
CHAPTER 2: Vector Smooth Transition Regression Mod-

els for US GDP and the Composite index of Leading Indica-

tors

1 Introduction

Much e¤ort has been devoted to evaluate how well time series models represent real US

output and to connect the evolution of this series with the business-cycles phenomenon.

Additionally, many authors have tried to improve the accuracy of univariate models of

output in two ways. First, by using nonlinear models that try to capture the possible

nonlinearities in output dynamics. Second, by including certain variables that incorporate

additional information about output features. In this paper, we are interested in examining

the (possible nonlinear) accuracy of the Composite index of Leading Indicators (CLI)

information to anticipate both future output changes and turning points.

Until the 1990s, the emphasis of this literature has been on linear models. Univariate

linear models of output have basically followed extensions of the seminal analysis of Box

and Jenkins (1976). The most signi…cant multivariate linear analysis for examining the

accuracy of CLI at anticipating output features are the work of Auerbach (1982), Braun

and Zarnowitz (1989), and Diebold and Rudebusch (1991).

However, during the current decade, several studies have found evidence in favor of

nonlinear behavior in output. Hamilton (1989), Teräsvirta and Anderson (1992), Tiao

and Tsay (1994), Potter (1995), Teräsvirta (1995), and Pesaran and Potter (1997) propose

alternative univariate nonlinear approaches to US output. On the other hand, Granger,
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Teräsvirta and Anderson (1993), Estrella and Mishkin (1998), and Filardo (1992, 1999),

examine with nonlinear multivariate models the predictive performance of CLI.

All of these studies su¤er at least one of the following drawbacks. Firstly, linear models

implicitly impose strong symmetry properties. Secondly, univariate models lose the leading

information that CLI may incorporate into the system. Thirdly, non-vector autoregressive

models fail to capture the dynamic interactions among the variables in the model. To our

knowledge, only Hamilton and Perez-Quiros (1996) propose a nonlinear VAR model for

analyzing the accuracy of those variables.

Our contribution to the previous literature is twofold. First, we propose a vector

autoregressive extension of the STR model developed by Granger and Teräsvirta (1993).

By analogy, we call it Vector Smooth Transition Regression (VSTR) model. The primary

principle for estimation is maximum likelihood. This approach leads to simple linearity

and model selection tests. In line with Eitrheim and Teräsvirta (1996), we also extend to

the VAR context the tests for examining the accuracy of VSTRmodels. Finally, we analyze

the most recent model selection techniques in order to formally select one model from the

family of VSTR. Thus, we focus the multiple-equation STR models in an alternative view

to Weise (1999) and Rothman et al. (2001).

Second, we contribute to the empirical literature of CLI in nonlinear models by apply-

ing the VSTR methodology to model the nonlinear features of GDP and CLI together.

We …nd that a logistic-VSTR is more accurate than any other nonlinear VSTR speci…-

cation. In anticipating growth, these gains come basically from recessionary periods. In

replicating the US business-cycle phases, our proposed model is unequivocally the best.

The plan of the paper is as follows. The baseline model is presented in section 2.
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Section 3 deals with linearity tests, model selection procedures and a brief discussion

about the techniques used for comparing the accuracy of the nonlinear models. Empirical

results are considered in Section 4. The …nal section contains concluding remarks and

suggests directions for future research.

2 The baseline model

Consider the following vector autoregressive generalization of the STR model:

yt = ¯0yAt + (ē0yAt)Fy(Dty) + uyt;
xt = ¯0xAt + (ē0xAt)Fx(Dtx) + uxt; (1)

where At = (1; yt¡1; xt¡1; :::; yt¡p; xt¡p)0 = (1;X 0
t)
0; ¯0y = (´y; a1; b1; :::; ap; bp); ¯

0
x =

(´x; c1; d1; :::; cp; dp);
ē0
y = (éy;ea1;eb1; :::;eap;ebp); ē0x = (éx;ec1; ed1; :::;ecp; edp); and

Ut = (uyt; uxt)
0 s N [0;­] : (2)

The key component of a VSTR model is the transition function F . By convention, it is

bounded between zero and one. If F is zero, then the baseline model becomes a linear

VAR (VARa), with parameters ¯y and ¯x: On the other hand, if F is one, then the VSTR

model becomes another linear VAR (VARb), with parameters ¯y+ ēy and ¯x+ ēx: Hence,
F may be interpreted as a …ltering rule that locates the model between these two extreme

regimes. This section presents a brief discussion about the economic interpretation of

VSTR models, depending on the form of the transition function.
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2.1 Logistic transition function

In this case, F is the following monotonically increasing function:

Fi(Dti) =
1

1 + e¡°iDti
; (3)

where °i is the smoothness parameter, and i = y, x. We refer to Dti as switching expres-

sion which may present two alternative forms. First, Dti may be the di¤erence between

a proposed transition variable zti; which is usually a lagged value of y and x, and an

estimated threshold gi, that is

Dti = zti ¡ gi: (4)

We call a logistic VSTRmodel with switching expression (4) Logistic VSTR (LVSTR(zty; ztx)).

Note that, as °i approaches in…nity, Fi converges to the Heaviside function. In this ex-

treme case, the baseline model generalizes to a VAR the SETAR model proposed by Tsay

(1989).

Second, Dti may be the weighted average of the qi lagged deviations from a linear path:

Dti =

qiX
j=1

wijbui;t¡j ; (5)

where
Pq
j=1wij = 1; and bui is the estimated residual of the i-th equation from a linear

path. Similarly, a logistic VSTR model with Dti as in (5), represents the LVSTR-Deviated

(LVSTR-D(qy; qx)) models.

Applied to GDP and CLI rates of growth, logistic models have a nice economic inter-

pretation. Assume that ē and ° are both greater than zero. In logistic models, VARa (F
close to zero) is interpreted as the linear path which models extreme recessionary periods

whereas VARb (F close to one) can be seen as the linear model associated with great
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expansions. To see this, note that in extreme contractions (expansions) the transition

variable is lower (higher) enough than the threshold in LVSTR models, and the actual

GDP is less (greater) enough than a linear path in LVSTR-D models for keeping the tran-

sition function close to zero (one). Thus, the transition function locates the model either

near to or far from recessions, depending on the switching expression’s values.

2.2 Exponential transition function

Consider the exponential transition function

Fi(Dti) = 1¡ e¡°iDti ; (6)

where i = y, x: Assume the following alternative forms for the switching expression. First,

let Dti be the squared di¤erence between the transition variable and the threshold,

Dti = (zti ¡ gi)2: (7)

Let us denote an exponential model with switching expression (7) as Exponential VSTR

(EVSTR(zty; ztx)).

Second, let Dti be the weighted sum of the q lagged squared deviations from a linear

path

Dti =

qiX
j=1

wijbu2i;t¡j ; (8)

where wij and bui are the same as in (5). We refer to these model as EVSTR-Deviated
(EVSTR-D(qy; qx)).

Applied to GDP and CLI, exponential models have di¤erent economic interpretation to

logistic models. Now, VARa can be associated with a middle ground, whereas troughs and
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peaks have similar dynamic structures represented in VARb. That is to say, if either the

transition variable is di¤erent to the threshold in the EVSTR, or the model deviates from

a linear path in the EVSTR-D, then F becomes di¤erent to zero, and the model smoothly

approximates from the middle ground to any of the extreme situations represented by

VARb (F = 1).

3 Speci…cation of VSTR models

The aim of this section is to describe a battery of model selection rules in order to obtain

one nonlinear speci…cation from the set of VSTR models described in Section 2. Note

that, since we base the estimation of VSTR upon the maximum likelihood principle, any

test may be carried out through simple likelihood ratio tests. Additionally, to economize

on notation we restrict the analysis to the case of zty = ztx = zt, and qy = qx = q :1

In the spirit of the seminal methodology in Tsay (1989), Figure 1 describes the proce-

dure for modelling VSTR systems. First, we specify a linear VAR and its maximum lag

length using standard linear techniques. Second, we apply linearity tests to the auxiliary

regressions described in Table 1. This requires that we have to select a priori a set of

variables to include in the switching expression. In deviated models, this implies select-

ing the maximum value of q. In the remaining cases, the natural way of selecting the

candidates for being transition variables is to try with lagged values of y and x:2 Third,

1 In deviated models, this implies that the system is deviated from the linear path according to the same

number of lagged deviations for both GDP and CLI. In the remaining cases, this implies that the same

transition variable locates the entire system between regimes.
2Both maximum value of q (qmax) and maximum lag of x and y (lagmax), depend upon the frequency

of the data. For example, with montly data, it is advisable to try for qmax = lagmax = 12, whereas with
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once linearity is rejected, we decide the speci…c form of the transition function with the

sequence of model selection tests appearing in Table 2.3

Up to this point, the VAR generalization of STR models is straightforward. However,

note that the sequence of tests described above …nds as nonlinear models as rejections of

linearity. Teräsvirta (1994) suggests that in such case the selected model should be the

one with the smallest p-value in the linearity test. However, this procedure involves two

drawbacks. First, we may …nd appropriate estimates and forecasts of the nonlinear model

even if linearity is weakly rejected. Second, it is not clear what to do in case of similar

p-values. The remain of the section tries to guard against these drawbacks by basing the

decision upon an a posteriori evaluation of the accuracy of the estimated nonlinear models

at capturing the nonlinearities of GDP and business-cycles.

3.1 Testing the adequacy of VSTR models

Eitrheim and Teräsvirta (1996) propose three kind of tests for evaluating the adequacy of

the estimated single-equation nonlinear model. Speci…cally, they consider that a model

with Serially Independent errors (test SI), with No Remaining Nonlinearity (test NRN),

and with Parameter Constancy (tests PC) may be considered as adequate for …tting the

quarterly data may be enough to try for qmax = lagmax = 4.
3Linearity and model selection tests are based upon linear approximations of VSTR models about ° = 0,

in line with Luukkoven et al. (1988). In the case of logistic models that include the transition variable

belonging to the set of explanatory variables, the identi…cation problem is avoided by using a third order

linear approximation. In deviated models, a second order approximation is necessary for discriminating

between logistic and exponential models. In the remaining cases, identi…cation is achieved with a …rst

order Taylor approximation.
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data. This section extends these tests to a multiple-equations framework.

To derive the test SI, we consider the alternative baseline model that takes into account

the possible serial dependence of errors:

Yt = G('t;ª) + Ut; (9)

where Yt = (yt; xt)0; 't = (1; yt¡1; :::; yt¡p; xt¡1; :::; xt¡p)0; G('t;ª) = (Gy('t;ªy); Gx('t;ªx))0,

ªi is the (
%
2 £ 1) vector of unknown parameters contained in both the autoregressive lags

and in the transition function. Instead of (2), errors are assumed to evolve as

Ut = ©(L)Ut + &t; &t s N [0;¡] : (10)

Here, ©(L) = (©1L+:::+©rLr) indicates a (2£2)matrix polynomial in the lag operator L;

and ¡ is a (2£2)matrix of constant parameters. The null hypothesis of serial independence

of errors is H0 : ©1 = ¢ ¢ ¢ = ©r = 0: As we show in the Appendix, the statistic

LM =
1

T
m0©

³
M©© ¡M©ª (Mªª)

¡1M 0
©ª

´¡1
m©; (11)

follows under the null a Â2 distribution with 4r degrees of freedom.4

4A tilde above any expression refers to its maximum likelihood estimate under the null. Let eVt be the
(2r£1) matrix (ev0yt; ev0xt)0, where evit = (eui(t¡1); :::; eui(t¡r))0, and let eZt be the ( %2£2) matrix (ezyt; ezxt), where
ezit is @ eGi=@ªi = @Gi('t;

eªi)=@ªi, with i = y; x. Expression @ eGi=@ªi is composed by three vectors. The
…rst is @ eGi=@®i = Ai. The second is @ eGi=@e®i = eAi: The third term depends on the selected transition

function. If this corresponds to non-deviated models, then @ eGi=@°i and @ eGi=@gi appear in Eitrheim
and Teräsvirta (1996). However, if the transition function corresponds to deviated models, then the last

expression is zero. Thus, the following identities hold: m© =
P³e¡¡1 eUt ­ eVt´,M©© =

1
T

P³e¡¡1 ­ eVt eV 0
t

´
,

M©ª =
1
T

P³e¡¡1 eZt ­ eVt´, and Mªª =
1
T

P³eZte¡¡1 eZt´, where ­ denotes the Kronecker product and T
is the sample size.
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To obtain the test NRN it is useful to rewrite the baseline model allowing for additive

misspeci…cation as follows:

yt = ¯0yAyt + (ē0yAyt)F 1y (D1ty) + (eµ0yAt)F 2y (D2ty) + uyt;
xt = ¯0xAxt + (ē0xAxt)F 1x (D1tx) + (eµ0xAt)F 2x (D2tx) + uxt; (12)

where F is the transition function analyzed in previous sections. Following the usual linear

approximations of F 2i , Table 4 describes a test which has power against an omitted additive

VSTR component.5

Finally, the tests PC are obtained under the assumption that the transition function

has constant parameters, whereas both ¯i and ēi may change over time. We assume that
the change may be possibly non-monotonic and not necessarily symmetric. This may be

modelled as follows: ¯i(t) = ¯i + ¸1iHi and ēi = ēi + ¸2iHi, where i = y and x, and
Hi = (1 + expf¡°i(tk + si(k¡1)tk¡1 + :::+ si1t+ si0)g)¡1 ¡ 0:5: (13)

Substracting one-half is useful just in deriving the tests. After linear approximations of

Hi Table 5 describes a test against the null of time-varying parameters.

3.2 Investigating the predictive accuracy

In this section, we propose a method for checking the accuracy of the nonlinear models at

forecasting output growth and turning points. The former may be checked by using the

5Following Eitrheim and Teräsvirta (1996), this test be generalized to have power not only against an

omited additive VSTR component but also against omission of important lags from the estimated VSTR

model.
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well-known Mean Square Error

MSE =
1

T

TX
t=1

(yt ¡ byt)2; (14)

based upon the distance between actual (y) and estimated (by) GDP growth (T is the

sample size). The latter may be investigated with the loss function Turning Points Error

TPE =
1

T

TX
t=1

(dt ¡ bdt)2; (15)

where dt is an indicator variable taking value 1 at the o¢cial NBER recessions. Recall that

logistic transition functions (in models with baseline parameters greater than zero) could

be interpreted as probabilities of being in expansion. This leads to de…ne bdt = 1¡Fy(zty).
We want not only to order the di¤erent models, but would also like to test whether

one of them is signi…cantly superior to the others. Diebold and Mariano (1995) provide

a statistic (DM henceforth) for testing the hypothesis of no di¤erence in the accuracy of

any two competing forecasts that follows a N(0; 1) distribution under the null.6

4 Empirical results

In this section we examine the nonlinear relations between real GDP, and the Composite

Index of Leading Indicators (CLI) using both in-sample and real-time analysis.7

6See Camacho and Perez-Quiros (2000) for a speci…c de…nition of the DM test applied to forecasting

GDP growth and business-cycles.
7The composite index of leading indicators is a weighted average of ten macroeconomic leading variables

which are expected to turn before the aggregate economy. This series, issued by the Conference Board,

is subject to statistical revisions (due to revisions in the components), and de…nitional revisions (index’s

components are reselected and reweighted).
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In-sample, we analyze the 151 quarterly observations of GDP running from June 1960.2

to 1997.4. We use the monthly CLI series released in January 1998 (the …rst which contains

…gures for December 1997), which is transformed into quarterly series by selecting the data

corresponding to the last month of each quarter.

In real-time, we predict values from 1972.2 to 1998.1. At any quarter t we use the

CLI series published two months after the beginning of such quarter (these substitute the

approximate …gures available one month after the beginning of each quarter) converting

the quarterly CLI observations into monthly series as in the in-sample analysis. 8

Following the speci…cation strategy outlined in Figure 1, we need to specify an appro-

priate linear VAR which is the base for the nonlinear models. In a preliminary analysis of

data, the augmented Dickey-Fuller tests detect unit root in the log of both variables. This

suggests the use of the stationary rate of growth of output and CLI, hereafter y and x, for

estimating a VAR model of order one (the Schwarz selection criterion was minimized at

one) in …rst di¤erences (the Johansen’s ratio test of the null of no cointegration is 14.48).

This contradicts previous results in the literature (Granger et al., 1993, and Hamilton

and Perez-Quiros, 1996), con…rming that the absence of cointegration with GDP is a

characteristic of the latest CLI revisions.

Linearity and model selection tests require the speci…cation of a set of variables z and

a set of values of q. For the former we use lagged values of x and y within a year. For

8For example, to obtain the …rst real-time prediction we estimate the models with GDP available in

1972.1 and the CLI series issued in February (representing the information available until 1971.4). We use

these estimates to forecast GDP for the second quarter of 1972 (…gures available in August) with the CLI

series available in May (representing the information available up to the …rst quarter). The procedure is

updating until the last forecast.
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the latter we use (square) weighted averages of the one to four lagged deviations from the

linear path. Model selection tests are applied for each candidate rejecting linearity. Table

6 displays that one logistic (zt = yt¡2), three exponential (zt = xt¡1; xt¡2; and xt¡3), and

one logistic-deviated (q = 1) models are the candidates for representing the nonlinearities

of output and CLI together.

We estimate the parameters of the models by maximum likelihood, checking whether

the size of the model can be reduced. First, the nonlinear autoregressive parameters

are examined to be signi…cant. Second, autoregressive parameters corresponding to the

least signi…cant (if nonsigni…cant) estimates are repetitively removing and reestimating

the reduced model. This procedure leads to …nal speci…cations which agree with Hamilton

and Perez-Quiros (1996) results: lagged growth does not help in forecasting either current

growth or current CLI in any bivariate model. Additionally, the intercept is proved to

be statistically insigni…cant both on the second equation of EVSTR(xt¡1), EVSTR(xt¡3),

and LVSTR-D(1), and on the …rst equation of LVSTR(yt¡2).9 Finally, eb and ed are jointly
insigni…cant in each nonlinear speci…cation. Table 7 shows estimates of the signi…cant

parameters.10

In illustrating how these nonlinear models work, let us analyze the output equation

of LVSTR(yt¡2) and EVSTR(xt¡2). The logistic model presents a smoothness param-

eter 1:85, indicating that the transition between the two extreme regimes (character-

ized by F = 0 and F = 1) is smooth. The estimated threshold is 0:13 and marks the

9Results leading to these choices have been omitted, but are available from the author upon request.
10Note that, as Teräsvirta (1994) has emphasized, a precise joint estimation of the smoothness parameter

and the threshold is a problem when the former is large.
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halfway point between regimes. On the other hand, the exponential model shows a much

higher smoothness parameter (11:20) which implies sharper transitions between the mid-

dle ground (F = 0), marked by values of xt¡2 near to 0:83; and the other extreme regime

(F = 1). Figure 2 shows the transition function values as a function of the observed

switching expressions. These pictures allow the reader to readily see some characteristics

of the transition function: its shape and its more frequent values.

The …rst approximation to the estimated models is the study of the adequacy of these

speci…cations to the data. For this purpose, Table 8 reports the results of the tests SI for

values of r from 1 to 4, the test NRN, and the tests PC for values of k from 1 to 3.11 These

show that there is evidence of serially uncorrelated errors and parameter constancy of any

model at any lag, but EVSTR(xt¡2). The p-values of the test NRN show that there is no

strong evidence against these models.12 Thus, we conclude that the proposed models pass

the tests of accuracy fairly well.

Tables 9 and 10 describe the performance of the models’ predictions at representing

both the US GDP growth and the US business-cycles phases.13 As measures of the accu-

racy of the models at forecasting, Table 9 reports the Certain Negative Rates (CNR) and

Certain Positive Rates (CPR). The former (latter) signals the percentage of quarters when

the models correctly anticipate GDP falls and recessions (GDP rises and expansions).14

11Note that monotonic as well as nonmonotonic changing parameters are special cases of the test PC

with k = 3:
12The unique exception is the p-value of 0.01 of EVSTR(xt¡3), but this has not been followed up since

the number of parameters which would appear make the model intractable.
13 In line with Stock and Watson (1992), we interpret an estimated probability of recession above 0.75

(below 0.25) as a signal of recession (expansion).
14Let Nl (Ng) be the number of quarters when the rate of growth of GDP is actually less (greater) than
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On the other hand, Table 10 shows the False Negative Signal Rates (FNR) and False

Positive Signal Rates (FPR) which examine the percentage of mistakes when the models

forecast GDP rises and recessions (FNR) and GDP failures and recessions (FPR).15 These

Tables point out that LVSTR(yt¡2) always presents one of the best accuracy and that the

false signals rate of LVSTR(yt¡2) is similar (if not lower) to the other nonlinear models’

rates at estimating growth, but much lower than the rate of LVSTR-D(1) at replicating

the NBER schedule.

Finally, we formally test the in-sample and out-of-sample accuracy of the selected

nonlinear models at identifying both actual GDP growth and the NBER chronology. At

…tting GDP growth in-sample, Table 11 reveals that LVSTR(yt¡2) is the model with lowest

MSE, especially during recessions. Additionally, Table 12 con…rms the within-recessions

improvement in the accuracy of such model against any other nonlinear speci…cation,

but EVSTR(xt¡3). On the other hand, LVSTR(yt¡2) is both numerically (TPE of 0.16

vs. 0.51) and statistically (DM equals to 8.52) superior to LVSTR-D(1) at identifying

in-sample the US business-cycles .

zero, and among them, let cNli (cNgi) be the number of these quarters for which model i estimates that
GDP falls (rises). In addition, let Nr (Ne) be the number of quarters of NBER recessions (expansions),

and let cNri (cNei) be the number of these periods for which the estimated probability of recession from
model i is above 0.75 (below 0.25). Thus, dNli=Nl and cNri=Nr (cNgi=Ng and cNei=Ne) are de…ned as the
CNR (CPR) of model i:
15Let cNli (cNgi) be the number of quarters for which model i estimates that GDP falls (rises), and let

Ng (Nl) be the number of these quarters for which GDP actually rises (falls). Also let cNri (cNei) be
the number of quarters for which the estimated probability of recession from model i is above 0.75 (below

0.25), and let Ne (Nr) be the number of these quarters classi…ed by the NBER as expansions (recessions).

Hence, Ng=cNli and Ne=cNri (Nl=cNgi and Nr=cNei) are the FPR (FNR)of model i.
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Let us move to the out-of-sample results. The last two columns of Table 11 show that

LVSTR(yt¡2) is again the model with lowest MSE. However DM tests do not …nd that

such model was statistically superior in real-time.16 At forecasting the NBER schedule,

LVSTR(yt¡2) presents numerical (TPE of 0.17 vs. 0.39) and statistical (DM of 4.77) gains

with respect to LVSTR-D(1).

Summarizing, LVSTR(yt¡2) is the selected nonlinear model for three reasons. First,

Table 8 highlights the poorer adequacy of exponential models to the data. Second, Table 11

concludes that LVSTR(yt¡2) shows numerically better accuracy than any other nonlinear

speci…cation at representing both the US GDP growth and the US business cycles phases.

Additionally, Table 12 presents evidence in favor of its statistical superiority, especially

during recessions. These facts were anticipated by the analysis of Tables 9 and 10, where

LVSTR(yt¡2) presented the best certain and false positive and negative rates. Third,

logistic models allow for a richer economic interpretation when applied to output growth

since they can be used for forecasting the US business-cycles behavior.

One of the major contributions of this paper is to analyze the ability of STAR mod-

els in forecasting the business-cycles sequence. Figure 3 assesses the degree to which

LVSTR(yt¡2) characterizes the US business-cycle ‡uctuations in real-time. Speci…cally,

its transition function may classify the data into two subsamples based on 1 ¡ F being

above and below 0.5.17 With this criterion, we detect correlation between low values of the

transition function (high values of 1¡ F ) and the NBER recessions. Thus, the transition
16Note that, when we restrict the analysis to recessionary periods, LVSTR(yt¡2) is better than

LVSTR-D(1) and EVSTR(xt¡1), and there exists some evidence in favor of using this model instead

of EVSTR(xt¡2).
17Among others, this criterion is used by Filardo (1994), and Etrella and Mishkin (1998).
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function may be considered as a …lter which infers the probability of being in recession.

5 Conclusion

We provide a vector autoregressive extension of Smooth Transition Regression models.

Following maximum likelihood estimation, we have adapted linearity, model selection and

model adequacy tests, as long as several model evaluation techniques to analyze these

models.

We have found empirical evidence in favor of nonlinear behavior of US output and

CLI. Speci…cally, we select a logistic nonlinear model whose transition variable is output

growth with two periods of lag. The estimated nonlinear speci…cation describes the US

output growth features fairly well, especially at the more turbulent recessionary periods.

This is con…rmed by both the in-sample and the real-time analysis. Interestingly, this

nonlinear model is also able to anticipate the US o¢cial NBER business-cycles phases.
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Appendix. LM test of serial independence of errors in VSTR models

It is well known that the test statistic (11) follows a limiting Â2 distribution with as

many degrees of freedom as the number of parameters which are assumed to be zero under

the null. Thus, our target is to …nd an explicit de…nition for expressions appearing in this

test.

Following the notation used Section 3.4.1, let the (1£ r) vector ©0ij =
³
©1ij ; ¢ ¢ ¢ ;©rij

´
be the block ij of the matrix ©0 such that Ut = ©0Vt; with i; j = y; x. Let us collect

the 4r elements of © in the column vector © = (©0yy;©0yx;©0xy;©0xx)0; and let us de…ne the

vector # = (©
0
;ª0)0.Hence, the null of serially uncorrelated errors may be expressed as

H0 : © = 0. To derive the test, it is useful to left-multiply the model (9) by I ¡ ©(L),

which leads to the likelihood function:

lt = C ¡ 1
2
ln j¡j ¡ 1

2

¡
&2yt¡

yy + 2&yt&xt¡
yx + &2xt¡

xx
¢
; (A1)

where ¡ij is the block ij of the symmetric matrix ¡¡1; with i; j = y; x.

To derive the estimate of score under the null, it is useful to note that @elt=@©yj =
(¡yye&yt + ¡xye&xt)evjt and @elt=@©xj = (¡yxe&yt + ¡xxe&xt)evjt, with j = y, x. This leads to

the (4r £ 1) vector

m© =
X³

@elt=@©0yy; @elt=@©0yx; @elt=@©0xy; @elt=@©0xx´0 ; (A2)

which corresponds to the expression
P³e¡¡1e&t ­ eVt´ : Similarly, we can derive that

mª =
X³

@elt=@ª´ =Xh³e&te¡¡1 ­ I%´ eZti (A3)

corresponds to the matrix
Ph³e&te¡¡1 ­ I%´ eZti, w he re eZt is the (%£ 1) vector ¡ez0yt; ez0xt¢0 :
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To estimate the expressions related to the Hessian matrix, let us decompose the matrix

M =
1

T

X
@2elt=@#@#0 (A4)

into four blocks [Mij], with i; j = ©;ª. The upper left block M©© is similarly com-

posed of 16 blocks,M(©ij ;©hk) = 1
T

P
@2elt=@©ij@©0hk which correspond toM(©ij ;©hk) =

e¡jkevitev0ht; for i; j; h; k = x; y. This implies that M©© =
1
T

P³e¡¡1 ­ eVteV 0t ´ : The upper
right block M©ª =

1
T

P
@2elt=@©@ª0 is 1

T

P³e¡¡1 eZ0t ­ eVt´, whereas the lower left block is
M 0
©ª
: Finally, the lower right block Mªª =

1
T

P
@2elt=@ª@ª0 is 1

T

P³eZte¡¡1 eZ 0t´ :

25



References

[1] Auerbach, A. (1982). The index of leading indicators: Measurement without theory

thirty years later, Review of Economics and Statistics, 69: 589-595.

[2] Beaudry, P. & Koop, G. (1993). Do recessions permanently change output?, Journal

of Monetary Economics 31, no. 2, 147-167.

[3] Braun, P. & Zarnowitz, V. (1989). Major macroeconomic variables and leading in-

dexes: some estimates of their interrelations, 1886-1982, NBER Working Paper No

2812.

[4] Box, G. & Jenkins, G. (1976). Time series analysis: Forecasting and control, rev. ed.

San Francisco: Holden-Day.

[5] Camacho, M. & Perez-Quiros, G. (2000). This is what the US leading indicators lead,

European Central Bank Working Paper No 27.

[6] Diebold, F. & Mariano, R. (1995). Comparing predictive accuracy, Journal of Busi-

ness and Economic Statistics 13, no.3, 253-263.

[7] Diebold, F. & Rudebusch, A. (1991). Forecasting output with the composite leading

index: A real-time Analysis, Journal of the American Statistical Association 86, no.

415, 603-10.

[8] Eitrheim, ;. & Teräsvirta, T. (1996). Testing the accuracy of smooth transition au-

toregressive models, Journal of Econometrics, 74, 59-75.

26



[9] Estrella, A. & Mishkin, F. (1998). Predicting US recessions: Financial variables as

leading indicators, Review of Economics and Statistics, 80, 45-61.

[10] Filardo, A. (1994). Business cycle phases and their transitional dynamics, Journal of

Business and Economics Statistics, 12, 279-288.

[11] Filardo, A. (1999). How reliable are recession prediction models, Reserve Bank of

Kansas City Quarterly Review, second quarter, 35-55.

[12] Granger, C. & Teräsvirta, T. (1993). Modelling nonlinear economic relationships,

New York: Oxford University Press.

[13] Granger, C.; Teräsvirta, T. & Anderson, H (1993). Modelling nonlinearities over the

business cycle. In: James H. Stock and Mark W. Watson (Eds.), Business Cycles

Indicators, and Forecasting. Chicago; University of Chicago Press.

[14] Hamilton, J. (1989). A new approach to the economic analysis of nonstationary time

series and the business cycles, Econometrica 57, 357-384.

[15] Hamilton, J. & Perez-Quiros, G. (1996). What do the leading indicators lead?, Journal

of Business, 69: 27-49.

[16] Lin, Ch. & Teräsvirta, T. (1994). Testing the Constancy of Regression Parameters

against Continuous Structural Change, Journal of Econometrics, no 62, 211-228.

[17] Layton, A. P. (1998). A further test of the in‡uence of leading indicators on the

probability of US business cycle phase shifts, International Journal of Forecasting,

14, no1, 63-70.

27



[18] Luukkoven, R.; Saikkoven, P. & Teräsvirta, T. (1988). Testing linearity against

smooth transition autoregressive models, Biometrika, 75, 491-499.

[19] Pesaran, M. & Potter, S. (1997). “A ‡oor and ceiling model of US output, Journal of

Economics Dynamics and Control, 21, 661-695.

[20] Potter, S. (1995).A nonlinear approach to US GNP, Journal of Applied Econometrics

10: 109-25.

[21] Rothman, P.; van Dijk, D. & Hans Franses, P. (2001). A multivariate STAR analysis

of the relationship between money and output. Macroeconomic Dynamics 5. Forth-

coming.

[22] Stock, J. and Watson, M. (1992). A procedure for predicting recessions with leading

indicators: Econometrics issues and recent experience. In: James Stock and Mark

Watson (Eds.), Business Cycles, Indicators and Forecasting. Chicago; The University

of Chicago Press.

[23] Teräsvirta, T. & Anderson, H. (1992). Characterizing nonlinearities in business cycles

using smooth transition autoregression models, Journal of Applied Econometrics, 7,

S119-136.

[24] Teräsvirta, T. (1994). Speci…cation, estimation and evaluation of smooth transition

autoregressive models, Journal of the American Statistical Association, 89, no. 425,

208-18.

[25] Teräsvirta, T. (1995). Modelling nonlinearity in U.S. Gross national product 1889-

1987, Empirical Economics, 20, 577-97.

28



[26] Tiao, G. & Tsay, R. (1994). Some Advances in nonlinear and adaptive modelling in

time series analysis, Journal of Forecasting, 13, 109-131.

[27] Tsay, R. (1989). Testing and Modelling Threshold Autoregressive Processes, Journal

of American Statistical Association, 84, no 405, 245-292.

[28] Weise, Ch. (1999). The asymmetric e¤ects of monetary policy: a nonlinear vector

autoregression approach, Journal of Money, Credit and Banking, 31, no. 1, 85-108.

29



Table 1. Linear approximation of VSTR models

z belongs to Xt

Logitic models Exponential models

yt = "y0 +
3P

h=0

»0yhXtwh + vyt

xt = "x0 +
3P

h=0

»0xhXtwh + vxt

yt = "y0 +
2P

h=0

»0yhXtwh + vyt

xt = "x0 +
2P

h=0

»0xhXtwh ++vxt

z does not belong to Xt and deviated models

Logitic models Exponential models

yt =
1P

h=0

("yhw
h + »0yhXtwh) + vyt

xt =
1P

h=0

("xhw
h + »0xhXtwh) + vxt

yt =
2P

h=0

("yhw
h + »0yhXtwh) + vyt

xt =
2P
h=0

("xhw
h + »0xhXtwh) + vxt

Note. This Table applies to the case zy = zx = z and qy = qx = q: Vari-

able w is the (square) weighted deviation from the linear path in deviated models

whereas it is the transition variable in other VSTR models. In the case of logis-

tic models including transition variables within the set of explanatory variables,

the identi…cation problem is avoided by means of a third order Taylor series ap-

proximation. In deviated models, a second order approximation is applied for a

posterior discrimination between logistic and exponential models. The remaining

VSTR models are approximated with a …rst order linear expansion.

Table 2. Linearity tests.

Auxiliary regressions Null of linearity

z belongs to Xt

yt = "y0 +
3P

h=0

»0yhXtwh + vyt

xt = "x0 +
3P

h=0

»0xhXtwh + vxt
»i1 = »i2 = »i3 = 0

z does not belongs to Xt and deviated models

yt =
2P

h=0

("yhw
h + »0yhXtwh) + vyt

xt =
2P

h=0

("xhw
h + »0xhXtwh) + vxt

"i1 = "i2 = 0

»i1 = »i2 = 0

Note. This Table applies to the case zy = zx = z and qy = qx = q: Variable w

is the (square) weighted deviation from the linear path in deviated models whereas

it is the transition variable in other VSTR models. Parameter i refers to y and x.
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Table 3. Model selection tests

zt belongs to Xt Choice

Hypoth. Test 1 Test 2 Test 3

H0 »i3 = 0
»ij = 0;

j = 2; 3

»ij = 0;

j = 1; 2; 3

Ha »i3 6= 0
»i2 6= 0
»i3 = 0

»i1 6= 0
»ij = 0

j = 2; 3

Reject

Accept

Accept

Accept

...

Reject

Accept

Reject

...

Accept

Reject

Reject

Logistic

Exponential

Logistic

No decision

zt does not belongs to Xt and deviated models Choice

Hypoth. Test 1

H0 "i2 = 0; »i2 = 0

Ha "i2 6= 0; »i2 6= 0
Accept

Reject

Logistic

Exponential

Note. This Table applies to the case zty = ztx = zt and qy = qx = q:

Variable w is the (square) weighted deviation from the linear path in

deviated models whereas it is the transition variable in other VSTR

models. Parameters "i and »i refer to the auxiliary regressions in Table

2. Parameter i refers to y and x. As an example, let zt be any variable

belonging to Xt. If Test 1 and Test 2 cannot be rejected, but Test 3 is

rejected, then a logistic transition function should be used.
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Table 4. Test of no remaining nonlinearity.

Auxiliary regressions Null no remaining nonlinearity

z belongs to Xt

yt = ¯
0
yAyt +

ē0
yAtF

1
y +

3P
h=1

»0yhXtwh + vyt

xt = ¯
0
xAxt +

ē0
xAtF

1
x +

3P
h=1

»0xhXtwh + vxt
»i1 = »i2 = »i3 = 0

z does not belongs to Xt and deviated models

yt = ¯
0
yAyt +

ē0
yAtF

1
y +

2P
h=1

("yhwh + »
0
yhXtw

h) + vyt

xt = ¯
0
xAxt +

ē0
xAtF

1
x +

2P
h=1

("xhwh + »
0
xhXtw

h) + vxt

"i1 = "i2 = 0

»i1 = »i2 = 0

Note. This Table applies to the case zy = zx = z and qy = qx = q: Variable w is described

in Table 1. Parameter i refers to y and x.

Table 5. Test of parameter constancy

Auxiliary regressions Null of constant parameters

yt = µ
0
y0¯yt + µ

0
y1¯ytt+ ¢ ¢ ¢+ µ0yk¯yttkheµ0y0ēyt + eµ0y1ēytt+ ¢ ¢ ¢+ eµ0yk ēyttkiFy + vyt

xt = µ
0
x0¯xt + µ

0
x1¯xtt+ ¢ ¢ ¢+ µ0xk¯xttkheµ0x0ēxt + eµ0x1ēxtt+ ¢ ¢ ¢+ eµ0xk ēxttkiFx + vxt

µ0i1 = ¢ ¢ ¢ = µ0ik = 0eµ0i1 = ¢ ¢ ¢ = eµ0ik = 0

Note. Variable w is described in Table 1. Parameter i refers to y and x.
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Table 6. Results of linearity and model selection tests

Lin. test Test 1 Test 2 Test 3 Decision

z = yt¡2 26.47 (R) 11.73 (A) ¢ ¢ ¢ ¢ ¢ ¢ LVSTR(yt¡2)

q = 1 41.55 (R) 12.54 (A) ¢ ¢ ¢ ¢ ¢ ¢ LVSTR-D(1)

z = xt¡1 30.94 (R) 7.25 (A) 16.54 (R) 7.14 (A) EVSTR(xt¡1)

z = xt¡2 41.65 (R) 20.98 (R) ¢ ¢ ¢ ¢ ¢ ¢ EVSTR(xt¡2)

z = xt¡3 36.94 (R) 21.35 (R) ¢ ¢ ¢ ¢ ¢ ¢ EVSTR(xt¡3)

Note. Tests are developed as Tables 2 and 3 describe. Statistics are displayed only for models which

reject linearity. Second column shows the results for linearity tests whereas third to …fth columns present

the results for model selection tests. Only xt¡1 belongs to the set of explanatory variables (a three-stage

testing procedure applies) since these tests refer to a vector autoregressive speci…cation with lag length one.

Results of the tests at 1% are in parentheses (A: non-rejection, R: rejection).

Table 8. Testing the adequacy of VSTR models

Test SI Test NRN Test PC

r = 1 r = 2 r = 3 r = 4 k = 1 k = 2 k = 3

EVSTR(xt¡1) 0.09 0.08 0.11 0.08 0.69 0.64 0.16 0.69

EVSTR(xt¡2) 0.02 0.01 0.01 0.01 0.04 0.02 0.18 0.01

EVSTR(xt¡3) 0.44 0.09 0.19 0.04 0.01 0.76 0.29 0.95

LVSTR(yt¡2) 0.08 0.08 0.20 0.12 0.05 0.10 0.98 0.97

LVSTR-D(1) 0.20 0.13 0.20 0.23 0.06 0.40 0.24 0.11

Note. As Section 3.1 describes, tests SI, test NRN, and tests PC refer to tests of serial independence

of the errors, test of no remaining nonlinearity and tests of parameter constancy respectively. Each entry

shows the p-values of these tests. Tests NRN and PC have also power against omission of important lags

from the estimated model.
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Table 7. Maximum likelihood estimates of parameters.

Model estimation VARCOV

LVSTR(yt¡2)

byt = 0:91
(0:12)

bFy + 0:60
(0:05)

xt¡1

bxt = 0:42
(0:18)

¡ 0:31
(0:13)

bFx + 0:43
(0:05)

xt¡1

bFy = ·1 + expµ¡1:85
(0:26)

(yt¡2 ¡ 0:13
(0:01)

)

¶¸¡1
bFx = ·1 + expµ¡87:57

(15:66)
(yt¡2+0:33

(047)
)

¶¸¡1

b¾11 = 0:55
(0:02)b¾22 = 0:51
(0:02)b¾12 = 0:11
(0:03)

LVSTR-D(1)

byt = 0:72
(0:07)

¡ 0:18
(0:10)

bFy + 0:61
(0:06)

xt¡1

bxt = 0:30
(0:09)

bFx + 0:35
(0:07)

xt¡1

bFy = ·1 + expµ¡14:85
(13:64)

(yt¡1 ¡ 0:56
(0:08)

¡ 0:11
(0:07)

yt¡2 ¡ 0:57
(0:08)

xt¡2
¶¸¡1

bFx = ·1 + expµ¡1:93
(1:93)

(xt¡1 ¡ 0:23
(0:07)

¡ 0:15
(0:06)

yt¡2 ¡ 0:50
(0:07)

xt¡2
¶¸¡1

b¾11 = 0:59
(0:02)b¾22 = 0:53
(0:02)b¾12 = 0:09
(0:03)

EVSTR(xt¡1)

byt = 1:20
(0:36)

¡ 0:59
(0:36)

bFy + 0:58
(0:06)

xt¡1

bxt = 0:14
(0:04)

bFx + 0:45
(0:05)

xt¡1

bFy = 1¡ expÃ¡185:54
(2:48)

µ
xt¡1 ¡ 0:83

(0:03)

¶2!
bFx = 1¡ expÃ¡145:85

(3:29)

µ
xt¡1 ¡ 2:31

(0:78)

¶2!
b¾11 = 0:59

(0:02)b¾22 = 0:52
(0:02)b¾12 = 0:09
(0:03)

EVSTR(xt¡2)

byt = 0:83
(0:12)

¡ 0:29
(0:13)

bFy + 0:59
(0:05)

xt¡1

bxt = 1:02
(0:49)

¡ 0:90
(0:48)

bFx + 0:42
(0:05)

xt¡1

bFy = 1¡ expÃ¡11:20
(0:14)

µ
xt¡2 ¡ 0:31

(0:12)

¶2!
bFx = 1¡ expÃ¡1558:55

(35:89)

µ
xt¡2 ¡ 0:25

(0:02)

¶2!
b¾11 = 0:59

(0:02)b¾22 = 0:51
(0:02)b¾12 = 0:07
(0:03)

EVSTR(xt¡3)

byt = 0:97
(0:11)

¡ 0:94
(0:36)

bFy + 0:54
(0:06)

xt¡1

bxt = 0:67
(0:36)

bFx + 0:39
(0:05)

xt¡1

bFy = 1¡ expÃ¡0:26
(0:19)

µ
xt¡3 ¡ 1:41

(0:36)

¶2!
bFx = 1¡ expÃ¡0:42

(0:37)

µ
xt¡3 + 0:18

(0:17)

¶2!
b¾11 = 0:55

(0:02)b¾22 = 0:50
(0:02)b¾12 = 0:08
(0:03)

Note. Standard errors are in parentheses.
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Table 9. Certain negative and positive detection rates (CNR and CPR).

In-sample Out-of-sample

yt
Business

cycles
yt

Business

cycles

yt <0 yt >0
NBER

recessions

NBER

expansions
yt <0 yt >0

NBER

recessions

NBER

expansions

CNR CPR CNR CPR CNR CPR CNR CPR

EVSTR(xt¡1) 25 98 ... ... 33 100 ... ...

EVSTR(xt¡2) 35 98 ... ... 13 97 ... ...

EVSTR(xt¡3) 35 97 ... ... 20 97 ... ...

LVSTR(yt¡2) 50 97 29 56 26 98 22 72

LVSTR-D(1) 30 98 37 40 33 100 5 17

Note. “In-sample” refers to 1960.2-1997.4. “Out-of-sample” refers to 1972.2-1998.1. Variables yt and xt

denote rate of growth of GDP and CLI at time t. In both in and out-of-sample analysis, last (…rst) two

columns present the percentage of quarters when each model correctly anticipates the NBER schedule (yt

sign). Notice that, in line with Stock and Watson (1992), an estimated probability of recession above 0.75

(below 0.25) is interpreted as a signal of recession (expansion).

For instance, of the 20 (131) in-sample falls (rises) of GDP, the LVSTR-D(1) model detects negative

(positive) growth 6 times (128 times), which implies 30% of CNR (98% of CPR). On the other hand, this

model predicts 10 times probability of recession above 0.75 within the 27 quarters of NBER recessions (37

% of CNR) and estimates 120 times probability of recession below 0.25 within the 124 quarters of NBER

expansions (97% of CPR).
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Table 10. False negative and positive signal rates (FNR and FPR)

In-sample Out-of-sample

GDP
Business

cycles
GDP

Business

cyclesby > 0 by < 0 bp 6 0:25 bp > 0:75 by > 0 by < 0 bp 6 0:25 bp > 0:75
FNR FPR FNR FPR FNR FPR FNR FPR

EVSTR(xt¡1) 10 29 ... ... 10 0 ... ...

EVSTR(xt¡2) 9 22 ... ... 13 60 ... ...

EVSTR(xt¡3) 9 36 ... ... 12 50 ... ...

LVSTR(yt¡2) 7 28 7 50 11 33 9 50

LVSTR-D(1) 10 25 25 86 10 0 31 94

Note. “In-sample” refers to 1960.2-1997.4. “Out-of-sample” refers to 1972.2-1998.1. Symbols by
and bp denote estimated rate of growth of GDP and estimated probability of recession. In both in
and out-of-sample analysis the …rst (second) column presents the percentage of negative (positive)

actual rate of growth of GDP within the periods of positive (negative) estimated growth rate. In

addition, the third (fourth) column shows the percentage of NBER recessions (expansions) within

the quarters of estimated expansions (recessions). Notice that in line with Stock and Watson

(1992), an estimated probability of recession above 0.75 (below 0.25) is interpreted as a signal of

recession (expansion).

For instance, of the 143 (8) in-sample positive (negative) estimated rates of growth of GDP

with the LVSTR-D(1) model, the GDP actually falls (rises) 14 (2) times, which corresponds to

a FNR (FPR) of 10% (25%). On the other hand, of the 67(72) times within sample that the

LVSTR-D(1) model predicts probability of recession less than 0.25 (higher than 0.75), 17(62) of

those turned out to be actual NBER recessionary (expansionary) quarters, which correspond to a

FNR of 25% (FPR of 86%).
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Table 11. In-sample and out-of-sample MSE and TPE

In-sample Out-of-sample

MSE TPE MSE TPE

EVSTR(xt¡1)

0.59

1.08

0.49

...

0.72

1.65

0.53

...

EVSTR(xt¡2)

0.59

1.08

0.48

...

0.76

1.53

0.60

...

EVSTR(xt¡3)

0.55

0.90

0.48

...

0.72

1.49

0.56

...

LVSTR(yt¡2)

0.55

0.88

0.48

0.16

0.30

0.13

0.70

1.46

0.54

0.17

0.55

0.09

LVSTR-D(1)

0.59

1.08

0.48

0.51

0.61

0.49

0.70

1.67

0.49

0.39

0.50

0.37

Note. For each model, …rst entry refers to the entire

sample. Following the NBER chronology, second (third)

entry refers to recessionary (expansionary) periods. “In-

sample” refers to 1960.2-1997.4. “Out-of-sample” refers

to 1972.2-1998.1. MSE and TPE, de…ned in (14) and

(15), are loss functions that evaluate the model’s accu-

racy at anticipating GDP growth and the US business-

cycle phases.

37



Table 12. Diebold and Mariano (DM) tests

In-sample Out-of-sample

MSE TPE MSE TPE

LVSTR(yt¡2)

EVSTR(xt¡1)

1.43

2.96

0.11

...

0.86

1.93

0.19

...

LVSTR(yt¡2)

EVSTR(xt¡2)

1.27

2.51

0.01

...

1.04

1.01

0.70

...

LVSTR(yt¡2)

EVSTR(xt¡3)

0.15

0.30

0.40

...

0.64

0.63

0.37

...

LVSTR(yt¡2)

LVSTR-D(1)

1.28

2.61

0.13

8.52

4.16

7.71

0.30

2.14

1.02

4.77

0.24

5.41

Note. This Table presents the absolute values of the DM

test statistic. For each model, …rst entry refers to the en-

tire sample. Following the NBER chronology, second (third)

entry refers to recessionary (expansionary) periods. “In-

sample” refers to 1960.2-1997.4. “Out-of-sample” refers to

1972.2-1998.1 MSE and TPE are loss functions de…ned in

(14) and (15). For example, 1.28 (8.52) is the absolute value

of the DM statistic under the hypothesis of no di¤erence in

the accuracy of models LVSTR(yt¡2) and LVSTR-D(1) at

anticipating in-sample growth (recessions), calculated with

the entire sample.
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Figure 1. Description of VSTR selection

Note. This figure describes the specification of VSTR models in four steps. First, a linear VAR and its maximum lag 
length is specified. Second, linearity tests are applied for w (either the  -square-  weighted deviation from the linear path 
in deviated models whereas or  the transition variable in other VSTR   models) the  researcher proposes. Third, for 
each w for which linearity was rejected, model selection tests are carried out. Finally, the validity of these models is 
evaluated by testing their adequacy (tests of serialy independence of errors, test of no remaining nonlinearity and tests 
of parameters constancy), and by checking the  accuracy of the resulting models at anticipating both output growth 
(MSE) and turning points (TPE), formally tested through Diebold and Mariano (DM) tests. The procedure concludes 
with the selection of one nonlinear specification.

Linear VAR(p)

(Schwartz)

Propose w

Linearity tests

Non linear

Model selection

LVSTR LVSTR-D EVSTR EVSTR-D

Linear

Model evaluation

Tests SI, Test NRN, Tests PC 

MSE, TPE, DM

One model
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Figure 2: Estimated transition function vs the transition variable

Note: Figure 2 plots the transition function of GDP growth equation against Yt-2 (Graph1) and Xt-2 
(Graph2).

Graph 1. Trasition function of GDP growth from LVSTR(Yt-2)
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Graph 2. Trasition function of GDP growth from EVSTR(Xt-2)
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Figure 3: Out-of-sample probabilities of recession

Note: Figure 3 shows the out-of-sample (period 1972.2-1998.1) probabilities of recessions from the 
LVSTR(Yt-2) model. Shaded areas correspond to the official NBER recessions.


