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Abstract 
 
 
The purpose of my doctoral studies has been the development 
of bioinformatics methods to quantitatively evaluate associations 
between proteins and nucleic acids (NAs). This thesis aims to 
provide insights into molecular features and relatively unknown 
mechanisms involving RNA-binding proteins and long noncoding 
RNAs as well as transcription factors and regulatory DNA 
elements. In this work, I present two algorithms, catRAPID omics 
express and PAnDA, for the prediction of RNA- and DNA-protein 
interaction respectively. These computational methods offer the 
possibility to address experimental problems and guide new 
approaches facilitating experimental design and procedures.   
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Resumen 
 
Mis estudios de doctorado han tenido como propósito principal el 
desarrollo de herramientas bioinformáticas para la evaluación de 
interacciones entre proteínas y ácidos nucleicos (ANs) de forma 
cuantitativa. Por consiguiente, esta tesis apunta a proporcionar 
conocimientos sobre características moleculares y mecanismos de 
asociación proteína-AN relativamente desconocidos; 
concretamente, la asociación de proteínas a ARNs y ARNs no 
codificantes, a la vez que factores de transcripción y elementos de 
regulación del ADN. En este proyecto presento dos 
algoritmos: catRAPID omics express y PAnDA, cuyas finalidades 
son las de predecir interacciones proteína-ARN y proteína-ADN 
respectivamente. Dichos métodos computacionales ofrecen la 
posibilidad de abordar problemas experimentales, así como de guiar 
el diseño y procedimiento de nuevas estrategias para su resolución. 
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Preface 
 
 
The work carried out during my doctoral studies has been mainly 
focused on computational prediction of protein and nucleic acids 
(NAs) interactions. Protein-NAs interactions are involved in many 
cellular processes and can imply either transient or stable 
nucleoprotein complexes encompassing specific and nonspecific 
interactions. The study of protein-NA interactions occupies a 
prominent role in several research areas as well as in a large number 
of biotechnological and clinical applications. Not surprisingly, a 
vast number of works have provided deep insights into the 
functional implication of NA-binding protein complexes features in 
terms of sequence and structures. Despite of this research effort, 
difficulties associated with the experimental determination of 
protein-NA complexes and binding sites led to an urgent need for 
reliable and accurate computational predictions of NA binding in an 
automatic fashion. 

In this thesis, I report the results obtained while testing and 
improving performances of the catRAPID suite that is one of the 
most used computational frameworks for large-scale analysis of 
protein-RNA associations. Applications of catRAPID approaches 
are described for several physiological and pathological processes 
namely neurodegenerative diseases (Chapter I), gene expression 
regulation (Chapter II and Chapter VII), and cancer (Chapter III). 
The development of catRAPID omics express (Chapters III and VI) 
as a module of catRAPID suite is presented. Furthermore, 
performances of PAnDA (Chapter IV), a new implementation for 
the prediction of protein-DNA interactions, are reported. 

Both catRAPID omics express and PAnDA are sequence-based 
methods that integrate genomic and functional annotations such as 
expression levels and protein-protein interaction networks. These 
methodologies pave the way for a better understanding of protein-
NAs interaction features and will be valuable 
in providing information for numerous theoretical and practical 
applications. 
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INTRODUCTION 
 
The association of proteins with nucleic acids is essential to life. 
This cellular event is a key element of the genetic blueprint and 
regulates mechanisms for its maintenance and variation. Therefore, 
the study of this macromolecular interaction is of paramount 
importance to understand cell growth, development, differentiation, 
evolution, and disease. Advances in computational biology are 
mirroring experimental approaches aiming to unveil details on the 
binding mechanism and regulation. As the experimental 
determination of binding sites is laborious and not always feasible, 
computational prediction of protein-NA interactions has been a fast-
growing field in computational biology over the past two decades. 
 
1. Chemistry and Biology of Nucleic Acids  
 
1.1. Composition and structure of Nucleic Acid polymers 

Nucleic acids (NAs), or polynucleotides, are biopolymers essential 
for storing and transmitting genetic information in nearly all living 
systems (Landenmark, Forgan, and Cockell 2015). Nucleic acids 
include DNA (2’-deoxyribonucleic acid) and RNA (ribonucleic 
acid), which differ form their structure, functions and stabilities 
(Alberts 1989; Bryce and Pacini 1998; Brown 2011). DNA and 
RNA are polymeric molecules composed of monomers known as 
nucleotides. Each nucleotide consists of a heterocyclic base 
(nucleobase or nitrogenous base), a pentose (5-carbon) sugar, and a 
phosphate group derived from phosphoric acid (H3PO4). 

Organic bases found in nucleic acids are related either to the purine 
or to the pyrimidine heterocyclic ring systems. There are four 
heterocyclic bases in DNA: adenine (A), guanine (G), cytosine (C) 
and thymine (T). The first two are derived from purine, whereas the 
remaining two are derived from pyrimidine. The fourth base in 
RNA is not thymine but instead the pyrimidine-derived base, uracil 
(U). 
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Figure 1. Chemical structures of the heterocyclic bases found in 
DNA and RNA [adapted from (Bryce and Pacini 1998)] 

As for the 5-carbon sugars found in nucleic acids, deoxyribose (β-
2’-deoxy-d-ribofuranose) is present solely in DNA while ribose (β-
D-ribofuranose) is present solely in RNA. Ribose differs from 
deoxyribose for a hydroxyl group attached to the 2’-position of the 
pentose sugar (Figure 2). 

 

 

 

 

 

Figure 2. Ribose (right) and deoxyribose (left) 5-carbon sugars 
found in nucleic acids [adapted from 
https://en.wikibooks.org/wiki/Structural_Biochemistry] 

A glycoside bond joins any one of the bases to either one of the two 
sugar molecules to form a compound known as a nucleoside. 
Addition of a phosphate group to the sugar residue of a nucleoside 
produces a compound known as nucleotide. A dinucleotide (dimer) 
of DNA or RNA is formed by covalently linking the 5′-phosphate 
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group of one nucleotide to the 3′-hydroxyl group of another to form 
a phosphodiester bond. An oligonucleotide (oligomer) is formed 
when several such bonds are made. Since at physiological pH of 7.4 
each phosphodiester group exists as an anion, nucleic acids are 
highly charged polyanionic molecules (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Diagram representation of the structure of an 
oligonucleotide [adapted from (Bryce and Pacini 1998)] 

One end of a nucleic acid strand has a 5′-hydroxyl group (primary 
hydroxyl) and the other end has a 3′-hydroxylstructure of a 
polynucleotide group (secondary hydroxyl). The nucleic acid chain 
therefore has directionality. By convention, nucleic acid sequences 
are written in the 5' to 3' direction. It is important to stress that 
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distinct oligonucleotides, i.e. distinct sequences, are distinct 
molecules with different chemical and biophysical properties. 

One of the factors responsible for the folded structure of both DNA 
and RNA is the intra-molecular base pairing that occurs within 
double-stranded nucleic acids chains. Dictated by specific hydrogen 
bonding patterns, the standard or canonical Watson-Crick base pairs 
[A-U(T) and G-C] (Figure 4) allow the DNA to maintain a regular 
helical structure that is dependent on its nucleotide sequence. In 
RNA molecules (e.g., transfer RNA), Watson-Crick base pairs 
permit the formation of short double-stranded helices, and a wide 
variety of non-canonical interactions or mismatches (e.g., G-U or 
A-A) (Figure 4) permit RNAs to fold into a vast range of specific 
three-dimensional structures. DNA with high GC-content is more 
stable than DNA with low GC-content, although the stability of the 
duplex is derived from both hydrogen bonding and base stacking 

(Yakovchuk, Protozanova, and Frank-Kamenetskii 2006). 

It should be mentioned that non-canonical base pairing is possible 
and modified nucleobases do also occur (a comprehensive catalogue 
of modified nucleotides can be found at 
http://mods.rna.albany.edu/mods/). 

Because of the canonical base pairing, the sequence of one strand of 
DNA precisely defines the sequence of the other; the two strands 
are said to be complementary, and are sometimes called reverse 
complements of each other. Nucleic acids can adopt different 
conformations: right-handed helices B-form and A-form, and left-
handed helix Z-form. B-form has a wide major groove and a narrow 
minor groove running around the helix along the entire length of the 
molecule (Figure 5). B-form is found at low salt concentrations and 
it is believed to be the native conformation occurring in chromatin, 
a periodic structure made up of repeating, regularly spaced subunits 
called nucleosomes. Within the nucleosomes the major part of DNA 
is wrapped around histones, the remaining DNA known as linker 
DNA. 
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Figure 4. Canonical and non-canonical base pairs [adapted from 
(Crick 1993)] 

A-DNA is found in solutions with higher salt concentrations or with 
alcohol added. RNA occurs almost exclusively in the A-form (or in 
a related A'-form). In A-DNA, the major groove is deep and the 
minor groove very shallow. Z-DNA occurs for alternating poly(dG-
dC) sequences in solutions with high salt concentrations or alcohol. 
In addition, there exist further nucleic acid conformations like C-
DNA, H-DNA or others. 
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Figure 5. Major and minor grooves in DNA double helix [adapted 
from (Bryce and Pacini 1998)] 

1.2. Properties of Base–Amino acid interface 

As chains of amino acid residues, proteins are able to perform a vast 
range of activities within living systems, including interactions with 
NAs. DNA- and RNA-binding protein interfaces have diverse 
nature of binding sites at the atomic contact level (Gromiha 2011). 
In protein-DNA complexes, the grooves formed by the backbones 
of base pairs provide an interface for protein binding. In protein-
RNA structures, both double- and single-stranded segments are 
found with some single-stranded regions stabilizing the structure 
and contributing to protein binding. While protein-DNA 
associations are governed predominantly by interaction of side-
chain amino acids and functional groups in the major groove, RNA 
recognition is largely mediated by interactions of amide and 
carbonyl groups in the protein backbone with the edge of the RNA 
base (Allers and Shamoo 2001). 

DNA-binding sites form packed, hydrophilic surfaces capable of 
direct and water-mediated hydrogen bonds (Susan Jones et al. 1999; 
Nadassy, Wodak, and Janin 1999). Conversely, RNA-binding sites 
are less tightly packed (see Table 1) and more frequently involved 
in van der Waals interactions (Susan Jones et al. 2001; Ellis, 
Broom, and Jones 2007). The wide range of conformations (e.g. 
loops, bulges, stems; see Figure 6) exhibited by RNA (Bon et al. 
2008) may be responsible for the poor atomic packing. 
Furthermore, the convex nature of RNA surface that binds to the 
concave protein surface (Bahadur, Zacharias, and Janin 2008) 
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determines the typical asymmetry found in protein-RNA interface 
area (1208 Å2 for protein and 1337 Å2 for RNA). Nonetheless, 
shape complementarity is a primary feature for the two kind of 
complex formation (see Table 1). Interestingly, large interfaces 
comprised into protein-RNA complexes are suspected to be under 
higher selection pressure (Barik et al. 2015). 

 

 Protein-DNA Protein-RNA 

Interface size 
3137 Å2 

(1600  Å2✶) 
2545 Å2 

Number of aa 24✶ 45 

Number of nt 12✶ 16 

Atomic packing † 6.1 Å 8.9 Å 

Shape complementarity ‡ 0.65 0.67 

Salt bridges 11 8 

Stacking interactions 
Purines: 35% 

Pyrimidines: 65% 

Purines: 54% 

Pyrimidines: 46% 

Table 1. Average values of relevant structural parameters of DNA- 
and RNA-protein interfaces. † (S Jones and Thornton 1996); ‡ 
(Lawrence and Colman 1993); *(Nadassy, Wodak, and Janin 
1999)[adapted from (Barik et al. 2015)]. 

The immediate proximity of peptides and nucleotides involves a 
mutual action at atomic level exhibiting favoured amino acid-base 
hydrogen bonds and van der Waals contacts (Nicholas M. 
Luscombe, Laskowski, and Thornton 2001; Treger and Westhof 
2001). In particular, for both DNA- and RNA-protein interfaces, 
positively charged (Arginine and Lysine), polar (Threonine and 
Asparagine) and aromatic (Phenylalanine) amino acids play a 
predominant role in mediating specific and nonspecific interactions 
with certain base types or sequence contexts (Nicholas M. 
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Luscombe, Laskowski, and Thornton 2001; Treger and Westhof 
2001; Susan Jones et al. 2001). 

 

Figure 6. RNA secondary structure feature and naming conventions 
[adapted from (Zwieb 2014)]. 

As a consequence of the chemical affinities, many DNA- and RNA-
binding proteins can recognize specific base pairing patterns that 
identify particular regulatory regions of genes and transcripts. A 
nucleotide sequence pattern with functional or chemical 
significance (e.g. a DNA site of high affinity for protein molecules) 
is called a sequence motif (Stormo 2000). Sometimes patterns are 
defined in terms of probabilistic models, such as Positional Weight 
Matrices (PWMs) (Stormo 2000), and can be graphically 
represented using sequence logos (Schneider and Stephens 1990) 
showing the most conserved bases in a set of aligned sequences. 
Given a set of sequences, many bioinformatics programs attempt to 
identify candidate motifs. Renowned de novo motif discovery tools 
include MEME (T. L. Bailey et al. 2015), SeAMotE (Agostini et al. 
2014), and many others (Lihu and Holban 2015). Although motif 
representation of binding site positions is well-established, novel 
probabilistic paradigms are regularly proposed to yield better 
prediction performances such as the sparse local inhomogeneous 
mixture (Slim) model (Keilwagen and Grau 2015) that takes into 
account inter-position dependence (Mukherjee et al. 2013). 
Nonetheless, an unbiased and comprehensive evaluation of the 
differences between binding sites recognized in vivo and in vitro 
needs to be attempted. 

Notable repositories of DNA-binding proteins recognition motifs 
are FlyTF (Pfreundt et al. 2010) and LEGO Factors (Stampfel et al. 
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2015) (Drosophila melanogaster), CollecTF (Kiliç et al. 2014) 
(Bacteria domain), DPInteract (Robison, McGuire, and Church 
1998) (Escherichia coli), AthaMap (Steffens et al. 2005) 
(Arabidopsis thaliana), ScerTF (Spivak and Stormo 2012) 
(Saccharomyces species), HOCOMOCO (Kulakovskiy et al. 2016) 
(Homo sapiens and Mus Musculus), TRANSFAC (Wingender et al. 
2000) and Factorbook (J. Wang et al. 2012) (Homo sapiens), 
JASPAR (Mathelier et al. 2016) (Eukaryotes), and UniPROBE 
(Hume et al. 2015) (several organisms). 

Available repositories of RNA-binding proteins recognition motifs 
are the database of RNA-Binding Protein DataBase (RBPDB) 
(Cook et al. 2010), RNAcompete compendium (Ray et al. 2013), 
RNA Bricks (Chojnowski, Walen, and Bujnicki 2014), 
INTERactions in RNA structures (InterRNA)  (Appasamy et al. 
2016), RNA Characterization of Secondary Structure Motifs (RNA 
CoSSMos) (Vanegas et al. 2012), RNA 3D Motif Atlas (Petrov, 
Zirbel, and Leontis 2013). 

A polypeptide sequence pattern with functional or chemical 
significance (e.g. a protein site of high affinity for DNA molecules) 
is called a domain (Richardson 1981). A protein domain is a highly 
conserved structural unit that can function and evolve almost 
independently of the rest of the protein (Ponting and Russell 2002; 
Orengo and Thornton 2005). Proteins often include multiple 
domains, many of which can be traced back to the Last Universal 
Common Ancestor (LUCA) (Ranea et al. 2006), even though their 
origin is still poorly understood (Alva, Söding, and Lupas 2016). 
Protein domain assignments using Pfam (Finn et al. 2014), InterPro 
(A. Mitchell et al. 2015), and other domain annotation resources are 
widely used to infer protein evolutionary and functional 
relationships. 

Although some protein domains have clearly understood functions 
(Forslund and Sonnhammer 2008), many proteins are able to 
undergo specific processes even in absence of the conforming 
canonical domain. Remarkable examples are amyloidogenic 
proteins associated with neurodegenerative disorders acting as 
transcription factors (Hegde, Vasudevaraju, and Rao 2010; Maloney 
and Lahiri 2011), and metabolic enzymes acting as RNA-binding 
proteins (Beckmann et al. 2015; Castello, Hentze, and Preiss 2015). 
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Those proteins are referred to as moonlighting proteins. Especially 
concerning RNA recognition, recent experimental studies (Castello 
et al. 2012; Baltz et al. 2012; Kwon et al. 2013; Castello et al. 2016) 
indicate that a number of RNA-binding proteins contain non-
classical RNA-binding domains and are not annotated in RNA-
related pathways (Gerstberger, Hafner, and Tuschl 2014). For both 
classes of NA-binding proteins, structural disorder (Guharoy, 
Pauwels, and Tompa 2015) emerged as a prevalent and important 
feature in establishing the interaction with nucleotides (Castello et 
al. 2012; Klus et al. 2015). Based on such discoveries, a new 
generation of knowledge-free computational methods for domain 
detection has been developed (Carmen Maria Livi et al. 2015).  
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2. Discovery of Protein and Nucleic Acid
interactions 

Protein–NA interactions play a crucial role in central biological 
processes, ranging from mechanisms of replication, transcription 
and recombination to enzymatic events utilizing nucleic acids as 
substrates. For these reasons, biochemical and structural studies of 
protein–NA recognition processes are of general relevance. Many 
multidisciplinary approaches have been posing unique and 
challenging views on protein-NA interactions. Advances in 
genomic techniques to identify NA-binding proteins and their 
targets, as well as methods to elucidate their functions, are calling 
for the development of novel computational frameworks for the 
analysis of protein-NA interaction data. Hence, the broad range of 
methodologies required for a mechanistic understanding of protein–
NA interactions and their functions in the cell covers both structural 
and genomic aspects investigated with both experimental and 
computational techniques. 

2.1 The interaction as a structural event 

X-ray crystallography (Shi 2014), along with Nuclear Magnetic 
Resonance NMR (Marion 2013) and other chemical and physical 
methods (Hanein and Milligan 2013) are used to discover how 
proteins and NAs interact with each other. Protein–DNA 
interactions have been documented for individual structures, and the 
literature on the subject has been reviewed in detail (N. M. 
Luscombe et al. 2000) along with protein-RNA interactions (Susan 
Jones et al. 2001). Currently, the Protein Data Bank  (PDB; 
[http://www.rcsb.org/pdb]) (Berman et al. 2000) includes more than 
5000 DNA/RNA-protein complex structures that is about 800 non-
redundant DNA/RNA binding protein chains (below 25% sequence 
identity), corresponding to only 5% of the number of available 
protein structures (Zhao, Yang, and Zhou 2013; Miao and Westhof 
2015). 

In addition to PDB, structures of protein–NA complexes are 
deposited in the Nucleic Acid Database (NDB) (Coimbatore 
Narayanan et al. 2014), and also specific collections such as 
Protein-RNA Interface Database (PRIDB) (Lewis et al. 2011), 3D-
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footprint (Contreras-Moreira 2010), Nucleic acid–Protein 
Interaction DataBase (NPIDB) (Kirsanov et al. 2013), Transcription 
Factor Binding Site Shape (TFBSshape) (L. Yang et al. 2014), 
Transcription factor-DNA interaction data repository (TFinDit) 
(Turner, Kim, and Guo 2012), Biological Interaction Database for 
Protein-Ncucleic Acid (BIPA) (Lee and Blundell 2009), 
Thermodynamic Database for Protein-Nucleic Acid Interactions 
(ProNIT) (M. D. S. Kumar et al. 2006) Protein-DNA Structure-
Affinity Database (PDSA) (AlQuraishi, Tang, and Xia 2015), and 
Telomeric Proteins Interaction Network (TeloPIN) (Luo et al. 
2015). 

Considering practical problems occurring in experimental structural 
biology such as high costs, poor NMR spectra of larger proteins, 
and conformational changes due to packing interactions in 
crystallisation (Acharya and Lloyd 2005), computational modelling 
of protein–NA complexes represents a powerful alternative to 
prompt investigation and discovery into the field (Karplus and 
Lavery 2014; Zhou 2014). Nonetheless, a problem for in silico 
simulations of protein-NA complexes, associated with the training 
of force fields (MacKerell and Nilsson 2008), makes calculations as 
limited as the application of experimental methods for determining 
molecular conformations (Bränd´en and Alwyn Jones 1990). For 
instance, the Critical Assessment of PRediction of Interactions 
CAPRI (http://capri.ebi.ac.uk) international challenge (Janin 2010) 
and the three protein-RNA benchmarks available in the literature 
up-to-date (Barik et al. 2012; Pérez-Cano, Jiménez-García, and 
Fernández-Recio 2012; Huang and Zou 2013)  show that molecule 
flexibility still remains a computational issue to overcome. 
Importantly, known complex structures are still very few compared 
with known sequence space (only less than 1/1000th proteins of 
known sequences have experimental structures available (Moult 
2008)), and the ease of crystallization confines the set of solved 
structures to a non-random sampling. 

2.2. The interaction as a genomic event 

In addition to efforts to improve knowledge on protein-NA 
interactions at the structural level, other approaches, both 
experimental and computational, have been developed based on 
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chemical properties and cellular context of the recognition or 
binding event. Such techniques are based on next-generation 
sequencing (van Dijk et al. 2014) and proteomics (Larance and 
Lamond 2015) and exploit chemical specificities of interacting 
molecules in a large-scale context. Indeed, in vivo experimental 
techniques to check protein-DNA and protein-RNA interactions 
share the same principles, which often imply immunoprecipitation 
(IP) (see Figure 7), i.e. precipitation of the protein of interest using 
a specific antibody. Such techniques form a precious toolbox for 
understanding protein-NA interactions at the finest resolution and 
broadest scale. Notable online resources for experimental protein-
NA interactions are ENCODE (https://www.encodeproject.org/) 
and NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/). Repositories 
of protein-RNA interactions are CLIPZ (Khorshid, Rodak, and 
Zavolan 2011), iCounts (Anders et al. 2012), Atlas of UTR 
Regulatory Activity (AURA) (Dassi et al. 2014), CLIPdb (Y.-C. T. 
Yang et al. 2015), Database of RNA interactions in post-
transcriptional regulation (DoRiNA) (Blin et al. 2015). 
Computational methods build upon more highly heterogeneous 
approaches [reviewed in (Cirillo, Agostini, and Tartaglia 2013; K 
2013; Cirillo, Livi, et al. 2014; Si et al. 2015)]. The development of 
algorithms for a comprehensive analysis of high-throughput data 
represents one of the main challenges for the bioinformatics 
community and a rational aid to experimental scientists. 
Computational methods offer the possibility to address 
experimental problems, prompt functional hypotheses, and guide 
new approaches. Indeed, the prediction of structural and functional 
properties of macromolecules could largely facilitate the process of 
designing experimental procedures and protocols.  
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Figure 7. Overview of CLIP-based methods [adapted from (Re et al. 
2014)]
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3. Experimental methods for protein and Nucleic 
Acids interactions detection  

Experimental characterization of protein-NA interactions can be 
broken down into in vitro approaches, which determine the 
specificity of NA-binding proteins free from other cellular factors, 
and in vivo approaches, which measure a snapshot of proteins 
binding to DNAs or expressed RNAs. 

3.1 In vitro protein-NAs interactions 

In vitro methods for the determination of DNA-binding protein 
targets are DNA Electrophoretic Mobility Shift Assay (EMSA) 
(Hellman and Fried 2007), which is based on the observation that 
the rate of DNA migration is shifted or retarded upon protein 
binding when subjected to non-denaturing polyacrylamide or 
agarose gel electrophoresis; the DNA Pull-down Assay, which 
purifies the components of a protein-DNA complex either by 
Western blot/mass spectrometry when using a biotinylated DNA, or 
by Southern blotting/PCR when using a protein labelled with an 
affinity tag; and Microplate Capture and Detection Assay (Gibellini 
et al. 1993), which uses immobilized DNA probes to capture 
specific protein entities.  

In vitro methods for the determination of RNA-binding protein 
targets are Systematic evolution of ligands by exponential 
enrichment (SELEX) (Ellington and Szostak 1990), which consists 
of multiple rounds of binding and amplification of RNA molecules; 
SEQRS (Campbell et al. 2012), which modifies traditional SELEX 
by sequencing the bound RNA pool at each round; RNAcompete 
(Ray et al. 2009), which assays the bound pool of designed RNA 
using microarray; and RNA Bind-n-Seq (Lambert et al. 2014), 
which sequence RNAs bound to various amounts of proteins after 
incubation. 

3.2 In vivo protein-DNA interactions 

Chromatin immunoprecipitation (ChIP) experiments (Pillai, 
Dasgupta, and Chellappan 2015) allow the capture of a snapshot of 
specific protein-DNA interactions and to quantitate them by means 



 

 16 

of quantitative polymerase chain reaction (qPCR). In vivo 
crosslinking, traditionally achieved with formaldehyde, covalently 
stabilizes protein-DNA complexes, allowing even transient 
interactions to be trapped (Jackson 1978). Importantly, 
formaldehyde fixation step is also able to stabilize protein-protein 
interactions (Hoffman et al. 2015; Gavrilov, Razin, and Cavalli 
2014; Cirillo, Botta-Orfila, and Tartaglia 2015). 

Crosslinked protein-DNA complexes are extracted with a lysis step 
that dissolves the cell membrane with detergent based solutions. 
DNA is sheared by sonication or digestion with micrococcal 
nuclease MNase (C. Wu and Allis 2004). ChIP validated antibodies 
are then used to isolate the complex of interest. Alternatively, 
affinity tags such as HA, myc or GST fused to target proteins can be 
used to immunoprecipitate target proteins lacking qualified 
antibodies (Lichty et al. 2005). Beaded antibody binding resin like 
protein A, G or A/G, or immobilized streptavidin in the case of 
biotinylated antibodies, are used to affinity purify the complex 
using blocking buffers such as salmon sperm DNA and a generic 
protein source. Importantly, increase in bead volume increases non-
specific binding (Lin, Tirichine, and Bowler 2012). Crosslinks are 
reversed typically through extensive heat incubations or through 
digestion of the protein component with proteinase K, which 
cleaves at the carboxy-side of aliphatic, aromatic or hydrophobic 
residues and also eliminates nucleases from the purified DNA 
preventing degradation. After DNA purification using phenol-
chloroform, DNA levels can be determined by agarose gel 
electrophoresis or more commonly by quantitative polymerase 
chain reaction (qPCR). The direct correlation between the amounts 
of immunoprecipitated complex and bound DNA (Blecher-Gonen et 
al. 2013) makes qPCR procedures sufficiently accurate to enable 
measurement of target protein-DNA levels in different experimental 
conditions. 

ChIP technology has fostered advanced specializations and offshoot 
techniques. ChIP coupled with microarray analysis (ChIP-chip) 
(Ren et al. 2000) allows genome-wide analysis of protein or protein 
modification distribution. Purified DNA sample and a control (the 
input sample or an IP with a non-specific antibody) are each 
fluorescently labelled and co-hybridized to a microarray (Aparicio, 
Geisberg, and Struhl 2004). Despite the relatively inexpensive 
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costs, the main disadvantages of ChIP-chip are the inherent 
restrictions of microarray technology, and the limited resolution and 
higher signal to noise ratio compared to sequencing technologies 
(Ho et al. 2011; Massie and Mills 2012). ChIP coupled with 
quantitative next-generation sequencing technology (ChIP-seq) 
(Lieb et al. 2001; Johnson et al. 2007) identifies binding sites of 
DNA-associated proteins detecting enrichment of chromatogram 
peaks. ChIP-seq main disadvantages are its costs and its limitations 
in the case of rare sample types (Gilfillan et al. 2012). Remarkably, 
ChIP-seq is the primary technology used in the ENCODE 
(Encyclopedia of DNA Elements) project (Landt et al. 2012; T. 
Bailey et al. 2013). 

To better address biological questions or to modify the resolution 
and scale of the experiments, researchers have created a specialized 
version of ChIP. ChIP-exo (Rhee and Pugh 2012) is used to 
specifically map binding sites in the genome via the addition of a 
DNA digestion step to ChIP-seq. ChIA-PET (Chromatin Interaction 
Analysis by Paired-End Tag Sequencing) (J. Zhang et al. 2012) 
couples ChIP with chromatin conformation capture (3C) technology 
(Sajan and Hawkins 2012) to detect the interaction of distant DNA 
regions via a protein of interest. 

3.3 In vivo protein RNA-interactions  

The two major approaches for analyzing protein-RNA interactions 
in vivo are RNA Immunoprecipitation (RIP) (Jain et al. 2011) and 
Cross-Linking Immunoprecipitation (CLIP) (Milek, Wyler, and 
Landthaler 2012; Riley and Steitz 2013). Both RIP and CLIP are 
similar to DNA-based ChIP in that they use antibodies to isolate 
specific nucleic acid-protein interactions. 

RIP involves IP of an RNA-binding protein (RBP) of interest using 
an antibody. RIP can be coupled to microarray (RIP-ChIP) (Keene, 
Komisarow, and Friedersdorf 2006) or sequencing (RIP-seq) 

(Cloonan et al. 2008). The use of a recombinant protein to probe an 
isolated total RNA sample is known as recombinant RIP (rRIP) 

(Townley-Tilson et al. 2006). Disadvantages of RIP protocols 
include lack of RBP binding site detection, non-specific RNA 
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interaction identification, and high signal-to-noise ratio (Mili and 
Steitz 2004). 

CLIP technologies (Milek, Wyler, and Landthaler 2012; Riley and 
Steitz 2013) differ from RIP in their use of UV crosslinking 

(Brimacombe et al. 1988). As weak and non-specific protein 
interactions are not crosslinked, CLIP protocols allows stringent 
isolation conditions, hence a reduced background noise and an 
increased resolution leading to actual RBP binding sites 
identification to within a few nucleotides. CLIP is generally coupled 
to sequencing as in the case of CLIP-seq also known as HITS-CLIP  
(high-throughput sequencing of RNA isolated by crosslinking 
immunoprecipitation) (Darnell 2010). PAR CLIP (photoactivatable-
ribonucleoside-enhanced crosslinking and immunoprecipitation) 
(Ascano et al. 2012) attempts to enhance efficiency of crosslinking 
and resolution of RBP binding site by incorporating photoreactive 
ribonucleoside analogs into nascent RNA of living cells, which 
undergoes characteristic mutations in the sequence upon 
crosslinking (Spitzer et al. 2014). The major disadvantage of PAR-
CLIP is its limitation to cell cultures which are the only 
experimental system for animal studies to be conducive to 
incorporation of the ribonucleoside analog (Ascano et al. 2012). 
iCLIP (Konig et al. 2011; Huppertz et al. 2014) allows single-
nucleotide resolution of RBP binding sites. After partial digestion of 
the protein by proteinase K, cDNA synthetized from an adapter 
sequence ligated at the 3'end of RNA is circularized resulting in its 
location next to the last nucleotide before the RBP binding site. The 
very detailed protocol and specialized data analysis tools represent 
the main disadvantages of iCLIP technique (Huppertz et al. 2014; 
Chen et al. 2014). 

ChIRP (chromatin isolation by RNA purification), CHART (capture 
hybridization analysis of RNA targets) and RAP (RNA antisense 
purification) exploit biotinylated oligonucleotides complementary 
to the RNA of interest as a way to pull down associated proteins (C. 
Chu et al. 2011; Simon et al. 2011). Mass spectrometry and next-
generation sequencing are employed to identify proteins associated 
with RNA and genomic locations at which these interactions occur. 
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4. Computational methods for protein and 
Nucleic Acid interactions prediction  

In the context of theoretical methods for computational biology, 
selection of relevant information is essential to build predictive 
models (T. M. Mitchell 1982). As predictions are based upon 
previous experience, predictive approaches are intrinsically limited 
by the initial hypotheses and the choice of features to describe the 
system. 

Computational prediction of protein-NA binding requires 
experimental knowledge on whether a given protein binds NAs. 
This information can be retrieved from structural (e.g. X-ray 
crystallography) or genomic (e.g. ChIP and CLIP technologies) 
approaches. The definition of a NA binding residue changes if it is 
based on distance cut-offs (generally from 3.5 to 7Å), on non-
covalent contacts (e.g. hydrogen bonding and Van de Waals 
interactions), or even on changes in accessible surface area 
(ΔASA>0Å2 or >10% area change) (Miao and Westhof 2015). 
Moreover, single point mutations are able to maintain the structure 
of a binding site but disable the binding ability (Arnaud et al. 2011), 
and a binding site can be associated with multiple activities like in 
the case of moonlighting  proteins (Huberts and van der Klei 2010). 

Based on the kind of features exploited, protein-NA interaction 
prediction methods can be roughly divided in two major categories: 
structure-based methods and sequence-based methods (Cirillo, 
Agostini, and Tartaglia 2013). Sequence based methods take 
advantage of the information collected within primary sequences of 
protein and NAs. In general, statistical analysis of a large collection 
of sequences known to be involved in an interaction leads to the 
creation of a model that is further used to identifying novel binding 
regions. In contrast, structure-based methods use the geometric 
shape of protein and NAs to describe interactions at atomic level 
and derive binding affinities and rules of binding recognition. Both 
methodologies can return binary predictions (binding or not-
binding) or score-based predictions generally including arbitrary 
cut-offs. 
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Common features used in sequence-based methods are: 

• Nucleic acids and amino acid composition (e.g. sequence 
binary encoding); 

• Sequence similarity (e.g. multiple sequence alignment 
coupled to conservation scoring such as Shannon entropy, 
Scorecons (Valdar 2002), etc.); 

• Evolutionary information [e.g. position-specific scoring 
matrix (Stormo 2000)]. 

Common features used in structure-based methods are: 

• Secondary structure [e.g. assessed from the structure using 
DSSPcont (Carter, Andersen, and Rost 2003)]; 

• Accessible surface area [e.g. assessed from the structure 
using NACCESS (Hubbard and Thornton 1993)]; 

• Physicochemical features (e.g. hydrophobicity, electrostatic 
patches, cleft size, charge, dipole, quadrupole moments, 
etc.). 

Secondary structure and physicochemical features can be predicted 
using primary structure (Bellucci et al. 2011). 

An up-to-date selection of protein-NA interaction prediction 
methods is reported in Appendix. 

 



 

 21 

CHAPTER I 

Protein-RNA interactions in Neurodegenerative 
diseases 

Established in 2010, research in Tartaglia's lab at Center for 
Genomic Regulation (CRG) of Barcelona, Spain, focuses on 
neurodegenerative diseases. Although neurodegenerative diseases 
are traditionally described as protein disorders leading to 
amyloidosis, recent evidence indicates that protein-RNA 
associations are involved in their onset. In this work, we used 
catRAPID to investigate a number of protein–RNA associations 
involved in neuronal function and misfunction such as protein–
RNA interactions associated with fragile X syndrome; protein 
sequestration in CGG aggregates; the TDP-43 noncoding 
interactome; FMRP and TDP-43 autogenous regulation; iron-
mediated translation of APP and α-synuclein transcripts; and prion 
proteins and RNA aptamers. The strong agreement of our 
calculations with experimental evidence encouraged us to propose 
putative candidates in the disease mechanism to be further 
investigated by experimental studies. This work also introduces two 
new modules of catRAPID suite: catRAPID strength and catRAPID 
fragments. catRAPID strength is a tool to estimate the specificity of 
an interaction under study; catRAPID fragments allows the analysis 
of associations between molecules with long sequences. The work 
also set the basis to new lines of research at Tartaglia's lab such as 
ribonucleoprotein associations of triplet repeat expansions; design 
of RNA aptamers for neurodegenerative diseases; and the 
autogenous regulation of gene expression (Zanzoni et al. 2013). 

 

Cirillo D, Agostini F, Klus P, Marchese D, Rodriguez S, Bolognesi 
B, Tartaglia GG. Neurodegenerative diseases: quantitative 
predictions of protein-RNA interactions. RNA. 2013 Feb;19(2):129-
40. doi: 10.1261/rna.034777.112. Epub 2012 Dec 21. PMID: 
23264567 

 



Cirillo D, Agostini F, Klus P, Marchese D, Rodriguez S, Bolognesi B, 
Tartaglia GG. Neurodegenerative diseases: quantitative predictions of 
protein-RNA interactions. RNA. 2013 Feb;19(2):129-40. doi: 10.1261/
rna.034777.112

http://rnajournal.cshlp.org/content/19/2/129.long
u16319
Rectángulo
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CHAPTER II 

Regulatory functions of ncRNAs 

My PhD involved data analysis projects complementary to the 
methodological part. In this chapter I present a work carried out in 
collaboration with the Bellvitge Institute for Biomedical Research 
(IDIBELL). The aim of the work was to produce and analyse the 
allelic expression screen of an imprinted domain on mouse 
chromosome 10 comprising the paternally expressed Plagl1 gene. 
One result of the study was the identification of two unspliced 
ncRNAs, Hymai and Plagl1it. My contribution to the project had 
been to help defining the interaction propensity between Hymai and 
Plagl1it, and Trithorax chromatin regulators. This analysis allowed 
the identification of a potential regulatory function at the imprinted 
domain. This work was published in 2012 in PLoS One, and is a 
typical example of how the wealth of high-throughput data sets new 
challenges for protein-RNA interaction prediction.  

Iglesias-Platas I, Martin-Trujillo A, Cirillo D, Court F, Guillaumet-
Adkins A, Camprubi C, Bourc'his D, Hata K, Feil R, Tartaglia G, 
Arnaud P, Monk D. Characterization of novel paternal ncRNAs at 
the Plagl1 locus, including Hymai, predicted to interact with 
regulators of active chromatin. PLoS One. 2012;7(6):e38907. doi: 
10.1371/journal.pone.0038907. Epub 2012 Jun 19. PMID: 
22723905 

 



Iglesias-Platas I, Martin-Trujillo A, Cirillo D, Court F, Guillaumet-Adkins 
A, Camprubi C, Bourc'his D, Hata K, Feil R, Tartaglia G, Arnaud P, Monk 
D. Characterization of novel paternal ncRNAs at the Plagl1 locus, including 
Hymai, predicted to interact with regulators of active chromatin. PLoS One. 
2012;7(6):e38907. doi: 10.1371/journal.pone.0038907. 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038907
u16319
Rectángulo
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CHAPTER III 

Interaction determines expression 

In this work, published in Genome Biology, we use catRAPID 
algorithm to integrate computational predictions of protein-RNA 
interactions with experimental expression profiles. Remarkably, our 
analysis uncovered novel regulatory paradigms concerning 
proliferation and differentiation processes. The work linked 
experimentally determined tissue-specific expression patterns of 
known human mRNA-binding proteins (RBPs) and thousands of 
mRNAs. As such associations are experimentally known for just a 
small subset of molecules, our computational strategy allowed to 
generalize to a proteomic scale and reach an unprecedented scope. 
We found that mRNA-RBP pairs for which the catRAPID 
algorithm predicts a high interaction propensity tend to have 
strongly correlated or strongly anti-correlated expression patterns in 
human tissues. By analysing functional categories, we detected a 
strong enrichment of functions related to cell-cycle control among 
the positively correlated patterns and those for survival, growth and 
differentiation among negatively correlated patterns. Furthermore, 
over 90% of genes in both categories are listed as cancer-related 
genes. Due to its large-scale implications and the soundness of 
predictions, the study has high potential to guide and inspire future 
experimental work. As commented by colleagues, “the overall 
picture painted embodies important principles that are here to stay, 
robust to false discoveries in the prediction set” (Zagrovic 2014). 

Cirillo D, Marchese D, Agostini F, Livi CM, Botta-Orfila T, 
Tartaglia GG. Constitutive patterns of gene expression regulated by 
RNA-binding proteins. Genome Biol. 2014 Jan 2;15(1):R13. doi: 
10.1186/gb-2014-15-1-r13. PMID: 24401680 
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Cirillo D, Marchese D, Agostini F, Livi CM, Botta-Orfila T, Tartaglia 
GG. Constitutive patterns of gene expression regulated by RNA-
binding proteins. Genome Biol. 2014 Jan 2;15(1):R13. doi: 10.1186/
gb-2014-15-1-r13. 

https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-1-r13
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CHAPTER IV 

PAnDA, Protein And DNA Associations 

Transcription factors are proteins that bind to specific patterns of 
DNA sequences to control how genes are turned on or off. The way 
this function is achieved is still unknown. To gain insights into this 
mechanism, we analysed a large collection of ENCODE ChIP-seq 
data to study how transcription factors interact together with 
specific DNA regions. We found that the association of multiple 
transcription factors is a fundamental feature to explain their 
localization onto DNA. We developed a computational method that 
uses this feature to predict where a transcription factor will localize 
in the genome. This tool is called PAnDA (Protein And DNA 
Associations). The very high accuracy of PAnDA shows that the 
network itself contains enough information to localize transcription 
factors on DNA even in absence of known recognition motifs. The 
most innovative aspect of our work is that it introduces a cell-
specific view of transcription factors networks, which opens up the 
way for efficient and effective manipulation of cellular processes. 
PAnDA tool will raise new fundamental questions in the field and 
will inspire future research on topics like the evolution of regulatory 
networks and the formation of macromolecular complexes. 

 

Cirillo D, Botta-Orfila T, Tartaglia GG. By the company they keep: 
interaction networks define the binding ability of transcription 
factors. Nucleic Acids Res. 2015 Oct 30;43(19):e125. doi: 
10.1093/nar/gkv607. Epub 2015 Jun 18. PMID: 26089389 
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CHAPTER V 

Refining Xist interactome 

This chapter presents a recent submission for publication in Nature 
Structural and Molecular Biology. Mammalian female-specific 
process of X Chromosome Inactivation (XCI) is critically 
dependent on a long non-coding RNA called Xist. At the onset of X 
inactivation, Xist spreads in cis on the future inactive X and triggers 
gene silencing by recruitment of repressive DNA and chromatin 
modifiers. In this study I explored the protein interactome of Xist 
through a multifaceted approach aiming at identify direct Xist 
binders. Five proteomic and genetic studies recently revealed a 
large and heterogeneous list of binding proteins containing bona 
fide interactors as well as transient and spurious interactions. The 
Global Score method based on the catRAPID fragment algorithm 
(Cirillo et al. 2013) (Chapter I) was applied to identify specific and 
direct associations. Using enhanced individual-nucleotide resolution 
Cross-Linking and ImmunoPrecipitation (eCLIP), we validated our 
predictions for Spen, Hnrnpk, Lbr, Ptbp1, and Hnrnpu/Saf-A 
proteins, reporting a global prediction accuracy of ~80%. An 
innovative aspect of this approach is the investigation of protein 
networks involved in Xist regulation. The computational method 
and pipeline presented in this work can be easily applied to the 
study of other lncRNAs.  

 

Cirillo D, Blanco M, Buness A, Avner P, Guttman M, Tartaglia 
GG, Cerase A. A Computational Approach Reveals Direct Protein 
Interactions to the Long Non-Coding RNA Xist. Nature Structural 
and Molecular Biology (submitted). 
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Abstract 

Computational frameworks predicting protein-RNA networks provide an 

important source of information for understanding the regulation of long non-

coding RNAs (lncRNAs) and complement experimental approaches. We here 

introduce the catRAPID Global Score to calculate direct binders of Xist 

lncRNA, the master regulator of X Chromosome Inactivation (XCI). Using 

enhanced individual nucleotide CLIP method (eCLIP), we validated our 

predictions for five candidates. We proved that Global Score can efficiently 

predict which protein domain and RNA fragments mediates the interaction. We 

showed that Global Score can be used as a tool to prioritize bona fide direct 

interactors from high-throughput data or Gene Ontology functional categories. 

Our approach paves the way for a novel approach to study ribonucleoprotein 

interactions involved in non-coding RNA regulation. 
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Glossary:  

CHART-seq: Capture Hybridisation Analysis of RNA Target-Sequencing 
ChIRP-MS: Chromatin Isolation by RNA Purification-Mass Spectrometry 
ESC: Embryonic Stem Cells  
GO: Gene Ontology 
HnrnpK: Heterogeneous nuclear ribonucleoprotein K 
H3K27me3: Histone 3 lysine 27 trimethylation 
KD: Knock Down 
KO: Knock Out 
lncRNA: long non-coding RNA 
Fbxw7: F-box and WD-40 domain protein 7  
Hnrnpab: heterogeneous nuclear ribonucleoprotein A/B  
Hnrnpc: heterogeneous nuclear ribonucleoprotein C  
Hnrnpf: heterogeneous nuclear ribonucleoprotein F  
Hnrnpk: heterogeneous nuclear ribonucleoprotein K  
Hnrnpl : heterogeneous nuclear ribonucleoprotein L  
Matr3: matrin 3  
Pcbp2: poly(rC) binding protein 2  
Ptbp1: polypyrimidine tract binding protein 1  
Raly: hnRNP-associated with lethal yellow  
Rbm3: RNA binding motif protein 3  
Srsf3: serine/arginine-rich splicing factor 3  
Srsf9: serine/arginine-rich splicing factor 9  
Tardbp: TAR DNA binding protein  
Hnrnpq: synaptotagmin binding, cytoplasmic RNA interacting protein  
Myef2: myelin basic protein expression factor 2, repressor  
Fubp3: far upstream element (FUSE) binding protein 3  
Rbm15: RNA binding motif protein 15  
Hnrnpa2b: heterogeneous nuclear ribonucleoprotein A2/B1  
Hnrnpm: heterogeneous nuclear ribonucleoprotein M  
Hnrnpu: heterogeneous nuclear ribonucleoprotein U  
Lbr: lamin B receptor  
Thoc2: THO complex 2  
Celf1: CUGBP, Elav-like family member 1  
Sf3b3: splicing factor 3b, subunit 3  
Tcf7l1: transcription factor 7 like 1 (T cell specific, HMG box)  
Spen: SPEN homolog, transcriptional regulator (Drosophila)  
Wtap: Wilms tumour 1-associating protein 
ncRNA: non-coding RNA 
RAP-Seq: RNA Antisense Purification-Sequencing 
RAP-MS: RNA Antisense-Mass Spectrometry 
RepA: A repeats of Xist RNA 
Rmb15:RNA binding motive protein 15 
RNA-IP: RNA-immunoprecipitation 
Rnf12/RLIM: Ring finger protein LIM domain interacting 
i-CLIP: Individual nucleotide resolution Crosslinking and Immunoprecipitation 
Pol II: RNA Polymerase II 
PRC1/2: Polycomb Repressive Complex 1/2  
SAF-A/hnrnpU: Scaffold attachment factor A/heterogeneous ribonucleoprotein U 
SHARP/Spen: SMRT-and HDAC-associated Repressor Complex/Msx2-interacting protein 
S/MAR: scaffold/matrix attachment region 
SMRT/NCoR: Silencing Mediator for Retinoic Acid Receptor and Thyroid Hormone 
Receptor/Nuclear Receptor Co-Repressor  
Xa: active X chromosome 
XCI: X chromosome inactivation  
Xi: inactive X chromosome 
XIC: X Inactivation Center 
Xist: Inactive X specific transcript 
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Introduction  

Many non-coding transcripts carry out their functional roles by physically 

interacting with RNA-binding proteins (RBPs). A number of reports show that 

non-coding RNAs are tightly associated with various ribonucleoprotein 

complexes and chromatin regulators in order to target enzymatic activities to 

appropriate locations in the genome (1, 2). Accordingly, understanding how 

non-coding RNAs regulate gene expression requires investigation of protein-

RNA complexes in vivo.  

To date, most approaches to determine protein-RNA interactions exploit 

immunoprecipitation (3), which requires prior knowledge about which proteins 

might interact in order to test an interaction. For this reason, the direct protein 

interactions of most lncRNAs remains unknown. 

Recently, work by several groups have developed unbiased mass 

spectrometry methods to comprehensively define the proteins that directly 

interact with a given lncRNA (4-6). These approaches were applied to the well-

studied Xist lncRNA and uncovered many previously unknown proteins that 

have now been shown to be required for Xist-mediated transcriptional silencing 

(4-7). Although these approaches are powerful for defining direct interactions, 

they require significant resources – including significant time and cell numbers 

– in order to study each individual lncRNA. 

Here we develop a novel computational method for defining direct RNA-protein 

interactions that exploits some important property of biochemistry of 

interactions, we call this approach Global Score.  We show that this approach 

performs really well by gauging it again known Xist interactions (4-8). Our 

results show that there are 38 direct interactions with Xist and that we can 

validate many of these by eCLIP. Together, our approach provides a robust 

computational framework that enable identification of bona fide RNA-protein 

interactions that can be used for prioritized IP based follow-up. 
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Results 
 
catRAPID Global Score 

The catRAPID algorithm is extensively used in experimental works (9-11). 

Nonetheless, the method has the main limitation to be restricted to transcripts 

shorter than 1000 nt due to the complexity of their conformational space (12). 

To identify proteins interacting with longer transcripts and especially lncRNAs, 

we implemented a new module called Global Score. The algorithm is based on 

the observation that binding sites are identifiable by fragmenting protein and 

RNA sequences (13, 14). As in the original catRAPID method (15), the 

interaction propensity is calculated considering secondary structures, van der 

Waals’ and hydrogen-bonding potentials. Using fragmentation, we reported 

accurate predictions for interactions involving FMRP, TDP-43, p53 and other 

proteins (12, 16), indicating that the procedure is particularly suitable to 

discriminate between binding and non-binding sites. The ability to predict both 

protein and RNA contacting regions makes catRAPID a valid tool to 

complement CLIP experiments and identify protein regions involved in RNA 

recognition. Indeed, catRAPID shows high performances when compared with 

CLIP and other high-throughput approaches (14).  

 

Here we propose a method to integrate the signal coming from the binding 

propensities of fragments into a variable called Global Score that predicts the 

overall interaction ability of a protein-RNA pair. The introduction of the Global 

Score module allows us to compute interactions with large RNAs (>1000 nt), 

thus extending the general applicability of our approach (Methods, Global 

Score). Briefly, we calculate a total of 104 interactions are calculated, we 

weighted according to their interaction propensities and sum up into an overall 

score.  

We trained the Global Score on 1500 ribonucleoprotein interactions detected 

by CLIP involving all the RNA-binding proteins reported in “The Atlas of UTR 

Regulatory Activity” (AURA, version 2014) (17). In a 5-fold cross-validation, we 

discriminated interacting and non-interacting protein-RNA pairs with an area 



 

 76 
 

5"

5"

under the ROC curve (AUC) of 0.84 (Fig. 2).  We performed an independent 

cross-validation on 800 interactions between transcripts longer than 1000 nt 

(Methods, Global Score) and protein partners identified by protein microarrays 

(18). The performances on the test set were considerably high (AUC=0.80; Fig. 

2), indicating that Global Score can predict protein interactions with large RNAs 

with good accuracy. In our test set, we also used 50 proteins reported by 

recent studies to have RNA-binding ability but lacking canonical domains (19, 

20). As Global Score correctly predicts that 85% of the non-canonical RBPs 

(i.e. 43 out of 50) bind to their RNA targets, we can conclude that the algorithm 

does not show particular preference for specific RBP classes. 

Analysis of Xist interacting proteins 

Recent publications created an unprecedented wealth of information on Xist 

interactions and functional players in XCI (4-8).  While proteomic approaches 

(4-6) reveal proteins associating with Xist, they cannot directly differentiate 

between functional Xist-interactors and other cellular processes (such as RNA-

processing and polyadenylation). In addition, proteomic analyses are deprived 

of proteins targeting RNA species that are used as reference controls in the 

experiments (21). By contrast, genetic screens select important regulators of 

XCI, but fail to provide information of direct protein interactions (7, 8). Often, 

due to their experimental set-up genetic screens are devoid of proteins 

interfering with other cellular functions (22). 

About 350 candidates (including unpublished data; Material and Methods) 

have been reported in proteomic studies (Fig. 1). By contrast, about 50 

proteins were identified through genetic screens. Yet, it should be mentioned 

that potentially-important low-ranking hits of genetic screen might be 

consequence of i) inefficient knock-down (i.e. Sh/SiRNA screening), ii) spatially 

limited integration sites (i.e., small genes in insertional mutagenesis screens), 

iii) depletion affecting cell viability or cell cycle control. Another important 

aspect to consider in genetic analyses is how complete are the screenings. 

Hits from the Monfort et al. screen are biased against short genes indicating 

that the screen is not complete (25). On the other hand, most of shRNAs were 

recovered in the work of Moindrot et al., showing a higher degree of saturation. 
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In addition, published hits from Moindrot et al. (7) show better overlap with 

proteomic data over Monfort et al. (8). In this work, we decided to re-rank 

functional data by Moindrot et al. (7) and use them for our analysis [Fig. 1; 

Material and Methods; (7, 21)]. 

Having developed the Global Score method, we sought to determine which of 

these interactions are likely to be direct Xist interactions. We used the Global 

Score to measure the interaction strength of each protein predicted by the 

three proteomic studies (Fig. 2). Our predictions show that the two datasets by 

McHugh et al. (5) [published (I) and plus unpublished results (II) (Material and 

Methods)] are associated with the highest predictive power (Area under the 

ROC curve AUC > 0.9) followed by Chu et al. (4) (AUC=0.82) and Minajigi et 

al. (6) (AUC=0.75). In the calculations, we considered as negative controls 

those proteins reported by Minagiji et al. (6) that were depleted in the male vs 

female spectral counting [log(FC) < -0.75]. Accordingly, Global Score predicts 

them as non-interacting in ~80% of cases (Methods: Global Score). Thus, 

catRAPID calculations suggest that the database by McHugh et al. (5) is the 

most enriched in direct targets.  

Predictions of direct protein-RNA interactions  

For the >600 Xist interacting proteins considered in this study, we observed 

that the Global Score values correlate with the lines of evidence supporting 

these interaction (Fig. 3A). Using values above the Global Score of Spen (also 

called SHARP), which is the only protein reported in all the experiments 

(Global Score=0.59; Fig. 3A dashed-line), we identified 58 candidates. 

Considering hits appearing in at least 2 datasets, we selected 38 proteins (Fig. 

3B and Table 1) showing medium- (**) to high- (***) interaction propensities 

(Table 1). Notably, 29 out of 38 proteins have high-propensity (***) of 

interaction and 20 are associated with Global Score ≥0.95, which is highly 

significant with respect to the negative set (28 out 200 proteins have Global 

Score ≥0.95; p-value = 7.979e-07; Fisher’s exact test) as well as proteomic (73 

out of the 343 proteins; p-value = 8.123e-0.5; Fisher’s exact test) and genomic 

(82 out 298 proteins; p-value = 0.0024; Fisher’s exact test) datasets (Fig. 3B). 
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We note that Polycomb Repressive complex proteins PRC2 did not rank high 

in our analysis due to the fact that PRC2 elements were not over-represented 

in proteomic (4-6) or genetic screens (7, 8). Yet, PRC1 catalytic subunit 

Ring1B (also known as Rnf2) showed a high catRAPID score (Global Score = 

0.98, ***). Given the fact that this protein was found in only one of the three 

proteomic datasets and Chu et al. identified a number of non-direct binders by 

using formaldehyde fixation conditions (4), we excluded this candidate for 

further analysis. 

GO analysis and network analysis of selected candidates 

We then screened our candidates for cellular localization (i.e. direct interactors 

have to be nuclear), functional categories (i.e. RNA metabolism, gene-

silencing), protein association network (i.e. STRING-network) and expression-

level (i.e. expressed in early embryogenesis, when available; for details 

Methods and Tables S1-3).  

GO analysis reveals that 21 out of the 38 candidates are part of the Hnrnp 

protein network (Fig. 4A). Importantly, Hnrnpu and Hnrnpk are crucial 

regulators of XCI: they are respectively necessary, for Xist-localization to 

chromatin (and, in turn, gene-silencing) (5, 23) as well as Polycomb 

recruitment (4). Our analysis indicates another sub-network between 

Rbm15/Spen and Rbm3, which is important for Ncor-complex recruitment to 

the inactive X (4, 5).  

Almost all of the 38 candidates are in the RNA-related functional categories (35 

out of 38 genes). We found functional associations with RNA-related 

processes, especially post-transcriptional regulation, splicing and nuclear 

export. The last category is particularly interesting as Xist, a poly-adenylated, 

spliced RNA never leaves the nucleus (24). A considerable fraction of our 

selected genes (20 out of 38; Fig. 4B and Table S4) cluster in the 

transcriptional regulation category. Other candidates are part of the silencing 

machinery [Ncor2 (Spen) and Hdac1 complex (Rbm14)] or are important for 

RNA processing and stabilization (Hnrnp-proteins) (25, 26). Three out of 38 

genes are also part of the nuclear matrix (Lbr, Matr3, Hnrnpm), a sub-

compartment that is involved in silencing and contacts Xist (27, 28).  



 

 79 
 

8"

8"

To infer functional relationships among the selected candidates, we clustered 

the initial pool of 58 genes based on enriched GO terms of interactions (Supl. 

Table 3 and Methods Gene ontology clustering). Our analysis identified two 

major groups: one related to RNA splicing and transport, and another related to 

transcription regulation and protein degradation (Suppl. Fig. 4). The two 

classes contain genes that are important for Xist spreading and localization to 

the chromatin (Hnrnpu/Saf-A) (24) and are relevant for Xist localization to the 

nuclear lamina (Lbr) and may be relevant for Xist localization to the nucleolus 

(29). 

 

Prediction of protein interactions at nucleotide resolution 

We selected 5 representative genes for further investigation: Hnrnpu/Saf-A and 

Spen that have a role in Xist mediated silencing (Hnrnpu/Saf-A with Global 

Score = 0.66 **, and Spen with Global Score = 0.59 **,), Lbr and Hnrnpk that 

have been described to have a role in gene-silencing or Polycomb recruitment 

(Lbr with Global Score = 0.79, **, and Hnrnpk with Global Score = 0.99, ***), 

and Ptbp1 (Global Score = 0.99, ***) that associates with Xist but its role 

seems to be redundant in XCI establishement (4, 5).  

Another powerful feature of the Global Score algorithm is the ability to define 

the protein domain and RNA binding sites that interact. We made use of this 

property to predict the binding sites of the 5 representative candidates (Fig. 5; 

Table S2 and S3). To determine what Xist regions are specifically contacted by 

each protein, we calculated interactions using fragments containing RNA-

binding domains annotated in Gerstberger et al. 2014 (11)  and NPIDB (‘RNA’ 

and ‘hybrid’ families) (30): Hnrnpk (P61979) 363-414 aa (KH domain); 

Hnrnpu/Saf-A (Q8VEK3) 1-52 aa (SAP domain); Ptbp1 (P17225) 76-127 aa 

(RRM domain); Spen (Q62504) 332-477 aa (RRM domain) (Methods: Binding 

sites assessment). In the case of Lbr, we used amino acids 51-102 that are 

predicted by our method to be most interactive (Methods: Binding sites 

assessment; Suppl. Fig. 2). 

In agreement with previous work, Spen is predicted to interact with the Xist A-

repeats, a region of Xist that is necessary for gene-silencing (31). Instead 
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Hnrnpk is predicted to bind to the B-repeats of Xist that have been also 

associated to Polycomb recruitment by Heard’s lab (4, 32). Lbr and Ptbp1 are 

predicted to bind to the 3’-part of Xist corresponding to the E-repeats, while 

Hnrnpu/Saf-A is predicted to bind in multiple locations (Suppl. Fig. 3) (31).  

 

Validation of catRAPID predictions 

We went on to map the binding sites of Spen, Hnrnpk, Lbr, Ptbp1 and 

Hnrnpu/Saf-A using an enhanced individual nucleotide CLIP method (eCLIP). 

As shown in Fig. 6, the five representative proteins bind to different regions: 

Spen and Hnrpk have propensity for the 5’ of Xist (i.e., 1-5000 nt), Lbr and 

Ptbp1 show binding sites in the central region (i.e., 9000-13000 nt) and 

Hnrnrpu/Saf-A has a dispersed signal (Suppl. Fig. 3). Notably, catRAPID does 

not predict binding sites in the 3’ of Xist, which indicates marginal role in 

macromolecular recognition, as suggested by the poor sequence conservation 

of the region (33). Nevertheless, a recent paper suggested a role for Xist exon 

7 in its localization on the chromatin (34).  

Overall, eCLIP data are in very good agreement with the catRAPID predictions: 

the portion of Xist predicted to interact with our selected proteins (highest 

catRAPID score) was verified in all cases. Interestingly, eCLIP data confirm the 

specific interaction of Spen to Xist A-repeats and Hnrnpk to Xist B-repeat. 

Ptbp1 instead interacts, as predicted, to Xist E-repeats. Lbr interacts with a 

region downstream of Xist A-repeats, mostly around the E-repeat and a Xist 3’-

end (Fig. 6 and Table 1). In all the cases, at least 1 out of 3 top-interacting 

regions are matched by experimental validation. catRAPID, however, reports 

that Hnrnpu/Saf-A binds to a region in the central part of Xist, while eCLIP 

experiments reveal that the protein binds broadly across the whole transcript. 

The binding regions identified by Hasegawa et al. (nt 1899–3488 and nt 4725–

6079) are included in our predictions and experimental validation (23). As 

Hnrnpu/Saf-A is mostly implicated in Xist localization onto the chromatin, it is 

possible that Xist interactions are non-specific to support Xist attachment to the 

nuclear matrix (23). Hnrnpu/Saf-A dispersed eCLIP profile may also be an 

artefact of cell-population sequencing experiments. i.e. Saf-A binds to Xist in 
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each cell but its binding site profile may differ between individual cells. As a 

consequence, the Saf-A eCLIP profile result broad/dispersed in cell population 

assays (24). 

 

Discussion  

In this study we introduced the Global Score method based on the catRAPID 

fragment algorithm (12) to predict the interaction propensity of proteins that 

directly interact with a lncRNA. Our approach is based on the hypothesis that 

the information to detect protein interactions is contained in RNA domains 

identifiable by fragmentation of the molecule into sub-elements (13, 14). 

Previous estimates indicate that catRAPID has an accuracy of 80% in 

predicting protein-RNA interactions (3), which is perfectly in-line with the 

results reported in this study. Using this approach, we explored the protein 

interactome of Xist through a multifaceted approach aiming to identify direct 

Xist binders and showed that we can recapitulate previous proteomic and 

genetic screens and can even further separate bona fide direct interactions 

across the five previous studies. Importantly, this approach correctly identifies 

the binding sites on RNA in 4/5 cases tests further highlighting the power of 

this approach. The sole exception (SAF-A) reflects the fact that the protein 

interacts with several regions of the Xist transcript  - although, our predictions 

match the most highly interacting regions (Fig. 6).  

Our approach will provide a powerful method for the lncRNA community 

because currently there are no straightforward methods for predicting likely 

protein interactions with a lncRNA – all current methods are time consuming 

and expensive and only provide partial information. Therefore, this 

computational method, which can be used on any lncRNA and protein set can 

provide a rapid platform for evaluating likely interactions for biochemical and 

functional followup. 

Our eCLIP analysis refines our knowledge of the binding sites of Xist-

interacting proteins (5, 23, 35). Indeed, we identified binding sites, at 

nucleotide resolution, showing which regions are important for Xist interaction 
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and function. Our results are in agreement with previous studies mapping 

Spen-Xist interaction to the Xist A-repeats, a key region for the establishment 

of Xist-mediated silencing (4, 31). The Ptbp1 eCLIP profile reveals that this 

protein may have a role in Xist spreading and localization to the chromatin, 

although its function may be redundant (5). HnrnpK eCLIP mapping is 

particularly in the light of HnrnpK role in Polycomb recruitment. The Xist-

HnrnpK interacting region was previously mapped to between Xist repeats F 

and B (4). Jarid2, an important cofactor of Xist-mediated PRC2 recruitment, 

also interacts with the same region of Xist RNA (32). It is tempting to speculate 

that HnrnpK and Jarid2 may interact to recruit PRC2 on the inactive X 

chromosome and repB binding is essential for Polycomb recruitment. It is 

known that Xi localizes to the nuclear lamina (36). It is possible that Lbr 

mediates this interaction. In this case, we predicted the RNA-binding region to 

aa 51-102. This region largely overlaps with the RS domain, which has been 

implicated in nucleic acid recognition (37). As we predicted the region prone to 

interact with RNA without previous knowledge of the domains, we can 

conclude that our method can be used to predict novel RNA-binding domains 

for proteins with non-canonical RNA-binding regions. 

HnrnpU/SafA’s broad interaction is instead unexpected. Further studies are 

needed to understand whether only few regions of Xist are needed to sustain 

this interaction.  

Intriguingly, our analysis identifies Fbxw7 and Tcf7l1 as novel potential Xist 

direct interactors selected from the genetic screens (7, 8). We do not currently 

know which proteins tether Xist to the nucleolus (29). It is tempting to speculate 

that proteins from the Ubiquitin-Proteasome pathways (UPS) may be involved 

in this process. A potential candidate is Fbxw7, which was independently found 

from the Brockdorff and Wutz’s laboratories (7, 8). Fbwx7 is a component of 

the SCF (SKP1-CUL1-F-box protein) E3-ligase complex that is important for 

poly-ubiquitination of target substrates for subsequent proteasome degradation 

(38). However, as candidates coming from a Ubiquitin-Proteasome-System 

(UPS) in Moindrot et al. ranked low (7), this protein may have an indirect role in 

Xist mediated silencing.  
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We believe that the computational method presented here can be applied to 

the study of other lncRNAs. Our work paves new avenues for protein-RNA 

interaction studies as we can predict, with high accuracy, which regions of 

RNA are bound by proteins as well as the protein domains mediating the 

binding. As catRAPID can be used as a tool to design mutations to any lncRNA 

and interacting proteins, a tempting possibility is to generate Xist deletion to 

uncouple Xist spreading from Polycomb recruitment, gene silencing or nuclear 

lamina/nucleolus tethering. 
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Materials and methods 

Dataset ranking 

In the genetic screening by Moindrot et al, (7) the effect of shRNAs targeting 

specific genes was calculated by dividing final counts ("sorted") over initial 

counts ("input"). The ratio of each individual shRNA was standardized by 

subtracting the median ratio of the dataset followed by division with median 

absolute deviation. The third highest standardized ratio of shRNAs targeting 

the same gene was used as score for the ranking. Thus, at least three 

individual shRNAs show higher or equal enrichment in counts were employed 

to assure consistent results and avoid off-targets shRNAs. The overlap 

between Moindroit et al. top-300 with joint proteomic datasets [Chu et al. (4). 

McHugh et al. (5) and Minajigi et al. (6)] is of 50 proteins. As the overlap 

between the genes list by Moindroit et al. (7) and proteomic datasets was only 

marginally increasing by considering lists of 500 or 1000 cases, we used the 

top 300 candidates in our analysis. By contrast, the overlap between the genes 

list by Monfort et al. (8) and proteomic datasets was of 5 candidates. 

 
 
Database generation  

In our study we integrated the results of two genetic [Moindrot et al. (7). 

Monfort et al. (8)] and three proteomic [Chu et al. (4). McHugh et al. (5) and 

Minajigi et al. (6)] screening. 

Genetic screens comprise ~300 genes of which 8 ncRNAs (8 genes: Senp2, 

Prmt1, Dgkh, Fance, Zfp326, Ube2d2b, Snapc4, Ufd1l) from Moindrot et al. 

2015; and 22 genes from Monfort et al. 2015. Proteomic screens comprise 81 

genes from Chu et al. 2015; 1768 proteins (1765 genes: Actb, Parp1, Hmga1, 

Ppid/Ppif have duplicated entries) from Minajigi et al. 2015; and 20 genes from 

McHugh et al. 2015. 

As for the datasets reported by Chu et al. (4). McHugh et al. (5) and Minajigi et 

al. (6), we used gene symbols to retrieve non-redundant sets of protein 

sequences through Uniprot (http://www.ebi.ac.uk/reference_proteomes). In the 

case of Moindrot et al. (7) and Minajigi et al., we used the provided protein 
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identifiers (Moindrot RefSeq IDs were converted to UniProt IDs with 100% 

sequence similarity).  

 

catRAPID  

We used the catRAPID fragment approach (12, 15) to identify putative binding 

sites between Xist and proteins and the Global Score algorithm to assess the 

overall interaction propensity.  

In the catRAPID method, contributions of secondary structure, hydrogen 

bonding and van der Waals’ are combined together into the interaction profile: 

 
!! = !!!!+!!!!+!!!!        (1) 

where the variable ! indicates RNA (! = !) or protein (! = !). The hydrogen 

bonding profile, denoted by!!, is the hydrogen bonding ability of each amino 

acid (or nucleotide) in a protein (or RNA) sequence: 

! = !!,!!,… ,!!"#$%!        (2) 

Similarly, ! represents the secondary structure occupancy profile and ! the 

van der Waals’ profile. The interaction propensity ! is defined as the product 

between the protein propensity profile !!and the RNA propensity profile !! 
weighted by the interaction matrix I: 

! = !!I !!           (3) 

The algorithm predicts the interaction propensity of a protein-RNA pair 

reporting the discriminative power, which is a measure of interaction strength 

with respect to the training sets.  

 

Due to computational requirements, the catRAPID graphic algorithm accepts 

only protein sequences with a length ranging between 50aa and 750aa and 

RNA sequences between 50nt and 1200nt (3). When the input sequences 

exceed the size compatible with our computational requirements, catRAPID 
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cannot be used to calculate the interaction propensity. To overcome this 

limitation, we developed a procedure called fragmentation, which involves 

division of polypeptide and nucleotide sequences into overlapping fragments 

followed by prediction of the interaction propensities (3). Following the 

procedure described in (12), the RNA fragment size employed in this study is 

700 nt,  

 

 

Global Score 

To estimate the overall interaction potential of protein and RNA molecules 

using uniform fragmentation, we built the Global Score approach. To train the 

algorithm, we used the interactomes of RNA-binding proteins reported in 

AURA (AGO1, AGO2, AGO4, ELAVL1, QKI, PUM1, PUM2, TNRC6A, 

TNRC6B, TNRC6C, NCL, IGF2BP1, IGF2BP2, IGF2BP3 and ELAVL1) (17).  

We filtered out similar UTR sequences using CD-HIT [sequence identity > 

80%] (39).  To avoid biased training towards proteins with many RNA partners, 

we selected 50 UTRs for each protein to generate the positive binding dataset. 

The negative non-binding set was built shuffling the UTRs partners of the 

positive pool.  

We computed protein-RNA interactions using uniform fragmentation (total of 

750 positives and 750 negatives)(3). For each protein-RNA association, we 

clustered the interaction propensity scores ! (Eq. 3) as follows 

!! = ! ! − ! 1− ! ! − ! − 1         (4) 

where ! !  is the Heaviside function that is 1 if ! > 0 and zero otherwise. The 

values !! are weighted to norm 1:  

!! = !! !!!"#
!!!"#          (5) 

where !"# = −50 and !"# = 50. To determine the relative contribution !! of 

fragments, we compute ℎ!: 

hk=!"#ℎ ωki Fi           (6) 
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where !"#ℎ x  is the hyperbolic tangent of !. The global score Π is evaluated 

using ℎ!: 

Π=!"#ℎ Ωkhk          (7) 

The weights !!!  and !! have been determined by optimizing the match 

between experimental and predicted interactions (same number of positive and 

negative cases). To avoid over-fitting, we varied the number of internal weights 

proportionally to the size of the training set and performed a 5-fold cross-

validation at each optimization. For ! = 100 and ! = 10, we obtained an AUC 

of 0.84 (Fig. 2A) in discriminating interacting and non-interacting protein-RNA 

pairs. 

We performed an independent cross-validation using 8 transcripts (Myc, Bcl2, 

Igf2rnc, Pwrn1, Sox2oy, lincRBM26, Occ1 and Tp53) > 1200 nucleotides 

whose binding partners have been determined through protein microarrays 

technology (8). For each RNA molecule, we selected 50 top-ranked (i.e., high-

affinity) and 50 bottom-ranked (i.e., low-affinity) proteins and used catRAPID 

fragment and the Global Score algorithm to classify. Also on this test set, the 

performances were high (AUC=0.80; Figure 2A).  

The algorithms to compute protein-RNA interactions are available at our group 

webpage http://service.tartaglialab.com/page/catrapid_group and the new 

algorithm Global Score can be accessed at 

http://service.tartaglialab.com/new_submission/catrapid_fragments_ultra [upon 

acceptance of the paper, the link will replace previous web-address 

http://service.tartaglialab.com/new_submission/catrapid_fragments]. 

 

 

Binding sites predictions 

To visualize Xist binding sites, catRAPID scores were Z-normalized using 

interaction propensities calculated on proteins associated with poor spectral 

counts in the study by Minajigi et al. [200 proteins with log2(FC) < –0.75] (6). 

Notably, catRAPID predicts 80% of these proteins as non-interacting. 
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To determine what Xist regions are specifically contacted by protein 

candidates, we selected fragments containing RNA-binding domains retrieved 

from Gerstberger et al. 2014 (11).  NPIDB [‘RNA’ and ‘hybrid’ families; update 

September 2015] (30). Xist-protein interactions were ranked (Fig. 3 and Table 

S3) to identify high-confidence regions.  As for Lbr, our approach identifies 

amino acids 51-102 as the most prone to interact with RNA (Suppl. Fig. 2) 

To localise high-confidence binding sites, we calculated the coordinates of the 

highest-scoring regions (top 2%) and filtered out fragments falling outside the 

resolution of our approach (average distance > 5 times the size of the RNA 

fragment). We observe that Hnrnpu/Saf-A has the largest signal dispersion 

(Suppl. Fig. 3), which suggests that binding is non-specific, as revealed by 

eCLIP experiments (Fig. 6). For this case, the filter on catRAPID resolution has 

been removed (Fig. 6) 

The Global Score is used to divide proteins in three groups of 1000 entries: 

low-affinity interactions (Global Score < 0.02; one-star *), medium-affinity 

interactions (0.02 < Global Score < 0.80; two-stars **), and high-affinity (Global 

Score > 0.80; three-stars ***). 

 

Binding sites assessment 

Predicted binding regions of Hnrnpk, Hnrnpu/Saf-A, Lbr, Ptbp1, and Spen have 

been assessed with eCLIP data. Highest scoring associations falling within 

experimentally validated binding sites (>50% coverage) are listed: Hnrnpk 

(P61979) 363-414 aa (KH domain) interacting with Xist 2507-3224 nt (0.98 

percentile, Fig. 5); Hnrnpu/Saf-A (Q8VEK3) 1-52 aa (SAP domain) with Xist 

3956-4673 nt (0.99 percentile, Fig. 5); Lbr (Q3U9G9) 51-102 aa (most 

interacting Lbr fragment, Suppl. Fig. 2) with 10025-10742 nt (0.98 percentile, 

Fig. 5); Ptbp1 (P17225) 76-127 aa (RRM domain) with Xist 10741-11458 nt 

(0.99 percentile, Fig. 5); Spen (Q62504) 332-477 aa (RRM domain) with Xist 

18-735 (0.98 percentile, Fig. 5). 

 

Interaction network 
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The network of protein-protein interactions among 40 candidate genes has 

been constructed using STRING database (40) with several confidence scores 

(high confidence score of 0.70 to highest confidence score of 0.90). Most of 

those interactions are reported with highest confidence score of 0.90. 

Interactions among Spen, Rbm15 and Rbm3 have been manually curated (4, 

5). 

 

Gene ontology clustering 

We clustered candidate genes using functional macro-categories of interest 

(“Chromatin remodeling”, “Nuclear matrix and envelop”, “RNA processing and 

splicing”, “Transcription regulation”). Gene Ontologies (GO) terms (PMID: 

10802651) are assigned to a macro-category querying their definitions using 

keywords (i.e. the words in the macro-category). 

In order to infer functional relationship among 58 candidate genes, we 

downloaded their interactors from STRING (highest confidence score of 0.9) 

and compute GO term enrichment (Dunn–Šidák correction for multiple testing). 

Based on enriched GO terms, we compute Jaccard index to built a similarity 

matrix to be used to cluster candidate genes (hierarchical clustering, Ward’s 

method). Optimal cluster number was estimated using the Calinski-Harabasz 

criterion. We associated each cluster to the top 3 unique most enriched GO 

terms. All computations were performed using R statistical environment. 

 

eCLIP experiments 

We crosslinked 6 hours doxycycline-induced pSM33 mouse male ES cells with 

0.4J of UV254.Cells were lysed in 1 ml lysis buffer (50 mM Tris pH 7.5, 100mM 

NaCl, 1% NP-40, 0.5% Sodium Deoxycholate, 1x Protease inhibitor cocktail). 

RNA was digested with Ambion RNase I (1:4000 dilution) to achieve a size 

range of 100-500 nucleotides in length. Lysate preparations were precleared 

by mixing with Protein G beads for 1hr at 4C. Target proteins were 

immunoprecipitated from 5 million cells with 10 ug of antibody and 75 ul of 

Protein G beads in 100uL lysis buffer. The antibodies were pre-coupled to the 
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beads for 1 hr at room temperature with mixing before incubating the 

precleared lysate to the beads-antibody overnight at 4C. After the 

immunoprecipitation, the beads were washed four times with High salt wash 

buffer (50 mM Tris-HCl pH 7.4, 1 M NaCl, 1 mM EDTA, 1% NP-40, 0.1% SDS, 

0.5% sodium deoxycholate) and four times with Wash buffer (20 mM Tris-HCl 

pH 7.4, 10 mM MgCl2, 0.2% Tween-20). RNAs were then eluted by incubating 

at 50C in NLS elution buffer (20 mM Tris-HCl pH 7.5, 10 mM EDTA, 2% N-

lauroylsacrosine, 2.5 mM TCEP) supplemented with 100 mM DTT for 20 

minutes. Samples were then run through a standard SDS-PAGE gel and 

transferred to a nitrocellulose membrane, and a region 75 kDa above the 

molecular size of the protein of interest was isolated and treated with 

Proteinase K (NEB) followed by buffer exchange and concentration with RNA 

Clean & Concentrator™-5 (Zymo). We then made sequencing libraries from 

these samples as previously described in Engreitz et al. 2014 (Cell, doi: 

10.1016/j.cell.2014.08.018) and Shishkin et al. 2015 (Nature Methods, doi: 

10.1038/nmeth.3313). 

 

Additional annotations 

Cellular localization information (Tables 1, S2) was retrieved from UniProt (41) 

and LOCATE (42) (experimental evidence) databases. Expression levels in 

ES-E14 cell line and E18 mouse (Central Nervous System) were retrieved from 

ENCODE  (43) RNA-seq data averaging RPKMs of replicates with IDR<0.1. 
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Figure 1. Intersections of genes reported in 5 studies of Xist interactomes. Five laboratories investigated Xist 

interactions: three groups used biochemical approaches to identify Xist interactors (4-6), and two others used a genetic 

strategy to reveal Xist functional partners that mediating gene-silencing (7, 8). Only one protein, Spen, has been found in 

all the assays. 58 genes are present in at least two assays and 17 candidates are in common in at least one proteomic or 

one genetic assay.

A B

Figure 2. Performances of Global Score algorithm A) Receiver Operating Characteristic (ROC) curves of training and 

testing sets: In the 5-fold cross-validation, we discriminated interacting and non-interacting protein-RNA pairs with an 

area under the ROC curve (AUC) of 0.84. On the test set, performances were comparable to those of the training set 

(AUC=0.80). B) Area Under the ROC curve of proteomic assays [Minajigi et al. (6), Chu et al. (4), McHugh et al. II 

[ranked 11-20 in the publication (5)], McHugh et al. (ranked 1-10 in the publication (5))].
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Figure 3. Selection of Xist-interacting proteins A) Global Score distribution of protein groups classified by experimental 

evidence. Predicted interaction propensities correlate with lines of experimental evidence (Wilcoxon signed-rank test). The 

green line indicates the only experimental case reported in all the screenings (Spen; Global Score = 0.59). B) List of 

candidate proteins analysed in this study. We identified 38 proteins associated with at least two lines of evidence and Global 

Score > 0.59. Above Global Score > 0.59, 20 proteins experiments (highlighted with a star on the right) appear in three or 

four experiments.
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Figure 4. Network and functional analysis of candidate mediators of XCI Protein-protein. A) Interaction networks of 38 

candidate factors (Methods: Interaction network). B) Functional categories associated with candidate mediators of XCI 

(Methods: Gene ontology clustering): Chromatin remodeling, Nuclear matrix/envelop, RNA processing/splicing, and 

Transcription regulation. Twenty out of 38 genes cluster in the transcriptional regulation category. Ncor2 (Spen), Hdac1 

complex (Rmb14) are part of the splicing machinery and Matr3 is important for Xist processing and stabilization (25, 26). 

Three out of 38 genes are also part of the nuclear matrix (Lbr, Matr3, Hnrnpm), a nuclear sub-compartment that is important 

for gene silencing and is known to contact Xist. In the plot, grey lines connect interacting proteins (grey line with is 

proportional to STRING confidence score: thick lines indicate a confidence score of 0.9; thin lines indicate a confidence 

score of 0.7).

Figure 5. Interaction propensities of Xist regions with Spen, Hnrnpk, Hrnnpu/Saf-A, Lbr and Ptbp1 For each RNA-binding 

domain, we used catRAPID to predict the interacting Xist regions: Hnrnpk (P61979) 363-414 aa (KH domain) interacting with 

Xist 2507-3224 nt; Hnrnpu/Saf-A (Q8VEK3) 1-52 aa (SAP domain) with Xist 3956-4673 nt; Lbr (Q3U9G9) 51-102 aa (most 

interacting Lbr fragment, Suppl. Fig. 2) with 10025-10742 nt; Ptbp1 (P17225) 76-127 aa (RRM domain) with Xist 

10741-11458 nt; Spen (Q62504) 332-477 aa (RRM domain) with Xist 18-735.
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Figure 6. eCLIP validation of Spen, Hnrnpk, Hrnnpu/Saf-A, Lbr and Ptbp1 binding  sites  eCLIP and catRAPID 

predictions show high agreement: Spen and Hnrpk bind in the 5’ of Xist (< 5000 nt; respectively A-repeats and B-

repeats), Lbr and Ptbp1 show binding sites in the central region (i.e., 9000-13000 nt; E-repeats) while Hnrnrpu/Saf-A 

has a dispersed signal (throughout all sequence). Predicted binding regions are reported along Xist sequence 

(Methods: Binding sites predictions). Matches are highlighted with colour shades.
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Supplementary Figure 1. Significance of candidates selection. By bootstrapping (104 randomizations of associations 
between Global Score and experimental evidence values; see also Fig. 3), we observed that predictions above Spen score 
(Global Score=0.59) are significantly associated with values of experimental evidence ≥ 2 (p value<0.01).
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Supplementary Figure 3. Signal dispersion Variance associated with binding sites predicted by catRAPID.

Supplementary Figure 4. Analysis of putative XCI candidates (top left) Number of interactors retrieved from STRING 

(highest confidence score). (top right) Multidimentional scaling (MDS) of similarities of functions associated to high 

confidence interactors of putative candidates. (bottom) Dendogram of hierarchical clustering of putative candidates. Most 

enriched functional categories of putative candidates interactors are reported in cyan and blue.
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CHAPTER VI 

Reviews on computational methods for protein-RNA 
interaction prediction 

During my Ph.D. studies, I had the opportunity to participate in the 
writing of two reviews about the state-of-the-art of computational 
methods for protein-RNA interaction prediction. The two reviews 
are complementary and cover a broad overview of the main 
approaches used in the field. The first review uncovers details about 
catRAPID method (Bellucci et al. 2011) offering illustrative 
predictions on long noncoding RNA biology and prokaryotic RNA 
regulation. A collection of notable sequence-based and structure-
based (Appendix II) methods is reported. The second review deals 
with popular experimental and computational methods to detect 
protein-RNA interactions. A comparison of catRAPID and RIPseq 
(Muppirala, Honavar, and Dobbs 2011) on autogenous interactions 
(Zanzoni et al. 2013) is presented. This review presents a practical 
synopsis of catRAPID modules and implementations. It also 
introduces catRAPID omics express module that is built upon 
catRAPID express (Cirillo, Marchese, et al. 2014) (Chapter III). 
Moreover, it prefigures future research line in Tartaglia's lab such as 
the implementation of RNA secondary structure models based on 
experimental data (e.g. PARS, SHAPE), and the study of 
ribonucleoprotein aggregates (e.g. nucleoli, stress granules and 
Cajal bodies) in neurodegenerative diseases. 

Cirillo D, Agostini F, Tartaglia GG. Predictions of protein–RNA 
interactions. Wiley Interdisciplinary Reviews: Computational 
Molecular Science. Volume 3, Issue 2, Volume 3, pages 161–175, 
March/April 2013. doi: 10.1002/wcms.1119. Epub 2012 Sep 25. 
Review. 

Cirillo D, Livi CM, Agostini F, Tartaglia GG. Discovery of protein-
RNA networks. Mol Biosyst. 2014 Jul;10(7):1632-42. doi: 
10.1039/c4mb00099d. Epub 2014 Apr 23. Review. PMID: 
24756571 



Cirillo D, Agostini F, Tartaglia GG. Predictions of protein-RNA 
interactions. Wiley Interdisciplinary Reviews: ComputationalMolecular 
Science. 2013; 3 (2): 161-175. DOI: 10.1002/wcms.1119

http://onlinelibrary.wiley.com/doi/10.1002/wcms.1119/full
u16319
Rectángulo



Cirillo D, Livi CM, Agostini F, Tartaglia GG. Discovery of protein-RNA 
networks. Mol Biosyst. 2014 Jul;10(7):1632-42. doi: 10.1039/c4mb00099d. 
Epub 2014 Apr 23. Review. PubMed PMID: 24756571.

http://pubs.rsc.org/en/Content/ArticleLanding/2014/MB/c4mb00099d#!divAbstract
u16319
Rectángulo
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DISCUSSION 

Information contained in biological sequences 

Protein interaction with nucleic acids (NAs) is at the heart of gene 
regulation. Recognition sites of NA-binding proteins have been 
found to be highly sequence-specific in prokaryotes and much less 
so in eukaryotes (Villar, Flicek, and Odom 2014). As a matter of 
fact, the complexity of higher eukaryotes requires a concerted series 
of actions involving transcription factors (TFs) interacting with 
other proteins and DNA (Stampfel et al. 2015) (transcriptional gene 
regulation) as well as RNA-binding proteins (RBPs) interacting 
together and with transcripts (Campbell and Wickens 2015) (post-
transcriptional gene regulation). Furthermore, the chromatin state 
and its spatial organization (Grubert et al. 2015), and NAs-NAs 
interactions (e.g. noncoding RNA-DNA interactions) (Holoch and 
Moazed 2015) add further layers of complexity to the entire 
process. A comprehensive computational modelling of eukaryotic 
gene regulation is an ambitious endeavour (Ahsendorf et al. 2014). 
Nonetheless, simple approaches, although sometimes reductionist 
(Regenmortel 2004), are useful to improve our understanding of the 
key parts of the whole process. Examples of such approaches are 
sequence-based methods integrating functional knowledge like 
catRAPID omics express (Chapter 4) and PAnDA (Chapter 5) (see 
Table 2). These methods are of very general applicability thanks to 
the main role of primary structure in determining cellular events. 
Features such as secondary structure and macromolecular assembly 
are encoded in the sequence from which both tri-dimensional 
constraints and binding specificities can be derived. Moreover, 
primary structure is the most complete and reliable source of 
information due to the wide availability of sequencing data (NCBI 
Resource Coordinators 2016; Kersey et al. 2016). 

From motif-based methods to integrative approaches 

Prediction of protein-NA interactions relies on information 
extracted from RNA and DNA sequences that are recognized by 
proteins (Introduction section 1.2). A comprehensive knowledge of 
experimentally-determined recognition sites (Introduction, section 
3) is critical to understanding the mechanisms underlying the
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binding. The difficulty of acquiring the necessary data makes 
sequence-based predictions of quantitative estimate of NA-binding 
not easy to accomplish. Motif-finding algorithm RNAcontext 
(http://www.rnamotif.org/) (Kazan et al. 2010) is an example of a 
sequence-oriented approach based on affinity data provided by the 
in vitro assay RNAcompete (Ray et al. 2009). The intuition behind 
this method is the observation that RBP target recognition is 
determined by both base content and its tridimensional 
conformation (i.e. paired, in a hairpin loop, unstructured, and 
miscellaneous) or structural accessibility (X. Li et al. 2010). 
Moreover, the predictive value of the structural context highlighted 
by this work is also taken into account in catRAPID approach 
(Bellucci et al. 2011). Although catRAPID was not designed to find 
motifs in RNA sequences, the importance of RNA structure 
information for protein-RNA interaction prediction is reflected in 
the comparable performances of the two methods (reported to be 
70% to 80%). The role of RNA secondary structure in RBPs 
recognition is supported by the chemoaffinity structure probing 
methodology called in vivo Click Selective 2'-hydroxyl acylation 
analysed by primer extension icSHAPE (Spitale et al. 2015). 
Authors implemented a Support Vector Machine (SVM) algorithm 
combining icSHAPE signals (in vivo and in vitro), genomic 
locations, and sequence conservation to predict RNA binding sites 
for a number of RBPs with high accuracy. 

Regardless of the use of motif models, sequence degeneration 
represents the main reason that makes motif-based computational 
approaches inevitably suffer from high error rates (Hannenhalli 
2008). In addition, motif-based classification of NA-binding 
proteins does not necessarily correspond to structural and functional 
properties of protein-NA complexes. Indeed, it has been 
demonstrated that structurally-related proteins can recognize the 
same motif, and proteins recognizing distinct motifs can be part of 
the same structural group (Prabakaran et al. 2006). Recent detection 
of secondary motifs shared by multiple TFs in addition to their 
primary ones (J. Wang et al. 2012; Gerstein et al. 2012) 
corroborates the sheer complexity of properties and rules that 
govern protein-NA recognition (Cirillo, Livi, et al. 2014; Cirillo, 
Botta-Orfila, and Tartaglia 2015). 
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To reduce the ambiguity of motif-based binding site prediction, 
novel approaches for recognition sites detection have been 
developed using (i) improved or alternative binding motif 
representations and (ii) additional biological information 
(integrative approaches). The first type of methods exploits mainly 
motif subtypes (Kel et al. 2004; Hannenhalli and Wang 2005; 
Georgi and Schliep 2006; Bais, Kaminski, and Benos 2011; Chan et 
al. 2012) and inter-position dependence models (Osada, Zaslavsky, 
and Singh 2004; Quader and Huang 2012; Keilwagen and Grau 
2015). The second type of methods relies on relevant attributes of 
cellular context such as ‘omics’ profiles (i.e. transcriptomic, 
genomic, proteomic, and epigenomic data). Those features can 
capture the spatio-temporal background of the binding event and 
have a bearing on a more accurate selection of binding sites. A 
critical advantage of integrative approaches is the possibility of 
increasing the coverage of available data (dataset integration) and 
reducing ‘noise’ by assessing the reliability of the retrieved 
information (confidence estimation). 

In Chapters 4 and 5, I introduced catRAPID omics express and 
PAnDA, two novel large-scale methods for protein-RNA and 
protein-DNA-interaction prediction, respectively. The two 
algorithms apply integrative approaches for predicting multiple 
interacting partners:  

• catRAPID omics express integrates the Interaction 
Propensity score of catRAPID method (Bellucci et al. 2011) 
with expression data (Cirillo, Marchese, et al. 2014) and 
sequence annotations (protein domains and RNA motifs). 
The integration is a linear operation resulting in a ranking 
score that allows transcriptome- or proteome-wide selection 
of candidate partners among human coding or noncoding 
RNAs and proteins (full-length or RNA/DNA binding 
domains, and possibly disordered regions). 

• PAnDA integrates protein-protein interaction networks, 
expression levels, and sequence annotations (DNA motifs) 
to identify putative binding modes of transcription factors 
onto sets of DNA sequences. Using several machine-
learning algorithms, the integration results in a ranking score 
that allow the selection of mediators of TFs. 



 

 134 

DNA- and RNA-binding proteins: akin by nature? 

Recently, a large-scale benchmark of NA binding site prediction 
algorithms (Miao and Westhof 2015) revealed that most of the 
assessed programs exhibit prediction abilities on both DNA- and 
RNA-binding proteins, some with AUC values >0.7 on all the 
datasets, demonstrating that similar interaction rules during NA 
binding are operating. In line with this finding, a new generation of 
advanced algorithms are being developed for predicting NA-
binding regardless of DNA- and RNA-binding differences. 

DeepBind (Alipanahi et al. 2015) is method for predicting NA-
binding sites based on convolutional neural networks (CNNs) 
modelling binding scores directly from raw data of high-throughput 
experiments (PBM, SELEX, ChIP- and CLIP-seq). Currently, 
models for 538 distinct TFs and 194 distinct RBPs have been 
generated that can be used to score new sequences. The two 
interesting aspects of DeepBind are the following: (i) DeepBind is a 
sequence-based method that applies the same theoretical framework 
(i.e. CNNs) to both DNA and RNA binding predictions, 
highlighting the importance of sequence patterns in NAs 
recognition process; (ii) While most existing methods are trained on 
the strongest interacting regions (e.g. the top few hundred peaks of 
a ChIP-seq experiment), DeepBind models are trained using all 
sequencing data and reach better accuracies, showing how 
informative ‘extra’ sequences could be. 

Proteins able to bind both types of nucleic acids are called DNA- 
and RNA-binding proteins (DRBPs). A list of 149 experimentally 
validated human DRBPs have been manually curated, containing 
several regulatory enzymes (Hudson and Ortlund 2014). Indeed, 
DRBPs undergo many cellular functions ranging from DNA/RNA-
related activities to unexpected processes (e.g. apoptosis and 
response to extreme temperatures). Binding of DNA and RNA can 
be competitive, simultaneous, or combinatorial, allowing a powerful 
multi-level regulation of gene expression, often mediated by 
lncRNAs. It would be extremely compelling to apply the methods 
and ideas discussed here to carry out the simultaneous investigation 
of DNA and RNA binding abilities of such engaging set of proteins. 
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Table 2. Similarities and differences between catRAPID omics 
express (Cirillo, Livi, et al. 2014) and PAnDA (Cirillo, Botta-Orfila, 
and Tartaglia 2015) algorithms. 

 

 

 catRAPID omic express PAnDA 

Input Protein or RNA sequences Protein and DNA 
sequences 

Length restrictions >50 amino acids or 
nucleotides 

none 

Output 

• Interaction Propensity score 
• Tissues expression correlation 
• Domains and motifs presence 
• Statistics (Discriminative 
Power (Bellucci et al. 2011), 
Interaction Strength (Agostini, 
Cirillo, et al. 2013), Ranking 
distribution) 

• Binding Propensity score 
• Binding modes 
• Statistics (Candidate targets 
distribution, Mappability 
(Cirillo, Botta-Orfila, and 
Tartaglia 2015)) 

Organism Homo sapiens Homo sapiens 
Scope Large-scale Large-scale 

Parameters 

• Entire proteins (<750 aa) or 
NA-binding domains 
• Disordered regions 
(optional) 
• Coding or noncoding 
transcripts 

Default mode: 
• Cell line 
Expert mode: 
• Cell line 
• Motif database 
• Expression threshold 
• Machine Learning method 
• Protein-protein 
Interaction database 

Expression data RNA-seq (Harrow et al. 
2012) 

RNA-seq (Djebali et al. 
2012) 

Method 

Weighted inner product of 
linear functions of structural 
(nucleotide contact 
frequencies), biochemical 
(amino acid physico-chemical 
scales), and predicted 
(nucleotide secondary 
structure occupancy) features 
of protein and RNA 
sequences. 

Four supervised models of 
several learning methods 
(K-nearest neighbors, 
Adaptive Boosting, Support 
Vector Machine, Random 
Forest) based on motif 
occurrences of interacting 
transcription factors with 
optimal cell-specific 
expression levels. 



 

 136 

Present and future challenges of integrative approaches 

As for many integrative methods, the major limitation of both 
catRAPID omics express and PAnDA resides in the availability of 
high-quality training data: many novel binding regions of protein 
(Carmen Maria Livi et al. 2015) and RNA (Agostini et al. 2014) 
sequences are still to be discovered; high-quality high-throughput 
interaction experiments are to be designed with better efficiency 
(Rao et al. 2014); several cells and tissues of many organisms will 
have to be sequenced (Hornett and Wheat 2012). 

Such restrictions limit the extent to which data integration can be 
employed effectively. For instance, for both catRAPID omics 
express and PAnDA, predictions are limited to Homo sapiens due to 
the inaccessibility of comprehensive resources of similar data for 
other organisms. Despite this incompleteness, new experimental 
approaches exhibit potential to partly fill this methodological gap 
and lead to better quality predictions. 

Even if limited by the availability of efficient antibodies and the 
multiplicity of cell-lines, tissues and developmental stages, in vivo 
transcriptome-wide discovery of RNA binding sites has improved 
dramatically over the last decade (Rinn and Ule 2014). Very 
recently, a catalog of validated IP-quality antibodies against 365 
unique RBPs has been released (Sundararaman et al. 2015) based 
on an ‘RBP compilation’ of 1072 proteins comprising domain-
based (Lunde, Moore, and Varani 2007) and interactome-captured 
RBPs (Castello et al. 2012). By means of this catalog, eCLIP 
(enhanced CLIP) (Van Nostrand EL et al, manuscript under 
preparation) experiments in K562 and HepG2 cells are being 
performed in the context of ENCODE project (data available at 
https://www.encodeproject.org). eCLIP is a radioactive-free CLIP 
protocol which reduces execution time to almost 4 days and 
requires much many fewer cycles of PCR amplification to get 
enough material to sequence. 

Such a new wealth of genomic features can improve current 
performances and has even been used to re-train predictive 
methods. In the case of catRAPID, an interaction potential based on 
sequence-derived physico-chemical features could be generated 
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using high-quality data on RBPs for which both CLIP-related and 
mass spectrometry (MS) data are available. To date, RNA binding 
sites (PAR-CLIP, iCLIP, CLIP-SEQ/HITS-CLIP, eCLIP, and RIP-
seq experiments) and MS-validated enzymatic/nonenzymatic RBDs 
(Gerstberger et al. 2014) are available for 70 human RBPs. 
Considering the high-throughput nature of these experiments, the 
database of ‘interacting regions’ is expected to substantially exceed 
that of catRAPID original training set (Bellucci et al. 2011), 
although the variability of protein sequences is to be increased. 

In the case of PAnDA, evaluation of chromatin accessibility 
(Tsompana and Buck 2014) and chromosome conformation (Cao et 
al. 2015) could be used to better select candidate target regions. The 
main drawback of PAnDA algorithm is that parameters such as 
optimal expression thresholds and mappability (i.e. a measure of co-
factors’ motif coverage) must be derived anew whenever expanded 
databases of expression levels, interaction networks and binding 
motifs make part of an updated version. In addition, the use of 
RNA-seq data as a proxy for TF protein concentration implies a 
direct proportionality between protein and mRNA expression levels 
which is still a debated issue (Vogel and Marcotte 2012; Cirillo, 
Marchese, et al. 2014). As an alternative, data on protein 
abundances could be used (M. Wang et al. 2015). 

A perspective on NA-binding protein assemblies 

Integrative approaches are key for protein-NA interaction 
predictions (Levo and Segal 2014). A peculiar feature of such 
methods is that they provide meaningful information that extends 
pretty much over the practical value of a single prediction score. 
Indeed, multiple features combined into a model designed to reveal 
interaction propensities will help to unveil the broader context in 
which a physical event is occurring, for instance the cooperation of 
multiple NA-binding proteins in the same activity. 

As for RNA-binding, the method iONMF (Stražar et al. 2016) 
represents an example of high-throughput data integration that 
yields remarkable improvements on prediction accuracy and 
downstream applications, such as the interpretation of RNA 
recognition determinants. By means of multiple matrix factorization 
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technique, iONMF is able to generate models for multiple RNA-
binding proteins using several data sources: RNA secondary 
structure prediction (Denman 1993), functional annotations 
(Ashburner et al. 2000), as well as RBP co-binding, k-mer 
composition, and region type (exon, intron, 5’UTR, 3’UTR, CDS) 
derived from a large collection of iCLIP, PAR-CLIP, CLIP-
SEQ/HITS-CLIP experiments [(Anders et al. 2012) and 
http://icount.biolab.si]. Interestingly, the two most informative data 
sources revealed by iONMF for RBP binding are RNA structure 
and RBPs co-binding within the same gene region. 

As highlighted in Chapters 5 and 6, cooperation between different 
proteins is essential to recapitulate how proteins bind to RNA and 
DNA, respectively (Mascareñas 2008). Cooperative binding is 
critical for biological function of NA-binding proteins like 
transcription factors (Levine and Tjian 2003; Spitz and Furlong 
2012). Cooperative TFs are clustered within protein interaction 
networks (Manke, Bringas, and Vingron 2003), are found in 
shortened distance along DNA sequences (Aguilar and Oliva 2008), 
and are evolutionary conserved (He et al. 2011). This combinatorial 
interplay is suspected to be responsible for driving distinct functions 
and regulatory control mechanisms (Farnham 2009; MacQuarrie et 
al. 2011; Stampfel et al. 2015). Also RBPs engage in homo- and 
hetero-oligomeric interactions (Danner 2002). An illustrative 
example is Hnrnp complex (Krecic and Swanson 1999), which I 
recently found to be an essential part of RBPs interactome of long 
noncoding RNA Xist (Chapter 5). 

Over the last decade, more than 20 different methods have been 
proposed for complex prediction (Srihari et al. 2015) based (i) 
solely on protein-protein interaction (PPI) network topology or (ii) 
combined with auxiliary biological insights. The study of protein 
complexes allows the identification of modules or groups of 
interacting molecules regulating specific biological processes 
(Hartwell et al. 1999). Integrative methods for NA-protein 
interaction prediction such as PAnDA and catRAPID omics express 
have the inherent ability to identify functional modules. In the case 
of PAnDA, predicted TF binding modes based on cell-specific PPI 
network bring out key mediators of TF activity. In the case of 
catRAPID omics express, co-expressed RBPs with high interaction 
propensities might bind cooperatively to the same RNA targets. 
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Hence, both methods permit meaningful further analysis towards 
organisation, function and dynamics of NA-related modules. 

Interestingly, the theoretical methodologies developed here pave the 
way to design a ‘multibody’ simulation for protein-NA interactions 
using components of PPI networks. In physics, a multibody (or n-
body) simulation is a representation of a dynamic system of objects 
under the influence of physical forces. In the context of molecular 
dynamics, all-atom simulation of large macromolecular assemblies 
remains a computational challenge (Pankavich and Ortoleva 2015). 
Nonetheless, by eliminating some of the interaction details, a 
‘coarse-grained’ description of the system can help to overcome 
computational limitations. I speculate that the use of 
phenomenological constraints can further speed up calculations, 
especially in the case of interaction (or docking) simulations 
(Krippahl and Barahona 2015). In theory, a protein-RNA interaction 
simulation could be constrained to catRAPID omics express 
predicted binding sites onto RNA, protein and co-expressed RBPs 
belonging to the same PPI network. This approach could 
dramatically accelerate the simulation process. 
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Conclusions 

The work carried out during my Ph.D. studies at Centre for 
Genomic Regulation (CRG) of Barcelona, Spain, has been compiled 
in the form of a thesis entitled “Protein and Nucleic Acid 
Interactions”. The thesis presents my personal contribution to the 
field of computational prediction of macromolecular interactions. 

In the first half of my career as a Ph.D. student I have been 
extensively working on testing and improving the performances of 
several modules of catRAPID suite for protein-RNA interaction 
prediction. By employing catRAPID algorithm, I investigated a 
number of protein-RNA associations involved in many 
physiological and pathological processes such as neurodegenerative 
diseases (Chapter I), chromatin regulation (Chapter II), and cancer 
(Chapter III). Subsequently, I implemented and applied two novel 
algorithms for protein-NAs interaction prediction: catRAPID omics 
express (Chapters III and VI) and PAnDA (Chapter IV). 

catRAPID omics express is a module of catRAPID suite that 
computes the interaction propensity of human proteome and 
transcriptome taking into account expression levels. The 
implementation of catRAPID omics express was prompted by 
insights on the relation between interaction propensity and 
correlation in expression of protein and RNAs in human tissues. 
PAnDA predicts the interaction between DNA and assemblies of 
TFs. The algorithm is built upon the finding that PPI networks and 
cell-specific expression levels improve performances in predicting 
binding events. 

Overall, the two algorithms are sequence-based methods integrating 
genomic and functional annotations such as expression levels and 
PPI interaction networks. This new way of approaching protein-NA 
interaction prediction has been recently applied to disentangle Xist 
interactome (Chapter VII) paving the way to the study of other long 
noncoding RNAs using similar computational approaches. 
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Appendix I 
Selection of protein-DNA interaction prediction methods 
[adapted from (Nagarajan, Ahmad, and Michael Gromiha 2013)] 

Sequence-based methods (sorted by time of publication): 
 
PAnDA 
http://service.tartaglialab.com/new_submission/panda (Cirillo, 
Botta-Orfila, and Tartaglia 2015) 
 
SNBRFinder 
http://ibi.hzau.edu.cn/SNBRFinder/ (X. Yang et al. 2015) 
 
INTERACT-O-FINDER 
http://interacto.eurekanow.org/index.html (Samant, Jethva, and 
Hasija 2014) 
 
newDNA-Prot 
http://sourceforge.net/projects/newdnaprot/ (Y. Zhang et al. 2014) 
 
iDNA-Prot|dis http://bioinformatics.hitsz.edu.cn/iDNA-Prot_dis/ 
(B. Liu et al. 2014) 
 
MuMoD 
Program available upon request from the authors (Narlikar 2013) 
 
DNABR  
http://www.cbi.seu.edu.cn/DNABR/ (Ma et al. 2012) 
 
MetaDBSite 
http://projects.biotec.tu-dresden.de/metadbsite/ (Si et al. 2011) 
 
NAPS 
http://omictools.com/naps-tool (Carson, Langlois, and Lu 2010) 
 
BindN+ 
http://bioinfo.ggc.org/bindn+/ (L. Wang et al. 2010) 
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hPDI 
http://bioinfo.wilmer.jhu.edu/PDI/ (Xie et al. 2010) 
 
BindN-RF 
http://bioinfo.ggc.org/bindn-rf/ (L. Wang, Yang, and Yang 2009) 
 
DBindR 
http://www.cbi.seu.edu.cn/DBindR/DBindR.htm (J. Wu et al. 2009) 
 
ProteDNA 
http://serv.csbb.ntu.edu.tw/ProteDNA/ (W.-Y. Chu et al. 2009) 
 
DISIS 
http://cubic.bioc.columbia.edu/services/disis (Ofran, Mysore, and 
Rost 2007) 
 
DP-Bind 
http://lcg.rit.albany.edu/dp-bind/ (Hwang, Gou, and Kuznetsov 
2007) 
 
TFmodeller 
http://maya.ccg.unam.mx/~tfmodell/ (Contreras-Moreira, Branger, 
and Collado-Vides 2007) 
 
BindN 
http://bioinfo.ggc.org/bindn/ (L. Wang and Brown 2006) 
 
DBS-PSSM 
http://dbspssm.netasa.org/ (Ahmad and Sarai 2005) 
 
DBS-PRED  
http://www.abren.net/dbs-pred/ (Ahmad, Gromiha, and Sarai 2004) 

 

Structure-based methods: 
NuProPlot 



 

 145 

http://www.nuproplot.com/ (Pradhan and Nam 2015) 
 
SPOT-Struct-DNA 
http://sparks-lab.org/yueyang/server/SPOT-Struct-DNA/ (Zhao et 
al. 2014) 
 
CONSRANK 
https://www.molnac.unisa.it/BioTools/consrank/ (Chermak et al. 
2014) 
 
DBSI 
https://mitchell-lab.biochem.wisc.edu/DBSI_Server/index.php 
(Zhu, Ericksen, and Mitchell 2013) 
 
DNABind 
http://mleg.cse.sc.edu/DNABind/ (R. Liu and Hu 2013) 
 
PreDNA 
http://202.207.14.178/predna/ (T. Li et al. 2013) 
 
Nucleos  
nucleos.bio.uniroma2.it/nucleos/ (Parca et al. 2013) 
 
DBD2BS 
http://dbd2bs.csbb.ntu.edu.tw/ (Chien et al. 2012) 
 
3DTF 
http://www.gene-regulation.com/pub/programs/3dtf/ (Gabdoulline 
et al. 2012) 
 
CONS-COCOMAPS 
https://www.molnac.unisa.it/BioTools/conscocomaps/ (Vangone, 
Oliva, and Cavallo 2012) 
 
COCOMAPS 
https://www.molnac.unisa.it/BioTools/cocomaps/ (Vangone et al. 
2011) 
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iDBPs 
http://idbps.tau.ac.il/ (Nimrod et al. 2010) 
 
PDA 
http://bioinfozen.uncc.edu/webpda/ (R. Kim and Guo 2009) 
 
DBD-Threader 
http://cssb.biology.gatech.edu/skolnick/webservice/DBD-
Threader/index.html (Gao and Skolnick 2009b) 
 
DBD-Hunter 
http://cssb.biology.gatech.edu/skolnick/webservice/DBD-
Hunter/index.html (Gao and Skolnick 2008) 
 
DISPLAR 
http://pipe.scs.fsu.edu/displar.html (Tjong and Zhou 2007) 
 
DNABINDPROT 
http://www.prc.boun.edu.tr/appserv/prc/dnabindprot/ (Ozbek et al. 
2010) 
 
DP-dock 
http://cssb.biology.gatech.edu/skolnick/webservice/DP-
dock/index.html (Gao and Skolnick 2009a) 
 
PFplus  
http://pfp.technion.ac.il/ (Shazman et al. 2007) 
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Appendix II 
Selection of protein-RNA interaction prediction methods  
[adapted from (Cirillo, Agostini, and Tartaglia 2013; Si et al. 2015)] 

Sequence-based methods (sorted by time of publication): 
PRIPU 
http://admis.fudan.edu.cn/projects/pripu.htm (Cheng, Zhou, and 
Guan 2015) 
 
Oli 
Program available upon request from the authors (Carmen M Livi 
and Blanzieri 2014) 
 
RNABindRPlus 
http://einstein.cs.iastate.edu/RNABindRPlus/ (Walia et al. 2014)  
 
catRAPID 
http://s.tartaglialab.com/catrapid (Bellucci et al. 2011; Agostini, 
Zanzoni, et al. 2013)  
 
SRCPred 
http://tardis.nibio.go.jp/netasa/srcpred (Fernandez et al. 2011)  
 
SPOT 
http://sparks.informatics.iupui.edu (Zhao, Yang, and Zhou 2011)  
 
PRBR 
http://www.cbi.seu.edu.cn/PRBR/ (Ma et al. 2011)  
 
RNAPred 
http://www.imtech.res.in/raghava/rnapred/ (M. Kumar, Gromiha, 
and Raghava 2011)  
 
RPISeq 
http://pridb.gdcb.iastate.edu/RPISeq/ (Muppirala, Honavar, and 
Dobbs 2011)  
 
BindN+ 
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http://bioinfo.ggc.org/bindn+/ (L. Wang et al. 2010)  
 
NAPS 
http://prediction.bioengr.uic.edu/ (Carson, Langlois, and Lu 2010)  
 
PiRaNhA 
http://bioinformatics.sussex.ac.uk/PIRANHA (Murakami et al. 
2010)  
 
PRNA 
http://www.sysbio.ac.cn/datatools.asp (Z.-P. Liu et al. 2010)  
 
RNA 
http://mcgill.3322.org/RNA/ (Q. Li, Cao, and Liu 2010)  
 
RISP 
http://grc.seu.edu.cn/RISP (Tong, Jiang, and Lu 2008)  
 
PRINTR 
http://210.42.106.80/printr/ (Y. Wang et al. 2008)  
 
PPRInt 
http://www.imtech.res.in/raghava/pprint/ (M. Kumar, Gromiha, and 
Raghava 2008)8)  
 
RNABindR 
http://bindr2.gdcb.iastate.edu/RNABindR/ (Terribilini et al. 2007)  
 
BindN 
http://bioinfo.ggc.org/bindn/ (L. Wang and Brown 2006)  
 
SVMProt 
http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi (Han et al. 2004)  
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Structure-based methods: 
RBPDetector 
http://ibi.hzau.edu.cn/rbrdetector (X.-X. Yang, Deng, and Liu 2014) 
 
SPOT-Seq-RNA 
http://sparks-lab.org/server/SPOT-Seq-RNA/ (Y. Yang et al. 2014)  
 
DRNA 
http://sparks.informatics.iupui.edu/yueyang/DFIRE/dRdR-DB-
service (Zhao, Yang, and Zhou 2011)  
 
OPRA 
Program available upon request from the authors (Pérez-Cano et al. 
2010)  
 
Struct-NB 
http://www.public.iastate.edu/∼ftowfic (Towfic et al. 2010)  
 
PRIP 
http://www.qfab.org/PRIP (Maetschke and Yuan 2009)  
 
PatchFinderPlus 
http://pfp.technion.ac.il/ (Shazman and Mandel-Gutfreund 2008)  
 
KYG 
http://cib.cf.ocha.ac.jp/KYG/ (O. T. P. Kim, Yura, and Go 2006) 
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