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Summary 

Aquaporins (AQPs) are integral transmembrane, water-selective channels that enable 

high permeability fluxes of water and some other small solutes across plasma 

membranes. Mammalian spermatozoa are highly permeable to water, which is in 

agreement with the presence of these proteins. However, the presence, localisation and 

function on AQPs in mammalian sperm have been poorly studied, which contrasts with 

the deep knowledge and numerous studies on somatic cells. Against this background, 

the first objective of the present Dissertation was to identify three separate members of 

the AQP family, AQP3, AQP7 and AQP11 in the sperm of two major livestock species 

such as porcine and bovine by immunoblotting. The second objective was to evaluate 

the distribution and localisation of these proteins through immunocytochemistry and 

confocal laser microscopy. Finally, a third objective was to investigate the putative 

function of AQPs in ejaculated boar and bull spermatozoa, through evaluating different 

sperm functional parameters, cryopreservation procedures and fertilizing ability. Results 

from Western blot proved the presence of these three proteins in both livestock species. 

Regarding boar spermatozoa, blots showed the presence of one specific band for AQP3 

(25 KDa), AQP7 (25 KDa) and AQP11 (50 KDa). In the case of bull spermatozoa, the 

same molecular weights were obtained, except for AQP3, where two specific bands 

were observed (30 and 60 kDa). With regard to the second aim, our 

immunocytochemical data indicated that these three proteins exhibited a homogeneous 

distribution and localisation in the ejaculated sperm of both species. In boars, two 

different AQP3-localisation patterns were identified: one was restricted to the mid-piece 

and the other involved the entire tail. In both cases, AQP3 was also present in the 

acrosomal region. In contrast, AQP3 was only found in the mid-piece of bull sperm. In 

relation to AQP7, the distribution of this protein was confined to the connecting-piece 

and partially to the mid-piece of boar sperm. In bull sperm, AQP7 was detected in both 

post-acrosomal region and mid-piece. Finally, AQP11 was found throughout the sperm 

head and tail in both species. Cryopreservation did not affect the localisation of these 

three AQPs, except for AQP7 in boars, which was mainly found at the sperm mid-piece 

and in the acrosomal region following freeze-thawing. Regarding the third objective, 

only relative AQP11-content was significantly and positively correlated with different 

sperm quality parameters in fresh boar spermatozoa. In relation with the possible 
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involvement of these three AQPs with sperm cryotolerance, relative AQP7-amounts in 

fresh semen were significantly higher in GFE than in PFE demonstrating that this 

protein is able to predict the ejaculate freezability in boar and bull sperm before 

cryopreservation procedures take place. In contrast, while AQP3 content was found to 

be involved in the cryotolerance of boar spermatozoa, AQP11 was only related to that 

of bull spermatozoa. Interestingly, bull fresh ejaculates with higher relative amounts of 

AQP11 also exhibited higher in vitro fertilizing ability at post-thawing. In conclusion, 

AQPs are present in boar and bull spermatozoa and play a crucial role in their ability to 

withstand freeze-thawing procedures. All these results contribute to increase our 

knowledge about the function of water channels on mammalian sperm physiology and 

cryopreservation and may also have practical applications for the selection of those 

ejaculates exhibiting higher sperm cryotolerance.  
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Resum 

Les aquaporines són canals selectius transmembrana altament permeables i involucrats 

en el transport de molècules d’aigua i altres soluts a través de les membranes 

biològiques. L’espermatozoide madur de mamífer és una cèl·lula molt permeable a 

l’aigua fet que, en principi, fa pensar amb la presència d’aquestes proteïnes. Tanmateix, 

l’existència, localització i funció de les aquaporines en els espermatozoides de mamífer 

s’ha estudiat més aviat poc, la qual cosa contrasta amb l’elevat nombre d’estudis 

realitzats en cèl·lules somàtiques. Així doncs, el primer objectiu d’aquesta Tesi 

Doctoral va ser determinar la presència de les aquaporines AQP3, AQP7 i AQP11 en els 

espermatozoides de dues espècies d’interès productiu (porcina i bovina) mitjançant el 

mètode de Western blot. El segon objectiu va ser estudiar la distribució i localització 

d’aquestes tres proteïnes emprant mètodes immunocitoquímics i microscòpia òptica 

confocal de rastreig amb làser. Finalment, el tercer objectiu va ser establir la relació 

d’aquestes tres aquaporines amb la qualitat espermàtica i la criotolerància de les 

ejaculacions porcines i bovines. Els resultats de Western blot van demostrar la presència 

d’aquestes tres proteïnes en ambdues espècies animals. En el cas de l’espermatozoide 

porcí, es va identificar una única banda específica per a cadascuna de les aquaporines i 

amb un únic pes molecular, tal i com segueix: 25 KDa per l’AQP3 i l’AQP7 i 50 KDa 

per l’AQP11. Pel que fa a l’espermatozoide de toro, es van obtenir els mateixos 

resultats per l’AQP7 i l’AQP11, però no per l’AQP3 on es van identificar dues bandes 

específiques de 30 i 60 KDa. Quant al segon objectiu, les anàlisis immunocitoquímiques 

van mostrar una distribució i localització homogènies per les tres aquaporines en les 

ejaculacions d’ambdues espècies. En el cas de l’espermatozoide de porcí, es van 

observar dos patrons de distribució per l’AQP3: un restringit a la peça intermèdia i 

l’altre difús a tota la cua. En ambdós casos, també es va observar marcatge a la regió 

acrosòmica. En el cas de l’espermatozoide de toro, es va determinar que l’AQP3 es 

localitzava exclusivament a la peça intermèdia. Pel que fa a l’AQP7, es va trobar 

marcatge a la peça de connexió i, en menor mesura, a la peça intermèdia de 

l’espermatozoide porcí. En el cas de l’espermatozoide de toro, l’AQP7 es va localitzar a 

la peça intermèdia i a la regió post-acrosòmica. Finalment, es va determinar que 

l’AQP11 es trobava al cap i a la cua dels espermatozoide d’ambdues espècies. En 

aquesta Tesi també es van determinar els canvis de localització d’aquestes tres proteïnes 
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durant la criopreservació. No es van observar canvis substancials, llevat del cas de 

l’AQP7 a l’espermatozoide de porcí on s’observava un marcatge més intens a la peça 

intermèdia i a la regió acrosòmica després de la descongelació. Respecte al darrer 

objectiu, es va veure que el contingut relatiu d’AQP11, però no el de les altres dues 

aquaporines, estava correlacionat positivament i significativa amb diferents paràmetres 

de qualitat de l’esperma de porcí. D’altra banda, es va demostrar que la quantitat 

relativa d’AQP7 en els espermatozoides de porc i toro estava relacionada amb la 

congelabilitat de les ejaculacions, de tal manera que aquelles que, abans de la 

criopreservació, presentaven espermatozoides amb un major contingut relatiu d’AQP7 

tenien una criotolerància superior. De manera similar, es va observar que l’AQP3 i 

l’AQP11 estaven relacionades amb la criotolerància dels espermatozoides de porcí i 

boví, respectivament. A més, les ejaculacions bovines fresques amb major quantitat 

relativa d’AQP11 no només van mostrar més tolerància a la criopreservació espermàtica 

sinó que també van exhibir una major capacitat fecundant in vitro després de la 

descongelació. Així doncs, es pot concloure que les aquaporines es troben als 

espermatozoides de porc i toro, on juguen un paper fonamental quant a la seva capacitat 

de resistència enfront als protocols de congelació i descongelació. Tots aquests resultats 

contribueixen a incrementar el nostre coneixement sobre el paper d’aquests canals 

d’aigua en la fisiologia i criopreservació dels espermatozoides, la qual cosa pot ser 

d’utilitat en la selecció de les ejaculacions de major congelabilitat. 
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Resumen 

Las acuaporinas son canales selectivos transmembrana altamente permeables a las 

moléculas de agua y otros solutos, permitiendo su transporte a través de las membranas 

biológicas. El espermatozoide maduro de mamífero es una célula altamente permeable 

al agua, lo que hace pensar en la presencia de estas proteínas. No obstante, la existencia, 

localización y función de las acuaporinas en los espermatozoides de mamífero se ha 

estudiado más bien poco, lo que contrasta con el elevado número de estudios que se han 

realizado en células somáticas. Por ello, el primer objetivo de la presente Tesis Doctoral 

fue determinar la presencia de las acuaporinas AQP3, AQP7 y AQP11 en dos especies 

de interés productivo (el porcino y el vacuno) mediante el método de Western blot. El 

segundo objetivo fue estudiar la distribución y localización de estas tres acuaporinas 

mediante inmunocitoquímica y microscopia óptica láser confocal. Finalmente, el tercer 

objetivo fue establecer la relación de estas tres acuaporinas con la calidad espermática y 

la criotolerancia de los eyaculados de verraco y toro. Los resultados de Western blot 

probaron la presencia de estas tres proteínas en ambas especies animales. En el caso del 

espermatozoide porcino, las tres proteínas se presentaron como bandas específicas y 

únicas con unos pesos moleculares de 25 KDa en el caso de la AQP3 y la AQP7 y de 50 

KDa en el caso de la AQP11. Para el espermatozoide de toro se obtuvieron resultados 

parecidos, exceptuando el caso de la AQP3 donde se identificaron dos bandas 

específicas de 30 y 60 KDa. En relación con el segundo objetivo, los resultados de los 

análisis inmunocitoquímicos mostraron una distribución y localización homogéneas 

para las tres acuaporinas en los eyaculados de ambas especies. En el caso del cerdo, se 

detectaron dos patrones de distribución para la AQP3. En el primero de ellos, el marcaje 

quedaba restringido a la pieza intermedia y en el segundo se difundía a lo largo de la 

cola del espermatozoide. En ambos casos, también se observó marcaje en la región 

acrosómica. En cambio, se observó un único patrón en el caso del espermatozoide de 

toro, localizándose la AQP3 en la pieza intermedia. En cuanto a la AQP7, se observó 

que esta proteína estaba fundamentalmente localizada en la pieza de conexión y, en 

menor medida, en la pieza intermedia del espermatozoide porcino. En lo que al toro se 

refiere, la AQP7 fue detectada en la pieza intermedia y en la región post-acrosómica. 

Finalmente, se determinó que la AQP11 se encontraba en la cabeza y cola de los 

espermatozoides de ambas especies. Cabe destacar que en esta Tesis Doctoral también 
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se observó que la criopreservación espermática no alteraba los patrones de localización 

de las acuaporinas, excepto en el caso de la AQP7 en el espermatozoide porcino la cual 

fue hallada en la pieza intermedia y en la región acrosómica después de su 

descongelación. En relación al último objetivo, se determinó que el contenido relativo 

de la AQP11 en el espermatozoide de verraco estaba positiva y significativamente 

correlacionado con diferentes parámetros de calidad del semen refrigerado. En lo que 

concierne a la relación de estas tres acuaporinas con la criotolerancia, se halló que el 

contenido relativo de la AQP7 en el semen fresco de ambas especies era 

significativamente mayor en los eyaculados de buena (GFE) que en los de mala 

congelabilidad (PFE). Asimismo, se observó que la AQP3 y la AQP11 estaban 

relacionadas con la criotolerancia de los espermatozoides de verraco y toro, 

respectivamente. Además, los eyaculados frescos de toro con mayor contenido de 

AQP11 no sólo mostraron una mejor tolerancia a la criopreservación sino que también 

exhibieron un mayor poder fecundante in vitro después de la descongelación. Así pues, 

se puede concluir que las acuaporinas se encuentran en los espermatozoides de verraco 

y toro, donde juegan un papel fundamental en cuanto a su capacidad de resistencia 

frente a los protocolos de congelación y descongelación. Todos estos resultados 

contribuyen a incrementar nuestro conocimiento acerca del papel de estos canales de 

agua en la fisiología y criopreservación de los espermatozoides, pudiendo tener así 

implicaciones prácticas en la selección de los eyaculados con mejor congelabilidad.
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Riassunto 

Le acquaporine (AQP) sono proteine canale transmembranarie selettive per le molecole 

d’acqua, che permettono un flusso veloce di quest’ultime e di altri piccoli soluti 

attraverso le membrane plasmatiche. Gli spermatozoi dei mammiferi sono altamente 

permeabili all'acqua proprio per la presenza di queste proteine. Nonostante ciò, la 

presenza, la localizzazione e la funzione delle AQP negli spermatozoi dei mammiferi è 

ancora un tema poco studiato, a differenza della profonda conoscenza e dei numerosi 

studi in merito alle cellule somatiche. Proprio per questo motivo, il primo obiettivo della 

presente tesi di dottorato è stata l’identificazione di tre membri distinti appartenenti a 

tale famiglia di proteine, ossia AQP3, AQP7 ed AQP11, in due specie di alto interesse 

produttivo quali il maiale ed il toro, attraverso la tecnica di immunoblotting. Il secondo 

obiettivo preposto è stata la successiva valutazione della loro distribuzione e 

localizzazione nella cellula spermatica attraverso l’utilizzo delle tecniche di 

immunocitochimica e di microscopia laser confocale. Terzo ed ultimo obiettivo è stato 

quello di studiare quale fosse il possibile ruolo di AQP3, AQP7 e AQP11 negli 

spermatozoi di maiale e toro attraverso la valutazione di diversi parametri di qualità 

spermatica, del processo di crioconservazione e della capacità fecondante del seme. I 

risultati di western blot hanno dimostrato la presenza di queste tre acquaporine in 

entrambe le specie animali. Nello spermatozoo di maiale, i dati hanno mostrato la 

presenza di una banda specifica per AQP3 (massa molecolare pari a 25 KDa), AQP7 

(25 KDa) ed AQP11 (50 KDa). Nel caso del toro, sono state identificate le medesime 

masse molecolari, ad eccezione di AQP3 che ha invece presentato due bande specifiche 

pari a 30 e 60 KDa. In relazione al secondo obiettivo, i nostri dati d’immunocitochimica 

hanno indicato che queste tre AQP hanno una distribuzione ed una localizzazione 

omogenea nello sperma di entrambe le specie. Nel suino, per AQP3 sono stati 

identificati due diversi pattern di localizzazione: nel tratto intermedio e in tutta la 

lunghezza della coda degli spermatozoi; in entrambi i casi, AQP3 era anche presente 

nella regione acrosomiale. Al contrario, nel caso del toro, AQP3 è stata trovata solo nel 

tratto intermedio degli spermatozoi. Nel maiale la distribuzione di AQP7 è limitata al 

collo e solo parzialmente al tratto intermedio; nel toro, è stata invece localizzata nella 

regione post-acrosomiale e nel tratto intermedio. Per quanto riguarda AQP11 la 

distribuzione si è dimostrata essere a livello di testa e coda della cellula spermatica, ciò 
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in entrambe le specie studiate. È importante sottolineare che la crioconservazione del 

seme non ha mutato la localizzazione di queste proteine, ad eccezione della AQP7 che 

nel maiale, dopo il processo di congelamento-scongelamento, si è identificata nel tratto 

intermedio e nella regione acrosomiale. In merito al terzo obiettivo, solo il contenuto 

relativo di AQP11 è stato significativamente e positivamente correlato ai diversi 

parametri di qualità spermatica sul seme fresco di maiale. Per quanto riguarda  la 

possibile correlazione di queste tre acquaporine con la criotolleranza, il contenuto 

relativo di AQP7 nel seme fresco di maiale e di toro è stato significativamente maggiore 

i quegli eiaculati aventi una maggiore criotolleranzza (GFE) rispetto a  quelli in cui 

quest’ultima era inferiore (PFE), dimostrando che AQP7 è in grado di predire la 

congelabilità del seme prima del congelamento in entrambe le specie. Al contrario, il 

contenuto di AQP3  è si è mostrato correlato alla criotolleranza solamente nel maiale, e 

l’AQP11 unicamente nel toro. È interessante notare che gli eiaculati freschi di toro con 

una maggiore quantità relativa di AQP11 hanno evidenziato, allo scongelamento, una 

capacità fecondante in vitro più alta. Tutti questi risultati possono contribuire ad 

aumentare le nostre conoscenze sul ruolo dei canali acqua-selettivi nella fisiologia della 

cellula spermatica dei mammiferi e nella sua crioconservazione e ciò potrebbe avere 

anche applicazioni pratiche per quanto riguarda la scelta di eiaculati con una maggiore 

criotolleranza nel processo di crioconservazione del seme. 
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Thesis Outline 

The present Thesis dissertation is divided into three sections and a final part for 

concluding remarks. It also provides a summary and its translation into Catalan, Spanish 

and Italian. 

 

The first section is a general introduction about the current knowledge of aquaporins 

(AQPs) and also includes global overviews on pig, cattle and spermatology. The 

objectives of this Thesis are also stated at the end of this first section.  

 

The second section contains the main contributions and specifically describes the 

results obtained. This section consists of five papers and all are organized in a similar 

way. A specific introduction covering the research related to the aims; the materials and 

methods; the results obtained; a specific discussion together with suggestions for future 

investigations; and the conclusions of the study. 

 

 Paper I and Paper II were aimed at investigating the presence and localisation of 

three AQPs (AQP3, AQP7 and AQP11) in boar spermatozoa and their potential 

relationship between these three water channels and sperm quality in boar 

extended semen. 

 

 Paper III was conducted to address whether the relative content of AQP3, AQP7 

and AQP11 in boar spermatozoa differed between good (GFE) and poor (PFE) 

freezability ejaculates, and whether freeze-thawing procedures induced any 

change in the localisation of these three AQPs. 

 

 Paper IV and Paper V were performed to identify and determine the precise 

localisation of AQP3, AQP7 and AQP11 in fresh and frozen-thawed bull 

spermatozoa and to evaluate the relationship between the relative abundance of 

these proteins and bull sperm cryotolerance. In addition, the relationship between 

relative AQP11-content in fresh bull semen and in vitro fertilization (IVF) 

outcomes of frozen-thawed sperm was also investigated. 
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The third section is a general discussion that deals with the results obtained in these 

five papers and suggests different scenarios for further research.  

The last part of this Thesis dissertation, the concluding remarks, is a summary of the 

most important findings from the five papers of this Thesis.  



 

 

 

 

 

 

 

 
Introduction 
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Introduction 

1. Porcine and bovine market and the importance of reproductive 

biotechnologies in these sectors 

 

The pig is a very important agro-economically mammal with a worldwide distribution. 

Consumers interest for pork meat in their daily meals is increasing. This makes the pig 

one of the main food resources for humans around the world (reviewed by Knox, 2014). 

Pigs have adapted to survive in a great diversity of environments. In addition, their 

efficiency has been related to their high fertility, short interval to maturity, short 

gestation period (about 113 days), high litter size and quick tendency to rebreed 

(reviewed by Knox, 2014). All these features make this animal as one of the most 

efficient livestock species for global food production.  

Worldwide, the EU is the second largest producer of pork (20%) after China 

(50%). Spain is the fourth producer after China, USA and Germany (European 

Statistics; EUROSTAT, 2015; Ministry of Agriculture, Food and Environment; 

MAGRAMA, 2015). According to figures released for 2015, the pig sector in Spain 

represented 14% of the final agricultural production and 37% of the final livestock 

production. As shown in Figure 1, Catalonia was the main producing region, 

accounting for 42.29% of the total pig production in Spain, followed by Castile and 

Leon (13.9%). 

 

 

 

 

 

 

 

 

Figure 1. Regional distribution of pork production in Spain in 2015. Source: MAGRAMA, 2015. 

 

Besides the importance of pig for agricultural purposes, it is also important as a 

model for biomedical studies. Taking into account that humans and pigs share many 
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similarities, the use of pig organs for therapeutic applications and xenotransplantation is 

an issue of great interest that merits further research (reviewed by Nieman & Rath, 2001 

and Flisiokowska et al. 2013).  

In Spain, bovine production has a dual purpose. For this reason, there are two 

production systems involving different breeds for beef and milk production. Regarding 

meat, and compared to the pig, beef has a longer production cycle, lower feed efficiency 

(conversion index) and higher value of individual animals. For this reason, prices in the 

beef sector are higher than those for the pig, which in turn explains the consumer 

preference for pork meat. In addition, all these reasons also make dairy animals more 

profitable than beef cattle (EUROSTAT, 2015). According to MAGRAMA, the beef 

sector in 2015 represented 6% of the final agricultural production in Spain. In terms of 

Spanish livestock production, beef cattle ranks at the fourth place after pig, dairy cattle 

and poultry, representing 16.49% of the final livestock production. When comparing the 

European countries, Spain ranked at the fifth place in beef cattle production in 2015, 

after France, Germany, United Kingdom and Ireland. By regions, the most important 

ones were Castile and Leon (21% of Spanish production) followed by Galicia (15%), 

Extremadura (13%), Catalonia (11%) and Andalusia (8%) (MAGRAMA, 2015; Figure 

2).  

 

 

 

 

 

 

 

 

Figure 2. The distribution of the production of bovine in Spain by autonomous communities in 2015. 

Source: MAGRAMA, 2015. 

 

On the other hand, most of the milk produced in Spain is from bovine origin. 

Concretely, 89.75% of the total milk produced in Spain during 2015 was from bovine 

origin, followed by that obtained from ovine (5.50%) and caprine species (4.75%; Dairy 

Interbranch Organization; INLAC, 2016). The dairy sector in Spain focuses on the 

production of milk, cheese, yoghurts, butter and other derivates. Following the quotas 

set by the European Commission (SIGLAC), 5,973,272 tonnes of milk were produced 
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in Spain between 1 April 2014 and 31 March 2015 (MAGRAMA, 2016). By regions, 

the major production was concentrated in the Cantabrian coast (56%), which comprises 

Galicia (38%), Asturias (10%) and Cantabria (8%), and in Castile and Leon (13%; 

MAGRAMA, 2016).  

In the recent decades, the global livestock sector has changed rapidly in response 

to globalization and demand and consumption of animal-source food have much 

increased. Currently, livestock is one of the fastest-growing sectors in agriculture in 

developing countries (Thornton, 2010), as provides essential nutrients through meat, 

dairy and eggs as well as wool and leather (FAO, 2012). Related to this, reproductive 

biotechnologies in livestock have contributed to increase productivity, which can help 

to fight poverty and hunger, reduce the threats of diseases and ensure environmental 

sustainability in developing countries (FAO, 2010). The most applied biotechnology in 

the reproduction of farm animals is Artificial Insemination (AI) which in combination 

with sperm preservation enables the genetic improvement and dissemination of selected 

male germplasm (FAO, 2010). In effect, these technologies have been utilised in several 

species, particularly in dairy cattle in which the impact on genetic improvement and 

control of venereal diseases has been very high (reviewed by Foote, 2001). In other 

species, such as the pig, AI with fresh/extended semen is used in 95% of cases 

(reviewed by Riesenbeck, 2011 and Rodríguez-Gil & Estrada, 2013). Due to their high 

sensitivity to cold shock, the use of cryopreserved sperm in pigs is less often than in 

horses and cattle (reviewed by Curry, 2000 and Bailey et al. 2008). A main concern is 

the fact that pregnancy rates and litter sizes are reduced with cryopreserved boar sperm 

(reviewed by Knox, 2015). This topic has also gained further knowledge from the 

prediction of boar sperm freezability, another matter of concern that also contributes to 

explain the low use of frozen-thawed boar sperm for breeding purposes (see Section 

5.1). 

 

1.1 Piétrain pig breed 

 This swine breed was originated in Belgium, specifically at a town called Brabant. In 

morphologic terms, the breed is of medium size, white colour with black spots, robust 

and long body, and erected ears. Moreover, the extremities are shorter than in other 

breeds (MAGRAMA, 2011; Figure 3).   
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Piétrain breed is extremely heavy muscled and their meat carries a high 

proportion of lean to fat, which makes Piétrain males to be used as terminal boars. 

However, the breed presents a low growth and requires a high level of feeding to 

increase its weight (i.e. low conversion index; Spanish Federation of Associations of 

Select Livestock; FAEGAS, 2010). Moreover, Piétrain breed is characterized for low 

prolificacy rates in females (few piglets per sow and year), bad nursery performance and 

poor milk production (Quiniou et al. 2007).  

On the other hand, it is worth mentioning that some Piétrain individuals carry a 

gene mutation which affects the quality of meat. Intramuscular fat (IMF) content in 

Piétrain breed is associated with a mutation (HALn) in the halothane genotype (HALN), 

which presents a recessive pattern. More than 80% of total Piétrain breed population are 

homozygous recessive (HALn/n) and this genotype is related to low quality meat, with 

features such as pale, soft and exudative (PSE) (Alves et al. 2014). This determines the 

use of Piétrain individuals for producing fresh meat like ham, sausages or mortadella 

rather than higher quality products such as cured ham, bacon or pork loin (Alves et al. 

2014). For these reasons, the use of Piétrain purebred in pig production is relatively 

rare. Instead, this breed is more commonly used in crossbreeding programs with sows 

from other breeds as this improves carcass quality (Rybarczyk et al. 2011). 

 

1.2 Holstein bovine breed  

Holstein is a bovine breed originating from separate regions, North Holland, Friesland, 

Germany and Netherlands. Two breeds of cattle, black animals from Germany and 

white animals from Holland were crossed to create a new breed of cattle. This 

Figure 3. Phenotype characteristics of Piétrain 

boar. Source: FAO, 2012. 
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crossbreed consists of large-size animals of white colour with black or red spotted 

markings (Holstein Association USA, Inc, 2016; Figure 4).  

 

 

 

 

 

 

 

 

 

 

Holstein cattle are known as the world’s highest-production dairy animals. The 

breed is characterized by good durability, high productivity and high fat and protein 

levels in milk, making it a cost-effective and highly profitable livestock in farms around 

the world (Holstein Association USA, Inc, 2016). Moreover, the breed produces 

vigorous calves, distinguished by rapid growth, early maturity and easy care. Apart 

from this, these animals also contribute to the meat supply worldwide. Related with this, 

the Holstein breed produces a high quality beef with less external fat in comparison 

with other breeds such as Airshires, Brown Swiss, Guernseys and Jerseys (The SA 

Holstein Society, 2016).  

 

2. Generalities of reproduction  

 

2.1 Overview 

There is a widespread variation in gamete structure, particularly on male gametes. 

Within this context, spermatozoa show a pronounced degree of variation both in shape 

and size among mammals as a result of evolution. Nevertheless, they all share a 

common structure and function (i.e. to fertilize ova) (reviewed by Gomendio & Roldan, 

2008). Generally speaking, two major parts are distinguished in the mammalian 

ejaculated spermatozoon. The first comprises the head that carries the male genome 

(haploid nucleus) and the mechanisms for sperm-oocyte recognition, interaction and 

fusion (acrosome). The second includes the tail which contains the mitochondrial piece 

Figure 4. Phenotype characteristics of Holstein Bull. Source: 

Holstein Association USA, Inc, 2016. 
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and is involved in the intrinsic sperm motility following activation and hyperactivation 

(Briz & Fàbrega, 2013).  

 

2.2 General structure of mammalian spermatozoa  

The sperm head comprises the acrosome and the nucleus being surrounded by the 

plasma membrane (reviewed by Pesch & Bergmann, 2006). 

The acrosome looks like a cap enveloping the anterior part of sperm head. It is a 

secretory vesicle that contains mucopolisaccharides, proteins, lipids and hydrolytic 

enzymes (hyaluronidase and acrosin) to digest the oocyte covers (Zona Pellucida; ZP) 

and possibly cumulus cells during fertilization. Although the acrosomal membrane is a 

continuous vesicle, the upper surface is called the outer acrosomal membrane and the 

lower surface facing the nucleus is called the inner acrosomal membrane (Briz & 

Fàbrega, 2013). In addition, the acrosome is divided into four morphological segments 

corresponding to three plasma membrane domains of the acrosomal region: apical, pre-

equatorial and equatorial (Briz & Fàbrega, 2013). While the two first regions are 

exocytosed when spermatozoa pass through the cumulus cells or interact with the zona 

pellucida, the equatorial region is retained after acrosomal exocytosis (Manandhar & 

Toshimori, 2001). 

The haploid nucleus constitutes the major part of the sperm head and contains 

the highly compact, hypercondensed chromatin with the transcriptionally inactive 

genetic information (reviewed by Pesch & Bergmann, 2006). The enormous compaction 

of sperm chromatin is due to the partially replacement of histones by protamines. These 

proteins are capable of forming stable disulphide bounds (S-S) that protect the sperm 

chromatin from damage. After fertilization, protamines are reduced by the reduced 

glutathione present in the oocyte cytoplasm, which reduces disulphide bonds (S-S) to 

sulfhydryl groups (-SH) allowing sperm head to decondense (Manandhar & Sutovsky, 

2007).  

The connecting piece or neck of the spermatozoon is a short linking segment 

located between the base of the head and the first mitochondrion of the mid-piece that 

plays a crucial role upon sperm-oocyte fusion as it harbors the proximal centriole (Briz 

& Fàbrega, 2013). 

The tail is the longest part and impulses the spermatozoon with a helicoidal 

forward movement through the uterus and oviduct until meets and penetrates the oocyte 

(Manandhar & Sutovsky, 2007). It has a filamentous and cylindrical shape and can be 
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subdivided into three pieces: the mid-piece, presenting an axonematic structure covered 

with a mitochondrial sheath (diverse mitochondria helicoidally disposed around the 

axonema) that plays a major role during sperm capacitation; the principal piece, 

presenting an axonematic structure covered with a fibrous sheath; and the terminal 

piece, having a simple axonematic structure enclosed by the plasmalemma (Briz & 

Fàbrega, 2013). The mid-piece is connected with the principal piece by the Jensen’s 

ring, a circumference of packed filamentous subunits attaching the two structures that 

avoids displacements of the mitochondrial sheath (Guan et al. 2009; Briz & Fàbrega 

2013; Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. General structure of mammalian spermatozoa. Source: Modified from Brewis & Gadella, 2009.  

 

2.3 Morphological differences between species 

The principal mission of a mammalian sperm cell is the transmission of paternal 

genome to the next generation. To accomplish this goal, these cells are very specialized 

and have an accurate cellular design that is related with the evolutionary reproductive 

strategy of each species (Rodríguez-Gil, 2013). Despite spermatozoa showing a 

remarkable uniformity in their structure across mammalian species, there is a wide 

variation. Concretely, differences between species exist in the lengths and widths of 

spermatozoa and in the shapes of sperm heads (reviewed by Yániz et al. 2015). Table 1 

summarizes the dimensions of sperm from different species. 
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Table 1.  Differences in sperm dimensions between different species (Pesch & Bergmann, 2006). 

Species 
Length 

(µm) 

Head 

(µm) 

Mid-piece 

(µm) 

Principal piece 

(µm) 

Length Width Shape Length Width Length Width 

Man 50-60 3.4-4.6 1.5-2.8 Paddle shaped 3.5-5 0.6-0.8 44-50 0.4-0.5 

Stallion 60 5 2.4 Paddle shaped 8 0.5 30 0.49 

Boar 50-60 8.5 4.25 Paddle shaped 10 * 30 * 

Bull 75-90 9.15 4.25 Paddle shaped 14.84 0.67 50 0.51 

Sheep ram 70-80 8.2 4.25 Paddle shaped 14 0.8 45 0.5 

 

Apart from these morphological differences, the composition of their plasma 

membrane and their resilience to withstand cryopreservation procedures are also diverse 

(See Section 5.1).  

 

3. Cell membranes 

 

3.1 Composition and structure of cellular membranes 

Nowadays, the consensual model to describe the plasma membrane structure and 

function is called the fluid mosaic model. This theory was formulated by Singer and 

Nicolson in the 1970s (Singer & Nicolson, 1972; reviewed by Lombard, 2014). 

According to this model, mammalian cell membranes consist of a lipid bilayer 

composed primarily of phospholipids and cholesterol. The structure also contains 

integral and peripheral proteins embedded into the lipid bilayer and carbohydrates as 

minority compounds attached to either lipids (glycolipids) or proteins (glycoproteins) 

on the outer layer of the plasma membrane (Cooper, 2000; Figure 6). The ‘mosaic’ 

term refers to the mixture of lipids and proteins in the membrane and the ‘fluid’ term 

corresponds to the capacity of the movement of the components across this structure 

(reviewed by Lombard, 2014).  
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Figure 6. Schematic diagram of biological membranes structure. Source: Lombard, 2014. 

 

The four major phospholipids are phosphatidylcholine (PC), phosphatidylserine 

(PS), phosphatidylethanolamine (PE) and sphingomyelin (SM). Their distribution is 

asymmetric. While the outer side of the plasma membrane mainly contains PC and SM, 

PE and PS are present in the inner layer. In addition, a fifth phospholipid called 

phosphatidylinositol (PI) is localized in the inner plasma membrane in minor quantities 

and plays a crucial in transduction signal pathways involving G-coupled proteins 

(Cooper, 2000; Figure 7). 

 

 

   

 

 

 

 

Figure 7. General structure of an animal cell membrane. Source: Cooper, 2000. 

 

The interior of lipid bilayer is occupied by hydrophobic fatty acid chains. There 

are responsible for membrane impermeability to water-soluble molecules. Fatty acids 

may be saturated or unsaturated (with one or more double bounds). Unsaturated chains 

introduce kinks into the hydrocarbon structure which makes them difficult to pack into a 

regular structure. This strategy allows plasma membrane to remain fluid at low 
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temperatures (Alberts et al. 2002). With regard to cholesterol, this molecule plays an 

important role in determining membrane fluidity. It presents a hydrocarbon ring 

structure which interacts with fatty acid chains of phospholipids decreasing their 

mobility, which in turn makes this structure more rigid (Cooper, 2000). These features 

are of great importance in certain processes, such as sperm cryopreservation in which 

the fluidity of membrane at low temperatures determine their sensitiveness to freezing 

and thawing (See Section 5.1). 

It has been observed that lipid molecules mix randomly across the lipid 

monolayer. The attractive forces between tails of neighbour fatty acids hold the adjacent 

molecules together in small micro domains known as lipid rafts. These domains are rich 

in sphingolipids, cholesterol and proteins (Alberts et al. 2002; Figure 8). Since lipid 

rafts in gametes contain proteins that regulate intracellular functions and cell signalling, 

these domains are important for sperm maturation, fertilization, and early 

embryogenesis (reviewed by Kawano et al. 2011). 

 

 

 

 

 

 

 

 

 

 

On the other hand, the protein fraction is the other major constituent of cell 

membranes. These proteins are involved in cell signalling and in the active and passive 

transports of ion/solutes (See Section 3.2). Finally, despite being a minority, 

carbohydrates also play an important paper in the cell recognition process (Alberts et al. 

2002). 

 

3.2 Cellular transport 

The plasma membrane is a semi-permeable barrier between the cell and the extracellular 

environment (Lodish et al. 2000). In short, the semi-permeable nature of cell membrane 

determines which molecules can enter the cell. Small hydrophobic molecules and gases 

Figure 8. Lipid raft structure. Source: Kulkarni, 2012.  
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such as carbon dioxide and oxygen cross membranes rapidly without any assistance. On 

the other hand, small polar molecules such as water and ethanol can also traverse 

membranes but at lower diffusion rates. Moreover, cell membranes limit the pass of 

charged molecules as ions and large molecules such as sugars or amino acids. The 

passage of these molecules requires a specific transport mediated by proteins (reviewed 

by Watson, 2015).  

There are two mechanisms (passive and active) by which molecules can move 

across plasma membranes. The first mechanism, called passive transport, consists of the 

movement of substances across membranes in favour of their gradient of concentration 

and without requiring any energy (reviewed by Watson, 2015; Figure 9). There are two 

types of passive transport: simple and facilitated diffusion. Simple diffusion is a non-

selective process that enables the transport of small hydrophobic molecules and gases 

that are able to freely diffuse across the phospholipid bilayer. In contrast, facilitated 

diffusion is mediated by transmembrane integral proteins as the transported ions and 

molecules, which are large, polar and charged, are not able to pass through the 

phospholipid bilayer. There are two classes of proteins involved in facilitated diffusion: 

carrier and channel proteins. Whereas carrier proteins allow the transport of specific 

molecules through conformational changes and are responsible for the transport of 

sugars, amino acids and nucleosides, channel proteins enable the transport of any 

molecule with appropriate size and charge, generally polar and charged substances, 

forming a hydrophilic passage (Cooper, 2000).  

Active transport requires energy and occurs when substances are transported 

against concentration gradients (reviewed by Watson, 2015). There are three ways of 

driving active transport: coupled-carriers, ATP-driven pumps and light-driven pumps, 

which are mainly found in bacterial cells (Alberts et al. 2002). 

 

 

 

 

 

 

 

 

Figure 9. Diagram illustrating the main differences between active and passive transport 

Source: Alberts et al. 2002. 
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4. Water transport and functional diversity of Aquaporins 

 

4.1 The importance of water and their transport through lipid bilayer 

membranes 

Water is the main component of cells and tissues and plays an essential role for all 

physiological and biochemical processes in live organisms (reviewed by Sales et al. 

2013). Therefore, water can be described as the "solvent of life" since there is no life 

without water (reviewed by Agre, 2006). Cell survival requires the suitable 

concentration of water and solutes. It is crucial that the right substances enter cells (e.g. 

nutrients) and waste substances (e.g. toxins) are removed (reviewed by Watson, 2015). 

Biological membranes have an intrinsic water permeability that depends upon their lipid 

composition (reviewed by Törnroth-Horsefield et al. 2010). Due to the hydrophobic 

nature of lipid bilayer, water penetrates slowly this structure by simple diffusion 

(reviewed by Huang et al. 2006a and Matsuzaki et al. 2002). In fact, if water only 

passed through plasma membrane via simple diffusion, it would be hard to explain 

water permeability of some cells, such as red blood cells, renal tubular epithelial cells or 

gametes (reviewed by Huang et al. 2006a). For this reason, Sidel and Solomon (1957) 

early assumed that water should mainly flow through cell membranes by a passive 

transport mechanism other than simple diffusion (Figure 10; reviewed by Parisi et al. 

2007). Nevertheless, it not was until the early nineties when Peter Agre and their 

colleagues discovered the Aquaporins (AQPs) (Preston et al. 1992). 

 

 

 

 

 

 

 

 

 

 

Figure 10. Schematic representation of the different types of passive transport. Source: modified from 

Watson, 2015. 
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4.2 Aquaporins: Water Channel Proteins 

 

4.2.1 Discovery  

The first water channel protein (Aquaporin) was discovered in 1992 by Professor Peter 

Agre (Figure 11). The contribution of this researcher to the study of structural and 

functional properties of AQPs and their distribution across tissues made him to be 

awarded with the Nobel Prize in Chemistry in 2003. This award was shared with 

Professor Roderick MacKinnon, who focused his research upon the structure and 

function of ion channels, specifically those of potassium (K+) (reviewed by Mackinnon, 

2004).  

Agre and his colleagues of Johns Hopkins University were trying to purify a 32-

kDa protein related to the determination of Rh blood group when they found a 

polypeptide of lower weight (28 kDa) that was co-purified with the targeted protein. 

The structural analysis of this molecule indicated that it was an integral membrane 

protein with no relationship with the Rh protein. Interestingly, Agre and colleagues 

found that this polypeptide was identical to another one found in the kidney. The fact 

that red blood cells and kidney tubules are highly permeable to water led these 

researchers to suggest that this new protein of 28 kDa could be related with water 

transport (Preston et al. 1992).                   

 

 

 

 

 

 

 

 

                                 Figure 11. Prof Peter Agre. Source: Agre, 2004. 

 

This hypothesis was later tested by Dr Gregory Preston, a Postdoctoral 

researcher working at Agre’s Lab. Preston cloned the sequence of this new protein and 

microinjected a cRNA construct into Xenopus laevis oocytes which have very low water 

permeability. Control oocytes were injected with water alone. After microinjection, both 

control and treated oocytes were dropped into distilled water. While control oocytes fad 
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to swell due to their low water permeability, those microinjected with the cRNA 

encoding for the AQP exhibited higher water permeability and swollen and 

subsequently exploded when came into contact with distilled water (Figure 12). These 

results confirmed the initial hypothesis and this protein, which was initially named as 

CHIP28 due to its molecular weight, was finally called AQP1 (Preston et al. 1992).      

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Discovery of AQP1. Functional demonstration of AQP1 as a water transporter in Xenopus 

laevis oocytes. Upper left: Control oocyte (injected with water) not expressing recombinant-AQP1 (left) 

and treated oocyte (injected with cRNA expressing AQP1 (right). Thirty seconds after coming into 

contact with distilled water, AQP1-injected oocytes began to swell by osmosis and they exploded after 

three minutes (bottom left image). Right: Postdoctoral Researcher Dr. Gregory Preston. Source: Agre, 

2006. 

 

4.2.2 Function 

Aquaporins, from the Latin words aqua=water and porus=passage, are a family of 

highly conserved, integral transmembrane proteins that serve as selective water 

channels (Agre et al. 1993). This family of proteins belong to the superfamily of 

integral membrane channel proteins, known as major intrinsic proteins (MIP) 

(Marchler-Bauer et al. 2013). Aquaporins allow the passage of water and, in some 

cases, certain small uncharged solutes such as glycerol (Borgnia & Agre, 2001; Grayson 

et al. 2003), urea (Borgnia et al. 1999; Litman et al. 2009), ammonia (Saparov et al. 

2007) and arsenite (Liu et al. 2002) across the membrane. This increases the transport 

rates of these molecules across the plasma membrane by 10-100 fold (reviewed by Agre 

et al. 2002). Aquaporins are considered as passive transporters, so that the driven force 
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for moving water molecules across channels is the osmotic gradient (reviewed by Perez 

Di Giorgio et al. 2014).  

 

4.2.3 Classification and structure 

Thus far, 13 members of the AQP family have been identified in mammalian cells 

(reviewed by Huang et al. 2006a). Although the presence of AQPs relies upon cell types 

and tissues, more than one isoform may be expressed in a given cell or tissue at the 

same time (reviewed by Matsuzaki et al. 2002 and Verkman, 2005; Table 2). 

Aquaporins are subdivided on the basis of their sequence similarity and substrate 

selectivity into three major groups (reviewed by Agre et al. 2002 and Ishibashi et al. 

2009): orthodox AQPs, aquaglyceroporins (GLPs) and superaquaporins (reviewed by 

Sales et al. 2013). The first group is composed of seven members: AQP0, AQP1, 

AQP2, AQP4, AQP5, AQP6 and AQP8. They are water-selective channels, because 

they are permeable to water but not to small organic and inorganic ions/molecules 

(reviewed by Huang et al. 2006a). In spite of this, the anion conductance of AQP6 is 

involved in the transport chloride anion (Cl-) at low pH (Yasui et al. 1999b). 

The second group, also known as aquaglyceroporins, includes four members: 

AQP3, AQP7, AQP9 and AQP10, which are not only permeable to water but also to 

glycerol, urea and other small non-electrolytes (reviewed by Borgnia et al. 1999 and 

Agre et al. 2002). The basic difference between orthodox AQPs and GLPs is the pore 

size. In the case of orthodox AQPs, the pore measures about 2.8 Å whereas in GLPs 

measures 3.4 Å (reviewed by Sales et al. 2013). 

Finally, the third group, also known as superaquaporins, includes AQP11 and 

AQP12, which present low homology to the other two groups (Murai-Hatano et al. 

2008). They are permeable to water and AQP11 has been suggested to be a glycerol 

channel in human adipocytes (Madeira et al. 2014). Superaquaporins differ from 

orthodox AQPs and GLPs in the absence of the asparagine-proline-alanine (NPA) 

motif, as alanine is replaced by cysteine (NPC) (Gorelick et al. 2006). They are 

expressed inside the cell and they are concretely localized in the membrane of 

intracellular organelles rather than in the plasma membrane. Therefore, superAQPs are 

involved in the intracellular water transport and the regulation of organelle volume and 

intravesicular homeostasis (reviewed by Ishibashi, 2006; Nozaki et al. 2008 and Badaut 

et al. 2014). The derivate NPA boxes may cause this intracellular retention (reviewed 

by Ishibashi et al. 2009).  
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              Table 2. Tissue distribution and roles of mammalian AQPs (Matsuzaki et al. 2002; Sales et al. 2013; Ricanek et al.  2015).  

Aquaporin 
Permeability 

characteristics 
Localisation Possible function 

AQP0 Water (Low) Lens fiber cell Sustain lens transparency 

AQP1 Water (High) 

 

Erythrocyte 

Capillary endothelium 

Kidney proximal tubule, Henle’s loop and vasa recta 

Corneal endothelium, iris and ciliary lens epithelia 

Epithelium of respiratory system 

Cholangiocyte 

 

 

Water transport 

Water transport across vessel wall 

Urinary concentration 

Water movement in ocular tissues 

Osmoprotection 

Bile modification 

 

AQP2 Water (High) 

 

Kidney collecting duct 

 

 

Urinary concentration 

 

AQP3 
Water (High) 

Glycerol (High) 

Urea (Moderate) 

 

Kidney collecting duct 

Epithelium of urinary tract 

Epithelium of respiratory system 

Epithelium of digestive tract 

Epidermis of skin 

Corneal epithelium 

Conjunctival epithelium 

Meningeal cells 

 

Urinary concertation 

Osmoprotection 

Osmoprotection 

Osmoprotection 

Osmoprotection 

Osmoprotection 

Osmoprotection 

Transfer of cerebrospinal fluid 

AQP4 Water (High) 

 

Kidney collecting duct 

Gastric parietal cell 

Epithelium of respiratory system 

Meningeal cell, ependymal cell 

Glial cell 

Retinal glia 

Skeletal muscle 

 

Urinary concertation 

Gastric-acid secretion 

Osmoprotection 

Transfer of cerebrospinal fluid 

Regulation of brain volume 

Water movement in ocular tissues 

Muscle-volume regulation 
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AQP5 Water (High) 

 

Salivary gland 

Lacrimal gland 

Sweat gland 

Alveolar type I pneumocyte 

Corneal epithelium 

 

Salivary secretion 

Tear secretion 

Sweat secretion 

Water transfer between alveolar and air spaces 

Water movement in ocular tissues 

AQP6 Water (Low) Kidney collecting duct Urinary concentration 

 

 

 

AQP7 

 

Water (High) 

Glycerol (High) 

Urea (High) 

Arsenite (High) 

 

Kidney proximal tubule 

Adipose tissue 

 

 

Urinary concentration 

Regulator of adipocyte metabolism/ Glycerol transport 

 

AQP8 Water (High) 

 

Kidney proximal tubule 

Epithelium of duodenum, jejunum and colon 

Bile canaliculus 

Pancreatic acinar cell 

Liver 

 

Urinary concertation 

Water absorption and colonic fluid transport 

Bile secretion 

Secretion of pancreatic juice 

Unknown 

AQP9 

Water (High) 

Glycerol (High) 

Urea (High), 

Arsenite 

Liver 

Leucocytes 
Hepatocyte glycerol influx and urea efflux 

Regulation of leukocytes volume 

AQP10 
Water (Low) 

Glycerol (High) 

Urea (High) 

 

Small intestine 
Water absorption 

AQP11 Water (High) 
Kidney 

Liver 
Water movement across intracellular membranes 

AQP12 Water (High) Pancreas 
Water movement across intracellular membranes, 

digestive enzyme secretion and pancreas cell fluids 
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Structural studies of AQPs have revealed that they are assembled in the cell 

membrane as tetramers (reviewed by Agre, 2002; Figure 13). As each monomer in the 

tetramer has been demonstrated to be a functional unit (Preston et al. 1992; Shi et al. 

1994), the tetrameric structure has been proposed to be necessary to stabilize the 

position of individual monomers (reviewed by Agre, 2006). 

 

 

 

 

 

 

 

 

Figure 13. Tetrameric structure of AQPs with monomers labelled 1-4 (Verkman et al. 2014). 

 

Each monomer consists of a single polypeptide chain of approximately 270 

amino acids and spans the membrane six times with six hydrophobic, transmembrane α-

helices (TMH1-6) (Maurel et al. 1993; Benga 2009). These helices are connected by 

three extracellular loops (loops A, C and E) and two intracellular loops (loops B and D) 

(reviewed by Fujiyoshi et al. 2002 and Kruse et al. 2006). Both the amino- and 

carboxyl-terminal ends are always located in the cytoplasm and show a significant 

sequence similarity suggesting an ancient gene duplication (Zardoya & Villalba, 2001; 

Quigley et al 2002). Loops B and E are hydrophobic and present a conserved domain 

composed by asparagine-proline-alanine (NPA) which is associated with substrate 

selectivity because play a critical function in charge and size obstacle (Zardoya & 

Villalba, 2001; Wallace & Roberts, 2004). Loops B and E overlap into the membrane 

forming a single transmembrane aqueous pathway (hourglass structural model). The 

center of the molecule is formed by oppositely juxtaposing two NPA motifs (reviewed 

by Echevarría & Zardoya, 2006). Both loops stay in touch through their proline residues 

and hydrophilic asparagine residues are vital for protein selectivity (reviewed by Agre 

& Kozono, 2003). 



Introduction 

                                                                                                                 

                                             

                                                                                                                    

Noelia Prieto Martínez | Aquaporins in boar and bull spermatozoa - 33 - 
 

 

There is a second narrower pore constriction called aromatic/arginine (ar/R) 

which is composed of four residues, two from helices 2 (H2) and 5 (H5) and two from 

loop E (LE1 and the invariant R). This region is based on the presence of a conserved 

arginine residue in loop E and on the high prelevance of aromatic residues at H2. This 

constriction is involved in the rejection of large molecules and determines the rate of 

transport (Fu et al. 2000; Sui et al. 2001; Harries et al. 2004; Mitami-Ueno et al. 2011).    

Finally, AQPs also have a third motif called AEF (Ala-Glu-Phe) that is located 

in TMH1. This motif is conserved in all family members but its function is still 

unknown (Zardoya & Villalba, 2001; Perez Di Giorgio et al. 2014; Figure 14). 

The discrimination between water or glycerol molecules seems to be given by 

the P1-P5 motif (Froger et al. 1998). P1 is located in the terminal part of H3 and is 

occupied by a non-aromatic amino acid in the case of AQPs conducting water (also 

called orthodox AQPs) and by an aromatic residue in the case of GLPs. Moreover, P2 

and P3 are located in loop E after the second NPA motif and are normally formed by a 

Ser-Ala pair in orthodox AQPs and by Asp-Arg or Asp-Lys residues in GLPs. All GLPs 

identified thus far contain an aspartic acid (Asp) residue at position P2. This contrasts 

with orthodox AQPs, which do not present aspartic acid at P2. In fact, the presence of 

aspartic acid at P2 expands the pore and makes it able to accept large molecules such as 

glycerol. This is the reason why GLPs but not orthodox AQPs are able to allow the 

passage of molecules other than water. Finally, P4 and P5 are located in H6. While they 

contain aromatic residues in orthodox AQPs, there is a proline followed by a non-

aromatic residue in GLPs (Hub & de Groot, 2008). 
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Figure 14. Left: Schematic representation of the classical structure of AQPs. An AQP monomer showing 

the six transmembrane helices (TMH1-6) connected by two intracellular (B and D) and three extracellular 

(A, C and E) loops. NPA motifs are shown in yellow, ar/R constriction are shown in blue, P1-P5 residue 

positions are shown in red and the AEF motif is shown in grey. Source: Perez Di Giorgio et al. 2014. 

Right: Hourglass structural model formed by the superposition of NPA motifs. Source: Echevarría & 

Zardoya, 2006. 

 

4.2.4 Mechanism of water transport 

A very fast water transport through AQPs is carried out from one side of the membrane 

to the other. The size of the pore is not large enough to accommodate more than a single 

water molecule along the channel (Tajkhorshid et al. 2002). Interestingly, NPA and ar/R 

regions have been proposed to exert a large influence on substrate specificity (Wallace 

& Roberts, 2004; Forrest & Bhave, 2007; Figure 15). In effect, the ar/R region, which 

is located at the extracellular side of the pore, serves as a selectivity filter for molecular 

transport acting as a size-exclusion barrier (Fu et al. 2000; Sui et al. 2001).    

Within the channel, water molecules establish hydrogen bonds between them 

and with the amino acid residues constituting the walls of the channel (reviewed by 

Echevarría & Zardoya, 2006). Nevertheless, when the water molecules are getting 

closer to the narrowest part of the pore, the positive electrostatic charges of NPA motifs 

help to reorient the water molecules passing through the channel. This reorientation of 

water dipoles disrupts hydrogen-binding interactions between water molecules 

(reviewed by Forrest & Bhave, 2007). The oxygen atom forms a hydrogen bond with 

asparagine residues of NPA motifs. Concretely, water molecules break their hydrogen 

bonds between them and subsequently form two hydrogen bonds with Asn residues 

(reviewed by Echevarría & Zardoya, 2006). 

External 

Internal 
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Figure 15. Left: Water transport mediated by AQPs in cell membranes. It should be noticed that NPA and 

ar/R motifs act as selectivity filters. Source: Forrest & Bhave, 2007. Right: A membrane-embedded 

model of an AQP tetramer. Water crosses the membrane through pores present in each AQP monomer 

following a strict single file. Source: Wang & Tajkhorshid, 2007. 

 

4.2.5 Regulation 

The study of how water transport through AQPs is regulated has received great attention 

from researchers due to its relevance for cell function (reviewed by Engel et al. 2000). 

Aquaporins are regulated post-translationally by phosphorylation of serine and 

threonine residues, which plays a vital role in channel-gating and trafficking of 

eukaryotic AQPs (reviewed by Törnroth-Horsefield et al. 2010). This phosphorylation 

is mediated by protein kinases activated through transduction pathways that involve G-

coupled protein receptors. Moreover, changes in pH affect the AQPs conformation and 

modify their transport activity (Tournaire-Roux et al. 2003; Németh-Cahalan et al. 

2004; Hedfalk et al. 2006). Finally, it should be noted that specific stimuli may lead 

AQPs to translocate and/or trigger up/down-regulation of AQP expression (reviewed by 

Gunnarson et al. 2004). Some examples about these regulation mechanisms are given 

below. 

 The expression of AQP4, which is found in astrocytes, is down-regulated by 

thrombin. Concretely, it has been hypothesised that thrombin binds to protease-

activated receptor 1 (PAR-1), which is coupled to a G-protein that activates a PLC-

mediated pathway. While the activation of this pathway seems to regulate AQP4-

expression via MAPK/ERK, the exact mechanism remains unknown (Tang et al. 2007). 

On the other hand, a G-coupled receptor linked to adenylate cyclase regulates AQP5 by 

modulating its expression and by triggering its translocation to the plasma membrane 

(Yang et al. 2003).  

 The role of AQP2 in concentrating urine in kidneys is regulated by 

phosphorylation and translocation in response to vasopressin. In effect, vasopressin 

binds to vasopressin type-2 receptor (V2R), which is coupled to a G-protein that 

activates adenylate cyclase. The increase of cAMP levels activates protein kinase A 

(PKA), which phosphorylates Ser256 residue of AQP2. Such a phosphorylation 

ultimately results in redistribution of AQP2 from intracellular vesicles to plasma 

membrane (Bouley et al. 2006). AQP1 and AQP8 are also regulated by site-specific 
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phosphorylation. In both cases, phosphorylation induces the redistribution of these two 

cell AQPs to plasma membrane (Garcia et al. 2001; Conner et al. 2010).  

 Apart from recruiting AQPs to the plasma membrane, phosphorylation may also 

alter their permeability by inducing conformational changes.  In effect, phosphorylation 

of Ser180 mediates AQP4-gating (Zelenina et al. 2002). 

On the other hand, a few mammalian AQPs appear to be regulated by pH 

(reviewed by Engel et al. 2000). For example, AQP0 is exclusively found in the plasma 

membrane of vertebrate lens fiber cells, which are filled with crystalline proteins that 

maintain the transparency of the eye lens (reviewed by Törnroth-Horsefield et al. 2010). 

In this context, it is worth mentioning that specific mutations of AQP0 have been 

identified as a cause of cataracts (Francis et al. 2000; Geyer et al. 2006). AQP0 has a 

double function, as does not only regulate the water homeostasis of lens fibers but also 

forms tight-junctions between the membranes of lens fiber cells (Costello et al. 1989). 

The influence of pH on AQP0 is apparent from pH variations ranging between 6.5 and 

7.5, as while AQP0 becomes activated at pH 6.5, this ability to transport water is 

reduced by three-fold at pH 7.5 (Németh-Cahalan et al. 2000; Németh-Cahalan et al. 

2004). On the other hand, while AQP3, which is expressed in kidneys, airway epithelia 

and secretory glands, is permeable to both water and glycerol at neutral pH, the channel 

appears to close at pH< 6 (Zeuthen & Klaerke, 1999). Finally, AQP6, which resides in 

the acid-secreting cells of the renal collecting duct, undergoes a conformational change 

at pH< 5.5 through which the channel opens for selective permeation by water and 

chloride ions (Yasui et al. 1999a, 1999b).  

Apart from this, regulation of AQPs is also related with their sensitivity to 

certain molecules. It is well stablished that heavy metals (mercury, cooper and nickel) 

can directly interact with AQPs thereby affecting their activity, as studies focused upon 

AQP1, AQP2 and AQP3 have demonstrated (Preston et al. 1993; Hasegawa et al. 1994; 

Zelenina et al. 2003; 2004). Indeed, mercurial compounds, such as HgCl2, have been 

found to inhibit water transport in AQP1 and AQP2. In the case of AQP1, this inhibition 

effect occurs through Cys189 site, which is located close to the NPA motif in loop E 

(Preston et al. 1993; Figure 16). On the other hand, three amino acid residues (Trp128, 

Ser152 and His241) located in loops C and E have been identified as the cause of cooper 

(Cu) and nickel (Ni) sensitivity in AQP3 (Zelenina et al. 2003; 2004).  
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Figure 16. Site of mercurial inhibition in AQP1. It is localized at Cys189, near to the NPA motif situated 

in loop E. Source: Huang et al. 2006a. 

 

4.2.6 Evolution  

AQPs are present in the three domains of life: Bacteria, Eukarya and Archaea (reviewed 

by Perez Di Giorgio et al. 2014). They show a sequence homology and share functional 

and structural similarities (reviewed by Engel et al. 2000). Different studies on the 

presence of AQPs in bacteria, fungi, plants and animals concur in that there are two 

major phylogenetic divisions: the water-selective type channels (AQPs) and the glycerol 

facilitators (GLPs) (Heymann & Engel, 1999). This dichotomy implies an early gene 

duplication event in Bacteria (Zardoya, 2005).  

The earliest evolutionary studies of diverse subfamilies of aquaporins in bacteria 

recognized two AQPs: aqpZ and glpF in Escherichia coli, which appear to be the 

predecessor forms of orthodox AQPs and aquaglyceroporins, respectively (reviewed by 

Ishibashi et al. 2011). As commented in the previous sections, the size of the pore 

restricts the spectrum of permeating substrates. The first AQP had a larger pore which 

allowed the uptake of nutrients and release of waste products, which suggests that this 

first AQP was more likely a GLP. The loss of the conserved aspartic residue situated 

close to the second NPA box could have converted aquaglyceroporins into orthodox 

AQPs, which are more specialized in water transport (see Section 4.2.3). In the case of 

superaquaporins, they may have been derived from orthodox AQPs to bring about the 

intracellular water transport for animal cells. The absence of superaquaporins in lower 

organisms and plants suggests that they could have been originated from horizontal 

gene transfer (HGT) between cohabiting ancient bacteria (reviewed by Ishibashi et al. 

2011).  
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It is also worth mentioning the absence of orthodox AQPs and GLPs in many 

archaea organisms, such as thermophilic archaea. This could be explained by the fact 

that they live near to submarine volcanoes where water channels may not be necessary 

because diffusion rates are very high at elevated temperatures. In spite of this, aqpM, an 

AQP permeable to both water and glycerol has been identified in the archea 

Methanothermobacter marburgensis (Lee et al. 2005). Intriguingly, while aqpM has 

been suggested to facilitate the movement of water across plasma membranes in 

response to osmotic gradients, it presents low permeability rates to water and glycerol 

so that their actual function in these organisms is yet to be addressed (Kozono et al. 

2003).  

Comparative studies of genomes between Bacteria and Eukarya suggest that a 

major fraction of genes in prokaryotic genomes have been acquired by HGT (reviewed 

by Koonin et al. 2001). Fixation and long-term persistence of HGT imply that the 

corresponding genes might confer a selective advantage onto the recipient organism 

(reviewed by Phillips, 2006). On the other hand, gene transfer in eukaryotic cells has 

mainly occurred via symbiotic or parasitic relationship with bacteria (Novichkov et al. 

2004). 

In the case of Eukarya, AQP diversification occurred in vertebrates and plants. 

The classification of mammalian aquaporins consists of thirteen members (AQP0-

AQP12) grouped in three major subfamilies as described in Section 4.2.3. Regarding 

plants seven subfamilies have been established: plasma membrane intrinsic proteins 

(PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs), small 

basic intrinsic proteins (SIPs), X intrinsic proteins (XIPs), hybrid intrinsic proteins 

(HIPs), and GlpF-like intrinsic proteins (GIPs) (Johanson et al. 2001; Danielson & 

Johanson, 2008; Perez Di Giorgio et al. 2014). 

In contrast to animals, plants only present orthodox AQPs. The absence of GLPs 

and superaquaporins could be explained by a functional conversion of orthodox AQPs 

into GLPs (NIPs). In addition, the presence of other intracellular AQPs (TIPs and SIPs) 

could have made intracellular superaquaporins redundant (reviewed by Perez Di 

Giorgio et al. 2014). 
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4.2.7 The importance of AQPs in the reproductive system 

As aforementioned, AQPs are found in many mammalian tissues and organs. In 

particular, they are present in the reproductive system of both males and females 

(reviewed by Huang et al. 2006a; Table 3), which suggests that AQPs play an important 

role in mammalian reproduction (Thoroddsen et al. 2011). In effect, they are involved in 

the fluid movement across male and female reproductive tracts (reviewed by Huang et 

al. 2006a). For example, in the female reproductive tract, AQPs act regulating the 

transport of water within the mammalian uterus and their expression is in turn regulated 

by ovarian steroid-hormones (Jablonsky et al. 2003). Moreover, the presence of these 

proteins also contributes to the cervical dilatation during gestation (Anderson et al. 

2006). AQPs also participate in the ova transport along the fallopian tube (or oviduct) 

by altering its luminal diameter and influence the production of the oviductal fluid, 

which provides the physiological medium for fertilization and early embryonic 

development (Gannon et al. 2000). Steroid hormones may regulate the expression of 

AQPs and thus control water transport into the oviduct lumen (reviewed by Leese et al. 

2001). AQPs also take part in follicular development as their gonadotropin-influenced 

expression in granulosa cells not only ensures rapid transport of water transport but also 

that of other small neutral molecules (McConnell et al. 2002). On the other hand, AQPs 

participate in blastocyst formation, as different AQPs have been found in trophectoderm 

and play an important role in the water movement across the epithelium during the 

process of cavitation (reviewed by Watson & Barcroft, 2001). AQPs are also involved 

in embryo implantation, in a process that depends on estrogen stimulation (Richard et 

al. 2003). Finally, AQPs are expressed in chorioamniotic membranes and placenta 

where they play a vital role in the reabsorption of amniotic fluid (reviewed by Huang et 

al. 2006a).  

Regarding the male, AQPs have a very important reabsorptive function 

throughout the reproductive tract. In addition, AQPs have been described in the plasma 

membrane of seminal vesicles and prostate, where play an important role in the 

secretion of fluids rich in nutrients which are required for sperm survival (reviewed by 

Huang et al. 2006a). Furthermore, not only do AQPs have an important role in both 

male and female reproductive tracts but also on the sperm adaptation before and after 

copulation. After ejaculation, sperm enter the female reproductive tract and are exposed 
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to a mild osmotic variation (reviewed by Cooper & Yeung, 2003). While this osmotic 

change is involved in the activation of sperm motility, it needs to be precisely regulated 

as, otherwise, it may lead sperm cells to swell or shrink thereby negatively affecting 

their integrity (reviewed by Cooper & Yeung, 2003). Therefore, AQPs have been 

proposed to be active players in the regulation of sperm volume (Yeung et al. 2006; 

Yeung et al. 2010). 

Although a large number of studies have described the potential role of AQPs in 

the reproductive system, the identification, localisation and function of these proteins in 

spermatozoa has been studied less. 

 

Table 3. Cellular localisation of mammalian AQP isoforms in female and male reproductive tracts 

(Huang et al. 2006a; Sales et al. 2013).  

 Aquaporin  Major tissue distribution 

AQP0 Testis 

AQP1 Vagina, ovary, oviduct, uterus, placenta, fetal membrane, embryo, 

testis, efferent ducts, epididymis, vas deferens, seminal vesicles and 

prostate 

AQP2 Uterus, ovary, testis, efferent ducts, epididymis and vas deferens  

AQP3 Uterus, cervix, ovary, placenta, fetal membrane, embryo, epididymis 

and prostate 

AQP4 Uterus, cervix and ovary 

AQP5 Ovary, uterus, cervix, oviduct, granulose cells, embryo and 

epididymis 

AQP6 Embryo 

AQP7 Ovary, embryo, testis, epididymis, spermatids, testicular and 

epididymal spermatozoa and ejaculated sperm 

AQP8 Uterus, cervix, ovary, oviduct, placenta, fetal membranes, embryo, 

testis and epididymis 

AQP9 Ovary, oviduct, uterus, granulose cells of follicles, placenta, fetal 

membrane, embryo, testis, efferent ducts, epididymis, vas deferens, 

prostate and coagulating gland 

AQP10 Testis, efferent ducts and epididymis 

AQP11 Testis 

AQP12 N/A 

N/A, data not available 



Introduction 

                                                                                                                 

                                             

                                                                                                                    

Noelia Prieto Martínez | Aquaporins in boar and bull spermatozoa - 41 - 
 

 

4.2.8 Role of AQPs in reproductive pathophysiology 

Few studies have been undertaken to elucidate the involvement of AQPs in reproductive 

disorders. Alterations in the expression, function and regulation of AQPs have already 

been demonstrated to be at the basis of some forms of male sub-fertility and infertility 

(reviewed by Huang et al. 2006a). AQPs are related with abnormal sperm motility 

(AQP7) (Saito et al. 2004) and varicocele (AQP1) (Nicòtina et al. 2005). In the case of 

female reproductive disorders, it has been demonstrated that the reduced expression of 

AQP9 in the human fallopian tube may contribute to tubal ectopic pregnancy (Ji et al. 

2013). On the other hand, AQPs have also been associated with other different 

reproductive disorders such as polycystic ovary syndrome (PCOS) (Qu et al. 2010) and 

ovarian cancer, as AQP5 and AQP9 have been found to be up-regulated in malignant 

ovarian tumours (reviewed by Frede et al. 2013). Moreover, another study has shown 

that AQP3 is involved in the migration and invasion of breast cancer cells (Huang et al. 

2015).  

 

5. Generalities of sperm cryopreservation 

As AQPs are mainly involved in the transport of water and other solutes, a crucial issue 

that attracts the attention from researchers is the involvement of these proteins during 

cryopreservation of gametes and embryos. As the current Thesis dissertation is focused 

upon the localisation and function of AQPs in mammalian spermatozoa, the present 

section aims at introducing the main features of sperm cryopreservation, the damages 

that this technique inflicts upon the sperm cell, and its main advantages and 

disadvantages.  

The first knowledge about sperm cryopreservation dates back 1776, when the 

Italian scientist Lazzaro Spallanzani reported to have achieved the maintenance of 

human sperm motility after exposure to low temperatures (Spallanzani, 1979; Walters et 

al. 2009). Nevertheless, it was not until the 20th century when this technology 

experienced some relevant progresses (reviewed by Yeste, 2016). In 1949, Polge and 

their colleagues in the United Kingdom made a serendipitous discovery with the use of 

glycerol as a cryoprotectant permeable agent (CPA; Polge et al. 1949; Walters et al. 

2009). This finding allowed identifying crucial elements for the development of 

Cryobiology and represented a defining momentum for sperm cryopreservation (Baust 
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et al. 2009; Walters et al. 2009). At that time, Polge and his colleagues could not 

imagine that their work would have far-reaching for reproductive biology and genetic 

improvement in human and livestock animals. 

 

5.1 Sperm cryoinjury 

  

5.1.1 Principles of cryoinjury during freezing and thawing 

It is well known that semen cryopreservation is the best method to store sperm for long 

periods of time. In addition, this technology enables preserving genetic resources from 

livestock animals and facilitates international trade. However, spermatozoa experience 

osmotic, chemical and mechanical stress when are frozen and thawed, and this 

ultimately results in cryoinjuries (FAO, 2008).  

Freezing inflicts a direct damage related to the formation of intracellular ice and 

cell dehydration. Taking this into account, Mazur et al. (1972) proposed the two-factor 

hypothesis. According to this hypothesis, intracellular ice crystals are produced at high 

cooling rates due to the fact that intracellular water is not able to leave cells completely. 

Conversely, most of the water flows out at low cooling rates resulting in an increase in 

the concentration of intracellular solutes, cell dehydration and contraction of organelles 

and membranes (Mazur et al. 1972; reviewed by Yeste, 2016; Figure 17). In addition, it 

is worth mentioning that these effects are inverted along thawing. Under low thawing 

rates, recrystallization occurs. Moreover, high thawing rates induce an osmotic stress 

since CPAs are unable to leave the cell fast enough. This leads to water inlet into the 

cell that may cause cell membrane disruption (reviewed by Holt, 2000b; Casas & 

Flores, 2013). For these reasons, many efforts have been focused upon finding the 

optimal cooling/freezing and thawing rates in order to prevent cryoinjuries as much as 

possible (Holt et al. 2005; Juarez et al. 2011). 
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Figure 17. Schematic representation of cell injuries according to the two-factor hypothesis proposed by 

Mazur et al. (1972). Source: Yeste, 2016. 

 

5.1.2 The relevance of cryoprotectants 

Apart from cooling rates, the permeability of plasma membrane to water and 

cryoprotectants (CPAs) is crucial for cell survival during cryopreservation (Tan et al. 

2013). Cryoprotectants are compounds used to decrease the stress derived from freezing 

protocols. Nevertheless, they may produce osmotic and toxic damages at certain 

concentrations and, thus, finding the appropriate concentrations is essential (Okazaki et 

al. 2009). 

Classification of CPAs is made according to their diffusion capacity across cell 

membranes and distinguishes between permeating and non-permeating CPAs. Non-

permeating CPAs are compounds that are not able to pass through plasma membrane by 

simple diffusion and, thus, act extracellularly. The most commonly used non-

permeating CPAs are milk and egg yolk proteins, sugars (mainly disaccharides) and 

other compounds of high molecular weight, such as polyvinylpyrrolidone (PVP), hydroxyethyl 

starch (HES), polyethylene glycol (PEG) and dextrans (reviewed by Benson et al. 2012). Egg 

yolk is routinely included in cryopreservation extenders to protect boar sperm from cold 

shock (reviewed by Benson et al. 2012). When combined with Orvus ES Paste® 

(Equex), a surfactant, egg yolk proteins provide better protection to sperm, as this 

detergent facilitates the interaction of these proteins with the sperm plasma membrane 

(reviewed by Holt, 2000a and Rodríguez-Martinez & Wallgren, 2010). In bulls, egg 

yolk- (~20%) and milk-based extenders were used in the past to protect sperm from the 

detrimental effects of cryopreservation. Nevertheless, other alternatives are currently 
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used, as the risk of introducing exotic diseases through transporting egg yolk based 

products has been perceived. In addition, egg yolk has been suggested to be able to 

interfere with sperm evaluation and the presence of particulate material in the extender 

may reduce fertility (reviewed by Layek et al. 2016). Against this background, IMV 

Technologies has introduced a new product for bovine sperm cryopreservation called 

BioxellTM, an egg yolk free extender that contains other CPAs like glycerol. It is worth 

mentioning that a cryoprotecting solution should contain both permeating and non-

permeating CPAs, because while the latters do not provide full protection to the cell, 

they reduce the levels required for permeating CPAs (reviewed by Yeste, 2016).  

As far as permeating CPAs are concerned, the most used are glycerol, 

dimethylsufoxide (DMSO), ethylene glycol (EG), methanol, propylene glycol (PG) and 

dimethylacetamide (DMA). These compounds cross cell membranes, are able to alter 

their properties, induce changes in diffusion rates and modify cytoplasm viscosity 

(reviewed by Holt, 2000a). Related with this, glycerol is the most used CPA for sperm 

cryopreservation since no permeating CPA has demonstrated to yield better results. 

Nevertheless, this CPA can result toxic and can affect plasma membrane fluidity when 

added at concentrations higher than 4% (Buhr et al. 2001).  

 

5.1.3 Effects on plasma membrane 

As discussed in Section 3, any plasma membrane contains phospholipids which confer 

fluidity and cholesterol which provide rigidity and stability (reviewed by Yeste, 2016). 

The lipid component of the sperm membranes is responsible for the fluidity, sperm 

maturation, spermatogenesis, capacitation, acrosome reaction and membrane fusion 

(reviewed by Sanocka & Kurpisz, 2004 and Keber, 2013). Related to this, it has been 

reported that differences in the fatty acid composition of sperm membrane between 

species are an important factor on gamete freezability. Higher resilience of mammalian 

spermatozoa to cold shock, which includes the dramatic effects ensuing from the 

destabilization of the plasma membrane at temperatures equal or lower than 5ºC, has 

been perceived for species in which the cholesterol:phospholipid ratio and the degree of 

saturated fatty acids in the phospholipid fraction are high (reviewed by Mandal et al. 

2014). Indeed, bull spermatozoa, which is more cryoresistant than boar spermatozoa, 

presents higher cholesterol:phospholipid (0.45 vs. 0.26) and lower plasma membrane 
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protein:phospholipid molar ratios (0.80 vs. 1.26) than boar spermatozoa (Parks & Lynch 

1992). Therefore, boar sperm are very sensitive to cold shock because their 

plasmalemma contains high levels of unsaturated phospholipids and low 

cholesterol:phospholipid molar ratio (reviewed by Casas & Flores, 2013). 

It is well known that at low temperatures, lipids experience alterations in 

physical phases (i.e. fluid- and gel-phase lipids) resulting in an increase of gel phases. 

Different studies have reported that the presence of sterols inhibit these phase-changes, 

that is why the amounts of cholesterol present in the plasma membrane are very relevant 

(reviewed by Holt, 2000a). Restriction of lateral movements of membrane 

phospholipids has been reported at temperatures lower than 5ºC resulting in a transition 

from fluid to gel phases. Since phospholipids present different transition temperatures, 

phase separations may occur. As a result, lipids are restructured, integral membrane 

proteins are clustered and some molecules of cholesterol are released. This leads to a 

disruption of lipid and protein interactions and the loss of function of some proteins 

such as ion channels (reviewed by Yeste, 2016). 

 

5.1.4 Effects on sperm nucleus 

Other cryoinjuries affect sperm nucleus and chromatin integrity leading the 

destabilization of nucleoproteins and DNA damage (Flores et al. 2009; Yeste et al. 

2013a). Sperm DNA is made up of DNA and nucleoproteins (mostly protamines; P1 

and P2). Freeze-thawing protocols disrupt disulphide bridges (S-S) between cysteine 

radicals of protamines (Flores et al. 2011). In addition to the disruption of disulphide 

bridges, freeze-thawing procedures also increase the levels of sperm DNA 

fragmentation (Yeste et al. 2013a). The extent of this cryoinjury differs between species 

and is linked to whether sperm chromatin only contains P1 or it also contains P2. Thus, 

species having P1 and P2 (human, stallion and mouse) present higher levels of DNA 

fragmentation than those presenting only P1 (boar, ram and bull) (Gosálvez et al. 2011).  

 

5.1.5 Effects on mitochondrial function and ROS production 

Sperm mitochondrial status is very important because of its relationship with sperm 

motility and the energy status of cells (Mazur et al. 2000). Freeze-thawing procedures 

induce changes in the mitochondrial membrane potential (reviewed by Yeste, 2016). 
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Indeed, it has been described that chilling and freezing reduce mitochondrial activity in 

spermatozoa from boars (Flores et al. 2010) and other mammalian species, such as 

equine (reviewed by Peña et al. 2015). 

Cryopreservation can increase the intracellular levels of reactive oxygen species 

(ROS), which are mainly produced in mitochondria. This increase in sperm ROS 

synthesis after freezing and thawing procedures has been described in bovine 

(Chatterjee & Gagnon, 2001; Gürler et al. 2016) and equine (Baumber et al. 2003; 

Ortega Ferrusola et al. 2009; Yeste et al. 2015a). In bull, ROS attacks the long chains of 

PUFAs present in their plasma membrane which initiate a lipid peroxidation cascade 

that results in deleterious effects on sperm function (Abavisani et al. 2013). However, 

the effects of cryopreservation upon ROS production in boar sperm are less clear 

(Flores et al. 2009; Casas & Flores, 2013).  

It is noteworthy that small amounts of ROS are important to drive the tyrosine 

phosphorylation cascades related with sperm capacitation (reviewed by Aitken et al. 

2010). Nevertheless, ROS in high quantities cause peroxidative damage to sperm 

plasma membrane and can cause single or double-strand DNA breaks (reviewed by 

Aitken & Krausz, 2001 and Spiropoulos et al. 2002). Thus, ROS-mediated damage 

affects the sperm fertilizing potential and the ability to create a normal and healthy 

embryo (reviewed by Aitken et al. 2010).  

 

5.1.6 Effects on sperm motility 

A dramatic reduction of sperm motility is very apparent following freeze-thawing 

(Estrada et al. 2014; Yeste et al. 2013a; 2013b; 2014). As commented above, 

mitochondrial function is crucial for sperm motility and its decrease after freeze-

thawing procedures has been attributed to damages to the mitochondrial membranes 

since the ATP generated by oxidative phosphorylation in mitochondria is transferred to 

the microtubules to drive motility (Mazur et al. 2000; O’Connell et al. 2002). 

Nevertheless, it is important to take into account that, prior to capacitation, sperm show 

very low mitochondrial activity together with a very high glycolytic rate. This is 

probably due to the fact that after ejaculation sperm encounter a mostly anaerobic 

environment in the female genital tract and mitochondrial respiration requires aerobic 

conditions to work. In spite of this, mitochondrial activity is necessary for sperm 
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capacitation and hyperactivation through ways that do not appear to be directly linked to 

energy production, but rather to the regulation of intracellular redox balance and 

calcium stores (reviewed by Rodríguez-Gil, 2013). 

 

5.1.7 Effects on mRNAs and microRNAs 

Cryopreservation affects sperm mRNAs. In boars, there are two studies that linked the 

abundances of certain transcripts encoding for different proteins with cryopreservation 

protocols (Zeng et al. 2014a; 2014b). In other species, such as humans and bovine, 

different studies have found that certain mRNAs that are involved in post-fertilization 

events and pregnancy success are reduced following freeze-thawing (Valcarce et al. 

2013; Card et al. 2013). On the other hand, sperm microRNAs, which appear to 

modulate gene expression in post-fertilization events, have also been found to be 

affected by cryopreservation procedures in pigs (Zhang et al. 2015).  

 

5.1.8 Changes of sperm proteins 

Finally, cryopreservation procedures also induce changes in levels, localisation, 

function and tyrosine-phosphorylation of certain sperm proteins involved in 

capacitation, adhesion, energy supply and sperm-oocyte binding and fusion. These 

effects have been observed in boar, humans and in bulls (reviewed by Yeste, 2016).  

 

5.2 Freezability Markers 

According to the literature, sperm cryosurvival highly varies between species. In 

addition, a high individual variability between and within ejaculates and even between 

fractions of the same ejaculate exists in the sperm ability to sustain cryopreservation 

(cryotolerance or freezability; Holt et al. 2005; Peña et al. 2006; Waterhouse et al. 

2006; Dorado et al. 2010; Yeste et al. 2015). As a consequence, ejaculates are usually 

classified as good (GFE) or poor freezability ejaculates (PFE) according to their post-

thaw sperm survival and motility (Casas et al. 2009; Yeste et al. 2013a; Vilagran et al. 

2014). In this context, a main inconvenient is the low association between conventional 

sperm quality parameters evaluated before cryopreservation and ejaculate freezability 

(Roca et al. 2006; Casas et al. 2009; Yeste et al. 2013a; Vilagran et al. 2014). The 

reason why conventional parameters fail to detect GFE and PFE is because they do not 
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contemplate the cell mechanisms facing to stressful conditions, but rather reflect the 

sperm physiology at 37ºC (reviewed by Yeste, 2016).  

The mechanisms underlying the differences between GFE and PFE remain 

largely unknown. Nevertheless, different studies focused on boar spermatozoa have 

been aimed at elucidating the molecular basis of sperm freezability. The study 

conducted by Thurston et al. (2002) explored the hypothesis that inter-individual 

variation was genetically determined. These authors found 16 molecular markers linked 

to genes related with freezability variations using the Amplified Fragment Length 

Polymorphism (AFLP) technique. Moreover, other works have identified separate 

sperm and seminal proteins as freezability markers. Specifically, heat-shock protein 90 

(HSP90AA1), acrosin-binding protein (ACRBP), triosephosphate isomerase (TPI), 

voltage-dependent anion channel 2 (VDAC2), fibronectin (FN1), N-acetyl-β-

hexosaminidase (β-HEX), superoxide dismutase 1 (SOD1), outer dense fibre protein 2 

(ODF2), and α-kinase anchor protein 3 (AKAP3) have been reported as markers for 

predicting boar ejaculate freezability (Casas et al. 2009; Casas et al. 2010; Vilagran et 

al. 2013; Chen et al. 2014; Vilagran et al. 2014;  Vilagran et al. 2015; Wysocki et al. 

2015; see Table 4). However, it is yet to be addressed why the abundance of these 

proteins differs between samples since, thus far, no work has determined whether 

differences in gene expression occur during spermatogenesis (reviewed by Yeste, 2015). 

With regard to bull spermatozoa, different works have reported the association 

of certain proteins with sperm freezability (Table 4). Concretely, Jobim et al. (2004) 

studied the seminal plasma of high and low bull freezability ejaculates through two-

dimensional polyacrylamide gel electrophoresis (2D-PAGE) and identified three 

proteins that were more abundant in seminal plasma samples collected from bulls with 

high semen freezability. These proteins were bovine seminal plasma (BSPA1/A2), 

acidic seminal fluid protein (aSFP) and bovine clusterin precursor. These authors also 

identified another protein, lipocaline-like prostaglandin D synthase (PGDS), which was 

found to be more abundant in seminal plasma samples from bulls with low sperm 

freezability. Moreover, other studies have demonstrated that bulls with lower 

freezability and fertility present higher levels of glutamic oxaloacetic transaminase 

(GOT) and glutamate pyruvate transaminase (GPT) in seminal plasma (Belorkar, 1987; 

Herman & Madden, 1953; Vander Horst et al. 1979).  
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In any case, there is great interest in identifying freezability markers in fresh 

sperm, either of protein nature or not, as this may predict the ejaculate cryotolerance and 

avoid the cryopreservation of those sperm samples with poor freezability.
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                                    Table 4. The main freezability markers for boar sperm reported thus far. 

Protein Species Marker 
Relation with 

Cryotolerance 

Reference 

(cryotolerance) 
Function 

Reference 

(function) 

Acrosin binding 

protein (ACRBP) 

 

Boar 

 

Sperm 

Higher levels in 

GFE than in 

PFE 

Vilagran et al. 

2013 

Regulates acrosome 

reaction avoiding 

premature capacitation 

and degenerative 

acrosome exocytosis 

Vilagran et al. 

2013 

Fibronectin 1 

(FN1) 
Boar 

Seminal 

plasma 

Higher levels in 

GFE than in 

PFE 

Vilagran et al. 

2015 

It is related with total 

sperm motility and 

sperm-fertilizing ability 

Wennemuth et 

al. 2001 

Heat Shock 

Protein 90 

(HSP90AA1) 

Boar Sperm 

Higher levels in 

GFE than in 

PFE 

Casas et al. 

2010 

Provides resistance and 

protection against cell 

oxidative and thermal 

stress 

Fukuda et al. 

1996; Huang 

et al. 1999; 

Wang et al. 

2005; Powers 

et al. 2008 

N-acetyl-β-

hexosaminidase (β-

HEX) 

Boar 
Seminal 

plasma 

Enzyme activity 

negatively 

correlated with 

sperm 

cryotolerance 

Wysocki et al. 

2015 

Enables sperm cells to 

penetrate the zona 

pellucida by removing 

N-acetylglucosamine 

residues in ZP 

glycoproteins 

Miller et al. 

1993 

Triosephosphate 

isomerase (TPI) 
Boar Sperm 

Lower levels in 

GFE than in 

PFE 

Vilagran et al. 

2013 

Involved in energy 

production in the 

glycolytic pathway. 

Concretely, it leads the 

conversion of 

dyhydroxyacethone 

phosphate to 

glyceraldehyde 

phosphate 

Vilagran et al. 

2013 
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Voltage-dependent 

anion channel 2 

(VDAC2) 

Boar Sperm 

Higher levels in 

GFE than in 

PFE 

Vilagran et al. 

2014 

Involved in osmotic 

regulation and 

suggested to play vital 

roles during 

spermatogenesis, 

sperm maturation, 

motility, acrosome 

reaction and 

fertilization  

Liu et al. 

2010; 

Shoshan-

Barmatz et al. 

2010 

Superoxide 

dismutase 1 

(SOD1) 

Boar Sperm 

Higher levels in 

frozen-thawed 

than in extended 

semen 

Chen et al. 2014 
Eliminates superoxide 

radicals 

Tsunoda et al.  

2012 

Outer dense fibre 

protein 2 (ODF2) 
Boar Sperm 

Higher levels in 

frozen-thawed 

than in extended 

semen 

Chen et al. 2014 

Involved in sperm 

progressive motility, 

sperm tail elasticity and 

protection against 

shearing epididymal 

forces 

Donkor et al. 

2004 

 

α-kinase anchor 

protein 3 (AKAP3) 

 

Boar Sperm 

Higher levels in 

frozen-thawed 

than in extended 

semen 

Chen et al. 2014 

Regulates sperm 

motility, capacitation, 

and acrosome reaction 

Hillman et al. 

2013 

Bovine seminal 

plasma A1/A2 

BSPA1/A2 

 

Bull 
Seminal 

Plasma 

Higher levels in 

GFE than in 

PFE 

Jobim et al. 

2004 

Potentiates sperm 

capacitation by binding 

to capacitation factors 

such as heparin and by 

stimulating sperm 

membrane cholesterol 

efflux 

Moreau et al. 

1998 

aSFP 

(spermadhesin) 
Bull 

Seminal 

Plasma 

Higher levels in 

GFE than in 

PFE 

Jobim et al. 

2004 

Plays a role as 

decapacitation factor 

and/or ZP-binding 

molecule 

Dostàlovà et 

al. 1994 
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Bovine seminal 

plasma A1/A2 

BSPA1/A2 

Bull 
Seminal 

Plasma 

Higher levels in 

GFE than in 

PFE 

Jobim et al. 

2004 

Potentiates sperm 

capacitation by binding 

to capacitation factors 

such as heparin and by 

stimulating sperm 

membrane cholesterol 

efflux 

Moreau et al. 

1998 

Bovine clusterin 

precursor 
Bull 

Seminal 

Plasma 

Higher levels in 

GFE than in 

PFE 

Jobim et al. 

2004 

Given its localisation in 

sperm membrane and 

its role in lipid 

transport and re-

distribution, this 

protein may have 

biological functions 

similar to those of BSP 

Jobim et al. 

2004 

Lipocaline-like 

prostaglandin D 

synthase 

(PGDS) 

Bull 
Seminal 

Plasma 

Higher levels in 

PFE than in 

GFE 

Jobim et al. 

2004 

Although the role of 

PGDS is still not clear, 

it has been suggested to 

act on sperm PUFAs, 

regulating membrane 

fluidity. 

Reviewed by 

Caballero 

2011 

Glutamic 

oxaloacetic 

transaminase 

(GOT)  

Bull 
Seminal 

Plasma 

Higher levels in 

PFE than in 

GFE 

(Belorkar et al., 

1987; Herman 

& Madden, 

1953; Vander 

Horst et al. 

1979) 

Amino acid 

metabolism 

Reviewed by 

Huang et al. 

2006b 

 

Glutamate 

pyruvate 

transaminase 

(GPT) 

Bull 
Seminal 

Plasma 

Higher levels in 

PFE than in 

GFE 

(Belorkar et al., 

1987; Herman 

& Madden, 

1953; Vander 

Horst et al. 

1979) 

Plays a key role in the 

intermediary 

metabolism of glucose 

and amino acids 

Reviewed by 

Huang et al. 

2006b 
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5.3 Importance of AQPs for the cryopreservation of male and female gametes 

Nowadays, fertility preservation is an essential part of reproductive science that not only 

refers to gametes (sperm and oocytes) and embryos, but also to reproductive organs 

such as ovarian and testicular tissues. It is well know that cryopreserved cells may be 

stored for long-periods of time without changes in their functionality or genetic 

information, this method becoming highly attractive for reproductive purposes 

(reviewed by Bagchi et al. 2008; reviewed by Chian et al. 2013).  

Currently, slow freezing and vitrification are the most utilized methods for 

gamete cryopreservation. The first is characterized by the use of low concentrations of 

CPAs, which is associated with little toxicity to cells and low cooling rates. Vitrification 

method uses high cooling rates in combination with high concentrations of 

cryoprotectants and an abrupt reduction in temperature (reviewed by Sales et al. 2013). 

Although vitrification is the best method to store oocytes and embryos (reviewed by 

Mukaida & Oka, 2012) the most efficient method for long-term sperm preservation is 

slow freezing (reviewed by Mocé et al. 2016).  

As previously mentioned in other sections, the permeability of plasma 

membrane to water and CPAs is crucial during cryopreservation (Tan et al. 2013). The 

transport of water and cryoprotectants across the plasma membrane takes place via 

simple diffusion through the lipid bilayer and facilitated diffusion through channel 

proteins. Transport rates of water and CPAs are low in simple diffusion, but they are 

much higher in facilitated diffusion (Jin et al. 2011). Related to facilitated diffusion, and 

as aforementioned, it is widely known that AQPs are critical in regulating the transport 

of water and CPAs across cell membranes and in preventing osmotic damage (Kumar et 

al. 2015). Moreover, because glycerol is the most used permeable CPA, the presence of 

GLPs might be relevant for the survival of cryopreserved cells. For all these reasons, 

many efforts have been made to elucidate the role of these proteins during 

cryopreservation procedures. Specifically, Edashige et al. (2003) demonstrated that the 

injection of cRNA encoding for Aqp3 into mouse oocytes increased glycerol 

permeability and augmented cell survival after vitrification. Morató et al. (2014) 

reported that the exogenous expression of AQP3 in mature porcine oocytes also 

increased the permeability to water and ethylene glycol. Moreover, another study has 
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demonstrated that AQP7 plays an important role in the tolerance to hyperosmotic stress 

and in the survival of the human oocytes during cryopreservation (Tan et al. 2013).  

With regard to embryos, Edashige et al. (2006) and Jin et al. (2011) described 

that cell permeability to water and CPAs in mouse and bovine morulae was associated 

with the expression of AQP3, both at mRNA and protein levels. Related with this, Jin et 

al. (2013) found that the expression of AQP3 was significantly higher in pig blastocysts 

than in oocytes and morulas, which indicates that the higher permeability of water and 

CPAs of pig blastocysts and their higher cryotolerance is, at least in part, related to the 

presence of a high number of AQP3-channels.  

 

6. State of art of AQP3, AQP7 and AQP11 in sperm 

The three AQPs studied in this work were chosen because, as described below, their 

presence had previously been demonstrated in other mammalian species. Furthermore, 

these three proteins belong to the groups of GLPs (AQP3 and AQP7) and superAQPs 

(AQP11), both involved in the transport of water and CPAs.  

Spermatozoa have higher water permeability than other cells like red blood cells 

and renal tubular epithelial cells (reviewed by Huang et al. 2006a). There are only two 

studies conducted in human and murine sperm about the presence of AQP3 and its role 

in sperm osmoregulation (Chen et al. 2010; Chen & Duan, 2011). These functional 

studies with Aqp3-knockout mice have reported normal sperm motility but higher 

vulnerability to hypotonic stress, which produces cell swelling and increases tail 

bending after entering the uterus. These abnormalities difficult the sperm migration 

throughout the oviduct and decrease fertilization rates. 

Regarding AQP7, Saito et al. (2004) conducted a study comparing fertile and 

infertile men and reported that while ejaculated sperm from all fertile men presented 

AQP7, spermatozoa were devoid of AQP7 in 23% of infertile men. In addition, sperm 

motility of infertile patients lacking AQP7 in ejaculated spermatozoa was significantly 

lower than that of sperm exhibiting positive AQP7-staining. This suggests that AQP7 is 

involved in the maintenance of sperm motility and the absence of AQP7 in ejaculated 

spermatozoa may be an underlying cause for male infertility. In agreement with these 

data, Yeung et al. (2010) found that spermatozoa from 10% of infertile human patients 

showed no clear AQP7-staining. In contrast to these findings, other studies have 
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demonstrated that knockout mice for Aqp7 are fertile and produce normal functional 

spermatozoa, possibly due to the fact that their function is compensated by other AQPs 

(Sohara et al. 2007). Furthermore, Kondo et al. (2002) have shown that a homozygous 

mice for a non-functional mutation in AQP7 remains fertile implying that this protein 

could not be indispensable in the regulation of fertility.  

As far as AQP11 is concerned, Yeung & Copper (2010) have described that this 

protein is present in the cytoplasm of elongated spermatids and is essential for sperm 

production during spermatogenesis and spermiation in mice. Unfortunately, Aqp11-null 

mice develop polycystic kidneys causing their death due to a severe renal failure 

(reviewed by Matsuzaky et al. 2016). Therefore, addressing how the efflux of water and 

non-metabolizable substances is performed via AQP11 is much difficult as, thus far, 

there is no viable Aqp11 knock-out mouse model. 

Despite all of the aforementioned, the localisation, presence and role of AQPs in 

mammalian spermatozoa is still poorly studied. Taking this into account and given the 

importance of these proteins in several processes, the current dissertation has focused on 

the study of two GLPs (AQP3 and AQP7) and one superaquaporin (AQP11) in the 

sperm of the two major species (bovine and porcine) in livestock production. 
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Objectives 

Against the background introduced in the previous section, the present Thesis 

dissertation has three main aims that look for addressing the presence and function of 

AQPs in the sperm of two major livestock species such as boar and bull.  

 

In response to the following objectives, five papers, as referred at the end of each aim.  

1. The identification of three separate AQPs, AQP3, AQP7 and AQP11 in boar 

and bull sperm by immunoblotting. (PAPER I, PAPER II, PAPER IV and 

PAPER V). 

2. The determination of the precise localisation by immunocytochemistry 

procedures. (PAPER I, PAPER II, PAPER IV and PAPER V). 

3. Elucidate their putative role on sperm function through the evaluation of the 

relationship of these three proteins with different sperm functional parameters, 

sperm cryotolerance and fertilizing ability. (PAPER I, PAPER II, PAPER 

III, PAPER IV and PAPER V). 
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ABSTRACT 

Aquaporins (AQPs) are integral membrane water channels that allow transport of water and 
small solutes across cell membranes. Although water permeability is known to play a critical 
role in mammalian cells, including spermatozoa, little is known about their localisation in 
boar spermatozoa. Two aquaporins, AQP7 and AQP11, in boar spermatozoa were identified 
by western blotting and localised through immunocytochemistry analyses. Western blot 
results showed that boar spermatozoa expressed AQP7 (25 kDa) and AQP11 (50 kDa). 
Immunocytochemistry analyses demonstrated that AQP7 was localised in the connecting 
piece of boar spermatozoa, while AQP11 was found in the head and mid-piece and diffuse 
labelling was also seen along the tail. Despite differences in AQP7 and AQP11 content 
between boar ejaculates, these differences were not found to be correlated with sperm 
quality in the case of AQP7. Conversely, AQP11 content showed a significant correlation 
(P < 0.05) with sperm membrane integrity and fluidity and sperm motility. In conclusion, boar 
spermatozoa express AQP7 and AQP11, and the amounts of AQP11 but not those of AQP7 
are correlated with sperm motility and membrane integrity. 

 

Additional keywords: immunostaining, pig, sperm membrane integrity, sperm motility, 
water channels, western blot. 
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ABSTRACT 

The proteins belonging to the aquaporin family play a fundamental role in water and solute 
transport across biological membranes. While the presence of these proteins has been 
extensively studied in somatic cells, their function in mammalian spermatozoa has been 
studied less. The present study was designed to identify and localise aquaglyceroporin 3 
(AQP3) in boar spermatozoa. With this purpose, 29 fresh ejaculates from post-pubertal 
Piétrain boars were classified into two groups based upon their sperm quality and 
subsequently evaluated through western blot and immunofluorescence assessments. 
Western blotting showed the specific signal band of AQP3 at 25 kDa, whereas 
immunofluorescence assessments allowed us to identify two different AQP3 localisation 
patterns: (1) spermatozoa presenting a clear labelling located only in the mid-piece and (2) 
spermatozoa exhibiting a distribution pattern in the head and along the entire tail. The first 
staining pattern was predominant in all studied ejaculates. Despite individual differences in 
AQP3 content and localisation between boar ejaculates, these differences were not 
correlated with sperm quality. In conclusion, although AQP3 is present in boar spermatozoa 
in two different localisation patterns, neither the AQP3 content nor its localisation have been 
found to be associated with conventional sperm parameters. 
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Abstract  

Cryopreservation is the most suitable method to preserve boar sperm over long-term 

storage. However, freeze-thawing protocols inflict extensive damage to sperm cells, 

reducing their viability and compromising their fertilizing ability. In addition, high 

individual variability is known to exist between boar ejaculates, which may be classified 

as of good (GFE) or poor (PFE) freezability. While conventional spermiogram parameters 

fail to predict sperm cryotolerance in fresh sperm, high levels of certain proteins, also 

known as freezability markers, have been found to be related to the sperm resilience to 

withstand freeze-thawing procedures. In this context, the hypothesis of the present study 

was that aquaporins AQP3, AQP7 and AQP11 could be linked to boar sperm 

cryotolerance. Twenty-nine ejaculates were evaluated and subsequently classified as GFE 

or PFE based upon their sperm viability and motility at post-thawing. Fourteen ejaculates 

resulted to be GFE, whereas the other fifteen were found to be PFE. Relative abundances 

of AQP3, AQP7 and AQP11 and their localization patterns were evaluated in all fresh 

and frozen-thawed ejaculates through immunoblotting and immunocytochemistry. Prior 

to cryopreservation, relative amounts of AQP3 and AQP7 were found to be significantly 

(P<0.05) higher in GFE than in PFE. In contrast, no significant differences (P>0.05) 

between freezability groups were found for AQP11, despite GFE tending to present 

higher levels of this protein. The localization of AQP7, but not that of AQP3 or AQP11, 

was observed to be affected by cryopreservation procedures. In conclusion, these results 

suggest that AQP3 and AQP7 are related to boar sperm cryotolerance and may be used 

as freezability markers. 
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ABSTRACT 

Aquaporins (AQPs) are integral membrane water channels that allow transport of water and 
small solutes across cell membranes. Although water permeability is known to play a critical 
role in mammalian cells, including spermatozoa, little is known about their localisation in 
boar spermatozoa. Two aquaporins, AQP7 and AQP11, in boar spermatozoa were identified 
by western blotting and localised through immunocytochemistry analyses. Western blot 
results showed that boar spermatozoa expressed AQP7 (25 kDa) and AQP11 (50 kDa). 
Immunocytochemistry analyses demonstrated that AQP7 was localised in the connecting 
piece of boar spermatozoa, while AQP11 was found in the head and mid-piece and diffuse 
labelling was also seen along the tail. Despite differences in AQP7 and AQP11 content 
between boar ejaculates, these differences were not found to be correlated with sperm 
quality in the case of AQP7. Conversely, AQP11 content showed a significant correlation 
(P < 0.05) with sperm membrane integrity and fluidity and sperm motility. In conclusion, boar 
spermatozoa express AQP7 and AQP11, and the amounts of AQP11 but not those of AQP7 
are correlated with sperm motility and membrane integrity. 

 

 

Additional keywords: immunostaining, pig, sperm membrane integrity, sperm motility, 
water channels, western blot. 
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Abstract  

The present study sought to identify and localise aquaporin 11 (AQP11) in bull sperm and to 

investigate the relationship between relative AQP11-content, sperm cryotolerance and fertilising 

ability of frozen-thawed semen. With this purpose, twenty bull ejaculates were classified into two 

groups of good and poor freezability according to their post-thaw sperm quality and assessed 

through immunocytochemistry and immunoblotting analyses before and after cryopreservation. 

Evaluations by immunocytochemistry allowed us to localise AQP11 throughout the entire tail and 

along the sperm head. These results were confirmed through immunoblotting, which showed a 

specific band of about 50 kDa corresponding to AQP11. Furthermore, immunoblotting revealed 

that bull ejaculates with good freezability characteristics presented significantly (P<0.05) higher 

relative amounts of AQP11 both in fresh and frozen-thawed sperm than those with poorer 

freezability. In addition, in vitro oocyte penetration rates were correlated with the relative AQP11-

content in fresh sperm. In conclusion, AQP11 is present in the head and tail of bull sperm and 

their relative amounts in fresh and frozen-thawed sperm are related to the resilience to withstand 

cryopreservation and the fertilising ability of frozen-thawed sperm. Future research is needed to 

elucidate the actual role of sperm AQP11 on bovine fertility. 

 

Keywords: AQP11; aquaporins; bull; sperm; cryopreservation; in vitro fertilisation 
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Discussion  

Water is the main component of all living cells and, for this reason, is involved in the 

regulation of most biological processes, such as the response to osmotic gradients 

(Gravelle et al. 2013). Nevertheless, and due to the hydrophobic nature of lipid 

membranes, water penetrates slowly this structure by simple diffusion (reviewed by 

Huang et al. 2006a and Matsuzaki et al. 2002), which does not explain the high water 

exchange rates observed in erythrocytes, renal tubular epithelial cells and spermatozoa 

(Noiles et al. 1993; Huang et al. 2006a). These observations supported the hypothesis 

raised by Sidel and Salomon in 1957, who suggested the existence of selective water 

pores in biological membranes (Sidel & Salomon, 1957). However, it was not until the 

early nineties when Peter Agre and their colleagues discovered AQPs, a family of water-

specific transmembrane channel proteins. This research provided the molecular basis for 

understanding water transport through facilitated diffusion (reviewed by Agre, 2004 and 

Agre, 2006). Since then, the study of AQPs has received particular consideration 

providing new insights into the structure, function and regulation of these proteins in 

living organisms (reviewed by Gomes et al. 2009). 

It is well established that AQPs are ubiquitously distributed across mammalian 

tissues. In particular, their presence in the reproductive tract of both males and females 

(reviewed by Huang et al. 2006a) indicates that AQPs play an important role in 

reproductive physiology (Thoroddsen et al. 2011). Nevertheless, and in contrast to the 

deep knowledge and numerous studies on AQPs in somatic cells, the understanding of 

sperm AQPs is limited. Concretely, AQPs have been studied in the mammalian 

spermatozoa of rodents (Yeung & Cooper, 2010; Chen & Duan, 2011) dogs (Ito et al. 

2008) and humans (Yeung et al. 2010; Moretti et al. 2012). However, the identification, 

localisation and function of these proteins in boar and bull spermatozoa are yet to be 

reported.  

Against this background, one of the purposes of the present Thesis dissertation 

was to identify three separate members of the AQP family, AQP3, AQP7 and AQP11 in 

ejaculated boar and bull sperm by immunoblotting (PAPER I, PAPER II, PAPER IV 

and PAPER V). The results obtained prove the presence of these three proteins in the 

sperm of both livestock species. Regarding boar sperm, the results of Western blot 

showed the presence of one specific band for AQP3 (25 KDa), AQP7 (25 KDa) and 
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AQP11 (50 KDa). In the case of bull sperm, immunoblotting showed the presence of two 

specific bands for AQP3 (30 and 60 KDa) and only one for AQP7 (25 KDa) and AQP11 

(50 KDa). It is noteworthy that the weight of reactive bands for AQP3 differed between 

the two species. In the same way, when comparing the data obtained in the present work 

with studies conducted in other species, the results suggest that molecular weights of 

AQP7 and AQP11 are also species-specific. For example, the study conducted by Yeung 

et al. (2010) in human sperm found the existence of four separate AQP7 isoforms (27 

KDa, 29 KDa, 30 KDa and 40 KDa), which corresponded to different glycosylation 

patterns. On the other hand, and despite using the same extraction method, molecular 

weights of AQP11 were seen to differ within rodent species as whilst a single isoform of 

33 KDa was observed in rat spermatozoa, three different isoforms of 27, 34 and 43 KDa 

were identified in mouse spermatozoa (Yeung & Cooper, 2010). The fact that bull sperm 

present two specific bands could be related to the existence of two AQP3-isoforms of 

different molecular weights in a similar fashion to the described for humans and mice. In 

contrast, boar sperm would only have a single AQP3-isoform. Another possible 

explanation would be related to the presence of monomeric (30 KDa) and dimeric (60 

KDa) forms of AQP3 in bull sperm. However, the use of denaturants and reducing agents 

in lysis and Laemmli buffers should have, in principle, denaturized all proteins, making 

less likely the observation of dimeric forms. That being said, one should also note that 

while samples were boiled at 90ºC for 5 min, some protocols suggest that it is better to 

heat proteins at 70ºC when dealing with multi-pass membrane proteins, as these proteins 

tend to aggregate when boiled and the aggregates may not enter the gel efficiently. 

Therefore, it should not be excluded that the presence of the 60 KDa-band in bull sperm 

is artefactual. For this reason, more research including different lysis buffers and 

conditions for gel electrophoresis is required to address this issue. 

In the context of the bands and molecular weights identified by immunoblotting, 

it should be noted that even studies performed in the same species have reported different 

results, as in the case of the study conducted by Vicente-Carrillo et al. (2016). All these 

discrepancies can be, at least in part, due to the different techniques utilized for preparing 

the sperm samples before immunoblotting analysis. Nonetheless, positive controls and 

peptide competitive assays led us to conclude the specificity of the antibodies and the 

reliability and accuracy of our data. This indicates that all the bands obtained correspond 

to the proteins of interest. Thus, taking into account the combined results of the three 

proteins studied and the previous data obtained by Yeung et al. (2010) and Yeung & 



Discussion 

Noelia Prieto Martínez | Aquaporins in boar and bull spermatozoa - 179 - 
 

Cooper (2010), it seems that molecular weights of AQP3, AQP7 and AQP11 are species-

specific. In any case, more research including mass spectrometry analysis through 

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry peptide 

mapping (MALDI-TOF MS) is required as this technique provides much higher accuracy 

in the identification of immunoblotted-proteins (Egelhofer et al. 2002).  

After confirming the presence of AQP3, AQP7 and AQP11 in the sperm of both 

species, the present Thesis also sought to evaluate the distribution and localisation of 

these proteins through immunocytochemistry and confocal laser microscopy (PAPER I, 

PAPER II, PAPER IV and PAPER V). The obtained results demonstrate the presence 

of these three proteins in all fresh studied ejaculates with a homogeneous distribution and 

localisation in both species. Specifically, AQP3 is present in two different localisation 

patterns in boar sperm. The first one corresponds to clear labeling at the mid-piece and 

the acrosomal region and was predominant in all studied ejaculates (~70%; unpublished 

data). In the second pattern, spermatozoa exhibit an AQP3-distribution along the entire 

tail and the acrosomal region. In contrast to these findings, AQP3 was only found in the 

mid-piece of bull sperm. On the other hand, whereas AQP7 was mainly found at the 

connecting-piece and partially at the mid-piece of boar sperm and it was detected in both 

post-acrosomal region and mid-piece of bull sperm. Finally, AQP11 was found to be 

localized throughout the sperm head and tail in both species.  

Immunolocalisation of AQP3, AQP7 and AQP11 was not only performed in 

fresh/liquid-stored but also in frozen-thawed boar and bull sperm (PAPER III, PAPER 

IV and PAPER V). This goal could be considered as a double-edged sword because not 

only does give us information on whether AQPs-distribution may be affected by 

cryopreservation procedures but does also investigate the participation of these proteins 

in this process, as discussed later. In a similar way to the observed in fresh ejaculates, 

AQP3, AQP7 and AQP11 were detected in all frozen-thawed samples. However, it is 

worth noting that while distributions of AQP3, AQP7 and AQP11 in bull sperm and those 

of AQP3 and AQP11 in boar sperm were homogeneous, without changes before and after 

cryopreservation, a different localisation pattern for AQP7 was observed between fresh 

and frozen-thawed boar sperm. Indeed, whereas AQP7 was mainly found at the 

connecting piece of boar spermatozoa before cryopreservation, this protein was also 

found to be present at the sperm mid-piece and in the acrosomal region following freeze-

thawing. Therefore, AQP7-distribution in boar sperm appears to be affected by 

cryopreservation procedures. Similar to these results, the study conducted by Tan et al. 
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(2013) described that the hyperosmosis induced by the addition of CPAs during 

cryopreservation procedures led to redistribution of AQP7 in the plasma membranes of 

mouse oocytes. These authors also observed that AQP7 interacted with F-actin, which 

could facilitate that translocation. In boar sperm, Vicente-Carrillo et al. (2016) have also 

observed that freeze-thawing relocates the labeling of AQP7 to the sperm head. 

Therefore, and despite more research still being required to elucidate this issue, the 

redistribution of AQP7 observed during freeze-thawing procedures in boar spermatozoa 

is consistent with other previous studies. 

It is noticeable that the most predominant pattern for AQP3 in boar sperm, i.e. 

localized in the sperm mid-piece, coincided with the findings obtained in bulls. However, 

this is not in accordance with the localisation reported in other mammalian species, as 

AQP3 has been found to be mainly confined to the principal piece of the sperm tail in 

human (results obtained by immunofluorescence and immunogold) and mouse sperm 

(data acquired using immunofluorescence; Chen et al. 2011; Chen & Duan, 2011). On 

the other hand, the staining results for AQP11 coincided between boars and bulls. This 

localisation contrasted with the reported for rat sperm, obtained by immunocytochemistry 

using a biotinylated secondary antibody with a streptavidin-HRP conjugate, where 

AQP11 was found at the end-piece of sperm flagellum (Yeung & Cooper, 2010). 

Regarding AQP7, frozen-thawed boar sperm exhibited a similar pattern to that found by 

Vicente-Carrillo et al. (2016) in frozen-thawed boar sperm when the same antibody was 

used. The same pattern was also observed in fresh and frozen-thawed bull semen. In spite 

of this, it is worth mentioning that localisation patterns of AQP7 in fresh sperm differed 

from those obtained by Vicente-Carrillo et al. (2016), the observations being performed 

under a confocal microscope in both cases. In effect, while Vicente-Carrillo et al. (2016) 

found AQP7 in the mid-piece of fresh boar spermatozoa, localisation of AQP7 in the 

current Thesis was mainly restricted to the connecting piece, the AQP7-labeling in the 

mid-piece being marginal. In order to clarify these inconsistencies, we repeated all 

experiments and we obtained exactly the same results following our protocol and the set 

by Vicente-Carrillo et al. (2016). In addition, these results are in contrast with those 

obtained in human spermatozoa, where AQP7 has been found in other sperm 

compartments, including the pericentriolar area, the equatorial segment, and the mid- and 

main pieces (Saito et al. 2004; Yeung et al. 2010; Moretti et al. 2012).  

In this conflicting area, one should note that the discrepancies in the localisation 

of AQPs could be due to the use of different antibodies, cell preparation and/or 
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immunostaining methods. Although control experiments performed without the primary 

antibody and with specific blocking peptides asserted both the specificity and reliability 

of the staining in the context of the current Thesis, further research using immunogold 

and transmission electron microscopy are required to determine the precise localisation 

of these proteins. These analyses may provide a possible explanation on whether AQP7-

localisation pattern changes in response to cryopreservation or rather this observation is 

an artifact of freeze-thawing protocols. Related to this, and to the best of our knowledge, 

only one study has used immunogold to localize AQP7 in boar sperm (Vicente-Carrillo 

et al. 2016). However, the authors that conducted this work used an antibody of dubious 

specificity that was not properly confirmed using a blocking peptide. Yet the 

immunoblots performed in the study of Vicente-Carrillo et al. (2016) differed when 

different AQP7-antibodies were used. Again, this clearly supports the suggestion that 

these authors should have confirmed the specificity of all their antibodies, especially in 

the case of immunogold.  

Once demonstrated both the presence and localisation of AQP3, AQP7 and 

AQP11 in boar and bull sperm, the subsequent aim of the present dissertation was to 

analyze whether any relationship between sperm quality and these three proteins existed. 

In the first instance, this relationship was studied in boar spermatozoa (PAPER I and 

PAPER II) by correlating the relative levels of AQP3, AQP7 and AQP11 and different 

sperm quality parameters evaluated in extended boar semen. These parameters were 

plasma membrane integrity (evaluated through SYBR14/PI), membrane lipid disorder 

(M540/YO-PRO-1) and acrosome integrity (PNA-FITC/PI). While relative levels of 

AQP3 and AQP7 were not found to be correlated with any of the sperm parameters 

evaluated, relative AQP11-content was significantly and positively correlated with sperm 

motility and integrity evaluated through % SYBR14+/PI-, % PNA-FITC-/PI-, % M540-

/YO-PRO-1- and % of total and progressive motile spermatozoa. In contrast to these 

results, Chen et al. (2011) demonstrated that an Aqp3-knockout mouse model presented 

normal motility but higher susceptibility to face a hypotonic ambient (i.e. the female 

reproductive tract; ~310 mOsm·Kg-1). The sperm produced by this Aqp3-null mouse 

model showed an increment in tail bending after entering the uterus, which hindered the 

sperm migration within the oviduct and resulted in decreased fertilization rates. With 

regard to AQP7, whilst some studies conducted in human related the distribution of this 

protein with sperm motility and morphology (Yeung et al. 2010; Moretti et al. 2012), 

other works conducted in mice found that AQP7 was not indispensable for the regulation 
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of sperm function and fertility (Kondo et al. 2002; Yang et al. 2005; Sohara et al. 2007; 

Yeung et al. 2009). Indeed, a genetic deletion of AQP7 did not produce apparent defects 

in sperm. All that being said, and despite the fact that AQP3 and AQP7 have not been 

found to be related with the sperm quality of fresh/extended boar semen in this study, 

another crucial issue is the role of these two GLPs as glycerol transporters. As glycerol is 

the most used permeable CPA, it could be that these two GLPs were related with the 

sperm resilience to withstand freeze-thawing procedures. The present Thesis also 

purported to address such a relationship in both boar and bull sperm, and this issue will 

be taken it up again later in this Discussion. As far as AQP11 is concerned, Shannonhouse 

et al. (2014) conducted a study in which they identified different changes in the testicular 

transcriptome of Syrian hamster related to photoperiodic modulation of fertility. In this 

work, they found that transcript levels of Aqp11 were positively correlated with those of 

three genes (Catsper1, Pgk2, and Tnp2) involved in the regulation of sperm motility. 

These findings are in agreement with the present Thesis and could contribute to explain 

why relative AQP11-content in boar spermatozoa is positively correlated with total and 

progressive sperm motility, at least in fresh semen. Thus, the differences in the 

relationship between AQP3, AQP7 and AQP11 amounts and sperm-quality parameters 

appear to be species-specific. Finally and still dealing with fresh/liquid-stored semen, the 

present dissertation has also investigated fresh bull semen. Apart from the fact that no 

correlation was observed between sperm quality parameters and the relative levels of 

AQP3, AQP7 and AQP11, bull semen is mainly stored in frozen state, so that emphasis 

is here made on the putative role of these three AQPs in the cryotolerance of bovine 

semen. 

Semen preservation technologies seek to keep the sperm fertilizing capacity for a 

period whose duration depends on the method and material used. In the case of long-term 

conservation, frozen storage in liquid nitrogen (LN2) is the most used system (reviewed 

by Rodríguez-Gil, 2006). Nevertheless, in spite of the potential advantages of long-term 

semen storage, porcine sperm are notoriously sensitive to cold temperatures, because of 

the low cholesterol/phospholipid ratio of their membranes (reviewed by Johnson et al. 

2000 and Bailey et al. 2008). For this reason, the method for routine sperm preservation 

in pigs (up to 12-15 days) is liquid-storage at 15-17◦C (reviewed by Rodríguez-Gil, 2006). 

Moreover, the timing of ovulation in the pig is another important factor to consider. 

Indeed, as this process can occur over a long-estrus window, boar spermatozoa may be 

required to survive up to 40 h in the oviduct. This represents an inconvenient for frozen-
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thawed sperm, as their lifespan is dramatically decreased and thus reproductive 

performance is significantly lower than that of fresh/extended semen (Alm-Packalén, 

2009). In contrast, bull sperm cryopreservation is widely and commonly used in the 

bovine breeding industry (Pons-Rejraji et al. 2009). Indeed, oppositely to other species, 

such as the pig, bull sperm are characterized by superior cryoresistance which enables 

them to efficiently survive cryopreservation (Slowińka et al. 2008). All these factors 

explain the use of fresh/extended semen in pigs and of cryopreserved semen in cattle. For 

that reason, and as aforementioned, we were mainly focused upon the relationship of 

AQP3, AQP7 and AQP11 with cryopreserved rather than fresh bull semen.  

As explained in the Introduction of the present dissertation, the role of some AQPs 

is not restricted to the transport of water but these proteins are also involved in the traffic 

of certain small, uncharged solutes such as glycerol, urea, ammonia and arsenite (Borgnia 

et al. 1999; Liu et al. 2002; Saparov et al. 2007), enabling a 10-100 fold increase in 

transport rates across plasma membranes (reviewed by Agre et al. 2002). It is well 

established that the permeability of the plasma membrane to water and cryoprotectants 

(CPAs) is crucial for cell survival during cryopreservation (Tan et al. 2013). Hence, given 

the role of AQPs in water transport (Barcroft et al. 2003; Knepper et al. 2004) and taking 

into account that glycerol has been the most used CPA for freezing sperm from most 

animal species (reviewed by Holt, 2000a) including boar (at concentrations of 2-3%; 

Bianchi et al. 2008) and bovine semen (Forero-Gonzalez et al. 2012), we hypothesized 

that AQPs could be involved in sperm cryotolerance (PAPER III, PAPER IV and 

PAPER V).  

In order to address whether variations in the relative content of AQP3, AQP7 and 

AQP11 in fresh sperm could be related to the sperm resilience to withstand freeze-

thawing procedures, the relative amounts of these three proteins were evaluated by 

immunoblotting in fresh and in frozen-thawed boar and bull sperm. Furthermore and 

according to the literature, sperm cryotolerance highly varies between species, individuals 

from the same species, ejaculates from the same individual and even between fractions 

of the same ejaculate (Holt et al. 2005; Peña et al. 2006; Waterhouse et al. 2006; Dorado 

et al. 2010; Yeste et al. 2015). Taking this into account, we also found interesting to study 

whether boar and bull ejaculates with higher cryotolerance were those that presented 

higher relative levels of AQP3, AQP7 and AQP11 in fresh sperm (PAPER III, PAPER 

IV and PAPER V). This kind of research also has a practical angle, as identifying the 

ejaculates of poor freezability before freeze-thawing procedures take place may avoid the 
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extra costs incurred when PFE are cryopreserved. In this case, and following an approach 

previously deployed in other studies of our research group (Casas et al. 2009; Yeste et al. 

2013a; 2014a; Vilagran et al. 2013; 2014), boar and bull ejaculates were classified into 

GFE and PFE groups through a hierarchical cluster analysis and on the basis of their 

viability and motility at post-thawing. 

For AQP3, our data demonstrated that the relative amounts of this protein were 

significantly higher in GFE than in PFE in both fresh and frozen-thawed boar sperm. 

Furthermore, the relative abundances of AQP3 in fresh/extended boar semen were 

significantly correlated with sperm viability at 30 and 240 min post-thawing and with 

progressive and total motility assessed at 30 min post-thawing (PAPER III). In contrast, 

relative AQP3-content in bull sperm did not differ between GFE and PFE either before 

or after freeze-thawing and relative AQP3-amounts were not correlated with any bull 

sperm parameter at post-thawing. Therefore, although the present dissertation had 

hypothesized that AQP3 could be involved in the cryotolerance of boar and bull 

spermatozoa, this hypothesis was only confirmed in the case of boars (PAPER III) but 

not in that of bulls (PAPER IV). 

The relationship of AQP3 with boar sperm cryotolerance could be explained by 

their properties as a member of the aquaglyceroporin subfamily. AQP3 has been 

identified in reproductive organs such as uterus, cervix, ovary, placenta, fetal membrane, 

epididymis and prostate (reviewed by Zhang et al. 2012). In addition, their presence in 

mouse and pig oocytes (Edashige et al. 2003; Morató et al. 2014), pig expanded 

blastocysts (Jin et al. 2013), and mice morulae (Edashige et al. 2006) has also been 

reported to play an important role during cryopreservation, as their exogenous expression 

increases the cell permeability to water and CPA resulting in higher tolerance to 

cryopreservation. Furthermore, two studies conducted by Chen & Duan (2011) and Chen 

et al. (2011) described this protein as a part of an osmosensing system responsible of 

detecting early events in cell swelling. These researchers described that the lack of this 

protein is related with a higher vulnerability to physiological hypotonic changes occurring 

upon sperm entrance into the female reproductive tract and with sperm tail deformation, 

which hampers sperm motility and ultimately reduces fertilizing ability. Thus, all these 

studies demonstrated the importance of this protein in mammalian reproduction. Taking 

into account the participation of AQP3 in all these processes, it is not surprising that this 

protein does also seem to be involved in the cryopreservation success of boar sperm.  
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On the other hand, it is not possible, at this moment, to explain why AQP3 has not 

been found to be related to bull sperm cryotolerance. Unfortunately, no data regarding 

the role of AQP3 on mammalian sperm cryopreservation is available. When trying to 

formulate a hypothesis to explain the results obtained in PAPER IV, which denote that 

there is no relationship between the relative content of AQP3 in fresh bull semen and the 

sperm resilience to withstand cryopreservation, we should consider that the expression of 

AQP3 was not altered when bovine embryos were exposed to a hypertonic medium during 

in vitro culture (Camargo et al. 2011). Therefore, the fact that AQP3 is not related to the 

response of bovine embryos to high hypertonic media could be an explanation on why 

bull sperm with higher relative AQP3-abundance do not exhibit better cryotolerance 

when exposed to a cryopreservation medium of high osmolality. 

The relative levels of AQP7 in fresh boar sperm were significantly higher in GFE 

than in PFE and were also found to be correlated with the sperm viability and progressive 

motility evaluated at post-thawing. Similar results were obtained in bull spermatozoa as, 

again, fresh ejaculates with higher cryotolerance (GFE) and thus higher sperm survival 

following freeze-thawing presented higher relative amounts of AQP7 than PFE. In 

addition, another statistical approach which consisted of a combination of PCA and linear 

regression analyses showed that the relative abundances of AQP7 in fresh bull sperm 

could predict the sperm survival at post-thawing. In a similar fashion to the case of AQP3, 

the relationship of AQP7 with sperm cryotolerance of both boar and bull ejaculates could 

also be explained by its properties as a glycerol transporter. In fact, cryoprotectants have 

been reported to up-regulate the expression of AQP7 in mouse oocytes but not that of 

AQP3 and AQP9 which are also GLPs (Tan et al. 2013). The increased expression of this 

protein facilitates water diffusion and is essential for the cell to face the osmotic shock 

linked to cryopreservation via Aurora A/CPEB phosphorylation mediated by PI3K and 

PKC pathways (Tan et al. 2013). The present Thesis has found that ejaculates with higher 

relative amounts of AQP7 exhibit higher cryotolerance and thus, their sperm survival at 

post-thawing is higher. Therefore and bearing in mind that spermatozoa are 

transcriptionally silent cells and that the osmolality of freezing medium LEYGO (1,650-

1,750 mOsm·Kg-1) is very high, the fact that a given spermatozoon has more relative 

levels of AQP7 makes it more resilient to withstand the osmotic shock and thus freeze-

thawing procedures.  

Regarding to AQP11, their levels were higher in GFE than in PFE but not 

significantly different either in fresh or frozen-thawed sperm. Besides, relative AQP11-
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abundances in fresh or frozen-thawed sperm were found not to be significantly correlated 

with sperm quality at post-thawing. This indicates that, for the time being, AQP11 is not 

able to predict boar sperm cryotolerance. Related to this, it is noticeable that, as 

aforementioned, the present Thesis also demonstrated that relative AQP11-content was 

positively correlated with sperm quality in boar fresh semen (Prieto-Martínez et al. 

2016a; PAPER I). As conventional sperm analyses are not useful to predict boar sperm 

freezability (Hernández et al. 2006; Casas et al. 2009), one should not be surprised by the 

fact that a protein marker that is related to conventional quality parameters in fresh semen 

has no relationship with sperm cryotolerance. While conventional sperm quality 

parameters fail to detect GFE and PFE because they do reflect the sperm physiology at 

37ºC rather than contemplating the cell mechanisms facing adverse/stressful conditions 

(reviewed by Yeste, 2016), further research should investigate which the exact role of 

AQP11 in the physiology of epididymal, ejaculated/liquid-stored and capacitated sperm 

is. On the other hand, and as far as the results obtained in bulls are concerned, a significant 

and positive correlation was observed between sperm quality evaluated at post-thawing 

and relative AQP11-levels in fresh and frozen-thawed sperm. In addition, both before and 

after freeze-thawing, GFE presented significantly higher relative AQP11-levels than PFE. 

Therefore, bull spermatozoa with low relative AQP11-amounts appear to be less able to 

withstand freeze-thawing procedures. 

Different studies have been reported the expression of AQP11 in several rat 

tissues, such as kidney, liver, testes and brain (Gorelick et al. 2006) and in human 

adipocytes, where despite AQP11 not belonging to the aquaglyceroporin subfamily, it has 

been suggested to be a glycerol channel (Madeira et al. 2014). A main inconvenient when 

trying to find an explanation for the role of AQP11 during sperm cryopreservation is that 

fact that this protein is one of the latest discovered AQP family members, whose function 

has been difficult to set due to its primarily intracellular location. Taking this into account, 

AQP11 channels could be important to keep organelle viability after cryopreservation, 

when intracellular compartments are subjected to dehydration and to rehydration. 

Nevertheless, considering our data, the implication of AQP11 in boar sperm 

cryotolerance has not been clearly established in the present Thesis (PAPER III). In 

contrast, this protein plays an important role in bull sperm cryotolerance. Therefore, more 

research is warranted to elucidate whether a high number of boar samples should be 

evaluated to confirm the small differences between GFE and PFE or the ability of AQP11 

to predict ejaculate freezability is species-specific. This latter hypothesis would also be 
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in agreement with the fact that AQP3 is related with boar but not with bull sperm 

freezability. In fact, it is quite likely that the sperm resilience to withstand freeze-thawing 

protocols does not rely only upon a specific AQP but rather more than one, and that the 

combination of these AQPs is species-specific (AQP3-AQP7 in boars and AQP7-AQP11 

in bulls). 

Cryopreservation is an efficient way to store spermatozoa and plays a major role 

in genetic improvement, economization of breeding programs in the livestock industry 

and preservation of endangered species (Yoon et al. 2015). Nevertheless, although this 

technique is extensively used in cattle industry for AI purposes since it produces the same 

calving rates than those of fresh semen (Hiemstra, 2005), the use of frozen-thawed sperm 

for AI is limited in swine because the fertility of cryopreserved semen is significantly 

lower than that of fresh semen (Roca et al. 2006). In order to improve the success of this 

technique, several studies have been focused on the research of protein markers linked to 

the sperm resilience to withstand freeze-thawing procedures (Thurston et al. 2002; Casas 

et al. 2009; 2010; Vilagran et al. 2013; 2014; 2015). It is in this context that the results 

obtained in the PAPER III are of great interest. In effect, these results support the 

reliability of AQP3 and AQP7 as cryotolerance markers in boar sperm as both are 

involved in sperm cryotolerance and are able to predict the ejaculate freezability. 

Regarding bull sperm, the findings reported herein could also have practical implications 

since, as aforementioned, frozen-thawed sperm is routinely used for AI (Curry, 2000). 

Therefore, we suggest that the relative abundances of AQP7 and AQP11 in bull sperm 

could be used as cryotolerance markers and that quantitative analysis of these proteins in 

fresh sperm could contribute to select the semen samples with higher quality prior to 

cryopreservation and AI (Daigneault et al. 2015; Lecewicz et al. 2015) (PAPER IV and 

PAPER V). Finally and still related with the reliability of AQP11 as a cryotolerance 

marker, one of the most interesting results obtained in the present work is the capability 

of this protein to predict the fertilizing ability of frozen-thawed bull sperm (PAPER V). 

In this sense, we investigated whether the relative AQP11-abundance in fresh bull semen 

was associated with the ability of frozen-thawed bull sperm to penetrate in vitro matured 

bovine oocytes. The results showed that relative AQP11-abundance in fresh semen is 

correlated with penetration rates of frozen-thawed sperm and that penetration rates were 

significantly higher in GFE than in PFE. Hence, under a practical point of view the 

analysis AQP11 could also contribute to improve the selection of higher quality semen 

samples prior to AI. Nevertheless, this topic warrants further research in order to ascertain 
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whether the relationship of relative AQP11-levels with fertilizing ability of frozen-thawed 

bull sperm was due to the role exerted by this protein during freeze-thawing or it was due 

to the previous selection of intact sperm through discontinuous gradient washing, with 

higher recovery in GFE than in PFE. This could be addressed by determining the 

relationship between relative AQP11 levels and penetration rates of fresh bull semen. In 

addition, further research is also necessary to determine whether a correlation between 

relative AQP11-content in fresh semen and reproductive outcomes following AI with 

frozen-thawed bull sperm also exists. On the other hand, taking into consideration that 

around 99% of semen doses used for pig AI are refrigerated (reviewed by Johnson et al. 

2000), it could also be interesting to investigate the relationship between the relative 

AQP11-abundance in fresh/extended boar semen of boars and IVF and AI outcomes. 

Future studies should also scrutiny the suitability of other methods such as ELISA. 

This technique can be used for quantitative determination of proteins and represents a 

more accurate estimation than semi-quantitative approaches such as Western blotting. 

This would be followed by the development and optimization of kits determining the 

quantity of AQP3, AQP7 and AQP11 in fresh boar and bull semen, which could allow 

ultimately selecting the samples with higher cryotolerance and/or the fertilizing ability, 

thereby reducing cryopreservation costs and optimizing the use of seminal doses both in 

porcine and bovine. 

Taking all above into consideration, we can conclude that the present dissertation 

has reported, for the first time, the existence and localisation of AQP3, AQP7 and AQP11 

in both boar and bull sperm. Moreover, localisation patterns for these three AQPs have 

been reported to present species-specific peculiarities, since their distribution differs 

between mammalian species. On the other hand, although cryopreservation does not 

induce major changes in the localisation patterns of AQP3 and AQP11 in either boar or 

bull sperm, it appears to alter that of AQP7 at least in boars. As far as the relationship 

between sperm quality and these three proteins is concerned, only relative AQP11-levels 

are significantly correlated with sperm motility and membrane integrity in fresh/extended 

boar sperm. In addition, regarding the relationship between these three AQPs and sperm 

cryotolerance, the present dissertation has demonstrated that relative AQP7-content in 

fresh sperm is related to their resilience to withstand freeze-thawing procedures and is 

able to predict ejaculate freezability in boars and bulls. On the other hand, while AQP3 is 

involved in the cryotolerance of boar spermatozoa, AQP11 is only related to that of bull 
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spermatozoa. Finally, bull fresh ejaculates with higher amounts of AQP11 seem to exhibit 

also higher in vitro fertilizing ability at post-thawing.  
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Conclusions 

1. AQP3, AQP7 and AQP11 are present in boar and bull spermatozoa and their 

localisation are species-specific (PAPER I, PAPER II, PAPER IV and PAPER 

V).  

2. AQP3, AQP7 and AQP11 have a homogeneous distribution in the ejaculated 

sperm of both species and cryopreservation procedures do not affect the 

localization of these proteins, except for AQP7 in boars (PAPER I, PAPER II, 

PAPER III, PAPER IV and PAPER V).  

3. While relative amounts of AQP11 are significantly correlated with the quality of 

boar extended semen, AQP3 and AQP7 are correlated with no sperm quality 

parameter (PAPER I and PAPER II). 

4. Relative levels of AQP3 in fresh boar semen are significantly higher in GFE than 

in PFE. Thus, the semen from boars with high AQP3 content should be used for 

cryopreservation procedures (PAPER III). 

5. In contrast, relative AQP3-content in fresh bull sperm does not differ between 

GFE and PFE. Therefore, AQP3 is discarded as freezability marker for bull sperm 

(PAPER IV). 

6. Relative abundance of AQP7 in fresh of both boar and bull spermatozoa is 

significantly higher in GFE than in PFE. Therefore, AQP7 is a marker for boar 

and bull sperm freezability, as predicts the sperm ability to withstand freeze-

thawing protocols before these procedures take place (PAPER III and PAPER 

IV). 

7. The amounts of AQP11 in fresh boar semen do not differ significantly between 

GFE and PFE. Therefore, AQP11 content is not able to predict boar sperm 

cryotolerance (PAPER III).  

8. In contrast, in fresh bull sperm, GFE presented significantly higher relative 

AQP11-levels than PFE. Thus, this protein predicts the ejaculate freezability in 

bull fresh sperm (PAPER V). 

9. The relative AQP11-abundance in fresh bull semen is associated with the ability 

of frozen-thawed bull sperm to penetrate in vitro matured bovine oocytes and 

penetration rates are significantly higher in GFE than in PFE (PAPER V). 
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10. While the results obtained in the current dissertation support the relevance of 

AQPs for boar and bull sperm cryopreservation, further research is warranted to 

address through which precise mechanism each AQP exerts its function and to 

explain why, whereas the involvement of AQP7 in sperm cryotolerance is 

concurrent in both species, that of AQP3 and AQP11 differs.  
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