
Graph enumeration and random graphs

Author: Lander Ramos 1

Advisor: Marc Noy 2

Departament de Matemàtiques
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de Nombres, con Elisa, con las innumerables charlas apasionantes durante la pausa del
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Introduction

In this thesis we use analytic combinatorics to deal with two related problem: graph
enumeration and random graphs from constrained graph families, which are particular
cases of combinatorial classes, defined as (infinite) sets, together with a positive integer
size function such that the number of elements of each size is finite. We are interested
in drawing a general picture of some graph families by determining, first, how many
elements are there of a given possible size (graph enumeration), and secondly, what is
the typical behaviour of an element of fixed size chosen uniformly at random, when the
size tends to infinity (random graphs).

More precisely, the classes we are interested in are graphs of a given kind, like planar
graphs with vertex degree constraints. So first we give an asymptotic estimate of the
total number of graphs of such classes of a given size n, when n tends to infinity. And
moreover, we evaluate some parameters, like the number of edges, of a graph of size n
chosen uniformly at random, when n tends to infinity as well. This means that for those
classes we have an estimate of the number of graphs, as well as its typical behaviour.
The reason we compute an estimate, and not the exact number of graphs, or the exact
value of a parameter, is that computations are typically very difficult, or even unfeasible,
but we have powerful tools that give precise asymptotic estimates when the size of the
objects is large enough.

Most of the tools used in this thesis can be found in [5]. Actually, many of the papers
that inspired this thesis were also based in those results, and consist on related results,
concerning classes of graphs like planar graphs or series-parallel graphs, and parameters
like the number of edges or the degree distribution. In order to use these results, we
need to work with the generating function of the corresponding combinatorial class,
which is a complex function associated to the class.

In Chapter 1 we introduce the notation used in the rest of the thesis. In addition
some definitions regarding the Symbolic Method are included, in particular all the details
about generating functions. The chapter is complemented with the main results that
we use in this thesis, namely analytic theorems and combinatorial techniques.

In Chapter 2 we study planar graphs with minimum degree 2 and 3. This is one
of the natural sequels of the work of O. Giménez and M. Noy [8], where the authors
gave an enumeration of planar graphs, as well as many limit laws of random planar
graphs. In particular, they describe the generating function of planar graphs implicitly
as the solution of a system of explicit equations, since an explicit expression is not likely
to exist. The knowledge of a generating function leads to many interesting properties
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regarding the combinatorial class that it counts. One of this properties is the asymptotic
enumeration of objects in the class, in this case planar graphs. It is obtained from the
location of the main singularity of the generating function, and the behaviour of the
generating function near this singularity. After applying the corresponding analytic
theorems and techniques, the authors of [8] obtained an asymptotic estimate of the
number of planar graphs, given by

gn ∼ g · n−7/2γnn!,

where g and γ are well defined analytic constants, and γ ≈ 27.2269. Moreover, if
we enrich the generating function by adding a variable that encodes edges, we obtain
properties regarding the behaviour of the corresponding parameter, in this case edges,
in random planar graphs. In particular they proved that the number of edges in a
random planar graph with n vertices is asymptotically normal, and the mean µn and
variance σ2n satisfy

µn ∼ κn, σ2n ∼ λn,
where κ ≈ 2.2133 and λ ≈ 0.4303 are computable analytic constants. There are similar
results for the degree sequence or the number of connected components, obtained by
enriching the generating function with the corresponding parameter.

Many of our results for planar graphs with minimum degree 2 and 3 are similar to
the results obtained for planar graphs, and in fact we need to use the corresponding
generating function, after some modifications to remove vertices of degree 1 and 2. For
this removal we need the concept of the core and kernel of a graph, defined as follows:
the core of a graph is obtained by repeatedly removing vertices of degree one, and the
kernel of a graph without vertices of degree one is obtained by replacing maximal paths
of vertices of degree 2 with edges. We use this concept to obtain different parameters
from planar graphs, like the expected size of the core, or the size of the trees attached
to it, which roughly corresponds to the part of the graph not belonging to the core. We
also use extremal techniques to compute the expected size of the largest of those trees.

As a warm-up we obtain the same results for embedded maps with minimum degree
2 and 3, using the fact that we have explicit expressions for their generating functions.
A map, as opposed to planar graphs, is associated with an embedding in the sphere,
and this gives an explicit method to obtain its generating function, and therefore to
count them. These results are interesting by themselves, but we take advantage of
the existence of explicit expressions to show how the combinatorics works, paying less
attention to the analysis, which in the case of graphs contains many technical difficulties
due to the non-existence of an explicit expression for its generating function, and we
have to solve them using involved ad-hoc techniques.

In Chapter 3 we venture into a vast field: counting subgraphs in random graphs.
The most general version of the problem would be: given a class of graphs G, and a
graph H, give as much information as possible about the number of occurrences of H
as a subgraph of a graph in G, taken uniformly at random. This general version is out
of the reach with our current tools, so instead we tackle some specifical subcases of the
problem, namely a particular and easy enough class of graphs G, a particular simple
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small enough (but non trivial) subgraph H, or partial results about the behaviour of
the number of occurrences in families of classes of graphs. Note that in Chapter 2 we
show how to deal with the problem of counting edges in planar graphs, so the subgraph
H should be more interesting than a single edge.

One of the results that inspired our work is the paper by C. McDiarmid [16], who
counted the number of pendant copies of graphs in random graphs from classes of graphs
satisfying a general enough property that includes a wide variety of graph constrained
classes. Here, a pendant copy of a graph H in a graph G is a copy of H as a subgraph
of G joined to the rest of the graph by a bridge edge, i.e., an edge such that after
removing it the number of connected components increases. McDiarmid proved that if
the class of graphs satisfy a number of natural properties, then a large enough graph in
the class, taken uniformly at random among all the graphs of the same size, contains
a linear number of pendant copies of any connected graph in the class. Since all the
pendant copies are at the same time copies as subgraphs, this gives a lower bound for
the number of occurrences of graphs for classes of graphs satisfying those conditions.
However, the number of occurrences of a graph of k vertices as a subgraph of a graph
of n vertices could be up to O(nk).

In the first part of our work we deal with subcritical graphs classes, as defined in [12].
There is a precise definition of a subcritical graph class, but its main characterization
is more interesting: a subcritical class of graphs is such that the size of the largest 2-
connected component of a graph in the class is typically of logarithmic size with respect
to the number of vertices, as opposed to critical classes of graphs, which contain a 2-
connected component of linear size. Note that a 2-connected component is a maximal
2-connected subgraph, and a 2-connected graph is a connected graph that does not
contain a cut vertex. We study the number of 2-connected graphs in subcritical classes
of graphs, taking advantage of the fact that the 2-connected components are small, and
that a 2-connected subgraph cannot traverse cut vertices. We prove that the number
of occurrences of such subgraphs follows a Gaussian limit law with linear expectation.

In the second part of the chapter we compute the exact value of the constants for
given subgraphs, triangles and quadrangles, in a given subcritical class of graphs, the
class of series-parallel graphs. Our previous result already proves that the number
of triangles and quadrangles follows a gaussian law with linear expectation, but we
compute the exact value of the constants, i.e., we prove that the expected number of
triangles in a connected series-parallel graph with n vertices is asymptotically µn, with
µ ≈ 0.39418. Our combinatorial and analytic tools also give enumerative results on
the number of series-parallel graphs without triangles almost “for free”, so we compute
these values. Finally, we prove a Gaussian law with linear expectation on the number
of occurrences of triangles and quadrangles in 2-connected series parallel graphs, which
cannot be proven by means of the general theorem of the previous section.

In Chapter 4 we enumerate graphs where the degree of every vertex belongs to a
fixed subset of the natural numbers. More formally, given D ⊂ N, we give an asymptotic
estimate, that depends on D, on the number of graphs with n vertices where the degree
of every vertex belongs to D. Many particular cases have been already studied. When
D consists of a single element k, we deal with the family of k-regular graphs, which

5



were counted in [63]. More complex subsets have been also considered, like graph
with minimum degree δ ≥ k [10], or classes of Eulerian graphs, defined as graphs
where all vertices have even degree [25] [73]. As expected, our result matches all the
particular cases when we specialize our formula. In the case of Eurlerian graphs, our
formula provides enumeration for a given number of vertices and edges, strengthening
the previously existing results, which only take vertices into account.

The techniques used in this chapter are slightly different to the ones from the previ-
ous chapters. Some of the tools we use do not behave well when the generating function
of the class of graphs has radius of convergence 0, as is the case for general graphs, even
if we constrain the degree of the vertices. Instead, we work with the so-called configu-
ration model. In this model, we consider that each vertex has a number of half-edges
equivalent to its degree, and we match all the possible half-edges between them. This
allows us to set the degree of every vertex in advance, but the main drawback is that
we allow all the possible matchings between half-edges, which leads to the possibility
of loops and multiple edges, i.e., when we match two half-edges belonging to the same
vertex, or when we match more than one pair of half-edges between the same pair of
vertices. In other words, the resulting graph is not necessarily a simple graph, but a
multigraph.

Since all the previous results were related to simple graphs, and enumeration does not
behave well with multigraphs, due to the existence of an infinite number of multigraphs
with a fixed number of vertices, we have to find a way to get rid of the loops and
multiple edges. Actually, since we work with asymptotic enumeration, we can leave
some multigraphs if their density is low enough so that the asymptotic estimate is not
affected. The good news are that the probability of having a triple edge or a double
loop tends to zero when the size of the graph is large enough, so we only have to
consider double edges and single loops. We deal with this situation by means of the
inclusion-exclusion principle, inspired in a particular approach given in [5].

All the chapters of this thesis where written as papers for different journals and
conferences. However, not all of them have been published as for today. At the time of
finishing writing this thesis, the status of the different chapter are as follows:

• Chapter 2 was written to be published as a paper. An extended abstract was
accepted in Eurocomb 2013 [46]. We are currently preparing an extended version
to submit to a journal.

• Chapter 3 has been accepted in Random Structure and Algorithms [59]. We are
currently waiting for its publication.

• Chapter 4 has been published as a preprint in the proceedings of the Workshop
on Analytic Algorithmics and Combinatorics 2016 [30]. We are currently working
in a longer version to be submitted to a journal.
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Chapter 1

Background and definitions

This chapter is devoted to introduce all the contents needed to follow the rest of the
thesis. It includes both the main definitions that appear in other chapters, and the
main theorems already existing in the literature. For the sake of clarity, the concepts
are divided into three sections. In Section 1.1, the combinatorial structures we will
deal with are defined, and the notation for them is presented. In Section 1.2, we show
how to use analytic tools to extract properties from combinatorial classes, and we state
the main theorems that we use. In Section 1.3 we show well-known relations between
combinatorial classes that can be translated into analytic relations so that we have the
equations needed to apply the theorems of Section 1.2.

1.1 Structures

In this section we define and fix notation for the structures that we use, mostly graphs
and maps. In Section 1.1.1 we define what a graph is, and we precisely state which kind
of graphs we are working with. In Section 1.1.2 we define the other main structure we
work with: maps. Finally, in Section 1.1.3 we define properties in graphs that define
graph classes that we will count later.

1.1.1 Graphs

The main combinatorial objects in this thesis are graphs, in particular labelled graphs.
A labelled graph is a pair (V (G), E(G)), where V = V (G) is the set of vertices and E(G)
is a set of unordered pairs of different vertices in V , called edges. The two vertices of an
edge are called endpoints, and two vertices v and w are adjacent if and only if there exists
an edge in the graph whose endpoints are v and w. All the vertices are distinct, and we
will use the set [n] = {1, 2, . . . , n} to label the n vertices of a labelled graph. Since all
the graphs in this thesis are labelled, from now on we just say graph instead of labelled
graph. Sometimes, a graph is called simple graph to distinguish it from multigraphs.
A labelled multigraph, or, in this thesis, a multigraph is a pair (V (G), E(G)), where
V = V (G) is a set of vertices, as in the case of simple graphs, and E(G) is a finite
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multiset of unordered pairs of (non necessarily different) vertices in V . In other words,
a multigraph allows both multiple edges and loops. A multiple edge is a set of edges
with the same endpoints, and a loop is an edge where the endpoints are equal. Note
that this definition allows multiple loops. Also, unless stated differently, the edges of
a multigraph are not distinguishable. In this thesis we only study properties related
to simple graphs, but some proofs require multigraphs as intermediate steps, which in
some cases are easier to work with.

A subgraph of a graph G is a graph H such that the set of vertices of H is a subset
of the set of vertices of G, and the set of edges of H is a subset of the set of edges of G,
whose endpoints are vertices in H. A path in a graph is a finite sequence of different
vertices of the graph v1, v2, . . . , vn such that for every i ∈ {1, . . . , n − 1} there is an
edge between vi and vi+1. A cycle of a graph is a path such that there is an edge
between v1 and vn and n ≥ 3. A graph G is connected if it is not empty and there is
a path between each pair of vertices of G. A connected component of a graph G is a
maximal connected subset of vertices of G. A graph G is k-connected if it has at least
k vertices and there is no subset of k − 1 vertices such that after removing them the
graph becomes not connected. Note that the definition of connected is equivalent to
the definition of 1-connected. A 2-connected component or a block of a graph G is a
maximal 2-connected subgraph of G. A tree is a connected graph without cycles. A
rooted tree is a tree with a distinguished vertex, which is called the root of the tree.
A minor of a graph G is a subgraph H whose vertices matches disjoint subsets of the
vertices of G, and two vertices v and w of H are adjacent if an only if there is a vertex
in the subset corresponding to v adjacent to a vertex in the subset corresponding to w
in G. A graph is complete if it contains every possible edge; in other words, if every pair
of different vertices is adjacent. We write Kn as the complete graph with n vertices.
A bipartite graph is a graph where the set of vertices is divided into two subsets, and
any two vertices belonging to the same subset are not adjacent. A complete bipartite
graph is a bipartite graph where all the pair of vertices belonging to different sets are
adjacent. We write Kn,m as the complete bipartite graph whose vertices are divided
into two subsets of sizes n and m respectively.

1.1.2 Maps

Another structure that we consider in this thesis are maps. Roughly speaking, a map
is a connected planar multigraph embedded in the sphere. We use the definitions and
notation given by Landon and Zvonkin in [29]. More formally, a rooted map is a sub-
division of the sphere into sets homeomorphic to dots, segments and discs. They are
respectively called vertices, edges and faces. Moreover, there is a distinguished oriented
edge called the root edge. The two extremes of an edge are called its endpoints. The
degree of a vertex is the number of different endpoints of edges incident to it. Note
that a vertex can be incident to the two endpoints of a loop, and in this case such an
edge contributes twice to the degree of the vertex. The degree of a face is the number
of edges appearing when traversing the boundary of the face. Note that a single edge
can appear twice in the boundary, and in this case it is counted twice. Two maps are
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considered distinct if there is no homeomorphism between them preserving the internal
structures. In Figure 1.1 we can see two equivalent rooted maps with three vertices and
four edges each. Note that the lower triangle in the map at the left maps to the outer
face of the map at the right. On the other hand, in Figure 1.2 we can see two different
rooted maps. Although they are isomorphic as mutigraphs, the embedding is different,
since in the first map the face at the left of the root edge has degree five, whereas in
the second map it has degree three.

Figure 1.1: Two equivalent maps.

Figure 1.2: Two different maps.

In this thesis the vertices and edges of maps are not labelled, but one can prove that,
after rooting and orienting an edge, all the other vertices and edges are distinguishable.
In Figure 1.3 we can see a map with four unlabelled vertices, but vertices 1 and 2 are
distinct, since vertex 1 is adjacent to one endpoint of the root edge, whereas vertex 2
is adjacent to the other endpoint. For the same reason, the edge between the origin of
the root and vertex 1 is different from the edge between the end of the root and vertex
2. Note that, as a planar multigraph, all the vertices and edges are equivalent.

1.1.3 Classes of graphs

In this subsection we present the classes of graphs we work with. A class of graphs
is given by the property that the graphs must fulfil in order to be in the class. For
example, the class of connected graphs is the set of graphs that are connected. The

total number of graphs with n vertices, using our definition of graph, is 2(n2). This kind
of quadratic exponential does not behave well with our tools, since generating functions
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1 2

Figure 1.3: Two distinguishable vertices of a map.

typically encode additive parameters, which usually have linear growth, so for Chapter 2
and Chapter 3 we consider classes of graphs that only contain asymptotically θ(n)knn!
graphs with n vertices, for some constant k and subexponential function θ(n). These
classes are the class of planar graphs and the class of series parallel graphs.

We say that a graph G is planar if there is an embedding of each connected compo-
nent of G in the sphere such that no two edges intersect. An embedding of a connected
graph is a subdivision of the sphere into sets homeomorphic to dots, segments and discs
such that there is a bijection between sets homeomorphic to dots and vertices in G, sets
homeomorphic to segments and edges in G, such that an edge is incident to a vertex if
an only if the corresponding sets are incident as well. For some applications, an alter-
native definition is the characterization given by Wagner’s Theorem, that states that a
graph is planar if and only if it does not contain K5 or K3,3 as a minor. However, this
definition is not used for enumerative purposes. Instead, we use Whitney’s Theorem,
that states that every 3-connected graph admits a unique embedding in the sphere,
which implies that we can enumerate 3-connected graphs in terms of 3-connected maps.

The other class that we consider is that of series-parallel graphs. There are several
equivalent definitions for them. In our context, a series-parallel graph is a graph whose
2-connected components can be obtained from a graph consisting of two vertices and an
edge, by means of a concatenation of series and parallel operations. Given a multigraph
G, we say that a multigraph H is obtained from G by means of a series operation if
H is the result of replacing an edge e of G with a vertex adjacent to the endpoints
of e. Analogously, we say the H is obtained from G by means of a parallel operation
if H is the result of duplicating an edge e of G with another edge between the same
endpoints. Note that after a parallel operation we always have a non-simple multigraph.
Since we are working with simple series-parallel graphs, we only consider those that end
up without loops or multiple edges. In particular, the last operation must be a series
operation. Also, note that according to our definition it is enough if the two connected
components are obtained by means of this operation.

There are alternative equivalent definitions for series-parallel graphs. One of the best
known states that a graph is series-parallel if it does not contain K4 as a minor. Alter-
natively, series-parallel graphs are those whose connected components are subgraphs of
a 2-tree, which is defined as the result of starting with an edge, and repeatedly adding
vertices adjacent to the endpoints of an existing edge. These definitions are useful for
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other applications, but our tools behave well with the constructive definition of series
and parallel operations, so we will use this one.

1.2 Analysis

In this section we present the analytic tools that we use to study combinatorial classes.
Most of the content is based on the book Analytic Combinatorics by P. Flajolet and
R. Sedgewick [5]. In Section 1.2.1 we define generating functions, which are used to
translate combinatorial relations into analytic functions, so that we can apply the ex-
isting theorems. Section 1.2.2 is devoted to the study of the asymptotic enumeration of
classes counted by generating functions, whereas Section 1.2.3 shows how to deal with
objects chosen uniformly at random of such combinatorial classes. Finally, Section 1.2.4
discusses the particular case of random objects when they are defined by a system of
an infinite number of equations.

1.2.1 Generating functions

A combinatorial class is a set of objects together with a size function. More formally, it
is a pair (A, | . |), where | . | : A → N is called the size function. The size function must
satisfy that the number of objects with any given size is finite. More formally, for every
n ∈ N, |{a ∈ A||a| = n}| <∞. Also there might be objects of size zero, so we consider
zero to be a natural number. Let A(n) be the set of elements of size n. We define the
generating function of A as the formal power series A(z) =

∑
a∈A z

|a| =
∑∞

n=0 |A(n)|zn.
Sometimes, we call the generating function A(z) the ordinary generating function, to
distinguish it from the exponential generating function. The exponential generating
function of A is the formal power series A(x) =

∑
a∈A x

|a|/|a|! =
∑∞

n=0 |A(n)|xn/n!.
Conversely, we write [zn]A(z) = |A(n)| = an.

We are often interested in keeping track of the value of a parameter of the com-
binatorial objects. A parameter is a function f : A → N, but in contrast to the
size, we do not impose that the number of elements with a given parameter is finite.
Instead, we will distinguish objects of the same size according to the value of its pa-
rameter. Let A(n,m) be the set of elements of size n and parameter m. We define the
bivariate (ordinary) generating function of a combinatorial class A with parameter f
as A(z, y) =

∑
a∈A z

|a|yf(a) =
∑∞

n=0

∑∞
m=0 |A(n,m)|znym. The exponential bivariate

generating function of A is the formal power series A(x, y) =
∑

a∈A x
|a|yf(a)/|a|! =∑∞

n=0

∑∞
m=0 |A(n,m)|xnym/n!. Note that in the bivariate exponential generating func-

tion we divide by the factorial of the size of an object, and not by the factorial of its
parameter.

In order to translate combinatorial relations into generating functions we use the
so-called Symbolic Method. This method gives a dictionary that allows us to obtain
equations defining generating functions from the combinatorial relations that define the
combinatorial class. The two basic classes are neutral class E , consisting of a single
element of size 0, and the atomic class Z, consisting of a single element of size 1.
Given two combinatorial classes A and B, we define the union of A and B, denoted
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A ∪ B, as the class consisting of the disjoint union of both classes. More formally,
A ∪ B = (A, 0) ∪ (B, 1), and the size of each element of the class is inherited from the
initial classes. We define the cartesian product of A and B, denoted A×B, as the class
of ordered pairs of elements in A and B, where the size of each pair is the sum of the
sizes of the elements in the pair. The sequence of a combinatorial class A such that
|A(0)| = 0 consists of the set of ordered finite sequences of any size of elements in A,
and the size is again the sum of the sizes of the elements in the sequence. More formally,
Seq(A) = E ∪ A ∪ (A × A) ∪ (A × A × A) . . .. The pointing operator, A•, consists in
replacing each object of size n with n distinct objects of the same size. On the other
hand, the deriving operator, A◦, replaces each object of size n with n distinct objects
of size n − 1. The rationale with respect to these two operators is the following: we
assume that each object of size n consists of n atoms, like for example vertices in the
case of graphs. Then, the pointing operator consists in distinguishing one of the atoms
of each object, whereas the deriving operator does the same but the atom is no longer
considered as such, so the size of the object becomes n− 1. The composition operator,
A ◦ B, replaces each element of A of size n with a sequence of n objects in B, and the
size is the sum of the sizes of the objects in B. Again, this operator conceptually deals
with atoms; in this case each atom of each object of A is replaced with an object in B.

The cartesian product, as defined above, does not behave well when dealing with
classes of labelled objects, i.e., classes where the objects of size n consist of n atoms
labelled from 1 to n, like in the case of labelled graphs. Indeed, a pair of elements of
sizes n and m has size n + m and n + m atoms, but the labels are chosen from two
disjoint sets {1, . . . , n}×{0} and {1, . . . ,m}×{1}, whereas one might expect the labels
of the atoms to be chosen from the set {1, . . . , n+m}. This is why we define the labelled
product between two combinatorial classes A and B as follows: each object of A × B
consists in an ordered pair of objects a ∈ A and b ∈ B, of size respectively n and m.
Such an object has size n+m and consists of n+m atoms, n of those in a and m in b,
inherited from the original objects. Each atom is labelled with a distinct label from 1
to n+m, and the relative order is preserved, in the sense that for each pair of atoms p
and q in a, the label of p is larger than the label of q in a if an only if the label of p is
larger than the label of q in the object 〈a, b〉, and the same with the atoms of b. Note
that this means that every pair of objects of size n and m corresponds to

(
n+m
n

)
objects

of the labelled product. In Figure 1.4 one can see a possible relabelling of the product
of two labelled objects that preserves the relative order of the labelling of each object
of the pair.

In labelled contexts, the sequence operator is defined using this notion of labelled
product. In other words, an object of the sequence class is the labelled product of a
number of object of the original class. Also, the composition operator takes the labelling
into account. We can also define the set operation of a labelled combinatorial class A,
as the class of unordered sets of objects in A, where the size of an object is the sum of
the sizes of the objects in the set.

Once we have defined combinatorial classes, we need a dictionary to translate them
into algebraic relations between generating functions. The labelled operations work
with exponential generating functions, whereas the standard product, sequence and
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Figure 1.4: A relabelling of the product of labelled objects that preserves the relative
order.

composition operations are easier to translate into ordinary generating functions. Ta-
ble 1.1 includes the main conversions. Note that because of the convenient definition
of exponential generating functions, the relations between exponential generating func-
tions representing labelled operations are the same as the relations between ordinary
generating functions representing ordinary operations, so we only include one column
for both. The exception is the set operation, which only makes sense in the case of
labelled classes, so the corresponding equation only works for exponential generating
functions. In Chapter 3 we use other non-standard relations, like cycles and restricted
sets, that are defined there. The operations of Table 1.1 also apply when there is an
additive parameter in the combinatorial class and the generating function counts it.
The composition, pointing and deriving operators can also be applied to the parameter
in the way one might expect: if we replace the variable that counts the parameter with
another generating function, the resulting generating function conceptually represents
the result of replacing each object counted by the parameter with an object of the
other combinatorial class. One can also differentiate with respect to the parameter, and
the result will consist conceptually in distinguishing one of the objects counted by the
parameter, and either keeping it or not, depending on the operator.

Construction Class Equations

Sum C = A ∪ B C(x) = A(x) +B(x)
Product C = A× B C(x) = A(x) ·B(x)
Sequence C = Seq(A) C(x) = 1/(1−A(x))

Set C = Set(A) C(x) = exp(A(x))
Composition C = A ◦ B C(x) = A(B(x))

Pointing C = A• C(x) = A•(x) = x d
dxA(x)

Deriving C = A◦ C(x) = A◦(x) = d
dxA(x)

Table 1.1: The Symbolic Method translating combinatorial constructions into opera-
tions on counting series.
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1.2.2 Enumeration

The whole point of computing the generating function of combinatorial classes is to
analyse it in order to obtain properties about the class that it counts. The most natural
property of a combinatorial class is the enumeration, defined as the number of objects
of any given size, which must be finite by definition. In our applications, the exact
number is often hard to compute, so instead we try to obtain an asymptotic estimate.
More formally, given a combinatorial class A, we are interested in finding a function
f : N→ N such that limn→∞ f(n)/|A(n)| = 1. We use the notationA(n) ∼ f(n) to state
that f(n) is the asymptotic estimate of A(n). There exist analytic tools that provide
precise estimates from the knowledge of the generating function of a combinatorial class.
This is explained in [5][Chapter IV], where the authors state the following principles:

First Principle of Coefficient Asymptotics. The location of the singularities of a
function dictates the exponential growth of its coefficients.

Second Principle of Coefficient Asymptotics. The nature of the singularities of
a function determines the associate subexponential factor.

Here, the exponential growth of the coefficients is the limit limn→∞
n
√
A(n), whereas

the subexponential growth is a factor θ(n) such that limn→∞
n
√
θ(n) = 1. In our

applications, A(n) ∼ θ(n)αn typically holds, and we compute θ(n) and α by means
of tools based in the previous principles. Note that when dealing with exponential
generating functions, an extra n! factor must be added. The exponential growth of
a generating function can be obtained by means of Pringsheim’s Theorem, as given
in [5], which states that, under some technical conditions, the exponential growth of
a generating function is given by the inverse of its dominant singularity. The exact
statement of the theorem is the following:

Theorem 1.2.1 (Location of Singularities). Let A(z) be a generating function. analytic
at 0. Assume that ρ = |ρ| is a singularity of A(z), and every other singularity has
absolute value larger than ρ. Then

n
√

[zn]A(z) ∼ ρ−1

The techniques for computing the subexponential growth are usually more involved
than the ones used for the exponential term. See [5] for a complete description. In
our case, we deal with square-root singularities, i.e., our generating functions behave
like a square root near the singularity. We use the so-called Transfer Theorem. This
theorem gives the subexponential growth assuming that the generating function can be
analytically extended to a ∆-domain, defined as the region ∆(α, ρ,R) = {x ∈ C : |x| <
R, x 6= ρ, | arg(x− ρ)| > α}, where ρ is the dominant singularity, for some real R > ρ
and α > 0, as in Figure 1.5. After we are able to prove that the generating function
behaves like a square root near the main singularity, and that it can be analytically
extended to a ∆-domain, we apply the following version of the Transfer Theorem, as
given in [20]:
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Theorem 1.2.2 (Transfer Theorem). Let a be an arbitrary complex number in C \Z≤0
and let R > ρ > 0 assume that f(x) is analytic in a domain ∆ = ∆(α, ρ,R).

If, as x→ ρ in ∆,
f(z) ∼ (1− z)−a

then

[zn]f(x) ∼ na−1

Γ(a)
.

Actually, the complete version given in [5][Theorem VI.1] gives a complete asymp-
totic expansion in descending powers of n, but for our purposes the first term is enough.

0 ρ

R

α

Figure 1.5: A ∆-domain near a singularity ρ with outer radius R and angle α.

1.2.3 Limit Laws

Given a combinatorial class A with a parameter f : A → N, we are interested in the
behaviour of the parameter of an object of a given size chosen uniformly at random. As
in the case of univariate enumeration, computing the exact number of objects of size n
and parameter m is typically too difficult for the kind of combinatorial classes we work
with. Instead we will use probability analysis to find the asymptotic behaviour when the
size n tends to infinity. First we need some definitions regarding probability analysis.
Let (Ω,P(Ω),p) be a probability space, and let X be a random variable over this
probability space. We denote FX(x) the probability distribution function of X, defined
as FX(x) = p({X ≤ x}). If the probability distribution function is differentiable, we
denote its derivative as fX, and we define the expectation E[X] as follows:

E[X] =

∫ +∞

−∞
tfX(t)dt.
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In general, given a function g : R→ R, we define E[g(X)] analogously as:

E[g(X)] =

∫ +∞

−∞
g(t)fX(t)dt.

The variance is defined as V[X] = E[(X − E[X])2], or, equivalently, V[X] = E[X2] −
E[X]2. Sometimes, when there is no ambiguity, we just write EX and VX.

Analogously to the definition of generating functions of combinatorial classes, we can
define the generating function of a discrete random variable, taking values in the natural
numbers Z≥0. If X is such a random variable, the associated probability generating
function pX(z) is defined as pX(z) =

∑∞
n=0 p(X = n)zn. Note that pX(1) = 1, p′X(1) =

EX, and p′′X(1) + p′X(1)− p′X(1)2 = VX, provided that these values exist.
Given a parameter f of a combinatorial class A, and given n ∈ N, we can define a

random variable Xn as follows: we consider all the objects of A(n), and we pick one
of them, a, uniformly at random. The value of the random variable is f(a). Again,
computing the exact value of Xn is typically difficult, so instead we compute the limit
distribution of Xn when n tends to infinity. There are many definitions of convergence
of random variables. In this thesis, the convergence is in distribution, even if we do not
mention it. Given a sequence (Xn)n of random variables over a probability space, we

say that (Xn)n converges in distribution to X, denoted by Xn
d−→ X, if for every x ∈ R,

limn→∞ FXn(x) = FX(x). Since this is the only kind of convergence that appears in

this thesis, we just write Xn → X to express Xn
d−→ X.

The main tool that we use to compute the limit law of a sequence of random variables
that count a parameter is the Quasi-powers Theorem, which proves convergence to a
Gaussian distribution, and gives easy tools to compute its expectation and variance.
The Quasi-powers Theorem was obtained by Hwang in [34]. Before stating it, we need
to define some notation, based on the version appearing in [5]. Let f(u) be a complex
function, analytic in u = 1, and assume that f(1) 6= 0. Then define

m(f) =
f ′(1)

f(1)
, v(f) =

f ′′(1)

f(1)
+
f ′(1)

f(1)
−
(
f ′(1)

f(1)

)2

.

With this notation, the statement in [5][Theorem IX.8], is as follows:

Theorem 1.2.3 (Quasi-powers Theorem). Let Xn be non-negative discrete random
variables (supported by Z≥0), with probability generating functions pn(u). Assume that,
uniformly in a fixed complex neighbourhood of u = 1, for sequences βn, κn → +∞, there
holds

pn(u) = A(u) ·B(u)βn
(

1 +O

(
1

κn

))
,

where A(u), B(u) are analytic at u = 1 and A(1) = B(1) = 1. Assume finally that
B(u) satisfies the so-called “variability condition”,

v(B(u)) ≡ B′′(1) +B′(1)−B′(1)2 6= 0.
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Under these conditions, the mean and variance of Xn satisfy

µn ≡ EXn = βnm(B(u)) + m(A(u)) +O(κ1n)

σ2n = VXn = βnv(B(u)) + v(A(u)) +O(κ1n).

The distribution of Xn is, after standardization, asymptotically Gaussian, and the speed

of convergence to the Gaussian limit is O(κ1n + β
−1/2
n ):

P
{

Xn − EXn√
VXn

≤ x
}

= Φ(x) +O

(
1

κn
+

1√
βn

)
,

where Φ(x) is the distribution function of a standard normal,

Φ(x) =
1√
2π

∫ x

−∞
e−w

2/2dw.

In Chapter 3 we want to compute a parameter whose probability generating function
is not analytic for u > 1, and therefore it is not analytic near u = 1. Instead, we show
that if the generating function is the solution of a system of equations satisfying a
number of additional properties, then we can relax the constraint, so we only need that
the probability generating function is analytic near u = 1 in an arc of circle of center 0
and radius 1. See Theorem 3.3.1 for further details.

1.2.4 Systems of equations

In some of our applications, our generating function are obtained as the solution of a
system of equations. Under some conditions of positivity, the solutions of the system
have the same dominant singularity, and behave like a square-root near it, which is
sufficient to apply Transfer Theorem or Quasi-powers Theorem, as stated in the previous
subsections. One of the main references in this area is [47][Chapter 2], which shows
how to prove that the solution of a system of equations has the square-root behavior,
distinguishing whether we have one or many equations, or whether we consider or not
additional parameters. We reproduce here [47][Theorem 2.33], as it is general enough
for our purposes.

Theorem 1.2.4. Let F(x,y,u) = (F1(x,y,u), . . . , FN (x,y,u)) be a non-linear system
of functions analytic around x = 0, y = (y1, . . . , yN ) = 0, u = (u1, . . . , uk) = 0,
whose Taylor coefficients are all non-negative, such that F(0,y,u) = 0, F(x,0,u) 6=
0, Fx(x,y,u) 6= 0. Furthermore assume that the dependency graph of F is strongly
connected and that the region of convergence of F is large enough that there exists a
complex neighborhood U of u = 1 = (1, . . . , 1), where the system

y = F(x,y,u),

0 = det(I− Fy(x,y,u)),

has solutions x = x0(u) and y = y0(u) that are real, positive and minimal for positive
real u ∈ U .
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Let
y = y(x,u) = (y1(x,u), . . . , yN (x,u))

denote the analytic solutions of the system

y = F(x,y,u)

with y(0,u) = 0.
Then there exists ε > 0 such that yj(x,u) admit a representation of the form

yj(x,u) = gj(x,u)− hj(x,u)

√
1− x

x0(u)

for u ∈ U , |x−x0(u)| < ε and | arg(x−x0(u))| 6= 0, where gj(x,u) 6= 0 and hj(x,u) 6= 0
are analytic functions with (gj(x0(u),u))j = (yj(x0(u),u))j = y0(u).

Furthermore, if [xn]yj(x,1) > 0 for 1 ≤ j ≤ N and for sufficiently large n ≥ n1,
then there exists 0 < δ < ε such that yj(x,u) is analytic in (x,u) for u ∈ U and
|x−x0(u)| ≥ ε but |x| ≤ |x0(u)|+ δ (this condition guarantees that y(x,u) has a unique
smallest singularity with |x| = |x0(u)|).

In some cases, we cannot express a combinatorial class as the solution of a system of
a finite number of equations. Instead, we express it as the solution of an infinite system
of equations with an infinite number of variables. Again, we are interested in evaluating
a parameter from an object of the class chosen uniformly at random. The main result in
this area is given in [61], where the authors show that, if some constraints of compactness
are fulfilled, then the solution of such a system admits a representation of square-root
type in a ∆-domain, which proves that the parameter follows asymptotically a Gaussian
law. For completeness the statement of the theorem is given here [61][Theorem 1]. Here
`p, for a given real p with 1 ≤ p < ∞, denotes the Banach space of all complex valued
sequences (tn)n∈N satisfying

∑∞
n=1 |tn|p <∞.

Theorem 1.2.5. Let 1 ≤ p < ∞, 1 ≤ r ≤ ∞ and F : C × `p × `r → `p, (x,y,v) 7→
F(x,y,v) be a function satisfying:

(1) there exist open balls B ∈ C, U ∈ `p and V ∈ `p such that (0,0,0) ∈ B × U × V
and F is analytic in B × U × V ,

(2) The function (x,y) 7→ F(x,y,0) is a positive function,

(3) F(0,y,v) = 0 for all y ∈ U and v ∈ V ,

(4) F(x,0,v) 6≡ 0 in B for all v ∈ V ,

(5) ∂F
∂y (x,y,0) = A(x,y + α(x,y)Ip for all (x,y) ∈ B × U , where α is an analytic
function and there exists an integer n such that An is compact,

(6) A(x,y) is irreducible for strictly positive (x,y) and α(x,y) has nonnegative Taylor
coefficients.
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Let y = y(x,v) be the unique solution of the functional equation

y = F(x,y,v)

with y(0,v) = 0. Assume that for v = 0 the solution has a finite radius of convergence
x0 > 0 such that y0 := y(x0,0) exists and (x0,y0) ∈ B × U .

Then there exists ε > 0 such that y(x,v) admits a representation of the form

y(x,v) = g(x,v)− h(x,v)

√
1− x

x0(v)

for v in a neighbourhood of 0, |x− x0(v)| < ε, and arg(x− x0(v)) 6= 0, where g(x,v),
h(x,v) and x0(v) are analytic functions with hi(x0(0,0) > 0 for all i ≥ 1.

Moreover, if there exist two integers n1 and n2 that are relatively prime such that
[xn1 ]y1(x,0) > 0 and [xn2 ]y1(x,0) > 0 then x0(v is the only singularity of y(x,v) on
the circle |x| = x0(v) and there exist constants 0 < δ < π/2 and η > 0 such that y(x,v)
is analytic in a region of the form

∆ := {x : |x| < x0(0) + η, | arg(x/x0(v)− 1)| > δ}.

In our applications, conditions (1) ∼ (4), (6) are usually fulfilled. We state a set
of conditions that implies (5), so that if the system of equations satisfy them, then
Theorem 1.2.5 applies. We call this set of conditions the partition condition, which
roughly speaking is defined as follows. Assume that the vector F is indexed by j ∈ N.
Then, for every j ∈ N there must exist a function F̃ (x, y) such that Fj(x,y,1) =

F̃j(x, y1 + y2 + . . .). In other words, if the parameters are not taken into account, then
all the solutions of the equation y = F(x,y,v) have the same contribution to the system
of equations. In Chapter 3 we define precisely this property, and we show how can we
use it to prove that all the assumptions of Theorem 1.2.5 are fulfilled, and therefore
that some complex parameters converge asymptotically to a Gaussian law.

1.3 Combinatorial techniques

In this section we show combinatorial properties that allow one to define generating
functions as the solution of some equations, or as functions of other generating functions
that we already know. Section 1.3.1 deals with the decomposition of a graph into
connected and 2-connected components. The given combinatorial relations show how
to obtain the generating function of 2-connected graphs in terms of the generating
function of all the graphs, and vice versa. Section 1.3.2 shows how to unroot trees,
and classes of graphs that have a tree structure, that is, how to obtain the generating
function of trees from the generating function of rooted trees.

1.3.1 Block decomposition

Let us consider a class of graphs G such that a graph is in G if and only if every connected
component is in G. Let C be the subclass of connected graphs in G. Then the following
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equation holds:
G = Set(C).

Let G(x) be the exponential generating function of G, and let C(x) be the exponential
generating function of C. Then

G(x) = exp(C(x)).

In order for this equation to be true, we need that the empty graph is included in the
class of general graphs, but not in the class of the connected graphs. This is why we
impose that a connected graph has to be a non-empty graph.

In the literature, a 2-connected component is called a block. A class of graphs is
block stable if a graph is in the class if and only if all its connected components and
2-connected blocks belong to the class as well. For technical reasons, the root of a
connected graph will be part of it, whereas the root of a 2-connected graph will not. If
a class is block-stable, we can relate the classes of pointed connected graphs and derived
2-connected graphs. The combinatorial argument is the following. The root of a rooted
connected graph belongs to zero or more 2-connected blocks, and every vertex of every
block apart from the root is incident as well to a rooted connected graph, which may
consist of a single vertex. Let C• be the class of pointed connected graphs of the class,
and B◦ the class of derived 2-connected graphs of the class. Then

C• = Z × set(B◦ ◦ C•),

Recall that Z is the atomic class, consisting of a single element of size one. This
combinatorial equation can be easily translated into generating functions. If B′(x)
and xC ′(x) are the generating functions of B◦ and C• respectively, then the following
equation holds:

xC ′(x) = x exp(B′(xC ′(x)).

Note that, if needed, this equation also relates the equations for (unrooted) connected
and 2-connected graphs, which can be obtained from B′(x) and xC ′(x) by means of
integration.

1.3.2 Dissymmetry theorem

The relation between 2-connected and 3-connected graphs of a class is not as straight-
forward as those shown in Section 1.3.1. The standard approach uses an intermediate
class called networks. A network is a 2-connected graph where we root, direct and,
possibly, remove an edge. The endpoints of the rooted edge are called poles, and we
denote them as 0 and ∞, such that the direction of the edge goes from 0 to ∞. In
this way, we keep track of the orientation of the root edge even if we remove it. Note
that the poles are not labelled. Indeed, we use 0 and ∞ instead of the old labels of the
vertices, so a network corresponding to a 2-connected graph of size n will have size n−2.
Of course, a relabelling that preserves the relative order must be performed so that the
other vertices have labels in {1, . . . , n− 2}. A series network is a network with at least
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one cut vertex, whereas a parallel network is a 2-connected network. The following
relation between the combinatorial classes of 2-connected graphs B and networks N is
straightforward:

(Y × B◦−◦) ∪ (Y × B◦−◦) = X 2 ×N ,
where Y represents the class consisting of a single element of size 0 and one edge with
generating function y, and B◦−◦ consists in rooting and removing one edge of the graph.
This is translated to generating functions as follows:

2y2
∂

∂y
B(x, y) = x2N(x, y).

From this, it is clear that one could theoretically obtain the generating function of
2-connected graphs of a class by integrating the generating function of networks with
respect to y. However, in some cases, we do not have access to the enriched generating
function that counts edges, and in other cases integrating this function is not easy.
This is why we use the so-called combinatorial integration approach defined in [2].
This approach uses the Dissymmetry Theorem to relate the generating functions of
2-connected graphs and networks of a given class of graphs.

The Dissymmetry Theorem states that there exists a bijection between classes of
labelled trees with different rootings. This theorem was proven in [2], and the statement
is the following:

Theorem 1.3.1 (Dissymmetry theorem). Let T be the class of labelled unrooted trees.
Let T• be the class of labelled rooted trees. Let T•−• be the class of labelled trees rooted
in an edge. Let T•−◦ be the class of labelled trees rooted in an oriented edge. Then the
following bijection holds:

T ∪ T•−◦ ≈ T• ∪ T•−•
Note that this equation allows to express the generating function of unrooted trees in

terms of the generating function of rooted trees, which is typically simpler. According to
the dictionary of Section 1.2.1, one could also obtain the generating function of unrooted
trees by integrating that of rooted trees. However, integration is typically more difficult
than just applying the dissimetry theorem, since the generating function is usually not
explicit. In any case, this gives an alternative name for the technique consisting in
applying the dissymetry theorem: combinatorial integration.

In our case, we do not apply the theorem to trees, but to tree-decomposable classes.
A tree-decomposable class is a class where each object has a tree associated to it.
The tree represents different parts of the object, and we take advantage of the rooting
in those cases where it is easier to define the object if a given part is distinguished.
In particular, we know that the class of two connected graphs is tree-decomposable, by
using a mapping from graphs to trees inspired in [17], where the authors give a canonical
way to decompose a 2-connected graph into 3-connected components. In particular, this
decomposition assigns a tree to every 2-connected graph where the nodes represent either
cycles, or multiedges, or 3-connected graphs. Then the Dissymmetry Theorem applies,
and it gives a system of equations that relates 3-connected graphs and 2-connected
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graphs, as the one shown in [2][Section 5.4]. This approach is particularly useful with
series-parallel graphs, since there are no 3-connected series-parallel graphs, and planar
graphs, since we know that there is a unique embedding of a 3-connected planar graph,
and we know how to count 3-connected embedded planar graphs.
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Chapter 2

Planar graphs of minimum
degree two and three

This chapter is based in a joint work with M. Noy. We determine the asymptotic growth
of planar maps and graphs with a condition on the minimum degree, and properties
of random graphs from these classes. In particular we show that the expected size of
the largest tree attached to the core of a planar graph of size n chosen uniformly at
random is asymptotically c log(n) for an explicit constant c. These results provide new
information on the structure of random planar graphs.

2.1 Introduction

The main goal of this chapter is to enumerate planar graphs subject to a condition on
the minimum degree δ, and to analyze the corresponding planar random graphs. Asking
for δ ≥ 1 is not very interesting, since a random planar graph contains in expectation
a constant number of isolated vertices. The condition δ ≥ 2 is directly related to the
concept of the core of a graph. Given a connected graph G, its core (also called 2-core
in the literature) is the maximum subgraph C with minimum degree at least two. The
core C is obtained from G by repeatedly removing vertices of degree one. Conversely, G
is obtained by attaching rooted trees at the vertices of C. The kernel of G is obtained
by replacing each maximal path of vertices of degree two in the core C with a single
edge. The kernel has minimum degree at least three, and C can be recovered from K
by replacing edges with paths. Notice that G is planar if and only C is planar, if and
only if K is planar.

As shown in Figure 2.1, the kernel may have loops and multiple edges, which must
be taken into account since our goal is to analyze simple graphs. Another issue is that
when replacing loops and multiple edges with paths the same graph can be produced
several times. To this end we weight multigraphs according to the number of loops and
edges of each multiplicity. We remark that the concepts of core and kernel of a graph
are instrumental in the theory of random graphs [64, 37].

For the sake of brevity, it is convenient to introduce the following definitions: a
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Figure 2.1: Core and kernel of a graph.

2-graph is a connected graph with minimum degree at least two, and a 3-graph is a
connected graph with minimum degree at least three. From now on all graphs are
labelled and generating functions are of the exponential type. Let cn, hn and kn be,
respectively, the number of planar connected graphs, 2-graphs and 3-graphs with n
vertices, and let

C(x) =
∑

cn
xn

n!
, H(x) =

∑
hn
xn

n!
, K(x) =

∑
kn
xn

n!

be the associated generating functions. Also, let tn = nn−1 be the number of (la-
belled) rooted trees with n vertices and let T (x) =

∑
tnx

n/n!. The decomposition of a
connected graph into its core and the attached trees implies the following equation

C(x) = H(T (x)) + U(x), (2.1)

where U(x) = T (x) − T (x)2/2 is the generating functions of unrooted trees. Since
T (x) = xeT (x), we can invert the above relation and obtain

H(x) = C(xe−x)− x+
x2

2
.

The equation defining K(x) is more involved and requires the bivariate generating
function

C(x, y) =
∑

cn,k y
k x

n

n!
,

where cn,k is the number of connected planar graphs with n vertices and k edges. We
can express K(x) in terms of C(x, y) as

K(x) = C(A(x), B(x)) + E(x), (2.2)

where A(x), B(x), E(x) are explicit elementary functions (see Section 2.3).
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From the expression of C(x) as the solution of a system of functional-differential
equations [8], it was shown that

cn ∼ κn−7/2γnn!,

where κ ≈ 0.4104 · 10−5 and γ ≈ 27.2269 are computable constants. In addition,
analyzing the bivariate generating function C(x, y) it is possible to obtain results on
the number of edges and other basic parameters in random planar graphs. Our main
goal is to extend these results to planar 2-graphs and 3-graphs.

Using Equations (2.1) and (2.2) we obtain precise asymptotic estimates for the
number of planar 2- and 3-graphs:

hn ∼ κ2n
−7/2γn2 n!, γ2 ≈ 26.2076, κ2 ≈ 0.3724 · 10−5,

kn ∼ κ3n
−7/2γn3 n!, γ2 ≈ 21.3102, κ3 ≈ 0.3107 · 10−5.

As is natural to expect, hn and kn are exponentially smaller than cn. Also, the number
of 2-connected planar graphs is known to be asymptotically κcn

−7/226.1841nn! (see
[71]), smaller than the number of 2-graphs. This is consistent, since a 2-connected has
minimum degree at least two.

By enriching Equations (2.1) and (2.2) taking into account the number of edges,
we prove that the number of edges in random planar 2-graphs and 3-graphs are both
asymptotically normal with linear expectation and variance. The expected number
of edges in connected planar graphs was shown to be [8] asymptotically µn, where
µ ≈ 2.2133. We show that the corresponding constants for planar 2-graphs and 3-
graphs are

µ2 ≈ 2.2614, µ3 ≈ 2.4065.

This conforms to our intuition that increasing the minimum degree should increase the
expected number of edges.

We also analyze the size Xn of the core in a random connected planar graph, and
the size Yn of the kernel in a random planar 2-graph. We show that both variables are
asymptotically normal with linear expectation and variance and that

EXn ∼ λ2n, λ2 ≈ 0.9618,

EYn ∼ λ3n, λ3 ≈ 0.8259.

We remark that the value of λ2 has been recently found by McDiarmid [16] using
alternative methods. Also, we remark that the expected size of the largest block (2-
connected component) in random connected planar graphs is asymptotically 0.9598n
[28]. Again this is consistent since the largest block is contained in the core.

The picture is completed by analyzing the size of the trees attached to the core. We
show that the number of trees with k vertices attached to the core is asymptotically
normal with linear expectation and variance. The expected value is asymptotically

C
kk−1

k!
ρkn,
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where C > 0 is a constant and ρ ≈ 0.03673 is the radius of convergence of C(x). For k
large, the previous quantity grows like

C√
2π
· k−3/2(ρe)kn.

This quantity is negligible when k � log(n)/(log(1/ρe)). Using the method of moments,
we show that the size Ln of the largest tree attached to the core is in fact asymptotically

log(n)

log(1/ρe)
.

Our last result concerns the distribution of the vertex degrees in random planar 2-
graphs and 3-graphs. We show that for each fixed k ≥ 2 the probability that a random
vertex has degree k in a random planar 2-graph tends to a positive constant dH(k), and
for each fixed k ≥ 3 the probability that a random vertex has degree k in a random planar
3-graph tends to a positive constant dK(k). Moreover

∑
k≥2 pH(k) =

∑
k≥3 pK(k) = 1,

and the probability generating functions

pH(w) =
∑
k≥2

dH(k)wk, pK(w) =
∑
k≥3

dK(k)wk

are computable in terms of the probability generating function pC(w) of connected
planar graphs, which was fully determined in [21].

The previous results show that almost all planar 2-graphs have a vertex of degree
two, and almost all planar 3-graphs have a vertex of degree three. Hence asymptotically
all our results hold also for planar graphs with minimum degree exactly two and three,
respectively. In addition, all the results for connected planar graphs easily extend to
arbitrary planar graphs. This is because the expected size of the largest component in
a random planar graph is n−O(1) (see [28]). We will not repeat for each of our results
the corresponding statement for graphs of minimum degree exactly two or three.

It is natural to ask why we stop at minimum degree three. The reason is that
there seems to be no combinatorial decomposition allowing to deal with planar graphs
of minimum degree four or five (a planar graph has always a vertex of degree at most
five). It is already an open problem to enumerate 4-regular planar graphs. In contrast,
the enumeration of cubic planar graphs was completely solved in [38].

The contents of the chapter are as follows. In Section 2.2 we find similar results
for planar maps, that is, connected planar graphs with a fixed embedding. They are
simpler to derive and serve as a preparation for the results on planar graphs, while
at the same time they are new and interesting by themselves. In Section 2.3 we find
equations linking the generating functions of connected graphs, 2-graphs and 3-graphs;
to this end we must consider multigraphs as well as simple graphs. In Section 2.4 we use
singularity analysis in order to prove our main results on asymptotic enumeration and
properties of random planar 2-graphs and 3-graphs. The analysis of the distribution of
the degree of the root, which is technically more involved, is deferred to Section 2.5.
We conclude with some remarks and open problems.
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We assume familiarity with the basic results of analytic combinatorics as described
in [5]. Given a complex number ζ 6= 0, a ∆-domain at ζ is an open set of the form

∆(R,φ) = {z : |z| < R, z 6= ζ, | arg(z − ζ)| > φ}

We wiil need the following result [5, Corollary VI.1].

Transfer Theorem. If f(z) is analytic in a ∆-domain and satisfies, locally
around its dominant singularity ρ, the estimate

f(z) ∼ (1− z/ρ)−α, z → ρ,

with α 6∈ {0,−1,−2, . . . }, then the coefficients of f(z) satisfy

[zn]f(z) ∼ nα−1

Γ(α)
ρ−n.

We also need and a simplified version of [5, Theorem IX.8].

Quasi-powers Theorem. Let the Xn be non-negative discrete random vari-
ables with probability generating functions pn(u). Assume that, uniformly
in a fixed complex neighbourhood of u = 1

pn(u) = A(u)B(u)n
(

1 +O

(
1

n

))
where A(u), B(u) are analytic at u = 1 and A(1) = B(1) = 1. Assume
finally that B(u) satisfies B′′(1) +B′(1)−B′(1)2 6= 0.

Then the distribution of Xn is, after standardization, asymptotically Gaus-
sian, and the mean and variance satisfy

EXn ∼
(
B′(1)

B(1)

)
n, VarXn ∼

(
B′′(1)

B(1)
+
B′(1)

B(1)
−
(
B′(1)

B(1)

)2
)
n.

In our applications we will have B(u) = ρ(1)/ρ(u), where ρ(u) will be the
dominant singularity (as a function of z) of a bivariate generating function
f(z, u). The former expressions become then

EXn ∼
(−ρ′(1)

ρ(1)

)
n, VarXn ∼

(
−ρ
′′(1)

ρ(1)
− ρ′(1)

ρ(1)
+

(
ρ′(1)

ρ(1)

)2
)
n.

In order to apply the former results we need to show that the corresponding gen-
erating functions can be defined in a ∆-domain. This relatively straightforward for
planar maps, since we have explicit algebraic expressions for the generating functions.
It is rather more involved for planar graphs. The expressions obtained in Section 2.3
are not enough for this purpose and we have to use alternative equations related to the
decomposition of connected graphs into 2-connected components (see Section 2.4).
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2.2 Planar maps

We recall that a planar map is a connected planar multigraph embedded in the plane up
to homeomorphism. A map is rooted if one of the edges is distinguished and oriented.
In this way a rooted map has a root edge and a root vertex (the tail of the root edge).
We define the root face as the face on the right of the directed root edge. A rooted map
has no automorphisms, in the sense that every vertex, edge and face is distinguishable.
From now on all maps are planar and rooted. We stress the fact that maps may have
loops and multiple edges.

The enumeration of rooted planar maps was started by Tutte in his seminal paper
[1]. Let mn be the number of rooted maps with n edges, with the convention that
m0 = 0. Then

mn =
2 · 3n

(n+ 2)(n+ 1)

(
2n

n

)
, n ≥ 1

The generating function M(z) =
∑

n≥0mnz
n is equal to

M(z) =
18z − 1 + (1− 12z)3/2

54z2
− 1. (2.3)

Either from the explicit formula or from the expression for M(z) and the transfer
theorem, it follows that

mn ∼
2√
π
n−5/212n. (2.4)

If mn,k is the number of maps with n edges and degree of the root face equal to k, then
M(z, u) =

∑
mn,kz

nuk satisfies the equation

M(z, u) = zu2(M(z, u) + 1)2 + uz

(
uM(z, u)−M(z, 1)

u− 1
+ 1

)
. (2.5)

By duality, M(z, u) is also the generating function of maps in which u marks the degree
of the root vertex. This is a convenient modifications of the usual equations for maps,
where the empty map is also counted.

The core C of a map M is obtained, as for graphs, by removing repeatedly vertices
of degree one, so that C has minimum degree at leat two. Then M is obtained from
C by placing a planar tree at each corner (pair of consecutive half-edges) of C. This is
equivalent to replacing each edge with a non-empty planar tree rooted at an edge. The
number tn of planar trees with n ≥ 1 edges is equal to the n-th Catalan number and
the generating function T (z) =

∑
tnz

n satisfies

T (z) =
1

1− z(1 + T (z))
− 1.

We define a 2-map as a map with minimum degree at least two, and a 3-map as a map
with minimum degree at least three. Let hn and kn be, respectively, the number of
2-maps and 3-maps with n edges.
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Theorem 2.2.1. The generating functions H(z) and K(z) of 2-maps and 3-maps,
respectively, are given by

H(x) =
1− x
1 + x

(
M

(
x

(1 + x)2

)
− x
)
, K(x) =

H

(
x

1 + x

)
− x

1 + x
.

The following estimates hold:

hn ∼ κ2n−5/2(5 + 2
√

6)n, kn ∼ κ3n−5/2(4 + 2
√

6)n, (2.6)

where

κ2 =
2√
π

(
2

3

)5/4

≈ 0.6797, κ3 =
2√
π

(
4− 4

√
2

3

)5/2

≈ 0.5209.

Proof. The decomposition of a map into its core and the collection of trees attached to
the corners implies the following equation:

M(z) = T (z) +H (T (z))
1 + T (z)

1− T (z)
. (2.7)

The first summand corresponds to the case where the map is a tree, and the second one
where the core is not empty: each edge is replaced with a non-empty tree whose root
corresponds to the original edge. The factor

1 + T (z)

1− T (z)
= 1 +

2T (z)

1− T (z)

is interpreted as follows. The first summand corresponds to the case where the root of
the map is in the core, and the second one to the case where it is in a pendant rooted
tree τ , which we place at the left-back corner of the root edge of the core. In this case
there is a non-empty sequence of non-empty trees from the root edge e of τ to the root
edge of the core, and the factor 2 distinguishes the two possible directions of e.

In order to invert the former relation let x = T (z), so that

z =
x

(1 + x)2
.

We obtain

H(x) =
1− x
1 + x

(
M

(
x

(1 + x)2

)
− x
)

= x+ 3x2 + 16x3 + 96x4 + 624x5 + · · · (2.8)

Let now C be a 2-map. The kernel K of C is defined as follows: replace every
maximal path of vertices of degree two in C with a single edge (see Figure 2.2). Clearly
K is a 3-map and C can be obtained by replacing edges in K with paths. It follows
that

H(z) = K

(
z

1− z

)
1

1− z +
z

1− z . (2.9)
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Figure 2.2: Core and kernel of a map.

The first term corresponds to the substitution of paths for edges, and the extra factor
1/(1− z) indicates where to locate the new root edge in the path replacing the original
root edge. The last term corresponds to cycles, whose kernel is empty. Inverting the
relation x = z/(1− z) we obtain

K(x) =

H

(
x

1 + x

)
− x

1 + x
= 2z2 + 9z3 + 47z4 + 278z5 + · · · (2.10)

In order to obtain asymptotic estimates for hn and kn we need to locate the dominant
singularities of H(z) and K(z) and show that these functions are defined on suitable
∆-domains. M(z) has a unique singularity at ρ = 1/12 and is analytic in C minus
the ray [1/12,+∞), and T (z) is singular only at 1/4. Hence H(z) has a singularity at
σ = ρT (ρ)2 = 5− 2

√
6. We show next that H(z) is analytic in |x| < σ and has no other

singularities in |x| = σ. By continuity it is analytic in a ∆-domain at σ.
From Equation (2.8), the singularities of H are at −1 and at the points x where

t = x/(1 + x)2 ∈ [1/12,∞). We show that these points either satisfy |x| ≥ 1 or belong
to the real segment [σ, 1). If we solve the equation for x we get

x =
1− 2t±

√
1− 4t

2t
, t ∈ [1/12,∞).

We analyze two cases. For t > 1/4 we can rewrite x = (1 − 2t ± i
√

4t− 1)/2t and
obtain |x| = 1. When 1/12 ≤ t ≤ 1/4, x must be real. Consider the solution x(t) =
(1− 2t+

√
1− 4t)/2t. It is non-increasing since the derivative

x′(t) = −1− 2t+
√

1− 4t

2
√

1− 4t · t2 .

is negative . Since x(1/4) = 1 it follows that x ≥ 1. For the solution x(t) = (1 − 2t −√
1− 4t)/2t the derivative is positive and x(1/12) = σ. Hence x ≥ σ.
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From Equation (2.10) it follows that K(z) has singularity at τ = σ/(1 − σ) =
(
√

6− 2)/4.
For future reference we display these basic constants, that is, the dominant singu-

larities for 2- and 3-maps:

σ = 5− 2
√

6, τ =

√
6− 2

4
.

The singular expansion of M(z) at the singularity z = 1/12 can be obtained directly
from the explicit formula (2.3), and is equal to

M(z) =
1

3
− 4

3
Z2 +

8

3
Z3 +O(Z4),

where Z =
√

1− 12z. Plugging this expression into (2.8) and expanding gives

H(x) = H0 +H2X
2 +

8

3

(
2

3

)5/4

X3 +O(X4),

where now X =
√

1− x/σ. A similar computation using (2.10) gives

K(x) = K0 +K2X
2 +

8

3

(
4− 4

√
2

3

)5/2

X3 +O(X4),

where X =
√

1− x/τ .
The estimates for hn and kn follow by the transfer theorem and the equality Γ(−3/2) =

4
√
π/3.

Our next result is a limit law for the size of the core and the kernel in random maps.

Theorem 2.2.2. The size Xn of the core of a random map with n edges, and the size
Yn of the kernel of a random 2-map with n edges are asymptotically Gaussian with

EXn ∼
√

6

3
n ≈ 0.8165n, VarXn ∼

n

6
≈ 0.1667n,

EYn ∼ (2
√

6− 4)n ≈ 0.8990n, VarYn ∼ (18
√

6− 44)n ≈ 0.0908n.

The size Zn of the kernel of a random map with n edges is also asymptotically Gaussian
with

EZn ∼
(

4− 4
√

6

3

)
n ≈ 0.7340n, VarZn ∼

(
128

3
− 52

3

√
6

)
n ≈ 0.2088n.

Proof. If u marks the size of the core in maps then and immediate extension of (2.7)
yields

M(z, u) = H (uT (z))
1 + T (z)

1− T (z)
+ T (z). (2.11)
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It follows that the singularity ξ(u) of the univariate function z 7→M(z, u) is given by

ξ(u) =
σu

(σ + u)2
.

An easy calculation gives

−ξ
′(1)

ξ(1)
=

√
6

3
, −ξ

′′(1)

ξ(1)
− ξ′(1)

ξ(1)
+

(
ξ′(1)

ξ(1)

)2

=
1

6
.

If now u marks the size of the kernel in 2-maps then an extension of (2.9) gives

H(z, u) = K

(
uz

1− z

)
1

1− z +
z

1− z . (2.12)

The singularity χ(u) of z 7→ K(z, u) is now given by

χ(u) =
τ

τ + |u| .

Applying the quasi-powers theorem and we obtain

−χ
′(1)

χ(1)
= 2
√

6− 4, −χ
′′(1)

χ(1)
− χ′(1)

χ(1)
+

(
χ′(1)

χ(1)

)2

= 18
√

6− 44.

The last statement concerning Zn follows by combining equations (2.11) and (2.12), ob-
taining an expression of M(z, u) in terms of K(z), and repeating the same computations
as before for the corresponding singularity function. In order to apply the quasi-powers
theorem we need to show that, for u0 close enough to 1 we can extend both H(z, u0) and
K(z, u0) to respectives ∆-domains. Both proofs are analogous to the one of Theorem
2.4.3.

It is interesting to compare the previous result with the known results on the largest
block (2-connected components) in random maps [43]. The expected size of the largest
block in random maps is asymptotically n/3, rather smaller than the size of the core.
In other words, the core C consists of the largest block B together with smaller blocks

attached to B comprising in total
√
6−1
3 n ≈ 0.4832n edges. An explanation for this is

the presence of a linear number of loops, which belong to the core, but do not belong
to the largest block.

Our next goal is to analyze the size of the trees attached to the core of a random
map.

Theorem 2.2.3. Let Xn,k count trees with k edges attached to the core of a random
map with n edges. Then Xn,k is asymptotically normal and

EXn,k ∼ αkn
where

αk = (4 +
5

3

√
6)

1

k + 1

(
2k

k

)(
1

12

)k
, k ≥ 1.

Moreover,
∑

k≥1 αk =
√

6/3.
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Proof. The generating function for trees, where variable wk marks trees with k edges,
is equal to

T (z, wk) = T (z) + (wk − 1)tkz
k,

where tk = Ck = 1
k+1

(
2k
k

)
is the k-th coefficient of T (x). The scheme for the core

decomposition is then

M(z, wk) = H(T (z, wk))
1 + T (z)

1− T (z)
+ T (z).

It follows that the singularity ρk(wk) of the univariate function z 7→ M(z, wk) is given
by the equation

T (ρk(wk)) + (wk − 1)tkρk(wk)
k = σ.

An easy calculation gives

−ρ
′
k(1)

ρk(1)
=

1− σ
σ(1 + σ)

Ck

(
1

12

)k
.

The first part of the proof is concluded by noticing that (1− σ)/(σ(1 + σ)) = 4 + 5
3

√
6.

Finally,
∑

k≥1 αk =
√

6/3 follows from the closed form of the generating function
for the Catalan numbers.

Recall that the size of the core is asymptotically 1−σ
1+σn =

√
6
3 n. Hence the asymptotic

probability that a random tree attached to the core has size k is

βk =
αk√
6/3
∼ 1

σ
√
π
k−3/23−k, k →∞, (2.13)

It follows that if k � log(n)/ log(3), the expected number αkn of trees of size k tends to
zero. This indicates that the size Ln of the largest tree attached to the core is at most
log(n)/ log(3) with high probability. We show that in fact Ln/ log(n) tends to 1/ log(3).

Theorem 2.2.4. Let Ln be the size the largest tree attached to the core of a random
map with n edges. Then

Ln
log n

→ 1

log(3)
≈ 0.9102 in probability

and

ELn ∼
1

log(3)
log n (n→∞).

The proof is completely analogous to the proof of Theorem 2.4.5 and is not presented
here. After proving Theorem 2.4.5 we indicate how to adapt the proof to establish
Theorem 2.2.4, which is technically easier.
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Degree distribution. Our last result in this section deals with the distribution of
the degree of the root vertex in 2-maps and 3-maps. We let M(z, u) be the GF of maps,
where z marks edges and u marks the degree of the root vertex. Similarly, H(z, u) is
the GF for 2-maps, and T (z, u) = 1/(1 − uz(T (z) + 1)) − 1 for trees, where again u
marks the degree of the root. Then we have

M(z, u) = H

(
T (z),

u(T (z, u) + 1)

T (z) + 1

)
(T (z, u) + 1) +H(T (z))

T (z, u)

1− T (z)
+ T (z, u).

The first term corresponds to the case where the root belongs to the core: we replace
each edge with a tree, and each edge incident to the root vertex is replaced with a
possibly empty tree, where u marks the degree of the root. The term T (z) + 1 in
the denominator ensures that an edge is not replaced twice with a tree. The factor
T (z, u) + 1 allows to place a possibly empty tree in the root corner. The second term
corresponds to the case where the root belongs to a tree attached to the core: the
denominator 1− T (z) encodes a sequence of trees going from the core to the root edge.
The last term corresponds to the case where the core is empty, and therefore the map
is a tree.

If we change variables x = T (z) and w = u(T (u, z) + 1)/(T (z) + 1), the inverse is

z =
x

(1 + x)2
, u =

w(1 + x)

1 + wx
.

The former equation becomes

H(x,w) =

M

(
x

(1 + x)2
,
w(1 + x)

1 + wx

)
1 + wx

− wx

1 + x
M

(
x

(1 + x)2

)
+

1

1 + wx
+

wx2

1− x − 1.

(2.14)
The first terms are

H(x, u) = w2x+
(
w2 + 2w4

)
x2 +

(
3w2 + 4w3 + 4w4 + 5w6

)
x3 + · · ·

The relationship between H(z, u) and K(z, u) is simpler:

H(z, u) = K

(
z

1− z , u
)

+K

(
z

1− z

)
zu2

1− z +
zu2

1− z .

Inverting gives

K(x, u) = H

(
x

1 + x
, u

)
− xu2

1 + x
H

(
x

1 + x

)
− xu2

1 + x
, (2.15)

and the first terms are

K(z, u) = 2u4z2 + (4u3 + 5u6)z3 + (9u3 + 9u4 + 15u5 + 14u8)z4 + · · ·
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In order to analyze H(z, u) and K(z, u) we need the expansion of M(z, u) near the
singularity ρ = 1/12. As we have seen, the expansion of M(z) near z = 1/12 is

M(z) =
1

3
− 4

3
Z2 +

8

3
Z3 +O(Z4),

where Z =
√

1− 12z. Since M(z, u) satisfies (2.5) we obtain

M(z, u) = M0(u) +M2(u)Z2 +M3(u)Z3 +O(Z4). (2.16)

A simple computation by indeterminate coefficients gives

M3(u) =
8u√

3(2 + u)(6− 5u)3
.

The limiting probability that a random map has a root vertex (or face) of degree k is
equal to

pM (k) =
[uk][zn]M(z, u)

[zn]M(z)
.

Both coefficients can be estimated using transfer theorems and we get that the proba-
bility generating function of the distribution is given by

pM (u) =
∑

pM (k)uk =
M3(u)

M3(1)
=

u
√

3√
(2 + u) (6− 5u)3

(2.17)

Our goal is to obtain analogous results for 2-maps and 3-maps.

Theorem 2.2.5. Let pM (u) be as before, and let pH(u) and pK(u) be the probabil-
ity generating functions for the distribution of the root degree in 2-maps and 3-maps,
respectively. Then we have

pH(u) =

pM

(
u(1 + σ)

1 + uσ

)
1 + σ

1 + uσ
− uσ

1− σ ,

pK(u) =
pH(u)− u2σ

1− σ ,

where σ = 5 − 2
√

6, as in Theorem 2.2.1. Furthermore, the limiting probabilities that
the degree of the root vertex is equal to k exist, both for 2-maps and 3-maps, and are
asymptotically

pH(k) ∼ ν2k1/2wkH ,
pM (k) ∼ ν3k1/2wkK ,

where wH = wK =
√

2/3 ≈ 0.8165, ν2 =
√

3(1− σ)/(64π) ≈ 0.1158, ν3 =
√

3/(64π(1− σ)) ≈
0.1288.
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The correction terms uσ in pH(u) and u2σ in pK(u) are due to the fact, respectively,
that 2-maps have no vertices of degree one and 3-maps no vertices of degree two.

Proof. Since M(z, u) satisfies (2.16) and H(x,w) satisfies (2.14), we obtain

H(z, u) = H0(u) +H2(u)Z2 +H3(u)Z3 +O(Z4),

where Z =
√

1− z/σ, and H3(u) can be computed as

H3(u) =

(
1− σ
1 + σ

)3/2(M3 (u(1 + σ)/(1 + uσ))

1 + uσ
− M3(1)uσ

1 + σ

)
.

The probability generating function of the distribution is given by

pH(u) =
H3(u)

H3(1)
=

pM

(
u(1 + σ)

1 + uσ

)
1 + σ

1 + uσ
− uσ

1− σ , (2.18)

as claimed in the statement.
Now by (2.15), K(u, z) satisfies

K(z, u) = K0(u) +K2(u)Z2 +K3(u)Z3 +O(Z4),

where now Z =
√

1− z/τ and K3(u) is

K3(u) =

(
1

1 + τ

)3/2 (
H3(u)−H3(1)σu2

)
.

The probability generating function of the distribution is given by

pK(u) =
K3(u)

K3(1)
=
pH(u)− u2σ

1− σ . (2.19)

The asymptotics of the distributions can be obtained from that of pM (u). The
singularity of pM (u) is at uM = 6/5, and its expansion is computed from the explicit
formula in (2.17) as

pM (u) = P−3U
−3 +O(U−2), (2.20)

where U =
√

1− 5u/6 and P−3 = 1/(4
√

10). The singularity of pH and pK is obtained
by solving the equation

u(1 + σ)

1 + uσ
= uM =

6

5
,

giving uH = uK =
√

3/2. Hence, the exponential growth constants are wH = wK =√
2/3. The singular expansion of pH(u) is obtained by composing (2.18) and (2.20),

giving as a result
pH(u) = Q−3U

−3 +O(U−2), (2.21)
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where now U =
√

1− u
√

2/3, and Q−3 = P−3
√

15(1− σ)/8 =
√

3(1− σ)/16. The

singular expansion of pK(u) is obtained by composing (2.19) and (2.21) giving as a
result

pK(u) = R−3U
−3 +O(U−2), (2.22)

where U is as before and R−3 = Q−3/(1− σ) =
√

3/(1− σ)/16.
The estimates for pH(k) and pM (k) follow by the transfer theorem, provided that

the probability generating functions can be extended to a ∆-domain. Since we know
explicitly pM (u), we also know that it is analytic at D = C \ (−∞,−2] ∪ [6/5,∞). By
Equation (2.18) we know that if u(1 + σ)/(1 + uσ) ∈ D then pH and pK are analytic
at u. By inverting the expression we can check that if u(1 + σ)/(1 + uσ) /∈ D then
u ∈ (−∞,−1/(8 − 3

√
6)] ∪ [

√
3/2,∞), and therefore pH and pK are analytic in a ∆-

domain.

2.3 Equations for 2-graphs and 3-graphs

In this section we find expressions for the generating functions of 2- and 3-graphs in
terms of the generating function of connected graphs. The results are completely general
and specialize to the generating functions of planar graphs, since a graph is planar if
and only if its core is planar, and in turn the core is planar if and only if its kernel is
planar.

Let C(x, y) be the generating function of connected graphs, where x marks vertices
and y marks edges. Denote by H(x, y) and K(x, y) the generating functions, respec-
tively, of 2-graphs and 3-graphs. We will find equations of the form

H(x, y) = C(A1(x, y), B1(x, y)) + E1(x, y)
K(x, y) = C(A2(x, y), B2(x, y)) + E2(x, y),

where Ai, Bi and Ei are explicit functions.
From now on all graphs are labelled, and all generating functions are of the expo-

nential type.

2-graphs. Let G be a connected graph. The core C of G is obtained by removing
repeatedly vertices of degree one, so that G is obtained from C by replacing each vertex
of G with a rooted tree. The number Tn of rooted trees with n edges is known to be
nn−1, and the generating function T (x) =

∑
Tnx

n/n! satisfies

T (x) = xeT (x).

The core of G can be empty, in which case G must be an (unrooted) tree. The number Un
of unrooted trees is known to be nn−2, and the generating function U(x) =

∑
unx

n/n!
is equal to

U(x) = T (x)− T (x)2

2
.
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Theorem 2.3.1. Let hn be the number of 2-graphs with n vertices. Then H(x) =∑
hnx

n/n! is given by

H(x) = C(xe−x)− x+
x2

2
. (2.23)

Proof. The decomposition of a graph into its core and the attached rooted trees implies
the following equation:

C(z) = H(T (z)) + U(z). (2.24)

The first summand corresponds to the case where the core is non-empty, and the second
summand corresponds to the case where the graph is a tree. In order to invert the former
relation let x = T (z), so that

z = xe−x, U(z) = x− x2

2
.

We obtain

H(x) = C(xe−x)− x+
x2

2
=
x3

3!
+ 10

x4

4!
+ 252

x5

5!
+ . . .

Equation (2.23) can be enriched by taking edges into account. The generating
functions T (x, y) and U(x, y) are easily obtained as T (x, y) = T (xy)/y and U(x, y) =
U(xy)/y, and a quick computation gives

H(x, y) = C(xe−xy, y)− x+
x2y

2
= y3

x3

3!
+ (3y4 + 6y5 + y6)

x4

4!
+ . . . (2.25)

3-graphs. A multigraph is a graph where loops and multiple edges are allowed. As
in the case of simple graphs, we define a k-multigraph as a connected multigraph in
which the degree of each vertex is at least k. Let C̃ be a 2-multigraph. The kernel K̃ of
C̃ is defined as follows: replace every maximal path of vertices of degree two in C̃ with
a single edge. Clearly K̃ is a 3-multigraph, and C̃ can be obtained by replacing edges in
K̃ with paths.

Let G̃ be a multigraph. For each i ≥ 1, let αi be the number of vertices in G̃ that
are incident to exactly i loops, and let βi be the number of i-edges, that is, edges of
multiplicity i. The weight of G̃ is defined as

w(G̃) =
∏
i≥1

(
1

2ii!

)αi

·
∏
i≥1

(
1

i!

)βi
.

This definition is justified by the fact that when replacing an i-edge with i different
paths, the order of the paths is irrelevant. Similarly, when replacing a loop with a path,
the orientation is irrelevant. Note that the weight satisfies 0 < w(G̃) ≤ 1, and moreover
w(G̃) = 1 if and only if G̃ is simple. With this definition, the sum K̃n of the weights of
all 3-multigraphs with n vertices is finite.
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As a preliminary step to computing the generating function of 3-graphs, we establish
a relation between 3-multigraphs and connected multigraphs. In order to distinguish
between edges of different multiplicity, we introduce infinitely many variables as follows.
Let C̃n,m,l1,l2,... be the sum of the weights of connected multigraphs with n vertices, m

loops and li i-edges for each i ≥ 1. Define similarly K̃n,m,l1,l2,... for 3-multigraphs, and
let

C̃(x, z, y1, y2, . . .) =
∑

C̃n,m,l1,l2,...x
nzmyl11 y

l2
2 . . . /n!

and
K̃(x, z, y1, y2, . . .) =

∑
K̃n,m,l1,l2,...x

nzmyl11 y
l2
2 . . . /n!.

Theorem 2.3.2. Let C̃(x, z, y1, y2, . . .) and K̃(x, z, y1, y2, . . .) be as before. Then

K̃(x, z, y1, y2, . . .) =

C̃
(
xe−x(y1+s),−sxy1 − xy2 + z, s+ y0, s

2 + 2y1s+ y2, . . . ,
∑k

j=0

(
k
j

)
yjs

k−j , . . .
)

+ E(x, y1),

(2.26)
where

y0 = 1, s = − xy21
1 + xy1

, E(x, y) = −x+
x2y

2 + 2xy
− ln

√
1 + xy +

xy

2
− (xy)2

4
.

The proof of Theorem 2.3.2 is quite technical and is given below. As a corollary
we obtain the generating function of 3-graphs. Recall that C(x, y) is the generating
function of connected graphs.

Corollary 2.3.3. Let Kn,m be the number of 3-graphs with n vertices and m edges.
The generating function K(x, y) =

∑
Kn,mx

nym/n! is given by

K(x, y) = C (A(x, y), B(x, y)) + E(x, y), (2.27)

where

A(x, y) = xe(x
2y3−2xy)/(2+2xy), B(x, y) = (y + 1)e−xy

2/(1+xy) − 1,

and E(x, y) is as in Theorem 2.3.2.

Proof. Since the weight of a simple graph is one, the number of simple 3-graphs is
equivalent to the number of weighted 3-multigraphs without loops or multiple edges.
This observation leads to

K(x, y) = K̃(x, 0, y, 0, . . . , 0, . . .). (2.28)

Moreover, for each connected multigraph G̃, a connected simple graph G can be obtained
by removing loops and replacing each multiple edge with a single edge. Then G̃ is
obtained from G by replacing each edge with a multiple edge, and attaching zero or
more loops at each vertex. This can be encoded as
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C̃(x, z, y1, y2, . . . , yk, . . .) = C

xez/2,∑
i≥1

yi
i!

 , (2.29)

where the exponential and the 1/i! terms take care of the weights. Finally, Equa-
tion (2.27) can be obtained by combining (2.28), (2.26) and (2.29).

We remark that a formula equivalent to (2.27) was obtained by Jackson and Reilly
[67], using the principle of inclusion and exclusion. Our approach emphasizes the as-
signment of weights to multigraphs, which are needed in the various combinatorial
decompositions.

Note that taking y = 1 in Equation (2.27) we obtain the univariate generating
function K(x) of 3-graphs as

K(x) = K(x, 1) = C(A(x, 1), B(x, 1)) + E(x, 1) (2.30)

The proof of Theorem 2.3.2 requires the generating function of 2-multigraphs. Let
H̃n,m,l1,l2,... be the sum of the weights of 2-multigraphs with n vertices, m loops and li
i-edges (i ≥ 1), and let

H̃(x, z, y1, y2, . . .) =
∑

H̃n,m,l1,l2,...x
nzmyl11 y

l2
2 . . . /n!.

Lemma 2.3.4. Let H̃(x, z, y1, y2, . . .) and K̃(x, z, y1, y2, . . .) be as before. The following
equation holds:

K̃(x, z, y1, y2, . . . , yk, . . .) =H̃

x,−sxy1 − xy2 + z, y1 + s, y2 + 2y1s+ s2, . . . ,
k∑
j=0

(
k

j

)
yjs

k−j , . . .


− ln

√
1 + xy1 −

xz

2
+
x2y2

4
+
xy1
2
− (xy1)

2

4
,

(2.31)

where

s = − xy21
1 + xy1

.

Proof. The kernel of a 2-multigraph is obtained by replacing each edge with a path.
This implies the following equation:

H̃(x, z, y1, y2, . . . , yk, . . .) =K̃

x, sxy1 + xy2 + z, y1 + s, y2 + 2y1s+ s2, . . . ,

k∑
j=0

(
k

j

)
yjs

k−j , . . .


− ln

√
1− xy1 +

xz

2
+
x2y2

4
− xy1

2
− (xy1)

2

4
,

(2.32)
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where

s =
xy21

1− xy1
.

The first summand corresponds to the case where there is at least one vertex of degree
≥ 3, and thus the kernel is not empty. The other summands correspond to cycles (each
vertex is of degree exactly two): from the logarithm encoding cycles we must take care
of cycles of length one or two.

If the kernel is not empty, we replace every edge and every loop with a path. The
expression s encodes a nontrivial path, consisting of at least one vertex. Each loop can
be replaced with either another loop, or a vertex and a double edge, or a path consisting
of at least two vertices; these operations are encoded, respectively, by z, xy2 and s. Note
that if the kernel has an i-loop, then we can replace any of the loops with a path, in both
orientations. Therefore there are 2i ways to obtain the same graph, which compensates
the fact that the weight of the new graph will be 2i times the weight of the old graph.
Each k-edge can be replaced with a j-edge and k− j nontrivial paths, where 0 ≤ j ≤ k.
There are (k − j)! ways to obtain the same graph, and the weight becomes k!/j! times
the previous weight. Therefore yk is replaced with

(
k
j

)
yjs

k−j , for j = 0, . . . , k.
A simple computation shows that inverting (2.32) gives (2.31), as claimed.

Proof of Theorem 2.3.2. Given a multigraph it is clear that every vertex incident to a
loop or to a multiple edge belongs to the core. Therefore, Equation (2.25) can be easily
extended to multigraphs, giving the equation

H̃(x, z, y1, y2, . . . , yk, . . .) = C̃
(
xe−xy1 , z, y1, y2, . . . , yk, . . .

)
− x+

x2y1
2

. (2.33)

Finally, Equation (2.26) is obtained by composing (2.31) and (2.33).

As mentioned before, Theorem 2.3.1 and Corollary 2.3.3 hold for planar graphs as
well. In the next section we use them to enumerate and analyze planar 2- and 3-graphs.

2.4 Planar graphs

In this section we follow the ideas of Section 2.2 on planar maps in order to obtain related
results for planar 2-graphs and 3-graphs. The asymptotic enumeration of planar graphs
was solved in [8]. From now on we assume that we know the generating function C(x, y)
of connected planar graphs, where x marks vertices and y marks edges, as well as its
main properties, such as the dominant singularities and the singular expansions around
them.

In this section we use the equations obtained in Section 2.3 to compute some param-
eters in planar graphs. Most of the computations will be analogous to the ones of maps,
but technically more involved. In order to compare the following results, we recall [8]
that the number of connected planar graphs is cn ∼ κn−7/2γn, where κ ≈ 0.4104 · 10−5

and γ ≈ 27.2269. As expected, there will be slightly fewer connected 2-graphs and
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3-graphs than connected planar graphs. Besides, the expected degree of 2-graphs and
3-graphs will be slightly higher.

2.4.1 Planar 2-graphs

We start our analysis with planar 2-graphs. The analysis for 3-graphs in the next
subsection is a bit more involved.

Theorem 2.4.1. Let hn be the number of planar 2-graphs. The following estimate
holds:

hn ∼ κ2n−7/2γn2 n!,

where γ2 ≈ 26.2076 and κ2 ≈ 0.3724 · 10−5.

Proof. Recall Equation (2.23) from Section 2.3:

H(x) = C(xe−x)− x+
x2

2
.

In order to obtain an asymptotic estimate for hn we need to locate the dominant singu-
larity of H(x). The singularity of C(x) is ρ = γ−1 ≈ 0.0367 [8]. Hence the singularity
of H(x) is at σ = T (ρ) ≈ 0.0382. Therefore, the exponential growth constant of hn
is γ2 = σ−1 ≈ 26.2076. Note that we use the same symbol σ as in Section 2.2 for
maps, but they correspond to different constants. No confusion should arise and it
helps emphasizing the parallelism between planar maps and graphs.

The singular expansion of C(x) at the singularity x = ρ is

C(x) = C0 + C2X
2 + C4X

4 + C5X
5 +O(X6),

where X =
√

1− x/ρ, and C5 ≈ −0.3880 · 10−5 is computed in [8]. Plugging this
expression into (2.23) and expanding gives

H(x) = H0 +H2X
2 +H4X

4 +H5X
5 +O(X6),

where now X =
√

1− x/σ and H5 = C5(1 − σ)5/2 ≈ −0.3520 · 10−5. The estimate
for hn follows directly by the transfer theorem, provided that H can be extended to a
∆-domain. As opposed to the case of maps, we do not have an exact expression for C,
and because of the relation of Equation (2.23), it is not enough to assume that C can be
extended to a ∆-domain, since |(−σ) exp(−(−σ))| > ρ. Instead, we use an alternative
expression for H.

Define A(x) as the generating function of connected planar graphs with an unlabelled
root where all the vertices except, perhaps, the root, have degree at least 2. If the root
has degree 2 then graphs in A are encoded by H ′(x). Otherwise either the graph is
reduced to a single vertex or the root is connected to a rooted 2-graph through a path
of arbitrary length and they are encoded by x

1−xH
′(x). Hence we have

A(x) =
H ′(x)

1− x + 1. (2.34)
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Let B(x) be the generating of planar 2-connected graphs. The unique decomposition
of a rooted connected graph into blocks is reflected (see [8]) into the basic equation
C ′(x) = exp (B′(xC ′(x))). The radius of convergence R of B is given by R = ρC ′(ρ),
and R is the only singularity in the circle of convergence of B(x).

A straightforward modification including paths as building blocks in the decompo-
sition gives

A(x) = exp(B′(xA(x))− x). (2.35)

By subtracting x we remove the source of vertices of degree 1: leaves of the block tree
decomposition consisting of a single edge. Let F (x) = exp(B′(xA(x))−x) be the right-
hand side of (2.35). Equation (2.34) shows that A has the same singularities as H in
the open ball of radius 1. We now use (2.35) to prove that A, and therefore H, can be
extended to a ∆-domain.

The proof has two parts. First we have to prove that A behaves like a square root
near its singularity x = σ. This follows from [47, Theorem 2.31], using r(x) = R/x (in
the notation of [47]). Then we need to prove that there is no branch point when solving
A = F (A, x) for x in the circle of convergence |x| = σ. Since FA(A, x) = xAB′′(xA) is
a positive function, and FA(A(σ), σ) = RB′′(R) < 1, we have that |FA(A(x), x)| < 1,
so it is analytic in a neighbourhood of x. Using the neighbourhood of the singularity,
and a finite covering of its compact complement we obtain that A is analytic in a
∆-domain.

Our next result is a limit law for the number of edges in a random planar 2-graph.
We recall [8] that the expected number of edges in random connected planar graphs is
asymptotically µn, where µ ≈ 2.2133, and the variance is λn with λ ≈ 0.4303.

Theorem 2.4.2. The number Xn of edges in a random planar 2-graph with n vertices
is asymptotically Gaussian with

EXn ∼ µ2n ≈ 2.2614n,

VarXn ∼ λ2n ≈ 0.3843n.

Proof. Equation (2.25) from Section 2.3

H(x, y) = C(xe−xy, y)− x+
x2y

2

implies that the singularity σ(y) of the univariate function x 7→ H(x, y) is given by

σ(y)e−σ(y)y = ρ(y),

where ρ(y) is the singularity of the univariate function x 7→ C(x, y). An easy calculation
gives

µ2 = −σ
′(1)

σ(1)
=
−ρ′(1)/ρ− σ

1− σ =
µ− σ
1− σ ≈ 2.2614,
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which provides the constant for the expectation. Similarly

λ2 = −σ
′′(1)

σ(1)
− σ′(1)

σ(1)
+

(
σ′(1)

σ(1)

)2

=

−ρ′′(1)

ρ(1)
− 3σ′(1)− 3σ′(1)2

σ
+ σ′(1)2 + 2σ′(1)σ + σ2 − σ′(1)

σ
+

(
σ′(1)

σ

)2

1− σ .

This value can be computed from the known values of µ, λ and σ. In order to apply
the quasi-powers theorem we need to prove that H(x, y) is analytic in a ∆-domain for y
close enough to 1. Define A(x, y) as the generating function of connected planar graphs
with an unlabelled root where all the vertices except the root have degree at least 2.
The following equations are a direct extension of (2.34) and (2.35):

A(x, y) =
Hx(x, y)

1− xy + 1,

A(x, y) = exp(Bx(xA(x, y), y)− xy) = F (A, x, y).

From the first equation we know that A and H have the same singularities for x, y such
that xy < 1, so we just need to prove that for values y0 near 1 the function A(x, y0) is
analytic in a ∆-domain. The proof is analogous to that of Theorem 2.4.1. First, A(x, y)
behaves like a square root near the singularity σ(y0), again by [47, Theorem 2.31] taking
r(x, u) = R(u)/x. Then we need that, when |x| = R(y), FA(A(x, y), x, y) 6= 1 holds.
Since FA is positive, FA(A(x, 1), x, 1) < 1, and since both F and A are continuous in
y, for values of y close enough to 1 the inequality holds, so again we can extend the
generating function to a ∆-domain.

Next we determine a limit law for the size of the core and the kernel in random
connected planar graphs.

Theorem 2.4.3. The size Xn of the core of a random connected planar graph with n
edges is asymptotically Gaussian with

EXn ∼ (1− σ)n ≈ 0.9618n, VarXn ∼ σn ≈ 0.0382n.

Proof. The generating function Ĉ(x, u) of connected planar graphs, where u marks the
size of the core, is given by

Ĉ(x, u) = H(uT (x)) + U(x). (2.36)

It follows that the singularity ξ(u) of the univariate function x 7→ Ĉ(x, u) is given by
the equation

uT (ξ(u)) = σ.

We can isolate ξ(u) obtaining the explicit formula

ξ(u) =
σe−σ/u

u
.
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An easy calculation gives

−ξ
′(1)

ξ(1)
= 1− σ, −ξ

′′(1)

ξ(1)
− ξ′(1)

ξ(1)
+

(
ξ′(1)

ξ(1)

)2

= σ.

In order to apply the quasi-powers theorem we need to show that, for u0 close enough
to 1 we can extend the generating function C(x, u0) to a ∆-domain. As in the proof of
Theorem 2.4.1, two steps are needed. First, we have to prove that C(x, u) is analytic
near x = ρ(u) if arg(x/ρ(u) − 1) > α. We know that this is the case for H(x) near σ,
for some angle β. Since uT (x) is analytic, it is conformal and preserves angles locally,
hence for u close enough to 1 and x close enough to ρ(u), if arg(x/ξ(u) − 1) > α for
some α > β, then uT (x) is close to σ and arg(T (x)u/σ − 1) > β. Then T (x)u is in the
region of convergence of H and C(x, u) is analytic in x. On the other hand, if u = 1
then uT (x) is a positive function, hence if |x| = ξ(1) but x 6= ξ(1) then |T (x)| < σ. This
implies that if u is close enough to 1 and |x| = |ξ(u)| but far enough from ξ(u), then
|uT (x)u| < σ by the continuity of uT (x)u, so C(x, u) is analytic in a neighbourhood of
x. By compactness, a finite number of neighbourhoods is enough, and their union gives
a ∆-domain in which C(x, u) is analytic.

Our next goal is to analyze the size of the trees attached to the core of a random
connected planar graph.

Theorem 2.4.4. Let Xn,k count trees with k vertices attached to the core of a random
connected planar graph with n vertices. Then Xn,k is asymptotically normal and

EXn,k ∼ αkn, VarXn ∼ βkn,

where

αk =
1− σ
σ

kk−1

k!
ρk,

and βk is described in the proof.

Proof. The generating function of trees where variable wk marks trees with k vertices
is equal to

T (x,wk) = T (x) + (wk − 1)Tkx
k,

where Tk = kk−1/k! is the k-th coefficient of T (x). The composition scheme for the core
decomposition is then

C(x,wk) = H(T (x,wk)) + U(x).

It follows that the singularity ρk(wk) of the univariate function x 7→ C(x,wk) is given
by the equation

T (ρk(wk)) + (wk − 1)Tk(ρk(wk))
k = σ.

An easy calculation gives

αk = −ρ
′
k(1)

ρk(1)
=

1− σ
σ

kk−1

k!
ρk
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βk = −ρ
′′
k(1)

ρk(1)
− ρ′k(1)

ρk(1)
+

(
ρ′(1)

ρ(1)

)2

=
1

σ2

(
Tkρ

k(Tkρ
k(1− 2k + 4σ − 2kσ2) + σ − σ2

)
The proof that C(x,wk) can be extended analytically to a ∆-domain is analogous to
the proof of Theorem 2.4.3.

As expected,
∑

k≥0 αk = 1 − σ, since there are σn vertices not in the core, and
therefore there are (1− σ)n trees attached to the core. Moreover,

∑
k≥0 kαk = 1, since

a connected graph is the union of the trees attached to its core.
To conclude this section, we consider the parameter Ln equal to the size of largest

tree attached to the core of a random planar connected graph.

Theorem 2.4.5. Let Ln be the size of largest tree attached to the core of a random
planar connected graph. Then

Ln
log n

→ 1

log(1/(eρ))
≈ 0.4340 in probability

and

ELn ∼
1

log(1/(eρ))
log n (n→∞).

For the proof we need Theorem 1.1 from [70], a kind of Master theorem for proving
results on the maximum degree of certain classes random graphs, which can be adapted
to other extremal parameters. For completeness we reproduce the statement in full.

Theorem 2.4.6 (Master theorem). Let dn,k denote the probability that a randomly
selected vertex of a certain class of random graphs of size n has degree k, and let dn,k,`
denote the probability that two different randomly selected (ordered) vertices have degrees
k and `. Suppose that we have the following properties.

1. There exists a limiting degree distribution dk (k > 1) with an asymptotic behaviour
of the form

log dk ∼ k log q (k →∞),

where q is a real constant with 0 < q < 1.

2. We have, as n → ∞, k → ∞, ` → ∞, and uniformly for k, ` ≤ C log n (for an
arbitrary constant C > 0)

dn,k ∼ dk anddn,k,` ∼ dkd`.

3. There exists q < 1 such that, uniformly for all n, k, ` ≥ 1,

dn,k = O(qk) and dn,k = O(qk+`).
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Let ∆n denote the maximum degree of a random graph of size n in this class. Then

∆n

log n
→ 1

log(1/q)
in probability

and

E ∆n ∼
1

log(1/q)
log n (n→∞).

Proof. The main idea in the proof is to generalize the previous theorem, assigning
a numerical “label” ν to each vertex instead of its vertex degree. Given the same
hypothesis of the Master theorem in the behaviour of this parameter, the conclusion
still holds and we obtain an estimate on the maximum label.

In our case the label is the size of the tree attached to the core that contains the a
given vertex. If the graph is itself a tree then all labels are equal to 0 by convention.
Therefore, in the rewording of the theorem, dn,k denotes the probability that a randomly
selected vertex of a random planar graph of size n has label k, and dn,k,l denotes the
probability that two different randomly selected (ordered) vertices have labels k and
l. In order to compute such probabilities we define the generating functions Ĉ(x, z)
and Ĉ(x, z, w) as follows: Ĉ(x, z) is for connected planar graphs with a root vertex,
where x marks vertices and z marks the label of the root. Analogously, Ĉ(x, z, w) is
for connected planar graphs with two different ordered root vertices, where x marks
vertices, z marks the label of the first root, and w the label of the second root. The
following relations hold:

Ĉ(x, z) = H ′(T (x))T •(zx) + T (x)

Ĉ(x, z, w) = H ′′(T (x))T •(zx)T •(wx) +H ′(T (x))T ••(zwx) + T •(x)

We then have

dn,k =
[xnzk]Ĉ(x, z)

[xn]Ĉ(x, 1)
, dn,k,l =

[xnzkwl]Ĉ(x, z, w)

[xn]Ĉ(x, 1, 1)
.

Also, note that Ĉ(x, 1) = C•(x), and Ĉ(x, 1, 1) = C••(x), which are well-known func-
tions. Next we verify that all the conditions in the Master theorem hold.

Condition 1. Define αk as in Theorem 2.4.4. Then

dk = k · αk =
1− σ
σ

kk

k!
ρk.

And one easily check that log dk ∼ k log(eρ) as k →∞, as required.
Condition 2. To check this condition we cannot use the quasi-powers theorem, since

it only proves the desired result for fixed k. Since we only need the result for k tending
to infinity, we can dismiss the graphs whose core is empty. Therefore, for k →∞,

[xnzk]Ĉ(x, z) ∼ [xn]H ′(T (x))[zk]T •(xz) = [xn−k]H ′(T (x)) · [zk]T •(z).
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From this we obtain

dn,k ∼
[xn−k]H ′(T (x))

[xn]C•(x)
· [zk]T •(z) ∼ 1− σ

σ

(
n− k
n

)−5/2
ρk · 1√

2πk
ek.

Finally, when k ≤ C log n we have
(
n−k
n

)−5/2 → 1 and thus dn,k ∼ dk.
Now we have to prove the same for dn,k,l. Let Ĉ(x, z, w) = S1 + S2 + S3, where

S1 = H ′′(T (x))T •(zx)T •(wx), S2 = H ′(T (x))T ••(zwx), S3 = T •(x).

We know that the coefficients of S3 are 0 when k and l tend to infinity. Since we
differentiate H once instead of twice, it follows that [xnzkwk]S2 = O((k/n)[xnzkwk]S1).
Since k = O(log n), the coefficients of S2 are asymptotically smaller than those of S1.
Therefore, the main asymptotic part comes from S1. We have

[xnzkwl]S1(x, z, w) = [xn−k−l]H ′′(T (x)) · [zk]T •(z) · [wl]T •(w).

Then

dn,k,l =
[xn−k−l]H ′′(T (x))

[xn]C••(x)
· [zk]T •(z) · [wl]T •(w) · (1 + o(1)) ∼

∼
(

1− σ
σ

)2(n− k − l
n

)−3/2
ρk+l ·

(
1√
2πk

)2

ek+l.

When k, ` = O(log n) we have
(
n−k−l
n

)−3/2 → 1, and thus dn,k,l ∼ dkdl, as required.
Condition 3. We already proved that, for k, l ≥ 1, and uniformly for any k, l, n, we

have
[xnzk]Ĉ(x, z) = f(n, k)(eρ)k, [xnzkwl]Ĉ(x, z, w) = g(n, k, l)(eρ)k+l,

where f and g are subexponential functions, so for any q > eρ we have that dn,k = O(qk)
and dn,k,l = O(qk+l).

Thus the Master theorem applies and we conclude the proof.

2.4.2 Planar 3-graphs

We recall again that the generating function of connected planar graphs C(x, y), where
x marks vertices and y marks edges, was computed in [8].

Theorem 2.4.7. Let kn be the number of planar 3-graphs. The following estimate
holds:

kn ∼ κ3n−7/2γn3 n!,

where
γ3 ≈ 21.3102, κ3 ≈ 0.3107 · 10−5.
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Proof. Recall Equation (2.30) from Section 2.3:

K(x) = C (A(x), B(x)) + E(x), (2.37)

where A(x), B(x) and E(x) are explicit functions. In order to obtain an estimate for
kn we need to locate the dominant singularity of K(x). The singularities of C(x, y) is
given by (X(t), Y (t)), where t ∈ (0, 1) and X, Y are explicit functions defined in [8].
Hence the singularity τ of K(x) is obtained by solving

X(t) = A(τ), Y (t) = B(τ).

The smallest positive solution τ of the system can be computed numerically and is
τ ≈ 0.0469. The exponential growth constant is then γ3 = τ−1 ≈ 21.3102.

The singular expansion of C(x, y) at the singularity x = ρ(y) is of the form

C(x, y) = C0(y) + C2(y)X2 + C4(y)X4 + C5(y)X5 +O(X6),

where X =
√

1− x/ρ(y), and C5(y) is an explicit expression computed in [8]. Plugging
this expression into (2.37) and expanding gives

K(z) = K0 +K2Z
2 +K4Z

4 +K5Z
5 +O(Z6), (2.38)

where Z =
√

1− z/τ . In order to compute the dominant coefficient K5, we need to

expand C5(B(z)) (1−D(z))5/2, where D(z) = A(z)/ρ(B(z)), at z = τ . Consider the
first-order Taylor expansion of D(z):

D(z) = D(τ) +D′(τ)(z − τ) +O((z − τ)2).

Since (A(τ), B(τ)) is a singular point of C(x, y), we have

A(τ) = ρ(B(τ)), D(τ) =
A(τ)

ρ(B(τ))
= 1.

Therefore,
√

1−D(z) is computed as√
τD′(τ)(1− z/τ) +O((x− τ)2) =

√
τD′(τ)Z +O(Z2),

hence (1−D(z))5/2 = (τD′(τ))5/2Z5 +O(Z6). Since C5(y) is analytic at y = B(τ), we
conclude that K5 = C5(B(τ))(τD′(τ))5/2 ≈ −0.2937 · 10−5. The estimate for kn follows
directly by the transfer theorem, with κ3 = K5/Γ(−5/2) ≈ 0.3107 · 10−5, provided that
K can be analytically extended to a ∆-domain at τ . This is shown in the next lemma,
completing the proof of the theorem.

Lemma 2.4.8. The generating function K(x) is analytic in a ∆-domain at its dominant
singularity τ .

Proof. Before starting the proof we introduce some definitions:
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• K•(x) is the generating function of rooted planar graphs with minimum degree
at least 3. Note that K•(x) has the same radius of convergence τ as K(x).

• For i = 1, 2, K•i (x) is the generating function of rooted planar graphs where all
the vertices have degree at least 3 except for the root, which has degree exactly i.

• B̂(x, u) is the generating function of 2-connected planar graphs where x counts
vertices of degree at least 3, u counts vertices of degree exactly two, and both
kind of vertices are labelled with the same set of labels. In particular B̂(x, u) =∑

n,m≥0 bn,mx
num/(n+m)!, where bn,m counts the number of 2-connected planar

graphs with n vertices of degree at least 3 and m vertices of degree exactly 2.
Note that we do not consider a single edge in B̂(x, u) since it has no vertices of
degree 2 or more.

We can relate these generating function using the following positive system of equations:

K•1 = F1(x,K
•,K•2 ),

K•2 = F2(x,K
•,K•1 ,K

•
2 ),

K• = F3(x,K
•,K•1 ,K

•
2 ),

(2.39)

where

F1(x, z, z2) = x(z + z2),

F2(x, z, z1, z2) = x

(
(z + z2)

2

2
+Bu

)
,

F3(x, z, z1, z2) = x

(
Bx + (z + z2)(Bu +Bx) +

(Bu +Bx)2

2
+ exp≥3(z + z2 +Bu +Bx)

)
.

The terms Bx and Bu in the previous system are defined as

Bx = B̂x(x+ z + z1 + z2, z + z1 + z2),

Bu = B̂u(x+ z + z1 + z2, z + z1 + z2).

First, we need to check that F1, F2 and F3 are analytic in a neighbourhood of 0.
This is equivalent to checking that Bx and Bu are analytical at 0. We derive this from
the following properties of B̂:

• B̂ is a positive series in x and u.

• Bx and Bu are analytic at (x0, u0) if and only if B̂ is analytic at (x0, u0).

• If B̂ is analytic near (x0, u0), then it is analytic at (x1, u1), for |x1| ≤ x0 and
|u1| ≤ u0.

• B̂(x, x) = B(x) − x2/2, hence B̂(x, u) is for (x0, u0) < (R,R), although it might
be analytic for (x0, u0) where u0 < R ≤ x0 or x0 < R ≤ u0 as well.
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This implies that B̂(x, u) is analytic at 0, and the same holds for F1, F2 and F3. Since
K•(0) = K•1 (0) = K•2 (0) = 0 we have that the system (2.39) holds in a neighbourhood
of x = 0, and it ceases to hold at the singularity of K•. First note that K•1 , K•2 and K•

have all the same radius of convergence, τ , because all of them are the sum of the others
plus some positive terms, so it is not possible that a singularity appears in one of them
and not in the others. Note that, in these cases, there are three sources of singularities:

• Poles at F1, F2 and F3. This is not possible, since all the involved functions are
analytic in C except for Bx and Bu.

• Branching point in solving F1, F2 and F3. This is not possible either, since in this
case the singular analysis of K• would be of the form K• = K•0 +K•1Z +O(Z2),
where K•1 6= 0, and we have seen in Equation (2.38) that this is not the case.

• A singularity in Bx(x) and Bu(x) (note that both functions share singularities).
This must be the source of singularity, and in fact the singularity of Bx(x) must be
exactly at x = τ . If the singularity was at a given x0 < τ , then there would be an
unbounded derivative of Bx at x0, and since K• is x ·Bx plus some positive terms,
then K• would have an unbounded derivative at x0 < τ , and that is impossible
since K• is analytic for x with |x| < τ . The singularity cannot be at an x0 > τ
either, because we discarded the other sources of singularities and this would imply
that K• is analytic for x > τ , which is impossible.

Therefore the equations hold for x such that Bx is analytic at (x + K•1 (x) + K•2 (x) +
K•(x),K•1 (x) + K•2 (x) + K•(x)). Now, consider x such that |x| = τ but x 6= τ . Then,

by positivity of B̂ and K•i , we have: (|x+K•1 (x) +K•2 (x) +K•(x)|, |K•1 (x) +K•2 (x) +

K•(x)|) < (τ +K•1 (τ) +K•2 (τ) +K•(τ),K•1 (τ) +K•2 (τ) +K•(τ)), so B̂ is analytic and
the equations hold. Therefore K•(x) is analytic as well.

We just have to check that, if |x| = τ and x 6= τ then there is not branching point
when solving the system of equations. Let A be the Jacobian matrix of (F1, F2, F3).
According to [47, Section 2.2.5], the maximum positive eigenvalue of A is a positive
function in x, K•i . We know that such an eigenvalue must be smaller than 1 when
evaluated at (τ,K•1 (τ),K•2 (τ),K•(τ)), since otherwise there would exist a real x with
|x| < τ such that the system evaluated at x has a branching point, and we know this
is not possible. Hence, by positivity of the maximum eigenvalue, if |x| = τ but x 6= τ
then the maximum eigenvalue of A evaluated at (x,K•1 (x),K•2 (x),K•(x)) cannot be 1,
so we can apply the Implicit Function Theorem and there is an analytic continuation
of K• in a neighbourhood of x, and by compactness it can be extended to a ∆-domain,
as we wanted to prove.

Our next result is a limit law for the number of edges in a random planar 3-graph.

Theorem 2.4.9. The number Xn of edges in a random planar 3-graph with n vertices
is asymptotically Gaussian with

EXn ∼ µ3n ≈ 2.4065n, VarXn ∼ λ3n ≈ 0.3126n
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Proof. Recall Equation (2.27) from Section 2.3:

K(x, y) = C (A(x, y), B(x, y)) + E(x, y), (2.40)

where

A(x, y) = xe(x
2y3−2xy)/(2+2xy), B(x, y) = (y + 1)e−xy

2/(1+xy) − 1,

E(x, y) = −x+
x2y

2 + 2xy
− ln

√
1 + xy +

xy

2
− (xy)2

4
.

It follows that the singularity τ(y) of the univariate function x 7→ K(x, y) is given by
the equation

A(τ(y), y) = ρ(B(τ(y), y)),

where ρ(y) is as before the singularity of x 7→ C(x, y). The value of τ(1) = τ is already
known. In order to compute τ ′(1) we differentiate and obtain

Ax(τ, 1)τ ′(1) +Ay(τ, 1) = ρ′(B(τ, 1))
[
Bx(τ, 1)τ ′(1) +By(τ, 1)

]
.

Solving for τ ′(1) we obtain

τ ′(1) = −ρ
′(B(τ, 1))By(τ, 1)−Ay(τ, 1)

ρ′(B(τ, 1))Bx(τ, 1)−Ax(τ, 1)
.

Since ρ = X ◦ Y −1, where X and Y are explicit functions defined in [8], ρ′(y) can be
computed as X ′(Y −1(y))/Y ′(Y −1(y)). After some calculations we finally get a value of
τ ′(1) ≈ −0.1129 and

µ3 = −τ
′(1)

τ(1)
≈ 2.4065.

Using the same procedure we can isolate τ ′′(1) ≈ 0.3700 and obtain the variance as

λ3 = −τ
′′(1)

τ(1)
− τ ′(1)

τ(1)
+

(
τ ′(1)

τ(1)

)2

≈ 0.3126.

In order to apply quasi-powers theorem we just have to prove thatK(x, y) is analytic in a
∆-domain for y close enough to 1. The proof is analogous to the proof of Theorem 2.4.7.
We just have to adapt the equations so that they count edges as well:

K•1 = F1(x,K
•,K•2 , y),

K•2 = F2(x,K
•,K•1 ,K

•
2 , y),

K• = F3(x,K
•,K•1 ,K

•
2 , y),

where
F1(x,K

•,K•2 , y) = xy(K•2 +K•),

F2(x,K
•,K•1 ,K

•
2 , y) = x

(
y2(K•2 +K•)2

2
+Bu

)
,
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F3(x,K
•,K•1 ,K

•
2 , y) =

= x

(
Bx + y(K•2 +K•)(Bu +Bx) +

(Bu +Bx)2

2
+ exp≥3(yK

•
2 + yK• +Bu +Bx)

)
,

and where we use, for short, the notation:

Bx = B̂x(x+K•1 +K•2 +K•,K•1 +K•2 +K•, y)

Bu = B̂u(x+K•1 +K•2 +K•,K•1 +K•2 +K•, y),

where B̂(x, u, y) is the enriched version of B̂(x, u), defined in Theorem 2.4.7, where y
counts edges. The rest of the proof is identical: since Fi are continuous in y and positive,
the largest eigenvalue will have absolute value smaller than 1 if y is close enough to 1,
so there will be no branching point when solving the system of equations.

Next we determine the limit law for the size of the kernel in random planar 2-graphs.

Theorem 2.4.10. The size Yn of the kernel of a random planar 2-graph with n edges
is asymptotically Gaussian with

EYn ∼ µKn ≈ 0.8259n, VarYn ∼ λKn ≈ 0.1205n (2.41)

Proof. Recall that the decomposition of a simple 2-graph into its kernel gives

H(x) = H̃(x, 0, 1, 0, . . .) = K̃

(
x,

x2

1− x,
1

1− x, . . . , k
(

x

1− x

)k−1
+

(
x

1− x

)k
, . . .

)
+E(x, 1).

If u marks the size of the kernel then

H(x, u) = K̃

(
ux,

x2

1− x,
1

1− x, . . . , k
(

x

1− x

)k−1
+

(
x

1− x

)k
, . . .

)
+ E(x, 1).

Composing with Equations (2.26) and (2.29) we get

H(x, u) = C (A(x, u), B(x, u)) + F (x, u)

where

A(x, u) = ux exp

(
−x
(
2u+ x+ u2x− 2ux

)
2(1− x+ ux)

)
,

B(x, u) = −1 + 2 exp

(
x (1− u)

1− x+ ux

)
,

and F (x, u) is a correction term which does not affect the singular analysis. It follows
that the singularity χ(u) of the univariate function x 7→ H(x, u) is given by the equation

A(χ(u), u) = ρ(B(χ(u), u)),
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If we differentiate the former expression and replace u with 1 we get

Ax(σ, 1)χ′(1) +Ay(σ, 1) = ρ′(1)(Bx(σ, 1)χ′(1) +By(σ, 1)).

Note that χ(1) = σ, where σ is, as before, the singularity of the generating function
H(x) of planar 2-graphs. Moreover, B(x, 1) = 1. After some calculations we finally get
χ′(1) ≈ −0.03135 and

µK = −χ
′(1)

χ(1)
=

2ρ′(1)eσ + σ2 − σ + 1

1− σ .

This is computed using the known values of σ and ρ′(1) = −ρµ. Using the same
procedure we can isolate χ′′(1) ≈ 0.05295 and compute λK as

λK = −χ
′′(1)

χ(1)
− χ′(1)

χ(1)
+

(
χ′(1)

χ(1)

)2

≈ 0.1205.

We need to show that H(x, u) is analytic in a ∆-domain. If u = 1 we already know it for
H(x, 1). Since A(x, u) and B(x, u) are both analytic, and A(σ, 1) = ρ and B(x, 1) = 1,
then for u close enough to 1 and x close enough to χ(u), by continuity, if arg(x/χ(u)−
1) > α then arg(A(x, u)/ρ(B(x, u)) − 1) > β for some β > 0, as in the proof of
Theorem 2.4.3. Also, if |x| = σ but x 6= σ, then we know that H(x, 1) is analytic near
x. Again by continuity, if u is close enough to 1 then H(x, u) is analytic at (x, u), and
by compactness this is sufficient to prove analyticity in a ∆-domain.

Note that, since the expected size of the core of a random connected planar graph
is 1 − σ, the expected size of the kernel of a random connected planar graph with n
vertices is asymptotically (1− σ)µKn = (2ρ′(1)eσ + σ2 − σ + 1)n ≈ 0.7944n.

2.5 Degree distribution

In this section we compute the limit probability that a vertex of a planar 2-graph or
3-graph has a given degree. In order to do that, we compute the probability distribution
of the root of a rooted planar 2-graph and 3-graph. Since every vertex is equally likely
to be the root, we conclude that the average distribution is the same. Note that this is
not true for maps, so in this section we only compute the distribution for graphs. This
section is rather technical, especially the part of 3-graphs, so that is why we separate
its content from that of Section 2.4.

Let c•n be the number of rooted connected planar graphs with n vertices, i.e., c•n =
n · cn. Let C•(x) =

∑
c•nx

n = xC ′(x) be its associated generating function. Let c•n,k be
the number of rooted connected planar graphs with n vertices and such that the root
degree is exactly k. Let C•(x,w) =

∑
c•n,mx

num be its associated generating function.
The limit probability dk that the root vertex has degree k can be obtained as

dk = lim
n→∞

c•n,k
c•n

= lim
n→∞

[xn][wk]C•(x,w)

[xn]C•(x)
.
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Therefore, the probability distribution p(w) =
∑
dkw

k can be obtained from the knowl-
edge of C•(w, u). In [21] this function is computed, and dk is proven to be asimptotically

dk ∼ c · k−1/2qk,

where c ≈ 3.0175 and q ≈ 0.6735 are computable constants. Our goal is to obtain
similar results for 2-graphs and 3-graphs, by respectively computing generating function
H•(x,w) and K•(x,w) in terms of C•(x,w).

2.5.1 2-graphs

Theorem 2.5.1. Let h•n,k be the number of rooted 2-graphs with n vertices and with

root degree k. Let H•(x,w) =
∑
h•n,kx

nwk be its associated generating function. The
following equation holds

H•(x,w) = ex(1−w)C•(xe−x, w)− xwC•(xe−x)− x+ x2w (2.42)

Proof. The decomposition of a graph into ins core and the attached rooted trees implies
the following equation:

C•(z, w) = H•(T (z), w)
T (z, w)

T (z)
+H•(T (z))

wT (z, w)

1− T (z)
+ T (z, w),

where T (z, w) = z · ewT (z) is the generating function of rooted trees where w marks the
degree of the root. The first addend corresponds to the case where the root is in the
core. In this case, the degree of the graph root is the degree of the core root plus the
degree of the root of its appended tree. The second addend corresponds to the case
where the root is in an attached tree. In this case there is a sequence of trees between
the core and the root, and finally a rooted tree. The degree of the graph root is the
degree of the root of the rooted tree plus one. The last addend corresponds to the case
where the graph is a tree, and therefore its core is empty.

In order to invert the former relation let x = T (z) so that

z = xe−x, T (z, w) = xe−x(1−w), H•(T (z)) = (1− x)C•(xe−x) + x2 − x.

After some calculations we obtain

H•(x,w) = ex(1−w)C•(xe−x, w)− xwC•(xe−x)− x+ x2w =

=
1

2
w2x3 +

(
w2 +

2

3
w3

)
x4 +

(
9

2
w2 +

13

3
w3 +

41

24
w4

)
x5 + . . .

The probability distribution p(w) can be computed using transfer theorems. The
expansion of C•(x,w) near the singularity x = ρ gives the following equation

C•(x,w) = C0(w) + C2(w)X2 + C3(w)X3 +O(X4), (2.43)
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where X =
√

1− x/ρ. The probability distribution can be computed as

p(w) =
C3(w)

C3(1)
.

Our goal is to obtain the same result by applying the relation obtained in (2.42).

Theorem 2.5.2. Let ek be the limit probability that a random vertex has degree k in a
2-graph. Let pH(w) =

∑
ekw

k be its probability distribution. Let p(x) be as before. The
following equation holds:

pH(w) =
eσ(1−w)p(w)− σw

1− σ , (2.44)

where σ = T (ρ), as in Theorem 2.4.1. Furthermore, the limiting probability that the
degree of a random vertex is equal to k exists, and is asymptotically

pH(k) ∼ ν2k−1/2qk,

where q ≈ 0.6735 and ν2 ≈ 3.0797.

Proof. Since C•(x,w) satisfies (2.43), and H•(x,w) satisfies (2.42), we obtain

H•(x,w) = H0(w) +H2(w)X2 +H3(w)X3 +O(X4),

where X =
√

1− x/σ, and H3(w) is computed as

H3(w) = eσ(1−w)C3(w)(1− σ)3/2 − wσC3(1)(1− σ)3/2

The probability generating function of the distribution is given by

pH(w) =
H3(w)

H3(1)
=

(1− σ)3/2
(
eσ(1−w)C3(w)− wσC3(1)

)
(1− σ)3/2C3(1)(1− σ)

=
eσ(1−w)p(w)− σw

1− σ .

The asymptotics of the distribution can be obtained from p(w). The singularity of
p(w) is obtained in [21] as r ≈ 1.4849. The expansion of p(w) near the singularity is
computed as

p(w) = P−1W
−1 +O(1),

where P−1 ≈ 5.3484 is a computable constant, and W =
√

1− w/r. Plugging this
expression into (2.44) we get

pH(w) = Q−1W
−1 +O(1),

where Q−1 = P−1e
σ(1−r)/(1 − σ) ≈ 5.4586. The estimate for pH(k) follows directly by

singularity analysis.
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2.5.2 3-graphs

In order to prove a similar result for 3-graphs, we need to extend the generating function
C•(x.w) so that it takes edges into account. This function C•(x, y, w) was computed in
[21], and our goal is to obtain the analogous generating function for 3-graphs, K•(x,w),
in terms of We remark that the expression given in [21] for C•(x, y, w) is extremely
involved and needs several pages to write it down.

Theorem 2.5.3. Let k•n,k be the number of rooted 3-graphs with n vertices and with

root degree k. Let K•(x,w) =
∑
k•n,kx

nwk be its associated generating function. The
following equation holds

K•(x,w) = B0(x,w) · C• (B1(x), B2(x), B3(x,w)) +A(x,w) (2.45)

where

B0(x,w) = e(w
2−1)x2/(2+2x)+x(1−w)/(1+x), B1(x) = xe(x

2−2x)/(2+2x),

B2(x) = 2e−x/(1+x) − 1, B3(x,w) =
(1 + w)e−wx/(1+x) − 1

2e−x/(1+x) − 1
,

A(x,w) = A0(x) +A1(x)w +A2(x)w2,

and A0(x), A1(x), A2(x) are analytic functions.

In order to prove this theorem we need some technical lemmas that relate different
classes of graphs.

Lemma 2.5.4. Let C̃•(x,w, z, y1, . . . , yk, . . .) be the generating function of rooted con-
nected planar weighted multigraphs where x marks vertices, w marks the root degree, z
marks loops, and yk marks k-edges. The following equation holds

C̃•(x,w, z, y1, . . . , yk . . .) = ez·(w
2−1)/2C•

xez/2,∑
i≥1

yi
i!
,

∑
i≥1w

i · yi/i!∑
i≥1 yi/i!

 . (2.46)

Proof. Given a simple connected planar graph G, a connected planar multigraph can
be obtained from G by replacing each edge with a multiple edge, and placing 0 or
more loops in each vertex (see proof of Corollary 2.3.3 for details). In the case of
rooted graphs, if we replace an edge incident to the root with a i edge, its root degree is
increased in i−1. Therefore, instead of replacing such an edge with a multiple edge with
generating function yi/i!, we replace it with a multiple edge with generating function
wiyi/i!. Similarly, when we add a loop incident to the root vertex, the root degree is
increased by 2. Therefore, its associated generating function is not z, but zw2.

Lemma 2.5.5. Let H̃•(x,w, z, y1, . . . , yk, . . .) be the generating function of rooted planar
weighted 2-multigraphs where x marks vertices, w marks the root degree, z marks loops,
and yk marks k-edges. The following equation holds

H̃•(x,w, z, y1, . . . , yk . . .) = ey1x(1−w)C̃•(xe−y1x, w, z, y1, . . . , yk . . .)−w·A(x, z, y1, . . . yk, . . .)−x,
(2.47)

for a given function A(x, z, y1, . . . yk, . . .) that does not depend on w.
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Proof. The decomposition of a planar connected weighted multigraph into its core and
the attached rooted trees implies the following equation:

C̃•(x,w, z, y1, . . . , yk, . . .) = H̃•(T (x, y1), w, z, y1, . . . , yk, . . .)
T (x, y1, w)

T (x, y1)
+

+H̃•(T (x, y1), z, y1, . . . , yk, . . .)
wT (x, y1, w)

1− T (x, y1)
+ T (x, y1, w),

where T (x, y) = T (xy)/y is the generating function of rooted trees where x marks
vertices and y marks edges, and T (x, y, w) = T (xy,w)/y is the generating function of
rooted trees where x marks vertices, y marks edges, and w marks the root degree. The
justification of this relation is analogous to the proof of Theorem 2.5.1, as well as the
inverse.

Lemma 2.5.6. Let K•(x,w) be the generating function of rooted simple planar 3-graphs
where x marks vertices and w marks the root degree. The following equation holds

K•(x,w) = H̃•(x,w,−sx, 1 + s, 2s+ s2, . . . , ksk−1 + sk, . . .) + w2A(x), (2.48)

for a given function A(x), and where s = −x/(1 + x).

Proof. Recall from Section 2.3 the decomposition (2.32) of a planar 2-multigraph into
its kernel and paths of vertices

H̃(x, z, y1, y2, . . . , yk, . . .) = K̃

x, sxy1 + xy2 + z, y1 + s, y2 + 2y1s+ s2, . . . ,
k∑
j=0

(
k

j

)
yjs

k−j , . . .


− ln

√
1− xy1 +

xz

2
+
x2y2

4
− xy1

2
− (xy1)

2

4
,

where s = xy21/(1−xy1) is a nonempty path of edges and vertices. If we root a vertex of
a planar 2-multigraph there are two options: either it belongs to the kernel or it belongs
to an edge of the kernel. In the former case, its degree corresponds to the degree of the
corresponding vertex in the kernel. In the latter case its degree must be 2. With this
observation we can extend this equation so that it considers rooted graphs and it takes
the root degree into account, as

H̃•(x,w, z, y1, y2, . . . , yk, . . .) =

K̃•
(
x,w, sxy1 + xy2 + z, y1 + s, y2 + 2y1s+ s2, . . . ,

∑k
j=0

(
k
j

)
yjs

k−j , . . .
)

+ w2A(x, z, y1, . . . , yk, . . .),

where A(x, z, y1, . . . , yk, . . .) is a function that does not depend on w. This relation
can be inverted as in Section 2.3, and finally we can conclude (2.48) from the following
equation

K•(x,w) = K̃•(x,w, 0, 1, 0, . . . , 0, . . .).
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Using these lemmas we finally prove Theorem 2.5.3.

Proof. The equation (2.45) is obtained by combining equations (2.48), (2.47) and (2.46).

The expression obtained in Theorem 2.5.3 allows us to prove the following result.

Theorem 2.5.7. Let fk be the limit probability that a random vertex has degree k in
a planar 3-graph. The limit probability distribution pK(w) =

∑
fkw

k exists and is
computable.

Proof. The generating function C•(x, y, w) is expressed in [21] as

C•(x, y, w) = C0(y, w) + C2(y, w)X2 + C3(y, w)X3 +O(X4),

where X =
√

1− x/ρ(y). If we compose this expression with (2.45) we obtain

K•(x,w) = B0(x,w)×[
C0(B2(x)), B3(x,w)) + C2(B2(x), B3(x,w))X2 + C3(B2(x), B3(x,w))X3 +O(X4)

]
+A(x,w),

(2.49)
where X =

√
1−B1(x)/ρ(B2(x). If we define D(x) = B1(x)/ρ(B2(x)) then we can

proceed as in the proof of Theorem 2.4.7, obtaining that X =
√
τD′(τ)Z + O(Z2),

where Z =
√

1− x/τ . Plugging this expression into (2.49) we obtain

K•(z, w) = K0(w) +K2(w)Z2 +K3(w)Z3 +O(Z4),

where Z =
√

1− z/τ and

K3(w) = B0(τ, w)C3(B2(τ), B3(τ, w))(τD′(τ))3/2 + a0 + a1w + a2w
2,

for some constants a0, a1 and a2. The limit probability distribution of the root vertex
being of degree k is computed as

pK(w) =
K3(w)

K3(1)
=
B0(τ, w)C3(B2(τ), B3(τ, w))(τD′(τ))3/2 + a0 + a1w + a2w

2

B0(τ, 1)C3(B2(τ), 1)(τD′(τ))3/2 + a0 + a1 + a2
.

Since we know that a 3-graph has no vertices of degree 0, 1 or 2, we can choose suitable
values of a0, a1 and a2 such that the probability distribution pK(w) =

∑
fkw

k satisfies
f0 = f1 = f2 = 0. The function C3(y, w) is described in [21], and every other function
that appears in the previous expression is explicit. Therefore, pK is computable, as we
wanted to prove.

We remark that pK(w) is expressed in terms of C3(x,w), which is a very involved
(although elementary) function, given in the appendix in [21].
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2.6 Concluding remarks

Most of the results we have obtained can be extended to other classes of graphs. Let
G be a class of graphs closed under taking minors such that the excluded minors of G
are 2-connected. Interesting examples are the classes of series-parallel and outerplanar
graphs. Given such a class G, a connected graph is in G if and only if its core is
in G. Hence Equation (2.23) also holds for graphs in G. Using the results from [24],
we have performed the corresponding computations for the classes of series-parallel and
outerplanar graphs (there are no results for kernels since outerplanar and series-parallel
have always minimum degree at most two). The results are displayed in the next table,
together with the data for planar graphs. The expected number of edges is µn, and the
expected size of the core is κn. It is worth remarking that the size of the core is always
linear, whereas the size of the largest block in series-parallel and outerplanar graphs is
only O(log n) [28, 32].

Graphs Growth constant µ (edges) κ (core)

Outerplanar 7.32 1.56 0.84

Outerplanar 2-graphs 6.24 1.67

Series-parallel 9.07 1.62 0.875

Series-parallel 2-graphs 8.01 1.70

Planar 27.23 2.21 0.962

Planar 2-graphs 26.21 2.26

The k-core of a graph G is the maximum subgraph of G in which all vertices have
degree at least k. Equivalently, it is the subgraph of G formed by deleting repeatedly
(in any order) all vertices of degree less than k. In this terminology, what we have called
the core of a graph is the 2-core. Using the results from [8] it is not difficult to show
that the 3-core, 4-core and 5-core of a random planar graph have all linear size with
high probability (there is no 6-core since a planar graph has always a vertex of degree
at most five). The interesting question is however whether the k-core has a connected
component of linear size (as is the case for k = 2). We have performed computational
experiments on random planar graphs, using the algorithm described in [74], and based
on the results we formulate the following conjecture.

Conjecture. With high probability the 3-core of a random planar graph has one
component of linear size. With high probability the components of the 4-core of a
random planar graph are all sublinear.

We have not been able to prove neither of the conjectures. As opposed to the kernel,
the 3-core is obtained by repeatedly removing vertices of degree two. These deletions
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may have long-range effects that appear difficult to analyze. Even more challenging
appears the analysis of the 4-core.

63



Chapter 3

Subgraph statistics in
series-parallel graphs

This chapter is based in a joint work with J. Rué and M. Drmota, accepted in the
journal Random Structures and Algorithms. Let H be a fixed graph and G a subcritical
graph class. We show that the number of occurrences of H (as a subgraph) in a graph
in G of order n, chosen uniformly at random, follows a normal limiting distribution
with linear expectation and variance. The main ingredient in our proof is the analytic
framework developed by Drmota, Gittenberger and Morgenbesser to deal with infinite
systems of functional equations [61]. As a case study, we obtain explicit expressions for
the number of triangles and cycles of length 4 in the family of series-parallel graphs.

3.1 Introduction

The study of subgraphs in random discrete structures is a central area in graph theory,
which dates back to the seminal works of Erdős and Rényi in the sixties [35]. Since
then, a lot of effort has been devoted to locate the threshold function for the number of
copies of a given subgraph in the G(n, p) random graph model, as well as the limiting
distribution of the corresponding counting random variable (see for instance [36, 4, 52],
and the monograph [41, Chapter 3]). The number of copies of a fixed graph and its
statistics had been also addressed in other restricted graph classes, including regular
graphs, random graphs with specified degree sequences (see for instance, [56, 22, 58, 53,
55], see also [57]) and random planar maps [50, 11].

In this chapter we study subgraphs of a graph chosen at random from a so-called
subcritical class. Recall that a block is a maximal 2-connected subgraph. Roughly
speaking, a graph class is called subcritical if the largest block of a random graph
in the class with n vertices has O(log(n)) vertices (see the precise analytic definition
in Section 3.3). Indeed, graphs in these classes have typically a tree-like structure and
share several properties with trees. Just to mention some families, prominent subcritical
graph classes are forests, cacti trees, outerplanar graphs and series-parallel graphs, and
more generally graph families defined by a finite set of 3-connected components (see the
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work of Giménez, Noy and Rué [28]). Let us mention that the analysis of subcritical
graph classes is intimately related to the study of the random planar graph model: it is
conjectured that a graph class defined by a set of excluded minors is subcritical if and
only if at least one of the excluded graphs is planar (see [45]).

The systematic study of subcritical graph classes was started by Bernasconi, Pana-
giotou and Steger in [65] when studying the expected number of vertices of given
degree. Later, Drmota, Fusy, Kang, Kraus and Rué in [12] extended the analysis to
unlabelled graph classes, and obtained normal limiting probability distributions for
different parameters, including the number of cut-vertices, blocks, edges and the ver-
tex degree distribution. Drmota and Noy [27] investigated several extremal param-
eters in these graph classes. They showed, for instance, that the expected diameter
Dn of a random connected graph from a subcritical graph class on n vertices satisfies
c1
√
n ≤ E[Dn] ≤ c2

√
n log n for some constants c1 and c2. More recently, the precise

asymptotic estimate has been deduced to be of order Θ(
√
n) (see [49]). Furthermore, the

normalized metric space (V (G), dG/
√
n) (where dG(u, v) denotes the distance between

u and v in the graph G) is shown to converge (with respect to the Gromov-Hausdorff
metric) to the so-called Brownian Continuum Random Tree, multiplied by a scaling
factor that depends only on the class under study (see [49] for details, and also [40]
for extensions to the unlabelled setting). Let us also mention that even more recently,
the Benjamini-Schramm convergence had been addressed as well in [40, 31] for these
graph families. Finally, the maximum degree and the degree sequence of a random
series-parallel graph have been studied in [70] and [65, 75], respectively.

Our results: this chapter is a contribution to the understanding of the structure of a
random graph from one of these graph classes. More precisely, we present a very general
framework to deal with subgraph statistics in subcritical graph classes. Our main result
is the following theorem:

Theorem 3.1.1. Let Cn be the set of connected graphs in a subcritical graph class G of
order n, and let H be a fixed connected graph. Let XH

n be the number of copies of H in
an object in Cn, chosen uniformly at random. Then,

E[XH
n ] = µHn+O(1) and Var[XH

n ] = σ2Hn+O(1)

for some constants µH > 0, σ2H ≥ 0 that only depend on H (and on the subcritical graph
class under study). Moreover, if σ2H > 0, then the random variable

XH
n − E[XH

n ]√
Var[XH

n ]

converges in distribution to N(0, 1).

We want to stress the fact that the constant µH can be expressed in terms of the
Benjamini-Schramm limit (see [40]) but this does not apply for σ2H since the Benjamini-
Schramm limit implies only a law of large numbers.
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The strategy we use on the proof is based on analytic combinatorics. More precisely,
given a subgraph H we are able to get expressions for the counting formulas encoding
the number of copies of H. As we will show, even if H has a very simple structure,
we will need infinitely many equations and infinitely many variables to encode all the
possible copies. We will be able to fully analyze the infinite system of equations that
we obtain using an adapted version of the main theorem of Drmota, Gittenberger and
Morgenbesser [61], which provides the necessary analytic ingredient in order to study
infinite functional systems of equations. This result extends the classical Drmota-Lalley-
Woods Theorem for (finite) systems of functional equations (see [60]).

Let us also discuss some similar results from the literature. The study of induced
subgraphs (also called patterns) in random trees was done by Chyzak, Drmota, Klausner
and Kok in [66], showing normal limiting distributions with linear expectation and
variance. This covers in particular the distribution of the number of vertices of given
degree in random trees. In the more general setting of subcritical graph classes, the
number of vertices of degree k was studied in [12].

In another direction, the study of pendant copies of a given graph in random planar
graphs was started by McDiarmid and Steger and Welsh in [44]. Let H being fixed
rooted graph, with vertex set {1, . . . , h} and root r. We say that H appears in the
graph G at W ⊂ V (G) (or H is a pendant copy in G) if (i) there is an increasing
bijection from {1, . . . , h} to W giving a graph isomorphism between H and the induced
subgraph G[W ] of G, and (ii) there is exactly one edge in G between W and the rest
of G, and this edge is incident with the root r. The number of pendant copies of a
fixed subgraph H in a subcritical graph class was studied in [28]. In particular, it was
shown that this number follows a Central Limit Theorem with linear expectation. As
every pendant copy defines a subgraph, this result implies that the expected number
of subgraphs in a subcritical graph of order n, chosen uniformly at random is at least
linear. Our result strongly strengths this fact by showing the precise limiting probability
distribution and the order of magnitude of the expectation.

As mentioned, Theorem 3.1.1 provides Central Limit Theorems with linear expecta-
tion and variance. However, our method does not give an effective method for computing
the corresponding constants. In particular if H is not 2-connected then we need to oper-
ate with an infinite system of equations. Nevertheless if H is 2-connected and if we have
a very precise characterization of the corresponding counting generating function of 2-
connected graphs (for example given by a finite system of functional equations) then it
is possible to compute the constants µH and σ2H to arbitrary precision. As a case study,
we provide explicit computations for specific (2-connected) subgraphs of series-parallel
graphs. Recall that a graph is series-parallel if it excludes K4 as a minor. Another
equivalent definition states that a series-parallel graph is a graph whose 2-connected
components are obtained from an edge by means of series and parallel operations. In
this setting, we are able to show the following explicit result for triangles:

Theorem 3.1.2. The number of copies of K3, XNn , on series-parallel graph with n
vertices chosen uniformly at random is asymptotically normal, with

E[XNn ] = µNn+O(1), Var[XNn ] = σ2Nn+O(1),
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where µN ≈ 0.39481 and σ2N ≈ 0.41450.

Additionally, our approach based on generating functions and analytic combinatorics
let us also analyze the asymptotic number of triangle-free series-parallel graphs on n
vertices. Finally, the more involved case of studying the number of copies of C4 as well
as the number of series-parallel graphs with a given girth is discussed as well.

Structure of the chapter: Section 3.2 is devoted to the introduction of the notation
concerning generating functions and results needed later in the chapter. Section 3.3
covers the analytic preliminaries of the chapter. This section includes a modified version
of the main theorem of Drmota, Gittenberger and Morgenbesser in [61], which is our
main analytic ingredient on the proof of Theorem 3.1.1. Section 3.4 deals with the easier
situation where the subgraph under study is 2-connected. The arguments to deal with
the general connected case are developed in Section 3.5. In order to prepare the reader
for the involved notation used to deal with general subgraphs, some simpler cases are
fully developed. Section 3.6 is devoted to explicit computations in the family of series-
parallel graphs. Section 3.7 discusses the results obtained so far and possible future
investigations.

3.2 Preliminaries

All graphs we study are assumed to be simple (no loops nor multiple edges) and labelled.
A graph on n vertices will be always labelled with different elements in {1, . . . , n}. Fi-
nally, all convergences of random variables considered in this chapter are in distribution,
as in the rest of this thesis.

3.2.1 Combinatorial classes. Exponential generating functions.

We follow the notation and definitions in [5]. A labelled combinatorial class is a set A
together with a size function, such that for each n ≥ 0 the set of elements of size n,
denoted by An, is finite. Each object a of An is made of n atoms (typically, vertices
in graph classes) assembled in a specific way, the atoms bearing distinct labels in the
set {1, . . . , n}. We always assume that a combinatorial class is stable under graph
isomorphism, namely, a ∈ A if and only if all graphs a′ isomorphic to a are also elements
of A.

In counting problems it is convenient to use the exponential generating function
(shortly the EGF) associated to the labelled class A:

A(x) :=
∑
n≥0
|An|

xn

n!
.

In our setting, we use the (exponential) indeterminate x to encode vertices. In the
opposite direction, we also write [xn]A(x) = |An|/n!.
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The basic constructions we consider in this chapter are described in Table 3.1. Let
us briefly explain each construction (see [5] for all the details). The disjoint union A∪B
of two classes A and B refers to the disjoint union of the classes (and the corresponding
induced size). The labelled Cartesian product A×B of two classes A and B is the set of
pairs (a, b) where a ∈ A and b ∈ B, joint with a redistribution of the labels of both a and
b. The size of (a, b) is the sum of the sizes of a and b. The sequence of a set A (denoted
by Seq(A)) is {ε} ∪ A ∪ (A × A) ∪ . . . (ε denotes an element in the class of size 0).
The set construction Set(A) is Seq(A)/ ∼, where (a1, a2, . . . , ar) ∼ (â1, â2, . . . , âr) when
there exists a permutation of indices τ in {1, . . . , r} such that equality ai = âτ(i) holds
for all i. The cycle construction Cyc(A) is similar to the set construction, but now two
elements are equivalent if and only if one can be obtained from the second by a cyclic
permutation. The restricted set construction is equivalent to the set construction but
here the Cartesian product has only a fixed number of terms. Finally, the composition
of two combinatorial classes A and B (or or substitution of B in A) is obtained by
substituting each atom of each element of A by an element of B.

We additionally consider classes of graphs of various types depending on whether
one marks vertices or not. A (vertex-)pointed graph is a graph with a distinguished
(labelled) vertex. A derived graph is a graph where one vertex is distinguished but not
labelled (the other n − 1 vertices have distinct labels in {1, . . . , n − 1}). In particular,
isomorphisms between two pointed graphs (or between two derived graphs) have to
respect the distinguished vertex.

Given a graph class A, the pointed class A• is the class of pointed graphs arising
from A. Similarly, the derived graph class A◦ is obtained by taking all derived graphs
built from A. Hence, |A•n| = n|An| and |A◦n−1| = |An|, and we have A•(x) = x d

dxA(x)

and A◦(x) = d
dxA(x).

Construction Class Equations

Sum C = A ∪ B C(x) = A(x) +B(x)
Product C = A× B C(x) = A(x) ·B(x)
Sequence C = Seq(A) C(x) = 1/(1−A(x))

Set C = Set(A) C(x) = exp(A(x))

Restricted Set C = Set≥k(A) C(x) = exp≥k(A(x)) = exp(A(x))−∑k−1
i=0

A(x)i

i!

Cycle C = Cyc(A) C(x) = −1
2 log(1−A(x))− A(x)

2 −
A(x)2

4
Composition C = A ◦ B C(x) = A(B(x))

Pointing C = A• C(x) = A•(x) = x d
dxA(x)

Deriving C = A◦ C(x) = A◦(x) = d
dxA(x)

Table 3.1: The Symbolic Method translating combinatorial constructions into opera-
tions on counting series.

Pointing and deriving operators will be only used over vertices. When dealing with
ordinary parameters over combinatorial classes (for instance, edges or copies of a fixed
subgraph) we use extra variables in the corresponding counting formulas. The partial
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derivatives of counting series with respect to parameters are denoted by subindices of the
corresponding indeterminate. For instance, a generating function of the form Ay(x, y)
means ∂

∂yA(x, y).

3.2.2 Graph decompositions

Recall from Chapter 1 that a block of a graph g is a maximal 2-connected subgraph of
g. A graph class G is block-stable if it contains the edge-graph e (the unique connected
graph with two labelled vertices), and satisfies the property that a graph g belongs to
G if and only if all the blocks of g belong to G. Block-stable classes cover a wide variety
of natural graph families, including graph classes specified by a finite list of forbidden
minors that are all 2-connected. Planar graphs (Ex(K5,K3,3)) or series-parallel graphs
(Ex(K4)) are block-stable.

For a graph class G, we write C and B for the subfamilies of connected and 2-
connected graphs in G, respectively. In particular, the following combinatorial specifi-
cations hold:

G = Set(C), C• = • × Set(B◦ ◦ C•).
The previous formulas can be interpreted as follows: first, each general graph in G is a
set of elements in C. Secondly, a pointed connected graph in C• can be decomposed as
the root vertex, and a set of derived blocks (the ones incident with the root vertex) where
we substitute on each vertex a pointed connected graph. See, for instance, [15, 47, 14]
for full details. By means of Table 3.1 these expressions translate into equations of EGF
in the following way:

G(x) = exp(C(x)), C•(x) = x exp(B◦(C•(x))).

See [17] for further results on graph decompositions and connectivity on graphs.

3.3 Analytic preliminaries

In this part we include the analytic results necessary in the forthcoming sections of the
chapter.

3.3.1 Subcritical graphs

We start with the notion of subcritical graph class. Further details concerning these
graph classes can be found in [12]. The next definition is based on the notation intro-
duced in Section 3.2.2:

Definition 1. A block-stable class of (vertex labelled) graphs is called subcritical if

C•(ρC) < ρB,

where ρB denotes the radius of convergence of B◦(x) and ρC the radius of convergence
of C•(x).

69



Roughly speaking, the subcritical condition means that the singular behaviour of
B◦(x) does not interfere with the singular behaviour of C•(x). Only the behaviour
of B◦(x) for |x| ≤ (1 + ε)C•(ρC) matters (where ε > 0 is sufficiently small). This
analytic behaviour translates into qualitative properties: as it is shown in [32], this
condition assures that the largest block of a random graph in the class with n vertices
has O(log(n)) vertices. This behaviour differs from the one in random planar graphs,
where the largest block follows an Airy-map law with linear expectation (see [28]).

Let us analyze the equations. From the subcritical condition and the arguments in
[12, Section 4.1] (see also [5, Chapter VI.9.]) it follows that y = C•(x) becomes singular
for x = x0 = ρC if x0 (and y0 = C•(x0)) satisfies the system of equations

y0 = x0e
B◦(y0),

1 = x0e
B◦(y0)B◦′(y0),

or equivalently if

1 = y0B
′′(y0),

x0 = y0e
−B′(y0).

In particular, we just have to assure that the equation 1 = yB′′(y) has a solution y < ρB.
Equivalently this is granted if

ρBB
′′(ρB) > 1.

It also follows from general theory (see [5, Chapter VI.9.]) that the solution function
C•(x) has a square-root type singularity at x = ρC and can be (locally) written in the
form

C•(x) = h1(x)− h2(x)

√
1− x

ρC
,

where h1(x) and h2(x) are analytic functions at x = ρC and satisfy the condition
h1(ρC) = C•(ρC) and h2(ρC) > 0.

It is convenient to assume that our graph class is an aperiodic class. That is, there
is a positive integer n0 such that we have [xn]C•(x) > 0 for n ≥ n0. Then it follows
that x = ρC is the only singularity on the circle of convergence |x| = ρC . Additionally,
there is an analytic continuation of C•(x) to a domain of the form {x ∈ C : |x| <
ρ′ and arg(x − ρC) 6∈ [−θ, θ]} for some real number ρ′ > ρC and some positive angle
0 < θ < π/2. We call such a domain ∆-region or domain dented at ρC .

More precisely, if |x| = ρC but x 6= ρC then

|C•(x)B◦′(C•(x))| < 1.

Thus by the Implicit Function Theorem, C•(x) has no singularity there and can be
analytically continued. Consequently, we get by singularity analysis over C•(x) that

[xn]C•(x) =
h2(ρC)

2
√
π
n−3/2ρ−nC

(
1 +O

(
n−1

))
.
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Since C•(x) = xC ′(x) we also obtain the local singular behavior of C(x) which is of the
form

C(x) = h3(x) + h4(x)

(
1− x

ρC

)3/2

,

for some functions h3(x) and h4(x) which are analytic at x = ρC . Since G(x) =
exp(C(x)) this also provides the local singular behavior of G(x):

G(x) = h5(x) + h6(x)

(
1− x

ρC

)3/2

,

where again h5(x) and h6(x) are analytic at x = ρC . This implies (applying again
singularity analysis) that

[xn]G(x) =
3h6(ρC)

4
√
π

n−5/2ρ−nC
(
1 +O

(
n−1

))
.

In what follows we will heavily make use of these properties of subcritical graph classes.

3.3.2 A single equation

We first state a Central Limit Theorem that is a slight modification of [47, Theorem
2.23]. Let F (x, y, u) =

∑
n,m Fn,m(u)xnym be an analytic function in x, y around 0,

and u is a complex parameter with |u| = 1. Suppose that the following conditions hold:

(F1) F (0, y, u) ≡ 0.

(F2) F (x, 0, u) 6≡ 0.

(F3) All coefficients Fn,m(1) of F (x, y, 1) are real and non-negative.

(F4) For |u| = 1, then |Fn,m(u)| ≤ Fn,m(1).

(F5) The function t 7→ F (x, y, eit) is at least three times continuously differentiable and
all derivatives are analytic, too, in x and y.

(F6) The region of convergence of F (x, y, u) is large enough such that there exist non-
negative solutions x = x0 and y = y0 of the system of equations

y = F (x, y, 1), (3.1)

1 = Fy(x, y, 1),

with Fx(x0, y0, 1) 6= 0 and Fyy(x0, y0, 1) 6= 0.

Then, by the implicit function Theorem it is clear that the functional equation

y = F (x, y, u)
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has a unique analytic solution y = y(x, u) =
∑

n yn(u)xn with y(0, u) = 0 that is
three times continuously differentiable with respect to t if u = eit. Furthermore the
coefficients yn(1) are non-negative.

It is easy to show that there exists an integer d ≥ 1 and a residue class r modulo
d such that yn(1) > 0 if n 6≡ r (mod d). In order to simplify the following presentation
we assume that d = 1 (namely, we discuss the aperiodic case). The general case can be
reduced to this case by a proper substitution in the original equation.

We have then the following theorem:

Theorem 3.3.1. Assume that F (x, y, u) satisfies assumptions (F1)− (F6) and y(x, u)
is a power series in x that is the (analytic) solution of the functional equation y =
F (x, y, u). Suppose that Xn is a sequence of random variables such that

E
[
uXn

]
=

[xn] y(x, u)

[xn] y(x, 1)
,

where |u| = 1. Set

µ =
Fu
x0Fx

,

σ2 =
1

x0F 3
xFyy

(
F 2
x (FyyFuu − F 2

yu)− 2FxFu(FyyFxu − FyxFyu) + F 2
u (FyyFxx − F 2

yx)
)

+

µ+ µ2,

where all partial derivatives are evaluated at the point (x0, y0, 1) which is a solution to
the system of equations (3.1). Then we have that

E[Xn] = µn+O(1), Var[Xn] = σ2n+O(1)

and if σ2 > 0 then
Xn − E[Xn]√

Var[Xn]
→ N(0, 1).

Proof. The proof runs along the same lines as that of [47, Theorem 2.23]. We just
indicate the differences.

By the Implicit Function Theorem it follows that there exist functions f(u) and g(u)
(for |u − 1| < ε and |u| = 1 for some ε > 0) which are three times differentiable with
respect to t if u = eit that satisfy

g(u) = F (f(u), g(u), u),

1 = Fy(f(u), g(u), u)

with f(1) = x0 and g(1) = y0. Furthermore, by applying a proper variant of the
Weierstrass Representation Theorem it follows (as in the proof of [47, Theorem 2.23])
that we have a presentation of the form

y(x, u) = h1(x, u)− h2(x, u)

√
1− x

f(u)
(3.2)
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locally around x = x0, u = 1, where h1(x, u), and h2(x, u) are analytic in x and three
times continuously differentiable with respect to t if u = eit, where h1(f(u), u) = g(u)
and

h2(f(u), u) =

√
2f(u)Fx(f(u), g(u), u)

Fyy(f(u), g(u), u)
6= 0.

Since d = 1 we also get

yn(u) = [xn]y(x, u) =

√
f(u)Fx(f(u), g(u), u)

2πFyy(f(u), g(u), u)
f(u)−nn−3/2

(
1 +O(n−1)

)
(3.3)

uniformly for |u− 1| < ε and |u| = 1. Hence,

E
[
uXn

]
=

[xn]y(x, u)

[xn]y(x, 1)
=
h2(f(u), u)

h2(f(1), 1)

(
f(1)

f(u)

)n (
1 +O

(
n−1

))
. (3.4)

By using the local expansion of f(u) we get for u = eit

f(1)

f(u)
= eitµ−σ

2t2/2+O(t3),

which directly implies

lim
n→∞

E
[
eit(Xn−µn)/(σ

√
n)
]

= e−t
2/2.

By Levi’s Theorem this proves the Central Limit Theorem.

Remark 3.3.2. In our applications, the function y(x, u) will be the generating function
C•(x, u) = x ∂

∂xC(x, u) of connected graphs. Since [xn]C•(x, u) = n[xn]C(x, u) it follows
that

[xn]C(x, u)

[xn]C(x, 1)
=

[xn]C•(x, u)

[xn]C•(x, 1)

and, thus, it is sufficient to work with C•(x, u) instead of C(x, u). However, if we are
interested in all graphs (not necessarily connected) we need to study the behaviour of
G(x, y). By means of the set construction G(x, u) = exp(C(x, u)) we have to replace
y(x, u) = C•(x, u) by the function

G(x, u) = ỹ(x, u) = exp

(∫ x

0

y(ξ, u)

ξ
dξ

)
and the new random variable X̃n that is defined by E

[
uX̃n

]
= [xn]ỹ(x,u)

[xn]ỹ(x,1) . Indeed, ỹ(x, u)

has a slightly different singular behaviour: from (3.2) we obtain∫ x

0

y(ξ, u)

ξ
dξ = h3(x, u) + h4(x, u)

(
1− x

f(u)

)3/2
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and consequently

ỹ(x, u) = h5(x, u) + h6(x, u)

(
1− x

f(u)

)3/2

for proper function h3(x, u), h4(x, u), h5(x, u), h6(x, u). However, from that expression
we obtain the same kind of asymptotic behavior as in (3.4) and a Central Limit Theorem
for X̃n with the same asymptotic behaviour for mean and variance as for Xn.

Remark 3.3.3. In most of the applications, the condition σ2 > 0 is satisfied. As it
is shown in [12, Lemma 4], if y = F (x, y, u) =

∑
n,m,k an,m,kx

nymuk satisfies some
natural analytic conditions (see [12]), and assuming that there are three integer vectors
(nj ,mj , kj), j = 1, 2, 3 with mj > 0, j = 1, 2, 3 with∣∣∣∣∣∣

n1 m1 − 1 k1
n2 m2 − 1 k2
n3 m3 − 1 k3

∣∣∣∣∣∣ 6= 0

and anj ,mj ,kj 6= 0 for j = 1, 2, 3, then σ2 > 0.

Remark 3.3.4. Finally we remark that Theorem 3.3.1 extends to a finite system of
equations yj = Fj(x, y1, . . . , yK , u), 1 ≤ j ≤ K, provided that the system is strongly con-
nected (compare with [47, Theorem 2.35]). We will use this extension in Section 3.6.2.

3.3.3 An infinite system of equations

The main reference for this subsection is the work of Drmota, Gittenberger and Mor-
genbesser [61]. We start again with an equation of the form y = F (x, y), where F
satisfies (almost) the same assumptions as that of Theorem 3.3.1.

(I1) Let F (x, y) =
∑

n,m Fn,mx
nym be an analytic function in x, y around 0 such

that the conditions (F1), (F2), (F3), and (F6) are satisfied (we just omit the
properties concerning u).

In particular this means that the solution y = y(x) has a square-root type singularity
at x0 and the coefficients yn = [xn]y(x) have an asymptotic expansion of the form given
by (3.3), where u = 1. Furthermore we suppose that the following conditions hold:

(I2) There exist functions yj(x, u), j = 1, 2, . . ., that are power series in x and are
defined for |u| = 1 such that

y(x) =
∑
j≥1

yj(x, 1).

(I3) The infinite system of functions y = (yj(x, u))j≥1 = (yj)j≥1 satisfy an (infinite)
system of equations of the form

yj = Fj(x,y, u), j ≥ 1,
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where Fj has a power series expansion

Fj(x,y, u) =
∑

n,m1,m2,...

Fj;n,m1,m2,...(u)xnym1
1 ym2

2 · · ·

with coefficients that satisfy |Fj;n,m1,m2,...(u)| ≤ Fj;n,m1,m2,...(1). In particular,
these coefficients are non-negative for u = 1.

(I4) For every j ≥ 1 there exists a function F̃j(x, y) with

Fj(x,y, 1) = F̃j(x, y1 + y2 + · · · ) (3.5)

and ∑
j≥1

F̃j(x, y) = F (x, y). (3.6)

(I5) For each j ≥ 1, Fj is three times continuously differentiable with respect to t with
u = eit such that the series∑

j≥1
jm

∂r

∂tr
Fj(x,y, e

it), r ∈ {0, 1, 2, 3}, (3.7)

converges absolutely for |x| < x0 + ε and ‖y‖1 < y0 + ε (for some ε > 0).

From properties (I2)–(I4) it immediately follows that Fj is well defined (and also
analytic) for x and y = (yj)j≥1 for which F (|x|, ‖y‖1) is analytic (recall that ‖y‖1 =∑

j≥1 |yj |). Consequently, under the same conditions, F̃j(|x|, ‖y‖1) is convergent. Ac-
tually we only need convergence for |x| < x0 + ε and ‖y‖1 < y0 + ε for some ε > 0. This
suggests to work in the space `1(C) for y = (yj)j≥1. However, in the present situation
we have to be slightly more careful since we have to take also into account derivatives
with respect to t (with u = eit). For this purpose we use weighted `1 spaces of the form

`1(m,C) =
{

y = (yj)j≥1 ∈ CN : ‖y‖m,1 :=
∑
j≥1

jm|yj | <∞
}
,

for some non-negative real number m (see also Remark 3.3.6). Since ‖y‖1 ≤ ‖y‖m,1 the
functions Fj are also well defined (and analytic) if |x| < x0 + ε and ‖y‖m,1 < y0 + ε for
some ε > 0.

Note that the case r = 0 in condition (I5) just says that for each j the mapping
(x,y) 7→ Fj(x,y, u) is well defined in the space C × `1(m,C) with |x| < x0 + ε and
‖y‖m,1 < y0 + ε (for some ε > 0).

Finally we want to mention that (I4) informally means that the infinite system can
be interpreted as a partition of the main equation y = F (x, y). Hence, we refer to
Equation (3.6) as the Partition Property).

The main theorem in this context is the following:
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Theorem 3.3.5. Assume that F (x, y) and Fj(x, y1, y2, . . . , u), j ≥ 1, satisfy the con-
ditions (I1)–(I5) so that the functions yj(x, u), h ≥ 1, satisfy the infinite system of
equations yj(x, u) = Fj(x, y1(x, u), y2(x, u), . . . , u), j ≥ 1. Furthermore set y(x, u) =∑

j≥1 yj(x, u) and suppose that Xn is a sequence of random variables with

E
[
uXn

]
=

[xn] y(x, u)

[xn] y(x, 1)

for |u| = 1. Then we have

E[Xn] = µn+O(1) and Var[Xn] = σ2n+O(1)

for some real constants µ > 0 and σ2 ≥ 0. Furthermore if σ2 > 0 then

Xn − E[Xn]√
Var[Xn]

→ N(0, 1).

Remark 3.3.6. We note that a corresponding theorem for a finite system is also true
([60, 47]) but in our context we just need the infinite version.

Furthermore, Theorem 3.3.5 even holds in slightly more general situations. For
example, if the functions yj(x, u) are not indexed by an integer j ≥ 1 but by a multi-
index j = (j1, . . . , jd) of integers ji ≥ 1 then we can also adapt the space `1(m,C) to the
space {

y = (yj)j≥1 ∈ CNd
: ‖y‖m,1 :=

∑
j≥1
‖j‖m1 |yj| <∞

}
.

Actually we will need this generalization if we consider subgraphs H with more than one
cut-vertex.

Finally, as for Theorem 3.3.1 the Central Limit Theorem transfers to X̃n that is
defined with the help of ỹ(x, u) = exp

(∫ x
0 y(ξ, u)/ξ dξ

)
. Compare this fact with Re-

mark 3.3.2.

Proof. We first note that Theorem 3.3.5 will be deduced from [61, Theorem 1] with a
slight adaption corresponding to u – here we just require differentiability with respect
to t if u = eit and not analyticity – and corresponding to the underlying space – we
replace `1(C) by `1(m,C). Actually the modification corresponding to u can be treated
as in the proof of Theorem 3.3.1 and the change of the underlying space does not change
the proof at all, so we will not discuss these issues.

Next we note that Equation (3.5) implies

yj(x, 1) = F̃j(x, y(x)),

where y = y(x) is the solution of the equation y = F (x, y). Thus, we study two cases.
First, if F̃j does not depend on y then yj(x, 1) is analytic at x = x0. This also implies
that yj(x, u) is analytic for |u| = 1 and for |x| < 1 + ε for some ε > 0. Let I1 denote the
set of indices j with this property. Furthermore, since F (x, y) is also analytic at x = x0
it also follows that

∑
j∈I1 yj(x, u) is analytic in x for |x| < x0 + ε and for |u| = 1.
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In the second case yj(x, 1) has a square-root singularity of the form

yj(x) = h1,j(x)− h2,j(x)
√

1− x/x0,

which is inherited from that of y(x). Furthermore it follows that Fj(x, y1, y2, . . . , u)
depends on all variables yi, i ≥ 1. Let I2 denote the set of indices j of the second case.

If we reduce now the infinite system to those equations with j ∈ I2, where we consider
yj(x, u) with j ∈ I1 as already known functions, then we get a strongly connected system
of equations

yj = Fj(x, (yi(x, u))i∈I1 , (y`)`∈I2 , u), j ∈ I2
that satisfies all regularity assumptions of [61, Theorem 1]. In particular, since

|Fj(x, y1, y2, . . . , u)| ≤ Fj(|x|, |y1|, |y2|, . . . , 1) = F̃j(|x|, |y1|+ |y2|+ · · · )

and F̃j(x, y) is analytic (at least) in the region where F (x, y) is analytic, it follows that
the function Fj(x, y1, y2, . . . , u) is well defined (and analytic in x and y1, y2, . . .) for x
in a proper neighborhood of 0, y = (yj)j≥1 in a proper neighborhood of 0 in `1(m,C)
and u with |u| = 1.

The only remaining assumption that has to be checked is that the operator

J =

(
∂Fj
∂yi

(x,y, 1)

)
i,j∈I2

is compact. Since the property

Fj(x, y1, y2, . . . , 1) = F̃j(x, y1 + y2 + · · · )

is satisfied, it follows that

∂Fj
∂yi

(x,y, 1) =
∂F̃j
∂y

(x, y1 + y2 + · · · )

is independent of the choice of i. Hence the rank of J equals 1 which implies that J is
a compact operator.

Thus we can apply [61, Theorem 1] and obtain that all functions yj(x, u), j ∈ I2,
have a common square-root type singularity, and an expression of the form

yj(x, u) = h1,j(x, u)− h2,j(x, u)

√
1− x

f(u)
.

with functions f(u), h1,j(x, u), h2,j(x, u) that are three times differentiable in t, where
u = eit and analytic in x around x0.

Summing up we, thus, obtain a square-root singularity for y(x, u). So we are pre-
cisely in the same situation as in the proof of Theorem 3.3.1. And so the result fol-
lows.
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3.4 2-Connected Subgraphs

The purpose of this section is to consider 2-connected subgraphs H. This case is much
easier than the general case since a 2-connected subgraph can only appear in a block.
Due to its shortness, we include the proof for this specific subgraph case.

Theorem 3.4.1. Suppose that H is a 2-connected graph that appears as a subgraph in

an aperiodic subcritical graph class G. Let Xn = X
(H)
n denote the number of copies of

H in a connected or general graph in G of order n, chosen uniformly at random.
Then, Xn satisfies a Central Limit Theorem with E[Xn] ∼ µn and Var[Xn] ∼ σ2n

as n→∞.

Proof. Let b◦n,k be the number of rooted 2-connected graphs in G with n − 1 non-root
vertices such that H appears precisely k times as a subgraph. Furthermore let

B◦(x, u) =
∑
n,k

b◦n,k
xn

n!
uk

be the corresponding generating function.
Let C•(x, u) be the corresponding generating function of connected graphs in G

(where the root is non discounted). Since H is assumed to be 2-connected the number
of copies of H in a connected graph is just the sum of its copies in the blocks. Hence
we have

C•(x, u) = xeB
◦(C•(x,u),u).

If u = 1 then B◦(x, 1) and C•(x, 1) are the usual counting functions that satisfy the
equation C•(x, 1) = xeB

◦(C•(x,1),1).
In order to prove Theorem 3.4.1 we just have to check the conditions of Theo-

rem 3.3.1. It is straightforward to check that conditions (F1)-(F4) are satisfied. By the
subcritical condition we certainly have x0 = ρC and y0 = C•(ρC , 1) that satisfy

y0 = x0e
B◦(y0,1),

1 = x0e
B◦(y0,1)B◦′(y0, 1).

Furthermore, since C•(ρC , 1) < ρB the region of convergence of F (x, y, u) = xeB
◦(y,u)

is large enough and condition (F6) in Theorem 3.3.1 is also satisfied.
The only missing assumption that has to be (finally) checked is that the mapping

t 7→ xeB
◦(y,eit) is three times continuously differentiable in t. Of course it is sufficient to

study the mapping t 7→ B◦(y, eit). First we note that |B◦(y, u)| ≤ B◦(|y|, 1). From this
it follows that B◦(y, u) exists (and is also analytic in y) for all |y| < ρB and for |u| = 1.
Next we note that the number of occurrences of a graph H of order L in a graph with
n vertices is bounded by O(nL). Write b◦n for the number of rooted 2-connected graphs
in G with n− 1 non-root vertices. Thus it follows that∣∣∣∣∣ ∂r∂ur ∑

k

b◦n,ku
k

∣∣∣∣∣ ≤∑
k

krb◦n,k = O(nrLb◦n)
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for u with |u| = 1; for notational convenience we have taken the derivatives formally
with respect to u. However, since all all derivatives ∂m

∂ymB
◦(y, 1) are finite it follows

that all derivatives ∂r

∂urB
◦(y, u) exist for |u| = 1. (Alternatively we can use the bound

nrL = O((1 + ε)n) for every ε > 0 which implies that∣∣∣∣ ∂r∂urB◦(y, u)

∣∣∣∣ = O(B◦(|y|(1 + ε), 1)).

Consequently all assumptions of Theorem 3.3.1 are satisfied and the result follows
for the connected case. In the general case, where we have to work with G(x, u) =
exp

(∫ x
0 C

•(ξ, u)/ξ dξ
)
, we get the same result, see Remark 3.3.2.

3.5 Connected Subgraphs

The purpose of this section is to extend Theorem 3.4.1 to subgraphs H that are not
2-connected, and hence prove Theorem 3.1.1. The main difference between the 2-
connected case and the (general) connected case is that occurrences of H are not nec-
essarily separated by cut-vertices. This means that we have to cut H also into pieces
(more precisely, into its blocks) and to count all combinations of these pieces when two
(or several) blocks are joined by a cut-vertex, or several cut-vertices.

We start this section by illustrating the arguments with the base case H = P2, which
is the simplest case of a graph H that is not 2-connected. Later, as a warm-up for the
general case (where notation could be especially involved), we show the combinatorics
behind two particular cases: copies of subgraphs with one cut-vertex and exactly three
blocks (Section 3.5.2) and the number of copies of P3 (Section 3.5.3). In both cases
we show again the type of functional equations we obtain in this setting and the main
difficulties that arise when encoding the counting formulas. At the end of the section we
indicate how the method can be modified to cover the general case, both combinatorially
and analytically.

3.5.1 Counting copies of P2

We start the study of connected subgraphs dealing with the simplest case study. This
subsection will show some of the ideas that will be used later in the proof of Theo-
rem 3.1.1, and can be considered as a warm-up for the forthcoming subsections.

Let H be a path of length 2, namely P2. In this situation, H separates by a cut-
vertex into two edges. In particular, observe that if we join two blocks at a cut-vertex
and the two corresponding degrees of these two blocks at the cut-vertex are k1 and k2
then there we create k1k2 occurrences of H. Hence, copies of P2 may arise from the
following sources:

(A) Copies where the vertex in P2 of degree 2 is the root vertex, but not contained in
one of the blocks of the graph. In other words, each edge of the copy of P2 under
study is contained in a different block incident with the root vertex.
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(B) Copies that are not incident with the root vertex, and built by taking and edge
in one of the blocks incident with the root vertex and completing it to a copy of
P2 by means of one of the attached rooted connected graphs.

(C) Copies already existing in the blocks incident with the root vertex.

The previous observation suggests that we distinguish between infinitely many situations
(depending on the root degrees of the blocks) which leads to an infinite system of equa-
tions. Let us start by introducing corresponding generating functions for 2-connected
graphs. We denote by

B◦j (w1, w2, w3, . . . ;u), j ≥ 1,

the generating function of blocks in G, where the root has degree j, where wi counts the
number of non-root vertices of degree i, and where u counts the number of occurrences
of H = P2. Formally this is a generating function in infinitely many variables. Of course
we have

B◦j (x, x, . . . ;u) = B◦j (x, u),

where x counts the number of non-root vertices. Consequently if B◦j (x, u) is convergent
for some positive x and for u with |u| = 1 then B◦j (w2, w3, . . . ;u) converges for all wi
with |wi| < x and for all u with |u| = 1. Next let

C•j (x, u), j ≥ 0,

denote the generating function of connected rooted graphs in G, where the root vertex
has degree j, where x counts the number of (all) vertices and u the number of occurrences
of H = P2. Then by the same principle as above we have C•0 (x) = x and for j ≥ 1

C•j (x, u) = x
∑
s≥0

1

s!

∑
j1+···+js=j

u
∑

i1<i2
ji1ji2

s∏
i=1

B◦ji

∑
`1≥0

u`1C•`1(x, u),
∑
`2≥0

u2`2C•`2(x, u), . . . ; u

 .

Note that s is the number of blocks containing the root vertex, and the index jr (for

r = 1, . . . , s) is the degree of the root of the block r. In particular, the term u
∑

i1<i2
ji1ji2 ,

the terms
∑

`k≥0 u
`kC•`k(x, u) and the last argument in B◦ji(w1, w2, . . . ;u) are the con-

tributions to Case (A), (B) and (C), respectively.
It is convenient to replace all occurrences of C•0 (x) by x. Thus we can view the

infinite dimensional vector y = y(x, u) = (C•j (x, u))j≥1 as the solution of an infinite
dimensional system of the form yj = Fj(x,y, u), where Fj is defined by

Fj(x,y, u) = x
∑
s≥0

1

s!

∑
j1+···+js=j

u
∑

ii<i2
ji1ji2

s∏
i=1

B◦ji

x+
∑
`1≥1

u`1y`1 , x+
∑
`2≥1

u2`2y`2 , . . . ; u

 .

(3.8)
We now show that this system of equations satisfies all assumptions of Theorem 3.3.5.
First of all, let us check the Partition Property (3.6). If u = 1 the function Fj(x,y, 1)
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can be written as a function F̃j(x, y1 + y2 + · · · ), where

F̃j(x, y) = x
∑
s≥0

1

s!

∑
j1+···+js=j

s∏
i=1

B◦ji (x+ y, 1) .

In particular, F (x, y) =
∑

j F̃j(x, y) is equal to x exp(B◦(x + y)), which is analytic in

x. Since |F̃j(x, y)| ≤ F̃j(|x|, |y|) it is sufficient to study F̃j for positive x and y. By
Equation (3.8) it follows that for all n < j we have [xn]F̃j(x, y) = 0. Consequently we
have (for positive x and y)

jmF̃j(x, y) ≤
(
x
∂

∂x

)m
F̃j(x, y).

By analyticity of
∑

j F̃j(x, y), it directly follows then that

∑
j≥1

jmF̃j(x, y) ≤
(
x
∂

∂x

)m
F (x, y).

Thus, the infinite system is well defined (and analytic) on `1(m,C) for every m ≥ 0.
It remains to check Condition (I5) (Equation (3.7)) for r ∈ {1, 2, 3}. For the sake

of brevity we only work out the details of the case r = 1. The remaining cases are
more involved but can be handled similarly. We first note that u appears in Fj at three
different places:

(i) As the power u
∑

ii<i2
ji1ji2 (contribution of Case (A)),

(ii) In sums of the form
∑

`≥1 u
m`y` as an argument of one of the terms B◦ji (contri-

bution of Case (B)) and

(iii) As the last argument in one of the terms B◦ji(w1, w2, . . . ;u) (contribution of Case
(C)).

As above it is sufficient to consider positive x and y = y1 + y2 + · · · in order to assure
absolute convergence.

If we substitute u = eit and take the derivative with respect to t it follows that in
Case (i) the derivative gives a factor of the form

i
∑
ii<i2

ji1ji2e
it
∑

ii<i2
ji1ji2

which can be absolutely bounded by∑
ii<i2

ji1ji2 ≤ s(s− 1)j2.
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Thus we are led to consider the sum (which is an upper bound)

∑
j≥1

jmx
∑
s≥0

1

s!
s(s− 1)j2

∑
j1+···+js=j

s∏
i=1

B◦ji (x+ y, 1)

≤
∑
j≥1

jm+2x
∑
s≥2

1

(s− 2)!

∑
j1+···+js=j

s∏
i=1

B◦ji (x+ y, 1)

≤
(
x
∂

∂x

)m+2∑
j≥1

x
∑
s≥2

1

(s− 2)!

∑
j1+···+js=j

s∏
i=1

B◦ji (x+ y, 1)

=

(
x
∂

∂x

)m+2

xB◦(x+ y)2 exp (B◦(x+ y))

which is certainly bounded (for positive x and y). Now we study Case (ii). If we take
derivatives we get

∂

∂t
B◦j

x+
∑
`1≥1

eit`1y`1 , x+
∑
`2≥1

e2it`2y`2 , . . . ; u


=
∑
m≥1

∂

∂wm
B◦j

x+
∑
`1≥1

eit`1y`1 , x+
∑
`2≥1

e2it`2y`2 , . . . ; u

 ∑
`m≥1

im`me
mit`my`m

which can be bounded from the above by∑
`≥1

`|y`|

∑
m≥1

m
∂B◦j
∂wm

(x+ y, 1)

Note that the sum
∑

m≥1m
∂B◦j
∂wm

corresponds to the sum of the degrees of the non-root
vertices. Since this sum is bounded by twice the number of edges it is bounded by
n(n− 1), where n denotes the number of vertices. This leads us to the upper bound∑

`≥1
`|y`|

 (x+ y)2
∂2B◦j
∂x2

(x+ y, 1).

This upper bound also implies the upper bound (recall that the derivative here is only
restricted to Case (ii)):∣∣∣∣∣ ∂∂t

s∏
i=1

B◦ji

∣∣∣∣∣ ≤
∑
`≥1

`|y`|

 (x+ y)2
∂2

∂x2

s∏
i=1

B◦ji(x+ y, 1).

Finally, summing up over j (with the weight jm) we obtain the upper bound (for positive
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x and y) ∑
`≥1

`|y`|

∑
j≥1

jmx
∑
s≥0

1

s!

∑
j1+···+js=j

(x+ y)
∂2

∂x2

s∏
i=1

B◦ji(x+ y, 1)

≤

∑
`≥1

`|y`|

(x ∂
∂x

)m+2

(x+ y)3 exp (B◦(x+ y)) .

Recall that we are working in the space `1(m,C) with m ≥ 1. Thus the series∑
` `|y`| is finite by definition Hence, the whole term is bounded. Finally in Case (iii)

we can argue in the same way as in the proof of Theorem 3.4.1 and obtain∣∣∣∣ ∂∂tB◦j (x+ y, eit)

∣∣∣∣ ≤ j3B◦j (x+ y, 1)

(in the case of H = P2 we have L = 3). This leads us to consider the sum

∑
j≥1

jmx
∑
s≥0

1

s!

∑
j1+···+js=j

(
s∑
i=1

j3i

)
s∏
i=1

B◦ji (x+ y, 1)

which can be bounded (similarly to Case (i)) by(
x
∂

∂x

)m+3

xB◦(x+ y)3 exp (B◦(x+ y)) .

By putting the Case (i)–(iii) together it follows that Condition (3.7) is satisfied for
r = 1. As mentioned above the cases r = 2 and r = 3 can be similarly handled. This
completes the proof of the Central Limit Theorem in the case of H = P2 for connected
graphs.

3.5.2 Main Example 1: Connected graphs with one cut-vertex

In the following two subsections we will illustrate the methods used in the general
situation for a simpler subgraph. We start discussing the number of copies of a connected
graph H with exactly 1 cut-vertex and three different blocks attached to it. Let H1,
H2 and H3 denote these blocks, and v the cut-vertex of H. Furthermore we denote by
H1,2 the graph spanned by the vertices of H1 and H2, and similarly H1,3 and H2,3. The
unique cut-vertex in H induces a vertex in each Hi, Hi,j that we denote by c(Hi) and
c(Hi,j), respectively.

Before analyzing the corresponding equations, let us show how a copy of H may be
created in the graph class under study. When creating a rooted connected graph by
joining blocks to the root, we have the following possibilities for a copy of H:

(A) Copies that are incident with the root vertex but not contained in one of the
blocks of the graph.
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(B) Copies that are not incident with the root vertex and not contained in any block
incident with the root vertex, built by taking subgraphs of H already existing in
the blocks incident with the root vertex and completing them by pasting elements
in C•.

(C) Copies already existing in the blocks incident with the root vertex.

See the analogy with the study of the number of copies of P2 (Case (A) and Case (A),
etc).

Let encode now the problem by means of generating functions. All indices in this
subsection are vectors with six components, of the form L = (l1, l2, l3; l1,2, l1,3, l2,3). As
we will show, such an index will encode the number of copies of Hi and Hi,j incident
with a certain vertex. Let w be the infinite vector with components wK , with K =
(k1, k2, k3; k1,2, k1,3, k2,3) being an index with 6 entries. We denote by B◦L(w;u), L =
(l1, l2, l3; l1,2, l1,3, l2,3) the generating function of derived blocks in G, where the root
vertex is incident with li copies of Hi (i ∈ {1, 2, 3}) and li,j copies of Hi,j (i 6= j)
at c(Hi) and c(Hi,j), respectively. We use the variable wK to encode the number of
vertices which are incident with ki copies of Hi, and ki,j copies of the subgraphs Hi,j

at c(Hi). We also use the variable u to count the number of copies of H. We note
that different copies of the same subgraph Hi or Hi,j could be overlapping. From the
previous definition, it is obvious that writing wK = x in B◦L(w;u) for all K we obtain
the generating function B◦L(x, u) where now x counts the total number of vertices. As
in the analysis of P2, if this generating function is convergent for some positive x and
for u with |u| = 1 then B◦L(w;u) converges for all wK with |wK | < x and for all u with
|u| = 1.

For a vector index R = (r1, r2, r3; r1,2, r1,3, r2,3), let C•R(x, u) be the generating
function of vertex-rooted connected graphs in G, where the root vertex is incident with
ri copies of Hi at c(Hi) and similarly for the numbers rij and the subgraphs Hij , and
where u counts the number of occurrences of H. Each of these functions satisfies the
following equation

C•R(x, u) = x
∑
s≥0

1

s!

∗∑
{L1,...,Ls}

u
∑

i 6=j 6=k(l
i
1l

j
2l

k
3 )+

∑
i 6=j(li1,2l

j
3+l

i
1,3l

j
2+l

i
1,2l

j
3+l

i
2,3l

j
1)

s∏
i=1

B◦Li
(W, u)

(3.9)
where the sum

∑
i 6=j 6=k is taken over triplets with pairwise different indices, and the sum∑∗

{L1,...,Ls} is taken over all sets of s indices Li = (li1, l
i
2, l

i
3; l

i
1,2, l

i
1,3, l

i
2,3), i = 1, . . . , s

satisfying

s∑
i=1

li1 = r1,

s∑
i=1

li2 = r2,

s∑
i=1

li3 = r3,

s∑
i=1

li1,2 +
∑
i 6=j

li1l
j
2 = r1,2,

s∑
i=1

li1,3 +
∑
i 6=j

li1l
j
3 = r1,3,

s∑
i=1

li2,3 +
∑
i 6=j

li2l
j
3 = r2,3,
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and the infinite vector W has components

WK =
∑
P

uk1p2,3+k2p1,3+k3p1,2+k1,2p3+k1,3p2+k2,3p1C•P (x, u). (3.10)

Observe that the term u
∑

i 6=j 6=k(l
i
1l

j
2l

k
3 )+

∑
i6=j(li1,2l

j
3+l

i
1,3l

j
2+l

i
1,2l

j
3+l

i
2,3l

j
1), the terms in u in

W and the last argument in the term B◦Li
(W, u) are the contributions to Case (A), (B)

and (C), respectively.
Equation (3.9) reads in the following way: a pointed connected graph in the family

where the root vertex is incident with ri copies of Hi at c(Hi) (and similarly for the
numbers rij and the subgraphs Hij) is obtained by pasting a set of blocks at the root
vertex, and adding the extra copies of H created, both those arising from the root vertex
(Case (A)), and those arising from the decomposition of the blocks with the copies of
connected rooted graphs (Case (B)). This last term is encoded by means of the term
in u after the sum

∑∗
Li

.
The analysis of this system of equations is very similar to the study of the number

of copies of P2 and can be mimic without any difficulty. The only technical point in the
analysis is that we have to check several properties in the functional space introduced
in Remark 3.3.6. Let us also mention that very similar arguments (with more indices)
apply for subgraphs H with exactly one cut-vertex (even with more than three blocks
and possible block repetitions).

3.5.3 Main Example 2: Counting copies of P3

We present an additional warm-up example, where we show a new difficulty that arises
for subgraphs with more than one cut-vertex. As we will see, it is not enough to express
the infinite system of equations in terms of ‘indexed’ block families counting formulas.
Indeed, for each block in the class (and for each set of blocks) we will need a very
precise information of its internal structure. It will turn out that Theorem 3.3.5 does
not directly apply. However, we will show how this problem can be overcome.

For illustrative reasons of this phenomenon, we just study the number of copies of
P3 on the subcritical class graph where all 2-connected blocks are isomorphic to K4

minus an edge. This family is indeed subcritical due to the fact that the generating
function for blocks is analytic (see [28]). We denote by C•k,l(x, u) the generating function
of (vertex) rooted connected graphs in the family where the root vertex has degree k
and is the starting point of l paths of type P2 (possibly intersecting). As usual, u marks
occurrences of P3.

In our setting, we have B◦(x) = x3. Observe that (up to the labellings of the
vertices) K4 minus an edge has two different ways to be rooted: either over a vertex of
degree 2 or degree 3. We call the resulting derived objects b◦1 and b◦2 with generating
functions b◦1(x) = b◦2(x) = 1

2x
3.

Let us now describe the system of equations satisfied by C•k,l(x, u), or at least the
form of the first equations for small indices. It is obvious that C•0,0(x, u) = x, that for
every choice of l 6= 0, C•0,l(x, u) = 0. Also, for every choice of l ≥ 0, C•1,l(x, u) = 0.
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Expressions for C•2,l(x, u) and C•3,l(x, u) become more involved: in both cases we may
have a block of type b◦1 (and b◦2, respectively) incident with the root of the connected
object. See Figure 3.1 for a general structure of both cases.

C•k1,l1 C•k2,l2

C•k3,l3

C•k1;l1
C•k2;l2

C•k3;l3

Figure 3.1: Block structure when dealing with C•2,l (left) and C•3,l (right). The shaded
regions represent different rooted connected copies.

Following the notation in Figure 3.1, by writing I = (k1, l1, k2, l2, k3, l3) we have the
following relations:

C•2,l(x, u) =
1

2
xu6

∗∑
I

uk1k2+k1k3+k2k3+4(k1+k2+k3)+3(l1+l2)+2l3C•k1,l1(x, u)C•k2,l2(x, u)C•k3,l3(x, u),

C•3,l(x, u) =
1

2
xu6

∗∗∑
I

uk1k3+k2k3+4(k1+k2+k3)+2(l1+l2)+3l3C•k1,l1(x, u)C•k2,l2(x, u)C•k3,l3(x, u),

where the first sum
∑∗

I is taken over indices I satisfying k1 + k2 + 4 = l and the second
sum

∑∗∗
I is taken over indices I satisfying k1 +k2 +k3 + 4 = l. Both formulas are easily

explained by checking the structure depicted in Figure 3.1. In particular, the initial
term u6 encodes the 6 existing different paths of length 3 in the graph K4 minus an
edge.

Let us describe more precisely the leftmost term defining C•2,l(x, u). An object
counted in C•2,l(x, u) is obtained by pasting three rooted connected objects over vertices
of a block of type b◦1. Then, the final number of paths of length 3 arise from the following
contributions:

(a) The existing paths of length 3 in each of the pasted rooted connected components.

(b) The existing paths of length 3 in b◦1 (6 in total).

(c) Paths that are created by concatenating paths of length 1 in b◦1 with paths of length
2 in each pasted rooted connected component.

(d) Paths that are created by concatenating paths of length 2 in b◦1 with paths of length
1 in each pasted rooted connected component.
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(e) Paths created by using 2 paths of length 1 in a pair rooted connected components
which are linked in b◦1 by a path of length 1.

As mentioned above, the most difficult term to be encoded is the one in Case (e) and it
is given by the correlation term k1k2 + k2k3 + k2k3, which is built explicitly using the
internal structure of b◦1 and the set of indices I.

The situation is even more involved if several blocks are attached to the root. For
example, the equations for C•4,l(x, u) and C•5,l(x, u) require the whole information of
the two attached blocks. Nevertheless, it is clear how to set up an infinite system of
equations for the functions C•k,l(x, u).

Unfortunately this system does not satisfy all assumptions of Theorem 3.3.5. Namely
if we set u = 1 we obtain for example

C•2,l(x, 1) =
1

2
x
∗∑
I

C•k1,l1(x, 1)C•k2,l2(x, 1)C•k3,l3(x, 1)

where this sum is taken over indices I satisfying k1 + k2 + 4 = l. This means that the
right hand side cannot be written in terms of C•(x) =

∑
k,l C

•
k,l(x, 1), and hence the

Partition Property (3.6) cannot be satisfied.
However, it is possible to modify our setting slightly. Instead of analyzing the

block decomposition related to the equation C•(x) = x exp(B◦(C•(x))) we iterate this
equation and replace it by

C•(x) = x exp(B◦(x exp(B◦(C•(x)))))),

which means that we specify first a tree of height two of (rooted) blocks before we
substitute each vertex by C• in order to obtain a recursive description for C•. Ob-
serve that this equation is well-defined for x < ρC , because of the subcritical condition
C•(ρC) < ρB.

We show this procedure by considering one special instance that is part of the
equation for C•2,6(x, u), compare with Figure 3.2. Here the root block is of type b◦1.
One non-root vertex of this block is attached to another block of type b◦1, a second
non-root vertex is attached to a block of type b◦2, whereas the third non-root vertex has
no block attached. It is clear that such a block structure will lead to a connected graph
of type (k, l) = (2, 6) - and there is another instance similar to that which cover then
all situations of this form (switch the bottommost K4 minus an edge and paste it using
a vertex of degree 3 instead a vertex of degree 2, as drawn in Figure 3.2).

The corresponding generating function is then of the form

x4u64
∑
K

uH(K)
6∏
i=1

C•ki,li(x, u),

where the sum is taken over all indices K = (k1, l1, k2, l2, k3, l3, k4, l4, k5, l5, k6, l6) and

H(K) = k1k2 + k1k3 + k2k3 + 3(l1 + l2) + 2l3 + 7(k1 + k2) + 4k3 +

k4k6 + k5k6 + 2(l4 + l5) + 3l6 + 6(k4 + k5 + k6).
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C•
k1,l1

C•
k3,l3

C•
k2,l2

C•
k4,l4

C•
k5,l5

C•
k6,l6

Figure 3.2: Construction of rooted connected objects of type (k, l) = (2, 6).

Observe that the term u64 encodes the number of copies of P3 in the block structure
drawn in Figure 3.2: 6 copies on each of the three blocks (18 in total), 40 copies using
edges of two blocks (2 edges in one block, another edge in an adjacent block) and finally
6 copies with an edge on each block.

In the same way we can deal with the other case which leads to a functional equation
for C•2,6(x, u) of the form

C•2,6(x, u) = F2,6

(
x, u, (C•k,l(x, u))k,l≥0

)
.

3.5.4 The general case. Proof of Theorem 3.1.1

We finally deal with the study of the number of copies of a general fixed connected
subgraph H. Recall that the new difficulty emerging when considering copies of P3 was
the existence of a correlation between the root type and the root types of the attached
connected graphs. In this section we show how we can overcome this problem. We
start with the observation that the equation characterizing (rooted) connected graphs
in terms of blocks can be iteratively written as follows:

C•(x) = x exp(B◦(C•(x))) = x exp(B◦(x exp(B◦(C•(x))))) = . . . . (3.11)

When stopping after h iterations, Equation (3.11) says that a rooted connected graph
is obtained by repeating h times the operation of pasting a set of rooted blocks on
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vertices, and finally substituting recursively rooted connected graphs on each vertex –
in the previous section we did just one interation.

We introduce now some terminology and notation. Recall that the block graph of
a graph G (namely, the graph whose vertices are the blocks and cut-vertices of G, and
edges are defined between each block and its incident cut-vertices) is a tree. Let c• ∈ C•
be a rooted graph in our graph class. We define a distance for blocks with respect to
the root vertex as follows: blocks which are incident with the root vertex are at distance
1 from the root vertex. Blocks that are not at distance 1 from the root vertex but are
incident with some block of this type are at distance 2 from the root vertex, and so
on. We say then that the set of blocks of c• which are at distance at most h from the
root in its block graph is the h-root block of c•. We define B(h),◦ to be the family of all
possible h-root blocks. We write B(h),◦(x,w) for the EGF associated to B(h),◦, where
x encodes vertices on the h-root block until level h − 1, while the extra parameter w
encodes vertices belonging to the blocks pasted in the last step of the iteration (namely,
at level h). Then, the following holds:

B(h),◦(x,w) = exp
(
B◦(xB(h−1),◦(x,w))

)
with initial condition B(1),◦(x,w) = exp(B◦(w)). From Equation (3.11) we get that
for each h ≥ 1, C•(x) = xB(h),◦(x,C•(x)). In particular C•(x) = xB(1),◦(x,C•(x)) =
x exp(B◦(C•(x))). Due to the fact that each iteration in Equation 3.11 has well-defined
unique solution C•(x) arising from a subcritical composition scheme, we may assume
that all the analysis will be done for points x, w where the function B(h),◦(x,w) is
analytic. We also write B(h),◦(x,w, u) for the counting formula of h-root blocks, where
u marks copies of the subgraph H.

Let us now study substructures of H that will be necessary for the encoding. Assume
that the block graph of H has diameter h. The main observation we exploit is that all
copies of H which are incident to the root vertex of c• are contained in the h-root block
of c•. Let H0 = {H1, . . . ,Hs} be all the connected subgraphs spanned by subsets of
blocks of H. For a given Hi ∈ H0 we denote by Hi the set of blocks in H not contained
in Hi. Given Hi ∈ H0 we say that a vertex v in Hi is a virtual cut-vertex if it is either a
cut-vertex in Hi, or when we embed Hi in H, the resulting vertex becomes a cut-vertex
in the ambient graph H. See Figure 3.3 for an example of a subgraph with 3 blocks and
4 virtual cut-vertices (2 of them cut-vertices).

Figure 3.3: The graph H and a subgraph of H with four virtual cut-vertices (two of
them, in red, are not cut-vertices in the subgraph). Each dark circle denotes a block.
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We denote then by H the family of graphs constructed from the graphs in H0 by
rooting one of its virtual cut-vertices. Let d denote the cardinality of H and let I = Nd
be the set of d-dimensional indices I. For every I = (i1, . . . , id) ∈ I (which we also call
profile) we consider the combinatorial family C•I (with exponential generating function
C•I (x, u)) of rooted connected graphs in C• with ij copies of the j-th subgraph of H,
1 ≤ j ≤ d, where the virtual cut-vertex coincides with the root vertex of the connected

graph in C•I . Similarly, we define B(h),◦I the family of h-rooted blocks whose profile is

equal to I. Hence, B(h),◦ =
⋃
I∈I B

(h),◦
I .

Let c• ∈ C•I . There are three different types of copies of H in c•:

Case (c) Copies of H already existing in the rooted connected graphs that we attach at the
h-root block of c•.

Case (bc) Copies created by using some subgraph of H from the h-root block of c• and
completing it to H by using attached rooted connected graphs with appropriate
profiles.

Case (b) Copies of H already existing in the h-root block of c•.

See Figure 3.4 for an example of a subgraph H with h = 2, and three different copies
of H arising from these 3 different sources.

We can now write an expression for C•I (x, u). Let bh be a h-root block. Denote by
|bh|2 the number of vertices of bh on the h-level of the root block, and |bh|1 = |bh|−|bh|2.
We write I(|bh|2) = (I1, . . . , I|bh|2). This set of profiles will be the ones of the rooted
connected graphs that we will attach to each vertex of the h-level of the h-root block.
Also, given fixed bh and a set of profiles I(|bh|2), we write

• G1(bh) for the number of copies of H in Case (b).

• G2(bh, I(|bh|2)) for the number of copies of H in Case (bc).

Observe that both G1(bh) and G2(bh, I(|bh|2)) depend on the specific structure of bh
(and also on the set of the profiles I(|bh|2) in G2). With this terminology in mind, now
it is easy to write an equation for C•I (x, u):

C•I (x, u) = x
∑

bh∈B
(h),◦
I

∑
I(|bh|2)

uG1(bh)+G2(bh,I(|bh|2))x
|bh|1

|bh|1!

|bh|2∏
i=1

C•Ii(x, u), (3.12)

where the second sum is extended to all possible sets of |bh| profiles. We are now ready
to prove Theorem 3.1.1 by analyzing Equation (3.12). We write y = (C•I (x, u))I , which
is a solution to the infinite system of equations yI = FI(x,y, u) with

yI = FI(x,y, u) = x
∑

bh∈B
(h),◦
I

∑
I(|bh|2)

uG1(bh)+G2(bh,I(|bh|2))x
|bh|1

|bh|1!

|bh|2∏
j=1

yIj .
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(b)

H

(c)

(b)

(bc)

(bc)

Figure 3.4: A generic copy of H in the construction may arise from three different
sources. Examples of different contributions are shown with the corresponding case
(either (b), (c) or (bc)).

We can now check that this system of equations satisfies the conditions of Theorem
3.3.5. We may assume in all the analysis that all variables yI , x are positive. Let us
start with the Partition Property (3.6). By writing u = 1, we get that FI(x,y, 1) is
equal to

FI(x,y, 1) = x
∑

bh∈B
(h),◦
I

x|bh|1

|bh|1!

|bh|2∏
j=1

yIj = xB
(h),◦
I

(
x,
∑
J

yJ

)
.

Hence, FI(x,y, 1) is equal to xB
(h),◦
I (x,

∑
J yJ) = F̃I (x,

∑
J yJ), and Condition (3.5) is

satisfied. Let us check now Condition (3.6). Observe that∑
I

F̃I(x, y) =
∑
I

xB
(h),◦
I (x, y) = xB(h),◦(x, y) = F (x, y),
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which is analytic in x and y due to the subcritical condition (recall that with this nota-
tion, C•(x) = F (x,C•(x))). Also, the condition assuring that this system of equations
is well defined and analytic in the functional space considered in Remark 3.3.6 is satis-
fied by taking a sufficiently large (but bounded) number of derivatives of F̃I(x, y) with
respect to y. Again, by the subcritical condition all these derivatives are bounded and
consequently, for each choice of m ≥ 1

∑
I

‖I‖m1 F̃I(x, y) ≤
(
xy

∂2

∂x∂y

)mf1(|H|)
F (x, y),

for a certain function f1 that only depends on the size of |H| (and hence, it is bounded).
This fact finally proves the first part of the conditions.

Let us show now Condition (3.7). We only argue the case r = 1, as the arguments
for the second and the third derivatives are very similar (but much longer). We will
show that the terms can be bounded by a constant number of derivatives (depending
on |H|) of an analytic function, hence the resulting value will be bounded as well. We
need first to bound the following derivative at t = 0:

∣∣∣∣ ∂∂tFI(x,y, eit)
∣∣∣∣ =

∣∣∣∣∣∣∣x
∂

∂t

∑
bh∈B

(h),◦
I

∑
I(|bh|2)

eit(G1(bh)+G2(bh,I(|bh|2)))x
|bh|1

|bh|1!

|bh|2∏
j=1

yIj

∣∣∣∣∣∣∣
≤ x

∑
bh∈B

(h),◦
I

∑
I(|bh|2)

(G1(bh) +G2(bh, I(|bh|2)))
x|bh|1

|bh|1!

|bh|2∏
j=1

yIj

Hence we have two different contributions, namely expressionsG1(bh) andG2(bh, I(|bh|2)).
Observe first that G1(bh) counts the number of copies of H in bh, hence it is bounded
by O(|bh||H|). Consequently, we have the bound

x
∑

bh∈B
(h),◦
I

∑
I(|bh|2)

G1(bh)
x|bh|1

|bh|1!

|bh|2∏
j=1

yIj ≤
(
xy

∂2

∂x∂y

)|H|
F̃I

(
x,
∑
J

yJ

)

which is bounded, and hence

x
∑
I

‖I‖m1
∑

bh∈B
(h),◦
I

∑
I(|bh|2)

G1(bh)
x|bh|1

|bh|1!

|bh|2∏
j=1

yIj

≤ x
∑
I

‖I‖m1
(
xy

∂2

∂x∂y

)|H|
F̃I

(
x,
∑
J

yJ

)
≤ x

(
y
∂2

∂x∂y

)mf1(|H|)+|H|
F

(
x,
∑
J

yJ

)
.

It finally remains to study the contribution G2(bh, I(|bh|2)), which is the number of
copies of H created in Case (bc). We can obtain a bound for G2(bh, I(|bh|2)) by using
that the size of H is bounded by |H|. Observe that any copy created in Case (bc)
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(and hence counted by G2) is obtained by taking a subgraph of H in the h-root block,
and completing it to H by attaching at most |H| substructures arising from pending
connected graphs. The number of subgraphs of |H| in bh is bounded by |bh|f2(|H|), for
a certain function f2. This means that

G2(bh, I(|bh|2)) ≤ |bh|f2(|H|)
∑
∗
‖Ij1‖1 . . . ‖Ij|H|‖1,

where the sum in the previous expression is extended to all subsets of size |H| of
{1, . . . , |bh|}. Observe that the total number of terms of the sum is bounded then
by |bh||H|. Putting it all together we get the following:

x
∑

bh∈B
(h),◦
I

∑
I(|bh|)

G2(bh; I(|bh|2))
x|bh|1

|bh|1!

|bh|2∏
j=1

yIj

≤ x
(∑

I

‖I‖1|yI |
)|H| ∑

bh∈B
(h),◦
I

|bh|f2(|H|)|bh||H|
x|bh|1

|bh|1!

|bh|2∏
j=1

yIj

≤
(∑

I

‖I‖1|yI |
)|H|(

xy
∂2

∂x∂y

)f2(|H|)+|H|
F̃I

(
x,
∑
J

yJ

)
.

By assumption, the sum
∑

I ‖I‖1|yI | is bounded, hence the previous term is bounded
as well. Finally we can get bounded expressions for the weighted sum with coefficients
‖I‖m1 , as we did when analyzing the function G1(bh). This concludes the study for the
first derivative. As mentioned, case r = 2 and r = 3 can be similarly handled and
obtain similarly bounded expressions. This concludes the proof of Theorem 3.1.1.

3.6 Computations

The method used to prove our Theorem 3.1.1 provides normal limiting distributions
with linear expectation and variance. In general, the constants appearing in both the
expectation and the variance are complicated to be estimated, as they depend on the
solution of a non-linear system of equations with infinitely many equations and vari-
ables. However, in some few cases we can get explicit computational results. In this
section we address this problem by analyzing the statistics of some small subgraphs
in series-parallel graphs. Recall that a series-parallel graph is a graph such that its
2-connected components are obtained from an edge by means of series and parallel op-
erations. In particular, we compute the subgraph statistics for triangles in a 2-connected
and connected series-parallel graph of order n (see further comments on this graph class
in Section 3.1). In this prominent case, it is straightforward to apply Remark 3.3.3 in
order to justify that the corresponding constant σ2H is positive. Hence, for all subgraphs
in the connected level the second statement in Theorem 3.1.1 will hold. Additionally,
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our methodology gives easily the asymptotic enumeration of series-parallel graphs avoid-
ing a triangle. The advantage of series-parallel graphs is that there is a constructive
definition that allows us to encode and count triangles.

In order to analyze series-parallel graphs we use a variant of Tutte’s decomposition
into 3-connected components, as depicted in [17]. Recall that this strategy is used
when a class of graphs satisfies that a graph belongs to the family if and only if its
connected, 2-connected and 3-connected components also belong to, as it is the case in
series-parallel graphs.

Note that in Section 3.4 we already proved that the number of copies of a 2-connected
subgraph in a connected graph is normally distributed. In this section we prove the same
for the 2-connected level in the particular class of series-parallel graphs. In this situation
Theorem 3.1.1 does not apply. However, we can again get a Central Limit Theorem by
means of the Quasi-Powers Theorem (see [34]).

3.6.1 Triangles in series-parallel graphs

As already mentioned, a connected graph is obtained from its tree decomposition into
2-connected blocks. We can also decompose 2-connected graphs into 3-connected graphs
by means of networks. Recall that a network is a graph with two distinguished vertices,
called poles, such that the graph obtained by adding an edge between the two poles
(if they are not adjacent) is 2-connected (see Tutte’s monograph [17]). In the case of
series-parallel graphs there are no 3-connected graphs, so we start with networks as the
basic building blocks. The key point here is that networks are easy enough to be built,
so we can control the copies of simple structures, like cycles. If these structures are
2-connected then they can only appear inside 2-connected blocks, so if we count them
at the 2-connected level then Tutte’s decomposition gives the total number for general
graphs.

In one of the steps of the decomposition we have to obtain a 2-connected graph from
a network. In general, a network is obtained by picking an edge of the 2-connected graph
and performing some minor corrections. Therefore, in order to obtain a 2-connected
graph from a network we have to ‘forget’ a root edge. Since we can translate the action
of rooting an edge in terms of generating functions as differentiating with respect to the
variable that counts edges, we can translate the opposite action (forgetting the root) as
the integration with respect to the same variable. This was done in [8] to obtain the
generating function of 2-connected planar graphs. However, we will use a more recent
approach, purely combinatorial, defined following the ideas of the grammar developed
in [2]. This approach uses the so-called Dissymmetry Theorem for trees [15]. This
technique gives a bijection that relates unrooted trees and trees rooted in both a vertex
and an edge, which is used to express the generating function of unrooted trees in terms
of the generating function of rooted trees. In [2] the authors consider the decomposition
of a 2-connected graph into networks. Since the class is tree-decomposable, they show
that the Dissymmetry Theorem can be used to obtain the generating function of 2-
connected graphs in terms of the generating function of the networks, with no integration
involved.
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Equations

Since there are no 3-connected series-parallel graphs, we start by computing the gener-
ating functions DN(x, y, u) of networks, where x mark vertices and y marks edges. We
add the additional parameter u which is used to encode triangles.

Recall that a network is obtained from a 2-connected series-parallel graph by choos-
ing and orienting an edge. It might not occur in the graph, and the vertices incident
to it, the poles, are not labelled, but instead one of them is consider to be 0, and the
other one is ∞. For convenience we split both series and parallel generating functions
as follows. We define PN0 := PN0 (x, y, u) as the generating function of parallel networks
that do not contain an edge between the poles, whereas PN1 := PN1 (x, y, u) is the gen-
erating function of parallel networks where there is an edge connecting the poles. For
convenience, we include the network consisting of a single edge in PN1 .

We define SN2 := SN2 (x, y, u) as the generating function of series networks where
there is a path of length exactly 2 between the poles, or equivalently where there exists
a single cut-vertex. We also define SN3 := SN3 (x, y, u) as the remaining series networks.
Namely, the ones where the graph distance between the poles is at least 3. Figure 3.5
shows the structures for PN0 , PN1 and SN2 .

0 ∞ 0 ∞ 0 ∞

Figure 3.5: Structure of classes PN0 , PN1 and SN2 respectively.

The generating function DN := DN(x, y, u) can be expressed then as the solution of
the following system of equations:

DN = PN0 + PN1 + SN2 + SN3 (3.13)

PN0 = exp≥2(S
N
2 + SN3 )

PN1 = y exp(uSN2 + SN3 )

SN2 = x(PN1 )2

SN3 = xDNPN0 + xPN1 (PN0 + SN2 + SN3 ).

The previous formulas read as follows: a graph in PN0 is obtained as a set of at least
two series networks in parallel, since no series network has an edge between the poles.
A graph in PN1 is obtained by putting a set of series networks in parallel with an edge.
Note that each series network that contains a path of length 2 between the poles will
produce a triangle. A graph in SN2 has a single cut-vertex, and an edge joining it to
both poles, which might be in parallel with other series networks, so we need two copies
of PN1 . A graph in SN3 has at least one cut-vertex. Let x be the cut-vertex closest to
pole 0. There are two options: either x is joined to pole 0 by an edge, and therefore by
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a network in PN1 , or it is joined to pole 0 by a network in PN0 . In the former case, there
cannot be an edge between x and pole ∞, so there must be a network in PN0 , SN2 or SN3
that joins x and pole ∞. In the latter case any network is possible, since the distance
between the poles will be at least 3.

From these equations we deduce that triangles can only come up from parallel con-
structions where the poles are connected by an edge and at least one path of length 2.
Observe that we cannot get a single equation for DN(x, y, u) from the System (3.13),
due to the exponential operator. However we can obtain the first terms of its expansion
near 0:

DN(x, y, u) = y +
(
y2 + uy3

)
x+

(
2y3 + 3y4 + 4uy4 + 5u2y5

) x2
2!

+(
6y4 + 30y5 + 7y6 + 18uy5 + 48uy6 + 36u2y6 + 49u3y7

) x3
3!

+O(x4).

Now that we know DN and the auxiliary functions PN0 , PN1 , SN2 and SN3 , we can use the
Dissymmetry Theorem for trees in order to obtain the generating function BN(x, y, u)
of 2-connected series-parallel graphs, where x, y, u marks vertices, edges and triangles,
respectively. We will use the same approach as in [2]: since the class of 2-connected
series-parallel graphs is tree-decomposable, the Dissymmetry Theorem gives the follow-
ing bijection

BN + BN◦→◦ ' BN◦ + BN◦−◦,

where BN◦ represents the class of 2-connected series-parallel graphs with a distinguished
vertex in the tree decomposition, i.e., either a ring or a multiedge, BN◦−◦ represents
the class of 2-connected series-parallel graphs with a distinguished edge in the tree
decomposition, which must be incident to both a ring and a multiedge, and BN◦→◦
represents the class of 2-connected series-parallel graphs with a distinguished oriented
edge in the tree decomposition. A class of graphs is tree-decomposable if each graph
has an associated tree whose nodes are distinguishable in some way. See [2] for further
details. This leads to the following expressions:

BNR(x, y, u) = Cyc(x(PN0 + PN1 )) + (u− 1)
(xPN1 )3

6
,

BNM (x, y, u) =
x2

2

(
y exp≥2(uS

N
2 + SN3 ) + exp≥3(S

N
2 + SN3 )

)
,

BNMR(x, y, u) =
x2

2

(
(SN2 + SN3 )(PN0 + PN1 − y) + (u− 1)(PN1 − y)SN2

)
.

Let us explain each term. BNR represents the class of 2-connected series-parallel graphs
with a distinguished ring in the tree decomposition, where a ring, as in [2], is a cycle of
length at least 3. BNM represents the class of 2-connected series-parallel graphs with a
distinguished multiedge in the tree decomposition, and BNMR represents the class of 2-
connected series-parallel graphs with a distinguished pair of incident ring and multiedge.
In the case of BNR we have to consider the special case where the ring is of length 3, and
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the parallel networks that replace the edges of the ring are of the kind PN1 , since this
generates a new triangle, as it is shown in Figure 3.6. In the case of BNM we distinguish
2 cases, depending on whether one of the edges of the multiedge is not replaced with a
series network, but with an edge, since this generates a new triangle for every other edge
replaced with a series network in SN2 . Note that, according to the definition of the tree
decomposition, a multiedge has to be composed by at least three series networks. In the
case of BNMR we have to take into account the special situation where both conditions
happen at the same time.

P1

P1 P1

Figure 3.6: 2-connected series-parallel graph rooted in a ring of length 3. The shaded
regions plus the edges represent parallel networks of the kind PN1 .

Observe that we have obtained an explicit expression of BNR, BNM and BNMR in terms
of PN0 , PN1 , SN2 and SN3 . Finally, following [2, Section 5.3], the generating function
BN(x, y, u) is obtained as

BN(x, y, u) =
1

2
x2y +BNR(x, y, u) +BNM (x, y, u)−BNMR(x, y, u). (3.14)

In the last step we just compute the generating function GN(x, y, u) as the set of its
connected components, encoded as the exponential of CN(x, y, u), which at the same
time can be obtained from the decomposition into 2-connected components, encoded
as BN(x, y, u), by a standard integration. This determines the generating function
GN(x, y, u) of series-parallel graphs where x counts vertices, y counts edges and u counts
triangles.

Number of triangles

Theorem 3.1.1 assures that the number of triangles in a series-parallel graph on n vertices
choosing uniformly at random follows a Central Limit Theorem. We will proceed with
the explicit computation of the constants. We will not consider the number of edges
any more, so we can assume that y = 1. In all this section all generating functions are
considered evaluated at y = 1, and hence, we only use variable x and u.
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The first lemma gives the singularity type of the networks:

Lemma 3.6.1. The generating function SN3 (x, u) of networks where the distance between
the poles is greater than 2 satisfies

SN3 (x, u) = g3(x, u)− h3(x, u)

√
1− x

RN(u)
,

for functions g3(x, u) and h3(x, u) analytic in a neighbourhood of the point (x, u) =
(R, 1), R = RN(1) ≈ 0.12800, and RN(u) is the singularity curve of SN3 (x, u). A similar
result is also true for SN2 (x, u) with certain functions g2(x, u) and h2(x, u) instead of
g3(x, u) and h3(x, u).

Proof. We will use the techniques shown in [47]. In particular, we will use [12, Theorem
2], which is a consequence of [47, Theorem 2.33]. First, we need to adapt the equations
so that they satisfy the hypothesis of [12, Theorem 2]. The new equations are:

SN2 =x exp(2uSN2 + 2SN3 ) = F1(x, S
N
2 , S

N
3 , u)

SN3 =x
(
exp≥2(S

N
2 + SN3 )(exp≥1(S

N
2 + SN3 ) + exp(uSN2 + SN3 ))+

exp(uSN2 + SN3 ) exp≥1(S
N
2 + SN3 )

)
= F2(x, S

N
2 , S

N
3 , u)

Since the functions F1, F2 are analytic in the complex plane, they satisfy the hypothesis
of [12, Theorem 2]. Moreover, in [24] the authors show that for u = 1 the system has
a unique solution, for which x = R ≈ 0.12800. Since the system is aperiodic, there
is a unique singularity, which implies the existence of a square-root expansion around
(x = R, u = 1), which in particular implies the statement.

By means of Equation (3.13), all different network classes can be expressed in terms
of both SN3 (x, u) and SN2 (x, u). Hence, all network classes have a similar expression.
This observation makes the following lemma an straightforward result:

Lemma 3.6.2. The generating function BN(x, u) of 2-connected series-parallel graphs
where x marks vertices and u marks triangles satisfies

BN(x, u) = gB(x, u)− hB(x, u)

√
1− x

RN(u)
, (3.15)

where gB and hB are analytic in a neighbourhood of the point (x, u) = (R, 1), R =
RN(1) ≈ 0.12800, and where RN(u) is the function described in Lemma 3.6.1.

As described in [28], the dominant singularity of both C(x, u) and G(x, u) arises
from a branch point of the equation defining C•(x, u) in terms of B◦(x, u). We write
τN(u) the solution to the equation τN(u)B◦

′
(τN(u), u) = 1. The singularity of C(x, u)

(and also G(x, u)) is located at ρN(u) = τN(u) exp(−B◦(τN(u), u)). Note that, since
both C(x, u) and G(x, u) are aperiodic, the singularity is unique.

The next step is to deduce from the previous lemmas the limiting distribution for
the number of triangles. We already know, due to Theorem 3.1.1, that in the connected
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level this random variable follows a normal limit distribution. However, we cannot claim
from Theorem 3.1.1 a normal limit distribution for a subclass of connected series-parallel
graphs. In the next theorem we obtain the result in the case of 2-connected graphs in
the family, without using Theorem 3.1.1 :

Theorem 3.6.3. The number of triangles WN
n on a 2-connected series-parallel graph

with n vertices chosen uniformly at random is asymptotically normal distributed, with

E[WN
n ] = µN,2n+O(1), Var[WN

n ] = σ2N,2n+O(1),

where µN,2 ≈ 0.45242 and σ2N,2 ≈ 0.45997.

Proof. To get the constant in the expectation and variance, we compute both RN′(u)
and RN′′(u) by means of the equations for networks. As both parameters

µN,2 = −R
N′(1)

RN(1)
, σ2N,2 = −R

N′′(1)

RN(1)
− RN′(1)

RN(1)
+

(
RN′(1)

RN(1)

)2

.

are strictly greater than 0, we can apply the Quasi-Powers Theorem over the expression
in Equation (3.15), and the result holds straightforward.

Finally, we are able to compute the number of triangles in a (connected or general)
series-parallel graph of order n, chosen uniformly at random.

Theorem 3.6.4. The number of triangles XNn of a connected series-parallel graph with
n vertices, chosen uniformly at random is asymptotically normal, with

E[XNn ] = µNn+O(1), Var[XNn ] = σ2Nn+O(1),

where µN ≈ 0.39481 and σ2N ≈ 0.41450. The same result holds for a general series-
parallel graph with n vertices, chosen uniformly at random.

Proof. The normality of the random variable in the connected level is assured by the
fact that series-parallel graphs are subcritical, and hence Theorem 3.1.1 applies in this
setting. Normality in the general level is a consequence of Remark 3.3.2. Finally, we
obtain the explicit value of the multiplicative constants in E[XNn ] and Var[XNn ] from the
explicit expression of F in terms of B◦.

One may compare these values with the expected number of pendant triangles in
a uniformly at random series-parallel graph on n vertices, computed in [28] as approx-
imately 2.2313 · 10−3n. As expected, the number of copies of a triangle in a random
series-parallel graph is much smaller than the number of occurrences of the triangle in
a random series-parallel graph.
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Enumeration of triangle-free series-parallel graphs

If we write u = 0 in the equations of the previous section we get the generating function
of triangle-free series-parallel graphs. In this subsection we provide the asymptotic
analysis of such family, which is interesting by itself.

In all this section we use the equations in the introduction of Section 3.6.1 with the
value u = 0. In order to emphasize that we are considering triangle-free families, we use
the superindex 4 instead of N. We start studying the singular behaviour for networks.

Lemma 3.6.5. Fix y in a small neighbourhood of 1. The generating function S43 (x, y)
of triangle-free series networks where the poles are at a distance greater than 2 has a
positive singularity R4(y), and the following singular expansion in a dented domain ∆
at a certain x = R4(y):

S43 (x, y) = a40 (y) + a41 (y)X + a42 (y)X2 + a43 (y)X3 +O(X4),

where X =
√

1− x/R4(y). In particular, R4(1) ≈ 0.19635.

Proof. First, note that if we assign u = 0 in the equations defining the networks in
Equation (3.13), then we can express S43 as the solution of the following single implicit
equation:

S43 = x
((

exp≥2(xy
2e2S

4
3 + S43 )

)(
exp≥1(xy

2e2S
4
3 + S43 ) + yeS

4
3

)
+ yeS

4
3 exp≥1(xy

2e2S
4
3 + S43 )

)
.

(3.16)

We write the right hand side of Equation (3.16) as G(S43 , x, y). Then, for every choice of

y in a neighbourhood of 1, we need to check that S43 satisfies a so-called Smooth Implicit-
function Scheme (see the work of Meir and Moon [33], se also [5, Section VII. 4.1.]) of

the form S43 = G(S43 , x, y). In this context, if G verifies some analytic conditions, then

the solution S43 (x, y0) of the equation admits an square root expansion in a domain
dented at its singularity. We now check the conditions:

(a) G(U, x, y) must be analytic in a given complex region. In our case it is an entire
function.

(b) The coefficients gm,n(y) of the Taylor expansion of G(U, x, y) with respect to U and
x must be non-negative, as it is the case. Moreover g0,0(y) = 0, and g0,1(y) = 0 6= 1.

(c) gm,n(y) must be positive for some m and some n ≥ 2. Since g1,2(y) = 2y, this holds
for any y in a small neighbourhood of 1.

(d) The singularity must be unique, which is true since the generating function is ape-
riodic.

(e) Finally, for each choice of y in a small neighbourhood of 1, we need the existence

of a solution R4(y) and a40 (y) satisfying the characteristic system

a4(y) = G(a40 (y), R4(y), y), 1 = GU (a40 (y), R4(y), y). (3.17)
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Direct computations for y = 1 gives that such system of equations has a valid
solution at a4(1) ≈ 0.15545 and R4 ≈ 0.19635. Finally, this statement is also true
in a small neighbourhood of y = 1 by the fact that both equations in System (3.17).

In conclusion, the Implicit-function Scheme S43 = G(x, S43 , y) is smooth for y = 1, by
continuity of the equations it is also smooth for y in a small neighbourhood of y. Hence
for each choice of y in a small neighbourhood of 1, S43 admits a square-root expansion
in a domain dented at R4(y), as we wanted to show.

Once we have the singularity behaviour of S43 (x, y) for y close enough to 1, we
can compute the coefficients of its singular expansion at a given value of y = 1. This
computation is enclosed in the following lemma.

Lemma 3.6.6. We have that the coefficients on the singular expansion of S43 (x, 1) in
a domain dented at x = R4(1) ≈ 0.19635 are equal to:

a40 (1) = a40 ≈ 0.15545, a41 (1) = a41 ≈ −0.34792, (3.18)

a42 (1) = a42 ≈ 0.27799, a43 (1) = a43 ≈ −0.16276.

In particular, a4i (y) 6= 0 for i ∈ {0, . . . , 3} and y in a small neighbourhood of 1.

Proof. We just apply undeterminate coefficients over Equation (3.16). By continuity of

the functions a4i (y), the final statement holds as well.

By using this singular expansion for S43 (x, 1) we can obtain the corresponding co-
efficients of the singular expansion of the rest of the networks counting formulas:

Lemma 3.6.7. The generating functions P40 , P41 , S42 and D4 have the following
singular expansions in a domain dented at x = R4(y):

P40 = p40 (y0) + p41 (y0)X + p42 (y0)X
2 + p43 (y0)X

3 +O(X4)

P41 = q40 (y0) + q41 (y0)X + q42 (y0)X
2 + q43 (y0)X

3 +O(X4)

S42 = s40 (y0) + s41 (y0)X + s42 (y0)X
2 + s43 (y0)X

3 +O(X4)

D4 = d40 (y0) + d41 (y0)X + d42 (y0)X
2 + d43 (y0)X

3 +O(X4),

where X =
√

1− x/R4(y). In particular, when y = 1 and R4(1) ≈ 0.19635 we have
that

p40 (1) ≈ 0.10374, p41 (1) ≈ −0.28169, p42 (1) ≈ 0.33606, p43 (1) ≈ −0.31761,

q40 (1) ≈ 1.16818, q41 (1) ≈ −0.40643, q42 (1) ≈ 0.39544, q43 (1) ≈ −0.31132,

d40 (1) ≈ 1.69532, d41 (1) ≈ −1.22249, d42 (1) ≈ 0.95538, d43 (1) ≈ −0.81117,

s40 (1) ≈ 0.26795, s41 (1) ≈ −0.18645, s42 (1) ≈ −0.05411, s43 (1) ≈ −0.01948,

Additionally, all the terms are different to 0 when y belongs to a small neighbourhood
of 1.
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Proof. Observe that writing u = 0 in the system of Equations (3.13), P40 , P41 , S42
and D4 can be expressed explicitly in terms of S43 . Hence we can use the coefficients

of the expansion of S43 obtained in (3.18) to compute the expansion for the all other
functions. The last statement follows from continuity and the fact that the computations
give coefficients different from 0.

We can go now directly to get the singular expansions for B4(x, y):

Theorem 3.6.8. The generating function B4(x, y) of triangle-free series-parallel net-
works has the following singular expansion in a domain dented at R4 of the form

B4 = b40 (y) + b42 (y)X2 + b43 (y)X3 +O(X4),

where X =
√

1− x/R4(y). In particular, when y = 1 and R4(1) ≈ 0.19635 we have
that

b40 (1) ≈ 0.01964, b42 (1) ≈ −0.04123, b43 (1) ≈ 0.00359.

Moreover, b40 (y), b42 (y) and b43 (y) are different to 0 for y close enough to 1, and the

term b41 (y) of X is 0 for any y close enough to 1.

Proof. Replacing P40 , P41 , S42 , S43 with their singular expansion in the Equation (3.14)
gives directly square-root expansions for B4. Note that B4 can also be obtained from
P41 by the equation

2y
∂B4

∂y
= x2P41 .

This is true because by our encoding the only networks which contains the root edge
are the ones considered in P41 . This implies that the singular expansion of B4 must

start at X3, so that after differentiating it we get the singular expansion of P41 .

We can now apply the Transfer Theorem for singularity analysis [51] in order to get
the first asymptotic counting formulas:

Theorem 3.6.9. The number b4n of 2-connected triangle-free series-parallel graphs with
n vertices is asymptotically equal to

b4 · n−5/2 ·R−n4 · n! (1 + o(1)),

where b4 ≈ 0.00152 and R−14 ≈ 5.09289.

Proof. Apply the Transfer Theorem to the singular expansion.

Now we can move to the connected level. In this case, the solution of the equation
τB•′(τ) = 1 is located at τ = 0.19631, and hence the singularity of C•(x) is located at
ρ = 0.19403 . We can then state the final enumerative theorem in this subsection:
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Theorem 3.6.10. The number of connected and general triangle-free series-parallel
graphs with n vertices, c4n and g4n , is asymptotically equal to

c4 · n−5/2 · ρ−n4 · n! (1 + o(1)), g4 · n−5/2 · ρ−n4 · n! (1 + o(1)),

where c4 ≈ 0.00473, g4 ≈ 0.00563 and ρ−14 ≈ 6.28155.

Proof. This is an straightforward computation. Due to the subcritical scheme, the
singularity of both C4(x, 1) and G4(x, 1) arise from a branch point. The solution
to the equation xB◦′(x) = 1 is given by τ4 = 0.19629. Such value gives that C(x)
ceases to be analytic at x = ρ4 = 0.15920 .We apply then the Transfer Theorem to the
resulting singular expansion, joint with the expressions of the coefficients of the singular
expansions that were obtained in [28, Proposition 3.10.].

As a direct consequence of these computations, the probability that triangle-free
series-parallel graph of order n, chosen uniformly at random, is connected is equal to
exp(−C0) ≈ 0.83962 (see [28, Theorem 4.6.]).

These enumerative results complement previous ones concerning series-parallel graphs
with certain obstructions. In Table 3.2, the constant growth for (connected) series-
parallel graphs, triangle-free series-parallel graphs and bipartite series-parallel graphs
is shown. The constant for the full family was obtained in [24], while the asymptotic
enumeration for bipartite series-parallel graphs can be found in [69].

Family Constant growth

Series-Parallel 9.07359
Triangle-free Series-Parallel 6.28155

Bipartite Series-Parallel 5.30386

Table 3.2: Constants growth for series-parallel graphs, and for subfamilies (triangle-free
and bipartite).

Observe that the asymptotics for triangle-free graphs and bipartite graphs are dif-
ferent. This fact contrasts with the picture that emerges in the general graph setting:
as it was proven by Erdős, Kleitman and Rothschild in [9], the number of triangle-free
graphs with n vertices is asymptotically equal to the number of bipartite graphs with n
vertices. The main difference in our setting is that series-parallel graphs are very sparse,
and hence an Erdős-Kleitman-Rothschild type result does not hold in this setting.

3.6.2 4-cycles

For the sake of conciseness and in order to show a new set of equations we analyze the
statistics of 4-cycles C4 in 2-connected series-parallel graphs. We proceed as we did in
the previous section: we get first the equations defining networks, and then we build
the counting formulas of 2-connected series-parallel graphs. We do not deal with the
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connected and general setting, because we are in the subcritical case and the procedure
will be very similar to the case of triangles.

The combinatorial ideas to get the generating functions for networks (encoding now
the number of cycles of length 4) are similar to the ones used before. We denote by
S�2 , S�3 and S�∞ series networks where the poles are at distance 2, 3 and more than
3, respectively. Observe that the first two networks could contribute to the creation
of 4-cycles (by means of parallel operations), while the term S�∞ cannot. Similarly, we
define P�1 , P�2 and P�∞ parallel networks where the distance of the poles is equal to 1,
2 or more than 2. In particular the single edge is encoded in P1. The total counting
formula for networks is encoded by D�.

Note that there is a difference with respect to triangles. A series network where the
poles are at distance 2 has a unique path of length 2 between the poles. This is not
true for the case of paths of length 3: both S�2 and S�3 may have an arbitrary number
of paths of length 3, and each of those will form a 4-cycle if we put it in parallel with
an edge. This is why we need two additional functions, S�2 and S�3 , that count series
networks that will be put in parallel with an edge, and therefore each path of length
3 will contribute with a new 4-cycle, in addition to other 4-cycles already contained in
the network either touching or not touching the poles. In other words, in S�2 and S�3
the variable u counts both paths of length 3 between the poles and 4-cycles.

In order to count paths of length 3 we need to note that some of them come from
paths of length 2 in the parallel networks that we put in series. Therefore, we will
denote as P�1 and P�2 the parallel networks where u counts both 4-cycles and paths of
length 2 between the poles. These paths in turn come from series networks, so we use
again the property that a series network whose poles are at distance 2 has a unique
path of length 2 between the poles. This gives the following main equation

D� = S�2 + S�3 + S�∞ + P�1 + P�2 + P�∞

with

S�2 = x(P�1 )2,

S�2 = x
(
P�1

)2
,

S�3 = x(P�1 (P�2 + S�2 ) + P�2 P
�
1 ),

S�3 = x(P�1 (P�2 + uS�2 ) + P�2 P
�
1 ),

S�∞ = x(P�1 (P�∞ + S�3 + S�∞) + P�2 (S�2 + S�3 + S�∞ + P�2 + P�∞) + P�∞D
�),

concerning series networks and
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P�1 = y

exp(S�3 + S�∞)
∑
k≥0

u(k2)

(
S�2

)k
k!

 ,

P�1 = y

exp(S�3 + S�∞)
∑
k≥0

u(k+1
2 )

(
S�2

)k
k!

 ,

P�2 = S�2 exp≥1(S
�
3 + S�∞) + exp(S�3 + S�∞)

∑
k≥2

u(k2)
(S�2 )k

k!
,

P�2 = uS�2 exp≥1(S
�
3 + S�∞) + exp(S�3 + S�∞)

∑
k≥2

u(k+1
2 ) (S�2 )k

k!
,

P�∞ = exp≥2(S
�
3 + S�∞).

concerning parallel networks. The equations for series networks are obtained by fixing
the network type which is incident with the 0-pole (which must be of parallel type),
and the network incident with the ∞-pole. In particular, the indices must sum the
corresponding index in S. The equations for parallel networks are more involved: in
this case sets of networks of type S�2 can create a quadratic number of copies of C4,
hence the infinite sums with quadratic exponents in u.

Starting from these equations, we can go to deduce counting formulas for 2-connected
objects. In order to apply the dissymmetry theorem we need to obtain the corresponding
B�R, B�M and B�RM as follows:

B�R =Cyc(x(P�1 + P�2 + P�∞)) +
x3

6

((
P�1

)3
− (P�1 )3 + 3(P�1 )2P�2 − 3

(
P�1
)2
P�2

)
+

(u− 1)
(xP�1 )4

8

B�M =
x2

2

(
P�1 + P�2 + P�∞

)
−

x2

2

(
y + y(S�2 + S�3 + S�∞) +

u(S�2 )2

2
+ S�2 (S�3 + S�∞) +

(S�3 + S�∞)2

2

)
B�RM =

x2

2
(S�2 (P�1 − y) + S2(P�2 + P�∞) + (S�3 + S�∞)(P�1 − y) + (S�3 + S�∞)(P�2 + P�∞))

B� =
1

2
x2y +B�R +B�M −B�RM ,

where B�R represents 2-connected series-parallel graphs rooted at a ring, B�M rep-
resents 2-connected series-parallel graphs rooted at a multiedge, and B�RM represents
2-connected series-parallel graphs rooted at a ring and a multiedge that are adjacent at
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the decomposition tree. In the case of B�R we have to deal with several special cases,
since if the length of the ring is 3 or 4, then 4-cycles might appear. If the length is 4, a
single cycle appears. If the length is 3, many cycles might appear if we replace at least
two edges of the ring with a parallel network of the kind P�1 : in particular, any path
of length 2 in the other parallel network will produce a 4-cycle. In the case of B�M , the
parallel networks already count all the 4-cycles, but since the number of edges must be
at least three, we have to remove the cases with one and two series networks or edges
in parallel. In the case of B�RM we have to consider the special cases depending on the
length of the ring and whether there is an edge between the poles of the multiedge.
If the length of the ring is three, then any path of length two in the parallel network
will produce a 4-cycle, whereas if there is an edge between the poles of the multiedge,
then any path of length 3 in the series network will produce a 4-cycle, as it is shown in
Figure 3.7.

S2 P1

Figure 3.7: 2-connected series-parallel graph rooted in a ring of length 3 and a multiedge
with an edge between the poles. Each path of length 3 in S�2 and each path of length
2 in P�1 will produce a new 4-cycle.

Using these expression and setting y = 1, u = 0 we obtain the radius of convergence
and the singularity analysis of B�(x, 1, 0), which, by means of the Transfer Theorem,
gives the asymptotic enumeration of 2-connected series-parallel-graphs without 4-cycles.

Theorem 3.6.11. The number of 2-connected quadrangle-free series-parallel graphs
with n vertices (b�n ) is asymptotically equal to

b� · n−5/2 ·R−n� · n! (1 + o(1)),

where b� ≈ 0.00145 and R−1� ≈ 5.13738.

The proof of the next result is analogous to the proof of triangle-free series-parallel
graphs.
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Theorem 3.6.12. The number of connected and general quadrangle-free series-parallel
graphs with n vertices, c�n and g�n , is asymptotically equal to

c� · n−5/2 · ρ−n� · n! (1 + o(1)), g� · n−5/2 · ρ−n� · n! (1 + o(1)),

where c� ≈ 0.00233, g� ≈ 0.00276 and ρ−1� ≈ 6.41498.

We use Remark 3.3.4 to obtain the following result about 4-cycles. It is a modi-
fication of [47, Theorem 2.35], which provides a way to compute the expectation and
variance of generating functions that satisfy the following system of equations:

y = F (x,y,u), (3.19)

0 = det(I − F y(x,y,u)). (3.20)

According to that theorem, the expectation µ and the variance Σ of the parameters u
can be computed as

µ = −x0,u(1)

x0(1)
,

Σ = −x0,uu(1)

x0(1)
+ µµT + diag(µ),

where x = x0(u) and y = y0(u) are the solutions of the system (3.19) and (3.20). After
half an hour of execution time in Maple we get the following theorem:

Theorem 3.6.13. The number of quadrangles W�
n on a uniformly at random 2-connected

series-parallel graph on n vertices is asymptotically Gaussian, with

E[W�
n ] = µ�,2n+O(1), Var[W�

n ] = σ2�,2n+O(1),

where µ�,2 ≈ 0.51235 and σ2�,2 ≈ 0.25418.

3.6.3 Girth

Now we can generalize the previous results to obtain the generating function of series-
parallel graphs with girth at least k, for k ≥ 4. We need new notation for the series and
parallel networks. In particular, in order to express the generating function of networks
with girth k we define Si, for 2 ≤ i ≤ k−2 as the generating function of series networks
with girth ≥ k and where the distance between the poles is exactly i. The generating
function of series networks with girth ≥ k and distance to the poles ≥ k−1 is expressed
as S∞. Analogously, we define Pi, for 1 ≤ i ≤ k − 3 and P∞ as the generating function
of parallel networks with the same condition on the distance between the poles. In this
case the generating functions satisfy the following system of equations:

Pi =


y exp(S∞) if i = 1

Si exp≥1(
∑

j≥k−i Sj) if 1 < i < k/2

Si exp≥1(
∑

j≥i+1 Sj) + exp≥2(Si) exp(
∑

j≥i+1 Sj) if k/2 ≤ i ≤ k − 3

exp≥2(Sk−2 + S∞) if i =∞
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Si =

 x
[∑i−1

j=1 Pj(Si−j + Pi−j)
]

if 1 ≤ i ≤ k − 2

x
[∑

j≥1 Pj
∑

t≥k−j−1(St + Pt)
]

if i =∞

Note that for convenience we are considering that S1 exists, with a value of S1 = 0.
This equations generalize the corresponding ones for girth 3. For the case of parallel
networks we impose that the the distance between the poles of the two shortest series
networks is at most k. This can be done by distinguishing two cases: if the distance
between the poles is i < k/2 then there must be one single series network with distance
i between the poles. This implies that all the other series networks must have distance
at least k− i between the poles, because otherwise there would be a cycle of length less
than k. If the distance between the poles is i ≥ k/2, then no cycle of length less than
k can be produced, so we just have to be sure that the shortest series network that we
put in parallel is of length i. For the case of series networks no further constraint is
needed, since no new cycle can be produced.

This gives a way to compute the exponential growth for any possible girth. Since
the computations are involved and analogous to the ones of girth 4 we do not include
the results.

3.7 Concluding remarks

In this work we have shown normal limiting distributions for the number of copies of a
given graph for subcritical graph classes. From our study several challenging questions
might be investigated in the future. First, the proof of our main theorem does not give a
systematic way to compute both the expectation and the variance of the corresponding
random variable (we only get that both of them are linear in n). In Section 3.6 we have
exploited extra information concerning the structure of series-parallel graphs in order
to get precise constants, but getting a full numerical analysis seems to be very difficult
in a more general context. Nevertheless, we can use the Benjamni-Schramm limit given
in [40, 31] to get the constant for the mean value (for details see [40]). However, it
seems to be very difficult to obtain a general procedure for computing the constant for
the variance.

Second, we cannot immediately obtain local limit laws for the number of copies of a
given graph. In our analysis we only provided asymptotic information of our generating
functions a neighborhood of u = 1 (for |u| = 1). In order to obtain a Local Limit
Theorem we need asymptotic information for all u with |u| = 1. This is certainly not
out of reach but needs a lot of extra work.

Finally, our techniques do not apply to subgraphs in planar-like families (see [28]).
Technically speaking, when analyzing subcritical graph classes we have continuously
exploited the assumption that the counting formula for the blocks can be considered to
be analytic. Unfortunately, the picture changes dramatically when dealing with planar
graphs, as a critical composition scheme arises (see [8, 28]). In this context, very little
is known concerning the number of subgraphs in the random planar graph model, even
concerning the number of triangles. The only result we know so far is [72, 39], where
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the authors exploit the fact that triangles in cubic planar graph do not intersect. Using
this combinatorial fact, they are able to show normality for the number of triangles
in cubic planar graphs. This method does not apply in the general planar setting, as
an edge can be incident with many triangles. So new ideas from different sources are
needed to attack this problem.
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Chapter 4

Counting graphs with given
degree sequence

This chapter is based in a paper reported and presented in the Meeting on Analytic
Algorithms and Combinatorics 2016. Given a set D of nonnegative integers, we derive
the asymptotic number of graphs with a given number of vertices, edges, and such
that the degree of every vertex is in D. This generalizes existing results, such as the
enumeration of graphs with a given minimum degree, and establishes new ones, such
as the enumeration of Euler graphs, i.e. where all vertices have an even degree. Those
results are derived using analytic combinatorics.

4.1 Introduction

4.1.1 Related works

The asymptotics of several families of simple graphs with degree constraints have been
derived. Regular graphs, where all vertices have the same degree, have been enumerated
by [63], graphs with minimum degree at least δ by [10]. An Euler graph, or even graph,
is a graph where all vertices have an even degree. An exact formula for the number of
such graphs, for a given number of vertices and without consideration of the number
of edges, has been derived by [25] and [73]. In the present work, we generalize those
results and derive the asymptotic number of graphs with degrees in any given set.

A similar problem has been addressed with probabilistic tools by the configuration
model, introduced independently by [3] and [54]. This model inputs a distribution F
on the degrees, and outputs a random multigraph where the degree of each vertex
follows F . The main difference with the model analyzed in this article is that the
number of edges in the configuration model is a random variable. The link between
both models is discussed in Section 4.5.1. For more information on the configuration
model, we recommend the book of [42].

Other related problems include the enumeration of graphs with a given degree se-
quence, given in [63], and the enumeration of graphs with degree parities, investigated
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by [26]. The case of multigraphs can be seen as symmetric matrices with nonnegative
coefficients. The enumeration where the sum of the rows is constant is given in [23],
and the regularity of the case where the possible entries of the matrix are fixed is given
in [48].

4.1.2 Model and notations

A multiset is an unordered collection of objects, where repetitions are allowed. Sets
are then multisets without repetitions. A sequence is an ordered multiset. We use the
parenthesis notation (u1, . . . , un) for sequences, and the brace notation {u1, . . . , un} for
sets and multisets. Open real intervals are denoted by open square brackets ]a, b[.

A simple graph G is a set V (G) of labelled vertices and a set E(G) of edges, where
each edge is an unordered pair of distinct vertices. In a multigraph, the edges form a
multiset and the vertices in an edge need not be distinct. An edge {v, w} is a loop if
v = w, a multiple edge if it has at least two occurrences in the multiset of edges, and a
simple edge otherwise. Thus, the simple graphs are the multigraphs that contain neither
loops nor multiple edges, i.e. that contain only simple edges. The set of multigraphs
with n vertices and m edges is denoted by MGn,m, and the subset of simple graphs
by SGn,m.

The degree of a vertex is defined as its number of occurrences in E(G). In particular,
a loop increases its degree by 2. The set of multigraphs from MGn,m where each vertex

has its degree in a set D is denoted by MG
(D)
n,m. The subset of simple graphs is SG

(D)
n,m.

The set D may be finite or infinite. We denote its generating function by

SetD(x) =
∑
d∈D

xd

d!
.

For any natural number i, D − i denotes the set {d − i ∈ Z≥0 | d ∈ D}. In particular,
observe that Set′D(x) = SetD−1(x). If the minimum of D is smaller than i, then D − i
contains less elements than D. We also define the valuation r = min(D) and periodicity
p = gcd{d1 − d2 | d1, d2 ∈ D} of the set D (by convention, the periodicity is infinite
when |D| = 1).

4.1.3 Main Theorem and applications

Our main result is an asymptotic expression for the number of graphs in SG
(D)
n,m, when

m grows linearly with n.

Theorem 4.1.1. Assume D contains at least two integers, has valuation r = min{d ∈
D} and periodicity p = gcd{d1− d2 | d1, d2 ∈ D}. Let m, n denote two integers tending
to infinity, such that 2m/n stays in a fixed compact interval of ]r,max(D)[ and p divides

2m− rn, then the number of simple graphs in SG
(D)
n,m is

(2m)!

2mm!

SetD(ζ)n

ζ2m
p√

2πnζφ′(ζ)
e
−W n

m
(ζ)2−W n

m
(ζ)

×(1 +O(n−1)),
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where φ(x) =
xSetD−1(x)
SetD(x)

, ζ is the unique positive solution of φ(ζ) = 2m
n , and W n

m
(x) =

n
4m

x2 SetD−2(x)
SetD(x)

. If p does not divide 2m− rn, if 2m/n < r or if 2m/n > max(D), then

SG
(D)
n,m is empty.

When D = Z≥0, the degrees are not constrained, so SG
(D)
n,m = SGn,m. Using Stirling

formula, it can indeed be checked that
((n2)
m

)
, the total number of simple graphs with n

vertices and m edges, is asymptotically equal to the result of Theorem 4.1.1

n2m

2mm!

(2m)!

(2m)2me−2m
√

2π2m
e−(m

n )
2−m

n
(
1 +O(n−1)

)
.

[10] have derived the asymptotics of simple graphs with minimum degree at least δ.
They used probabilitic and analytic elementary tools, in a sophisticated way. In the
present chapter, we have addressed the enumeration of a broader family of graphs with
degree constraints, using more powerful tools (analytic combinatorics). For graphs with
minimum degree at least δ, the asymptotics derived in Theorem 4.1.1, for D = Z≥δ,
matches their result.

Euler graphs are simple graphs where each vertex has an even degree. An exact,
but complicated, formula for the number of such graphs, for given number of vertices
and without consideration of the number of edges, has been derived by [25] and [73].
Applying Theorem 4.1.1, we are now able to derive the asymptotic number of Euler
graphs with n vertices and m edges, when 2m/n stays in a fixed compact interval
of R>0

|SG(even)
n,m | =(2m)!

2mm!

cosh(ζ)n

ζ2m
2√

2πnζφ′(ζ)

× e−( n
4m

ζ2)
2− n

4m
ζ2(1 +O(n−1)),

where φ(x) = x tanh(x) and tanh(ζ) = 2m/n.
In the rest of the chapter we provide a proof for Theorem 4.1.1.

4.2 Analytic preliminaries

Our tool for the analysis of graphs with degree constraints is analytic combinatorics,
as presented by [5]. Its principle is to associate to the combinatorial family studied
its generating function. The asymptotics of the family is then linked to the analytic
behavior of this function.

In the analysis of a graphs family F with analytic combinatorics, the main difficulty
is the fast growth of its cardinality, which often implies a zero radius of convergence for
the corresponding generating function

∑
G∈F

w|E(G)| z
|V (G)|

|V (G)|! .
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This feature drastically reduces the number of tools from complex analysis that can be
applied. Graphs with degree constraints are no exception, but our approach completely
avoid this classic issue. In fact, the only analytic tool we use is the following lemma, a
variant of [5, Theorem VIII.8].

Lemma 4.2.1. Consider a non-monomial series B(z) with nonnegative coefficients, an-
alytic on C, with valuation r = min{n | [zn]B(z) 6= 0} and periodicity p = gcd{n | [zn−r]B(z) 6=
0}. Let φ(z) denote the function zB′(z)

B(z) , and K a compact interval of the open inter-

val ]r, limx→∞ φ(x)[. Let N , n denote two integers tending to infinity while N/n stays
in K, and let ζ denote the unique positive solution of φ(ζ) = N/n. Finally, consider
a compact Y and a function A(y, z), C2 on Y × C, such that for all y in Y , the func-
tion z 7→ A(y, z) is analytic on C and A(y, ζp) is nonzero. Then we have, uniformly
for N/n in K and y in Y ,

[zN ]A(y, zp)B(z)n =


pA(y,ζp)√
2πnζφ′(ζ)

B(ζ)n

ζN

(
1 +O(n−1)

)
if p divides N − nr,

0 otherwise.

4.3 Multigraphs with degree constraints

The work of [68] and [64] demonstrates that multigraphs are more suitable to the ana-
lytic combinatorics approach than simple graphs. Moreover, the results on multigraphs
can usually be extended to simple graphs. Following this observation, multigraphs are
analyzed in this section, before turning so simple graphs in Section 4.4.

4.3.1 Preliminaries

The main model of random multigraphs with n vertices and m edges is the multigraph
process, analyzed by [68] and [64]. It samples uniformly and independently 2m vertices
(v1, v2, . . . , v2m) in {1, . . . , n}, and outputs a multigraph with set of vertices {1, . . . , n}
and set of edges

{{v2i−1, v2i} | 1 ≤ i ≤ m}.
Given a simple or multi graph, one can order the set of edges and the vertices

in each edge. The result is a sequence of ordered pairs of vertices, that we call an
ordering of G. Let orderings(G) denote the number of such orderings. For example, the
multigraph on 2 vertices with edges {{1, 1}, {1, 2}, {1, 2}} has 12 orderings, amongst
them ((1, 2), (1, 1), (2, 1)). For simple graphs, the number of orderings is equal to 2mm!,
because each edge has two possible orientations and all edges can be permuted. For
non-simple multigraphs, orderings is smaller. [68] and [64] introduced the compensation
factor κ(G) of a multigraph G with m edges, defined as

κ(G) =
orderings(G)

2mm!
.
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The compensation factor of a multigraph is 1 if and only if it is simple.
Observe that in the random distribution induced by the multigraph process, each

multigraph receives a probability proportional to its compensation factor. Therefore,
when the output of the multigraph process is constrained to be a simple graph, the
sampling becomes uniform on SGn,m. The total weight of a family F of multigraphs
is the sum of their compensation factors. For example, the total weight of MGn,m is

equal to n2m

2mm! . When F contains only simple graphs, its total weight is equal to its
cardinality.

4.3.2 Exact and asymptotic enumeration

We derive an exact expression for the number of multigraphs with degree constraints in
Theorem 4.3.1, then translates it into an asymptotics in Theorem 4.3.2.

Theorem 4.3.1. The total weight of all multigraphs in MG
(D)
n,m is∑

G∈MG
(D)
n,m

κ(G) =
(2m)!

2mm!
[x2m] SetD(x)n.

Proof. By definition of the compensation factor, the number of multigraphs of the the-
orem is equal to

1

2mm!

∑
G∈MG

(D)
n,m

orderings(G).

Let us consider an ordering

((v1, v2), (v2, v3), . . . , (v2m−1, v2m)).

of a multigraph G from MG
(D)
n,m. For all 1 ≤ i ≤ n, let Pi = {j | vj = i} denote the set

of positions of the vertex i in this ordering. Since the vertices have their degrees in D,
each Pi has size in D. This implies a bijection between

• the orderings of multigraphs in MG
(D)
n,m,

• the sequences of sets (P1, . . . , Pn), where the size of each set is inD, and (P1, . . . , Pn)
is a partition of {1, . . . , 2m} (i.e. the sets are disjoints and

⋃n
i=1 Pi = {1, . . . , 2m}).

We now interpret (P1, . . . , Pn) as a sequence of sets that contain labelled objects and
apply the Symbolic Method (see [5]). The exponential generating function of sets of size
in D is SetD(x). The bijection then implies∑

G∈MG
(D)
n,m

orderings(G) = (2m)![x2m] SetD(x)n,

and the theorem follows, after division by 2mm!.
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Now applying Lemma 4.2.1 to the exact expression, we derive the asymptotics of
multigraphs with degree constraints. Let us first eliminate three simple cases.

• When D contains only one integer D = {d}, MG
(D)
n,m is the set of d-regular multi-

graphs. The total weight of MG
(D)
n,m is then 0 if 2m 6= nd, and (2m)!

2mm!d!n otherwise.

• The sum of the degrees of the vertices is equal to 2m, so MG
(D)
n,m is empty when

2m/n < min(D) or 2m/n > max(D).

• The periodicity p of D is equal to gcd{d − r | d ∈ D}. For each vertex v of a

multigraph from MG
(D)
n,m, it follows that p divides deg(v)− r. By summation over

all vertices, we conclude that if p does not divide 2m− nr, then the set MG
(D)
n,m is

empty.

The two last points obviously hold for SG
(D)
n,m.

Theorem 4.3.2. Consider a set D ⊂ Z≥0 of size at least 2. Let r = min(D) denote
its valuation and p = gcd{d1 − d2 | d1, d2 ∈ D} its periodicity. Let m, n denote two
integers tending to infinity, such that 2m/n stays in a fixed compact interval of the open

interval ]r,max(D)[, and p divides 2m− rn, then the total weight of MG
(D)
n,m is equal to∑

G∈MG
(D)
n,m

κ(G) =
(2m)!

2mm!

p√
2πnζφ′(ζ)

SetD(ζ)n

ζ2m

×
(
1 +O(n−1)

)
where φ(x) =

xSetD−1(x)
SetD(x)

and ζ is the unique positive solution of φ(ζ) = 2m
n .

4.3.3 Typical multigraphs with degree constraints

Let us recall that an edge is simple if it is neither a loop nor a multiple edge. Before
turning to the enumeration of simple graphs with degree constraints, we first describe

the behavior of non-simple edges in a typical multigraph from MG
(D)
n,m. No proofs are

given here, as stronger results will be derived later.

Using random sampling, we observe that in most of the multigraphs from MG
(D)
n,m,

all non-simple edges have low multiplicity and are well separated. This motivates the

following definition. A multigraph from MG
(D)
n,m is in MG

(D,∗)
n,m if all its non-simple edges

are loops or double edges, and each vertex belongs to at most one loop or (exclusive)
one double edge. Let |E|e denote the number of occurrences of the element e in the

multiset E. Formally, MG
(D,∗)
n,m is characterized as the set of multigraphs G from MG

(D)
n,m

such that for all vertices u, v, w, we have

|E(G)|{v,v} ≤ 1,

|E(G)|{v,w} ≤ 2,

|E(G)|{u,v} = |E(G)|{v,w} = 2 =⇒ u = w,

{v, v} ∈ E(G) =⇒ ∀w, |E(G)|{v,w} ≤ 1.
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Figure 4.1: Four examples of multigraphs from MG
(D,0)
n,m .

The complementary set, MG
(D)
n,m \MG

(D,∗)
n,m , is denoted by MG

(D,0)
n,m , and illustrated in

Figure 4.1.

4.4 Simple graphs with degree constraints

We introduce the notation SG
(D)
n,m for the set of simple graphs with n vertices, m edges

and all degrees in D, i.e. multigraphs from MG
(D)
n,m that contain neither loops nor

multiple edges. The enumeration of simple graphs with degree constraints is derived in
Theorem 4.1.1. First, in Section 4.4.2, we describe an inclusion-exclusion process that

outputs | SG
(D)
n,m | when applied to MG

(D,∗)
n,m . In Section 4.4.3, this process is then applied

to MG
(D)
n,m, and the error introduced is proven to be negligible in Section 4.4.4.

In order to forbid loops and multiple edges in multigraphs from MG
(D)
n,m, we introduce

the notion of marked multigraphs.

4.4.1 Marked multigraphs

A marked multigraph G is a triplet (V (G), E(G), Ē(G)), where V (G) denotes the set
of vertices, E(G) the multiset of normal edges, and Ē(G) the multiset of marked edges,
where both normal and marked edges are unordered pairs of vertices. We say that a
marked multigraph G belongs to a family F of (unmarked) multigraphs if the unmarked
multigraph (V (G), E(G) ∪ Ē(G)) is in F .

We now extend to marked multigraphs the definitions of degree, orderings and
compensation factors, introduced for multigraphs in Section 4.2. The degree of a ver-
tex from a marked multigraph G is equal to its number of occurrences in the multi-
set E(G) ∪ Ē(G). An ordering of a marked multigraph G with m = |E(G)| + |Ē(G)|
edges is a sequence

S = ((v1, w1, t1), . . . , (vm, wm, tm))

from (V (G) × V (G) × {0, 1})m such that the multiset {{vi, wi} | (vi, wi, 0) ∈ S} is
equal to E(G), and the multiset {{vi, wi} | (vi, wi, 1) ∈ S} is equal to Ē(G). The
number of orderings of a given marked multigraph G is denoted by orderings(G), and
its compensation factor is

κ(G) =
orderings(G)

2mm!
.

For example, consider the marked multigraph G with

V (G) = {1, 2},
E(G) = {{1, 2}},
Ē(G) = {{1, 2}, {1, 2}}.
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Its number of orderings is 24, and therefore its compensation factor is κ(G) = 1/2,
whereas it is 1/6 for G without the marks,

V (G) = {1, 2}, E(G) = {{1, 2}, {1, 2}, {1, 2}}.

In the following, we will consider families of marked multigraphs where the marked
edges are loops or multiple edges. Given a marked multigraph G, then `(G) denotes
the number of loops in Ē(G), and k(G) the number of distinct edges from Ē(G) that
are not loops. The generating function of a family F or marked multigraphs is

F (u, v) =
∑
G∈F

κ(G)uk(G)v`(G).

4.4.2 Inclusion-exclusion process

In this section, we build an operator Marked that inputs a family of multigraphs and
outputs a family of marked multigraphs. It is designed so that the asymptotics of its

generating function Marked
MG

(D)
n,m

(u, v) is linked to the asymptotics of | SG
(D)
n,m |. In order

to justify the construction, we first introduce the operators Marked(1) and Marked(2).

First marking. If we could mark all loops and multiple edges from MG
(D)
n,m, the

enumeration of simple graphs with degree constraints would be easy. Indeed, given a

family F of multigraphs, let Marked
(1)
F denote the marked multigraphs from F with

all loops and multiple edges marked. Since the simple graphs are the multigraphs that
have neither loops nor multiple edges, we have

Marked
(1)

MG
(D)
n,m

(0, 0) =
∑

G∈MG
(D)
n,m

κ(G)0k(G)0`(G)

=
∑

G∈SG(D)
n,m

κ(G),

which is equal to | SG
(D)
n,m |, because simple graphs have a compensation factor equal

to 1. Unfortunately, we do not have a description of this family in the symbolic method
formalism.

Second marking. The inclusion-exclusion principle advises us to mark some of the

non-simple edges. Let Marked
(2)
F denote the set of marked multigraphs G from F such

that each edge from Ē(G) is either a loop, or has multiplicity at least 2 in Ē(G) and
does not belong to E(G). This construction implies the relation

Marked
(2)
F (u, v) = Marked

(1)
F (u+ 1, v + 1),

and therefore
|SG(D)

n,m | = Marked
(2)

MG
(D)
n,m

(−1,−1).
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The natural idea to build a marked multigraph G from Marked
(2)

MG
(D)
n,m

is to first choose

some loops and multiple edges to put in Ē(G), then complete E(G) with unmarked
edges, which may well form other loops and multiple edges, in a way that ensures G ∈
Marked

(2)

MG
(D)
n,m

. However, the description of the set of marked edges is complicated,

because of the numerous possible intersection patterns.

Third marking. We have seen in Section 4.3.3 that in most of the multigraphs

from MG
(D)
n,m, non-simple edges do not intersect. This motivates the following defini-

tion. Given a set F of multigraphs, let Marked(F) denote the set of marked multigraphs
from F such that each vertex is in exactly one of the following cases:

• the vertex belongs to no marked edge,

• the vertex belongs to one marked loop and no other marked edge,

• the vertex belongs to two identical marked edges and no other marked edge.

Therefore, each marked edge is a loop of multiplicity 1 or a double edge. This marking

process links the multigraphs from MG
(D,∗)
n,m , defined in Section 4.3.3, to the simple

graphs with degree constraints.

Lemma 4.4.1. The value Marked
MG

(D,∗)
n,m

(−1,−1) is equal to the number of simple

graphs in SG
(D)
n,m.

Proof. As explained in the paragraphs First markink and Second marking of Sec-
tion 4.4.2, the following relations hold

Marked
(1)

MG
(D,∗)
n,m

(0, 0) = |SG(D)
n,m |,

Marked
(2)

MG
(D,∗)
n,m

(u, v) = Marked
(1)

MG
(D,∗)
n,m

(u+ 1, v + 1).

Furthermore, by construction of MG
(D,∗)
n,m , we have

Marked
MG

(D,∗)
n,m

(u, v) = Marked
(2)

MG
(D,∗)
n,m

(u, v),

so Marked
MG

(D,∗)
n,m

(−1,−1) = |SG
(D)
n,m |.

Applying the operator Marked to the decomposition

MG(D)
n,m = MG(D,∗)

n,m ]MG(D,0)
n,m ,

we find

Marked
MG

(D)
n,m

(u, v) = Marked
MG

(D,∗)
n,m

(u, v)

+ Marked
MG

(D,0)
n,m

(u, v)

118



which implies, after evaluation at (u, v) = (−1,−1) and reordering of the terms,

|SG(D)
n,m | = Marked

MG
(D)
n,m

(−1,−1)

−Marked
MG

(D,0)
n,m

(−1,−1).

We compute the asymptotics of Marked
MG

(D)
n,m

(−1,−1) in Section 4.4.3, and prove that

Marked
MG

(D,0)
n,m

(−1,−1) is negligible in Section 4.4.4.

4.4.3 Application of the inclusion-exclusion process to all multigraphs
with degree constraints

We start with an exact expression of Marked
MG

(D)
n,m

(u, v) in Lemma 4.4.2, then derive

its asymptotics in Lemma 4.4.4.

Lemma 4.4.2. Marked
MG

(D)
n,m

(u, v) is equal to

(2m)!

2mm!
[x2m]

( ∑
k,`≥0

an,m,2k+`
(uW n

m
(x)2)k

k!

(vW n
m

(x))`

`!

)
×SetD(x)n,

where an,m,j = 0 when j is greater than min(n,m), otherwise

an,m,j =
n!

(n− j)!nj
m!

(m− j)!mj

(2m− 2j)!(2m)2j

(2m)!
,

W n
m

(x) =
n

4m

x2 SetD−2(x)

SetD(x)
.

Proof. To build an ordering of a multigraph from Marked
MG

(D)
n,m

with 2k vertices in

marked double edges and ` vertices in marked loops, we perform the following steps:

1. choose the labels of the 2k vertices that appear in the marked double edges,
and the ` vertices that appear in the marked loops. There are

(
n

2k,`,n−2k−`
)

such
choices.

2. choose the distinct k edges of distinct vertices, among the chosen 2k vertices, that
will become the marked double edges. There are (2k)!

2kk!
such choices.

3. order the 2k marked double edges and the vertices in each of them. There are
(2k)!4k

2k
ways to order them.

4. order the ` loops. There are `! ways to do so.

5. choose among the m edges of the final ordering which ones receive marked loops
and which ones receive marked double edges. There are

(
m

2k,`,m−2k−`
)

choices.
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6. to fill the rest of the final ordering, build an ordering of length 2m − 4k −
2` where the 2k vertices that belong to marked double edges and the ` ver-
tices that appear in marked loops have degree in D − 2, while the other n −
2k − ` vertices have degree in D. The number of such orderings is (2m − 4k −
2`)![x2m−4k−2`] SetD−2(x)2k+` SetD(x)n−2k−`.

This bijective construction implies the following enumerative result∑
G∈Marked(MG

(D)
n,m)

κ(G)uk(G)v`(G)

=
1

2mm!

∑
k,`≥0

(
n

2k, `, n− 2k − `

)
(2k)!

2kk!

(2k)!4k

2k
`!

×
(

m

2k, `,m− 2k − `

)
(2m− 4k − 2`)!

× [x2m−4k−2`] SetD−2(x)2k+` SetD(x)n−2k−`uk(G)v`(G).

After simplification, this last expression can be rewritten

Marked
MG

(D)
n,m

(u, v) =
(2m)!

2mm!

× [x2m]

( ∑
k,`≥0

an,m,2k+`
(uW n

m
(x)2)k

k!

(vW n
m

(x))`

`!

)
× SetD(x)n.

We observe that when 2k + ` is fixed while n,m tends to infinity, then an,m,2k+`
tends to 1. The double sum can then be approximated by an exponential, and it is
tempting to conclude

Marked
MG

(D)
n,m

(u, v) ∼ [x2m]e
uW n

m
(x)2+vW n

m
(x)

SetD(x)n.

The next lemma formalizes this intuition. A multivariate generating function f(x1, . . . , xn)
is said to dominate coefficient-wise another series g(x1, . . . , xn) if for all k1, . . . , kn ≥ 0,∣∣∣[xk11 · · ·xknn ]g(x1, . . . , xn)

∣∣∣ ≤ [xk11 · · ·xknn ]f(x1, . . . , xn).

Lemma 4.4.3. When m/n stays in a fixed compact interval of R>0, there is an entire
bivariate analytic function C(u, v) such that, for n large enough, 1

nC(u, v) dominates
coefficient-wise

eu+v −
∑
k,`≥0

an,m,2k+`
uk

k!

v`

`!
. (4.1)
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Proof. Developing the exponential as a double sum

eu+v =
∑
k,`≥0

uk

k!

v`

`!
,

the result can be rewritten

n
|1− an,m,2k+`|

k!`!
≤ [ukv`]C(u, v)

for all k, `. We prove that when n is large enough, we have

n
|1− an,m,2k+`|

k!`!
≤
(

1 +
n

m

) (2k + `)2e4k+2`

√
k!`!

(4.2)

for all k, ` ≥ 1. Since the right-hand side are the coefficients of a function analytic on
C2, this will conclude the proof.

Let bn,j denote the value
∏j−1
i=0

(
1− i

n

)
, then observe that an,m,j is equal to bn,jbm,j/b2m,2j .

Since bn,j ≤ 1, if (cn,j) denotes a sequence such that cn,j ≤ bn,j for all (n, j), then
cn,jcm,j ≤ an,m,j ≤ c−12m,2j , which implies

n
|1− an,m,2k+`|

k!`!
(4.3)

≤ n
max(c−12m,4k+2` − 1, 1− cn,2k+`cm,2k+`)

k!`!
.

We now prove that Equation (4.2) holds both for 2k+` ≤ √m/2 and for 2k+` >
√
m/2.

Case 2k+` ≤ √m/2. We prove by recurrence on j that bn,j ≥ 1− j2

n . The recurrence
is initialized with bn,0 = 1. Assuming it is satisfied at rank j, then

bn,j+1 =

(
1− j

n

)
bn,j ≥

(
1− j

n

)(
1− j2

n

)
≥ 1− (j + 1)2

n
,

which concludes the proof of the recurrence. This implies, using Inequality (4.3),

n
|1− an,m,2k+`|

k!`!
≤ n

k!`!
max

(
1

1− (4k+2`)2

2m

− 1,

1−
(

1− (2k + `)2

n

)(
1− (2k + `)2

m

))
.

Since 2k + ` ≤ √m/2, the first argument of the maximum function is at most 1. The
second argument is smaller than (n−1 +m−1)(2k + `)2. Therefore, we have

n
|1− an,m,2k+`|

k!`!
≤
(

1 +
n

m

) (2k + `)2

k!`!
,
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and Inequality (4.2) is satisfied.
Case 2k+ ` >

√
m/2. We first prove bn,j ≥ e−j . To do so, we apply a sum-integral

comparison in the expression

log(bn,j) =

j−1∑
i=0

log

(
1− i

n

)
≥
∫ j

0
log
(

1− x

n

)
dx

= −(n− j) log

(
1− j

n

)
− j ≥ −j.

Inequality (4.3) then implies

n
|1− an,m,2k+`|

k!`!
≤ n

k!`!
max

(
e4k+2` − 1, 1− e−(4k+2`)

)
≤ n√

k!`!

e4k+2`

√
k!`!

.

We now prove that n/
√
k!`! is smaller than 1 for n large enough. Indeed, 2k+` >

√
m/2

implies max(k, `) ≥ √m/8, so

n√
k!`!
≤ n√

max(k, `)!
≤ n

(
√
m/8)!

,

and since m/n stays in a compact interval of R>0, this last term tends to 0 with n. We
then conclude

n
|1− an,m,2k+`|

k!`!
≤ e4k+2`

√
k!`!

for n large enough, so Inequality (4.2) is satisfied.

We can now derive the asymptotics of Marked
MG

(D)
n,m

(u, v). As observed in the dis-

cussion preceding Theorem 4.3.2, the result is trivial when D contains only one integer,
when 2m/n is outside [min(D),max(D)] and when p does not divide 2m−min(D)n.

Lemma 4.4.4. Assume D has size at least 2, valuation r and periodicity p. Let m, n
denote two integers tending to infinity, such that 2m/n stays in a fixed compact interval
of ]r,max(D)[ and p divides 2m− rn. When u, v stay in a fixed compact, then

Marked
MG

(D)
n,m

(u, v) =
(2m)!

2mm!

SetD(ζ)n

ζ2m
p√

2πnζφ′(ζ)
(4.4)

×euW n
m

(ζ)2+vW n
m

(ζ)
(1 +O(n−1)),

where W n
m

(x) = n
4m

x2 SetD−2(x)
SetD(x)

, φ(x) =
x SetD−1(x)
SetD(x)

and φ(ζ) = 2m
n .
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Proof. We start with the expression of Marked
MG

(D)
n,m

(u, v) derived in Lemma 4.4.2

Marked
MG

(D)
n,m

(u, v) =

(2m)!

2mm!
[x2m]

( ∑
k,`≥0

an,m,2k+`
(uW n

m
(x)2)k

k!

(vW n
m

(x))`

`!

)
× SetD(x)n.

Using the notation

A(x) =e
uW n

m
(x)2+vW n

m
(x)

−
∑
k,`≥0

an,m,2k+`
(uW n

m
(x)2)k

k!

(vW n
m

(x))`

`!
,

this implies

(2m)!

2mm!
[x2m]e

uW n
m

(x)2+vW n
m

(x)
SetD(x)n

−Marked
MG

(D)
n,m

(u, v)

=
(2m)!

2mm!
[x2m]A(x) SetD(x)n.

Observe that W n
m

(x) has valuation 0 and period p. According to Lemma 4.2.1, we have

(2m)!

2mm!
[x2m]e

uW n
m

(x)2+vW n
m

(x)
SetD(x)n

=
(2m)!

2mm!

SetD(ζ)n

ζ2m
p√

2πnζφ′(ζ)

× euW n
m

(ζ)2+vW n
m

(ζ)
(1 +O(n−1)),

so the demonstration is complete if we prove

(2m)!

2mm!
[x2m]A(x) SetD(x)n =

(2m)!

2mm!
O

(
n−1

SetD(ζ)n

ζ2m
√
n

)
.

The Taylor coefficients of W n
m

(x) need not be positive, so we introduce the entire func-
tion

W̃ n
m

(x) =
∑
n≥0
|[zn]W n

m
(z)|xn,

which dominateW n
m

(x) coefficient-wise. By application of Lemma 4.4.3, 1
nC(uW̃ n

m
(x)2, vW̃ n

m
(x))

dominates coefficient-wise A(x), and therefore∣∣∣∣(2m)!

2mm!
[x2m]A(x) SetD(x)n

∣∣∣∣
≤ (2m)!

2mm!
[x2m]

1

n
C(uW̃ n

m
(x)2, vW̃ n

m
(x)) SetD(x)n.
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Finally, according to Lemma 4.2.1, we have

(2m)!

2mm!
[x2m]

1

n
C(uW̃ n

m
(x)2, vW̃ n

m
(x)) SetD(x)n

=
(2m)!

2mm!
O

(
n−1

SetD(ζ)n

ζ2m
√
n

)
.

4.4.4 Negligible marked multigraphs

Recall that MG
(D,0)
n,m denotes the set MG

(D)
n,m \MG

(D,∗)
n,m . In Lemma 4.4.6, we prove that

Marked
MG

(D,0)
n,m

(−1,−1) is negligible. To do so, we first bound MarkedR(1, 1) for a

family R of marked multigraphs from MG
(D)
n,m with mandatory edges.

Lemma 4.4.5. Let e1, . . . , ej denote j edges on the set of vertices {1, . . . , n}, and R

the set of multigraphs from MG
(D)
n,m that contain those edges, with multiplicities (i.e. an

edge with k occurrences in the list has at least k occurrences in the multiset of edges of
the multigraph)

R =
{
G ∈ MG(D)

n,m

∣∣∣ ∀i, ei ∈ E(G) with multiplicities
}
.

Assume D contains at least two integers and has valuation r. Let m, n denote two inte-
gers tending to infinity, such that 2m/n stays in a fixed compact interval of ]r,max(D)[,
then

MarkedR(1, 1) = O
(
n−j Marked

MG
(D)
n,m

(1, 1)
)
.

Proof. Let R̃ denote the set of multigraphs from MG
(D)
n,m with j distinguished mandatory

edges
e1 = {v1, v2}, . . . , ej = {v2j−1, v2j}.

Given an ordering of a multigraph from R, we can distinguish the first occurrences of the
mandatory edges, in order to obtain the ordering of a multigraph from R̃. Therefore, the
number of orderings of multigraphs from R is at most equal to the number of orderings
of multigraphs from R̃. Dividing by 2mm!, this implies∑

G∈R
κ(G) ≤

∑
G∈R̃

κ(G),

so MarkedR(1, 1) ≤ MarkedR̃(1, 1).
Let W denote the fixed set of vertices that appear in the mandatory edges, and for

all w ∈ W , let dw denote the number of occurrences of the vertex w in the mandatory
edges

dw =
∣∣{i |vi = w}

∣∣.
Let also G

(d)
n,m denote the set of multigraphs with n vertices and m edges, where each

vertex w from the mandatory edges has degree in D − dw and the other vertices have
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degrees in D. To construct an ordering from a multigraph in MarkedR̃, we choose the j
positions of the mandatory edges among the m positions available, the order of the
vertices in those edges, and mark or not each of them. Then the rest of the ordering
is filled with an ordering from Marked

G
(d)
n,m−j

. Therefore, the number of orderings from

MarkedR̃ is at most

mj2j2j2m−j(m− j)! Marked
G

(d)
n,m−j

(1, 1).

Dividing by 2mm! and using the fact that j is fixed, we obtain

MarkedR̃(1, 1) = O

(
Marked

G
(d)
n,m−j

(1, 1)

)
. (4.5)

Following the steps of Lemma 4.4.2, Marked
G

(d)
n,m−j

(1, 1) is not greater than

(2m− 2j)!

2m−j(m− j)! [x
2m−2j ]

( ∑
k,`≥0

an,m−j,2k+`
W n

m
(x)2k+`

k!`!

)

×
( ∏
v∈W

SetD−dv(x)

)
SetD(x)n−|W |.

An application of the same argument as in the proof of Lemma 4.4.4 leads to

Marked
G

(d)
D (n,m−j)(1, 1) =

(2m− 2j)!

2m−j(m− j)!

×O
(

SetD(ζ)n−|W |

ζ2(m−j)
√
n− |W |

)
.

Since |W | and j are fixed, this implies, using Lemma 4.4.4,

Marked
G

(d)
n,m−j

(1, 1) =
(2m− 2j)!

2m−j(m− j)!
2mm!

(2m)!

×OO
(

Marked
MG

(D)
n,m

(1, 1)
)
.

Simplifying and injecting this relation from Equation (4.5), we obtain

MarkedR̃(1, 1) = O
(
n−j Marked

MG
(D)
n,m

(1, 1)
)
.

Figure 4.1 displays four multigraphs from MG
(D,0)
n,m . Actually, any multigraph from MG

(D,0)
n,m

contains one of those four graphs as a subgraph, and this property can be described
in terms of mandatory edges. In the following lemma, we use this fact to bound
Marked

MG
(D,0)
n,m

(−1,−1).
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Lemma 4.4.6. Assume D contains at least two integers, has valuation r and periodic-
ity p. Let m, n denote two integers tending to infinity, such that 2m/n stays in a fixed
compact interval of ]r,max(D)[, and p divides 2m− nr, then

Marked
MG

(D,0)
n,m

(−1,−1)

= O
(
n−1 Marked

MG
(D)
n,m

(−1,−1)
)
.

Proof. By definition, a multigraph G belongs to MG
(D,0)
n,m if and only if it contains a

vertex v that is in one of the following configurations:

1. the loop {v,v} appears at least twice in E(G),

2. there is a vertex u such that the edge {u,v} appears at least three times,

3. there is a vertex u such that {v,v} is in E(G) and {u,v} appears at least twice,

4. there are vertices u and w such that {u,v} and {v,w} both appear at least twice.

Let R̃1 (resp. R̃2, R̃3, R̃4) denote the set of multigraphs from MG
(D)
n,m that contain a

vertex in configuration 1 (resp. 2, 3, 4). We then have

MG(D,0)
n,m = R̃1 ∪ R̃2 ∪ R̃3 ∪ R̃4.

Let also R1, R2, R3 and R4 denote four subsets of MG
(D)
n,m, such that

1. the multigraphs from R1 contain two occurrences of the loop {1, 1},

2. the multigraphs from R2 contain three occurrences of the edge {1, 2},

3. the multigraphs from R3 contain an occurrence of {1, 1} and two occurrences of
{1, 2},

4. the multigraphs from R4 contain two occurrences of {1, 2} and two occurrences of
{1, 3}

(see Figure 4.1). Given the symmetric roles of the vertices, the number of orderings
from multigraphs in R̃1 (resp. R̃2, R̃3, R̃4) is lesser than or equal to n times (resp.
n2, n2, n3) the number of orderings from multigraphs in R1 (resp. R2, R3, R4). This
implies

MarkedR̃1
(1, 1) ≤ nMarkedR1(1, 1),

MarkedR̃2
(1, 1) ≤ n2 MarkedR2(1, 1),

MarkedR̃3
(1, 1) ≤ n2 MarkedR3(1, 1),

MarkedR̃4
(1, 1) ≤ n3 MarkedR4(1, 1),
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so

Marked
MG

(D,0)
n,m

(1, 1) ≤nMarkedR1(1, 1)

+ n2 MarkedR2(1, 1)

+ n2 MarkedR3(1, 1)

+ n3 MarkedR4(1, 1).

The multigraphs from R1 (resp. R2, R3, R4) have 2 mandatory edges (resp. 3, 3, 4).
Four applications of Lemma 4.4.5 lead to

Marked
MG

(D,0)
n,m

(1, 1) = O(n−1) Marked
MG

(D)
n,m

(1, 1).

Finally, according to Lemma 4.4.4,

Marked
MG

(D)
n,m

(1, 1) = O
(

Marked
MG

(D)
n,m

(−1,−1)
)
.

Now we have all the ingredients to prove Theorem 4.1.1.

of Theorem 4.1.1. In Lemma 4.4.1, we have proven that the number of simple graphs

in SG
(D)
n,m is equal to Marked

MG
(D,∗)
n,m

(−1,−1). By a set manipulation, this quantity can

be rewritten
Marked

MG
(D)
n,m

(−1,−1)−Marked
MG

(D,0)
n,m

(−1,−1),

where MG
(D,0)
n,m = MG

(D)
n,m \MG

(D,∗)
n,m . Replacing the second term with the result of

Lemma 4.4.6, we obtain

| SG(D)
n,m | = Marked

MG
(D)
n,m

(−1,−1)
(
1 +O(n−1)

)
.

Finally, the asymptotics of Marked
MG

(D)
n,m

(−1,−1) has been derived in Lemma 4.4.4.

4.5 Random generation

In order to keep a combinatorial interpretation, we focused on generating functions SetD(x)
with coefficients in {0, 1}. Our results hold more generally for any generating func-
tion D(x) with nonnegative coefficients and large enough radius of convergence (so that
the saddle-point from Lemma 4.2.1 is well defined). Multigraphs are then counted with
a weight that depends of the degrees of their vertices

weight(G) = κ(G)
∏

v∈V (G)

deg(v)![xdeg(v)]D(x).

The present work has been guided by experiments on large random graphs with
degree constraints. We used exact and Boltzmann sampling [13]. Observe that to build

a random simple graph from SG
(D)
n,m, one can sample multigraphs from MG

(D)
n,m and reject

until the multigraph is simple. As a consequence of Theorem 4.1.1, the expected number

of rejections is e
−W n

m
(ζ)2−W n

m
(ζ)

(using the notations of the theorem).
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4.5.1 Boltzmann sampling

The construction of the Boltzmann algorithm is straightforward from Theorem 4.3.1.
To build a random multigraph with degrees in D, n vertices and approximately m
edges, the algorithm first computes a positive value x, according to the number of edges
targeted. It then draws independently n integers (d1, . . . , dn), following the law

P(d) =

(
[zd]D(z)

)
xd

D(x)
(4.6)

with D(x) = SetD(x). If their sum is odd, a new sequence is drawn. Otherwise, the
algorithm outputs a random multigraph with sequence of degrees (d1, . . . , dn). To do
so, as in the configuration model ([3], [54]), each vertex vi receives di half-edges, and a
random pairing on the half-edges is drawn uniformly.

Therefore, the random distribution induced on multigraphs by the Boltzmann sam-
pling algorithm is identical to the configuration model. Conversely, given a probability
distribution on Z≥0, one can choose D(x) so that the distribution is equal to the one de-
scribed by Equation (4.6). Thus, we expect random multigraphs from the configuration
model and multigraphs with degree constraints to share many statistical properties.

4.5.2 Recursive method

For the sampling of a multigraph in MG
(D)
n,m, the generator first draws a sequence of

degrees, and then performs a random pairing of half-edges, as in configuration model
and the Boltzmann sampler. Each sequence (d1, . . . , dn) from Dn is drawn with weight∏n
v=1 1/(dv)!. In the first step, we use dynamic programming to precompute the val-

ues (Si,j)0≤i≤n,0≤j≤2m, sums of the weights of all the sequences of i degrees that sum
to j

Si,j =
∑

d1,...,di∈D
d1+···+di=j

i∏
v=1

1

dv!
,

using the initial conditions and the recursive expression

Si,j =


1 if (i, j) = (0, 0),

0 if i = 0 and j 6= 0, or if j < 0,∑
d∈D

Si−1,j−d

d! otherwise.

After this precomputation, we generate the sequence of degrees as follows: first we
sample the last degree dn of the sequence according to the distribution

P(dn = d) =
Sn−1,2m−d
d!Sn,2m

,

then we recursively generate the remaining sequence (d1, . . . , dn−1), which must sum to
2m− dn. Once the sequence of degrees is computed, we generate a random pairing on
the corresponding half-edges.
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4.6 Forthcoming research

The results presented can be extended in several ways. The case where 2m/n tends
to min(D) or max(D) could be considered. For example, [10] have derived, using ele-
mentary tools, the asymptotics of graphs with a lower bound on the minimum degree
when m = O(n log(n)). This extension would only require to adjust the saddle-point
method from Lemma 4.2.1.

We have also derived results on the enumeration of graphs where the degree sets
vary with the vertices. The model inputs an infinite sequence of sets (D1,D2, . . .) and
output graphs where each vertex v has its degree in Dv. The techniques presented in
this chapter can be extended to this case, if some technical conditions are satisfied, such
as the convergence of the series n−1

∑
v≥1 log(SetDv(x)). This extension will be part

of a longer version of the paper in which this chapter is based. Two examples of such
families are graphs with degree parities [26], and graphs with a given degree sequence
[63].

We believe that complete asymptotic expansion can be derived for graphs with
degree constraints. This would require to apply a more general version of Lemma 4.2.1,
such as presented in Chapter 4 by [6], and we would have to consider more complex

families than MG
(D,∗)
n,m .

The asymptotics of connected graphs from SGn,m when m− n tends to infinity has
first been derived by [62]. Since then, two new proofs were given, one by [19], the other
by [18]. The proof of Pittel and Wormald relies on a link between connected graphs and
graphs from a particular family of graphs with degree constraints (graphs with degrees
at least 2). In [7], following the same approach, but using analytic combinatorics,
we obtained a short proof for the asymptotics of connected multigraphs from MGn,m

when m− n tends to infinity. We now plan to extend this result to simple graphs, and
to derive a complete asymptotic expansion.

In this chapter, we have focused on the enumeration of graphs with degree con-
straints. We can now start the investigation on the typical structure of random in-
stances of such graphs. An application would be the enumeration of Eulerian graphs,
i.e. connected Euler graphs.

Finally, the inclusion-exclusion technique we used to remove loops and double edges
can be extended to forbid any family of subgraphs.
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[24] M. Bodirsky, O. Giménez, M. Kang, M. Noy. Enumeration and limit laws for
series–parallel graphs. European Journal of Combinatorics, 28(8):2091–2105, 2007.

[25] R. W. Robinson. Enumeration of euler graphs. Proof Techniques in Graph Theory,
147–153, 1969.

[26] R. Read, R. Robinson. Enumeration of labelled multigraphs by degree parities.
Discrete Mathematics, 42(1):99–105, 1982.

[27] M. Drmota, M. Noy. Extremal parameters in sub-critical graph classes.
ANALCO’13, 1–7, 2013.
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