

On the design of power- and
energy-efficient functional units

for vector processors

Ivan Ratković

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons
(http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX (h t t p : / / w w w . t d x . c a t /) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX.
No s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons
(framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus
continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis)
and the cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized
by the titular of the intellectual property rights only for private uses placed in investigation and
teaching activities. Reproduction with lucrative aims is not authorized neither its spreading nor
availability from a site foreign to the UPCommons service. Introducing its content in a window or
frame foreign to the UPCommons service is not authorized (framing). These rights affect to the
presentation summary of the thesis as well as to its contents. In the using or citation of parts of the
thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

On the Design of
Power- and Energy-Efficient

Functional Units for Vector Processors

Ivan Ratković

Department of Computer Architecture

Universitat Politècnica de Catalunya - BarcelonaTech

A thesis submitted for the degree of

Doctor of Philosophy in Computer Architecture

October, 2016

Advisor: Dr. Adrián Cristal
Co-Advisor: Dr. Oscar Palomar
Co-Advisor: Dr. Osman S. Unsal
Co-Advisor: Prof. Mateo Valero

mailto:ivan.ratkovic@bsc.es
http://docencia.ac.upc.edu/
http://www.upc.edu

Abstract

Vector processors are a very promising solution for mobile devices and

servers due to their inherently energy-efficient way of exploiting data-

level parallelism. While vector processors succeeded in the high perfor-

mance market in the past, they need a re-tailoring for the mobile market

that they are entering now. Functional units are a key components of

computation intensive designs like vector architectures, and have signif-

icant impact on overall performance and power. Therefore, there is a

need for novel, vector-specific, design space exploration and low power

techniques for vector functional units.

We present a design space exploration of vector adder (VA) and multi-

plier unit (VMU). We examine advantages and side effects of using mul-

tiple vector lanes and show how it performs across a broad frequency

spectrum to achieve an energy-efficient speed-up. As the final results

of our exploration, we derive Pareto optimal design points and present

guidelines on the selection of the most appropriate VMU and VA for

different types of vector processors according to different sets of metrics

of interest.

To reduce the power of vector floating-point fused multiply-add units

(VFU), we comprehensively identify, propose, and evaluate the most

suitable clock-gating techniques for it. These techniques ensure power

savings without jeopardizing the performance. We focus on unexplored

opportunities for clock-gating application to vector processors, espe-

cially in active operating mode. Using vector masking and vector multi-

lane-aware clock-gating, we report power reductions of up to 52%, as-

suming active VFU operating at the peak performance. Among other

findings, we observe that vector instruction-based clock-gating tech-
niques achieve power savings for all vector floating-point instructions.
Finally, when evaluating all techniques together, the power reductions
are up to 80%.

We propose a methodology that enables performing this research in a
fully parameterizable and automated fashion using two kinds of bench-
marks, synthetic and “real world” application based. For this interre-
lated circuit-architecture research, we present novel frameworks with
both architectural- and circuit-level tools, simulators and generators (in-
cluding ones that we developed). Our frameworks include both design-
(e.g. adder’s family type) and vector architecture-related parameters
(e.g. vector length).

Additionally, to find the optimal estimation flow, we perform a compar-
ative analysis, using a design space exploration as a case study, of the
currently most used estimation flows: Physical layout Aware Synthesis
(PAS) and Place and Route (PnR). We study and compare post-PAS and
post-PnR estimations of the metrics of interest and the impact of various
design parameters and input switching activity factor (αI).

Acknowledgements

Pursuing a Ph.D. is a multi-year endeavour that can turn into a tedious

and never ending journey. That was not my case, and I am thankful

to many people without whom I would not have been able to complete

my Ph.D. studies. While it is not possible to make an exhaustive list of

names, I would like to mention a few. Apologies if I forget to mention

any name below.

Firstly, I would like to express my sincere gratitude to my advisors Os-

car Palomar, Osman Unsal, Adrian Cristal, and Mateo Valero for all

the help and guidance they provided during my Ph.D. studies. Their

support, confidence, and sound technical advice have played a major

role shaping my research ideas into the contributions expressed in this

thesis.

I am thankful to Professor Borivoje Nikolić, who accepted me kindly

and provided me an opportunity to join Berkeley Wireless Research

Center, UC Berkeley as a visiting scholar. I had a great and productive

time in Berkeley thanks to Borivoje’s positive attitude and enthusiasm.

My sincere thanks go to my former supervisor during my studies at the

University of Belgrade, Veljko Milutinović, for his guidance and sup-

port.

I would also like to thank Professor Carlos Alvarez his useful advice

and fruitful discussions.

I would also like to acknowledge all my colleagues from the office in

Barcelona Supercomputing Center that helped me throughout my Ph.D.

studies; for their insights and expertise in technical matters, and for their

unconditional support that has been crucial to keep me sane. My spe-
cial thanks go to my colleagues from the “Vector Group”, Milan Stanić,
Milovan Ðurić, Timothy Hayes, Nikola Bežanić, and Tassadaq Hussain
for the stimulating discussions, for the sleepless nights we were working
together before deadlines, and for all the fun we have had in the last six
years. I acknowledge to my colleagues Srd̄an Stipić and Javier Arias for
great technical help and tips. Besides, I am thankful to Brian Richards,
Vladimir Milovanović, Yunsup Lee and all my other colleagues from
Berkeley Wireless Research Center.

Finally, I would like to thank to my friends and family for supporting
me during this endeavour. I especially thank my parents Lidija and
Živorad and my sister Svetlana for their unconditional love and care.

This thesis has been supported by the cooperation agreement between
the Barcelona Supercomputing Center and Microsoft Research, by the
Ministry of Science and Technology of Spain under the FPU National
Plan (FPU12/06157), by the European Union (FEDER funds) under con-
tracts TIN2007-60625, TIN2008-02055-E, TIN2012-34557, and TIN2015-
65316-P, and by the European Union’s Seventh Framework Programme
(FP7/2007- 2013) under the ParaDIME project (GA no. 318693).

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Vector Processors Background . 8

1.2.1 Power- and Energy-Efficiency 10

1.3 Clock-Gating Background . 12

1.4 Thesis contributions and overview . 14

2 Reference Vector Architecture 17
2.1 VectorSim . 17

2.2 Execution . 18

2.3 Instruction Set Architecture . 18

2.4 Vector Register File . 19

2.5 Memory System . 20

2.6 High-Level VFU Configuration . 20

3 Estimation Flows 23
3.1 Introduction . 23

3.2 Metrics . 24

3.2.1 Basic Metrics . 24

3.2.2 Derived Metrics . 26

3.3 Methodology . 27

v

3.3.1 Framework . 27
3.3.2 Design Parameters . 30
3.3.3 Adder Families . 31
3.3.4 Power Estimation . 36

3.4 Results . 37
3.4.1 Area . 37
3.4.2 Timing . 38
3.4.3 Power . 42
3.4.4 Related Work . 44

3.5 Summary . 45

4 Exploration of Energy-Efficient Vector Adders 49
4.1 Introduction . 49
4.2 Methodology . 50

4.2.1 Framework . 50
4.2.2 Framework Parameters . 51
4.2.3 Test Benchmarks Generator - tBenchGen 52
4.2.4 Test Benchmarks . 53

4.3 Design Space Exploration . 54
4.3.1 Adders Characteristics Discussion 54
4.3.2 Multi-lane Effectiveness . 57
4.3.3 Application-based vs. Random Data Benchmarking 59

4.4 VA Selection Guidelines . 60
4.5 Related Work . 62
4.6 Summary . 63

5 Exploration of Energy-Efficient Vector Multipliers 67
5.1 Introduction . 67
5.2 Methodology . 68

5.2.1 Exploration Framework . 68
5.2.2 Framework Parameters . 70
5.2.3 Multiplier Families . 72

5.3 Multipliers’ Characteristics . 75
5.3.1 Area . 75

vi

5.3.2 Timing . 75

5.3.3 Power . 76

5.4 Multi-Lane Effectiveness . 78

5.5 VMU Design Guidelines . 80

5.6 Related Work . 83

5.7 Summary . 83

6 Low Power Vector FMA 87

6.1 Introduction . 87

6.2 Related Work . 88

6.3 Floating-Point Arithmetic Background 88

6.3.1 Floating-Point Representation 89

6.3.2 Fused Multiply-Add (FMA) . 90

6.4 Proposed Techniques . 92

6.4.1 Scalar Operand Clock-Gating (ScalarCG) 92

6.4.2 Implicit Scalar Operand Clock-Gating (ImplCG) 93

6.4.3 Vector Masking and Vector Multi-Lane-Aware Clock-Gating

(MaskCG) . 94

6.4.4 Input Data Aware Clock-Gating (InputCG) 95

6.4.5 Idle Unit Clock-Gating (IdleCG) 96

6.5 Methodology . 97

6.5.1 Exploration Framework . 97

6.5.2 Benchmarking . 98

6.5.3 A Fully Parameterizable FMA Generator 100

6.6 Evaluation . 102

6.6.1 Area Efficiency . 102

6.6.2 Per Technique Power Analysis 103

6.7 Real Application-Based Combined Power Evaluation 106

6.8 Summary . 110

7 Conclusions 113

vii

8 Publications on the topic 117
8.1 Publications from the thesis: . 117
8.2 Related publications not included in the thesis: 118

References 133

viii

1
Introduction

This thesis concerns the following two problems: selecting optimal vector func-

tional unit (VFU) structure according to a variety of metrics and lowering VFU

power; it also contributes methodologies that allow designers to explore two prob-

lems in a fully parameterizable, automated and comprehensive way. In this intro-

ductory chapter first we present the motivation of the thesis (Section 1.1) followed

by an overview on vector processors (Section 1.2), clock-gating background (Sec-

tion 1.3), and finally the thesis overview and contributions (Section 1.4).

1.1 Motivation

After the technology switch from bipolar to CMOS, in the 1980s and early 1990s,

that enabled low power processing, processor designers had high performance as

the primary design goal, leaving power and area as secondary goals. However,

when it became apparent that further technology feature size scaling according to

Moore’s law (Figure 1.1) will lead to extreme power density (which could become

extremely difficult or too costly to cool), power- and energy-efficiency turned into

the primary design constraint for almost all computer systems.

Nevertheless, different computer systems have different demands. Let us con-

sider two fast-growing markets such as mobile devices and data centers. The main

design goal of mobile, battery constrained, devices is to achieve energy efficiency.

However, computer systems like data centers suffer from both power density and

1

1. INTRODUCTION

1970

0.001

0.01

0.1

1

10

100

1000

10000

1980 1990 2000 2010 2020
YEAR

T
R

A
N

S
IS

T
O

R
 C

O
U

N
T
 [

1
0

6
]

Figure 1.1: Moore’s law [76, 77] illustrated on Intel’s microprocessors transistor count. The
number of transistor doubles every two years. Adapted from [78].

energy consumption issues. The power density issue is related to cooling prob-

lems and it has recently become even more important with the appearance of the

concept of “dark silicon”1 [35].

Nonetheless, it is still expected that each new generation of microprocessors

has higher performance than the previous one. Since frequency does not scale

with technology in an energy-efficient way anymore, we need changes at the ar-

chitectural level that allow faster execution without a power increase [16]. In other

words, we want higher performance without an excessive increase of power

Vector processors are an inherently energy-efficient architecture [7, 67, 66, 65,

118] for applications that exhibit data-level parallelism (DLP), i.e. that operate on

vectors of independent elements (described in Section 1.2). It has been observed

that the best vector-based machines are generally faster and/or more energy-effi-

cient than scalar multicore processors [66]. In some cases, scalar multicores perform

better though at a greater energy cost. There are server and mobile workloads with

a lot of DLP. For example, Facebook’s face recognition feature, running on data

centers; or Google’s offline voice typing system introduced in Android 4.1 (Jelly

Bean). Taking all this into account, we consider that low power vector proces-

1Dark silicon (the term was coined by ARM [6]) is defined as the fraction of die area that goes
unused due to power, parallelism, or other constraints.

2

1.1 Motivation

sors are quite interesting designs for mobile devices and servers. These computer

systems have fairly different design goals than early vector processors that were

used almost exclusively for supercomputing. Although considered as a power and

energy-efficient solution for workloads that exhibit data-level parallelism, vector

processors were not explored sufficiently from a low power perspective in the past.

Their designers prioritized performance without caring much about power, and

this is not desirable in today’s energy-conscious climate. Therefore, modern vector

processors require a rethink and new design-space explorations of their functional

units in an energy- and power-efficient manner.

There are architecture-related characteristics, specific only to vector processors,

that affect functional unit (FU) usage. For example, the activity factor (described

in Section 3.2.1) of a VFU is affected by architectural parameters, such as the max-

imum vector length or number of vector lanes. We have observed that the data of

a vector are correlated, so the activity factor of a VFU is less than that of a func-

tional unit operating with scalar data. An additional characteristic of VFUs is that

they are typically fully pipelined. The reason for that is that in vector processing

the critical metric is the throughput, so we typically we operate on long vectors (a

long sequence of the same consecutive operations). For that reason, non-pipelined

arithmetic units are not efficient in vector processing. Here we have the opposite

situation than in scalar processing where we most care about the latency. Obvi-

ously, vector and scalar arithmetic units have different design goals. Therefore, an

arithmetic unit’s structure that is optimal for scalar architecture may not be optimal

for the vector one.

FUs take a significant part in modern processor budget (Figure 1.2), especially

in the case of vectors (Figure 1.3). Moreover, it has been observed that FUs are

processor’s thermal hotspots [99]. VFUs are likely to have even higher tempera-

ture since, due to its faster execution, a vector core dissipates more power than

the equivalent scalar one [67]. This makes the concern about the hotspots more

significant.

To narrow down the discussion, we focus on the most common arithmetic oper-

ations in vector processing, present in practically all vector workloads: integer and

floating point addition and multiplication.

3

1. INTRODUCTION

Figure 1.2: Power breakdown of an Alpha-based FinFET core. Core components: integrated
memory controller (MC), renaming unit (RNU), execution unit (EXEU), load-store unit
(LSU), and instruction fetch unit (IFU). Adapted from [107].

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

IFU

LSU

EXEU

MMU

Figure 1.3: Power breakdown of ARM-based vector core [103] averaged for a number of
benchmarks. Core components: IFU, LSU, EXEU, and memory management unit (MMU).

Addition is one of the most used operations in both general-purpose and appli-

cation-specific processors and this also applies to vector processors. This operation

is included in practically all arithmetic algorithms. Moreover, it is often in the

processor’s critical path [117]. Therefore, selecting an appropriate adder unit is of

crucial importance for an energy-efficient vector processor design.

Multiplication is a fundamental operation in many algorithms that exhibits a

lot of DLP, such as image processing. Its importance has increased in the last

decade due to ubiquitous media processing. Additionally, multiplication is a com-

mon operation in most signal processing algorithms. Multipliers have large area,

long latency and consume considerable power. They are a major source of power

dissipation in processors specialized for digital signal processing workloads. High

4

1.1 Motivation

power dissipation in these structures is mainly due to the switching of a large num-
ber of gates during multiplication. In addition, much power is also dissipated due
to a large number of spurious transitions on internal nodes. Consequently, low
power multiplier design has been an important part of low power very-large-scale
integration (VLSI) system design.

Floating point fused multiply-add, being a power consuming FU, deserves spe-
cial attention. Abundant floating-point fused multiply-add (FMA) is typically
found in vector workloads such as multimedia, computer graphics or deep learning
workloads [102]. Although in the past FMAs have been used for high-performance,
they recently have been included in mobile processors as well [91, 65, 118]. More-
over, energy- and power-efficient mobile processors are entering the server market
as well [108]. In contrast to high-performance vector processors (e.g. NEC SX-
series [74] and Tarantula [36]) that have separated units for each floating-point oper-
ation, (e.g. separate floating-point (FP) adder and multiplier) mobile vector proces-
sors’ resources are limited. Thus, we typically have a single unit per vector lane ca-
pable of performing multiple FP operations rather than separate FP units [65, 118].
Additionally, having the FP computations localized inside the same unit reduces
the number of interconnections, which is both power- and performance-efficient.
Apart from that, FMA units offer better accuracy (single, instead of two round/nor-
malize steps) and improved performance (shorter latency) compared to a multipli-
cation followed by an independent addition.

A well-known method to reduce switching power in FUs (and other synchronous
designs) is clock-gating (described in Section 1.3). In addition to its straightfor-
ward application to idle units, there are unexplored opportunities for this method,
especially when considering active operating mode. Furthermore, there are char-
acteristics of vector processors that provide additional clock-gating opportunities.
Moreover, in addition to reducing dynamic power, clock-gating can also reduce
static (leakage) power since leakage associated with CMOS devices is exponentially
dependent on temperature [51, 61]1.

1Although leakage power has increased its importance (or weight) in recent years, when we
assume low leakage libraries, it is still an order of magnitude less than dynamic power. The in-
troduction of FinFET, high k devices, and FD-SOI has played an important role in maintaining the
leakage low.

5

1. INTRODUCTION

APPLICATIONS

INSTRUCTION SET
ARCHITECTURE

MICROARCHITECTURE
(RTL)

PHYSICAL
IMPLEMENTATION

Figure 1.4: A holistic, multi-layered approach in processor design optimizations.

From the aforementioned facts we can conclude that improving energy- and
power-efficiency by exploring and selecting optimal VFUs structure depending on
the architectural parameters and workloads, and by applying low power techniques
such as advanced clock-gating is of crucial importance. To achieve optimal results,
a holistic optimization approach should be employed, i.e. bridging the gap between
circuits and system should be accomplished (Figure 1.4).

We need a novel methodology that enables a joint circuit circuit-system design
space explorations and optimizations using low power techniques such as clock-
gating. For such a methodology we need a novel integrated framework with both
architectural- and circuit-level tools. The framework should include both design-
(e.g. arithmetic family type) and vector architecture-related parameters (e.g. vector
length). This is necessary for aforementioned exploration as we need to observe
how architectural-level parameters (e.g. vector length) affect the circuit-level met-
rics (e.g. adder’s power dissipation) and how circuit-level parameters (e.g. adder’s
clock cycle) impact the execution time of a microbenchmark.

The final goal of a design-space exploration is to obtain metrics of interest
(power, timing, area). Although it is not possible to measure precisely the metrics
of interest of a design until it is fabricated, there are various estimation methods
aimed for different design phases, which differ in levels of accuracy and estima-
tion speed. The most accurate way to simulate a design is to use transistor-level
post-place and route (PnR) data and SPICE. However, such detailed simulation is
not possible in early phases of the design process. Moreover, it is impractical for a

6

1.1 Motivation

large number of test vectors and numerous design points as its computational com-

plexity leads to an unaffordable long time frame to get the results. On the other

hand, estimation processes done in early phases (e.g. post-synthesis results) are

less detailed which makes them faster. Yet, decreased accuracy of these processes

may lead a designer to wrong conclusions.

The most widespread estimation flows work at the gate-level. Assuming this

modeling granularity, PnR models are more accurate than synthesized ones as they

are closer to fabricated chips. Conversely, synthesis estimation flow deals with sim-

pler models and requires fewer steps, which makes it faster but less accurate than

PnR flow. Traditional synthesis tools use wire-load models based on fanouts which

do not provide accurate wire delay information. Wiring delay cannot be ignored,

and it even increases its importance with further technology scaling [57]. Physical

layout Aware Synthesis (PAS) tends to overcome the drawbacks of traditional syn-

thesis tools and to provide post-PAS results which are closer to post-PnR ones. The

main advantage of PAS tools over the traditional synthesis flows is their floorplan

awareness that provides more realistic interconnect modeling.

Selecting an appropriate estimation method for a given technology and design

is of crucial interest as the estimations guide future project and design decisions.

The accuracy of the estimations of area, timing, and power (metrics of interest)

depends on the phase of the design flow and the fidelity of the models.

Considering design methodologies to tackle the aforementioned problems, we

consider reusability and parameterization not just as an on-going trend but as a

requirement. The design process has to evolve to provide a way to achieve power-

and performance-efficient designs that are cost-effective. The traditional solution

to face this problem, building application specific hardware instances, becomes

exceedingly expensive. Therefore, there is a need for digital design rethink. An

emerging solution is to design fully parameterizable design flows with hardware

generators included, instead of the specific hardware instances [95, 78].

7

1. INTRODUCTION

1.2 Vector Processors Background

Vector processors operate on vectors of data within the same instruction1. The

key idea behind vector processors is to collect a set of data elements in memory,

place them into a large register, operate on them, and then store them back. Vector

instructions are a compact way of capturing DLP, and are a simple, scalable way

to organize large amounts of computation. Vector processing receives its name

because it is designed to work on long one-dimensional arrays, or vectors, of data.

Vector instruction set architecture (ISA)s provide an efficient organization for

controlling a large amount of computation resources. Vector instructions offer a

good aggregation of control by localizing the expression of parallelism. Further-

more, vector ISAs emphasize local communication and provide excellent compu-

tation/area ratios. Vector instructions express DLP in a very compact form, thus

removing much redundant work (e.g. instruction fetch, decode, and issue). For

example, a vector floating-point FMA instruction (FPFMAV) indicates the operation

(FMA), three source vector registers and one destination vector register. Thus, tu-

ples of three elements, one from each source register, are the inputs for the vector

fused multiply-add unit (VFMA), and the result is written to the destination. All

tuples can be processed independently, and multiple elements could be accommo-

dated in a vector register.

The register file is designed so that a single named register holds a number

of elements. The entire architecture is designed to take advantage of the vector

style in organizing data. Additionally, the memory system of vector processors

allows efficient strided and indexed memory access. The number of elements of a

vector register is denoted by the maximum vector length (MVL), and in this thesis

it ranges from 16 to 128, thus including in the study both long vector and relatively

short vector designs. Occasionally fewer elements than the MVL are used, which

reduces the effective vector length (EVL). The vector register file typically consists

of eight or more vector registers [49]. The number and the length of vector registers

to provide is a key decision in the design of a vector unit. The configuration of a

1 On the contrary, a “traditional”, non-vector, processor can be defined as a processor that
operates on scalar values, hence known as scalar processors.

8

1.2 Vector Processors Background

6361 ... 3 1

6361 ... 3 1

V0

V1

V3

Lane 1

6361 ... 3 1

6361 ... 3 1

V2

6260 ... 2 0

6260 ... 2 0

V0

V1

6260 ... 2 0

V2

V3

Lane 0

6260 ... 2 0

FMA FMA

Figure 1.5: A 2-lane, 4-stage VFMA (MVL=EVL=64) executing FPFMAV V3<-V0,V1,V2.

vector register file is the programmer-visible partitioning of the vector element
storage into vector registers of a given MVL.

The vector execution model streamlines one vector register element per cycle to
a fully pipelined VFU. As a result, the execution time of a vector instruction is the
start-up latency (number of stages) of the VFU plus the EVL. A common technique
to reduce this time is to implement multiple vector lanes through replicated lock-
stepped VFUs. Each lane accesses its own “slice” of the vector register file, which
reduces the need for increasing the number of ports, typically associated with a
larger number of VFUs. Lock-stepping the lanes simplifies control logic and is
power-efficient. These concepts are illustrated in Figure 1.5. Using multiple lanes
can increase the energy-efficiency of a vector architecture (sections 4.3.2 and 5.4).

Two techniques that significantly increase the performance are vector chaining
and dead-time elimination. Chaining is vector equivalent of data forwarding; it
allows a vector operation to start as soon as the individual elements of its vector
source operand become available. Therefore, the results from the first functional
unit in the chain are forwarded to the second functional unit. Dead-time elimina-
tion allows the processor to use ALU immediately after the current instruction.

Additionally, an interesting feature that vector processors typically offer is a
vector mask control. It uses an MVL-bit vector mask register (VMR) for indicating
which operations of the vector instruction are actually performed. In other words,
vector instructions operate only on the vector elements whose corresponding en-
tries in the VMR are ’1’.

Conventional vector processors should not be confused with single instruction
multiple data (SIMD) multimedia extensions such as AVX-512 [9] that are an al-
ternative way to exploit DLP and indicate operations to perform on multiple ele-

9

1. INTRODUCTION

ments1. The main difference of these extensions with a conventional vector proces-

sor is that they exploit subword-SIMD parallelism and are typically implemented

with multiple VFUs that operate on all independent elements in parallel. Having

a VFU per element to operate on all them in parallel would be inefficient for vec-

tor processors because they operate on much longer vectors. Instead, VFU is fully

pipelined, and the elements of the vector register are streamlined to the unit, one

per cycle, possibly using a small number of vector lanes.

The reference vector architecture that we use in this thesis is described in Chap-

ter 2.

1.2.1 Power- and Energy-Efficiency

Vector processors provide power- and energy-efficiency in several ways [7]:

• Instruction fetch. The most obvious reduction is in instruction fetch, decode,

and dispatch, as mentioned above. For vectorizable code, a vector unit sig-

nificantly reduces the number of instruction fetches. Vector instructions also

remove much of the interlock and dispatch logic overhead. These concepts

are illustrated on Figure 1.6 by showing an example of the reduced instruction

count compared to an equivalent execution on a scalar processor.

• Register file access. Operations within a vector instruction access the vec-

tor register file in a regular pattern, so a high-bandwidth vector register file

can be built from smaller, fewer-ported banks. In contrast, a superscalar ar-

chitecture with its flexibility to access any combination of registers for any

operation requires full multiported access to the entire register file storage.

• Datapath data. Vector instructions group similar operations, therefore, it is

likely that there is much greater bit-level correlation between successive el-

ements in a vector than between successive instructions executed in a scalar

processor. This reduces power dissipation (see Section 4.3.1).

1 Vector processors are SIMD architectures in Flynn’s taxonomy [40], although by SIMD we refer
to such type of multimedia extensions.

10

1.2 Vector Processors Background

forB(i=0;Bi<8;Bi++)Bv2{i}=v0{i}+v1[i];B

VECTOR SCALAR

LDVB
LDV
ADDV
STV
B

LDB
LD
ADD
ST
INC
CMP
BR
B

x8

Figure 1.6: Vector vs. scalar processor instruction count using array addition as an example.
In the scalar case we need to execute 8 times the listed 7 instructions, while in the vector
case we need just 4 vector instructions.

• Datapath control lines. A VFU executes the same operation on a set of el-

ements, so datapath control signals are only switched once per vector. This

should reduce switching activity compared to a scalar architecture where dif-

ferent types of operation are time multiplexed over the same FUs, and hence

datapath control lines are toggled more frequently.

• Memory accesses. Vector memory operations present regular data access

patterns to the memory system, which enables further energy savings. For

example, unit-stride vector memory accesses may only require one, or at most

two, TLB accesses per vector of operands.

The main sources of potential increases in switching activity per operation are in

structures that provide inter-lane communication, including control broadcast and

the memory system crossbar. This inter-lane cost can be reduced by using highly

vectorizable algorithms that avoid inter-lane communication, and by adding caches

adapted for vector processors that reduce lane interactions with memory.

11

1. INTRODUCTION

1.3 Clock-Gating Background

Clock-gating is a well known method to reduce switching power in synchronous
pipelines [85]. It is a widely used power saving optimization method and prac-
tically a standard in low-power design. It is the most efficient power reduction
technique for active operating mode, especially because dynamic power remains
dominant over the static power for logic. The early unpopularity of clock gating
was due to the inability of the tools of that time to deal with the timing impli-
cations of the gated clock signals and by the reduced fault coverage achieved by
logic testers [81]. Clock gating was originally conceived as a system level power
optimization technique aiming to reduce the power dissipated on the clock net-
work by deactivating parts of the system that are idle. Its applicability has been
extended to the register level as a power efficient implementation of registers on a
hold condition.

The goal is to “gate” the clock of any component whenever it does not perform
useful work. The underlying circuit mechanism is presented on Figure 1.7. A reg-
ister candidate for clock-gating is shown on the upper part of Figure 1.7. During a
hold condition, the register preserves its previous value at a high power cost. Un-
necessary power is dissipated on: (1) the clock tree with its buffers and clock lines,
(2) the register itself, (3) logic between the registers, and (4) the multiplexors on
the feedback paths. By controlling the clock driving the clock input of the register
(lower part of Figure 1.7), reloading is only conditionally performed resulting in
both reduced power consumption and area overhead. Due to the high potential
savings at low cost, clock-gating is fully automated in most commercial synthesis
tools [32, 106].

Since it can reduce power significantly, the conditions under which clock-gating
can be applied should be extensively studied and identified. A widely used ap-
proach is to clock-gate a whole FU when it is idle. An advanced approach is to
use a finer granularity (than the whole FU) and to clock-gate FUs on the internal
pipeline stage level i.e. only stages where instructions are present are clocked. We
call this approach idle clock-gating technique - IdleCG (see Section 6.4.5). A com-
plementary, more advanced and challenging approach is to clock-gate the FU or
its sub-blocks when it is active, i.e. operating at peak performance. We call these

12

1.3 Clock-Gating Background

Figure 1.7: Clock-gating transformation. Adapted from [39].

techniques active clock-gating techniques - ActiveCG (see sections 6.4.1, 6.4.2, 6.4.3,

and 6.4.4).

While on the circuit level clock-gating is standardized and in most cases auto-

mated with library, the real challenges are at the architectural level as an extensive

investigation has to be done in order to explore the conditions under which clock-

gating can be applied (i.e. Enable signal generation). In order to prevent timing

overheads, enable signal generation has to be done on-time, i.e. it must not be on

the critical path.

Regarding alternative gating low power techniques, an important technique is

power gating [56, 3, 94]. It is especially important in lowering the leakage power.

Reasons why we studied clock-gating rather than power-gating are:

• The main goal of clock-gating is dynamic power suppression, while the main

goal of power gating is leakage power suppression. In our experiments,

the leakage is practically negligible, and the reasons are explained in sec-

tions 3.2.1 and 6.6.

• Clock-gating has much finer granularity than power-gating, thus allowing us

to gate not only the whole VFU but its components as well.

13

1. INTRODUCTION

• Clock-gating has low or no timing overhead which is not a case with power

gating [56, 62]. Turning power gating mechanism on and off incurs timing

overhead, thus, it is more suitable for lowering power in idle mode (long idle-

ness) than in active operating mode (short idleness). During active operating

mode (the one that this research targets) gate/ungate frequently happens (of-

ten per cycle), thus the overhead of the mechanism can be unacceptable.

• Power-gating physical implementation is more complex and require dealing

with power and signal integrity issues [1, 96, 115].

1.4 Thesis contributions and overview

In this thesis we try to solve the problems listed in the Motivation (Section 1.1) with

the following main thesis’ contributions:

• A deep multi-level investigation on achieving high power and energy effi-

ciency of VFUs, in particular of: vector adders (Chapter 4), multipliers (Chap-

ter 5) and IEEE 754-2008 compliant floating point FMA (Chapter 6). We have

decoupled 32-bit vector machine with support for 64-bit floating point and

TSMC40LP as target architecture and technology, respectively. We achieve

these goals mainly in two complementary manners.

– We identify, propose, and evaluate in-depth the most suitable clock-

gating techniques for VFU running at peak performance periods without

jeopardizing performance (Chapter 6). We look beyond classical clock-

gating: we examine additional opportunities to avoid unnecessary ac-

tivity in vector workload executions. We present the first proposal of

active clock-gating techniques for VFU. Using only one of these tech-

niques can achieve up to 52% of power reductions. Savings of up to

80% are available when the techniques are applied together on a VFU

running a variety of benchmarks. This is a consequence of the fact that

clock-gating efficiency (percentage of time that clock-gating technique(s)

is used) is quite high, often close to 100%.

14

1.4 Thesis contributions and overview

– A comprehensive (power, delay, energy, area, power density) joint circuit-

system design space exploration of vector adders (Chapter 4) and multi-

pliers (Chapter 5) for vector processors. The exploration includes circuit-

level parameters like the number of pipeline stages, clock-gating sup-

port, and arithmetic family, as well as architectural parameters such as

MVL and benchmarking. We discover that vector multi-lane is useful

for achieving low Energy-Delay products, and beats increasing frequency

as a measure to achieve energy- and thermal-efficient speed-up, espe-

cially for long vectors lengths. Finally, we provide guidelines on optimal

vector adder unit (VA) and vector multiplier unit (VMU) configuration

selection for different low power vector architectures.

• A novel methodology that includes exploration frameworks. In order to join

architectural-level information (e.g. microbenchmarks) with circuit-level out-

puts (e.g. power measurements), and accomplish in that way all aforemen-

tioned explorations, we developed automated and integrated architecture-

circuit exploration frameworks (different variants of frameworks are present

in all the chapters) that consist of several generators and simulators at differ-

ent levels. The frameworks assume both synthetic and real application-based

benchmarking (SPEC [101], SDVB [112], and STAMP [72]) and include a va-

riety of parameters at all the abstraction levels from Figure 1.4. Additionally,

it includes both hardware (Chisel-based) and software generators. The use of

generators facilitates design space explorations through sweeping the param-

eters of the design. The basis of the frameworks is explained in Chapter 3.

• Development of physical layout aware synthesis (PAS) and PnR estimation

flows and their comparative analysis in terms of power, timing, area, and the

flow completion time using adders as a case study (Chapter 3). We analyze

side-effects of clock-gating, pipelining, and extensive timing optimizations.

We perform this analysis using various design parameters, including switch-

ing activity factor input switching activity factor (αI). The estimation flows

serve as a basis for the above mentioned frameworks.

15

1. INTRODUCTION

The aforementioned chapters that present these contributions are complemented
by Chapter 2 that describes reference vector architecture used in the rest of the
chapters, as well as vector simulator that we use. Additionally, chapters 8 and 7
list the publication of the thesis and conclude the thesis, respectively.

16

2
Reference Vector Architecture

In this chapter, we present vector microarchitecture that we use as an assumed

reference in the rest of the thesis1. For vector architecture modeling we use vector

simulator VectorSim. The main configuration parameters are listed in Table 2.1 and

explained in subsequent chapters.

2.1 VectorSim

We built VectorSim based on the vector architecture library (VALib) and the Sim-

pleVector simulator (both developed in our research group [102]). VALib is a library

that implements vector instructions and allows rapid manual vectorization and

characterization of applications. SimpleVector is a simple and very fast trace-based

simulator which helps to estimate the performance of a vector processor. We took

advantage of the fact that both tools have been designed to be easily extended with

new instructions or implementation alternatives. Therefore, we modify them to sat-

isfy our research goals and to enable its integration in our exploration frameworks.

High-level VectorSim configuration is presented in Table 2.1.

1Vector processing background is provided in Section 1.2.
1VFU and ALU latencies are variable as they are design parameters in our research (see sec-

tions 3.3.2, 4.2.2, 5.2.2, and 6.5.3)

17

2. REFERENCE VECTOR ARCHITECTURE

Table 2.1: High-level VectorSim configuration.

Execution 32-bit in-order vector core; decoupled vector and scalar core; vector chaining.
Vector Register File MVL: 16, 64, or 128 elements; Number of registers: 8.
VFU nL: 1, 2, or 4; 1 32-bit arithmetic logic unit (ALU), 1 64-bit VFMA1.
Memory System L2 (direct access to L2, shared with scalar core): 1MB, 4-way, 128b cache line,

hit latency: 7ns, miss latency: 70ns; 1 load unit, 1 store unit.

2.2 Execution

We setup VectorSim to model a decoupled 32-bit vector machine with support for
64-bit floating point. The decoupled execution model assumes separated in-order
vector and scalar execution units [36, 2, 65, 118]. They share instruction fetch and
decode, and they separate issue logic and functional units, allowing in that way
independent scalar execution. In-order execution is common in low power proces-
sors and performs more efficient in vector than in scalar processing as in vector
architectures the drawbacks of in-order execution are diminished, especially if the
vectors are long. As a result, the FUs are kept busy. Also, many modern low power
processors are in-order due to its simplicity (e.g. Intel Bonnell (Atom) [59] and
some of ARM Cortex-A architectures [27, 28, 24, 25, 26]). Additionally, we model
chaining and dead time elimination. For MVL, in our experiments, we choose the
following values: 16, 64, and 128.

2.3 Instruction Set Architecture

We extend the ISA of VaLib, which is inspired by traditional register-based vec-
tor machines, e.g. CRAY and CONVEX. Among other upgrades, we added a set
of vector FMA instructions. The instructions can be grouped into the following
classes:

• Arithmetic and logical. These instructions are common operations such as
addition, multiplication, logical bitwise operations, etc. They can operate in
vector-vector or vector-scalar mode. The exception is the FMA instruction
that has 3 operands and more combinations of vector and scalar operands
(see Table 6.4). Most instructions support masking.

18

2.4 Vector Register File

Memory
Unit

Register
File

VFMA ALU

LANE 0

Memory
Unit

Register
File

VFMA ALU

LANE 1

Figure 2.1: A 2-lane vector datapath.

• Memory. There are instructions for unit-stride, strided and indexed access.

Some variants support masking, which is useful to access elements condition-

ally.

• Reduction. This class includes sum, max, and min.

• Bit/element manipulation. Examples of this class include instructions to read

or write individual elements of a vector register, or to compress a register

according to a vector mask.

2.4 Vector Register File

Our configuration assumes 8 vector registers. We find this number is sufficient for

all the workloads we examined. Each lane has its own slice of register file. We rely

on the regular access pattern (a characteristic of vector architectures) in order to

keep number of R/W ports small. For a low power vector processor it is important

to keep the usage of vector register file low. In order to achieve that, the compiler

plays a big role. The vector part of the code that we use is compiled by hand, so

we avoid unnecessary usage of vector registers.

A 2-lane vector data path is depicted on Figure 2.1, where we can see a 2-lane

partitioning of the vector register file.

19

2. REFERENCE VECTOR ARCHITECTURE

2.5 Memory System

Vector load-store unit. The vector memory unit handles the memory instructions
and loads or stores a vector to or from cache memory. The vector loads and stores
are fully pipelined, so that words can be moved between the vector registers and
cache memory with a bandwidth of 1 word per clock cycle (if accesses hit the
cache), after an initial latency. We have 1 load and 1 store unit. More than that
would exceed a low power processor budget.

Cache memory.
Cache configuration (and memory system in general) has significant impact

on the execution time for vector processors. In our model, the vector unit di-
rectly accesses the L2 cache (shared with the scalar unit). This technique has
been proposed to facilitate the inclusion of vector units in microprocessor de-
signs [84, 36, 2, 65, 118]. Accessing the L2 instead of the L1 allows not modifying
the design of the L1 interface in the scalar core, which is a critical component of
the design, typically in the critical path. By leaving this interface unmodified, we
can safely focus on the vector component of the design. Vector code benefits from
the large cache lines that L2 can provide. By interfacing the cache hierarchy we
can provide enough bandwidth and exploit data locality. As it is larger than L1, L2
is more suitable for multi-banking implementation. Vector processors benefit from
using cache banks rather than interleaving mainly due to efficient access to words
that are not sequential.

2.6 High-Level VFU Configuration

The vector execution engine is organized as nL identical vector lanes (Figure 2.1).
Possible values of the number of lanes (nL) are 1, 2, and 4. In our experiments, we
do not examine more lanes as it would not satisfy well a low power core budget1.
Moreover, values that we choose are typical in vector processor design [49]. Each
lane has a slice of the vector register file, a slice of the vector mask file, 1 vector
integer ALU, 1 VFMA, and a private TLB. There is no communication across lanes,

1The total number of functional unit per core is in accordance with many other low power
processors [27, 28, 24, 25, 26, 59, 60, 83]

20

2.6 High-Level VFU Configuration

except for gather/scatter, reduction, and compress instructions. In addition to
the vector ALU, each lane also includes 1 logic unit that handles logic operations,
shifting and rotating. We assume the division is done in software, since it is rare
in vectorizable applications and the hardware support is costly. Additionally, a
control unit is needed to detect hazards, both from conflicts for the functional units
(structural hazards) and from conflicts for register accesses (data hazards).

21

3
Estimation Flows

3.1 Introduction

In this chapter, we perform a comparative analysis of PAS and PnR flows using

design space exploration of low power 32-bit adders as a case study. Additionally,

this chapter serves as a foundation for the rest of chapters. These estimation flows

are very important parts of the methodology that we propose and use across the

thesis.

We study and compare post-PAS and post-PnR estimations of the metrics of

interest and the impact of various design parameters and input switching activity

factor (αI). Specifically, we compare estimations in terms of area, timing, and power

for several design parameters: clock cycle, adder family, number of pipeline stages,

and clock-gating. We study how adder area, timing and power differ with respect

to the applied estimation flow. Adders are particularly interesting for this study be-

cause they are fundamental microprocessor units, and their design involves many

parameters that create a vast design space. A design space exploration with a large

number of design points allows observing advantages and drawbacks of estimation

flows in a comprehensive way. We show cases in which the post-PAS and post-PnR

estimations could lead to different design decisions, especially from a low-power

designer point of view. We examine and explain in which cases post-PAS results

are (or are not) reliable, compared to post-PnR (since PnR ones are more accurate

and close to post-fabrication results).

23

3. ESTIMATION FLOWS

Since power has become the primary design constraint for the majority of com-
puter systems, we pay special attention to power dissipation. In contrast to area
and timing estimation of a VLSI design that does not require knowledge of the
inputs, we cannot have a solid total power estimation without information about
the inputs. Therefore, we evaluate how the power numbers obtained in post-PAS
and post-PnR estimations vary with input switching activity factor (αI).

3.2 Metrics

This section defines the metrics of interest that are used in the rest of the chapter
and the thesis. We can define two types of metrics which are used in digital design
- basic and derived metrics.

3.2.1 Basic Metrics

Switching activity factor (α) of a circuit node is the probability the given node will
change its state from 1 to 0 or opposite at a given clock tick. Activity factor is a
function of the circuit topology and the activity of the input signals. The activity
factor is necessary in order to analytically compute (estimate) dynamic power of a
circuit.

Capacitance (C) is the ability of a body to hold an electrical charge, and its SI
unit is the farad (F). Capacitance can also be defined as a measure of the amount of
electrical energy stored (or separated) for a given electric potential.

Energy (E) is defined as the ability that a physical system has to do work on
other physical systems and its SI unit is the joule (J). The total energy consumption
of a digital circuit can be expressed as the sum of dynamic and static energy:

Etot = Edyn + Estat. (3.1)

Dynamic energy has three components that are the result of the next three
sources: charging/discharging capacitances (switching), short-circuit currents, and
glitches. For processor designers the most relevant energy is the switching one,
as the others components are parasitic, thus are not directly affected with archi-
tectural level low power techniques. According to the general energy definition,

24

3.2 Metrics

dynamic energy in digital circuits can be interpreted as: When a transition in a

digital circuit occurs (a node change its state 0→1 or 1→0) some amount of elec-

trical work is done; thus, some amount of electrical energy is spent. In order to

obtain an analytical expression of dynamic energy, a network node can be modeled

as a capacitor CL which is charged by voltage source VDD through a circuit with

resistance R. In this case the total energy consumed to charge the capacitor CL is

E = CLV2
DD, where the half of the energy is dissipated on R, and half is saved in

CL, EC = ER =
CLV2

DD
2 .

The total static energy consumption of a digital circuit is the result of leakage

and static currents. Leakage current Ileak consists of drain leakage, junction leakage,

and gate leakage current, while static current IDC is bias which is needed by some

circuits for their correct work. Static energy at a time moment t (t > 0) is given as

follows:

E(t) =
∫ t

0
VDD(Ileak + IDC)dτ = VDD(IDC + Ileak)t. (3.2)

Delay (D). In processor design, delay has two definitions, depending on the

abstraction level (layers from Figure 1.4) that we consider. At the circuit level, it

is propagation delay, and is defined as the difference between the time when the

input to a logic gate becomes stable and valid and the time when the output of that

logic gate is stable and valid. It usually refers to the time required for the output

to reach 50% of its final output level when the input changes. However, at the

architectural level, by delay we assume the execution time of an application kernel

(te). In this thesis, we assume the latter definition.

Power (P) is the rate at which work is performed or energy is converted, and its

SI unit is the watt (W). Average power is given with P = ∆E
∆t , in which ∆E is amount

of energy consumed in time period ∆t. From architectural perspective, average is

more important than instantaneous power. Like energy, power dissipation sources

in digital circuits can be divided into two major classes: dynamic and static.

Dynamic power dissipation, similar to dynamic energy consumption, consists

of switching (Pswitch), short-circuit (Psc) and glitching (Pglitch) power:

Pdyn = Pswitch + Psc + Pglitch. (3.3)

25

3. ESTIMATION FLOWS

From references [111, 38, 86] we have:

Pswitch =
1
2

α f CLV2
DD, Psc ∝ α f V3

DD/CL, and Pglitch ∝ α f V2
DD. (3.4)

Static power in CMOS digital circuits is a result of leakage and static currents
(the same sources which cause static energy):

Pstat = VDD(IDC + Ileak). (3.5)

Further, P is typically structurally divided into power of adder’s clock tree and
of the rest of the adder: P = Pct + Prest

Generally, in our research, we observe from the results that Pstat is typically two
orders of magnitude less than Pdyn. The leakage is negligible due to the following
reasons: (1) arithmetic’ topologies produce high switching (high Pdyn), (2) the tech-
nology that we use has low leakage, and (3) we optimize non-critical path logic
for leakage using high-VTH cells. Therefore, the power of an arithmetic unit (P) is
practically equal to its dynamic component (P ≈ Pdyn).

3.2.2 Derived Metrics

Energy-Delay Product (EDP) - While low power often used to be viewed as synony-
mous with lower performance that is no longer the case. In many cases, application
runtime is of significant relevance even in energy- or power-constrained environ-
ments. With the dual goals of low energy and fast runtime in mind, energy-delay
product (EDP) was proposed as a useful metric [46]. EDP offers equal “weight” to
either energy or performance degradation. If either energy or delay increases, the
EDP increases. Thus, lower EDP values are desirable.

Energyi-Delayj product (EDiPj) - EDP of a design tells how close the design is
to a perfect balance between performance and energy efficiency. Sometimes, in real
designs, achieving that balance may not necessarily be of interest. Typically, one
metric is assigned greater weight, for example, energy is minimized for a given
maximum delay or delay is minimized for a given maximum energy. In the high-
performance arena, where performance improvements matter more than energy
savings we need a metric which has i < j, while in low-power design we need one

26

3.3 Methodology

with i > j (i, j > 0). For example, a commonly used performance oriented metric is

ED2P [71].

Surface power density (Pd) - Another related metric which is defined as power

per unit area:

Pd =
P
A

, (3.6)

and its SI unit is W
m2 . This metric is the crucial one for thermal studies and cooling

system selection and design, as it is related with the temperature of the given

surface by Stefan-Boltzmann law [104].

3.3 Methodology

This section describes the methodology, framework, and flow parameters used to

perform this extensive comparison of PnR and PAS estimation flows. By flow

parameters, we assume design parameters and αI (explained in sections 3.3.2 and

3.3.4 respectively).

3.3.1 Framework

A simplified block diagram of the framework is depicted on Figure 3.1. As a

PAS tool and post-PAS results estimator we use Cadence RTL compiler [32] in

Physical Layout Estimation mode while for PnR and post-PnR estimations we use

Cadence Encounter Digital Implementation System [31]. We developed several

scripts for automation and interfacing between tools. PAS is the first common

part of both PAS and PnR estimation flows. Each design point is defined by four

parameters, adder family (AF), nS, CGable and TCLK (described in Section 3.3.2). We

wrote all the hardware description language (HDL) code by hand for the adders

of each valid combination of the AF, nS, and CGable parameters. For each design

point, we supply the HDL code of the adder together with a target clock cycle (the

TCLK parameter) to the PAS tool to produce adder’s mapped netlists. We perform

PAS for all combinations of our design parameters in an automated way. The

PAS tool tries to meet timing constraints (TCLK) while prioritizing power over area

27

3. ESTIMATION FLOWS

Design Parameters:
HDL code (CGable, AF, nS), TCLK

Metrics
of Interest
(post-PAS)PAS

PnR

Post-PAS
Estimation

PnR Estimation flow

PAS Estimation flow

Post-PnR
Estimation

Physical Layout
Information

Sniper SimOR SPEC2006
ɑIappɑI

Metrics
of Interest
(post-PnR)

Figure 3.1: Block diagram of the framework used to perform the comparative analysis of
PnR and PAS estimation flows in terms of area, timing and power (metrics of interest).

optimization. Once we have all the netlists produced using PAS, we perform post-

PAS estimation of the metrics of interest (area, timing and power), and complete

the PAS estimation flow. Both post-PAS and post-PnR αI-based power estimations

are explained in Section 3.3.4. In order to complete the PnR estimation flow we

further process our designs and perform PnR. The last stage of the PnR estimation

flow is post-PnR estimation of the metrics of interest. Additionally, the most critical

paths are verified with Cadence Spectre [97]. This step is not shown in Fig. 3.1 for

the sake of simplicity.

All designs are implemented using the mentioned TSMC40LP library for typical

operating conditions. Since practically all existing vector processors (and vector

processors exploration is the final goal of the research presented in this chapter) are

developed using standard cells [49], we selected this approach in our research. We

chose effective current based model (ECSM)[18] as it delivers accuracy to within

2% of SPICE [19]. It is more accurate than conventional models like non-linear

delay model (NLDM) which differ as much as 20%.

We perform PAS and PnR under the same conditions. PAS tool requires basic

physical layout information in order to perform its physical layout aware synthe-

sis. This is a subset of the complete set of physical layout parameters required

by the PnR tool. For example, core density is a fundamental and basic layout

parameter required by both tools. An initial core density of 70% is selected as a

sensible balance between timing improvement and shrinking area for the wide set

28

3.3 Methodology

of adder designs parameters that we use. We experimentally found that, in PnR
stage in general, density below 70% sometimes provides negligible faster timing
for a non-negligible area overhead while densities higher than 70% can spoil tim-
ings noticeably as the tool suffers from the lack of free space for optimizations and
routing. Additionally, the initial densities below 70% sometimes even cause DRC
errors and density violations. Regarding another important parameter used by
both flows, number of routing layers, we use 4 since we experimentally found that
using more would be a waste of resources as the additional layers do not improve
the quality of results (QoR).

The optimization techniques that are applied in the PAS stage are: adding
buffers, resizing gates, remapping logic, swapping pins, boundary optimizations
(removing undriven or unloaded logic connected, propagating constants, collaps-
ing equal pins, and rewiring of equivalent signals across hierarchy), and delet-
ing buffers. However, we prevent restructuring optimization techniques that could
change the adder structure, in order to maintain the original topology of each adder
family. The optimization techniques done in the PAS stage are applied again in PnR
since there is more optimization space in PnR than in PAS. Additionally, two more
techniques are applied in PnR: moving instances and applying useful skew. PAS
optimizations are run with high effort, while PnR ones with medium effort rather
than high in order to keep PnR runtime affordable for a large number of design
points. More details about the optimizations are available in the documentation of
the aforementioned Cadence tools.

The necessary times for the complete PAS and PnR estimation flow for a single
design are around 70 and 400 seconds in average, respectively. Thus, PAS is around
5.7 times faster than PnR estimation flow. The time needed to perform PnR is fairly
reasonable for a small number of designs. However, the difference in execution
time of the estimation flows becomes an important issue when we have experiments
with a large number of design points. For example, in this design space exploration
the number of design points is over 2000, which puts the difference of time needed
between the flows completion into days. Moreover, for larger and faster designs
this ratio increases as the PnR tool makes more effort on routing and optimizations.
Therefore, we can expect the difference between these flows to be higher for large
and more complex designs (e.g. accelerator or processor’s core).

29

3. ESTIMATION FLOWS

The framework is built for adders, but it can be easily accommodated for any
other kind of arithmetic block. For example, in order to adapt the current frame-
work to perform the same kind of comparative analysis for multipliers, practically
the only change would be to supply the HDL code of the multipliers instead of
current HDL code. To make it fully compatible with this framework, the new
HDL code should, of course, incorporate the same design parameters (AF, nS, and
CGable).

3.3.2 Design Parameters

In this section we present the design parameters used in this comparative analysis
of estimation flows:

• CGable indicates whether a VFU (in this case an adder) is implemented with
or without support for clock-gating (CG or noCG, respectively). Clock-gating
prevents useless switching activity in circuits and makes pipelining more ef-
fective. We assume the clock-gating decision is done in the issue stage. It is
done at the stage level, i.e. each stage is activated with its Enable signals only
when the data on its inputs is valid. We implement clock-gating in the HDL
code and use latch-based clock-gating cells from TSMC40LP library. This
clock-gating technique is called IdleCG and it is additionally explained and
evaluated in Section 6.4.5. For simple structures like 32-bit integer adders
and multipliers, there is no enough room for fruitful application of more ad-
vanced techniques like the ones presented in sections 6.4.1, 6.4.2, 6.4.3, and
6.4.4.

• AF is the adder family (algorithm). We choose five adder families: Brent-
Kung (bk), Kogge-Stone (ks), carry-lookahead (cla), ripple-carry adder (rca),
and conditional-sum adder (cosa), all implemented in HDL code. We choose
rca as it is a basic algorithm and it is the simplest to implement (as for each
bit it practically requires only one full adder cell), cla as a basic model of fast
adders, and prefix (bk and ks) and cosa adders as they are fast and suitable
for pipelining. All the adders that we use in this thesis are explained in
Section 3.3.3. We obtain the results for static CMOS. However, as it is observed

30

3.3 Methodology

in [80], the topology that is the most energy efficient in one logic style, is also
the most energy-efficient in the other styles.

• TCLK = (1/ f) is the clock period of the adder (and the system), while f is
its clock frequency. We define 0.1-5.0 GHz as a frequency range in order to
explore a vast design space.

• nS indicates the number of pipeline stages in the adder (pipeline depth), and
it ranges from 1 to 8. We only increase nS for a particular AF if it provides
shorter TCLK with PAS. In particular, we implement bk, ks, rca for 1-8, cosa for
1-7, and cla for 1-4 stages. The structures of all the observed adders except
cla are regular, so pipelining these adders is done in a fairly obvious way. cla
does not have a structure that allows such obvious way to pipeline it, so in
this case we need to apply ad-hoc pipelining. Since the adders are pipelined
and have a clocked input register (first pipeline stage) they can be easily in-
corporated into a datapath. The input register of an n-stage adder consists of
2x32 DFlipFlops (DFF) for the input operands and one DFF for the carry-in
bit, and in case of CG we have n additional DFFs for the Enable signal. Ad-
ditionally, each n-stage adder has n-1 pipeline clocked registers (consisting of
DFFs) which are used to save intermediate results. The size of each register
depends on the AF structure and the place inside the adder where the register
is inserted (i.e. on the way the adder is pipelined). We include in this study
high numbers of pipeline stages because we need high frequencies for vast
design space exploration, and because we want to study the impact of deep
pipelining.

3.3.3 Adder Families

This section presents the adder families used in this chapter and Chapters 4 and 6.
Even more detailed explanations of each AF are available in [14, 33].

Ripple-Carry Adder (rca)

The rca is O(n) for both time and area, where n is the width of the operands. In the
worst case, a carry can propagate from the least significant bit position to the most

31

3. ESTIMATION FLOWS

Figure 3.2: n-bit ripple carry adder (rca).

Figure 3.3: Full adder (FA) and half adder (HA).

significant bit position. A block diagram of the RCA is shown in Figure 3.2.

The basic unit is full adder (FA), also referred to as a (3,2) counter, computes a

sum bit and a carry bit, si = xi ⊕ yi ⊕ cini, ci+1 = xiyi + xici + yici. That is, it adds

two operand bits with the incoming carry bit to produce a sum bit and an outgoing

carry bit. Its block diagram is shown on Figure 3.3

When there is no incoming carry bit, i.e. when it is assumed to be ’0’, half adder

(HA) is used: si = xi ⊕ yi, ci+1 = xiyi. It is also referred to as (2,2) counter and its

block diagram is shown on Figure 3.3

The delay (TCLK assuming nS = 1) of rca, expressed in logic levels, is Trca = 2n

(O(n)), while area, expressed in number of simple gates, is Arca = 7n + 2 (O(n)).

Carry-Lookahead Adder (cla)

The bottleneck for ripple carry addition is the calculation of ci, which takes linear

time proportional to n. To improve it, we define Generate (gi = xiyi) and Propagate

(pi = xi + yi) functions. Both gi and pi can be generated for all n bits in constant

32

3.3 Methodology

Figure 3.4: 4-bit Carry-Lookahead Adder.

time (1 gate delay). gi and pi are used for carry generation:

ci+1 = xiyi + xici + yici = xiyi + (xi + yi)ci = gi + pici

These equations allow us to calculate all the carries in parallel from the operands.
For example, the carries for a 4-bit cla adder (Figure 3.4) are given as:

c0 = c0,

c1 = g0 + c0p0,

c2 = g1 + g0p1 + c0p0p1,

c3 = g2 + g1p2 + g0p1p2 + c0p0p1p2,

c4 = g3 + g2p3 + g1p2p3 + g0p1p2p3 + c0p0p1p2p3,

The delay is Tcla = 4 log n (O(log n)), while area is Acla = 14n− 20 (O(n)).

Conditional Sum Adder (cosa)

The basic idea in the cosa is to generate two sets of outputs for a group of k operand
bits. One set is valid if input carry is one, while another is valid if it is zero.
Depending on the value of incoming carry bit, only one of the sets is selected. Both
of the sets have k sum bits and an outgoing carry bit. An example of cosa for 4-bit
operands is shown on Figure 3.5

The delay is Tcosa = 2 log n + 2 (O(log n)), while area is Acosa = 3n log n + 7n−
2 log n− 7 (O(n)).

33

3. ESTIMATION FLOWS

Figure 3.5: 4-bit Conditional Sum Adder (cosa).

Parallel-Prefix Adders

Parallel-prefix networks are widely used in high performance adders. They use

direct parallel-prefix scheme for fast carry computation. They all have the initial

generate and propagate signal generation and the final sum bit generation and

differ only in the arrangement of the intermediate carry generation levels.

Parallel-prefix adders are constructed out of fundamental dot operators denoted

by • as follows:

(g′′, p′′) • (g′, p′) = (g′′ + g′p′′, p′p′′),

where p′′ and p′ indicate the propagations while g′′ and g′ indicate the generations.

A parallel-prefix adder can be represented as a parallel-prefix graph consisting of

dot operator nodes. In the graphs, the black nodes • depict nodes performing

the binary associative dot operation • on its two inputs, while the white nodes ◦
represent feed-through nodes with no logic i.e. cells are empty or contain buffers

(Figure 3.6).

In this research, we focus on bk and ks parallel-prefix algorithms. They all have

delay and area at the same order of magnitude: the delay is O(log n), while area is

O(n log n).

34

3.3 Methodology

Figure 3.6: Black and white nodes.

Figure 3.7: 16-bit Kogge-Stone (ks) Adder.

Kogge-Stone (ks) On Figure 3.7 is shown the parallel-prefix graph of a ks adder

[64]. This adder structure is characterized by minimum logic depth, and full binary

tree with minimum fan-out (maximum fan-out is 2), resulting in a fast adder (due

to smaller capacitive loads) but with a large area, i.e. increased number of black

nodes and interconnections. The delay is Tks = 4 log n + 4, while area is Aks =

3n log n + n + 8.

Brent-Kung (bk) On Figure 3.8 is depicted the parallel-prefix graph of a bk adder

[17]. The tree has a low number of dot operators, while at the same time there are

few cascaded dot operators. This adder is characterized by high logic depth and

small area. The delay is Tbk = 4 log n, while area is Abk = 14n− 3 log n− 1.

35

3. ESTIMATION FLOWS

Figure 3.8: 16-bit Brent-Kung (bk) Adder.

3.3.4 Power Estimation

Power estimation is specially analyzed as it depends on data inputs. Formulas 3.4
implies that all Pdyn components are proportional to α. The probability of changing
the state from 0 to 1 at a given clock tick for circuit input and node is denoted αI

and α respectively. α is a function of the circuit topology and aforementioned αI . A
probability of 0 means there is no activity (or negligible activity), 0.5 means signal
changes its state every cycle while 1 means the signal has the same frequency as
the reference clock.

However, for power estimation purposes, both PAS and PnR tools divide total
power into net, internal, and leakage power. Net power is the power dissipated
when charging or discharging the capacitive load, which includes the net capaci-
tance and the capacitance of the input pins, and is calculated using the first equa-
tion in Formula 3.4. The internal power consists of two components: (i) the power
dissipated in an instantaneous short-circuit connection between the voltage supply
and the ground when the gate transitions (Psc) and (ii) the internal net power dissi-
pated during charging or discharging internal capacitance (Pswitch). It is calculated
by using internal power tables provided in the library, which are generated as a
result of SPICE simulations for a range of input slew rates and external loadings,
the effective frequency of a given circuit input (αI/TCLK), and the probability that
the input signal is high. Pglitch is modeled inherently by propagating switching
activity through the circuit. The leakage power computation depends on the state
of the gate, and is calculated using the power tables provided in the library.

36

3.4 Results

We perform post-PAS and post-PnR power estimation by providing the out-
come of PAS and PnR stages to post-PAS and post-PnR estimators respectively and
changing the αI of the input signals of the adders. This statistically-based power
estimation method is suitable in cases in which a large number of design parame-
ters are used, i.e. a large number of design points. We perform power experiments
in two ways:

• By varying αI (shown as αI↗ in Figure 3.1) from 0 to 0.5, with increments of
0.025. Since we study pipelined adders with an input register on its inputs,
the maximum possible αI of our input signals is 0.5. We assign the input
signals the same probability (p) of being ’1’ or ’0’, as we assume they have
independent and uniformly distributed random values.

• By assigning the input ports of the adder utilizing signal statistics (αI = αIapp

and p) obtained using Sniper simulator [21]. Using Sniper we collect the data
from input registers of the adder and information about adder usage. We
further process these data to calculate αI (αIapp) and p of each input port
of the adder separately (A[31:0], B[31:0], CarryIn, and Enable signals). We
run Sniper for four SPEC CPU2006 benchmarks: mcf, bzip2, libquantum,
and h264ref [50]. Sniper implements an Intel’s x86 microarchitecture, and we
configure it to use a single adder in our experiments.

3.4 Results

3.4.1 Area

Table 3.1 shows the statistics of the ratio of area for all designs obtained using PnR
and PAS. Area estimated using PnR and PAS estimation flows is compared for all
combinations of the design parameters. For both flows, the effective area occupied
by cells is considered. The geometrical mean of the ratios is high (1.64). The main
reason is that clock tree synthesis with PnR is more realistic (but still imperfect) so
with all its buffers and clock routing, it occupies more area than in PAS case. Clock
tree in CG designs is more complicated, and they suffer from higher area increases
than noCG ones. We observe, for a given AF and TCLK, the ratio decreases with

37

3. ESTIMATION FLOWS

Table 3.1: PnR vs. PAS ratio for area, timing, and power

Area Timing Power
All noCG CG All noCG CG All noCG CG

Min 1.43 1.43 1.45 0.84 0.84 0.88 0.49 0.56 0.49
Max 1.94 1.73 1.94 2.07 1.38 2.07 7.52 2.07 7.52

GEOM 1.63 1.58 1.69 1.18 1.02 1.38 1.12 1.02 1.27
GStDev 1.06 1.04 1.06 1.25 1.12 1.21 1.35 1.21 1.45

nS. This happens as the PnR tool does more effort in timing closure (that occupies

extra area) for adders with fewer stages as they are inherently slower. Regarding

AF, bk has the highest ratio, as due to its high max-fanout, additional circuit sizing

is done in PnR. For any given TCLK and nS, AFs have the same relative area order

in both flows: Area(cosa)>Area(ks)>Area(bk)>Area(cla)>Area(rca).

3.4.2 Timing

Table 3.1 provides statistics of ratios of TCLK for all designs. In the rest of this

section we focus on the minimal achievable clock period (Tmin) for a given nS for all

AF according to post-PAS (TminPnR) and post-PnR (TminPAS) timing results. In other

words, Tmin represents the critical path of the fastest achievable adder structure for

given nS and AF. The comparison is shown on Figures 3.9(a) and 3.9(b) for noCG
and CG respectively. Additionally, Figure 3.9 indicates the clock network latency

(tCNL) of post-PnR adders. In PAS, for timing analysis purpose, the clock tree is

not modeled, so clock network latency is not considered properly. Therefore we

present clock latency only for post-PnR designs. The ratios of Tmin for PnR and

PAS (TminPnR/TminPAS) are presented in Table 3.2. A ratio below 1 means that for

the same nS and AF, PnR adder can achieve higher speed (lower clock period) than

PAS adder.

From Figure 3.9(a) we notice that post-PnR estimations report faster timings for

designs without clock-gating support (NoCG case) in most cases. However, both

post-PnR and post-PAS provide very similar estimations on average. Except for

highly pipelined designs, the impact in overall timing of clock network latency in

post-PnR is not very high. This is because the PnR tool is able to overcome the

38

3.4 Results

1 2 3 4 5 6 7 8
nS

0

200

400

600

800

1000

1200

1400

1600
T
C
L
K
 [p

s]
tCNL cla (PnR)

bk (PnR)
ks (PnR)
cosa (PnR)
rca (PnR)

cla (PAS)
bk (PAS)
ks (PAS)
cosa (PAS)
rca (PAS)

a)

1 2 3 4 5 6 7 8
nS

0

200

400

600

800

1000

1200

1400

1600

1800

T
C
L
K
 [p

s]

tCNL cla (PnR)
bk (PnR)
ks (PnR)
cosa (PnR)
rca (PnR)

cla (PAS)
bk (PAS)
ks (PAS)
cosa (PAS)
rca (PAS)

b)

Figure 3.9: PnR vs. PAS: minimal achievable clock periods (Tmin) for given nS and AF, for
(a) noCG and (b) CG. Black part of PnR bars indicates the clock network latency (tCNL).

clock tree network latency by applying optimization techniques. As a conclusion,

timing results obtained with PAS are reliable in most cases for designs without

39

3. ESTIMATION FLOWS

Table 3.2: Ratios of minimal achievable clock periods for PnR and PAS (TminPnR/TminPAS).
In the upper part of the table are presented results without clock-gating, while in the
bottom are the results with clock-gating support.

AF \ nS 1 2 3 4 5 6 7 8

bk 1 0.97 0.99 0.94 1 1.06 1.12 1.19
ks 0.97 0.90 0.92 0.94 0.97 1.06 1.17 1.38
cla 0.96 0.98 0.90 0.84 N/A N/A N/A N/A noCG

cosa 1 1.11 0.97 0.99 1.13 1.22 1.36 N/A
rca 0.99 1.02 0.92 1.01 0.89 0.91 0.9 1.11

bk 1.29 1.31 1.36 1.28 1.37 1.56 1.76 2.06
ks 1.47 1.30 1.52 1.31 1.35 1.56 1.76 1.93
cla 1.40 1.22 0.88 1.02 N/A N/A N/A N/A CG

cosa 1.11 1.26 1.07 1.38 1.58 1.64 2.07 N/A
rca 1.05 1.15 1.17 1.46 1.13 1.22 1.24 1.71

Table 3.3: nS of the fastest design per AF for PnR. The maximum nS for a given AF is in
parenthesis

CGable \ AF bk ks cla cosa rca

noCG 7 (8) 5 (8) 4 (4) 5 (7) 7 (8)
CG 5 (8) 5 (8) 4 (4) 3 (7) 7 (8)

clock-gating (NoCG).
The impact of the clock tree for CG (Figure 3.9(b)) is higher since the clock tree is

significantly larger than in designs without clock-gating. This results in an increase
of clock network latency which causes timing degradation since with high clock
network latency, register-to-output critical paths become hard to satisfy. The final
result is that post-PnR estimations report consistently slower timings than post-PAS
estimations. Therefore, we can say that PAS flow underestimates the negative effect
of including clock-gating logic. We also notice that the ratio (TminPnR/TminPAS) is
higher when nS increases in case of high area AFs (bk, ks, cosa). For low area
AFs (cla, rca) this trend does not exist but still the 8-stage design (rca) has the
highest ratio. Additionally, we observe that, according to post-PnR estimations, cla
performs faster for CG than for NoCG compared to other AF. Due to its small area
and simple structure, the delays introduced with routing and clock tree synthesis
are smaller than for high area parallel adder structures.

40

3.4 Results

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
αI

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Po
w

er
 [m

W
]

600(PnR)
600(PAS)
900(PnR)
900(PAS)
1500(PnR)
1500(PAS)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
αI

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 αIcritαIcrit600(PnR)
600(PAS)
900(PnR)
900(PAS)
1500(PnR)
1500(PAS)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
αI

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5 αIcritαIcrit600(PnR)

600(PAS)
900(PnR)
900(PAS)
1500(PnR)
1500(PAS)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
αI

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
αIcritαIcrit600(PnR)

600(PAS)
900(PnR)
900(PAS)
1500(PnR)
1500(PAS)

Figure 3.10: (αI , P) graph for post-PnR and post-PAS estimations. From left to right:
(a) NoCG, ks, 3-stage, (b) CG, cla, 4-stage, (c) CG, rca, 6-stage and (d) CG, cosa, 2-stage adders.

From Figure 3.9 we observe that for PnR, there are cases in which designs with

fewer stages are faster than designs with more stages. For example, the 2-stage

bk adder with CG can achieve shorter TCLK than the 3-stage one. These coun-

terintuitive results happen due to two reasons. The first and the main reason is

that with more pipeline stages, the clock tree is larger, so clock network latency is

higher. In this case, the clock network latency increase is higher than timing short-

ening achieved with additional stages. The second, less dominant, but also less

obvious reason can be observed in the case of NoCG 2- and 3-stage bk PnR adders.

The combinational path delay (TPnR − tCNL) in the 2-stage case is shorter than in

the 3-stage case (even if we allow more space for clock and signal routing). Most

41

3. ESTIMATION FLOWS

likely, the reason why the PnR tool routes less efficiently the 3-stage case is that
it gets stuck in a local minima. Finding optimal routing for a given placement is
an NP-complete problem, so tools typically have to resort to use heuristics, which
cannot always guarantee to find the optimal solution. The mentioned counterin-
tuitive result is not an isolated case. For example, lower clock tree latency for a
higher nS, also can be seen in 4- and 5-stage CG, bk adders. We suppose this is a
consequence of the irregularity of adder structures, and that for regular structures
like caches the results would be more expectable. Reducing clock network latency
can be achieved by manual clock-tree optimizations, but for a design space explo-
ration it is not practical to optimize by hand a large number of design points. If we
optimized by hand only some of them, the comparison would not be fair.

We observe two important consequences of aforementioned facts. The first one
is that the fastest adders produced using PnR and PAS flows have different design
parameters. The fastest adders are 5-stage ks (263ps, PnR) and 8-stage ks (200ps,
PAS) for NoCG, while 4-stage cla (407ps, PnR) and 8-stage bk (240ps, PAS) for CG.
Accordingly, when clock-gating and PnR are assumed, cla outperforms parallel-
prefix AF (bk and ks), that are traditionally known to be fast. The second observa-
tion is that according to post-PnR estimations, in terms of Tmin there is an optimal
point beyond which pipelining stops to give the desired speedup but rather slow-
downs for all AF except cla. On the contrary, in post-PAS estimations more pipeline
stages always result in shorter TCLK. Table 3.3 shows the optimal number of stages
per AF, for NoCG and CG.

3.4.3 Power

As explained in Section 3.2.1, we have that the power of an adder (P) is practically
equal to its dynamic component (P ≈ Pdyn). Therefore, for the sake of simplicity,
we only present the aggregated power P.

Table 3.1 shows the statistics of the ratio of power for designs generated for
all combinations of design parameters and αI obtained using PnR and PAS flows.
Regarding AF, we observe that post-PAS power estimations are the most similar to
the post-PnR ones for rca (simple topology) while the highest deviations are found
for parallel-prefix adder structures. For CG, we exclude the αI = 0 case from the

42

3.4 Results

statistics and further analysis as it is a special case when clock-gating logic is always
enabled. Results for this case are fairly different, and the ratios range from 0.4 to
15.4. Therefore, we can deduce that this case is modeled differently in post-PnR
and post-PAS estimations.

In order to examine how post-PAS and post-PnR power change with αI , we
present (αI , P) graphs for different TCLK (Figure 3.10). As a representative NoCG
case, ks, 3-stage adder is selected (Figure 3.10(a)). The graph shows that post-PAS
overestimates power dissipation, comparing to post-PnR results, for low αI . For
high αI this remains true for longer TCLK designs while for designs with shorter
TCLK post-PAS power results are lower than post-PnR. We observe that, for higher
nS, the post-PnR and post-PAS power ratio is higher. The trends are similar for all
AF except for rca. In this case, post-PAS power is typically lower than post-PnR
power.

Figures 3.10(b)-(d) show graphs for three representative CG cases. For CG, the
post-PAS power estimations are usually below post-PnR ones. The exceptions are
designs for low nS and long TCLK where post-PAS results are typically above post-
PnR ones (Figure 3.10(d)). As can be expected, post-PnR power estimations increase
with αI . On the contrary, for post-PAS, we observe that there is a critical αI (αIcrit)
from which estimation starts decreasing and contradicting the formulas for power
dissipation (Formulas 3.4). This αIcrit does not depend on AF but increases with
TCLK. It starts at 0.175 for the shortest TCLK (around 400ps), and it disappears when
TCLK gets around 1200ps. The trend is the same for other AF, but for rca it is much
less noticeable as it can be seen from Figure 3.10(c). For CG, nS has the same impact
on post-PnR and post-PAS power estimations as for NoCG. The unexpected effect
of αI (αI > αIcrit) is related to the way how the post-PAS tool estimates clock-gating
power reduction. Since we do not have access to the source code of the tools, we
are not able to further investigate the problem.

From a low-power processor’s designer point of view, the most relevant adders
are those that have the lowest power for a given frequency. Figure 3.11(a) shows two
graphs, (f , P) and (f , nS), of the lowest power adder design for a given frequency
for both post-PnR and post-PAS. The graph shows the AF and the nS of the PnR
adders and the AF of PAS adders. Bar colors indicate whether the PnR and PAS
adders have the same nS. The graph includes only CG, as we target low power,

43

3. ESTIMATION FLOWS

while αI = 0.5 is chosen, as it is the worst case from low-power design point of
view. We can observe from the graph that post-PAS power drops for high TCLK,
and this is a consequence of the aforementioned effect of αIcrit. For f below 0.5
GHz according to both post-PnR and post-PAS estimations rca is selected. In the
next range (0.5-1 GHz) in post-PnR power estimations, cla has the lowest power,
while in post-PAS case it varies between cla and bk. For medium f range (1-2 GHz)
in both cases bk is typically the lowest power family. Adder bk continues to be
the lowest power AF over 2 GHz for post-PAS, while for post-PnR the most power
efficient AF are typically cosa and cla. Regarding nS, it is different for PAS and PnR
for around 30% of f range, and when it is different, usually PnR adders have a
higher nS as follows from Section 3.4.2.

Figure 3.11(b) shows the results for αI extracted from the benchmarks (αI =

αIapp). There are important differences compared to the experiment with αI = 0.5.
For the sake of simplicity, we do not present results for αI of each benchmark
separately but we present results for averaged αIavg. In this averaged case, we can
notice that post-PAS power drops, observed for αI = 0.5, are not visible for αI =

αIavg. This means that αIavg of the input bits does not go above αIcrit. Still, when
benchmarks for which the data supplied on adders have high αI (αI > αIcrit) are
considered (e.g. bzip2), the aforementioned post-PAS power drops are observable.
Although for αIavg there are not post-PAS power drops as for αI = 0.5, post-PAS
power estimations are still significantly below post-PnR ones for high frequencies
(around 3 times). Additionally, the lowest power adders according to post-PnR
and post-PAS are fairly different. The most interesting observation is that cla is the
lowest power AF for the high frequency range (> 2 GHz) according to post-PnR.
As it is presented in Section 3.4.2, cla is able to achieve high frequencies with less
nS than other AF for CG, being in that way more power-efficient. The lowest power
designs for post-PAS are similar in both experiments. Therefore, we can observe
that PAS estimation flow is less dependent on αI

3.4.4 Related Work

In the context of adder characteristic evaluation, there is considerable prior research
[119, 8, 105, 117, 116]. Our research differs in that we perform evaluation of adders

44

3.5 Summary

from the estimation flow perspective. Additionally, in the context of comparison

of estimation flows there is some published work [29, 48] that targets comparison

between proposed physically aware behavioral level estimators and other state-of-

the-art synthesis tools, using digital arithmetic as a case study. The main difference

to our work is that we perform a design space exploration with a large number of

design points, which allows more general conclusions to be drawn. Some of the

previous research efforts aim to connect statistics of the input signals with power

dissipation [12, 4]; however, their goals are different as they do not include design

space exploration nor a comparison of estimation flows.

3.5 Summary

In this chapter, we examined and analyzed the differences between results obtained

using PnR and PAS estimations flows. Results obtained for PnR are closer to the

post-fabrication ones, thus, we took them as a reference in the discussions. As

a case study, we use a wide design space exploration of low-power adders that

include various design parameters and αI . We examined both regular and corner

cases.

For both timing and power, we found that differences between post-PAS and

post-PnR flows can be significant for CG and high nS. Nevertheless, for NoCG and

low nS the differences are not substantial. We found that for simple topologies (e.g.

rca) the mentioned estimation flows have the most similar results.

We concluded that timing accuracy strongly depends on clock-tree modeling.

Idealistic modeling is responsible for optimistic post-PAS results. Additionally, we

found that due to PnR clock-tree modeling imperfectness, counterintuitive results

sometimes occur. As a consequence, there are cases in which designs with less

stages are faster than designs with fewer stages.

We observed that accuracy of post-PAS power results is inversely proportional

to αI and frequency. Power estimations increase less with αI and frequency than

post-PAS ones. The differences between power estimations are especially high

for CG, where post-PAS power is typically less than post-PnR. Moreover, post-

PAS power estimations can decrease for αI > αIcrit, contradicting the formulas

45

3. ESTIMATION FLOWS

for power. Fortunately, αI of most real-world application is typically low, so the
mentioned unreliable and contradicting results are not common to happen.

Regarding area, we observe that post-PAS practically always underestimates
area compared to post-PnR.

When accuracy is wanted and computational resources are not a bottleneck,
PnR flow is preferred choice. However, when a large number of design point (and
restricted computation resources) and simple structures are considered, we have
observed that PAS flow is an acceptable choice. Still, while using any of the flows,
the limitations should be kept in mind.

We followed these guidelines in the rest of the thesis and use the PAS flow in
Chapter 4, where we perform a very wide exploration of integer adders, while
in Chapters 5 and 6 we use the PnR flow to study more complex circuits like an
integer multiplier and a floating point unit.

46

3.5 Summary

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

2.
25

2.
50

Fr
eq

ue
nc

y
[G

Hz
]

012345

nS

n
S
(P
n
R

)
=
n
S
(P
A
S
)

n
S
(P
n
R

)
n
S
(P
A
S
)

123456789

Power [mW]

n
S
(P
n
R

)
=
n
S
(P
A
S
)

n
S
(P
n
R

)
n
S
(P
A
S
)

cl
a

(P
AS

)
bk

 (P
AS

)
ks

 (P
AS

)
co

sa
 (P

AS
)

rc
a

(P
AS

)
cl

a
(P

nR
)

bk
 (P

nR
)

ks
 (P

nR
)

co
sa

 (P
nR

)
rc

a
(P

nR
)

a)

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

2.
25

2.
50

Fr
eq

ue
nc

y
[G

Hz
]

012345

nS

n
S
(P
n
R

)
=
n
S
(P
A
S
)

n
S
(P
n
R

)
n
S
(P
A
S
)

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Power [mW]

n
S
(P
n
R

)
=
n
S
(P
A
S
)

n
S
(P
n
R

)
n
S
(P
A
S
)

cl
a

(P
AS

)
bk

 (P
AS

)
ks

 (P
AS

)
co

sa
 (P

AS
)

rc
a

(P
AS

)
cl

a
(P

nR
)

bk
 (P

nR
)

ks
 (P

nR
)

co
sa

 (P
nR

)
rc

a
(P

nR
)

b)

Fi
gu

re
3.

11
:P

os
t-

Pn
R

an
d

po
st

-P
nR

po
w

er
es

ti
m

at
io

ns
gr

ap
h

of
th

e
lo

w
es

tp
ow

er
ad

de
r

de
si

gn
s

w
it

h
cl

oc
k-

ga
ti

ng
su

pp
or

t
(C

G
)

fo
r

gi
ve

n
fr

eq
ue

nc
y,

fo
r

(a
)

α
I
=

0.
5,

an
d

(b
)

α
I
=

α
Ia

pp
ex

tr
ac

te
d

fr
om

th
e

be
nc

hm
ar

ks
.

Ba
rs

re
pr

es
en

t
n S

of
lo

w
es

t
po

w
er

Pn
R

ad
de

r,
w

hi
le

th
ei

r
co

lo
r

in
di

ca
te

w
he

th
er

th
e

Pn
R

an
d

PA
S

ad
de

rs
ha

ve
th

e
sa

m
e

n S
.

47

4
Exploration of Adder Unit Structure for Energy

E�cient Vector Processors

4.1 Introduction

In this chapter, we perform a comprehensive (power, delay, energy, area) design

space exploration of the adder unit for vector processors VA. The final goal of this

design space exploration is to provide guidelines for designers of low power and

energy efficient vector processors. We propose a complete framework that consists

of several simulators at different levels, and we do this exploration mostly with real

microbenchmarks (consisting of application data) obtained from vectorized SPEC

applications [50]. It is necessary for this exploration as we need to observe how

architectural-level parameters (e.g. vector length) affect the circuit-level metrics

(e.g. adder’s power dissipation) and how circuit-level parameters (e.g. adder’s

clock cycle) impact the execution time of a microbenchmark. We discover that these

observations are not possible with a framework based on random value input. Due

to a large number of design points and simulations, as a basis for the exploration

framework we use a PAS estimation flow (see Chapter 3).

First, we present a discussion of adders’ power characteristics considering clock-

gating and timing stage analysis for various kinds of testbenchs and modern tech-

nology (Section 4.3.1). Afterwards, we study vector multi-lane usefulness in case

of VA (Section 4.3.2). We also discuss the advantages of using application-based

testbenchs over traditional random-data ones (Section 4.3.3). Finally, we provide

49

4. EXPLORATION OF ENERGY-EFFICIENT VECTOR ADDERS

guidelines on VA configuration selection for different low power vector processors
(Section 4.4).

4.2 Methodology

This section describes the framework used to perform the design space exploration
of VA as well as the framework parameters and the test benchmarks that we use.

4.2.1 Framework

The framework is depicted on Figure 4.1. The basis for this framework is PAS
estimation flow (Chapter 3), so the corresponding explanations and details are valid
here. Therefore, here we focus on the added features, i.e. differences, characteristic
for this framework.

The framework includes architectural- (VectorSim) and circuit-level (RC, NCsim)
simulators and tools, as well as an interfacing tool (tBenchGenerator). For various
circuit- and architectural-level parameters (explained in Section 4.2.2) we obtain the
metrics of interest of our VA (described in Table 4.1).

The first step in the framework is to feed VectorSim (introduced in Chapter 2)
with the vector parameters (microbenchmark (uBench), maximum vector length
(MVL), number of lanes (nL)) as well as some design parameters (number of stages
(nS), clock period (TCLK)). This stage generates data and timing traces. The traces
include information about vector additions only, excluding scalar additions.

The next step is transforming this architectural-level information into Verilog
test benchmarks (tBenchs) using tBenchGen (introduced in Section 4.2.3). We gen-
erate independent tBenchs files for each lane of the VA. Section 4.2.4 describes the
different tBenchs that we generate. Apart from the traces, we include here one more
parameter (CGable) which indicates if the design has clock-gating support.

We incorporate design parameters (AF, TCLK, nS, CGable) into handcrafted HDL
codes of adders which are supplied to Cadence RTL-Compiler [32] (RC PLE Synthe-
sis) to produce different adder’s synthesized mapped netlists and to perform static
timing analysis (STA). For multiple lane VA configurations, adders in all lanes are
identical.

50

4.2 Methodology

VectorSim

tBenchGen

traces

NCSim RC (Synthesis + STA)

uBench, MVL, nL nS,f

RC PowerSim

P

CGable AF INPUT
PARAMETERS

ARCHITECTURAL
LEVEL

CIRCUIT
LEVEL

EXPLORATION
PART

te A

.sdf

EXPLORATION
ENGINE

PARETO-OPTIMAL GRAPHS
OF VA CONFIGURATIONS
IN SPACE OF
METRICS OF INTEREST

Processor type

CIRCUIT-LEVEL PARAMETERSARCHITECTURAL PARAMETERS

.vcd
.v

tBench

HDL Design

Figure 4.1: Block diagram of the framework’s steps, parameters, and metrics.

The next step is to simulate each synthesized adder in NCSim [58] for each
matching tBench with back-annotated delays using standard delay format (sdf)
files [100]. This is done in order to obtain the execution time te, verify the syn-
thesized designs and extract resulting switching activity information using Value
Change Dump (vcd) files [110]. The final step of the framework is a precise com-
putation of power metrics (P and Prest) using RC Power Simulation. The inputs are
synthesized designs in Verilog and vcd files.

4.2.2 Framework Parameters

We first present the vector processor specific parameters:

• uBench is a vectorized microbenchmark (kernel) extracted from an applica-
tion, and it consists of integer data. It is a representative part of the applica-
tion and small enough (between 100k and 150k test vectors) to keep circuit
simulation time reasonable. We use three different uBenchs extracted from

51

4. EXPLORATION OF ENERGY-EFFICIENT VECTOR ADDERS

Table 4.1: Metrics of Interest. Explained in detail in Section 3.2

.

Measured Metrics

P and Prest. Average power of FU (or FUs if we have more than one lane)
including and excluding the clock tree respectively.

te. The execution time of a test benchmark tBench, also referred as Delay (D).

A. The area of FU.

Derived Metrics

Pd. Surface power density = P/A. It is proportional to the fourth power of
temperature of the given surface by Stefan-Boltzmann law (Pd ∝ T4) [104].

E=PDP. Power-Delay product is total energy spent in FU during a tBench.

PdDP, EDP, E2DP, and E3DP are commonly used Power density and Energy-
Delay products [75].

three vectorized SPEC applications (described in Table 4.2) that are used in
mobile devices and can also be found in server workloads. In the uBenchs,
there are long and short vector data, so our application set is comprehen-
sive for our needs. They are addition intensive (in average 27.14% of total
instructions executed), so adder’s impact on the uBenchs te is significant.

• MVL is the already mentioned maximum vector length of the vector processor.
Possible values are 16 and 128 to represent both extremes of short and long
maximum vector lengths. We chose 16 as a short vector length that is close to
SIMD extensions while 128 represents long maximum vector lengths.

• nL is the number of vector lanes. Possible values are 1, 2, and 4.

The design parameters, which are primarily needed for the circuit-level part of
the framework, are CGable, AF, TCLK(=1/f), and nS. The explanation for CGable, AF,
TCLK, and nS in Section 3.3.2 are valid here as well.

4.2.3 Test Benchmarks Generator - tBenchGen

To transform architectural-level information to Verilog tBenchs we develop a tool
written in Perl named tBenchGen. The most important inputs are: data and time

52

4.2 Methodology

Table 4.2: Vectorized microbenchmarks (uBench)

Hmmer (SPEC2006) applies profile Hidden Markov Models (HMMs) and is
useful in many areas such as speech synthesis, handwriting, gesture recogni-
tion, part-of-speech recognition, machine translation, bioinformatics, etc.

Facerec (SPEC2000) is an implementation of a face recognition system.

H264ref (SPEC2006) is the reference implementation of H.264/AVC standard
for video compression. and it is currently one of the most commonly used
formats for the recording, compression, and distribution of high definition
video.

traces from VectorSim, all circuit- and architectural-parameters, CGtype (explained in

Section 6.5.3), data bit-width, and tBench length expressed in the number of Verilog

test vectors. As output, it provides tBench for each lane separately, and its profiling

report.

4.2.4 Test Benchmarks

We generate two kinds of tBenchs: app-tBench are obtained from real uBenchs and

synth-tBench are synthetic. app-tBench are a function of all the parameters used in

VectorSim. On the contrary, synth-tBenchs are not related with the vector simulator

and are a function of TCLK only. There are three types of app-tBenchs (noCG, CG
and 100%) and two types of synth-tBenchs (rnd and 0%).

• noCG is used to evaluate designs without clock-gating. The input values of

the VA are provided for each cycle.

• CG enables evaluating designs with clock-gating support. Clock-gating is

enabled when we have idle cycles. Here we need additional clock-gating

signals, one per stage.

• 100% represents a case where the VA is always busy, assuming that mem-

ory is fast enough to provide data on time and that consecutive vector add

instructions (ADDV) are independent. Therefore, the execution time depends

only on the characteristics of the VA.

53

4. EXPLORATION OF ENERGY-EFFICIENT VECTOR ADDERS

• rnd is a tBench with random values that are supplied each cycle to the adder.

This is the traditional methodology of testing digital designs.

• 0% is used to evaluate the case when there is no vector additions in the

uBench, i.e. clock-gating is always active.

rnd and 100% have the highest and the second highest activity factors respec-

tively. 0% has the lowest activity factor among the tBenchs. CG and 0% are sup-

plied to the adders with clock-gating, while the rest are supplied to adders without

clock-gating logic integrated.

4.3 Design Space Exploration

In this section we first analyze the adders’ characteristics and then the effectiveness

of multiple lanes, showing their behavior on the measured frequency range using

averaged results of all mentioned uBenchs. However, we comment on uBenchs’ re-

sults separately when there are interesting differences between them. The execution

times (te) for all uBenchs are normalized before averaging to assure the correctness

of averaged results. At the end of the section, we present the major drawbacks of

using a synthetic benchmark of random data for our research.

4.3.1 Adders Characteristics Discussion

We compare the power characteristics of the examined adder families by comparing

their power dissipation for the measured frequency range. For a given frequency

and adder family we plot the lowest power configuration (Figure 4.2). The goal

here is to examine power dissipation of adders alone, so we test configurations

with one lane and do not include the clock tree power. Results for MVL=16 and

128 are almost the same, so we do not comment on them separately. The only

exception is CG where for MVL=128 we have slightly higher power dissipation. It

is due to better exploitation of VA, so the clock-gating mechanism is active less

percentage of time than for MVL=16.

54

4.3 Design Space Exploration

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18

20

frequency [GHz]

P
ow

er
no

C
T

[m
W

]
re
st

a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

frequency [GHz]

P
ow

er
no

C
T

[m
W

]
re
st

b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

frequency [GHz]

P
ow

er
no

C
T

[m
W

]
re
st

c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

frequencya[GHz]

P
ow

er
no

C
T

[m
W

]

bk
cla
cosa
ks
rca

re
st

d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

frequency [GHz]

P
ow

er
no

C
T

[m
W

]
re
st

e)

Figure 4.2: Power dissipation of analyzed adder families for the following test benchmarks:
a) noCG, b) CG, c) 100%, d) rnd, and e) 0% for MVL=128.

noCG: As we can see in Figure 4.2(a), power dissipation is highly dependent on

the number of pipeline stages. For a given frequency, the lowest power configura-

tion is always the one with the fewest stages. On the graph lines we can observe

steps, that occur when the number of stages increases for a given adder family. bk

adder family is the most efficient one except for the lowest and highest frequency

ranges. For the lowest frequencies, until 0.57GHz, rca is slightly better than others

due to its simplicity. However, it requires more stages to achieve a given frequency

than other adder families because of its intrinsically poor timing characteristics.

Therefore, it is worse than the other designs for higher frequencies. For the highest

55

4. EXPLORATION OF ENERGY-EFFICIENT VECTOR ADDERS

frequency range, ks is the best as it is the only one that can satisfy the frequency
range from 4.17GHz to 5GHz. There is a short range (3.85GHz-4.17GHz) where
cosa is the lowest power adder.

CG: Clock-gating reduces power dissipation roughly 5x (Figure 4.2(b)). Designs
are slightly different in this case as clock-gating logic is incorporated in baseline
designs used in the previous case. As a side effect, timings are a bit worse, espe-
cially for ks adder family, which is not the fastest adder as in the previous case. In
fact, it can achieve “only” 4GHz, causing bk to perform the best in both mid- and
high-range.

100%: The graph (Figure 4.2(c)) is fairly similar to noCG one, but power con-
sumption, in general, is around 10% higher than for noCG case as the activity factor
here is higher.

rnd: As we can see in Figure 4.2(d), power dissipation is significantly higher
than for any app-tBench case, even for 100%, which is the most similar to rnd, as
in both cases we have data constantly supplied to the adder inputs. Here, the re-
sults are closer to the worst case ones, they are up to 2x higher than ones obtained
with noCG, and up to 10x higher that CG ones. The reason for this difference is
that random data is not correlated, which makes the activity factor higher. This
is particularly emphasized in cosa as its conditional logic suffers from excessive
power dissipation when it is driven by uncorrelated values. A higher activity fac-
tor implies that logic uses relatively more power than in app-tBenchs (diminishing
pipelining relative overhead) and the slope of the (f, Prest) graph is higher. As a
result, power gaps between stages are smoother than in previous cases.

0%: This case (Figure 4.2(e)) actually shows the maximal possible power reduc-
tion using clock-gating. The greatest consumer in this case is clock-gating logic.
The size of this logic is directly proportional to the number of stages - number of
FFs to be gated. As a result, power dissipation is practically defined by the num-
ber of pipeline stages. Therefore, for a given frequency and number of stages two
adders have quite similar power dissipation. Power is around 10x lower than for
CG.

General Observations: Despite the glitch reduction achieved with pipelining
[98], the overhead of adding registers is too high. Even with clock-gating presence,
it is not possible to compensate it. Thus, for all five tBenchs we find that, for a given

56

4.3 Design Space Exploration

frequency, the adder with the lowest number of stages has the lowest power. bk

is generally the most power efficient one. Although ks and cosa can provide high

frequency, due to its high area, they suffer from long wires that cause excessive net

power dissipation. rca is the most power and area efficient for low frequencies, and

this makes it suitable for low power and low performance requirements where we

can hide its long carry propagation delay.

From an implementation point of view, the most relevant results are for CG

(Fig 4.2b). Power dissipation of the adders with clock-gating ranges from 11.68µW

for 0.1GHz and 3.49mW for 4.2GHz, which is adequate for the low power design

demands.

4.3.2 Multi-lane Effectiveness

In order to examine the fruitfulness of vector multi-lane over the measured fre-

quency range, we look for P, E, EDP, and ED2P characteristics of 1-, 2-, and 4-lane

VAs. For a given combination of MVL, app-tBench and f, we pick the configuration

with the lowest power (including clock tree) for each nL.

Table 4.3 shows ratios of power dissipated by 2- and 4-lane configurations over

single lane power for 1GHz and 4GHz. For noCG having twice nL causes doubling

power almost independently from MVL and f. On the contrary, for CG, doubling

the nL increases power by less than 2x. The reason is that addition is faster while

the rest of the hardware is the same, so a higher percentage of time the VA is

clock-gated. Due to the same reason, the ratio decreases when frequency increases.

For CG and 100% multi-lane is more power efficient for longer MVL, especially

for 4 lanes. There is a correlation between data inside a vector, and with multi-

lane we actually slice a vector into nL shorter vectors, which causes decrease of the

correlation and increase of the activity factor. Due to this reason having nL lanes

causes a power increase grater than nL times in 100%. This trend decreases with

frequency as for higher frequencies we need to use adders with more stages. By

having more stages a design has fewer glitches, which means that a decrease of

data correlation has less effect in terms of glitching increase for 8- than for 1-stage

adder.

57

4. EXPLORATION OF ENERGY-EFFICIENT VECTOR ADDERS

Table 4.3: Power Dissipation Ratio of 2- and 4- over 1-lane VA

f [GHz] 1.0 4.0

nL 2 4 2 4

MVL 16 128 16 128 16 128 16 128

noCG 1.99 1.98 3.95 3.88 1.98 1.99 3.94 3.96

CG 1.79 1.74 3.1 2.9 1.68 1.65 2.69 2.62

100% 2.12 2.06 4.63 4.17 2.06 2.02 4.29 4.08

Table 4.4: Speed-up of 2- and 4- over 1-lane VA

f [GHz] 1.0 4.0

nL 2 4 2 4

MVL 16 128 16 128 16 128 16 128

CG, noCG 1.41 1.52 1.74 1.97 1.29 1.42 1.48 1.73

100% 2 2 4 4 2 2 4 4

Table 4.4 shows the speed-up of the multi-lane configurations over single lane

both for 1GHz and 4GHz. As it consists of additions only, in 100% doubling the

number of lanes halves the te. For noCG and CG we have the same result, as clock-

gating does not affect te for a given frequency. For these app-tBenchs, the speed-

up linearly decreases with frequency, so adding more lanes is more productive for

lower frequencies (low power region). This happens because the parallelism offered

by multiple lanes has lower effect, as the app-tBench does not have only arithmetic

instructions (Amdahl’s law), and cache and main memory latencies become more

noticeable at higher frequencies. Cache latency is more difficult to be hidden with

short MVL, so speed-up decreases with frequency more in this case.

Results for PDnP are functions of P and te, thus they are directly explained with

the discussion above. We just highlight the most interesting observations. While

for 100% all lane configurations have the same energy independently of f and

MVL, for other app-tBenchs the single lane configuration is the most energy efficient

one. Adding more lanes becomes more fruitful if we look for performance, so 2-
and 4-lane VAs are in most cases better solutions than 1-lane for EDP, especially

58

4.3 Design Space Exploration

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

2

10
3

10
4

10
5

frequency [GHz]

E
D

P
 [m

Ju
s]

n

L
=1

n
L
=2

n
L
=4

Facerec

Hmmer

Average

Figure 4.3: EDP of 1-,2-, and 4-lane VA for CG and MVL=128.

for CG and long MVL. While for other metrics averaged results lead to the same
conclusions as individual uBenchs’ results, we observe that adding lanes improves
EDP for long-vector uBenchs (Hmmer), while it is the opposite for short-vector
ones (Facerec) (Figure 4.3). Results for H264ref are similar to the averaged ones.
For ED2P, 4-lane VA is better than 1- or 2-lane for all MVL and app-tBenchs. The
(f, EDnP)(n>1) graphs have the minimum around 1.67GHz and, as it is shown in
the next section, this is actually the most energy-efficient operating region.

4.3.3 Application-based vs. Random Data Benchmarking

We found the following problems with the traditional random data-based bench-
marking:

• The main problem is that we cannot measure te, so we do not know how some
design and architectural parameters affect te of uBenchs. Therefore, we cannot
speak about the energy spent (or EDP and ED2P) during a uBench execution.

• We cannot incorporate architectural-level parameters (MVL and nL) into power
measurement, so we cannot analyze their effects on P and how this changes

59

4. EXPLORATION OF ENERGY-EFFICIENT VECTOR ADDERS

with frequency.

• By supplying random data instead of real ones, we overestimate power dis-
sipation as it is proved by comparing adders’ power of rnd and 100% cases.
This happens because the value range of real data is “narrow”, especially
inside a vector, so activity factor is lower.

• Additionally, there are not idle cycles, so we are not able to analyze power of
designs with clock-gating.

4.4 VA Selection Guidelines

In this section we provide some guidelines, derived from our results, on the choice
of the best VA for the following types of low power vector processor:

• Embedded. A vector processor of this type would resemble “classic” em-
bedded processors from TI and ARM that could be used in embedded signal
processing solutions, including portable devices in audio, voice, communica-
tions, medicine, etc. Assumed frequency range is
(0.1-0.4)GHz. The requirements are long battery life (E), as we need au-
tonomous work and battery often is not rechargeable, and small area (A).
Therefore, the desired VA should have a low product of E and A. Here power
is indirectly limited with energy and frequency requirements, so there is a
low risk of temperature violation.

• Low-End Mobile. The reference in this case is low-end ARM-like processors
used in various handheld devices like GPS navigations and low-end smart-
phones. Targeted frequency range is (0.33-0.8)GHz. This kind of processors
needs fast response (te) as it is a soft real time system, and long battery life
(E). Therefore EDP is the right metric here as it usually is for this kind of
low power devices[75]. Additionally, we need to maintain low P and A to
satisfy processor’s power/area budget.

• High-End Mobile. Here we assume a vector processor that resembles current
processors like high-end ARM, Intel Atom, or AMD Bobcat which can be

60

4.4 VA Selection Guidelines

found in high-end smartphones, tablets, and notebooks. Assumed frequency
range is (0.8-1.8)GHz. We have similar requirements like for low-end mobile
processors with the difference that we stress performance more, so the desired
metric is ED2P [75].

• Low Power - High Throughput. Targeted vector processor in this case would
have similar design goals as low power processors for servers like ThunderX
ARM processors [108]. The frequency range of interest is (1.6-4.2)GHz. We
took a pretty wide frequency range as from one side we target low frequency
processors like the mentioned ones, but from the other side, we also want to
explore possibilities and trends of high frequency range. In general, when we
consider server design we always need to care about performance (te). Addi-
tionally, we distinguish and consider two cases. In the first case we assume
that the server is always busy so we need to care about power dissipation P
as it is constantly on, so the targeted metric is E. However, if the server is
supposed to have idle periods, during which it goes to low power states, then
we usually want to finish the job as soon as possible and go to one of these
states. Therefore, in this case, we are interested in ED2P.

We only consider designs with clock-gating support as today it is standard in
any low power and energy efficient design. Results for each processor type are
observed separately for short (16) and long (128) MVL.

Figure 4.4 shows the best design points according to the metric of interest for
three types of processor, via Pareto-optimal trade-off graphs. For example, if EDP
is the metric of interest, for each te observed, we select the configuration with the
least E. We discard slower designs that consume more energy than faster ones. For
other metrics of interest, configurations are selected in a similar manner. The figure
actually shows the te vs. P, E, or EDP trade-offs and the black curves indicate the
best observed result for the metric of interest. The embedded case is not shown as
there is a single solution. There are graphs for both cases of server processors.

Table 4.5 presents detailed information of the most relevant design points ac-
cording to the metrics of interest discussed above. The best design for a given met-
ric is highlighted using a bold font in the metric column. The table also includes
some alternative design points that trade off the desired metric with significant

61

4. EXPLORATION OF ENERGY-EFFICIENT VECTOR ADDERS

gainings in other metrics. This is indicated with italic fonts in the metrics involved.
Effects of parameters on a particular metric are explained in Section 4.3.

As it was observed in Section 4.3.1, 1-stage bk adders are usually the best design
choice. However, when speed is not critical, like in embedded vector processors, 1-
stage, 1-lane, rca VA is the best choice due to its simplicity. It confirms that where the
performance requirements are pretty low, rca is the most area and energy efficient
choice [44]. When we stress performance, 2-stage adders are more desirable, as
we cannot achieve high frequencies with single stage. For high speed designs, ks
adders are also an interesting solution.

When we consider low-end mobile vector processors, we can confirm 1-stage bk
as the most efficient solution. The VA configurations shown in Fig 4.4 a appear in
series that correspond to different nL values. In terms of EDP, 2-lane configurations
perform the best. For MVL=128, configurations with 4 lanes are more desirable as
we can exploit them better than for MVL=16. When we deal with high-end mobile
vector processors, 2- and 4-lane configurations provide lower ED2P than single lane
ones. With long MVL, 4-lane configurations are the only ones to be considered.

For power-constrained servers, where demands are conservative in terms of te,
single lane configurations are usually the most desirable due to their low power.
This remains true for long MVL. However, when we consider VA design for
fast, low power servers, multi-lane is as effective as in high-end mobile case. In
this case, 2-stage adders running around 2.6GHz perform the best in terms of
ED2P for both long and short MVL.

In terms of the frequency, we can identify two efficient operating ranges. The
first one is around 1.67GHz while the second one lies around 2.6GHz. Until these
points, we can consider increasing frequency as a way to achieve energy efficient
speed-up, but after that adding more lanes becomes a more fruitful solution.

4.5 Related Work

In the context of adders, there is considerable research on their comparison in
the Energy-Delay space [80, 105, 79]. However, our analysis differs as we include
architecture-related parameters and additional ones like clock-gating. Apart from
that, our analysis targets vector architectures and the adders for these architectures

62

4.6 Summary

lead to distinct conclusions. While there is very interesting research on the selection
of adder units for particular architectures such as DSPs [69] and crypto-processors
[52], their exploration demands are different, so they do not utilize the same kind
of architectural parameters as we do. Moreover, they do not test the adders with
architecture-driven benchmarks and assume adders are always busy.

4.6 Summary

The presented design space exploration addresses the issue of optimal VA selec-
tion in vector processor design. A novel, multi-level (circuit and architectural)
methodology, on identifying the best VA is presented. We showed how design (e.g.
frequency) and architectural (e.g. maximum vector length or number of lanes) pa-
rameters can direct the selection of the VA design. We reevaluate various adder’s
families characteristic with this novel methodology and showed that multi-lane
approach is efficient in terms of EDP and ED2P, especially with clock-gating and
longer vector lengths. Additionally, we showed advantages of our benchmarking
method over the traditional random values-based one for this exploration. Finally,
we propose suitable VA configurations for four vector processor types according to
several metrics of interests. We found that 2- and 4-lane configurations with single
stage bk adders are optimal for mobile, while 1-lane, rca configurations perform
the best for embedded vector processors. However, 4-lane configurations with 2-
stage bk adders running around 2.6GHz are optimal solutions for VA if we target
high-performance, low power server vector processors.

63

4. EXPLORATION OF ENERGY-EFFICIENT VECTOR ADDERS

0 50 100 150 200
0

5

10

15

20

25

exe time [us]

E
ne

rg
y

[m
J]

a)

MVL=16

MVL=128

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

900

exe time [us]

E
D

P
 [m

Ju
s]

b)

MVL=16

MVL=128

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

3500

exe time [us]

E
D

P
 [m

Ju
s]

c)MVL=16

MVL=128

0 10 20 30 40 50
0

2

4

6

8

10

12

exe time [us]

P
ow

er
 [m

W
]

v

L
=16,n

S
=1

v
L
=16,n

S
=2

v
L
=16,n

S
=4

v
L
=16,n

S
=5

v
L
=16,n

S
=7

v
L
=16,n

S
=8

optimal
v

L
=128,n

S
=1

v
L
=128,n

S
=2

v
L
=128,n

S
=4

v
L
=128,n

S
=5

v
L
=128,n

S
=7

v
L
=128,n

S
=8

d)

MVL=16

MVL=128

Figure 4.4: Pareto-optimal trade-off graphs of E (a), EDP (b), EDP (c), and P (d) vs. te for
low-end mobile, high-end mobile, fast low power servers, and power-constrained servers
respectively. Hyperbolic curves (“optimal” in the legend) represent EDP (a), ED2P (b),
ED2P (c), and E (d) of the best design points for both 16 and 128 MVL.

64

4.6 Summary
Ta

bl
e

4.
5:

O
pt

im
al

VA
U

ni
t

C
on

fig
ur

at
io

ns

Ve
ct

or
Pr

oc
es

so
r

In
pu

t
Pa

ra
m

et
er

s
O

ut
pu

t
M

et
ri

cs

Ty
pe

M
V

L
n L

A
F

n S
f[

G
H

z]
t e

[µ
s]

P[
m

W
]

E[
m

J]
ED

P[
m

Jµ
s]

ED
2 P[

m
Jµ

s2]
A

[µ
m

2]
P d

[m
W

/m
2]

Em
be

dd
ed

16
1

rc
a

1
0.

1
74

9.
1

16
.7

9x
10
−

3
12

.5
8

94
22

7.
06

x1
06

28
1.

2
36

.0

(0
.1

-0
.4

)G
H

z
12

8
1

rc
a

1
0.

1
66

8.
6

18
.3

5x
10
−

3
12

.2
7

82
04

5.
48

x1
06

28
1.

2
41

.5
3

16

2
bk

1
0.

8
69

.0
8

0.
25

62
17

.7
12

23
84

.4
7x

10
3

79
2.

6
18

7.
5

4
bk

1
0.

8
55

.6
2

0.
44

36
24

.6
7

13
72

76
.3

3x
10

3
15

85
.0

14
4.

1

1
rc

a
1

0.
33

22
6.

8
56

.7
6x

10
−

3
12

.8
7

29
19

66
.1

8x
10

6
30

9.
4

11
1.

0

Lo
w

-E
nd

1
bk

1
0.

8
98

.0
5

0.
14

27
13

.9
9

13
71

0.
13

4x
10

6
39

6.
3

22
4.

2

M
ob

ile

12
8

4
bk

1
0.

8
43

.2
1

0.
45

36
9

19
.6

1
84

7.
5

36
.6

2x
10

3
15

85
.0

15
0.

6

(0
.3

3-
0.

8)
G

H
z

2
bk

1
0.

8
56

.1
2

0.
27

11
15

.2
1

11
43

47
.9

1x
10

3
79

2.
6

20
6.

3

1
rc

a
1

0.
33

20
2.

2
61

.9
x1

0−
3

12
.5

2
25

32
51

.2
x1

06
30

9.
4

12
7.

6

1
bk

1
0.

8
85

.8
0.

15
52

13
.3

2
11

43
98

.0
3x

10
3

39
6.

3
25

5.
9

16

4
bk

1
1.

67
30

.4
0.

85
1

25
.8

7
78

6.
5

23
.9

1x
10

3
22

44
.0

25
5.

5

4
ks

1
1.

8
28

.8
1.

07
3

30
.9

1
89

0.
3

25
.6

4x
10

3
38

47
.0

20
5.

8

H
ig

h-
En

d
2

bk
1

1.
6

37
.9

7
0.

47
53

18
.0

5
68

5.
3

26
.0

2x
10

6
10

64
.0

31
7.

5

M
ob

ile

12
8

4
bk

1
1.

69
21

.8
5

0.
89

58
19

.5
7

42
7.

7
9.

34
x1

03
24

77
.0

24
9.

2

(0
.8

-1
.8

)G
H

z
4

ks
1

1.
8

20
.8

6
1.

06
5

22
.2

2
46

3.
5

9.
67

x1
03

38
47

.0
20

3.
7

4
bk

1
1.

67
22

.1
7

0.
86

23
19

.1
2

42
3.

8
9.

40
x1

06
22

44
.0

26
0.

6

16

1
bk

1
1.

69
49

.9
0.

27
79

13
.8

7
69

2
34

.5
3x

10
3

61
9.

2
37

3.
8

4
bk

8
4.

2
17

.8
4

10
.8

8
19

4.
1

34
64

61
.7

9x
10

3
83

27
.0

74
7.

9

Po
w

er
-C

on
st

ra
in

ed
4

ks
5

3.
45

19
.7

1
5.

40
5

10
6.

5
21

00
41

.3
9x

10
3

51
95

.0
62

1.
3

Se
rv

er
s

1
bk

1
1.

6
52

.4
2

0.
26

86
14

.0
8

73
8

38
.6

9x
10

6
53

1.
9

37
5.

6

(1
.6

-4
.2

)G
H

z

12
8

1
bk

1
1.

6
44

.2
0.

29
57

13
.0

7
57

7.
6

25
.5

3x
10

3
53

1.
9

42
6.

6

4
bk

8
4.

2
11

.3
6

12
.1

4
13

7.
9

15
66

17
.7

9x
10

3
83

27
.0

89
8.

5

16
4

bk
2

2.
63

22
.1

2
2.

04
5

45
.2

4
10

01
22

.1
4x

10
3

38
77

37
2.

9

Fa
st

Lo
w

Po
w

er
4

bk
1

1.
6

37
.9

7
0.

47
53

18
.0

5
68

5.
3

26
.0

2x
10

6
10

64
.0

31
7.

5

Se
rv

er
s

12
8

4
bk

2
2.

63
15

.2
9

2.
11

13
2.

26
49

3.
3

7.
54

x1
03

38
77

.0
38

9.
5

(1
.6

-4
.2

)G
H

z
4

bk
1

1.
67

22
.1

7
0.

86
23

19
.1

2
42

3.
8

9.
40

x1
06

22
44

.0
26

0.
6

65

5
Exploration of Multiplier Unit Structure for

Energy E�cient Vector Processors

5.1 Introduction

In this chapter, we perform comprehensive (power, delay, energy, area, power

density) design space exploration of multipliers for vector processors. The ex-

ploration includes circuit-level parameters like the number of pipeline stages and

clock-gating support, as well as architectural parameters such as the number of

lanes. In order to join architectural-level information (e.g. microbenchmarks) with

circuit-level outputs (e.g. VMU power measurements) we use an automated and

integrated architecture-circuit exploration framework (explained in detail in Sec-

tion 5.2.1) that consists of several simulators at different levels, and we perform

this exploration with microbenchmarks generated with data obtained from vec-

torized applications of the San Diego Vision Benchmarks [112]. To achieve high

accuracy and estimate properly the interconnect and routing overhead inside the

multiplier we use PnR estimation flow (explained in detail in Chapter 3) as a basis

for the framework.

We observe how architectural-level parameters (e.g. vector length) affect the

circuit-level metrics (e.g. multiplier’s power dissipation) and how circuit-level pa-

rameters (e.g. multiplier’s clock cycle) impact the execution time of a microbench-

mark. We present a discussion of multipliers’ power, timing and area character-

istics, considering clock-gating, for various kinds of testbenchmarks and verified

67

5. EXPLORATION OF ENERGY-EFFICIENT VECTOR MULTIPLIERS

physical results for a recent technology (Section 5.3). Additionally, we present a

study of vector multi-lane advantages and drawbacks for VMU. The final goal of

this design space exploration is to provide guidelines for designers of low power

and energy efficient vector processors. Guidelines are based on Pareto-Optimal

trade-off graphs of VMU design space that we get as result of our framework.

5.2 Methodology

This section describes the exploration framework used to perform the design space

exploration of VMU, the framework parameters and the test benchmarks that we

use.

5.2.1 Exploration Framework

The framework is depicted on Figure 5.1. Basis for this framework is PnR estima-

tion flow (Chapter 3), i.e. corresponding explanations and details are valid here.

Additionally, it is upgraded with the features explained in Section 4.2.1. Therefore,

here we focus here on the added features, i.e. differences, characteristic for this

framework.

The framework includes architectural- (VectorSim) and circuit-level (RC, En-
counter, NCsim) simulators and tools, as well as an interfacing tool (tBenchGen)

and an exploration engine. For various circuit- and architectural-level parameters

(explained in detail in section 5.2.2) we obtain the metrics of interest of our VMU

(described in Table 4.1).

We use VectorSim (explained in Chapter 2) and we feed it with the architectural

and some circuit parameters. Architectural stage generates data and timing traces

for the vector multiplications. The interfacing part transforms this architectural-

level information into Verilog test benchmarks (tBenchs) using tBenchGen (explained

in Section 4.2.3).

At the circuit level, we incorporate all the circuit parameters into handcrafted

HDL codes of multipliers which are supplied to Cadence RTL Compiler (RC Syn-
thesis) to produce different multiplier’s synthesized mapped netlists and to perform

68

5.2 Methodology

VectorSim

tBenchGen

traces

NCSim

uBench, MVL, nL nS, f

EDI PowerSim

P

CGable MF INPUT
PARAMETERS

ARCHITECTURAL
LEVEL

CIRCUIT
LEVEL

EXPLORATION
PART

te A

.sdf

EXPLORATION
ENGINE

PARETO-OPTIMAL GRAPHS
OF VMU CONFIGURATIONS
IN SPACE OF
METRICS OF INTEREST

uBench, vL, CGable, frange
SELECTION
PARAMETERS

CIRCUIT-LEVEL PARAMETERSARCHITECTURAL PARAMETERS

.vcd .v

tBench

HDL Design

RC (Synthesis + STA)

EDI (PnR + STA)

Figure 5.1: Block diagram of the framework’s steps, parameters, and metrics.

STA. For VMU configurations with multiple lanes, multipliers in all lanes are iden-

tical. We provide synthesized Verilog netlists together with the physical layout

information to Cadence Encounter Digital Implementation System to get placed

and routed designs (EDI P’n’R) and to again perform STA.

The next step of the framework is a precise estimation of power metrics (P) using

EDI Power Simulation. The inputs are placed and routed designs and corresponding

vcd files.

The final step is the exploration part, where the design points (VMU config-

urations) are supplied to the exploration engine (a combination of MATLAB and

Perl scripts). The design points are first filtered with selection parameters: uBench,

CGable, vL, and frequency range (frange). and then depicted using Pareto-optimal

trade-off graphs in the space of desired metrics of interest (e.g. E-D space).

69

5. EXPLORATION OF ENERGY-EFFICIENT VECTOR MULTIPLIERS

Table 5.1: Vectorized microbenchmarks (uBench). All the microbenchmarks are run for
fullHD inputs.

Disparity Map (computeSAD) computes depth information using dense
stereo. It is used for robot vision for stereo vision.
Maximally Stable Regions (FitEllipses) does Blob detection in images. It is
used for stereo matching and object recognition
Feature Tracking (ImageBlur) extract motion from a sequence of images. It
is used for Robot vision for tracking.

5.2.2 Framework Parameters

We first present the vector architecture specific parameters.
uBench is a microbenchmark (kernel) vectorized by hand. We use three differ-

ent integer uBenchs from San Diego Vision Benchmark [112] run for fullHD inputs
(described in Table 5.1). These uBenchs are used in mobile devices and can also
be found in server workloads. uBenchs are multiplication intensive, so multiplier’s
impact on the uBenchs’ execution time is significant. We keep their size between
100k and 150k test vectors to keep circuit simulation time reasonable.

MVL and nL are explained in Section 4.2.2
We now present the circuit-level parameters which are primarily needed for the

circuit-level part of the framework:

• f=(1/TCLK) is the clock frequency of the multiplier and of the whole processor,
while TCLK is the clock cycle. We use (0.1-2.05) GHz as a practical frequency
range for low power vector processors. Vector processors are usually able to
afford high frequency due to two reasons: (1) control logic is simple, so it
is not a timing bottleneck and (2) they can afford deep pipelining because
latency is hidden. frange is a frequency range used as a selection parameter.

• MF is the multiplier family (algorithm). We consider only multiplier families
that are suitable to be fully-pipelined. Structures that are not fully-pipelinable
produce pipeline bubbles and this is inefficient for vector processors, as vec-
tor operands are streamlined to the vector ALU at the rate of one per cycle.
For this reason, we do not include serial (with a feedback loop), but only par-
allel (fully-pipelined) structures. Therefore we consider array and tree MFs

70

5.2 Methodology

(explained in Section 5.2.3). carry-save array (ar) and Wallace (wl) [113] mul-

tipliers are chosen as representative examples for each of the mentioned MFs.

Array multiplying algorithm is selected as it has a regular layout with simple

interconnects (which became important in deep submicron design). Tree mul-

tiplier is chosen as it is supposed to be both timing- and area-efficient (delay

proportional to the logarithm of the operand width). However, it has irregu-

lar layout with complicated interconnects which can spoil their power, timing

and area results in recent technology nodes. For partial product generation

a simple AND network is chosen rather than Booth one, as we experimen-

tally found that when it is attached to multiplier, it performs better in terms

of area, timing, and power (a previous study confirmed these findings [13]).

As the final stage adder, for both considered multiplier families we choose

Brent-Kung adder, as it is typically the optimal one when clock-gating and

pipelining are considered 4.3. We implement our multipliers so they support

32-bit 2’s complement integers.

• CGable is explained in Section 3.3.2.

• nS indicates the number of pipeline stages in the multiplier (pipeline depth).

We only increase nS for a particular multiplier family (MF) if further pipelin-

ing provides noticeable f increase. In particular, we implement ar for 1-9 and

wl for 1-5 stages. We consider a wide range of pipeline stages as the vector

arithmetic units are typically fully and deeply pipelined, as in vector process-

ing the throughput of an arithmetic units is more important than its latency.

Additionally, pipelining is quite necessary for multipliers due to two reasons:

(1) to achieve higher frequency, and (2) to reduce glitching. In parallel mul-

tipliers (especially tree ones), glitches or spurious transitions are typically

generated because partial product bits arrive at the same time but are added

serially, and the input-to-output paths in adder cells have different delays.

The input register (first pipeline stage) of an n-stage multiplier consists of

2x32 DFlipFlops for the input operands. Additionally, each n-stage multiplier

has n-1 pipeline clocked registers which are used to save intermediate results.

The size of each register depends on the MF structure and the place inside

71

5. EXPLORATION OF ENERGY-EFFICIENT VECTOR MULTIPLIERS

the multiplier where the register is inserted (i.e. on the way the multiplier is
pipelined).

5.2.3 Multiplier Families

Parallel, fully pipelinable, multipliers consists of three phases: (1) partial product
generation (PPG), (2) partial product reduction (PPR), and (3) final carry-propagate
addition (CPA) (final stage adder). The PPR is the main part of these multipliers
so they are divided by PPR algorithm. In this research, we focus on ar and wl
algorithms. Even more detailed explanations of each MF are available in [14, 33].

Array (ar)

This is the most regular and simple multiplier. The algorithm is similar to multipli-
cation “by hand” as each partial product is being added. This concept is illustrated
on Figure 5.2. A diagonal in ar multiplier is equivalent to a column in multiplica-
tion matrix.

As shown on Figure 5.2, the multiplier consist of FA, modified full adder (MFA),
HA, and modified half adder (MHA) cells. Implementation of FA and HA is ex-
plained in Section 3.3.3, while MFA/MHA consists of an AND gate that creates
a partial product bit and FA/HA cell. The partial product is being added with a
partial product from the previous row in case of MHA, while for MFA it is being
added with sum and carry bits from the previous row. A block diagram of MFA is
shown in Figure 5.3.

As it was mentioned above ar multiplier has simple and efficient physical im-
plementation (layout). The reason is its highly regular structure and using only
short wires that go from one FA to another horizontally, vertically, or diagonally.
For this reason, ar is done in a square.

The delay (TCLK assuming nS = 1) is O(n) and area is = O(n2)

Wallace (wl)

Tree multipliers are an efficient way to reduce multiplier’s delay from O(n) to
log(n). The main idea is to is to reduce the partial product tree down enough

72

5.2 Methodology

ANDAND

AND

AND

AND

AND AND AND

MHAMHA MHA MHA

MFAMFA

MFA

MFA

MFA

MFA

MFA

FA FA HA

C SC S

C S

C S

C S

C S

C S

C S

C S

C S

S S S
CC C C

y3 y2 y1 y0

x0

x1

x2

x3

p0

p1

p2

p3

p7 p6 p5 p4

Figure 5.2: A 4x4 unsigned carry-save array (ar) multiplier.

FA
Cout Sum

Figure 5.3: A modified full adder (MFA) cell.

so that a fast adder (e.g. Brent-Kung adder) can be employed in CPA stage. The

reduction is achieved by combining three bits at time by using carry-save adder

73

5. EXPLORATION OF ENERGY-EFFICIENT VECTOR MULTIPLIERS

CSA CSA

CSA

CSA

CSA

CSA

CSA

CPA

Figure 5.4: Wallace tree reduction using CSAs.

FA CSAcout

s

x y

cin

zyx

c s

Figure 5.5: CSA -> FA transformation.

(CSA) cells as shown on Figure 5.4. CSA cells are FA cells used in a different

manner, as it shown in Figure 5.5.

As a side-effect of these reductions that provide timing improvement, there are

physical implementation issues: layout is irregular, wasted area are is increased,

complexity is higher, and interconnect is more complicated, thus incurs some rout-

ing overhead.

74

5.3 Multipliers’ Characteristics

Table 5.2: Wallace vs. Array ratio for area and power

Area (CGable) Power (tBench)
noCG CG 100% noCG CG 0%

Min 0.47 0.50 0.09 0.12 0.13 0.55
Max 1.08 1.08 0.98 0.99 1.03 1.52

GeomMean 0.64 0.66 0.21 0.24 0.29 0.80
GeomStdDev 1.28 1.22 1.75 1.65 1.70 1.30

5.3 Multipliers’ Characteristics

We analyze the power, timing, and area characteristics of the examined multiplier

families by observing the lowest power configurations for each pair of frequency

and multiplier family. Table 5.2 provides statistics for area and power ratios of wl

over ar multipliers for all four tBenchs of the lowest power configurations, with and

without clock-gating mechanism integrated (CGable=CG and noCG). Power graphs

of the lowest power configurations are shown on Figure 5.6. Since the goal here is

to analyze characteristics of multipliers alone, we test configurations with one lane.

5.3.1 Area

Except for slow designs (f < 0.3 GHz), wl is more area efficient than ar, as it can

be observed from Table 5.2. For higher frequencies ar needs more pipeline stages

(higher nS to achieve the same timing as wl, which increases area.

5.3.2 Timing

Maximal achievable frequencies for CGable=noCG are 2.05 GHz and 1.85 GHz for

wl with 5 stages and ar with 9 stages respectively. For CG both 5-stage wl and

9-stage ar achieve the same max frequency - 1.7 GHz. As wl has an irregular struc-

ture, its clock tree is also irregular, so the insertion of a clock gating mechanism

affects overall timing results to a higher extent than in ar. Maximum frequency of

multipliers would be higher if a high-performance technology is used instead of

low power one.

75

5. EXPLORATION OF ENERGY-EFFICIENT VECTOR MULTIPLIERS

0 0.5 1 1.5 2
0

10

20

30

40

50

frequency [GHz]

P
ow

er
 [m

W
]

wl
ar

a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

20

frequency [GHz]

b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

frequency [GHz]

c)

Figure 5.6: Power dissipation of the lowest power configurations of analyzed multiplier
families for (a) noCG, (b) CG, and (c) 0%, for MVL=128.

5.3.3 Power

Similarly as in the previous chapters we observe that Pstat is almost negligible,
it is an order of magnitude less than Pdyn, even for CG. This applies to all the
tBenchs except for 0%, where Pstat contributes with 20%. Therefore, the power of a
multiplier (P) is practically equal to its dynamic component (P ≈ Pdyn).

Figure 5.6 shows the lowest power configurations for noCG, CG, and 0% for
MVL=128. Qualitatively, power graphs for MVL=16 and 128 have similar shapes for
all tBenchs. Absolute numbers indicate that power is slightly higher for MVL=16
in case of noCG and 100% as in case of MVL=128 there is less correlation between
data being executed (slightly higher αI). However in case of CG, the difference is
drastic, power dissipation for MVL=128 is almost 3 x higher than for 16. It is due to
much better exploitation of the multiplier, so the clock-gating signal is active less
often than for MVL=16. The graph for 100% is not shown for the sake of simplicity.
It has the same shape as noCG one, but it is on average 5-10% higher.

The reduction of power achieved with clock-gating (CG vs. noCG) is in aver-

76

5.3 Multipliers’ Characteristics

age around 5 x and 2 x for MVL=16 and 128 respectively. The reduction strongly
depends on the multiplier usage, so they vary across the uBenchs. They are the
highest for Feature Tracking, the lowest for Disparity map, while the savings for Max-
imally Stable Regions are in between and they are close to the average savings for all
the three uBenchs.

Power dissipation depends largely on nS. Despite the glitch reduction achieved
with pipelining, the overhead of adding registers is high. Therefore, for a given
frequency, the lowest power configuration is almost always the one with the fewer
stages. As a result of their topologies and critical paths, ar requires higher nS than
wl to achieve the same f. This is the main reason why wl in most of the cases has
significantly lower power than ar.

The staircase shape of P(f) graphs (Figure 5.6) is a result of pipelining. When
we want to make a multiplier able to work on a higher frequency, we first try to
achieve this with circuit optimization techniques (buffering, resizing, etc.). In this
case, power increases approximately linearly with frequency. However, when it is
not possible to further increase frequency with circuit optimization techniques, we
apply pipelining (increase nS). As a result, we obtain these high gradient increases.

While for low frequencies wl and ar perform similarly, on the rest of the explored
f scale, wl in most cases performs better. The only exception is 0% where ar has
lower power for f > 1.45. Thus, we can consider ar as a suitable choice for highly
memory bound workloads when clock-gating is active most of the time, while for
almost all other scenarios wl has lower power.

From Table 5.2 we can observe that geometrical mean (GM) of wl/ar power
ratio differs among tBenchs: GM(100%)<GM(noCG)<GM(CG)<GM(0%). There
are two reasons for this: (1) Switching activity of tBenchs. When switching activity
of a tBench is high, Prest is the dominant power component. Prest is proportional
to the area of the multiplier. (2) Clock-gating. The more clock-gating is active,
the more significant Pct is. When clock-gating is active most of the time, total P
is practically defined by Pct. In this case, designs with regular layout (thus less
complicated clock-tree) perform better in terms of power. Thus, area inefficient
and regular layout designs (ar) can compete in power efficiency with low area and
irregular layout ones (wl) only for low activity tBenchs, when clock-gating is active
most of the time.

77

5. EXPLORATION OF ENERGY-EFFICIENT VECTOR MULTIPLIERS

5.4 Multi-Lane Effectiveness

In order to fully understand the results expressed via Pareto-optimal trade-off
graphs (Section 5.5) we analyze the effectiveness of using multiple lanes, show-
ing their behavior on the measured frequency range using averaged results of all
uBenchs. For a given combination of MVL, tBench, and f, we pick the configuration
with the lowest power for each nL. The execution times for all uBenchs are normal-
ized before averaging to assure the correctness of averaged results. We comment
on uBenchs’ results separately when there are interesting differences between them.

Table 5.3 presents the ratios of power dissipated by 2- and 4-lane configurations
over 1-lane power. For the sake of simplicity, we choose two points in the frequency
range explored, close to the extremes: 0.4 GHz and 1.6 GHz. Generally, there are
three factors that define VMU power, and power ratios in case of vector multi-lane:
(1) the amount of parallel multipliers (nL), (2) switching activity factor of data at
the VMU inputs (αI), and (3) the usage of VMU. While the effect of the first one is
obvious, the last two factors affect VMU power in less obvious ways, thus, require
deeper analysis.

As data of consecutive elements inside a vector is typically correlated, αI plays
a more important role in vector than in scalar processing. The effect of αI is clearly
observable for 100% where VMU usage is always the same (no VMU idleness).
With multi-laning we actually slice a vector into nL shorter vectors decreasing in
that way correlation between data inside the vector (i.e. increasing αI). Therefore,
although we increase the amount of hardware 4 times, we actually increase power
5 times. Shorter vector lengths also produce some increase of αI , therefore ratios
are slightly higher for MVL=16 than for 128. We observe that power dependency
on αI decreases with frequency. The reason is reduced glitching. For high fre-
quencies multipliers with more pipeline stages are used, and pipelining reduces
glitching [98].

The notable increase of αI with the increase of nL is a consequence of the char-
acteristics of image data. Neighboring pixels often have similar values. When pro-
cessing them as a vector, this results in high correlation between consecutive values
seen by the VMU, which translates into low αI , even for short vectors. However, if
data is processed on the multiple lanes, elements seen by one lane are interleaved,

78

5.4 Multi-Lane Effectiveness

Table 5.3: Power Dissipation Ratio of 2- and 4- over 1-lane VMU

f [GHz] 0.4 1.6
nL 2 4 2 4

MVL 16 128 16 128 16 128 16 128

noCG 1.93 2.19 3.73 4.5 2.19 2.27 4.36 4.5
CG 1.53 2.52 2.31 5.32 1.36 1.69 1.81 3.25

100% 2.24 2.24 5.02 5.01 2.40 2.31 4.96 4.77

i.e. they are not neighbors anymore. For this reason, there is the aforementioned
notable increase of αI (and consequently power), in designs with multiple lanes.

The usage effects are most visible comparing the ratios of power dissipated
for low and high frequencies in case of CG. The ratios are significantly lower for
higher frequencies as for high frequencies the memory system becomes a bottle-
neck. Adding more lanes results in more idle cycles which causes clock-gating to
be more active, thus average power is lower.

Power ratios for CG and noCG are notably higher for MVL=128 than for 16. As
it has been already mentioned in Section 5.3, in case of short MVL (16) we have
lower average power as the VMU is more time idle. Adding more lanes means that
the “effective” vector length is actually MVL/nL which augments this effect. This
is especially visible for CG, during idle cycles, the VMU is clock-gated.

Table 5.4 shows the speed-up obtained with 2 and 4 lanes over a 1-lane VMU.
We have chosen the same frequency points as in the previous example: 0.4 GHz
and 1.6 GHz. As can be expected from Amdahl’s law, doubling the number of
lanes provides exactly 2 x speedup for the 100%, since there are multiplications
every cycle. CG and noCG have practically the same results since the presence or
absence of clock gating at a given frequency does not affect the execution time as
long as they have the same nS. In these two cases, the speed-up decreases pretty
linearly with frequency. As a consequence, increasing the number of lanes is more
effective for VMUs operating at lower frequencies (low power region). The reason
is that in these tBenchs memory access time is modeled (unlike in 100%), and main
memory access latency translates into more cycles when the processor operates at
higher frequencies. Moreover, cache misses are more difficult to hide when the vL

is short, so speed-up degrades with frequency to a higher extent in this case.

79

5. EXPLORATION OF ENERGY-EFFICIENT VECTOR MULTIPLIERS

Table 5.4: Speed-up of 2- and 4- over 1-lane VMU

f [GHz] 0.4 1.6
nL 2 4 2 4

MVL 16 128 16 128 16 128 16 128

CG, noCG 1.23 1.74 1.43 2.59 1.16 1.48 1.31 1.80
100% 2 2 4 4 2 2 4 4

EDP characteristics of multiple-lane VMUs are shown on Figure 5.7 for CG and
both MVL=16 and 128. While for MVL=128 2- and 4-lane VMUs are better solutions
than 1-lane in terms of EDP, for MVL=16 1- and 2-lane VMUs are the most efficient in
terms of EDP. Regarding the rest of PDnP metrics, for the sake of simplicity, we do
not present the figures but we highlight the most interesting observations. When
considering energy (PDP), 1-lane outperforms 2- and 4-lane configurations for all
tBenchs. However, when we put the accent on the performance and consider ED2P,
the 4-lane VMU performs the best for all MVL and tBenchs. The (f, EDnP)(n>1)
graphs have the minimum around 0.63 GHz and, as can be seen in Figure 5.7, this is
actually the most energy-efficient operating region. Results for PDnP are functions
of P and te, thus they are directly explained with the discussion above. Regarding
per uBench results, we have observed that the results for Disparity map are close to
the average ones, while other two uBenchs differ to some extent. Feature Tracking
takes the most benefit of vector multi-lane being 4-lane VMU more often the most
efficient choice, while for Maximally Stable Regions the situation is the opposite and
1-lane performs better than in averaged results.

5.5 VMU Design Guidelines

This section presents guidelines on efficient VMU design for two groups of the
targeted low power processors. The first group represent low power embedded
processors with short MVL (16) that operate inside the lower frequency range
(0.1 GHz-1.0 GHz). Embedded processors typically have restricted power budgets,
therefore, they cannot afford long vector registers neither high frequencies. Exam-
ples of this market are ARM Cortex-Mx processors. The second group assumes
low power mobile and low power throughput-oriented server processors with long

80

5.5 VMU Design Guidelines

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

10
4

frequency [GHz]

E
D

P
 [m

Ju
s]

n
L
=1

n
L
=2

n
L
=4

MVL=16

MVL=128

Figure 5.7: EDP of 1-,2-, and 4-lane VMU for CG.

MVL (128) that operate inside the higher frequency range (0.7 GHz-1.7 GHz). Mo-
bile and server processors are expected to take full benefit of their workloads (that
exhibit much DLP), thus they can afford long vector registers to achieve energy
efficiency. Typical examples of this group are ARM Cortex-Ax and Hwacha [65]
for mobile, and ARM-based servers [37] for server market. In this section, we con-
sider only VMUs with clock gating support as it is the most relevant from a low
power implementation perspective. Additionally, we assume averaged results of
all uBenchs.

Pareto optimal design points are shown on Figure 5.8, for both groups of pro-
cessors in the Power−Execution time (P − D) trade off design space. The most
efficient designs for each metric of interest are listed in Table 5.5. Design points
that perform the best for particular metrics of interest are highlighted in both Ta-
ble 5.5 and Figure 5.8 using bold font in the output metric column and arrows
respectively. Pareto optimal design points for a given processor group are selected
by filtering all design points with the selection parameters.

When we emphasize performance (EDnP, n>1) vector multi-lane turns to be the
most adequate choice. We observe it is an effective way to achieve energy-efficient
speed-up, especially for vL=128 due to its fair DLP exploitation. Vector multi-

81

5. EXPLORATION OF ENERGY-EFFICIENT VECTOR MULTIPLIERS

60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

3

3.5

4

exe time [us]

P
ow

er
 [m

W
]

n

L
=1

n
L
=2

n
L
=4

P
MIN

E
MIN

EDP
MIN

P
d
D

MIN

ED2P
MIN

ED3P
MIN

a)

20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

exe time [us]

P
ow

er
 [m

W
]

n

L
=1

n
L
=2

n
L
=4

P
d MIN

, P
MINE

MIN

EDP
MIN

ED2P
MIN

, ED3P
MIN

b)

Figure 5.8: Pareto optimal trade-off graphs in P − D space for (a) vL = 16, frange =

(0.1 GHz− 1.0 GHz) and (b) vL = 128, frange = (0.7 GHz− 1.7 GHz).

lane turns to be a more effective approach for fast and low power VMU design

than frequency increase. Additionally, it also an efficient choice for achieving a

thermal-efficient speed-up (low PdDP). Consequently, high nS and high frequency

design points do not appear as optimal design points for a given metric of interest.

Therefore, 1- and 2-stage designs are always the best choices.

82

5.6 Related Work

As it is expected from Figure 5.7, there are two efficient frequency points:
0.65 GHz and 1.2 GHz. After these break-even points, adding more lanes becomes
a more effective approach than what has been increasing frequency. Regarding
particular MF, as a consequence of discussed in Section 5.3, wl is practically al-
ways more efficient than ar except when we look for ultra low power embedded
processors market.

5.6 Related Work

There is considerable prior circuit-level research on comparison of multipliers in
the Energy-Delay space [20, 109, 34] However, our analysis differs as we include
architecture-related parameters, additional parameters like clock-gating and more
recent technology nodes, thus, some of our conclusions are different. For exam-
ple, we found that ar multipliers sometimes beat wl multipliers in terms of power
when highly memory-bound workloads are considered (Section 5.3). While there
is very interesting research on the design of multiplier units for particular architec-
tures such as DSPs [41, 34], their exploration demands are different, they do not
target vector architectures neither utilize the same kind of architectural and circuit
parameters as we do, thus, their analyses lead to distinct conclusions (Section 5.5).

5.7 Summary

We presented a joint circuit-system analysis, consisting of various simulators and
tools, which tackles the problem of design of optimal VMU. We explored VMU
design space in a comprehensive way including both circuit (e.g. clock-gating,
multiplier family) and architectural parameters (e.g. number of vector lanes, max-
imum vector length) and showed how they direct optimal VMU configuration. All
VMU design points were implemented and verified using PnR flow and simu-
lated using the San Diego Vision Benchmark suite as input benchmark set. We
found that Wallace multiplier topology performs the best for almost all the cases
due to its area and timing efficiency. The exceptions are very low power design
and memory-bound systems where Carry-Save Array (ar) outperform Wallace (wl)

83

5. EXPLORATION OF ENERGY-EFFICIENT VECTOR MULTIPLIERS

multipliers thanks to its regular interconnects. We showed that vector multi-lane
approach beats increasing frequency as a measure to achieve energy- and thermal-
efficient speed-up, especially for long vector lengths. Additionally, we analyzed the
importance of considering the correlation between vector elements and VMU us-
age when using multiple vector lanes. Finally, we provided guidelines on optimal
VMU design by highlighting the most efficient design points for all the metrics of
interest for both low- and high-end low power vector processors. For instance, we
observe that 2-lane, 2-stage wl VMU running at 1.2 GHz performs the best in terms
of EDP for the low power mobile market.

84

5.7 Summary

Ta
bl

e
5.

5:
Su

m
m

ar
y

of
op

ti
m

al
V

M
U

co
nfi

gu
ra

ti
on

s

Se
le

ct
io

n
Pa

ra
m

et
er

s
V

M
U

C
on

fig
ur

at
io

n
O

ut
pu

t
M

et
ri

cs

f r
an

ge
[G

H
z]

M
V

L
M

et
ri

c
n L

A
F

n S
f[

G
H

z]
t e

[µ
s]

P[
m

W
]

E[
m

J]
ED

P[
m

Jµ
s]

ED
2 P[

m
Jµ

s2]
A

[µ
m

2]
P d

[m
W

/m
2]

(0
.1

-1
.0

)
16

P d
m

in
1

w
l

1
0.

1
92

0.
1

23
.2

2x
10
−

3
21

.3
6

19
.6

6x
10

3
18

.0
9x

10
6

65
44

3.
55

P d
D

P m
in

4
w

l
1

0.
65

12
5.

6
0.

29
24

36
.7

3
46

12
57

.9
2x

10
3

31
.8

5x
10

3
9.

18

P m
in

1
ar

1
0.

1
92

0.
1

22
.8

3x
10
−

3
21

.0
1

19
.3

3x
10

3
17

.7
8x

10
6

60
34

3.
78

E m
in

1
w

l
1

0.
55

18
9.

9
0.

10
58

20
.0

9
38

15
72

4.
5x

10
3

67
07

15
.7

7

E
D

P m
in

1
w

l
1

0.
6

18
1.

1
0.

11
54

20
.9

37
85

68
5.

5x
10

3
70

76
16

.3
1

E
D

2
P m

in
2

w
l

1
0.

65
14

0.
8

0.
19

93
28

.0
5

39
49

55
5.

9x
10

3
15

.9
3x

10
3

12
.5

1

E
D

3
P m

in
4

w
l

2
1

98
.8

3
0.

67
36

66
.5

7
65

79
65

0.
2x

10
3

29
.5

8x
10

3
22

.7
7

(0
.7

-1
.7

)
12

8

P d
m

in

P m
in

1
w

l
2

0.
7

78
.7

0.
60

59
47

.6
9

37
53

29
5.

4x
10

3
72

24
83

.8
8

P d
D

m
in

P
4

w
l

2
0.

7
31

.5
9

3.
05

5
96

.5
30

48
96

.2
9x

10
3

28
.9

x1
03

10
5.

7

E m
in

1
w

l
2

0.
9

61
.1

9
0.

77
2

47
.2

4
28

91
17

6.
9x

10
3

72
69

10
6.

2

E
D

P m
in

2
w

l
2

1.
2

27
.6

1
2.

48
9

68
.7

4
18

98
52

.4
2x

10
3

17
.2

9x
10

3
14

4

E
D

2
P m

in

E
D

3
P m

in
4

w
l

2
1.

2
19

.3
2

6.
25

7
12

0.
9

23
36

45
.1

3x
10

3
34

.5
8x

10
3

18
0.

9

85

6
Low Power Vector FP FMA Design Using

Advanced Clock-Gating Techniques

6.1 Introduction

In this chapter, we investigate the design of low power fully pipelined double pre-

cision IEEE754-2008 compliant FMA unit for vector processors (VFMA). We com-

prehensively identify, propose, and evaluate the most suitable clock-gating tech-

niques for VFMA running at peak performance periods. We present three kinds

of techniques: (1) novel ideas to exploit unique characteristics of vector architec-

tures for clock-gating during active periods of execution (e.g. vector instructions

with a scalar operand or vector masking), (2) novel ideas for clock-gating during

active periods of execution that are also applicable to scalar architectures but which

application is especially beneficial to vector processors (gating internal blocks de-

pending on the values of input data), and (3) ideas that are widely used in other

architectures and that we present as its application is especially beneficial to vector

processors and for the sake of completeness (idle VFMA). Regarding the second

and the third group of ideas, an advantage of vector processing that extends the

applicability of clock-gating, is that vector instructions last many cycles, so the state

of the clock-gating and bypassing logic remains the same during the whole instruc-

tion. As a result, power savings typically overcome the switching overhead of the

added hardware (which is often not a case in scalar processors). The proposed

techniques are explained in Section 6.4.

87

6. LOW POWER VECTOR FMA

We present a fully automated, parameterizable, and scalable exploration frame-
work including our hardware and software (benchmark) generators (Section 6.5).
Our methodology is completely aligned with current trends in digital design that
promote building generators rather than instances [95, 10, 78]. To achieve high ac-
curacy and estimate properly the interconnect and routing overhead, we integrate
PnR estimation flow (Chapter 3) into our framework. We evaluate the presented
techniques using both synthetic and real application based benchmarks.

6.2 Related Work

We present the related work for each of our clock-gating techniques together with
the description of the technique in Section 6.4.

In the context of alternative low power techniques for floating-point units, in-
teresting approaches have been proposed: memoing (caching results that can be
reused) and byte encoding (computation performed over significant bytes). How-
ever, detailed and accurate evaluation reveals that the actual savings are often low
and with an unaffordable area overhead [43].

Regarding the automatic generation of FMA units, there is influential research
[42]. While their framework focuses on the internal implementation on the man-
tissa multiplier and general microprocessors, it lacks the following features, needed
for our research, that we implemented: (1) incorporation of different low power
techniques, (2) a complete testing infrastructure including architectural simulators
as well, and (3) energy-efficient vector processing aware FMA design. Addition-
ally, their method employs a high-level language to serve as a macro processing
language to generate predefined blocks written in the underlying HDL. The dis-
advantages of these methods lie in the lack of connection between the higher level
language and the underlying HDL.

6.3 Floating-Point Arithmetic Background

This section introduces FP representation and FP FMA. Additional details about
floating-point arithmetic are available in [45, 14, 33].

88

6.3 Floating-Point Arithmetic Background

Table 6.1: IEEE754 single and double precision formats. The number of bits for each field
is shown (bit ranges are in square brackets, 0 = least-significant bit)

Sign Exponent Fraction

Single Precision (32 bits) 1 [31] 8 [30-23] 23 [22-0]
Double Precision (64 bits) 1 [63] 11 [62-52] 52 [51-0]

6.3.1 Floating-Point Representation

Floating-point (FP) representation is the most common way to represent real num-

bers in computers. It is based on scientific notation to encode numbers, M ∗ 10E,

where M and E are the mantissa (base) and the exponent, respectively. For exam-

ple, 123.4 could be represented as 1.234 ∗ 102. In the same way in binary format,

we have that the number 10100.12 could be represented as 1.010012 ∗ 24.

IEEE754 floating-point numbers have three basic components: the sign (S), the

exponent (E), and the fraction (F). IEEE754 double and single precision floating-

point formats are shown in Table 6.1. The sign bit ’1’ indicates negative, while

’0’ indicates positive numbers. The mantissa is composed of the fraction and an

implicit (hidden) leading ’1’1. The exponent base (2) is implicit and need not be

stored. The exponent field contains sum of bias (B) and true exponent (ET). The

bias is 127 for single and 1023 for double precision numbers. Therefore the value

represented by an FP IEEE754 FP number is: (1− 2S) ∗M ∗ 2ET = (1− 2S) ∗ (1 +

F) ∗ 2E−B. The most important features of IEEE754 floating point format are shown

in Table 6.2.

Special value NaN is used for representing undefined values. This happens

when:

• one (or more) operand is NaN,

• the operation is 0 ∗∞,

• the operation is ∞−∞,

• the operations 0/0, ∞/∞,

1An exception are subnormal numbers where the implicit bit is ’0’

89

6. LOW POWER VECTOR FMA

Table 6.2: IEEE754 single and double precision features.

Feature Single Double

Zero (±) E = 0, F = 0
Subnormal E = 0, F 6= 0
Infinity (±∞) E = 255, F = 0 E = 2047, F = 0
Not-a-number
(NaN)

E = 255, F 6= 0 E = 2047, F 6= 0

Ordinary number E ∈ [1, 254], ET ∈ [−126, 127] E ∈ [1, 2046], ET ∈ [−1022, 1023]
MIN 2−126 ≈ 1.2 ∗ 10−38 2−1022 ≈ 1.2 ∗ 10−308

MAX ≈ 2128 ≈ 3.4 ∗ 1038 ≈ 21024 ≈ 1.8 ∗ 10308

• the operations x mod 0, ∞ mod y,

• square roots of negative numbers
√

x, x < 0.

Another important special value is infinity (±∞). This happens when either input
is ∞ and the result is NaN. NaN and infinity handling are explained in [45].

Since the result of floating point operation is a real number, the exact represen-
tation could need more bits than available (F). In these situations a representation
that is close to the exact result is necessary. Therefore a rounding operation is
needed. While several rounding modes exist, IEEE754 specifies the following ones:

• Round to nearest (tie to even),

• Towards zero,

• Round toward plus infinity, and

• Round toward minus infinity.

6.3.2 Fused Multiply-Add (FMA)

The FMA unit executes the FMA instruction (FMA R <- A, B, C) that implements
R = A ∗ B + C. In contrast to a multiplication followed by an addition, FMA in-
struction assumes processing all three operands at the same time. It was introduced
for the first time in IBM’s RS/600 in 1990 [53]. IEEE754-2008 standard defines FMA

90

6.3 Floating-Point Arithmetic Background

instruction to be computed initially with unbounded range and precision, round-

ing only once to the destination format. For this reason, FMA is faster and more

precise than a multiplication followed by an addition. The FMA unit performs

operand alignment in parallel with the multiplication. This leads to shorter latency

(nS) compared to a multiplication followed by an addition. Additionally, the FMA

operation reduces the number of interconnections between floating-point units and

the number of adders and normalizers. The FMA instructions help compilers to

produce more efficient code. Potential drawbacks are increased latency of FP adder

(if executed on the FMA) and a complex normalizer.

A simplified list of steps of FMA flow are:

1. Mantissa multiplication (MA ∗MB), exponents addition (EA ∗ EB), alignment

of the addend’s mantissa (MC), and calculation of the intermediate result

exponent ER = max(EA + EB, EC).

2. Addition of the product (MA ∗MB) and aligned MC.

3. Normalization of the addition result and exponent update.

4. Rounding.

5. Determination of the exception flags and special values.

A simplified implementation block diagram of the FMA unit used in our research is

shown on Figure 6.1. As we assume double precision we need an 162-bit adder and

a 53x53 multiplier. For the adder and the multiplier, we choose Brent-Kung and

Wallace algorithms, respectively, as it is aligned with our findings in Chapters 4 and

5. The aligner performs shifting of the addend based on the exponent difference in

order to align it with the product (MA ∗MB).

Floating point addition using FMA unit is implemented by setting the first

operand to 1 (A = 1.0), while floating point multiplication is implemented by

setting the third operand to 0 (C = 0.0).

91

6. LOW POWER VECTOR FMA

Table 6.3: A classification of the proposed techniques using two criteria: (1) Vector
Processing-Specific or -Beneficial and (2) operating mode (Active or Idle).

VP-specific VP-beneficial

Active MaskCG, ScalarCG, ImplCG InputCG
Idle n/a IdleCG

Table 6.4: Types of instructions where ScalarCG is applicable. Capital letters indicate vector
operands.

Operation Vector Instruction
A ∗ b + C FPFMAVSV - a multiplicand is a scalar
A ∗ B + c FPFMAVVS - the addend is a scalar
A ∗ b + c FPFMAVSS - a multiplicand and the addend are scalars
A +/∗ B FPADDV/FPMULV - a multiplicand/the addend is a scalar1

A +/∗ b FPADDVS/FPMULVS - 2 out of 3 operands are scalars

6.4 Proposed Techniques

This section presents the proposed clock-gating techniques for VFMA. The classifi-

cation is presented in Table 6.3.

6.4.1 Scalar Operand Clock-Gating (ScalarCG)

We propose this technique to tackle the cases when one or two operands do not

change during the vector instruction. Table 6.4 lists the types of instructions during

which ScalarCG is active. As there is only one of all the supported vector instruc-

tions that has all three operands vectors, most of the execution time at least one

operand is scalar.

During these instructions the corresponding input register(s) of scalar operand(s)

should latch a new value only on the first clock edge of the execution of the instruc-

tion, while during the rest of the instruction, they can be clock-gated. To implement

this, we introduce the signals VS[2..0] (Figure 6.1), where VS[i] = 0 means that the

i-th operand is gated. VS signals are derived from the instruction OPCODE. Only

the FPFMAV instruction, in which all operands are vectors, does not benefit from this

technique.

92

6.4 Proposed Techniques

6.4.2 Implicit Scalar Operand Clock-Gating (ImplCG)

This technique is an additional optimization of ScalarCG and aims to exploit further

the information given through the instruction OPCODE for clock-gating, operand

isolation, and computation bypassing. In the case of addition and subtraction in-

structions, such as FPADDV and FPSUBV, the 53x53 mantissa multiplier is not needed

as it is known that one of the multiplicands is ‘1’, thus, we can bypass, isolate, and

clock-gate it providing the value of the other multiplicand directly to the adder.

There is an analogous situation when we have an FPMULV where the addend is

known to be ‘0’. In this case, the 162-bit wide adder and the aligning part are not

needed.

To control bypassing, isolation, and clock-gating of the mention modules, we

introduce signal INSTYP (Figure 6.1), generated from the instruction OPCODE,

which indicates whether an FPFMAV or an FPADDV/FPSUBV/FPMULV instruction is

executed. INSTYP together with VS signals provide information of the instruc-

tion type. For example, INSTYP=1 and VS[0]=1 and VS[2]=0 indicate that we

have an FPMULV instruction while INSTYP=1, and VS[0]=0 indicate that we have

an FPADDV/FPSUBV instruction. Circuitry added for implementing ImplCG mostly

consists of clock gating cells and MUXs.

In the context of instruction-dependent techniques, there is interesting research

done in the past for scalar processors [82]. The main advantages of our ImplCG

proposal over the mentioned research are: (1) we apply the technique for a variable

number of pipeline stages, (2) we evaluate power, timing, and area, and (3) we

propose the technique for vector processors.

The advantage of the vector over other models (e.g. scalar) is that vector in-

structions last many cycles, so the state of the related hardware (clock-gating logic

and MUXs) maintains the same state during the whole instruction. Thus, there will

be less switching overhead than in the scalar case.

1When executing an addition/multiplication the “unused” operand is constant during the
whole instruction: A = 1/C = 0.

93

6. LOW POWER VECTOR FMA

C
op_sign

rounding
mode, Enable

MaskCG

INPUT REGISTERS

ALIGNER MULTIPLIER (Wallace)

ADDER
EXPONENT
AND
CONTROL

INCREMENTER
LEADING
ZERO
ANTICIPATION

NORMALIZER

exception flags

Cmantissa Bmantissa Amantissa

A, B, C [expWidth-1..expWidth-3] PROCESSING

Out

1 clk delay

C

B AInputCG

INSTYP, VS[2..0]

ScalarCG
 ImplCG

B A

ImplCG, InputCG

ScalarCG, ImplCG
InputCG

IdleCG()

 VMR[63..00]

MaskCG()
INSTRUCTION ISSUE

IdleCG

ROUNDING

ScalarCG, ImplCG
InputCG

ScalarCG, ImplCG
InputCG

Figure 6.1: A simplified block diagram of a 1-lane, 4-stage, VFMA with all clock-gating
techniques applied (AllCG technique). Input signals for the baseline without clock-gating
are multiplicands (A, B), addend (C), rounding mode, and operation sign (op_sign) while
output signals are result (Out) and exception flags. Details regarding applied clock-gating
techniques are explained in Section 6.4.

6.4.3 Vector Masking and Vector Multi-Lane-Aware Clock-Gating
(MaskCG)

Here we target cases when there are idle cycles during the vector mask instructions
(e.g. FPFMAV_MASK). Common cases where vector mask control is used are: (1)
sparse matrix operations and (2) conditional statements inside a vectorized loop.1

Additionally, we assume the same mechanism is also used to reduce the EVL to
less than the MVL. With nL lanes, in the last cycle of the operation, there will be
mod(EVL, nL) idle lanes.

The VMR directly controls the clock-gating of the whole arithmetic unit during
these idle cycles (Figure 6.1). Regarding the internal implementation, we perform

1Vector mask instruction are common. For example, in Facerec (SPEC2000-ref [50]) and Sphinx3
(SPEC2006-ref [50]) applications we measured that 4% and 2% of all the vector instructions are
vector mask instructions.

94

6.4 Proposed Techniques

Table 6.5: InputCG - conditions under which a hardware block of mantissa arithmetic com-
putations and corresponding input registers can be bypassed, isolated and clock-gated.

Hardware block Condition Subtechnique
Full computation The result is NaN. InputCGNaN

Full computation The result is ∞. InputCGin f

Multiplier Multiplicand is ‘0’. InputCGmul0

Adder and aligner Addend is ‘0’. InputCGadd0

clock-gating at pipeline stage granularity [114], so we prevent useless cycles inside
the unit i.e. the data is latched in subsequent stages only if necessary. Once the
Enable signal of the first pipeline stage’s register gets the value ‘1’, this Enable signal
propagates to the end of the pipeline, one stage per cycle (Figure 6.1). In other
words, Enable signal of n-th stage is actually the first stage’s Enable signal delayed
by n − 1 cycles. This is implemented by adding a 1-bit wide, nS − 1 long shift
register that drives clock-gating cells.

To the best of our knowledge, there is no related work that aims to exploit vector
conditional execution with VMR to lower power of vector processors.

6.4.4 Input Data Aware Clock-Gating (InputCG)

Here we identify the scenarios in which, depending on the input data, a part of
mantissa processing is not needed for the correct result, thus, can be bypassed.
We use a recoded format for internal representation [15], that allows us detect-
ing special cases and zeros with low hardware overhead: it requires inspection
of only the three most significant bits of the exponent. Therefore, we can detect
the scenarios by adding simple circuitry at the inputs of the VFMA (Figure 6.1).
Table 6.5 presents identified scenarios (conditions) when a hardware block of man-
tissa arithmetic computations and corresponding input registers can be bypassed,
isolated and clock-gated. Similar as for ImplCG, the hardware required for bypass-
ing, isolation and clock-gating mostly consist of clock gating cells and MUXs.

There are many workloads whose data contain a lot of zero values [11, 30], thus
can fairly benefit from the last two subtechniques presented in Table 6.5. Although
these techniques are applicable to other architectures as well, their application to
vector processors is more efficient since the recurrent values are common within the

95

6. LOW POWER VECTOR FMA

vector data, thus lowering the switching overhead in added hardware (clock-gating

logic and MUXs).

While both ImplCG and InputCG techniques aim to exploit cases when the ad-

dend is ‘0’, in this case, there is no external information of ‘0’ existence via VS

signals, but is has to be detected, and the gating has to be done on time.

As in the case of ImplCG, the research done in [82] presents a related data-

driven technique for scalar processors. The main advantages (that enable additional

savings) of our InputCG technique over the mentioned research are (1) detection

of zero operands, (2) distinction between ∞ and NaN, and (3) gating mantissa

multiplier when processing NaNs.

6.4.5 Idle Unit Clock-Gating (IdleCG)

This technique clock-gates the VFMA when no data is supplied to it. The clock

(un)gate decision is made in the instruction issue pipeline stage, where it is known

if an instruction will be sent to the VFMA in the next cycle (Figure 6.1). As indi-

cated on Figure 6.1, this technique uses the same internal clock-gating circuitry as

MaskCG. A similar approach is widely used in scalar processors and is known as

Deterministic Clock-Gating [68, 73]. Nonetheless, this technique has more potential

for power savings than its scalar equivalent as it can benefit from the following

vector specific advantages:

• VFMAs are used in burst fashion (with idle periods between bursts), since

a single FMA/ADD/SUB/MUL instruction processes all vector elements in con-

secutive cycles. This makes clock-gating more efficient as the overhead of its

buffers is minimized.

• For very high frequency designs, the issue stage may need an additional cycle

to determine if a unit will be used in the next cycle. In a scalar processor,

we would need to waste that cycle once per each scalar FMA/ADD/SUB/MUL

instruction. In a vector processor, we waste this cycle EVL − 1 times less.

Although here we focus lowering power of VFMA when it is active, we present this

technique for the sake of completeness as it was used in Chapters 3, 4, and 5.

96

6.5 Methodology

VectorSim

tBenchGen
traces

NCSim RC)(Synthesis)+)STA))

param-uBench

EDI)PowerSim
P

INPUT)
PARAMETERS

ARCHITECTURAL
LEVEL

CIRCUIT
LEVEL

A,f

.sdf

EDI)(PnR)+)STA))

FMAgen PARAMS.uKernelPARAMS.

.vcd
.v

tBench

uKernel

FMAgen

.v

app-uBench Vec. PARAMS.

Figure 6.2: A simplified block diagram of the framework.

6.5 Methodology

6.5.1 Exploration Framework

A simplified block diagram of the framework is depicted in Figure 6.2. It includes
architectural- (uKernel, VectorSim, FMAgen) and circuit-level (RC, EDI, NCsim) sim-
ulators and tools, as well as an interfacing tool (tBenchGen). For various parameters
we obtain power (P) and area (A) of the VFMA. The basis for power and area mea-
surements is the PnR estimation flow (Chapter 3), thus, corresponding explanations
and details are valid here.

The first step is feeding VectorSim with vectorized microbenchmarks (uBench)
and vector parameters (MVL and number of vector lanes (nL)). Using these inputs
VectorSim generates data and timing traces for the vector floating point operations.
We use two kinds of uBenchs (both explained in Section 6.5.2):

• param-uBenchs are generated by feeding the parameterizable microkernel
uKernel with its parameters, and

97

6. LOW POWER VECTOR FMA

• app-uBenchs are extracted from vectorized applications.

The synthesizable Verilog netlists are generated using FMAgen (described in
Section 6.5.3). The output of architectural-level simulations together with FMAgen
parameters are transformed into Verilog test benchmarks (tBenchs) using tBenchGen
(explained in Section 4.2.3). Afterwards, we use Cadence RTL Compiler (RC) to
obtain synthesized mapped netlists and to perform STA of the VFMA. All the
designs are synthesized for the minimum clock period that provides a safe slack on
the critical path. We provide synthesized Verilog netlists together with the physical
layout information to the Cadence Encounter Digital Implementation System (EDI)
to get placed and routed designs and to perform again STA.

In order to verify the designs and extract resulting switching activity informa-
tion (written into vcd files) we simulate each VFMA in Cadence NCSim for each
matching tBench with back-annotated delays using sdf files. Afterwards, we per-
form precise power estimation using EDI PowerSim.

6.5.2 Benchmarking

This section explains the two benchmarking methods that we employ for an in-dept
evaluation of the proposed techniques. The first method has as goal to stress each of
the techniques separately, while the second tests all the techniques simultaneously
and provides the results for “real world” applications.

Fully Parameterizable Kernel - uKernel

We generate different param-uBench using the same uKernel. It is a variant of the
DAXPY loop: D = A ∗ B + C. The inputs are random values unless specified oth-
erwise. uKernel parameters (Table 6.6) are used to determine the characteristics of
the generated param-uBench. There are parameters that modify the code (INSTYP,
ADD/MUL, MULS, ADDS), execution (IR, pm), and data (pin f , pNaN, p0). Listing 6.1
shows an example of uBench pseudocode generated with the uKernel. We iterate
param-uBench until we reach 10000 test vectors to assure a representative sample,
using a uniform distribution. The aforementioned VS signals are derived from
INSTYP, ADD/MUL, MULS and ADDS parameters.

98

6.5 Methodology

Table 6.6: uKernel parameters.

Parameter Description
INSTYP It indicates whether we have (0) FPFMAV or (1) FPADDV and

FPMULV types of vector instructions.
ADD/MUL It indicates whether the instruction is addition (0) or multi-

plication (1) if INSTYP=1.
MULS, ADDS They indicate whether one of the multiplicands and the ad-

dend are scalar values, respectively.
pm The probability that a bit in the VMR during a vector oper-

ation is ‘0’. The probability that one lane is idle in the last
cycle is included in pM.

pin f , pNaN , p0 The probabilities that an operand is ∞, not a number (NaN),
and 0, respectively.1.

IR Idleness Ratio, IR =
TIR

TEX + TIR
, where TIR is the average

pause length between two subsequent vector instructions and
TEX is the average execution time of vector instructions.

Listing 6.1: A simplified param-uBench pseudocode generated with INSTYP=0, MULVS=0,
ADDS=1, and pm>0

for (i=0; i< length; i+=MVL) {

LDV V0 <- A[i+0..63]

LDV V1 <- B[i+0..63]

LD R2 <- c

VMR <- MASK[i+0..63]

FPFMAVVS_MASK V2 <- V0, V1, R2

STV D[i+0..63] <- V2

}

Application-Based Microbenchmarks - app-uBench

app-uBench is a vectorized and floating-point intensive microbenchmark (kernel) ex-

tracted from an application. It is a representative part of the application and small

enough (between 100k and 150k test vectors) to keep circuit simulation time rea-

1To explore potential savings we use the whole range of probabilities, including values that not
represent a realistic case (e.g. 100% NaNs)

99

6. LOW POWER VECTOR FMA

Table 6.7: Vectorized application-based microbenchmarks (app-uBench). In brackets are
given names of corresponding benchmark suites

Sphinx3 (SPEC2006-ref [50]) is a widely known speech recognition system
that includes both an acoustic trainer and various decoders, i.e., text recogni-
tion, phoneme recognition, N-best list generation, etc.

Facerec (SPEC2000-ref [50]), explained in Table 4.2.

K-means (modified STAMP [92]) is one of the oldest and most commonly
used clustering algorithms. It is a prototype based clustering technique defin-
ing the prototype in terms of a centroid which is considered to be the mean of
a group of points and is applicable to objects in a continuous n-dimensional
space.

Disparity Map - computeSAD (SDVB), explained in Table 5.1.

sonable. We use four different app-uBenchs extracted from vectorized applications

described in Table 6.7. We selected application with different type and behavior to

make the results more general. These are the applications that are used in mobile

devices and can also be found in server workloads.

6.5.3 A Fully Parameterizable FMA Generator

We developed FMAgen as a hardware generator written in Constructing Hardware

in Scala Embedded Language (Chisel), a hardware construction language aimed at

designing hardware by using parameterized generators [10]. Chisel is based on

the Scala programming language, and it supports a combination object-oriented

and functional programming and good software engineering techniques. We find

it as an optimal way to design and test parameterizable FUs. On one side it pro-

vides the possibility to design and connect hardware blocks in the same way as in

other HDLs (Verilog or VHDL), while on another side it is significantly more flexi-

ble (parameterizable) than existing HDLs and provides significantly faster testing.

Chisel allows users to code their designs in one source description and target mul-

tiple backends without rewriting their designs. The Chisel code is compact, due

to its higher level of description than traditional HDLs. Not surprisingly, as a

general problem of high-level design approaches, a disadvantage of Chisel-based

100

6.5 Methodology

digital design is that it sometimes has worse quality of results than hand-crafted

Verilog [5].

As a base for FMAgen, we take an open source floating-point library - Berkeley

Hardware Floating-Point Units (BHFPU) [15]. This open source library internally

uses a recoded format (the exponent has an additional bit) to detect and handle

special cases, such as subnormal numbers, more efficiently1. BHFPU can produce

FMAs for an arbitrary floating-point format, i.e. arbitrary number of mantissa and

exponent bits.

FMAgen generates synthesizable Verilog code of 1-lane VFMAs according to

the input parameters (FMAgen parameters): Clock-Gating technique type (CGtype),

latency - number of pipeline stages (nS), and the input floating-point format. Possi-

ble values for CGtype are any combination of the aforementioned clock-gating tech-

niques (IdleCG, MaskCG, ScalarCG, ImplCG, and InputCG), including all of them

together (AllCG) or none of them (NoCG). A combination of clock-techniques that

will be discussed later is ActiveCG which contains all active clock-gating techniques

from Table 6.3 (MaskCG, ScalarCG, ImplCG, InputCG). nS can be an arbitrary num-

ber. Presented advanced clock-gating techniques are compatible with each other

and can be arbitrarily combined. In this study, we put 4 stages as a reasonable limit

for a low power processor. Additionally, we set the VFMA input floating-point for-

mat to double precision. Apart from the mentioned features that we added to

BHFPU (support for all the clock-gating techniques as well as support for com-

bining them arbitrarily, pipelining, and different pipelining styles), we also added

full IEEE754-2008 compliance [23] (which introduces some timing overhead). A

simplified block diagram of modeled VFMA is shown on Figure 6.1.

We paid special attention to ensure that clock-gating logic does not create a crit-

ical timing path. Since we target low power, we do not incorporate any speculative

hardware for improving latency, thus, no energy is wasted on precomputed results

that get discarded.

We would also like to stress that the FMAgen in combination with high-effort

PnR flow is a powerful tool capable of producing a variety of designs with Verilog-

like QoR in a highly elegant, scalable and flexible manner. We especially noticed

1We assume recoding is done when loading and storing to memory.

101

6. LOW POWER VECTOR FMA

highly efficient pruning which is important in case of complex generators with a
variety of parameters like FMAgen.

6.6 Evaluation

This section presents an evaluation of the presented vector processing aware clock-
gating proposals in terms of power savings (S) and area efficiency. Regarding
power measurements, first we evaluate each technique separately using bench-
marking method from Section 6.5.2, and afterwards we evaluate combined scenar-
ios using the method explained in Section 6.5.2.

VFMA designs with 1, 2, 3, and 4 stages are synthesized and run for 0.45, 0.85,
1.1, and 1.3 GHz respectively. We assume a NoCG 2-lane VFMA as a baseline and
its power is 15.6, 30.9, 44.9, and 59.2 mW for 1, 2, 3, and 4 stages respectively. As
in the previous chapters, we observe that the static (leakage) power is practically
negligible compared to dynamic power. Although it is negligible when considering
active operating modes (i.e. the execution inside a vector kernel), when the execu-
tion is outside a vector kernel (i.e. when the vector core is inactive), the leakage
might be additionally suppressed via power gating.1 However, power gating is out
of the scope of this research since we target lowering power during active operating
modes with no performance loss.

We focus on 4-stage results as they are the most important from the processor
design perspective. Nonetheless, the 1-stage results are presented as a reference
and in most cases it has the highest overhead in terms of power and area across
all nS. For the sake of simplicity, in the rest of this section we do not present
further results for 2- and 3-stage designs, but we observe these results regularly
scale between results for 1 and 4 stages.

6.6.1 Area Efficiency

Table 6.9 reveals the area efficiency of the proposed techniques. Area for a NoCG
2-lane VFMA configuration is 36191, 38060, 40693, and 43419 µm2 for 1, 2, 3, and 4

1 The gate signal in this case could be generated from vector kill instruction KILLV (similar to
VRIP instruction in Cray X1 instruction set [93]).

102

6.6 Evaluation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability

20

10

0

10

20

30

40

50

60

70

80

90

100

Sa
vi

ng
s [

%
]

IdleCG , IR
MaskCG , pm
InputCG , Apinf
InputCG , Apnan
InputCG , Ap0
InputCG , Cp0

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability

20

10

0

10

20

30

40

50

60

70

80

90

100
IdleCG , IR
MaskCG , pm
InputCG , Apinf
InputCG , Apnan
InputCG , Ap0
InputCG , Cp0

(b)

Figure 6.3: Evaluation of power savings over the baseline (NoCG), as a function of uKernel
parameters for IdleCG, MaskCG, and InputCG for 4-stage (a) and 1-stage (b) 2-lane VFMA.
For each graph, only one uKernel probability parameter from Table 6.6 is assumed to be
variable while other parameters are zero. This is indicated in the legend with technique,
probability pairs.

stages respectively. Area overhead is in some cases higher than expected because:

(1) during synthesis, we prioritized timing and power over area to assure power

savings without spoiling timing and (2) Chisel generated Verilog code is some-

times less area efficient than equivalent manually written Verilog [5]. However, we

observe this overhead has a strong decreasing trend as the nS increases.

6.6.2 Per Technique Power Analysis

Figure 6.3 and Table 6.8 reveal results for each of the presented vector processing

aware clock-gating proposals separately, in terms of power savings for 4- and 1-

stage VFMA. In these experiments we set MVL and the number of vector lanes (nL)

to 64 and 2 respectively.

103

6. LOW POWER VECTOR FMA

Table 6.8: Evaluation of power savings for ScalarCG and ImplCG depending on the in-
struction type against the baseline (NoCG). INSTYP, ADD/MUL, MULS, and ADDS uKernel
parameters are variable in these experiments to test all the instructions separately, while
the rest are zero.

Vector Instruction nS SScalarCG(%) SImplCG(%)

FPFMAV
1 -34.35 -38.27
4 1.87 0.39

FPFMAVSV
1 -10.11 -12.73
4 16.47 14.55

FPFMAVVS
1 -31.47 -33.19
4 4.07 4.74

FPFMAVSS
1 -6.77 -7.77
4 18.9 18.83

FPADDV
1 -10.7 65.07
4 16.54 42.42

FPADDVS
1 -6.72 70.30
4 18.92 46.16

FPMULV
1 -31.36 -22.81
4 4.12 9.0

FPMULVS
1 -6.69 2.52
4 18.95 23.04

Table 6.9: Area efficiency of the proposed clock-gating techniques against the baseline
(NoCG) for nS =1 and 4.

CGtype nS IdleCG/MaskCG ScalarCG ImplCG StageCG InputCG ALLCG

Ratio(%)
1 98.1 153.8 184.6 98.1 129.0 185.4
4 96.3 104.6 125.4 96.9 107.3 148.0

We observe that in most of the cases the savings grow with nS, as more pipeline
stages enable finer granularity of clock-gating. Due to its higher practical impor-
tance, in the rest of the discussion we focus on 4-stage results.

Figure 6.3 shows results for MaskCG, InputCG, and IdleCG:

F MaskCG. Due to its simplicity, this technique comes with practically no over-
head and the savings are between 8% and 52% depending on the pm. The saving
attainable when pm=1 (S=52%) is the maximum possible power reduction for active
VFMA.

104

6.6 Evaluation

F InputCG. In order to isolate savings for each of the mentioned subtechniques

(Table 6.5), we test all them separately by asserting the probabilities pin f , pNaN, and

p0 (Table 6.6) to operands. In InputCG∞, InputCGNaN, and InputCGmul0, the corre-

sponding probability affects operand A, while in InputCGadd0 it affects operand C,

the addend.

The maximum saving of 48.3% is available when pin f or pNaN is 1 (InputCG∞

and InputCGNaN). The same savings are available when an operand is NaN or ∞,

as in both cases the same hardware is clock-gated. The minimum probability pNaN

or pin f (of any operand) necessary for saving power is the spot where the savings

graph crosses the probability axis (16%).

When considering InputCGmul0, the maximum saving is 40%, and the minimum

probability p0 (of any multiplicand) necessary for saving power is 18.5%.

Much lower maximum saving (2.3%) is available when the addend is a zero

(InputCGadd0), as the adder consumes much less power than the multiplier (around

5 times in average). However, by combining these scenarios at the same time (which

is reasonable to assume in a real application case), higher savings would be avail-

able. Therefore, even though detecting zero addend and clock-gating the adder

and the corresponding aligner and input registers are not enough to justify its exis-

tence by itself, it improves overall savings of the complete InputCG technique when

a real, combined scenario is considered. Since it shares some hardware with other

InputCG subtechniques, the overhead of adding it is less than the saving it can

achieve.

The power overhead of the added hardware can be identified in the case when

the probability is 0, i.e. when InputCG is never active. The cost is a bit higher

than expected taking into account the amount of additional logic that we include

(detecting, bypassing, and clock-gating logic). In line with our discussion of area

results, Chisel generated designs sometimes suffer from unexpected overhead, and

our initial experiments confirm it. However, we observe it significantly decreases

as nS increases, thus, we expect this to be negligible for high nS.

F IdleCG. This technique provides savings between 8% and 95.3%. Although it

uses the same hardware as MaskCG, the savings are higher in average because here

the input data is stable, while in MaskCG it is not, thus incurring some switching

105

6. LOW POWER VECTOR FMA

albeit the first pipeline stage is gated. The saving attainable when IR=1 (95.3%) is
the maximum possible power reduction when the VFMA is idle.

The results for ScalarCG and ImplCG are shown in Table 6.8:

F ScalarCG. Savings are available for all the combinations of INSTYP, ADD/MUL,
MULS, and ADDS uKernel parameters, i.e. for all vector floating point instructions.
Not surprisingly, as the internal multiplier dissipates more power than the adder,
latching multiplicand’s mantissas provides more savings than latching addend’s
mantissa (FPFMAVSV and FPADDV vs. FPFMAVVS and FPMULV).

F ImplCG. This technique significantly improves savings for FPADDV/FPMULV in-
structions compared to ScalarCG. The highest savings, and the largest improve-
ments compared to ScalarCG, are available for FPADDV and FPADDVS instructions as
in these cases the multiplier is gated. As for ScalarCG, there are savings for all
vector floating-point instructions. Incidentally, we can observe that for FPADDV and
FPADDVS power savings are higher for 1- than for 4-stage VFMA. The reason is that
the mantissa multiplier contributes with more percentage to the total power when
only one pipeline stage is present.

6.7 Real Application-Based Combined Power Evalua-
tion

Table 6.10 reveals the evaluation of the presented clock-gating proposals as well as
workload profiling results for all combinations of app-uBench and vector parameters
(MVL and nL), while figures 6.4, 6.5, and 6.6 visualize the key metrics from the
Table. For the reasons explained above, we focus on VFMAs with 4 stages. The
meaning of the results shown in table and the figures is:

• S - power savings,

• Active Execution / Idle Execution - Active/Idle VFMA execution, i.e percentage
of app-uBench execution time that VFMA is active/idle,

• IdleCG, ScalarCG, ImplCG, InputCG and InputCG subtechniques efficiency -
percentage of execution time that a technique is used,

106

6.7 Real Application-Based Combined Power Evaluation

-20%

0%

20%

40%

60%

80%

100%

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

16 128 16 128 16 128 16 128

Facerec Sphinx3 Disparity K-Means

NL, MVL, app-uBench

Power Savings (S)

AllCG Efficiency

Figure 6.4: Power savings (S) and AllCG efficiency.

• AllCG efficiency - percentage of execution time that any clock-gating tech-

nique is used,

• ActiveCG efficiency - percentage of execution time that any active clock-gating

technique is used, and

• ActiveExeCG efficiency - percentage of active VFMA execution that any active

clock-gating technique is used,

We show the profiling results as well to understand the VFMA behavior and where

the saving come from. Data for MaskCG, InputCGNaN, and InputCGin f is not

present in the Table 6.10 as they are 0%. The reason is that the selected app-uBenchs

do not have vector mask instructions. Also, none of the input values are NaNs

nor infinities. However, abundant vector mask instructions could be found in any

vector workload that has conditional execution, so in this kind of workloads we

can expect fair savings as the result of MaskCG technique. Regrading NaNs and

infinities, for some other applications and/or input data sets their occurrence might

be more common, thus, the benefit of InputCGNaN and InputCGin f subtechniques

will be visible. Common cases of NaN and infinity processing are explained in [45].

107

6. LOW POWER VECTOR FMA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

16 128 16 128 16 128 16 128

Facerec Sphinx3 Disparity K-Means

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

NL, MVL, app-uBench

Idle Execution

Active Execution

Figure 6.5: ActiveCG/IdleCG - Active/Idle VFMA execution.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

16 128 16 128 16 128 16 128

Facerec Sphinx3 Disparity K-Means

N
o

rm
al

iz
e

d
 A

ct
iv

e
 V

FU
 E

xe
cu

ti
o

n
 T

im
e

NL, MVL, app-uBench

ActiveExeCG
Efficiency

Figure 6.6: ActiveExeCG efficiency.

Figure 6.4 and Table 6.10 reveals that AllCG efficiency is very high, i.e. clock-
gating is often used almost 100% of total execution time. This is a consequence of
the fact that proposed clock-gating techniques are used during both idle and active
VFMA execution. Due to this very high AllCG efficiency, the power savings are
also fairly high. We observe that power savings are available for practically all the
combinations of app-uBenchs and vector parameters. The most savings are available

108

6.7 Real Application-Based Combined Power Evaluation

for computer vision app-uBenchs (Facerec and Disparity) and are between 60% and

80%. The only case when the savings are not available is for K-Means, MVL=16

and nL=4. There are two reasons for that: (1) clock-gating efficiency (percentage

of execution time that any clock-gating technique is used) is not high and (2) with

nL=4 and MVL=16 the effective vector length per lane is 4 which makes ImplCG less

fruitful since it is used only 3 consecutive cycles per vector on each lane (which as

a result has more switching activity in clock-gating and bypassing logic).

Figure 6.5 shows that ratio of active and idle VFMA execution varies across

app-uBenchs and vector parameters, and explains the nature for each combination

of parameters. There are situations when the VFMA is most of the time active and

vice versa. However, we can notice there is a trend that vector processors with

MVL of 128 have its VFMA most of the time active (busy) as with longer vectors

the effects of cache latency are diminished. IdleCG is used whenever VFMA is idle,

thus, IdleCG efficiency inside these idle periods is 100%. When considering active

VFMA execution, the efficiency (ActiveExeCG) varies across the app-uBenchs and

vector parameters and is shown on Figure 6.6. As we can observe from the figure,

a very high percentage of the time at least one of the active clock-gating techniques

is used and depending on the benchmark it goes up to 100%. Table 6.10 shows that

in all these cases the used techniques are some variants of ImplCG1 and InputCG.

Also, there are cases when these techniques overlap.

ActiveCG techniques can arbitrarily overlap and there are two kinds of overlaps.

The first group of overlaps assumes cases when the techniques jointly produce

higher savings than each technique separately. This happens when the techniques

target different hardware. For example, when we have a zero addend inside a

FPADDV instruction, InputCGadd0 gates the mantissa adder and the aligner, while

ImplCG gates input register of A operand and the mantissa multiplier. The second

group of overlaps happens when one technique gates just part of the hardware that

another technique gates. In these cases, the savings are equal to the savings of the

technique that have larger scope. For example, if the corresponding bit in VMR is

’0’ and current instruction is FPFMAVVS, the savings are going to be equal to savings

achieved by MaskCG alone.

1Explained before, ScalarCG is integrated in ImplCG

109

6. LOW POWER VECTOR FMA

6.8 Summary

In this research, we extensively identify, propose, and evaluate the most suitable
clock-gating techniques for vector FMA (VFMA) considering peak performance,
and focusing on the active operating mode. We propose techniques that are either
(1) completely novel ideas to lower the power of VFMA using active clock-gating
(e.g. vector instructions with scalar operand or vector masking) or (2) ideas that
exist in some form in scalar architectures and that we extend to achieve more sav-
ings by taking advantage of vector processing characteristics. We find that each of
the proposed optimizations achieves power reductions while maintaining the per-
formance. As a consequence of this fact, sometimes an area increase is observed.

An in-depth evaluation is performed, and each of the techniques is evaluated
separately as well as combined with other techniques. For this evaluation, both
synthetic and real application-based benchmarks are employed. We considered a
variety of benchmarks with different behavio to assure a fair evaluation and gen-
eral conclusions. In the case of active 4-stage VFMA with 2 lanes actively operating
at the peak performance, power savings are up to 52% are available when using a
single technique. Regarding the vector instruction-dependent techniques that we
propose, we observe savings for all floating-point vector instructions. Testing all the
techniques together and using real application benchmarks (especially computer
vision ones) reveals fairly high power reductions that go up to 80%. Clock-gating
efficiency (percentage of time that some of the proposed techniques are used) is
quite high, often close to 100%. When considering the efficiency of only active
clock-gating techniques, this number is usually between 70% and 100%. Addition-
ally, we notice the trend that savings for the proposed techniques rise with the
number of pipeline stages.

We performed this research in a fully parameterizable, scalable and automated
manner using simulators and tools at many levels. Although targeting floating-
point FMA, as the major consumer among all functional units, similar low power
techniques as well as the framework could be re-tailored for other vector functional
units as well. We would also like to stress that the combination of Chisel-based gen-
erators and state-of-the-art synthesis and PnR tools is a powerful tool for flexible
hardware generation with Verilog-like QoR.

110

6.8 Summary
Ta

bl
e

6.
10

:P
ow

er
sa

vi
ng

s
an

d
cl

oc
k-

ga
ti

ng
st

at
is

ti
cs

.A
ll

th
e

re
su

lt
s

ar
e

ex
pr

es
se

d
in

pe
rc

en
ta

ge
s.

ap
p-

uB
en

ch
M

V
L

nL
S

A
llC

G
A

ct
iv

e
Ex

e
A

ct
iv

eC
G

A
ct

iv
eE

xe
C

G
Id

le
Ex

e,
Id

le
C

G
Sc

al
ar

C
G

/
Im

pl
C

G
In

pu
tC

G
In

pu
tC

G
m

ul
0

In
pu

t a
dd

0

Fa
ce

re
c

16

1
70

.3
2

98
.9

6
16

.6
8

15
.6

3
93

.7
4

83
.3

2
15

.6
3

7.
50

0.
00

7.
50

2
73

.9
9

98
.8

3
9.

36
8.

19
87

.4
9

90
.6

4
8.

19
4.

21
0.

00
4.

21

4
76

.4
8

98
.7

7
4.

91
3.

68
74

.9
9

95
.0

9
3.

68
2.

21
0.

00
2.

21

12
8

1
59

.8
4

99
.6

5
44

.3
3

43
.9

8
99

.2
1

55
.6

7
43

.9
8

19
.9

0
0.

00
19

.9
0

2
65

.5
0

99
.5

5
28

.8
1

28
.3

5
98

.4
3

71
.1

9
28

.3
5

12
.9

3
0.

00
12

.9
3

4
71

.0
4

99
.4

7
16

.8
3

16
.3

0
96

.8
7

83
.1

7
16

.3
0

7.
55

0.
00

7.
55

Sp
hi

nx
3

16

1
37

.5
4

84
.9

6
49

.4
8

34
.4

3
69

.5
9

50
.5

2
32

.0
6

17
.6

7
2.

37
15

.2
9

2
38

.6
1

85
.0

5
43

.0
4

28
.1

0
65

.2
7

56
.9

6
26

.0
3

15
.3

7
2.

07
13

.3
0

4
46

.1
3

87
.8

3
28

.0
7

15
.9

0
56

.6
3

71
.9

3
14

.5
5

10
.0

2
1.

35
8.

68

12
8

1
30

.5
5

82
.2

5
69

.6
7

51
.9

2
74

.5
3

30
.3

3
48

.3
1

25
.2

7
3.

61
21

.6
6

2
22

.0
9

76
.9

8
88

.4
9

65
.4

7
73

.9
8

11
.5

1
60

.8
9

32
.1

0
4.

58
27

.5
2

4
23

.4
3

77
.7

0
82

.2
6

59
.9

6
72

.8
9

17
.7

4
55

.7
0

29
.8

4
4.

26
25

.5
8

D
is

pa
ri

ty

16

1
75

.5
5

97
.8

5
38

.4
1

36
.2

6
94

.4
1

61
.5

9
36

.2
6

25
.9

0
0.

00
25

.9
0

2
74

.2
0

97
.1

0
24

.3
8

21
.4

9
88

.1
1

75
.6

2
21

.4
9

16
.4

4
0.

00
16

.4
4

4
73

.1
7

96
.6

9
13

.5
1

10
.2

0
75

.5
2

86
.4

9
10

.2
0

9.
11

0.
00

9.
11

12
8

1
79

.6
9

10
0.

00
81

.3
8

81
.3

8
10

0.
00

18
.6

2
82

.6
0

60
.8

1
0.

00
60

.8
1

2
78

.9
0

10
0.

00
76

.2
4

76
.2

4
10

0.
00

23
.7

6
76

.7
7

56
.9

7
0.

00
56

.9
7

4
77

.7
1

99
.4

5
61

.6
0

61
.0

5
99

.1
0

38
.4

0
61

.0
5

46
.0

3
0.

00
46

.0
3

K
-M

ea
ns

16

1
19

.5
6

60
.2

2
76

.2
6

36
.4

9
47

.8
4

23
.7

4
35

.8
7

0.
61

0.
00

0.
61

2
4.

61
47

.9
7

94
.0

5
42

.0
2

44
.6

8
5.

95
41

.2
7

0.
76

0.
00

0.
76

4
-1

1.
24

45
.0

0
88

.9
3

33
.9

3
38

.1
5

11
.0

7
33

.2
1

0.
71

0.
00

0.
71

12
8

1
24

.6
2

60
.5

3
96

.4
4

56
.9

7
59

.0
7

3.
56

50
.4

6
6.

51
0.

00
6.

51

2
22

.9
1

58
.6

5
10

0.
00

58
.6

5
58

.6
5

0.
00

51
.9

0
6.

75
0.

00
6.

75

4
20

.7
7

57
.8

1
10

0.
00

57
.8

1
57

.8
1

0.
00

51
.0

5
6.

75
0.

00
6.

75

111

7
Conclusions

In this work we have achieved the following main goals:

• Optimizing power and energy efficiency of VFU by applying various clock-
gating techniques and by optimal structure selection through extensive design
space exploration.

• A methodology that enables achieving the first goal by using fully parameter-
izable multi-level exploration frameworks that consist of various tools, sim-
ulators and generators (including several that we developed) at both circuit
and architecture levels.

The following paragraphs summarize and conclude the achievements of this
thesis.

We performed extensive design-space exploration of VA and VMU to find the
optimal structure from energy-efficient and low power perspective when consider-
ing various types of vector processors. The exploration consists of both architectural-
and circuit-level parameters: MVL, number of vector lanes, benchmark, frequency,
adder/multiplier family, and clock-gating. Among other findings we concluded
that the vector multi-lane method is an energy- and thermal-efficient way to achieve
speed-up and it outperforms frequency scaling in that sense. We analyzed the im-
portance of considering the correlation between vector elements and VFU usage
when using multiple vector lanes. Additionally, we discovered that 1-stage bk and
2-stage wl multipliers are often good matches for mobile vector processors.

113

7. CONCLUSIONS

We comprehensively identify, propose, and evaluate the most suitable clock-
gating techniques for VFMA. We went a step further into power reductions using
classic clock-gating, we looked at unexplored opportunities for clock-gating ap-
plication to vector processors, especially when considering active operating mode
and peak performance. VFMA is large enough so that significant power savings
that we report diminish the overheads of additional logic insertion. The savings
have a rising trend when increasing the number of pipeline stages. Applying one
of the proposed techniques (MaskCG) in isolation brings down power savings of
up to 52%. When combined all together, the techniques achieve reductions of up
to 80%. Large savings are the result of high clock-gating efficiency: the percent-
age of time that clock-gating technique(s) is used. It is quite high, often close to
100%. When considering the efficiency of only active clock-gating techniques, this
number is usually between 70% and 100%. Generally, we observe that computer vi-
sion applications (Facerec and Disparity) are the ones that take the most benefit of
the proposed techniques. Additionally, the lessons learned from above mentioned
explorations helped us to further optimize VFMA through optimal mantissa arith-
metic selection and understanding the effects of vector architecture concepts (e.g.
number of vector lanes or maximal vector length) on arithmetic units.

To perform the complete mentioned research we propose a novel methodology
that is based on multi-level, fully parameterizable and automated frameworks. We
developed frameworks that consists of various tools and generators (some of which
we developed) and parameters at both circuit and architectural levels. Joint circuit-
architectural research helps to understand how architectural level parameters (e.g.
vector length) affect the circuit-level metrics (e.g. VMU power dissipation) and how
circuit level parameters (e.g. multipliers clock cycle) impact the execution time of a
microbenchmark. Generators that we use enable design space exploration through
sweeping the parameters of the design. We use two kinds benchmarking, synthetic
and “real world” application-based ones. Synthetic ones are necessary when stress-
ing and isolating some functionalities and features of the observed system. This
approach gives an opportunity to precisely understand underlying mechanisms.
However, for an overall evaluation and verification of the results, and getting more
general conclusions, application-based benchmarking is a must. Two key advan-
tages are: (1) knowledge of how architectural and circuit parameters affects exe-

114

cution time, (2) knowledge of how architectural level parameters, such as vector

multi-lane, affect power dissipation and how it changes with some circuit-level pa-

rameters (e.g. clock period). In this thesis, we used applications from SPEC, SDVB

and STAMP benchmarks.

Additionally, we developed two different estimation flows: PAS and PnR. We

performed a comparative analysis of both of them in terms of power, timing, area,

and completion time using a design space exploration as a case study. Among

other experiments we observed the flows’ estimations accuracy change with input

switching activity factor. We showed in which cases the results are reliable and

in which cases they are not. In all the experiments presented in this thesis the

technology that we use is a 40nm low power one (TSMC40LP).

This thesis could be important not only for vector processor designers but for

a wider microprocessor design community, especially in this era when the power

envelope is stricter than ever, and the demand for performance has not waned.

The following three directions seem very promising for future work that builds

from the research of this thesis:

• Adapt the proposed optimizations and methodologies for low power FP and

reduced precision FP computation in artificial neural networks (ANN). In

the training part, there is abundant FP FMA computation [47, 54, 63, 70,

22] and it is usually done in server processors. We expect our clock-gating

techniques that lower power without performance loss to be quite effective for

these ANN computations. However, in the inference part there are reduced

precision FP FMA operations [55]. Thus, a combination of our integer and

FMA arithmetic optimizations has potential for success. As the inference part

is often done in battery operated devices, here the optimizations would focus

on the energy consumption. In both training and inference parts, abundant

DLP is present.

• Application of similar methodology and ideas to other architectures for ex-

ploiting DLP such as graphics processing unit (GPU). GPUs are prominent in

the last decade and have increasing popularity, not only for graphics and

115

7. CONCLUSIONS

gaming, but for accelerating workloads from many domains.. Addition-
ally, due to abundant computation (mostly FP), they are known as signifi-
cant power consumers. Vector processors and GPUs, although both targeting
efficient DLP exploitation, work in, to some extent, different way. There-
fore, the proposed ideas would sometimes require an adaptation to the GPU
paradigm. For example, the vector masking technique would need to adapt
to GPU predication, while it still can exploit multi-lane slack in the same way.

• Extending the research to the front end of the vector pipeline, memory unit,
and the register file. A large vector register file could be implemented in 3D
DRAM and connected to VFUs via through-silicon via (TSV). In that way, we
would be able to significantly increase the vector register file while keeping
its latency small.

116

8
Publications on the topic

8.1 Publications from the thesis:

• Ivan Ratković, Oscar Palomar, Milan Stanić, Osman Unsal, Adrian Cristal,
and Mateo Valero, “On the Selection of Adder Unit in Energy Efficient Vector
Processing”, Proceedings of the 2013 The International Symposium on Qual-
ity Electronic Design (ISQED), March 2013, Santa Clara, USA. [87]

• Ivan Ratković, Oscar Palomar, Milan Stanić, Osman Unsal, Adrian Cristal, and
Mateo Valero, “Physically vs. Physically-Aware Estimation Flow: Case Study
of Design Space Exploration of Adders”, In Proceedings of IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), July 2014, Tampa, USA. [88]

• Ivan Ratković, Nikola Bežanić, Osman Unsal, Adrian Cristal, and Veljko Mi-
lutinović, “An Overview of Architecture Level Power- and Energy-Efficient
Design Techniques”, Elsevier Advances in Computers, 2015. [89]

• Ivan Ratković, Oscar Palomar, Milan Stanić, Milovan Duric, Djordje Pešić, Os-
man Unsal, Adrian Cristal, and Mateo Valero, “Joint Circuit-System Design
Space Exploration of Multiplier Unit Structure for Energy-Efficient Vector Pro-
cessors”, In Proceedings of IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), July 2015, Montpelier, France. [90]

• Ivan Ratković, Oscar Palomar, Milan Stanić, Osman Unsal, Adrian Cristal,
and Mateo Valero, “A Fully Parameterizable Low Power Design of Vector

117

8. PUBLICATIONS ON THE TOPIC

Fused Multiply-Add Using Active Clock-Gating Techniques”, 2016 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED),
August 2016, San Francisco, USA.

8.2 Related publications not included in the thesis:

• Milan Stanić, Oscar Palomar, Ivan Ratković, Milovan Duric, Osman Unsal,
Adrian Cristal, and Mateo Valero, “VALib and SimpleVector: Tools for Rapid
Initial Research on Vector Architectures”, ACM International Conference on
Computing Frontiers, May 2014, Cagliari, Italy.

• Milan Stanić, Oscar Palomar, Ivan Ratković, Milovan Duric, Osman Unsal,
Adrian Cristal, and Mateo Valero, “Evaluation of Vectorization Potential of
Graph500 on Intel Xeon Phi”, International Conference on High Performance
Computing & Simulation (HPSC), July 2014, Bologna, Italy.

• Milovan Duric, Milan Stanić, Ivan Ratković, Oscar Palomar, Osman Unsal,
Adrian Cristal, and Mateo Valero, “Imposing Coarse-Grain Reconfiguration
to General Purpose Processors”, International Conference on Embedded Com-
puter Systems: Architectures, Modeling and Simulation (SAMOS), July 2015,
Samos, Greece.

• Milovan Duric, Milan Stanić, Ivan Ratković, Oscar Palomar, Osman Unsal,
Adrian Cristal, and Mateo Valero, “Dynamic Specialization of Mobile Cores
for Data-Parallel Applications”, In submission at International Journal of Par-
allel Programing, Springer

• Milan Stanić, Oscar Palomar, Timothy Hayes, Ivan Ratković, Osman Unsal,
Adrian Cristal, and Mateo Valero, “Towards Low-Power Embedded Vector
Processor”, ACM International Conference on Computing Frontiers, May
2016, Como, Italy.

• Milan Stanić, Oscar Palomar, Timothy Hayes, Ivan Ratković, Osman Unsal,
Adrian Cristal, and Mateo Valero, “POSTER: An Integrated Vector-Scalar De-

118

8.2 Related publications not included in the thesis:

sign on an In-order ARM Core”, International Conference on Parallel Archi-
tectures and Compilation, September 2016, Haifa, Israel.

119

References

[1] Abdollahi, A., Fallah, F. & Pedram, M. (2005). An effective power mode
transition technique in mtcmos circuits. In Proceedings of the 42nd annual De-
sign Automation Conference, 37–42. 14

[2] Abts, D., Bataineh, A., Scott, S., Faanes, G., Schwarzmeier, J., Lundberg,
E., Johnson, T., Bye, M. & Schwoerer, G. (2007). The cray blackwidow: a
highly scalable vector multiprocessor. In Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, 17, ACM. 18, 20

[3] Agarwal, K., Nowka, K., Deogun, H. & Sylvester, D. (2006). Power gating
with multiple sleep modes. In Proceedings of the 7th International Symposium
on Quality Electronic Design, 633–637. 13

[4] Alipour, S., Hidaji, B. & Pour, A.S. (2010). Circuit level, static power, and
logic level power analyses. In EIT, 1–4. 45

[5] Arcas-Abella, O., Ndu, G., Sonmez, N., Ghasempour, M., Armejach, A.,
Navaridas, J., Song, W., Mawer, J., Cristal, A. & Luján, M. (2014). An
empirical evaluation of high-level synthesis languages and tools for database
acceleration. In Field Programmable Logic and Applications (FPL), 2014 24th In-
ternational Conference on, 1–8. 101, 103

[6] ARM (2016). http://arm.com. 2

121

http://arm.com

8. PUBLICATIONS ON THE TOPIC

[7] Asanović, K. (1998). Vector microprocessor. PhD Thesis, UC Berkeley. 2, 10

[8] Aslund, A., Gustafsson, O., OhIsson, H. & Wanhammar, L. (2004). Power
analysis of high throughput pipelined carry-propagation adders. In Norchip
Conference, 2004. Proceedings, 139–142, IEEE. 44

[9] AVX-512 instructions (2016). https://software.intel.com/en-us/blogs/

2013/avx-512-instructions/. 9

[10] Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R.,
Wawrzynek, J. & Asanović, K. (2012). Chisel: constructing hardware in a
scala embedded language. In Proceedings of the 49th Annual Design Automation
Conference, 1216–1225. 88, 100

[11] Balakrishnan, S. & Sohi, G.S. (2003). Exploiting value locality in physical
register files. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on, 265–276, IEEE. 95

[12] Baran, D., Aktan, M., Karimiyan, H. & Oklobdzija, V. (2009). Exploration
of switching activity behavior of addition algorithms. In Circuits and Systems,
2009. MWSCAS ’09. 52nd IEEE International Midwest Symposium on, 523–526.
45

[13] Baran, D., Aktan, M. & Oklobdzija, V.G. (2010). Energy efficient implemen-
tation of parallel cmos multipliers with improved compressors. In Proceedings
of the 16th ACM/IEEE international symposium on Low power electronics and de-
sign, 147–152, ACM. 71

[14] Behrooz, P. (2000). Computer arithmetic: Algorithms and hardware designs.
Oxford University Press. 31, 72, 88

[15] Berkeley Hardware Floating-Point Units (2016). https://github.com/

ucb-bar/berkeley-hardfloat/. 95, 101

[16] Borkar, S. & Chien, A.A. (2011). The future of microprocessors. Commun.
ACM, 54, 67–77. 2

122

https://software.intel.com/en-us/blogs/2013/avx-512-instructions/
https://software.intel.com/en-us/blogs/2013/avx-512-instructions/
https://github.com/ucb-bar/berkeley-hardfloat/
https://github.com/ucb-bar/berkeley-hardfloat/

8.2 Related publications not included in the thesis:

[17] Brent, R. & Kung, H. (1982). A regular layout for parallel adders. IEEE
Trans.Comput., 31, 260–264. 35

[18] Cadence Design Systems (2016). http://www.cadence.com/. 28

[19] Cadence Design Systems (2016). Encounter library characterizer datasheet.
28

[20] Callaway, T.K. & Swartzlander Jr, E.E. (1997). Power-delay characteris-
tics of cmos multipliers. In Computer Arithmetic, 1997. Proceedings., 13th IEEE
Symposium on, 26–32. 83

[21] Carlson, T.E., Heirman, W. & Eeckhout, L. (2013). Sampled simulation of
multi-threaded applications. In ISPASS’13, 2–12. 37

[22] Chung, I.H., Sainath, T.N., Ramabhadran, B., Pichen, M., Gunnels, J.,
Austel, V., Chauhari, U. & Kingsbury, B. (2014). Parallel deep neural net-
work training for big data on blue gene/q. In SC14: International Conference
for High Performance Computing, Networking, Storage and Analysis, 745–753. 115

[23] Committee, I.S. et al. (2008). 754-2008 ieee standard for floating-point arith-
metic. IEEE Computer Society Std, 2008. 101

[24] Cortex-A32 Processor (2016). https://www.arm.com/products/processors/
cortex-a/cortex-a32.php. 18, 20

[25] Cortex-A35 Processor (2016). https://www.arm.com/products/processors/
cortex-a/cortex-a35.php. 18, 20

[26] Cortex-A53 Processor (2016). https://www.arm.com/products/processors/
cortex-a/cortex-a53-processor.php. 18, 20

[27] Cortex-A7 Processor (2016). https://www.arm.com/products/processors/

cortex-a/cortex-a7.php. 18, 20

[28] Cortex-A8 Processor (2016). https://www.arm.com/products/processors/

cortex-a/cortex-a8.php. 18, 20

123

http://www.cadence.com/
https://www.arm.com/products/processors/cortex-a/cortex-a32.php
https://www.arm.com/products/processors/cortex-a/cortex-a32.php
https://www.arm.com/products/processors/cortex-a/cortex-a35.php
https://www.arm.com/products/processors/cortex-a/cortex-a35.php
https://www.arm.com/products/processors/cortex-a/cortex-a53-processor.php
https://www.arm.com/products/processors/cortex-a/cortex-a53-processor.php
https://www.arm.com/products/processors/cortex-a/cortex-a7.php
https://www.arm.com/products/processors/cortex-a/cortex-a7.php
https://www.arm.com/products/processors/cortex-a/cortex-a8.php
https://www.arm.com/products/processors/cortex-a/cortex-a8.php

8. PUBLICATIONS ON THE TOPIC

[29] Dougherty, W.E. & Thomas, D.E. (2000). Unifying behavioral synthesis and
physical design. In Proceedings of the 37th Annual Design Automation Confer-
ence, 756–761. 45

[30] Ekman, M. & Stenstrom, P. (2005). A robust main-memory compression
scheme. In ACM SIGARCH Computer Architecture News, vol. 33, 74–85. 95

[31] Encounter Digital Implementation System (2016). http://www.cadence.com/
products/di/edi_system/pages/default.aspx/. 27

[32] Encounter RTL Compiler (2016). http://www.cadence.com/products/ld/

rtl_compiler/pages/default.aspx/. 12, 27, 50

[33] Ercegovac, M. & Lang, T. (2003). Digital Arithmetic. Morgan Kaufmann. 31,
72, 88

[34] Erdogan, A., Zwyssig, E. & Arslan, T. (2004). Architectural trade-offs in the
design of low power fir filtering cores. In Circuits, Devices and Systems, IEE
Proceedings-, vol. 151, 10–17. 83

[35] Esmaeilzadeh, H., Blem, E., Amant, R.S., Sankaralingam, K. & Burger, D.
(2011). Dark silicon and the end of multicore scaling. In Computer Architecture
(ISCA), 2011 38th Annual International Symposium on, 365–376. 2

[36] Espasa, R. et al. (2002). Tarantula: a vector extension to the Alpha architec-
ture. In ISCA 29, 281–292. 5, 18, 20

[37] Euro Server (2016). http:www.euroserver-project.eu/. 81

[38] Favalli, M. & Benini, L. (1995). Analysis of glitch power dissipation in cmos
ics. In Proceedings of the 1995 international symposium on Low power design, 123–
128. 26

[39] Flynn, D., Aitken, R., Gibbons, A. & Shi, K. (2007). Low Power Methodology
Manual: For System-on-Chip Design. Springer Science & Business Media. 13

[40] Flynn, M.J. (1966). Very high-speed computing systems. Proceedings of the
IEEE, 54, 1901–1909. 10

124

http://www.cadence.com/products/di/edi_system/pages/default.aspx/
http://www.cadence.com/products/di/edi_system/pages/default.aspx/
http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx/
http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx/
http:www.euroserver-project.eu/

8.2 Related publications not included in the thesis:

[41] Gailhard, S., Julien, N., Diguet, J.P. & Martin, E. (1998). How to transform
an architectural synthesis tool for low power vlsi designs. In VLSI, 1998. Pro-
ceedings of the 8th Great Lakes Symposium on, 426–431, IEEE. 83

[42] Galal, S., Shacham, O., Brunhaver, J., Pu, J., Vassiliev, A. & Horowitz,
M. (2013). Fpu generator for design space exploration. In Computer Arithmetic
(ARITH), 2013 21st IEEE Symposium on, 25–34. 88

[43] Gandhi, K.R. & Mahapatra, N.R. (2003). A study of hardware techniques
that dynamically exploit frequent operands to reduce power consumption in
integer function units. In Computer Design, 2003. Proceedings. 21st International
Conference on, 426–428. 88

[44] Ghosh, S. & Roy, K. (2008). Exploring high-speed low-power hybrid arith-
metic units at scaled supply and adaptive clock-stretching. In Proceedings of
the 2008 Asia and South Pacific Design Automation Conference, ASP-DAC ’08,
635–640. 62

[45] Goldberg, D. (1991). What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys (CSUR), 23, 5–48. 88, 90,
107

[46] Gonzalez, R. & Horowitz, M. (1996). Energy dissipation in general purpose
microprocessors. IEEE J. Solid-State Circuits, 31, 1277–1284. 26

[47] Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep learning, book in
preparation for MIT Press. 115

[48] Gu, Z., Wang, J., Dick, R.P. & Zhou, H. (2007). Unified incremental physical-
level and high-level synthesis. IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, 26, 1576. 45

[49] Hennessy, J., Patterson, D. & Asanović, K. (2011). Computer Architecture,
Appendix G. MK. 8, 20, 28

[50] Henning, J.L. (2006). Spec cpu2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News, 34, 1–17. 37, 49, 94, 100

125

8. PUBLICATIONS ON THE TOPIC

[51] Heo, S., Barr, K. & Asanović, K. (2003). Reducing power density through
activity migration. In Low Power Electronics and Design, 2003. ISLPED’03. Pro-
ceedings of the 2003 International Symposium on, 217–222. 5

[52] Heo, S.W. et al. (2003). Study of optimized adder selection. In ASIC, 2003.
Proceedings. 5th International Conference on, vol. 2, 1265 – 1268. 63

[53] Hokenek, E., Montoye, R.K. & Cook, P.W. (1990). Second-generation risc
floating point with multiply-add fused. Solid-State Circuits, IEEE Journal of ,
25, 1207–1213. 90

[54] Holley, L.H. & Karplus, M. (1989). Protein secondary structure prediction
with a neural network. Proceedings of the National Academy of Sciences, 86, 152–
156. 115

[55] How to Quantize Neural Networks with Tensor-
Flow (2016). https://petewarden.com/2016/05/03/

how-to-quantize-neural-networks-with-tensorflow/. 115

[56] Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H. &
Bose, P. (2004). Microarchitectural techniques for power gating of execution
units. In ISLPED ’04, 32–37. 13, 14

[57] Huang, Z. & Ercegovac, M.D. (2000). Effect of wire delay on the design of
prefix adders in deep-submicron technology. In Signals, Systems and Comput-
ers, 2000. Conference Record of the Thirty-Fourth Asilomar Conference on, vol. 2,
1713–1717, IEEE. 7

[58] Incisive Enterprise Simulator (2016). http://www.cadence.com/products/

fv/enterprise_simulator/pages/default.aspx/. 51

[59] Intel Bonnell Microarchitecture (2016). https://en.wikipedia.org/wiki/

Bonnell_%28microarchitecture%29. 18, 20

[60] Intel Silvermont Microarchitecture (2016). https://en.wikipedia.org/wiki/
Silvermont. 20

126

https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/
https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/
http://www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx/
http://www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx/
https://en.wikipedia.org/wiki/Bonnell_%28microarchitecture%29
https://en.wikipedia.org/wiki/Bonnell_%28microarchitecture%29
https://en.wikipedia.org/wiki/Silvermont
https://en.wikipedia.org/wiki/Silvermont

8.2 Related publications not included in the thesis:

[61] Jacobson, H., Bose, P., Hu, Z., Buyuktosunoglu, A., Zyuban, V., Eicke-

meyer, R., Eisen, L., Griswell, J., Logan, D., Sinharoy, B. et al. (2005).

Stretching the limits of clock-gating efficiency in server-class processors.

In High-Performance Computer Architecture, 2005. HPCA-11. 11th International
Symposium on, 238–242. 5

[62] Jiang, H., Marek-Sadowska, M. & Nassif, S.R. (2006). Benefits and costs of

power-gating technique. In 2005 International Conference on Computer Design,

559–566. 14

[63] Kim, J., Hopfield, J. & Winfree, E. (2004). Neural network computation by

in vitro transcriptional circuits. In Advances in neural information processing
systems, 681–688. 115

[64] Kogge, P. & Stone, H. (1973). A parallel algorithm for the efficient solution

of a general class of recurrence equations. IEEE Trans.Comput., 22, 783–791.

35

[65] Lee, Y., Waterman, A., Avizienis, R., Cook, H., Sun, C., Stojanovic, V. &

Asanovic, K. (2014). A 45nm 1.3 ghz 16.7 double-precision gflops/w risc-v

processor with vector accelerators. In European Solid State Circuits Conference
(ESSCIRC), ESSCIRC 2014-40th, 199–202. 2, 5, 18, 20, 81

[66] Lee, Y. et al. (2011). Exploring the tradeoffs between programmability and

efficiency in data-parallel accelerators. In Proceedings of the 38th annual inter-
national symposium on Computer architecture, 129–140. 2

[67] Lemuet, C. et al. (2006). The potential energy efficiency of vector acceleration.

In SC 2006 Conference, Proceedings of the ACM/IEEE, 1. 2, 3

[68] Li, H., Bhunia, S., Chen, Y., Vijaykumar, T.N. & Roy, K. (2003). Deterministic

clock gating for microprocessor power reduction. In HPCA ’03, 113–. 96

[69] Liu, Y. & Zhang, T. (2007). On the selection of arithmetic unit structure in

voltage overscaled soft digital signal processing. In ISLPED ’07, 250–255. 63

127

8. PUBLICATIONS ON THE TOPIC

[70] Luo, Z., Liu, H. & Wu, X. (2005). Artificial neural network computation on
graphic process unit. In Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005., vol. 1, 622–626. 115

[71] Martin, A.J., Nystroem, M. & Penzes, P. (2001). Et2: A metric for time
and energy efficiency of computation. Tech. Rep. CaltechCSTR:2001.007, Caltech
Computer Science. 27

[72] Minh, C.C., Chung, J., Kozyrakis, C. & Olukotun, K. (2008). Stamp: Stan-
ford transactional applications for multi-processing. In Workload Characteriza-
tion, 2008. IISWC 2008. IEEE International Symposium on, 35–46, IEEE. 15

[73] Mohyuddin, N., Patel, K. & Pedram, M. (2009). Deterministic clock gating
to eliminate wasteful activity due to wrong-path instructions in out-of-order
superscalar processors. In Computer Design, 2009. ICCD 2009. IEEE Interna-
tional Conference on, 166–172. 96

[74] Momose, S. (2015). Nec vector supercomputer: Its present and future. In
Sustained Simulation Performance, 95–105, Springer. 5

[75] Monchiero, M. et al. (2006). Design space exploration for multicore architec-
tures: a power/performance/thermal view. In Proceedings of the 20th annual
international conference on Supercomputing, 177–186. 52, 60, 61

[76] Moore, G.E. (1965). Cramming more components onto integrated circuits.
Electronics, 38, 114–117. 2

[77] Moore, G.E. (2003). No exponential is forever: but" forever" can be de-
layed![semiconductor industry]. In Solid-State Circuits Conference, 2003. Digest
of Technical Papers. ISSCC. 2003 IEEE International, 20–23. 2

[78] Nikolic, B. (2015). Simpler, more efficient design. In European Solid-State Cir-
cuits Conference (ESSCIRC), ESSCIRC 2015-41st, 20–25, IEEE. 2, 7, 88

[79] Oklobdzija, V. et al. (2005). Comparison of high-performance vlsi adders in
the energy-delay space. IEEE Trans. Very Large Scale Integr. Syst., 13, 754–758.
62

128

8.2 Related publications not included in the thesis:

[80] Patil, D. et al. (2007). Robust energy-efficient adder topologies. In Proceedings
of the 18th IEEE Symposium on Computer Arithmetic, 16–28. 31, 62

[81] Plakaris, G. (2003). Power efficient arithmetric circuits for application specific
processors. Ph.D. thesis, Technical University of Denmark, DTU, DK-2800 Kgs.
Lyngby, Denmark. 12

[82] Preiss, J., Boersma, M. & Mueller, S.M. (2009). Advanced clockgating
schemes for fused-multiply-add-type floating-point units. In Computer Arith-
metic, 2009. ARITH 2009. 19th IEEE Symposium on, 48–56. 93, 96

[83] Qualcomm Krait (2016). https://en.wikipedia.org/wiki/Krait_(CPU). 20

[84] Quintana, F. et al. (1999). Adding a vector unit to a superscalar processor. In
Proceedings of the 13th international conference on Supercomputing, 1–10. 20

[85] Rabaey, J. (2009). Low power design essentials. Springer Science & Business
Media. 12

[86] Rabe, D. & Nebel, W. (1996). Short circuit power consumption of glitches.
In Proceedings of the 1996 international symposium on Low power electronics and
design, 125–128. 26

[87] Ratković, I., Palomar, O., Stanić, M., Unsal, O.S., Cristal, A. & Valero,
M. (2013). On the selection of adder unit in energy efficient vector processing.
In Quality Electronic Design (ISQED), 2013 14th International Symposium on,
143–150, IEEE. 117

[88] Ratković, I., Palomar, O., Stanic, M., Unsal, O., Cristal, A. & Valero, M.
(2014). Physical vs. physically-aware estimation flow: Case study of design
space exploration of adders. In VLSI (ISVLSI), 2014 IEEE Computer Society
Annual Symposium on, 118–123, IEEE. 117

[89] Ratković, I., Bežanić, N., Ünsal, O.S., Cristal, A. & Milutinović, V.
(2015). Chapter one-an overview of architecture-level power-and energy-
efficient design techniques. Advances in Computers, 98, 1–57. 117

129

https://en.wikipedia.org/wiki/Krait_(CPU)

8. PUBLICATIONS ON THE TOPIC

[90] Ratković, I., Palomar, O., Stanić, M., Duric, M., Pešić, D., Unsal, O.,
Cristal, A. & Valero, M. (2015). Joint circuit-system design space explo-
ration of multiplier unit structure for energy-efficient vector processors. In
VLSI (ISVLSI), 2015 IEEE Computer Society Annual Symposium on, 19–26, IEEE.
117

[91] Reference Manual for ARM Architecture - ARMv7-A (2016). http://arm.

com/. 5

[92] Rethinagiri, S.K., Palomar, O., Sobe, A., Yalcin, G., Knauth, T., Gil, R.T.,
Prieto, P., Schneegaß, M., Cristal, A., Unsal, O. et al. (2015). Paradime:
Parallel distributed infrastructure for minimization of energy for data centers.
Microprocessors and Microsystems, 39, 1174–1189. 100

[93] Russell, R.M. (1978). The cray-1 computer system. Communications of the
ACM, 21, 63–72. 102

[94] Sathanur, A., Pullini, A., Benini, L., Macii, A., Macii, E. & Poncino, M.
(2007). Timing-driven row-based power gating. In Low Power Electronics and
Design (ISLPED), 2007 ACM/IEEE International Symposium on, 104–109. 13

[95] Shacham, O., Azizi, O., Wachs, M., Qadeer, W., Asgar, Z., Kelley, K.,
Stevenson, J.P., Richardson, S., Horowitz, M., Lee, B.W. et al. (2010). Re-
thinking digital design: Why design must change. Micro, IEEE, 30, 9–24. 7,
88

[96] Shin, Y., Seomun, J., Choi, K.M. & Sakurai, T. (2010). Power gating: Circuits,
design methodologies, and best practice for standard-cell vlsi designs. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 15, 28. 14

[97] Spectre Circuit Simulator (2016). http://www.cadence.com/products/cic/

spectre_circuit/pages/default.aspx/. 28

[98] Srinivasan, V. et al. (2002). Optimizing pipelines for power and performance.
In Proceedings of the 35th annual ACM/IEEE international symposium on Microar-
chitecture, MICRO 35, 333–344. 56, 78

130

http://arm.com/
http://arm.com/
http://www.cadence.com/products/cic/spectre_circuit/pages/default.aspx/
http://www.cadence.com/products/cic/spectre_circuit/pages/default.aspx/

8.2 Related publications not included in the thesis:

[99] Stan, M.R., Skadron, K., Barcella, M., Huang, W., Sankaranarayanan,

K. & Velusamy, S. (2003). Hotspot: A dynamic compact thermal model at the

processor-architecture level. Microelectronics Journal, 34, 1153–1165. 3

[100] Standard Delay Format (2016). http://www.eda.org/sdf/. 51

[101] Standard Performance Evaluation Corporation (2016). https://www.spec.

org/benchmarks.html/. 15

[102] Stanic, M., Palomar, O., Ratković, I., Duric, M., Unsal, O. & Cristal,

A. (2014). Valib and simplevector: tools for rapid initial research on vector

architectures. In Proceedings of the 11th ACM Conference on Computing Frontiers,

7. 5, 17

[103] Stanic, M., Palomar, O., Hayes, T., Ratković, I., Unsal, O. & Cristal, A.

(2016). Towards low-power embedded vector processor. In Proceedings of the

ACM International Conference on Computing Frontiers, 339–342. 4

[104] Stefan-Boltzmann law (2016). http://hyperphysics.phy-astr.gsu.edu/. 27,

52

[105] Sun, S. & Sechen, C. (2007). Post-layout comparison of high performance

64b static adders in energy-delay space. In Computer Design, 2007. ICCD 2007.

25th International Conference on, 401 –408. 44, 62

[106] Synopsys Design Compiler (2016). http://www.synopsys.com/Tools/

Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx/. 12

[107] Tang, A., Yang, Y., Lee, C.Y. & Jha, N.K. (2015). Mcpat-pvt: Delay and power

modeling framework for finfet processor architectures under pvt variations.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23, 1616–1627.

4

[108] ThunderX ARM Processors (2016). http://www.cavium.com/. 5, 61

131

http://www.eda.org/sdf/
https://www.spec.org/benchmarks.html/
https://www.spec.org/benchmarks.html/
http://hyperphysics.phy-astr.gsu.edu/
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx/
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx/
http://www.cavium.com/

8. PUBLICATIONS ON THE TOPIC

[109] Townsend, W.J., Swartzlander Jr, E.E. & Abraham, J.A. (2003). A compar-

ison of dadda and wallace multiplier delays. In Optical Science and Technol-
ogy, SPIE’s 48th Annual Meeting, 552–560, International Society for Optics and

Photonics. 83

[110] Value Change Dump (2016). https://en.wikipedia.org/wiki/Value_

change_dump/. 51

[111] Veendrick, H. (1984). Short-circuit dissipation of static cmos circuitry and its

impact on the design of buffer circuits. Solid-State Circuits, IEEE Journal of , 19,

468 – 473. 26

[112] Venkata, S.K., Ahn, I., Jeon, D., Gupta, A., Louie, C., Garcia, S., Belongie,

S. & Taylor, M.B. (2009). Sd-vbs: The san diego vision benchmark suite. In

Workload Characterization, 2009. IISWC 2009. IEEE International Symposium on,

55–64. 15, 67, 70

[113] Wallace, C.S. (1964). A suggestion for a fast multiplier. Electronic Computers,
IEEE Transactions on, 14–17. 71

[114] Xanthopoulos, T. & Chandrakasan, A.P. (1999). A low-power idct macro-

cell for mpeg-2 mp@ ml exploiting data distribution properties for minimal

activity. Solid-State Circuits, IEEE Journal of , 34, 693–703. 95

[115] Xu, T., Li, P. & Yan, B. (2011). Decoupling for power gating: Sources of

power noise and design strategies. In Proceedings of the 48th Design Automation
Conference, 1002–1007. 14

[116] Zeydel, B., Baran, D. & Oklobdzija, V. (2010). Energy-efficient design

methodologies: High-performance vlsi adders. IEEE Solid-State Circuits, 45,

1220–1233. 44

[117] Zhou, C. et al. (2009). 64-bit prefix adders: Power-efficient topologies and de-

sign solutions. In Custom Integrated Circuits Conference, 2009. CICC ’09. IEEE,

179 –182. 4, 44

132

https://en.wikipedia.org/wiki/Value_change_dump/
https://en.wikipedia.org/wiki/Value_change_dump/

8.2 Related publications not included in the thesis:

[118] Zimmer, B., Lee, Y., Puggelli, A., Kwak, J., Jevtic, R., Keller, B., Bailey,
S., Blagojevic, M., Chiu, P.F., Le, H.P. et al. (2015). A risc-v vector processor
with tightly-integrated switched-capacitor dc-dc converters in 28nm fdsoi. In
VLSI Circuits (VLSI Circuits), 2015 Symposium on, C316–C317, IEEE. 2, 5, 18,
20

[119] Zimmermann, R. (1997). Binary adder architectures for cell-based vlsi and
their synthesis. PhD Thesis, ETH Zurich. 44

133

Abbreviations

EVL effective vector length. 8, 9, 94

MVL maximum vector length. 8, 9, 14, 18, 50, 52, 54, 55, 57–59, 61, 62, 64, 65, 70,
76–81, 85, 94, 97, 103, 106, 109, 113

AF adder family. 27, 30, 31, 38–44, 50, 65

MF multiplier family. 71, 72, 83

ar carry-save array. 71–73, 75, 77, 83–85

bk Brent-Kung. 30, 31, 35, 36, 38, 40–42, 44, 55–57, 62, 63, 65, 113

cla carry-lookahead. 30, 31, 33, 40–42, 44

cosa conditional-sum adder. 30, 31, 33, 34, 40, 41, 44, 56, 57

ks Kogge-Stone. 30, 31, 35, 40–43, 56, 57, 62, 65

rca ripple-carry adder. 30–32, 40, 41, 43–45, 55, 57, 62, 63, 65

wl Wallace. 71, 72, 75, 77, 83–85, 113

EDP Energy-Delay Product. 26

ALU arithmetic logic unit. 17, 18, 20, 21

135

Abbreviations

ANN artificial neural networks. 115

BHFPU Berkeley Hardware Floating-Point Units. 101

Chisel Constructing Hardware in Scala Embedded Language. 100, 101, 103, 105,
110

CPA final carry-propagate addition. 72, 73

CSA carry-save adder. 73, 74

DLP data-level parallelism. 2, 4, 8, 9, 115

EXEU execution unit. 4

FA full adder. 32, 72, 74

FMA fused multiply-add. 5, 8, 14, 18, 87, 88, 90, 91, 101, 110, 115

FP floating-point. 5, 88, 89, 91, 115

FU functional unit. 3, 5, 10, 12, 13, 18, 52, 100

GPU graphics processing unit. 115, 116

HA half adder. 32, 72

HDL hardware description language. 27, 30, 50, 68, 88, 100

IFU instruction fetch unit. 4

ISA instruction set architecture. 8, 18

LSU load-store unit. 4

MC integrated memory controller. 4

MFA modified full adder. 72, 73

136

Abbreviations

MHA modified half adder. 72

MMU memory management unit. 4

PAS physical layout aware synthesis. 15, 23, 24, 27–29, 31, 36–47, 49, 50, 115

PnR place and route. 6, 15, 23, 24, 27–29, 36–47, 67, 68, 83, 88, 97, 101, 115

PPG partial product generation. 72

PPR partial product reduction. 72

QoR quality of results. 29, 101, 110

RNU renaming unit. 4

sdf standard delay format. 51, 98

SIMD single instruction multiple data. 9

STA static timing analysis. 50, 69, 98

TSV through-silicon via. 116

VA vector adder unit. 14, 49, 50, 53, 54, 57–60, 62, 63, 65, 113

vcd Value Change Dump. 51, 69, 98

VFMA vector fused multiply-add unit. 8, 9, 18, 20, 87, 92, 94–98, 101–104, 106–110,
114

VFU vector functional unit. 1, 3, 5, 8–10, 13, 14, 17, 18, 30, 113, 116

VLSI very-large-scale integration. 5, 24

VMR vector mask register. 9, 94, 95, 99, 109

VMU vector multiplier unit. 14, 67–69, 78–85, 113, 114

137

	1 Introduction
	1.1 Motivation
	1.2 Vector Processors Background
	1.2.1 Power- and Energy-Efficiency

	1.3 Clock-Gating Background
	1.4 Thesis contributions and overview

	2 Reference Vector Architecture
	2.1 VectorSim
	2.2 Execution
	2.3 Instruction Set Architecture
	2.4 Vector Register File
	2.5 Memory System
	2.6 High-Level VFU Configuration

	3 Estimation Flows
	3.1 Introduction
	3.2 Metrics
	3.2.1 Basic Metrics
	3.2.2 Derived Metrics

	3.3 Methodology
	3.3.1 Framework
	3.3.2 Design Parameters
	3.3.3 Adder Families
	3.3.4 Power Estimation

	3.4 Results
	3.4.1 Area
	3.4.2 Timing
	3.4.3 Power
	3.4.4 Related Work

	3.5 Summary

	4 Exploration of Energy-Efficient Vector Adders
	4.1 Introduction
	4.2 Methodology
	4.2.1 Framework
	4.2.2 Framework Parameters
	4.2.3 Test Benchmarks Generator - tBenchGen
	4.2.4 Test Benchmarks

	4.3 Design Space Exploration
	4.3.1 Adders Characteristics Discussion
	4.3.2 Multi-lane Effectiveness
	4.3.3 Application-based vs. Random Data Benchmarking

	4.4 VA Selection Guidelines
	4.5 Related Work
	4.6 Summary

	5 Exploration of Energy-Efficient Vector Multipliers
	5.1 Introduction
	5.2 Methodology
	5.2.1 Exploration Framework
	5.2.2 Framework Parameters
	5.2.3 Multiplier Families

	5.3 Multipliers' Characteristics
	5.3.1 Area
	5.3.2 Timing
	5.3.3 Power

	5.4 Multi-Lane Effectiveness
	5.5 VMU Design Guidelines
	5.6 Related Work
	5.7 Summary

	6 Low Power Vector FMA
	6.1 Introduction
	6.2 Related Work
	6.3 Floating-Point Arithmetic Background
	6.3.1 Floating-Point Representation
	6.3.2 Fused Multiply-Add (FMA)

	6.4 Proposed Techniques
	6.4.1 Scalar Operand Clock-Gating (ScalarCG)
	6.4.2 Implicit Scalar Operand Clock-Gating (ImplCG)
	6.4.3 Vector Masking and Vector Multi-Lane-Aware Clock-Gating (MaskCG)
	6.4.4 Input Data Aware Clock-Gating (InputCG)
	6.4.5 Idle Unit Clock-Gating (IdleCG)

	6.5 Methodology
	6.5.1 Exploration Framework
	6.5.2 Benchmarking
	6.5.3 A Fully Parameterizable FMA Generator

	6.6 Evaluation
	6.6.1 Area Efficiency
	6.6.2 Per Technique Power Analysis

	6.7 Real Application-Based Combined Power Evaluation
	6.8 Summary

	7 Conclusions
	8 Publications on the topic
	8.1 Publications from the thesis:
	8.2 Related publications not included in the thesis:

	References

