 

Figure 5.76 Gas chromatography analysis of fatty acids from A. limacinum SR21.  
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5.2.4 Chromatography method (process) development 
Chromatography method development was initiated by attempting to separate a mixture of the Sigma‐

Aldrich TG standards (see Material and Methods). Different condition combinations of hexane, ethanol, 

and methanol were evaluated as mobile phases. On the other hand, 4 columns consisting of both C4 and 

C18 reversed‐phase chromatography resins were used as stationary phase. All columns used all had bead 

diameters of 5 µm. 

This initial portion of the study posed challenges as none of the column gave good resolution between 

TG, likely due to the choice of mobile phase conditions. Specifically, it became evident that the use of 

relatively nonpolar hexane inhibited binding to the reversed‐phase resin particles. Therefore, a solvent 

with greater polarity was required.  

In order to give greater attention to mobile phase conditions, the work was limited only to the use of one 

of the columns with the highest carbon load (hydrophobicity) in the market, the Kromasil® C18 packed 

with 5µm beads. This resin is also available in a larger bead size of 16 µm, which is more appropriate for 

the preparative applications which is the aim of this work. The profile from every sample model is 

presented in Figure 5.77. 

Further optimization of the chromatographic method was performed using a mixture of the Sigma‐Aldrich 

TG standards together with omega‐3 pills content and palm oil mixture. This was investigated using the 

5µm Kromasil® column. To perform the optimization, Taguchi’s L8 matrix was used [228]. Selected factors 

Figure 5.77 Elution profile of different model samples processed by the optimized HPLC method describe 
below. A = Sigma‐Aldrich standard mixture; B = omega‐3 pills; C = Palm Oil.  

A 

 

 

B 

 

 

 

C 
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were: methanol concentration in the mobile phase, flow rate, and introduction of hexane as a gradient. 

Factor levels are as follows:  

• Methanol concentration: 2:3 v/v methanol/ethanol, 4:1 v/v methanol/ethanol, and pure 

methanol 

• Flow rates: 0.75 mL/min, 1.25 mL/min, and 1.5 mL/min 

• Gradient: no gradient was used as the lower level and hexane gradient as the higher level.  

The factors were placed in the matrix following orthogonality of the vectors. 

The response parameter for a DoE was the relative resolution between two specific peaks. One represents 

a TG with an ECN of 36 and the second represent a TG with an ECN of 48. Resolution, R, was calculated 

using equation 5.1. 

� = (��1 ��2)/[
�

�
(�1 + �2)]   Equation 5.1 

where tr is the retention time of the peak, w is the width of the chromatographic peak, and 1 and 2 refer 

to two different TG. 

The TG with an ECN 36 correspond to the TG containing DHA (from A.limacinum clarified lysate,  

PDHADHA), while the TG with an ECN 48 correspond to the first eluting TG not containing any n‐3 PUFA. 

By comparing Sigma‐Aldrich standards elution time with an ECN between 36 and 48, the corresponding 

Methanol 

conentration 

(%) 

Flow rate 

(mL/min)

Hexane 

gradient

40 0,75 N

40 0,75 Y

40 1,25 N

40 1,25 Y

80 0,75 N

80 0,75 Y

80 1,25 N

80 1,25 Y

100 0,75 N

100 0,75 Y

100 0,75 N

100 1,25 N

100 1,25 Y

100 1,25 N

100 1,5 N

100 1,5 Y
100 1,5 N

22.9 ± 0.9

18.8 ± 1.5

25.2 ± 0.4

32 ± 0.6

24.3 ± 0.9

23 ± 0.3

31.3 ± 0.7
25 ± 0.2

23,6

24,2

22,5

25,0

27,1

24,7

24,2

26,9
24,9

14.8 ± 0.7 23,4

16 ± 0.2 24,1

14.2 ± 2 22,9

25 ± 1.3 28,0

21.35 ± 0.2

Relative 

resolution

Signal / 

Noise

7.7 ± 0.3 17,7

11 ± 0.1 20,9

6.5 ± 0.6 16,1

7.9 ± 0 18,0

Table 5.40 Results from DoE runs separating TGs from a Sigma‐Aldrich/omega‐3 pill/palm oil mixture on 
a Kromasil® C18 column packed with 5 µm beads.  Experimental design is based on Taguchi’s L8 matrix. 
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peaks in the Sigma‐Aldrich + omega‐3 pills + palm oil mixture were identified.  Results from these runs are 

summarized in Table 5.40 Results from DoE runs separating TGs from a Sigma‐Aldrich/omega‐3 pill/palm 

oil mixture on a Kromasil® C18 column packed with 5 µm beads.  Experimental design is based on Taguchi’s 

L8 matrix.. 

Observing the results in Table 5.40 Results from DoE runs separating TGs from a Sigma‐Aldrich/omega‐3 

pill/palm oil mixture on a Kromasil® C18 column packed with 5 µm beads.  Experimental design is based 

on Taguchi’s L8 matrix. show that the resolution increases as methanol concentration increase in the 

mobile phase. An ANOVA was performed to determine the factors contributing most significantly to 

resolution. As expected, ANOVA indicates that methanol is the main contributor to resolution (67% 

positive contribution towards a higher resolution). A maximum resolution of 32 between peaks with ECN 

of 36 and 48 was reached.  Results are indicating that the optimum mobile phase composition is 100% 

Methanol. Beyond methanol concentration, the flowrate (contribution of 80% from the rest of factors) 

appears to be the most important factor the interaction between flowrate and gradient showed a positive 

contribution (18.8 %).  

Based on the optimization described above, the chromatography method for TG from clarified lysate using 

the Kromasil® C18 column (5µm beads) is as follows: pure methanol for 130 minutes followed by an 

increase in hexane concentration from 0% to 35% (in methanol) from 130 minutes to 170 minutes 

followed by 100% methanol from 170 minutes to 180 minutes.  Column temperature was maintained at 

30ºC due to repeatability requirements, but the process can be carried out at room temperature. The flow 

rate during the entire procedure is 1.25 mL/min. The load volume of 10 µL of clarified lysate corresponds 

to 13.8 mg of TG. 

There are several modifications that can be made when implementing this method to production scale.  

The TG of interest (those containing n‐3 PUFA) elute within 50 minutes of sample injection (load); 

therefore, 130 minutes of isocratic elution can be reduced to 50 minutes. Hexane can be viewed as a 

cleaning/regeneration step for the column; therefore, after the TG of interest have eluted, the mobile 

phase composition can be switched to 100% hexane.  The full chromatographic procedure as it would be 

implemented in a production environment is shown in Table 5.41. 

Table 5.41  Chromatography procedure for separating TGs in a production environment.  The flow rate 
for steps is 1.25 mL/min when using the Kromasil® C18 column with 5µm beads and diameter of 4.6 mm. 

Step 
# 

Step Description Mobile Phase 
Time 
(min) 

Column 
Volumes* 

1 Equilibration 100% methanol 2.4 3 

2 Load 
A. limacinum clarified lysate (in 

methanol) 
  

3 Elution 100% methanol 50 15.1 

4 Regeneration (cleaning) 100% hexane 40 12 

5 Storage 100% hexane 2.4 3 

6 Additional periodic cleaning** 100% water 2.4 3 

*ratio of mobile phase volume to chromatography bed volume 
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Figure 5.78 shows the elution profile for A. limacinum clarified lysate using the final method. It is worth 

mention that although optimization focused on separation of TG containing n‐3 PUFA from 

monounsaturated/saturated TG, the method appears to give good separation between individual TG 

containing n‐3 PUFA as well. 

Classical HPLC requires high pressure equipment that process scale chromatography cannot reach [64]. 

Therefore, the reversed‐phase step for an industrial TG purification will use a Kromasil® C18 column with 

a bigger bead size. For the scale up process, a 16 µm bead size rather the 5 µm bead size was selected.  

Pressure drop in a bed packed with rigid beads like silica varies inversely with the square of the particle 

diameter per the Blake‐Kozeny equation.  Thus, a column packed with 16 µm beads (the largest bead 

available for a Kromasil® C18 column) will have a pressure drop of approximately 1/10th that of a column 

packed with 5 µm beads.  At the flow rates used in this study (1.25 mL/min), column pressures of slightly 

less than 10.7 bars were measured.  Assuming an approximately equal pressure drop from a production‐

scale system (not including the column) would result in a medium pressure chromatography system [64].  

Larger bead size would be required for truly low‐pressure operation. 

The larger bead size is expected to decrease the number of theoretical plates, which would lead to a 

decrease in resolution between the various TG species. Figure 5.77A shows a chromatogram resulting 

from the optimized method described in Table 5.41 applied to a Kromasil® C18 column with a 16 µm bead 

size.  The resolution between the PDHADHA peak and subsequent peak was 1.70.  When the 5 µm bead 

size is used, the resolution was 1.71.  Therefore, the difference in resolution between the two columns 

was not significant. For scale up of the chromatography step, an acceptable load volume per unit column 

volume was needed.  To determine this value, the Kromasil® C18 column packed with 16 µm beads was 

used to execute the chromatography method described in Table 5.41 at four different load amounts: 

0.112, 0.85, 4.2 and 11.2 g of clarified lysate/mL of resin. The resolution between key components of the 

TG profile (peaks R‐1 and R, and R and R+1 in Figure 5.79) was calculated for each load condition using 

Equation 5.1. In Figure 5.79 the reference TG is tagged as R while the TG eluting before and after are R‐1 

and R+1, respectively. Can be seen in the same figure that when the sample load increases, the resolution 

Figure 5.78  A chromatogram showing the elution of A. limacinum clarified lysate using the optimized 
procedure for TG purification from. The Kromasil® C18 column with 5µm beads was used for this run. 
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between peaks is reduced. Thus, increasing the sample load reduces the purity of each TG. Results of the 

resolution calculations for every sample are shown in Figure 5.78. 

 As can be seen, the resolution between R and R‐1 is always higher than R and R+1. A resolution of 1.5 

provides nearly complete separation of components; and a resolution of 1 is acceptable for most 

separations [64]. Therefore, separation of PDHADHA from the diglyceride is nearly complete for all TG 

loadings.  For separation of PDHADHA from PDPADHA, the resolution falls below 1.0 at approximately 4 

mg TGs/mL resin.  It is important to note that if the objective is the separation of TG containing n‐3 PUFA 

from monounsaturated or saturated TGs, maximum loading of clarified lysate would be significantly 

higher than 4 mg TGs/mL resin. 

Figure 5.79. Chromatograms from runs in which amount of load (clarified lysate) was varied as follows: (a) 
0.112, (b) 0.85, (c) 4.2 and (d) 11.2 mg of TGs from clarified lysate/mL resin.  (a) is the bottom 
chromatogram, (d) is the top.  All runs used the Kromasil® C18 column with 16 µm beads operated as 
shown in Table 5 at a flow rate of 1.25 mL/min.  Peak R‐1 is a diglyceride; peak R is PDHADHA; and peak 
R+1 is PDPADHA.  
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During the same experiment, when the maximum load of 11.2 g TG/L clarified lysate was processed, the 

fraction corresponding to PDHADHA was collected (as shown in Figure 5.80). This sample was then 

analyzed by analytical version of the HPLC method. This allowed to determine the reference TG purity and 

recovery. At these load conditions, the purity of PDHADHA was measured as 92.78 % and the recovery 

was 84 %. Purity was measured as the ratio of the area of the PDHADHA peak to the area of all peaks. On 

the other hand, the recovery was calculated by collecting the material eluting at the reference TG time. 

Then this TG was re‐injected, a third time, in the HPLC system and areas (second injection and third 

injection) were used to calculate the recovery %. Purity could be increased by reducing recovery.  

The impurities are probably other molecules containing PUFA. Regardless, at this high purity, PDHADHA 

would have a very high value as a nutraceutical product. There is even the potential that this method 

could be used for the production of standard TGs with long chain n‐3 PUFA, which are not currently 

commercially available. 

5.2.5 Process scale chromatography example 
As an example of chromatography scale up, consider a scenario in which a 200‐L A. limacinum 

fermentation is processed. A. limacinum can reach a concentration of 60 g/L, where almost 40% are lipids 

and a 20% are PUFA. Therefore, 12 g/L of TG containing n‐3 PUFA would be obtained.  Using a scale up 

methodology in which liquid residence time is kept constant by maintaining column height and linear 

velocity at both small and large‐scale, the following relationships apply: 

Figure 5.81  Resolution between peaks R vs R‐1 and R vs R+1 as a function of the mass of TGs loaded to 
the 16 um Kromasil® C18 column. 

 Figure 5.80 Chromatogram showing the collection of the PDHADHA peak for purity and recovery 
analysis. 
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���1 = ���2      Equation 5.2 

� �

���� �
=

� �

���� �
                   Equation 5.3 

hbed is the bed height; Q is the volumetric flow rate to the column; Abed is the cross sectional area of the 

bed; and subscripts 1 and 2 refer to parameter values at small and large scale, respectively. Using these 

relationships, and assuming a column capacity of 40 g TGs/L column volume, the parameters presented 

in Table 5.42 result for the 200‐L fermentation scenario. The objective of the chromatography step is 

separation of TG made up of n‐3 PUFA from monounsaturated/saturated TG. In this case, resolution is not 

a constrain. 

Table 5.42  Scale up of the reversed‐phase chromatography step for processing a 200‐L A. limacinum 
fermentation. 

Parameter Value 

Clarified lysate (load) volume 200 L 

Column height 25 cm 

Column volume (assume capacity 40 mg 
TG/mL resin) 

= (12 g/L x 200 L)/40 g/L = 60 L 

Column diameter = 60000 cm3=π x d2/4 x 25 cm, d = approx. 55cm 

Volumetric flow rate = v x A = 451.518910 cm/h x 2760 cm2 =1246 L/h 

Grams triglycerides produced = 12 g/L x 200 L = 2400 g  

 

Based on this analysis, a 60‐cm column packed with Kromasil® C18 reversed‐phase column with a 16 µm 

particle size would be suitable for processing a 200‐L A. limacinum fermentation.  

Considering the cost of methanol, resin, fermentation broth, operations and power (industrial suppliers) 

the cost of the product would be 800 €/Kg. Unmodified TG rich in n‐3 PUFA is not currently available in 

the market. Purified DHA price ranges between 100 to 8000 €/Kg depending on purity and format. 

Therefore, if the market demands this new product it may have a high value, similar to purified DHA.  

The downstream process would use disk‐stack centrifugation as harvesting technique. Cells of similar size 

and concentration (in fermentation/cell culture broth) are commonly recovered using disc‐stack 

centrifugation. 

Collected cells are suspended in methanol at a concentration of 7.5% by volume and lysed using 

sonication. This concentration may be increased significantly but a deeper investigation is needed. A flow 

through sonicator would be preferable for scale up.  Lysate must be clarified to make it suitable to load to 

a chromatography column.  This could be accomplished using centrifugation, depth filtration, or some 

combination of both.  These are commonly use operations for lysate clarification for other applications. 

Then the clarified lysate can be loaded onto a reversed‐phase column.  As designed in this study, that step 

is capable of separating n‐3 PUFA from each other or from monounsaturated/saturated TG. The final 

purified methanol/TG solution could go through an evaporation step to remove methanol, leaving behind 

purified TG.  For example, using a sanidry vacuum dryer. Evaporating methanol off after the purification 

would allow the reformulation of the final product if desired. Unsaturated TGs is the main component of 
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the product which makes it liquid at room temperature. To increase its volume and facilitate its 

manipulation, the product can be dissolved either in ethanol or glycerol. 

5.2.6 Identification of the reference peak R by Mass spectrometry  
Mass spectrometry was performed to confirm the identification of the PDHADHA chromatography peak 

(corresponding to ECN 36 from the final chromatography method). This analysis will also allow to 

confirmation that the remaining peaks have been correctly identified according to their ECN / retention 

time. 

The same fraction used to measure purity and recovery (described previously) was used to perform 

MALDI‐TOF mass spectrometry.  The resulting MALDI‐TOF mass spectrum is shown in Figure 5.82. 

 

Despite the spectrum is showing low resolution two main peaks give a significant high relative intensity. 

As reported by Petković et al. [63] large hydrophobic molecules tend to create clusters (complex adducts) 

with the matrix and salts. This phenomenon was considered to identify peaks from MALDI‐TOF. Those 

peaks appear to be [PDHA + DHB + Na+] + and [DHADHA + 2(DHB) + Na+] + corresponding to 795 m/z and 

1043 m/z, respectively. These results are a strong evidence that the purified fraction is PDHADHA. 

To further confirm the identification, a sample of A. limacinum clarified lysate (without purification) was 

processed by HPLC‐MS/MS. Results of HPLC‐MS/MS analysis are displayed in figure 11. As can be 

observed, the most abundant FA are P, DPA and DHA. This results are in concordance with HRGC analysis 

and the A. limacinum clarified lysate elution profile. 

Moreover, the resolution is substantially higher compared to MALDI‐TOF mass spectrum. Basically all 

adducts are based on sodium. Sodium comes from the artificial seawater in where the microorganism was 

grown. [PDHA + 2(Na) – H+] + is the most abundant species in the samples. This is in concordance with 

previous results, indicating that PDHADHA and PPDHA are the most abundant TGs in A. limacinum.  

Figure 5.82 MALDI‐TOF mass spectrum of the PDHADHA fraction shown in 
Figure 5.79. 
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Although it is extremely difficult to demonstrate these are the exact clusters formed during the ionization, 

the obtained mass spectrum is a strong evidence that the purified fraction is constituted by the TG 

PDHADHA. The results are in concordance with HPLC chromatograms and the ECN number of the mention 

TG. Moreover, HPLC‐MS/MS chromatogram reinforce the evidence by showing that probably PPDHA and 

PDHADHA are the most abundant TGs in A. limacinum. 

  

Figure 5.15 HPLC‐MS/MS mass spectrum of the PDHADHA fraction shown in  
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5.3 Chapter achievements 
 

During this chapter, an alternative approach to purify unmodified TG containing n‐3 PUFA have been 

investigated. Unmodified TG are not marketed nowadays while some works suggest that it would be the 

best supplementary form [229,230].  

PPP was used in order to evaluate different solvents solubility with TG. All the solvents were initially 

selected based on its EHS score, being the “greenest” possible. Methanol, ethanol and hexane appeared 

to be the best in solubility and EHS score. After HPLC studies methanol and hexane turned to be the best 

mobile phase combination of polar and non‐polar solvents. Considering that unsaturated FA have a higher 

solubility in methanol, cell disruption and simultaneous extractions was carried out using this solvent. It 

has been shown that one run of 2000 J/mL was enough to extract 90%‐95% of the objective material.  

In order to investigate TG purification without standards of TG containing DHA, 2 sample models were 

formulated. The first was a combination of Sigma‐Aldrich standards with known ECN. Some of this 

standards have the same ECN number than those TG containing DHA. This allowed to predict the elution 

time of any TG based on ECN. The second sample was the content of commercial omega‐3 pills combined 

with commercial palm oil. This model served to investigate chromatographic conditions to separate TG 

containing unsaturated moieties versus those not containing any.  

Various methodologies were explored in order to purify TG containing unsaturated moieties. This 

investigation resulted in two main methodologies based on reverse‐phase chromatography using a very 

hydrophobic resin. The first was an analytical methodology to investigate A. limacinum clarified lysate 

elution profile. This served as the starting procedure for the scale up work on a preparative methodology 

(the second method) with a 16 µm bead size column. The preparative methodology showed that this resin 

can be used in process scale chromatography. On the other hand, the preparative procedure itself could 

be used to produce novel standards of TG containing DHA. 

In the last part of this thesis, the reference peak was identified by mass spectrometry using MALDI‐TOF 

and HPLC‐MS/MS. This confirmed that the reference peak was a TG composed of PDHADHA. 

This chapter represents a great approach to purify valuable nutraceutical TG that needs further 

investigation to perform a final implementation in an industrial process.  
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Using A. limacinum SR21 as a model it has been shown that thraustochytrids have a complex life cycle 
during batch growth.  
In a batch culture, A. limacinum SR21 showed five different stages; vegetative cells, zoosporangium cells, 
zoospores, amoeboid cells and semi‐proliferative cells. Between different life stages, zoospores revealed 
the highest growth rate while the vegetative cell stage appears to contain the highest amount of DHA.  
During continuous cultures A. limacinum SR21 only shown the vegetative cell stage.  
A Matlab® algorithm has been satisfactorily adapted to measure cell dimensions using current microscopy 
equipment and a smartphone. 
 
A method has been developed and validated for successfully determine and quantify DHA from A. 
limacinum SR21 samples. The method includes both the sample preparation procedure as well as the 
HRGC‐FID analysis. Sample preparation procedure has been simplified and permits simultaneous sample 
processing. Besides A. limacinum samples this method would allow the quantification of DHA from other 
thraustochytrids species.  
 
It has been shown that HPLC‐RID, Enzymatic kit and DotBlot‐Matlab® methods can measure precisely the 
glycerol concentration from culture broth. DotBlot ‐ Matlab® analysis was the cheapest and fastest 
analytical method for glycerol quantification which allows a high number of samples to be processed 
simultaneously. This is the most convenient method for glycerol consumption bioprocess monitoring.  
 
DotBlot methodology was coupled with a Maltab algorithm exclusively developed for this purpose. The 
Matlab® algorithm was successfully applied to calculate glycerol concentration from the DotBlot based on 
a standard curve.  
 
Cultivating A. limacinum SR21 with crude glycerol as carbon source showed an equivalent performance 
between glucose and glycerol.  
It has been shown that A. limacinum SR21 grow comparably well either with organic or inorganic nitrogen 
sources. Nevertheless, organic nitrogen sources enhance DHA and lipid production in A. limacinum SR21. 
After several DoE and three ANN models a constant relationship was established between carbon and 
nitrogen concentration. In order to avoid a limiting nitrogen situation, 2.3 g/L of yeast extract and 0.4 g/L 
of tryptone are needed per every 10 g/L of carbon source.  
A. limacinum SR21 showed a great versatility for a wide salinity range. A. limacinum can grow and produce 
DHA satisfactorily when sodium chloride concentration is between 14 and 30 g/L.  
Phosphate buffer (KH2PO4 + NaOH) was selected according to price and pH range, and Tris buffer was 
successfully substituted.  
The best concentration for MgSO4, CaCl2 and KCl was determined to be 0.1 g/L, 0.19 g/L and 0 g/L, 
respectively. Therefore, KCl did not show any effect either on A. limacinum SR21 growth or DHA 
production.   
Cyanocobalamin or Vitamin B12 showed no effect on A. limacinum growth. After investigating different 
concentrations, it has not shown any effect either on biomass or DHA production. Thus, Vitamin B12 was 
excluded from the medium.  
 
It has been seen that low oxygen concentration enhances the specific accumulation of DHA whereas 

impairs biomass production. For this reason, the two main factor governing oxygen transference, aeration 

and agitation, were satisfactorily modelled using a CCD design and RSM concluding that:  

 An agitation of 200 rpm and an airflow of 0.1 L/min maximize DHA yield.  

Conclusions  
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 An agitation of 680 rpm and an airflow of 3 L/m (1.76 vvm) ensure a maximum production of 

biomass.  

 An agitation of 500 rpm and 1L/min would work as consensus parameters for single tank reactors.  

Batch cultures between 40 and 60 g/L So generated a highest rDHA, with a maximum peak of 76.9 mg 

DHA/L·h. Batch cultures with So higher than 60 g/L showed a reduced growth yield. The highest growth 

yield was obtained in batch reactors with So 10 g/L were reached 0.9 g X/gS.  

Batch reactors showed an average DHA yield of 0.23 g DHA/g biomass which is the highest reported in 

bibliography and in this the present thesis in bioreactor cultures.  

Fed‐batch cultures showed no evidence of unspecific triglycerides production stimulation by a sustained 

low carbon source concentration. Data obtained indicate that DHA yield was the same than in batch 

reactors. However, rDHA was higher reaching a value of 105 mg DHA/L·h.  

Two different continuous reactors strategies were successfully performed and investigated to enhance 
rDHA. Singe tank continuous reactor gave a maximum rDHA of 135 mg DHA/L·h. The maximum rDHA obtained 
with A. limacinum SR21 operating in Multi‐stage CSTR was 152.6 mg DHA/L·h.  
In all continuous reactors DHA yield was always lower showing an average value of 0.19‐0.2 g DHA/g 
biomass. 
Using multi‐stage strategy A. limacinum SR21 produces a natural antioxidant called Astaxanthin, which 
may protect DHA during downstream. 
 
For the downstream processing an alternative approach to purify unmodified TG containing n‐3 PUFA 

have been developed. After HPLC studies, methanol and hexane turned to be the best mobile phase 

combination of polar and non‐polar solvents.  

Considering that unsaturated FA have a higher solubility in methanol, cell disruption and simultaneous 

extractions were carried out using this solvent. It has been shown that one run of 2000 J/mL was enough 

to extract 90%‐95% of the objective material.  

In order to investigate TG purification without standards of TG containing DHA, 2 sample models were 

formulated. The first was a combination of Sigma‐Aldrich standards with known ECN. Some of this 

standards have the same ECN number than those TG containing DHA. This allowed to predict the elution 

time of any TG based on ECN. The second sample was the content of commercial omega‐3 pills combined 

with commercial palm oil. This model served to investigate chromatographic conditions to separate TG 

containing unsaturated moieties versus those not containing any.  

Two main methodologies based on reverse‐phase chromatography using a very hydrophobic resin were 

successfully developed. The first was an analytical methodology to investigate A. limacinum clarified lysate 

elution profile. This served as the starting procedure for the scale up work on a preparative methodology 

(the second method) with a 16 µm bead size column. The preparative methodology showed that this resin 

can be used in process scale chromatography. On the other hand, the preparative procedure itself could 

be used to produce novel standards of TG containing DHA. 

PDHADHA was identified by mass spectrometry using MALDI‐TOF and HPLC‐MS/MS. This confirmed that 

the reference peak was a TG composed of PDHADHA. 

 

Conclusions  
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This section gathers all the information of materials & methods. 

6.2 Cultivation of Thraustochytrids 

6.2.1 Thraustochytrid strains and conservataion 
Aurantiochytrium limacinum (ATCC MYA‐1381) and Thraustochytrium aureum (ATCC 34304) were 

purchased from the American Type Culture Collection (ATCC), USA. Aurantiochytrium mangrovei (NBRC 

103269), Sicyoidochytrium minutum (NBRC 102975), Ulkenia amoeboidea (NBRC 104106) and 

Botryochytrium radiatum (NBRC 10407) were purchased from NITE Biological Research Center (NBRC), 

Japan. To establish a culture from the frozen state place an ampule in a water bath set at 35°C (2‐3 min). 

Immerse the vial just sufficient to cover the frozen material. Do not agitate the vial. Immediately after 

thawing, aseptically remove the contents of the ampule and inoculate into 5 mL of in a sterile culture flask 

or 16 x 125 mm screw‐capped test tube. Incubate at 25°C overnight. Inoculate the culture content into a 

250 mL flask with 80 ml growth media (see below). Then, an aliquot of the culture with 30% glycerol was 

used for long term conservation of the microorganism at ‐80°C.  

6.2.2 General growth media 
The starting growth media of the current study was made of artificial sea water, 1 g/L yeast extract, 1 g/L 

tryptone, and streptomycin sulphate 25 µg/mL [147]. The seawater composition was (per L): 18 g NaCl, 

2.44 g MgSO4, 0.6 g KCl, 1.0 g NaNO3, 0.3 g CaCl2 ·2H2O, 0.05 g KH2PO4, 1 g Tris buffer, 0.027 gNH4Cl, 15x10 
‐8 g vitaminB12 combined with 10 mL/L metal solution, and 3 mL/L chelated iron solution as reported in 

Starr & Zeikus (1993) [178]. Crude glycerol, pure glycerol or glucose was added as carbon source. Any 

modification is indicated in the corresponding section of this thesis. 

Pharma‐grade glycerol, also referred to as pure glycerol, was purchased from Fisher Scientific Spain. For 

crude glycerol samples, raw glycerol used was graciously provided by Transportes Ceferino Martínez S.A. 

It was obtained as the residual fraction from the transesterification of used cooking oil (UCO) to biodiesel 

through an alkali catalysed process. The crude glycerol generated has a dark brown colour and a glycerol 

content of 80%. Glucose was purchased from Sigma‐Aldrich Spain.  

6.2.3 Erlenmeyer flask cultivation 
Inoculums were prepared using 40 mL of an artificial seawater medium plus a carbon source (generally 

crude glycerol) and incubated at 20°C, while being shaken (200 rpm). After 48 hours, the cells were used 

to inoculate the new flasks at a 2 ‐ 2.5% volume ratio, the final dilution is equivalent to 0.5 OD60089. 

Cultures were grown in 250 mL Erlenmeyer flasks using an artificial sea water medium volume of 80 mL. 

The culture media used artificial sea water, as reported in the previous section using 10 g/L of carbon 

source. The flasks were incubated at 20 ºC in an Infors incubator (Switzerland). Samples consisting of 2 

mL were collected to monitor cell growth by measuring OD600 using a Jenway 6310 spectrophotometer, 

dry weight of biomass, residual glycerol and glucose concentrations as well as DHA quantification. All 

                                                           
89 The OD is measured in a spectrophotometer at 600 nm. The underlying principle is that most of the light 
scattered by the cells no longer reaches the photoelectric cell, so that the electric signal is weaker than with a cell‐
free cuvette. The OD of a bacterial culture is thus primarily not an absorbance as in the case of a dissolved dye. 
Cells of many bacteria are almost colorless and real light absorption is marginal. It is therefore not correct (even 
though unfortunately common) to designate the OD of a culture an absorption; the most appropriate term would 
indeed be turbidity. 
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assays were conducted in triplicate. Any modification of these general conditions are indicated in the 

corresponding section of this thesis. 

6.2.4 Bioreactor cultivation 
Inoculums were prepared using 40 ml of an artificial seawater medium plus a carbon source (generally 

crude glycerol) and incubated at 20°C, while being shaken (200 rpm). After 48 hours, cells were used to 

inoculate the bioreactor at a 2 ‐ 2.5% volume ratio, equivalent to 0.5 of initial OD600. The culture media 

used artificial sea water, as reported in section 6.2.2 using different concentrations of carbon source. 

Cultures were grown in a bench scale batch 2.5‐liter bioreactor, Minifors, Infors (Switzerland), using 1.5 

liters of working volume. The fermenter was stirred using a turbine that was equipped with Rushton 

impellers at a speed of 500 rpm. An aeration rate of 1.5 l/min was used in all experiments. Any 

modification will be noted in the corresponding section. Samples consisting of 10 mL of the fermentation 

broth were taken as desired. The samples were used to monitor cell growth by evaluating OD600, dry 

weight of biomass, residual glycerol and glucose concentrations as well as DHA quantification. All assays 

were conducted in triplicate. 

Standard parameters for different Bioreactor types 

 

6.2.5 Bioreactor cultivation with feeding 
Bioreactors that include a feeding stream were initiated as batch cultures following the instructions in 

section 6.2.4. To avoid any contamination, the feeding container as well as the tubing equipment was 

autoclaved together and connected immediately after sterilization process. Thus, the medium has a 

temperature of 90ºC avoiding contamination during this procedure. Always use thermoresistant gloves to 

manipulate the feeding system after sterilization and during the connection procedure. In fed‐batch 

reactor the feeding container was a 2 L Pyrex bottle. In continuous reactors the feeding container was a 

5L Pyrex bottle. Moreover, during the connection procedure every important part was gently sprayed with 

70% ethanol. In order to avoid any opportunistic microorganism was contaminating into the feeding 

media even after the mentioned precautions, streptomycin sulphate was added reaching a final 

concentration of 25 µg/mL.  

6.2.6 Kinetic parameters calculation 
Specific growth rate (μ, h‐1) was evaluated on the basis of values of biomass at the exponential phase of 

growth as expressed in 

 X
dt

dX
g          Equation 6..  

 

Batch

Fed-Batch

Single tank Continuous

Two stage Continuous

Three stage Continuous FT: 28 ST:20 TT:15 FT: 680 ST: 375 TT: 200 FT: 3 ST: 0.4 TT: 0.1

FT: 6.5 ST: 7

pH

7

7

7

FT: 6.5 ST: 7 TT:7

Airflow (L/min)

1,5

1,5

1

FT: 28 ST:20 FT: 680 ST: 200 FT: 3 ST: 0.1

20 500

20 500

20 500

Reactor type Temperature (ºC) Agitation (rpm)
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X
dt

dX
g          Equation 6.2   

The growth yield (YX/S) was calculated as the amount of biomass obtained compared to the substrate 

consumed, as in equation 6.3.       

�� �⁄ =
��

��
              Equation 6.3 

where X stands for biomass concentration (g/l) and S for substrate concentration (carbon source, g/l).  

Sometimes, calculated yields based on produced biomass can show higher values due to other carbon 

sources included in the complex ingredients of the media (i.e. triptone, yeast extract adn crude glycerol). 

This might be particularly important when using crude glycerol as carbon source, which is a complex 

mixture itself. Accordingly, a set of cultures with different initial carbon source concentration were 

performed. The resultant final biomass concentration was plotted versus different initial carbon source 

concentrations ( Figure 6.83), showing a linear relationship. The resultant slope is equivalent to the yield 

of g biomass per g of glycerol added.  

 Figure 6.83. Biomass concentration vs Initial glycerol concentration. The slope corresponds to YX/S.  

 

The specific DHA yield, which is the amount of DHA obtained (GC‐FID analysis) per gram of biomass, was 

calculated as in equation 6.4 

                                            �� �⁄ =
��

��
      Equation 6.4 

where P stands for product mass (g) and X for biomass (g). 
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The maximum specific growth rate µmax(h‐1) was the maximum of the specific growth rates calculated 

during the exponential growth phase, as expressed in 

 X
dt

dX
g          Equation 6. 

The net specific growth rate µnet(h‐1) was calculated between the inoculation and the end of the 

exponential growth phase, using 

 X
dt

dX
g          Equation 6. 

Therefore, µnet includes the lag phase. 

The affinity or semi‐saturation constant or KS, is the concentration of substrate that causes a µg=1/2 µmax. 

The value reported is an average of the repetitions, where KS was determined using a graphical approach 

by the linearization of Monod equation in a batch scenario. According to the Equation 6.7, 

 
�

� �
=

� �

� �
·

�

�
+

�

� �
           Equation 6.7  

 

where μg is the specific growth rate, Ks the saturation constant, S the substrate concentration and μmax is 

the maximum growth rate. Using the Lineweaver‐Burk double reciprocal plot (1/μg vs 1/S), as used in the 

Michaelis‐Menten enzymatic kinetic determinations, the resultant slope equals to  
� �

� �
.  

Using a similar approach, the maintenance coefficient was calculated (g carbon source / g biomass · hour). 

According to the equation 6.8 

�

��
=

�

��
· +

��

� �
        Equation 6.8 

where YE is the overall yield, YG is the specific growth yield, ms the maintenance coefficient and μg the 

specific growth rate. In this case, the slope is equal to the maintenance coefficient value.  

 

6.2.7 Monod kinetic parameters calculation using a Chemostat 
From data collected using a chemostat, Monod Equation kinetic parameters can be obtained. Data include 

S at several dilution rates D. Any continuous reactor in this thesis was started after a batch culture. After 

the batch stage is finished, the feeding is initiated and set up to ensure the lowest D possible. Thus, the 

biomass reached the highest concentration possible in a continuous operation mode. After the biomass 

concentration is stabilized, D is increased and the feeding was maintained during 3 days.  The flow was 

increased every 3 days to determine A. limacinum performance in different D value conditions.  

Rearranging equation 4.9, equation 6.9 is obtained:  

                                              
�

�
=  

�
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+
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�
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     Equation 6.9   
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Using S points obtained at different D rates, 1/D vs 1/S was plotted according the Linwaeber‐Burk 

linearization of Monod equation 6.6, at steady state situations. Using every plotted points, a regression 

line was calculated. The slope m corresponds to Ks/µmax and the intercept corresponds to 1/µmax.  

In order to determine maintenance coefficient ms the following equation was used 

�

�� /�
�� =

�

�� /�
� +

��

�
     Equation 6.10 

According to equation 6.7 ms was calculated by plotting 
�

�� /�
��  versus 

�

�
. The slope is equal to the 

maintenance coefficient and the intercept is equal to  
�

�� /�
� . Thus, kd can be calculated using equation 6.8. 

� � =
��

�� /�
�       Equation 6.11 

 

6.2.8 Dry cell weight  
Dry weight of biomass was determined after centrifugation of 10 ml of the sample (Sigma 1‐14 Microfuge) 

at 4000 rpm for 15 min. The pellet was rinsed with a saline solution (5 g/L) and centrifuged again. Then it 

was lyophilized (LyoAlfa 6 freeze drier, Telstar Spain) and finally weighted. The result off different sample 

measurements are plotted in Figure 6.84. 
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Figure 6.84 Different samples OD vs resultant biomass concentration (based on dry cell weight after 
lyophilized). 
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6.3 Glycerol quantification 

6.3.1 Sample preparation 
For residual glycerol determination, fermentation samples were centrifuged at 4000 rpm (Sigma 3‐16K, 

Germany), for 5 min at 5ºC. The supernatant was collected for direct analysis or stored at ‐80ºC to avoid 

possible zoospore proliferation, until the sample was analysed.  

 

6.3.2 HPLC analysis 
For crude glycerol determination using HPLC, a calibration curve was prepared by a series of dilutions in 

the range of 0 to 10 g/L. Dilutions were prepared with artificial seawater media instead of water because 

to reproduce the conditions of fermentation, it was necessary to mimic salinities found in the ocean where 

the microorganism naturally grows. In this case, 18 g/l of sodium chloride and other salts in minor amounts 

were used. Citric acid (Sigma‐Aldrich, Spain) was added as an internal standard.  

An HPLC 1100 series from Agilent Technologies® equipped with a Transgenomic™ ICSep COREGEL 87H3 

column and a refraction index detector (RID), was used for glycerol analysis. A column temperature of 

80ºC was used. The mobile phase was 0.04N sulphuric acid in MilliQ water at 0.4 ml/min. The 

concentration of sulphuric acid was higher than usual, to avoid column damage from the cationic load of 

the seawater. The injection volume was 10 µl of sample. Chromatograms were analysed with ChemStation 

Software from Agilent Technologies®.  

 

6.3.3 Analysis with an enzymatic kit 
K‐GCROL kit (Megazyme International) uses tablets that contain nicotinamide‐adenine dinucleotide 

(NADH), adenosine‐5’‐triphosphate (ATP) and phosphoenolpyruvate. Glycerol is phosphorylated by ATP 

to L‐glycerol‐3‐phosphate in the reaction catalysed by glycerokinase. The adenosine‐5’‐diphosphate (ADP) 

formed in the reaction reconverted by phosphoenolpyruvate (PEP) with the aid of pyruvate kinase into 

ATP with the formation of pyruvate. In the presence of L‐lactate dehydrogenase, pyruvate is reduced to 

L‐lactate by oxidizing NADH which is stoichiometric with the content of glycerol and can be measured by 

the decrease in absorbance at 340 nm.  

 

6.3.4 Analysis with a Dot Blot assay  
Plates of silica gel 60 F254 (Merck, Germany with a height of 10 cm and variable lengths were used. Two 

microliters of supernatant samples were spotted. Spots must be separated by at least 7 mm, because 

concentrated samples tend to suffer from considerable diffusion on DB. After spotting, the samples must 

be immediately dried by heated air. To visualize the spots, a solution of potassium permanganate (Sigma 

Aldrich, Spain) 37 mM, potassium carbonate 0.29 M (Panreac, Spain) and 0.05% NaOH (Panreac, Spain) in 

MilliQ water was added. Then, spots were scanned with HP ScanerJet 5100 (resolution of 1200 ppi). The 

scanned Dot Blot layer was processed and the resulting image was analysed using Matlab®® (Mathworks 

Inc., MA). 

 

6.3.5 Comparison of Glycerol quantification methods during the cultivation 
A cultivation of A. limacinum was monitored in order to evaluate DotBlot capabilities to measure crude 

glycerol compared to the other methods. Immediately after pumping the samples out of the reactor, they 
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were kept in a cold room (ca. 5ºC). All of the samples were analysed at the same time. Three replicas were 

analysed for each method. 

 

6.4 Fatty acids determination and quantification by HRGC 

6.4.1 Biomass lyophilisation 
A. limacinum cells were harvested and centrifuged at 4000 rpm during 15 min at 5ºC. Supernatant was 

collected and stored at ‐20 ºC to perform glycerol analysis. The pellet was collected and stored at ‐80 ºC 

during 24 h. After this period samples were lyophilized individually using a LyoAlfa (Telstar, Spain). 

6.4.2 Original glassware sample preparation 
To prepare the sample, FA methyl esters (FAME) were synthesized using a one‐step extraction‐

transesterification method as described originally by Majid et al. (1999) and Indarty et al. (2005). They 

were then adapted for the microorganism’s lipid extraction. The biomass was weighed (20 mg) using 

clean, 10mL screw‐top glass balloons, to which 4mL fresh solution of a mixture of methanol, concentrated 

sulphuric acid, and chloroform (1.7:0.3:2.0 v/v/v) was added. The balloons were closed with a Graham 

refrigerator which were tightly sealed with a Teflon cap to avoid leakage. Every balloon was weighed to 

evaluate leakages. Transesterification (without prior extraction) was studied at different combinations of 

temperature and reaction time. On completion of the reaction, the balloons were cooled down to room 

temperature and weighed again to dismiss leaking samples. Then, 1mL of distilled water was added to the 

mixture and thoroughly vortexed for 1 min. After the formation of two phases, the lower phase containing 

FAME was transferred to a clean, 10mL balloon and dried with anhydrous Na2SO4. Then, every sample was 

analyzed using gas chromatography. 

6.4.3 New sample preparation method 
FA analysis was performed in triplicates, and consisted of two consecutive steps; the preparation of FAME 

and the chromatographic analysis. FAME were synthesized by a four‐in‐one step procedure. The method 

is a modification of Indarti et al. adapted to extract and transform triglycerides to methylated fatty acids 

(FAMEs) from microorganisms. In a 2 mL glass vial, lyophilized biomass was weighed (5 mg) and dissolved 

in 500 µL fresh methanol, sulfuric acid and chloroform (1.7:0.3:2 v/v/v) mixture. The vials were sealed 

with aluminum crimp caps to avoid volume los during the Fischer reaction. To do so, samples were 

maintained in a water bath at 80 °C during 30 min. After that samples were cooled during 2 min at room 

temperature. Then 100 µL of water were added to separate two phases, having FAMEs dissolved in 

chloroform. 

Chloroform phase was collected and analyzed by HRGC 7890GC (Agilent technologies, Waldbronn, 

Germany) equipped with a flame ionization detector and Supelco SP™‐2380  

 

6.4.4 High resolution gas chromatography (HRGC) with a flame ionization detector (FID) 
The chloroform phase was then collected and analysed with an HRGC 7890GC (Agilent technologies, 

Germany) that was equipped with a flame ionization detector and a Supelco SP™‐2380 (60 m x 0.25 mm 

x 0.20 μm) capillary column. The oven temperature was programmed to run at 210 ºC for 4 minutes, then 

2 ºC / min. to 230 ºC for 5 minutes and then 15 ºC to 255 ºC for 0.5 min. The injection module was heated 

above oven temperature, 250 ºC, with a split ratio and flow of 33:1 and 33 mL/min. respectively.  Helium 
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was used as carrier gas at a linear velocity of 24.28 cm/sec.  The detector was heated to 250ºC. Different 

fatty acids were identified by comparing the retention times with those of standard fatty acids (Sigma‐

Aldrich, Spain), such as DHA (ref. D2534‐100MG) and P (ref. P0500‐10G). 

6.5 A. limacinum life characterization 

6.5.1 Microoscopy and Matlab® algorithm 
A random, 2 µL sample of A. limacinum was taken from the culture and deposited on a glass microscope 

slide. After covering the culture drop with a cover slip, the sample was then analysed at magnification of 

40x 100x 400x and 1000x. For crystal violet staining, cells were dried after deposition on a cover slip and 

then left with a small volume of the dye. Thereafter, the sample was rinsed with miliQ water and analyzed 

by microscopy.  Stored pictures were processed using a Matlab® algorithm (Appendix C) that was specially 

adapted for this purpose. This method was validated with laser scattering equipment (Saturn Digisizer 

5200), to measure the diameter of A.limacinum cells.  

6.6 Determination and quantification of squalene 

6.6.1 Extraction of squalene 
In order to extract squalene, a sample of 100 mg of lyophilized biomass was put in a glass tub with 6 mL 

of methanol:chloroform (v/v) mixture. The tube was vortexed for 30 seconds. Then, the samples were 

incubated overnight using mild agitation (100 rpm – orbital shaker). Thereafter, 2 mL of the same mixture 

were added to an additional 2mL water. The tube with the sample was agitated and centrifuged at 3000 

rpm during 5 minutes. Three clear phases were expected to appear. The upper and middle phases were 

discarded, while the lower phase was collected in a glass balloon to be rotavaporated. Once evaporated, 

the sample was suspended in a known volume of chloroform. At that point, the sample was ready to be 

analysed. 

6.6.2 Analysis of squalene using HRGC-FID 
The sample was analysed using an HRGC 7890GC device (Agilent technologies, Germany) equipped with 

a flame ionization detector and an HP‐5MS‐UI (30 m x 0.25 mm x 0.25 μm) capillary column. The oven 

temperature was programmed at 170 ºC. A ramp of 10 ºC/min. was immediately applied, until reaching a 

final temperature of 280 ºC. The final temperature was maintained for an additional 10 minutes.  The 

injection module was heated to 250 ºC, with a split ratio and flow of 20:1 and 1 mL/min. The detector 

module was heated to 275 ºC. Helium was used as a carrier gas. 

6.7 Determination and quantification of astaxanthin 
 

6.8 Determination of organic acids 
Bioreactor samples were centrifuged at 4000 rpm (Sigma 3‐16K, Germany), for 5 minutes at 5ºC. The 

supernatant was collected for organic acids determination using HPLC. A set of different organic acid 

standards were injected. An HPLC 1100 series from Agilent Technologies® equipped with a Transgenomic™ 

ICSep COREGEL 87H3 column and a refraction index detector (RID) was used for glycerol analysis. A 

column temperature of 80ºC was used. The mobile phase was 0.04N sulphuric acid in MilliQ water at 0.4 

ml/min. The concentration of sulphuric acid was higher than usual conditions to avoid column damage 

from the cationic load of seawater. The injection volume was 10 µl of sample. Chromatograms were 

analysed with ChemStation Software from Agilent Technologies®.  
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6.9 Downstream processing 

6.9.1  Microalgae biomass preparation (for cell disruption) 
A. limacinum was grown in a 2 L bioreactor (Sartorius Stedim Biotech BIOSTAT® BPlus culture system 
equipped with a 2L UniVessel BB‐8846906) using enriched artificial seawater. An enriched artificial 
seawater culture solution with the following components (per L) was used: 18 g NaCl, 2.44 g MgSO4, 0.6 
g KCl, 1.0 g NaNO3, 0.3 g CaCl2•2H2O, 0.05 g KH2PO4, 1 g Tris, 0.027 g NH4Cl, 15x10‐8 g vitami45n B12 
combined with 10 mL/L metal solution, and 3 mL/L chelated iron solution as reported in Chi et al. [47] and 
Starr & Zeikus [48]. The culture was maintained at 20 ºC for one week with more than 50 % dissolved 
oxygen. The cells were collected by centrifugation (Eppendorf 5810 R centrifuge, USA) at 4000 rpm for 15 
min at 5ºC. 750 mg of cells were collected and suspended in 10 mL of a solution containing 30 g/L glycerol 
and 10 g/L NaCl to prevent any cell disruption. The cell concentration in each 10 mL aliquot was 7.5% 
solids. The mixture was stored at ‐20 ºC for the experiments. 
 

6.9.2 Disruption of A. limacinum by sonication  
A 10 mL aliquot (see section above) of cells was thawed and centrifuged using a benchtop Sigma 2‐16HKL 
centrifuge at 4000 rpm for 15 min at 5ºC.  The resulting pellet was recovered and suspended in 10 mL of 
methanol (Sigma‐Aldrich, USA; 32213‐2.5L‐D) or chloroform (Sigma‐Aldrich, USA; 288306‐1L), maintaining 
7.5 % solids (v/v) concentration for the process. Cells were disrupted using a bench scale sonicator 
(Misonix s‐4000, USA) with an output voltage of 1kV and a frequency of 20 kHz. The sonication system 
was equipped with a 13‐mm tip connected to a standard ½‐inch diameter tapped horn.  The amplitude 
was set at 70% of the system’s capacity with pulses of 3 seconds followed by 5 seconds of cooling until 
reaching the desired total energy. 

Sonication at each condition was performed on 3 replicates. The sonication was carried out in a 50 mL 
Falcon® tube in an ice bath to minimize temperature increase due to sonication. After this, samples were 
agitated for 10 minutes using a vortex or a plate shaker. To ensure repeatability all the samples were 
shaken with a titer plate shaker (Thermo Scientific, USA) for 5 minutes. Samples were then centrifuged 
and the supernatant collected to complete what is referred to as the first extraction.  Supernatant was 
stored while the pellet was collected for a second extraction. This extraction was carried out using fresh 
methanol. The extraction capacity was gravimetrically quantified to determine the total mass extracted.  
Extraction of TGs was also quantified by HPLC using a UV detector. 

6.9.3 Gravimetric quantification of A. limacinum extract 
A 1.5 mL volume of A. limacinum clarified lysate (with methanol as solvent) was transferred to a previously 
weighed Eppendorf tube. Lysates were then dried using a Vacufuge™ Concentrator (Eppendorf, Westbury, 
NY, USA). The concentrator was operated at 1400 rpm and 30 ºC with a vacuum pressure of 20 mbar. The 
samples were processed until the mass stabilized. The extracted content in each vial was then 
gravimetrically quantified by subtracting the weight of the Eppendorf tube from the gross weight of the 

tube/residue. 

6.9.4  Fatty acid profile quantification by gas chromatography 
Total fatty acid content and fatty acid composition were also determined in A. limacinum lysate. Fatty acid 
analysis was performed in triplicate and consisted of two consecutive steps: preparation of fatty acid 
methyl esters (FAME) and analysis by gas chromatography. The method used is detailed in section New 
sample preparation method and High resolution gas chromatography (HRGC) with a flame ionization 
detector (FID). 



 6.9.Downstream processing 

 

 

193 

6.9.5 HPLC for TG analysis 
To analyze TG as part of process development, a basic HPLC procedure was established and used. It was 
performed using a Shimadzu Prominence HPLC system (Shimadzu Corporation, Kyoto, Japan) consisting 
of a double LC‐20AS pump, SIL‐20AC auto‐sampler, a system controller CBM‐20A, a column chamber CTO‐
20A, and a SPD‐M20A photodiode array (PDA) detector operating with both the deuterium (D2) lamp and 
tungsten (W) lamp. A Kromasil® C18 reversed‐phase column with a 5µ particle size, 100Å pore diameter, 
and dimensions of 250 mm x 4.6 mm was installed. TGs were resolved with 40 minutes of isocratic 
operation using a 2:3 v/v mixture of methanol (Sigma‐Aldrich, USA; 32213‐2.5L‐D) to hexane (Sigma‐
Aldrich, USA; 34484‐2.5L), followed by a linear gradient from 60% methanol in hexane to 100 % methanol 
over 60 minutes. Wavelength acquisition was set up at 190 nm ‐ 230 nm. The cell measuring temperature 
was set to 40 ºC and the column chamber was set to 30 ºC. 

Individual peaks for TGs produced by A limacinum were identified as follows: retention time as a function 
of ECN was determined using known TGs from a standard mixture purchased from Sigma‐Aldrich 
(described below).  That standard mixture did not contain many of the TG expected in A limacinum lysate.  
But the peaks resulting from injections of A limacinum lysate could be easily identified based on retention 
time since ECN (and therefore retention times) are known for the TG previously reported to be produced 
by A limacinum [43]. 

6.9.6 Chromatography method (process) development 
Development of a reversed‐phase chromatography method for purification of TGs from A. limacinum was 
performed using the same Shimadzu Prominence HPLC system (Shimadzu corporation, Kyoto, Japan) 
described previously for analysis of TGs.  Data and chromatograms were collected using LabSolution 
software (Shimadzu Corporation, Kyoto, Japan). The autosampler was programed to clean the needle with 
hexane. Wavelength acquisition was set at 190 nm 500 nm. The cell measuring temperature was set to 40 
ºC and the column chamber was set to 27 or 30 ºC. Different mixtures of hexane (Sigma‐Aldrich, USA; 
34484‐2.5L), methanol (Sigma‐Aldrich, USA; 32213‐2.5L‐D) and ethanol (Sigma‐Aldrich, USA; 34870‐2.5L) 
were used as mobile phase during the work. Reversed‐phase resins used in this study are listed in Table 
6.43. 

                 Table 6.43 Reversed-phase columns used for method development and scale up. 

Brand Resin Type Bead Size 
(µm) 

Pore Size 
(Å) 

Length 
(mm) 

Column 
Diameter 

(mm) 
Alltech® 
RP18 

C18 5 100 250 4.6 

Jupiter® C4 5 300 250 4.6 

Kromasil® C18 5 100 250 4.6 

Kromasil® C18 16 300 250 4.6 

Initial chromatography method development relied on purchased triglycerides.  TG standards containing 
DHA are not commercially available; therefore, TGs were purchased with equivalent carbon numbers 
(ECNs) similar to those for TGs previously reported by Nakaharah et al. [43] from A. limacinum.  The ECN 
for a TG is defined as follows: ECN = number of carbon atoms – 2x the total amount of double bonds.  

There is a linear relationship between ECN and k´, the chromatographic retention factor.  Because of this 
relationship, retention times for two different TGs with the same ECN will be the same, using the same 
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chromatographic method.  By matching ECN values of standards to ECN for TGs obtained from A. 
limacinum lysate, chromatographic performance between purchased TGs and A. limacinum TGs should 
be similar.  Detailed information regarding TGs in the standard sources is found in Table 6.44. 

Table 6.44 TGs in purchased mixtures used in this study.  Fatty acid abbreviations are as follows: P=palmitic acid; M=myristic acid; 
Ln=α-linolenic acid; L=linoleic acid; O=oleic acid; G=gadoleic acid; E=erucic acid; S=stearidonic acid.  All TGs making up the Sigma-
Aldrich standards are unsaturated.  The omega-3/palm oil mixture contains both unsaturated and saturated TG (. Trierucin 0.9 
mg/mL, Tri-11-eicosenin 0.7 mg/mL, trilinolenin 0.91 mg/mL, trinolein 0.96 mg/mL, trioelin 0.99 mg/mL, tripalmitin 1.15 mg/mL 
and trimysristin 1.04 mg/mL). 

Sigma-Aldrich standards Omega-3 pill/palm oil mixture 

TG ECN TG ECN 

LnLnLn 36 LLO 44 

MMM 42 LLP 44 

LLL 42 LOO 46 

PPP 48 LOP 46 

OOO 48 LPP 46 

GGG 58 OOO 48 

EEE 64 POO 48 

  PPO 48 

  PPP 48 

  SOO 50 

  SOP 50 

  PPS 50 

6.9.7 Mass spectrometry for TG identification (MALDI-TOF) 
MALDA‐TOF mass spectrometry was used to identify peaks eluting from the process chromatography 
method using Shimadzu Prominence HPLC system (Shimadzu Corporation, Kyoto, Japan). Collected 
samples were concentrated by evaporation using an Eppendorf Vacufuge plus (Eppendorf, USA) and 
dissolved in a 50% by volume solution of acetonitrile and water for a total volume of 4 mL.  Analysis by 
mass spectrometry were carried out using 2 µL volume of the purified TG. Measurements were performed 
using a MALDI‐TOF Axima system. The laser frequency was 50 Hz, the acceleration voltage was 20 kV, and 
the extraction delay time was 200 ns. The spectra were recorded in linear positive mode within a mass 
range of 500 to 1300 m/z. 
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7.1 Experimental Design (Part I) 

Experimentation is one of the most common activities performed by researchers; including scientists and 

engineers. The results of the experiments offer insight for a wide range of applications from social science 

to biotechnology. Experimentation is used to understand and/or improve a system. The system may be 

simple or complex, and it can result in either a product or a process. This work has applied different DoE 

in order to develop and optimize a bioprocess. In any experimentation, the investigator attempts to 

determine the effect that input variables have on the output/performance of the product process. This 

enables the investigator to determine the optimum settings for the input variables.  

Experimental design is a body of knowledge and techniques that help the researcher conduct experiments 

economically, analyse the data, and make connections between the conclusions from the analysis and the 

original objectives of the investigation. The application of DoE in this thesis is for; the development of the 

analytical methods found in chapter 2 and the investigation and optimization of the biotechnological 

process that is explained in chapters 3, 4 and 5. The traditional approach to industrial and scientific 

investigation is to employ trial and error methods to verify and validate the theories that may be advanced 

to explain a certain observed phenomenon. This may lead to prolonged experimentation without useful 

results. The approaches include experimentation that looks at one factor at a time (box 2.1), several 

factors individually90, several factors all at the same time91 and full factorial designs92. Full factorial designs 

are orthogonal, which means that there are an equal number of test data points under each level of each 

factor. By taking advantage of this property, both the factors and the interactions can be estimated. These 

approaches have many variations and statistical modifications. 

A full factorial design is very powerful but is only acceptable when working with a few factors. When 

several factors need to be investigated, the number of experiments to be run with a full factorial design 

is very large. For this reason, statisticians have developed more efficient test plans, which are referred to 

as fractional factorial experiments. These designs use only a portion of the total possible combinations to 

estimate the main factor effects and only some of the interactions. The main reason for designing the 

experiment statistically is to obtain unambiguous results at a minimum cost. The statistically designed 

experiment permits simultaneous consideration of all possible variables that are expected to have a 

bearing on the problem under consideration and as such, even if interaction effects exist, a valid 

evaluation of the main factors can be made. From a limited number of experiments, it would be possible 

to uncover the vital factors that would lead to further trials in which the researcher could determine the 

most desirable combination of factors to potentially yield the expected results.  

The statistical principals employed in the design and analysis of experimental results assure impartial 

evaluation of the effects on an objective basis. The statistical concepts used in the design, form the basis 

for a statistical validation of the results from the experiments. The statistical foundations for the design 

of experiments and the Analysis of Variance (ANOVA) was first introduced by Sir Ronald A, Fisher, who 

was curiously, a biologist. ANOVA is a method for partitioning total variation into accountable sources of 

variation in an experiment. It is a statistical method used to interpret experimented data and make 

                                                           
90 Evaluate different factors modifying only one per experiment. 
91 Evaluate different factors modifying all per experiment. 
92 An orthogonal experimental design in which every experiment includes one or multiple modifications of the 
factors, ensuring the investigation of every possible combination.  
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decisions about the parameters that are under investigation. More information about ANOVA can be 

found in section 7.3.1.1.  

7.2 Taguchi Methods 
The construction of fractional replicate designs generally requires good statistical knowledge on the part 

of the investigator and is subject to some constrains that limit the practical applicability and ease of 

conducting experiments. For this reason, Dr. Genichi Taguchi suggested the use of Orthogonal Arrays 

(OAs)93 for designing the experiments. He has also developed the concept of the linear graph94, which 

simplifies the design of OA experiments. These designs can be applied by engineers and scientists without 

acquiring advanced statistical knowledge. The main advantage of these designs lies in their simplicity; they 

are easily adaptable to more complex experiments that involve a number of factors with a different 

number of levels. They provide the desired information with the least possible number of trials and yet 

yield reproducible results with adequate precision.  

The basis of Taguchi’s methods is the additive cause-effect model. To explain this model; suppose there 

are two factors, e.g. temperature and time of culture, which influence a process. Let α and ß be the effect 

that the temperature and time of culture factors respectively, had on the response variable Y. Taguchi 

                                                           
93 OAs where mathematical invention is dated in early 1987 by Jacques Hadamard, a French mathematician. 
94 Taguchi’s linear graphs are graphical representations of the columns and their interaction in an orthogonal 
matrix. This allows for better planning of an experiment, predicting which factors and interactionds could be 
analysed before starting the experiments.  

 

Factor: A variable or attribute that influences or is suspected of influencing the characteristic being 
investigated. All input variables which affect the output of a system are factors. Factors are varied in the 
experiment, can be controlled at fixed levels or set at levels of interest. They can be qualitative (e.g. shape of 
the Erlenmeyer) or quantitative (e.g. temperature).  

Levels of factors: The values of factors being investigated in an experiment. If the factor is an attribute, each 
of its states is a level, e.g. an Erlenmeyer with deflectors or not. If the factor is a variable, the range is divided 
into the required number of levels.  

Response: The output obtained from a trial of an experiment, e.g. the production of DHA.  

Degrees of freedom: A degree of freedom in a statistical sense is associated with each piece of information 

that is estimated from the data. In other words, it equals the total number of samples/responses minus 1. 

Orthogonality: The combination of factors with different levels in a factorial design conforms a matrix of values 

grouped in vectors. Two vectors are orthogonal if the sum of the products of their corresponding elements is 

0. For example, consider the following vectors a and b: 

 

This shows that the two vectors are orthogonal. 

Box 2.9. Experimental design terminology 
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showed that in many practical situations, these effects can be represented by an additive cause-effect 

model. This model has the following form: 

                                       � = μ + � � + ß � + ���     Equation 7.1  

where µ is the mean value of Y in the region of experiment, αi and ßj are the individual or main effects of 

the influencing factors (temperature and time of culture) and eij is the error term. 

The term main effect designates the effect on the response Y that can be attributed to a single process or 

design parameter, such as temperature. In the additive model, it is assumed that interaction effects are 

absent. The additivity assumption also implies that the individual effects are separable. Under this 

assumption, the effect of each factor can be linear, quadratic or higher order. When interactions are 

included, the model becomes multiplicative or non‐additive. In other words, the model becomes more 

complex. The Taguchi methods will facilitate the experimentation when there are complex scenarios. 

The Taguchi method offers the perfect opportunity to apply DoE due to its simplicity and capacity to 

identify the proper factors. In Chapter 2, the Taguchi methods will be applied to the analytical chemistry 

that will be discussed.  

7.3 Analytical Methods statistics 
3 main analytical methods (two for glycerol 

quantification and one for DHA 

quantification) have been developed and 

documented. This includes the 

quantification and monitoring of glycerol 

consumption, fatty acids profile 

determination and DHA quantification, and 

the microscopy based measurements of cell 

dimensions and its qualitative analysis. DHA 

quantification is done with the challenging 

sample preparation method and the High 

Resolution Gas Chormatography (HRGC) 

method. This research has also used other 

general analytical procedures, which haven’t 

been developed during the research and that are explained in the Materials and Methods section (chapter 

2.2).  

7.3.1.1 Sum of squares  
In many applications, the sum of squares is an important tool. It allows the determination of factors 

effects on any experiment to which it is applied. This tool is used when it is necessary to look at distance, 

because the sum of squares (SS) is a mathematical calculation of distance. In order to know how far one 

sequence of numbers is from another, it is possible to simply take the differences between the 

corresponding terms in the two sequences, and add them. However, if that method is used, the 

cancellation of positive and negative terms would be achieved and the sequences would seem closer 

together than they actually are. Objects of interest for mathematicians are actually quadratic forms. It is 

important to note that the sum of squares is a special type of quadratic form.  

 

Every matrix used in this thesis will be indicated in 

the corresponding experiment section. For more 

information about how to apply Taguchi methods 

see Appendix B.  

  L = Latin square 

La (bc) a =number of rows 

  b = number of levels 

  c = number of columns (factors) 

Degrees of freedom associated with the OA = a ‐1 

Box 2.17. Nomenclature of arrays 
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A metric or distance function is a function d(x,y) that defines the distance between the elements of a set 

as a non‐negative real number. If the distance is zero, both elements are equivalent under that specific 

metric. Distance functions thus provide a way to measure how close two elements are. These elements 

do not have to be numbers but can also be vectors, matrices or arbitrary objects. Distance functions are 

often used as error or cost functions that can be minimized in an optimization problem. 

In this context, SS represents a measure of variation or deviation from the mean. It is calculated as a 

summation of the squares of the differences from the mean. The calculation of the total sum of squares 

(SST) considers both the sum of squares from the factors (SSE) and from residuals95 (SSR). In this work, the 

SS has been used for both ANOVA and linear regression secondary calculations. In ANOVA from Pareto 

that was used in this thesis, the total sum of squares helps express the total variation that can be 

attributed to various factors and it also helps to determine its contribution. Converting the sum of squares 

into mean squares by dividing by the degrees of freedom allows researchers to compare these ratios and 

determine whether there is a significant difference due to factor. The larger this ratio is, the more the 

treatments affect the outcome.  

In ANOVA, mean squares are used to determine whether factors are significant. 

 The factors of the mean square are obtained by dividing the treatment sum of squares by the 

degrees of freedom. The factors mean square represent the variation between the sample means. 

 The mean square of the error (MSE) is obtained by dividing the sum of squares of the residual 

error by the degrees of freedom. The MSE represents the variation within the samples. 

In linear regression, the total sum of squares helps express the total variation of the y's. 

The total sum of squares or proportional variance is defined in Equation 7.2. 

 

��� =  ∑ (��� ��)�        Equation 7.2  

 

In addition, SST = SSR + SSr, defined in Equation 7.3 and Equation 7.4, respectively.  

 

                            ��� =  ∑ (��� ��)�      Equation 7.3 

 

                            ��� =  ∑ (��� ��)�      Equation 7.4 

 

By comparing the regression sum of squares to the total sum of squares, it is possible to determine the 

proportion of the total variation that is explained by the regression model. R2, the coefficient of 

determination will be explained in the following section.  

                                                           
95 Residual of an observed value is the difference between the observed value and the estimated value.  
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7.3.1.2 Assay attributes 
The development of an efficient and reliable biotechnological process is dependent on having suitable 

analytical methods. This means that it is important that work on analytical methodology for the 

bioproduct of interest, is initiated at the very beginning of process development. Analytical studies are 

important throughout the development and a scale up of the process is also necessary, because changes 

can occur either to the product or to its associated impurities. This chapter will explain the basic attributes 

that are required for any analytical procedure in order to show its usefulness.  

Precision is a measure of the reproducibility of an assay. Precision is expressed as a relative standard 

deviation, defined as the standard deviation divided by the mean response, also known as the coefficient 

of variation (CV). Typically, this is converted to a percentage. The precision indicates the likelihood that a 

repeat test will have the same result. Assays that result in a precision that is greater than 5% are generally 

unacceptable. Precision is evaluated based on standard deviation (SD), which can be seen in equation 7.5. 

�� =  �
∑ (����̅)��

���

���
        Equation 7.5 

where �̅ the mean of n measurements, and xi is an individual measurement. At least three replicates must 

be made before a meaningful standard deviation can be determined. The standard deviation is an 

estimate of the true variability of the assay, based on a limited sample. The true variability requires infinite 

replicates to measure. Almost all measurements in this thesis have done three replicates unless the 

specific situation made it difficult to achieve. For example, in cases where the research implied several 

cultures with several samples per culture, the replicates had to be reduced for logistic constraints.  

Accuracy is a measure of closeness of the assay result to the “true value”. Accuracy is often measured on 

the basis of the recovery of pure product added into the sample. Therefore, this can be easily measured 

by adding an internal standard during the sample preparation and by analysing the recovery of this 

product. The analytical method needs to be calibrated on a curve in order to quantify it. When working 

with FA, internal standards are normally odd FAs which are either rare or non‐existent in nature.  

Specificity is the ability of the method to distinguish between the analyte and similar components. This 

means that no other molecules in the sample matrix interfere with the quantification of the target 

molecules. Therefore, the purity can be demonstrated with the resolution between the species that were 

analysed.  

The linearity of a method is its ability to produce a response that is proportional to the concentration of 
the analyte. Linearity is assessed by creating a standard curve for the analyte by a linear least‐square fit 
of the response against the concentration. The correlation coefficient (r2) is the measure of the linearity 
and is defined as indicated in Equation 7.6 which is based on Equation 7.2 and Equation 7.3. 

�� = 1  
���

���
       Equation 7.6 

Where SSE is the sum of squares that was introduced in section 7.3.1.1 and SST is the total sum of squares 

as explained in 7.3.1.1. The square of the correlation coefficient varies over the range 0 ≤ r2 ≥ 1 and is a 

measure of the amount of variability in the data explained or accounted for by the linear model. Linearity 

is important because responses from assays for any given analyte amount assayed may not always be 

identical. Assays become nonlinear at both high and low concentrations, where detectors become 



S. Abad Sánchez Ph.D. Thesis 

 

202 

saturated or when noise becomes a significant proportion of the response. The slope is the response 

factor or signal, whose intercept should be zero. If the intercept is not zero, there may be some noise 

present, especially at lower limits of the calibration curve.  

For this reason, it is important to determine the limit of detection (LOD) and the limit of quantification 

(LOQ), which are precise measurements made at the lower extreme of the linearity curve. LOD and LOQ 

can be determined in three different ways: based on visual evaluation, based on signal to noise ratio and 

based on the residual standard deviation (RSD) of the response and the slope of the linear regression.  For 

this work, RSD is used to calculate the LOD and LOQ for the current method. The calculation is done as 

expressed in Equation 7.7.  

    ��� =
��(������)�

���
     Equation 7.7 

where Y is the obtained response, Yest is the calibration curve estimated response and n is the number of 

samples per replicate. Once RSD is obtained, all data is available to calculate LOD and LOQ. LOD is 

considered to be 3 times RSD divided by the slope while LOQ is considered 10 times RSD divided by the 

slope.  

Range refers to the upper and lower limits within which the assay can produce accurate and precise 

results. Normally, these limits are delimited by the particular slope linearity and by the LOD and LOQ at 

lower limits. For example, in the quantification of DHA, the upper limit of the range would be delimited 

by the last data point maintaining the linearity of the method whereas the lower limit would be set by the 

LOQ, which equals the minimum concentration that can be quantified precisely.  

Robustness refers to the assay conditions. This can be defined as the capacity to be reliable despite 

unpredicted minor changes of the method conditions. Robustness is not generally evaluated, because if a 

method is not robust, it will result in low accuracy and imprecise statistics.  

7.4 Experimental design (Part II) 
As already explained in the introduction of chapter 2, the thesis presented here not only looking for 

documentation of a bioprocess development. It also aims to serve as a guide providing information about 

different optimization techniques. In this chapter two new techniques were used which need to be 

introduced. Those techniques are artificial neural network and response surface methodologies.  

7.4.1 Artificial Neural network 
Artificial neural networks (ANN) are mathematical models emulating an animal brain acting [231]. They 

are considered a black box approximation because ANN cannot return information about the system, just 

to uncover an empirical model between inputs and targets (responses), giving an output. This is a powerful 

feature, because internal mechanism of any investigated relationship are not needed. ANN can adapt to 

any set of data with nonlinear relationship making it so powerful for fitting very heterogeneous. It can 

handle with big amounts of data. Therefore, is a potential tool for bioprocess modeling, where the 

microorganism mechanisms are unknown.  

ANN can have different very different structure but generally are composed of a layer of input neurons, a 

hidden layer of neurons (or more) and an output data. Every element in ANN is interconnected with the 

others. Every connection has a parameter which defines it, called weight (Wj). Weights are the variables 

which, together with the intercept, are modified while the system is learning. In other words, the weights 
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vary their effect until the target result fits with the validating points. Validation points are the response 

of experiments which haven’t been included for the machine training.  This test if the model is adjusted 

or not.  

Adjusting the model in ANN require several iterations of Wj adjustment. This process consists of 

performing a lineal combination of the Wj which converge in each neuron. Every neuron in the system is 

a processing unit performing the combination as indicated in Equation 7.8:  

� =  ∑ ��
�
��� + �� +  �     Equation 7.8 

Where xi is the input I, Wj is the weight j associate with every connection and � is the intercept from every 

neuron. Then the activation function is applied on the result y from every lineal combination. Activation 

function is expressed in Equation 7.9: 

�(�) =  
�

�����
       Equation 7.9 

The activation function gives a nonlinear nature to the model and secondly, is normalizing the value 

calculate in every neuron between 0 and 1. There are other sigmoidal function which could be used for 

this objective as well. However, this was chosen due to having an easier derivatization.  Output neuron is 

not applying the activation function, because is releasing the results. During every iteration, the system 

seeks the reduction of the error by using the backpropagation algorithm which decides the new Wj value 

after every iteration. This process is repeated until error requirements are achieved.  

This optimization technique has been used for the medium development in the section 3.3.2 of this 

chapter. 

7.4.2 Response surface methodology 
In experimental investigation we study the relationship between the input factors and the response 

(output) of any process or systems. The purpose may be either to optimize the response or to understand 

the system. If the input factors are quantitative and are a few, RSM can be used to study the relationship. 

For example, the influence of NaCl and yeast extract on A. limacinum growth. The growth is a function of 

the levels of NaCl and yeast extract which can be represented as in Equation 7.10. 

 � = �(��, ��) + �     Equation 7.10 

Where e is the observed error of the growth (response) Y.  

However, the secret theoretical relationship between two factors and its response is unapproachable. 

Making some reasonable assumptions about the underlying relationship between the factors and the 

response an empirical model can be developed. For example, if it is believed that factors X1 and X2 are 

independent and that each has only a first‐order effect on the response, then Equation 7.11 is a suitable 

model.  

� =  �� +  ���� + ���� +  e     Equation 7.11 

Where R is the response, X1 and X2 are the factors (levels), and ß0, ßa and ßb are adjustable parameters 

whose values are determined by linear regression and would define the “shape” of the model. Although 

an empirical model may provide an excellent description of the response surface, it has no basis in theory 

and could not predict correctly unexplored parts of the explored data.  
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In a situation where the factors are not independent, an interaction parameter is included, leaving the 

following first‐order Equation 7.12: 

� =  �� +  ���� + ���� + ������� +  e    Equation 7.12  

 

Finally, if a first‐order empirical model cannot be fitted into the data, it may fit in a second‐order models. 

A second‐order model need quadratic terms, which confers curvature to the model. Equation 7.13 

corresponds to two factor expression. 

� =  �� +  ���� + ���� + ������� + ����
� + ����

� +  e   Equation 7.13 

Every empirical model can be adjusted by linear and multiple linear regression, but the correct data 

needs to be collected. Generally, to obtain valuable data for fitting a first‐order model, only two levels 

per factors are needed (2k DoE)96. However, for second‐order models 3 levels per factor (3K DoE) are 

needed but the experiments demand increases. The most popular 3k factorial design is called Central 

composite design (CCD). It is used in the next chapter and therefore, introduced. 

7.5 Experimental design (Part III) 
This is the last part of experimental design techniques introduced. In Chapter 3 ANN and RSM have been 

introduced, where RSM was built with data from polynomial regressions. In Chapter 4 it is being 

introduced a new experimental design called Central Composite Design (CCD) that is commonly used to 

build RSM. CCD has been used for agitation and aeration modeling to be then applied to the multi‐stage 

CSTR approach. Agitation and aeration influence the oxygen transfer rate, therefore, these two 

parameters will define the best oxygen conditions for biomass growth and DHA production.  

7.5.1 Central composite design (CCD) and RSM 
The Bow‐Wilson CCD is an experimental design commonly used to build response surfaces due to its 
special characteristics. CCD is composed by a fractional factorial design97 with a central point (generally 
0,0) and “star” or axial (Figure 7.83) points. Hence, it is a hybrid type of DoE. Star points allow describing 
the plane curvature that defines a response surface. CCD can be applied for 2, 3 and 4 factors k with the 
levels defined by the architecture of the experimental design as following: 

 nF factorial points (corner cube points) indicated by +1 and -1. 

 nC central points of the design indicated as 0. 

 α axial or star points. The number of axial points is defined by the number of factors = 2k. 

                                                           
96 Two levels per factor k, which gives the amount of experiments needed.  
97 A factorial experiment in which only an adequately chosen fraction of the treatment combinations required for 
the complete factorial experiment is selected to be run. Used to economy high loads of experiments. 



 7.5.Experimental design (Part III) 

 

 

205 

 

In general, the α selected value ranges between 1 and √k. This value will define the geometric nature of 

the design. When α is equal to √k the design is called spherical CCD, and is the one used in chapter 4. CDD 

allows a deeper study of the plane described by factor levels. Moreover, it explores 5 different levels 

geometrically selected. Then, RS generated through CCD data offers a more precise model as well as an 

optimization of the factors analyzed. The experimental matrix is detailed in the results section of chapter 

4.   

  

                       Figure 7.85. Architecture of the spherical CCD used in Chapter 4.  
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Appendix B: Algorithm I  
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This algorithm was developed exclusively in this thesis for glycerol monitoring in a bioprocess 

development. Paste of the text below in a Matlab® terminal with Image processing toolbox installed will 

compute the tool. 

% Nostromo Algorithm by Sergi Abad Sánchez 
  
tic; % Inici del contador. 
clc; % Borrar la pantalla. 
clear all; % Borra les variables y matrius emmagatzemades 
disp('In the space no one can hear you scream!'); % Missatge d'inici. 
workspace; % Fa apareixer el panell de variables de Matlab®. 
  
% Canvia la ruta de l'archiu 
if(~isdeployed) 
    cd(fileparts(which(mfilename))); 
end 
  
% Read in  MATLAB®  
[fn,pn]=uigetfile('*.*', 'Select an image'); 
spots = imread(fullfile(pn,fn)); 
spots = rgb2gray(spots); 
spots = imadjust(spots); 
spots = imcrop(spots); 
subplot(2, 3, 1); 
imshow(spots); 
% Maximitza la pantalla que mostra les figures. 
set(gcf, 'Position', get(0, 'ScreenSize')); 
% Força a mostrar la figura, si no es mostra es que tenim un punt de rotura 
caption = sprintf('Imatge original en escala de grisos'); 
title(caption);  
axis square;  
  
% Histograma. 
[pixelCount grayLevels] = imhist(spots); 
%a = pixelcount-100; 
%axis(a); 
subplot(2, 3, 2);  
bar(pixelCount);  
title('Histogram of original image'); 
%xlim([0 grayLevels(end)]); % Ajusta la escala del 0 al valor máxim dels 
pixels. 
  
  
% Converteix la imatge a binary, mitjançant un llindar donat 
% Utilitzant una operació lógica 
message = sprintf('Cal analitzar de forma diferents els spots més concentrats 
i els més diluits');  
reply = questdlg(message, '%s\n\nYes = Spots concentrats No = spots 
diluits?','70', '30', '100'); 
  
if strcmpi(reply, '70') 
    thresholdValue = 70 ; 
elseif strcmpi(reply, '30') 
    thresholdValue = 30;  
elseif strcmpi(reply, '25') %modificat aquí, abans era 15 
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  thresholdValue = 25; 
else  
  thresholdValue = 70; 
end 
  
  binaryImage = spots > thresholdValue; % "Bright objects will be the chosen 
if you use >." 
% binaryImage = spots < thresholdValue; % "Dark objects will be the chosen if 
you use <." 
  
% Omplir el gaps per desferse de valors similars al background dins dels 
% "spots" 
binaryImage = imfill(binaryImage, 'holes'); 
  
% Mostra el llindar sobre l'histograma en forma d'una barra vermella. 
hold on; 
maxYValue = ylim; 
hStemLines = stem(thresholdValue, maxYValue(2), 'r'); 
children = get(hStemLines, 'children'); 
set(children(2),'visible', 'off'); 
  
% Col·loca una etiqueta sobre la barra vermella. 
annotationText = sprintf('El llindar equival %d nivells de gris', 
thresholdValue); 
  
% Per text(), x i y han de ser del tipus "double", per tant cal convertir-los 
text(double(thresholdValue + 5), double(0.5 * maxYValue(2)), annotationText, 
'FontSize', 10, 'Color', [0 .5 0]); 
text(double(thresholdValue - 70), double(0.94 * maxYValue(2)), 
'"Background"', 'FontSize', 10, 'Color', [0 0 .5]); 
text(double(thresholdValue + 50), double(0.94 * maxYValue(2)), 
'"Foreground"', 'FontSize', 10, 'Color', [0 0 .5]); 
  
% treu objectes de conjunts de pixels menors de mil, per eliminar soroll 
binaryImage = bwareaopen(binaryImage, 1000); 
  
% Aquest codi, nomès cal activarse per evitar soroll de fons.  
%SE = strel('disk', 60, 0); 
%binaryImage = imdilate(binaryImage, SE); 
%SE = strel('disk', 60, 0); 
%binaryImage = imerode(binaryImage, SE); 
  
% Mostra la imatge en binari (blanc i negre; 1 i 0). 
subplot(2, 3, 3); imagesc(binaryImage); colormap(gray(256)); title('Imatge 
binaria obtinguda seguint el llindar mostrat'); axis square; 
  
labeledImage = bwlabel(binaryImage, 8);     % Marca cada spot per mesurar els 
valors associats 
coloredLabels = label2rgb (labeledImage, 'hsv', 'k', 'shuffle'); % marcatge 
pseudo aleatori  
  
subplot(2, 3, 4); 
imshow(labeledImage, []); 
title('Imatge marcada amb diferents escales de gris bwlabel()');  
axis square; 
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subplot(2, 3, 5);  
imagesc(coloredLabels); 
axis square; 
caption = sprintf('Marques de label2rgb().\n Els spots s ordenen de dalt a 
baix i d esquerra a dreta.'); 
title(caption); 
  
% Calcula totes les propietats dels spots, mitjançant una funció predisenyada 
"regiondrops". 
mesures = regionprops(labeledImage, spots, 'all');    
numcalculs = size(mesures, 1); 
  
% bwboundaries() retorna una taula on s especifiquen les coordenades dels 
diferents spots. S'aplica sobre l'imatge original per encerclar els spots. 
subplot(2, 3, 6); imagesc(spots); 
title('Marges de bwboundaries()'); axis square; 
hold on; 
boundaries = bwboundaries(binaryImage);  
  
%el nombre de "cercles" s'utilitzen com a contador per a la seguent iteració. 
numberOfBoundaries = size(boundaries); 
for k = 1 : numberOfBoundaries 
    thisBoundary = boundaries{k}; 
    plot(thisBoundary(:,2), thisBoundary(:,1), 'g', 'LineWidth', 2); 
end 
hold off; 
  
fontSize = 14;  % Determina les dimensions dels números de marcatge 
labelShiftX = -7;   % S'utilitza per a centrar la marca just al centre del 
spot. 
sECD = zeros(1, numcalculs); 
  
% Escriu l'encapsalament en el terminal de comandes. 
fprintf(1,'Spot #  Intensitat  Area   Perimetre\n'); 
  
% Entra en una iteració amb for per mostrar les mesures indicades 
anteriormente. El contador equival al número de vegades calculades les 
propietats anteriors 
for k = 1 : numcalculs           % Entra en loop per a tots els spots. 
     
    sMitjana = mesures(k).MeanIntensity; % La intensitat mitjana 
    sIntens = mesures(k).MaxIntensity;  
    sArea = mesures(k).Area;        % Area. 
    sPerimeter = mesures(k).Perimeter;      % Perimetre. 
    sCentre = mesures(k).Centroid;      % Centre. 
    sECD(k) = sqrt(4 * sArea / pi);                 % Diametre - Equivalent 
Circular Diameter. 
    fprintf(1,'#%2d %8.0f %12.0f %8.0f\n', k, sMitjana, sArea, sIntens); 
    % Posa el número sobre els spots en els spots amb límits i en l'escala de 
grisos. 
    text(sCentre(1) + labelShiftX, sCentre(2), num2str(k), 'FontSize', 
fontSize, 'FontWeight', 'Bold'); 
  end 
  
% Posa les marques en les imatges en color (codi rgb). 
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subplot(2, 3, 5); 
  
for k = 1 : numcalculs           % Loop de nou als spots 
    sCentre = mesures(k).Centroid;      % Calcula el centre 
    text(sCentre(1) + labelShiftX, sCentre(2), num2str(k), 'FontSize', 
fontSize, 'FontWeight', 'Bold'); 
end 
  
  
  
elapsedTime = toc; 
% Avisa que l'anàlisi ha finalitzat i et demana si vols guardar la imatge i 
els spots. 
message = sprintf('Finalitzat CapaFina.m \n \n Temps de calcul = %.2f 
segons.', elapsedTime); 
message = sprintf('%s\n\nRevisa la figura per veure les imatges del 
proces.\nRevisa el terminal per consultar els resultats numérics.', message); 
message = sprintf('%s\n\nVoldries guardar els spots per separat?', message); 
reply = questdlg(message, 'Guardar la figura?', 'Yes', 'No', 'No'); 
% Resposta = 'espai' per apretar X (o X amb el ratolí), 'Yes' per sí, i 'No' 
per No. 
  
if strcmpi(reply, 'Yes') 
     
    % Demana el nom que li volem posar a l'arxiu. 
    FilterSpec = {'*.tif', 'TIFF images (*.tif)'; '*.*', 'All Files (*.*)'}; 
    DialogTitle = 'Guarda el nom de l archiu'; 
    % Funció estándar per a guardar l'archiu i evitar errors 
    thisFile = mfilename('fullpath'); 
    [thisFolder, baseFileName, ~, version] = fileparts(thisFile); 
    DefaultName = sprintf('%s/%s.tif', thisFolder, baseFileName); 
    [fileName, specifiedFolder] = uiputfile(FilterSpec, DialogTitle, 
DefaultName); 
    [folder, baseFileName, ext, version] = fileparts(fileName); 
    fullImageFileName = fullfile(specifiedFolder, [baseFileName '.tif']); 
    imwrite(uint8(coloredLabels), fullImageFileName); 
     
end 
     
message = sprintf('T agradaria guardar els spots per separat per a fer l 
informe?'); 
reply = questdlg(message, 'Extreure les imatges?', 'Yes', 'No', 'Yes'); 
% Les mateixes opcions de resposta que abans. 
  
if strcmpi(reply, 'Yes') 
    figure; 
    % Optimitza les dimensions de la figura. 
    set(gcf, 'Position', get(0, 'ScreenSize')); 
    for k = 1 : numcalculs           % Entra en loop sobre els spots. 
        % Busca les dimensions més adients per a la figura. 
        Box = mesures(k).BoundingBox;   
        % Extreu cada spot a la seva box 
        subImage = imcrop(spots, Box); 
        % Mostra la imatge amb les dades desitjades 
        subplot(3, 4, k); 
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        imshow(subImage); 
        caption = sprintf('Spot #%d\nDiameter = %.1f pixels\nArea = %d 
pixels', k, sECD(k), mesures(k).Area, sPerimeter(k)); 
        title(caption, 'FontSize', 14); 
    end 
  
end 
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Appendix C: Algorithm II  
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This second algorithm was adapted from Jan Neggers algorithm, “measure tool”. Paste the text 

below in a Matlab® terminal with Image processing toolbox installed would compute the tool. 

(The font of the algorithm has been reduced to avoid a major waste of paper). 

function varargout = measuretool(varargin) 
% This tool (measure tool) is intended to aid measuring on images. 
% In order to do this the image needs to have some visual scale to 
% calibrate the pixel to length ratio on, e.g. scale bar, ruler. 
% 
% This is a two file GUI (Graphical User Interface) 
%     measuretool.m   - the code, run this file to start the GUI 
%     measuretool.fig - the figure, keep this file toghether with 
%                       measuretool.m 
% 
% Quick Help: 
% =============================% 
% - Select a folder containing images using <Browse> 
% - Press <Load>, and select one image from the list' 
% - Press <Calibrate> and select two points of which the distance is known' 
% - Use the zoom function of the toolbar and correct your initial selection' 
% - Double Click the line to confirm' 
% - Enter the length of the selected distance in the calibration panel' 
% - Calibration is ready:' 
% - Use the <Distance>, <Caliper>, <Circle> or <Angle> tools to measure' 
% - Each measurement can be deleted using <Delete> or modified using <Edit>' 
% 
% 
% For a more elaborate help, hit the <Help> button in the GUI 
  
% Initializing the GUI: 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
    'gui_Singleton',  gui_Singleton, ... 
    'gui_OpeningFcn', @measuretool_OpeningFcn, ... 
    'gui_OutputFcn',  @measuretool_OutputFcn, ... 
    'gui_LayoutFcn',  [] , ... 
    'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
  
% --- Executes just before measuretool is made visible. 
function measuretool_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
  
if isfield(handles,'Data') 
    Data = handles.Data; 
end 
  
% setting default plot options 
options.marker1 = 'o'; 
options.marker2 = '.'; 
options.markersize = '10'; 
options.linestyle1 = '-'; 
options.linestyle2 = '--'; 
options.linewidth = '1' ; 
options.color1 = 'r'; 
options.color2 = 'k'; 
options.textcolorfg = 'k'; 
options.textcolorbg = 'none'; 
options.fontsize = '14'; 
options.zoomfactor = 2; 
options.splinemethod = 'spline'; 
  
% storing the ascii degree symbol 
Data.degree = char(186);% i.e. ?? 
  
% put the tool on the right side of the screen 
movegui('southeast') 
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% detect old Matlab® version 
if verLessThan('Matlab®', '7.9.0') 
    set(handles.Quickmeasure,'Value',1,'foregroundcolor',[0.5 0.5 0.5]); 
end 
  
% detect image processing toolbox 
if ~exist('imline','file') 
    set(handles.Quickmeasure,'Value',1,'foregroundcolor',[0.5 0.5 0.5]); 
end 
  
% storing in the Data structure 
Data.options = options; 
handles.Data = Data; 
% Update handles structure 
guidata(hObject, handles); 
  
% optional, use the tool on a figure already open 
if ~isempty(varargin) 
    argin = varargin{1}; 
else 
    argin = []; 
end 
if ishandle(argin) 
    Data.gcf = argin; 
    handles.Data = Data; 
     
    % Update handles structure 
    guidata(hObject, handles); 
     
    % configure the gui for use without file selection 
    currentfigure_fun(hObject, eventdata, handles) 
end 
  
function varargout = measuretool_OutputFcn(hObject, eventdata, handles) 
varargout{1} = handles.output; 
  
function currentfigure_fun(hObject, eventdata, handles) 
% read the Data structure 
Data = handles.Data; 
  
tmpname = 'measuretool_gcf.fig'; 
tmpfile = fullfile(tempdir,tmpname); 
  
saveas(Data.gcf,tmpfile,'fig'); 
  
% Fill the Data structure 
Data.unit      = 'pixels'; 
Data.cfile     = tmpname; 
Data.ctype     = '*.fig'; 
Data.cfilenum  = 1; 
Data.files     = {tmpname}; 
Data.ftypes    = {'*.fig'}; 
Data.path      = tempdir ; 
Data.Im(1,1,3) = 0; 
  
% Disable the file selection options 
set(handles.FileBrowse,'Enable','off') 
set(handles.FileBox,'Enable','off') 
set(handles.FileBox,'String',{'Current Figure'}) 
  
% Disable the calibration options 
set(handles.Calibrate,'Enable','off') 
set(handles.CalibLength,'Enable','off') 
% set(handles.CalibUnit,'Enable','off') 
  
handles.Data = Data; 
% Update handles structure 
guidata(hObject, handles); 
  
plotfun(hObject, eventdata, handles) 
  
function FileBrowse_Callback(hObject, eventdata, handles) 
% load the Data structure 
Data = handles.Data; 
  
% start browsing from the current folder 
if isfield(Data,'path') 



 7.5.Experimental design (Part III) 

 

 

217 

    oldpath = Data.path; 
else 
    oldpath = pwd; 
end 
  
% possible image types to list 
imagetypes = {'*.png';'*.jpg';'*.jpeg';'*.gif';'*.tif';'*.tiff'}; 
imagetypes = [imagetypes ; upper(imagetypes)]; 
  
% popup, ask for a fiel 
[filename, filepath] = uigetfile({'*.jpg;*.jpeg;*.tif;*.png;*.tif;*.tiff;*.PNG;*.JPG;*.TIF','All Image 
Files';'*.*','All Files' },'Select an Image',oldpath); 
  
% if cancel 
if filename == 0 
    set(handles.Status,'string','Browse: no file selected') 
    return 
end 
  
% get a list of fiels 
files = {}; filetypes = {}; 
% for each file type 
for i = 1:length(imagetypes) 
    % read the files from the dir for this type 
    filestmp = dir([filepath filesep '*' imagetypes{i}]); 
    filestmp = {filestmp(:).name}; 
    filetypestmp = repmat(imagetypes(i),1,length(filestmp)); 
     
    % store them with the other types 
    files = {files{:} filestmp{:}}.'; 
    filetypes = {filetypes{:} filetypestmp{:}}.'; 
end 
  
% get the current file from the list 
n = length(files); 
for k = 1:n 
    if strcmp(files{k},filename); 
        cfile = files{k}; 
        ctype = filetypes{k}; 
        cfilenum = k; 
    end 
end 
  
% select the current file from in the list 
set(handles.FileBox,'String',files); 
set(handles.FileBox,'Value',cfilenum); 
  
% update status 
set(handles.Status,'string','Browse: file loaded') 
  
% storing in the Data structure 
Data.cfile    = cfile ; 
Data.ctype    = ctype ; 
Data.cfilenum = cfilenum ; 
Data.files  = files ; 
Data.ftypes = filetypes ; 
Data.path   = filepath ; 
  
% Update handles structure 
handles.Data = Data; 
guidata(hObject, handles); 
  
% plot the figure 
plotfun(hObject, eventdata, handles) 
  
function [u v] = zoomselect(h,zoomfactor) 
% store current axes 
xlim = get(h,'xlim'); 
ylim = get(h,'ylim'); 
  
% get the position of the zoomed box 
[u v] = ginput(1); 
  
% calculate size of the zoombox 
fovx = diff(xlim)./zoomfactor; 
fovy = diff(ylim)./zoomfactor; 
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% position zoombox centered around selected position 
xzoom = [u-fovx/2 , u+fovx/2] ; 
yzoom = [v-fovy/2 , v+fovy/2] ; 
  
% shift the zoom xlimit to be within the initial view 
if xzoom(1) < xlim(1) 
    % zoom select is on the left edge of the axes 
    xzoom(1) = xlim(1); 
    xzoom(2) = xlim(1) + fovx; 
elseif xzoom(2) > xlim(2) 
    % zoom select is on the right edge of the axes 
    xzoom(2) = xlim(2); 
    xzoom(1) = xlim(2) - fovx; 
end 
  
% shift the zoom ylimit to be within the initial view 
if yzoom(1) < ylim(1) 
    % zoom select is on the bottom edge of the axes 
    yzoom(1) = ylim(1); 
    yzoom(2) = ylim(1) + fovy; 
elseif yzoom(2) > ylim(2) 
    % zoom select is on the top edge of the axes 
    yzoom(2) = ylim(2); 
    yzoom(1) = ylim(2) - fovy; 
end 
  
  
% zoom 
set(h,'xlim',xzoom,'ylim',yzoom) 
  
% select a point 
[u v] = ginput(1); 
  
% restore old axes 
set(h,'xlim',xlim,'ylim',ylim) 
  
  
  
  
  
function plotfun(hObject, eventdata, handles) 
% read the Data structure 
Data = handles.Data; 
O = Data.options; 
  
if ~isfield(Data,'cfile') 
    return 
end 
  
% Evaluate options 
% ============================== 
marker = {O.marker1 ; O.marker2}; 
markersize = eval(O.markersize); 
if length(O.color1) == 1 || strcmpi(O.color1,'none') 
    color{1,1} = O.color1; 
else 
    color{1,1} = eval(O.color1); 
end 
if length(O.color2) == 1 || strcmpi(O.color2,'none') 
    color{2,1} = O.color2; 
else 
    color{2,1} = eval(O.color2); 
end 
linestyle = {O.linestyle1 ; O.linestyle2}; 
linewidth = eval(O.linewidth); 
if length(O.textcolorfg) == 1 || strcmpi(O.textcolorfg,'none') 
    textcolorfg = O.textcolorfg; 
else 
    textcolorfg = eval(O.textcolorfg); 
end 
if length(O.textcolorbg) == 1  || strcmpi(O.textcolorbg,'none') 
    textcolorbg = O.textcolorbg; 
else 
    textcolorbg = eval(O.textcolorbg); 
end 
fontsize = eval(O.fontsize); 
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% Plot the image 
% ============================== 
% some shorthands 
filename = Data.cfile; 
filetype = Data.ctype; 
filepath = Data.path; 
fileext  = regexprep(filetype,{'\*','\.'},''); 
  
% start a new window 
if ~isfield(Data,'gcf') 
    Data.gcf = figure(1234); 
    clf(Data.gcf); 
     
    % get the screensize 
    fullscreen = get(0,'ScreenSize'); 
    P = fullscreen .* [50 50 0.8 0.8]; 
    % fix the new figure 
    set(Data.gcf,'Name','measure window','HandleVisibility','callback','NumberTitle','off') 
    set(Data.gcf,'Position',P) 
else 
    figure(Data.gcf); 
    clf(Data.gcf); 
end 
  
% Read the image 
if strcmp(fileext,'fig') 
    position = get(Data.gcf,'Position'); 
    close(Data.gcf); 
    Data.gcf = openfig(fullfile(filepath,filename)); 
    Data.gca = get(Data.gcf,'Children'); 
    set(Data.gcf,'Position',position); 
    set(Data.gcf,'Name','measure window','HandleVisibility','callback','NumberTitle','off') 
    Im = Data.Im; 
else 
    Im = imread(fullfile(filepath,filename),fileext); 
    Data.Im = Im; 
end 
  
% set the default unit 
if ~isfield(Data,'unit') 
    Data.unit = 'pixels'; 
end 
  
% check the size (ndims = 3 for RGB images) 
if ndims(Im) == 3 
    [n m k] = size(Im); 
else 
    [n m] = size(Im); 
    % fix for showing grayscale images as colored 
    colormap(gray); 
end 
% create default x and y vectors 
x = 1:m; 
y = 1:n; 
  
% if calibrated update x and y vectors 
if ~strcmpi('...',get(handles.CalibRatio,'String')) 
    if isfield(Data,'Lppx') 
        % length per pixel 
        Lppx = Data.Lppx; 
        % update x and y vectors 
        x = x*Lppx; 
        y = y*Lppx; 
    end 
else 
    Lppx = 1; 
end 
  
% store x and y vectors 
Data.x = x; 
Data.y = y; 
  
% plot the image 
if ~strcmp(fileext,'fig') 
    Data.imagehandle = imagesc(x,y,Im);drawnow 
    % get the axes handles of the image 
    Data.gca = get(Data.imagehandle,'Parent'); 
else 
    Data.gca = get(Data.gcf,'Children'); 
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end 
% tune the axes settings 
set(Data.gca,'Box','On','NextPlot','add','DataAspectRatio',[1 1 1]); 
  
  
% add labels 
if strcmp(Data.unit,'um') 
    Data.xlabh = xlabel(Data.gca,'\mum'); 
    Data.ylabh = ylabel(Data.gca,'\mum'); 
else 
    Data.xlabh = xlabel(Data.gca,Data.unit); 
    Data.ylabh = ylabel(Data.gca,Data.unit); 
end 
  
% set fontsize 
set(Data.gca,'FontSize',fontsize); 
set(Data.xlabh,'FontSize',fontsize); 
set(Data.ylabh,'FontSize',fontsize); 
  
  
% Plot the calibration scale bar 
% ============================== 
if isfield(Data,'Calib') 
    X = Data.Calib.X*Lppx; 
    Y = Data.Calib.Y*Lppx; 
    h = plot(Data.gca,X,Y,'-xw',X,Y,':+k');drawnow 
    set(h,{'Marker'},marker) 
    set(h,'MarkerSize',markersize) 
    set(h,{'MarkerEdgeColor'},color) 
    set(h,{'LineStyle'},linestyle) 
    set(h,{'Color'},color) 
    set(h,'LineWidth',linewidth) 
end 
  
% store and update the handles structure 
handles.Data = Data; 
guidata(hObject, handles); 
  
% Plot the measurements 
% ================================== 
if ~isfield(Data,'Mdata') 
    return 
end 
Mdata = Data.Mdata ; 
  
% put the tool again back on top 
figure(Data.gcf) 
  
% forloop over each measurement 
n = length(Mdata); 
for k = 1:n 
     
    % read the Mdata structure 
    type  = Mdata(k).type; 
    value = Mdata(k).value; 
    unit  = Mdata(k).unit; 
    X     = Mdata(k).X; 
    Y     = Mdata(k).Y; 
    circ  = Mdata(k).circ; 
    spl   = Mdata(k).spline; 
     
    % set the fancy units 
    if strcmp(unit,'um') 
        unit =  '\mum'; 
    elseif strcmp(unit,Data.degree) 
        unit = '\circ'; 
    end 
  
    % use intensity instead of value 
    if get(handles.Intensity,'Value') 
        value = Mdata(k).intensity; 
        unit  = ''; 
    end 
     
    % convert the value to string 
    value = sprintf('%.2f',value); 
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    % skip measurements from other images 
    if ~get(handles.ShowAll,'Value') 
        if Data.Mdata(k).filenum ~= Data.cfilenum 
            continue 
        end 
    end 
     
    % plot the measurement, and set the plot options 
    switch type 
        case 'Distance' 
            ht = text(X(2),Y(2),[' ' value ' ' unit]); 
            h1 = plot(X,Y,'-xw',X,Y,':+k'); 
            h  = h1; 
        case 'Caliper' 
            ht = text(X(3),Y(3),[' ' value ' ' unit]); 
            h1 = plot(X(1:2),Y(1:2),'-xw',X(1:2),Y(1:2),':+k'); 
            h2 = plot(X(3:4),Y(3:4),'-xw',X(3:4),Y(3:4),':+k'); 
            h  = [h1 ; h2]; 
             
            set(h2,{'Marker'},marker) 
            set(h2,'MarkerSize',markersize) 
            set(h2,{'MarkerEdgeColor'},color) 
            set(h2,{'LineStyle'},linestyle) 
            set(h2,{'Color'},color) 
            set(h2,'LineWidth',linewidth) 
        case 'Circle (R)' 
            ht = text(circ.xc,circ.yc,[' ' value ' ' unit]); 
            h1 = plot(circ.xc,circ.yc,'xw',circ.xc,circ.yc,'+k'); 
            h2 = plot(X,Y,'-w',X,Y,':k'); 
            h  = [h1 ; h2]; 
             
            set(h2,'Marker','none') 
            set(h2,{'LineStyle'},linestyle) 
            set(h2,{'Color'},color) 
            set(h2,'LineWidth',linewidth) 
        case 'Angle' 
            ht = text(X(3),Y(3),[' ' value unit]); 
            h1 = plot(X,Y,'-xw',X,Y,':+k'); 
            h  = h1; 
        case 'Spline' 
            ht = text(spl.x(end),spl.y(end),[' ' value ' ' unit]); 
            h1 = plot(spl.x,spl.y,'xw',spl.x,spl.y,'+k'); 
            h2 = plot(X,Y,'-w',X,Y,':k'); 
            h  = [h1 ; h2]; 
             
            set(h2,'Marker','none') 
            set(h2,{'LineStyle'},linestyle) 
            set(h2,{'Color'},color) 
            set(h2,'LineWidth',linewidth) 
    end 
     
    set(h1,{'Marker'},marker) 
    set(h1,'MarkerSize',markersize) 
    set(h1,{'MarkerEdgeColor'},color) 
    set(h1,{'LineStyle'},linestyle) 
    set(h1,{'Color'},color) 
    set(h1,'LineWidth',linewidth) 
     
    if strcmp(type,'Spline') 
        set(h1,'LineStyle','none') 
    end 
     
     
    set(ht,'verticalalignment','bottom'); 
    set(ht,'Color',textcolorfg) 
    set(ht,'BackgroundColor',textcolorbg) 
    set(ht,'FontSize',fontsize) 
     
     
    % process the checkboxes in the gui, switch for [Show Points] 
    if ~get(handles.PlotPoints,'Value') 
        set(h,'marker','none') 
    end 
    % process the checkboxes in the gui, switch for [Show Lines] 
    if ~get(handles.PlotLines,'Value') 
        set(h,'LineStyle','none') 
    end 
    % process the checkboxes in the gui, switch for [Show Text] 
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    if ~get(handles.PlotText,'Value') 
        set(ht,'Visible','off') 
    else 
        set(ht,'Visible','on') 
    end 
end 
  
% put the tool again back on top 
figure(handles.figure1) 
  
  
function PlotOptions_Callback(hObject, eventdata, handles) 
% This function provides a popup menu to change the plotting preferences, 
% e.g. color, linestyle, etc. 
Data = handles.Data; 
O    = Data.options; 
  
% build the popup window 
prompt={'Marker Style 1',... 
    'Marker Style 2',... 
    'Marker Size',... 
    'Line Style 1',... 
    'Line Style 2',... 
    'Line Width',... 
    'Color 1',... 
    'Color 2',... 
    'Text Foreground Color',... 
    'Text Background Color',... 
    'Text Fontsize',... 
    'Zoom Factor',... 
    'Spline interp. meth.'}; 
name='Plot Options'; 
numlines=1; 
  
fields = fieldnames(O); 
n = length(fields); 
  
% builde the default answer from the options structure 
for k = 1:n 
    defaultanswer{k} = O.(fields{k}); 
    if ~ischar(defaultanswer{k}); 
        defaultanswer{k} = num2str(defaultanswer{k}); 
    end 
end 
  
% pop the menu 
A = inputdlg(prompt,name,numlines,defaultanswer); 
  
% if cancel 
if isempty(A) 
    set(handles.Status,'string','Options: Canceled') 
    return 
end 
  
% store the answer back to the options structure 
for k = 1:n 
    O.(fields{k}) = A{k}; 
end 
  
% evaluate the field of view 
O.zoomfactor = eval(O.zoomfactor); 
  
% error detection switch 
optionerror = false; 
  
% check if a proper interpolation method is entered 
if ~any(strcmp(O.splinemethod,{'spline','linear','nearest','cubic'})) 
    set(handles.Status,'string','Options: invalid method, use "linear", "cubic", or "spline", value reset to 
default') 
    O.splinemethod = 'spline'; 
    optionerror = true; 
end 
  
% check if a proper marker entered 
if ~any(strcmp(O.marker1,{'o','s','^','d','v','*','<','>','.','p','h','+','x','none'})) 
    set(handles.Status,'string','Options: invalid marker, value reset to default') 
    O.marker1 = 'o'; 
    optionerror = true; 
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end 
if ~any(strcmp(O.marker2,{'o','s','^','d','v','*','<','>','.','p','h','+','x','none'})) 
    set(handles.Status,'string','Options: invalid marker, value reset to default') 
    O.marker1 = '.'; 
    optionerror = true; 
end 
  
% check if a proper linestyle is entered 
if ~any(strcmp(O.linestyle1,{'-','--','-.',':','none'})) 
    set(handles.Status,'string','Options: invalid linestyle, value reset to default') 
    O.linestyle1 = '-'; 
    optionerror = true; 
end 
if ~any(strcmp(O.linestyle2,{'-','--','-.',':','none'})) 
    set(handles.Status,'string','Options: invalid linestyle, value reset to default') 
    O.linestyle1 = '--'; 
    optionerror = true; 
end 
  
% check if a proper color is entered 
if ~any(strcmp(O.color1,{'y','m','c','r','g','b','w','k','none'})) ... 
   && isempty(regexp(O.color1,'\[[(\d*)(\s*)(\.*)]*\]', 'once')) 
    set(handles.Status,'string','Options: invalid color, value reset to default') 
    O.color1 = 'r'; 
    optionerror = true; 
end 
if ~any(strcmp(O.color2,{'y','m','c','r','g','b','w','k','none'})) ... 
   && isempty(regexp(O.color2,'\[[(\d*)(\s*)(\.*)]*\]', 'once')) 
    set(handles.Status,'string','Options: invalid color, value reset to default') 
    O.color2 = 'k'; 
    optionerror = true; 
end 
if ~any(strcmp(O.textcolorfg,{'y','m','c','r','g','b','w','k','none'})) ... 
   && isempty(regexp(O.textcolorfg,'\[[(\d*)(\s*)(\.*)]*\]', 'once')) 
    set(handles.Status,'string','Options: invalid color, value reset to default') 
    O.textcolorfg = 'k'; 
    optionerror = true; 
end 
if ~any(strcmp(O.textcolorbg,{'y','m','c','r','g','b','w','k','none'})) ... 
   && isempty(regexp(O.textcolorbg,'\[[(\d*)(\s*)(\.*)]*\]', 'once')) 
    set(handles.Status,'string','Options: invalid color, value reset to default') 
    O.textcolorbg = 'none'; 
    optionerror = true; 
end 
  
  
% storing in the big Data structure 
Data.options = O; 
  
if ~optionerror 
    set(handles.Status,'string','Options adjusted') 
end 
  
  
% update the gui 
handles.Data = Data; 
guidata(hObject, handles); 
plotfun(hObject, eventdata, handles) 
  
  
function CalibLength_Callback(hObject, eventdata, handles) 
% called when changing the calibration Length 
Data = handles.Data; 
  
% update the current unit 
unit = get(handles.CalibUnit,'String'); 
unit = unit{get(handles.CalibUnit,'Value')}; 
Data.unit = unit; 
  
if ~isfield(Data,'Calib') 
    % update the measurements 
    if isfield(Data,'Mdata') 
        Mdata = Data.Mdata; 
        n = length(Mdata); 
        for k = 1:n 
            Mdata(k).unit = Data.unit ; 
        end 
        Data.Mdata = Mdata ; 



S. Abad Sánchez Ph.D. Thesis 

 

224 

    end 
    % update the gui 
    handles.Data = Data; 
    guidata(hObject, handles); 
    plotfun(hObject, eventdata, handles) 
    return 
end 
  
% store previous Length per Pixel (if any) 
if isfield(Data,'Lppx') 
    oldLppx = Data.Lppx; 
else 
    oldLppx = 1; 
end 
  
% get the current length 
L = eval(get(handles.CalibLength,'String')); 
  
% update the length per pixel ratio 
Lppx = L/Data.Calib.Pixels; 
Data.Lppx = Lppx; 
  
  
%update the gui 
set(handles.CalibRatio,'String',sprintf('%.2f %s',Lppx,unit)); 
  
% correction, for recalibration 
Lppx = Lppx / oldLppx; 
  
  
% update the measurements 
if isfield(Data,'Mdata') 
    Mdata = Data.Mdata; 
    n = length(Mdata); 
    for k = 1:n 
        Mdata(k).X = Mdata(k).X * Lppx; 
        Mdata(k).Y = Mdata(k).Y * Lppx; 
        Mdata(k).value = Mdata(k).value * Lppx; 
        Mdata(k).unit = Data.unit ; 
        if isstruct(Mdata(k).circ) 
            Mdata(k).circ.xc = Mdata(k).circ.xc * Lppx; 
            Mdata(k).circ.yc = Mdata(k).circ.yc * Lppx; 
            Mdata(k).circ.R  = Mdata(k).circ.R  * Lppx; 
        end 
        if isstruct(Mdata(k).spline) 
            Mdata(k).spline.x = Mdata(k).spline.x * Lppx; 
            Mdata(k).spline.y = Mdata(k).spline.y * Lppx; 
        end 
    end 
    Data.Mdata = Mdata ; 
end 
  
set(handles.Status,'string','Calibration done') 
  
% update the gui 
handles.Data = Data; 
guidata(hObject, handles); 
plotfun(hObject, eventdata, handles) 
  
  
function CalibLength_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function CalibUnit_Callback(hObject, eventdata, handles) 
CalibLength_Callback(hObject, eventdata, handles) 
  
function CalibUnit_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function Calibrate_Callback(hObject, eventdata, handles) 
% this function allows the user to calibrate on the scalebar, ruler, etc. 
if ~isfield(handles.Data,'gcf') 
    return 
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end 
Data = handles.Data; 
buttons = findobj(handles.figure1,'Enable','on'); 
buttons = setdiff(buttons,[handles.Status handles.Clear]); 
set(buttons,'Enable','off') 
  
figure(Data.gcf) 
  
% select two preliminary points 
set(handles.Status,'string','Calibrate: Select two points to form a Line') 
if get(handles.ZoomSelect,'Value') 
    [u v] = zoomselect(Data.gca,Data.options.zoomfactor); 
else 
    [u v] = ginput(1); 
end 
h = plot(u,v,'r+',u,v,'bo','markersize',10); 
if get(handles.ZoomSelect,'Value') 
    [u(2) v(2)] = zoomselect(Data.gca,Data.options.zoomfactor); 
else 
    [u(2) v(2)] = ginput(1); 
end 
h(3:4) = plot(u,v,'r+',u,v,'bo','markersize',10); 
% remove the points 
delete(h); 
  
if get(handles.Quickmeasure,'value') 
    position = [u(1) v(1) ; u(2) v(2)]; 
else 
    set(handles.Status,'string','Calibrate: Adjust the Line, double click the line when ready') 
    h = imline(Data.gca,[u(1) v(1) ; u(2) v(2)]); 
    % update status info 
    % get the position, and wait for double click 
    position = wait(h); 
    % remove the line 
    delete(h); 
end 
  
% calculate distance (hypot = robust sqrt(x^2+y^2)) 
A = diff(position(:,1)); 
B = diff(position(:,2)); 
pixels = hypot(A,B); 
  
% store the position 
X = position(:,1); 
Y = position(:,2); 
  
% put the tool again back on top 
figure(handles.figure1) 
  
if isfield(Data,'Lppx') 
    Lppx = Data.Lppx; 
else 
    Lppx = 1; 
end 
  
X = X / Lppx; 
Y = Y / Lppx; 
pixels = pixels / Lppx; 
  
% store calibration data in the Data structure 
Data.Calib.Pixels = pixels; 
Data.Calib.X = X; 
Data.Calib.Y = Y; 
  
% update the status 
set(handles.CalibPixel,'String',sprintf('%.2f',pixels));drawnow 
set(handles.Status,'string','Calibration done') 
  
handles.Data = Data; 
guidata(hObject, handles); 
% redraw the image (first check the unit and length) 
set(handles.Status,'String',sprintf('Calibration: %g pixels selected',pixels));drawnow 
set(buttons,'Enable','on') 
  
CalibLength_Callback(hObject, eventdata, handles) 
  
function Distance_Callback(hObject, eventdata, handles) 
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% this function preselects the distance measurement 
if ~isfield(handles.Data,'gcf') 
    return 
end 
Data = handles.Data; 
  
buttons = findobj(handles.figure1,'Enable','on'); 
buttons = setdiff(buttons,[handles.Status handles.Clear]); 
set(buttons,'Enable','off') 
  
  
% first ask for 2 points, plot each point and remove the points when done. 
set(handles.Status,'string','Distance: Select two points') 
figure(Data.gcf) 
% select two preliminary points 
if get(handles.ZoomSelect,'Value') 
    [u v] = zoomselect(Data.gca,Data.options.zoomfactor); 
else 
    [u v] = ginput(1); 
end 
h = plot(u,v,'r+',u,v,'bo','markersize',10); 
if get(handles.ZoomSelect,'Value') 
    [u(2) v(2)] = zoomselect(Data.gca,Data.options.zoomfactor); 
else 
    [u(2) v(2)] = ginput(1); 
end 
h(3:4) = plot(u,v,'r+',u,v,'bo','markersize',10); 
delete(h); 
  
% call the real distance measurement function 
Distancefun(hObject, eventdata, handles,u,v) 
set(buttons,'Enable','on') 
  
  
function Distancefun(hObject, eventdata, handles,u,v) 
% this function allows the measuring of a two point distance 
Data = handles.Data; 
  
if get(handles.Quickmeasure,'value') 
    position = [u(1) v(1) ; u(2) v(2)]; 
else 
    % place an imline using the two points 
    set(handles.Status,'string','Distance: Adjust the Line, double click the line when ready') 
    h = imline(Data.gca,[u(1) v(1) ; u(2) v(2)]); 
    % wait for double click, and get position 
    position = wait(h); 
    % remove the line 
    delete(h); 
end 
  
% calculate the distance (hypot = pythagoras) 
A = diff(position(:,1)); 
B = diff(position(:,2)); 
Distance = hypot(A,B); 
  
% store position for later plotting 
X = position(:,1); 
Y = position(:,2); 
  
% create image space (for intensity) 
[x y] = meshgrid(Data.x,Data.y); 
  
% calculate a length vector 
t = [ 0 ; hypot(diff(X),diff(Y)) ]; 
t = cumsum(t); 
  
% discretize the measurement line 
Ni = 200; 
ti = linspace(0,max(t),Ni); 
xi = interp1(t,X,ti); 
yi = interp1(t,Y,ti); 
  
% grayscale the image 
im = grayscale(Data.Im); 
  
% interpolate the intensity profile along the measurement line 
profile = interp2(x,y,im,xi,yi); 
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% calculate the average intensity 
intensity = mean(profile); 
  
% get the unit, or set it to pixels 
if ~isfield(Data,'unit') 
    Data.unit = 'pixels'; 
end 
  
%Save the measurement in the structure 
if ~isfield(Data,'Mdata') 
    % if first measurement 
    n = 1; 
else 
    % or open a new slot in the measurement data structure 
    n = length(Data.Mdata) + 1; 
end 
  
% store the measurement 
Data.Mdata(n).n         = n; 
Data.Mdata(n).type      = 'Distance'; 
Data.Mdata(n).value     = Distance; 
Data.Mdata(n).unit      = Data.unit; 
Data.Mdata(n).X         = X; 
Data.Mdata(n).Y         = Y; 
Data.Mdata(n).spline    = []; 
Data.Mdata(n).circ      = []; 
Data.Mdata(n).filenum   = Data.cfilenum; 
Data.Mdata(n).file      = Data.cfile; 
Data.Mdata(n).intensity = intensity; 
Data.Mdata(n).profile   = [ti ; profile]; 
  
  
% update the status 
set(handles.Status,'String',sprintf('Distance: %.2f %s stored to measurements',Distance,Data.unit));drawnow 
  
% put the tool again back on top 
figure(handles.figure1) 
  
% update the gui 
handles.Data = Data; 
guidata(hObject, handles); 
plotfun(hObject, eventdata, handles) 
  
function Caliper_Callback(hObject, eventdata, handles) 
% start the caliper measurement (preselecting) 
if ~isfield(handles.Data,'gcf') 
    return 
end 
Data = handles.Data; 
buttons = findobj(handles.figure1,'Enable','on'); 
buttons = setdiff(buttons,[handles.Status handles.Clear]); 
set(buttons,'Enable','off') 
  
% first select 2 points to position a line 
set(handles.Status,'string','Caliper: Select two points, to position the Line') 
figure(Data.gcf) 
% select two preliminary points 
if get(handles.ZoomSelect,'Value') 
    [u v] = zoomselect(Data.gca,Data.options.zoomfactor); 
else 
    [u v] = ginput(1); 
end 
h = plot(u,v,'r+',u,v,'bo','markersize',10); 
if get(handles.ZoomSelect,'Value') 
    [u(2) v(2)] = zoomselect(Data.gca,Data.options.zoomfactor); 
else 
    [u(2) v(2)] = ginput(1); 
end 
h(3:4) = plot(u,v,'r+',u,v,'bo','markersize',10); 
delete(h); 
  
if get(handles.Quickmeasure,'value') 
    L = [u(1) v(1) ; u(2) v(2)]; 
else 
    % position the line 
    h = imline(Data.gca,[u(1) v(1) ; u(2) v(2)]); 
    set(handles.Status,'string','Caliper: Adjust the Line, double click the line when ready') 
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    L = wait(h); 
    delete(h); 
end 
  
% when done plot the temporary line 
X = L(:,1); 
Y = L(:,2); 
h = plot(X,Y,'-+r',X,Y,'--ob','markersize',10); 
  
if get(handles.Quickmeasure,'value') 
    set(handles.Status,'string','Caliper: Select the perpendicular Point') 
    if get(handles.ZoomSelect,'Value') 
        [u v] = zoomselect(Data.gca,Data.options.zoomfactor); 
    else 
        [u v] = ginput(1); 
    end 
    P = [u(1) v(1)]; 
else 
    % now position a point 
    set(handles.Status,'string','Caliper: Adjust the Point, double click the line when ready') 
    hp = impoint(Data.gca); 
    P = wait(hp); 
    delete(hp); 
    delete(h); 
end 
  
u = [X ; P(1)]; 
v = [Y ; P(2)]; 
  
% the real caliper measurement part 
Caliperfun(hObject, eventdata, handles,u,v) 
set(buttons,'Enable','on') 
  
  
function Caliperfun(hObject, eventdata, handles,u,v) 
% this function allows a distance measurement of a line-point type 
Data = handles.Data; 
  
% calculate the perpendicular distance 
% ================================= 
x1 = u(1); 
x2 = u(2); 
y1 = v(1); 
y2 = v(2); 
  
x3 = u(3); 
y3 = v(3); 
  
% The perpendicular distance (http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html) 
D = ( (x2-x1)*(y1-y3) - (x1-x3)*(y2-y1) ) / hypot(x2-x1,y2-y1); 
Caliper = abs(D); 
  
% now determine the location of the fourth point for plotting 
dx = x1-x2; 
dy = y1-y2; 
dist = sqrt(dx*dx + dy*dy); 
dx = dx / dist; 
dy = dy / dist; 
x4 = x3 + D*dy; 
y4 = y3 - D*dx; 
  
% Storing the four points 
X = [x1 ; x2 ; x3 ; x4]; 
Y = [y1 ; y2 ; y3 ; y4]; 
  
% create image space (for intensity) 
[x y] = meshgrid(Data.x,Data.y); 
  
% calculate a length vector 
t = [ 0 ; hypot(diff(X(3:4)),diff(Y(3:4))) ]; 
t = cumsum(t); 
  
% discretize the measurement line 
Ni = 200; 
ti = linspace(0,max(t),Ni); 
xi = interp1(t,X(3:4),ti); 
yi = interp1(t,Y(3:4),ti); 
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% grayscale the image 
im = grayscale(Data.Im); 
  
% interpolate the intensity profile along the measurement line 
profile = interp2(x,y,im,xi,yi); 
  
% calculate the average intensity 
intensity = mean(profile); 
  
if ~isfield(Data,'unit') 
    Data.unit = 'pixels'; 
end 
  
%Save the measurement in the structure 
if ~isfield(Data,'Mdata') 
    n = 1; 
else 
    n = length(Data.Mdata) + 1; 
end 
Data.Mdata(n).n         = n; 
Data.Mdata(n).type      = 'Caliper'; 
Data.Mdata(n).value     = Caliper; 
Data.Mdata(n).unit      = Data.unit; 
Data.Mdata(n).X         = X; 
Data.Mdata(n).Y         = Y; 
Data.Mdata(n).spline    = []; 
Data.Mdata(n).circ      = []; 
Data.Mdata(n).filenum   = Data.cfilenum; 
Data.Mdata(n).file      = Data.cfile; 
Data.Mdata(n).intensity = intensity; 
Data.Mdata(n).profile   = [ti ; profile]; 
  
% update the status 
set(handles.Status,'String',sprintf('Caliper: %.2f %s stored to measurements',Caliper,Data.unit));drawnow 
  
% put the tool again back on top 
figure(handles.figure1) 
  
handles.Data = Data; 
guidata(hObject, handles); 
plotfun(hObject, eventdata, handles) 
  
function circ = circlefit(x,y) 
% least squares circle fitting (see Matlab® help/demo (pendulum)) 
n = length(x); 
M   = [x(:), y(:) ones(n,1)]; 
abc = M \ -( x(:).^2 + y(:).^2); 
xc  = -abc(1)/2; 
yc  = -abc(2)/2; 
R   = sqrt((xc^2 + yc^2) - abc(3)); 
  
circ.xc = xc; 
circ.yc = yc; 
circ.R  = R; 
  
function Circle_Callback(hObject, eventdata, handles) 
% initiate the circle measurement 
if ~isfield(handles.Data,'gcf') 
    return 
end 
Data = handles.Data; 
buttons = findobj(handles.figure1,'Enable','on'); 
buttons = setdiff(buttons,[handles.Status handles.Clear]); 
set(buttons,'Enable','off') 
  
% ask for two points (center and radius) 
if get(handles.Quickmeasure,'value') 
    set(handles.Status,'string','Circle: Select Point 1 / 5 on the Edge of the circle') 
else 
    set(handles.Status,'string','Circle: Select the Center of the circle') 
end 
figure(Data.gcf) 
if get(handles.ZoomSelect,'Value') 
    [u v] = zoomselect(Data.gca,Data.options.zoomfactor); 
else 
    [u v] = ginput(1); 
end 
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h = plot(u,v,'r+',u,v,'bo','markersize',10); 
if get(handles.Quickmeasure,'value') 
    set(handles.Status,'string','Circle: Select Point 2 / 5 on the Edge of the circle') 
else 
    set(handles.Status,'string','Circle: Select a Point on the Edge of the circle') 
end 
if get(handles.ZoomSelect,'Value') 
    [u(2) v(2)] = zoomselect(Data.gca,Data.options.zoomfactor); 
else 
    [u(2) v(2)] = ginput(1); 
end 
h(3:4) = plot(u,v,'r+',u,v,'bo','markersize',10); 
delete(h); 
  
Circlefun(hObject, eventdata, handles,u,v) 
set(buttons,'Enable','on') 
  
  
function Circlefun(hObject, eventdata, handles,u,v) 
% This function allows the measurement of a radius, using a cirlce 
Data = handles.Data; 
% calculate the box around the circle 
A = diff(u); 
B = diff(v); 
R = hypot(A,B); 
P = [u(1)-R v(1)-R 2*R 2*R]; 
  
  
if get(handles.Quickmeasure,'value') 
    position = [u(1) v(1) ; u(2) v(2)]; 
    h = plot(u,v,'r+',u,v,'bo','markersize',10); 
    for k = 3:5 
        set(handles.Status,'string',sprintf('Circle: Select Point %g / 5 on the Edge of the circle',k)) 
        if get(handles.ZoomSelect,'Value') 
            [u v] = zoomselect(Data.gca,Data.options.zoomfactor); 
        else 
            [u v] = ginput(1); 
        end 
        h = [h plot(u,v,'or',u,v,'.b','markersize',10)]; 
        position(k,:) = [u v]; 
    end 
    delete(h); 
else 
    % position a draggable circle 
    set(handles.Status,'string','Circle: Adjust the Circle, double click the line when ready') 
    h = imellipse(Data.gca,P); 
    % fix the aspect ratio (so no ellipses are allowed) 
    setFixedAspectRatioMode(h,true) 
    position = wait(h); 
    delete(h); 
end 
% use circlefit to obtain the radius 
circ = circlefit(position(:,1),position(:,2)); 
xc = circ.xc; 
yc = circ.yc; 
Radius = circ.R; 
  
% store points on the circle for later plotting 
if get(handles.Quickmeasure,'value') 
    phi = linspace(0,2*pi,30); 
    X = circ.R*sin(phi) + circ.xc; 
    Y = circ.R*cos(phi) + circ.yc; 
else 
    X = position(:,1); 
    Y = position(:,2); 
end 
  
% create image space (for intensity) 
[x y] = meshgrid(Data.x,Data.y); 
  
% find all pixels inside the circle 
incircle = inpolygon(x,y,X,Y); 
  
% grayscale the image 
im = grayscale(Data.Im); 
  
% calculate the average intensity 
intensity = mean(im(incircle)); 
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% distance from center 
ti = hypot(x(incircle)-xc,y(incircle)-yc).'; 
  
% profile 
profile = im(incircle).'; 
  
  
if ~isfield(Data,'unit') 
    Data.unit = 'pixels'; 
end 
  
%Save the measurement in the structure 
if ~isfield(Data,'Mdata') 
    n = 1; 
else 
    n = length(Data.Mdata) + 1; 
end 
  
Data.Mdata(n).n         = n; 
Data.Mdata(n).type      = 'Circle (R)'; 
Data.Mdata(n).value     = Radius; 
Data.Mdata(n).unit      = Data.unit; 
Data.Mdata(n).X         = X; 
Data.Mdata(n).Y         = Y; 
Data.Mdata(n).spline    = []; 
Data.Mdata(n).circ      = circ; 
Data.Mdata(n).filenum   = Data.cfilenum; 
Data.Mdata(n).file      = Data.cfile; 
Data.Mdata(n).intensity = intensity; 
Data.Mdata(n).profile   = [ti ; profile]; 
  
% update the status 
set(handles.Status,'String',sprintf('Circle: %.2f %s stored to measurements',Radius,Data.unit));drawnow 
  
% put the tool again back on top 
figure(handles.figure1) 
  
% update the gui 
handles.Data = Data; 
guidata(hObject, handles); 
plotfun(hObject, eventdata, handles) 
  
  
function Angle_Callback(hObject, eventdata, handles) 
% initate the Angle measurement 
if ~isfield(handles.Data,'gcf') 
    return 
end 
Data = handles.Data; 
buttons = findobj(handles.figure1,'Enable','on'); 
buttons = setdiff(buttons,[handles.Status handles.Clear]); 
set(buttons,'Enable','off') 
  
figure(Data.gcf) 
set(handles.Status,'string','Angle: Select the Intersection') 
if get(handles.ZoomSelect,'Value') 
    [u v] = zoomselect(Data.gca,Data.options.zoomfactor); 
else 
    [u v] = ginput(1); 
end 
h = plot(u,v,'r+',u,v,'bo','markersize',10); 
set(handles.Status,'string','Angle: Select a Point to form a Line 1 with the Intersection') 
if get(handles.ZoomSelect,'Value') 
    [u(2) v(2)] = zoomselect(Data.gca,Data.options.zoomfactor); 
else 
    [u(2) v(2)] = ginput(1); 
end 
h(3:4) = plot(u,v,'r+',u,v,'bo','markersize',10); 
set(handles.Status,'string','Angle: Select a Point to form a Line 2 with the Intersection') 
if get(handles.ZoomSelect,'Value') 
    [u(3) v(3)] = zoomselect(Data.gca,Data.options.zoomfactor); 
else 
    [u(3) v(3)] = ginput(1); 
end 
h(5:6) = plot(u,v,'r+',u,v,'bo','markersize',10); 
delete(h); 
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Anglefun(hObject, eventdata, handles,u,v) 
set(buttons,'Enable','on') 
  
  
function Anglefun(hObject, eventdata, handles,u,v) 
% This function allows the measurement of an angle using three points 
Data = handles.Data ; 
  
if get(handles.Quickmeasure,'value') 
    position = [u(2),v(2);u(1),v(1);u(3),v(3)]; 
else 
    set(handles.Status,'string','Angle: Adjust the Polygon, double click the line when ready') 
    h = impoly(Data.gca,[u(2),v(2);u(1),v(1);u(3),v(3)],'Closed',false); 
    position = wait(h); 
    delete(h); 
end 
  
% Create two vectors from the vertices. 
v1 = [position(1,1)-position(2,1), position(1,2)-position(2,2)]; 
v2 = [position(3,1)-position(2,1), position(3,2)-position(2,2)]; 
phi = acos(dot(v1,v2)/(norm(v1)*norm(v2))); 
Angle = (phi * (180/pi)); % radtodeg(phi) 
  
X = position(:,1); 
Y = position(:,2); 
  
% create image space (for intensity) 
[x y] = meshgrid(Data.x,Data.y); 
  
% calculate a length vector 
t = [ 0 ; hypot(diff(X),diff(Y)) ]; 
t = cumsum(t); 
  
% discretize the measurement line 
Ni = 200; 
ti = linspace(0,max(t),Ni); 
xi = interp1(t,X,ti); 
yi = interp1(t,Y,ti); 
  
% grayscale the image 
im = grayscale(Data.Im); 
  
% interpolate the intensity profile along the measurement line 
profile = interp2(x,y,im,xi,yi); 
  
% calculate the average intensity 
intensity = mean(profile); 
  
%Save the measurement in the structure 
if ~isfield(Data,'Mdata') 
    n = 1; 
else 
    n = length(Data.Mdata) + 1; 
end 
  
Data.Mdata(n).n         = n; 
Data.Mdata(n).type      = 'Angle'; 
Data.Mdata(n).value     = Angle; 
Data.Mdata(n).unit      = Data.degree; 
Data.Mdata(n).X         = X; 
Data.Mdata(n).Y         = Y; 
Data.Mdata(n).spline    = []; 
Data.Mdata(n).circ      = []; 
Data.Mdata(n).filenum   = Data.cfilenum; 
Data.Mdata(n).file      = Data.cfile; 
Data.Mdata(n).intensity = intensity; 
Data.Mdata(n).profile   = [ti ; profile]; 
  
% update the status 
set(handles.Status,'String',sprintf('Angle: %.2f %s stored to measurements',Angle,Data.degree));drawnow 
  
% put the tool again back on top 
figure(handles.figure1) 
  
% update the gui 
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handles.Data = Data; 
guidata(hObject, handles); 
plotfun(hObject, eventdata, handles) 
  
function Spline_Callback(hObject, eventdata, handles) 
% % this function preselects the spline measurement 
if ~isfield(handles.Data,'gcf') 
    return 
end 
Data = handles.Data; 
buttons = findobj(handles.figure1,'Enable','on'); 
buttons = setdiff(buttons,[handles.Status handles.Clear]); 
set(buttons,'Enable','off') 
  
prompt = 'Enter number of points:'; 
dlg_title = 'Select the number of Spline points'; 
num_lines = 1; 
def = {'5'}; 
answer = inputdlg(prompt,dlg_title,num_lines,def); 
  
% if cancel 
if isempty(answer) 
    set(handles.Status,'string','Spline: Canceled') 
    return 
end 
n = eval(answer{1}); 
  
% set minimum to 2 
n = max([2 n]); 
  
figure(Data.gcf) 
u = zeros(1,n); 
v = zeros(1,n); 
h = zeros(2,n); 
for k = 1:n 
    set(handles.Status,'string',sprintf('Spline: Select Point %g / %g',k,n)) 
    if get(handles.ZoomSelect,'Value') 
        [u(k) v(k)] = zoomselect(Data.gca,Data.options.zoomfactor); 
    else 
        [u(k) v(k)] = ginput(1); 
    end 
    h(:,k) = plot(u(k),v(k),'r+',u(k),v(k),'bo'); 
end 
delete(h); 
  
% call the real distance measurement function 
Splinefun(hObject, eventdata, handles,u,v) 
set(buttons,'Enable','on') 
  
  
function Splinefun(hObject, eventdata, handles,u,v) 
% this function allows the measuring of a multi point spline length 
Data = handles.Data; 
  
if get(handles.Quickmeasure,'value') 
    position = [u ; v ].'; 
else 
    % place an imline using the two points 
    set(handles.Status,'string','Spline: Adjust the Polygon, double click the line when ready') 
    h = impoly(Data.gca,[u ; v ].','Closed',false); 
    % wait for double click, and get position 
    position = wait(h); 
    % remove the line 
    delete(h); 
end 
  
X = position(:,1); 
Y = position(:,2); 
  
% save for later plotting 
spl.x = X; 
spl.y = Y; 
  
% calculate a length vector 
t = [ 0 ; hypot(diff(X),diff(Y)) ]; 
t = cumsum(t); 
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% testing for uniqueness 
I = unique(t); 
if length(I) ~= length(t) 
    set(handles.Status,'string','Spline: error, points must be distict') 
    return 
end 
  
  
% number of interpolation points 
N = 50*length(X); 
  
% interpolation method 
method = Data.options.splinemethod; 
  
% intepolate along the length vector 
ti = linspace(0,max(t),N) ; 
xi = interp1(t,X,ti,method); 
yi = interp1(t,Y,ti,method); 
  
% calculate the spline length 
L = sum( hypot( diff(xi),diff(yi) ) ); 
  
% create image space (for intensity) 
[x y] = meshgrid(Data.x,Data.y); 
  
% grayscale the image 
im = grayscale(Data.Im); 
  
% interpolate the intensity profile along the measurement line 
profile = interp2(x,y,im,xi,yi); 
  
% calculate the average intensity 
intensity = mean(profile); 
  
% get the unit, or set it to pixels 
if ~isfield(Data,'unit') 
    Data.unit = 'pixels'; 
end 
  
%Save the measurement in the structure 
if ~isfield(Data,'Mdata') 
    % if first measurement 
    n = 1; 
else 
    % or open a new slot in the measurement data structure 
    n = length(Data.Mdata) + 1; 
end 
  
% store the measurement 
Data.Mdata(n).n         = n; 
Data.Mdata(n).type      = 'Spline'; 
Data.Mdata(n).value     = L; 
Data.Mdata(n).unit      = Data.unit; 
Data.Mdata(n).X         = xi; 
Data.Mdata(n).Y         = yi; 
Data.Mdata(n).spline    = spl; 
Data.Mdata(n).circ      = []; 
Data.Mdata(n).filenum   = Data.cfilenum; 
Data.Mdata(n).file      = Data.cfile; 
Data.Mdata(n).intensity = intensity; 
Data.Mdata(n).profile   = [ti ; profile]; 
  
% update the status 
set(handles.Status,'String',sprintf('Spline: %.2f %s stored to measurements',L,Data.unit));drawnow 
  
% put the tool again back on top 
figure(handles.figure1) 
  
% update the gui 
handles.Data = Data; 
guidata(hObject, handles); 
plotfun(hObject, eventdata, handles) 
  
function PlotPoints_Callback(hObject, eventdata, handles) 
plotfun(hObject, eventdata, handles) 
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function PlotLines_Callback(hObject, eventdata, handles) 
plotfun(hObject, eventdata, handles) 
  
function PlotText_Callback(hObject, eventdata, handles) 
plotfun(hObject, eventdata, handles) 
  
function Edit_Callback(hObject, eventdata, handles) 
% This function allows the editing of a previous measurement 
if ~isfield(handles.Data,'Mdata') || isempty(handles.Data.Mdata) 
    set(handles.Status,'String','Edit: No measurements to edit');drawnow 
    return 
end 
Data = handles.Data; 
Mdata = Data.Mdata; 
n = length(Mdata); 
  
% build a list of previous measurements 
for i = 1:n 
    prompt{i} = [num2str(Mdata(i).n) ': ' Mdata(i).type ' ' sprintf('%.2f',Mdata(i).value) ' ' Mdata(i).unit]; 
end 
  
% always ask which one (allows for abort) 
[Selection,ok] = listdlg('Name','Select a measurement','PromptString','Select a 
measurement:','SelectionMode','single','ListString',prompt); 
if (ok == 0) || isempty(Selection) 
    return 
end 
k = Selection; 
  
type = Mdata(k).type; 
set(handles.Status,'string',['Edit: ' type]) 
  
% create a list for each dataset 
N = 1:n; 
% select the not selected sets 
C = setdiff(N,k); 
Data.Mdata = Mdata(C); 
handles.Data = Data; 
guidata(hObject, handles); 
  
buttons = findobj(handles.figure1,'Enable','on'); 
buttons = setdiff(buttons,[handles.Status handles.Clear]); 
  
  
% repeat the measurement function above, except with the old 
% points as input/base of the new measurement 
switch type 
    case 'Distance' 
        figure(Data.gcf) 
        if get(handles.Quickmeasure,'value') 
            Distance_Callback(hObject, eventdata, handles) 
        else 
            set(buttons,'Enable','off') 
            u = Mdata(k).X; 
            v = Mdata(k).Y; 
            Distancefun(hObject, eventdata, handles,u,v) 
            set(buttons,'Enable','on') 
        end 
    case 'Caliper' 
        figure(Data.gcf) 
        if get(handles.Quickmeasure,'value') 
            Caliper_Callback(hObject, eventdata, handles) 
        else 
            set(buttons,'Enable','off') 
            u = Mdata(k).X; 
            v = Mdata(k).Y; 
             
            % position the line 
            set(handles.Status,'string','Caliper: Adjust the Line, double click the line when ready') 
            h = imline(Data.gca,[u(1) v(1) ; u(2) v(2)]); 
            L = wait(h); 
            delete(h); 
             
            % when done plot the temporary line 
            X = L(:,1); 
            Y = L(:,2); 
            h = plot(X,Y,'-+r',X,Y,'--ob'); 
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            % now position a point 
            set(handles.Status,'string','Caliper: Adjust the Point, double click the line when ready') 
            hp = impoint(Data.gca, u(3), v(3)); 
            P = wait(hp); 
            delete(hp); 
            delete(h); 
             
            u = [X ; P(1)]; 
            v = [Y ; P(2)]; 
             
            Caliperfun(hObject, eventdata, handles,u,v) 
            set(buttons,'Enable','on') 
        end 
    case 'Circle (R)' 
        if get(handles.Quickmeasure,'value') 
            Circle_Callback(hObject, eventdata, handles) 
        else 
            set(buttons,'Enable','off') 
            u = Mdata(k).circ.xc; 
            v = Mdata(k).circ.yc; 
            u(2) = u + Mdata(k).circ.R; 
            v(2) = v; 
            Circlefun(hObject, eventdata, handles,u,v) 
            set(buttons,'Enable','on') 
        end 
    case 'Angle' 
        if get(handles.Quickmeasure,'value') 
            Angle_Callback(hObject, eventdata, handles) 
        else 
            set(buttons,'Enable','off') 
            figure(Data.gcf) 
            u = Mdata(k).X([2 1 3]); 
            v = Mdata(k).Y([2 1 3]); 
            Anglefun(hObject, eventdata, handles,u,v) 
            set(buttons,'Enable','on') 
        end 
    case 'Spline' 
        if get(handles.Quickmeasure,'value') 
            Spline_Callback(hObject, eventdata, handles) 
        else 
            set(buttons,'Enable','off') 
            u = Mdata(k).spline.x.' ; 
            v = Mdata(k).spline.y.' ; 
            Splinefun(hObject, eventdata, handles,u,v) 
            set(buttons,'Enable','on') 
        end 
    otherwise 
        set(handles.Status,'string','Edit: unkown measurement type') 
        return 
end 
  
  
function Delete_Callback(hObject, eventdata, handles) 
% this function allows the removal of one or several previously made 
% measurements. 
if ~isfield(handles.Data,'Mdata') || isempty(handles.Data.Mdata) 
    set(handles.Status,'String','Delete: No measurements to edit');drawnow 
    return 
end 
Data = handles.Data; 
Mdata = Data.Mdata; 
n = length(Mdata); 
  
% build a list of previously made measurements 
for i = 1:n 
    prompt{i} = [num2str(Mdata(i).n) ': ' Mdata(i).type ' ' sprintf('%.2f',Mdata(i).value) ' ' Mdata(i).unit]; 
end 
  
% always ask which one (allows for abort) 
[Selection,ok] = listdlg('Name','Select measurements','PromptString','Select 
measurements:','SelectionMode','multiple','ListString',prompt); 
if (ok == 0) || isempty(Selection) 
    return 
end 
  
% create a list for each dataset 
N = 1:n; 
% select the not selected sets 
C = setdiff(N,Selection); 
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Data.Mdata = Mdata(C); 
  
handles.Data = Data; 
guidata(hObject, handles); 
plotfun(hObject, eventdata, handles) 
  
  
function guihelp(handles) 
% this function prints this help to a temporary file and opens the file in 
% a text editor. 
txt = {; 
    'This tool (measure tool) is intended to aid measuring on images.' 
    'In order to do this the image needs to have some visual scale to calibrate the pixel to length ratio on, 
e.g. scale bar, ruler.' 
    '' 
    'Updates can be found at:' 
    'http://www.mathworks.nl/Matlab®central/fileexchange/25964-image-measurement-utility' 
    '' 
    'Quick Help' 
    '=============================' 
    ' - Select an image using <Browse>' 
    ' - Press <Calibrate> and select two points of which the distance is known' 
    ' - Use the zoom function of the toolbar and correct your initial selection' 
    ' - Double Click the line to confirm' 
    ' - Enter the length of the selected distance in the calibration panel' 
    ' - Calibration is ready:' 
    ' - Use the <Distance>, <Spline>, <Caliper>, <Circle>, or <Angle> tools to measure' 
    ' - Each measurement can be deleted using <Delete> or modified using <Edit>' 
    '' 
    'Image processing toolbox tools' 
    '=============================' 
    'The tool is intended for high quality measurements, and is therefore build around tools like "imline" from 
the image processing toolbox. These tools are powerful because they allow you to select, zoom, re-adjust, and 
than confirm your selection. As a result, all measurements require several "clicks", the first set of clicks 
can be quick, and allow you to place the measurement tool, where after the tool can be modified using its 
control points, when ready double click on the tool to finalize the selection. Finally, it is important that 
the full sequence of "clicks" is finished before a new measurement is started, otherwise the GUI will terminate 
less gracefully. If the image processing toolbox is unavailable, or a Matlab® version older then 2009b (7.9.0) 
is used, then the <Quick> option can be used (optionally with <Zoom Select>) to bypass the "imline" selection 
tools.' 
    '' 
    'Listbox of images' 
    '=============================' 
    'After selecting an image (using the <Browse...> button), a list of all images in the folder is loaded in 
the tool, this allows the measurement on several files without the need to re-calibrate, which off coarse only 
works if the images actually share the same scale, e.g. like in a movie.' 
    '' 
    'Status' 
    '=============================' 
    'Status information is shown here.' 
    '' 
    'Calibrate' 
    '=============================' 
    'It goes without saying that each measurement depends on the calibration, so it is worth spending some time 
on getting it right. Furthermore, the calibration can be re-done at any time, all measurements will be updated 
accordingly.' 
    '' 
    'Measure' 
    '=============================' 
    '<Distance>: measure the distance between two points, first place two initial points, then correct and 
confirm the selected distance by double clicking on the line.' 
    '<Caliper>: measure the perpendicular distance between a line and a point, first place two initial points, 
then correct and confirm (double click) the position of the line, now place a point at a distance perpendicular 
to the line, again correct the position and confirm with a double click.' 
    '<Spline>: measure the length of a multi-point spline. This tool is very similar to the "Distance" tool, 
except it handles more than 2 points and interpolates them using the spline interpolation method of interp1 
(tip: set the method to "linear" in the options menu to measure polygons).' 
    '<Circle>: measure a radius by placing a circle, first select the center of the circle and then one point 
on the circle, the position and size of the circle can be corrected, confirm with a double click on the circle. 
The selection behavior changes slightly when the "Quick" option is selected, then five points need to be 
selected through which a circle is fitted.' 
    '<Angle>: measure an angle between two lines, first select the intersection and then two more points to one 
for each line, the three point line can be moved and the position of the points can be moved by dragging them 
with the mouse, double click on the line to confirm the measurement.' 
    '<Edit>: Reposition the points of one measurement which can be selected from a list' 
    '<Delete>: Delete one or multiple measurements using a list' 
    '' 
    'Plot' 
    '=============================' 
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    'In this panel a set of plotting options can be found, which switch on (or off) visual objects. <Points>, 
<Lines>, and, <Text>, not quite unexpectedly, enable (or disable) to plotting of points, lines, and texts. When 
<All> is enabled then measurements from all images in the "List" are shown simultaneously, when disabled then 
only measurements from the current image are shown. <Intensity> switches the text from the spatial quantity to 
the average intensity of the pixels underneath the measured object. For "Distance", "Angle", and "Spline" the 
intensity is calculated by interpolating the pixel values on discretized points of the measured (and plotted) 
line, and average those. For "Caliper" the intensity is calculated in the same way but only for the 
"perpendicular" line, i.e., the line connecting the selected line and point. For "Circle" the average intensity 
is calculated for all pixels inside the circle. Actually, for all measurement types except "Circle", the 
intensity profiles are stored and can be found in the myname(k).profile matrix (see "save to workspace"), where 
the first column is the distance along the measurement and the second column the corresponding intensity.' 
    '' 
    'Save' 
    '=============================' 
    '<Workspace>: A popup asks for a variable name, to which all measurements are stored to the base workspace 
in the form of a structure. The measurement data can be found by typing myname(k) where k is an integer 
selecting the specific measurement.' 
    '<Text>: A popup asks for a .txt file name, after which all data is written to the file.' 
    '<Image (png)>: A popup asks for a .png file name, after which the "measure window" is saved as a .png file 
(note, the image is anti-aliased which takes some time)' 
    '<Image (pdf)>: A popup asks for a .pdf file name, after which the "measure window" is saved as a .pdf 
file' 
    '' 
    'Current Figure' 
    '=============================' 
    'Calling measuretool(gcf) will open the tool for use on the current figure, for instance one created with 
imagesc(x,y,Z). In this mode all file selection tools are disabled. Typically, such figures have non-square 
pixels for which the calibration process is not well defined, therefore, the axes are assumed to be calibrated 
(i.e. have meaningful values) and the calibration options are also disabled.' 
    '' 
    'Changelog' 
    '=============================' 
    'version 1.13 by Jan Neggers, Jan,12,2012' 
    '   - added feature to measure the intensity (as suggested by Jakub)' 
    '   - included the "Plot" section in the help' 
    '   - simplified the save to workspace structure' 
    '' 
    'version 1.12 by Jan Neggers, Dec,7,2011' 
    '   - most GUI buttons are now disabled during measurements to prevent confusion' 
    '   - added a "clear" button to reset the tool' 
    '   - added more input checks for the "options" menu' 
    '' 
    'version 1.11 by Jan Neggers, Sept,29,2011' 
    '   - minor update, added the possibility to use a figure window which is already open (e.g. 
measuretool(gcf))' 
    '   - changed the zoom select from absolute to relative' 
    '   - all buttons are now disabled during measurement' 
    '' 
    'version 1.10 by Jan Neggers, Sept,27,2011' 
    '   - entire overhaul of the gui, added quite a few features, some of which as proposed by Mark Hayworth' 
    '' 
    'version 1.00 by Jan Neggers, Sept,22,2011' 
    '   - fixed some bugs related to the help' 
    '   - improved displaying in micrometers' 
    '   - added the four <Save> buttons' 
    '' 
    'version 0.92 by Jan Neggers, Apr,06,2010' 
    '   - fixed grayscale images showing in color (after comment from Till)' 
    '   - improved help file displaying' 
    '' 
    'version 0.91 by Jan Neggers, Nov,30,2009' 
    '   - first version' 
    }; 
  
% create a temporary file to hold the help.txt 
tempfile = [tempdir 'measuretool_help.txt']; 
fid = fopen(tempfile,'wt+'); 
for i = 1:length(txt) 
    fprintf(fid,'%s\n',txt{i}); 
end 
fclose(fid); 
  
% open the file (in windows or unix) 
try 
    if ispc 
        % windows 
        winopen(tempfile) 
    elseif isunix 
        % unix (linux) 
        % finding out which text editors are present 
        [a b] = system('type gedit kate mousepad'); 
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        % converting to a 3x1 cell 
        a = textscan(b,'%s','delimiter','\n'); 
        % searching for the words not found 
        a = regexpi(a{1},'.not found'); 
        % opening the text file 
        if isempty(a{1}) 
            command = ['! gedit ' tempfile ' &']; 
            eval(command) 
        elseif isempty(a{2}) 
            command = ['! kate ' tempfile ' &']; 
            eval(command) 
        elseif isempty(a{3}) 
            command = ['! mousepad ' tempfile ' &']; 
            eval(command) 
        else 
            % if no editor is found then print to command window 
            set(handles.Status,'string','Help: could not find a suitable text editor to show the help file, see 
command window.') 
            for i = 1:length(txt) 
                fprintf('%s \n',txt{i}) 
            end 
        end 
         
    end 
catch ME 
    set(handles.Status,'string','Help: Something went wrong, printing help to command screen.') 
    for i = 1:length(txt) 
        fprintf('%s \n',txt{i}) 
    end 
    %     rethrow(ME) 
end 
  
function Help_Callback(hObject, eventdata, handles) 
guihelp(handles) 
  
function SaveWorkspace_Callback(hObject, eventdata, handles) 
Data = handles.Data ; 
if ~isfield(Data,'Mdata') 
    set(handles.Status,'string','Save: No data to save to workspace.') 
    return 
end 
  
N = length(Data.Mdata); 
for k = 1:N; 
    % load one measurement 
    M = Data.Mdata(k); 
     
    % store coordinates 
    if strcmp(M.type,'Circle (R)') 
        X = M.circ.xc ; 
        Y = M.circ.yc ; 
    elseif strcmp(M.type,'Spline') 
        X = M.spline.x ; 
        Y = M.spline.y ; 
    else 
        X = M.X; 
        Y = M.Y; 
    end 
     
    % prepare save structure 
    D(k).filename  = M.file; 
    D(k).type      = M.type; 
    D(k).value     = M.value; 
    D(k).intensity = M.intensity; 
    D(k).profile   = M.profile; 
    D(k).unit      = M.unit; 
    D(k).x = X; 
    D(k).y = Y; 
end 
  
% build the popup window 
prompt={'Choose a Workspace variable name'}; 
name='Save to workspace'; 
numlines=1; 
defaultanswer={'mt'}; 
% pop the menu 
A = inputdlg(prompt,name,numlines,defaultanswer); 
  
% if cancel 



S. Abad Sánchez Ph.D. Thesis 

 

240 

if isempty(A) 
    set(handles.Status,'string','Save: Canceled') 
    return 
end 
  
% save to workspace 
assignin('base',A{1},D); 
  
set(handles.Status,'string',sprintf('Save: Data saved to variable %s',A{1})) 
  
function SaveText_Callback(hObject, eventdata, handles) 
Data = handles.Data ; 
if ~isfield(Data,'Mdata') 
    set(handles.Status,'string','Save: No data to save to file.') 
    return 
end 
% prompt for a filename to save to 
[file,path] = uiputfile('mt_data.txt','Save file name'); 
if file == 0 
    set(handles.Status,'string','Save: to text aborted.') 
    return 
end 
  
% open file for writing (and trunctate) 
fid = fopen(fullfile(path,file),'wt+'); 
  
% Write the header 
fprintf(fid,'Data file created by measuretool.m \r\n'); 
fprintf(fid,'=========================================== \r\n'); 
fprintf(fid,'Filename:    %s \r\n',Data.cfile); 
fprintf(fid,'Date:        %s \r\n',datestr(now)); 
[n m k] = size(Data.Im); 
fprintf(fid,'Image Size:  (%gx%gx%g) \r\n',n,m,k); 
% Calibration 
if isfield(Data,'Lppx') 
    fprintf(fid,'Calibration: %g %s per pixel \r\n',Data.Lppx,Data.unit); 
else 
    fprintf(fid,'Calibration: none \r\n'); 
end 
fprintf(fid,'= End of Header =========================== \r\n'); 
fprintf(fid,'%3s, %12s, %5s, %10s, %12s, %s, %s, %s 
\r\n','n','value','unit','type','intensity','[xcoords]','[ycoords]','filename'); 
  
% Write the Data 
N = length(Data.Mdata); 
for k = 1:N; 
    % load one measurement 
    M = Data.Mdata(k); 
     
    % get the coordinates 
    if strcmp(M.type,'Circle (R)') 
        X = M.circ.xc ; 
        Y = M.circ.yc ; 
    elseif strcmp(M.type,'Spline') 
        X = M.spline.x ; 
        Y = M.spline.y ; 
    else 
        X = M.X; 
        Y = M.Y; 
    end 
     
    % format to a string 
    xstr = '[ '; 
    ystr = '[ '; 
    for kk = 1:length(X); 
        if kk == 1 
            xstr = [ xstr sprintf('%8.2e',X(kk)) ] ; 
            ystr = [ ystr sprintf('%8.2e',Y(kk)) ] ; 
        else 
            xstr = [ xstr ' ; ' sprintf('%8.2e',X(kk)) ] ; 
            ystr = [ ystr ' ; ' sprintf('%8.2e',Y(kk)) ] ; 
        end 
    end 
    xstr = [ xstr ' ]' ]; 
    ystr = [ ystr ' ]' ]; 
     
    % write to file 
    fprintf(fid,'%3d, %12.6e, %5s, %10s, %12s, %s, %s, %s 
\r\n',k,M.value,M.unit,M.type,M.intensity,xstr,ystr,M.file); 
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end 
  
% close the file 
fprintf(fid,'= End of File ============================= \r\n'); 
fclose(fid); 
  
set(handles.Status,'string',sprintf('Save: Data saved to file %s',file)) 
  
  
function SavePNG_Callback(hObject, eventdata, handles) 
% this is an attempt to get anti-aliased png images, it works reasonably 
% well execpt for the font sizes, which change a bit between saving. 
Data = handles.Data; 
if ~isfield(Data,'gcf') 
    set(handles.Status,'string','Save: No image to save') 
    return 
end 
H = Data.gcf; 
  
% prompt for a filename to save to 
[file,path] = uiputfile('mt_data.png','Save file name'); 
if file == 0 
    set(handles.Status,'string','Save: to png aborted.') 
    return 
end 
  
% set the status 
set(handles.Status,'string','Save: Writing png...') 
  
% fix the extention, to be always .png (small case) 
filename = fullfile(path,file); 
filename = [regexprep(filename,'.png$','','ignorecase') '.png']; 
  
% get the original figure position (and size) 
savepos = get(H,'Position'); 
  
% set the paper position to 1 inch per 100 pixels 
set(H,'PaperUnits','inches','PaperPosition',savepos.*[0 0 1e-2 1e-2]) 
  
% get the fontsize handles 
Hf = findobj(H,'-property','FontSize'); 
  
% store the original fontsize 
fontsize = get(Hf(1),'FontSize'); 
% double the font size (temporarily) 
set(Hf,'FontSize',fontsize*2); 
  
% get a temporary filename 
tmp = [tempname '.png']; 
  
% save png (2 times bigger than original) 
print(H,tmp,'-dpng','-r200') 
  
% restore the fontsize 
set(Hf,'FontSize',fontsize); 
  
  
% read the temporary image 
Im = imread(tmp,'PNG'); 
  
% delete the temporary file 
delete(tmp); 
  
try 
    I = imresize(Im, 0.5, 'bilinear'); 
catch 
    % workaround for missing Image Processing Toolbox 
     
    % get the image size 
    [n m k] = size(Im); 
    % create the interpolation spacing 
    xi = (1:2:m) + 0.5 ; 
    yi = (1:2:n) + 0.5 ; 
     
    % create a new image 
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    mi = length(xi); 
    ni = length(yi); 
    I = zeros(ni,mi,k); 
     
    % interpolate (per color) 
    I(:,:,1) = interp2(double(Im(:,:,1)),xi,yi.','*linear'); 
    I(:,:,2) = interp2(double(Im(:,:,2)),xi,yi.','*linear'); 
    I(:,:,3) = interp2(double(Im(:,:,3)),xi,yi.','*linear'); 
     
    % convert back to integer 
    I = uint8(round(I)); 
end 
% write the real .png file 
imwrite(I,filename,'PNG') 
  
set(handles.Status,'string',sprintf('Save: PNG file %s saved',file)) 
  
  
function SavePDF_Callback(hObject, eventdata, handles) 
Data = handles.Data; 
if ~isfield(Data,'gcf') 
    set(handles.Status,'string','Save: No image to save') 
    return 
end 
H = Data.gcf; 
  
% prompt for a filename to save to 
[file,path] = uiputfile('mt_data.pdf','Save file name'); 
if file == 0 
    set(handles.Status,'string','Save: to pdf aborted.') 
    return 
end 
  
set(handles.Status,'string','Save: Writing pdf...') 
  
filename = fullfile(path,file); 
  
% fix the extention, to be always .png (small case) 
filename = [regexprep(filename,'.pdf$','','ignorecase') '.pdf']; 
  
% get the original figure position (and size) 
savepos = get(H,'Position'); 
  
% set the paper position to 1 inch per 100 pixels 
set(H,'PaperUnits','inches','PaperPosition',savepos.*[0 0 1e-2 1e-2]) 
set(H,'PaperSize',savepos(3:4).*[1e-2 1e-2]) 
  
% save png (3 times bigger than original) 
print(H,filename,'-dpdf') 
  
set(handles.Status,'string',sprintf('Save: PDF file %s saved',file)) 
  
  
% --- Executes on selection change in FileBox. 
function FileBox_Callback(hObject, eventdata, handles) 
Data = handles.Data; 
  
cfilenum = get(handles.FileBox,'Value'); 
if ~isfield(Data,'ftypes') 
    return 
end 
  
ctype = Data.ftypes{cfilenum}; 
cfile = Data.files{cfilenum}; 
  
set(handles.Status,'string','List: new file selected') 
  
Data.cfile    = cfile ; 
Data.ctype    = ctype ; 
Data.cfilenum = cfilenum ; 
  
% storing in the Data structure 
handles.Data = Data; 
% Update handles structure 
guidata(hObject, handles); 
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plotfun(hObject, eventdata, handles) 
  
function FileBox_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function ShowAll_Callback(hObject, eventdata, handles) 
plotfun(hObject, eventdata, handles) 
  
function Quickmeasure_Callback(hObject, eventdata, handles) 
  
function ZoomSelect_Callback(hObject, eventdata, handles) 
  
function Clear_Callback(hObject, eventdata, handles) 
Data = handles.Data; 
if isfield(Data,'gcf') 
    close(Data.gcf) 
end 
D.options  = Data.options; 
D.degree = Data.degree; 
  
Data = D; 
handles = rmfield(handles,'Data'); 
  
% Enable the all buttons 
buttons = findobj(handles.figure1,'Enable','off'); 
set(buttons,'Enable','on') 
  
% select the current file from in the list 
set(handles.FileBox,'String',{'...'}); 
set(handles.FileBox,'Value',1); 
  
% set status 
set(handles.Status,'string','measuretool reset') 
  
  
% storing in the Data structure 
handles.Data = Data; 
% Update handles structure 
guidata(hObject, handles); 
  
function Intensity_Callback(hObject, eventdata, handles) 
plotfun(hObject, eventdata, handles) 
  
function I = grayscale(I) 
I = double(I); 
if ndims(I) == 3 
    I = 0.2989 * I(:,:,1) + 0.5870 * I(:,:,2) + 0.1140 * I(:,:,3); 
end 
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