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Chapter 1

Introduction

My thesis deals with mechanisms to allocate indivisible objects. Any mechanism

can be treated as a game form since it defines the actions that the subjects of

the mechanism can take. Therefore, we can predict the outcomes of a mechanism

using game theoretic tools. However, unlike ‘positive’ game theory, the designer

of the mechanism has the freedom to set the rules of the game so as to achieve the

most desirable outcome. For example, social welfare calls for efficient allocation of

resources while the objective of an owner of resources is to maximize his revenues.

Usually the social planner, auctioneer, or principal lacks the knowledge about

the agents’ characteristics relevant to achieve the desired objective. The role of

a mechanism is to overcome the asymmetric information problem by inducing

competition among the agents.

In my thesis I deal with this ‘normative’ side of game theory, that is, I ask

how a mechanism performs with respect to a particular objective and how it can

be improved. Thus, in chapter 2, I ask whether the allocation will still be envy-

free and efficient with respect to the true preferences when the social planner

simply solicits agents to announce their valuations and an envy-free allocation

is selected with respect to the announced preferences. The remaining chapters

deal with auctions. Chapter 3 compares how various auction formats perform in

promoting entry since higher entry leads to stronger competition during bidding

and, consequently, to higher revenues of the seller. In the last chapter I test
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empirically whether the seller can benefit from changing the order of sales in

sequential auctions of heterogenous objects.

In Chapter 2 of my thesis I address the implementation of envy-free allocations

in the assignment problem. Each agent must be assigned to an indivisible object

and pay the price of the object he gets, and prices are required to sum to a

given number. An example is the housemate problem where a group of tenants is

sharing an apartment and they must decide who gets which room and how much

each must pay, subject to the constraint that the sum of their contributions must

equal the rent of the apartment. The objective is to select an assignment-price

pair that is envy-free with respect to the agents’ true preferences. Envy-freeness

is a sufficient condition for the stability of the assignment since it guarantees that

each agent prefers the object-price pair he has been assigned to any other pair.

Moreover, it implies efficiency which makes it an attractive solution concept.

Previous research concentrated on mechanisms that select an envy-free assign-

ment and price pair, assuming that the valuations of objects are known by the

social planner. Once we assume that the social planner lacks such perfect knowl-

edge and must instead solicit agents’ valuations, a question arises on the scope

that agents can manipulate the outcome by misrepresenting their valuations.

I treat the assignment problem as a game and prove that the mechanism, in

which agents are simply required to announce their (possibly false) valuations and

an envy-free allocation is selected with respect to these announced valuations, will

double-implement the set of envy-free allocations both in Nash and strong Nash.

This means that, in equilibrium, the selected allocation will be envy-free also

with respect to the true preferences. I demonstrate that by choosing an envy-free

allocation a social planner does not need to worry about strategic issues, that is,

the scope for agents to manipulate the allocations is limited in equilibrium. This

result provides a justification on strategic grounds for the use of social choice

functions selecting envy-free allocations.

The chapter 3 studies auctions when the presence of a strong buyer deters
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the entry of other potential bidders, preventing competition in the auction and

leading to a low sales price. For example, the issue arose during third-generation

mobile communication licenses auctions where incumbent firms could effectively

discourage entry by threatening to outbid new entrants.

When attracting entrants is a goal, the allocation mechanism should favor

entrants over incumbents. Maskin and Riley [3] have shown that Dutch auction,

compared with English auction, tilt the allocation in favor of ex-ante weaker

bidders, while sacrificing efficiency. Based on this insight, Paul Klemperer (see

Klemperer [2]) have proposed the use of the so-called Anglo-Dutch auction in

order to promote entry. It is a mixture of the two types of auctions. It begins

with an ‘English’ phase during which the price rises until all but a number of

bidders that exceeds by one the number of objects drop out. At this price the

auction switches to a second ‘Dutch’ phase. In this stage, only the remaining

bidders can submit simultaneous, sealed bids and only bids above the price at

which the English phase stopped are allowed.

We propose an alternative two-stage English auction, based on Burguet and

Sákovics [1], in order to encourage entry. In the first stage there is a reserve price,

and if nobody bids at that price, then a second stage is conducted without the

reserve price. Potential entrants of the second stage learn that those who entered

in the first stage but did not bid have low valuations. This provides incentives for

weak bidders to enter in the second stage. Instead of using inefficiencies as the

tool to induce entry, what the two-stage English auction uses is the information

conveyed by the (absence of) bidding in the first phase.

We analyze a model when valuations can take only two different values, al-

though incumbents have a higher probability of high valuation, and entrants have

to incur a cost before learning their valuations. We show that in the one-unit

case a two-stage English auction is more efficient than both the English and the

Anglo-Dutch auctions. Moreover, we show that the gain in efficiency benefits

the seller as well. Indeed, the revenues for the seller are higher in the two-stage
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English auction than in the Anglo-Dutch auction.

Subsequently, we extend the model to continuous valuations. Indeed, in the

discrete valuations model, the Anglo-Dutch is allocationally efficient, that is, the

object is never assigned to a bidder that competes against a bidder with higher

valuation, and the only inefficiency comes from inappropriate entry. Instead,

in the case of continuous valuations the Anglo-Dutch auction may produce in-

efficient allocation when a bidder with lower valuation wins the auction. The

inefficient allocation of the Anglo-Dutch auction increases seller’s revenues by re-

ducing informational rents of ex-ante stronger bidders. To investigate whether we

do not underestimate the revenue generation potential of Anglo-Dutch auction

we perform numerical computations using uniform distributions. We obtain the

same results as in the discrete valuations model.

We also consider multiple units. Here entry decisions in the second stage of

the two-stage English auction depends on the number of units that are sold in the

first stage. The larger the number of units left unsold the larger the number of

entrants in the second stage. In fact, under very extreme values of the parameters,

the effect that the number of units available has on entry is very extreme. Only

in such cases can Anglo-Dutch auctions dominate in terms of revenues the two-

stage English auction. Otherwise, our results for the one unit case hold in the

multiple unit case.

Many real life auctions sell more than one object; objects are usually different

and often are sold sequentially; hence the questions arise of how the order of sales

affects revenue and what the optimal order of sales is. The last chapter addresses

these issues. It consists of an empirical analysis of auctions conducted by the

state company “Latvia’s State Forests” selling rights to harvest timber in state

forests. In each auction the company offers several lots of forest, and they are

sold sequentially through oral, ascending price auctions.

For the two-object case, theory suggests that the revenues of the seller are

highest when objects are sold in the order of decreasing value. I test empirically
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this hypothesis for the case of many objects and suggest an optimal ordering of

sales. Since we do not observe the valuations of lots the bidders have, first I

estimate them, using a discrete choice model, based on the assumption that a lot

will be sold if and only if its valuation exceeds the reserve price. Next, I test the

order of sales effect on the revenues of the seller. I do not reject the hypothesis

that the order does not have effect on the revenues of seller.
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Chapter 2

Double Implementation in a

Market for Indivisible Goods

with a Price Constraint

2.1 Introduction

I study the problem of assigning a set of indivisible objects to a set of agents.

Each agent wants exactly one object, and his preferences are quasilinear in money.

Each agent must pay a price corresponding to the object he gets, and prices are

required to sum to a given number. A standard example is the housemate problem

where a group of tenants is sharing an apartment. The objective is to determine

who gets which room and how much each must pay subject to the constraint that

the sum of their contributions must equal the rent of the apartment. However,

neither the valuations of objects, nor the number that the prices must sum up to,

need to be positive. An example with a negative price constraint includes heirs

sharing inheritance that besides indivisible objects contains a divisible object -

money. Negative valuations imply that the objects are not goods but rather bads

or burdens. For example, a central government with fixed budget assigning waste

disposal sites and other duties/projects to municipalities.

When deciding on the assignment of agents to objects and the corresponding

prices, we may want to meet certain criteria. The usual requirements include
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efficiency and envy-freeness. Efficiency ensures that the welfare of society as a

whole is maximized, while envy-freeness guarantees that each agent prefers the

object-price pair he has been assigned. In this sense envy-freeness is a sufficient

condition for the stability of the assignment. Moreover, it implies efficiency which

makes it an attractive solution concept.

There exists a wide literature that uses the above framework. Shapley and

Shubik [13] showed that the set of efficient and envy-free allocations can be found

as a solution to a linear programming problem. Subsequent contributions have

proposed different algorithms to find a particular envy-free allocation. Examples

selecting envy-free allocations when prices are required to sum to a given number

include algorithms by Abdulkadiroǧlu et al. [1] and Haake et al. [8]. Since

the set of efficient and envy-free allocations is usually not a singleton, these

algorithms pick up different solutions, corresponding to different price vectors.

In related works, Brams and Kilgour [5] and Chin Sung and Vlach [6] impose

the additional constraint that prices must be nonnegative and analyze when the

selected allocation is envy-free. The requirement of nonnegative prices is justified

when objects are goods and the price constraint is positive, like in the room-

sharing problem.

A shortcoming of all of the above studies is that they treat the valuations of

objects as known by the social planner. However, in a more realistic setup the

social planner lacks such perfect knowledge and instead solicits agents’ valuations.

Yet agents are interested to maximize their own utility and, in general, have no

incentives to reveal their true valuations. Therefore, if we insist on using an

algorithm to reach a particular allocation, a question arises on the scope that

agents have to manipulate the outcome by misrepresenting the valuations.

Motivated by these algorithms, I consider a mechanism that, given the an-

nounced valuations, selects an allocation that is efficient and envy-free with re-

spect to these announced preferences. It is a direct revelation mechanism where

agents’ actions are messages of the valuations they attach to each object. The
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particular price vector that the mechanism selects among all possible envy-free

prices, coincides with the one that would be selected by the algorithm of Abdulka-

diroǧlu et al. [1]. The advantage of this algorithm is that it provides a formula

for the selected price vector in terms of the announced preferences, making it

easy to establish whether there is a profitable deviation. In addition, since the

algorithm by Abdulkadiroǧlu et al. [1] does not specify which efficient assignment

to select with respect to the announced preferences, I introduce a tie-breaking

rule to ensure that the assignment is efficient with respect to the true preferences.

I prove that the proposed mechanism double implements the set of efficient

and envy-free allocations both in Nash and strong Nash equilibrium. That is,

I show, first, that all envy-free allocations (with respect to the true valuations)

are outcomes of some (strong) Nash equilibrium of the game induced by the

mechanism and, second, all (strong) Nash equilibrium outcomes of the game are

envy-free. Although truth-telling is not an equilibrium strategy, in any (strong)

Nash equilibrium the reported preferences will induce an allocation such that

agents will be envy-free with respect to the true preferences.

One implication of the result is that by choosing an efficient and envy-free

allocation a social planner does not need to worry about strategic issues, that is,

the scope for agents to manipulate the allocations is limited in equilibrium. This

provides a justification on strategic grounds for the use of social choice functions

selecting envy-free allocations. It also gives an answer to the question posed by

Abdulkadiroǧlu et al. [1] on the possible equilibria of the preference manipulation

game induced by their algorithm.

When there is no requirement that prices must sum to a certain amount, it

has been shown (Leonard [10]) that truth-telling is a dominant strategy for the

mechanism which selects an efficient assignment of objects and agents pay the

so-called agent-optimal prices. However, when prices are required to sum to a

given amount, there is a trade off between strategy-proofness and envy-freeness:

if the price that an agent pays depends on his valuations, then he would have
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incentives to misrepresent them, ruling out truth telling as a dominant strategy.

On the other hand, if prices are independent of preferences, then envy-freeness is

not guaranteed. Therefore, I use (strong) Nash equilibrium as a solution concept.

Another desirable feature of the proposed mechanism is that it is balanced,

unlike the implementation in dominant strategies which requires side-payments

to the third party. The latter can be justified in certain cases, for instance, when

objects are auctioned and a seller receives the revenue such as in Demange et al.

[7]. However, there are economic examples where such side-payments are ruled

out or their amount is fixed in advance in which case a balanced mechanism is

the appropriate one.

Among other studies that address manipulation games the present paper is

most closely related to Tadenuma and Thomson [14] and Beviá [4]. Both study

the strategic aspects of using envy-freeness as a solution concept to allocate indi-

visible goods and prove that the set of equilibrium outcomes coincides with the

set of envy-free allocations with respect to the true preferences. The work by

Tadenuma and Thomson [14] considers allocating only one indivisible object to

one of several agents when monetary compensations are available, while Beviá

[4] extends the result to the multiple objects case. Beviá’s [4] approach is more

general in that she works with correspondences while my mechanism selects a

single-valued outcome. As a consequence, Beviá [4] must use modified equilib-

rium concepts appropriate to multi-valued outcomes.

The remaining of the chapter is organized as follows. The following section

provides the formal model and some results necessary for the proof. Section 2.3

defines the implementation problem and states the theorem. An example for

two-agent two-object case is provided in Section 2.4 before proving the theorem

in Section 2.5. Final remarks in Section 2.6 conclude the paper. Some of the

proofs are relegated to the Appendix.
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2.2 Preliminaries

The set of agents is I = {1, ..., n} and generic elements of I will be denoted by i

and k. The set of objects is J = {1, ..., n} with generic elements of J denoted by

j and l. Throughout it is assumed that the number of agents and objects is the

same n.1 It is assumed that each agent wants one and only one object. The matrix

of true valuations is A = [aij]i∈I,j∈J where aij ∈ R is the valuation that agent i

assigns to object j. The assignment of agents to objects is given by a one-to-one

mapping µ : I → J . I denote a price vector by p = (p1, ..., pn) ∈ Rn. Utilities are

quasi-linear in prices, namely, the utility of agent i from being assigned to object

µ(i) and paying its price pµ(i) is ui(pµ(i)) = aiµ(i) − pµ(i). Let M denote the set of

assignments. An allocation is an assignment-price pair (µ, p) ∈ M × Rn.

Definition 1 An assignment µ ∈ M is efficient if
∑
i∈I

aiµ(i) ≥
∑
i∈I

aiη(i) for all

assignments η ∈ M .

Definition 2 An allocation (µ, p) ∈ M × Rn is envy-free if ui(pµ(i)) ≥ ui(pj)

for all i ∈ I and j ∈ J .

Given an envy-free allocation (µ, p) ∈ M × Rn we will refer to p as an envy-

free price. Also denote by MA the set of efficient assignments relative to the

matrix of valuations A. Alkan et al. [2] prove that if the allocation (µ, p) is

envy-free then the assignment µ is efficient. One can also think of envy-freeness

as a sufficient requirement of stability since each individual prefers his object to

any other object, given the vector of prices. Therefore, envy-freeness is used as a

solution concept in most models dealing with indivisible objects, see for example

Alkan et al. [2], Aragonés [3], Haake et al. [8], and Klijn [9].

The assignment problem of indivisible objects was first addressed by Shapley

and Shubik [13] who proved that the problem can be translated into a linear pro-

gramming problem where the efficient assignments are obtained from the primal

1See the discussion in Section 2.6 when the number of agents and objects is different. Note,
however, that the results stated in this section do not require that |I| = |J |.

11



problem but envy-free prices and the corresponding utilities come from the dual

problem as shadow prices. Given the matrix of valuations A, define with the coali-

tional function w(A, T,Q) the maximal worth that a coalition of agents T ⊆ I

can obtain when assigned to a set of objects Q ⊆ J . It can be expressed in terms

of the following linear programming problem2: given the matrix of valuations A

and subsets T and Q, choose (xij)i∈T,j∈Q to solve for

w(A, T,Q) ≡ max
∑

i∈T,j∈Q

aijxij (2.1)

subject to

∑

i∈T

xij ≤ 1 for any j ∈ Q

∑

j∈Q

xij ≤ 1 for any i ∈ T

xij ≥ 0 for any i ∈ T, j ∈ Q
∑

i∈T,j∈Q

xij = min(|T |, |S|).

This primal problem has a corresponding dual problem where the costs of inputs

— agents and objects — are minimized. Shadow prices are prices of objects and

utilities of agents. Given the matrix of valuations A and subsets T and Q, choose

(ui)i∈T and (pj)j∈Q to solve for

w(A, T,Q) ≡ min
∑

i∈T

ui +
∑

j∈Q

pj (2.2)

subject to

ui + pj ≥ aij for any i ∈ T, j ∈ Q. (2.3)

Then the solution of the primal has the property that xij takes values 0

or 1 for all i ∈ T and all j ∈ Q. Assume that T = I and Q = J . The primal

problem solves for an efficient assignment of objects as follows: given the solution

2The last condition is needed to ensure that agents will be assigned to objects even if their
valuations are negative.
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(xij)i∈I,j∈J , define the assignment µ by letting µ(i) = j if and only if xij = 1. The

dual problem gives the set of envy-free prices (this follows from constraint (2.3)

since ui ≥ aij − pj for all i ∈ I and all j ∈ J) and the corresponding utilities

(ui ≡ ui(pµ(i))).

The set of envy-free prices forms a lattice that possess the following property:

if p′ and p′′ are two envy-free price vectors then so are the price vectors p and p

where p
i
= min(p′i, p

′′
i ) and pi = max(p′i, p

′′
i ). This property is proven in Shapley

and Shubik [13], see also Roth and Sotomayor [12] (chapter 8). The lattice has

an agent-optimal price vector p∗ ≥ 0 such that p ≥ p∗ ≥ 0 for all envy-free and

non-negative prices p.

Given an efficient assignment µ, an agent-optimal price can be calculated3

(see Leonard [10] or Roth and Sotomayor [12]) using the coalitional function,

defined by equation (2.1), as

p∗µ(i) = w(A, I\{i}, J) − w(A, I\{i}, J\{µ(i)}), (2.4)

for each i ∈ I. From (2.4) it follows that p∗µ(i) does not depend on the object

valuations of agent i. Using this property Leonard [10] proves that the mech-

anism that selects the agent-optimal prices p∗ is strategy-proof. His result is a

consequence of the well-known Clark’s pivotal mechanism and is a special case

of the results proven by Roberts [11] for quasilinear utility functions.

Here I state some additional results that will be useful later in proving the

theorem.4

Proposition 1 Given a matrix of valuations A, the coalitional function w(A, T,Q)

is continuous and weakly increasing in aij.

It is shown in the proof of the Proposition 1 that when i ∈ T and j ∈ Q equation

(2.1) can be written as

w(A, T,Q) = max(const1 + aij · 0, const2 + aij · 1) (2.5)

3For an example how to calculate agent-optimal prices, see Section 2.4.
4The proofs are provided in the Appendix.
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where const2 = w(A, T\{i}, Q\{j}) and const1 is a coalitional worth that is

obtained by solving the original assignment problem subject to the additional

constraint that agent i is not assigned to object j. Since neither const1 nor const2

is affected by the change in aij they can be considered constants. Function (2.5)

is obviously continuous and weakly increasing in aij.

Proposition 2 Given a matrix of valuations A, the set of envy-free prices is the

same for all efficient assignments of objects.

Proposition 2 allows us to establish immediately the following result.

Corollary 1 Fix an envy-free price vector p. Under all efficient assignments of

objects each agent gets the same utility:

aiµ1(i) − pµ1(i) = aiµ2(i) − pµ2(i)

for all i ∈ I and where µ1 and µ2 are any two efficient assignments of objects.

2.3 Implementation Problem

In the implementation problem that I consider I restrict the set of feasible price

vectors and require the prices to sum to a given number C:
∑

j∈J pj = C. One

can think in terms of an economy that consists of the set J of indivisible objects

and a quantity C of the divisible object - money - that must be distributed among

n agents.

Let 4C denote the set of price vectors that sum to C. Since all feasible

price vectors are required to belong to this set, from now on it is understood

that an allocation is an assignment-price pair (µ, p) ∈ M × 4C . And with an

envy-free price vector p I will only refer to price vectors that meet the price

constraint: p ∈ 4C . Notice that the set of envy-free prices in 4C is non-empty.

For example, if we take the agent-optimal price vector p∗ and add a constant c

(positive or negative), the envy-freeness is preserved. We can always choose c

such that p∗ + c ∈ 4C .
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Given C and the matrix of valuations A, denote the set of envy-free alloca-

tions in M × 4C with G(A). If a social planner were to choose an allocation

(µ, p), arguably, he would prefer to select one from the set of envy-free alloca-

tions (µ, p) ∈ G(A) since these allocations meet the desirable normative criteria of

envy-freeness and hence efficiency. The algorithms proposed by Abdulkadiroǧlu

et al. [1], Aragonés [3], Brams and Kilgour [5], Haake et al. [8], and Klijn [9]

were designed to select allocations from the set G(A). However, all of them rely

on the knowledge of matrix A. If the social planner does not know the true pref-

erences of agents, he will need to solicit them. A question arises whether agents

have strategic incentives to reveal their true valuations. That is, an agent can

find it profitable to announce valuations of objects different from his true ones.5

Given this misrepresentation of preferences there is no guarantee anymore that

the selected allocation by any of the algorithms will satisfy envy-freeness with

respect to the true preferences. However, it will be demonstrated that, with the

help of an appropriate tie-breaking rule, selecting an allocation that is envy-free

with respect to the announced preferences, not necessarily the true ones, achieves

in the equilibrium envy-freeness with respect to the true valuations.

I propose a direct revelation mechanism where each agent is required to an-

nounce only his own valuations of objects and the mechanism selects an envy-

free allocation with respect to the matrix of announced valuations. Formally, a

strategy of agent i is a vector of object valuations bi = (bi1, ..., bin) ∈ Rn that

he announces. Given the matrix of reported valuations B = [bij]i∈I,j∈J , denote

the set of envy-free allocations implied by the matrix B by G(B). A mecha-

nism g is a mapping from the space of valuations into the space of allocations

g : Rn×n → M × 4C . I restrict attention to mechanisms that, for each matrix

of valuations B, will select an allocation (µ, p) from the envy-free set G(B). The

5Truth-telling is a dominant strategy when the assignment µ is efficient and agent i pays the
agent-optimal price p

∗µ(i) of the object he gets. However, in general the agent-optimal prices
will not meet the price constraint, p∗ /∈ 4C , and therefore, (µ, p∗) /∈ G(A).
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justification why to consider such mechanisms was provided before - the envy-

freeness is the standard solution concept for such type of problems and there

exist works that analyze how to select an allocation from the set G(B) although

usually ignoring strategic issues.

In general, the set of envy-free prices is not a singleton. From all envy-free

prices the price vector that I select corresponds to the one that would be selected

according to the algorithm of Abdulkadiroǧlu et al. [1] when applied to the matrix

B. The advantage of this price vector is its explicit linear relationship with the

agent-optimal prices, given by the equation:

pj = p∗j +

C −
∑

m∈J

p∗m

n
for all j ∈ J. (2.6)

where p∗ is the vector of agent-optimal prices implied by B. According to this

formula each agent i ∈ I pays the agent-optimal price corresponding to the object

he gets p∗µ(i) plus the equal share of the difference between the price constraint

and the sum of all agent-optimal prices.

The utility of agent i having object µ(i) and paying price pµ(i), by applying

equation (2.6), is

ui(pµ(i)) = aiµ(i) − pµ(i) = aiµ(i) −
C

n
−

n − 1

n
p∗µ(i) +

1

n

∑

l 6=i

p∗µ(l). (2.7)

It follows that the utility of agent i is decreasing in its own agent-optimal price

but increasing in each of other agent-optimal prices keeping the assignment µ

fixed. We know from equation (2.4) that p∗µ(i) does not depend on the valuations

of objects reported by agent i, that is, he cannot affect his own agent-optimal

price. However, he can affect the agent-optimal prices of other objects.

If there are several efficient assignments of agents to objects with respect to

the reported valuations B then the mechanism g will break ties according to the

following rule. Order all objects and all agents, and without loss of generality

assume that the order corresponds to the natural one: σ(i) = i for all i ∈ I
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and σ(j) = j for all j ∈ J , and keep these orders fixed. Start with object 1 and

proceed iteratively. If all efficient assignments allocate object 1 to the same agent

i, then let agent i get it. Otherwise choose among all efficient assignments the

one that assigns object 1 to the agent that has announced the smallest valuation

for object 1: µ(i) = 1 if bi1 < bk1 for any k such that there exists an efficient

assignment ν ∈ MB under which ν(k) = 1. If bi1 = bk1 for two or more agents

then select the agent from this set who has been assigned the lowest number:

µ(i) = 1 if i < k when bi1 = bk1. In general, assume that objects 1 to l − 1

are already assigned. If all remaining efficient assignments allocate object l to

the same agent i, then let agent i get it. Otherwise choose among all efficient

assignments the one that assigns object l to the agent that has announced the

smallest valuation of object l: µ(i) = l if bil < bkl for any k such that there

exists an efficient assignment ν ∈ MB such that ν(k) = l and ν−1(j) = µ−1(j)

for already assigned objects j ∈ {1, ..., l − 1}. If bil = bkl for two or more agents

select the agent from this set who has been assigned the lowest number: µ(i) = l

if i < k when bil = bkl. Thus the tie-breaking rule selects a unique assignment

among all efficient assignments with respect to B. Thus, the mechanism g defines

a game form, and given A, the pair (A, g) is a game in normal form.

Assume that the strategy profile B has been announced. When a set of agents

T deviates and announces a different vector of valuations b′T ∈ R|T |×n, that leads

to another profile B ′ = (b′T , b−T ). When there is only one deviator, T = {i},

the strategy profile after the deviation is denoted by B ′ = (b′i, b−i). Denote the

allocation induced by the deviation by g(B ′) = (µ′, p′). The solution concept

that I use is strong Nash equilibrium.

Definition 3 A strategy profile B ∈ Rn×n is a strong Nash equilibrium

relative to (A, g) if there is no coalition T and strategy profile b′T such that

ui(p
′
µ′(i)) ≥ ui(pµ(i)) for all i ∈ T and ui(p

′
µ′(i)) > ui(pµ(i)) for at least one i ∈ T .

Denote the set of strong Nash equilibrium outcomes relative to (A, g) by OSNE
(A,g) ,
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that is OSNE
(A,g) = {(µ, p) ∈ M × 4C |g(B) = (µ, p) for some pure strategy strong

Nash equilibrium B relative to (A, g)}. Similarly, we can define Nash equilibrium

if we restrict the set of deviators T to a single agent i and denote the set of Nash

equilibrium outcomes relative to (A, g) by ONE
(A,g).

Now we are ready to state the main result of the paper:

Theorem The mechanism g double implements the social choice correspondence

G both in Nash and strong Nash equilibrium: ONE
(A,g) = OSNE

(A,g) = G(A) for all

A ∈ Rn×n.

2.4 An Example

Before providing the proof of the theorem, consider the following numeric two

agent-two object example with the price constraint C = 20 and the matrix of

valuations

A =

(
15 18
6 22

)
.

The efficient assignment is µ(1) = 1 and µ(2) = 2 since 15+22 > 6+18. The set

of all envy-free prices is delimited by the equations p2 = 3 + p1 and p2 = 16 + p1

and shown in Figure 2.1 by the shaded area. To obtain the agent-optimal price

of object 1, we find that w(A, I\{1}, J) = 22 and w(A, I\{1}, J\{µ(1)}) = 22,

and by applying equation (2.4), p∗1 = 22 − 22 = 0. In the same way we can find

that p∗2 = 18 − 15 = 3. Thus the agent-optimal prices are p∗ = (0, 3).

The prices that sum up to C are represented with the line connecting the

points (20,0) and (0,20). The intersection of this line with the shaded region

gives the set of envy-free prices that meet the price constraint. In general, there

are an infinity of prices that are envy-free and meet the price constraint. The

mechanism g that I consider selects, given the announced valuations, envy-free

prices obtained from the agent-optimal prices by increasing all of them by the

same amount so that the price constraint is met. If the announced valuations are
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Figure 2.1: The set of envy-free prices

A, then the vector of prices selected by the mechanism is p = (8.5, 11.5) (found

by adding 8.5 to the agent-optimal prices p∗).

The algorithm by Abdulkadiroǧlu et al. [1] would also select the prices p =

(8.5, 11.5). Their algorithm finds the first envy-free price when we move from the

initial price vector p0 = C
n

along the rent constraint. Thus, the price p obtained

by the algorithm is the most ‘equal’ price among all envy-free prices. In the

example we start from p0 = (10, 10) and reach p = (8.5, 11.5). The proposed

mechanism does not ensure neither nonnegative prices nor individual rationality

since it depends on the magnitude of C.6 In the example, if C < 3 all envy-free

price vectors have at least one negative price and if C > 37 then there is no

envy-free price that would be individually rational.

In general, agents do not have incentives to announce the true valuations.

Agent 1, by announcing the vector b = (2, 18), still gets object 1 according

to the tie-breaking rule but pays 2 instead of 8.5. Since, in order to find an

efficient assignment, what matters is the relative magnitudes of valuations we

can define βi ≡ bi2 − bi1. Then agent i gets object 2 and agent k gets object

6An allocation (µ, p) ∈ M ×4C is individually rational if uiµ(i)(pµ(i)) ≥ 0 for all i ∈ I.
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1 if βi > βk or if βi = βk and bi1 > bk1. One can check that when agent i

gets object 2 and agent k gets object 1 the agent-optimal prices are given by

p∗1 = max(−βi, 0) and p∗2 = max(βk, 0). It is easy to check that any strategy

profile B where 3 ≤ β1 = β2 ≤ 16 and b11 ≤ b21 is a Nash equilibrium. When

β1 = β2 both assignments are efficient with respect to the announced preferences,

but by announcing b11 ≤ b21 the tie-breaking rule ensures that the mechanism will

select the assignment that is also efficient with respect to the true preferences.

In the proof of the theorem I consider two types of deviations when an agent

feels envy. The first occurs when the agent still gets the same object after the

deviation but the other agent now must pay a higher price and thus, according to

the price constraint, the deviating agent pays a lower price. For example, consider

β2 > β1, β2 > 0 and β1 < 3 and matrix A represents the true preferences. Given

the announced preferences, µ(1) = 1 and µ(2) = 2 and the agent-optimal prices

are p∗1 = max(−β2, 0) = 0 and p∗2 = max(β1, 0). Therefore p1 = p∗1 + (20 −

p∗1 − p∗2)/2 = (20 − max(β1, 0))/2 > 8.5 and p2 = 20 − p1 < 11.5. Agent 1 feels

envy since 15 − p1 < 18 − p2. Agent 1 can deviate and announce β ′
1 = β2 and

b′11 < b21. Then agent 1 still gets object 1 but pays only p′
1 = (20 − β2)/2 < p1

since p′∗1 = max(−β2, 0) = 0 and p′∗2 = max(β ′
1, 0) = β2. Thus he had a profitable

deviation.

The second type of deviation occurs when an agent gets the object he envies

at the price that the agent who was originally assigned to it paid. For example,

if 0 ≥ β2 > β1 and matrix A represents the true preferences then µ(1) = 1

and µ(2) = 2, p∗1 = max(−β2, 0) = −β2 and p∗2 = max(β1, 0) = 0. Agent

1 must pay p1 = (20 − β2)/2 > 8.5 and like in the previous case, feels envy.

Agent 1 can profitably deviate by announcing β ′
1 = β2 and b′11 > b21. After

the deviation the efficient assignment is µ′(1) = 2 and µ′(2) = 1 with agent-

optimal prices p′∗1 = max(−β ′
1, 0) = −β2 and p′∗2 = max(β2, 0) = 0. Agent 1 pays

p′2 = p2 = (20 + β2)/2 < 11.5. A similar profitable deviation exists when β2 = β1

and b11 = b21. Then agent 1 is assigned to object 1 and will feel envy if β1 < 3.
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Agent 1 is strictly better off by announcing b′11 > b21 while keeping β ′
1 = β2. If

β1 = 3 then agent 1 is indifferent between getting object 1 and 2. Observe that

the examples discussed cover all the cases when agent 1 could feel envy when he

is originally assigned to object 1.

When there are more than two agents, it gets a little bit more complicated

to demonstrate the existence of a profitable deviation when an agent feels envy.

It may not be anymore possible either to increase the price paid by the agent

who is assigned to the object that is envied or to obtain that object at the price

that the agent who was originally assigned to it paid. For example, consider the

following matrix of announced valuations

B =




5 10 15
5 10 0
0 10 20




and C = 30. The agent-optimal prices are p∗ = (0, 5, 10) and the prices selected

that sum to 30 are p = (5, 10, 15). There are two efficient assignments µ1(1) =

1, µ1(2) = 2, µ1(3) = 3 and µ2(1) = 2, µ2(2) = 1, µ2(3) = 3. The tie-breaking rule

selects the first assignment. Suppose that agent 3 envies object 2 at the given

prices: a32 − 10 > a33 − 15. Agent 3 can not increase the prices of objects 1

and/or 2 and thus decrease the price of object 3 and still get it. And neither he

can obtain object 2 at price p2 = 10. By announcing the vector of valuations

b′3 = (0, 15 + ε, 20) where ε > 0 ensures that µ′(3) = 2 and the agent-optimal

prices will be p′∗ = (0, 5, 10−ε) and the selected prices p′ = (5+ε/3, 10+ε/3, 15−

2ε/3). For ε sufficiently small agent 3 will find it advantageous to deviate since

a32 − 10 − ε/3 > a33 − 15.

2.5 Proof of The Theorem

Throughout the proof fix a matrix of true valuations A, and assume without loss

of generality that the orders of agents and objects needed to define g are both

1, 2, ..., n.
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The set of Nash equilibria contains the set of strong Nash equilibria: OSNE
(A,g) ⊆

ONE
(A,g). To establish the statement of the theorem, one needs to demonstrate,

first, that for every envy-free allocation one can construct a strategy profile B

that is a strong Nash equilibrium of the proposed game (A, g) (Lemma 1) implying

G(A) ⊆ OSNE
(A,g) ⊆ ONE

(A,g); second, that a strategy profile B where an agent feels

envy at allocation g(B) = (µ, p) can not be a Nash equilibrium of the game

(A, g) (Lemma 2) implying OSNE
(A,g) ⊆ ONE

(A,g) ⊆ G(A). Combining the results of

both Lemmas gives the desired result: ONE
(A,g) = OSNE

(A,g) = G(A).

Lemma 1 Let (µ, p) be an envy-free allocation. Then there is a strong Nash

equilibrium B of (A, g) such that g(B) = (µ, p).

Proof: Take an envy-free allocation (µ, p) ∈ G(A). Consider the following strat-

egy profile B: each agent i ∈ I announces bi = p + ci where scalars ci satisfy

the following relationship for any two agents i and k: ci < ck if and only if

µ(i) < µ(k). I claim that the given strategy profile constitutes a strong Nash

equilibrium.

Observe that any possible assignment of objects is efficient with respect to B.

The only envy-free price vector is p. The way how the scalars ci for i = {1, ..., n}

were chosen ensures that the unique assignment, selected according to the tie-

breaking rule, will be µ: an agent i who announced the smallest bi1 among all

agents will be assigned to object 1 and by construction it was agent µ−1(1).

Among the remaining n − 1 agents, agent µ−1(2) announced the smallest bi2

therefore he is assigned to object 2, and so forth.

Assume on the contrary that there exists a profitable deviation by a group

of agents T . Given the strategy profile after deviation B ′ = (b
′

T , b−T ), the mech-

anism g selects an allocation (ν, p′). Since before deviation all agents i ∈ T

preferred their object to any other object and for a deviation to be profitable it

must be that

aiν(i) − p′ν(i) ≥ aiµ(i) − pµ(i) ≥ aiν(i) − pν(i) (2.8)
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with the first inequality strict for at least one agent i ∈ T . It follows that for all

i ∈ T

p′ν(i) ≤ pν(i) (2.9)

with at least one inequality strict. Thus there exits an object j whose price has

strictly decreased: p′
j < pj. Observe that if T = I it follows immediately that

the new price vector does not sum to C, a contradiction.

If T  I choose one of the objects j whose price has decreased the most.

Since after the deviation the selected allocation g(B ′) = (ν, p′) is envy-free with

respect to the matrix B ′ then for each non-deviating agent i ∈ I\T we have an

inequality

biν(i) − p′ν(i) ≥ bij − p′j. (2.10)

Using the fact that before the deviation biν(i) − pν(i) = bij − pj since bi = p + ci

we obtain for each agent i ∈ I\T that

0 > p′j − pj ≥ p′ν(i) − pν(i) (2.11)

for the assignment ν. Thus it follows that p′
ν(i) < pν(i) for all i ∈ I\T . Combining

it with (2.9) and summing up over all objects gives

n∑

j=1

p′j <
n∑

j=1

pj,

a contradiction since both price vectors must sum to C.

Lemma 1 says that an envy-free allocation can be supported as a strong Nash

equilibrium of (A, g). Therefore, if (µ, p) ∈ G(A) then (µ, p) ∈ OSNE
(A,g) . Note also

that the proof does not depend on any particular way the prices are determined

as long as they are envy-free with respect to the announced matrix B.

Lemma 2 Let B be a strategy profile such that g(B) = (µ, p) /∈ G(A). Then B

is not a Nash equilibrium of (A, g).

23



Proof: Let g(B) = (µ, p) be given and assume that agent i envies object j:

ui(pj) > ui(pµ(i)). (2.12)

I will construct a profitable deviation in two steps. In the first step consider a

possible deviation b′i where agent i announces

b′ij = w(B, I, J) − w(B, I\{i}, J\{j}) ≥ bij

and b′ik = bik for all k 6= j. According to (2.5) we can distinguish between two

cases before the deviation. First, there was an efficient assignment ν ∈ MB such

that ν(i) = j. Then we have const1 ≤ w(B, I\{i}, J\{j}) + bij = w(B, I, J).

Then by the construction of the deviation b′ij = bij and w(B′, I, J) = w(B, I, J).

Second, there was no efficient assignment ν ∈ MB such that ν(i) = j. It implies

that w(B, I\{i}, J\{j}) + bij < const1 = w(B, I, J). By substituting this result

for const1 in equation (2.5) but applied to calculate w(B ′, I, J), it again follows

that w(B′, I, J) = w(B, I, J). Since after the deviation every assignment that

achieves the coalitional worth equal to w(B ′, I, J) is efficient, it follows that all

assignments that were efficient before the deviation remain efficient after. That

is, the deviation b′i was constructed in such a way that no assignment that was

efficient is destroyed by the deviation and if the deviation adds an additional

efficient assignment, it must assign agent i to object j: if ν ∈ MB then ν ∈ MB′

,

and if ν ∈ MB′

but ν /∈ MB then ν(i) = j. It follows that µ ∈ MB′

. Therefore

we can take the assignment µ to find the agent-optimal price of any object l ∈ J

after the deviation according to (2.4):

p′∗l = w(B′, I\{µ−1(l)}, J) − w(B ′, I\{µ−1(l)}, J\{l}). (2.13)

Since w(B′, I, J) = w(B, I, J) and b′µ−1(l)l = bµ−1(l)l for all l ∈ J because the only

valuation to change was bij but µ(i) 6= j, therefore the second term of (2.13) does

not change:

w(B′, I\{µ−1(l)}, J\{l}) = w(B ′, I, J) − b′µ−1(l)l = w(B, I, J) − bµ−1(l)l.
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By Proposition 1 the first term is weakly increasing in bij:

w(B′, I\{µ−1(l)}, J) ≥ w(B, I\{µ−1(l)}, J).

Therefore none of the agent-optimal prices can decrease as a result of the devia-

tion.

In the continuation I analyze the following two cases:

Case 1 The agent-optimal price of object j strictly increases: p′
∗j > p∗j.

It means that

w(B′, I\{µ−1(j)}, J) > w(B, I\{µ−1(j)}, J).

This can only happen if b′ij > bij, which means that there was no efficient assign-

ment ν ∈ MB that would allocate agent i to object j. Applying (2.5) we obtain

that7

w(B′, I\{µ−1(j)}, J) = const2 + b′ij > (2.14)

w(B, I\{µ−1(j)}, J) = max(const1, const2 + bij).

Now consider a deviation where agent i announces, given a sufficiently small

ε > 0,

b′′ij = b′ij − ε > bij

and b′′ik = bik for all k 6= j. In what follows I compare the strategy profile after

the deviation B′′ = (b′′i , b−i) with the initial strategy profile B = (bi, b−i). First,

after the deviation the set of efficient assignments does not change MB = MB′′

,

and so does the selected assignment: µ ∈ MB. Second, using the same argument

as when discussing the deviation B ′ = (b′i, b−i), none of the agent-optimal prices

can decrease as a result of the deviation. Third, from (2.14) it follows that

w(B′, I\{µ−1(j)}, J) > w(B ′′, I\{µ−1(j)}, J) > w(B, I\{µ−1(j)}, J),

7Observe that the values of constants const1 and const2 change depending on the sets T ⊆ I
and Q ⊆ J but not on the value of bij while keeping the rest bkl, for k 6= i and l 6= j, fixed.
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and, as a result, p′′∗j = p′∗j−ε > p∗j. Fourth, the agent-optimal price of object µ(i)

does not change pµ(i) = p′′µ(i) since by (2.4) it does not depend on the valuations of

agent i. Then, according to (2.7), agent i is strictly better off after the deviation

b′′i , thus strategy profile B was not an equilibrium.

Case 2 The agent-optimal price of object j remains the same: p′
∗j = p∗j.

First I argue that this case implies that none of the agent-optimal prices will

change due to the deviation b′i, namely, p′∗k = p∗k for all k ∈ J . From Proposition

2, in order to check whether a price vector is envy-free, it is sufficient to consider

any efficient assignment. Choose µ ∈ MB since by the construction of B ′ the

assignment µ ∈ MB′

. Clearly, the only agent who could feel envy under the price

vector p∗, given the matrix of valuations B ′, is agent i and only with respect to

object j, that is, biµ(i)−p∗µ(i) < b′ij −p∗j. However, the deviation was constructed

to ensure that there exists an assignment ν ∈ MB′

such that ν(i) = j. Corollary

1 says that biµ(i)−p′∗µ(i) = b′ij −p∗j. Agent i cannot affect the agent-optimal price

of the object he is assigned to under some efficient assignment rule, therefore

p′∗µ(i) = p∗µ(i). Thus nobody feels envy relative to B ′ under price vector p∗. And

it was argued before that as a result of the deviation b′i, the agent-optimal prices

cannot decrease, therefore p∗ must be the vector of agent-optimal prices after the

deviation.

Now consider a deviation b′′i where agent i announces, for sufficiently small ε,

b′′ij = b′ij + ε

and b′′ik = bik for all k 6= j. After the deviation all efficient assignments will

allocate object j to agent i: ν(i) = j for all ν ∈ MB′′

and B′′ = (b′′i , b−i). In

what follows I compare the situation when the strategy profile B ′ = (b′i, b−i) was

used with the strategy profile B ′′ = (b′′i , b−i). Take any efficient assignment after

the deviation b′′i : ν ∈ MB′′

. This assignment was efficient before the deviation:

ν ∈ MB′

. Again, agent i cannot affect his own agent-optimal price, here, the
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price of object j. According to (2.4), before the deviation the price of any object

l 6= j is equal to

p∗l = w(B′, I\{ν−1(l)}, J) − w(B ′, I\{ν−1(l)}, J\{l}), (2.15)

where

w(B′, I\{ν−1(l)}, J\{l}) = w(B ′, I\{ν−1(l), i}, J\{l, j}) + b′ij

since ν(i) = j. After the deviation b′′ij the second term of (2.15) has increased by

ε, that is,

w(B′′, I\{ν−1(l)}, J\{l}) = w(B ′, I\{ν−1(l)}, J\{l}) + ε

for all l 6= j. The first term of (2.15) before the deviation is

w(B′, I\{ν−1(l)}, J) = max(const1, const2 + b′ij).

Therefore, after the deviation b′′ij, it belongs to the interval:

w(B′, I\{ν−1(l)}, J) + ε ≥ w(B ′′, I\{ν−1(l)}, J) ≥ w(B ′, I\{ν−1(l)}, J).

It follows that the agent-optimal prices of objects other than j cannot increase

and each of them can decrease at most by ε: p∗l − ε ≤ p′′∗l ≤ p∗l for all l 6= j.

Since, according to (2.7), the utility of agent i is increasing in the agent-optimal

prices paid by other agents, consider the worst case: p′′
∗l = p∗l − ε for all l 6= j.

Then the utility of the agent i after the deviation is ui(p
′′
j ) = ui(pj) −

n−1
n

ε. By

(2.12), for sufficiently small ε,

ui(p
′′
j ) = ui(pj) −

n − 1

n
ε > ui(pµ(i)).

Thus, for sufficiently small ε, announcing

b′′ij = w(B, I, J) − w(B, I\{i}, J\{j}) + ε
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is a profitable deviation for agent i and the matrix B could not form a profile of

Nash equilibrium strategies.

From Lemma 2 it follows that if B is a Nash equilibrium of (A, g) it must

be envy-free, that is, if g(B) ∈ ONE
(A,g) then g(B) ∈ G(A). Lemma 1 already

established the converse inclusion G(A) ⊆ OSNE
(A,g) ⊆ ONE

(A,g). Therefore G(A) =

OSNE
(A,g) = ONE

(A,g). Thus I have proven that the simple and natural mechanism

double implements the set of efficient and envy-free allocation both in Nash and

strong Nash equilibrium. That is, the sets of Nash and strong Nash equilibrium

outcomes and envy-free allocations coincide.

2.6 Concluding Remarks

Given the announced preference profile, the mechanism selects a particular envy-

free price vector although there may exist other envy-free prices. Abdulkadiroǧlu

et al. [1] point to some advantages of the price selected by the algorithm. In

particular, if there exists an envy-free price vector that is nonnegative, then the

price selected by their algorithm must also be nonnegative. In any case, the use

of the given price selection rule entails no loss of generality since with the same

rule one can achieve any envy-free price with respect to the true preferences as

an equilibrium outcome of the game.

A feature of the mechanism is that an equilibrium strategy profile B will

usually imply multiple efficient assignments with respect to the announced valu-

ations. Therefore the mechanism always needs to rely on the tie-breaking rule to

select the right assignment. However, the set of possible equilibria is not affected

by the particular tie-breaking rule. One could substitute the present tie-breaking

rule with any other rule that selects correctly the efficient assignment with re-

spect to the true valuations. For example, a valid tie-breaking rule could be that

additionally to their valuations agents announce the object they prefer. In equi-
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librium, each agent would announce the object that would be assigned to him if

the true valuations were known. An advantage of the proposed tie-breaking rule

however is that it requires that agents announce only their own valuations.

Notice that the mechanism does not ensure individual rationality, that is,

agents may get lower utility by playing the game than by choosing not to partici-

pate. Thus it implicitly assumes that agents are forced to participate in the game.

The reason is that the model imposes an exogenous price constraint which if big

enough, rules out the existence of individually rational and envy-free allocations.

On the other hand, if the constraint is variable so that it accommodates individ-

ual rationality, one could simply apply the results of Leonard [10] and Demange

et al. [7] to implement in dominant strategies.

The model explicitly assumes that the number of agents and objects is the

same. If the number of agents exceeded the number of objects one could introduce

fictitious objects and the previous analysis would still apply. However, when the

number of objects exceeds the number of agents, the introduction of fictitious

agents does not work since it implies that some fictitious agent would need to

pay a price or receive a transfer of the object he is assigned to. As a result the

actually paid prices would not meet the price constraint.

2.7 Appendix: Proofs of Propositions 1 and 2

Proposition 1 Given a matrix of valuations A, the coalitional function w(A, T,Q)

is continuous and weakly increasing in aij.

Proof: If either i /∈ T or j /∈ Q then w(A, T,Q) does not depend on aij and

can be treated as constant - obviously continuous and weakly increasing in aij.

Assume that i ∈ T and j ∈ Q. Given a solution (xij)(i,j)∈T×Q to the primal

problem, we can write equation (2.1) in the following form:

w(A, T,Q) =
∑

(k,l)∈T×Q\{(i,j)}

aklxkl + aijxij. (2.16)
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First, I claim that if as a result of the change from aij to a′
ij, keeping the rest of

valuations fixed, there is no change in xij = x′
ij, then there is no change in the

solution xkl = x′
kl for all (k, l) ∈ T × Q. Assume, on the contrary, that xkl 6= x′

kl

for some (k, l) ∈ T ×Q\{(i, j)}, and that x′
kl for all (k, l) ∈ T ×Q was not another

solution of the original problem. Then we can write the system of equations:

∑

(k,l)∈T×Q\{(i,j)}

aklx
′
kl + aijxij <

∑

(k,l)∈T×Q\{(i,j)}

aklxkl + aijxij

∑

(k,l)∈T×Q\{(i,j)}

aklx
′
kl + a′

ijxij ≥
∑

(k,l)∈T×Q\{(i,j)}

aklxkl + a′
ijxij,

where the first inequality holds under original valuations and the second holds

after the change in aij. Thus we obtain a contradiction. Given this result, we

can write equation (2.1) as

w(A, T,Q) = max(const1 + aij · 0, const2 + aij · 1). (2.17)

The function in (2.17) is obviously continuous and weakly increasing in aij. Note

that const2 = w(A, T\{i}, Q\{j}) since agent i has been assigned to object j and

each agent can be assigned to at most one object and vice versa.

Proposition 2 Given a matrix of valuations A, the set of envy-free prices is the

same for all efficient assignments of objects.

Proof: Take any two efficient assignments µ1 and µ2. Assume, on the contrary,

that the price vector p is envy-free for the assignment µ1 but it is not envy-free

for the assignment µ2. Envy-freeness of µ1 implies that

aiµ1(i) − pµ1(i) ≥ aiµ2(i) − pµ2(i) (2.18)

for all i ∈ I. Assume without loss of generality that agent 1 envies object j under

assignment µ2:

a1µ1(1) − pµ1(1) ≥ aij − pj > a1µ2(1) − pµ2(1). (2.19)
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Summing up equation (2.18) across all agents and using equation (2.19) we obtain

∑

i∈I

aiµ1(i) −
∑

i∈I

pµ1(i) >
∑

i∈I

aiµ2(i) −
∑

i∈I

pµ2(i),

contradicting the assumption that µ2 was an efficient assignment.
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Chapter 3

Incumbency and Entry in License

Auctions:

The Anglo-Dutch Auction Meets

Other Simple Alternatives

3.1 Introduction

One of the salient features of the recent wave of spectrum license auctions has

been the disparity of prices across experiences. As an example, the Dutch auction

(meaning, the auction in the Netherlands) of licenses for the new UMTS fetched

less than a third than the corresponding British auction in per capita terms. One

of the explanations proposed for such disparity is the disparities across countries

in the ratio of incumbents to licenses, and the effects of this ratio on entry and

competition for licenses. (See, for instance, Klemperer [4] and Milgrom [7] .)

Certainly, insufficient entry may limit competition during the bidding process,

leading to a low price. The entry decision of a firm depends on a comparison

between its costs of participation and its expected benefits. For a potential

bidder the costs may include resources needed to assess the value of the license,

interest foregone on deposits, etc. These are sunk costs that a firm incurs before

it knows whether it wins a license. Therefore, the firm will decide to participate

only if it believes that its odds to win the auction are sufficient.
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But, why is the ratio of incumbents to licenses important in this regard? First,

incumbents are strong competitors. Indeed, they may have a client base and lower

expected network roll-out cost. That is, their expected valuation of a license is

higher. Also, their cost of market prospective may be significantly lower. If there

are at least as many incumbents as licenses, then entrants will probably assess as

too likely that all licenses will end up in the hands of incumbents, and then entry

is not likely to occur. That needs not be either inefficient or problematic in terms

of expected license revenue if there are more incumbents than licenses. Yet, if

the number of incumbents and licenses coincide, the lack of entry will destroy all

sources of competition, and that will have an enormous effect on revenue.

When attracting entrants is a goal, the allocation mechanism should favor

entrants over incumbents. For instance, Dutch (or first-price) auctions tilt the

allocation in favor of ex-ante weaker bidders, and thus weaker bidders prefer

Dutch auctions to efficient, English auctions (see Maskin and Riley [5]). Based

on this fundamental insight, Paul Klemperer (see Klemperer [3]) and others have

proposed the use of the so-called Anglo-Dutch auction when a number of identical

objects (licenses) are to be allocated and an identical number of ex-ante stronger

incumbents are potential buyers. An Anglo-Dutch auction is a mixture of the two

types of auction. It begins with an ‘English’ phase during which the price rises

until all but a number of bidders that exceeds by one the number of objects drop

out. At this moment (and price), the auction switches to a second ‘Dutch’ phase.

In this stage, only the remaining bidders can submit (simultaneous, sealed) bids

and only bids above the price at which the English phase stopped are allowed.

The first goal of this paper is to show in a very simple model how this auc-

tion indeed improves the expected revenues of the seller at the cost of sacrificing

efficiency. But our main goal is to investigate other simple alternatives that

dominate, both in terms of efficiency and revenues, the Anglo-Dutch auction.

We propose what we could term Anglo-Anglo auction: a two-stage, English auc-

tion. The design is inspired by Burguet and Sákovics [2], and consists of two
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English phases, the first one run with a (relatively high) reserve price. Instead of

using inefficiencies or allocation preference as the tool to induce entry, what the

two-stage, English auction uses is the information conveyed by the (absence of)

bidding in the first phase. Indeed, if some of the participants in the first phase

(incumbents included) are unwilling to bid above the reserve price, they will be

perceived as “weaker than expected” bidders. Thus, potential entrants that did

not venture to enter in the first round may now consider doing so for the second

round. We show that a two-stage, English auction is more efficient than both the

English and the Anglo-Dutch auctions. By allowing entry conditional on some

private information (entry conditional on bidding behavior), the two-stage entry

auction improves upon the most efficient one-stage entry auction, namely, the

English auction. Moreover, we show that the gain in efficiency (entry) benefits

the seller as well. Indeed, the revenues for the seller are higher in the two-stage,

English auction than in the Anglo-Dutch auction.

The analysis is carried out in an extremely simple model, presented in Section

3.2, where entrants have to incur a cost before learning their valuations. More-

over, valuations can take only two different values, although incumbents have

a higher probability of high valuation. We simplify further by assuming only

one unit for sale and one incumbent. The analysis of this model and the results

are presented in Section 3.3. Subsequently, we extend the model in two main

directions: multiple units and continuous valuations.

The extension to continuous types is relevant. Indeed, in the two-types model,

the Anglo-Dutch is allocationally efficient, in the sense that the object is never

assigned to a bidder that competes against a bidder with higher valuation. That

is, the only inefficiency may come from inappropriate (excessive) entry. The allo-

cation is still tilted in favor of the ex-ante weaker bidder: when two bidders have

the same type, an event with positive probability, the ex-ante weaker bidder will

win the auction (will bid higher) with higher probability. Yet one can suspect

that by not considering the allocation inefficiency (a tool to reduce informational
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rents of ex-ante stronger bidders) of Dutch auctions, their revenue generation

potential is underestimated. The analysis of the continuous valuations case nec-

essarily relies on numerical computations, since there is no analytical solution to

asymmetric Dutch auctions (the second stage of an Anglo-Dutch auction) and

the bidding behavior (when to bid) in a two-stage English auction has no simple

closed form. Using numerical methods for a family of simple continuous distri-

butions, we obtain the same results as in the base model.

Then we consider multiple units (and the same number of incumbents). Here

entry decisions in the second stage of the two-stage, English auction depends

on the number of units that are sold in the first stage. The larger the number

of units left unsold the larger the number of entrants in the second stage. In

fact, under very extreme values of the parameters, the effect that the number

of units available has on entry is very extreme. Only in such cases can Anglo-

Dutch auctions dominate in terms of revenues the two-stage, English auction.

Otherwise, our results for the one unit case hold in the multiple unit case.

3.2 Rules of the auctions

There are q identical units available for sale and the same number of incumbents.

Besides there is a sufficiently large number of potential entrants. In order to

learn his valuation and prepare his bid, an entrant has to incur a cost c. To

simplify the analysis, we assume that incumbents already know their valuations

and incur no further cost of participation. Each bidder has demand only for one

unit. Valuations are private and independently distributed. The valuations of

incumbents and entrants are drawn from distribution functions F1(v) and F2(v),

respectively.
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Rules of the Anglo-Dutch auction: Before bidding starts entrants decide

whether or not to incur cost c and to learn their valuations.1 The auction starts

as an English auction where bidders continuously raise their bids. We use the

clock modelling, so that once a bidder drops he cannot reenter the auction. When

q+1 bidders are left, the auction switches to the Dutch auction, or more precisely,

to the discriminatory auction, which is a generalization of first-price auction for

multiple units. Thus, surviving bidders simultaneously bid in this stage, and the

q bidders with the highest bids will win one license each. Winners pay their bids.

In this Dutch stage, the price at which the last bidder dropped out in the English

stage is set as a reserve price or minimum acceptable bid.

In the discrete valuation case, several bidders may drop out from the English

auction at a given price, leaving less than q + 1 bidders active. In that case, we

will assume that some of these simultaneously dropping bidders are randomly

selected to participate in the Dutch stage so that q + 1 bidders are still present.

Rules of the two-stage English auction: In the first stage the seller sets a

reserve price r, common to all units, and then entrants decide whether to enter

or not. Then the oral auction starts. Units are awarded to, at most, the q last

bidders to drop. The price is the maximum of r and the price at which only q

bidders stay. If less than q bidders offer the reserve price, so that some units fail

to sell in the first stage, these remaining units are auctioned in the second stage

with the reserve price now set equal to zero. Before this second stage starts,

entrants who did not enter in the first stage have a new chance to enter and

compete for the remaining units against incumbents and first-stage entrants who

abstained from bidding in the first stage. Again, if q ′ units were left unsold after

the first stage, they are awarded to the q′ bidders at the price at which only these

many bidders are left.

1We will consider pure strategy equilibria in entry. That allows us to leave the total number
of potential entrants unspecified. Thus, we will assume at the outset some exogenous order of
entry that entrants would consider natural.
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3.3 Discrete valuations, one unit case

Each bidder’s valuation may be v or v with v > v. Bidder 1, the incumbent, has

probability µ1 of having the high valuation v, and all other bidders (entrants)

have probability µ2 of having high valuation. We assume that µ1 > µ2.

3.3.1 Anglo-Dutch auction

Assume that, apart from the incumbent, bidder 1, n bidders enter the auction.

The English stage will stop at the price at which only two bidders remain in the

auction. Also, in this stage bidders’ weakly dominant strategy is to stay in the

auction until the price reaches their valuations. Thus, if there are more than two

bidders with valuation v, the price will continue increasing until it reaches this

value. In such case, the English stage stops at price v, two bidders are randomly

selected to bid in the Dutch part, where they bid v. On the other hand, if two

or less bidders have valuation v, the English stage stops at price v. In this case,

bidders with high valuation, if any, stay for the Dutch stage. If there are less than

two bidders with high valuation, then bidders among dropping (low valuation)

bidders are randomly selected so that two bidders take part in the Dutch stage.

We assume that bidders recognize each other, so that the identity of bidder 1

known. However, when the English stage stops at price v, the participants in the

Dutch part cannot be sure whether their opponent has been randomly selected

among the dropping bidders (i.e., has a low valuation) or not (i.e., has a high

valuation).

Bidding in the Dutch stage

We only need to analyze subgames in which the clock stops at price v in the

English stage. Assume bidder 1 and an entrant play the Dutch stage. It is easy

to see that there could be no pure strategy equilibrium in the bidding game.

Also, in equilibrium bidders bid v, the reserve price set by the English stage, if
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that is their valuation. For valuation v bidders, we consider only bidding in an

interval. It is easy to rule out bidding (with positive probability) strictly above

the supremum of the set of bids that the rival use with positive probability. That

is, this supremum needs being common to both bidders. Also, it is equally easy

to rule out mass points at such supremum, as is easy to rule out mass points

(or ”holes”) anywhere in the interior of the intervals of bids used in equilibrium.

Finally, equilibrium where the infimum of the intervals are different, or different

from v can be ruled out as well: there is no point in bidding in the interior of an

open interval with zero probability of containing a rival bid. Finally, we can rule

out that both bidders’ strategies contain a mass point at v, but we cannot rule

out that one of the bidders’ strategy has a mass point there.

To avoid open-set problems, we assume that in case two bidders with differ-

ent valuations tie in the Dutch auction then the winner is the one with higher

valuation. We will comment on this tie-breaking rule later.

Thus, let us characterize an equilibrium where bidders bid v when their val-

uation is v, and bid on [v, b] when their valuation is v, for some b. The entrant

bids according to a distribution H2, and the incumbent, bidder 1, bids according

to a distribution H1. Clearly, bidders with valuation v expect zero profits. Since

b is common and Hi, for i = 1, 2, has no atoms at b then the expected profits

of either an entrant or the incumbent that has valuation v when the clock stops

at price v in the English stage equals [v − b]. Indeed, by bidding b either bidder

expects to win with probability 1. Since expected profits should be independent

on the pure strategy played in a mixed strategy equilibrium, we conclude that the

entrant and the incumbent will expect the same equilibrium profit upon entry if

they have the same valuation.

This is in fact the way the Anglo-Dutch auction is expected to foster entry.

Indeed, notice that entrants with high valuation expect lower profits than incum-

bents in a standard English auction, since the rival has higher expected valuation.

The Dutch stage tilts competition in favor of entrants, and in the case of discrete
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valuations, this is enough to perfectly level the field.

In order to characterize b and Hi, for i = 1, 2, we need to consider the posterior

beliefs for each type of bidder about the rival bidder. Conditioning of being one

of the two bidders in the Dutch auction when the English auction stopped at

v, from the point of view of a rival with high type, an entrant’s type is v with

probability

γ2 =
µ2

µ2 + (1−µ2)
n

.

Indeed, given that stopping price (i.e., conditioning on no more than 1 rival

bidder having high valuation), the rival knows that the entrant would be one of

the participants in the Dutch stage for sure if his valuation is high, and with

probability 1
n

in case his valuation is (as everybody else’s) low. Similarly, the

rival with high valuation updates his beliefs about the incumbent having high

valuation assigning this event a probability

γ1 =
µ1

µ1 + (1−µ1)
n

.

Observe that γ1 > γ2. With these posteriors, the expected profit for bidder 1 is,

for all b on (v, b],

π1(b) = [(1 − γ2) + γ2H2(b)] (v − b). (3.1)

Similarly, for bidder 2, and for all b in (v, b]

π2(b) = [(1 − γ1) + γ1H1(b)] (v − b). (3.2)

Thus, given b, (3.1) and (3.2) characterize Hi, for i = 1, 2. Notice that since

π1(b) = π2(b) but γ1 > γ2, H2(b) < H1(b) for all b. That is, as is usually the case

in the Dutch auction, the ex-ante weaker bidder bids more aggressively. Now we

apply the condition that the infimum of the intervals of both mixed strategies

should be v. Since only one bidder can have a mass point at that infimum, and

H2(b) < H1(b) for all b, we conclude that H2(v) = 0. That is, from (3.1)

π1 = (1 − γ2) (v − v) = π2. (3.3)
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Substituting in (3.1) and (3.2), we obtain

H2(b) =
1 − γ2

γ2

b − v

v − b
.

and

H1(b) =
1 − γ1

γ1

b − v

v − b
+

γ1 − γ2

γ1

v − v

v − b
,

so that

H1(v) =
γ1 − γ2

γ1

.

Also, using H2(b) = 1 we obtain

b = γ2v + (1 − γ2) v.

The equilibrium when two entrants play the Dutch auction is even simpler.

Here both bidders are symmetric and update according to γ2 the probability that

the rival has high type when he himself does. Then, their expected profits are

given by (3.1), and using H2(v) = 0 we obtain that these profits equal (3.3). This

implies that H2(b) obtained above still describes the equilibrium, except that now

this is the common bidding strategy for both rivals.

We can summarize all that has been obtained in the following

Lemma 3 If selected to play the Dutch stage when the English stage stops at

price v,

i) entrants expect zero profits if their valuation is v and profits (1 − γ2) (v−v)

if their valuation is v independently of the identity of the rival,

ii) entrants bid independently of the identity of the rival, but more aggressively

than the incumbent.

We should comment now on the role of our tie-breaking assumption. We

assume that in case two bidders bid v, which occurs with positive probability

when the incumbent has valuation v and the entrant has valuation v, the bidder

with high valuation wins. This allows the latter to bid v and still expect to win
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with probability γ2. That is, this allows the incumbent to identify the lowest bid

that still allows him to defeat the bid of a rival with type v. Therefore, the tie-

breaking assumption comes to play the role of a smallest unit of money. Notice,

however, that we do not need assuming that the incumbent has preference when

bidding against an entrant with type v. That is, an entrant that may defeat the

incumbent.

We now turn to the analysis of entry and the English stage.

Entry and bidding in the English stage

First we compute the profits that an entrant expects net of the entry cost. Notice

that the entrant expects positive profits only when his type is v and no more than

one other bidder has this type. His profits in this case are independent of the pure

strategy (among the ones that belong to the support of his equilibrium mixed

strategy) that he chooses to play. One of these strategies is to bid b = v, in which

case he wins (v − v) when all rivals have v or when the rival is the incumbent

and bids v. This event has probability

[(1 − µ1) + µ1H1(v)] (1 − µ2)
n−1 .

Thus, substituting for H1(v), the expected profits of an entrant are

Πa(n) = µ2 (1 − µ2)
n−1

[
(µ1 − µ2)

(n − 1)µ2 + 1
+ (1 − µ1)

]
(v − v) − c. (3.4)

This is a decreasing function of n. Entry occurs to the point where the above

expression is non negative, and the same expression is negative for n+1. That is,

treating n as a continuous variable, the number of entrants in the Anglo-Dutch

auction, na, satisfies Πa(na) = 0.

Compare this entry decision with the entry decision in a standard English

auction. Again, treating n as a continuous variable, the number of entrants in a

standard English auction, ne, solves

µ2 (1 − µ1) (1 − µ2)
ne−1 (v − v) − c = 0. (3.5)

44



Since (µ1−µ2)
(n−1)µ2+1

> 0, and Πa(n) is decreasing in n, we conclude that

Lemma 4 The Anglo-Dutch auction promotes entry beyond what is obtained in

the standard English auction: na ≥ ne.

To conclude with the Anglo-Dutch auction, we can compute the profits ex-

pected by the incumbent. Again, planning to bid v in the Dutch stage when his

type is v and the clock stops at v at the English stage, the incumbent’s expects

profits are

µ1 (1 − µ2)
n (v − v). (3.6)

3.3.2 Two-stage English auction

Assume that, besides the incumbent, k new entrants enter and learn their val-

uations in the first stage and, if nobody bids, that is, if all bidders drop before

the reserve price r is called, then some additional l bidders enter in the second

stage. We look for a separating equilibrium where high valuation bidders of the

first stage prefer to bid (i.e., prefer to stay past the reserve price r) while low

valuation bidders abstain from bidding in the first stage.2

Thus, assume all bidders (entrants and incumbent) with valuation v stay past

the reserve price r ∈ (v, v). Then it is weakly dominant to drop only when

the price in the first stage reaches v, since dropping before implies zero profits.

Bidding in the second stage for all k + l + 1 participants is simple: again it is

weakly dominant to drop at a price equal to valuation.

Apart from entry, the only other important choice for a bidder with valuation

v present at the first stage is between participating in this first stage and waiting

in the hope that there is a second one. The incumbent will prefer to bid in this

first stage if

(1 − µ2)
k(v − r) ≥ (1 − µ2)

k+l(v − v).

2Entrants that would not “bid” in the first stage even if their valuation is high would not
enter. Thus, the only pooling equilibrium having no “bids” in the first stage is one where no
entrants enter and all wait until the second stage. We will consider this case below.
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Indeed, in either case he will earn positive profits, (v − v) in the second stage or

(v − r) in the first, only if no other participant has valuation v. Similarly, first

stage entrants with high type will prefer to bid if:

(1 − µ1)(1 − µ2)
k−1(v − r) ≥ (1 − µ1)(1 − µ2)

k+l−1(v − v).

In both cases, the restriction can be written as:

r ≤ v − (1 − µ2)
l(v − v). (3.7)

We now turn to the entry decisions in each stage. If the second stage of the

auction takes place, potential new entrants learn that the incumbent and the k

entrants in the first stage all have low valuations. Thus, treating l as a continuous

variable, it satisfies3

µ2(1 − µ2)
l−1(v − v) = c. (3.8)

Notice that l is independent of r. Similarly, the zero profit (entry) condition in

the first stage is

µ2(1 − µ1)(1 − µ2)
k−1(v − r) = c. (3.9)

Certainly k and l are integers, and thus in general neither of the conditions above

are satisfied with equality. That is, entrants expect “some” positive profits.

Again, if there is a “natural” order for potential entrants to enter, as we are

assuming, and expected profits in the first stage are no lower than expected

profits in the second this creates no additional coordination problems. Also, the

seller could consider a small entry in the second stage to keep entrants at their

indifference level.

If we compare (3.8) with (3.4), we can conclude that l ≥ na. That is, the

number of new entrants in the second stage is at least equal to the number of

entrants in the Anglo-Dutch auction.

3In fact, it would be given by

l = max{m|µ2(1 − µ2)
m−1(v − v) ≥ c}.

46



Let us define r(k), for k = 1, 2... as the solution in r of (3.9) above. Notice that

r(k) is decreasing in k. Also, denote by r×(0) the solution to (3.7) with equality.

This is the highest reserve price compatible with the incumbent bidding in the

first stage. Notice that r×(0) > r(1). Indeed, using (3.8) we have

r×(0) = v −
1 − µ2

µ2

c,

whereas r(1), substituting in (3.9) for k = 1, is

r(1) = v −
1

µ2(1 − µ1)
c < r(0).

Finally, define the reserve price r(0) as

r(0) = v −
1 − µ2

µ2(1 − µ1)
c.

At r(0), an incumbent with high valuation expects the same profits bidding in

the first stage of the two-stage English auction as in a standard English auction.

Notice that r×(0) > r(0) > r(1).

We should note that for any reserve price in [r(0), r×(0)] there exist two

equilibria. In one of them, the incumbent is expected not to participate in the

first stage no matter what valuation he has, and therefore the first stage never sells

the license. Thus, the second stage (and the whole two-stage English auction)

becomes a regular English auction. In the other equilibrium the incumbent is

expected to bid in the first round if his valuation is high, so that in the second

stage l new entrants enter. Given this, the incumbent indeed prefers bidding

in the first stage when his valuation is high. What is important is that the first

equilibrium does not exist for r ∈ (v, r(0)), and then we will only consider reserve

prices in this range.

3.3.3 Comparing total surplus

One feature of both the Anglo-Dutch auction and the two-stage English auction

in this setting is that the license is assigned to the user that values it most
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among the ones present at the round in which it is assigned. In a more general,

continuous type model this is true for the two-stage English auction, but not

for the Anglo-Dutch auction. Nevertheless, in our setting efficiency comparisons

depend only on the entry decisions.

The standard English auction maximizes the gains from trade among the

mechanisms at which entry occurs only at one point in time. Indeed, given n

entrants, a new entrant adds surplus only if the n − 1 previous entrants and the

incumbent all have valuation v and the new entrant has valuation v. This event

has probability µ2(1−µ1)(1−µ2)
n−1 and the increase in surplus is (v− v) in this

case. Trading this increased expected surplus with the cost of entry c results in

(3.5), the entry condition in an English auction. In this sense, the Anglo-Dutch

auction fosters entry beyond what is efficient.

In a two-stage English auction, entry takes place at more than one point in

time. If the license is not assigned in the first stage, then new entrants will enter

to take part in a final, English auction. This second-stage entry conditional on all

first-stage participants having low type v is also (conditionally) efficient. Indeed,

the expected surplus, given that there is a second stage, is

v +
[
1 − (1 − µ2)

l
]
(v − v) − lc

where l is given by (3.8). Now,

[
1 − (1 − µ2)

l
]
(v − v) = (v − v)

l∑

m=1

µ2(1 − µ2)
m−1.

Notice that there are l terms on the right hand side, and they are decreasing in

m. Thus, the smallest one is µ2(1− µ2)
l−1 (v − v). But this term is equal to c, if

(3.8) is satisfied.

It should not come as a surprise that a two-stage entry mechanism may result

in a higher surplus than even the most efficient one-shot entry. In fact, this is so

for any reserve price choices.

48



Proposition 3 The expected surplus in any two-stage English auction is higher

than in a standard English auction and therefore also higher than in an Anglo-

Dutch auction.

Proof: We have already established that the second stage entry l is conditionally

efficient, i.e., that l minimizes (1 − µ2)
l (v − v) + lc, also that l ≥ ne, and that l

is independent of the reserve price, and therefore independent of first stage entry

k. Notice that for r = v + ε and ε small, (3.9) is (virtually) the entry condition in

the English auction, therefore k ≤ ne for any r. Now, the total net surplus from

a two-stage English auction given entry decisions k ≤ ne is

v − (1 − µ1)(1 − µ2)
k
[
(1 − µ2)

l (v − v) + lc
]
− kc

> v − (1 − µ1)(1 − µ2)
k
[
(1 − µ2)

ne−k (v − v) + (ne − k)c
]
− kc

= v − (1 − µ1)(1 − µ2)
ne

(v − v) − (1 − µ1)(1 − µ2)
k(ne − k)c − kc

> v − (1 − µ1)(1 − µ2)
ne

(v − v) − nec,

where the last line is the expected surplus in the standard English auction. QED

According to the above proposition, any reserve price, including r = v (+ε),

the one that maximizes entry in the first round and still allows a positive prob-

ability of new entry in the second round, induces more efficient entry than the

most efficient one-shot entry auction. But what is the efficient level of first-stage

entry in the two-stage English auction? The answer to this question will also be

relevant when discussing revenues. When there is a second opportunity to exper-

iment, i.e., to obtain valuation draws, assigning the license in the first round has

an opportunity cost above v. Then efficient entry in the first stage needs not be

the highest compatible with screening low valuation types. Indeed,

Lemma 5 Maximizing surplus in a two-stage English auction requires limiting

entry. In particular, efficient entry k∗ satisfies

r(k∗) = v + (v − v)
[
1 − (1 − µ2)

l−1 (1 + (l − 1)µ2)
]
. (3.10)
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Proof: The marginal contribution of a new entrant in the first stage of the two

stage English auction is

µ2(1 − µ1)(1 − µ2)
k−1[(1 − µ2)

l (v − v) + lc] − c. (3.11)

Indeed, µ2(1 − µ1)(1 − µ2)
k−1 is the probability that the new entrant has a high

valuation v, and the rest of entrants have low valuation v. In this case, we

would have higher (gross) surplus with the additional entrant in the first stage

if future entrants were to have low type as well, which has probability (1 −

µ2)
l. The additional (gross) surplus would be (v − v), but entry of the second

period entrants would also imply a cost lc, which a good realization of a first

stage entrant would save. Now, treating k and l as continuous variables and

substituting equation (3.8), entry in the first stage should take place until the

point where

µ2(1 − µ1)(1 − µ2)
k−1(1 − µ2)

l−1 (v − v) (1 + (l − 1)µ2) = c.

It follows that efficient first stage entry k∗ < ne. Now, µ2(1−µ1)(1−µ2)
k−1(v−

r) = c. Substituting in (3.9), we obtain (3.10).QED

3.3.4 Comparing revenues

Revenues and efficiency are intimately related. Indeed, disregarding the integer

problem, entrants expect zero profits (net of the entry cost) both in a standard

English, an Anglo-Dutch, and a two-stage English auctions. Therefore, we need

only looking at total surplus (net of entry costs) and the profits of the incumbent

when comparing the seller’s revenues in both auctions. The incumbent’s profits

are µ1 (1 − µ2)
n (v − v) both in the standard English and in the Anglo-Dutch

auctions, except that n may differ in both. Thus, the revenues for the seller in

each case are

R(ni) = v − (1 − µ2)
ni

(v − v) − nic,
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for i = e, a. We can compute R(n) − R(n − 1) for any n to obtain

R(n) − R(n − 1) = µ2 (1 − µ2)
n−1 (v − v) − c.

This is decreasing in n. Thus, R(n) is maximized when this expression is zero,

i.e., when n = l (again, treating n as a continuous variable), increasing for n < l,

and decreasing for n > l. Compare this with entry decisions in Anglo-Dutch

and English auctions, obtained respectively from (3.4) and (3.5) above. Since

l > na > ne,

Proposition 4 The revenues of the seller are higher in the Anglo-Dutch auction

than in the standard English auction.

As conjectured, the Anglo-Dutch auction increases the revenues of the seller

by increasing entry.

Consider now the two-stage English auction. When maximizing revenues, the

seller needs only consider the maximum of the reserve prices compatible with any

amount of entry, k, that is, r(k) defined above. Indeed, any two values for the

reserve price that induce the same first period entry (and also the same second

period entry) also induce the same total (gross) surplus and the same cost of

entry, whereas both the profits of first period entrants and incumbents are lower

for the highest of the two reserve prices.

Then, let us compute the expected profit of the incumbent, i.e., µ1(1−µ2)
k(v−

r(k)) for different values of k. Substituting (3.9), we can write this expected

profits as
µ1

1 − µ1

1 − µ2

µ2

c.

Thus,

Lemma 6 The expected profits of the incumbent evaluated at r(k), are indepen-

dent of k.
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In other words, from the point of view of the seller’s revenues, the reduction

in reserve price that is necessary to attract one more entrant in the first round

exactly compensates the increase of competition obtained in this way, starting

from any level of entry k ≥ 1. Thus, we have

Corollary 2 From the point of view of the seller, the optimal reserve price is

r(k∗), which also maximizes total surplus.

Remark: If we select the equilibrium where the incumbent with high valuation

bids in the first stage, in the range [r(0), r×(0)], then r×(0) may result in higher

revenues for the seller. 4

We are now ready to compare seller’s revenues in the Anglo-Dutch auction

and in the two-stage English auction.

Proposition 5 A two-stage English auction with appropriate reserve price r(k∗)

results in higher revenues for the seller than the Anglo-Dutch auction.

Proof: The revenues for the seller in an Anglo-Dutch auction are

RAD = R(na) = v − (1 − µ2)
na

(v − v) − nac,

whereas the revenues of the seller in a two-stage English auction with r = r(k∗),

using the definition of r(k∗), can be written as

R2S(r(k∗)) = v − (1 − µ1)(1 − µ2)
k∗+l(v − v) − k∗c −

(1 − µ1)(1 − µ2)
k∗

lc −
µ1

1 − µ1

1 − µ2

µ2

c,

4Notice that this amounts to make a take it or leave it offer to the incumbent. If the seller
has the ability to exclude bidders from future stages, this may be optimal. In fact, McAfee and
McMillan [6] have shown in a model that could be reduced to our model except for its symmetry,
that the optimal mechanism for a seller with this ability when the number of potential buyers
is unbounded is to induce one by one entry and offer each entrant a (constant across periods)
price. With a finite number of potential entrants, this reserve price would have to be decreasing
(see Burguet [1]), so that buyers could buy in future periods even if they reject the offer at the
time they enter. The mechanism, however, would have to be complemented with asymmetric
subsidies even when buyers are symmetric.
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where the last term represents the profits of the incumbent. Then, since at k∗,

(3.11) equals zero, substituting this expression for c in that last term, we have

R2S(r(k∗)) = v − (1 − µ2)
k∗
[
(1 − µ2)

l(v − v) + lc
]
− k∗c.

Notice that, for all m ≤ l,

(1 − µ2)
m(v − v) + mc =

[
(1 − µ2)

m−1 − µ2(1 − µ2)
m−1
]
(v − v) + mc ≤

(1 − µ2)
m−1(v − v) + (m − 1)c.

Thus, repeating this for m = l, l − 1, ..., na − k∗,

R2S(r(k∗)) ≥ v − (1 − µ2)
k∗
[
(1 − µ2)

na−k∗

(v − v) + (na − k∗)c
]
− k∗c =

v − (1 − µ2)
na

(v − v) −
[
(1 − µ2)

k∗

(na − k∗) + k∗
]
c ≥ RAD.

QED

In an Anglo-Dutch auction, the seller sacrifices surplus to foster entry and

obtain higher revenues. A two-stage English auction increases the revenues of

the seller by improving the efficiency of entry decisions. As a result, both the

revenues of the seller and the efficiency of the allocation are higher than what

they are in a Anglo-Dutch auction.

3.4 Remarks on generalizations

In the previous sections we have analyzed a very stylized model of competition,

where buyers’ valuations could take one of two specific values. This was enough

to illustrate the main insights behind the proposal to use Anglo-Dutch auctions

to foster entry in the presence of a strong incumbent. Indeed, the incumbent bids

less aggressively in the Dutch part, so that the probability that an entrant obtains

the good (license) at a profit is enhanced. This fosters entry and enhances the

revenues for the seller at an efficiency cost: excessive entry. The stylized model

also shows that a two-stage English auction may be more appropriate to attain

the goal of high revenues with no cost of (and even enhancing of) efficiency.

53



Yet, there is one aspect of Anglo-Dutch auctions that the discrete case does

not reflect: the Dutch stage may introduce inefficiency that goes beyond excessive

entry, i.e., allocation inefficiency. Indeed, in asymmetric settings, a Dutch auction

may assign the good or license to a buyer different from the one that has the

highest willingness to pay. This inefficiency is in general to the advantage of

both the entrant and the seller (see Maskin and Riley [5]).

3.4.1 Continuous distributions

Thus, the first generalization we may consider is to assume continuous distribu-

tions of types, where this allocational inefficiency appears. We assume now that

vi, the valuation of a buyer, is a (independent) realization of a continuous random

variable. The incumbent draws his type from a distribution F1(v), whereas all

entrants draw their types from distribution F2(v). We further assume that F1

stochastically dominates F2.

In the Anglo-Dutch auction, it is still weakly dominant for bidders to stay in

the auction up to the moment when the price reaches their respective valuations.

If the clock stops at price ρ, with two entrants as the remaining bidders, then these

bidders participate in a symmetric Dutch auction with reserve price ρ, the one

with highest valuation will win, and the revenues for the seller will be equal to the

expected value of the second largest valuation. When one of the two remaining

bidders is the incumbent, however, bidders participate in an asymmetric Dutch

auction. In general, bidding strategies in this case, and expected revenues for the

seller, can only be obtained through numerical methods.

With respect to the two-stage English auction, and for any given reserve price

set by the seller, r, both the incumbent’s and entrants’ optimal behavior is to

drop at a price equal to their willingness to pay, if they do participate in any

of the stages. Thus, we only need analyzing participation decisions. We can

conjecture that these will be characterized by two cut-off values, w1, w2, such

that the incumbent decides to participate in the first period if v1 ≥ w1, and any
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first period entrant i participates if vi ≥ w2. Both of these values will depend

on the number of entrants in the first period and how many are expected in the

second. Treating entry as a continuous variable, then zero profits for entrants in

both stages and indifference between participating and waiting both for entrants

and the incumbent at their respective cut-off valuations are the four equations

that the solution (w1, w2, k, l) solves.

Using numerical computations, we have solved for the continuous model with

asymmetric, uniform distributions, Fi(v) = v
vi

, i = 1, 2, with 1 = v2 ≤ v1. The

details are shown in the Appendix. In all cases analyzed, the total surplus is

higher under a two-stage English auction than under an Anglo-Dutch auction.

Revenues also follow this ranking except for one case: when v1 = 1.2, and c =

0.072. This cost was chosen (as in all examples) so that entrants in the Anglo-

Dutch auction break even, the most favorable case from the point of view of the

seller. In this particular case, 2 entrants enter the Anglo-Dutch auction. For these

same values, the optimal reserve price in a two-stage English auction is r = 2
3
,

which generates zero entry in the first stage of the two-stage English auction, and

2 entrants in the second stage. (r = 2
3

is the maximum reserve price compatible

with the incumbent “bidding” in the first stage with positive probability, since

the expected highest bid from the two second period entrants is 2
3
. Consequently,

w1 = 1.) This obviously results in lower revenues for the seller (0.528, instead of

0.531). Why is entry not higher in the two-stage English auction? The answer

has to do with the integer nature of entry. Indeed, with l = 2, entrants expect

positive profits, equal to 0.0116. (Recall that entrants expect zero profits in the

Anglo-Dutch auction with these values of the parameters.) Yet with l = 3 they

would expect negative profits. The seller needs only setting an entry fee in

the second stage of the two-stage English auction above 0.0016 (much lower than

0.0116), which entrants would be willing to pay, to improve upon the Anglo-Dutch

auction.
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3.4.2 More than one unit

We could also ask whether our results extend to the case where the seller has

more than one unit for sale, and the equality between the number of units and

the number of incumbents still holds. In the Appendix we consider the case where

2 units are to be sold and there are 2 incumbents. Other things are as in the

model analyzed above. The main novelty here is that, in the second stage of a

two-stage English auction, there is now a chance that one of the units for sale

is assigned in the first stage, but the other unit is still available in the second

stage. Let l1 be the number of second-stage entrants in case 1 unit is left and l2

the number of second-stage entrants when 2 units are still available. These are

defined by

µ2(1 − µ2)
l1−1(v − v) = c, (3.12)

and

µ2[(1 − µ2)
l2−1 + (l2 − 1)µ2(1 − µ2)

l2−2](v − v) = c. (3.13)

Notice that the second stage is independent of the identity of the winner of

the first, given our assumptions. In the Appendix we show that the socially

efficient entry and allocation in one-stage auctions is achieved using, for instance,

an English auction. However, a two-stage English auction always results in higher

surplus than any one-stage auction. Thus, our results on efficiency carry over to

this multiple-unit case.

With respect to the seller’s revenues a sufficient condition for the ranking to

be the same is l2 ≤ 2(l1 + 1). In fact, this leaves a lot of slack. We have obtained

cases where the Anglo-Dutch auction performs better than the two-stage English

auction. However, these cases involve both extremely low values of µ2 and c so

that even though no entry would take place in an English auction, a large number

of firms would enter in an Anglo-Dutch or a second stage of the two-stage English

auction.
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3.5 Concluding remarks

We have offered theoretical support to the claim that an Anglo-Dutch auction

results in higher revenues than an ascending auctions when there are as many

licenses as incumbents. By favoring ex-ante weaker entrants, the Anglo-Dutch

auction fosters entry and this results in higher prices of licenses at the cost of

efficiency. However, we have also proposed another simple alternative to this

Anglo-Dutch auction: a two-stage English auction. What we could term an

Anglo-Anglo auction. Instead of relying on inefficient allocations to induce entry,

the two-stage English auction relies on information revealed through bidding, an

information on which entrants can condition their entry decisions. As a result,

entry is more efficient and surplus is higher, which works to the advantage of the

seller. Thus, this simple design not only increases revenues but also the gains

from trade.

There is one aspect in which the two-stage English auction is more complex

than the Anglo-Dutch auction: its intrinsic multistage nature. Indeed, the Anglo-

Dutch auction requires two stages, but no lag of time is needed between them.

On the contrary, in a two-stage English auction potential new entrants should

be given enough time to “enter ” (find about their valuation, prepare a bidding

strategy) before the second stage takes place. In cases where this waiting is

costly, this waiting cost would have to be weighed against the gains that we have

discussed. In any case, the conclusion of this work is that the learning that takes

place in dynamic designs may be a better alternative than inefficiencies when

fostering competition through entry is the goal.
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3.6 Appendix

3.6.1 Continuous valuations

Consider the Anglo-Dutch auction. There are initially n entrants plus the in-

cumbent who participate in the English stage. A weakly dominant strategy for

bidders is to stay in the auction up to the moment when the price reaches their

respective valuations and then to drop out. Suppose that the bidder with third

highest valuation drops out at the valuation ρ. Then the remaining two bidders

participate in the Dutch stage with reserve price ρ. Suppose that two bidders

with the highest valuations are entrants. Then the expected revenue for seller

from the Dutch stage is
∫ v2

ρ

v(1 − F2(v))f2(v)dv,

which is the expected value of the second highest valuation given that it exceeds

ρ. The density (on [0, ρ)) of the highest valuation ρ (reserve price) among the

remaining n − 1 bidders is

fn−1:n−1(ρ) = F2(ρ)n−2f1(ρ) + (n − 2)F2(ρ)n−3F1(ρ)f2(ρ).

There are n(n − 1) permutations when two bidders with the highest valuations

are entrants. Thus, the revenue for seller (times the probability of the event)

accruing when two entrants play the Dutch part is

Rw,w = n(n − 1)

∫ v2

0

(∫ v2

ρ

v(1 − F2(v))f2(v)dv

)
dF2(ρ)n−2F1(ρ) (3.14)

= n(n − 1)

∫ v2

0

v(1 − F2(v))F2(v)n−2F1(v)f2(v)dv.

Suppose now that one of the two bidders with the highest valuations is the

incumbent. Define the truncated distributions

G2(v) ≡
F2(v) − F2(ρ)

1 − F2(ρ)

G1(v) ≡
F1(v) − F1(ρ)

1 − F1(ρ)
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Let v = φ2(b) and v = φ1(b) be inverse bid functions, respectively, for entrant

and incumbent, defined on [ρ, b∗], such that φi(ρ) = ρ and φi(b
∗) = vi for i = 1, 2.

When an entrant bids b he wins with probability G1(φ1(b)) and pays his bid.

Similarly, the distribution of an entrant’s bid is G2(φ2(b)). Therefore the expected

revenue for the seller when accruing from an entrant-winner is

R2 =

∫ b∗

ρ

bG1(φ1(b))dG2(φ2(b)),

and the expected revenue accruing from an incumbent-winner is

R1 =

∫ b∗

ρ

bG2(φ2(b))dG1(φ1(b)).

The distribution of ρ is

fn−1:n−1(ρ) = (n − 1)F2(ρ)n−2f2(ρ).

Then, the expected revenue accruing to the seller from an entrant when the

incumbent is one of the two bidders with the highest valuations is

Rw,s = n

∫ v2

0

R2(1 − F2(q))(1 − F1(q))(n − 1)F2(q)
n−2f2(q)dq, (3.15)

and the expected revenue accruing to the seller from the incumbent is

Rs,w = n

∫ v2

0

R1(1 − F2(ρ))(1 − F1(ρ))(n − 1)F2(ρ)n−2f2(ρ)dρ. (3.16)

Thus, the total revenues of the seller are Rw,w + Rw,s + Rs,w. Notice that R1 and

R2 depend on the (inverse) bidding functions φi(b). These have to be computed

using numerical methods.

Now we turn to a two-stage English auction. Again assume that, besides the

incumbent, k entrants enter in the first stage and, if nobody bids, some additional

l bidders enter in the second stage. Since first stage entrants must bid at least the

reserve price r, they will decide to participate in the first stage bidding if their

valuations will exceed a cut-off value w2. Similarly, the incumbent will decide to

participate in the bidding if his valuation is above a cut-off value w1.
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Define truncated distributions for i = 1, 2 as

Hi(v) ≡
Fi(v)

Fi(wi)
.

We can distinguish three cases: (1) v2 ≥ w2 ≥ w1 ≥ 0, (2) v2 ≥ w1 ≥ w2 ≥ 0,

(3) v1 ≥ w1 ≥ v2 ≥ w2 ≥ 0. (And two more separate cases when k = 0 since

then w2 does not exist: v2 ≥ w1 ≥ 0 and v1 ≥ w1 ≥ v2.) Here we present only

derivations of cut-off points for the first case. Note that once bidders decide to

bid (both in the first and second stages) it is weakly dominant for them to bid

their true valuations. The cut-off point w1 for the incumbent is found when he is

indifferent between obtaining the object in stage 1 at reserve price r or waiting

till stage 2 and obtaining it at the highest valuation among k + l entrants. Thus,

(w1 − r)F2(w2)
k =

∫ w1

0

(w1 − v)dF2(v)lF2(v)k =

∫ w1

0

F2(v)lF2(v)kdv, (3.17)

and the cut-off point w2 for each of the k entrants satisfies

(w2 − r)F2(w2)
k−1F1(w1) +

∫ w2

w1

(w2 − v)F2(w2)
k−1dF1(v) (3.18)

=

∫ w2

w1

(w2 − v)F1(w1)dF2(v)lF2(v)k−1 +

∫ w1

0

(w2 − v)F1(v)dF2(v)lF2(v)k−1.

Here we have an extra term since an entrant with valuation w2 will win against

an incumbent whose valuation takes value in (w1, w2). Rearranging,

(w1 − r)F2(w2)
k−1F1(w1) +

∫ w2

w1

F2(w2)
k−1F1(v)dv

=

∫ w1

0

F2(v)lF2(v)k−1F1(v)dv +

∫ w2

w1

F2(v)lF2(v)k−1F1(w1)dv.

We can express both conditions using truncated distributions

w1 − r =

∫ w1

0

F2(v)lH2(v)kdv

w1 − r + F1(w1)
−1

∫ w2

w1

F1(v)dv

=

∫ w1

0

F2(v)lH2(v)k−1H1(v)dv +

∫ w2

w1

F2(v)lH2(v)k−1dv.
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Combining both equations gives
∫ w1

0

F2(v)lH2(v)kdv + F1(w1)
−1

∫ w2

w1

F1(v)dv (3.19)

=

∫ w1

0

F2(v)lH2(v)k−1H1(v)dv +

∫ w2

w1

F2(v)lH2(v)k−1dv.

Let us define the revenue of the seller from the incumbent by Rs, from each

of first-stage entrants by Rk, and from each of second-stage entrants by Rl. The

total revenue to the seller then is Rs + kRk + lRlF2(w2)
kF1(w1). Also define the

expected profit of each of first-stage entrants by Pk, and of each of second-stage

entrants by Pl.

For fixed entry (k, l) we solve the following maximization problem:

max
w1,w2

Rs(w1, w1) + kRk(w1, w2) + lRl(w1, w2)F1(w1)F2(w2)
k (3.20)

subject to constraint (3.19), and inequalities v2 ≥ w2 ≥ w1 ≥ 0, Pk(w2, w1) ≥ c

and Pl(w2, w1) ≥ c. After solving for this, we can find the reserve price r from

either equation (3.17) or (3.18). Next we present expressions for revenues Rs, Rk,

Rl, and profits Pk, Pl.

The expected revenue from the incumbent is

Rs =

∫ v1

v2

J1(v)f1(v)dv +

∫ v2

w2

J1(v)F2(v)kf1(v)dv +

∫ w2

w1

J1(v)F2(w2)
kf1(v)dv +

∫ w1

0

J1(v)F2(v)k+lf1(v)dv. (3.21)

The expected revenue from each of the k first stage entrants is

Rk =

∫ v2

w2

J2(v)F1(v)F2(v)k−1f2(v)dv +

∫ w2

w1

J2(v)F1(w1)F2(v)k+l−1f2(v)dv +

∫ w1

0

J2(v)F1(v)F2(v)k+l−1f2(v)dv, (3.22)

and the expected revenue from each of the l second stage entrants is

Rl =

∫ v2

w2

J2(v)f2(v)dv +

∫ w2

w1

J2(v)H2(v)kF2(v)l−1f2(v)dv +

∫ w1

0

J2(v)H1(v)H2(v)kF2(v)l−1f2(v)dv. (3.23)
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The expected profit of each of the k first stage entrants is

Pk =

∫ v2

w2

(1 − F2(v))F1(v)F2(v)k−1dv +

∫ w2

w1

(1 − F2(v))F1(w1)F2(v)k+l−1dv +

∫ w1

0

(1 − F2(v))F1(v)F2(v)k+l−1dv ≥ c, (3.24)

and the expected profit of each of the l second stage entrants is

Pl =

∫ v2

w2

(1 − F2(v))F2(v)l−1dv +

∫ w2

w1

(1 − F2(v))H2(v)kF2(v)l−1dv +

∫ w1

0

(1 − F2(v))H1(v)H2(v)kF2(v)l−1dv ≥ c. (3.25)

For numerical simulations we assume that valuations come from the uniform

distributions on [0, vi]

Fi(v) =
v

vi

, (3.26)

with v2 ≤ v1. The results from numerical simulations are summarized in Table

3.1. We have fixed v2 = 1 for all simulations. Table 3.1 illustrates results when

v1 varies. The entry cost c was chosen to ensure that n entrants in Anglo-Dutch

auction earn exactly zero net profits. With the uniform distributions, and when

first-stage entry is positive, one can show that w1 = w2 satisfies the equations

for cut-off points. Among the results presented in the Table 3.1 only in one case

the revenues of seller are lower in two-stage English auction than in Anglo-Dutch

auction, namely, in the auction that does not induce strictly larger (overall)

number of entrants than Anglo-Dutch auction: v1 = 1.2, c = 0.072, where RAD is

equal to 0.531, and R2S = 0.528. Yet, this is due to an integer problem. Indeed,

two entrants expect substantial positive profits in the second stage of the two-

stage English auction (0.0116 net of entry cost, in this case), yet a third one would

expect negative profits. If we keep the profits of entrants in the second stage to

zero, for instance, charging these entrants an entry fee of 0.0116, which would be

paid in case the incumbent did not bid (an event with probability 1/1.2), then

R2S = 0. 547 and then the revenues for the seller would again be larger in the

two-stage auction.
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Table 3.1: Numerical simulations of auctions for uniform distributions with v̄2 = 1
v1 c n SAD RAD k l w1 r S2S R2S

1 0.083 2 0.583 0.500 1 2 0.552 0.510 0.630 0.529
1 0.050 3 0.650 0.600 1 3 0.700 0.652 0.692 0.631
1 0.024 5 0.738 0.715 2 5 0.771 0.745 0.770 0.745
1.2 0.072 2 0.663 0.531 0 2 1.000 0.667 0.689 0.528
1.2 0.043 3 0.720 0.628 2 4 0.555 0.547 0.754 0.647
1.2 0.020 5 0.795 0.737 3 5 0.711 0.697 0.826 0.751
1.5 0.059 2 0.791 0.570 0 3 0.836 0.714 0.850 0.635
1.5 0.035 3 0.839 0.663 0 4 0.954 0.796 0.883 0.710
1.5 0.016 5 0.901 0.766 0 6 1.000 0.857 0.934 0.786
2 0.045 2 1.018 0.620 0 3 1.000 0.750 1.082 0.675
2 0.027 3 1.057 0.708 0 4 1.000 0.800 1.113 0.733
2 0.012 5 1.107 0.802 0 7 1.000 0.875 1.151 0.826

3.6.2 The two unit case

Again we show that the two-stage English auction is more efficient than both the

standard English auction and the Anglo-Dutch auction for all reserve prices r.

The expected surplus for any one-stage auction is given by

S1 = 2v−{2µ1(1−µ1)(1−µ2)
n+(1−µ1)

2[2(1−µ2)
n+nµ2(1−µ2)

n−1]}(v−v)−nc,

which is maximized by n such that

µ2[(1−µ1)
2{(1−µ2)

n−1+(n−1)µ2(1−µ2)
n−2}+2µ1(1−µ1)(1−µ2)

n−1](v−v) = c,

and is achieved using an English auction. Thus, necessarily expected surplus from

Anglo-Dutch auction is at most equal to the expected surplus from the standard

English auction. The expected surplus for the two-stage English auction is given

by

S2 = 2v − {2µ1(1 − µ1)(1 − µ2)
k + (1 − µ1)

2kµ2(1 − µ2)
k−1}[(1 − µ2)

l1(v − v) + l1c]

−(1 − µ1)
2(1 − µ2)

k[{2(1 − µ2)
l2 + l2µ2(1 − µ2)

l2−1}(v − v) + l2c] − kc. (3.27)

First we observe that k ≤ n since the highest first-stage entry is achieved by

setting the reserve price r = v + ε. Define l = n − k and rewrite expression for
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S1 as follows:

S1 = 2v − {2µ1(1 − µ1)(1 − µ2)
k + (1 − µ1)

2kµ2(1 − µ2)
k−1}[(1 − µ2)

l(v − v) + lc]

−(1 − µ1)
2(1 − µ2)

k[{2(1 − µ2)
l + lµ2(1 − µ2)

l−1}(v − v) + lc] − kc (3.28)

−(1 − {2µ1(1 − µ1)(1 − µ2)
k + (1 − µ1)

2[(1 − µ2)
k + kµ2(1 − µ2)

k−1]})lc.

Since l1 and l2 maximize expected surplus of the second stage when one and two

units, respectively, are available, it follows that

(1 − µ2)
l1(v − v) + l1c ≤ (1 − µ2)

l(v − v) + lc

{2(1 − µ2)
l2 + l2µ2(1 − µ2)

l2−1}(v − v) + l2c ≤ {2(1 − µ2)
l + lµ2(1 − µ2)

l−1}(v − v) + lc.

Comparing (3.28) with (3.27) implies that S2 > S1. We summarize the result in

the following lemma.

Lemma 7 The expected surplus in a two-stage English auction is higher than in

a standard English auction and an Anglo-Dutch auction.

Observe that the previous argument easily extends to more than two units.

The revenues of the seller are the difference between net surplus and the

profits of incumbents. We have already demonstrated that the surplus is higher

in two-stage English auction than in the Anglo-Dutch auction. For the Anglo-

Dutch auction to yield higher revenues it must be that the part of expected social

surplus received by incumbents is smaller in the Anglo-Dutch auction than in the

two-stage second price auction.

It can be shown, like in the case of one unit, that the revenues in a two-stage

auction are maximized either when there is no entry in the first stage and we

set the highest reserve price that induces incumbents with high valuations to bid

in the first stage, or when the entry level in the first stage is (almost) socially

efficient. (It will not be exactly socially efficient entry level because now profits

of incumbents are not independent of entry k.) We provide partial results on
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revenue rankings in both auctions. Consider the case when k = 0 and

r = v − [(1 − µ1){(1 − µ2)
l2 + l2µ2(1 − µ2)

l2−1} + µ1(1 − µ2)
l1 ](v − v).

Then the seller’s revenues in the two-stage English auction are

R2 = 2v − 2µ1(1 − µ1)[(1 − µ2)
l1(v − v) + l1c] (3.29)

−(1 − µ1)
2[{2(1 − µ2)

l2 + l2µ2(1 − µ2)
l2−1}(v − v) + l2c]

−2µ1[µ1(1 − µ2)
l1 + (1 − µ1){(1 − µ2)

l2 + l2µ2(1 − µ2)
l2−1}](v − v).

It can be shown that the expected utility of incumbent in the Anglo-Dutch auction

take the same expression as in (one-stage) English auction

µ1[(1 − µ2)
n + (1 − µ1)nµ2(1 − µ2)

n−1](v − v). (3.30)

Thus the expected revenue of the seller in the Anglo-Dutch auction can be written

as

R1 = 2v − 2µ1(1 − µ1)[(1 − µ2)
n(v − v) + nc] (3.31)

−(1 − µ1)
2[{2(1 − µ2)

n + nµ2(1 − µ2)
n−1}(v − v) + nc]

−2µ1[µ1(1 − µ2)
n + (1 − µ1){(1 − µ2)

n + nµ2(1 − µ2)
n−1}](v − v) − µ2

1nc
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It can be shown that the number of entrants in the Anglo-Dutch auction is given

by

n = max {m|µ2

[{
µ2

1(1 − µ2)
m−1 +

1

m
2µ1(1 − µ1)(1 − µ2)

m−1 (3.32)

+
2

m(m + 1)
(1 − µ1)

2(1 − µ2)
m−1

}

×
µ1(1 − µ2) + 2

m+1
(1 − µ1)(1 − µ2) + (1 − µ1)µ2

µ1(1 − µ2) + µ1mµ2 + 2
m+1

(1 − µ1)(1 − µ2) + (1 − µ1)µ2

+

{
m − 1

m
2µ1(1 − µ1)(1 − µ2)

m−1 + 2µ1(1 − µ1)(n − 1)µ2(1 − µ2)
m−2

+
4(m − 1)

m(m + 1)
(1 − µ1)

2(1 − µ2)
m−1 +

2

m
(1 − µ1)

2(n − 1)µ2(1 − µ2)
m−2

}

×
1

m+1
(1 − µ2)

2 + µ2(1 − µ2)
1

m+1
(1 − µ2)2 + µ2(1 − µ2) + m

2
µ2

2

+
(m − 1)(m − 2)

(m + 1)m
(1 − µ1)

2(1 − µ2)
m−1

+
m − 2

m
(1 − µ1)

2(m − 1)µ2(1 − µ2)
m−2

]
(v − v) ≥ c}.

We want to know when the revenue of the seller is higher in the two-stage

English auction (3.29), where entry is given by conditions (3.12) and (3.13), than

in the Anglo-Dutch auction where entry is given by the condition (3.32). First,

observe that when µ1 = 0, n is given by

µ2[(1 − µ2)
n+1 + (n + 1)µ2(1 − µ2)

n](v − v) = c

implying n = l2 − 2. Differentiating the expression in square brackets of (3.32)

with respect to µ1 we obtain that the derivative is negative. The expression in

square brackets of (3.32) is also declining with respect to n. Therefore we may

conclude that higher probability µ1 leads to lower entry n, and it is, at most,

l2 − 2. Assuming that n = l2 − 2 for all µ1 holds, when comparing (3.29) and

(3.31), we obtain that R2S ≥ R1S if

2µ1(1 − µ1)[(1 − µ2)
l1(v − v) + l1c] + 2µ2

1(1 − µ2)
l1(v − v)

≤ 2µ1(1 − µ1)[(1 − µ2)
l2−2(v − v) + (l2 − 2)c] + 2µ2

1(1 − µ2)
l2−2(v − v) + µ2

1(l2 − 2)c
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or

(1 − µ2)
l1(v − v) + l1c − µ1l1c ≤ (1 − µ2)

l2−2(v − v) + (l2 − 2)c −
µ1

2
(l2 − 2)c.

The inequality will hold if l2 ≤ 2(l1 + 1), since (1 − µ2)
l1(v − v) + l1c ≤ (1 −

µ2)
l2−2(v−v)+(l2−2)c. (Because l1 was chosen to minimize (1−µ2)

l1(v−v)+l1c.)
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Chapter 4

Estimating the Order of Sales

Effect in Sequential Auctions

4.1 Introduction

Using data from timber auctions in Latvia, I study the empirical evidence on

whether the order of sales affects the revenues of seller. State company “Latvia’s

State Forests” sells lots of standing trees sequentially through oral, ascending

price auctions. The lots are highly heterogenous because they differ in size,

composition and in other characteristics. Since they are so heterogenous we want

to know whether the order in which they are sold matters for the revenues of the

seller. And if it does, what is the optimal sequence in which seller should sell the

lots.

The literature on auctions suggests that the order of sales becomes relevant if,

on the one hand, auctioned lots are heterogenous and, on the other hand, firms

face capacity and/or budget constraints and therefore are not able to compete for

all the available lots. Intuitively, once buyers exhaust their budgets or capacities,

they will not participate in the bidding for the later units. Thus, competition is

less intense for the last lots in the auction. In the homogenous goods’ case the

bidders when bidding for the initial lots will take it into account and accordingly

will bid less aggressively. As a result, in equilibrium, a bidder will be indifferent

between acquiring a lot now or dropping from bidding and acquiring another
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lot later. When goods are heterogenous, bidders may not be able to equalize

the profits from obtaining different objects since their bids are constrained to be

nonnegative and not to exceed budgets. When more valuable lots are sold first,

the competition for them is strong. If they are sold last, the competition is weak

both for the initial less valuable lots, and also for later more valuable lots.

In order to test whether the order of sales affects the revenues, I construct

an econometric model. In general, we do not observe the valuations of the lots

the bidders have. Therefore, in the first stage I estimate them, using a discrete

choice model, based on the assumption that a lot will be sold if and only if its

valuation exceeds the reserve price. In the second stage I regress the revenues

of the seller on the obtained valuations allowing for different bidding strategies

depending on whether more valuable lot was sold first or last. I apply this model

to the sequential auctions of timber sold by “Latvia’s State Forests”. The results

from the first stage, where I obtain estimates of the valuations, agree with other

indirect evidence on the valuations like the prices the seller uses to construct the

reserve price and bids from related roundwood auctions. In the second stage I

can not reject the hypothesis that the order does not affect the revenues of the

seller.

The literature on multi-object auctions in the presence of constraints has been

mainly restricted to the two-object case. When objects are sold sequentially, the

analysis is usually done using English or second price auctions. The use of these

auction formats ensures the existence of dominant strategies in the second round,

irrespective of the information revealed during the first round. Additionally, other

simplifying assumptions have been employed to derive equilibrium strategies; for

instance, only two bidders, perfect correlation of valuations of both objects, or

complete information.

Elmaghraby [6] considers procurement auctions under private information

where each bidder can complete only one job. Costs of providing both jobs are

different but depend on the bidder’s type. The author allows for quite a general
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cost structure subject to the following restrictions - it is cheaper to fulfill the first

task than the second for all types, and the cost of the first task is strictly mono-

tonically decreasing and/or the cost of the second task is strictly monotonically

increasing in bidders type. He shows the existence of an efficient ordering and

derives equilibrium bids under this ordering. He has only partial results on the

revenues but they tend to indicate that the revenue of the seller is higher under

the efficient ordering.

Gale and Hausch [7] restrict the analysis to two bidders, each willing to obtain

only one object, but they allow the valuations of both objects to be imperfectly

correlated, although independent between bidders. They prove that the auction

where the seller sets the order does not guarantee efficiency while the right-

to-choose auction does it. They also establish an important link between the

revenues of the seller and the decline in prices of subsequently sold objects -

the revenues are higher in the efficient right-to-choose auction if and only if the

expected price declines in the standard auction.

Beggs and Graddy [3] construct a theoretical model for auctioning heteroge-

neous objects where each bidder wants only one object, and they apply it to art

auctions. They restrict attention to auctions that order items by declining valua-

tion, and prove that this ordering achieves efficiency, maximizes seller’s revenues,

and implies declining prices over the auction.

The research that considers budget constraints, rather than capacity, has been

mainly restricted to the complete information setup. Pitchik and Schotter [10]

conduct an experimental study of sequential auctions. There are two bidders

in their model, they value the objects differently and have different budget con-

straints. Valuations and budgets are common information. They conclude that

the trembling-hand perfect equilibrium is a good explicator of observed behavior

in the experiment.

Benôıt and Krishna [4] also work under the assumption of complete informa-

tion. The valuations are common across bidders and objects may be complements
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or substitutes. They prove that selling the more valuable object first maximizes

seller’s revenues, which agrees with the results of Beggs and Graddy [3] in the

case of capacity constraints. More importantly, Benôıt and Krishna [4] show that

budget constraints may arise endogenously - if bidders before auction decide on

their budgets, they will choose to be budget constrained even if rising money is

costless.

Pitchik [9] extends the analysis of sequential auctions with budget constraints

to incomplete information, assuming that valuations of both items and income

are functions of bidder’s type. She demonstrates that the order of sales affects

prices and revenues, the results depending on the magnitudes of valuations and

incomes of bidders.

To my knowledge there is no work undertaken in the empirical auction lit-

erature to test the relevance of the order of sales. The empirical literature on

sequential auctions has mainly focused on testing the ‘declining price anomaly’

when later objects systematically fetch lower price after controlling for valuations

of objects. Starting by the work of Ashenfelter [1] there has been growing body of

literature on the declining price anomaly (references can be found in the survey

by Ashenfelter and Graddy [2]). One of the explanations for the declining prices

comes from the heterogeneity of auctioned objects in the presence of capacity

constraints, for example, Gale and Hausch [7] and Beggs and Graddy [3], men-

tioned above. Although there exists a link between the declining price anomaly

and the optimal ordering of objects, research has focused on testing the former

phenomenon, while ignoring the latter.

The remaining of the chapter is organized as follows. The following section

describes the company “Latvia’s State Forests” and its practices to sell state

owned forests. Section 4.3 provides economic motivation, based on which I derive

econometric model in section 4.4. The results of the estimations are in section

4.5 and their discussion in section 4.6. The description of variables is relegated

to the Appendix.
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4.2 Timber Sales by “Latvia’s State Forests”

State company “Latvia’s State Forests” (in sequel I use its Latvian abbreviation -

LVM) was created in 1999 to administer forests owned by the state. It is organized

along 8 regions. In 2003 it administered 1.43 million hectares of forests, which

account for 47% of all forests in Latvia, with estimated value of 2.7 billion lats.1,2

Two thirds of forests are occupied by coniferous trees (pine forms 47% of forests,

and fir-tree 21%). Among foliage trees birch is the most common, accounting 24%

of forests. Total estimated stock of timber is 272.6 million cubic meters, while

annual increase is 7 million cubic meters, including the increase in the stock of

pine by 2.85 mill. m3, fir-tree by 2.03 mill. m3, and birch by 1.56 mill. m3. On

average, 4 million m3 of timber is cut annually in the state forests.

Felling both in private and public forests is regulated by the Law of Forest.

The law distinguishes several types of felling. When the trees have reached a

certain age or diameter, appropriate for that specie of trees, they are harvested

in the so called ‘principal’ felling. The most common type of principal felling is

clear-cut, after which replanting of forest is required. The other, secondary, types

of felling include the stock care-cut (to improve growth conditions and quality of

remaining trees), the sanitary-cut (to eliminate infected or damaged trees), the

reconstructive-cut (to fell unproductive forests) and the other-cut (to create and

maintain forest infrastructure).

LVM sells trees using three mechanisms: long-term felling contracts, auctions

and roundwood supplies. The long-term felling contracts were introduced in

the beginning of the nineties to guarantee input supplies to privatized logging

companies. In 2002 around 2.5 mill. m3 of growing trees where sold through

these contracts. Since 2000, when auctions of growing trees were introduced, the

1The information was taken from the web site of the company: www.lvm.lv.
2During the sample period the national currency of Latvia, lat (LVL) was fixed to the IMF

currency basket: 1 SDR = 0.7997 LVL. The exchange rates with respect to 1 USD and 1 EUR
were in the range of 0.55-0.65 LVL.
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average price realized during auctions has exceeded the average sales prices set

in the contracts with the tendency for the difference to increase: for example,

in 2002 the average price obtained in auctions was 9.99 LVL/m3 against 5.24

LVL/m3 set in contracts. Therefore, starting 2003 LVM does not sign anymore

new contracts.

Starting 2003 LVM has introduced a new selling mechanism when, instead

of selling growing trees, it supplies already prepared roundwood to sawmills and

other wood-processing companies. The process is organized along three separate

auctions: one to sell timber to its users, another to contract companies to cut

trees and the last to transport prepared timber to its buyers.

I address the auctions of growing trees conducted from the start of 2001 to the

middle of 2003. Each of the 8 regions runs its auctions at the frequency it finds

appropriate, usually once or twice a month. At least two weeks before an auction

a list of felling areas is published. An example of announcement is presented in

the Table 4.3. There is available more detailed description of each lot in forestry

and buyers have the right to visit and inspect the lot in nature.

Lots can be sold in oral auctions with ascending or descending price. Lots

that failed to be sold in at least two oral auctions or that must be sold urgently

are sold in sealed bid auctions. More than 95% of sales are done using sequential

ascending price auctions. Buyers usually bid not the price per m3 but the total

price that they must pay, that is, the price does not depend on wood collected.

For some lots buyers bid price per m3 and they pay according to actual amount

of wood collected; for these later lots there is an estimate of the total volume of

timber, but not of the useful volume or its composition. Before auction buyers

must pay a participation fee depending on the type of felling: 5-20 LVL. They

must pay a deposit that is 10% of the sum of the initial prices for lots they want

to buy. That is, buyer cannot participate in bidding for a given lot if remaining

(unused) deposit is below 10% of the initial price of the lot. Unused deposits are

returned or can be included in payment for bought lots. The initial price of a
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lot is based on an ‘estimated value’ of felling area. Bidding step depends on the

initial price of lot: 50, 100, 200 LVL. Buyers raise cards with their identification

number and price increases by a specified step. They can cry out higher increase

in price. If during 15 workdays the winner does not pay, he loses the deposit.

Firms must harvest the timber by the end of year if not specified otherwise.

Since I address the effect of lot order on the revenues of the seller, I describe

what is the current practise to organize the lots in an auction. First, lots of

principal cut are sold, and then the lots of secondary cut. It could be that the

forestry decides to auction urgently some lots after the auction was announced.

In that case these lots are attached at the end of the list, even if they belong to

the principal cut. Within each group the lots are grouped according to location

- forest district and forestry. Except that the principal-cut lots are, in general,

more valuable than the secondary-cut lots, there is no pattern according to the

initial price, taking it as a proxy for the value of the lot: more valuable lots can

appear before or after less valuable lots. There is, of course, a rationale to group

lots according to the location, but within each forest district or forestry there

exists the scope to rearrange lots according to their valuations.

4.3 Economic Motivation

We assume a complete information and common values framework; that is, the

valuations of objects are common and known to all bidders, but not to the seller.

Another assumption we make is that the entry in the auction is endogenous,

where bidders upon entry decide how much capacity and/or budget they commit

for the given auction. These simplifying assumptions suggest certain equilibrium

outcomes that allow us to derive later an econometric model to test whether order

affects seller’s revenues or not. The assumption of common valuations allows us

to abstract from the identity of the winner of a given lot, and to ignore how

many potential bidders there are. Complete information ensures that bidders will
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know the outcome of the auction before it starts if they follow (pure) equilibrium

strategy. This implies, combined with the assumption of endogenous entry, that

in equilibrium a lot will be sold as long as its value exceeds the reserve price,

since otherwise somebody will find it profitable to enter in order to buy the lot.

I now present two examples that illustrate how order affects seller’s revenues in

the presence of capacity and budget constraints. In both examples the equilibria

are derived in undominated strategies, that is, no bidder uses weakly dominated

strategies. To illustrate that order might matter when there are capacity con-

straints consider the following simple example. There are two lots available and

two bidders each willing to acquire at most one unit. Suppose that one lot is

worth 10 while another 6. Consider the order where the most valuable lot is sold

first. Once it is sold, the bidder who bought it will not participate in the bidding

for the second lot, therefore another bidder will obtain it at zero price, and make

profit equal to 6. It implies that he will be ready to pay for the first lot up to

4. The first lot will be sold at this price and the revenue of the seller will be 4.

Now consider the opposite order. The only remaining bidder, once the first lot

is sold, will again obtain the second lot at zero price and make profit 10. He will

not bid for the first lot, therefore it will also sell at zero price, and the revenues

of the seller will be zero.

The example illustrates that the revenues are a linear combination of valua-

tions but the coefficients change depending on the order of sales: under the order

where the first lot is more valuable, the coefficients are 1 and -1, while under the

second order where the first lot is less valuable, the coefficients are both equal

to zero. Therefore, one should estimate the model allowing for the regime switch

which depends on the valuations of the objects:

yt = β11Dt1vt1 + β12Dt1vt2 + β21Dt2vt1 + β22Dt2vt2 + εt, (4.1)

where yt is seller’s revenue from auction t (where the auction refers to both lots

sold on a given auction day), vti, i = 1, 2 are the valuations of the objects sold in
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auction t where the index i indicates whether the object was sold as the first or

second, and Dt1 = 1 if vt1 ≥ vt2 and Dt1 = 0 otherwise, and Dt2 = 1 − Dt1. We

can think of the disturbance term εt as deviations from equilibrium strategies.

The only restriction, the specification (4.1) imposes, is that equilibrium bids and

hence revenues are linear in valuations. Otherwise the specification (4.1) is quite

general in that it accommodates other (linear) bidding strategies and allows the

coefficients to change depending on whether the most valuable lot was sold first

or second.

The equilibrium strategies were derived only for two bidders. If the number

of bidders is different, the equilibrium strategies will accordingly change. For

example, if in the above example there are two objects but three (or more) bidders

each willing to acquire one lot, it is easy to verify that prices in equilibrium will

be equal to the valuations of lots, that is, all coefficients will be equal to 1

(and consequently order will not matter). It suggests that we must also assume

that bidders play the same equilibrium strategies from one auction to another if

there exist several equilibria. For example, from the two equilibrium strategies

discussed, the participants may prefer the first equilibrium where two bidders

enter, each willing to acquire one unit, and the remaining participants abstain

from entering than the second equilibrium where three or more participants enter,

since the first equilibrium is revenue superior from bidders point of view. Of

course, we could also rule out the second equilibrium by assuming that bidders,

in order to participate in the auction, must incur some small costs proportional to

the capacity choice. That and the complete information framework, will ensure

that in equilibrium at most two bidders will enter and compete for these two lots.

However, to reiterate, my objective is not to rule out any particular equilibrium

but rather to assume that agents will consistently play the same equilibrium

strategies in all auctions. Optimally, we want to use the estimation results of

equation (4.1) to infer what strategies bidders adopt, and not to impose any

equilibrium outcome from the outset.
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Suppose we have two lots A and B that have valuations vA and vB, and

vA ≥ vB. The model (4.1) implies that the order will not affect revenues if

β11v
A + β12v

B = β21v
B + β22v

A. Since it must hold for any valuations vA and vB

such that vA ≥ vB, it follows that the hypothesis that the order does not matter

is

H0 : β11 = β22, β12 = β21

H1 : β11 6= β22 and/or β12 6= β21.

A remark is needed on what are the relevant valuations vti in equation (4.1)

in the presence of the reserve prices, since in the timber auctions I analyze the

seller sets them. In the example above we can think of the valuations of 10 and

6 as net valuations after deducting reserve prices. For example, it could be that

one lot is worth 14 and its reserve price is 4 while another lot is worth 16 with

reserve price equal 10. If we define the (gross) valuation of a lot as wti and reserve

price by rti, the relevant variable in the model (4.1) is vti = wti − rti and not wti,

and the revenues of the seller we define as yt ≡
2∑

i=1

(pti − rti) where pti is the price

at which lot i was sold.

Benôıt and Krishna [4] have analyzed the relevance of order when bidders are

budget, rather than capacity constrained, that is, they will not be able to bid

more than their budgets allow. Additionally, they considered the case when bid-

ders, before auction starts, decide about their budgets, and budget decisions are

observable. Even if rising money is costless, Benôıt and Krishna [4] have shown

that in the equilibrium bidders choose to be budget constrained. In particular,

when there are two bidders, equilibrium budget decisions and equilibrium bidding

prices are:

bm ≥ v1 − v2 p1 = v1 − v2

bn = v1 − v2 p2 = 0
if v1 ≥ 2v2

bm ≥ 1
2
v1 + v2 p1 = 1

2
v1

bn = 1
2
v1 p2 = 0

if v1 < 2v2
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where v1 (v2) is the valuation of the object sold first (second) and p1 (p2) is its

price, and bm and bn are budgets of bidders m and n. In equilibrium bidder n

will win the first object while bidder m will obtain the second. As one can see,

the revenues of the seller are again a linear function of object valuations although

the vector of coefficients now is (1,−1, 0.5, 0). If we want to estimate revenues

as a function of valuations, we can again specify the econometric model (4.1),

except now Dt1 = 1 if v1 ≥ 2v2 and Dt1 = 0 otherwise. Again we can think of

vi, i = 1, 2 as net valuations and pi, i = 1, 2 as winning prices after subtracting

reserve prices, while the equilibrium budgets of both bidders must be increased

by r1 + r2.

To determine what are the relevant restrictions on the coefficients in the pres-

ence of budget constraints, consider first the case when the valuations of lots A

and B are vA and vB, and vB < vA < 2vB. Under both orderings of objects,

condition v1 < 2v2 holds, thus β11 = β12 for order not to matter. Now if the

ranking of valuations is vA ≥ 2vB then under the ordering, where unit B is sold

first, the condition v1 < 2v2 holds and under another ordering, where unit A is

sold first, the condition is v1 ≥ 2v2. It follows that for the order not to matter it

must be that β12 = β21 and β11 = β22. Summarizing, the test that the order of

sales does not matter is equivalent to testing hypothesis

H0 : β11 = β12 = β21 = β22

H1 : βij 6= βkl for some i 6= k or j 6= l.

In both examples, I have restricted attention to only two units. As the

examples suggest, the number of different orders is factorial of the number of

lots sold, and likewise the number of coefficients to be estimated will grow in

factorial. Hence, we must restrict attention in equation (4.1) to a limited number

of units even if more lots were sold on a given auction. In any moment during an

auction bidding strategies will depend on the valuations of lots that are still not

sold, as above examples illustrate, but we can reasonably assume that bidding
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strategies will not depend on the valuations of already sold units. It would not

be true when the past bidding conveys information relevant for later bidding.

For example, under incomplete information the prices of sold units would allow

to update information about the valuations of the remaining units, or about the

capacities or budgets of bidders. Even under complete information previous bids,

and hence valuations of sold units, may affect bids for remaining units, if budgets

of bidders are given exogenously, as shown in Benôıt and Krishna [4].

Above argument implies that in equation (4.1) we must use the last units

from an auction, and in the econometric analysis I will restrict attention to the

last two units. If we were using, for example, the last three units, we would have

6 possible orders of lots, and we would need to estimate 3 coefficients under each

order. Besides, we expect the number of equilibrium strategies to depend on

whether lots are won by different bidders or the same. In the case of three lots,

the coefficients would differ depending on whether these lots were bought by 1,

2 or 3 different bidders. Thus, if we limited attention to the last three units, we

would need to estimate 54 different coefficients, therefore the decision to use only

2 lots.

4.4 Econometric model

Before proceeding to build an econometric model, I want to discuss the similarity

between testing whether the order matters with the estimation of average treat-

ment effects (ATE), especially widely used in labour econometrics, for example,

to evaluate how much increases the probability of an unemployed person to find

a job if he undergoes or not a training course (see Blundell and Costa Dias [5],

Imbens [8], Wooldridge [11], ch. 18). We define expected revenues of the seller

when the most valuable unit is sold first and when sold last, after controlling for
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the covariates, by

µ1(v1, v2) ≡ E(y|v1, v2, D1 = 1) (4.2)

µ2(v1, v2) ≡ E(y|v1, v2, D1 = 0). (4.3)

The average treatment effect is

τ ≡ E[µ1(v1, v2) − µ2(v1, v2)],

where the expectation is over the distribution of covariates v1 and v2. In order

to test whether the order matters, we would first obtain estimates of expected

revenues of the seller µ̂1(v1, v2) and µ̂2(v1, v2) and, second, calculate the estimator

of ATE

τ̂ =
1

T

∑T

t=1
[µ̂1(vt1, vt2) − µ̂2(vt1, vt2)] (4.4)

and test whether it is different from zero.

Note that we have already combined µ1(v1, v2) and µ2(v1, v2) with the help

of dummy variables into single equation (4.1), under the assumption that the

revenues are a linear function of valuations. The linearity was suggested by the

examples in the previous section. However, instead of testing whether τ = 0, we

propose testing the hypothesis directly about the coefficients of (4.1), as discussed

in the previous section. Testing restrictions about coefficients is more general in

the sense that it could be that for some valuations of lots (v1, v2) one order of

sales is better for the seller, while for other valuations of lots another order can

be revenue superior. On the other hand, ATE would test whether on average one

order of sales is better than another.3

If we observed the valuations of lots, the estimation of (4.1) would be triv-

ial. Since they are not observed, we need to infer them from the available data.

For example, equilibrium prices will be a function of valuations. If we assumed

3Of course, we can generalize the ATE. If we expect that τ > 0 for a subdomain of (v1, v2),
and τ < 0 for another subdomain, then we define two separate ATEs for each subdomain and
test them.
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that the observed data correspond to a particular equilibrium, we could apply it

to recover valuations from the observed prices. However, this approach already

supposes that the particular equilibrium strategies describe the true bidding pro-

cess, and it already imposes that the order does or does not affect seller’s revenues

depending on what the theoretical model predicts. Therefore, we must find an

alternative way to recover the valuations, and once obtained we estimate the

model (4.1) to test whether the order matters.

The valuation of a lot will depend on its characteristics like the size of the lot,

its composition, the distance to a road and other factors captured by the error

term:

wti = Xtiγ + θti, (4.5)

where Xti is a vector of explanatory variables for lot i in auction t, and θti is

an error term. I assume that the error term is independent from explanatory

variables, and that θti ∼ i.i.d.N(0, σ2
θ).

The seller sets a reserve price which is a function of the characteristics of the

lot:

rti = h(xti1, xti2, ..., xtim) (4.6)

where xtij is a j-th characteristic of lot ti. In general, we do not know how the

seller chooses the reserve price, although the rules of the auction state that the

reserve price is set based on an estimate of the value of lot. We have argued

in the previous section that if we assume that the participation in the auction

is endogenous, and before the auction starts bidders choose their capacity or

budgets, it is reasonable to conclude that a lot will be sold as long as its (gross)

valuation exceeds the reserve price: wti ≥ rti. That is, we have a model of

discrete choice and since we assumed that θti for all t and i comes from normal

distribution, we estimate the Probit model. Thus, the probability of selling the

lot is

Pr (θti ≥ rti − Xtiγ) = 1 − Pr(θti ≤ rti − Xtiγ)
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and the probability of not selling the lot is

Pr(θti ≤ rti − Xtiγ).

Since θti ∼ N(0, σ2
θ), we can write the probabilities of selling and not selling as

Φ

(
Xtiγ − rti

σθ

)

and

1 − Φ

(
Xtiγ − rti

σθ

)
,

respectively, where Φ(·) denotes standard normal distribution, and I have used

the fact that the normal distribution is symmetric around the mean.

The likelihood function of the Probit model, to be maximized with respect to

γ and σθ, is:

L =
∏T

t=1

∏nt

i=1
Φ

(
Xtiγ − rti

σθ

)Fti
[
1 − Φ

(
Xtiγ − rti

σθ

)]1−Fti

(4.7)

where Fti = 1 if the unit is sold, and Fti = 0 otherwise. Note that since the

coefficient in front of reserve price rti is fixed equal to −1, we are able to iden-

tify estimated values of γ and σ2
θ . Instead of (4.7), I estimate slightly modified

likelihood function:

L =
∏T

t=1

∏nt

i=1
Φ (Xtiδ1 + rtiδ2)

Fti [1 − Φ (Xtiδ1 + rtiδ2)]
1−Fti (4.8)

where δ1 = γ/σθ and δ2 = −1/σθ. Once δ-s are estimated we can recover the

original parameters.

So far we have assumed that the valuations are independent across and within

auctions. However, we can reason that the valuations of lots sold on a particular

auction are correlated because of some common factors. For example, if oil is

important input in harvesting and transporting timber, the increase in oil prices

will lower the values of all forests. Further, even within each auction we could

group data according to regional location and assume that a common term affects
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the valuations of all lots within a given group. Now we generalize the data

generating process for the valuations of lots and decompose the error term into

two components. That is, we assume that besides the error term that is specific

for each lot, there is another random variable that has common effect on the

valuations of all the lots on that day. Now we write the valuation of a lot i that

belongs to auction t as

wti = Xtiγ + ηt + θti, (4.9)

where ηt is a random variable that affects the valuations of all lots within group

t equally. Again I assume that explanatory variables are independent from ran-

dom terms, and that ηt ∼ i.i.d.N(0, σ2
η) and θti ∼ i.i.d.N(0, σ2

θ). Note that the

assumption that the explanatory variables and group-specific random variable

are independent is unnecessary, in the same way as it is unnecessary to assume

that different components of vector Xti are independent. However, while Xti will

mainly consist of characteristics of a particular forest, I assume that ηt captures

macro-level factors, therefore we treat them as independent. One situation when

Xti and ηt are correlated can occur if ηt depends on the total supply of timber for

sale
∑nt

i=1 Xti, since excess supply will depress market prices for timber and, as a

result, the value of the forest. I will rule this case out, based on the observations

that most of the timber is exported and Latvia supplies small amount of world

timber.

Now the probability of selling the lot is

Φ

(
Xtiγ + ηt − rti

σθ

)

and the probability of not selling the lot is

1 − Φ

(
Xtiγ + ηt − rti

σθ

)
.

If the variable ηt was observable, we could write likelihood function like in

(4.7). However, since ηt is unobservable, we cannot condition on it. Instead, we
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need to integrate it out, where now the likelihood function is

L =
∏T

t=1

∫ +∞

−∞

(
∏nt

i=1
Φ

(
Xtiγ + ηt − rti

σθ

)Fti

(4.10)

[
1 − Φ

(
Xtiγ + ηt − rti

σθ

)]1−Fti

)
ϕ

(
η

ση

)
d

(
η

ση

)

where ϕ (·) is the density function of standard normal variable. Again, I estimate

slightly modified likelihood function:

L =
∏T

t=1

∫ +∞

−∞

(∏nt

i=1
Φ (Xtiδ1 + rtiδ2 + η∗

t δ3)
Fti (4.11)

[1 − Φ (Xtiδ1 + rtiδ2 + η∗
t δ3)]

1−Fti

)
ϕ (η∗) dη∗

where η∗ = η/ση is standardized normal variable, δ1 = γ/σθ, δ2 = −1/σθ and

δ3 = ση/σθ.

Thus, we can estimate consistently the deterministic part of the valuation of

each lot. However, the valuation net of the reserve price, which is defined as4

vti = Xtiγ − rti + ηt + θti, (4.12)

depends on random terms therefore valuations vti are unobservable variables,

even after estimating γ. Given distributional assumptions about θti and ηt, net

valuations also have normal distribution, vti ∼ N(Xtiγ − rti, σ
2
θ + σ2

η), and if

lots belong to the same auction their valuations are correlated with covariance

Cov(vti, vtj) = σ2
η, i 6= j while Cov(vti, vsj) = 0, if t 6= s. As long as θti and ηt are

independent of Xtiγ − rti, which we have assumed, the use of Xtiγ − rti instead

of vti as explanatory variables in (4.1) would still provide consistent estimates

β-s when estimated by OLS (since θti and ηt would be suppressed into the error

term εt, but the new error term would still be independent from explanatory

variables).

4From here on I only consider the case when the valuations are given by equation (4.9),
since equation (4.5) is a special case.
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However, there are two issues which we must account for. First, by the con-

struction of model, the expected value of error term θti + ηt for the sold units

is different from zero since in the second stage (that is, when estimating model

(4.1)) we use only observations whose gross valuations exceed the reserve price:

E(θti + ηt|wti > rti) 6= E(θti + ηt) = 0. Since θti + ηt ∼ N(0, σ2
θ + σ2

η),

E(θti + ηt|wti > rti) =
√

σ2
θ + σ2

ηλ(zti),

where zti = (rti − Xtiγ)/
√

σ2
θ + σ2

η and λ(zti) = φ(zti)
1−Φ(zti)

.

Second, even after correcting for sample selection bias, we still do not know

whether the first object is more valuable than the second or not.5 Each variable

Dtjvti, i = 1, 2, j = 1, 2 we write as sum of its mean and random part: Dtjvti =

xtij + εtij, where xtij ≡ E(Dtjvti). For example, xt11 we calculate as

xt11t = E(Dt1vt1) = πtE(vt1|vt1 > vt2 > 0) + (1 − πt)0

where

πt ≡ Pr(vt1 > vt2|vt1 > 0, vt2 > 0).

Conditional on ηt, valuations are independent and each comes from normal dis-

tribution: vti|ηt ∼ N(Xtiγ − rti + ηt, σ
2
θ) truncated from below at 0. Therefore,

πtE(vt1|vt1 > vt2 > 0) we obtain from

Pr(vt1 > 0, vt2 > 0)πtE(vt1|vt1 > vt2 > 0)

=

∫ +∞

−∞

(∫ ∞

0

∫ vt1

0

vt1f(vt1|ηt)f(vt2|ηt)dvt2dvt1

)
f(ηt)dηt

=

∫ +∞

−∞

(∫ ∞

0

vt1f(vt1|ηt)[F (vt1|ηt) − F (0|ηt)]dvt2dvt1

)
f(ηt)dηt.

In similar way we calculate the remaining variables. Observe that when calcu-

lating πtE(vt1|vt1 > vt2 > 0) we already take into account the first problem that

E(θti + ηt|wti > rti) 6= 0 or equivalently that E(vti|vti > 0) 6= Xtiγ − rti.

5In what follows I discuss the case when the regime change occurs depending on whether
v1 > v2 or v1 ≤ v2, which is relevant in the presence of capacity constraints. Similar analysis
can be performed if the regime change occurs depending on whether v1 > 2v2 or v1 ≤ 2v2,
relevant when we consider budget constraints.
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Thus, instead of unobserved variables (Dt1vt1, Dt1vt2, Dt2vt1, Dt2vt2) we use

their expected values in the equation (4.1), and we estimate the following model

yt = β11xt11 + β12xt12 + β21xt21 + β22xt22 + ut, (4.13)

where ut = εt + β11εt11 + β12εt12 + β21εt21 + β22εt22. Note that the variance of

ut is a function of the characteristics of both lots Xt1γ − rt1 and Xt2γ − rt2.

It follows that the variance of ut will be different across auctions as long as

lots will differ in their characteristics, that is, we must take into account the

heteroscedasticity when estimating equation (4.13). Knowing the distributions

of vti, i = 1, 2, the variances and covariances of εtij, i = 1, 2, j = 1, 2 can be

calculated. Then, in order to estimate equation (4.13), we proceed as follows.

First, we estimate equation (4.13) by OLS to obtain consistent estimates of βij,

i = 1, 2, j = 1, 2. Next, we calculate the weights σ̂ut
and we estimate now

equation (4.13) by Weighted Least Squares. We can iterate the process several

times.

4.5 Econometric Results

4.5.1 Estimation of Probit model

In the first stage we estimate the Probit models (4.10) and (4.11) in order to

obtain consistent estimates of the valuations of lots. In Section 2 when describ-

ing the rules of the auction I mentioned that forests that will be clear-cut are

auctioned first, and afterwards secondary-cut forests are auctioned. Since I will

select the last two units from the auction to test the hypothesis whether the or-

der affects revenues, these lots would necessarily be from the secondary cut. If

we treat the reserve price as an indicator of the forest value, then the average

reserve price for principal-cut lots is 4000 LVL, while the average reserve price for

secondary-cut lots is only 500 LVL. I assume that bidders regard principal-cut

and secondary-cut lots as belonging to two different auctions, possibly because
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the timber obtained from each type is used for different purposes: the timber

from principal-cut is bought by big wood processing companies or exported while

the timber from the secondary-cut is used by small local companies. Therefore, I

have decided to restrict the sample only to clear-cut type of lots. After omitting

lots of secondary-cut and lots with missing observations6, I was left with 4961

lots sold in 292 auctions.

First, we need to specify what are the relevant explanatory variables that

affect the value of the forest wti. The particular specification I adopt for (4.9) is

the following:

wti = γ̃1 + γ̃2Pineti + γ̃3Firti + γ̃4Birchti + γ̃5Aspenti (4.14)

+γ̃6Otherti + γ̃7Roadti + γ̃8Areati + ηt + θti,

where the definitions of the variables are given in the Appendix 4.7. Thus, I

assume that the value of the forest is proportional to the cubic-meters of timber

available there, and different types of timber are valued differently. Variables

Road and Area are meant to capture the harvesting costs. Note that coefficients

γ̃2, ..., γ̃6 give the value of one cubic-meter of growing tree of corresponding type,

and not the price of cut trees sold on the market. To obtain the latter we would

need to add to the coefficients γ̃2, ..., γ̃6 the cutting costs. The constant term γ̃1

can be interpreted as fixed costs.

Since the data I have from auctions cover two and a half year period from

the beginning of 2001 till the middle of 2003, it is probable that the coefficients

γ̃ did not remain fixed. When regressing the reserve price r on the explanatory

variables X and the date of auction, the coefficient for the date was positive

and significant. On the other hand, the proportion of sold to unsold units in

each auction had the tendency to increase, implying that the value of lots has

increased even faster. To account for this potential evolution of coefficients and at

6In particular, I needed to drop all observations from Eastern Vidzeme Region since they
did not provide percentage composition in their announcements of auctions.
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the same time to give it some economic justification, I assume that γ̃j = γjGDP

for j = 1, ..., 8, that is, I assume that the coefficients are proportional to the

evolution of nominal GDP since it captures both inflation and economic activity.

Equation (4.14) now becomes

wti = γ0 + γ1GDPt + γ2GDPtPineti + γ3GDPtFirti (4.15)

+γ4GDPtBirchti + γ5GDPtAspenti + γ6GDPtOtherti

+γ7GDPtRoadti + γ8GDPtAreati + ηt + θti,

where I have introduced new intercept term γ0.

Summary statistics of variables for all units and only for sold units is provided

in the Table 4.1. I also report the information about seller’s revenues.

Table 4.1: Sample summary statistics
all units sold units

average std. average std. min max total
pine 125.2 209.0 146.1 225.8 1,770 518,597
fir 158.2 157.8 177.2 169.3 1,551 629,022
birch 92.9 112.0 94.0 116.4 1,398 333,800
aspen 60.4 129.2 57.4 125.7 1,504 203,810
other 27.3 63.1 26.8 60.5 655 94,963
road 481.1 389.0 450.3 366.6 10 3000
area 1.96 1.38 2.04 1.35 0.1 23.0
r 3,945.60 3,766.57 4,409.82 3,981.76 10 30,000
GDP 1.16 0.11 1.00 1.33
revenue 6,211.66 5,665.69 10 52,100 22,051,385

Having specified the explanatory variables, we estimate δ-s in (4.8) and (4.11).

The estimation results are given in the Table 4.2 where I report directly origi-

nal parameters γ-s, σθ and ση, and their standard deviations obtained by the

delta method. First, observe that the estimates of coefficients from (4.11) take

larger absolute values than estimates from (4.8). The reason is that when we

neglect group-specific random effects, we can still estimate the Probit model of

the form (4.7), but instead of standard deviation σθ, now the standard devia-
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Table 4.2: Results from estimation of Probit model
equation (4.8) equation (4.11)
coefficients stand. dev. coefficients stand. dev.

intercept -31303.17 4192.16 -39351.64 6704.36
GDPt 30802.01 4073.18 40364.50 6657.37
GDPtPineti 16.85 1.08 17.39 1.27
GDPtFirti 24.84 1.86 27.00 2.28
GDPtBirchti 6.33 1.37 8.60 1.89
GDPtAspenti -0.03 1.00 -0.28 0.99
GDPtOtherti 5.57 2.03 -2.72 2.30
GDPtRoadti -2.36 0.38 -3.50 0.55
GDPtAreati -455.64 143.54 -570.85 134.41
σθ 6060.61 724.90 6581.22 937.21
ση 4930.19 761.16
observations 4961 4961
sold units 3550 3550
unsold units 1411 1411
log L -2491.60 -2206.10
pseudo R2 0.159 0.255
Pr(y = 1) ≤ .5 27.57 15.95
Pr(y = 1) > .5 92.93 96.23

tion is
√

σ2
θ + σ2

η.
7 It means that the coefficients obtained from (4.8) will be

σθ/
√

σ2
θ + σ2

η times lower than obtained from (4.11). Using estimates of σθ and

ση from (4.11), the ratio is 0.8. It means that by omitting the variable ηt from

the list of explanatory variables, we are systematically underestimating the co-

efficients, and thus incorrectly predicting the value of a forest. The results from

Table 4.2 imply that we reject H0 : ση = 0, therefore we reject model (4.7) as

misspecified.

Coefficients have signs as expected, except estimates of γ5 and γ6 in (4.11).

However, neither of these coefficients is significantly different from zero. I had

normalized GDP equal to 1 in the first quarter of 2001, while the highest value

it reached during the sample period is in the last quarter of 2002, when it was

1.3312. Thus, for example, the price of cubic-meter of growing fir-tree was initially

7However, when estimating (4.7) we cannot obtain separate estimates for σθ and ση.
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27.00 LVL/m3 and its peak price was 35.94 LVL/m3. Since recently LVM has

started to publish on its web site the prices it uses to obtain the initial price of

a lot. The prices are determined for each type of tree depending on the diameter

and whether distance to road is below or above 800 m. For example, the prices

of fir-tree during the month of August of 2005 with distance below 800 m were

24.90, 18.00 and 8.00 lats per m3 depending on the diameter. The corresponding

prices for pine-tree were 30.40, 23.50 and 12.00 and for birch 15.20, 9.00 and 6.80

lats per m3. The published prices are comparable with the coefficients obtained.

The most important difference is that according to my estimates cubic meter of

fir-tree was more valuable than the cubic-meter of pine-tree, while according to

LVM the price relationship (in August of 2005) is reversed.

Each 100 m that a forest is away from a road lowers its value by 350 · GDPt

lats. Average amount of timber in the sample is 464 m3 while average distance

to road is 481 m, implying that transporting 1 m3 to the road costs around

3.50 · 481/464 ·GDPt = 3.63 ·GDPt LVL/m3. As mentioned in the description of

the company, it has introduced a new type of auctions where companies are just

contracted to cut growing trees. The companies that participate in these auctions

must submit in their bids separately the cost of harvesting 1 m3 of timber and

the cost of transporting it to the road. While one does not expect the companies

bidding truthfully their costs, we can expect that the true costs are below the

bid cost, the difference being the profit of company. In the auction conducted in

2003 transportation costs to the road were in the range 2.00-2.50 LVL/m3. The

results of estimation indicate that we possibly overestimate the transportation

costs. However, the auctions are not directly comparable since in roundwood

auctions the lot size is much bigger: 50,000 m3 compared with approximately

500 m3 in the auctions we analyze. It could explain the differences in costs if

there are economies of scale.

The coefficient for area tells the decrease in the value of forest per hectare of

forest. I assume that the variable Area captures the costs of harvesting since it
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is reasonable that the costs are proportional to the size of area. Another way to

interpret the coefficient for area is as follows: given the volume of timber, the

smaller the area, the taller and bigger in the diameter the trees are, and therefore

the more valuable the timber is. The variable GDP , in turn, may capture the

cost savings as long as the growth in GDP indicates technological improvements.

The explanatory power of the model is not high since pseudo R2 is 0.255,

where pseudo R2 is calculated as 1− log L/ log LR and log LR is the log-likelihood

from the restricted model containing only the intercept term. I also report the

so-called percent correctly predicted. Given the estimates of coefficients δ̂ we

predict the lot to be sold, that is, yti = 1 if Φ
(
Xtiδ̂1 + rtiδ̂2

)
> 0.5 and unsold in

the opposite case. The percentage of times the predicted yti matches the actual

outcome is the percent correctly predicted. From Table 4.2 we see that the model

poorly predicts the cases when the unit is not sold, that is, for the most of unsold

units the model says that these lots should have been sold. This result can be

interpreted as the evidence against the assumption that any lot whose gross value

exceeds the reserve price will be sold.

4.5.2 Testing the order effect

From 292 auctions used to estimate the Probit model, I selected 204 auctions

where the last two lots of principal-cut were bought by two different bidders

since the order of sales will only matter if the lots are bought by two different

bidders. If both lots are bought by single bidder, his opponents’ undominated

strategy under the complete information assumption is to bid for each lot its

valuation or up to the budget constraint which ever is smaller.

The way how we arrive at the specification in equation (4.13) has a drawback.

First, the variability in the valuations can be decomposed into the variability of

the observable lot characteristics and into the variability coming from random

effects. By taking expectations we remove the second source of the variability.

Second, even if valuations were independent (they are not since contain common
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term ηt), the expected values we calculate depend on the characteristics of both

lots. As a result, the obtained variables are highly correlated and we face mul-

ticollinearity problem. The coefficients of correlation between all xij i = 1, 2,

j = 1, 2 are above 0.9. Although the estimated coefficients are unbiased in the

presence of multicollinearity, the estimates of individual coefficients can be very

imprecise.

I assume that there are no errors induced by bidding, εt = 0, in order to

simplify the calculation of E(u2
t ). Iterative estimation of (4.13) by WLS gave

coefficients stand. dev. t-statistic
x11 -0.7246 2.0585 -0.3520
x12 0.2804 3.5123 0.0798
x21 1.0884 3.6904 0.2949
x22 0.2557 1.9609 0.1304
R2 0.5078 SCR 1.65e+09

The obtained coefficients indicate that selling less valuable object first leads

to higher seller’s revenues since β̂22 > β̂11 and β̂21 > β̂12. However, as mentioned

above, in the presence of multicollinearity we can not trust obtained coefficients.

Standard deviations are very high compared with the magnitudes of the coeffi-

cients and we even can not reject the joint insignificance of explanatory variables

H0 : β11 = β12 = β21 = β22 = 0. Wald test statistic is equal to 6.01 that

has χ2(4) distribution, and we do not reject the null hypothesis at 10% signif-

icance level. The test whether the order of sales does not affect the revenues

of the seller H0 : β11 = β22, β12 = β21 gave statistic 0.13, therefore we do not

reject null hypothesis that the order is irrelevant.8 I also tested the hypothesis

whether bidders play strategies implied by the presence of capacity constraints.

Test statistic when testing hypothesis H0 : β11 = 1, β12 = −1, β21 = β22 = 0

was 10.37, and I could reject the null hypothesis at 5% significance level. I

also rejected the strategies, the bidders would adopt, if they were unconstrained:

H0 : β11 = β12 = β21 = β22 = 1 since Wald statistic was 751.56.

8It was already implied by the previous test since H0 : β11 = β12 = β21 = β22 = 0 is more
restrictive than H0 : β11 = β22, β12 = β21.
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Estimating (4.13) by WLS when regime switch occurs depending on whether

v1 ≥ 2v2 or not, gave the following results

coefficients stand. dev. t-statistic
x11 -1.0503 2.4219 -0.4337
x12 0.6807 8.9690 0.0759
x21 1.0394 4.5742 0.2272
x22 0.4987 2.1230 0.2349
R2 0.5225 SCR 1.60e+09

The obtained coefficients again indicate that selling less valuable object first

leads to higher seller’s revenues since β̂22 > β̂11 and β̂21 > β̂12, but we can not

reject the joint hypothesis that all coefficients are equal to zero, H0 : β11 =

β12 = β21 = β22 = 0 since Wald test statistic is equal to 3.14. An implication

again is that the order of sales does not affect the revenues of the seller. On

the other hand, I rejected the hypothesis that bidders play strategies implied

by the presence of budget constraints. Test statistic when testing hypothesis

H0 : β11 = 1, β12 = −1, β21 = 0.5, β22 = 0 was 34.82, which allows to reject

the null hypothesis. I also reject that bidders behave as if they were budget

unconstrained: H0 : β11 = β12 = β21 = β22 = 1 since Wald statistic was 337.54.

4.6 Discussion

We do not find the evidence that the seller can increase the revenues from se-

quential auction by changing the order in which lots of forest are auctioned.

Although we reject the particular strategies derived in Section 4.3 to illustrate

why the order becomes relevant when there are capacity or budget constraints,

the power of test, when testing the hypothesis that the order does not matter,

is very low. That is, even if the order of sales affected the revenues we would

not be able to detect it due to multicollinearity problem and resulting high vari-

ances. The reason of multicollinearity is the high variances obtained in the Probit

model, σ̂2
θ and σ̂2

η since they do not allow to classify whether the first object is

more valuable or not than the second with certainty. Most of the probabilities
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Pr(vt1 > vt2|vt1 > 0, vt2 > 0) take values in the range 0.3-0.7, and just few are

close to 1 or 0.

Additionally, the results hinge on many modelling assumptions. The viola-

tions of any of them can lead to erroneous conclusions. First, the valuations of

lots are not known and are estimated. The estimation was based on the assump-

tion that the lot will be bought as long as its valuation exceeds the reserve price.

It implies that joint budget and/or capacity of bidders must be sufficient to ex-

ercise any profitable purchase. In reality firms may not be able to increase their

capacities before the auction, and consequently, not all lots, that have positive

net value, will be bought. It is suggested by the fact that the Probit model pre-

dicts that most of the unsold lots should have been sold. On the other hand, the

obtained coefficients are confirmed by indirect evidence like the prices the seller

uses to construct initial price and bids from related roundwood auctions.

The second stage analysis assumes that bidders regard lots of principal-cut

and secondary-cut as two distinct goods. Although there may be factors that

differentiate them like size and composition, the substitutability is a matter of

relative prices. A company that specialized in harvesting big lots of principal cut

may now find it more profitable to purchase growing trees from the secondary-cut

forests. It implies that the bidding strategies for the last two units of principal cut

will not be independent of the valuations from the lots of secondary cut that are

sold after. The same argument applies to the independence of individual auctions.

The firms when planning their bidding strategies for a particular auction will

take into account the fact that there will be other auctions afterwards. Since

the forest must usually be harvested by the end of the year, firms can plan over

longer period how to utilize their resources. Additionally, auctions are announced

two weeks in advance, and also the lots that are not sold, are offered for sale in

the subsequent auctions. Thus, firms often will know what will be offered in the

following auctions while bidding in the present auction.

The hypothesis that the order of sales can affect seller’s revenue depends on
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heterogeneity of sold lots. If the number of lots is large relative to the number

of firms, they can implicitly bundle lots in order to homogenize their purchases,

since it eliminates the competition induced by heterogeneity. In general, the

repeated interaction of firms across auctions and even within auctions allow them

to mitigate the competition.

Even if the data supported the relevance of the order of sales, the use of

optimal ordering to raise revenues could be limited in practice. We assume that

the seller does not know how much firms value each forest, therefore it would

need to order lots based on its estimates. It means that, unless estimates are

very precise, there will be cases when the lots will be ordered suboptimally,

limiting the gains from this policy. If LVM knew the valuations or had very

precise estimates, the best it could do, would be to set the reserve price equal

to the value or estimate of the forest. It suggests that the reserve price may be

much more important tool to raise revenues then the optimal ordering of lots.

4.7 Appendix: The description of variables

The data sample contain most of the auctions of growing trees held from January

of 2001 till July of 2003. The data combine the descriptions of lots available from

the web site of the company with the information on sold units (the identity of

the winner and the price he pays), obtained from sales reports, submitted by the

regional forestries to the sales department of LVM. An example of announcement

is provided in Table 4.3. The description of each lot contains: 1) lot number; 2)

location of the lot; 3) type of felling; 4) size of area; 5) volume - total and useful;

6) composition by type of trees; 6) distance to road; 7) initial price; 8) required

deposit; 9) notes if special terms apply.

The composition of forest indicates the percentage split among several types

of trees. The most common types of trees are pine-tree, fir-tree and birch, other

types include aspen, black and white alder, oak, ash-tree and lime-tree. To obtain
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the amount of timber for each type I multiplied the ‘useful’ timber amount,

measured in cubic-meters, with share of that type of tree in the forest. I defined

corresponding variables: pine, fir, birch, aspen, and other where the last variable

contains all the rest of timber types since their amount was relatively small. All

variables are measured in cubic-meters. I also defined the variables road - the

distance to road measured in meters, area - the size of forest measured in hectares,

and r - the initial price measured in lats. The variable GDP is nominal quarterly

GDP of Latvia obtained from the web site of Statistical Office of Latvia. The

revenue y in (4.1) is defined as the difference between sales price p and the initial

price r, summed over both lots, and all measured in lats.
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Table 4.3: Auction held on January 24, 2003, region of Southern Kurzeme
Lot Forest Head Forestry Type of Identificators Area, Volume, m3 Composition Initial Deposit, Distance
number district forestry felling of felling area ha total useful price, LVL to road,

LVL m
1 Alsungas Kuld̄ıgas Alsungas clear-cut 143 1;2;3 4.7 1481 1420 7P3E 23000 2300 300
2 Alsungas Kuld̄ıgas Alsungas clear-cut 155 17;24; 5 1362 1340 5P3E2B 20000 2000 200

25;27
3 Apriķu Liepājas Aizputes clear-cut 359 14 2.1 501 455 6E3B1Ba 5000 500 200
4 Apriķu Liepājas Aizputes clear-cut 359 15 2.2 651 561 4E4B2A 4500 450 350
5 Apriķu Liepājas Aizputes clear-cut 359 30 1.8 569 473 2E3B2A2M 3000 300 300

1Ba
6 Grobiņas Liepājas Grobiņas clear-cut 14 3 1.3 356 242 5B2E2A1Os 2000 200 400
7 Grobiņas Liepājas Grobiņas clear-cut 14 12 3.2 643 456 5E1P2Os1B 5000 500 450

1A
8 Kr̄ıvukalna Liepājas Priekules clear-cut 20 14 2.8 884 747 4E4B2A 7000 700 600
9 Akmensraga Liepājas Apriķu stock 22 5;6;11; 16.8 741 666 7P1E2B 4000 400 550

care-cut 12;13
10 Akmensraga Liepājas Apriķu stock 27 4;5;8-12 11.8 587 495 5P1E4B 3500 350 350

care-cut
11 Apriķu Liepājas Aizputes stock 202 1;2;3 3.5 185 104 6E2Oz1B 1000 100 400

care-cut 1Ba
12 Apriķu Liepājas Aizputes stock 358 10;11 7.8 508 351 6E2B1M 3000 300 90

care-cut 1Ba
13 Kr̄ıvukalna Liepājas Priekules stock 370 14 2.8 243 196 5E5B 1500 150 600

care-cut

Composition 7P3E, for example, means 70% pine-tree, 30% fir-tree.
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