
 
 
 

 
 

 

 
 
 
 
 

 
 

 
 

 
 

 
 

 New Fabrication Methodologies  
for the Development of Low Power Gas Sensors 

Based on Semiconducting Nanowires 
 

Jordi Samà Monsonís 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement 3.0. Espanya de Creative 
Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento 3.0.  España de Creative 
Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution 3.0. Spain License.  
 



 

 

 

 

Jordi Samà Monsonís 

 

Director de la Tesi: 

Dr. Albert Romano Rodríguez 

Programa de Doctorat en Nanociències 

 

 

Departament d’Enginyeries: Secció Electrònica 

Grup de Micro-Nanotecnologies i Nanoscòpies per 

Dispositius Electrònics i Fotònics (MIND) 

Institut de Nanociència i Nanotecnologia (IN2UB) 

 

 

 

New Fabrication Methodologies for the 

Development of Low Power Gas Sensors Based on 

Semiconducting Nanowires 

 



 

 

 

  



 

Programa de Doctorat en Nanociència 

 

 

New Fabrication Methodologies for the Development of Low Power Gas sensors 

based on Semiconducting Nanowires 

 

Tesi que presenta Jordi Samà Monsonís 

per optar al títol de Doctor per la Universitat de Barcelona 

 

Director de la Tesi: 

Albert Romano Rodríguez 

 

 

Departament d’Enginyeria: Secció Electrònica 

Grup de Micro-Nanotecnologies i Nanoscòpies per Dispositius 

Electrònics i Fotònics (MIND) 

Institut de Nanociència i Nanotecnologia (IN2UB) 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table of contents 

    

 

 

TABLE OF CONTENTS 

1. INTRODUCTION ................................................................................................................... 5 

ABSTRACT ........................................................................................................................................................................... 5 

1.1. DEMAND OF GAS SENSORS ................................................................................................................................. 6 

1.2. SOLID STATE GAS SENSORS ................................................................................................................................ 7 

1.2.1. Semiconductor gas sensors ............................................................................................................. 8 

1.3. NANOSTRUCTURED MATERIALS ........................................................................................................................ 9 

1.4. GAS-SOLID INTERACTION ................................................................................................................................ 12 

1.4.1. Solid-gas interface ........................................................................................................................... 12 

1.4.2. Statistical description of Langmuir isotherm ....................................................................... 17 

1.4.3. Chemiresistive sensors ................................................................................................................... 21 

1.5. OBJECTIVES ....................................................................................................................................................... 26 

1.6. REFERENCES ..................................................................................................................................................... 27 

2. FABRICATION AND CHARACTERIZATION TECHNIQUES ................................... 33 

ABSTRACT ........................................................................................................................................................................ 33 

2.1. INTRODUCTION ................................................................................................................................................. 34 

2.2. SYNTHESIS OF NANOWIRES ............................................................................................................................ 35 

2.2.1. Vapour-Liquid-Solid Mechanism ............................................................................................... 37 

2.2.2.1 The role of metal nanoparticles .............................................................................................................. 38 

2.2.2.2 Details of VLS methods used in this thesis ........................................................................................ 40 

2.3. FIBID AND FEBIP INSIDE A FIB-SEM DUAL BEAM ................................................................................ 40 

2.3.1. Electrical contact fabrication for the NWs ............................................................................ 46 

2.4. ELECTRON BEAM LITHOGRAPHY ................................................................................................................... 48 

2.4.1. Resist exposure: interactions and limitations....................................................................... 50 

2.4.2. Contacting procedure for NWs ................................................................................................... 54 

2.5. MICROMEMBRANES AND MICROHOTPLATES ............................................................................................... 55 

2.6. ELECTRICAL AND GAS MEASUREMENTS ........................................................................................................ 58 

2.6.1. Electrical measurement setup .................................................................................................... 58 

2.6.2.1 Macroscopic access to individual NWs ............................................................................................... 59 

2.6.2. Gas measurement setup ................................................................................................................ 60 

2.7. REFERENCES ..................................................................................................................................................... 63 

3. LOCALIZED GROWTH OF SNO2 AND GE NWS .......................................................... 69 



New fabrication methodologies for the development of low power gas sensors based on semiconducting nanowires 

  

 

3.1. INTRODUCTION ................................................................................................................................................. 70 

3.2. EXPERIMENTAL DETAILS ................................................................................................................................ 72 

3.2.1. Calibration of temperature versus heater power in vacuum conditions ................... 72 

3.2.2. Growth process ................................................................................................................................. 75 

3.2.3. Experimental instrumentation ................................................................................................... 78 

3.3. RESULTS AND DISCUSSION .............................................................................................................................. 78 

3.3.1. Growth of SnO2 nanowires ........................................................................................................... 78 

3.3.2. Growth of Ge nanowires ................................................................................................................ 81 

3.3.3. Raman spectroscopy characterization of SnO2 NWs ......................................................... 83 

3.4. CONCLUSIONS ................................................................................................................................................... 87 

3.5. REFERENCES ..................................................................................................................................................... 88 

4. SITE-SELECTIVELY GROWN SNO2 NWS NETWORKS FOR AMMONIA 

SENSING IN HUMID CONDITIONS.................................................................................................... 91 

ABSTRACT ........................................................................................................................................................................ 91 

4.1. INTRODUCTION ................................................................................................................................................. 92 

4.2. EXPERIMENTAL SECTION ................................................................................................................................ 93 

4.3. RESULTS AND DISCUSSION .............................................................................................................................. 93 

4.3.1. Oxygen adsorption .......................................................................................................................... 93 

4.3.2. Response to ammonia in dry synthetic air ............................................................................. 96 

4.3.3 SnO2 NWs sensing mechanisms in humid conditions ....................................................... 101 

4.3.3.1 SnO2 NWs interaction towards H2O ................................................................................................... 101 

4.3.3.2 Ammonia sensing in humid conditions ............................................................................................ 104 

4.3.4. Response towards other gases .................................................................................................. 107 

4.3.4.1. Response towards CO ............................................................................................................................... 107 

4.3.4.2. Response towards NO2 ............................................................................................................................. 108 

4.4. SUMMARY OF THE DIFFERENT RESPONSES ............................................................................................... 109 

4.4 CONCLUSIONS ................................................................................................................................................ 111 

4.5 REFERENCES .................................................................................................................................................. 111 

5. LOW TEMPERATURE SENSOR BASED ON GE NWS LOCALLY GROWN ON 

SUSPENDED MICROHOTPLATES ................................................................................................... 117 

ABSTRACT ..................................................................................................................................................................... 117 

5.1. INTRODUCTION .............................................................................................................................................. 118 

5.2. EXPERIMENTAL DETAILS ............................................................................................................................. 119 

5.3. RESULTS AND DISCUSSION ........................................................................................................................... 119 

5.3.1. Structural characterization and conducting behaviour ................................................ 119 

5.3.2. Determination of the optimal sensing temperature ........................................................ 122 

5.3.3. Response to oxidizing species ................................................................................................... 123 

5.3.4. Response to reducing gases ....................................................................................................... 126 



Table of contents 

    

 

5.3.5. Gas selectivity and sensing mechanisms ...............................................................................131 

5.4. CONCLUSIONS ................................................................................................................................................ 132 

5.5. REFERENCES .................................................................................................................................................. 133 

6. INDIVIDUAL SNO2 NWS CONTACTED BY EBL ........................................................ 137 

ABSTRACT ..................................................................................................................................................................... 137 

6.1 INTRODUCTION .............................................................................................................................................. 138 

6.2 EXPERIMENTAL DETAILS ............................................................................................................................. 140 

6.2.1 Uniformity of PMMA coating on chips ...................................................................................140 

6.2.2 Optimization of the fabrication parameters .......................................................................145 

6.3 RESULTS AND DISCUSSION ........................................................................................................................... 149 

6.3.1 Electrical characterization ........................................................................................................149 

6.3.2 Response towards NH3 .................................................................................................................152 

6.3.3 Response towards NO2 .................................................................................................................155 

6.4 CONCLUSIONS ................................................................................................................................................ 156 

6.5 REFERENCES .................................................................................................................................................. 157 

7. CONCLUSIONS AND FUTURE PERSPECTIVES ....................................................... 161 

7.1. GENERAL CONCLUSIONS .............................................................................................................................. 162 

7.1.1. On the fabrication process .........................................................................................................162 

7.1.2. On the sensing performance ......................................................................................................163 

7.2. FUTURE WORK ............................................................................................................................................... 165 

RESUM EN CATALÀ .................................................................................................................... 167 

INTRODUCCIÓ ............................................................................................................................................................... 168 

Objectius de la tesi .....................................................................................................................................................169 

RESULTATS I DISCUSSIÓ .............................................................................................................................................. 171 

Creixement localitzat de nanofils de SnO2 i Ge ...............................................................................................171 

Creixement localitzat de nanofils de SnO2 per sensat d’amoníac en aire humit ...............................172 

Sensors de baixa temperatura basats en nanofils de Ge ............................................................................172 

Nanofils individuals de SnO2 contactats per litografia per feix d’electrons .......................................174 

CONCLUSIONS ............................................................................................................................................................... 175 

REFERÈNCIES................................................................................................................................................................ 177 

 

  



New fabrication methodologies for the development of low power gas sensors based on semiconducting nanowires 

4   

 

 



Chapter 1: Introduction 

   5 

 

1. INTRODUCTION 

 

 

 

 

 

 

 

 

Abstract 

An introduction to the current measurement technology for the monitoring of gas 

sensors is explained in this chapter. A brief state of the art and the requirements that 

current gas sensors need to fulfil are explained, providing the framework at which this 

Doctoral Dissertation was developed. At the end of this chapter, the fundamentals of the 

sensing mechanisms of metal oxide sensors will be explained. 
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1.1. Demand of gas sensors 

The air and environment quality is, nowadays, one of the main political concerns of 

the governmental institutions [1]. The presence of toxic gas species and pollutants is the 

first environmental cause of premature death in European Union [2], and 400000 

premature deaths each year in Europe are estimated to be due to the effects of urban air 

pollution [3]. The poor air quality is a specific and challenging issue in large urbanized 

areas and industrial zones, where the road traffic and industry causes the main pollutant 

emissions. Furthermore, with rising population, which is expected to mainly grow in 

cities, the pressure on urban environments is increasing. 

In this sense, European Commission adopted a directive in December of 2013 that 

determines the air quality objectives for the period up to 2030, with stricter allowed 

national emissions for six pollutants [4]. The main pollutants are particulate matter 

(PM), for which the health concerns are focused on particles of diameter below 10 µm, 

sulphur dioxide (SO2), nitrogen oxides (NOx), which covers NO and NO2, ammonia 

(NH3), volatile organic compounds (VOC) and ground-level ozone (O3). The emission 

of the pollutants is induced mainly by industrial emissions and both maritime and road 

transport, the latter producing mainly NOx and CO. Furthermore, nitrogen oxides and 

sulphur oxide are known to produce the acid rain [5]. 

The detection of toxic gases and pollutants is required in many different 

applications, either indoor, outdoor or in work places. As an example of outdoor 

applications, the short-response actions that public institutions implement against 

temporary pollution peaks are sustained on their detection by air quality monitoring 

networks. Real time detection is required, for instance, in parking garages, in order to 

activate the ventilation systems. Other applications are found in industrial facilities, 

where the leakage of flammable or hazardous gases, or processed chemical species can 

present a threat to safety and need to be detected immediately. These are just few 

examples of the necessity of monitoring and sensing the presence of gases in the day 

life. Therefore, suitable gas detection is nowadays an important requirement and the 

interest and applications are expected to grow since mobile phones are providing a 

portable platform that allows integrating sensors and identify harmful threads in 

personal environment. The necessity and requirements in the different fields of gas 

sensors may be described from an economical point of view: the global gas sensors 
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market was estimated to be $1780 million in 2013, with a compound annual growth rate 

of 5.1% from 2014 to 2020 [6].  

1.2. Solid state gas sensors 

A gas sensor is a device that detects the presence of a determined amount of a 

certain gas and that gives as output an electrical signal whose value depends on the 

specific concentration of the analyte. The principles on which the gas sensor is based 

can be chemical and/or physical. A chemical sensor is a device that transforms chemical 

information, ranging from the concentration of a specific sample component to total 

composition analysis, into an analytically useful signal [7]. This chemical information 

may originate from a chemical reaction of the analyte or from a physical property of the 

system investigated. A physical sensor is defined as a device that provides information 

about a physical property of a system. However, in some cases is not possible to decide 

whether the operational principle is based on chemical or physical process, for instance, 

when an adsorption process gives rise to the signal. This is the case of the majority of 

the currently suitable gas sensors, in which the chemical information of the surrounding 

gases is transformed in a process that is dependent on the physical properties of the gas: 

pressure and temperature. 

 The present thesis focuses on semiconductor gas sensors, which form part of the 

solid state gas sensors. The main applications of solid state resistive sensors are in 

safety, automotive, process control, household applications and environmental 

monitoring [8].  

Solid electrolyte sensors have been introduced in the market more than one decade 

ago. This type of sensors are based on a material that allows the conduction of ions 

(electrolyte) but not of electrons, being both collected through different paths [9]. 

Yttria-stabilized zirconia (YSZ) is the most common material of electrochemical-based 

sensors, being widely employed as oxygen sensor for air-to-fuel inspection, also known 

as lambda sensor, in automobile exhaust systems. This type of sensor is also known as 

potentiometric sensor, since usually the potential difference between the electrodes at 

which the chemical reactions take place is measured. However, also amperometric, 

impedimetric or catalytic measurements have been employed to obtain the sensing 

signal [8].  
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Conducting polymer materials have been studied as gas sensors since the early 

1980s [10]. Polypyrrole and polyaniline are the most common polymers, employed in 

conductometric and Field Effect Transistor (FET) sensors. Polymers can operate at 

room temperature, which represents a clear advantage when compared to other materials 

[11]. The sensing mechanism towards oxidizing gases takes places through the electron 

transfer from the aromatic rings of the polymer to the adsorbate [11]. However, the 

sensing mechanism against reducing gases is still not understood and the surface 

reactions between polymers and gas adsorbates still require a better understanding to 

achieve future commercial applications. 

Catalytic sensors or pellistors, are used to detect explosive or flammable gases. The 

catalyst sensing part is heated up to a temperature that allows a rapid combustion of the 

gas. The sensor detects gas concentration changes through the variation in resistance of 

the heating element produced by the temperature increase due to the gas combustion. 

Typically pellistors are made of Pt embedded in a ceramic material and are used to 

detect methane, carbon monoxide or hydrogen. However, for inexpensive detection of 

flammable gases at lower concentrations, semiconductor gas sensors offer better 

capabilities. 

1.2.1. Semiconductor gas sensors 

The first semiconductor gas sensor was introduced by Taguchi in the 1960s decade 

based on ZnO films, a metal oxide (MOX) sensor [12]. Since then, the advances in the 

materials science and fabrication processes allowed to improve the sensitivity and 

reliability, while simultaneously reducing the productions costs [13]. MOX materials 

change their electrical resistance upon the exposure to different gases, proportionally to 

the amount of adsorbate [9]. 

Metal oxide semiconductors are the most common materials used as semiconducting 

gas sensors. They can be used with different type of operational mechanisms, like 

resistive, capacitive or optical based sensors, among others [14]. Conductometric 

sensors are the most common type for metal oxide sensors. Metal oxides have several 

advantages over other type of gas sensors, like the low fabrication cost and robustness 

of the fabricated sensor, and offer a high potential for applications where the use of 

analytical systems, such as gas chromatographs or optical detector is prohibitive due to 
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the high cost involved. On the other hand, the simplicity of the transduced chemical 

quantity, and the possibility of integration into Si technology, make the metal oxide one 

of the most promising technologies for future applications, especially due to their 

scalability and possibility of very low power operation.   

In addition to metal oxide, other semiconductors are investigated for gas sensing 

applications. The most widely used semiconductor, Si, is a less common sensing 

material, which has been briefly studied as a gas sensor in porous form of an 

impedimetric or a resistive sensor [15,16]. On the other hand, the first gas sensor 

utilizing a field effect principle was based on Si technology for hydrogen detection [17].  

Wide bandgap semiconductors, such as SiC, AlN or GaN, are also employed as FET 

devices towards hazardous gases at high temperatures [18]. Specifically, SiC plays an 

important role in this kind of devices due to the high chemical inertness and good 

thermal conductivity, which can be used in harsh environments [19]. 

On the other hand, carbon based materials are also used as chemiresistors in the low 

temperature regime in the form of films [20]. Recently, with the discovery of graphene, 

this material or its oxide form have generated interest for their gas sensing properties 

[21]. 

1.3. Nanostructured materials 

The introduction of nanostructures as a new type of architectures with enhanced 

sensitivity and low response time represented a step forward in the gas sensing field.  

The first demonstration of enhancing the sensitivity by reducing the crystallite size of a 

metal oxide to the nanometer scale was demonstrated in 1991 by Yamazoe et al. [22]. In 

this nanostructured material, the reactions involving gas adsorbate take place at the 

surface of the material or at the grain boundaries, causing a change in the density of 

charge carriers. Since for the resistive measurements the volume of the material is 

contributing, the surface-to-volume ratio becomes extremely relevant and an increased 

sensitivity was expected for nanostructures, arising as promising candidates that exhibit 

many inspiring characteristics. 

The first work demonstrating the gas sensing capabilities of a single one-

dimensional structure arises in 2000 [23], where a single-walled carbon nanotube was 
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studied towards NH3 and NO2. Other carbon based nanostructures, such as nanofibers, 

have also shown their potential in detecting gas species [24,25]. On the other hand, 

single metal oxide nanowire-based gas sensors were demonstrated shortly after [26]. 

Since these works, nanowires, nanorods and nanotubes have generated enormous 

interest for detecting gas species with superior performance [27]. The synthesis 

methodologies of one-dimensional nanowires have pursued the control over the shape, 

aspect-ratio, the crystallinity and surface properties of the grown structures, which 

enhanced the fabrication of improved gas sensors, and promoted the discovery of new 

synthesis routes. 

In general, two different configurations on functional resistive sensors using 

nanowires as sensing part are found: multiple or single nanowire-based sensors. 

Multiple nanowires offer the enhanced response time of one-dimensional nanostructures 

together with the improved sensitivity due to the large surface-to-volume ratio of the 

devices. The electron conduction take place through the nanowires in this configuration, 

being modulated by the conductive diameter and the nanowire-to-nanowire contacts. On 

the other hand, individual nanowires offer other advantages, since the electronic 

transport takes place in one dimension without the barrier effects between grains or 

nanowire contacts, which allows to study the sensing mechanisms on a system with a 

well-defined geometry that facilitates the study of basic interactions. Furthermore, the 

gas diffusion takes place in an even easier way than in a bundle of NWs, which leads to 

a reduction of the response time. Nevertheless, the fabrication process is, obviously, 

more time-consuming for single nanowire-based devices. Furthermore, the absence of a 

redundancy of the conduction paths makes the single nanowire-based devices less 

robust than their multiple nanowire counterpart. 

Despite the research efforts to study theoretically and experimentally metal oxide 

sensors, there is still an important lack of basic understanding on sensing mechanisms 

of metal oxide nanowire sensors [18]. Further investigation are required in order to 

ensure reliability and reproducibility in the fabrication of gas sensors based on 

nanowires. Moreover, the research is focused on different requirements of metal oxide, 

which are also valid for gas sensors. 

The selectivity towards a specific gas is one of the main challenges of metal oxide 

gas sensors, as sensitivity is relatively good for the devices. Several alternatives are 
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found to improve the selectivity. On one hand, surface modification by self-assembled 

monolayers (SAM) has been proven successfully towards NO2 by adding amines [28] or 

metal nanocomposites in order to improve the selectivity [29]. In addition to the routes 

to functionalize the material’s surfaces, which are being studied for more than 20 years 

with a modest result, electronic noses, which comprehend a set of multiple sensors, each 

of them with specific and different sensitivities to the gases of interest, have emerged as 

an efficient alternative to improve selectivity and to analyse complex gas mixtures with 

relatively unselective sensor [30]. This increase is promoted by the very low cost of 

electronic components, circuits and boards, that, combined with the reduced price of the 

sensors, gives rise to a relatively cheap sensing system. 

Low power consumption of gas sensors is mandatory for a sustainable technology, 

and completely necessary for the development of autonomous devices with long term 

operational capabilities. Surface or bulk micromachining allows to fabricate micro-

electromechanical systems (MEMS), that have been demonstrated as a successful 

approach in order to miniaturize and reduce the power consumption of the metal oxide 

gas sensors, for which the devices employ embedded microheaters [31].  

On the other hand, previously non-explored semiconducting materials may offer 

new opportunities for gas sensing. A part of the present work, in this sense, deals with a 

quite known semiconductor as Ge, which has been briefly analyzed as a gas sensor, and 

tries to elucidate the behavior and the conditions that provide a sensing behavior that 

has not been previously reported before. 

Furthermore, one of the main challenges for the introduction of nanowires in the 

commercial market resides in the integration of one dimensional nanostructures with the 

controlling electronics, which should further reduce the fabrication costs and the spread 

of this devices [18]. The fabrication methodology of nanowires usually involves 

different stages, like the growth of nanowires and their removal from the substrate 

where they were grown. The NWs are then transferred to the electronic platform and, in 

some cases; final electrical contacts have to additionally be fabricated. On the other 

hand, the NWs can be dispersed over substrates with pre-patterned electrodes that do 

not require any further contact procedure.  

Consequently, the exploitation of nanowires with gas sensing purpose involves 

(sometimes highly) time-consuming processes with multiple and complex steps. This 
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important issue has been partially overcome in the work presented in this thesis, 

providing a simplified approach by eliminating several steps of the process without 

reducing the performance of the fabricated devices. 

1.4. Gas-solid interaction 

This section describes the basics of the physical and chemical processes that take 

place at the surface of a solid state gas sensor, and more concretely, of a metal oxide 

that leads to the gas sensing. These processes will be used in order to describe and 

justify, in the subsequent chapters, the mechanisms taking place at the fabricated and 

experimentally studied gas sensors based on nanowires. 

The first part of this section presents the different types of gas adsorption processes 

taking place at the surface of a material and the involved interaction. Moving to a higher 

scale, a description of the surface coverage given by Langmuir isotherm is presented in 

terms of the thermodynamic properties of the gas adsorbate. Finally, the specific events 

that lead to the observation of a change in the resistance of a metal oxide, used as a 

chemiresistive sensor, are given in the last section. 

1.4.1. Solid-gas interface 

A basic step of the gas sensing mechanism and of any catalytic reaction is the 

adsorption process. Adsorption is an increase in the concentration of a dissolved 

substance at the interface of a condensed and a gaseous phases due to the effect of 

surface forces [7]. Our interest is focused on the sticking of gas molecules (adsorbate) at 

a solid surface (adsorbent). 

In order to give a first description, we can describe the flux of molecules impinging 

a surface (ϕi), by the Hertz-Knudsen equation [32]: 

 𝜙𝑖 =
𝑝

(2𝜋𝑚𝑘𝐵𝑇)
1
2

         (1.1) 

where p denotes the pressure, m the mass of the molecule, kB the Boltzmann 

constant and T the temperature. The molecules striking the surface may stay on the 

surface (adsorption) depending on several factors (temperature, binding energy with the 

surface, among other) and afterwards, they can be desorbed. A gas sensor requires 
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adsorbing and desorbing of the gas species in order to interact with the adsorbate and to 

recover the initial state, respectively. 

All the gases tend to be adsorbed at the solid surface as a result of van der Waals 

interactions. This case is known as physisorption or physical adsorption, where the 

interaction takes place without involving charge transfer between the adsorbent (solid) 

and adsorbate (gas). The process is reversible, non-activated and non-dissociative, i.e., 

the gas specie remains unmodified, and takes place usually at temperatures close to the 

boiling point. At higher temperatures the physisorption can be neglected. Physical 

adsorption involves permanent dipole, induced dipole and quadrupole attraction 

between a molecule and a solid surface [33]. 

 In more detail, physisorption is described as a binding of an atom or molecule to a 

solid surface consisting in the addition of the polarization potential and the Pauli 

repulsion of the electrons [34,35]: 

 𝑉𝑝ℎ𝑦𝑠(𝑧) = 𝑉𝑝𝑜𝑙(𝑧) + 𝐾𝑛(𝑟)      (1.2) 

where Vpol(z) is the long-range attractive polarization potential described as 

 𝑉𝑝𝑜𝑙(𝑧) = −
𝐶3

𝑧3 −
𝐶4

𝑧4 −
𝐶5

𝑧5 − ⋯      (1.3) 

and Kn(r) is the repulsive force from Pauli repulsion at short distances, arising from 

the overlap of the electronic clouds of the adsorbate and the surface, and z stands for the 

distance from the surface.  

 

Figure 1.1. a) Physisorption potential energy between a particle and the surface of a solid represented as a 

function of the distance to the surface, which follows a Lennard-Jones potential; b) Diagram of Van der 

Waals interaction between the surface and molecule. Physisorption takes place with all gas adsorbate, i.e., 

is non-specific, and the forces are non-localized on concrete sites; the whole surface interacts with the gas 

molecules. 
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Lennard-Jones proposed a simple model to describe the combination of both 

interactions, the attractive and repulsive forces by a unique potential [36]. The potential 

is given by: 

 𝑉𝑝ℎ𝑦𝑠(𝑟) = 4𝜀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

]      (1.4) 

where 𝜀 is the depth of the potential well and 𝜎 is the distance at which the potential 

is zero. The attractive term has the inverse six-power term, and the repulsive one 

corresponds to the inverse twelve-power term. The potential is represented in Figure 1.1 

a). Van der Waals forces induce a long-range interaction, which attracts the gas 

molecule in order to minimize its energy, typically up to an optimal adsorption distance 

of r>3 Å. The interaction involves a small adsorption energy, of less than few hundreds 

of meV [37]. Due to the low binding energy, the physisorbed particles are strongly 

mobile on the surface and are easily desorbed. In principle, it is supposed that the 

surface of the solid follows an unspecific interaction with the adsorbate, i.e., the 

interaction takes places on all surface sites with the molecule independently of the gas 

specie, attracting the molecule as long as the proper pressure and temperature conditions 

are kept [38], as shown in Figure 1.1 b). However, some molecules may only 

physisorbed to specific surface sites as a function of the polarity of the latter ones. 

Another interaction regime takes place for higher adsorption energies, comparable 

to the energy of a chemical bond, where electrons are shared between the gas adsorbate 

and the surface of the solid, which gives rise to chemisorption or chemical adsorption. 

In this case, the adsorbate tends to be localized in specific sites, although some diffusion 

might occur in the process [38].  

Chemisorption involves thus, the rearrangement of the electrons from the gas and of 

the solid, with the subsequent formation and breaking of chemical bonds. Furthermore, 

chemisorption has no restrictions on temperature, unlike physisorption, although the 

effectiveness of the chemisorption may be limited to a specific temperature range. At 

low temperatures, chemisorption may be slow and, therefore, the mechanism barely 

takes place, leading to the observation that the main adsorption phenomenon is 

physisorption. The energy of the interaction in the chemisorption of adsorbates can 

reach several eV, one order of magnitude above the typical values for physisorption.  
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Figure 1.2 Potential energy during a a) non-activated chemisorption and b) activated chemisorption 

processes. The activated chemisorption requires additional energy in order to pass from physisorbed 

stated to the chemisorbed state; c) Diagram of chemisorbed molecules denoting the localization of the 

interaction on adsorption sites. 

Other differences found between the two processes is that chemisorption is often 

dissociative, may be irreversible and can be localized at a specific site, as is shown in 

Figure 1.2 c). There is no abrupt change in pressure nor in temperature that separates the 

two adsorption regimes, but the adsorption regime in the extremes of these magnitudes 

are easy to distinguish.  

The potential energy of chemisorption may be represented as a Lennard-Jones 

potential, Morse potential, or Buckingham potential, among others [33]. The Lennard-

Jones potential in chemisorption process is represented in Figure 1.2 a) and b) as a 

function of the distance from the surface for non-activated and activated processes, 

respectively.  

The gas molecule approaching the surface from a certain distance experiences the 

Van der Waals interaction, being initially bound to the surface at the physisorbed state. 

As the molecule further approaches the surface, it may also suffer the chemisorption 

potential. When the intersection between physisorption and chemisorption energy 
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potentials is found at negative energy values, the process is said non-activated and no 

activation energy must be overcome to reach the chemisorbed state (Figure 1.2 a). On 

the other hand, when the intersection occurs at positive energies, if the molecule has 

enough energy, it can overcome this barrier and will prefer to follow the chemisorption 

potential curve to reach the lower energy state (Figure 1.2 b). The equilibrium distance 

for chemisorption is usually found between 1 and 3 Å [33].  

In a dissociative process, the activation energy may represent, for instance, the 

energy necessary for the dissociation of the molecule. Furthermore, desorption is also a 

process with an energy barrier Edes due to the fact that breaking the bond is necessary in 

order to escape from the potential well. This applies to both non-activated and activated 

processes (see Figure 1.2 a) and b)). Therefore, one can expect a temperature 

dependence of the processes to be Arrhenius-like [39]: 

 𝑘𝑝 = 𝐴𝑒−𝐸𝑝/𝑘𝑏𝑇        (1.5) 

where kp stands for the reaction rate constant, A is the pre-exponential factor, and Ep 

the activation energy of the process, that one may expect to be Eads and Edes for 

adsorption and desorption processes, respectively. Once physisorption and 

chemisorption have been introduced, it is useful to describe the events that leads to the 

chemisorption of an impinging gas on a solid surface. Assuming a clean surface, the 

events that may happen as a result of the collision of the molecule are: 

 

Table 1.1. Comparison of the main properties of physisorption and chemisorption 

Physisorption Chemisorption 

Weak and long range bonding Strong, short range bonding 

Polarization Electron exchange 

Non-surface specific Surface specific 

No surface reactions 
Surface reactions:  

dissociation, catalysis.. 
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i) The gas molecule is scattered by the surface in an elastic process, without any 

loss of energy. 

ii) The molecule loses some energy (translational energy, for instance), 

transferring it to the solid and reaching the physical adsorbed state, i.e., 

finally remaining in the minimum of the physisorption potential. 

iii) The molecule passes, if the energy is high enough, directly to a chemisorbed 

state if this can be formed near the incidence site, without being trapped in 

the physically adsorbed state. 

iv) The molecule may be physisorbed at the site of the incidence and then it may 

a) be chemisorbed, b) be inelastically scattered back to the gas phase or c) 

hop to a neighbouring site, where again, cases i) and ii) can take place again. 

v) During the formation of the chemically adsorbed species, the molecule or its 

dissociated parts may a) lose chemical energy, released to the solid, and 

become localized at the original site or b) lose energy and hope diffusively 

until the excess of energy is dissipated. 

Chemiresistive sensors are generally based on the chemisorption of the molecules. 

As explained, chemisorption requires higher energy of the molecule than the 

physisorption process. For this reason, the sensing material needs to be heated up, since 

chemisorption usually takes place at temperatures above 150 °C. The exposed 

properties of chemisorption and physisorption are compared in Table 1.1. 

1.4.2. Statistical description of Langmuir isotherm 

The adsorption of a monoatomic gas on a solid surface at constant temperature is a 

situation that may be approximated by different models, like Langmuir isotherm, based 

on the adsorption of a monolayer, or Brunauer, Emmett and Teller (BET) isotherm, 

which is used to describe the adsorption of several monolayers, among others. A 

statistical treatment of the Langmuir isotherm will be presented, which describes the 

equilibrium state of the adsorption, but do not provide information about the dynamics 

of the system.  

 The adsorption isotherm reveals information about the amount of adsorbate that is 

adsorbed given a set of state variables: pressure p and temperature T. Several 

magnitudes must be considered in order to develop the statistical description. Let us 
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consider No as the number of localized sites at which the gas, considered as being 

monoatomic, may adsorb, and Nads as the number of adsorbates at the surface of the 

solid. The amount of adsorbed material is given in terms of surface coverage θ, which is 

the ratio of occupied sites related to the total available sites. 

It is assumed that one specie of adsorbate, and at most one adsorbate, may be bound 

at each adsorption site. This implies that just, at the limit, when full coverage occurs, 

one monolayer of particles may be adsorbed. Additionally, it is considered that one 

adsorbate does not interact with the others, i.e., the binding energy is independent of the 

coverage. Thus, the binding energy ε of the atom is considered to be independent of the 

number of adsorbed atoms [38]. All this situation supposes that the temperature in the 

system is kept constant. 

The energy of the system with Nads adsorbed particles is, hence, Nads ε, and the 

number of configurations that have this energy is the binomial coefficient 𝐶𝑁𝑜

𝑁𝑎𝑑𝑠. The 

canonical partition function is: 

 𝑄𝑎𝑑𝑠 = 𝐶𝑁𝑜

𝑁𝑎𝑑𝑠 exp (
𝑁𝑎𝑑𝑠ε

kB𝑇
)       (1.6) 

where kB is the Boltzmann constant and T the temperature. The grand canonical 

partition function is described as: 

 Θ = ∑ 𝑄𝑎𝑑𝑠 exp (
𝑁𝑎𝑑𝑠 𝜇𝑎𝑑𝑠

kB𝑇
)

𝑁𝑜
𝑁𝑎𝑑𝑠

       (1.7) 

where µads is the chemical potential of the adsorbate. Introducing (1.6) into (1.7), we 

obtain: 

  Θ = (1 + exp (
ε+ 𝜇𝑎𝑑𝑠

kB𝑇
))

𝑁𝑜

       (1.8) 

Thus, the probability that Nads atoms are adsorbed at the surface of a solid, is given 

by: 

 𝑃(𝑁𝑎𝑑𝑠) =
𝑄𝑎𝑑𝑠 exp(

𝑁𝑎𝑑𝑠𝜇𝑎𝑑𝑠
𝑘𝐵𝑇

)

Θ
      (1.9) 

Consequently, the average number of adsorbed particles is: 

 〈𝑁𝑎𝑑𝑠〉 = ∑ 𝑁𝑎𝑑𝑠𝑃(𝑁𝑎𝑑𝑠) = 𝑘𝐵𝑇
𝑁𝑜
𝑁𝑎𝑑𝑠

𝜕

𝜕𝜇𝑎𝑑𝑠 
ln(Θ)    (1.10) 
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The surface coverage θ is the fractional part of the surface that is occupied by 

adsorbate. As a consequence, one can deduce that: 

 𝜃 =
〈𝑁𝑎𝑑𝑠〉

𝑁𝑜
=

exp(
ε+ 𝜇𝑎𝑑𝑠

kB𝑇
)

1+exp(
ε+ 𝜇𝑎𝑑𝑠

kB𝑇
)
       (1.11) 

At equilibrium, the chemical potential of all phases must be equal and. thus, µads can 

be calculated as the chemical potential of monoatomic ideal gas, according to: 

 𝜇𝑎𝑑𝑠 = 𝑘𝐵𝑇 ln [
𝑝

𝑘𝑏𝑇
(

ℎ2

2𝜋𝑚𝑘𝐵𝑇
)

3

2
 ]      (1.12) 

where p is the equilibrium pressure of the gas, m the mass of the atom and h the 

Planck constant. Substituting (1.12) into (1.11) gives: 

 𝜃 =
𝑝

𝑝+𝑝𝑜(𝑇)
         (1.13) 

being: 

 𝑝𝑜(𝑇) = (
2𝜋𝑚𝑘𝐵𝑇

ℎ2 )

3

2
 𝑘𝐵𝑇 exp (−

𝜀

𝑘𝐵𝑇
)     (1.14) 

The so-called Langmuir adsorption corresponds to the equation (1.13). This relation 

shows that at low pressures, the partial coverage is proportional to p, and at high 

pressures θ tends asymptotically to 1. Furthermore, po(T) may be understood as the 

pressure required to obtain an equilibrium coverage of θ=0.5 at a certain temperature T. 

From (1.14) it is inferred that for high binding energy ε, po decreases exponentially and 

thus, the coverage tends to 1 at low pressures. Thus, the coverage is determined, besides 

the state variables, by the binding energy. 

The adsorption and desorption rates (dθ/dt) of the adsorbate are related to the 

coverage. Here we will assume, as an extension of the Langmuir isotherm, that the 

molecules can follow a dissociative adsorption, which breaks the molecule into n 

fragments (n=1 for non-dissociative adsorption). Therefore, the adsorption and 

desorption rates are described as follows: 

 
𝑑𝜃

𝑑𝑡
= 𝑘𝑎𝑑𝑠𝑝[𝑁𝑜(1 − 𝜃)]𝑛  (Adsorption)    (1.15)

 
𝑑𝜃

𝑑𝑡
= 𝑘𝑑𝑒𝑠(𝑁𝑜𝜃)𝑛   (Desorption)    (1.16) 
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Figure 1.3 Langmuir isotherms as a function of the gas pressure, calculated for an atom of hydrogen: a) 

showing the dependence on temperature for a physisorbed process. The binding energy is assumed to be 1 

eV; b) exhibiting the changes for increasing ε. The coverage is calculated at 500K. 

 

Where kads and kdes are the temperature-dependent constants of adsorption and 

desorption, respectively. At the steady state, the adsorption and desorption rates are both 

equal to 0. From these considerations, and equalizing thus both equations, the 

expression for Langmuir isotherm is obtained, in terms of a dissociative adsorption from 

another treatment. 

The dependence of the coverage on the gas pressure is represented in Figure 1.3 a) 

for different temperatures, assuming ε=1eV. The different coverages of the same 

system, obtained at 500K, and changing the binding energy are shown on Figure 1.3 b). 

The isotherms have been obtained assuming that a hydrogen atom is adsorbed at a 

certain pressure.  

 

Figure 1.4. Temperature dependence of coverage at isobaric conditions for physisorption and activated 

chemisorption processes. 
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The figures indicate a decreasing coverage for increasing temperatures and 

decreasing ε, at a constant pressure, which is valid for physisorption. The figures show, 

additionally, that any variation of the binding energy and temperature leads to an 

important change of the coverage because of the existence of the exponential 

dependence. 

At isobaric conditions, and looking at the temperature dependence of the coverage, 

activated chemisorption and physisorption processes show different behaviors (see 

Figure 1.4). The coverage diminishes as the temperature increases, for the physisorption 

isobar, in which since the adsorption should decrease with rise in temperature, 

according with Le-Chatelier’s principle. Nevertheless, in the case of an activated 

chemisorption, the coverage increases initially with rising in temperature due to the 

presence of an energy barrier.  

Langmuir isotherm equation is not expected to be valid in all cases, because the 

binding energy or the heat of adsorption often decrease with increasing surface 

coverage. Hence, the treatment is only valid for low surface coverages, since the 

binding energy is considered constant in these conditions. Furthermore, in the model a 

perfect surface without surface diffusion is assumed. More realistic calculations of 

isotherms can be performed using Monte-Carlo techniques [40]. However, Langmuir 

isotherm is a useful model to introduce the solid-gas interaction and to analyse to a first 

approximation how the adsorption of a gas is affected by the thermodynamic state 

variables. 

It must be noted, that the approach here presented assumes a unique adsorbate in the 

gas phase, although in general more than one gas specie interacts with the surface and 

competition among them exist to be chemisorbed at specific adsorption sites. 

1.4.3. Chemiresistive sensors 

Once the different types of adsorption of a gas on a solid surface have been 

discussed and the parameters that influences the coverage of a solid surface have been 

described, the mechanisms that give rise to the sensitivity to the resistive gas sensors 

will be presented, with a special focus on semiconducting metal oxides. 
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Figure 1.5. Energy band diagram at the surface of an n-type metal oxide semiconductor, where an 

adsorbate on the surface creates an acceptor level, which produces an upward band bending. 

The first step in the sensing mechanism of metal oxide is based on the physisorption 

or the chemisorption of the gas on adsorption sites of the metal oxide surface [9,41,42]. 

The metal oxide materials employed for gas sensing purposes are considered and treated 

as wide bandgap semiconductors, as for instance, ZnO or SnO2, whose energy bandgap 

is in the range of 3.6 eV. 

This section will consider the chemisorption of the gas molecules, which produces a 

charge transfer with the solid. When a molecule is adsorbed at its surface, electrons are 

donated to this molecule if the lowest unoccupied molecular orbital of the molecule is 

found below the Fermi level of the solid (acceptor levels) [9]. At the same time, 

electrons are transferred to the solid if the highest occupied orbital from the adsorbate is 

above the Fermi level of the solid (donor levels). Therefore, a net charge will be fixed at 

the surface of the solid, giving rise to an electric field, which causes a subsequent band 

bending of the energy bands of the material.  

The adsorption of a molecule that gives rise to a surface acceptor state, i.e., an 

electron from the semiconductor is donated to the electron, causes the accumulation of 

negative charge, situation represented in Figure 1.5, which induces the upward bending 

of band diagram at the surface. If an n-type semiconducting material is assumed, as 

shown in the diagram, whose Fermi level is within the bandgap but close to the 

conduction band, the band bending at the surface gives rise to a reduction of the 

majority charge carriers density (electrons) at the surface and thus, produces a depletion 
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layer in this area. The depletion layer is characterized by a positive charge that 

compensates the negative surface charge. 

The charge density in the depletion zone can be determined by solving Poisson’s 

equation. Here we assume a one dimensional problem, following: 

 𝜌 = 𝑒[𝑝(𝑧) − 𝑛(𝑧) + 𝐷+(𝑧) − 𝐴−(𝑧)] = 𝜀𝑟𝜀0
𝑑2𝑉

𝑑2𝑧
    (1.17) 

where e is the elementary charge, p and n denote the hole and electrons densities, 

respectively, and D+ and A- are the density of ionized donors and acceptors. εr and ε0 are 

the dielectric constant of the material and vacuum.  

For simplicity, it is assumed that the semiconductor is n-type and, therefore, the 

acceptor and hole concentrations are negligible in front of the electron density. Besides, 

the donor species in the semiconductors bulk are considered to be all ionized, i.e., 

D+(z)=D+=nb, which are, at the same time, equal to the bulk electron density. Thus, we 

rewrite equation 1.17 as: 

 𝑒[−𝑛(𝑧) + 𝐷+] = 𝜀𝑟𝜀0
𝑑2𝑉

𝑑2𝑧
       (1.18) 

To analytically solve the previous equation, a discontinuous abrupt transition of the 

electron density is considered, being n(z)=D+=nb in the bulk and n(z)=0 in the space 

charge region, whereby the space charge region is delimited by the Debye length (λD ). 

Therefore, the electric field (E=dV/dz) may be obtained integrating (1.18): 

 𝐸(𝑧) =
𝑒𝑛𝑏(𝑧−𝜆𝐷)

𝜀𝑟𝜀0
        (1.19) 

The potential is obtained integrating the electric field as function of  z: 

 𝑉(𝑧) =
𝑒𝑛𝑏(𝑧−𝜆𝐷)2

2𝜀𝑟𝜀0
        (1.20) 

Imposing charge neutrality conditions of the whole system allows to deduce that the 

space charge must be equal to the surface charge: 

 𝑛𝑏𝜆𝐷 = 𝑁𝑠 = 𝜃[𝑆𝑡]        (1.21) 

where Ns denotes the number of the surface charges per unit area, θ being the 

coverage, already presented in the previous section, and [St] is the density of adsorption 

sites in the surface, occupied and unoccupied. We may define the potential to be 0 in the 

bulk: V(z> λD )=0, and thus, using (1.21) the surface potential is obtained as follows: 
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 𝑉𝑠 =
𝑒𝑛𝑏𝜆𝐷

2

2𝜀𝑟𝜀0
=

𝑒𝑁𝑠
2

2𝜀𝑟𝜀0𝐷+       (1.22) 

Consequently, the change in charge carrier density at the depletion layer due to the 

surface charges, described by Ns, gives rise to a variation of the conductivity of the 

semiconductor, which causes a resistance change that can be measured in the gas 

sensing devices, described by: 

 Δ𝜎 = 𝑒[𝜇𝑛∫ 𝑛(𝑧) − 𝑛𝑏𝑢𝑙𝑘𝑑𝑧 +  𝜇𝑝∫ 𝑝(𝑧) − 𝑝𝑏𝑢𝑙𝑘𝑑𝑧]   (1.23) 

where µn and µp denotes the electron and hole mobility. Therefore, even though the 

surface conductivity is the only parameter which is altered in the semiconductor by the 

gas adsorption, the experimental measurements of the resistance of the sensor contains 

both the surface and bulk conductivities, the former depending on the thickness of the 

depletion layer. From this result, it is evident that the surface-to-volume ratio of the 

adsorbent becomes an important parameter.  

The geometry of the sensing part, thus, acquires special relevance, since, 

theoretically, for thickness below the depth of the space charge region full depletion of 

the material is reached, which is expected to enhance the change in conductivity and, 

consequently, the response of the sensor. Additionally, the crystalline quality of the 

material must be taken into account. 

 In a polycrystalline material not only the surface is exposed to the adsorbate, but 

also the grain boundaries, which are also depleted of carriers at their surfaces due to the 

grain-grain barriers. In the case of a polycrystalline material, its surface increases 

compared to a monocrystalline material, and the multiple space charge regions between 

the individual grains strongly contribute to the change in the total resistance of the 

material by amplifying the effect of the presence of chemisorbed gas molecules, 

because  the Schottky barriers that are formed between the grain, according to the 

previous reasoning (see Figure 1.6).  

The gas diffusion through the grain boundaries, however, requires longer times than 

the diffusion at the surface of the semiconductor and, thus, would give rise to a longer 

response time. Schottky contacts may be found, also, at the junction of semiconducting 

materials and metal electrodes, whose associated height barriers may be altered due to 

the adsorption of gases, modifying consequently the resistance measured on the 

operative gas sensor device. 
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Figure 1.6.  Energy band diagrams of three different scenarios where the adsorption of gas leads to band 

bending, affecting the conductivity of the semiconductor material: monocrystalline material, 

polycrystalline material, which is represented by a grain boundary, and a Schottky contact, formed by the 

junction of a metal and a semiconductor. 

 

Note that, for an n-type semiconductor, the upward band bending caused by the 

presence of negative charges (oxidizing species) at the surface reduces the density of 

charge carriers (electrons) and thus, reduces the conduction of the semiconductor. This 

is exemplified by the chemisorption of molecular oxygen (O2) in SnO2: 

 𝑂2(𝑔) + 𝑒− + 𝑆 ⇋  𝑂2(𝑠)
−        (1.24) 

where S is an unoccupied chemisorption site for oxygen, e- a free electron from the 

semiconductor, and O2
- a chemisorbed oxygen. The terms (g) and (s) denote the form in 

which the adsorbate is found, namely as gas in the surrounding atmosphere or 

chemisorbed at the surface. This equation describes the first step of the sensing 

mechanism, which is followed by the band bending in the semiconductor. 

In this latter situation, the removal of negative charges at the surface reduces the 

upward band bending, which leads to an increase in the majority charge carrier density 

and thus, the conduction increases. This process occurs during the adsorption of 

reducing gas species heated at the appropriate operating temperature. As an example, 

CO, reacts with oxygen according to: 

 2𝐶𝑂(𝑔) + 𝑂2(𝑠)
−  →  2𝐶𝑂2(𝑔) + 𝑒− + 𝑆     (1.25) 
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From this explanation one concludes that, for an n-type semiconductor, reducing 

species lead to the increase of the conduction (decrease of the resistance) in the 

semiconductor , as illustrated by the incorporation of a free electron in the solid. 

The opposite behaviour is found when an oxidizing specie is adsorbed on a p-type 

semiconductor surface. The adsorption of negative charges also shifts upwards the 

energy bands at the surface compared to the situation before the adsorption. 

Consequently, a more conductive layer is located at the surface. In a similar approach, 

reducing species induce the diminishment of the conductivity of the semiconductor, due 

to the reaction with pre-adsorbed oxygen.  

1.5. Objectives 

The main objective of this dissertation is to contribute towards the improvement of 

gas sensors based on semiconducting nanowires. The easy integration of nanowires in 

low consumption devices is the fundamental idea that guides this dissertation, and the 

subsequent characterization of the sensors. Furthermore, the low power consumption of 

the device is a constant condition of the presented procedures, implemented by means of 

MEMS substrate that has been used as platform for all the fabricated sensors. 

The main objectives for the innovation and optimization of fabrication methodology 

are summarized in the following strategy: 

1. Easy integration of nanowire-based devices by using localized growth on top of 

sensing platforms.  

The site-specific growth of SnO2 and Ge nanowires is performed on top of 

micromembranes and microhotplates, which are the sensing area of the gas sensors. The 

fabrication procedure allows in single process the growth of NW networks on top of the 

electronic platforms that will be used for the gas sensing, an important step forward 

towards the integration of nanowires on electronic devices. 

The details of the procedure and the structural characterization of the grown 

nanostructures are detailed in the chapter 3 of this dissertation. 
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2. Characterization of the fabricated sensors  

On the other hand, the fabricated devices can be used as gas sensors readily after the 

growth. The gas sensing behaviour of SnO2 networks have been characterized towards 

different gases; specifically, the kinetics of ammonia response in dry and humid air has 

been analysed in detail. In addition, the influence of water vapour is analysed, and thus, 

the chemical paths of the interaction with ammonia have been related to the operating 

temperature. The study related to the gas sensing properties of network of tin dioxide 

nanowires is explained in chapter 4. 

Furthermore, the synthesized meshes of Ge NWs have been for the first time, at the 

best of our knowledge, studied as a gas sensor. The chemical interactions towards 

oxidizing and reducing gases are analysed, paying important attention on the structural 

characterization, which results primordial for the analysis of sensing behaviour. 

Additionally, a sensing mechanism is proposed concerning the different experimental 

results obtained.  The study of Ge NWs as a gas sensor is described in chapter 5. 

3. New fabrication route towards single nanowire based gas sensors.  

A procedure based on electron beam lithography is explored in order to fabricate 

individual nanowire-based devices on top of microhotplates and micromembranes. The 

experimental procedure for that is detailed in the different steps. The study of the 

substrate utilized is highlighted as an important step, which leads to the successful 

fabrication of the devices.  

The individual nanowires have also studied as a gas sensor, whose results are 

discussed and compared to their mesh counterpart. The experimental observations and 

discussion of the single nanowire-based devices are explained in chapter 6 of this thesis. 
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2.  FABRICATION AND 

CHARACTERIZATION 

TECHNIQUES 

 

 

Abstract 

 

This chapter describes the growth techniques used for the synthesis of NWs, which 

are the fundamental part of the gas sensors studied in this thesis. The fabrication 

methods for contacting the nanowires used for the study of the materials and gas sensors 

employed in this thesis will be detailed, with the most important procedures and aspects 

of the technologies. Specifically, Focus Electron- (FEBID) and Focus Ion-Beam 

Induced Deposition (FIBID), as well as Electron Beam Lithography (EBL) techniques 

will be presented and discussed. Furthermore, the electrical characterization, gas mixing 

and testing systems will be described. 
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2.1. Introduction 

The research on nanostructures, as nanotubes, nanowires, nanorods or nanopillars, 

among others, has been intensively developed during the last years to study their 

enhanced physical and chemical properties, focusing on the achievement of reliable 

devices that could exploit these properties. This field, nanotechnology, has gained a 

huge interest in last three decades since the discovery of the buckminsterfullerene in 

1985 [1] and the carbon nanotubes (CNT) in 1991[2].  

Since then, huge efforts have been made in the search for new materials which, at 

the same time, has been supported by the development of new tools and equipment that 

allow to study the physical and chemical properties of the materials at nanometre scale. 

The invention of the Scanning Tunnelling Microscope by Binnig and Rohrer in 1981, 

the Atomic Force Microscopy in 1986, enhanced the field by providing new tools for 

the study and fabrication at a scale that was not possible before. Scanning and 

Transmission Electron Microscopies, which were developed decades before, were the 

initial pillars for advancing in the study of these new materials.   

Within the nanotechnology, huge amount of works are centred on the fabrication of 

reliable devices based on nanosized structures, where nanofabrication develops a 

fundamental role. Nanofabrication is defined as the field that involves the processes and 

methods of constructing engineered nanostructures and devices having minimum 

dimensions lower than 100 nm [3]. The development of a variety of nanofabrication 

techniques facilitated the increase of knowledge and understanding of the characteristics 

of nanostructures, and also the integration into multitude of different functional devices.  

Nevertheless, nanofabrication approaches are still challenging and complex, due to the 

difficulties to integrate nanostructures in the macro and micro technologies. Usually, 

these processes are highly time consuming and require multiple steps, which difficult 

their implementation into a commercial product due to the impact in the final costs. 

Furthermore, reproducibility and repeatability of the finished devices is an important 

issue that must be overcome in the nanofabrication field.  

Electron Beam Lithography and Focused Ion Beam are two of the most important 

tools for nanofabrication and nanolithography due to their functionality and precision. 

In the present work they have been employed for the fabrication of gas nanosensors 

based on single nanowire devices, which is a consolidated research line at the 
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Departament d’Electrònica. Both techniques will be described in this chapter. The 

equipment used to characterize the fabricated devices electrically and also for the gas 

sensing measurements will be detailed in this chapter too, as well as the advanced 

substrates employed for the contacting procedure of the nanowires. 

2.2. Synthesis of nanowires 

One dimensional semiconducting nanostructures have been investigated since the 

late 1990 for different applications, due to their novel electronic, thermal and 

mechanical properties, among others. Nanotubes, nanorods or nanowires fall within this 

classification. The first semiconducting nanowires (Ge and Si) with a diameter below 

100 nm were synthesized few years after the discovery of the carbon nanotubes, namely 

in 1998 [4]. Since then, huge progress has been made in finding new synthesis methods 

of nanostructures. 

The growth of inorganic and organic one-dimensional structures may be classified 

as metal-nanoparticle mediated or non-seeded methods. Among others, Vapour-Liquid-

Solid (VLS) [5], Solution Liquid Solid (SLS) [6] and Supercritical Fluid-Liquid-Solid 

(SFLS) [7] use a metal catalyst for the growth. These techniques have in common that 

the nanoparticles that are used as seed for the growth are molten. Briefly, these methods 

are based on the eutectic alloy of the chemical precursor with the molten nanoparticle, 

independently of the phase at which the precursor is found, reaching the precursor 

supersaturation in the alloy, situation at which the nanowire growth initiates.  The phase 

at which the precursor is found differentiates the mentioned methods and, consequently, 

the temperature, pressure and other key process parameters during the growth. Each 

method is suitable for some specific materials, and may allow to tune important 

parameters of the nanowire, as the diameter, length or growth direction. 

SLS is based on the rapid injection of the precursor into a hot solvent and requires 

low-melting point metal catalysts, which demand relatively low growth temperature. 

SLS allows growing single crystalline colloidal nanowires. It offers a systematic control 

of the diameter of the NW, but does not allow to control the crystal structure and growth 

orientation. Using a pressurized supercritical fluid, instead of a solution, allows to 

increase the growth temperature, which is the basis of the so-called SFLS. The process 

is carried out at high pressures in the range of 200-300 bar, using solvents as hexane or 
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CO2. SLS and SFLS allow the growth of small diameter NWs, below 10 nm. VLS is 

probably, the main growth method used for synthesizing semiconductor nanowires 

using metal catalyst due to the ability to produce a wide variety of materials. This 

process, which is the approach used in this thesis, will be detailed in the next 

subsection. 

Template-Directed methods generate the nanowires by filling a template structure or 

covering its sidewalls with a film, e.g. using atomic layer deposition (ALD) or inducing 

the growth of the material by means of electrodeposition, followed by a subsequent 

removal of the template.  

One of the most common templates is anodized aluminium oxide (AAO) that 

contains cylindrical nanochannels created by anodisation of aluminium. AAO template 

allows to grow nanowires of a huge variety of materials. This procedure that was first 

reported in 1996 [8] and is versatile in terms of materials available for the synthesis, 

either organic or inorganic. Its main drawback, however, is that the predominant 

synthesized structures are either amorphous or polycrystalline. 

Many other synthesis methods are found for the elaboration of one dimensional 

nanostructure, like electrospinning, which allows to fabricate polymer and metal oxide 

nanofibers [9], or chemical etching, a top-down process where pre-defined shapes are 

produced with the use of masks [10]. A full description of these methods can be found 

in [11]. 

 

 

Figure 2.1 a) VLS mechanism of growth of Ge NW using diphenyl germane (C2H14Ge) as a gas 

precursor. The precursor is decomposed on the gold nanoparticle and a eutectic alloy is formed. Once the 

superstation of the alloy is reached, Ge precipitates and the NW growth is initiated; b) TEM image of Ge 

NW with the Au nanoparticle on the tip; c) Kinetic steps in VLS mechanism: (1) mass transport in the gas 

phase, (2) chemical reaction on the vapour-liquid interface, (3) diffusion in the liquid phase, (4) 

incorporation of atoms in a crystal lattice. Adapted from [13]. 
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2.2.1. Vapour-Liquid-Solid Mechanism 

The VLS growth process employs a gas precursor and molten metal nanoparticles to 

define and initiate the nucleation and to promote the activation or the decomposition of 

the molecular reactants. The metal nanoparticles are heated above the eutectic 

temperature of the alloy formed by the decomposed precursor and the metal. The 

precursor in the gas phase is continuously added to the eutectic alloy until 

supersaturation of the adsorbate is reached, which will result in its precipitation, 

creating a liquid/solid interface between the eutectic alloy and the precipitated material.  

A representation of the VLS process is found in Figure 2.1 a), where the example of 

Ge NW growth using diphenyl germane as a precursor is represented. The metal catalyst 

remains at the tip of the nanowire, and the precipitation of the material takes place at the 

liquid/solid interface. The eutectic temperature, the minimum temperature at which the 

alloy is found in liquid phase for both components, is lower than the melting 

temperature of Au or Ge [12]. It should be noted that the eutectic temperature of an 

eutectic alloy at the nanoscale differs of those of a bulk system, and is dependent on the 

size of the alloy, as reported for Ge-Au system [12]. 

 The VLS mechanism comprises 4 different steps: (1) mass transport in the gas 

phase, (2) chemical reaction at the vapour-liquid interface, (3) diffusion in the liquid 

phase and (4) precipitation and incorporation of atoms in a crystal lattice, which are 

represented in Figure 2.1 b). These steps define the kinetics of the overall process, 

which depends strongly on each specific nanowire and nanoparticle material. 

VLS is carried out in combination with different precursor producing techniques, 

each of them giving rise to diverse crystalline yields, such as chemical vapour 

deposition (CVD), laser ablation (LA) or molecular beam epitaxy (MBE).  

CVD is the most used approach, where the precursor material is introduced in gas 

phase or evaporates from a solid powder or liquid solution, decomposing at a controlled 

temperature and pressure. This technique provides the highest variability of deposition 

parameters, since pressures from 10-3 Torr to atmospheric pressure may be kept during 

the deposition process, and also wide ranges of gas partial pressures or temperatures. 

LA uses a solid material which is sublimated as a result of a local heating provided by a 

pulsed laser radiation. This approach was used in the first demonstration of the growth 

of NWs in 1998  [4]. MBE, on the other hand, evaporates the phase-forming elements 



New fabrication methodologies for the development of low power gas sensors based on semiconducting nanowires 

38   

 

under high-vacuum conditions, and condensates them on a heated substrate surface. The 

transport of the precursor takes place without any carrier gas in MBE, which gives rise 

to structures with a higher crystalline quality, but on the expenses of a much lower 

deposition rate. Monocrystalline nanostructures may be obtained by any of the three 

mentioned methods. 

2.2.2.1 The role of metal nanoparticles 

The size of the liquid metal nanoparticles determines, in most cases, the diameter of 

the nanowires, as it was demonstrated in [14], where the diameter of Si NWs grown by 

CVD were controlled by the diameter of the nanoparticles used for the nucleation. In 

fact, the NW diameter is generally slightly larger than the nanoparticle size, observed at 

the tip of the NW, as a result of the supersaturation of Si in Au that leads to an 

expansion of the eutectic alloy. Of course, this depends on each particular material 

system. The presence of the nanoparticle at the tip, is also a proof of the involvement of 

VLS process in the growth. 

Generally, noble and transition metals are used as a catalyst of the VLS mechanism. 

Several requirements must meet the metal nanoparticles in order to promote the VLS 

mechanism [13]: 

i)  The metal must form a liquid alloy with the compound that has to precipitate 

in the solid phase. 

ii) The solubility limit of the catalyst must be much higher in liquid than in the 

solid phase. Thus, the solid catalyst should remain at the tip of the NW, 

which has an additional benefit as it reduces the catalyst contamination in 

the final grown material. 

iii) The vapour pressure of the catalyst should be small in order to avoid the 

evaporation of the catalyst.  

Instead of using metal nanoparticles, the growth may be self-catalytically promoted, 

by using seeds from the material that is proposed to be grown. The benefit would be that 

self-catalysed growth avoids the incorporation of the metal catalyst into the NW, which 

may alter some of its physical properties. As an example, ZnO NWs are self-

catalytically grown depositing a ZnO seed layer, and heating the substrate above the 

melting point of Zn [15]. In the referenced work, the zinc oxide layer was deposited by 
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decomposition of a zinc acetate precursor, and the NW growth was performed at 500°C 

while flowing the zinc acetate precursor. The presence of reducing organic solvents 

during the NW growth reduces ZnO to Zn, which is molten and alloyed with solid ZnO. 

Zn acetate vapour decomposes at the solid/liquid interface, and the NW growth is then 

started. The oxygen supply is provided by the oxidized ZnO film below the droplets, 

which was confirmed by the absence of NW growth when ZnO buffer layer was 

avoided [15]. In order to obtain a self-catalytically promoted VLS method, a binary, 

ternary or more complex compound must be employed.  

The enhanced growth of the NWs due to the lowering of the activation energy by 

the metal nanoparticle is observed in the majority of the cases. However, for the NWs 

grown by MBE, the nanoparticles play a different role because the reaction is not 

catalysed since the vapour-phase precursor is evaporated/sublimated from a pure target, 

and no gas decomposition takes place [16]. However, as in the other VLS methods, the 

metal nanoparticle in MBE promotes the absorption of the vapour phase molecules, 

because the chemical potential is lowered for a molecule dissolving into a liquid phase 

material.  

 In the VLS method, the process is thermodynamically driven, and thus, the growth 

mode (the growth direction) is the one that minimizes the free energy, which is a 

situation observed typically analysing the grown structures.  The bulk energy of the 

nanowire, the energy of the liquid/solid (metal/nanowire) interface, and the vapour/solid 

(gas precursor/nanowire) energy form part of the free energy of the growth.  

As an example, in [17] Ge NWs have been observed to vertically grow 

predominately along the <111> direction on clean monocrystalline Si,  on different 

substrate orientations, namely (111), (110), and (100) substrates, which did not have 

any silicon dioxide on the top [17]. The epitaxial growth of Ge was obtained 

independently of the crystal orientation of the silicon substrate, showing a tilted growth 

of the Ge NWs when Si (100) and (110) substrates were used. Additionally, a certain 

orientation of the nanowires may be deterministically achieved by selecting a substrate 

with a lattice structure matching and similar symmetry to that of the nanowire 

crystalline material [18]. For nanowires, the lattice mismatch at which the epitaxial 

growth occurs, compared to thin films, may be unusually high, due to the higher ability 

to relax the induced strain during the growth [19]. 
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The epitaxial growth is hindered by the presence of an interface oxide layer, 

avoiding the promotion of a deterministic direction growth. The growth is therefore 

anisotropic, i.e., nanowires may grow along all directions, but a preferential direction of 

the nanowires is found in front of others.  

2.2.2.2 Details of VLS methods used in this thesis 

The NWs grown in this thesis have been synthesized by means of a CVD process. 

CVD techniques involve the thermolysis, hydrolysis, oxidation or reduction of the solid 

material or gas precursor during the process. The precursor is dissociated by thermolysis 

when it reaches the nanoparticle surface as, for instance, in the case of SnO2 NWs 

growth, 𝑆𝑛(𝑂𝑡𝐵𝑢)4 [20].   

Several particular methods have been used to achieve the growth of NWs in this 

thesis. They all share that they follow the VLS process using a CVD methodology. The 

differences among them are linked to particular ways of obtaining the gas precursor or 

to achieve the required temperature for the thermolysis of the precursor and the growth 

of the nanowires. 

The SnO2 NWs contacted by EBL are grown by a CVD process in a cold-wall 

quartz reactor in which a high-frequency field is used to inductively heat the substrates 

(Si or Al2O3) by placing them on a graphite susceptor. The temperature is kept at around 

700°C, and the process is catalysed by a Au layer of 3-5 nm thickness that forms 

nanoclusters when temperature is raised. The precursor used is 𝑆𝑛(𝑂𝑡𝐵𝑢)4, which is 

decomposed on the Au nanoclusters. 

The SnO2 and Ge NWs locally grown on micromembranes or microhotplates are 

synthesized by a procedure detailed in chapter 3. A specific chapter is dedicated to the 

growth process due to the innovative and novel features of the procedure, which offers 

several advantages from the standard CVD growth of NWs. 

2.3. FIBID and FEBIP inside a FIB-SEM Dual Beam  

Focused Ion Beam (FIB) is a technique that uses a focalised beam of highly 

energetic ions to scan a surface, using electrostatic and magnetic lenses for focusing and 

deflecting purposes that was developed in the 70s for localised material removal by 

sputtering. The technique was further developed for its use as a mask-less 
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nanolithography system that allows to define nanopatterned features, but due to the 

associated low throughput and relatively high damage and modification of the ion 

bombarded materials, the methodology has almost disappeared.  

FIB systems, nowadays, are made in combination with a Scanning Electron 

Microscope (SEM), giving rise to the so-called Dual-Beam, Cross-Beam or FIB-SEM 

systems, which allow to combine the benefits of both techniques. From the resolution 

point of view, it competes, to some extent, with electron beam lithography (EBL). An 

advantage of FIB in combination of vapour precursors introduced into the working 

chamber is that it allows gas decomposition that can be used for local maskless 

deposition (FIBID) [21] or enhanced chemical etching [22], which converts the FIB into 

a nanofabrication laboratory.  

The work developed by the MIND Group of the Departament d’Electrònica, started 

13 years ago, was pioneer in the field of the use of Dual Beam systems for fabrication 

of reliable nanosized contacts to individual nanomaterials (nanowires, nanotubes and 

nanoparticles) to form nanodevices and that allowed their electrical characterization, by 

using a combination of both electron and ion beams. The dual-beam system allows to 

acquire electron images instead of the damaging ion-based images, and also to perform 

focused electron-beam induced depositions of different materials by dissociating 

metalorganic gas compounds, which allows to overcome the problems related to FIB 

technology, i.e., implantation, milling and damage. 

 

Figure 2.2 a) Scheme of SEM-FIB machine, showing the disposition of the electron and ion guns (whose 

beams intersect at an angle of 52º), the respective detectors and the gas injection system (GIS). b) 

Decomposition mechanism of the precursor at the sample surface induced by the electron beam, where 

deposition of fragments of the decomposed precursor can be seen. The mechanism also works for the ion 

beam. Images obtained from [23]. 
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A FIB-SEM system is basically, a SEM in which an ion column, consisting of an 

ion gun and ion optics, is introduced and where both beams can be focused on the same 

point. The samples are placed in the SEM chamber. The equipment allows to perform 

with nanometre sized precision and in situ: i) ablation of material (milling) via 

sputtering of the ion beam; ii) deposition of the material through the decomposition of a 

gas precursor by means of ion or electron beam, which is named Focused Ion Beam 

Induced Deposition (FIBID) or Focused Electron Beam Induced Deposition (FEBID), 

respectively. 

A Focused Ion Beam (FIB) – Scanning Electron Microscope (SEM) Dual Beam 

system (FIB), FEI Dual Beam Strata 235 or FEI Helios Nanolab, has been used for the 

fabrication of platinum contacts at a nanometre scale.  The electron column allows the 

acceleration of the electrons from 0.5 to 30 kV, which is equipped with a Field 

Emission Gun (Schottky emitter). The ion column (Ga+) accelerates the ions at 5, 10 

and 30 kV and, with the use of different apertures, allows an ion current range from 1 

pA to 20 nA. The microscope is equipped with an EvertHart-Thornley secondary 

electrons detector (SED) for electron imaging. The beams of both columns intersect at 

an angle of 52º (see Figure 2.2 a) for details). A sample holder with 6 degrees of 

freedom allows to move the sample in the three directions x, y, z, rotate it in the plane 

of the sample holder (along z axis), and tilt it through a parallel axis of the holder (x, y 

axes). The sample is located and may be oriented in different planes at the so-called 

eucentric height, the height at which the ion and electron beam are designed to intersect.  

 The instrument is equipped with a gas injection system (GIS) with 4 gas injectors, 

each consisting in a cylindrical tube nozzle that is used for gas-assisted deposition or 

etching with FEB or FIB. GIS supplies a high and localized molecular flux into the 

chamber, near the electron- or ion-beam impact area, while the overall chamber pressure 

is kept low enough for electron and ion beam operation. The metalorganic precursor 

trimetyl-methylcyclopentadienylplatinum [(𝐶𝐻3)3(𝐶𝐻3𝐶5𝐻4)𝑃𝑡],  the standard 

precursor for platinum deposits in the FEI machines, has been used for contacting 

individual NWs. Platinum structures can be deposited by mean of FEBID and FIBID 

processes. Scanning the sample by either electron or ion beam while keeping the 

metalorganic flow leads to the dissociation of the precursor molecules once it is 

previously adsorbed at the sample’s surface. A scheme of the process is represented in 
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Figure 2.2 b), where it is observed that the heavier part of the molecule remains attached 

to the surface, and the lighter part is taken away by the vacuum pumping system. 

The probability that an electron induces the decomposition of the precursor 

molecule depends on the electron energy, and is expressed as a cross-section (cm2). The 

electrons that are able to produce the scission are those with an energy of a few eV [24]. 

Thus, the main contribution to the dissociation of the gas precursor molecules is due to 

the secondary electrons (SE), which are produced through the ionization of the 

specimen by the primary electrons and whose energy is smaller than 50 eV [25,26]. 

However, backscattered electrons (BSE), and forward scattered electrons (FSE) also 

play a role. The maximum depth of the secondary electrons that can reach the surface is 

1 nm for metals and 10 nm for dielectric materials [26].  

The backscattered electrons (BSE) are produced by the elastic interaction of primary 

electrons with the nuclei of atoms from the substrate. The BSE have energies above 50 

eV [26]; despite to be considered as an elastic scattered products, they lose some energy 

as a result of some inelastic scattering with the substrate. They reach a scattering angle 

up to 180°, and the fraction of the BSE depends strongly on the atomic number (Z) of 

the interacting nuclei. Therefore, the higher the Z, the higher the probability to produce 

BSE, which is the fundamental mechanism of the BSE detectors, which allow high 

resolution compositional maps. The electrons used in BSE detector have approximately 

the 80% of the energy of the primary beam [25].  

 

Figure 2.3 Diagram of the scattering of primary electrons impinging on a substrate. a) Primary electrons 

are back scattered and go out of the surface at a certain distance from the primary beam. During the loss 

energy of the electrons, secondary electrons are produced in the substrate and a part exits the surface; b) 

once a 3-D structure has been deposited, the forward scattered electrons reach the surface and also 

generate secondary electrons as depicted in the picture. This image illustrates the process of a continuous 

vertical structure fabrication. Images taken from [27].  
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Forward scattered electrons are those electrons that experience small angle 

scattering events, which broaden the primary electron beam. This effect is caused by 

electron-electron interactions, and their contribution is minimum in the initial stages of 

the decomposition of the gas precursor, because they do not reach the surface, i.e., do 

not interact directly with the gas molecules.  

Notwithstanding the electron beam has a diameter typically of 1-3 nm, the lateral 

dimension of the smallest platinum deposits is about 15-20 nm, since the scattered 

secondary electrons exit from a wider area than where the electron beam is focused in.  

The confinement of the electrons to the area defined by the primary electrons (PE) is 

compromised by elastic and inelastic scattering processes with the specimen. 

The scattering events involved during the FEBIP deposition are represented in 

Figure 2.3 a). A part of the primary electrons is backscattered and exits the surface at a 

distance from the PE that depends on the scattering angle and the electron energy. The 

PE and backscattered electrons may lose energy during the interactions with the 

substrate due to inelastic, ionizing processes that generate the SE. The secondary 

electrons generated at a depth close to the surface are able to induce the fragmentation 

of the adsorbed precursor molecules.  

On the other hand, once the three dimensional deposit is started the forward 

scattered electrons play a role in the process. FSE reach the surfaces of the substrate and 

generate SE on the sides of the initial structure, which finally results in a broadening of 

the structure. The farthest SE generated from the position of the PE lead to the Pt halo, 

which is a very thin non-desired deposit of Pt around the fabricated structure.  

Other authors were able to reduce the lateral dimensions until few nanometres by 

using high acceleration voltages (100 or 200 kV), that mainly produces secondary 

electrons of low energy (2-10 eV). The broadening caused by the SE is reduced due to 

the reduced mean free path associated, between 1-5 nm [28,29]. 

Concerning the Focused Ion Beam Induced Deposition, the process is based on the 

electronic and nuclear collision of the incoming ions with the substrate. Gallium ions 

lose a significant fraction of the energy in nuclear collisions, which results in a reduced 

depth that the ions penetrate into the substrate. Secondary electrons are produced during 

the collisions of the primary ions, which gives rise to the scission of precursor 

molecules. They also may dislocate atoms from the substrate that in a cascade effect 
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may collide with closer atoms, which results in sputtering of excited surface atoms 

around the primary ion beam [30]. This effect may be prevented by lowering the ion 

current and adjusting some parameters of the deposition, as it will be explained later. 

The deposition rate is favoured for FIBID in front of FEBID, as a result of the 

higher ability to produce secondary electrons in the subsurface region. Furthermore, the 

deposition rate has a low dependence on the incident energy of the ions; oppositely, this 

is increased by a factor of eight for platinum deposited by FEBID, when the electron 

beam energy is lowered from 30 to 5 keV, due to the larger number of generated 

secondary electrons within the escape depth [31]. This is explained by several reasons; 

first, gallium ions are implanted at about 30 nm below the sample surface, even at the 

higher energy, allowing the secondary electrons to reach the surface more easily than 

those produced by FEB, which are stopped at a depth of several micrometres from the 

surface [23,24]. It is important to note that secondary electrons generated at depths of 

10-30 nm or above cannot reach the surface with enough energy to overcome the 

surface barrier, which depends slightly on the material [23]. Thus, the higher the beam 

energy of the electrons, the higher the fraction of secondary electrons that cannot reach 

the surface, and, therefore, the FEBID yield decreases.  

Moreover, other input parameters for the depositions are the dwell time and 

overlapping of the focused electron (or ion) beam. Dwell time is the time that the 

electron (or ion) beam stays at a certain position. Overlap is defined as the area 

overlapped when the beam moves from one position to the next and, in the FEI 

machines, is calculated in terms of percentage of area. A high overlap leads to a smaller 

pitch, i.e., a smaller distance between one position and the subsequent at which the 

beam is focused at a time equal to the dwell time. The pitch is a function of the beam 

magnification at which the deposit is done and the spot size, which is, at the same time, 

depending on the beam current. Some studies related to the effect of dwell time or 

overlapping on the deposition yield in FEBID differ in the obtained results, 

consequently, deeper studies must be performed for a better understanding [26] but are 

not addressed in this thesis. 

For the deposition using FIBID, low ion current, very short dwell times and negative 

overlapping need to be used in order to minimize the milling of the material that occurs 

during ion bombardment and to enhance the platinum deposition. It is important to 
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notice that FIBID involves the ion implantation on the sample’s surface, which may 

dope the material and change the conduction properties.  

The electron or ion beam assisted platinum resulting deposition is basically platinum 

nanoparticles embedded in a carbon matrix [31], with sizes between 3 and 8 nm, being 

the Pt nanoparticles larger for the FIBID case. Furthermore, Gallium is also implanted 

in the deposited matrix but only when performing FIBID. In both cases, the deposited 

platinum has a high carbon content, although platinum content is higher in FIBID 

process, since the gas dissociation process is more effective with ions. Initially, on the 

first layers, FIBID of Pt have high carbon content that is reduced as the thickness 

increases [32]. The high carbon content of the deposits leads to resistivity values several 

orders of magnitude above those of bulk Pt. Resistivity of electron and ion beam 

assisted platinum deposits are in the range of 106 µΩ·cm and 103 µΩ·cm respectively, 

much higher than bulk Pt, which is around 11 µΩ·cm [24]. 

2.3.1. Electrical contact fabrication for the NWs 

The grown nanowires are placed on top of microhotplates and electrically contacted. 

Microhotplates are suspended microplatforms with a buried microheater and 

interdigitated electrodes on the top. The details of the microhotplates are described in 

section 2.5. Since the ion beam assisted deposition may damage or dope with gallium 

ions the NW, electron beam is always used to assist the deposition of platinum 

nanocontacts on the region closer to the NW. The extension towards the outer contacts 

are carried out by FIBID because of the higher conductivity of the resulting structures 

and the higher deposition rate.  

An important issue in all this process is that the contribution of Pt contacts to the 

total resistance of the fabricated nanostructure is not negligible, since both electron and 

ion beam induced contributions are quite resistive, the former being the most important. 

Additionally, the contact resistance between the NW and the nanocontact, due to the 

differences in electron affinity and work function of the materials, plays a major role. In 

order to minimise the resistance contribution of the contacts, fabrication and electrical 

measurement in 4 contacts configuration is required.  

The whole process is performed as follows. Firstly, the nanowires are removed from 

the substrate were they were grown, typically alumina or silicon, by sonicating the 
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substrate while it is immersed in a solvent. The most common used solvents are ethanol, 

isopropanol or toluene. Afterwards, a droplet of the solvent with the removed NWs, of 

about 20 µl, is put on the microhotplate using an automated micropipette. As a 

consequence, the NWs are randomly oriented on the surface of the microhotplate, and 

prepared then for the contacting step. An appropriate amount of solvent for a given 

density of nanowire on the substrate must be used, in order to reach a compromise 

between a reasonable quantity of nanowires at the surface and avoiding a heap of NWs. 

The electrical contacts are fabricated ad hoc for each nanowire. Once the sample is 

introduced in the FIB-SEM chamber, the microhotplates are imaged by SEM to find a 

suitable nanowire for contacting. The process starts with the fabrication of FEBID 

contacts close to the NW, with dimensions (length x width x thick) typically of 10 x 0.3 

x 0.3 µm3 and extending them to the microfabricated electrodes of the sample by using 

FIBID.  

Sample stage must always be perpendicular to the beam that induces the platinum 

deposition, therefore, the stage is kept at 0º for FEBID and tilted to 52º for FIBID, 

holding it at the eucentric height. The deposition parameters used during the Pt 

deposition are summarized in Table 2.1.  

 

Table 2.1. Deposition parameters of electron and ion beam induced Pt structures 

Parameter FEBID FIBID 

Acceleration Voltage (kV) 5 30 

Sample Current (pA) 100 50 

Spot size 3 5 

Dwell Time (us) 0.2 0.2 

Overlap (%) 90 -200 

Width (nm) 250 500 

Height (nm) 300 500 
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Following the described procedure, a single NW is contacted in a total time of 1-2 

hours in two probes configuration, and between 2-4 h in four probes configuration. 

2.4. Electron Beam Lithography 

Electron Beam Lithography (EBL) is one of the most important techniques in 

nanofabrication, together with FIB-SEM. The EBL technique is based on the exposure 

of a thin polymer resist by a focused electron beam to modify the solubility of the 

polymer in a subsequent development [33]. EBL allows to define patterned structures 

with a size below 20 nm, a dimension that strongly depends on the machine [34].  

The technique derives from the early Scanning Electron microscopes, and can work 

with a wide variety of materials. The first EBL systems were developed in the 60’s 

decade [35], and the discovery of poylmethyl methacrylate (PMMA) as an excellent 

electron resist followed shortly after [36]. PMMA resist is still the most popular 

positive-tone resist used, but strong advances have been done in the last decades with 

the advent of a new series of specific resist for EBL, both positive- and negative tone. 

The main application of EBL nowadays is the supporting of the integrated circuit 

industry. EBL is used to produce the masks for the fabrication of integrated circuits by 

optical steppers or x-ray lithography.  

 

Figure 2.4 a) Scheme of the electron column of EBL system, where the electromagnetic lenses are 

represented by a X inside of a square; b) EBL system Raith150-Two, the equipment used in this thesis. 
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Advanced EBL systems are also dedicated for patterning, and employ high 

brightness systems for higher throughput. The most common EBL systems are equipped 

with an electron source that accelerates the electron with a tension of 10-30 kV, but 

equipments with energies up to 100kV are among the most advanced actual systems. 

The EBL system is composed by several parts. The SEM column, which contains 

the electron source, the objective lenses and the beam deflection unit, is represented in 

Figure 2.4 a). The electron gun is generally a field emission source (Schottky or thermal 

field type) because it combines a good and stable emission intensity and a reduced 

energetic dispersion of the electrons, which gives low chromatic aberrations. Magnetic 

lenses are generally used as an objective lens for focusing the electrons because of their 

lower aberrations, while electrostatic lenses form the condenser part. The beam 

deflection unit deviates the beam to position it at different points of the surface of the 

sample. Other elements found in the electron columns are the apertures, stigmators and 

beam blanker [35]. The apertures limit the beam current, which has a strong influence in 

the final resolution. The beam blanker, which is also an aperture, is one of the most 

important requirement to avoid the electron exposure during the movement of the beam 

in not-to-be-exposed regions and works by switching off the beam as a result of 

changing the angle of incidence of the electron beam and leading it to impact outside 

the aperture [33]. 

Laser interferometric stages are mainly used in the more advanced systems due to 

the ability to measure low resolution displacements in a stable way and to allow the 

projection of a certain pattern in a neighbouring area of an exposed one with an almost 

perfect matching, which is the so-called stitching. Briefly, a laser line is split by Zeeman 

effect, where the split-frequency laser is reflected on a mirror at the stage, and the beat 

frequency from both lines is measured [35]. The beat frequency is the frequency of the 

resulting wave and changes according to the Doppler effect. Integrating the beat count, 

the position of the stage is obtained.  

The equipment used in the experimental procedure is a Raith 150-TWO, equipped 

with an electron source that accelerates the electron beam from 10 to 30 kV (see Figure 

2.4 b)). Three different apertures may be chosen: 10, 20 and 30 µm, where the higher 

the aperture, the higher the current that reaches the sample. The system contains a 
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Secondary Electron Detector (SED) and in-lens detector. The working distance is 10 

mm and the vacuum level inside the chamber is similar to FIB systems, i.e., 10-6 mbar.  

2.4.1. Resist exposure: interactions and limitations 

The scission of the positive-tone resists takes place through physico-chemical 

changes induced by the collisions of the electrons [33]. The smaller fragments 

remaining on the exposed area are removed when immersed in the specific solvent for 

the resist, leaving the previously electron exposed patterns as opened windows in the 

resist layer. Negative-tone resists, on the other hand, are low solubility resists that are 

converted to high solubility by the cross-linking of their parts, whose exposure and 

development procedures are more complicated and may be affected severally by the 

external conditions. Negative resists have not been used in this work. 

Concerning the resist-electron interaction, secondary electrons are considered to 

cause the bulk of the scission of the polymer layer [35]. As explained before, secondary 

electrons are produced by ionization, resulting from inelastic collisions of the primary 

beam electrons or other higher energy electrons, and generated in cascade while the 

electrons interact with the resist.  

Primary electrons may suffer low angle scattering due to the interaction with the 

resist, producing as a result the broadening of the primary beam. The broadening 

increases with depth, an effect which is known as forward scattering effect. 

Furthermore, this effect is accentuated at low incident energies, as it is shown in Figure 

2.5 [33]. The effective increase in the beam diameter df is empirically described by the 

relationship df = 0.9 (Rt / Vb)
1.5 where Rt is the resist thickness and Vb the beam voltage 

[35].  As shown, the effect is minimized using high acceleration voltages and thin resist 

films [37].  

The beam voltage affects, additionally, the applicable electron dose necessary for 

the resist scission. The electron dose must be kept within a certain range in order to 

break the resist into short fragments that must be soluble to the developer, and achieve 

the subsequent removal of the resist on the exposed patterns. The required dose is 

influenced by the probability of inelastic collision of the electrons with the resist, from 

which the secondary electrons are generated. The probability is defined by a cross-

section, which is a function of the energy of the incoming electrons, decreasing roughly 
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in proportion to an increase in electron energy and thus, giving rise to a reduction of the 

generated secondary electrons. This results in less chain scission per electron for 

positive resists, which decreases the throughput [33]. Consequently, the applicable 

electron dose gets wider, as the maximum and minimum doses increases with the 

acceleration voltage. Since the throughput is reduced, this effect is considered as 

unwanted as it requires larger times for the exposure, even though the dose constraint is 

relaxed. 

The major part of the electrons passes through the resist, but some of them suffer 

large angle collisions with the specimen, the so-called back-scattered electrons. BSE 

may emerge at the incident surface of the resist but at some distance from the incidence 

point, even some micrometers away. Consequently, BSE give rise to an increased 

exposure of the resist as a result of the secondary electrons generated in cascade during 

the followed path, causing a pattern distortion [33].  

Thus, the dose that a pattern feature receives is affected by the scattered electrons 

from other features nearby. This effect is the so-called proximity effect, representing a 

non-confinement of the delivered electron dose to the shapes defined by the tool.  

In general, to avoid the proximity effect when uniform density and linewidth 

patterns are exposed, the well-adjusting of dose is enough. Another approach for more 

complicated patterns is based on working with low acceleration voltages, at which the 

electron mean free path is short. However, just very thin resists may be exposed, 

limiting considerably the final process. 

The resolution of EBL is determined, besides the dispersion of the secondary 

electrons in the resist layer, by the molecular structure of the resist and the dynamics of 

the development process. As an example, other approaches that lead to resolution below 

20 nm, which is not possible using PMMA resist, is based on hydrogen silsequioxane 

(HSQ) resist, a negative-tone resist that requires significant higher doses than PMMA 

[34].  

This fact reflects that the resist becomes an important issue for fabricating smaller 

structures, whose sensitivity, contrast and molecular size influences on the final 

resolution. The contrast is related to the verticality of the wall defined on the edge of the 

exposed resist. 
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Figure 2.5 Broadening of the electron beam due to the forward scattering in the resist at a) 3 kV and b) 

10kV. The dark part simulates the path followed by the electrons, and the results are obtained by the 

exposure for two parallel beams [33]. 

Another important parameter to control in EBL, already presented, is the electron 

dose, which is a function on the specific resist employed. In positive-tone resists, the 

dose affects the distribution of the fragment sizes in a way that the higher the dose at a 

certain voltage, the higher the scission of the resist into shorter polymers. 

 However, a limit of about 10 times the maximum recommended dose must be 

respected in order to avoid the posterior cross-linking of the fragments that turns the 

resist insoluble to the developer. Furthermore, a high dose increases, in general, the 

final dimensions of the pattern, due to the enhanced generation of forward and back 

scattered electrons. 

The electron dose leads to the breaking of the polymer backbone bonds, leaving 

fragments of lower molecular weight. Once the resist is exposed by the electron beam, 

the sample is immersed in a liquid developer to dissolve the broken fragments (positive 

tone resist) or the non-crosslinked molecules (negative tone resist). The developer 

penetrates the polymer matrix during the development, detaching the fragments from 

the matrix, which diffuse into the solvent. The longer fragments have lower mobility, 

and require longer time to be dissolved [33].  

The duration of this process is strongly dependent on the employed resist and might 

be critical: an overdevelopment may lead to a distorted profile of the resist, because of 

the degradation of the resist-substrate bonds, causing, for instance, the collapse of the 

pattern for vertical structures [33]. Typically, the development process is stopped by 

introducing the sample into an inert solvent, like isopropanol, so that the developer is 

diluted very fast, stopping its action.  
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Figure 2.6 Schematic representation of the different steps performed for the fabrication of metal structures 

by means of EBL. The development of the resist, metal deposition and removal of the resist (lift-off) are 

represented. 

The development may be performed by immersing the substrate in the developer 

while gently agitating it, or using a spray to spread the developer continuously on the 

substrate while it is spinning on a spin chuck. A drying in nitrogen procedure follows 

the previous step. A post-bake of the samples may be performed after the development 

to remove some developer residues.  

The procedure followed in this thesis and its different steps for the fabrication of 

metal nanostructures are represented in Figure 2.6. In this procedure, the resist is used 

as a sacrificial layer. As shown in the figure, the electron exposure and the development 

opens the desired windows in the resist. The metal layer is deposited afterwards over the 

whole sample, but remains in contact to the substrate only at the exposed areas. 

Afterwards, the non-exposed resist is removed by an aggressive solvent during the so-

called lift-off process, taking away the metal that was on top with it, and leaving only 

the metal in direct contact with the substrate. A critical issue during lift-off is the profile 

of the resist after the electron exposure and development.  

The undercut resist profile shown in Figure 2.6 is the desired profile for the lift-off 

procedure, because after the metal deposition the sidewalls of the resist are not covered 

by the metal, allowing the resist remover to reach the resist layer, and thus, facilitating 

the lift-off process. 

The resist profile may be achieved due to the forward scattering effect at low 

voltages, for instance, that broadens the beam with the depth, or with a combination of 

two layers of PMMA resist with different molecular weight.  
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2.4.2. Contacting procedure for NWs 

EBL system has been used to fabricate the electrical contacts to the NWs in order to 

employ a different technique that could replace the FIB with higher throughput, being 

less-time consuming and providing more reproducible results. 

The method for depositing the NWs on top of the suspended micromembranes is the 

same as detailed in the previous section for combined FEBID and FIBID procedure. 

The process to fabricate the contacts once the nanowires are on the top of 

microembranes, is divided in several steps. 

The chips are introduced in the EBL chamber without the resist. First of all, the 

acceleration tension and aperture must be chosen, together with the writing field size 

and the magnifications used during the design and fabrication of the contacts.   

The microhotplates used are especially designed for the EBL procedure thanks to 

the incorporation of 4 alignment marks on the membrane which are used to align the 

electron beam one the sample when, next, the resist is deposited on top, and thus, 

avoiding the undesired exposure of the resist in the areas of interest. The patterns that 

will be transferred to the resist are defined on top of the SEM picture of the NW, 

drawing directly the shape of the electrical contacts on top of the NWs. Each pattern 

covers a specific position over the NW, located close to the edges, and extends to the 

microelectrode of the microhotplate.  

The procedure has been developed using PMMA solved in anisole, provided by 

MicroChem. PMMA is a resist composed by a long chain polymer, with a molecular 

weight between 490 kDa and 950 kDa.  

After the design drawing, the chips are spin-coated with PMMA (usually at 1500-

5000 rpm range) and prebaked at 180ºC for 1 minute. The sample is introduced back in 

the EBL chamber. First, the stage is driven to the Faraday cage, where the beam is 

positioned in order to measure the electron current. Then, the dose exposure and step 

size is indicated, and the dwell time is calculated as a function of them following Dwell 

Time=Dose·(Step size)2/Beam current. The contacts here fabricated are not critical in 

size, i.e., are far above the resolution limit of PMMA resist using the Raith 150-TWO. 

However, due to the roughness of the membranes that is defined by the buried heater, 
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the uniformity of the resist thickness is an important issue for a complete resist 

exposure. 

At that point, the beam is blanked and the stage is moved to the coordinates of the 

first pattern. Thus, the manual marks are automatically exposed and recognized, 

correcting any misalignment due to the mechanical hysteresis of the stage, if necessary. 

All the defined patterns for contacting the NWs are exposed according to the required 

dose. This procedure is repeated for as much NWs have been selected in the chip and 

for the different chips. 

The samples are then removed from the EBL chamber and developed by immersing 

them in a solution of methyl-isopropyl-ketone (MIBK) and Isopropyl alcohol (IPA) 

(1:3) for 30 s and, next, in IPA for additional 30 s, which stops the development 

process. The samples are immediately nitrogen dried, as a last step of the EBL process.  

The fabrication of the contacts to the NWs follows with the deposition of metal 

layer on top of the resist. The metal layers used in this work are Ti/Pt, fabricated by 

evaporation or magnetron sputtering, and deposited on the whole sample. Afterwards, 

the lift-off process is performed by immersing the samples in acetone at room 

temperature to dissolve the remaining polymer layer. Once the resist and metal layer on 

top of it are removed, the samples are immersed again in isopropanol to clean the device 

of the remaining acetone. Thus, the metal film remains in the areas where it was 

deposited directly on top of the substrate, i.e., the area irradiated with electrons. 

2.5. Micromembranes and microhotplates 

Micromembranes and microhotplates are the substrates where the nanowires have 

been contacted individually by either FEBID/FIBIP or EBL procedures, or where they 

have been locally grown. The fabrication steps of these substrates are detailed in this 

section. 

Micromembranes and microhotplates are micro-sized thin structures that contain 

both a buried heater and electrodes on the top that have been fabricated on silicon 

wafers. The use of this kind of structures is interesting due to the small dimensions that 

allow to provide locally temperatures of several hundreds of °C on the membrane with a 
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low power consumption, in the range of mW. Furthermore, the reduced mass of the 

membranes provides a fast thermal response during both heating and cooling ramps. 

The main difference between them is that microhotplates are free-standing structures 

and micromembranes are closed microstructures, i.e., the whole perimeter of the 

membrane is attached to the thicker substrate. The substrates used in this thesis have 

been fabricated in collaboration of the IMB-CNM (CSIC), using their Clean Room 

micro and nanofabrication facility.  

The most employed materials for the fabrication of microhotplates or 

micromembranes are Si3N4 and SiO2, because they have a low thermal conductivity and 

they minimize the mechanical stress caused by the temperature provided by the heater. 

Combining the opposite effect of compressive stress of SiO2 and tensile stress of Si3N4 

[38], the films give a robust and durable structure. Both materials have been used for the 

fabrication of both micromembranes and microhotplates. 

Micromembranes are bulk micromachined substrates fabricated on double side 

polished p-type Si substrates, 300 μm thick. The whole thickness of the 

micromembranes is about 1.1 µm. A layer of 0.3 μm of LPCVD Si3N4, deposited on top 

of the silicon wafer, will be used as a dielectric membrane. The spiral-shaped micro-

heater is made from doped polysilicon embedded in the silicon nitride layer. A layer of 

deposited SiO2, 0.8 μm thick, acts as electrical isolation to the top. On top of it, Ti/Pt 

electrodes (25/150 nm nominally thick) are deposited, which provide electrical contact 

to the structures to be measured.  

Two different sizes of micromembranes have been used in this thesis: 

i) The larger one provides an active area of 400×400 μm2 at the center of a 

membrane of 1 × 1 mm2, and the distance between the Ti/Pt electrodes is either 50 or 

100 µm. The latter is represented in Figure 2.7 a). These micromembranes have been 

used as a substrate for the local growth of SnO2 nanowires, because they achieve higher 

temperatures than the free-standing membranes, without suffering an irreversible 

damage.  

ii) The smaller micromembrane has an active area of 100x100 µm2, and the 

distance between the electrodes is 10 µm, as shown in the Figure 2.7 b). In this 

substrate, individual SnO2 nanowires have been contacted by means of EBL. 



Chapter 2: Fabrication and characterization techniques 

   57 

 

Concerning microhotplates, the free-standing structures, two different designs of 

microhotplates have been employed in this thesis, both fabricated by surface 

micromachining.  

i) The microhotplate on top of which Ge NWs have been locally grown is shown 

in Figure 2.7 c). The membrane consists of a Si3N4 layer (700 nm thick), in which the 

platinum heating element is embedded. SiO2 layers are found on top (400 nm) and 

below (50 nm) the Si3N4 layer. The total thickness of the membrane is, therefore, 1150 

nm. Ti/Pt top electrodes are fabricated using photolithography and subsequent lift-off 

process on the upper SiO2 layer, with a thickness of 5/80nm respectively. 

 

 

 

Figure 2.7 a) Closed micromembranes used as a substrate for local growth of SnO2 NWs. 

The space between the electrodes is 100 µm; b) Closed micromembranes for contacting 

individual SnO2 NWs by means of EBL procedure; c) Free-standing microhotplates 

employed for local growth of Ge NWs; d) Free-standing microhotplates employed for 

contacting individual NWs by EBL procedure. 
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Figure 2.8 SEM picture of a microhotplate with a) NW contacted by EBL; b) NW contacted by FIB-

SEM; c) General view of the suspended microhotplate where the external pads for wire-bonding are 

visible. 

ii) EBL processes have been employed for contacting individual nanowires on a 

different design of microhotplates, shown in Figure 2.7 d). This substrate, like the 

previous one, contains a Pt heater embedded on PECVD Si3N4 layer, whose thickness is 

300 nm. On top of it has been deposited SiO2 800 nm thick with isolation purpose. 

Afterwards, Ti/Pt electrodes with a thickness of 25/250 nm are deposited. The heating 

area (100x100 µm2) is located only in the microhotplate, reaching temperatures up to 

350ºC with a consumption of 5 mW. 

2.6. Electrical and gas measurements 

2.6.1. Electrical measurement setup 

The electrical measurement setup is prepared for measuring single and network of 

NWs devices. The gas sensors with individual nanowires require high accuracy for 

obtaining the electrical characterization, due to the exceptional reduced dimensions, 

which require very low current to acquire the electrical response during the gas sensing 

without damaging the NW, typically in the nA range. Networks of NWs have lower 

requirements in terms of electrical measurements, due to the allowed multiple paths 

formed by the different nanowires, supporting higher currents. 
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Low measuring currents for individual nanowires must be kept in order to avoid also 

the self-heating of the nanowire, an effect produced due to the reduced mass and the 

relatively high resistivity of the metal oxide nanowires [40,41]. Self-heating is based on 

the Joule effect provided by the electrical current employed during the electrical 

measurement. In order to avoid it, the measurement current must be kept at low values, 

below about 10-50 nA, but varying from one NW to another due to their different 

diameters.  

Therefore, currents from 100 pA up to 50 nA have been used, depending on the 

resistance of the measured NWs. Furthermore, a good stability of the electrical output is 

mandatory in order to avoid any harmful fluctuation. For this reason, Source 

Measurement Units (SMU) from Keithley have been chosen, which accomplish with the 

specific requirements. Keithley 2602-A instrument equipped with two SMU, and 

Keithley 4200 SCS, equipped with three SMU and a ground unit, have been used with 

this purpose. The equipments provide DC voltage source and measurement values in the 

range between 1 μV and 40.4 V and DC current from 1 pA to 3.03 A. The required 

stability and source/measurements ranges for the electrical measurements are delivered 

satisfactorily by the SMU from Keithley.  

2.6.2.1 Macroscopic access to individual NWs 

The electrical path for the electrical measurements of single nanowires is formed by 

several parts. At the smaller level, the contacts are extended from the pre-patterned 

electrodes to the NW, fabricated by either EBL or FIB. Two SEM images of a NW with 

the fabricated contacts are shown in Figure 2.8 a) using EBL and b) FEBID and FIBID. 

The electrodes are accessible from external pads that allow to electrically contact and 

measure the NW (see Figure 2.8 c)), to which the external equipment is connected.  

The electrical measurements are obtained by two different methods: 

i) The chips are introduced in a 4-probe station, Karl Suss PM 5 Probe Station with 

four PH100 Micropositioner Probeheads. The probes connected to the micropositioners 

allow to contact the electrical pads, and, at the same time, the micropositioners are 

connected to the Keithley 4200 SCS system.  
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This approach is useful to measure the first fabricated prototypes in order to study 

exclusively their electrical behavior, and to check the reliability of the fabrication 

technique. 

ii) In order to intensively study the fabricated devices, the pre-patterned pads are 

ball-bonded to a TO-8 package with 12 pins, which gives a more robust and gas 

compatible setup. This procedure is useful for resistance-temperature measurements, for 

instance, and fits perfectly into the gas testing chamber that is specifically designed with 

a socket configuration for two TO-8 package, as shown in Figure 2.9. This is the 

method followed for the electrical measurements during dynamic gas experiments. Two 

electrical parameters are used during a gas measurement: the heater voltage/current in 

order to provide the desired temperature for the sensor, and the sensor voltage/current. 

For this reason, two different SMU units have to be used. 

2.6.2. Gas measurement setup 

The fabricated sensors must be characterized in controlled atmosphere, gas flow and 

temperature conditions. In these terms, an accurate, reliable and safe control of the gas 

flow is required in order to study the sensor’s response. The gas chamber must allow the 

mixing of different gases: the gas used as a background (synthetic air, nitrogen) and the 

gas or gases whose concentration are changed, the target gases, and must be hermetic, in 

order to avoid the leakage to the surrounding environment.  

 

Figure 2.9 Scheme of the two parts of the gas chamber. The stainless steel gas chamber includes a Teflon 

O-ring seal for a hermetic closure (not shown), and a PCB soldered to the 24 sockets where the two TO-8 

packages are inserted. 
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Figure 2.10 Diagram of the setup of the gas station, composed of the gas mixer, bubbler, gas chamber and 

Keithley SMU unit. A gas line is derived from the gas mixer to add humidity to the final mix by 

bypassing the background gas through a bubbler. The computer communicates in both directions with the 

gas mixer and the Keithley instrument to send the orders and to acquire the lecture provided by both 

instruments. 

The stainless steel chamber used for the gas measurements is represented in Figure 

2.9, which accomplishes with the mentioned requirements. On the right side of the 

figure, the lower part of the chamber is represented, on which the TO8 holders 

containing the chips are mounted. Two TO-8 can be mounted at its inside and accessed 

at the same time for measurement purposes. 

The lower part of the chamber part includes two teflon cylinders with gas-tight 

feedthrough contacts on which the sockets can be plugged. On the upper part of the 

chamber (left side) two holes are visible, whose purpose is to allow introducing UV 

light for light-activated gas measurements, not used in this work. A quartz window is 

located in the inner part, to seal properly the chamber allowing at the same time the 

transmission of UV light. 

The design of the gas chamber minimizes its internal volume, which is as small as 

8.6 ml, and thus, it reduces the time required to renew the gas in the chamber and 

tubing. A small volume chamber is convenient because the response time of the sensor 
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is convoluted by the time the chamber needs to be filled up and, thus, it might difficult 

the extraction of low response times of the sensor [42].  

Another important requirement for the gas setup is the control of the temperature 

and the electrical measurement of the chemiresistive sensors. The electrical 

measurements are obtained through a printed circuit board (PCB) that is connected 

below the chamber and soldered to the sockets at which the TO-8 packages are 

connected to.  

The experimental setup used for the gas measurements is represented in Figure 2.10.  

A Gometrics MGP2 gas mixer with 5 Brooks Mass-Flow Controllers (MFC) has been 

used to control the gas flow for the sensing measurements. The gas mixer has a specific 

gas outlet to generate the required relative humidity, which is a different outlet from the 

other mixing gases. The lecture of the delivered flow is acquired and the setpoint flow is 

indicated remotely. From this, the different gas concentrations are obtained, and related 

then to the resistance change of the sensor. 

The main part of the gas sensor tests performed in this thesis, have been performed 

by introducing different pulses of gas that are not ordered by concentration, since an 

ordered sequence of pulses may hinder a poisoning of the sensor or an abnormal 

behaviour. 

The humidity is added to the chamber by bypassing air through a bubbler that 

contains deionized water at a well-controlled temperature and delivering back to the gas 

mixture a controlled proportion of flow saturated with water. The humidity is previously 

calibrated by mixing different proportion of humidity-added air to the gas flow (keeping 

a constant total flow), and monitored using a commercial humidity sensor [43]. 

Finally, a customized Labview software controls the flows provided by the gas 

mixer together with the electrical measurements, allowing to program a time sequence 

for the gas measurements in which the change of the electrical parameters can be 

performed simultaneously.  
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3. LOCALIZED GROWTH 

OF SNO2 AND GE NWS 

 

 

 

 

 

 

 

Abstract 

In this chapter, an innovative methodology for the simultaneous localized growth 

and device integration of inorganic nanostructures on heated micromembranes and 

microhotplates is demonstrated both for single crystalline tin oxide and germanium 

nanowires. With this simple CMOS compatible technique, it has been possible to 

address satisfactory the issues of assembly, transfer and contact formation on the final 

substrate. The nanowires have been studied by TEM and Raman, showing the same 

features than those grown using standard CVD methodology. 
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3.1. Introduction 

In the previous chapter, the benefits of 1D nanostructures have been justified for gas 

sensing applications and some of the growth methods have been briefly reviewed. 

Vapour Liquid Solid approach, and specifically CVD have been remarked as a versatile 

technique, due to the variety of the external parameters at which the growth may be 

performed and the diversity of materials that are synthesized.  

Furthermore, one of the issues which has not been addressed is the integration of 

such highly promising nanostructures to form operative semiconductor devices, which 

is a challenging issue due to the highly time consuming and non systematic processes. 

For instance, the preparation of nanostructure-based devices usually includes a post-

growth deposition/transfer of the materials from the growth substrates to the appropriate 

surface for device fabrication. The transfer is typically followed by a contact fabrication 

procedure, which usually involves several steps and adds complexity to the overall 

fabrication process.  

When using gas sensors, the crystalline structure of the NWs is an important feature 

for studying the interaction of a well-defined surface with the surrounding molecules 

and the repeatability of the surface reactions. In this sense, single-crystalline materials 

allow better control and reproducibility for studying the interactions, which is more 

difficult when using polycrystalline materials. Single-crystalline nanowires may be 

grown by different methods, as explained in the previous section. The most common 

techniques are CVD and, to a lesser extent, MBE processes, which are highly time 

consuming because of the need of ultra-high vacuum in the case of MBE, and the long 

time required to heat up the furnace tube, due to the large volume of the growth 

chamber for CVD. Another important aspect of these techniques is that they have a 

power consumption in the order of kW in order to reach the growth temperature [1]. The 

benefits of the CVD approach are that the high vacuum is not required, which reduces 

the time for pumping, and that it does not require of complex geometries and materials 

sources. For that reasons, CVD has been the selected method of growth used in this 

chapter. 

Both techniques, CVD and MBE allow the growth at a high scale, for substrates up 

to 12 inch. Nevertheless, when using nanostructures for sensor applications, which are 

generally in the micron-scale, a more efficient growth may be achieved by limiting the 
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growth to the dimensions of the sensing area. The reduction of the heated area for the 

growth improves significantly three important aspects of the process: the power 

consumption, the involved time and the consumption of precursor. This is one of the 

main ideas that motivated the here presented localized growth of nanowires.  

Several strategies pointing in the same direction are found in literature, using 

different approaches and techniques to achieve the site-specific growth, as plasmon-

induced local heating [2], resistive-type heating of microhotplates [3,4] or micro-

cantilevers [5,6]. The aforementioned procedures overcome the limitations to grow 

inorganic coatings compatible with CMOS techniques, but the formed device 

configuration is less desirable in terms of thick interface layers, and interference 

between growth and characterization circuits. The templated growth of tin dioxide 

nanowires using pre-grown carbon nanotubes on micro-hotplates is presented in [7], 

however polycrystalline structures are obtained. An integration of SnO2 nanowire 

bundles in gas sensors was also demonstrated by Vomiero et al., which includes post-

growth removal of a SiO2 template and contact deposition [8], thus, being a much more 

complicated process than the here presented. Another approach deals with the growth of 

ZnO nanowires from solution on top of micro-membranes [9], but in contrast to our 

strategy the heating element was only used for functional operation of the device but not 

for the growth of NWs, as the growth process is carried out at low temperatures, about 

90ºC, in a liquid solution where the convection losses are considerably high. 

Furthermore, the control of length and the density of the nanowires is not 

successfully obtained in any of the mentioned works. Such issues have significant 

influence on the performance of the devices for applications such as gas sensors, 

although the direct growth on an electronic platform reduces the complexity of the 

process. 

Here we present a novel method based on the site-selective direct growth of 

inorganic nanowires, illustrated by germanium and tin oxide, on top of CMOS 

compatible micro-heaters, that resolves the mentioned issues. This innovative approach 

has not been attempted before, to the best of our knowledge, and is a first step towards 

fabricating integrated single crystal nanowire-based devices without the need of 

nanowire transfer or heating of an entire substrate to facilitate 1D nanostructure growth.   
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Figure 3.1.Schematic drawing of the micromembrane with integrated buried heater and external circuit 

containing interdigitated electrodes (IDE). This separate circuit is used to electrically characterize the 

nanostructure bundle deposited in the illustrated heated area 

3.2. Experimental details 

Micromembranes and microhotplates with integrated heaters and surface 

interdigitated electrodes (IDE), operating at low power (<100 mW) were fabricated in 

combination with IMB-CNM-CSIC, to allow the in-situ growth of NWs. All devices, as 

explained in chapter 2, had a thin isolating layer about one micrometre thickness 

(silicon oxide and/or silicon nitride) that contains the buried heating elements and 

exposed interdigitated Pt electrodes (IDE) on top, which can be used to fabricate 

electrical contacts that allow to access the inorganic structures. The electrodes from 

microhotplates allow in situ the formation of contacts to the growing nanowire bundles 

without electrical interference with the heater circuit and, thus, allowing heating and 

measuring operations to be performed independently (see Figure 3.1). The details of the 

innovative in-situ growth of nanowires will be described in the following sections. 

3.2.1.Calibration of temperature versus heater power in vacuum 

conditions 

The temperature required for the growth of the nanowires is locally provided by the 

micro-heaters from the micromembranes or the suspended microhotplates. The 

temperature is dependent on the electrical power dissipated by the heater. On large 
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heaters, the temperature may be obtained by using a thermocouple or other temperature 

sensors; nevertheless, when using micro-sized heaters, the temperature measurement 

becomes more difficult, due to the difficulties in introducing a temperature sensor into 

the chamber on top of the microstructure because of size and fragility of the micro-

devices.  

Furthermore, the temperature calibration of the microhotplates is typically carried 

out at atmospheric pressure and differs from vacuum conditions due to the reduced heat 

exchange by convection with the surrounding atmosphere and, thus, cannot be directly 

used for the here-proposed growth method.  

A first estimation of the temperature rise provided by the electrical power delivered 

to the heater when operating at low vacuum conditions, simulating the real growth 

conditions, was carried out employing a commercial microhotplate with an integrated 

temperature sensor.  

 

Figure 3.2. (Top) Temperature as a function of the power supplied to the heater of CCMOS microhotplate 

at atmospheric pressure and in low vacuum conditions (0.41 mbar). (Bottom) Difference between the 

temperature in atmospheric conditions referenced to vacuum conditions as a function of the electric 

power consumption of the heater. 
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 CSS4_16A chips from Cambridge CMOS Sensors (CCMOS) [10] were used for 

this purpose, because a buried diode temperature sensor is incorporated in the 

microhotplate. A constant pressure of 0.4 mbar was kept by connecting a mechanical 

vacuum pump to the same gas chamber employed for the gas measurements.  

The temperature provided by the heater as a function of the power supplied is 

represented in Figure 3.2 a). As expected, for the same supplied electrical power, higher 

temperatures are achieved in vacuum conditions, with a maximum absolute difference 

of 190°C compared to atmospheric conditions, as shown in Figure 3.2 b). One has to 

bear in mind that the maximum temperature measured by the diode is 600ºC, therefore 

above this value the temperature of the device can only be estimated.  

The mentioned experiments allow to estimate the change in electrical power needed 

to heat the membranes up to the right temperature for the growth of the NWs in vacuum 

conditions. The pressure during this calibration is one order of magnitude higher than 

the one used for the growth procedure. For a first estimate, a similar curve as before was 

supposed as initial calibration, assuming that the difference in pressure from 10-1 to 10-2 

mbar weakly affects the heat dissipated by convection. For practical purposes and, 

especially, for the higher temperature regimes, above 600 ºC, for which no 

microhotplates with temperature sensor were available, the temperature was estimated 

from the resistance value of the Pt or polysilicon heater.   

 

Figure 3.3. Optical image of the micromembranes on the TO-8 holder within the quartz chamber during 

the growth of the SnO2 NWs. The red radiation emitted of the micromembrane is observed, due to the 

high operating temperature (750 °C). 
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It has to be mentioned that at temperatures above 600-700 °C the heaters start to 

dissipate an important amount of heat by radiation, which is visible through the red 

colour that the microstructure acquires in this regime, during the growth of SnO2 NWs 

(see Figure 3.3). The increase in emission of thermal radiation at these temperatures 

takes place independently of the surrounding gas pressure, as known from the Stefan-

Boltzmann equation. 

3.2.2.Growth process 

The fabrication process is based on the VLS method, using a CVD-like technique on 

a localized area on micromembranes and microhotplates. On this initial approach, a thin 

non-continuous Au film (nominal thickness 1-1.5 nm) is sputter-deposited over the 

entire chip and, consequently, does not give rise to electrical conduction through it. The 

Au layer, when heated to the appropriate temperature, will act as a catalyst and 

nucleation site of the stimulated growth. The chip is mounted on a TO-8 holder, at 

which the pads are bond to, and introduced into a glass reactor. In the glass chamber 

electrical feedthroughs have been fabricated, which allow the pins of the TO-8 holder to 

be electrically accessed. 

 

Figure 3.4. Experimental setup used for the localized growth of the nanowires on top of micromembranes 

and microhotplates. 
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 A picture of the experimental setup for the localized growth is observed in Figure 

3.4 a), where the glass reactor and electrical source can be observed. Figure 3.4 b) 

shows the TO-8 holder with the electrical connections once it is prepared for the 

growth. 

The glass chamber, a cold-wall low pressure glass CVD reactor, with a volume of 

25 ml  is connected to a vacuum pump and once the right vacuum level is reached, the 

substrate is heated up to the appropriate temperature for the growth of nanowires by 

adequately biasing the micro-heater, giving rise to the formation of the liquid Au 

nanoclusters. Next the valve that separates the growing chamber and the glass flask that 

contains the liquid or solid precursor which already started to evaporate, is opened and 

the vapour flows on top of the micro-device, what initiates and catalyses the 

decomposition of gas precursor on the Au droplets, since the process is more favourable 

energetically in presence of the metal liquid phase. The complete diagram of the setup, 

where all the parts are illustrated is found in Figure 3.4 c). As it may be observed, the 

TO-8 is faced towards the inlet of the gas precursor. 

 

 

Figure 3.5. Representation of the electrical measurements performed during the localized growth of SnO2 

NWs. The heater current (black line) is increased quickly and then decreased. The resistance of the NWs 

is measured once the growth temperature is achieved (blue line).  
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The molecular sources for the Ge or SnO2 nanowire growth are liquid 

Diphenylgermane (H2Ge(C6H5)) (50 mg) or solid Sn(OtBu)4 (50 mg) respectively, 

which were kept at room temperature (25 °C) during the process. Nanowire growth was 

achieved by employing a vacuum of around 4·10-2 mbar that allows the sublimation or 

evaporation of the molecular source for SnO2 and Ge NWs, respectively.  

The respective micro-devices were heated to the appropriate temperature (400-420 

°C for Ge; 700-750 °C for SnO2).  As mentioned before, thermal decomposition of the 

vaporized precursor species allows the growth of nanowires only at the heated 

micromembranes or microhotplates. The growth duration was in the range for 2-10 

minutes depending on the desired length of the nanowires.   

An additional advantage of the here-presented set-up is the possibility to use the top 

electrodes to follow the growth process by monitoring the electrical resistance between 

them. The electrical measurements obtained during a standard experiment for the 

localized growth of SnO2 NWs are represented in Figure 3.5. A constant current 

operation mode was employed to carry out the heating experiments, while the voltage 

drop was measured continuously. The process starts with a heating up ramp that lasts 5 

min, which is used to reach the right growth temperature. Next, the power is kept 

constant for 10 minutes to allow the gas precursor to enter the chamber and the growth 

to take place, and finally the cooling down process takes 13 minutes. The black line in 

the figure represents the applied current of the heater, which is rapidly increased until 

the growth temperature is reached. The cooling down ramp is considerably longer in 

order to avoid the damaging of the heater, as the first experiments showed that many 

heaters were broken due to the thermal stresses induced by fast temperature changes.  

The blue line, on the other hand, represents the resistance measured during the NWs 

growth, starting to be measured when the growth temperature is reached. Once the 

growth is finished, the temperature is reduced, and the resistance of the NWs follow the 

typical semiconducting temperature behavior, i.e., the resistance increases when 

temperature is reduced, which is more visible at the last part.  

An advantage of this approach is the ability to check if the growth process is 

adequately performed and to stop the growth at a well-defined resistance value. During 

the growth experiments, the heaters were controlled by a Keithley 2602 Source-

Measuring Unit connected to a computer operating with Labview software. The 
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electrical power was in the range of 3 mW for the 100x100 μm2 microhotplates heated 

to 400 °C, for Ge NWs growth and of 48 mW for 700 °C in the case of 

micromembranes (SnO2 NWs). By coincidence, this latter power is exactly the same 

used to bring the gas sensor device to a suitable operating temperature of 260 ºC when 

performing the gas sensing experiments. As commented before, this strong difference in 

temperature is related to the important heat dissipation in atmospheric pressure due to 

convection effects. 

3.2.3. Experimental instrumentation 

The morphology of 1D nanostructures on top of the micromembranes and 

microhotplates was analyzed using a FEI Inspect F50 scanning electron microscope 

(SEM). The nanowires were deposited on lacey carbon and carbon film copper grids for 

TEM characterization (Alfa Aesar). In this study, we used a FEI TECNAI F20 equipped 

with an EDX detector. Raman measurements were performed on a Jobin Yvon LabRam 

HR800 using laser excitation wavelength of 325 nm. An objective lens of 40X at room 

temperature was used for obtaining the Raman scattering signal, in order to maximize 

the signal from the NWs when grown on top of micromembranes. Lorentzian functions 

were used to fit the experimental Raman spectra.   

3.3. Results and discussion 

3.3.1. Growth of SnO2 nanowires 

SnO2 are grown on closed micromembranes, which have been described in section 

2.5. Higher temperatures can be obtained using this type of substrates than using 

microhotplates, due to their higher robustness, which is a consequence of their design 

and fabrication process.  

A low magnification SEM image of a micromembrane with SnO2 NWs site-

selectively grown, is presented in Figure 3.6 a). The image shows that the surface area is 

completely covered by tin oxide nanowires, being the nanowire density homogeneous in 

the centre of the locally heated deposition area. The lighter area in this figure denotes 
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the area where the growth of the nanostructures has taken place, which follows the 

temperature profile provided by the heater. 

 

 

Figure 3.6 SEM image of a) micromembrane and the shape of the heater. The lighter part corresponds to 

the regions where the NWs are grown; b) Image with high density SnO2 NWs onto the membrane; c) 

Detail of the NWs contacting the electrode; d) Cross-section of SnO2 NWs-based sensor. A very thin 

layer is observed below the NWs of a thickness between 30-80 nm. 
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Figure 3.7 HRTEM image of a monocrystalline SnO2 NW that crystallizes in rutile phase. Inlet FFT 

illustrates the [101] predominant growth direction 

Higher magnification SEM pictures of NWs are shown in Figure 3.6 b) and c), 

where the high density of grown NWs is shown. The latter figure shows the nanowires 

nearby the Pt electrode, on top of which no NWs are found. A possible explanation 

could be that a Pt/Au alloy has formed during the heating step that did not acted as a 

catalyst for nanowires growth, probably because the alloy reduces the catalytic 

efficiency. The image also demonstrates the contact of the NW with the electrodes, 

justifying that the network of nanowires can be electrically measured. 

Locally grown SnO2 nanowires are monocrystalline, with tetragonal (rutile) phase, 

with predominant [101] growth direction of the tetragonal (rutile) phase, as shown by 

High Resolution Transmission Electron Microscopy (HRTEM) and the respective fast 

Fourier transformation (FFT) pattern (see Figure 3.7 and inset imatge). The average 

SnO2 nanowires are of the same quality as described elsewhere for large area growth 

[11]. 

A cross-section SEM image of SnO2 NWs on top of a micromembrane, with slightly 

shorter nanowires, is shown in Figure 3.6 c). On the bottom of the image, the 300 nm 

thick Si3N4 layer and the upper SiO2 (800 nm) film are observed. The heater from the 
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microhotplates is not observed in the image. A high density of NWs is found with a 

length between 2 and 5 µm, and the contact between the network of NWs can also be 

observed.  

Besides, a very thin layer is observed between the nanowires and the SiO2 layer. 

This corresponds to the two-dimensional growth of SnO2, which occurs simultaneously 

during the synthesis of the nanowires, but with a much lower growth rate, and leads to a 

thin layer of nanocrystalline SnO2 because it is a non-catalysed process. The thickness 

of this layer is between 30 and 80 nm; the layer roughness observed is due to the base of 

nanowires that remained after the sample preparation. Our estimations from similar 

samples grown in a conventional furnace indicate that the conductivity in this layer is 

orders of magnitude lower than that provided by the NW network. 

Thus, monocrystalline tin dioxide nanowires have been locally grown on top of 

micromembranes, forming a network that ensures the electrical contact between them 

and to the Pt electrodes from the micromembrane, being able to be studied as a gas 

sensor. This part will be presented in chapter 4. 

3.3.2.Growth of Ge nanowires 

A microhotplate after the Ge NW growth process is shown in Figure 3.8 a). In the 

central part of the microhotplate uniform monocrystalline Ge nanowire growth has been 

achieved, which extends also to parts of the suspending arms because of the still high 

enough temperature to allow the precursor thermolysis (see arrows in the figure). 

Moving away from the microhotplate with the embedded heater, the arms are cooling 

down and at a certain distance from the microhotplate the temperature is not enough to 

allow the thermolysis of the precursor and, thus, the nanowire growth does not take 

place. The uniformly grown nanowires are localized preferentially on top of the silicon 

dioxide layer, between the contacts, since, as explained before, the formation of a Pt-Au 

eutectic alloy might prevent the presence of Au seeds required for the growth. This 

depends on the thickness ratio of the Au-to-Pt layers, as for thicker Au layers, NW 

growth on top of the electrodes has been achieved. 

The grown NWs are not aligned and, thus, are interconnected as a mesh, as can be 

observed in the higher magnification SEM image from Figure 3.8 b). The electrode is 

observed in Figure 3.8 c), from it it can be seen that the nanowires are connected to.   
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Figure 3.8  a) SEM image of one of the microhotplates after the growth process, which occurred at the 

center and also on part of the arms closer to the microhotplate (see arrows), while further away, the 

temperature was not high enough to allow thermolysis; b) High magnification image with high density of 

Ge NWs; c) SEM image shows the homogeneous growth of Ge NWs on micro-membranes at 400 °C 

illustrating that on top of the electrodes the NW growth is hampered. 

 

Figure 3.9 HRTEM image of [111]-oriented Ge nanowire grow on a micromembrane illustrating the 

excellent crystal quality of the germanium nanowire, which is also reflected in the sharp FFT. 
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The grwon nanowires showed low tendency of tapering, in contrast to Ge nanowires 

grown using microcantilevers as local heating source [12]. As a function of the growth 

time, nanowires with lengths in excess of 10 µm are achieved through this method. 

(HRTEM) analysis confirms monocrystalline germanium nanowires, which grow 

predominately along the <111> direction of the cubic crystalline structure, surrounded 

by a very thin amorphous GeOx layer of around 1 nm (Figure 3.9)). Both results are in 

agreement with values reported in other works found in literature [13,14]. 

As in the case of SnO2, the localized growth of Ge NWs by VLS method has shown 

to provide monocrystalline nanostructures, in form of a network that readily after the 

growth may be used as a gas sensor. 

3.3.3.Raman spectroscopy characterization of SnO2 NWs 

Raman scattering studies have been performed on SnO2 network of nanowires 

grown by two different methods: i) the locally grown NWs on micromembranes, have 

been compared to the Raman spectrum of ii) SnO2 NWs grown on a Si/SiO2 substrate 

grown in a cold-wall quartz reactor in which a high-frequency field where the substrate 

is placed on a graphite susceptor [11]. The latter is the same approach followed for the 

growth of individual NWs contacted by EBL, which is detailed in the section 2.2.2.2. 

The Raman active modes from both samples have been characterized in order to 

compare the crystalline quality and study the similarities between the structures grown 

by the two methods. The NWs from both samples have been grown at similar 

temperature, and the diameter of the NWs is in the same range (around 100 nm). The 

NWs on top of Si substrate, are however, longer than the locally grown. 

The Raman studies have been obtained using an ultraviolet laser, with an excitation 

wavelength of 325 nm. Visible wavelengths (λ=532 nm) leads to a very low Raman 

signal due to the non-efficient scattering for this excitation line due to the very low 

absorption of subbandgap radiation. The measured Raman shift ranges between 350 and 

900 cm-1, where the SnO2 features should be observed. Concerning the locally grown 

NWs, the Raman signal has been obtained with the NWs on top of the micromembrane. 

Different Raman spectra obtained for NWs grown by standard CVD procedure are 

represented in Figure 3.10 a). The most intense peak, observed at 627 cm-1, corresponds 
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to the A1g mode of SnO2 [15]. As can be seen, the Si peak, located at 520 cm-1, is not 

observed, due to the high density of NWs that provides a high interaction volume which 

absorbs almost all the incident radiation and that does not allow to see the contribution 

from the Si substrate. The next Raman peaks, according to their intensity, are found at 

472 and 768 cm-1, which are associated to the Eg and B2g vibration modes, respectively, 

that, together with A1g, are the classic vibration modes of SnO2 [15]. B1g is also 

considered a classical mode, which corresponds to a wavenumber of 100 cm-1, out of 

the measurement range of this study. These peaks correspond to those in other works 

but with a small blue shift of around 5 cm-1 [15-17]. 

The Raman scattering processes occurring in SnO2 nanowires synthesized on top of 

micromembranes are presented in Figure 3.10 b). Similar to the NWs grown on Si 

substrate, the most intense peak is the one found at 627 cm-1, again, associated to the A1g 

mode. In this sample, a strong difference is evident because the second most intense 

peak is found at a Raman shift of 518 cm-1. This peak does not correspond to any 

known transition in SnO2 but, rather, can be assigned to the phosphorous-doped poly-Si 

heater. The Raman scattering peak of single-crystalline Si is known to be at 520 cm-1, 

but that of polycrystalline Si appears at a lower wavenumber [18].  

The third and fourth most intense peaks are found at 472 and 768 cm-1, the Eg and 

B2g vibrational modes, respectively. These are the same peaks observed in the Raman 

spectrum of locally grown SnO2 NWs and with the same order of intensity.  

Both experimentally obtained spectra have been fitted using the addition of 

lorentzian functions. The centre of the different lorentzian functions obtained from both 

samples are summarized in Table 3.1, and related to the vibrational modes of the SnO2 

crystalline lattice, when possible, or tentatively assigned to plausible contributions. 

Several similarities can be found from this analysis: the Eg, A2u TO (transversal optical 

phonon), A1g, A2u LO (longitudinal phonon) and B2g modes from SnO2 are found at very 

similar wavenumber values (3 cm-1 maximum difference is obtained).  

The mentioned peaks for both samples are in good agreement with those of the 

rutile structure of SnO2, confirming that SnO2 NWs possess the same crystalline 

structure observed by TEM.  
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Figure 3.10 a) Raman spectra from SnO2 NWs grown on Si/SiO2 substrate in a CVD quartz furnace. The 

spectra are calculated and experimentally obtained; b) Raman spectra from SnO2 NWs grown on top of 

micromembranes, experimental and also the fittings are plotted; c) Normalized Raman spectra from both 

samples to compare the peak features. Both show very similar characteristics. 

 

Table 3.1. Wavenumber of the different peaks from the decomposed Raman spectra of SnO2 NWs grown 

on Si substrate and locally grown on top of a micromembrane. The peaks are related to the vibrational 

modes. 

Vibrational Mode Raman Shift (cm-1) 

 

Si Substrate Micromembrane 

unknown 407 414 

Eg SnO2 [15,16] 470 472 

A2u IR active TO SnO2 [19]  496 498 

P-doped poly-Si [18]  

 

518 

 

539 

 A1g SnO2 [15,16]  627 627 

A2u IR active LO SnO2 

[15,16]  688 691 

unknown 715 714 

B2g SnO2 [15,16]  769 769 
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Two IR-active Raman peaks related to SnO2 are found in both samples, namely the 

A2u TO and A2u LO modes. Note that the intensity observed on these modes is much 

lower than the observed one corresponding to the classical modes. These are Raman 

forbidden modes that may become weakly active when structural changes induced by 

disorder and size effects take place [19]. 

In an infinite crystal only the phonons that are near the centre of the Brillouin zone 

may contribute to the scattering of the incident photons as a result of the momentum 

conservation rule between phonos and incident light. However, when the dimensions of 

the structure or the crystal are reduced to the nanoscale, the k=0 rule selection for the 

elastic scattering of phonons is relaxed progressively, allowing phonons with k ≠0 to 

contribute to the Raman spectrum [16]. Size effects appear when the grain size or the 

nanostructures have dimensions below about 20 nm [15]. When the crystallite is in the 

nanoscale, the phonon scattering is not limited to the centre of the Brillouin zone, and 

thus, the phonon dispersion near the centre must be considered. Therefore, symmetry-

forbidden modes are observed, in addition of shift and broadening of first-order optical 

phonon. 

TEM measurements, shown in Figure 3.7, prove that the grown material is 

composed of single-crystalline SnO2 nanowires, and SEM images ensure that, the 

nanowires present on top of the membrane have a diameter higher than 80 nm. Thus, 

crystalline grains of several nanometres of diameter from the NW are discarded as the 

origin of the assigned IR-active modes. One plausible explanation would come from 

some thinner nanowires could contribute to the signal. A second plausible explanation 

comes from the buffer layer under the NWs. The growth of this film, even if the growth 

conditions are selected to minimize its appearance, is inherent to the 3D non-catalysed 

growth and cannot be avoided. This film may contain nanocrystalline grains of small 

size that could give rise to the observed IR modes.  

Other features found in both spectra are the band centred at 407-414 cm-1 and 

another peak at 714 cm-1. The first feature appears as a band, more than a peak, due to 

the large full width half maximum (FWHM) of the peak that is not consistent with 

values expected for crystalline materials. The second peak can be fitted by a lorentzian 

shape with a FWHM in better agreement with reported values for crystalline materials. 
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The origin of both features is unclear, as no Raman peaks from SnO2, Si or SiO2 are 

found at these wavenumbers. 

Therefore, very similar features have been found on both spectra from SnO2 NWs 

locally or non-locally grown: the same vibrational modes related to rutile SnO2 are 

found, and with similar intensity profile. Furthermore, the peaks that show the higher 

intensity are exactly the same on both structure, and additionally, the same IR active 

modes are observed on both spectra. Consequently, the Raman study proves that the 

here presented in-situ growth of SnO2 NWs gives rise to very similar structure to the 

grown NWs on a standard CVD process, i.e., the resulting nanostructures obtained by 

the novel site-specific growth are very similar to those grown by the standard CVD 

process. 

3.4. Conclusions 

A CMOS compatible localized CVD growth of inorganic nanowires using 

microsized platforms with integrated heaters and surface electrodes for the electrical 

integration of the nanowire bundles has been demonstrated. This approach represents a 

simple, scalable and cost effective strategy for nanowire integration, which is a fast and 

low power consuming process. The growth conditions were optimized for specific 

inorganic material classes including classical group (IV) semiconductors, such as Ge, 

and functional oxides, illustrated by the controlled formation of SnO2. The structural 

characterization of the in-situ grown NWs has shown very similar features to those 

synthesized by a standard CVD process. 

The novel method for site-specific growth of NWs gives rise to their effective 

confinement in the heated area. The nanowires create a path to cover the gap between 

the IDEs through multiple NW contacts. Since the resulting structure is already a fully 

finalised device, requiring no further fabrication step after the growth, it can be used for 

electrical measurements or, in our case, for gas sensing applications. The in-depth 

analysis of the gas sensing properties of these devices will be explained in Chapter 4 for 

the network of SnO2, giving a detailed analysis of the sensing mechanism towards 

ammonia, and presenting briefly other measurements. Chapter 5 presents the sensing 

properties of Ge NWs towards different gases, as first measurements done with this 

nanostructured material. 
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Furthermore, the here proposed strategy can be applied to other 1D materials as long 

as there is a low temperature precursor available and the decomposition temperature lies 

within the reachable temperatures of the microhotplates and micromembranes. An 

extension of this work could be the selective deposition of the catalytic metal at the 

surface of the chips or wafers to avoid the contamination of the surface of the chips with 

Au. This process could be carried out during the fabrication of the microhotplates, as 

most of the employed catalytic metals are routinely used in microfabrication. 
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4.SITE-SELECTIVELY 

GROWN SNO2 NWS 

NETWORKS FOR 

AMMONIA SENSING IN 

HUMID CONDITIONS 

Abstract 

SnO2 NWs networks site-selectively grown on heated micromembranes have been 

characterized as ammonia sensors. The approach allows achieving reproducible growth 

together with stable and long-lasting ammonia sensing. The concurrent sensing 

mechanisms are analyzed relating the experimental sensing kinetics with the known 

ammonia oxidation processes. In humid conditions, moisture reduces the response to 

ammonia but also lowers the activation energy of the reaction process. Furthermore, the 

devices have been tested both in dry and humid conditions showing response time as 

short as two minutes. Sensors have been tested up to 1 month, only presenting variation 

of the base resistance with full retention of the response towards the gaseous analytes. 

The response towards other gases is also presented. 
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4.1. Introduction  

Ammonia is a toxic gas with irritant properties that can injure the respiratory tract 

[1]. Anthropogenic emissions of ammonia come in a 95% from agriculture, where 

ammonium salts are widely used as fertilizers [2]. On the other hand, swine farms can 

achieve high concentrations of ammonia up to 100 ppm, which are dangerous for 

human health, generated by decomposition of pig manure via metabolic activities of 

bacteria and fungi [3]. Long term exposure to ammonia must be below 25 ppm in order 

to avoid difficulties in breathing [4]. Concentrations of 500 ppm of NH3 leads to 

immediate and severe irritation of the nose and throat, and above 1000 ppm can cause 

pulmonary edema.  

On the other hand, ammonia, together with urea, is used in automotive applications 

for selective catalytic reduction (SCR) of nitrogen oxide (NOx) to nitrogen in order to 

avoid harmful gas emissions in diesel engines, which gives also H2O as a byproduct 

[5,6]. Accurate measurements of the ammonia concentration for SCR are needed in 

order to achieve an efficient process and to recycle the non-reacted ammonia fraction.  

Furthermore, measuring ammonia in breath can provide an easy diagnostic approach 

for patients with ulcers caused by bacterial stomach infections or kidney disorder [7]. 

Consequently, a clear necessity of monitoring the ammonia concentration is required in 

different application fields. 

A considerable amount of works are available in literature regarding the sensing of 

ammonia by employing metal oxide sensors, using a wide variety of materials like SnO2 

[8-12], ZnO [13-15], In2O3 [13,16], WO3 [17,18] or TiO2 [19,20], either based on a thin 

film or nanostructured materials. However, just few works study the reaction paths of 

the interaction of metal oxide/ammonia [21,22]. The reported sensing mechanisms are, 

mainly, analyzed in dry conditions. On the other hand, density functional theory (DFT) 

calculations have been performed to study the ammonia adsorption and have been 

compared with experimental measurements performed on a SnO2 individual nanowire 

[12]. The interference of water vapor in that work is, nevertheless, briefly studied.  

Nanostructures, and specifically nanowires, as explained in previous chapters, are 

excellent candidates to be employed as the active part of a gas sensor due to the high 

surface to volume ratio. Following this direction, the devices presented in chapter 3, 
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based on SnO2 nanowires site-specifically grown on micromembranes, have been 

employed immediately after the growth without requiring any additional fabrication 

step to study the ammonia adsorption and sensing mechansims.  

The nanowires require to be heated in order to enhance the charge transfer between 

the adsorbate and the surface of the nanowire, i.e., to operate as a gas sensor. Thus, the 

heater used to promote the growth of the nanowires has been used to provide the desired 

operation temperature. 

In summary, in this chapter an ammonia gas sensor based on SnO2 nanowires grown 

by a straight integration process of nanostructures with the electronic platform is 

presented. The concurrent sensing mechanisms of the interaction with ammonia vapor 

are related to the experimental observations, and analyzed in detail diluted in air. The 

interference of water in the sensing processes is well-known for adding complexity to 

the system, whose contribution has also been studied in this work. 

4.2. Experimental section 

The micromembranes with buried heaters and top electrodes detailed in section 2.5 

are the ones substrates used for these sensors. The electric power consumption at 

atmospheric pressure requires 13 and 28 mW in order to deliver 200 °C and 400 °C at 

the surface of the micromembrane, respectively. 

The growth of SnO2 NWs is described in detail Chapter 3. The gas sensing 

measurements are obtained keeping a constant flow of 200 ml/min for dry and humid 

air measurements. The relative humidity conditions indicated throughout the paper are 

referenced to the RH at room temperature. 

4.3. Results and discussion 

4.3.1.  Oxygen adsorption  

The behavior of the electrical resistance of SnO2 NWs at different temperatures in 

air has been investigated in order to study the initial oxygen species that are 

chemisorbed at the surface of the metal oxide nanostructure (Figure 4.1 a)). I-V curves 
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of the sensor show an ohmic behavior even at room temperature, which remarks the 

absence of a Schottky barrier that would be expected for a pure Pt/SnO2 interface as a 

consequence of the difference in electron affinity and work function of the two 

materials. The interface between the Pt electrodes and the SnO2 NWs is partially 

responsible for the low resistance values observed, since a Schottky barrier would 

decrease the conductivity of the network of the nanowires. 

Regarding the temperature behavior, the resistance of SnO2 NWs at room 

temperature is 2850 Ω, and decreases for increasing temperatures up to 200 °C. Above 

this temperature, the resistance changes its tendency and increases with temperature. 

The observed R(T) curve is associated with the gas specie adsorbed on the surface, i.e., 

oxygen specie. 

Atmospheric oxygen is predominantly physisorbed at the surface of the SnO2 at low 

temperatures, i.e., below 100°C approximately [23]. This mechanism takes place 

without electron transfer with the surrounding adsorbate; therefore, no change in the 

resistance of the semiconductor occurs. During physisorption, the observed reduction of 

resistance is purely due to the excitation of charge carriers.  

On the other hand, molecular oxygen (O2
-) is chemisorbed at the surface at 

temperatures around 150-200 °C, leading to a charge transfer from the oxide towards 

the adsorbate, following the reaction: 

 

Figure 4.1 a) Resistance of SnO2 locally grown NWs as a function of temperature. The minimum in 

resistance reflects the change in the adsorbed oxygen specie; b) Transient response of the sensor 

resistance in a change of temperature illustrating the increase in resistance for increasing temperatures 

above 200 °C. Blue line represents the evolution of temperature. 

  



Chapter 4: Site-selectively grown SnO2 NWs networks for ammonia sensing in humid conditions 

   95 

 

 𝑂2(𝑔) + 𝑒− + 𝑆 ⇋  𝑂2(𝑠)
−         (4.1) 

Above 200 °C the oxygen trapped through chemisorption can dissociate into two 

atomic oxygen species (O-) according to: 

 𝑂2(𝑔)
− + 𝑒− ⇋ 2𝑂(𝑔)

−                    (4.2) 

Consequently, O- leads to capturing more electrons from the semiconductor and, 

thus, produces an increase of its resistance, which explains the behavior in Figure 4.1 a), 

in a good agreement with other authors regarding the temperature range [23,24]. 

Therefore, we can conclude that the resistance change is related to the particular oxygen 

species adsorbed at the metal oxide surface. A completely different situation occurs in a 

high temperature regime, starting at 600 °C, at which oxygen atoms that share two 

electrons (O2-) with the metal oxide are promoted [23]. However, these high 

temperatures are beyond the range of the gas sensing measurements carried out in the 

present work. 

 

Figure 4.2. Change in resistance of SnO2 NWs towards different oxygen concentration diluted in nitrogen. 

The temperature is kept at 150 °C. 
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A transient response of the SnO2 NW device’s resistance with increasing 

temperature from 400 to 450 °C is represented in Figure 4.1 b). The low thermal mass 

of the micromembranes provides a fast thermal response; for instance, only tens of 

microseconds are required to reach 200 °C [25]. Therefore, the initial fast decay in 

resistance when the temperature is changed (at time 30 minutes) is due to the increase in 

charge carriers as a result of the temperature rise. 

The gradual increase in resistance that follows, can only be related to the 

chemisorption of atomic oxygen species, since temperature changes induce a new 

dynamic equilibrium between the wire and the adsorbate in a slower process than the 

thermal induced increase of charge carriers. Consequently, chemisorption of oxygen 

molecules is the cause of the positive resistance coefficient observed for temperatures 

above 150 °C. 

From another point of view, the oxygen adsorption has been studied keeping a 

constant temperature, and changing its concentration using nitrogen as a background 

gas. The evolution of the resistance towards this gas mixture is represented in Figure 

4.2, where the temperature was kept at 150 °C. Oxygen is let in into the chamber for 4 

hours, the same time hold as a recovery time. Although a fast initial increase is observed 

after the introduction of the nitrogen-oxygen gas mixture, the complete saturation of the 

response, i.e., the time required to achieve a steady state value takes about 7 hours.   

The response towards concentrations above 10.5 of oxygen is maintained almost 

stable, as observed in Figure 4.2, meaning that the surface reached the maximum 

oxygen coverage, leading to the saturation of the response. On the other hand, it is 

inferred that the sensor would not exhibit any change in the baseline when working in 

an oxygen deficient environment, above 10% of oxygen concentration. 

4.3.2. Response to ammonia in dry synthetic air 

The change in resistance of the locally grown nanowires against ammonia in 

synthetic air has been studied at different temperatures. The concentration of ammonia 

has been varied between 10 and 40 ppm, which is in the range of time-weighted average 

exposure limit recommended by NIOSH (25 ppm) for up-to 10 h workday [4]. The 

evolution of the sensor’s resistance at different temperatures and for changing pulses of 

ammonia is represented in Figure 4.3 a), where the decrease in resistance in the 
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presence of ammonia, expected for an n-type semiconductor gas sensor, like tin dioxide, 

towards a reducing gas, is observed. 

The response of the sensor is defined as: 

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(%) =
𝑅𝑎𝑖𝑟−𝑅𝑔𝑎𝑠

𝑅𝑎𝑖𝑟
                  (4.3) 

The summary of the responses as a function of temperature is represented in Figure 

4.3 b). The locally grown SnO2 NWs show a response of up to 36% for 40 ppm of NH3 

at 400 °C, temperature at which the highest response is found.  

On the other hand, the response time has been calculated, defined as the time to 

evolve from 10% to 90% of the steady state value. A response time as low as 2 minutes 

is obtained, again, at 400 °C. An Arrhenius plot of the response time as a function of the 

temperature is represented Figure 4.3 (c), which is fitted to an exponential behavior 

following 𝜏 = 𝜏0 exp (
𝐸𝑎𝑐𝑡

𝑘𝐵𝑇
).  

Concerning the sensing mechanisms that leads to the change in resistance, three 

competitive reactions are described in the literature for ammonia oxidation on metal 

oxide surfaces [21,22,27]: 

 𝛼2𝑁𝐻3 (𝑔) + 3𝑂𝛼 (𝑠)
− → 𝛼𝑁2(𝑔) + 𝛼3𝐻2𝑂(𝑔) + 3𝑒−             𝑇 < 400 °𝐶 (4.4) 

 𝛼2𝑁𝐻3 (𝑔) + 4𝑂𝛼 (𝑠)
− → 𝛼𝑁2𝑂(𝑔) + 𝛼3𝐻2𝑂(𝑔) + 4𝑒−          𝑇 < 400 °𝐶 (4.5) 

 𝛼2𝑁𝐻3 (𝑔) + 5𝑂𝛼 (𝑠)
− → 𝛼2𝑁𝑂(𝑔) + 𝛼3𝐻2𝑂(𝑔) + 5𝑒−         𝑇 > 400 °𝐶 (4.6) 

where (g) stands for a non-adsorbed gas molecule, (s) for a molecule adsorbed at the 

surface, e- is a conduction electron, 𝛼  is a coefficient that is equal to 1 for atomic 

oxygen 𝑂−  or 2 for molecular oxygen 𝑂2
−  ionosorbed species. The oxygen specie 

adsorbed at the surface depends on the working temperature. From the results obtained 

in the previous section, for 100<T<200 °C molecular oxygen is predominantly 

adsorbed, and above 200 ºC the atomic form is mainly found at the surface. The three 

reaction mechanisms (4.4)-(4.6) are supported by chemisorbed oxygen at the surface of 

the metal oxide, which corresponds to the temperature regime used in this work, above 

150 °C, employed in order to achieve acceptable response time for the gas sensing. 
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Figure 4.3 a) Evolution of SnO2 NWs resistance in front of different concentration of ammonia in 

synthetic air; b) Response of the test represented in a) in function of temperature; c) Arrhenius plot of the 

response time for pulses of 30 ppm of NH3. Symbols are experimental values and lines are the fitted 

exponential decay. 

It is well known from catalysis that in a large number of metal oxides, depending on 

the temperature, one specific reaction is preferred over the others [27,28]. In this 

direction, it is difficult to distinguish between the sensing reactions (4.4) and (4.5). 

Indeed, these reactions account for oxygen adsorption in the form of the active species 

and subsequent H stripping from the ammonia molecules until a relevant intermediate 

containing the N-N or N-O bond is formed. When this takes place, further H elimination 

with the concomitant formation of H2O takes place. Furthermore, equations (4.4) – (4.6) 

share more than 70% of their elementary steps. Consequently, in the low temperature 

regime, i.e., below 400 °C approximately, the reactions (4.4) and (4.5) take place 

simultaneously. 
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Reaction (4.6) dominates at temperatures above 400 °C and surface coverage 

governs the reaction. Since higher energy barriers can be surpassed at this temperature, 

the NO byproduct becomes dominant [27,28].  

The nitrogen containing products of the three reactions are therefore oxidized as a 

function of temperature: the higher the temperature at which the reaction takes place, 

the more oxidized is the nitrogen containing product. At the same time, the more 

oxidized is the nitrogen product, the higher the activation energy, following the 

relationship 𝐸(4.4)
𝑎𝑐𝑡 <  𝐸(4.5)

𝑎𝑐𝑡 <  𝐸(4.6)
𝑎𝑐𝑡  [27]. 

The activation energy of the sensor response towards ammonia has been obtained 

from the exponential temperature behavior of the response time, which is represented in 

Figure 4.3 c) in an Arrhenius plot. Three different kinetic regions are defined from the 

plot according to the experimental measurements: I) temperatures below 200 °C; II) 

between 200 and 400 °C and III) above 400 °C. Each of these regions presents different 

activation energies.  

The interaction with ammonia at region I, i.e., at low temperature, involves 

molecular oxygen ions, since this specie and not atomic oxygen is the main adsorbate 

form at this temperature range, as discussed previously. The activation energy from 

region I cannot be derived due to the small number of points measured, but a lower 

slope than region II can be inferred.  

The activation energy obtained from the Arrhenius plot in region II is 𝐸𝐼𝐼
𝑎𝑐𝑡 =

0.35 ± 0.04𝑒𝑉, which corresponds to a temperature ranges between (200>T>400°C), 

governed by atomic oxygen (α=1). Thus, atomic oxygen reacts with ammonia causing a 

higher activation energy than the molecular form (α=2) (𝐸𝑂2

𝑎𝑐𝑡 < 𝐸𝑂
𝑎𝑐𝑡), which has been 

also reported in [29]. Therefore, the differences in sensing kinetics observed on the 

Arrhenius plot are between region I and II are explained by the different oxygen species 

promoting the NH3 oxidation. 

On the other hand, this region comprehends the temperature range where reactions 

(4.4) and (4.5) can take place on the tin dioxide surface. The exponential behavior of the 

response time in the Arrhenius plot suggests that the same mechanism takes place over 

the whole temperature range. This confirms what was pointed out before, that both 
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reactions can occur simultaneously at these temperatures and that their contribution 

cannot be separated from each other. 

 Furthermore, the ratio between oxygen and ammonia partial pressures (𝑝𝑂2
/𝑝𝑁𝐻3

) 

also influences which of the three reactions are dominant. As shown in [27], for 

𝑝𝑂2
/𝑝𝑁𝐻3

>10 and temperatures below 400 °C, which are the conditions of the region II, 

the selectivity is lost, and N2 and N2O are produced in equivalent percentage. On the 

other hand, for low 𝑝𝑂2
/𝑝𝑁𝐻3

 ratios (<0.1), N2 production is enhanced [22,27] and N2O 

production is almost negligible. This is in agreement with the described sensing 

mechanism in region II. 

Comparing the values of the activation energy to those available in the literature, the 

one obtained in this work (0.35 eV) is lower than the reported ones in [27] and [12], 

which obtained an activation enthalpy of 0.74 eV (temperature range between 210-

260 °C, reaction mixture of 10% of ammonia and 90% of O2) and 0.5 eV 

(150<T<300 °C, 21% O2 and 200 ppm of NH3), respectively.  

Furthermore, density functional theory (DFT) studies concluded that the rate-

determining step of NH3 sensing mechanism in a single SnO2 monocrystalline nanowire 

is the oxygen adsorption, with an associated activation energy of 0.5 eV, not far from 

the experimental value obtained in that work [12]. Notice, though, that the errors 

intrinsic to DFT, particularly when dealing with the description of O2, make the DFT 

value only a qualitative estimate. Additionally, if oxygen adsorption is energetically 

favored, i.e. oxygen binding energy to the surface increases, then the activation energy 

of the whole process could be lowered.  

A change in tendency of the response time as a function of temperature is observed 

at 450 °C (see Figure 4.3 c)), the labelled region III. The variation in the kinetic 

behavior at 450 °C suggests that a different reaction takes place, which could 

correspond to (4.6), since this reaction starts to dominate at about 400 °C. The 

temperature intervals for the reaction that give rise to NO production are in agreement 

with other works, and are also supported by the faster response of the sensor’s 

resistance due to the ammonia interaction between 400 and 450 °C. The initial 

interaction of ammonia with the metal oxide surface leads to a fast reduction of the 

NWs resistance at these temperatures, followed by a slow increase during the further 

exposure to NH3. The same behavior has also been observed in metal oxide sensors like 
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WO3 [18] and In2O3/MgO bilayer structure [21] in the characterization of their 

responses towards ammonia diluted in air.  

This slow rise in resistance indicates, probably, that it is caused by gas adsorption. It 

is well known that nitric oxide (NO) is easily and readily oxidized to NO2 at 400 °C 

[21,30]. SnO2 NW-base gas sensors are known to respond to NO2 concentrations below 

100 ppb [31], a value that can be easy to reach during the ammonia and nitric oxide 

oxidation. Other products generated in the reactions cannot explain the observed 

increase in the resistance. On the one hand, H2O acts as a reducing gas to tin dioxide 

and its adsorption would give rise to a reduction of the resistance of n-type tin oxide 

NWs and, consequently, as a product of reaction (4.4), (4.5) and (4.6), could not 

account for the increase in resistance. N2 behaves as inert gas at the analyzed 

temperature range and does not affect the conductivity. Furthermore, SnO2 without 

additives on its surface requires tens of ppm of N2O [32] to achieve an observable 

response. As a result, the only reaction that will give rise to the observed behavior is the 

oxidation of NO to NO2, which is the only specie able to promote the resistance 

increase. According to this, NO2 attaches to an oxygen vacancy at the SnO2 surface 

[33], trapping an electron, and therefore the resistance of the SnO2 is increased as a 

result of the reactions: 

 2𝑁𝑂 (𝑔) + 𝑂2 → 2𝑁𝑂2(𝑔)       (4.7) 

   𝑁𝑂2 (𝑔) + 𝑒− → 𝑁𝑂2(𝑠)
−        (4.8) 

In fact, the initial resistance drop towards ammonia at 450 °C is larger than that at 

400 °C, although the further resistance increase due to NO2 adsorption reduces the final 

response (see Figure 4.4 d)). Consequently, at this temperature, the process is described 

by equations (4.6), (4.7) and (4.8) that take place simultaneously, being the last two 

secondary reactions. 

4.3.3 SnO2 NWs sensing mechanisms in humid conditions 

4.3.3.1 SnO2 NWs interaction towards H2O 

Water vapor is a gas widely present in the atmospheric air, that interferes with other 

gas analytes in gas sensing processes. The interaction of water vapor diluted in synthetic 

air with the surface of thin or thick SnO2 films has been studied and examined at 
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temperatures between 200-400 ºC [34-36], exhibiting a reversible response for different 

concentrations of water vapor. Less works are found regarding the water response 

towards SnO2 NWs [37]. 

The changes in the electrical signal of the sensor towards the presence of water 

vapor are shown in Figure 4.4 a) at an operation temperature of 400 °C. The 

concentration of water vapor in this work is expressed as relative humidity in %, i.e., the 

ratio of partial water vapor pressure and saturation pressure obtained at room 

temperature (20 °C).  

 

Figure 4.4 a) Electrical response of SnO2 NWs to different concentrations of water vapor in synthetic air 

at 400 °C; b) Resistance of SnO2 NW-based gas sensor for different humidity levels at different 

temperature. The U-shaped R-T curve is also obtained in humid conditions due to dissociation of 

molecular to atomic oxygen at a temperature of 200 °C; c) Electrical response of SnO2 NWs in dry, 30% 

and 60% relative humidity conditions (RH at room temperature) towards different ammonia pulses in 

synthetic air. Three tests have been performed by keeping a constant temperature of 400 °C; d) Sensor 

response towards 10 ppm of NH3 at different water vapor conditions. The overshoot in resistance is 

visible for 450 °C and RH=0% curve. 
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A clear decrease in resistance due to the presence of water vapor is observed, which 

is reversible, as can be seen in the same figure from the fact that the baseline value is 

fully recovered when water vapor is removed from the chamber. The behavior of the 

NWs resistance as a function of the relative humidity denotes that water vapor acts as a 

reducing gas for SnO2 nanostructures. There are several mechanisms proposed in the 

literature explaining the interaction of H2O with the tin dioxide surface.  

The first mechanism is based on the homolytic dissociation of water, which involves 

the reaction with lattice oxygen, leading to the production of two rooted hydroxyl 

groups. Thus, two electrons per water vapor molecule are released to the conduction 

band according to the following equation [34,35,38]: 

 𝐻2𝑂(𝑔) + 2𝑆𝑛𝑙𝑎𝑡 + 𝑂𝑙𝑎𝑡 ↔ 2(𝑂𝐻 − 𝑆𝑛𝑙𝑎𝑡) + 𝑉𝑂
.. + 2𝑒−   (4.9) 

where 𝑆𝑛𝑙𝑎𝑡   and 𝑂𝑙𝑎𝑡  stands for a tin and oxygen atom in lattice position, 

respectively, and 𝑉𝑂
.. is a doubly ionized oxygen vacancy. The neutral H atoms from the 

water vapor molecule react with lattice oxygen to form OH. The electron affinity of OH 

is lower than the lattice oxygen, and as a consequence, it is ionized more easily and 

gives as a result the donation of electrons to the metal oxide. 

Another mechanism related to chemisorbed oxygen at the SnO2 surface is the 

reaction of water with pre-adsorbed oxygen ions, which is similar to equation (4.9), but 

involves chemisorbed atomic oxygen [35]:   

 𝐻2𝑂 + 2𝑆𝑛𝑙𝑎𝑡 + 𝑂(𝑠)
− ⇋  2(𝑂𝐻 − 𝑆𝑛𝑙𝑎𝑡) + 𝑒−           (4.10) 

Equation (4.10) is supported by diffuse reflectance infrared Fourier transform 

(DRIFT) spectroscopy measurements that conclude that only OH terminal groups are 

formed at the surface of SnO2 [35]. The authors observed that the concentration of these 

surface hydroxyl groups increased with oxygen partial pressure, reaching a saturation, 

and showed that this effect was reversible. Therefore, the concentration of hydroxyl 

groups, which can account for the increase in conductivity to the metal oxide, is 

strongly dependent on chemisorbed oxygen. Consequently, when another reducing gas 

is present in the measuring chamber, besides H2O, both will compete for reacting with 

chemisorbed oxygen atoms, as will be considered in the combined response to water 

vapor and ammonia. 
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The resistance as a function of temperature in both dry and humid conditions (30% 

and 60% relative humidity) is represented in Figure 4.4 b). As can be seen, the sensor’s 

resistance decreases at higher concentrations of water vapor, confirming the reducing 

character of this gas and the fact that, even though a very high concentration of gas is 

introduced into the chamber, no saturation has been reached. On the other hand, the 

resistance of SnO2 NWs increases with temperature above 200 °C, showing a U-shaped 

resistance-temperature curve, which is in agreement with the curve shown in Figure 4.1 

that is related to the different oxygen species adsorbed at the surface of the metal oxide. 

This increasing resistance, as shown in section 4.3.1, is due to the adsorption of atomic 

oxygen and, therefore, it is ensured that atomic oxygen is available to react with 

ammonia in the presence of water vapor, as discussed in the next section. 

4.3.3.2 Ammonia sensing in humid conditions 

Once the resistance changes of locally grown nanowires towards different 

concentrations of NH3 and water vapor have been separately analyzed in detail, the 

sensing capabilities of the nanowires are studied with both gases being simultaneously 

present. 

The tests have been carry out by adding two different concentrations of water vapor 

to synthetic air; in terms of relative humidity, the employed levels are 30 and 60% for 

each temperature. The humid air is considered as the background, and hence, ammonia 

has been added to it, using the same sequence of ammonia pulses as used in the dry air 

experiments. The response of the SnO2 NWs has been investigated at temperatures of 

200, 300 and 400 °C. Operating at this temperature range, mainly atomic oxygen is 

chemisorbed at the semiconductor’s surface.  

The sensor’s resistance, normalized to the baseline (SA+H2O) value at 400 °C, is 

represented in Figure 4.4 c) for both dry and humid conditions towards different 

concentrations of ammonia. As can be clearly seen, the response (resistance variation) is 

reduced in the presence of increasing amounts of water vapor as compared to dry 

conditions. The sensor’s resistance does not show the overshoot in resistance which was 

observed in the response towards ammonia in dry conditions at 450 °C (see Figure 4.4 

d) for comparison), suggesting that reactions (4.4) and (4.5) are the main ones occurring 

in the studied range, while the effect of equation (4.6) is here negligible. 
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The reduced response of tin dioxide nanowires against ammonia in the presence of 

water vapor can be explained by several concurring mechanisms. On the one hand, 

competitive adsorption between water vapor and ammonia with chemisorbed oxygen 

takes place, as described in reaction (4.10) for water vapor, and in (4.4), (4.5) and (4.6) 

for ammonia sensing. Furthermore, 60% of relative humidity at 20 °C corresponds to 

approximately 14300 ppm of water, a concentration three orders of magnitude higher 

than that of ammonia throughout these experiments. Thus, the partial pressure of water 

vapor is considerably higher than that of ammonia, which should lead to a much higher 

coverage of the dissociated fragments at the metal oxide surface. 

The Arrhenius plot of the response time of the sensor in dry and humid conditions 

for 30 ppm of ammonia (Figure 4.5 a)) shows that the response is slower in humid 

conditions. Longer response times are a direct consequence of the competitive 

adsorption between atomic oxygen and water vapor that reduces the probability of 

oxidizing ammonia to be adsorbed and decomposed at the surface and, thus, slows 

down the reaction.  

At the same time, the activation energies shown in Figure 4.5 b), deduced from 

Figure 4.5 a) for the different ammonia concentrations at the various studied relative 

humidity values, clearly decrease in the presence of water vapor and are essentially 

independent of the ammonia concentration, at least, within the experimental uncertainty 

of these experiments. As mentioned before, water vapor can be dissociated in two 

hydroxyl species, those being chemisorbed at the surface of tin oxide assisted by Snlat 

and O-
(s) as described in reaction (4.10). A tentative explanation for the behavior could 

be derived from the interaction of hydroxyl groups with O2, as proposed by Epling et al. 

[39,40] in monocrystalline rutile TiO2 according to: 

𝑂𝐻(𝑠) + 𝑂2(𝑔) → 𝑂(𝑠)
− + (𝑂𝑎 − 𝑂𝐻)(𝑠)      (4.11) 

Where Oa stands for an oxygen adatom. This mechanism creates a new path for 

oxygen dissociation, which can occur even at lower temperatures than oxygen 

dissociation described according to reaction (4.1), reducing the activation barrier for 

oxygen dissociation. According to other works dealing with ammonia interaction 

mechanisms, oxygen dissociation is precisely the energy limiting step [12].  
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Figure 4.5 a) Sensor response time for NH3 pulses of 30 ppm in dry and humid conditions, represented in 

an Arrhenius plot. Symbols are experimental values and lines are the fitted exponential decays; b) 

Activation energy obtained from the response time to ammonia as a function of the relative humidity for 

all the concentrations studied in this work; c) Response of SnO2 NWs against ammonia in humid 

condition at 400 °C; d) Comparison between the response of the sensor at 300 °C and 30% of RH from 

10th and 25th day of measurements. A change of 5% in the resistance baseline is seen, while the response 

is almost unchanged. 

Thus, a mechanism similar to (4.11) could justify the lowering in the activation 

energy of ammonia sensing in presence of water. The oxygen (Oa) grows with 

increasing number of OH groups at the surface, and can act as sites for dehydrogenation 

of ammonia (H scavenging centers), following the same scheme provided in dry air.  

Regarding the long-term stability of the SnO2 nanowires operating in the extremely 

aggressive ammonia environment, the sensors were operated for 1 month in dry and 

humid conditions. The most noticeable result is that a drift in resistance of 7% from the 

initial values was observed, but where the resistance change due to the presence of the 

gases was almost invariant in its value, being only about 1% in terms of response. 

Figure 4.5 d) shows the resistance change at 300 °C and 30% of RH obtained at the 10th 

and 25th day of operation, and illustrates the repeatability of the measurements obtained 
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by this nanowire-based device. The sensor has shown a good durability, and offers 

relatively fast response time towards 30 ppm of NH3 of 6 minutes in the presence of 

water vapor, and 2 minutes in dry conditions. 

4.3.4. Response towards other gases 

Some other gas sensing results will be presented in this subsection. As it is well 

known, although metal oxides present highly sensitivity and low cost, among other 

benefits, they are not selective to a specific gas specie, i.e., metal oxides show a 

response against several oxidising and reducing gases. Here the behaviour towards CO 

and NO2 will be shown. 

4.3.4.1. Response towards CO  

The measurements of the interaction of the SnO2 nanowire-based devices towards 

different CO concentrations in dry synthetic air are shown in Figure 4.6 a). It is evident 

that the interaction of this gas with the metal oxide gives rise to a reduction in the 

resistance of the nanowires and that this reduction increases with CO concentration, as 

in the case of ammonia, confirming the reduction character of this gas. Note that the 

lowest tested CO concentration (10 ppm) is very close to the legal limit for 8h exposure 

time weighted average (TWA) of 8.6 ppm [41]. As for completeness, the reaction path 

that leads to the sensing of CO at the SnO2 surface is described according to [42] in the 

following equation:  

 𝛽𝐶𝑂(𝑔) + 𝑂𝛽(𝑠)
− → 𝛽𝐶𝑂2(𝑔) + 𝑒− + 𝑆     (4.12) 

The equation describes the oxidation of CO by previously chemisorbed molecular 

(β=2) or atomic (β=1) oxygen, in a similar way to the description of the ammonia 

oxidation of section 4.3.2, but following a more simple path in dry conditions because 

of the more simple CO molecule. 
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Figure 4.6. a) Different resistance evolutions of SnO2 NWs network to pulses for several concentrations 

of CO in synthetic air at different temperatures; b) Response of the NWs network as a function of CO 

concentration. 

The response towards CO is defined in the same form as for ammonia, since both 

are reducing gases, in (4.3). The change of the device’s resistance is about 3% for the 

lowest concentrations employed in this work, illustrating that the nanowires are less 

sensitive to the harmful concentrations of CO than for ammonia (see Figure 4.6 b)). The 

response time is below 1 minute for all the represented sensing experiments towards 

CO.  

4.3.4.2. Response towards NO2 

Nitrogen dioxide is a harmful gas that causes adverse respiratory effects, produced 

mainly by the internal combustion engines that burn fossil fuels. Nitrogen dioxide is an 

important gas for sensing and detection, due to the presence of harmful concentrations 

in cars and roads. Concentrations above 210 ppb can provide adverse effects on human 

health, even though is still not understood if they are caused by NO2 itself or by other 

secondary combustion related by-products [43]. 

The resistance of SnO2 NWs have been characterized towards different 

concentrations of NO2 diluted in synthetic air at different temperatures, as shown in 

Figure 4.7 a). The exposure time of NO2 is 15 min, and the time left for the sensor 

recovery is 30 minutes. As shown previously in this chapter, the total resistance of the 

NWs increases with the temperature above 200ºC due to the dissociation of molecular 

oxygen into atomic oxygen. NO2 increases the resistance of the nanowires network 

through its adsorption at the surface oxygen vacancies (see eq. (4.8)).  
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Figure 4.7. a) Resistance evolution of SnO2 NWs towards NO2 in synthetic air; b) response of the NWs 

for increasing nitrogen dioxide concentration. Maximum response is obtained at 300 °C. 

The response of the sensor is represented in in Figure 4.7 b), obtained according to: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(%) =
𝑅𝑁𝑂2−𝑅𝑎𝑖𝑟

𝑅𝑎𝑖𝑟
                  (4.13) 

The adsorption of NO2 is slightly promoted at 100 °C and, at the same time, with the 

increase of the temperature, the response and recovery time are reduced. The maximum 

response occurs at 300°C.  Remarkably, the response time at 300°C for 5 ppm of 

nitrogen dioxide is less than 3 minutes.  

The response towards NO2 at 300 ºC can be extrapolated to the recommended 

exposure limit, (210 ppb), obtaining a value of 15.7±0.4% of response. Therefore, the 

sensor should be able to detect the presence as low as 100 ppb of NO2 according to the 

results obtained. 

4.4. Summary of the different responses 

The results presented above confirm the non-selective response of the fabricated gas 

sensors, as it is expected for most metal oxides and, concretely, for SnO2 NWs.  

The response of the devices to the different gases, however, shows fast response 

with a stable behaviour, confirming their operability and stability. It is important to 

point that low consumption in the range of tens of mW is required for the operation of 

the sensor and that this mainly comes from the heater consumption. 
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Figure 4.8. Temperature behavior of the response of SnO2 NWs towards different gases in synthetic air. 

The maximum response observed is against NH3. 

The temperature behaviour of the sensor’s resistance towards different gas species is 

depicted in Figure 4.8, namely for 20 ppm of NH3, 10 ppm of CO and 1 ppm of NO2. 

The selected concentrations of gases are the nearest measured proportions to the 

recommended exposure limits that one would consider as the highest values to be 

measured. The ammonia and carbon monoxide concentrations are in the range of the 

exposure limit recommended by WHO or NIOSH, however, nitrogen dioxide is one 

order of magnitude above (210 ppb) [43].  

The highest response obtained towards the oxidizing and reducing gases correspond 

to 20 ppm of ammonia, at 400°C, with a value of 30%. The sensor response towards CO 

reaches a value of 5.3% at the same temperature. Towards NO2, although it has been 

analysed up to 350 °C, a response around 10% can be estimated from the Response-

Temperature curve. Thus, the responses towards the other gases are negligible in front 

of the ammonia interaction. 

On the other hand, water vapour is observed to reduce importantly the resistance of 

the NWs, whose adsorption on the surface of the NWs is saturated at relative humidity 

levels above 60%, since no further reduction is observed at higher levels. 
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4.4 Conclusions 

SnO2 nanowires locally grown nanowires on microhotplates, have shown a complex 

behaviour towards ammonia diluted in dry and humid synthetic air that has been 

described in detail and analysed from not only the electrical response point of view but 

also the kinetics. Different temperature regimes have been identified in the sensor 

kinetic response. In dry conditions, the promotion of NO as byproduct at high operating 

temperatures reduces the response of the sensor and gives rise that the maximum 

response to ammonia is obtained at 400 °C. When operated in humid conditions, the 

response of tin dioxide nanostructures is reduced and slowed down by the presence of 

water vapor. Simultaneously, the activation energy is lowered by moisture, which could 

be explained through the reaction between O2 and the OH adsorbed groups, 

consequence of water decomposition.  

Finally, the integrated growth of SnO2 on micromembranes has been demonstrated 

as a fast, reproducible and low power consuming approach, which gives rise to 

ammonia sensors with good repeatability and fast response. Sensors have been tested up 

to 1 month, only presenting variation of the base resistance with full retention of the 

response towards the gaseous analytes.  
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5. LOW TEMPERATURE 

SENSOR BASED ON GE 

NWS LOCALLY GROWN 

ON SUSPENDED 

MICROHOTPLATES 

Abstract 

The gas sensing properties of germanium monocrystalline nanowires (NWs) at 

temperatures up to 100 ºC have been demonstrated for the first time. The devices have 

been fabricated based on a site-specific vapour-liquid-solid growth of NW meshes on 

top of microhotplates. The devices have been investigated for the sensing of different 

gases. The preadsorbed oxygen is established to be crucial for the interaction with CO. 

The adsorption of water vapour, however, follows a different mechanism, attributed to a 

physisorption process and to the presence of phenyl groups at the surface. The different 

sensing mechanisms are detailed, for which the presence of a stable oxide layer plays a 

key role and this justifies the requirement of low temperature operation. 



New fabrication methodologies for the development of low power gas sensors based on semiconducting nanowires 

118   

 

5.1. Introduction 

Germanium is a semiconductor with a direct bandgap of 0.8 eV that was used more 

than 60 years ago to create the first transistor [1]. Two decades later, germanium was 

replaced by silicon because of the feasibility to grow a much more stable and 

electrically isolating oxide [2] . More recently, Ge has been studied to substitute Si in a 

niche application because of the higher electron and hole mobility taking advantage of 

the advances in semiconductor and components processing [3]. 

Germanium has been scarcely studied as gas sensor due to the difficulties to 

maintain a stable germanium oxide. The effect of several gases on the germanium 

surface and the consequent change in electrical resistance were investigated in early 

studies, which were pioneering for modern resistor-based gas sensing [4,5]. The few 

works studying Ge surface gas interactions are typically focused on the oxidation of 

pure germanium surfaces [6]. The chemisorption of oxygen molecules was studied and 

experimentally observed [7,8], and non-dissociative adsorption has been identified to be 

involved in the process [9].  

More recently, germanium n-type nano-cluster films have been studied as hydrogen 

and humidity sensors, showing response to water vapour even at room temperature, but 

no information about the crystalline properties of the material were given [10]. On the 

other hand, DFT studies carried out on the chemisorption of oxygen at the germanium 

surface predicted a dissociative chemisorption of the oxygen molecule [11,12]. Thus, 

charge transfer between oxygen molecules and the germanium surface has been both 

experimentally observed and theoretically studied in literature. However, to the best of 

our knowledge, Ge NWs have not been studied in terms of their applicability in gas 

sensors. The techniques employed to synthesize Ge NWs are similar to those described 

for silicon and are discussed in detail elsewhere [13,14].  

In this chapter, Ge NW-based devices have been fabricated by a Au-seeded process 

on top of heated microhotplates with integrated top electrodes, as described in chapter 3. 

The structural characterization of the NWs, with special emphasis on the thin GeOx 

shell, has been carried out, since the outer oxide layer plays a key role in the gas 

adsorption. The electrical response of these devices towards different gases has been 

studied and sensing mechanisms based on the experimental results, are proposed.  
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5.2. Experimental details 

Microhotplates with buried heaters and top electrodes have been fabricated using 

surface micromachining. The active area of the devices consists of a Si3N4 layer (700 

nm thick), in which the platinum heating element is embedded. SiO2 layers are found on 

top (400 nm) and below (50 nm) of the Si3N4. The microhotplates require 8 mW to 

achieve a temperature of 200 °C under atmospheric pressure. 

The site-specific growth procedure of Ge NWs on top of microhotplates has been 

described in Chapter 3 of this thesis. As specific experimental details in this chapter, the 

field effect measurements have been performed using a Keithley 4200 SCS 

Semiconductor Characterization System, equipped with 3 source and measurement unit 

(SMU).  

5.3. Results and discussion 

5.3.1. Structural characterization and conducting behaviour 

The Ge NWs are single-crystalline, and grow predominately along the <111> 

direction of the cubic crystalline lattice, as already presented in chapter 3. After the 

growth the Ge core of the NWs is surrounded by a very thin amorphous GeOx shell of 

around 1 nm (Figure 5.1  c)). The thin germanium oxide layer thickness lies in the same 

range as other values reported in literature, grown by supercritical-fluid-solid-solid 

(SFSS) mechanism [15] or by chemical vapour deposition [16].  

In order to identify the conduction type of the NWs, field effect transistor (FET) 

measurements have been performed, for which the upper electrodes of the microhotplate 

have been used as the source and drain of the transistor, and the buried heater, as a 

bottom gate electrode (see Figure 5.2Figure 5.2 a)). The thickness of the silicon nitride 

layer of the suspended membrane is 700 nm, and the SiO2 layer is 400 nm thick. 

Although the field effect is quite reduced due to the thick oxide acting as gate oxide (the 

thickness of the gate oxide in FET devices is usually around 50 nm), the electrical field 

effect on the Ge NWs is observed under this configuration. 
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Figure 5.1 HRTEM image of a monocrystalline Ge NW. A thin GeOx is observed at the surface, 

highlighted by arrows. Fast Fourier Transform (FFT) is shown in the inset, proving the monocrystalline 

nature of the NW. 

The transfer function of the FET based on the Ge NWs, obtained by varying the gate 

voltage between -80 and 80 V and measuring the drain-source current forcing VDS=+1 

V, is represented in Figure 5.2 c). An increase of the IDS current when negative gate 

voltages (VGS) are applied, which is shown in the figure, indicates unambiguously a p-

type behaviour of the NWs. The  Figure 5.2Figure 5.2 b) shows the I-V curve of the Ge 

NWs at room temperature, i.e., the IDS(VDS) with VGS=0 V. An ohmic behaviour is 

observed, with a resistance of 59.2 kΩ, which has been observed in all the measured 

sensors.  

The IDS(VDS) curves obtained at different gate voltages, from -80 to 80 V, are 

represented in Figure 5.2 d), showing  moderate increase of the source-drain current at 

negative voltages. Note that large gate voltages are used in order to see the field effect 

on the nanowires, in agreement with the thick “gate” oxide. The 3-dimensional grown 

nanowire meshes do not have homogeneous contacts nor distances to the gate electrode. 

This configuration reduces the field effect, as compared to a geometry with a nanowire 

meshes lying flat on the surface of the microhotplate or single horizontal nanowire 
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measurements with similar back-gating geometry. Nevertheless, even with this reduced 

field effect, it is possible to determine the p-type behaviour of the Ge NWs.  

 

Figure 5.2 a) Scheme of the microhotplate, where the buried heater and the top Pt electrode are observed. 

The thickness of the SiO2, Si3N4 layers and Pt electrode are not to scale. The electric field effect on Ge 

NWs on top of microhotplates is obtained using the Pt buried heater as the gate electrode; b) IDS-VDS 

curve of Ge NWs at room temperature with VG=0 V; c) Transfer curve of the Ge NWs-based FET. 

Measurement has been obtained at room temperature applying VDS=+1 V. The drain-source current 

increases when negative gate voltages are applied, indicating that Ge NWs are p-type; d) Different 

IDS(VDS) curves obtained applying gate voltages from -80 to 80 V. The conduction increases again clearly 

for negative applied voltages. 
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The observed conductivity type is in agreement with the catalyst incorporation in 

the nanowire, which is known to create an impurity level within the bandgap in NWs 

prepared by different methods [17,19]. Furthermore, Au is expected to behave as 

electron acceptor in Ge, as reported in [20], providing the p-type semiconductor 

behaviour.  

5.3.2. Determination of the optimal sensing temperature 

The first studies carried out in this thesis and aiming at analysing the behaviour of 

Ge NWs as gas sensors, are focused on elucidating the operating temperature that must 

be kept in order to obtain a reversible response of the nanowires and to achieve a stable 

baseline.  

The experiments carried out at temperatures above 200 °C towards different gases 

have shown a severe drift of the resistance baseline, and in some cases, the response 

towards the gas is reduced for subsequent gas exposures, independently of the gas 

concentration (see Figure 5.3 as an example). A possible explanation of this behaviour 

could be the fact that with accumulated oxidizing atmosphere the thickness of the GeOx 

outer layer increases due to the easy oxidation of the Ge core at that temperature. This 

would, on the one hand, change the effective section of the Ge channel in the NWs and, 

on the other, because of the thicker oxide, the charge transfer that might occur at the 

surface due to the interaction with the gas is hindered because of the thicker barrier. In 

agreement with this explanation, at temperatures below 200 °C, a more stable baseline 

is achieved. 

As a consequence of this time variation, the evolution and the drift of the resistance 

of the Ge NWs in air was characterized for 48h at 100 and 150 °C, in order to analyse 

the time required to reach a dynamic equilibrium at the surface that would assure a 

stable and reproducible starting point for the measurements.  

The first 10 hours of the evolution of the resistance are represented in Figure 5.4 a). 

The drift observed when Ge NWs are heated to 150 °C is 2% after 48h, calculated from 

the minimum value of the resistance, which is reached after 2.5 hours of the process 

(red arrow in the figure). The mentioned drift at 150 ºC is attributed to a further 

oxidation of the outer GeOx layer of the NWs at this temperature, but much smaller than 

at 200 ºC.  
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Figure 5.3. Resistance evolution of Ge NWs at 250°C against NO2 pulses. The resistance shows a severe 

drift and the changes in resistance are not proportional to NO2 concentration. 

However, while working at 100 ºC, the drift was only 0.1%, calculated by taking as 

starting point the resistance after 7 hours of the initial decay (black arrow in the figure), 

which seems to indicate a more stable GeOx layer arising under these conditions.  

As the only modification which can occur is the oxidation, the importance of a 

stable thickness of germanium oxide in order to obtain a stable and repeatable response 

is inferred. Since 100°C is found to be the most appropriate operational temperature, the 

thickness of GeOx has been experimentally characterized by HRTEM, before and after 

annealing the nanowires at 100 °C for 1 week in air to simulate the additional oxidation 

that could occur in the wires while in operation as gas sensors. The results show no 

post-annealing increase of the GeOx layer thickness, keeping its value at 1 nm 

approximately (image not shown). As a consequence of these tests, the maximum 

operation temperature has been set to 100 °C. 

5.3.3. Response to oxidizing species 

Once the sensing temperature has been selected, the locally grown Ge nanowires 

have been studied as a gas sensor towards different oxidizing species.  
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Figure 5.4 a) Stabilization of the 

resistance keeping 100 °C and 150 °C 

under synthetic air flow. A drift in 

resistance is observed after the initial 

resistance dip when the sensor is kept at 

150°C; b) Resistance evolution of two 

different sensors towards different 

concentrations of O2 diluted in nitrogen 

at 100°C; c) Change in the resistance of 

Ge NWs towards different pulses of 

NO2 in SA at 100 ºC; d) Response of Ge 

NWs as a function of NO2 concentration 

at 100 ºC. 
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The evolution of the resistance of the device towards different concentrations 

of oxygen in nitrogen was studied at 100 °C, keeping a constant flow of 200 ml/min, 

(see  Figure 5.4 b)), showing a clear decrease of the resistance in the presence of 

oxygen, while it increases when oxygen is removed from the test chamber. The transient 

response towards oxygen is slow, as evidenced by Figure 5.4 b). From this figure, by 

extrapolating the curve, the oxygen adsorption is estimated to require 6 hours to achieve 

a steady resistance. 

Oxygen, when chemisorbed at the surface of a metal oxide, captures one electron 

from the semiconductor, giving rise to a negative charge at the surface of the NWs, 

which causes an upward band bending at the surface. The surface charge causes a 

resistance change that is opposite for n- or p-type semiconducting gas sensors. The 

upward bending reduces the majority charge carrier density near the surface in an n-type 

semiconductor, leading to the creation of a depletion layer of electrons. Therefore, the 

effective conductive section in the nanowire is reduced, giving as a result the increase of 

the measured resistance. In the case of a p-type semiconductor, the concentration of 

majority carriers (holes) is increased at the surface due to the upward band bending, 

providing a higher conductive layer on the outer part and thus, lowering the resistance 

[23,24]. Therefore, the observed resistance reduction when oxygen is adsorbed can be 

accounted by the following reaction: 

 𝑂2(𝑔) + 𝑆 ↔ 𝑂2(𝑠)
− + ℎ+       (5.1) 

where 𝑂2(𝑔)  is molecular oxygen, S stands for an adsorption site, 𝑂2(𝑠)
−  for a 

chemisorbed molecular oxygen at the surface of Ge NWs and h+ is a hole generated by 

charge transfer of an electron to a surface acceptor level. 

In order to justify the here-proposed sensing mechanism, the germanium oxide layer 

must be taken into account. GeOx covers the surface of the Ge NWs and, necessarily, 

during the adsorption of gases the charge transfer must take place through it. 

Stoichiometric germanium oxide GeO2 is a dielectric with a bandgap of 5.56 eV [25] 

and, thus, showing a very low conductivity. The GeOx amorphous layer, for which no 

reliable electrical data are available, is expected also to be a dielectric, with an electric 

behaviour somewhere in between Ge and GeO2. Since the current measured in the 

devices necessarily passes through the Ge core of the NW, the resistance change 

observed should be the result of the interaction between chemisorbed molecules and the 
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charge carriers from the Ge core. This is a plausible situation due to the reduced GeOx 

thickness, of only 1 nm. 

The response of the device at 100 °C towards another oxidizing gas, NO2, is 

represented in Figure 5.4 c), where, again, a clear decrease of the device’s resistance in 

the presence of this gas is observed. The response towards nitrogen dioxide is visibly 

faster than that caused by the oxygen adsorption. The proposed sensing mechanism for 

nitrogen dioxide does not involve ionosorbed oxygen and is described according to the 

reaction [26]:  

 𝑁𝑂2(𝑔) + 𝑆 ↔ 𝑁𝑂2(𝑠)
− + ℎ+       (5.2) 

where S stands for an adsorption site and 𝑁𝑂2(𝑠)
− , for a chemisorbed NO2 molecule 

at the surface of Ge NWs. In this mechanism nitrogen dioxide plays a similar role to 

that of the ionosorbed oxygen in equation (5.1), giving rise to the negative charge 

accumulation at the surface of the GeOx layer and, subsequently, to the upward band 

bending at the surface.  

The response towards NO2 is defined according to the following equation: 

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(%) =
𝑅𝑜𝑥−𝑅𝑎𝑖𝑟

𝑅𝑎𝑖𝑟
· 100      (5.3) 

where Rox is the resistance of the device in the presence of the oxidizing gas and 

Rair, the reference value in dry synthetic air. The measured response to NO2 

concentrations up to 4 ppm is within 5%, as shown in Figure 5.4 d). 

5.3.4. Response to reducing gases 

The sensing of a metal oxide at temperatures above 200 °C in the presence of 

reducing species, like NH3 and CO, is known to undergo through the interaction with 

pre-adsorbed oxygen.  In order to evaluate if Ge NWs exhibits a similar mechanism, the 

sensing behaviour towards carbon monoxide (CO) diluted either in dry synthetic air 

(SA) or in nitrogen has been studied. In both cases, the tests have been performed at 

operating temperatures between 75 and 100 °C. The evolution of the resistance of the 

device is shown in Figure 5.5 a). The decrease in resistance for the higher temperature is 

evidenced by the behaviour in SA at 75 and 100ºC, as is expected for a semiconductor. 
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Figure 5.5 a) Evolution of the resistance of Ge NWs against different concentrations of CO diluted in 

synthetic air at 75 and 100 °C, and diluted in nitrogen at 100 °C. Clearly, the response towards CO in 

nitrogen is reduced; b) Response of Ge NWs as a function of CO concentration in SA and nitrogen, both 

measured at 100 °C.  

Furthermore, at 100 °C, the resistance in nitrogen is higher than in synthetic air, in 

agreement with the observed resistance decrease in the presence of oxygen. In this 

figure, the response towards CO in synthetic air can be clearly observed, while it is 

almost suppressed when CO is diluted in N2.  

In the case of a p-type metal oxide semiconducting sensor, the accepted sensing 

mechanism in the presence of CO is due to the oxidation of the CO molecule by one 

ionosorbed oxygen molecule 𝑂2
−, reducing the negative charge at the surface and giving 

CO2 as a result [23]: 

 2𝐶𝑂(𝑔) + 𝑂2(𝑠)
− + ℎ+ ↔ 2𝐶𝑂2(𝑔) + 𝑆     (5.4) 

This process, in opposition to the response to oxygen, reduces the above-mentioned 

band bending, decreasing the hole density near the surface and, thus, gives rise to an 

increase of the resistance. This is the expected behaviour for p-type semiconductors in 

the presence of a reducing gas that requires pre-adsorbed oxygen for its sensing 

mechanism. The mechanism (5.4), thus, accounts for the observed response of the Ge 

NWs-based device towards CO. 

When the device is exposed to CO diluted in nitrogen, because no replacement of 

the desorbed oxygen molecules occurs, a strong lowering of the response of the NWs 

towards CO is expected. This is evidenced in the red line in Figure 5.5 a), where almost 

no variation of the resistance to different concentrations of CO can be observed. The 

non-zero variation observed in the figure may be due to residual oxygen traces coming 
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from the CO/N2 gas bottle, nominally below 5 part per million (ppm), providing in a 

continuous manner a very low level of molecular oxygen during the sensor 

measurements. These experiments confirm that oxygen molecules are required for the 

CO sensing mechanism of Ge NWs, which is consistent with the model accepted for 

metal oxide gas sensors. 

In general, the response against a reducing gas is obtained according to the 

following equation: 

  𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(%) =
𝑅𝑎𝑖𝑟−𝑅𝑟𝑒𝑑

𝑅𝑎𝑖𝑟
· 100     (5.5) 

where Rred is the resistance of the device in the presence of the reducing gas and Rair, 

the reference value in dry synthetic air. The values of the response against CO are found 

to be in the range between 0.25 and 2.5% for concentrations between 25 and 500 ppm 

(Figure 5.5 b)).  

Water vapour is another reducing gas whose effect on the device’s resistance has 

been studied. This is shown in Figure 5.6Figure 5.5 a), whose measurement is obtained 

operating at a temperature of 100 ºC. Alternated pulses of dry and humid air, with 

different relative humidity (RH) levels, are introduced into the gas test chamber. The 

figure clearly reveals the repeatability of the measurements and the fact that the baseline 

is recovered after each measurement. The shortest measured response time is 10 min for 

the highest RH employed (80%). The response shown by the sensor is represented in in 

Figure 5.6Figure 5.5 b).  

Furthermore, in order to analyze the role of oxygen in the adsorption of water vapor, 

the response towards different concentrations of water vapor diluted in nitrogen and air 

at 100°C has been studied. Figure 5.6 c) shows the resistance changes in Ge NW 

devices upon exposure to different relative humidity values. The overall responses are 

very similar in both atmospheres, besides an offset of the baseline caused by the oxygen 

adsorption. This independence of the response on the oxygen partial pressure indicates 

that oxygen plays a negligible role on the adsorption of water vapor molecules.  
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Figure 5.6. a) Change in resistance of 

Ge NWs towards different pulses of 

water vapour at 100 °C. The water 

vapour concentration is expressed in 

terms of relative humidity; b) 

Response of the Ge NWs towards 

relative humidity in synthetic air; c) 

Different transient responses of Ge 

NWs towards several pulses of water, 

diluted in nitrogen and synthetic air, 

obtained holding a temperature of 

100°C; d) Response as a function of 

relative humidity obtained in nitrogen 

and synthetic air at 100°C. 
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The initial baseline is recovered when switching back and forth from nitrogen or 

synthetic air and operating the device to detect humidity levels. The obtained response 

is shown in Figure 5.6 b). Note that the resistance as a fundamental baseline differs 

from device to device. 

The sensing behavior towards water vapor at temperatures above 200°C is generally 

accepted in metal oxide to involve the formation of hydroxyl groups [27,28]. 

Furthermore, the chemisorbed oxygen has been observed to interfere with water vapor, 

providing higher response towards H2O in air than in nitrogen flow, as illustrated for the 

case of SnO2 [27]. However, the here presented results depict a different mechanism, as 

a result of the low temperature employed during the tests (100°C). Water vapor does not 

react with chemisorbed oxygen, and both do not compete for the same adsorption sites. 

The latter is confirmed by the fact that the response towards water vapor is the same in 

both nitrogen and synthetic air, with the only difference being the shift in the signal due 

to the chemisorbed oxygen. 

On one hand, the formation of OH groups is highly unlikely, since it involves the 

oxidation/reduction of the surface that at that 100 ºC is almost no promoted, which 

cannot give as a results the high response observed. 

Hence, a plausible explanation would be that the sensing mechanism is attributed to 

separated charges in the adsorbed water vapor molecules, in the form of electric dipoles.  

Our hypothesis is that the adsorption of these dipoles takes place at the surface with the 

hydrogen from the dipolar H2O molecules pointing towards the oxide. This 

configuration is rather unusual; however, organic groups from the precursor can still 

partially reside on the surface of Ge nanowires after the growth [29], and in our case the 

electron-rich phenyl groups could lead to the described orientation of the water dipole. 

As a consequence, the majority carriers in the Ge core experience higher repulsion 

effect from the closer hydrogen atoms (positive charge) than attraction coming from the 

farther oxygen atom (negative charge). This leads to a narrowing of the Ge NW 

conduction effective section, giving as a result the increase of the resistance. Since the 

conductivity changes are almost identical in nitrogen and synthetic air, water adsorption 

should predominantly take place at the surface not covered by oxygen, noticing no 

interaction with oxygen. 
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Table 5.1 Response of Ge NW-based devices towards different gas concentrations obtained at 100 °C in 

synthetic air, and the recommended exposure limit by WHO. 

Gas concentration 

(ppm) 

Response (%) Recommended exposure 

limit by WHO 

150 ppm CO 0.8 8.6 ppm (8 h exposure CO) 

1 ppm NO2 1.7 210 ppb (24 h exposure 

NO2 ) 

10% RH 10.8 - 

80% RH 21.0 - 

5.3.5. Gas selectivity and sensing mechanisms 

The summary of the response of the Ge NWs to certain gas concentrations of the 

previously analysed gases is given in Table 5.1, which proves that the response towards 

water vapour is the dominant one. For practical applications, one has to bear in mind 

that the recommended exposure limit by the World Health Organization are 8.6 ppm (8 

hours exposure) for CO and 210 part per billion (ppb) (24 hours exposure) for NO2 

[30,31] and that the two values indicated in the table are beyond these limits. When 

extrapolating the linear dependences shown for these two gases to the mentioned 

exposure limits, the response of the sensors would be of about 0.1 and 0.8%, 

respectively. The response to water vapour, on the other hand, is in the range of several 

%. This assures that for relevant outdoor environments the response of the gas sensor 

towards water vapour will be dominant. Even a variation of the oxygen concentration in 

the atmosphere would only give rise to a small variation in the resistance of the device, 

since the complete removal of oxygen leads to a change of a 5%, approximately, of the 

baseline (see Figure 5.4 b)). 

A result to notice is that, within the limited gas concentrations measured in this 

work, the sensing response of the Ge NW-based devices towards CO, NO2 and water 

vapor shows a linear dependence on the concentration, which simplifies the 

interpretation of the dependence between the resistance changes and the gas 

concentration measured.  
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The fact that the Ge NWs are surrounded by a thin GeOx shell plays a key role in the 

sensors properties. The uniform thickness will ensure a stable response when using the 

nanostructures as gas sensor and will control the charge transfer between the core of the 

nanowire and the surface of the oxide described in the different sensing mechanisms 

because of the strong isolating character of GeOx. Changes in the composition and 

thickness of the surface layer as a result of the further oxidation of the NWs surface 

would result in drastic changes in the charge transfer characteristics and the resistance, 

leading to non-reproducible and drifting sensing responses, similar to what has been 

observed when the sensor is kept at temperatures in excess of 200 ºC. Since these 

effects are not observed in our measurements, we conclude that there is no further 

alteration in the materials composition under the given experimental conditions. For this 

reason, all the sensing experiments have been carried out at temperatures up to 100ºC. 

The fact that the Ge-NWs show p-type conductivity further supports the GeOx layer 

uniformity, as it has been experimentally observed by X-Ray photoelectron 

spectroscopy that n-type Ge NWs are more easily oxidized than p-type, first to GeO, 

and, afterwards, to GeO2 [32].  

Furthermore, residual surface termination is inferred from the negligible interaction 

of oxygen in the adsorption of water. The partial blocking of surface adsorption sites by 

hydrocarbon groups can explain the low response observed towards other reducing or 

oxidizing species that require chemisorbed oxygen or available adsorption sites. 

Adsorption of water vapor, however, can be described by a physisorption process that 

would be ruled by the presence of phenyl groups at these temperatures. 

An alteration or removal of the germanium oxide layer due to the condensation of 

water and subsequent dissolution of the oxide on the surface should not occur because 

the temperature difference of the environment and the sensor surface is higher than 

50°C. Detailed investigations on the exact surface termination and also density of 

organic groups are part of future studies in this system.  

5.4. Conclusions 

Ge NWs have been energy efficiently grown via the vapour-liquid-solid method on 

specific locations on top of microhotplates that contain electrodes on their surface. This 

strategy allows overcoming one of the critical steps in the fabrication of nanowire-based 
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devices, the integration/contacting issue. P-type semiconducting behaviour, expected for 

the employed fabrication route, has been proven for the Ge NWs. 

 The resulting devices have been tested for the first time to the best of our 

knowledge as gas sensors towards oxygen, CO, NO2 and water vapour, showing stable 

and reproducible responses at low temperatures, up to 100 ºC. High response is obtained 

for water vapour, while for the other gases the resistance variation is small, providing 

gas selectivity to the devices. Sensing mechanisms have been proposed for the studied 

gases, which, for the case of oxygen, CO and NO2 are similar to those reported for other 

p-type semiconductor gas sensors. The mechanism against water dipoles is different, 

taking place as a physisorption process, attributed to the presence of phenyl groups at 

the surface. In these Ge NW-based devices, the 1 nm thick native GeOx layer 

surrounding the nanowires plays a key role in the sensing processes, providing the 

reaction sites for the different gas species and allowing the charge transfer from the 

semiconductor. The chemical stability of this oxide, even in the presence of large 

amounts of water vapour, assures the repeatability of the measurements. 
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6. INDIVIDUAL SNO2 NWS 

CONTACTED BY EBL 

 

 

 

 

 

 

Abstract 

A new methodology based on the use of Electron Beam Lithography for contacting 

individual nanowires on top of micromembranes and microhotplates has been 

developed. The different experimental steps, as the spin-coating of PMMA resist, 

electron exposure, and metallization of the patterned structures have been analysed and 

optimized. Furthermore, the fabrication and characterization of functional nanodevices 

have been demonstrated with prototypes of single nanowire-based gas sensors that show 

a reversible and remarkable response towards NH3 and NO2.  
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6.1 Introduction  

The requirement of high surface to volume ratio leads to the use of the nanowires as 

an optimal active material form in gas sensing. Gas sensors based on individual 

nanowires, on the other hand, allow to study and analyse the specific material response 

and the involved kinetics towards a gas, due to the well-defined surface and geometry of 

the nanowire [1]. Further benefit of such morphology is its considerably lower power 

consumption as compared to their bulk counterpart, attainable by an adequate device 

layout, allowing to match the limits required in mobile gas sensing applications [2].  

Dual-beam systems has been demonstrated as successful approach for contacting 

indivudla nanowires [3,4]. However, the technique is highly time consuming and 

requires several hours for contacting one single nanowire. Additionally, the Pt/C 

contacts importantly contribute to the overall resistance, due to the carbon content of the 

organometallic precursor.  

EBL appears, thus, as an alternative for the fabrication of nano-contacts to the 

nanostructures. Electron Beam Lithography, as a pattern transferring process, is 

nowadays, one of the fundamental techniques of nanofabrication. It is used in very 

different fields for fabrication of transistors, metallic tunnelling junctions or photonic 

crystals [5]. EBL has been used, besides, for fabricating gas sensors based on nano-

trenches by etching TiO2 [6], SnO2 [7] or Pd films [8], among others. The reported 

works, however, deal with multiple polycrystalline nanostructures, instead of a single 

one, and the process fabrication limits severely the wideness of the structures, which is 

higher than 200 nm. EBL is also employed for contacting individual nanowires, in order 

to fabricate field effect transistors using the nanowire as a channel [9-11].  

Few works are found, however, for resistive gas sensor purposes instead of a FET 

configuration. In these works, the process is performed on top of bulk substrates with no 

suspended structures and without an embedded microheater [12-14], i.e., the final 

devices either work at room temperature or are externally heated, which involves higher 

power consumption. At the best of our knowledge, this is the first time that nanowires 

are contacted on top of a microhotplate using this method for gas sensing purposes. 

The aim of this chapter, thus, is the development of a new method for fabricating 

gas sensors based on single nanowire, by means of Electron Beam Lithography, that 
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allows to overcome some drawbacks present in the Dual Beam approach. The main 

issues are the reduction of the required time for the contact fabrication, since the process 

allows to mount different substrates on the same support, and the fabrication of more 

conductive metal lines and contacts with a lower Schottky barrier.  

Tin dioxide nanowires have been chosen for this new approach, since among metal 

oxides, SnO2 is one of the preferred materials due to the easy fabrication technology, 

good crystallographic properties, good sensitivity and well known sensing interactions 

[15]. Furthermore, individual SnO2 one-dimensional nanostructures have been already 

characterized, being suitable to be compared to our previous works.  

 

 

Figure 6.1 a) Optical image of the suspended microhotplate; b) General view of the chip, which includes 

3 microhotplates; c) SEM image of one of the micromembranes, with a distance of 10 µm between the 

electrodes d) General view of the chip with 16 micromembranes. Both chips have been employed for 

contacting individual nanowires by means of EBL. 
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6.2  Experimental details 

As already explained in chapter 2, tin dioxide nanowires are grown by a CVD 

process in a cold-wall quartz reactor in which a high-frequency field is used inductively 

to heat the substrates (Si or Al2O3) by placing them on a graphite susceptor. The 

chamber temperature is kept at around 700°C and the process is catalysed by a Au layer 

of 3-5 nm thickness that forms nanoclusters when temperature is raised. The precursor 

used is 𝑆𝑛(𝑂𝑡𝐵𝑢)4 , which is introduced into the chamber in the gas phase, and 

decomposed on Au nanoclusters. More details on the growth of nanowires are given 

elsewhere [16]. 

The fabrication of the electrical nanosized contacts of the individual nanowires has 

been performed onto two different types of substrate: suspended microhotplates with 

alignment marks, whose optical image is shown in Figure 6.1 a), and micromembranes 

with a space between the electrodes of 100 µm (see Figure 6.1 b)). The details of the 

layer structure and the materials used for the fabrication of this type of substrates are 

described in section 2.5 of this dissertation. The deposition of NWs on top of the 

substrate and the design of the shape and the size of the contacts for the NWs are 

explained in section 2.4.2 

6.2.1 Uniformity of PMMA coating on chips 

The spin-coating of PMMA resist on top of the chips is an important step of the 

overall process, since the uniformity of the thickness of the resist depends on it. A non-

desired effect caused by the spin-coating is the so-called edge effect, which involves a 

small bead of coating thickness difference around the rim of the substrate. Since the 

fluid flows uniformly outwards, depending on the surface tension, viscosity of the 

solvent, and rotation rate, the edges of the chip may present a thicker coating.  

Therefore, the sizes of the chips are a relevant issue, since smaller chips may have 

an important part of the surface affected by the edge effect. The chips containing the 

microhotplates have a size of 1.2x3.4 mm2, and the chips with micromembranes have 

dimensions of 3x3 mm2. Usually, in order to achieve a uniform resist thickness that is 

not affected by the surface tension occurring at the edges of the substrate during the 

spin-coating, relatively large samples of at least 2x2 cm2 are required. However, due to 
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the limitations imposed by the wire-bonding of the chips onto TO-8 holders, which only 

accept chips of size below 1x1 cm2, and to the fact that for each membrane or hotplate 

we have to bond 4 or 6 wires and the TO-8 holder has 12 pins, we can only work with 

chips of the size indicated above.  

Thus, in order to reduce the edge effect, a stainless steel holder for the chips was 

designed and fabricated, which fits into the spin-coater. The upper surface of the chip 

and of the holder lie at the same height and, thus, the resist can be extended over the 

surface of the holder in a manner that the edge effects will only appear at the edges of 

the stainless steel holder (see Figure 6.2). Two rectangular pieces are screwed to the 

base of the holder, which embed the chip and fix it robustly. The edge effects in the chip 

are strongly reduced by this procedure; therefore, it has been used to fabricate the nano-

contacts that will be described in this chapter. 

Furthermore, the roughness of the surface of the chips affects the uniformity of the 

PMMA coating, since a valley in the surface may induce a thicker area of PMMA. In 

general, thicker layers of PMMA require higher electron acceleration voltages and doses 

for a complete exposure, which induces to a more important proximity effect, reducing 

the final resolution of the defined patterns. 

Therefore, the roughness profile of the suspended microhotplates has been studied 

by confocal microscopy. The whole chip was covered with a Au layer with a thickness 

of approximately 10 nm because the SiO2 layer on the suspended membrane does not 

reflect the white light employed by the microscope, and thus, the sample cannot be 

observed by the technique.  

 

Figure 6.2. Image of the holder used to extend the effective area at which the resist is deposited during the 

spin-coating process 
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Figure 6.3 a) 3-D image of a suspended microhotplate obtained by confocal microscopy. The central part 

is bent upward. Note that x-y axes are different from that of the z-axis; b) Topography map of the central 

part of the membrane, where the heater and electrodes are visible due to the distinct height at which they 

are found; c) Height profile from the segmented line remarked in b). The prominences observed, of 220 

nm height, are due to the heater. 

The 3-dimensional image of the topography measurements obtained by confocal 

microscopy is shown in Figure 6.3 a). Note that the x-y axes are on a different scale 

than the z axis. The central part of the suspended membrane is bent upward about 10 

µm, as it is also visible in the topography mapping represented in Figure 6.3 b), due to 

mechanical stress that suffers the structure after the bulk micromachining process.  

The segmented line in Figure 6.3 b) defines a profile line at the surface of the 

suspended membrane that is due to the heater, since the interdigitated electrodes do not 

reach the line. The topography profile is shown in Figure 6.3 c), which is caused by the 

heater, and supposes a difference in height of 220 nm. Thus, a first picture of the surface 

of suspended microhotplates is presented, showing non-negligible topography that will 

affect the PMMA coating profile. 



Chapter 6: Individual SnO2 NWs contacted by EBL 

   143 

 

The next step towards the implementation of the process is focused on how the spin-

coated PMMA onto suspended micromembranes is affected by the shown topography. 

The remaining profile of PMMA (950k A7) after being spin-coated on top of a 

suspended microhotplate has been studied by locally milling the sample in a Dual Beam 

Focused ion Beam system in order to obtain a cross-section view. A thin Au layer was 

sputtered before performing the cross-section to facilitate the observation of the PMMA 

layer edge. The SEM image of the central part of the membrane is shown in Figure 6.4, 

with the sample tilted by 52°. The picture corresponds to the central from the three 

membranes that each chip contains. The spin-coating was performed at 4500 rpm for 1 

minute and subsequently soft-baked for 1 minute at 180°C. After the spin coating, a 5-

10 nm thick Au layer was sputtered on the top of the resist in order to recognize the 

edge of the PMMA layer (bright zones in the upper part of the picture). At the right part 

of the picture, the heater and the electrode are clearly seen. The thickness of the PMMA 

layer on top of the heater region is visibly thinner (between 230 and 290 nm) than in the 

area with no underlying heater (thickness between 330 and 400 nm). 

 

 

Figure 6.4 Cross section SEM image of the central area of a suspended microhotplate with spin-coated 

PMMA on the top. The shown membrane corresponds to the central one out of the three present in the 

chip. The heater gives rise to a thinner resist on top of it, and the area between the heater lines involves a 

thicker PMMA layer. The scale and the distances are compensated for the tilt of the sample, which is of 

52°. 
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Figure 6.5 Left: Optical micrograph of one of the microhotplates showing the three regions from where 

cross-sections have been fabricated by FIB and that allow to measure the thickness of the PMMA. The 

resist was spin-coated at 4500 rpm for 1 minute on top of microhotplates. The thickness has been 

measured from a cross-section on three different points: A: on top of the electrode and the heater, on B: 

central part with no underlying heater or electrode, and C: outer part of the membrane, also with no 

underlying heater or electrode. The analysis has been made on the central membrane and the outer 

membranes of the chip. 

The change in the thickness of the PMMA layer is caused, thus, mainly by the 

heater, although the electrodes add also a smaller roughness. This effect is taken into 

account for the fabrication of the contacts, since a contact that follows the heater 

meander is more convenient in order to avoid a thick area of PMMA, which might not 

be completely electron exposed. 

The profile of PMMA has been studied in three different zones of the microhotplate 

by performing other similar cross-sections. The outer and the central microhotplates 

from the chip have been studied and the measured PMMA thickness is represented in 

Figure 6.5.  

The thickness of the PMMA layer has been found, from these measurements, to 

very slightly increase about 10 nm, in the outer zone of the membranes (C) compared to 

the central part (B), but this falls almost within the uncertainty of the measurement. On 

the other hand, no appreciable difference in thickness is found between the outer and the 

central membranes, proving that they are nominally equal. The main PMMA thickness 

different contribution is, however, the topography induced by the heater, which 

supposes a height difference of almost 100 nm. Thus, the height differences of about 

200 nm at the microhotplate’s surface before the deposition are reduced to almost 100 

nm after the PMMA spin coating at 4500 rpm. Consequently, the experimental 
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methodology should be able to successfully expose a PMMA layer with a changing 

thickness throughout the same microhotplate.  

6.2.2 Optimization of the fabrication parameters 

The final fabrication conditions and parameters, such as electron exposure, spin-

coating, and metallization thickness, that have been definitely chosen for the fabrication 

of the contacts to individual nanowires will be explained and justified in this section, 

based on the different observations obtained during the first fabrication procedures. 

 

 

Figure 6.6 SEM images of the Ti/Pt contacts fabricated by EBL: a) on a suspended microhotplate. A bad 

adherence due to the remaining resist, which is caused by an incomplete exposure, is shown in b) and c); 

d) Remaining resist after the lift-off on top of micromembranes; e) Detail of the contact on top of the NW 

and the electrode. 
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The first determinant of the approach is given by the diameter of the NWs, ranging 

between 50 – 80 nm. Therefore, the metal deposition has been chosen to have a 

thickness between 100-120 nm. Consequently, the resist coating should have a thickness 

of, at least, 400 nm to ensure a successful lift-off process. The PMMA resist coating 

that better fits the mentioned requirements is PMMA 950k A7 (7% dissolved in anisole 

and supplied by MicroChem; the PMMA dissolved in chlorobenzene is not used since 

anisole is much less toxic). Nominally, the spin-coating of this resist provides a range of 

400 to 800 nm nominally on a wafer, when spin-coated at 4000 to 1500 rpm, 

respectively. 

Thus, taking into account that the acceleration voltage of the electrons will be 20 kV 

and using the mentioned PMMA resist, different spin-coating speeds in the range of 

3000-4500 rpm were studied. The devices fabricated when PMMA spin-coated below 

3000 rpm showed a too high remaining thickness that caused an incomplete exposure 

and most part of the fabricated contacts were removed during the lift-off step. The most 

appropriate conditions for the PMMA deposition, in terms of a successful exposure and 

lift-off, have been found to be 4000 rpm for 1 minute. 

Under the mentioned conditions, and using an electron dose between 200 and 400 

µC/cm2, a bad adhesion of the metal layers has been observed. The SEM images 

included in Figure 6.6 show the metallization stripes that are, clearly, not well adhered, 

on top of one microhotplate (on a), b) and c)) and one micromembrane (on d) and e)). 

The local examination of the still visible metal contacts by Energy Dispersive X-Ray 

Spectroscopy (EDX) showed the presence of Ti and Pt layers, which, a priori, confirm a 

good adhesion of the metals at the oxide surface. Note that the contacts in Figure 6.6 a), 

b), c) and e) are located at the areas on top of the heater, which correspond to the thinner 

PMMA. The remaining PMMA visible in the areas where metal should have remained 

appears due to an incomplete exposure of the resist, a consequence of the low electron 

dose employed. 

As a consequence of the previously indicated, the electron dose was increased to 

600 µC/cm2 in order to ensure a complete exposure. On the other hand, the selected 

dose is sufficiently low to avoid PMMA to be converted into a negative resist, which 

takes place at doses around 3000 µC/cm2. 
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Figure 6.7. a) Scheme of the designed patterns for contacting the NW; b) SEM image of the final Ti/Pt 

contacts, taken after the lift-off process. Clearly, the proximity effect leads to a widening of the contacts. 

During the fabrication of the contacts to the individual nanowires, a widening of the 

final shape of the patterns, as compared to the designed ones, has been observed, which 

is attributed to the proximity effect. This is exemplified in Figure 6.7 a), where the 

pattern designed for contacting a nanowire on a micromembrane is represented. 

Subsequently, the metal deposition and the lift-off process resulted in the structure 

shown Figure 6.7 b), where the widening from both patterns is visible.  

 

Figure 6.8 a) SEM image of a Ti/Pt deposition whose resistance has been characterized. b) I-V curve of 

the Ti/Pt metallization indicated by the arrows on a). 
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This effect is non-desirable, and, in order to minimize it, the thickness of the resist 

should be reduced, or the acceleration voltage should be diminished [17], which also 

requires thinner resists for a complete exposure. Since the thickness cannot be reduced, 

as mentioned previously, the proximity effect cannot be avoided. 

A positive aspect, however, is that the nanowires are longer than 10 µm; hence, the 

fabricated contacts will be separated by several microns, and thus, the overlap of both 

contacts due to the proximity effect is easily avoided. Furthermore, the size of the 

patterns is not a critical issue in our approach, considering that the main requirement is 

to fabricate a metal contact that connects the NW and the electrode. 

Titanium and platinum have been used as metal layers for the fabrication of the 

contacts, since titanium provides a good adhesion to insulating materials, and platinum 

is not oxidized easily. The resistance of the Ti (20 nm)/Pt (80 nm) contacts has been 

characterized, obtaining a value between 150 and 300 Ω (see Figure 6.8), depending on 

the length and wideness of the contact, being negligible in comparison to the resistance 

of the nanowires, usually between hundreds of kΩ and hundreds of MΩ.  

The experimental tests performed to check the resistance of the metal depositions, 

together with the explained effects, allowed us to find the optimal conditions for the 

experimental procedure, which are given in detail in Table 6.1. The mentioned 

conditions have been successfully employed, besides, on both micromembranes and 

microhotplates. 

Table 6.1 Summary of the optimal parameters for the fabrication of contacts for NWs by EBL 

Acceleration voltage (kV) 20 

Aperture (µm) 20  

Spin-Coating 4000 rpm for 1 minute 

Soft-bake 180ºC, 60 s on a hotplate 

Exposure dose (µC/cm2) 600 

Magnification 1000 x 

Writing field size (µm2) 100x100 

Development 30s MIBK in IPA (ratio 1:2) + 30 s IPA 

Metal layers Ti (20 nm) / 80 nm (Pt) 
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An estimation of the time for contacting the NWs in one chip using the EBL process 

is about 2 hours, while for the five chips this may take approximately 6 h, allowing the 

fabrication of the contacts of about 15 NWs using this procedure, because one chip 

contains three MHP with their alignment marks. The metal deposition and lift-off 

process takes about 2 hours in total, thanks to the fact that these processes are done in 

parallel for all the chips. Comparing to the FIB methodology, which requires 1-2 h for 

contacting one single NW, the new approach reduces the fabrication time significantly. 

Furthermore, the low and repetitive resistance of the fabricated contacts is an advantage 

of the developed methodology when compared to the “platinum” deposits in the FIB, 

which give rise to a graphitic deposit with platinum inclusions. 

6.3 Results and discussion 

SEM pictures of three different SnO2 NWs with EBL-fabricated contacts are shown 

in Figure 6.9. A single NW, contacted on top of a microhotplate and with a diameter of 

50 ± 3 nm, is shown in Figure 6.9 a). The NWs on Figure 6.9 c) and e) have been 

contacted on top of micromembranes and have a diameter of 55±4 and 70±5 nm, 

respectively. The figures 6.9 b), d), f) and g) show the details of the fabricated structures 

with the sample tilted and at higher magnification to assure the coverage of the NW and 

also to quantify the roughness and the steps of the fabricated contacts created by the 

heater and by the surface electrodes. The parameters and conditions employed for the 

fabrication are the detailed in Table 6.1.  

6.3.1 Electrical characterization 

The contacted nanostructures have been electrically characterized at different 

temperatures in order to determine the type of contact formed between the deposited 

metals and the NW. I-V curves obtained at different temperatures for one specific 

nanowire are shown in Figure 6.10 a). 

In general, the junction between a metal and a semiconductor can introduce an 

energy barrier for the charge carriers crossing the junction, the so-called Schottky 

barrier that gives rise to an exponential I-V behaviour. The contact barrier height, 𝜙𝑏, at 
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a metal/n-type semiconductor junction is defined as the difference between the bottom 

of the conduction band of the semiconductor and the Fermi level of the metal: 

 

 

Figure 6.9. SEM pictures of SnO2 NWs contacted by EBL procedure, on top of a) and b) one 

microhotplate; c), d), e) f) and g) on top of micromembranes.  
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 𝜙𝑏 = 𝜙𝑚 − χs        (6.1) 

Where 𝜙𝑚 is the work function of the metal and χs is the electron affinity of the 

semiconductor. Since Ti has a low work function (3.84 eV), and the electron affinity is 

around 4.9 eV in SnO2 [18], there should result no barrier and the junction is expected 

to be Ohmic [19]. 

However, the I-V curves measured are not ohmic, since at low voltages the I-V 

curve cannot be fitted to a linear behaviour, but neither to an exponential one. 

Additionally, the curves are asymmetric, being the device more conductive at negative 

voltages. Furthermore, the current increases with temperature, as it is represented in 

Figure 6.10 b), with a subsequent reduction of resistance with temperature, as expected 

for a semiconductor. It is important to notice that the measured resistance values are 

relatively high, in comparison to other electrical measurements of single tin dioxide 

nanowire contacted by FIB [4,20].    

The non-Ohmic behaviour can be attributed to the poor electrical contacts, probably 

due to a the oxidation of the metal, which has been observed by Ti and Cr layers, the 

most common materials used as adhesion layer [21]. Besides, chemical impurity 

residues at the semiconductor/metal interface can give rise to the non-ohmic behaviour, 

which could be originated from organic solvents. This effect is consistent with the high 

resistance observed for the nanowires. 

 

Figure 6.10. a) I-V curves at different temperatures from a SnO2 NW contacted on top of a microhotplate; 

b) Resistance as a function of temperature, taken as R=V/I with I=1 nA. 
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 In order to improve the quality of the contacts and achieve a low resistance Ohmic 

contacts, an oxygen plasma cleaning process is proposed to be carried out after the 

development of the resist and before the deposition of the metals, as reported in [21]. 

6.3.2 Response towards NH3 

Individual SnO2 NWs have been studied towards different concentrations of 

ammonia in synthetic air. The same gas sequence alternating ammonia and synthetic air 

has been used at different temperatures, as it is represented in Figure 6.11 a). The 

adsorption of ammonia reduces the resistance of the single NW proportionally to the 

concentration, as can be observed in the same figure. The response of the sensor is 

defined as follows: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(%)  =
𝑅𝑎𝑖𝑟−𝑅𝑁𝐻3

𝑅𝑎𝑖𝑟
      (6.2) 

The steady state response shown by the nanowire as a function of ammonia 

concentration is represented in Figure 6.11 b). The maximum response shown by the 

NW reached a value of 75% for 20 ppm of NH3 at 200 °C. The response at 400 °C is not 

included in the figure due to the abnormal behaviour observed during the ammonia 

exposure, which almost cancels the response of the response at this temperature.  

Since the study on the ammonia sensing of the SnO2 NWs network detailed in 

Chapter 4 has been performed in similar ranges of temperatures and concentrations, the 

results obtained here will be compared with those of chapter 4.  

The maximum response of the locally grown tin dioxide nanowires is 36%, at 400 

°C for 40 ppm of ammonia in dry air, which is considerably lower response than for the 

the single nanowire contacted by EBL. Both sensors demonstrate different kinetic 

behaviour on the ammonia oxidation, since the response is maximum at different 

temperatures.  

Note, that the nanowire’s resistance at 400 °C is diminishes initially when ammonia 

enters in the measuring chamber, followed by a slow rise of the resistance. This 

tendency has been also observed in the network of nanowires at 400 and 450°C. This 

effect is more pronounced in single NW, resulting in an almost negligible response at 

this temperature, and as explained in Chapter 4, is caused by the oxidation of ammonia 

to nitric oxide according to the following reaction: 
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 𝛼2𝑁𝐻3 (𝑔) + 5𝑂𝛼 (𝑠)
− → 𝛼2𝑁𝑂(𝑔) + 𝛼3𝐻2𝑂(𝑔) + 5𝑒−            (6.3) 

Nitric oxide is oxidized to NO2 and, then, chemisorbed at the surface, causing the 

increase in resistance as described by the following two subsidiary reactions: 

 2𝑁𝑂 (𝑔) + 𝑂2 → 2𝑁𝑂2(𝑔)       (6.4) 

 𝑁𝑂2 (𝑔) + 𝑒− → 𝑁𝑂2(𝑠)
−        (6.5) 

 

 

Figure 6.11 a) Resistance change of individual NW towards different ammonia exposure of 1 hour, at 

four different temperatures; b) Measured response represented as a function of ammonia concentration. 

The response obtained at 400°C is not shown due to an abnormal behaviour that almost cancels it; c) 

Arrhenius plot of the response time, represented for pulses of 10 and 20 ppm of NH3. Symbols are the 

experimentally obtained values and lines are the exponential fittings. 
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However, another effect is observed on individual nanowire that has not been 

observed in the SnO2 nanowires network. The sensor resistance increases when 

ammonia is removed from the chamber, followed by a slow reduction, as can be 

observed from Figure 6.11 a). Both abnormal effects were observed in ammonia sensing 

using nanocrystalline WO3 powders at temperatures above 300°C [22,23]. The second 

effect is attributed to the remaining chemisorbed NO2 molecules, which are desorbed 

more slowly than ammonia molecules at those temperatures. Therefore, after the 

ammonia removal, NO2 molecules are still adsorbed at the surface; the subsequent 

desorption of nitrogen dioxide leads to the decrease in resistance. Consequently, for 

practical applications, that temperature regime should be avoided in order to operate a 

reliable ammonia sensor. 

Regarding the kinetic properties, the individual nanowire sensor shows a response 

time towards 20 ppm of ammonia of less than 2 minutes at 300 ºC, a smaller value than 

the one measured for the network of NWs at the same temperature (about 5 minutes). A 

possible explanation is that the latter contains multiple nanowires, distributed in a 

network to which the gas adsorbate must diffuse and be adsorbed. The diffusion thus, 

takes place more slowly than in the single nanowire-based sensor, resulting in a longer 

response time. 

An Arrhenius plot of the response time as a function of the inverse of the 

temperature is represented in Figure 6.11 c), which can be fitted to an exponential 

dependence according to: 

 𝜏 = 𝜏0 exp (
𝐸𝑎𝑐𝑡

𝑘𝐵𝑇
)        (6.6) 

The activation energy obtained from the fitting is Eact=0.23±0.01 eV, for which the 

data between 150 and 300 °C have been employed. A linear behaviour in the Arrhenius 

plot implies that the same sensing mechanism takes place over the whole temperature 

range, which, as it was discussed in Chapter 4, can be described by two concurring 

reactions: 

 𝛼2𝑁𝐻3 (𝑔) + 3𝑂𝛼 (𝑠)
− → 𝛼𝑁2(𝑔) + 𝛼3𝐻2𝑂(𝑔) + 3𝑒−             𝑇 < 300 °𝐶 (6.7) 

 𝛼2𝑁𝐻3 (𝑔) + 4𝑂𝛼 (𝑠)
− → 𝛼𝑁2𝑂(𝑔) + 𝛼3𝐻2𝑂(𝑔) + 4𝑒−          𝑇 < 300 °𝐶 (6.8) 
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From the experimental data, we can only ensure that this mechanism takes place up 

to 300 °C. At 400 °C, because of the unstable response time, one cannot assure whether 

we are still in the same regime, although the abnormal behaviour at that temperature 

suggests that the promoted mechanism is described by equation (6.3). The measured 

activation energy, however, is lower than in the case of network of SnO2 (0.35 eV) and 

the reported value (0.74 eV) in [24]. 

The results presented are consistent with a similar work, where the response of a 

single tin dioxide nanowire was analysed towards ammonia [25]. The response was 

found to be maximum at temperatures between 210 and 250 °C, similarly to the results 

presented in this work. The activation energy in that study (0.5 eV) was higher than the 

one obtained here. 

6.3.3 Response towards NO2  

The sensing behaviour of individual nanowire towards nitrogen dioxide diulet in air 

has also been studied. The exposure towards NO2 strongly increases the resistance of 

the single NW, as represented in Figure 6.12 a). Different temperatures have been used 

during the sensing experiments towards nitrogen dioxide. The response is obtained 

according to the following: 

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(%)  =
𝑅𝑁𝑂2−𝑅𝑎𝑖𝑟

𝑅𝑎𝑖𝑟
      (6.9) 

The measured response as a function of the NO2 concentration is shown in Figure 

6.12 b). The relative change towards 250 ppb of NO2 is notably high, reaching a value 

of 300%. On the other hand, the response is maximized at 300°C for all the 

concentrations, as represented in Figure 6.12 b). This temperature is in agreement with 

[26], which observed the same temperature at which the response is promoted. On the 

other hand, in other sensors employing single SnO2 NW contacted by FIB, a 

temperature of 200 °C was observed [27].  

The shortest response time is reached during the pulses with the maximum NO2 

concentration, 2000 ppb, acquiring a value of 3 minutes at 400°C. Response time of 

approximately 7 minutes are obtained at a temperature of 300 °C. 
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Figure 6.12 Resistance evolution of individual tin dioxide nanowire, contacted by EBL, towards different 

NO2 exposures in synthetic air at 4 different temperatures; b) Response of individual as a function of the 

temperature, for the different concentrations of NO2.  

Comparing to the mesh of SnO2 NWs, summarized in Chapter 4, the response of the 

network reaches the 30% as maximum towards 5 ppm, i.e., shows a response two orders 

of magnitude below than the single NW. Furthermore, the response time is longer in the 

case of the mesh of NWs. Therefore, the response against NO2 is consistent with the 

results obtained in the study towards ammonia, demonstrating a higher response and 

shorter response time for the individual NW-based sensor. As mentioned previously, the 

easier diffusion provides a shorter response time.  

6.4 Conclusions 

Individual SnO2 nanowires have been contacted by Electron Beam Lithography on 

top of microhotplates and micromembranes. A changing thickness of the resist has been 

observed, due to the roughness of the surface of the micromembrane. Thus, an optimum 

set of experimental parameters has been obtained from the preliminary studies: spin-

coating conditions of the PMMA resist (4000 rpm), of the exposure dose (600 µC/cm3) 

and the metal thickness (100 nm), which are valid for contacting NWs with diameters 

up to 80 nm.   

The fabricated nanodevices have been studied as gas sensors at different 

temperatures and towards both oxidizing and reducing gases, showing a stable response 

towards ammonia and nitrogen dioxide in air. The sensing mechanism towards NH3 is 

consistent with the results obtained with multiple tin dioxide nanowires. The ammonia 
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oxidation towards nitric oxide specie is promoted at 400 °C, a temperature slightly 

lower than the exhibited by network of NWs. Single NW devices have shown faster 

response than their mesh counterpart, in ammonia and nitrogen dioxide studies, 

attributed to the easier diffusion of the gas. 
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7.1. General Conclusions 

Different objectives were proposed at the starting of this thesis. Part of them were 

related to the process fabrication and integration of NWs, and others were focused on 

the study and analysis of the sensing mechanisms, and thus, on the optimization of the 

fabricated devices. 

All the sensors have been fabricated on top of microhotplates or micromembranes, 

which allows to heat them to the appropriate operative temperature range for gas 

sensing, requiring supply power between few mW and up to tens of mW, depending on 

the employed substrate. Thus, low power devices have been successfully fabricated, 

fulfilling one of the main actual requirements for gas sensors.  

7.1.1. On the fabrication process 

Two different configurations of active layers of gas sensors based on nanowires 

have been fabricated: meshes of NWs and individual NW. 

1. CMOS compatible growth of meshes of NWs has been carried out on top of 

microhotplates and micromembranes. The growth is a simple, scalable and cost 

effective strategy, which gives rise to a localized and site-specific growth of 

NWs on the sensing part of the electronic platform, i.e., confined in the heated 

area. Ge and SnO2 nanowires have been grown using this methodology. The 

locally grown nanostructures have shown to be single-crystalline, being 

equivalent to the nanowires grown by a standard CVD method. 

The growth is a mask-less process, and involves a severe reduction of the power 

consumption (few to tens of mW) and of the growth time compared to a 

standard CVD process. The innovative approach is a first step towards the 

fabrication of single crystalline nanowire-based gas sensors devices. 

2. Gas sensors based on individual SnO2 nanowires have been developed, by 

fabricating metal contacts to them through an Electron Beam Lithography 

procedure on top of microhotplates and micromembranes.  

The microhotplates and micromembranes, presenting an important roughness at 

the surface, have been characterized in order to solve the specific problems 
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derived from this fact, that would conduct to an incomplete resist exposure due 

to the changing thickness of the resist.  

The fabrication procedure has been demonstrated as a successful approach for 

contacting individual NWs with a diameter below 80 nm. Metal contacts with 

low resistance have been fabricated, a clear advantage compared to the contacts 

fabricated by FIB, which is the reference technology of the research group. 

Additionally, the here presented approach represents an important reduction of 

the fabrication time compared to FIB methodology. 

7.1.2. On the sensing performance 

The fabricated devices based on NWs have been characterized as gas sensors, and 

the sensing mechanisms have been analysed. The following conclusions have been 

obtained from the gas sensing measurements: 

Network of SnO2 NWs 

1. The sensing mechanisms towards ammonia, when diluted in dry and humid air, 

have been elucidated. The analysis of the sensor kinetic response has been 

performed in the range between 150 and 450 ºC, with the maximum response 

being obtained at 300 ºC. 

In dry conditions, the promotion of NO byproduct reduces the response of the 

sensor at temperatures above or equal to 450 ºC. When operating in humid 

conditions, the response towards ammonia diminishes due to the behaviour of 

water vapour and ammonia competing for the same adsorption sites. The 

activation energy of ammonia oxidation is lowered in humid conditions, which 

is attributed to the reaction of O2 and OH adsorbed groups, facilitating the 

oxygen dissociation. 

2. The response towards NO2, CO and oxygen has been studied. The response 

towards this gases, has been demonstrated to be lower than ammonia, and when 

operating at 400 °C, the maximum response is enhanced against ammonia in dry 

conditions. 
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Single SnO2 nanowire 

1. The fabricated devices have been characterized towards ammonia, showing the 

same sensing mechanisms as the meshes of tin dioxide NWs, but at lower 

temperatures. In these sensors, the NO byproduct is promoted at 400ºC, and the 

optimum response is obtained at 300ºC.  

2. The single NW-based sensors have shown faster response than their mesh 

counterpart towards NO2 and NH3. This is attributed to the easier diffusion of 

the gas in these devices due to the fact that all the surface is exposed to the gas. 

3. The sensors show are more ohmic behaviour at lower temperature that their FIB-

fabricated counterparts and their resistance lies in an interesting range for 

combining the devices with low-cost low-power portable electronic boards. 

 

Network of Ge NWs 

1. For the first time, Ge NWs have been studied as gas sensor. The p-type 

behaviour of the NWs has been experimentally observed.  

2. The GeOx shell around the Ge core plays a key role in the sensing mechanisms, 

providing the reaction sites for the charge transfer with the gas species, and at 

the same time, allowing the charge transfer from the semiconductor. 

3. The pre-adsorption of oxygen has been demonstrated to be necessary for the 

sensing of CO, determining the sensing behaviour as a p-type metal oxide 

sensor. 

4. The operating temperature needs to be kept equal or below 100 ºC to ensure a 

stable Ge oxide shell and, thus, a stable gas sensing device. This stability is 

supported by the TEM investigation that confirms that the GeOx shell is stable 

up to one week at 100 ºC in air. 

5. The sensing of water vapour differs form that of metal oxides and takes place by 

a physisorption process of the water dipoles, but in an unusual configuration, 

with the hydrogen atoms pointing towards the wire and the oxygen atom moving 

away from the nanowire. The physisorption is attributed to the low temperature 

employed on the gas sensing, induced by the presence of phenyl groups at the 

surface.  No competing mechanism nor interaction of water vapour with oxygen 

has been observed. 
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7.2. Future work 

In the following, some routes are proposed to continue and further extend the innovative 

and promising processes developed in the thesis. 

Extending the site-specific growth of NWs 

The localized growth of NWs can be extended to the synthesis of other metal oxide 

materials. The versatility of the technique allows to grow different materials using the 

integrated process on the same chip, just by flowing different precursors in different 

stages, and heating micromembranes or microhotplates at each stage to the optimum 

growth temperature, calibrated using a standard CVD furnace. 

 Thus, the fabrication of NW-based meshes of different materials on the same chip 

allows to fabricate an integrated electronic nose. The different materials will show a 

specific response towards each gas mixture, which leads to an improvement of the 

specificity, one of the main challenges of the gas sensors, by creating a nano-e-nose 

(nano electronic nose). 

Localized growth of a single NW 

The fabrication of nanosized patterns by EBL on top of micromembranes can be 

combined with the localized growth procedure to induce the growth of nanowires on 

specific areas of the hotplate, determined by the predefined pattern. Fabricating small 

patterns made of Au, as a catalyst for the growth, of few tens of nanometers, the growth 

of individual nanowires might be carried out.  

The application of a local electric field during the growth, using for instance, two 

electrodes on microhotplates containing four electrodes, may allow the addressing of the 

growth of a single NW from one contact to the other, and thus, grow locally one 

individual nanostructure eliminating several complicated steps as the transferring, and 

post-contacting. 

Germanium NWs 

More research efforts must be carried out in order to obtain a better understanding of 

the sensing mechanisms of Ge NWs. The presence of phenyl groups at the surface has 

been proposed to induce the adsorption of water dipoles; however, no experimental 

evidence has been obtained. The direct experimental observation through XPS, for 
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instance, or by FTIR measurements in transmission mode can contribute to provide their 

deeper comprehension. 

Furthermore, the study of n-type Ge NWs as gas sensor may add clarity to the 

understanding of the sensing mechanisms. As pointed in Chapter 5, the n-type Ge 

nanowires were reported to be more easily oxidized than p-type NWs; therefore, new 

studies on maintaining a stable GeOx layer would be required. On the other hand, the 

NWs may exhibit different properties, since n-type gas sensors show generally higher 

response than p-type semiconducting sensors. The comparison of both nanowires, 

additionally, could provide a better understanding on this concept, since few 

semiconductors that act as a gas sensor can be doped to provide both conductive 

behaviours.  

EBL procedure 

The deposition and alignment of NWs by means of dielectrophoretic forces, by 

applying an alternating field on a microhotplate, allows the deposition of single or 

multiple NW between the electrodes. Thus, the final step consisting in the fabrication of 

the metal contacts, in order to ensure a successful conduction path with the electrodes, 

can be carried out easily with the EBL procedure, which may be almost automatized. 
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Introducció 

La qualitat de l’aire és actualment, una preocupació per a les institucions 

governamentals [1]. La presència de pol·lució i de gasos perjudicials per a la salut és la 

primera causa mediambiental de mort prematura a la Unió Europea [2]. Així doncs, la 

detecció en temps real de gasos tòxics, i partícules en suspensió a ambients exteriors i 

interiors, és necessari per tal d’activar les mesures de seguretat corresponents en cas de 

superar el llindar màxim d’exposició referent al gas perjudicial. 

Els sensors de gas són emprats en diferents àmbits, com per exemple, en la 

monitorització de la qualitat de l’aire o en aparcaments subterranis, on els sensors 

encenen els sistemes de ventilació que extreuen CO acumulat a l’interior. Altres 

aplicacions es poden trobar en els tubs d’escapament dels automòbils, o en fàbriques on 

es manipulin productes químics, el risc de fuga dels quals suposa una amenaça per a la 

salut dels treballadors [3]. 

En aquest sentit, actualment es poden trobar diverses tecnologies emprades per a la 

fabricació de sensors de gas. Una de les més importants es basa en òxids metàl·lics, 

materials semiconductors de banda prohibida ampla, d’entre 2 i 4 eV [4]. Aquesta 

tecnologia ofereix baix cost, comparat amb altres metodologies com els sensors òptics o 

cromatògrafs. Els avantatges d’aquests sensors radiquen en la simplicitat de la 

transducció de la quantitat química i la possibilitat d’integració en la tecnologia CMOS 

[5]. 
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Els sensors resistius basats en òxids metàl·lics es fonamenten en un canvi en la 

conductivitat, o conseqüentment, de la resistència del sensor degut a la presència d’un 

gas que és adsorbit a la seva superfície. La interacció entre el gas adsorbit i el 

semiconductor involucra un intercanvi de càrrega que requereix, generalment, d’una 

temperatura superior a l’ambient per tal promoure-la [6]. La càrrega provinent del 

semiconductor indueix un canvi en la conductivitat superficial del material, que podrà 

ser detectada com a canvi en la resistència del material en la mesura que l’efecte 

superficial contribueix al volum del material [7]. Per tant, una gran relació superfície-

volum del material aportarà una gran sensitivitat al sensor . 

Així doncs, degut a la seva alta relació superfície volum, les nanoestructures són, 

unes candidates òptimes per a ser emprades com a sensors de gas. Entre elles, destaquen 

els nanofils d’òxids metàl·lics [8], que van ser utilitzats per primera vegada amb aquesta 

finalitat fa més d’una dècada [9], i des d’aleshores, s’han realitzat importants esforços a 

nivell de recerca per tal, per una banda, millorar la comprensió dels mecanismes de 

sensat involucrats, i per l’altra, aprofundir en els processos de síntesi, fet que ha portat 

al desenvolupament de noves rutes de síntesi, i una millora en el control de la forma, 

diàmetre i ràtio diàmetre/longitud dels nanofils [10]. 

Un dels principals desafiaments per a la comercialització de sensors de gas basats en 

nanofils és la integració d’aquests en dispositius electrònics de forma que sigui un 

procés repetible i escalable, en el que el temps i els costos de fabricació siguin moderats 

[11]. 

Objectius de la tesi 

Aquesta tesi s’emmarca en la utilització de nanofils d’òxids metàl·lics per a fabricar 

sensors de gas de baix consum. El principal objectiu d’aquesta tesi és la millora i 
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optimització d’aquests sensors, sota un dels punts fonamentals, la integració senzilla 

dels nanofils en dispositius de baix consum. A més, els sensors han estat caracteritzats 

per tal d’analitzar els mecanismes físics i químics de sensat, i en conseqüència, 

aconseguir l’optimització dels mateixos dispositius. 

Els principals objectius es poden resumir de forma breu en els següents punts: 

1. Creixement localitzat de nanofils sobre microplataformes calefactores. El 

mètode es basa en la integració de la síntesis dels nanofils realitzada de forma 

directa a l’àrea definida entre els elèctrodes per mitjà de deposició química de 

vapor (Chemical Vapour Deposition), de forma localitzada, obtenint com a 

resultat una xarxa de nanofils. Immediatament després del creixement, els 

nanofils poden ésser mesurats i emprats com a sensor de gas, sense requerir un 

post-procés. 

Nanofils de SnO2 i de Ge han estat crescut a través d’aquest procés 

innovador. Els sensors fabricats a través d’aquesta ruta han estat analitzats 

envers diferents gasos. Els nanofils de Germani han estat estudiats per primera 

vegada, segons el nostre coneixement, com a sensor de gas. 

 

2. Utilització de microdispositius de baix consum. La fabricació dels sensors de 

gas es realitza sobre microplataformes calefactores o micromembranes, 

corresponents a sistemes microelectromecànics (MEMS per les seves sigles en 

anglès).   

 

3. Nova metodologia per a la fabricació de sensors basats en nanofils individuals 

sobre microplataformes calefactores. Un nou procediment ha estat desenvolupat 

basat en la litografia per feix d’electrons (EBL  per les seves sigles en anglès).  
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Resultats i discussió 

Creixement localitzat de nanofils de SnO2 i Ge 

El mètode localitzat de síntesi dels nanofils es basa en un mecanisme Vapor-Líquid-

Sòlid, en una àrea localitzada en micromembranes i microplaques calefactores. Les 

microplaques calefactores i micromembranes contenen uns microcalefactors que 

permeten escalfar la superfície de la membrana fins a 450 i 750 °C respectivament. En 

aquest procediment, una capa prima i discontínua d’or (de gruix entre 1-3 nm,). Aquesta 

capa, quan és escalfada a la temperatura de descomposició del precursor actua com a 

catalitzador i com a suport per la nucleació del creixement. Els xips són muntats en 

suports tipus TO-8 en una cambra de quars, en el que flueix el precursor per a la 

posterior termòlisis localitzada del mateix, que dóna lloc al creixement de nanofils.  

Els nanofils de SnO2 són sintetitzats a partir del precursor sòlid Sn(OtBu)4, el qual 

sublima en les condicions de buit emprades. Els nanofils de Ge són sintetitzats a partir 

del precursor líquid H2Ge(C6H5)2. Les temperatures de creixement són 400-420 °C pels 

nanofils de Ge, i 700-750 °C per els nanofils de SnO2. La pressió mantinguda durant el 

creixement es troba en un buit relativament baix, al voltant de 4·10-2 mbar.  

Els nanofils de SnO2 han estat caracteritzats a través de microscòpia electrònica 

d’electrons, mostrant una estructura monocristal·lina tetragonal (rutil), amb una direcció 

de creixement [101]. Els nanofils de Ge són monocristal·lins amb una fase cristal·lina 

cúbica, i un creixement predominant al llarg de la direcció [111].  
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Creixement localitzat de nanofils de SnO2 per sensat d’amoníac en aire 

humit 

Les xarxes de nanofils de SnO2 han estat emprades per estudiar els mecanismes de 

sensat de gas envers NH3 diluït en aire sec i humit, envers concentracions d’entre 10 i 

40 ppm d’aquest gas, una valors concentracions  entre els que es troba l’exposició 

màxima recomanada per l’Organització Mundial per la Salut [2]. 

Els mecanismes de sensat han estat analitzats a diferents temperatures en aire sec i 

aire humit. La cinètica de la resposta ha estat estudiada, i parametritzada segons 

l’equació d’Arrhenius, observant així diferents règims en temperatura dels mecanismes. 

Aquests es troben relacionats amb la oxidació dels elements amb contingut de nitrogen 

provinents de la anomenada oxidació d’amoníac per part del diòxid d’estany. La 

presència de vapor d’aigua en el sensat d’amoníac fa disminuir la resposta de l’últim, ja 

que ambdós competeixen per els mateixos llocs d’absorció. A més, la pressió parcial de 

vapor d’aigua és 3 ordres de magnitud major que la d’amoníac, motiu pel qual 

l’adsorció es veu afavorida. 

La resposta del sensor és estable i reversible, i mostra uns temps de resposta al 

voltant de 2 min. A més, el sensor ha estat caracteritzat envers NO2, CO a diferents 

temperatures, observant una resposta superior envers NH3 mantenint una temperatura de 

400 °C. 

Sensors de baixa temperatura basats en nanofils de Ge  

Els nanofils de Ge han estat caracteritzats per primera vegada, com a sensor de gas 

envers espècies oxidants i reductores en aire sintètic. 
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Els nanofils de Ge han estat elèctricament estudiats, sota una configuració de 

transistor d’efecte camp, emprant les mateixes microplaques calefactores sobre les que 

s’han sintetitzat els nanofils. S’ha observat que els nanofils crescuts són semiconductors 

tipus p, atribuït a la incorporació del catalitzador de Au a l’estructura del nanofils, els 

quals creen nivells acceptadors a la banda prohibida del Ge [12]. 

A través de microscòpia de transmissió d’electrons, ha estat observat una capa 

amorfa d’òxid de Ge (GeOx) a la superfície del nanofils, amb un gruix 

d’aproximadament 1 nm. Aquesta capa ha estat caracteritzada després d’escalfar els 

nanofils durant una setmana a 100°C en aire, després del qual l’òxid de germani ha 

mantingut el gruix. L’obtenció d’un gruix estable de l’òxid de Ge és de rellevant 

importància, doncs com a material dielèctric pot influir decisivament en la transferència 

de càrrega entre els gasos i el semiconductor. 

Així doncs, els dispositius han estat estudiats com a sensor de gas a una temperatura 

de 100 °C, observant una resposta envers O2, CO, NO2 i H2O. Els sensors de Ge 

mostren una clara resposta envers CO diluït en aire, mentre que aquesta és quasi nul·la 

quan el gas reductor es troba diluït en nitrogen. Per tant, l’intercanvi de càrrega 

requereix la pre-adsorció d’oxigen a la superfície. Aquest tipus de resposta és consistent 

amb el model de sensor de gas semiconductor tipus p. 

La resposta envers vapor d’aigua, ha estat estudiada a la mateixa temperatura, 

donant lloc a la mateixa resposta quan aquesta és diluïda en nitrogen o en aire sintètic. 

Aquest fenomen és atribuït a la fisisorció dels dipols formats per la molècula de vapor 

d’aigua, que dóna lloc a la resposta més important d’entre les estudiades.  
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Nanofils individuals de SnO2 contactats per litografia per feix 

d’electrons 

Una nova metodologia basada en l’ús de litografia per feix d’electrons per a la 

fabricació de contactes per a nanofils individuals en microplaques calefactores suspeses 

o micromembranes ha estat desenvolupat. 

Els nanofils individuals, donat que tenen una geometria ben definida  i coneguda, 

permeten l’estudi de les interaccions del material amb els gasos adsorbits a través d’una 

configuració més senzilla. A més a més, si els nanofils son monocristal·lins, permeten 

la conducció dels electrons sense la presència de barreres intergranulars. 

El procés de contactat dels nanofils es divideix en diferents passos, un cop els 

nanofils ja són dipositats sobre les membranes, resumits en:  

i) Recobriment per rotació (spin-coating) de la resina PMMA sobre els dispositius. 

ii) Exposició via feix d’electrons dels contactes predissenyats sobre les membranes, 

amb conseqüent revelat de la resina. 

iii) Dipòsit de les pel·lícules metàl·liques (Ti/Pt) i  posterior lift-off de la resina. 

El perfil i rugositat superficial de la membrana ha estat estudiat mitjançant 

microscòpia confocal, mostrant un desnivell de fins a 220 nm, degut a la presència del 

microcalefactor enterrat a la capa de Si3N4 [13]. El perfil de la resina després del spin-

coating ha estat caracteritzat, observant importants diferències en el gruix causat pel 

mateix motiu. Així doncs, el procés de fabricació dels nano-contactes ha estat optimitzat 

i adaptat fins a trobar els paràmetres de fabricació que han permès fabricar sensors de 

gas basats en nanofils individuals de SnO2. La fabricació té diferents avantatges si es 

compara amb la metodologia de feix d’ions focalitzat (FIB), la tècnica de referència per 
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a la fabricació d’aquests dispositius desenvolupada en el departament, en el que es 

fabriquen contactes de Pt/C altament resistius. 

Els sensors han estats caracteritzats elèctricament, mostrant un comportament no 

òhmic de forma inesperada, doncs les juncions metall/semiconductor com Ti/SnO2 no 

donen lloc a una barrera Schottky. El comportament no lineal és atribuït a restes 

orgàniques presents al nanofil, degut a restes de la resina o de productes emprats del 

revelat. 

Els sensors han estat caracteritzats com a sensor de gas, mostrant un comportament 

envers amoníac en aire sintètic que és consistent amb el comportament mostrat per 

xarxes de nanofils de SnO2 mostrats en el capítol 4 de la present tesi. 

Conclusions 

Vers els processos de fabricació 

1. En aquesta tesi ha estat realitzat per primer cop, el creixement localitzat de 

xarxes de nanofils de SnO2 i Ge via un procés de dipòsit via CVD a sobre de 

microdispositius, mitjançant un procés escalable i que va un pas més enllà en la 

integració de dispositius basats en nanofils. Els nanofils crescuts són 

monocristal·lins, i són cristal·linament idèntics a les estructures crescudes amb 

processos estàndards de creixement. 

2. La fabricació de sensors de gas basats en nanofils individuals de SnO2 sobre 

microplaques calefactores ha estat implementat mitjançant litografia per feix 

d’electrons. Els substrats litografiats han mostrat important rugositats, que han 

estat caracteritzades per tal d’adaptar-hi el procés . 
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3. El procés de fabricació ha demostrat ser exitós per a nanofils amb diàmetre 

menor de 80 nm. Els contactes fabricats són de baixa resistència, que 

proporcionen una clara avantatge respecte la metodologia de fabricació per FIB. 

Vers els mecanismes de sensat de gas 

 Xarxes de nanofils de SnO2 

4. La resposta de les xarxes de nanofils SnO2 respecte la presència de NH3 han 

estat estudiats en un rang de temperatures entre 150 i 450 ºC , mostrant la 

promoció de NO com a producte a temperatures superiors a 450 ºC. Aquest fet 

redueix la resposta del sensor.  

5. En condicions humides, la resposta es veu reduïda, degut a la competició entre 

les molècules de vapor d’aigua i amoníac pels mateixos llocs d’adsorció. 

L’energia d’activació de l’oxidació d’amoníac es veu disminuïda en condicions 

humides, fet atribuït a la reacció de l’oxigen amb els grups hidroxils adsorbits, 

facilitant la dissociació del primer. 

 Xarxes de nanofils de Ge 

6. Els nanofils de Ge han estat mesurats com a tipus p a través de mesures d’efecte 

de camp realitzades emprar la microplaca calefactora com a transistor. 

7.  El mecanisme de sensat de gas dels nanofils de Ge ha estat identificat com el 

d’un sensor semiconductor (òxid metàl·lic) de tipus p.  

8. L’òxid de Ge present a la superfície dels nanofils juga un paper clau en el sensat 

de gas. Els dispositius s’han mantingut a una temperatura de 100 ºC per tal de 

mantenir un gruix estable de l’òxid.  

9. L’adsorció dels dipols formats per les molècules de vapor d’aigua a l’esmentada 

temperatura és atribuïda a un procés de fisisorció, en el que l’hidrogen queda 
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orientat en direcció a la superfície del nanofil. Aquest procés és possible mercè a 

la presència de grups metils a la superfície del nanofil provinent del procés de 

creixement.  

 

Nanofils individuals 

10. Els nanofils de SnO2 individuals fabricats per litografia per feix d’electrons, 

segueixen el mateix comportament que les xarxes de nanofils en el mecanisme 

de reacció respecte l’amoníac. La promoció d’òxid nítric com a producte és 

promogut a 400ºC. 

11. Els sensors basats en nanofils individuals mostren una resposta més ràpida i 

superior en valor relatiu que les xarxes de nanofils vers NO2 i NH3. El fenomen 

s’atribueix a la difusió del gas, que es veu facilitada en els sensors de gas 

individuals. 
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