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Preface

This thesis addresses two different questions. First, the economic consequences
of pairwise in�uences, understood as externalities which intensity and sign de-
pend on the pair of agents considered. Second, the effects of different commu-
nication processes in small groups, and its consequences for the optimal inner
network structure of informal organizations.
In the �rst chapter �Pairwise In�uences and Bargaining Among the Many�

we analyze how pairwise in�uences affect the nature and solution of distribu-
tional con�ict. In a model with pairwise in�uences the utility of each agent is
heterogeneously in�uenced by the utility of other agents in the economy. In
particular, there are two dimensions of heterogeneity: who in�uences whom, and
the strength of any of such pairwise dependent in�uence. The pattern of bilateral
in�uences takes the form of a weighted and directed network. This kind of mod-
els can encompass, for example, spatial externalities or social preferences. In the
analysis of distributional con�ict, in which agents have to divide some available
resource among them, pairwise in�uences affect the nature of this con�ict, since
if the externalities they represent are negative the con�ict is strengthened while if
these externalities are positive the con�ict is diluted. In a limit situation, there can
exist a complete alignement of preferences for a uniquely determined allocation.
In this last case, distributional con�ict simply vanishes. Our aim in this chapter
is to analyze the family of economies with pairwise in�uences in which there
exists full distributional con�ict and how the solution to this con�ict maps the
heterogeneous pattern of pairwise in�uences to shares and utilities obtained. In
particular, we use the Nash bargaining solution as the solution to distributional
con�ict. Our results rely on network centrality indexes that measure each agent's
prominence due to his position in the in�uences structure.
The chapter �On Pairwise In�uence Models: Networks and Ef�ciency� ex-

tends the analysis of the indirect effects of direct pairwise in�uences and how
these indirect effects determine the set of ef�cient allocations in such kind of
models. The results in this chapter are developed in a social preferences frame-
work but they immediately apply to more general setups with externalities. First,
we provide a complete analysis of the mapping from pairwise in�uences to net-
work externalities, that account for all levels of indirect effects generated by the
pattern of in�uences. Then, we provide a complete characterization of the set of
Pareto ef�cient allocations for almost every economy with pairwise in�uences in
terms of prestige measures derived from the literature on social network analysis.
We illustrate these results with the use of two different network designs, the circle
and the star, that express two polar cases on the set of possible structural pattern
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iv Preface

of in�uences.
The chapter "Spatial Spillovers and Local Public Goods" is a �rst attempt to

analyze some issues related to the effects of spatial spillovers in urban structure
and the provision of local public goods under the light of pairwise in�uence
models. Many public services that are distributed all along the city do not arrive
in the same way to all its citizens. Hence, public services are not always pure
public goods. Suppose that this services are distributed among the different
neighbourhoods in which the city is divided. Then it is probably neither true
that the effect of local public services is bounded to the neighbourhood level.
Instead, some of these effects can extend and spill over to other neighbourhoods.
The intensity of these spatial externalities probably depends on the geography
and on socioeconomic characteristics of the city. The con�ict that arises between
neighbourhoods to obtain larger shares of the available public services when spa-
tial externalities exist is analyzed theoretically in the �rst chapter of this thesis.
Different divisions of the city into neighbourhoods determine different patterns
of spatial externalities. These externalities are internalized in the solution to the
con�ict. Hence, a natural question emerges: which is the division of the city that
involves larger returns in terms of social welfare of all citizens once we take into
account the pattern of spatial externalities that this division entails? We do not
provide a complete answer to this question. We simply illustrate, with the use
of some data of Barcelona, how the tools we have previously developed provide
a satisfactory benchmark in which to inscribe this analysis. Beyond that �rst
topic, the second part of the chapter provides a public good provision game with
spatial spillovers, that we analyze with some detail. Neighbourhoods choose how
much they want to contribute to the provision of public services that later on are
assigned to them with the use of the Nash bargaining solution. The results in this
chapter are nonconclusive, but they sketch some directions for future research in
which the models and tools developed in previous chapters can show useful.
In the chapter �Communication Processes: Knowledge and Decisions�, in

joint work with my advisor Antoni Calvó-Armengol, we introduce a model of
communication in informal organizations. We envision an organization as a team
in which each member faces an individual decision problem and a common co-
ordination problem. The decision problem expresses the desire of all individuals
to choose actions that are close to the optimal, and unknown, task that should
be ideally implemented. The coordination problem expresses the needs of the
organization to align the actions of all its members. Each member has some
private information on the real state of the world. We analyze how different
communication processes of this private information impact the optimal actions
of each member. Each one of these decentralized information-sharing schemes
determines the way in which each member constructs his beliefs on the task to be
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performed, as well as what others belief is the optimal task to be performed,
and the beliefs on beliefs on beliefs, and so one and so forth. The analysis
provides a new concept, the knowledge index, that sums up in an idiosyncratic
value these higher order beliefs for each possible communication process. Given
any information structure derived from a communication process, the game has
a unique Bayesian equilibrium. The equilibrium action of each agent is linear
in the communication report each agent obtains, and this report is, precisely,
weighted by the knowledge index. The uniqueness and linearity properties of the
Bayesian equilibrium allow for clear welfare implications in our analysis. We
perform some comparative statics on the different parameters that determine the
relative strength of the individual decision versus the coordination problem, the
informativeness of private signals, and the particular characteristics of the com-
munication process, namely accuracies and correlations of �nal communication
reports.
The last chapter, �On Optimal Communication Networks,� also in joint work

with professor Antoni Calvó-Armengol, builds on the model and results devel-
oped in the previous chapter to study a family of networked communication
processes. We obtain a partial order on the set of possible networks: adding
communication possibilities always increases accuracy of the task forecast, but a
negative counterpart can arise if new links do not close triangles in the original
network because the coordination problem can be exacerbated. Our analysis also
shows that when there is one unique round of communication, and there is a
�xed supply of possible links, the optimal geometric arrangement of these links
maximizes a network span index, a measure of network irregularity. Instead,
when the number of possible communication rounds increases, the process be-
comes a model with persuasion bias in which the optimal network is regular. We
obtain therefore, for a wide set of parameters, a polarization result in terms of the
number of available rounds to communicate.
In some sense both parts of this thesis are complementary. Both are interested

in externalities, but the source of these externalities are of a different nature in
each one: in the �rst part, we deal with heterogeneous payoff externalities; in
the second part we deal with heterogeneous informational externalities. Hence,
we can phrase the essence of the interests of this thesis in understanding how
pairwise dependent externalities affect economic outcomes and behavior.
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Pairwise In�uences



Chapter 1
Pairwise In�uences and Bargaining

Among the Many

1.1 Introduction
In�uence in outcomes and behavior across individuals is pervasive in many social
and economic settings. This in�uence can take many forms. It can be centralized,
and result from a common in�uence of the environment. Else, it can be decentral-
ized and supported by more local interactions. At its most disaggregated level,
in�uence is mediated by pairwise interactions. The collection of such pairwise
interactions can display a rich pattern that might overall in�uence the resulting
individual outcomes.
Cross in�uences can be an important issue if we deal with distributional

con�ict. Consider a �xed resource to be divided among a set of individuals.
Any possible division of this resource has a direct effect on individual outcomes.
In addition to this direct effect, there can also be an indirect effect mediated
by the possible interactions that might arise across some pairs of individuals.
Through the chains of interactions present inside the group, these indirect effects
can spread all over the population. When individuals agree collectively on the
division of this common resource, all these in�uence effects have to be internal-
ized adequately. The pattern of direct pairwise in�uences can thus play a crucial
role in the solution of the distributional con�ict.
When considering disaggregate pairwise in�uences, there are two different

possible sources of heterogeneity in its underlying structure: the geometry of
interactions, that expresses who in�uences whom, and the magnitude of each one
of these in�uences. The aim of this paper is to analyze how the whole structure

2



1.1 Introduction 3

of such pairwise in�uences affects the bargaining outcomes.

Consider for example the case of urban crime. Crime patterns on city's neigh-
bourhoods are interlaced and there are several reasons why this is so.
First, the division of cities into different neighbourhoods is merely an admin-

istrative issue. Criminals do not doubt in crossing the street and move from a
neighbourhood to another to commit their activities. Hence, if no natural barrier
imposes dif�culties on this movement, this is a natural source of interdependence
in crime rates across neighbourhoods. This is very much related with the so
called Modi�able Area Unit Problem (M.A.U.P.) highlighted in the literature
of spatial statistics in geographic information science. Different groupings into
neighbourhoods lead to variability in statistical results. When aggregating for
crime rates it is unlikely that there exists a univocal relation between neighbour-
hood characteristics and crime outcomes.
Furthermore, the embeddedness of individuals into social networks that might

spread over the city, impacts also criminal behavior. Some individuals might im-
itate the behavior of their contacts in their network of acquaintances (see Glaeser
et al., 1996). Some others might infer (maybe erroneous) information on the
bene�t on committing crime (see Sah, 1993). Hence, criminal behavior suffers a
contagion effect inherent to the social environment. This social osmosis process
also induces spatial in�uence in crime rates.
When the major has to decide on how to distribute resources to �ght urban

crime, and when a representative of each neighborhood asks for part of these
resources, we come up with a distributive con�ict with in�uences on crime rates
across pairs of neighborhoods. Our analysis sheds light on how the particular
neighborhood geography and the pattern of in�uences across neighbourhoods
are internalized in the �nal assignment.

The environment. There are two dimensions of heterogeneity in the model.
On the one hand, the particular geometry of bilateral in�uences. Not everybody
necessarily exerts an in�uence on every other agent. The pattern of direct bilat-
eral in�uences determines who exerts an externality on whom and how in�uences
spread indirectly through the economy. On the other hand, the magnitude of each
bilateral in�uence is pairwise dependent. The magnitude of an in�uence relation
depends on exactly which agent exerts this in�uence and which agent receives it.
Direct in�uences generate indirect network effects. We call network exter-

nalities the sum of all these indirect effects. These are direct externalities derived
from the assignment of resources, and measure how the level of consumption,
not the utility, of an agent affects another agent's utility. Each pattern of pairwise
in�uences determines a unique pattern of network externalities.
To better understand the spread of in�uences through direct bilateral in�u-
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ences we reinterpret at some points in the paper the model in terms of networks.
The network links an agent to another whenever the second agent exerts a direct
externality on the �rst one. Externalities spread then through the links of the
network. We can keep track of all indirect in�uences generated from bilateral
in�uences through paths and cycles in the associated network. The network
metaphor is adequate in this setting due to asymmetric pairwise bilateral in�u-
ences. Connections with well-known notions from social network analysis, such
as centrality measures, arise as natural tools for the network reinterpretation of
the model.
Direct bilateral in�uences within a �nite set of agents are modeled with the

use of a linear model that encompasses the possibility of positive and negative
in�uences as well as asymmetric in�uences within pairs of agents. The model
is characterized by a matrix that collects the possibly different levels of bilateral
in�uences for each possible pair of agents, the primitives of the model.
A unit of a divisible resource has to be distributed among the agents of the

economy. The utility that an agent obtains comes from the share of the resource
that receives and also from the utility of agents that exert an in�uence on him,
which enters his utility function proportionally to the intensity of the direct in�u-
ence each of these other agents exert on him.
In the example on crime, whenever direct in�uences exist among crime rates

in different neighbourhooods, the assignment of a part of the resources against
urban crime does not only have a direct effect on this neighbourhood. Its ef-
fects also spill over the rest of neighbourhoods in an heterogeneous manner.
Hence, when the different neighbourhoods are engaged in dispute for these re-
sources, and they understand that these spillover effects exist, they show het-
erogeneous preferences on possible assignments. Even if probably each neigh-
bourhood would prefer to receive all the resource, if they realize they have to
achieve an agreement with the rest of neighbourhoods, they would prefer that
those neighbourhoods that overall exert a larger spillover effect on it receive more
resources than those that exert less.
A linear structure of in�uence is assumed for tractability. It ensures for,

almost, every economy with in�uences the existence of a unique solution to the
system relating utilities. This solution provides the utility in terms of the alloca-
tion, instead of in terms of others' utilities. Hence, solving the model means to
characterize the effect the share of the resource an agent receives changes others'
welfare, and it internalizes the indirect effects bilateral in�uences generate.
Still another assumption has to be argued. We suppose constant returns to the

share of the resource received. This is an strong assumption. Probably the returns
to direct investment on �ghting against crime in a neighborhood are not constant.
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However, assuming constant returns, in�uences become the unique underlying
force that yield to differences in the results. In general, the introduction of con-
cavities due to other reasons not related to in�uences would distort the analysis
of the effect of in�uences on the bargaining outcome.
When distributional con�ict exists, the bargaining outcome is given by the

Nash bargaining solution. With its use we ensure a unique well-de�ned out-
come after the resolution of the con�ict. Of course, this choice comes at a cost.
By using a cooperative solution we abstract from institutional or environmental
restrictions that can play a role during the bargaining process. These institu-
tional restrictions are generally introduced de�ning a particular non-cooperative
bargaining game that takes them into account. Then each particular application
should be followed by a different non-cooperative game that speci�es its partic-
ularities. This way we would lose some of the general conclusions that a more
stylized model can give as general features of somewhat different situations.

Results. We restrict our analysis to the more interesting case of regular economies.
Regular economies are such that any allocation that exhausts resources is Pareto
ef�cient. In regular economies, the Pareto frontier is non-degenerate.
For such economies, we characterize completely the Nash bargaining solu-

tion, providing closed-form expressions for the utilities and shares obtained.
The reason for which we restrict to regular economies is the following. In

non regular economies the Pareto frontier is degenerate. This is so because the
in�uence exerted by some given agent on others is much bigger than the in�uence
he receives in return. Ef�ciency might require then that this agent receives all the
resources available. If an individual in a group is so much loved by anybody else
compared with other possible affective relations, which means that the in�uence
this agent has on others' utility is very large, it could be ef�cient to give him all
the resource.
Similarly, there might exists intermediate situations in which only some agents

are allowed to receive a share of the resource for ef�ciency reasons. While our
methods and analysis could be extended to such nonregular situations, we focus
on the analysis of regular economies in which the pattern of in�uences excludes
de facto some agents from the course for some part of the resources.
We �rst characterize regular economies. This characterization is twofold.

First, regular economies are characterized by an upper bound on the aggregate
level of bilateral in�uences every agent exerts on others. In terms of direct
bilateral in�uences, we obtain a bound on the maximal level of aggregate direct
in�uences an agent can exert. The economy is regular if and only if no agent
exceeds this bound. Second, regular economies are characterized by conditions
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on the pattern of network externalities. More precisely, an economy is regular if
and only if all agents are equally central in the network structure of in�uences.
The relevant measure of network centrality is the Katz-Bonacich centrality index,
pervasively used in the sociology literature, and that also arises naturally in other
economic settings.
We next provide a constructive procedure to characterize the Nash bargaining

solution. It is important to note that even if the economy is regular and, hence, the
distributional con�ict involves all agents in the economy, this does not exclude
the possibility that some agents obtain �nally no share of the resource. Externali-
ties do not directly solve the bargaining problem but this does not mean that they
can not be suf�ciently asymmetric such that, after internalizing all in�uences, the
Nash bargaining solution assigns nothing to some of the agents.
A geometric procedure is presented to check if the solution for a particular

economy is interior, meaning all agents obtain a positive fraction of the resource,
and to characterize the solution in this case.
We also devote part of our work to the analysis of �-economies. In these

economies all existent pairwise in�uences have intensity equal to �, and when-
ever an agent exerts an in�uence on another, this other agent also exerts an
in�uence on the �rst one. One of the two dimensions of heterogeneity in the
model, the possibly different levels of externality intensities across individuals,
is kept to a minimum. The main source of heterogeneity is the geometry of the
pattern of pairwise in�uences.
An analysis in depth of this family of economies gives a better picture of how

the particular arrangement of pairwise relations, irrespective of the intensities of
these, impacts on bargaining outcomes. In particular, utility is directly related
with the number of connections an agent has. Those agents that receive and
exert more in�uences are also rewarded with larger utility levels. However, this
monotonicity does not necessarily translates into receiving larger fractions of the
resource.
Finally, we also study how changes on the pattern of in�uences distort the

Nash bargaining outcome. We analyze how changes in the levels of bilateral
in�uences change the bargaining result. Furthermore, we also discuss how our
framework can be used to describe and analyze situations in which some agents
that are not involved in the bargaining game can affect the bargaining outcome.

Applications. Besides the example on urban crime, our model is �exible enough
to encompass other possible applications.
Consider for example government spending. When deciding how to divide

the public budget within government departments a possible concern for the
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ministers is to take into account that outcomes related to responsibilities of one
department can affect outcomes related to other departments. The result of the
bargaining process should then depend on these in�uences generated across de-
partments.
The department of social affairs might exert a positive externality on the

department of education. If more resources are spent on social affairs, such as
ameliorating life conditions in specially poor regions, this can translate into larger
school attendance rates in this regions and hence an improvement in aggregate
level of education of the country, a subject under the domain of the education
department. Moreover, this effect on citizens' education can translate into an
increase on the understanding of good and healthy habits that might imply an
increase on life expectancy in the country, a fundamental issue for the health
department.
Observe that the outcome improvement on health comes indirectly from an

increase of resources for social affairs. This increase on resources improves the
outcome for social affairs which through a direct in�uence improves the outcome
on education, which improves the outcome on health. This is another example of
indirect in�uences that spread due to network effects. In this setup our analysis
sheds some light on how the pattern of in�uences across different departments
maps into government bargaining agreements.
Another possible application is in the �eld of social preferences.1 Follow-

ing the line of seminal work from Becker (1974), altruism and envy can be
interpreted as in�uences of a very particular kind, with its source coming from
psychological reasons. An agent is altruist for another if he is better off when the
other is better off. Hence, this second agent is exerting a positive in�uence on the
�rst one. Inversely, an agent is envious for another agent if he is worst off when
the other is better off, and in this case the in�uence the second agent exerts on
the �rst is negative. Our work applies then to the analysis of a bargaining game
in the presence of pure altruism and envy effects, where the pattern of altruism
and envy is variable in intensity across pairs of agents.

Related Literature. Our model bears a formal resemblance with previous work
on interdependent utilities by Bergstrom (1999) and Bramoullé (2001). Bra-
moullé also interprets this type of systems in terms of weighted and directed
networks, but focuses on some qualitative features of the mapping from bilat-
1 See Fehr and Schmidt (2002) and Sobel (2005) for very comprehensive surveys of the
theoretical literature and empirical evidence on social preferences. Levine uses a linear model
similar to the one we develope in our work to analyze experimental results for some classes of
games. Roth (1995) is a survey of experimental evidence of social preferences in bargaining
games.
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eral in�uences to network externalities.2 Here instead, we analyze the mapping
from bilateral in�uences to Nash bargaining utilities and agreed shares, providing
closed-form expressions for both.
A strategic model on status in networks that generates similar interdepen-

dency systems is provided in Rogers (2005). Rogers analyzes a network for-
mation game in which agents with heterogeneous skills can choose with whom
they want to contact and with which intensities they want that this contact is
made. Hence, the pattern of in�uences is endogenously chosen. We analyze
instead situations in which the structure of pairwise in�uences can not easily
be affected by individual strategic decisions. For example, in the urban crime
example no neighbourhood can do much to delimit in�uences among them, since
these are largely determined by private decisions and actions of the population,
which is an issue out of their control. A similar comment applies on the example
on interdepartmental in�uences in a government. Also, altruism and envy are
not only the result of strategic decisions but the effect of the embeddedness of
individuals on a social environment they can not determine and control.
The model also resembles input-output models of linear economies (Leon-

tief, 1951, Gale, 1960). However, input-output models only allow for positive
bilateral in�uences, while here we do not impose sign restrictions of any sort. Of
course, we also deal with different issues.
Some papers have analyzed multilateral bargaining with externalities from

a non-cooperative viewpoint. Jehiel and Moldovanu (1995a, 1995b) consider a
setup where one seller bargains with n potential buyers to decide which of them
obtains the unit of an indivisible good. The acquisition of the good by one of the
agents can exert a positive or negative externality on others. They analyze how
the bargaining outcome is affected by this allocative externality.
In a political economy context, Calvert and Dietz (2004) explore how the

introduction of externalities in a 3-agent economy alters the conclusions of the
Baron and Ferejohn (1989) non-cooperative game of legislative bargaining. See
Duggan (2004) for conditions about existence of equilibria in the n agents version
of the Baron and Ferejohn game with externalities.
While our cooperative approach is less sensitive to possible particularities

in the bargaining process, such as the particular mechanisms by which buyers
and sellers bargain or the existence of a voting rule (the majority rule in Baron-
Ferejohn models) in legislative bargaining, it allows for a general and tractable
analysis of multilateral bargaining with one unique outcome prediction and an
heterogeneous pattern of externalities.
2 For a complementary approach to this mapping and a general characterization of Pareto
ef�ciency in such a setup, see de Martí (2006).
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Our work also borrows from the very active literature on networks in eco-
nomics. However, we do not deal with the formation of social and economic
networks, maybe the more extensively studied issue in the �eld, but on games
played in a �xed network.3 Other authors have also explored the interrelation
of network structure and bargaining outcomes (see Calvó-Armengol, 2001, and
Corominas-Bosch, 2004 ). The approach in these papers is different in many
respects. Just to mention a few, bargaining is not among the many and the
network represents communication restrictions and delimits the possible pairs
of agents that can trade.
The Katz-Bonacich centrality measure was �rst de�ned by Katz (1953) and

later on developed by Bonacich (1987). It is one of the more relevant centrality
measures studied in the active �eld of social network analysis.4 Another game
played in a network, in this case not a bargaining game, where this centrality
measure naturally arises is Ballester et al. (2006). Agents play a game with
pairwise dependent strategic complementarities. In the unique equilibrium of
the game each agent action is proportional to his Katz-Bonacich centrality index
measured on this network of complementarities.

1.2 Bilateral In�uences and Network Externalities

1.2.1 Modelling Bilateral In�uences
In this section we propose a simple framework that allows to model positive and
negative allocative in�uences across individuals.
Suppose that there is an amount of a certain resource to be distributed within a
group of n individuals, N = f1; : : : ; ng. Let ci be the consumption of agent
i 2 N . Let bij 2 R be the magnitude of the in�uence agent j exerts on agent
i. Then, an increase of one unit of welfare for agent j induces an increase of bij
units of welfare for agent i. Given a pro�le c = (c1; : : : ; cn), the utility an agent
obtains , ui (c), is equal to

ui (c) = ci +
X
j 6=i

bijuj (c) i = 1; : : : ; n (1.1)

This set of equations forms what we call the bilateral in�uences system. Note
that the relation in this system is from outcomes to outcome.
In terms of the urban crime example, bij represents how the crime rate , not

the share of public budget received, in neighborhood j affects the crime rate in
3 See Jackson (2005) for a very extensive survey of the �eld of networks in economics, and for
an exhaustive list of references about games played in networks, including bargaining games.
4 For an exhaustive survey of this literature see Wasserman and Faust(1994).
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neighborhood i.
Due to linearity, we can �x the sum of consumption levels to

Pn
i=1 ci to be

equal to 1. Hence, we can interpret ci as the share of the resource received by
agent i.
De�ning bii = 0 for all i 2 N , we gather all the bij in a matrixB of bilateral

in�uences. An economy is completely characterized by its matrix of bilateral
in�uences.
For a given economy B, we can obtain from the structural system of bilat-

eral in�uences to a reduced-form system where the utility of each agent can be
directly expressed in terms of the shares pro�le, eliminating the dependency on
other's utility.
The bilateral in�uence system in matrix form is equal to

u (c) = c+B � u (c) (1.2)

Hence, if I is the identity matrix, whenever (I�B)�1 exists we obtain the
reduced-form system

u (c) = (I�B)�1 � c (1.3)

The �rst result we provide is a genericity result. An economy is character-
ized by n (n� 1) real values. Therefore, there is a one-to-one mapping from
economies to elements of Rn(n�1). From this point of view, the set of economies
in Rn(n�1) for which (I�B)�1 does not exist has (Lebesgue) measure zero.
This implies that for almost every economy B, the associated matrix (I�B)�1
exists (and, of course, is unique) and the next result then follows.

Proposition 1 For almost every economy B the associated reduced-form sys-
tem is uniquely characterized.

In words, given a structural system of bilateral in�uences there is no indeter-
minacy in the obtaining of the associated reduced-form expression, except for a
negligible set of economies.5

LetE (B) = (I�B)�1. Each entry eij (B) expresses the magnitude of how
the utility increases, if the entry is positive, or decrease, if the entry is negative,
when the level of consumption of agent j increases. We call E the matrix of
network externalities. An explanation for the choice of this name follows.

5 See Bramoullé(2001) for structural models of a similar nature for which indeterminacy in the
determination of the associated reduced-form system arises.



1.2 Bilateral In�uences and Network Externalities 11

1.2.2 From Bilateral In�uences to Network Externalities
Any economyB can be naturally represented by a network.
A network is formed by a set of nodes and a set of links that express a relation

between the pair of nodes linked. While this is an abstract object, it is a useful
metaphor to represent many varied situations in applied settings. In particular,
in our case this metaphor can be applied to make nodes represent the agents
involved in the structural system of bilateral in�uences, and make links represent
the pattern of bilateral in�uences exerted across pairs of agents. A link in such an
in�uence network is weighted, each link has an associated value that represents
the strength of the in�uence this link represents, as well as a particular direction,
since the in�uence agent i exerts on j does not necessarily coincides in strength
with the in�uence agent j exerts on agent i, and hence we have to distinguish the
link from i to j and the link from j to i.
Different conventions could be adopted to express the mapping from economies

to networks. We adopt the following one. We say that there is a link from agent i
to agent j whenever j exerts a, positive or negative, in�uence on i, and the weight
for this link is then equal to the coef�cient bij 2 R of the structural system of
bilateral in�uences. Since in our model there is no self-in�uence we do not allow
for self-loops, links from an agent to itself. The set links that begin in i point to
the agents that in�uence agent i.
Observe the weighted and directed nature of the network de�ned in this

way: since we have not imposed any restriction on the possible values of the
coef�cients in the structural in�uence system, the weight of a link can take any
real value; also, since we have not imposed symmetry on the levels of bilateral
in�uence, it is possible that there exist both a link from i to j and another one
from j to i and that their respective weights differ. Even more, it is possible that
there exist a link from i to j while there is no link from j to i.
A weighted and directed network is de�ned by an adjacency matrix, where

the entry (i; j) in this matrix is equal to the weight of the link from i to j. This
weight equals the level of bilateral in�uence j exerts on i. Hence, given an
economy B the adjacency matrix of its associated network, in the way we have
de�ned this network, is alsoB.
The following equality applies

E (B) = (I�B)�1 (1.4)
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WheneverB is a contraction6 we have that

(I�B)�1 =
+1X
k=0

Bk (1.5)

If j exerts an in�uence on i with weight bij and k exerts an in�uence on j with
weight bjk, k exerts an indirect in�uence on i with weight equal to bijbjk. The
matrix B2 keeps track of these second order network in�uences. The entry b[2]ik
ofB2 computes the sum of weights of all paths of length two from i to k.7

More generally, for any l � 1 the matrix Bl keeps track of the l-order net-
work in�uences: each entry b[l]ik equals the sum of weights of all paths of length l
from i to k.
Therefore, whenever the expression in equation (1.1) is valid, the entry eij (B)

ofE (B) is the sum of weights of all paths from j to i in the network represented
by the economy/adjacency matrix B. The matrix E (B) computes the sum of
indirect (network) effects that the pattern of bilateral in�uences generates. This
sum of indirect effects of any order is what we denote network externalities, and
this is why we call matrix E (B) the matrix of network externalities.
Each entry eij (B) represents by how much the consumption of agent j af-

fects the utility of agent i not only through the direct bilateral in�uence agent j
exerts on i, represented by bij , but also through the indirect in�uences resulting
of all possible indirect network connections from j to i.
The following example, borrowed from Bramoullé (2001), is useful to under-

stand how important are indirect network effects for the analysis of the mapping
from allocations to utilities de�ned in the reduced-form system.

Example 1. There are three agents, N = f1; 2; 3g, and the structural system

6 The matrix B is a contraction if and only if all its eigenvalues have norm smaller than 1. This
will be the case for example for the set of regular economies, that we de�ne later, if bilateral
in�uences are positive.
7 A path between i and j in network G is a sequence of agents i1; : : : ; iK of N, where an
agent can appear several times in this sequence, such that ikik+1 is a link of G for every
k 2 1; : : : ;K � 1, with i1 = i and iK = j. The length of such a path is equal to K � 1, the
number of links that form the path. In words, a path in g is an indirect connection from agent i to
agent j through linked agents in B. We de�ne the weight of a path i1; : : : ; iK ofG as the product
gi1i2 � � � giK�1iK . This weight is different than zero because of the de�nition of path. A path such
that i = j is called a cycle.
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of bilateral in�uences relating them is

u1 (c) = c1 + b12u2 (c) + b13u3 (c)

u2 (c) = c2 + b23u3 (c)

u3 (c) = c3

where b12 and b13 are positive but b23 is negative. This means that both agent
2 and 3 exert a positive direct in�uence on agent 1, probably with different
intensities, while agent 3 exerts a negative in�uence on agent 2. Besides, the
values for these direct bilateral in�uences are b21, b13 and b23.
The network that represents this situation is

t
2

t
3

t1









�

J
J
J
J
Ĵ-

b12 b13

b23

Figure 1

and the 3� 3 bilateral in�uences matrix is

B =

0@ 0 b12 b13
0 0 b23
0 0 0

1A
Hence, the 3 � 3 matrix of network externalities, E (B) = (I�B)�1, is equal
to

E (B) =

0@ 1 b12 b13 + b12b23
0 1 b23
0 0 1

1A
Observe that in this case we can easily compute the matrices of indirect network
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effects,Gk for k � 2. The matrices of higher order network effects are

B2 =

0@ 0 0 b12b23
0 0 0
0 0 0

1A
Bk =

0@ 0 0 0
0 0 0
0 0 0

1A for every k � 3

Therefore, E (B) = I + B + B2. The expressions of utilities in terms of
consumption are therefore

U1 (c) = c1 + b12c2 + (b13 + b12b23) c3
U2 (c) = c2 + b23c3
U3 (c) = c3

The weight of the network externality agent 3 exerts on agent 1, e13 =
b13 + b12b23, depends on the intensities of bilateral in�uences. In particular,
if �b12b23 > b13 the externality is negative, even if the direct bilateral in�uence
b13 is positive. A tension arises because even if agent 3 exerts a direct positive
in�uence on agent 1, the negative in�uence agent 3 exerts on agent 2 also has an
indirect (network) effect on agent 1 due to the indirect path from 3 to 1 through
agent 2. This negative in�uence is internalized in the reduced-form system re-
lated to network externalities and makes it possible that e13 is negative if the
bilateral negative in�uence 3 exerts on 2 is large enough.
We omit the dependence of E onB when no confusion is possible.

1.3 The Set of Pareto Allocations

1.3.1 Characterization
From now on we will consider that there is a certain amount of a resource that,
without loss of generality, we normalize to one. Before turning to the study of
distributional con�ict and how agents in an economy agree to divide this unit of
resource among them, we have to make a clari�cation about the set of Pareto
ef�cient allocations in an economy with in�uences. Externalities can have se-
vere consequences on which allocations can be Pareto ef�cient. Our aim in this
section is to characterize the set of economies for which distributional con�ict is
particularly strong.
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Before providing an example of the peculiar situations that can arise in economies
with in�uences we describe the utility possibility set for any economyB, that we
denote UPS (B). Given an economyB, and for any feasible allocation, we have
that u (c) = E � c =

Pn
i=1 cie

(i), where e(i) is the i-th column vector of the
matrix of network externalities. Since an allocation c is feasible if and only if
ci � 0 for every i 2 N and

Pn
i=1 ci � 1, we can conclude that the utility

possibility set for the economy de�ned byB is the convex hull of the columns of
the matrix of network externalities E plus the zero vector, that is

UPS (B) = co
�
e(1); : : : ; e(n);0

	
This implies that the utility possibility set for any economy B is a simplex, and
therefore it is a convex and compact set.

Example 2. Consider the economy represented by the following network

s s-�1 2
3=2

1=2

Figure 2

The 2� 2 matrix of bilateral in�uences is

B =

�
0 3=2
1=2 0

�

It follows that the matrix of network externalities for this economy is equal to

E (B) =

�
4 6
2 4

�

Here e(1) =
�
4
2

�
and e(2) =

�
6
4

�
and the utility possibility set for this

economy is the convex hull of these two vectors and the zero vector. We can
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depict UPS (B)

6

-
u1

u2

��
��

��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
(u�1; u

�
2)s

4 6

2

4

Figure 3

It turns out that the unique ef�cient allocation in this economy is (u�1; u�2), that
corresponds to (c�1; c�2) = (0; 1).8 At the unique Pareto ef�cient allocation agent
2 receives all the resource. This is so because the magnitude of the externality
agent 2 exerts on agent 1 is much larger than the one of the externality agent 1
exerts on agent 2. The effect of an increase in the level of consumption of agent
2 is then larger in agent's 1 utility than the effect of an increase in his own level
of consumption.
When considering such kind of situations the implications on the solution to

the Nash bargaining problem is immediate. Since the Nash bargaining solution
has to be Pareto ef�cient and there is a unique Pareto ef�cient allocation, the
Nash bargaining problem is trivially solved.
We will disregard the kind of economies that we have just described. Indeed,

we will concentrate from now on in the completely opposite kind of situations.
We will only consider economies where any allocation that exhausts available
resources is Pareto ef�cient. When this happens we say that the economy is
regular.9 The assumption of a regular economy ensures there is a nontrivial
bargaining problem and there exists competition among all agents to obtain some
share of the unit of resources.
The next result provides a complete characterization of regular economies in

8 Recall that we have normalized the total amount of resources to one. This is, of course,
without lose of generality because of linearity.
9 Observe that this is not the unique other possible situation. It could be that only a subset of
agents should consume for an allocation to be Pareto ef�cient. In the next chapter we provide
a generic characterization of all possible situations in terms of endogenous centrality measures
derived from the position of each agent in the network of bilateral in�uences.
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terms of the matrix of network externalities. Before stating it we de�ne a useful
notion for the analysis in the rest of the paper.

De�nition We say that an n-dimensional vector � is a strict system of
weights if and only if �i > 0 for every i 2 N and

Pn
i=1 �i = 1.

Now we provide the �rst characterization result of regular economies.

Proposition 2 An economyB is regular if and only if there exists a unique strict
system of weights � and a positive constant � > 0 such that � � e(i) (B) = � for
every i 2 N .

The previous result characterizes regularity through the matrix of network
externalities. Each element of column e(i) expresses how large is the network
externality agent i exerts on each agent. When we compute the weighted average
of these elements we obtain a single value that expresses an overall measure of
network externalities exerted by agent i. Hence, Proposition 2 says that regularity
amounts to �nd normalized weights, which are unique and depend on the econ-
omy we are analyzing, such that this overall measure of network externalities
each agent exerts is positive and equal for all agents.
It is also possible to provide a characterization of regular economies in terms

of the primitives of the economy, i.e. the matrixB of bilateral in�uences.

Proposition 3 A necessary and suf�cient condition for an economy B to be
regular is that

nX
j=1;j 6=i

bji < 1 for every i 2 N

This result provides a simple and direct way to check if an economy is regular,
and it helps us to understand better which are the network forces that induce
regularity. It states that regularity amounts to requiring that the aggregate level
of bilateral in�uences each agent exerts on others,

Pn
j=1;j 6=i bji, is not too large,

in fact not larger than 1.
For example, consider an economy where all agents are connected to each

other and the level of bilateral in�uence across any pair of individuals is equal
to certain value �. In this case the necessary and suf�cient condition for such
kind of economy to be regular is that � < 1

n�1 . this condition is satis�ed if
� < 0, and only if bilateral in�uences are positive the condition bounds �. This
is quite natural. When in�uences exerted are negative, distributional con�ict
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naturally arises because each agent wants the rest of the economy to receive the
smallest possible share. Any allocation that exhausts resources is in this case
Pareto ef�cient. Instead, when in�uences are positive and suf�ciently large each
agent would prefer that other agents receive all the resource since this would
increase more his utility than receiving himself part of it, and the Pareto frontier
might degenerate to a single point.
Consider a regular economy B. Then we can compute easily its associated

strict system of weights � and constant � from Proposition 2.10

Let B be a regular economy. De�ne �i = 1 �
Pn

j=1;j 6=i bji, i 2 N , and
� =

Pn
i=1 �i. Then, � =

1
�
and �i = ��i for all i 2 N .

The value of �i is negatively related to the level of aggregate bilateral in-
�uences agent i exerts. Hence, �i is smaller the larger this aggregate level of
bilateral in�uences is. The next section studies more in detail how these con-
stants relate to the particular network structure of in�uences, and we provide
interpretations for them.

1.3.2 Ef�ciency and Network Centrality
We can provide an alternative interpretation to the ef�ciency characterization in
Proposition 2. To this end, we have to introduce some terminology derived from
the literature on social networks.
Given a network we can try to measure the prominence of each agent due to

her position in the network. There are several variables that can determine the
prominence of an actor in a network. Furthermore, the de�nition of prominence
may depend on the setting we are studying. It is not the same if we deal with di-
rected or undirected networks, or with weighted or unweighted networks. Hence,
there is not in the social network analysis literature a unique standard de�nition
of prominence.
The more usual concept to analyze prominence in networks is centrality. It is

fairly natural to associate prominence with connectivity and this is what centrality
measures do. In the case of weighted and directed networks, as the ones we are
considering in our analysis, a rough measure of centrality of agent i would be the
sum of weights of the links that point to agent i, Si =

P
j 6=i bji.

11This measure is
called the degree centrality of agent i: In terms of our structural in�uence model,
Si measures the aggregate level of in�uence that emanates from agent i.

10 The proof of Lemma 1 is contained in the proof of Proposition 3.
11 This is an inner-centrality measure. Alternatively, we could de�ne an outer-centrality measure
by the sum of weights of the links that start in agent i. Since, as we will show in a moment, in our
analysis the relevant centrality measure is an inner measure, we avoid this possible distinction in
the text.
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Note that �i = 1� Si, which is a positive quantity whenever the economyB
is regular, is then a complementary degree centrality index for agent i. Its value
is smaller the largest is the degree centrality measure Si. Therefore, �i is also a
complementary centrality index, since it is a renormalization of �i to make the
sum of the indices for all agents to add up to one.
While this degree centrality is informative of some kind of prominence de-

rived by the way in�uences vary across pairs, it does not capture the value of how
these in�uences spread indirectly along chains of bilateral in�uences.
Remember that, as we have explained before, given an economy B we have

that for any l � 1 the matrix Bl keeps track of the l-order network externalities:
each entry b[l]ij equals the sum of weights of all paths of length l from i to j. Hence,
to construct a more elaborate centrality measure we might include these indirect
network effects subsumed in the sequence of matrices

�
Bl
	
l�1. A natural way is

to consider a decay factor � 2 (0; 1] and weight the l-order network effects by �l.
This is the Katz-Bonacich centrality measure. The (unweighted) Katz-Bonacich
inner-centrality12 measure vector, � (B;�) is de�ned as:

� (B;�) =

 1X
l=0

�lBl

!t
� 1

Whenever this vector is well-de�ned we can rewrite it as:

� (B;�) =
�
(I� �B)�1

�t � 1
A variation of this measure, called the weighted Katz-Bonacich centrality mea-
sure, is the following.
Let � be an strict system of weights. Then the �-weighted Katz-Bonacich

centrality measure, �� (B;�), is given by the following formula:

�� (B;�) =
�
(I� �B)�1

�t � �
In the unweighted Katz-Bonacich centrality measure all agents count the same
when considering the sum of network effects generated by each one of them. In
the �-weighted Katz-Bonacich centrality measure the network effects generated
by agent i are counted with weight �i. Some agents count more than others when
aggregating the whole matrix of network effects E (B).

12 It is an inner measure of centrality because it measures weights of paths and cycles that end
on each agent. An outer-centrality measure could be de�ned without transposing in the following
equation.
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After this digression into the realm of social and economic networks, we can
reinterpret the condition of proposition 3making use of weighted Katz-Bonacich
centrality measures. The condition is equivalent to say that there exists a unique
strict system of weights � such that�

(I�B)�1
�t � � = �1

with � being a positive constant. The reader can immediately recognize the �-
weighted Katz-Bonacich centrality measure, with � = 1, in the left handside of
the last equation. Hence the regularity condition says that there exists a vector
of weights for which the weighted Katz-Bonacich centrality measure is equal,
and positive, for all agents. This individual index measures the aggregate level of
network in�uence effects that i generates. These are represented by the paths on
the network that �nish on i, and this is exactly what the Katz-Bonacich centrality
index takes into account.
Two comments are in order. First, observe that our model generates endoge-

nously the unique system of weights � for which this centrality condition is
satis�ed. This is Proposition 3. Second, the decay factor is equal to 1, and
hence direct and indirect in�uences count the same to compute this measure of
prominence. Hence, we can rewrite proposition 2 as follows

Proposition 2' The economy B is regular if and only if there exists a unique
strict system of weights � and a constant � > 0 such that

�i� (B; 1) = � for all i 2 N

A general characterization, not only for regular economies, of Pareto ef�ciency
in economies with pairwise in�uences by means of centrality measures can be in
the next chapter.

1.4 Bargaining and In�uences

1.4.1 The Bargaining Problem and its Solution
From now on, we consider only regular economies with in�uences. We turn to
the study of distributional con�ict for these economies.
We consider the classical and widely used Nash bargaining solution (Nash,

1950). Following this seminal work we de�ne an n-person bargaining problem
as a duple hX;di, where X � Rn is a convex and compact set that expresses
the utility possibility set in the economy, and d 2 X is the disagreement point,
that expresses the utilities each agent would obtain in case they are not able to
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reach an agreement. The disagreement point has to satisfy the following dom-
inance condition: there exists v 2 X such that v strictly Pareto dominates d,
i.e. vi > di for every i 2 N . The (symmetric)13 Nash bargaining solution
xS =

�
xS1 ; : : : ; x

S
n

�
to hX;di is the solution to the following maximization

problem

max
x2X

nY
i=1

(xi � di)

Due to convexity of the utility possibility setX and strict convexity of the objec-
tive function this problem has a unique solution.
We want to analyze this Nash bargaining solution in the case the utility pos-

sibility set X is induced from a regular economy with in�uences. Observe this is
possible since as we mentioned before UPS (B) is convex and compact for any
economyB.
Given an economy B, let umin = (umin1 ; : : : ; uminn ) be the utility vector

where each entry umini is equal to the minimal utility agent i can obtain within the
set of ef�cient allocations of economy B.14 Since we assume that the economy
is regular, from Proposition 2 we know that there exist only one strict system
of weights � and one positive constant � such that � � e(i) = � for every
i 2 N . Given a disagreement point d we relabel agents from 1 to n such that
�1 (u

min � d1) � � � � � �n (u
min
n � dn). Finally, let

 (0) =
1

n
(�� � � d)

and let

 (j) =
1

n� j

 
�� � � d�

jX
k=1

�l
�
umink � dk

�!
for any j 2 f1; : : : ; n� 1g.
Now we have all the necessary ingredients to characterize the Nash bar-

gaining solution for any regular economy with in�uences. This is done in the
following result.

Proposition 4 Consider a regular economyB. Then, there exists j 2 f0; : : : ; n� 1g
13 To simplify the analysis we only consider the symmetric Nash bargaining solution. The
analysis for asymmetric Nash bargaining solutions with heterogeneous bargaining power is
completely analogous.
14 In fact, umini = min fei1 (B) ; : : : ; ein (B)g, so this vector of minimal utilities can easily be
derived from the group in�uence matrix.
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such that the utility vector associated with the Nash bargaining solution, uS , is

uSi = umini if i � j

and

uSi = di +  (j)
1

�i
if i > j

The Nash bargaining solution allocation is equal to cS = (I�B)uS .

This result characterizes the utilities and levels of consumption of the Nash
bargaining solution for any regular economy. In particular, it characterizes cor-
ner, partially corner and interior solutions.
For an individual i that obtains positive gains, uSi � di > 0, these gains are

inversely proportional to �i. If both i and j obtain positive gains we have that

uSi � di
uSj � dj

=
1�

P
k 6=j bkj

1�
P

k 6=i bki
(1.6)

The relative gains of agent i with respect to those of agent j uniquely depend
on the level of aggregate in�uence exerted by agent i and agent j. In particular,
the largest is the magnitude of aggregate in�uence that emanates from agent i
compared with those that emanate from agent j, the largest the relative gains of i
with respect to j.
Aggregate in�uence levels determine relative gains for those agents that ob-

tain positive gains. This does not mean that these levels form the unique relevant
information from the structural in�uence model to characterize the Nash bar-
gaining solution. The minimal utilities pro�le, umin, and therefore the multiplier
 (j), can not be expressed in terms of the aggregate in�uence levels. Indeed,
minimal utilities internalize all levels of network in�uence effects, since umini

equals the minimal entry in i's row of matrix E(B). In non-interior solutions
where some agents obtain no gains from bargaining the information from the
matrix of network externalities is fundamental for the characterization of the
Nash bargaining outcome.
The multiplier  (j) represents the remaining surplus, the remaining value of

the available unit of resources in terms of utilities, once we subtract the minimal
utilities some of the agents obtain (agents k � j). The rest of this remaining
value is shared proportionally to the inverse of entries of �.

Example 3. The analysis of the following two economies illustrate the char-
acterization we have just provided in a 2-agents setting. Economy (a) is such
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that b12 = 4=5 and b21 = 1=4 while economy (b) is such that b12 = b21 = 1=2.
The matrices of network externalities for each economy are

E(a) =

�
5=4 1
5=16 5=4

�
E(b) =

�
4=3 2=3
2=3 4=3

�
The utility possibility set with the respective Nash bargaining solution depicted,
when the disagreement point is d = 0, in both cases are
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Figure 4

In example (a) we obtain a corner solution. One agent receives all the re-
source as the solution to the distributional con�ict. We have that �1 = 3=4,
�2 = 1=5, and therefore � = 19=20. The associated constant and strict system
of weights from Proposition 2 are � = 20=19 and �1 = 15=19, �2 = 4=19. The
minimal utility each agent can obtain in a Pareto ef�cient allocation is umin1 = 1
and umin2 = 5=16. In this case the j from proposition 4 equals 1, and the
multiplier is  (1) = 5=19. In the solution, agent 1 receives nothing and agent
2 receives all the resource. Agent 1 obtains his minimal utility, us1 = 1, while
agent 2, instead, obtains uS2 =  (1) 1

�2
= 5

19
19
4
= 5

4
, that equals his maximal

possible utility within the set of ef�cient allocation.
In example (b) we obtain an interior solution. Both agents obtain a utility

within their minimal and maximal utility. In this case, we have that �1 = �2 =
1=2,and therefore � = 1. The associated constant and strict system of weights
from proposition 2 are therefore � = 1 and �1 = 1=2, �2 = 1=2. The minimal
utility each agent can obtain in an ef�cient situation is umin1 = umin2 = 2=3. We
get that the j from proposition 4 equals 0 and the multiplier is  (0) = 1. Hence,



24 Chapter 1 Pairwise In�uences and Bargaining Among the Many

each agent obtains a utility equal to us1 = us2 =  (0) 1
�i
= 2.

1.4.2 Discussion

1.4.2.1 A Geometric Characterization

We can provide a graphical approach of how the Nash bargaining solution is
obtained in the case of an interior solution. A similar kind of interpretation can be
given for corner and semi-corner solutions but then the analysis is more involved.
In proposition 4 we have obtained a complete characterization of the Nash

bargaining solution, both in terms of utilities and shares received. In particular
a fundamental ingredient for this characterization is the unique strict system of
weights � from proposition 2. Call ��1 the vector with entries the inverses of
the entries of �, i.e. ��1i = 1=�i. If the Nash bargaining solution is interior, the
vector of utilities agents obtain is equal to the disagreement point plus a positive
multiple of vector ��1. From this construction we can derive a geometric pro-
cedure to deduce when the Nash bargaining solution is interior given a particular
economyB. We present it with the use of the two previous examples.
We depict again the utility possibility sets and the vectors� and��1 for each

example.15
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Figure 5

In a regular economy the vector� is orthogonal to the Pareto frontier in the utility
possibility set.16 We have depicted the vector��1 in the point (0; 0) because this
15 We have rescaled both vectors for convenience. This does not affect at all the reasoning.
16 The conditions on Proposition 2 determine a hyperplane with orthogonal vector �. The utility
possibility set is a subset of this hyperplane.
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is the disagreement point.
In the �rst example, since the vector ��1 lies outside the utility possibility

set, no multiple can intercept the Pareto frontier. Therefore, the solution can not
be interior.
In the second example, the vector ��1 lies inside the interior of the utility

possibility set and then the Nash bargaining solution can be obtained by multi-
plying the vector by a positive scalar until it touches a point of the Pareto frontier.
This point is the Nash solution utility vector.
Just to clarify that this geometric procedure is valid for any possible dis-

agreement point, and not only for the case in which d = 0, we show here how it
applies also for the �rst economy in the case that d = umin.
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We locate the vector ��1, that does not change with the change of disagree-
ment point since it only depends on the matrixB, in the point umin = (1; 5=16).
The point where a positive rescaling of ��1 touches the Pareto frontier coincides
with the Nash bargaining solution utilities pro�le, us.

1.4.2.2 The Disagreement Point

As stressed in Binmore et al. (1996), the choice of a particular disagreement point
entails also some of the features of the bargaining process when considering the
Nash bargaining solution. In our case two different possible disagreement points
emerge as the more natural choices.
The �rst one is the choice of d = 0. This would be the natural choice when

in the bargaining situation there are time concerns. In this case, agents know that
an agreement could be in�nitely delayed and therefore that they could obtain no
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utility at all. This time concerns are modelled by means of the choice of the zero
vector as the disagreement point.
Another possibility is to choose d = umin, that is that di coincides with the

minimal utility agent i can obtain in an ef�cient situation, umini . In a regular
economy, this vector of minimal utilities satis�es the property of domination
that the disagreement point has to satisfy. Observe that this disagreement point
derives endogenously from the pattern of in�uences expressed by matrix B.
It might be a natural selection when considering situations in which no time
concerns exist. When Pareto ef�ciency is a requirement of the solution to the
distributional con�ict, as it is in the case of the Nash bargaining solution, agent
i might make recognize the rest of members in the economy that he should not
obtain less than umini .
Hence, while our cooperative approach can not capture all of the features of

particular applications, some of these features can be incorporated into the model,
not by changing utilities but directly through the choice of the disagreement
point.
Next result provides conditions under which we can ensure that the Nash

bargaining solution is interior, meaning that all agents receive some share of the
resource, for the two disagreement points we have just highlighted.

Corollary 1 The Nash bargaining solution is always interior when d = umin.
The Nash bargaining solution is interior whend = 0 if and only if for all i 2 NX

j 6=i

bij
�i
�j
< 1 (1.7)

This condition resembles the condition for regularity stated in Proposition
3. However, it is different in two aspects. First, the set of pairwise in�uences
that appear are in this case the ones that i receives, instead of those that i exerts.
Second, these bilateral in�uences are weighted by the quotient

�i
�j
=

�
1�

P
k 6=i bki

�
�
1�

P
k 6=i bkj

�
For example, in the case that all bilateral in�uences are positive this quotient is
larger than 1 if

P
k 6=i bkj >

P
k 6=i bki. The in�uence j exerts on i is weighted

by larger values in condition (1.7) if j exerts a larger aggregate level of direct
in�uences on others than i. Observe that this quotient was also present when
computing relative pro�ts obtained from bargaining across pairs of individuals.
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When we �x a disagreement point d such that for some agent umini > di
we also impose a value to the minimal gains that this agent is going to obtain
from the bargaining situation. This value is equal to umini � di. It might be
possible that these minimal gains from bargaining can not be reconciled with
the conditions imposed on relative gains across individuals in (1.6) when agents
obtain a positive share of the resource. The conditions in Corollary 1 exactly
account for this fact, and provide the expressions that ensure that this tension
does not arises.
To better understand that interiority condition when d = 0, we analyze in

more depth the case of two agent economies. Given an economy

B =

�
0 b12
b21 0

�
the values of �1 and �2 are �1 = 1�b21 and �2 = 1�b21. Given the regularity

condition, this two values are positive. The conditions for interiority expressed
in the previous corollary are in this case,

1� b12
1� b21

> b12

1� b21
1� b12

> b21

The following reasoning helps understand when we lose interiority. Fix a
value b21 < 1. If b12 = b21 the conditions reduce to 1 > b12 and 1 > b21
which are trivially satis�ed because of regularity. When we increase b12 the
second condition is still satis�ed since the left-hand side increases. But the
left-hand side of the �rst condition increases while the right hand side of this
same condition increases. If we increase b12 enough it is possible that this �rst
condition is not satis�ed for the parameters. It becomes too dif�cult to control for
both conditions. Agent 2 exerts a larger in�uence on agent 1 than the in�uence
agent 1 exerts on agent 2. If this difference is suf�ciently asymmetric, and this
asymmetry is measured by the two conditions above, then one of the agents
receives all the resource, even if the economy is regular.

1.5 Nonparticipants and the Bargaining Outcome
Until now, we have considered that all agents in the economy are involved in the
bargaining problem. However, our model also provides a framework to study
what would happen if some agents in the economy do not participate in the
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bargaining problem but care for some of the agents that indeed participate.

The following example shows in a simple economy how we can use the tools
we have developed so far to clarify the effect of agents that do not participate in
the bargaining problem. It is very close to the example developed in Kalai (1977).

Example 4. Consider the economy with three agents represented by the fol-
lowing network

s s s-� -�
1 2 3

1=2

1=2

�

�

Figure 7

where � is a positive constant. Suppose only agents 1 and 2 are engaged in
a bargaining problem. How does the introduction of agent 3 into the model17
perturbs the bargaining outcome respect to the situation when we consider agent
1 and 2 in isolation? The solution to the bargaining problem without the presence
of agent 3 is cS = (1=2; 1=2), as we have previously described. If we take care
of the existence of agent 3 we could proceed as follows.
The matrix of bilateral in�uences is

B =

0@ 0 1=2 0
1=2 0 �
0 � 0

1A
Hence, the matrix of network externalities when considering the 3 agents is

E (B) =
4

3� 4�2

0@ 1� �2 1=2 �=2
1=2 1 �
�=2 � 3=4

1A
Each entry eij of this matrix represents the network externality magnitude agent
j exerts on agent i if we consider the pattern of bilateral in�uences within all
agents in the economy, included agent 3. Now, we could solve for the bargain-
ing problem as we did previously in this section considering the submatrix E1;2
obtained eliminating from E (B) the third row and column

E1;2 (B) =
4

3� 4�2

�
1� �2 1=2
1=2 1

�
17 In the social preferences interpretation we can interpret agent 3 as a relative of agent 2.
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to characterize the Nash bargaining solution for the bargaining problem that in-
volves only agent 1 and 2, but taking care of the initial levels of interdependence
of the three agents in the economy. In particular the allocation that solves this
problem is

cS =

�
1

2
� 1� 4�

2

1� 2�2 ;
1

2
� 1� �2

1� 2�2

�
Observe the change in the pattern of consumption. If � is positive and suf�ciently
small then cS1 < 1=2 and cS2 > 1=2. Bilateral in�uences agents 2 and 3 exert
on each other alters the bargaining power of agent 2 with respect to agent 1, and
agent 2 obtains a larger share of the budget.
This methodology can be generalized to any number of agents. If the econ-

omy is formed by n1+n2 agents and only the �rst n1 of them are engaged into a
bargaining problem, �rst we have to compute the matrix of network externalities
E (B) for the economy as a whole, i.e. considering all the n1 + n2 agents.
Then, we solve the bargaining problem using the submatrix formed by the �rst
n1 rows and columns, E1 (B), as if this last matrix was the matrix of network
externalities of this (sub-)economy. In this way we internalize all the network
effects generated by the structural in�uence pattern into the bargaining problem
played by the �rst n1 individuals, when considering all agents in the economy.
The next proposition provides a characterization of the matrix E1 (B) for

such a situation. LetB11 be the matrix of bilateral in�uences across participants,
B22 be the matrix of bilateral in�uences across nonparticipants, B12 be the ma-
trix of bilateral in�uences from nonparticipants to participants, and B21 be the
matrix of bilateral in�uences from participants to nonparticipants.

Proposition 5 If n = n1 + n2, with 1 < n1 < n being the number of members
of the economy that participate in the bargaining game, then

E1 =
�
In1 �B11 �B12 � (In2 �B22)

�1B21
��1

This matrix has a natural interpretation. Observe that it is equivalent to the
matrix of network externalities that we would obtain if the economy had only the
n1 agents that are involved in the distributive con�ict and the matrix of bilateral
in�uences were B11 + B12 � (In2 �B22)

�1B21. Matrix (In2 �B22)
�1 equals

the matrix of network externalities if only nonparticipants were in the econ-
omy, E (B22). Hence, this new associated matrix of bilateral in�uences across
participants accounts on the feedback effect, derived from in�uence exerted by
participants on nonparticipants and viceversa, of network externalities exerted
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within the subeconomy formed by nonparticipants. From right to left the matrix

B12 � (In2 �B22)
�1B21

is obtained by �rst taking into account the direct bilateral in�uences partici-
pants exert on non-participants, then network effects among non-participants are
computed, and �nally we compute how these come back again to participants
through direct in�uence exerted by non-participants on participants. the product
of these three effects is added to the initial matrix of bilateral in�uences across
participants to compute the solution to the Nash bargaining problem.
In our framework, if there were no in�uences, i.e. bij = 0 for all pairs

ij, then the bargaining power of each agent would exactly coincide with the
Nash bargaining solution share he receives. Once in�uences are introduced, any
change in the levels of consumption of the Nash bargaining solution shares pro�le
can be interpreted as a change in bargaining power due to the position in the
network of bilateral in�uences. Here, network externalities, the aggregation of
direct and indirect network effects, generates the pattern of bargaining power,
if we want to interpret the allocation solution as the solution of an asymmetric
bargaining problem without in�uences.
Kalai (1977) studies how non-participants in a Nash bargaining problem in-

duce a change of bargaining power across participants, interpreting each non-
participant as a replica of the participant for which this agent cares. In our
case, each non-participant can care at the same time for different participants
with varying intensities and we can provide the particular mapping from this
interdependency structure to bargaining asymmetric outcomes.

1.6 �-economies.
In this section we study a family of networks with some particular properties.
Let � 2 R+. We say that an economy is an �-economy if whenever bij 6= 0,

then bij = bji = �. Hence, in an �-economy whenever there is a bilateral
in�uence this in�uence is bidirectional and of same weight.18

In this family of economies the heterogeneity comes only from one source,
the network geometry, and not from heterogeneous in�uence levels across pairs
of agents. Therefore the analysis of this family of networks sheds some light on
the isolated effect of the network geometry on the Nash bargaining outcome. In
fact, as we show in the following lines, the characterization of the Nash bargain-
ing solution becomes very transparent under some mild assumptions.

18 Observe that in the family of �-economiesG = B, since matrix B is symmetric.
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Fixed � and an �-economyB, we de�ne the degree of agent i, that we denote
by degi (B), as

degi (B) =
1

�

X
j 6=i

bij (1.8)

The degree of an agent is a measure of connectivity. It equals the number of con-
nections an agent has in the network of bilateral in�uences. Due to the symmetric
nature of �-economies, the degree of an agent computes at the same time to how
many people this agents exerts a direct in�uence, and from how many people this
agent receives a direct in�uence.
Suppose that if agents do not agree in a division of the resource the disagree-

ment outcome is that no division is implemented and hence agents receive a util-
ity equal to 0, i.e. d = 0. Then, under the regularity condition 1�(n� 1)� > 0
that ensures that for a �xed � any �-economy is regular, we obtain the following
characterization:

Proposition 6 Let B be a regular �-economy. Then the Nash bargaining solu-
tion is interior and the utility each agent obtains is

uSi =
1

n (1� �degi (B))

Hence,

cSi =
1

n (1� �degi (B))
�
X
j 6=i

bij
1

n (1� �degj (B))

Hence, for �-economies the degree of an agent is the unique relevant element
from the network to determine the utility an agent obtains, whereas the share an
agent obtains does not only depend on its own degree but also on the degrees of
agents to which he is connected.

Example 5. Consider the following two networks.
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In both networks there are four agents with three neighbours and four with
two neighbours. However, if for example � = 0:1, agents with three neighbours
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agents with three neighbours receive a larger share of the pie than in the second
network, while the opposite applies for agents with two links. The following
table provides the shares in both cases for the members of each class.

Nash Shares with � = 0:1 Ba Bb
Agents with 3 links 0.129 0.127
Agents with 2 links 0.121 0.123

This proves that the degree distribution is not a suf�cient invariant to determine
how the resource is distributed, it is also important the particular geometry of
how agents are connected. This is expressed in the following corollary.

Corollary 2 The share an agent obtains in the Nash bargaining solution in-
creases with the number of neighbours he has and diminishes with the number of
neighbours that his neighbours have.

That is why we obtain different shares in the previous pair of networks. In
the �rst one each agent that has three neighbours has one neighbour with three
links and two with two links, while in the right one each agent with three links
has two neighbours with three links and one with two. In accordance with this
last corollary, this agents should obtain a smaller share in the network at the right,
that is what we have observed before.
This last corollary provides in fact the main intuition on how the Nash bar-

gaining solution internalizes in�uences. The share an agent receives depends
on the aggregate level of bilateral in�uences provided at the local level. The
more connected an agent is and the less connected his neighbours are, the more
valuable is the share this agent receives for the spread of in�uence through the
network. If, instead, his neighbours are also very connected, it is not necessary to
give more to this agent. In this case other agents receive larger shares than before
because they help more to spread the effect of in�uences all over the economy.
The Nash bargaining solution with in�uences internalizes this indirect effects.
A particular case are degree-regular �-economies. In such economies all

agents have the same degree. Here pattern does not matter. In fact, we have the
following corollary.

Corollary 3 Let k 2 f0; : : : ; n� 1g and let B be a regular �-economy such
that degi (B) = k for all i 2 N . Then all agents obtain the same utility and
consume the same quantity in the Nash bargaining solution. In particular cSi =
1=n for all i 2 N and

uSi =
1

n (1� k�)
8i 2 N
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Therefore in the case of regular �-economies it does not matter how agents
are connected but how many connections each agent has.

Example 6. The following two networks, with each link being bidirectional
and with same weight �, differ in their particular geometry and lead to the same
solution to the bargaining problem.
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The network depicted in the right side has larger clustering19 levels than the one
in the left. This is not an issue in the determination of the Nash bargaining so-
lution. This example shows that clustering plays no role in the resulting division
that solves the distributional con�ict under degree-regularity.

1.7 The Effect of Network Changes on Welfare and
Consumption

In this section we explore how changes in the network of bilateral in�uences20
translate into changes in welfare and consumption patterns. In particular, we
center our attention in how a differential change on the weight of a link changes
the utility and the level of consumption in equilibrium of each agent involved in
the bargaining game. Hence, our results help to understand how changes in the
magnitude of in�uences change the characteristics of the bargaining outcome.
For the sake of simplicity, we focus our attention in situations where the

bargaining solution is interior, meaning that cSi > 0 and, hence, uSi > umini for
every i 2 N .21
The following proposition provides conclusions on comparative statics re-

lated to the utility pattern of the Nash bargaining solution.22

Proposition 7 Let B de�ne an economy with in�uences such that the Nash
bargaining solution is interior. Then:

19 Clustering measures if the agents to which an agent is connected are also connected within
them.
20 We make no distinction in de�ning the model in terms of networks or in terms of utilities. We
refer to network changes because at some points this simpli�es the necessary terminology.
21 A more extensive analysis could be done to deal with corner solutions.
22 If an economy is such that the Nash bargaining solution is interior, suf�ciently small changes
in the parameters of bilateral in�uences mantain interiority because of continuity. Hence, a
comparative statics analysis in our setup is legitimated.
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(i) @u
S
i

@bkl
� 0 if l 6= i, with equality if and only if dl = 0:

(ii) @u
S
i

@bki
= sign

 
1�

P
j 6=i

�jdj

!
for k 6= i.

The �rst part of the proposition states that the Nash bargaining solution utility
of agent i generally increases when there is an increase on the magnitude of a
bilateral in�uence across any two other agents, whoever these are. Increases on
bilateral in�uences agents different than i exert on each other are bene�cial for
agent i. The second part of the proposition is a little bit more complex. It states
that the increase on bilateral in�uences exerted by agent i are good for agent i if
the term

P
j 6=i

�jdj is suf�ciently small (in fact, if it is smaller than one). Observe

that this can happen either because the disagreement levels of agents different
than i are small or because the levels of the �s are small for agents different than
i. Agent j has a small level of �j whenever he exerts on the aggregate large
positive bilateral in�uences on other agents. Hence, for agent i it is good to exert
larger positive in�uences, if other agents exert large aggregate levels of bilateral
in�uences. The intuition is that larger bilateral in�uences exerted by agent i
can increase indirect network in�uences from i to himself (through cycles in the
network of bilateral in�uences) if other agents exert suf�ciently high bilateral
in�uences as well. If not, and for example other agents exert some bilateral
negative in�uences, the indirect network effects can be negative for agent i and
imply a decrease on utility.
We move now to comparative statics results related to consumption patterns.

These are provided in the following result.

Proposition 8 Let B de�ne an economy with in�uences such that the Nash bar-
gaining solution is interior. If d = 0,23 then:

(i) @c
S
i

@bki
> 0 if k 6= i

(ii) sign
�
@cSi
@bkl

�
= �sign (bil) if k 6= i 6= l 6= k

(iii) @c
S
i

@bij
> 0, bij < ��j for j 6= i

The �rst part of the proposition states a very simple and natural conclusion:
agent i receives a larger share whenever the level of aggregate bilateral in�uences
23 We consider this case since it is the more tractable one. In the proof the interested reader can
�nd the exact expression of each one of the derivatives, no matter which disagreement point we
consider.
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he exerts increases.24 This generates a positive effect on several other agents in
the economy through the spread of bilateral in�uences through network effects.
We could also interpret this result in terms of bargaining power: since he exerts a
larger aggregate level of bilateral in�uences his bargaining power increases, and
that is why he gets a larger fraction of the resource.
The second part of the proposition states that if agent i receives a positive

(resp. negative) direct bilateral in�uence from agent l then an increase of the
direct bilateral in�uence agent l exerts on another agent k, different than i and
l, implies that agent's i share diminishes (resp.increases). This is reminiscent of
the result of the �rst part of the proposition, and hence the same kind of intuition
applies.
Finally, the third part expresses that an increase in the weight of the direct

bilateral in�uence agent l exerts on i implies an increase in agent i share if and
only if the initial weight of this bilateral externality was suf�ciently negative.
We recover example 3:(b) of section 4 to illustrate graphically how small

changes on the levels of bilateral in�uences translate into changes on the utility
and shares derived from the Nash bargaining solution. This example is the 2-
person economy such that b12 = b21 = 1=2. If we increase b12 from the initial
b12 = 1=2 to ~b12 = 1=2 + �, where � < 1=2 to satisfy the regularity condition,
the new matrix of bilateral in�uences is

~B =

�
0 1=2 + �
1=2 0

�

and the new matrix of network externalities is

~E (B) =
4

3� 2�

�
1 1=2 + �
1=2 1

�

The utility possibility set and the Nash bargaining solution behave as follows
(dashed lines represent the initial situation and continuous lines represent the

24 And the rest of bilateral in�uences do not vary.
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new one; uS is the initial Nash bargaining solution and ~uS is the new one)
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Figure 8

The increase on the level of altruism of agent 1 shifts the Pareto frontier upwards.
Both agents obtain a larger utility in the new equilibrium of the bargaining game.
This is consistent with the conclusions of proposition 7,25 and now the division
is no more half of the budget for each one. Indeed, the equilibrium point ~uS is
closer to one of the extremes of the simplex than to the other. In particular it is
closer to e(2) which implies that cS2 has increased while cS1 has decreased. The
increase of cS2 is consistent with part (i) in proposition 8 while the decrease of
e(1) is consistent with part (iii), since b12 = 1=2 > �1=4 = ��2=2.

1.8 Discussion
Until this point we have not discussed the suitability of the Nash bargaining
solution in our setup. An initial point of debate is that with the use of this
solution we abstract from the effect of coalitions when there are more than two
agents. It could be possible that some agents decide to break relations with the
rest of agents in the economy, and that this threat plays a role in the �nal division
of resources. However, we do not think that in our setup this question plays a
prominent role in the examples we have used to motivate our research.
Consider for example the example on urban crime. Except for the case in

which the fear on crime is overwhelming, and citizens view the rest of problems

25 Observe that the increase in uS1 is the conclusion of part (i) while the increase of uS2 is the
conclusion of part (ii), since d = 0.
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associated with everyday urban life as secondary, it is dif�cult to imagine that
this dispute on resources to �ght against crime will lead to the division of the
city. 26

Similarly, in the social preferences example, we would not expect that mem-
bers of a family would decide to break relations when natural daily distributional
con�icts within the family arise.27

The omission of coalitions' role is more controversial in the case of govern-
ment spending. If only the simple majority of members of the government have
to agree on the division of the budget, as it is the case in the analysis provided
in Baron and Ferejohn (1989), this has non-negligible strategic implications on
the �nal agreement reached. It has been our aim in this work to analyze in detail
how the effects of pairwise in�uences affects distributional con�ict. Of course,
by adding to this pairwise in�uences' pattern more institutional details, such as
the majority voting rule in the case of government spending, we would obtain
more accurate predictions of each particular example. 28

Another consideration is the harmonization of the axioms that characterize
the Nash bargaining solution and our setup with interdependent utilities. We pro-
vide here a discussion on this in terms of the alternative set of axioms proposed
by Lensberg (1988). In particular, Lensberg shows that the Nash bargaining
solution is the unique solution that satis�es Pareto Ef�ciency, Anonymity (if a
utility possibility set is symmetric the solution is also symmetric) 29, Scale In-
variance (when applying a linear transformation of utilities the solution changes
accordingly to this linear transformation), and Consistency (if a subset of agents
receive the utility they would receive in the solution, when applying the solution
to the rest of the economy, the result is the same as if at the beginning we applied
the solution to the economy as whole). 30

Both Pareto Ef�ciency and Anonymity seem to be desirable properties of a
bargaining solution. In our setup Scale Invariance is also desirable because
when applying a linear transformation of utilities the preferences represented
remain unperturbed.31 Therefore, the axiom of Scale Invariance imposes that

26 Undoubtedly, there are cities in which this problem is real, and some neighbourhoods are
introducing physical barriers to combat crime at private expenses. Is in these kind of situations in
which our model would certainly not apply.
27 But maybe it can be the case when dealing with a bequest.
28 See Duggan(2004) for conditions about existence of equilibria in the n agents version of the
Baron and Ferejohn game with externalities.
29 More precisely, if x 2 UPS then �(x) 2 UPS for any permutation � of the entries of x.
30 Nash's (1950) characterization substitutes Consistency by a probably more dif�cult to
interpret axiom named Independence of Irrelevant Alternatives.
31 This is because utilities in our model are additively separable with respect to consumption
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these equivalent utility representations lead to the same solution. Hence, if we
consider the three previous axioms as natural requirements of a solution, the
unique axiom for the Nash bargaining solution that might deserve discussion is
Consistency.

1.9 Conclusion
We have explored the outcome of the Nash bargaining problem with considering
a simple model of interdependent behavior. Even if an economy is characterized
by n (n� 1) variables, the model is tractable and we have been able to provide
closed-form expressions for the bargaining outcome and comparative statics re-
sults. The network interpretation of the problem is helpful since it provides us
with a set of tools that simplify the analysis and makes it more intuitive. It helps
to understand the effect of heterogeneities in the model in all its dimensions,
magnitude and pattern.
Part of the analysis in our work shows some similarities with previous work

done by Kalai (1977).32 Kalai interprets any agent that cares for a player in the
bargaining problem but that do not participate in the bargaining problem, as a
replica of this player. In our model, an agent can care for different players of the
game, where this concern translates into in�uences as in the social preferences
example in the introduction. The transmission of this concern is not done as a
replication and its consequent change into the bargaining problem but through
a pattern of different in�uences that affect players' behavior. In this sense, we
allow for a more general pattern of interrelations and the transition is not done
in a discrete manner, as replicas would do, but smoothly, since small changes in
bilateral externality levels imply small changes in the levels of network effects.
Finally, our analysis borrows directly from the Nash bargaining solution. Dif-

ferent possible directions for further research are open. One possible direction
could be to explore whether other cooperative solutions can be de�ned through
some proper axioms adequate in a setting with heterogeneous in�uences such
as the one developed in this work. Another possible direction is to go further
in the study of non-cooperative bargaining models with an underlying structural
pattern of bilateral in�uences. In particular, it might be valuable to study how the
pattern of in�uences maps into equilibria of non-cooperative bargaining games
that incorporate relevant features of particular applications, such as the voting
rule in legislative bargaining, and how equilibria vary with respect to the case

levels.
32 See also Lensberg and Thomson (1989) for some other work done with replicated agents in
cooperative bargaining.
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without in�uences.

1.10 Proofs
Proof of Proposition 1
The determinant of the matrix I�B is a polynomial in n (n� 1) variables. The
set of points of Rn(n�1) in which this polynomial vanishes forms an algebraic
variety of dimension n (n� 1) � 1 at most, and hence it is a set with Lebesgue
measure equal to zero in Rn(n�1). �
Proof of Proposition 2
The following lemma is useful.
Given a regular economy B, a feasible allocation c is Pareto ef�cient if and

only if there exists a strict system of weights � such that � � u (c) � � � �u for
every �U 2 UPS (B).
Proof of Lemma 3 This is a slight variation of a well-known result relating

Pareto ef�ciency to linear social welfare functions (see for example Proposition
16.E.2, pg.560, in Mas-Colell et al., 1995). The statement in terms of strict
system of weights is valid because the shape ofUPS (B) is a simplex, not simply
a convex set. �

Since there is no possibility of confusion we omit the dependence ofE onB.
Observe that for any allocation c, the vector of utilities is u (c) =

Pn
i=1 cie

i. If
there exists a strict system of weights � and a strictly positive constant � such
that � � ei = � we have that for any allocation c

� � u (c) =
nX
i=1

ci
�
� � e(i)

�
= �

nX
i=1

ci

Since � > 0, we have that � � u (c) is maximal whenever
Pn

i=1 ci = 1. Hence,
any allocation such that

Pn
i=1 ci = 1 is Pareto ef�cient and the economy is

regular.
Now, suppose any allocation such that

Pn
i=1 ci = 1 is Pareto ef�cient. Con-

sider an interior allocation, i.e. such that ci > 0 for every i 2 N . The unique
possible strict system of weights that can separate u (c) to the utility possibility
set in the form of lemma 2 is the strict system of weights orthonormal to the
hyperplane that contains the n columns of the matrix of network externalities.
Obviously, this system of weights also separates u (c) to the utility possibility
set when ci = 0 for some i 2 N . Hence, we have the unique candidate for
the strict system of weights in the statement of proposition 2. From lemma 3 we
know that in particular � �u (c) � � �u (0) = 0. We can ensure that in fact this
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last inequality is strict since if it were equal to zero we would not be in a generic
situation.33�

Proof of Proposition 3
From proposition 2 we know that there exists an strict system of weights � and a
strictly positive constant such that � � e(i) = � for every i 2 N . In matrix terms
this is equal to

ET (B) � � = �1

whereET (B) is the transpose matrix ofE (B) and 1 is the n-dimensional vector
with all entries equal to 1. Hence, we have that, since the inverse matrix of
ET (B) is equal to (I�B)T ,

� = �
�
(I�B)T � 1

�
Therefore, �i = �

�
1�

P
j 6=i bji

�
. Since � is an strict system of weights, we

have that

�
nX
i=1

 
1�

X
j 6=i

bji

!
= 1

and hence

� =
1Pn

i=1

�
1�

P
j 6=i bji

�
Let �i = 1�

P
j 6=i bji, and let � =

Pn
i=1 �i. Then

�i =
�i
�

Since � is an strict system of weights, all entries of � have to be strictly positive,
and this can only happen if either all �i's are strictly positive or all �i's are strictly
negative. However, in the latter case � would be negative, since � = 1= (�).
Hence to obtain a regular economy it is necessary that �i = 1 �

P
j 6=i bji > 0

for every i 2 N .
The suf�ciency result is almost immediate. Consider the weights and � de�ned in
Lemma 1 in the text. Then by construction these coef�cients satisfy the regularity

33 If it were equal to zero this would imply that the columns of the matrix of network
externalities are linearly dependent, and hence that the determinant of E is equal to zero. This
would mean that we were considering a non solvable system of bilateral in�uences.
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condition in proposition 2. �

Proof of Proposition 4
Let � and � be the strict system of weights and constant from Proposition 2
associated to the economy. LetJ � N be the set of agents for which dj � uminj .
The Nash bargaining problem with network externalities is equal to

max
u2UPS(B)

nX
i=1

ln (ui � di)

subject to
nX
i=1

�iui = � (1.9)

ui � di if i 2 J (1.10)
ui � umini if i =2 J (1.11)

We know that the solution to this problem is unique. We denote this solution
us. Let � be the multiplier associated to restriction (1.9). The Kuhn-Tucker
conditions of the problem are

1

uSi � di
� � �i with equality if uSi > di (i 2 J ) (1.12)

1

uSi � di
� � �i with equality if uSi > umini (i =2 J ) (1.13)

From (1.12) we obtain that for each i 2 J we must have 1
uSi �di

=  �i. If not,
the value of the objective function in the solution would be �1. Hence, if, for
simplicity, we denote  = 1=� , we have

uSi = di +  
1

�i
for every i 2 J

On the other hand, we obtain from (1.13) that, for every i =2 J , uSi must satisfy

uSi = max

�
umini ; di +  

1

�i

�
for every i =2 J

Observe in particular that, for every i =2 J it holds that uSi = umini if and only
if �i (umini � di) �  . Using this fact, we proceed to provide and algorithm that
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at most in n steps provides the solution to the problem. As we stated in text, we
suppose without loss of generality that �1 (umin1 � d1) � � � � � �n (u

min
n � dn)

Step 0:
Suppose uSi = di +  (0) 1

�i
for every i 2 N . The multiplier  (0) is equal to

 (0) = 1
n

�Pn
i=1 �i

�
uSi � di

��
= 1

n
(�� � � d). If �1 (umin1 � d1) <  (0),

then  =  (0) and uS is the utility vector associated to the Nash bargaining
solution, and we are done. If not, go to step 1.

Step 1:
Suppose uS1 = umin1 and uSi = di+ 

(1) 1
�i
for every i > 1. The multiplier  (1) is

equal to  (1) = 1
n�1

�Pn
i=2 �i

�
uSi � di

��
= 1

n�1
�
�� � � d� �1

�
uS1 � d1

��
.

Observe that

(n� 1) (1) = �� �d� �1
�
uS1 � d1

�
� n (0) �  (0)

Hence,  (1) �  (0), and therefore we know for sure that �1 (umin1 � d1) �  (1).
If �2 (umin2 � d2) <  (1), then  =  (1) and uS is the utility vector associated
to the Nash bargaining solution, and we are done. If not, go to step 2.

Step k (2 � k < n):

Suppose uSi = umini for i � k and uSi = di +  (k) 1
�i
for i > k. An analogous

reasoning to the one in the previous step establishes that  (k) �  (k�1). In fact

(n� k) (k) = �� � � d�
kX
l=1

�l
�
uSl � dl

�
� (n� k + 1) (k�1) �  (k�1) = (n� k) (k�1)

The last inequality follows from the previous step of the procedure. If

�k+1
�
umink+1 � dk+1

�
<  (k)

then uS is the utility vector associated to the Nash bargaining solution, and we
are done.



1.10 Proofs 43

This process �nishes at most in step n� 1 since in this case we get that

 (n�1) = �� � � d�
n�1X
i=1

�i
�
umini � di

�
> �n

�
uminn � dn

�
This last inequality follows from the fact that � = � �uS > � �umin, since umin
can not be the total vector of utilities associated to an ef�cient allocation. Thus, if
we arrive to step n�1, we can ensure that the utility vector associated to the Nash
bargaining solution is uSi = umini for i < n and uSn = dn +  (n�1) 1

�n
> uminn .

�
Proof of Proposition 5
The matrix of bilateral in�uences is

B =

�
B11 B12
B21 B22

�

Thematrix of network externalities of the whole economy isE (B) = (I�B)�1
and we can decompose it as follows:

E (B) = (In �B)�1 =
�
E1 E12
E21 E2

�
=

�
In1 �B11 B12
B21 In2 �B22

��1

To avoid misunderstandings, we omit the dependence on B for E1;E2;E12 and
E21. In particular, the following two conditions are satis�ed:

E1 � (In1 �B11) + E12 �B21 = In1 (1.14)
E1 �B12 + E12 � (In2 �B22) = 0n1 (1.15)

From the second condition, we obtain that

E12 = �E1 �B12 � (In2 �B22)
�1

Plugging this back into the �rst condition we obtain that

E1 �
�
In1 �B11 �B12 � (In2 �B22)

�1B21
�
= In1

And the result follows.�

Proof of proposition 6
Fix �. The network in which the minimal utility of an agent is maximal is the

complete network, where all pair of agents are connected. The matrix E for the



44 Chapter 1 Pairwise In�uences and Bargaining Among the Many

complete network has entries 1�(n�2)�
(1+�)(1�(n�1)�) in the diagonal and

�
(1+�)(1�(n�1)�)

outside the diagonal. The minimal utility an agent can obtain is the minimum
of this two numbers, which coincides with the coef�cient outside the diagonal,
given the regularity assumption 1 � (n� 1)� > 0. Hence for any �-economy
B we have that

umini (B) � �

(1 + �) (1� (n� 1)�) (1.16)

If d = 0 we have that the condition to stop in the �rst step of the algorithm
provided in the proof of Proposition 4 is

(1� degi (B)�)u
min
i (B) � 1

n
(1.17)

Given the regularity condition we know that �= (1 + �) < 1=n and therefore

�

(1 + �) (1� (n� 1)�) <
1

n (1� degi (g)�)
(1.18)

Hence the condition in the �rst step of the algorithm provided in the proof of
Proposition 4 is satis�ed, and we are done. �
Proof of Proposition 7
We can rewrite the total utility an agent obtain in an interior solution as

usi = di +
1

n�i

 
1�

nX
j=1

�jdj

!
(1.19)

If i 6= j 6= k, straightforward calculus yields to

@usi
@bkj

=
dj
n�i

(1.20)

and the result of the �rst part of the proposition follows, since in any regular
economy �i > 0 for all i 2 N .
If i 6= j we have that

@usi
@bji

=
1

n�2i

 
1�

X
k 6=i

�kdk

!
(1.21)

Again, by the regularity condition, the result follows. �
Proof of Proposition 8
When d = 0 the share agent i obtains in the Nash bargaining solution when it is
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interior is

csi =
1

n�i
�
X
j 6=i

bij
1

n�j
(1.22)

Let k 6= i. If we differentiate the expression in (1.22) with respect to bki we
obtain

@csi
@bki

=
1

n�2i
> 0

and the �rst part of the proposition follows. If i; j and k are pairwise different
we have that

@csi
@bkj

= � bij

n�2j

Hence, @c
s
i

@bkj
bij � 0 with equality if and only if bij = 0. Finally, if i 6= j we have

that

@csi
@bij

= � 1
n

 
1

�j
+ bij

1

�2j

!

Hence,

@csi
@bij

> 0, �j < �bij

�



Chapter 2
On Pairwise In�uence Models:
Networks and Ef�ciency

2.1 Introduction
There is an increasing concern within economists to introduce insights from other
disciplines, such as psychology or sociology, into the realm of economics to
provide a further understanding of problems that are economic in nature. The
neoclassical model allows agents to be heterogeneous in tastes, each agent has
her own utility function that can differ from the one of any other agent in the
economy, but it neglects the social environment in which they are embedded.
There are several dimensions in which our models can be enriched to provide
a more general framework for economic analysis. On one side, the behavioral
economics literature, and more particularly the social preferences one, escapes
from the traditional homo economicus characterization of agents as completely
sel�sh individuals and presents models where agents are concerned for others
preferences, incorporating in this way features such as altruism, envy, fairness
or reciprocity into the economics arena. On the other side, the literature on
networks in economics enriches the underlying social structure by providing a
clear topology of interrelations within agents in the economy and studying how
this pattern of connections may change economic outcomes.
Our principal aim in this paper is to characterize ef�cient resource allocation

in situations in which the members of a group can be altruists or envious with
respect to other agents, and there is a well-speci�ed network of connections that
represents group structure. Hence, our work can be understood as the study of
group in�uence on resource allocation in two different dimensions: psychologi-
cal and structural. To this end, we use a model of linear interdependent utilities
where each agent has a private utility on consumption and a total utility that is
decomposed as the sum of her private utility plus a weighted sum of the total
utilities of the rest of agents with which she is connected. We do not make any
kind of restriction neither on the weight each agent assigns to the total utility of
another agent (weights can be positive, negative or zero, representing altruism,
envy or indifference, respectively; and the weights for two different agents with
which she may be connected can differ) nor in the shape of the network of rela-
tions (we allow for unreciprocated relations where agent i cares for agent j does

46
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not imply that agent j cares for agent i, so the network is directed).

Models with interdependent utilities generate implicit concerns through in-
direct connections on the network of relations: if Alice cares for Bob's utility
and Bob cares for Carol's utility, Alice cares indirectly for Carol's utility, since
her utility depends on Bob's utility that at the same time depends on Carol's
utility. As particular examples of these indirect concerns we �nd recursivities:
if Alice cares for Bob's utility and Bob cares for Alice's utility, Alice cares not
only directly, but also indirectly, for her own utility. Of course, in a network
with a substantial number of agents the number of possible indirect connections
between two agents through the network can be very large, if not in�nite. The
�rst part of the paper is devoted to fully characterize the total effects of these
recursivities. We provide closed-form expressions for the sum of all indirect
effects, what we call group in
uence, for (almost)34 any given network. An es-
pecially appealing property of these expressions is that they uniquely depend on
simple cycles and simple paths, thus eliminating in some sense the recursivities
that naturally arise in any utility interdependency setting.
The next step in our work is to characterize the Pareto ef�cient allocations for

any given network of interdependencies. When all agents are completely sel�sh,
the set of ef�cient allocations is easy to de�ne: it is formed by all the allocations
that exhausts resources, no matter how we distribute them within the group, and
hence there is a plethora of ef�cient allocations. Whenever this situation happens
for a network of interdependencies, we say that the Pareto frontier for this group
is regular. One example of how the utility interdependency can distort the Pareto
frontier from a regular situation is the following one: suppose that due to the
concrete network structure and the individual levels of altruism and/or envy of
each agent, and once we take into account group in�uence, that is, how the whole
network of interdependencies may change the concern each one of the agents has
for the rest of group members, there is one agent more loved than any other
one, so all members of the group would like to transfer her all their resources
because in this way they all would feel better off. In this situation the unique
ef�cient allocation is that this more loved agent, the more prominent one, due to
her position in the network of interdependencies, consumes everything. Another
situation where the set of ef�cient allocations is a singleton arises when group
in�uence generates a situation where everybody hates everybody. In this case
nobody should consume nothing because the act of somebody consuming hurts
all agents in the group, and we can interpret this as a situation where all agents
are �nonprominent�. Whenever there is a unique ef�cient allocation we say that
the Pareto frontier is singular.
Our result characterizing Pareto ef�ciency relies on a well-known concept

34 Except for a set of measure zero of networks.
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from the social networks analysis literature, prestige, that measures the promi-
nence of each agent due to her position in the interdependency network. We
provide a particular way to measure the prestige of each agent that aggregates
in one single value how much group structure in�uences this agent. We obtain
that the more prestigious agents should be the ones that consume in an ef�cient
situation. In particular, if all group members are equally prestigious we obtain
a regular Pareto frontier, while if there is one specially prestigious agent or if
everybody has negative prestige, we obtain a singular Pareto frontier, since in the
�rst case this outstanding agent should consume everything while in the second
case nobody should consume nothing. These represent two polar situations that
show how extremely different the �nal outcome can be depending on the inter-
dependency pattern but, indeed, there are many possible intermediate situations
that we also characterize with the same methodology.

2.2 Related Literature
There is an increasing amount of experimental evidence that shows large and
persistent deviations from pure sel�sh behavior, and that the social environment
can have a large impact on economic problems. An interesting example of it
is the work by Andreoni and Miller (2002), where the authors apply a revealed
preference argument to experimental results and obtain that some of the agents
had consistent preferences for altruism. Their conclusion is that all agents have
self-interested utility functions, i.e. all agents are rational, but not all care only
for their own payoff, but also for the payoff of the rest. Another example is
Levine (1998), where the author studies a model with altruism and spitefulness
similar to our one. Using principally results on ultimatum game experiments the
author obtains a distribution of altruism in the population that works quite well
in explaining other experimental results. The literature in behavioral economics
has been specially imaginative in providing models that try to capture attitudes
and behavioral patterns that can not easily be explained through the classical
sel�sh rational choice models. Some examples are Rabin (1993), Levine (1998),
Bolton and Ockenfels (2000), Fehr and Schmidt (1999), or Charness and Rabin
(2002), just to name a few, and not including interdependent utilities models, on
which we center later. A common feature of most of these models is that they are
specially de�ned for strategic settings with two agents, and whenever the number
of players is larger than two, all agents are concerned in the same way for the rest
of group members. Two excellent surveys of the �eld of social preferences are
Fehr and Schmidt (2002) and Sobel (2004).
The literature on interdependent utilities is vast. On the theory side we should

highlight the work done by Bergstrom (1999) and Bramoullé (2001). Pollak
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(1976) is among the �rst papers to provide a de�nition of interdependent prefer-
ences but Bergstrom (1999) is the �rst one rigorously de�ning what a system
of interdependent utilities is, either for a �nite or a denumerable number of
agents, and devotes the rest of the paper to show that several intergenerational
models that appeared previously are in fact systems of interdependent utilities.
Bramoullé's work is more close in spirit to our one. The �rst part of his work
addresses the study of some basic features of general interdependence systems
not initially studied by Bergstrom. In the second part the author considers, as
we do, linear interdependence systems to be able to relate social networks with
interdependent utilities. He obtains some results, also relying in well-known
concepts in sociology, on the relation between social structure and the induced
interdependence coef�cients, the coef�cients that express how the private utility
of an agent enters in the total utility of another one. These results are qualitative
in nature and are restricted to a certain subclass of networks. On the contrary, we
provide closed-form expressions of the induced interdependence coef�cients and
a full characterization of the quantitative effects in arbitrary social networks. We
are able to obtain neat expressions for the induced interdependence coef�cients
for (almost) every network. Furthermore, we apply our model to obtain not
only features of the interdependent utilities systems but also implications about
fundamental economic concepts.
Moreover, there are many papers that use interdependent utilities in sev-

eral areas of research in economics such as household economics, macroeco-
nomics or intergenerational altruism models like Barro (1974), Becker (1974,
1981), Bergstrom (1989, 1999), Bernheim and Stark (1988), Bruce and Wald-
man (1991), Hori and Kanaya (1989), Kimball (1987) and Ray (1987), just to
name a few35. However many of these works put restrictive conditions on the
interdependency system to limit network externalities to the minimum, trying to
eliminate in this way the recurrences and indirect links that could generate group
in�uence. For example, the seminal work by Becker (1974) on social interactions
is a system of interdependent utilities in which the network structure is a directed
star. In this case there is no group in�uence because there is at most one path
from an agent to another. This assumption simpli�es the analysis but is very
restrictive. Our analysis proves that a quantitative analysis can be done, at least
in cases with a �nite number of agents, even if the network structure is very
complex.
Finally, we also partially rely in the very active literature on networks in

economics. Recently, there has been an increasing attention on how non-market

35 A more extensive covering of the literature on interdependent utilities can be found in
Bergstrom(1999) and Bramoullé(2001).
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interactions may take a prominent role in, for example, how people can obtain a
job (Calvó-Armengol, 2004, Calvó-Armengol and Jackson, 2004), buyer-seller
relations (Kranton and Minehart, 2001), strategic experimentation and public
goods (Bramoullé and Kranton, 2005), how workers should be organized within
a �rm (Radner, 1993, Bolton and Dewatripont, 1994, Van Zandt, 1999), how
people tries to coordinate to accept certain social norms and rules or to go on
strike (Chwe, 2000, or Young, 2001), or in peer group effects and crime (Ballester
et al., 2006). The main differential characteristic of the networks that arise in
our work with respect to most of these literature is that they are both weighted
and directed, while most of the times the networks that are studied in economic
applications are unweighted and/or undirected.36

2.3 The Baseline Model and Some Examples

2.3.1 Linear Interdependent Utilities
Let N = f1; : : : ; ng be the set of agents. Each agent has an increasing private
utility function on his own consumption, ui (ci). Furthermore, each agent has
also a total utility function Ui of the form

Ui (c1; : : : ; cn) = ui (ci) +
X
j 6=i

bijUj (c1; : : : ; cn) i = 1; : : : ; n

that is, each agent may take into account the total utility of each other agent,
where bij is a real number that measures how much agent i cares for agent j.
These n equations determine what we call the interdependence system.
The main characteristic in interdependent utilities models is that agents care

for the total welfare of other agents. This model can be interpreted in several
ways: agents connected by a network of social relations, members of different
generations connected by a network of future and past concerns, or a network
of different selves of the same individual with different concerns for selves at
different periods of time. The interpretation for the �rst example is the following:
if bij > 0 then agent i is altruist versus agent j while if bij < 0 agent i is spiteful
against agent j. If bij = 0 agent i is indifferent to the situation of agent j.
The interdependence system can be solved, meaning that we can express

the total utility of each agent in terms of the private utilities of each member
of the group, easily. If c = (c1; : : : ; cn), U (c) = (U1 (c) ; : : : ; Un (c)) and
u (c) = (u1 (c1) ; : : : ; un (cn)), we can rewrite the interdependence system as

36 Some exceptions are Rogers (2006) and Bloch and Dutta (2005).
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follows

U (c) = u (c) +B �U (c)
where B is the matrix B = (bij)i;j with zeros in the diagonal, that we call the
initial matrix of interdependencies. Hence, the unique solution to the interde-
pendence system is, when (I�B)�1 exists,

U (c) = (I�B)�1 � u (c)

Let E = (I�B)�1. We call E the group in
uence matrix, and each entry eij
expresses how much agent i cares for the private (instead of the total) utility of
agent j.

Proposition 1 The interdependence system has a unique solution generically.

Proof: All proofs are in appendix A.

Hence, for almost every interdependence system, de�ned by matrix B, we
can obtain its group in�uence matrix E. When this is possible we say that the
interdependence system is generic.

2.3.2 Networks
A network is a set of agents, generally called nodes, N = f1; : : : ; ng and a
set of links between them. These links are modeled as a set of values g =
fgij 2 R; i; j 2 N and i 6= jg. There is a link from agent i to agent j if and
only if gij 6= 0.37 There is a link from agent i to agent j if gij 6= 0. If the number
of agents is n, a network is completely de�ned by these n (n� 1) coef�cients
in g. Hence, an equivalent tool to describe a network is its adjacency matrix,
denoted byB (g), with entries bij = gij if i 6= j and zeros in the diagonal.
Since any system of interdependent utilities can be de�ned by one of such

kind of matrix, we can reinterpret the interdependency matrix as the adjacency
matrix of a network g that we call the interdependency network. This reinter-
pretation of a system of interdependent utilities in terms of networks is not simply
a curiosity. An approach to a problem in terms of networks is useful whenever
the variable(s) that de�ne it are pairwise dependent, that is, they vary across pair
of agents, and this is exactly our case, since the level of altruism/envy depends on

37 This is not the more typical de�nition of a network found in most of the networks in
economics literature. Generally, it is assumed that gij can only take value 0 or 1 (this kind of
networks are generally called unweighted), and in many cases it is also assumed that gij = gji,
that is, there is a link from agent i to agent j if and only if there is also a link from agent j to
agent i (this kind of networks are called undirected).



52 Chapter 2 On Pairwise In�uence Models: Networks and Ef�ciency

the pair of agents we consider.38 While the matrixB is our fundamental object in
terms of de�ning a system of interdependent utilities, the network interpretation
will prove very useful all around our work since it provides us with a set of tools
and notions that will help in providing a more complete understanding of the kind
of effects utility interdependencies generate.
We denote by Gn the set of all networks with n nodes. We can provide a

graphical representation of any network g 2 Gn. The nodes are represented by
circles, and there is a row from node i to node j if and only if gij 6= 0. For
example, the graphical representation of the network g 2 G3 that has adjacency
matrix

B (g) =

0@0 � 0
0 0 �

 � 0

1A
where �; �; 
 and � are different than zero, is
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A path from agent i to agent j is an ordered set of agents p = (i; i1; : : : ; ik; j)
of N , where an agent can appear several times, such that i 6= j. We say that the
path p belongs to the network g if gii1gi1i2 � � � gikj 6= 0. We say that a path is
simple if all nodes of the path are different. In words, a path in g is an indirect
connection from agent i to agent j through linked agents in g . We denote by
Pij (g) the set of simple paths from i to j in g. Given a path p 2 Pij (g) we
de�ne its weight, that we denote w (p), as the product of weights of the links
involved in the path: w (p) = gii1gi1i2 � � � gikj . A path that do not belong to g
has weight equal zero.
Similarly, a cycle is de�ned like a path but with the simple difference that

in this case i = j. Hence, a cycle is an indirect connection from agent i to
himself through a chain of linked agents in g. We say that a cycle is a simple

38 And on the order we consider these pair of agents; that is why networks we consider are
generally directed.



2.3 The Baseline Model and Some Examples 53

cycle if the only agent that appears twice in the cycle is the initial-�nal agent.
Observe that a simple path is a path that does not contain any cycle. C (g) denotes
the set of simple cycles in g. Like with paths, we de�ne the weight of a cycle
c = (i; i1; : : : ; ik; i) 2 C (g), denoted by w (c), as the product of weights of the
links involved in the cycle, that is, w (c) = gii1gi1i2 � � � giki. We say that a cycle
c belongs or is in network g if its weight is different than 0.
For example, consider the following network g
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(1; 2; 3; 4) is a simple path in g from 1 to 4, (1; 2; 1; 2; 3; 4) is a path in g that is
not simple, and (5; 4) is a path that do not belong to g. Similarly, (1; 2; 3; 1) is
simple cycle in g, (1; 2; 1; 2; 3; 1) is a cycle in g that is not simple, and (3; 4; 3)
is a cycle that do not belong to g.

Given a network g and a subset S � N , we denote by gnS the network that
is obtained eliminating from g all the nodes in S and all the links that involve
a node in S, and this new network gnS has as adjacency matrix the principal
submatrix ofB (g) obtained by eliminating the rows and columns indexed by S.
In particular, given a simple path p 2 Pij (g) ( resp. cycle c 2 C (g) ), fpg
( resp. fcg ) denotes the set of nodes involved in this path ( resp. cycle ), and
gn fpg (resp. gn fcg) is the network obtained eliminating this set of nodes.
For example, if we consider the previous network g in �gure 2, the network

obtained by eliminating the nodes 1 and 6, gn f1; 6g, is
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the network obtained by eliminating the path p = (3; 4) is
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and the network obtained by eliminating the cycle (1; 2; 1) is
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To provide the characterization of group in�uence in a later section we only
need one more ingredient. Any permutation of n elements, � 2 Sn, decomposes
the set of n agents into different cycles in a unique way, and we denote this set of
cycles c (�). The cardinality of the set c (�) is denoted by ]�. Given any � 2 Sn
we de�ne its weight, w (�), as the product of weights of the cycles in which �
decomposes the network, i.e. w (�) =

Q
c2c(�)w (c). All this is explained with

greater detail in the last section of this chapter.

2.4 The General Case: Group In�uence

In some cases39 we can express E = (I�B)�1 as

(I�B)�1 =
X
k�0

Bk = I+B+B2 +B3 + � � � (2.1)

Each matrix Bk computes the indirect effects of order k, that is, the entry Bkij
is equal to the sum of weights of all paths of length k that connect agent i to
agent j.40 Hence, the entry Eij is equal to the sum of weights of all the paths
of any length that connect i to j. This sum of indirect effects of any order is

39 Whenever the in�nite sum of powers of B expressed below is a well-de�ned matrix, this
matrix is the inverse of B. In fact, the necessary and suf�cient condition for (4) to hold is that B
has to be a contraction, or, what is equivalent, that all the eigenvalues of B have absolute value
smaller than 1.
40 For a proof of this assertion, see Bramoullé(2001).
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what we denote group in
uence. Our aim in this section is to completely char-
acterize, for any interdependency network, group in�uence. We begin presenting
two examples that provide an sketch of the forces that interdependence systems
generate.

2.4.1 Understanding Group In�uence

2.4.1.1 Paths can generate Sentimental Contradictions

There are three agents, N = f1; 2; 3g, and the network g relating them is the
following
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where �, � and 
 are strictly positive parameters. This means that agent 1 loves
both agent 2 and agent 3, while agent 2 hates agent 3. Hence, the interdependence
system is

U1 (c) = u (c1) + �U2 (c) + �U3 (c)

U2 (c) = u (c2)� 
U3 (c)

U3 (c) = u (c3)

and the initial interdependence matrixB = B (g) is

B =

0@ 0 � �
0 0 �

0 0 0

1A
In this case we can easily compute the matrices of indirect effects,Bk for k � 2.
The matrix of second order effects is

B2 =

0@ 0 0 ��

0 0 0
0 0 0

1A
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while

Bk =

0@ 0 0 0
0 0 0
0 0 0

1A for every k � 3

We obtain that the induced interdependence matrix E = E (g) is

E = I+B+B2 =

0@ 1 � � � �

0 1 �

0 0 1

1A
Hence, the expressions of the total utilities in terms of the private ones are

U1 (c) = u1 (c1) + �u2 (c2) + (� � �
)u3 (c3)

U2 (c) = u2 (c2)� 
u3 (c3)

U3 (c) = u3 (c3)

Observe that the induced coef�cient of agent 1 related to the utility of agent
3, e13 = � � �
, depends on the intensities of the interdependence system.
If �
 > � the coef�cient is negative, even if in the interdependence system
b13 = � was positive. A tension arises between the affection agent 1 has for the
two other agents and the hate that agent 2 shows for agent 3: the hate of agent 2
is internalized in the interdependence system and, if agent 1 cares much more for
agent 2 than for agent 3, it makes it possible that �nally e13 be negative.

2.4.1.2 Cycles can generate Sentimental Reinforcement

CASE 1: There are three agents N = f1; 2; 3g, and the initial situation is the
following one
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where �; �; 
 2 (0; 1). This means that agent 1 loves agent 2, agent 2 loves
agent 3, and agent 3 loves agent 1. How does this virtuous cycle affects the
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induced interdependence coef�cients? Take for example agent 1. e11 expresses
all the direct and indirect effects that start and �nish in agent 1. The unique
possibility of indirectly arriving to agent 1 if we start in agent 1 is through the
cycle (1; 2; 3; 1), and the weight of this cycle is g12g23g31 = ��
. Hence the
sum of indirect effects from agent 1 to himself is

��
 + (��
)2 + (��
)3 + � � �

that is, the sum of the indirect effects of passing one time through the cycle, two
times through the cycle, three times, etc. Therefore, e11, which is equal to the
sum of the direct effect41 equal to 1 plus the indirect effects, is

e11 = 1 +
1X
k=1

(��
)k =
1

1� ��

> 1

The cycle provides a reinforcement of the concern agent 1 has for himself, since,
initially loved himself with coef�cient 1, but, �nally, his private utility enters into
his total utility with coef�cient e11 > 1. Obviously, given the symmetry of the
network, the same happens with the rest of agents.
But this cycle not only reinforces the concern an agent has for himself. Ini-

tially, agent 1 loves agent 2 with coef�cient equal to g12 = �, but the same cycle
c = (1; 2; 3; 1) generates indirect effects from agent 1 to agent 2: agent 1 can ar-
rive directly to agent 2 through the link 1!2, but also indirectly through the paths
(1,2,3,1,2), (1,2,3,1,2,3,1,2), etc. The weight of these paths is ��
� = � (��
),
��
��
� = � (��
)2, etc. Hence the sum of direct and indirect effects from
agent 1 to agent 2, e12, is equal to

e12 = �
1X
k=0

(��
)k =
�

1� ��

> �

The cycle not only provides self-reinforcement, it also reinforces the links be-
tween agents in the network. Later we will see that this is a general fact: part of
the effect cycles generate is global and homogeneous, it affects in the same way
all the relations in the network, reinforcing or weakening all of them in the same
way.

CASE 2: The situation is the same than in the previous case but now there is

41 In the system of interdependent utilities everybody loves himself with coef�cient 1.
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a new link from agent 3 to agent 2, with positive weight equal to �. Graphically,
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To the previous existing relations, we add a new one: now the love agent 2
showed for agent 3 is reciprocal, and agent 3 loves agent 2 with an intensity
equal to �. Does this friendship relation between agent 2 and agent 3 can bene�t
in any way agent 1? As we will see in just a moment, the answer is yes. This
proves that even cycles where an agent is not involved can be bene�cial for him.
The network structure generates externalities effects: how the rest of people is
connected affects the �nal concerns of an agent. This effects are not always
positive. For example, if � had been negative, the hate agent 3 would profess for
agent 2 would indirectly hurt agent 1.
Let's see how this new friendship can bene�t agent 1's concern for himself.

The reason is clear: this new friendship generates new indirect effects from agent
1 to himself. To the indirect effects derived from the cycle (1; 2; 3; 1) we have
to add the ones that involve the new cycle (2; 3; 2). For example there is a new
indirect effect generated by (1; 2; 3; 2; 3; 1), that has weight equal ����
 > 0.
As a matter of fact, it is obvious that all the new indirect effects have positive
weight, since all the initial coef�cients, �; �; 
 and �, are positive.
In the following subsection we obtain expressions for the induced coef�cients

for any generic network. The expression we obtain for e11 is in this case equal
to

e11 =
1� ��

1� ��
 � ��

Observe that e11 = 1���
1���
��� >

1
1���
 whenever 1 � ��
 � �� > 0, but that

e11 =
1���

1���
��� < 0 if 1� ��
 � �� < 0. Hence, we are confronted with two
opposite situations: if the sum of weights of the cycles (1; 2; 3; 1) and (2; 3; 2)
is smaller than one the situation described in this case is still better than the one
described in case 1, and hence the new friendship formed is bene�cial for agent 1;



2.4 The General Case: Group In�uence 59

however, if the sum of weights is larger than one, the situation becomes dramatic.
The excessive love intensities generate pernicious effects: agent 1's concern for
himself becomes negative!

2.4.2 A Generic Characterization of Group In�uence
We provide in this section a characterization of the group in�uence matrix E (g)
for any generic interdependency network. To this purpose �rst we have to de�ne
a set of aggregation values for any network g. Let

� (g) =

"X
�2Sn

(�1)]�W (�)

#�1
and let

�ij (g) =
X
p2Pij

w (p)
1

� (gn fpg) for every i; j 2 N

In particular, �ii = 1
�(gnfig) . Observe that this n

2 + 1 values only depend on
simple cycles and simple paths of the network g. This set of values is the tool we
need to completely characterize group in�uence.

Theorem 1 Let g be a generic interdependency network. The entries eij of
E (g) are equal to

eij (g) = � (g) �ij (g) for every i; j 2 N

This result is specially appealing because it provides a structural characteri-
zation of peer effects for any generic interdependence system. It provides closed-
form expressions of how �nally each individual cares for the private utility of any
other agent expressed in terms of the weights of simple paths and simple cycles
of the associated network structure. We can almost see which are the effects
generated by the interdependency network.
As stated, each entry eij (g) is decomposed as the product of two terms, � (g)

and �ij (g). the �rst term is common in all cases while the second depends
on the pair of agents we consider. We can interpret this decomposition as an
expression of two different forces that play a role in the determination of group
in�uence, and that are very related to the two previous examples. In what follows
we explain how.

2.4.2.1 The network multiplier

We call � (g) the network multiplier. It is a global and homogeneous effect
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generated by the network structure. It only depends on the simple cycles in the
network. In fact, the inverse of � (g) can be rewritten as

1�
X

c12C(g)

w (c1)+
X

c1;c22C(g)
c1;c2 disj:

w (c1)w (c2)�
X

c1;c2;c32C(g)
c1;c2;c3 disj:

w (c1)w (c2)w (c3)+� � �

This network multiplier is a pure reinforcement/weakening effect that affects in
the same way all the agents in the network. It subsumes the kind of reinforcement
or weakening effect that cycles generate and that are exempli�ed in subsection .
The explanation why in the expression of e (g) = 1=� (g) they appear not

only the weights of the cycles but also the product of combinations of cycles with
different signs, is that cycles have not a pure effect. The effects of different cycles
are entangled and thus a correction term has to be introduced to the pure effects
expression 1�

P
c12C(g)w (c1).

42

2.4.2.2 Local externalities

We call �ij (g) the local externality generated by the interdependency network
in the concern agent i has for agent j because they take into account not only
the direct concern agent i can have with agent j but also all the simple indirect
concerns of agent i with agent j. That is why �ij (g) depends on the simple
paths that go from agent i to agent j. Local externalities, in contrast with the
network multiplier, are mainly local and heterogeneous effects generated by the
interdependency network.
Observe that �ii (g) is equal to the inverse of the network multiplier of the

subnetwork of g obtained eliminating agent i. Therefore the group in�uence co-
ef�cient of agent iwith respect to himself, eii, is equal to the ratio� (g) =� (gn fig).
There are several possibilities. For example, if both multipliers are positive
and � (g) > � (gn fig) then the social structure reinforces the concern agent
i has for himself, eii > 1. This comparison between network multipliers can be
understood as checking how valuable is agent i for the rest of the group. A large
network multiplier of the whole network compared to the network multiplier
associated to the network gn fig means that agent i, specially the way she is
connected to other agents, exerts a positive externality on the rest of the group,
because if we eliminate her from the network the network multiplier decreases.
Similarly, the induced coef�cient of interdependence of agent i with respect

42 To have an analogy, it is much like what happens with the probability of intersection of events
in probability theory.
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to agent j if i 6= j is

eij (g) =
X

p2Pij(g)

w (p)
� (g)

� (gn fpg)

It depends on the direct paths from i to j, but the effect of each these paths
is not only its weight. The weight of a path p can be reinforced if the agents
that belong to it are valuable, where valuable has a similar meaning than in
the previous discussion. For example, if � (g) is larger than � (gn fpg), the
social network multiplier of the network obtained by removing the agents on
path p, and both multipliers are positive, the effect of path p in the coef�cient of
group in�uence eij its intensi�ed since it is larger than its weight. This happens
because the connections of the agents that belong to the path are important for
the reinforcement effects generated by the whole network structure, and this is
measured through the network multipliers.

2.5 The General Case: Ef�ciency, A Matter of Prestige
From now on, the setting is the following one: there is a quantity � of a certain
good that has to be distributed within a group of n agents, and we assume that
the private utility over consumption of each agent is ui (ci) = ci. We assume
that private returns to direct consumption are linear because we don't want that
possible concavities of these functions interfere with the effects that are generated
by the network structure, that are the effects in which we want to concentrate
in this work. Latter on I will provide some hints of the consequences of the
introduction of concavities in the private return functions ui(ci):
The question we want to address in this section is how does the network

structure determines ef�ciency in this setting. Hence, we want to determine
which allocations are Pareto ef�cient when we have to distribute the budget �
of the good within n agents that are linked by a interdependency network. Our
characterization relies on a well-known concept in the literature of social network
analysis, prestige. The prestige of an agent embedded in a network of relations
provides a measure of her relevance for the rest of agents given his position in
the network structure of the group.

2.5.1 Prestige in Social and Economic Networks
Not all the agents in a social network are necessarily equally important, whatever
important may mean. There are several variables that can determine the impor-
tance or prominence of an actor in the network. Furthermore, the de�nition of
prominence may depend on the setting we are studying. It is not the same if
we deal with directed or undirected networks, or with weighted or unweighted
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networks. Hence, there is not in the social networks analysis literature a unique
standard de�nition of prominence.
Sociologists have de�ned importance or prominence in networks mainly through

two different concepts: centrality and prestige. Both concepts are related to
connectivity : centrality of an agent is related to the paths that start in this agent,
while prestige is related to the paths that �nish in this agent. It depends on the
particular setting, but, roughly speaking, centrality is related to what you give and
prestige is related to what you receive. For example, an agent can be important in
the structure of a �rm because he can transmit easily information to many other
workers; in this case the relevant notion to study would be centrality. However,
in our case an agent is important depending on how much he is loved, that is, on
how much love or affection he receives. Hence prestige is the relevant concept
we have to deal with. There is a huge literature in sociology about prominence
in networks and several centrality and prestige measures have been de�ned.43
Our work is not the �rst economic model relying in concepts related to promi-
nence in social networks. For an example of an application of network theory to
economics in which centrality plays a key role see Ballester et al.(2004).
As we have previously stated, in our model an agent is more important than

another one if he is more loved than the other: the private utilities of agents j1 and
j2 enter into the total utility of agent i with coef�cients eij1 and eij2 respectively;
given there does not exist any concavities , agent j1 is more important than agent
j2 for agent i if and only if eij1 > eij2 . Each column contains in its entries the
basic information about prestige of each agent. To obtain an aggregate value of
prestige we do it in the simplest possible way as a weighted sum of the entries of
each column. First, we de�ne what is an strict system of weights.

De�nition 1 An strict system of weights is a vector � =(�1; : : : ; �n) 2 Rn
such that �i > 0 for all i 2 N and

P
i2N

�i = 1.44

Given a network g and an strict system of weights �, we de�ne the centrality
of agent i, that we denote �i (�;g) as �i (�;g) = � � e(i).

2.5.2 Pareto Ef�ciency
The following theorem provides a complete characterization of the Pareto frontier
in an interdependent utilities setting given any interdependency network.

Theorem 2 A vector of consumption c = (c1; : : : ; cn) is Pareto ef�cient
43 See chapter 5 in Wasserman and Faust(1994) for a survey of this literature and references.
44 For amore detailed explanation about this centrality measure of prestige, see section 3 of
chapter one.
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(i) when
Pn

i=1 ci = �, if and only if there exists a strict system of weights �
and a constant � > 0 such that �i (�; g) = � if ci > 0 and �i (�; g) � � if
ci = 0

(ii) when
Pn

i=1 ci < �, if and only if there exists a strict system of weights �
such that �i (�; g) = 0 if ci > 0 and �i (�; g) � 0 if ci = 0.

Hence, the measure of prominence of the agents in the network obtained
through prestige measures allows us to provide a general characterization of
the Pareto ef�cient allocations for any system of interdependent utilities. In
particular two polar situations are included in the characterization: the Pareto
frontier is regular if and only if there exists a strict system of weights � and
a positive constant � for which �i (�; g) = � for every i 2 N ; the Pareto
frontier is singular with agent j consuming everything if for every strict system
of weights � there exists a positive constant � for which �j (�; g) = � and
�i (�; g) < � for any other i 6= j, and the Pareto frontier is singular and nobody
should consume if for every strict system of weights �; �i (�; g) < 0. We are in
a regular situation if there is homogeneity in prestige, while the Pareto frontier is
singular if either there is a privileged agent or everybody is negatively prestigious,
no matter which strict system of weights we use to compute prestige.

Corollary 1 (Singular Pareto frontier) The Pareto frontier is singular with no-
body consuming if and only if E (g) is a negative matrix.

Proposition 2 (Regular Pareto frontier) The Pareto frontier is regular if and
only if

Pn
j=1;j 6=i bji < 1 for every i 2 N .

Each agent puts an initial weight of 1 to her private utility in the expression
of her total utility.

Pn
j=1;j 6=i bji is the sum of concerns of the rest of agents in the

group with agent i. To obtain a regular Pareto frontier nobody can be excessively
loved, meaning that this sum of concerns with each agent i can not exceed the
own concern of agent i with herself.
It is interesting to note that the result of the �rst corollary, on singular Pareto

frontiers, is valid for a more general family of private utility functions ui (ci) than
ui (ci) = ci. As far as ui (ci) is an increasing function of ci, the result still holds.

2.6 A Simple Case: �-homogeneous Networks
Let � be a positive real number. We de�ne the set of �-homogeneous networks
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Hom (�) as the set of networks such that whenever bij 6= 0 then bij = bji = �.
Hence, an �-homogeneous network is undirected, because if there exists a link
from agent i to agent j there also exists a link from agent j to agent i, and the
weight of all the network links is positive and equal to �.
In this family of networks both levels of heterogeneity are present but con-

trolled: the network of interdependencies is undirected and the level of altruism
is homogenized to a single value. This larger control on the structure of inter-
dependencies provides a simple picture of some of the more general results we
have obtained. Furthermore, it includes classical networks in the literature, such
as the circle and star, that are stylized examples of different kinds of possible
social structures.
Let degi (g) = jfj 2 Nn fig s:t: bij 6= 0gj for each i 2 N . We call degi (g)

the degree of agent i, and it measures the number of agents with whom agent
i is linked. We denote by degmin (g) = mink2Ndegk (g) and degmax (g) =
maxk2Ndegk (g) the minimal and maximal network degrees, respectively.
Again, suppose there is a quantity � of available resources that the group

can share. The following result characterizes, given a certain �-homogeneous
network of interdependencies, the values of � for which we obtain a regular
Pareto frontier. Just to remember, this means that the set of ef�cient allocations
is formed by all the allocations that exhaust resources and that these resources
are distributed anyway within the members of the group.

Proposition 3 Let g 2 Hom (�). The Pareto frontier is regular if and only if
� < 1

degmax(g)
.

Hence, connectivity, evaluated here as the number of connections each agent
has, provides us the criteria to evaluate if an �-homogeneous network has a
regular Pareto frontier. The next result states an analogous result for a singular
Pareto frontier.
In this case this result is not a complete characterization of singularity. It

provides a region of the �-space for which we can ensure singularity but it does
not characterizes all the �0s for which the Pareto frontier is singular with nobody
consuming.

Proposition 4 Let g 2 Hom (�) be connected and let �1 (g) be the maximal
eigenvalue of the interdependency matrix B (g). There exists " 2 (0;+1)
such that for every � 2

�
1

�1(g)
; 1
�1(g)

+ "
�
the unique ef�cient allocation is that

nobody consumes.
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The geometry of the network considered characterizes regularity and pro-
vides suf�cient conditions for singularity. In particular, connectivity and spectral
properties of the network are crucial. This is specially interesting since there
is a deep knowledge in the �eld of graph theory on these network structural
properties.45 A lot is known about the properties of the spectra of graphs, and we
can apply it in this case, and in the general one.
This proposition seems to extend the result of Bergstrom (1999) on the ap-

parent paradox that when two lovers that express more love for the other than
for themselves, i.e. bij > 1 if i 6= j, want to share some spaghettis they
have prepared for dinner, the unique ef�cient allocation is that they do not eat
nothing at all. The analysis of these kind of two agents situations with positive
externalities and its implications on resource allocation is extended in Vadasz
(2005). We have proved therefore that this kind of extreme result on resource
allocations is general, no matter which kind of private utilities ui (ci) each agent
shows and the number of agents in the economy, at least for some small small
of interval of �s just after the critical point 1

�1(g)
. However, as we will see in a

few lines, when there are more than two agents, other situations than a singular
Pareto frontier with nobody consuming can emerge when positive externalities
are severe.
From proposition 3 we derive a simple consequence.

Corollary 2 For any connected society homogeneously altruistic there exist
some levels of altruism for which the unique ef�cient situation is worst than if
the society were totally sel�sh. An upper bound for the smallest of these values
is 1
degmin

.

The following �gure subsumes what we know from propositions 2 and 3.

6

-

? ?
�

0 1
degmax| {z }

regular

1
�1(g)

1
�1(g)

+�| {z }
singular

n

0

45 See for example Cvetkovik et al. (1980).
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With the use of two classical examples, the circle and the star, we can obtain
a further understanding of what can happens in the rest of the � space.
A circle is a network where each agent is connected to two neighbors, one

at right and the other at left. It is the prototypical example of a situation very
regular in terms of social structure since all agents are indistinguishable in terms
of their position in the network.

A
A

�
�

A
A
�
�

ss
sss s

Circle (n=6)

Proposition 5 (The Circle) Let g 2 Hom (�) be a circle with n � 2 agents.
The Pareto frontier is regular if and only if � < 1

2
, and singular with nobody

consuming for every � > 1
2
.

Hence, there are situations in which the two critical points collapse into one.
In fact, this happens whenever degmax (g) = �1 (g), and this happens if and
only if the network is regular, i.e. deg1 (g) = � � � = degn (g). Moreover, the
characterization in the case of the circle is bipolar and � in proposition 3 is set to
+1.
The star is quite a different situation with respect to the circle. In a star one

agent (the central agent) is connected to all the rest of agents of the group (the
periphery), and all the agents in the periphery are only connected to the central
agent.

t
t

t
t

t
Star (n=5)

The central agent plays a very differentiated role with respect to the ones
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in the periphery since he provides cohesion to the group. This kind of social
structure has a more complex ef�ciency pattern than the circle.

Proposition 6 (The Star) Let g 2 Hom (�) be a star with n � 3 agents. The
Pareto frontier is

(i) regular if � < 1
n�1

(ii) neither regular nor singular for � 2
�

1
n�1 ; � (n)

�
, where � (n) = �1+

p
4n�7

2n�4

is an increasing function in n that takes values in
�

1
n�1 ;

1p
n�1

�
, and the ef�cient

allocations are such that the central agent and only one agent in the periphery
share the total available resources

(iii) singular, with the central agent consuming everything, if� 2
�
� (n) ; 1p

n�1

�
(iv) singular, with nobody consuming, if � 2

�
1p
n�1 ;

1p
n�2

�
(v) neither regular nor singular for � > 1p

n�2 , and the ef�cient allocations
are such that only some of the agents in the periphery can share the available
resources (not necessarily exhausting them), and with the number of allowed
agents to consume increasing with �.

Here, within the two critical points different possibilities coexist. Moreover,
the � in proposition 3 tends to 0 as the number of group members increases,
and the situation is nonsingular for any � greater than �1 (g) + �. Observe that,
while in the case of the circle it is true that whenever externalities are suf�ciently
positive the unique possible ef�cient allocation is always that nobody consumes,
this is not necessarily the case in a more centralized structure like the star. In
this case, even if externalities are positive and large, the ef�cient allocations in-
clude the possibility that nobody consumes but it does not include this possibility.
Hence, the paradox on true lovers that hate spaghuettis partially vanishes when
we increase the number of agents in the economy. Observe in particular that in
the case of two-agents economies, whenever both agents show love for each other
the associated network structure can be understood as a circle or as a star. When
we have at least three agents this possible confusion of structures disappears.

2.7 Conclusion
We have considered a model with two elements: (i) individuals are concerned for
others' total utility ( interdependent utilities ), (ii) each individual is concerned
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for a different subgroup of agents and with different intensity for each agent (
social networks ). The intensity of each link can be positive, negative or zero,
allowing for altruism, envy, of sel�shness. The interdependence system or, al-
ternatively, the social network, is determined by a set of n (n� 1) real values,
the intensities with which each agent cares for each other. But, even if the model
is very rich, we have been able to obtain closed-form expressions of the utility
possibility set under interdependent utilities for any generic situation. Moreover,
we have obtained several results about the Pareto frontier under interdependent
utilities thanks to n values, the prestige measures of each of the n agents, that
aggregate all the information the n (n� 1) initial values contain. Hence, to study
ef�ciency, we reduce the dimension of complexity of the problem from the initial
dimension of the interdependence system, which is of order n2, to the number of
agents in the economy, n.
We have concentrated in this work in the study of situations where there are

no concavities on the private returns on direct investment. This way we can
concentrate only on the study of network effects, without other effects interfering
in the results. While the assumption of linearity in private returns is restrictive,
we believe our conclusions are of some value also in the case private function
returns are concave, as can be seen for example in the result of Proposition 4,
which holds whenever each function ui(ci) is increasing in ci. With linearity,
we can measure how valuable is an agent for the rest of the group simply by
means of prestige, but if private returns are concave an agent is not only valuable
by his position in the network: an individual will be more valuable the more
prestigious he is, but also the larger it is his marginal return to an extra marginal
unit of the resources. It seems that then, concavities, limit the possibilities that an
extreme situation in which one agent receives all the resources is Pareto ef�cient.
Probably, due to marginal private returns it would be optimal for this agent to
transfer part of the resources to other agents that are less prestigious,
From our study of distributional con�icts we derive that prestige also plays

a role in the determination of the Nash bargaining solution. In this work we
have considered the interdependency network as given, taking a social planner's
perspective. In some environments it could be of interest to study the following
game of strategic network formation:46 if the total available resources are dis-
tributed using the Nash bargaining solution and before the distribution agents can
strategically choose with who they want to be linked and with which intensity,
which are the equilibria of this game? As a conjecture, it seems that the Nash
equilibria of this game should internalize prestige, centrality or other notions
related to the geometry of the network, in the strategy each agent would play.

46 See Jackson(2003) for a survey of this literature.
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Our methodology seems suf�ciently general to be applied in other situations
where the effects generated by interdependent utilities can be preponderant, such
as public goods games. Utility interdependencies can have signi�cant effects
on individual contributions. Altruistic agents can be disposed to increment their
contributions while envious agents maybe prefer to decrease their ones. A con-
jecture might be that, since in this case it seems that the behavior of each agent
may depend not only on the affection he receives but also on the one he provides,
both centrality and prestige can affect the equilibria of the game.
Linear interdependent utilities are specially meaningful if we want to model

pure altruism or envy. However, it would be of interest to extend the work we
have done here to more general systems of interdependent utilities that include
other patterns of behavior such as fairness.
Finally, we have only studied situations with a �nite number of agents. While

this is a very plausible assumption if we deal with social groups, several mod-
els of interdependent utilities from macroeconomics are de�ned for an in�nite
number of agents. Due to the interlinkage we have found between interdepen-
dent utilities and spectra of graphs, and that there is an increasing knowledge of
properties on in�nite graphs spectra, it is plausible that, at least for some families
of networks, there can be obtained for in�nite systems of interdependent utilities
some partially analogous results to the ones we have obtained in the present work.

2.8 Proofs
Proof of Theorem 1:
Let �E be the matrix that has as entries �eij = �ij and let e (g) = 1=� (g). We
have to prove that

(I�B) �E = eI

First, let's consider the entries (i; i) of the matrix (I�B) �E, that are equal to

nX
k=1

(I�B)ik �eki = e (gn fig)�
nX

j=1;j 6=i

bij
X
p2Pji

w (p) e (gn fpg) (2.2)

Observe that the weight of any simple cycle c = (i; i1; : : : ; ik; i) 2 C (g)
is equal to bii1bi1i2 � � � biki = bii1w (p) where p is the simple path equal to
(i1; : : : ; ik; i). Since the elements that form the cycle c are the same that form
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the path p, we can rewrite the second term of the right-hand side of (2.2) as

nX
j=1;j 6=i

bij
X
p2Pji

w (p) e (gn fpg) =
X
c2C(g)
i2c

w (c) e (gn fcg) (2.3)

Thus, using the alternative formulation of e (g) in text for the network gn fpg,
we have that the right hand side of (2.2) is equal to

0BB@1� X
c12C(gnfig)

w (c1) +
X

c1;c22C(gnfig)
c1;c2 disjoint

w (c1)w (c2)� � � �

1CCA� (2.4)

�
X

c2C(g);i2c

w (c)

0BB@1� X
c12C(g)

c;c1 disjoints

w (c1) +
X

c1;c22C(g)
c;c1;c2 disjoints

w (c1)w (c2)� � � �

1CCA
but we can reorder the terms in this expression as follows

1�

0@ X
c12C(gnfig)

w (c1) +
X

c2C(g);i2c

w (c)

1A+ (2.5)

+

0BB@ X
c1;c22C(gnfig)
c1;c2 disjoint

w (c1)w (c2) +
X

c1;c2C(g)
c1;c disjoint

w (c)w (c1)

1CCA�

�

0BB@ X
c1;c2;c32C(gnfig)
c1;c2;c3 disj:

w (c1)w (c2)w (c3) +
X

c;c1;c22C(g);i2c
c;c1;c2 disj:

w (c)w (c1)w (c2)

1CCA+ � � �
and this expression is equal to
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1�

0@ X
c12C(g)

w (c1)

1A+
0BB@ X
c1;c22C(g)
c1;c2 disj:

w (c1)w (c2)

1CCA�

�

0BB@ X
c1;c2;c32C(g)
c1;c2;c3 disj:

w (c1)w (c2)w (c3)

1CCA+ � � � (2.6)

which is equal to the alternative expression of e (g) we have provided in text.
Thus, we have established from equations (2.2) to (2.6) that for any network

g and for any agent i 2 N

e (g)� e (gn fig) = �
nX

j=1;j 6=i

bij
X
p2Pji

w (p) e (gn fpg)

= �
X
c2C(g)
i2c

w (c) e (gn fcg) (2.7)

Nowwe have to prove that the entries (i; j)with i 6= j of the matrix (I�B) �E
are equal to 0. The entry (i; j) of this product is equal to

nX
k=1

(I�B)ik �ekj = �eij|{z}
[A]

� bije (gn fjg)| {z }
[B]

�
nX

k=1;k 6=i;j

bik�ekj| {z }
[C]

(2.8)

Let's develop each term in the right hand side of (2.8) individually.

[A]:

�eij =
X

p2Pij(g)

w (p) e (gn fpg) (2.9)

[B]:

bije (gn fjg) = bije (gn fi; jg)| {z }
[B1]

+ bij [e (gn fjg)� e (gn fi; jg)]| {z }
[B2]

(2.10)
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[C]:

nX
k=1
k 6=i;j

bik�ekj =

nX
k=1
k 6=i;j

bik
X

p2Pkj(g)
i=2p

w (p) e (gn fpg)

| {z }
[C1]

+

+

nX
k=1
k 6=i;j

bik
X

p2Pkj(g)
i2p

w (p) e (gn fpg)

| {z }
[C2]

(2.11)

Furthermore, [C1] is equal to

nX
k=1
k 6=i;j

bik
X

p2Pkj(g)
i=2p

w (p) e (gn fp; ig)

| {z }
[C1:a]

+

+
nX
k=1
k 6=i;j

bik
X

p2Pkj(g)
i=2p

w (p) [e (gn fpg)� e (gn fp; ig)]

| {z }
[C1:b]

(2.12)

where gn fp; ig means the network obtained removing not only all agents in the
path p but also agent i. Observe that [C1:a] can be rewritten as follows

nX
k=1
k 6=i;j

bik
X

p2Pkj(g)
i=2p

w (p) e (gn fp; ig) =
X

p2Pij(g)
p6=(i;j)

w (p) e (gn fpg) (2.13)

It follows from this last expression of [C1:a] that [A] � [C1:a] � [B1] = 0.
Therefore, to be able to conclude that [A] � [B] � [C] = 0, we still have to
prove that [B2] + [C1:b] + [C2] = 0. First, observe that, if k 6= i; j and
p = (k; i1; : : : ; il; i; il+1; : : : ; il+s; j) 2 Pkj (g) such that i 2 p, we have that

bikw (p) = bik
�
bki1 � � � bilibiil+1 � � � bil+sj

�
= (bikbki1 � � � bili) biil+1 � � � bil+sj = w (c)w (�p) (2.14)
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where

�p = (i; il+1; : : : ; il+s; j) 2 Pij (g)
and

c = (i; k; i1; : : : ; il; i) 2 C (gn (f�pg n fig))
is such that i 2 c. Hence, taking into account that the elements in p are the same
that the union of elements of �p and c, we can rewrite [C2] as follows:

nX
k=1
k 6=i;j

bik
X

p2Pkj(g)
i2p

w (p) e (gn fpg) =

=
X

�p2Pij(g)

w (�p)
X

c2C(gn(f�pgnfig))
i2c

w (c) e (gn f�p; cg) (2.15)

Now, we rewrite [C1:b] and [B2] applying equation (2.7) to the network gn fpg.
[C1:b] is equal toX

k=1
k 6=i;j

bik
X

p2Pkj(g)
i=2p

w (p) [e (gn fpg)� e (gn fp; ig)] =

=
X

�p2Pij(g)
�p6=(i;j)

264� X
c2C(gn(f�pgnfig))

i2c

w (c) e (gn f�p; cg)

375 (2.16)

while, similarly, [B2] is equal to

bij [e (gn fjg)� e (gn fi; jg)] = �bij
X

c2C(gnfjg)
i2c

w (c) e (gn fi; jg) (2.17)

Hence, we obtain that

[C1:b] + [B2] = �
X

�p2Pij(g)

w (�p)

264 X
c2C(gn(f�pgnfig))

i2c

w (c) e (gn f�p; cg)

375
= � [C2] (2.18)

that is what we wanted to prove. �
Proof of Theorem 2:
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It is partially a consequence of the following result:
An allocation c is Pareto ef�cient if and only if there exists a strict system of

weights � such that � �U (c) � � � �U for every �U 2 UPS (g; �).47
This lemma derives from an application of the separating hyperplane theo-

rem. Given an allocation c = (c1; : : : ; cn) then U (c) =
Pn

k=1 cke
(k). We

distinguish two different situations:

(i) c is Pareto e�cient and
Pn

k=1 ck = �: in this situation the associated utility
vector is a convex combination of extreme points of the simplex all different from
the zero vector, since

U (c) =
nX
k=1

ck
�
�e(k)

Since c is Pareto ef�cient, we know that the above lemma applies for a certain
strict system of weights �. This implies that � �e(i) = � �e(j) for every i; j such
that ci; cj > 0. Suppose not: then, without lost of generality we can assume that
� � e(i) < � � e(j), but transferring the quantity ci from agent i to agent j would
generate a new feasible allocation, name it �c, such that � �U (c) < � �U (�c),
contradicting the lemma. Observe that since �� � e(i) = �� � e(j) for every i; j
such that ci; cj > 0 and since

� �U (c) =
nX
k=1

ck
�

�
�� � e(k)

�
it follows that �� � e(i) = � �U (c) for every i such that ci > 0.
The zero vector is a feasible allocation. Its associated utility vector is also the
zero vector. This implies that � �U (c) � 0. If we let K = 1

�
(� �U (c)) � 0

we can subsume all we have obtained in terms of prestige measures as follows:
�k (�; g) = � whenever ck > 0 and �k (�; g) � � whenever ck = 0.

(ii) c is Pareto e�cient and
Pn

k=1 ck < �: the prove is analogous to the
one for case one if we observe that, if ~c = � �

Pn
k=1 ck, now the expression of

47 This is a slight variation of a well-known result relating Pareto ef�ciency to linear social
welfare functions (see for example Proposition 16.E.2, pg.560, in Mas-Colell et al.). The
statement in terms of strict system of weights is valid because the shape of UPS (g;�) is a
simplex, not simply a convex set.
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U (c) as a convex combination is

U (c) =

nX
k=1

ck
�
�e(k) +

~c

�
0

Hence, �� � e(i) = � � 0 = 0 whenever ci > 0, and � �U (c) = 0. Therefore,
the lemma implies that �� � e(i) � 0 if ci = 0. We can rewrite all this in terms
of prestige measures as: �k (�; g) = 0 if ck > 0 and �k (�; g) � 0 if ck = 0. �
Proof of Proposition 2:
See proof of proposition 3 in chapter 1. �
Proof of Proposition 3:
It is an immediate consequence of proposition 2. �
Proof of Proposition 4:

We can order the eigenvalues of the n � n matrix B as follows: �1 (B) >
�2 (B) � � � � � �n (B) :

48 Hence, and taking into account the following facts,

� i) the determinant of a matrix is equal to the product of its eigenvalues
� ii) the matrix E (B) can be found computing the determinants of all
(n� 1)� (n� 1) submatrices ofB and the determinant ofB

� iii) the largest eigenvalue of any submatrix of B is strictly smaller than
�1 (B).49

� iv) the eigenvalues of a matrix are continuous functions in terms of the entries
of the matrix

we can reason as follows. The eigenvalues of the matrix E (B) are equal
to 1

1��1(B) ,. . . ,
1

1��n(B) . Hence, using that det (B) = det (E (B))�1 we have,
using (i), that

det (B) =

 
nY
i=1

1

1� �i (B)

!�1
With a simple continuity argument making use of (iv) we obtain that there exist
�1 such that for every � 2

�
1

�1(g)
; 1
�1(g)

+ �1

�
we have that det (B) is strictly

48 These eigenvalues are real because the matrix is real and symmetric. Moreover, it is a
classical result that the largest eigenvalue of a matrix is simple and hence strictly larger than all
the rest.
49 This is true if the matrix is irreducible which in networks terms means that there are not two
different groups of agents such that the members of one group are not connected to members
of the other one. This assumption is plausible in our study. If this happens we could study in
isolation each group.
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negative.50 Similarly, making use of a similar argument we can conclude (
making use of (ii), (iii) and (iv) ) that there exists �2 such that for every � 2�

1
�1(g)

; 1
�1(g)

+ �2

�
the determinant of any (n� 1)� (n� 1) submatrix ofB is

strictly positive. All together, and if � = min f�1; �2g, we obtain that for every
� 2

�
1

�1(g)
; 1
�1(g)

+ �
�
all the entries of E (B) are strictly negative and hence

the Pareto frontier is singular with nobody consuming. �
Proof of Proposition 5:
Since the circle is a regular network where all agents are equal, we can not
distinguish one agent from another, there are only two possibilities: either every-
body can consume (regular Pareto frontier) or nobody should consume (singular
Pareto frontier). We know from proposition 3 that the Pareto frontier is regular
if and only if � � 1

degmax
which in this case is equivalent to � � 1

2
since

degmax = degmin = 2. Therefore the Pareto frontier is singular, with nobody
consuming, if and only if � > 1

2
. �

Proof of Proposition 6:
Applying theorem 1 we obtain that the group in�uence matrix of a star is, if agent
1 is the central agent and agents from 2 to n are the peripheral ones, equal to the
following n� n matrix

1

1� (n� 1)�2

0BBBBBBB@

1 � � � � � �
� 1� (n� 2)�2 �2 � � � �2

� �2 1� (n� 2)�2 . . . ...
...

... . . . . . . �2

� �2 : : : �2 1� (n� 2)�2

1CCCCCCCA
The result follows then by inspection applying theorem 2. Each possibility in
the statement of the proposition represent a situation where, associated with a
particular strict system of weights, the prestige of the agents that can consume is
equal and larger than the ones that do not consume. A careful inspection of the
different possibilities associated with the above matrix leads the result. �

2.9 Grouping people into cycles
The principal mathematical tool we use in this section are permutations. This
subsection presents the basic results on permutations and provides a graph-theoretical
representation via subgraphs of this combinatorial tool.
50 This is because �1 (B) = ��1 (g) and because �1 (B) is strictly larger than the rest of
eigenvalues of B.
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A permutation � over the setN = f1; : : : ; ng is simply a one-to-one function
fromN toN . We denote the set of permutations over N by Sn. To give a concrete
permutation �, we have to say which are the images of each element in N . An
easy way of doing this is writing each element of N in a row and then write
below the respective images

� =

�
1 2 � � � n

� (1) � (2) � � � � (n)

�
(2.19)

A cyclic permutation of order r is a permutation of the form�
n1 n2 � � � nr
n2 n3 � � � n1

�
(2.20)

where fn1; : : : ; nrg is a subset of different elements of N .51 For example�
1 2 3
3 1 2

�
(2.21)

represents the cyclic permutation where 3 is the image of 1, 2 is the image of 3,
and 1 is the image of 2.
It follows from the de�nition of permutation that the composition of two

different permutations � and � of Sn is also a permutation of Sn. Generally,
the composition is called product of permutations, and we denote it by �� . We
have the following result.

Result. Each permutation � can be decomposed as a product of disjoint cyclic
permutations.52 Furthermore, this decomposition is unique, except for the order
in the product.

Given a permutation �, we denote by c (�) the set of cyclic permutations (of
order larger than 1)53 that belong to the decomposition into cyclic permutations of
�, and by ]� the cardinality of this set, that is the number of cyclic permutations

51 To simplify notation, when de�ning a permutation �, it is usual to not express the image of
the elements x 2 N such that � (x) = x. Hence, for example, when de�ning a cyclic permutation,
we suppose that � (x) = x for every x 2 Nnfn1; : : : ; nrg.
52 By disjoint we mean that there are no common elements in two different cyclic permutations
of the decomposition.
53 A cyclic permutation of order one lets unaltered the element that belongs to it. Therefore,
from now on, when we refere to a cyclic permutation we mean a cyclic permutation of order at
least equal to two.
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in the decomposition of �. For example, the permutation

� =

�
1 2 3 4 5 6
4 3 2 5 1 6

�
(2.22)

is decomposed into cyclic permutations as follows�
1 2 3 4 5 6
2 3 1 4 6 5

�
=

�
1 2 3
2 3 1

��
5 6
6 5

�
(2.23)

and hence c (�) =
��

1 2 3
2 3 1

�
;

�
5 6
6 5

��
and ]� = 2.

Coming back again to networks, there is an obvious one-to-one correspon-
dence between cyclic permutations and network cycles. Hence, each permutation
is, in fact, dividing the set N of agents into disjoint cycles.
For example, let's revisit the network in �gure 1

t
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The permutation � in S6 de�ned in (19) divides this network into cycles as
follows

t
2
�
���

t1

?

t
3

@
@@I t

4

t6

?t
5

6

Consequently, we can de�ne in a natural way the weight of a permutation �,
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w (�), as the product of weights of the simple cycles in c (�), i.e.

w (�) =
Y
c2c(�)

w (c) (2.24)



Chapter 3
Spatial Spillovers and Local Public

Goods

3.1 Introduction
The government of any region provides public facilities to satisfy the needs of
its population. Most of the times it is assumed that this public facilities reaches
everyone in the same way. However, this is not always necessarily the case. As
Olson (1969) notes:

One or more of the following of the three following logically possi-
ble relationships between the "boundaries" of a collective good and
the boundaries of the government that provides it will apply: (1) the
collective good reaches beyond the boundaries of the government
that provides it; (2) the collective good reaches only a part of the
constituency that provides it; or (3) the boundaries of the collective
good are the same as those of the jurisdiction that provides it.

In this chapter we deal with a variation of the second possibility. The task
for the government is easy if geography is not an important factor for citizens to
enjoy these facilities. This would be the case with a pure public good, expressed
in (1) and (3). However if the effects of these facilities are of a local nature, then
its allocation all around the geography of the city becomes a more dif�cult task.
Any allocation will imply that some agents receive a more direct bene�t than
others, but a second important feature of this kind of local public goods is that
they can show spillover effects: even if some agents do not receive an immediate
bene�t from a particular allocation of resources, they can receive some positive
(or negative) externalities from it. Hence, if the government realizes that these
spillover effects exist, it has to take them into account and the task of deciding
between different possible allocations becomes a more complex task.
A possible example is the case of a city and its division into neighbourhoods.

An activity in which spillover effects are clearly documented is the case of ur-
ban crime. There is a large amount of works in the criminology literature that
highlights that there exist signi�cant correlations among crime rates of different
neighbourhoods of a city and its relation with social and geographic charac-
teristics of the city (see, for example, Anselin and Messner, 1994, Anselin et

80
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al., 2000, Bowers and Johnson, 2003, Morenoff et al., 2001, Mears and Bhati,
2006). This suggests that there will also exist signi�cant positive spillovers when
local resources to combat urban crime are implemented. Therefore, how these
resources are allocated across the geography of the city becomes an important
factor in the combat of urban crime and its positive implications for the citizen-
ship. Those that live closer to where some resources are allocated will bene�t
more directly from them. Anyhow, because of the existence of such spillover
effects, more distant individuals can also bene�t from them.
Generally, when the jurisdiction is divided into smaller districts and these

districts can have local representatives that ask for part of these resources, a
natural set of possible solutions is to divide the available resources among them
according to some bargaining procedure. The analysis of this class of bargaining
problems has been performed in chapter one with the use of the Nash bargaining
solution.
In the �rst part of this chapter we build on this work to analyze, in a very sim-

pli�ed way, how two different divisions of a city entail different levels of social
welfare when the government decides to distribute resources making use of this
decentralized bargaining game. Any two different divisions generate different
patterns of indirect spillover effects which are internalized in a different manner
both in the �nal division of resources and welfare of each neighbourhood. Hence,
its social welfare implications are not trivial. This implies that a problem about
the optimal division of the city exists. We do not solve this problem here, but
we use some data on two different divisions of Barcelona to build corresponding
patterns of spatial spillovers and analyze its possible welfare implications.
A second important question related to local public goods and spatial spillovers

is where do the resources implemented come from. We analyze in the second part
of this chapter a public good provision game in which neighbourhoods provide
part of their wealth to generate the resources that later on are divided following
the Nash bargaining solution. We suppose there are two possible sources of het-
erogeneity: the pattern of spatial spillovers that the public good generates, and the
distribution of wealth across the population. Hence, neighbourhoods internalize
in their equilibrium decisions both their level of wealth compared to that of the
rest of the city and the positive bene�ts they receive both from the direct effects
of the share of public good that is directly allocated in their neighbourhood as
well as the spillover effects generated by the allocation of resources across the
rest of the city. The analysis is again not exhaustive but pretends to show some
features relating the social and geographic structure of the city, re�ected in the
pattern of spatial spillovers, with the incentives of neighbourhoods to contribute
to the public good.
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3.2 On the optimal division of a city
Suppose that in a city the government decides how to divide public resources
among neighbourhoods following a particular �xed rule, such as the Nash bar-
gaining solution. Furthermore suppose that this government is aware that there
exists a clear pattern of spillovers across neighbourhoods, and that the division
rule internalizes the effects of this pattern of spillovers. Therefore, a crucial
question is how to optimally divide the city into different neighbourhoods to
maximize the effects of the allocation of public resources. This problem is
complex since different city divisions lead to different patterns of externalities
which lead to different levels of social welfare. Therefore the optimal solution
has to take into account all these effects. We illustrate the possibility of using
the tools developed in previous chapters comparing, in a somewhat simplistic
manner, two different divisions of the city of Barcelona.
The population in Barcelona in year 2006 was 1:605:602 . There are different

divisions in which this population is disaggregated. The next �gure shows the
actual division of the city of Barcelona into neighbourhoods, called districtes.
These districtes are the main representative sub-units of the city. To illustrate

the way we can map this division to some more algebraic representation of the
city, we present its adjacency matrix, Gd . The entry ij of this matrix equals 1 if
the limits of neighbours i and j partially overlap, and it is equal to 0 otherwise:

Gd =

0BBBBBBBBBBBBB@

0 1 1 0 0 0 0 0 0 1
1 0 1 1 1 1 1 0 0 1
1 1 0 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0
0 1 0 0 1 0 1 0 0 0
0 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 1 0 1
1 1 0 0 0 0 1 0 1 0

1CCCCCCCCCCCCCA
In this division the mean connectivity of neighbourhoods is 3:6. The less con-

nected is Nou Barris, that only is connected to two other neighbourhoods, while
the more connected neighbourhood is the Eixample, that is connected to seven
other neighbourhoods. The Eixample is an especially central neighbourhood of
Barcelona.
In the same way we can construct more elaborate algebraic structures that

represent some features of the city, such as the matrix of bilateral in�uences Bd
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Figure 3.1 Barcelona: Districtes

associated to this division. To this end we should know which are the relevant
geographic and socioeconomic variables that determine the different magnitudes
of pairwise dependent spatial externalities.
A more disaggregate division is obtained with the use of zones estadstiques,

that are sub-units of the districtes. The next �gure provides a graphical represen-
tation of this division:

The mean connectivity for each neighbourhood, that we will call simply
zones, is in this division equal to 4; 8. The more connected zones are Sant
Gervasi and Guinardó, while the less connected zone is Barri Besos. Note that
none of the more connected zones belong to the Eixample, the more connected
district.
The statistical data for these divisions can be obtained in the webpage http://www.bcn.cat/estadistica/angles/index.htm.
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Figure 3.2 Barcelona: Zones Estadístiques

In what follows we provide a particular function that shapes the levels of
direct externality from one neighbourhood to another with the use of these sta-
tistics. These direct externalities will determine the pattern of spatial spillovers
when the local public good is allocated within the different neighbourhoods.
For the sake of simplicity, we assume that the level of direct spatial external-

ity from one neighbourhood to another only depends on the distribution of the
population among the different neighbourhoods, abstracting from other socioe-
conomic variables that could also determine these levels of direct externalities.
In particular we assume the following closed-form expression:

Assumption The level of in�uence of neighbourhood j on neighbourhood i
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depends on the population distribution in the city in the following way

bij =
piX

k2Nj

pk
� pj
p

This function of in�uence shows two characteristics. First, each neighbour-
hood exerts an in�uence that is proportional to its population. Second, the level
of in�uence of a neighbourhood on another directly depends on the population
that receive this direct in�uence compared with the overall population of the
neighbourhoods that receive direct in�uence from the neighbourhood.
In both cases we obtain that the economy de�ned by this function of in-

�uences, and the population data collected during 2006 at Barcelona for both
divisions, is regular and with the Nash bargaining solution being interior. We can
then immediately apply the results obtained in chapter 1 to compute the social
welfare derived from the division associated to the Nash bargaining solution,
under the additional assumption that the disagreement outcome is the absence
of allocation of resources, i.e. d = 0. We obtain that the social welfare when
there is a unit of resource to distribute is 1:34362 in the case of districtes, and
1:29601 in the case of zones.

Remark 1 Under the assumptions speci�ed above, the division of Barcelona in
districtes is better than the one in zones estadstiques.

If there where no externalities, the social welfare would be in both cases equal
to 1. The increase on social welfare with respect to the no-externality example is
larger on average in the case of districts compared with that of statistical zones.
Hence, representation of the population at the district level seems to be more
bene�cial for the city as a whole than representation at the level of statistical
zones.
This is, by no means, a de�nitive conclusion with the data provided from city

statistics. It is important to have correct direct in�uence functions that take into
account all the relevant characteristics of neighbourhoods for the spillover effects
of certain local public goods. However, the exercise we have provided shows
that the model proposed and results obtained in chapter one can prove useful to
attempt to better understand how the particular geography of the city models such
spillover effects and that we can derive from this analysis a welfare assessment
derived from different geographical partitions of the city into neighbourhoods.
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3.3 On the governance of local public goods
In this section we model a public good contribution game among the neighbour-
hoods of a city. Each neighbourhood has some idiosyncratic characteristics, in
this case represented by different levels of mean income. There exist a well-
de�ned pattern of spatial spillovers among them, and neighbourhoods are aware
of it. They choose which part of their income they dedicate to the provision of
a public good that later on would be assigned across the city following the Nash
bargaining solution. Hence, the way in which neighbourhoods internalize the
pattern of pairwise in�uences, in this case spatial spillovers, is reminiscent of
the use of this bargaining solution and its properties, that we have extensively
analyzed in chapter 1.
The closest model to the one we present here is Bloch and Zenginobuz,

2006, in which the authors also analyze a public good provision game with
local spillovers but of a different nature. In their model each district provides
an independent public good. Each district bene�ts from its public good, and of
the others' with some level of positive externality. Hence, the questions they have
in mind are somewhat different from those we have exposed here.

3.3.1 The model
Agents
The city is divided into a �nite number of neighbourhoods, n. We denote by

N the set of neighbourhoods.
Preferences
Let wi denote the income level of each neigbourhood, and let �w denote the

mean income level at the city level, i.e. �w = (w1+� � �+wn)=n. Each neighbour-
hood can decide to invest part of its income to the provision of a public good, c.
We differ from the standard approach to public goods in which everybody enjoys
in the same way the public good. In our case, the public good is divided and
allocated through the different neighbourhoods of the city. Each neighbourhood
enjoys a direct effect of the share of public good it receives and also can receive
positive spillovers from the allocation of the public good in the rest of neigh-
bourhoods. These spillovers can be of different magnitude depending on the
pair of neighbourhoods we consider. Each neighbourhood can potentially exert
a different level of direct spillover to each other neighbourhood, if it exerts any
kind of spillover at all.
Hence, each neighbourhood obtains utility from two sources: the income that

maintains once it has invested in the creation of the public good, if it has invested
at all, and the utility derived from the allocation of the public good through the
city and the positive spillovers derived from it. Let � i denote the contribution
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of neighbourhood i to the public good, and let c denote the level of public good
produced. The production function of the public good given a contributions'
pro�le � is

c (� ) = ln

 
1 +

X
i

� i

!
The level if public good is an strictly concave function on the sum of con-

tributions of all neighbourhoods. Individual contributions are therefore perfect
substitutes of each other.
The utility derived from wealth is equal to ln (1 + wi � � i). It is a decreasing

concave function with respect to � i.
If the public good is divided among the different neighbourhoods in such a

form that each one receives a part of it equal to ci (� ), we denote by

ui (c1 (� ) ; : : : ; cn (� ))

the utility neighbourhood i obtains from the local public good.
The total utility each neighbourhood obtains, that we denote vi; is equal to

the sum of the utility derived from wealth and the utility derived from the public
good:

~vi (� ) = ln (1 + wi � � i) + ui(c (� ))

Spatial Spillovers
Furthermore, we suppose that the component of the utility that measures the

impact of the public good on each neighbourhood follows a pairwise in�uence
model. Each neighbourhood j exerts a, positive or negative, direct externality on
each other neighbourhood i that equals bij 2 R. The utility on the public good
of a neighbourhood i is related to that of the rest of neighbourhoods as follows

ui(c (� )) = ci (� ) +
X
j 6=i

bijuj(c (� ))

We can gather all the information of this pairwise in�uence system into a
matrixB = (bij)i;j with zeros in the diagonal.
A city C is therefore characterized by its set of neighbourhoodsN , the wealth

distribution among neighbourhoodsw =(w1; : : : ; wn), and the pattern of spatial
spillovers among neighbourhoods given by the matrixB.
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Let bi =
P
j 6=i

bji equal the sum of direct spillovers i exerts on the rest of

neighbourhoods, and denote by �i = 1 � bi. This constant �i will be important
in the analysis. It is a complementary measure of direct spillovers exerted by
neighbourhood i. We assume that �i > 0 for all i 2 N : These condition imposes
that aggregate direct spillovers exerted by each neighbourhood are bounded from
above by 1, and it ensures that we are in a regular economy that does not show
degenerated outcomes derived from the pattern of spillovers of the kind we have
studied in the previous chapter. Moreover, we assume thatX

j 6=i

bji�j < �i 8i 2 N

This second condition is important for reasons that will become more appar-
ent in few lines that are related to the allocation rule of the public good among
the different neighbourhoods.

3.3.2 The game.
The public good provision game has two stages. In the �rst one each neighbour-
hood chooses a level of contribution to the public good, � i 2 [0; wi].
In the second stage of the game neighbourhoods bargain on how to allocate

the level of public good obtained from individual contributions, ln
�
1 +

nP
i=1

� i

�
,

among them. If they do not reach an agreement the public good is not di-
vided and the unique utility agents obtain derives from the remaining wealth
once discounted its contribution. We assume that the solution of this bargaining
procedure is given by the Nash bargaining solution. Because of the no-division
disagreement outcome, the disagreement point is equal to

d (� ) = (ln (1 + w1 � � 1) ; : : : ; ln (1 + w1 � � 1))

The previous conditions on the matrixB ensure that the Nash bargaining solution
will be interior for any city C given this disagreement point. Since the Nash
bargaining solution satis�es the property of Scale Invariance, we can immedi-
ately apply the results obtained in the �rst chapter to characterize the utilities
neighbourhoods obtain in this second stage of the game. We do that in the form
of a lemma.

Lemma The �nal utilities of the public good provision game are

vi(� ) = ln(1 + wi � � i) +
c(� )

n�i
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We differ from the analysis of Bloch and Zenginobuz in two different aspects:
�rst, that in their model each jurisdiction/neighbourhood creates its own public
good, from which other jurisdictions can bene�t; second, we allow for hetero-
geneity in wealth. Hence, there are two dimensions of possible heterogeneity,
spillovers and wealth distribution.

3.3.3 The Equilibria
Let ��i =

P
j 6=i

� j . The function vi is strictly concave in � i:Since

@vi
@� i

= � 1

1 + wi � � i
+

1

n�i (1 + �)

we obtain that the best-reply function of agent i is

BRi (��i) =

8><>:
0 if 1 + ��i � 1+wi

n�i
1+wi�n�i
1+n�i

� n�i
1+n�i

��i if 1 + ��i 2
�
1+wi
n�i

; 1
n�i

�
wi if 1 + wi + ��i � 1

n�i

We can clearly observe the dependences of individual decisions on the two
dimensions of heterogeneity of the problem (the wage distribution and the pattern
of spatial spillovers). For example, a neighbourhood decides to not contribute
at all if it is not wealthy enough or aggregate externalities it directly exerts on
the rest of neighbourhoods are small (measured by the parameter �i). This last
consequence is reminiscent of the use of the Nash bargaining solution on the
solution of distributional con�ict.
Observe that an equilibrium does not need to be interior, meaning that the

contribution of each agent is strictly positive and strictly smaller then his total
welfare. The following proposition characterizes the unique possible interior
equilibrium in terms of the city's characteristics.

Proposition 1 If the public good provision game admits an interior equilibrium,
it is unique within the set of interior allocations, and of the form

� �i =
1 + wi � n�i
1 + n2��

+
n2

1 + n2��

�
(1 + �w)

�
�� � �i

�
� �� ( �w � wi)

�
We can decompose the contribution of each neighbourhood into two different

components. The �rst one, that equals 1+wi�n�i
1+n2��

, is essentially, with the exception
of the common renormalization 1

1+n2��
to all neighbourhoods, an idiosyncratic
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component that only takes into account individual income, wi, and aggregate
direct externalities exerted by the neighbourhood, measured by �i.
The second term is more involved and comprises more information about the

whole city. Four elements are important: again individual income, wi, and the
aggregate level of direct externalities exerted by the neighbourhood, �i, and city's
mean income and mean externalities exerted.
The contribution of a neighbourhood increases the more wealthy it is with

respect to the city wealth's mean. This effect is larger the larger is the mean of
�'s, i.e. this effect is larger the smaller are the direct externalities neighbourhoods
exert in mean. This is not surprising. When spillovers are weak, neighbourhoods
have to invest more on the provision of the public good to receive its effects.
Also, the contribution of a neighbourhood increases the smaller is its associated
� compared with the mean of �'s, i.e. the larger are the aggregate direct spillovers
this neighbourhood exerts compared with the mean of aggregate direct spillovers
a neighbourhood in the city exerts in mean. Furthermore, this effect is larger
the larger is the mean income level of the city. This effect is reminiscent of the
use of the Nash bargaining solution with the disagreement outcome of no public
good assignment, but it also seems to be quite natural. When a neighbourhood
gives more than what it receives, it knows that this will probably diminish the
incentives of the rest of neigbourhoods to contribute to the public good provision,
and has to compensate this annoying consequence by contributing itself more.

Example Consider the following two cities, C1 and C2. Both cities have three
neighbourhoods,N = f1; 2; 3g : The matrix of spatial spillovers is the same for
both

B =

0@ 0 1=4 1=4
1=2 0 0
1=2 0 0

1A
The unique difference between these two cities is in the wealth distribution.

The wealth distribution of C1 is w1 = (2; 3=2; 3=2), while the one for C2 is
w2 = (2; 1; 1).
To get a more graphical representation of these two cities we depict in form of

a network the �ows and intensities of direct spillovers from one neighbourhood
to another:
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t t t-� -�
1=2

1=4 1=4

1=2
2 1 3

For the city C1 it is easy to check that the unique equilibrium of the public
good provision game is interior. In particular. � � = (6=11; 1=22; 1=22). The
difference in income translates into large differences between the contributions
of the poor neighbourhoods compared to that of neighbourhood 1, but it is not
suf�ciently large to preclude the participation of any of them.
In city C2 income inequality is larger between the central neighbourhood and

those at the periphery. With the use of the best-replies functions speci�ed above
we can easily derive that the unique equilibrium of the public good provision
game for this city is that neighbourhood one contributes with half of its income
and that the two other neighbourhoods do not contribute at all, i.e. � � = (1; 0; 0).
All neighbourhoods are interested in the bene�t that the public good generates
but neighbourhoods two and three are not wealthy enough to contribute to its
provision.

3.3.4 The social optimum
We proceed to study the socially optimal contribution pro�le to the public good.
We characterize this pro�le in case it is interior, and we proceed to compare it to
the equilibrium of the public good provision game in case it is also interior. To
describe this optimal provision rule, we �rst de�ne the harmonic mean of a set
of numbers. Let x be an n-dimensional real vector. The harmonic mean of the
elements of this vector, that we denoteH (x), is equal to

H (x) =
n

1
x1
+ � � �+ 1

xn

Proposition 2 If the social optimum is interior the socially optimal level of
contribution of agent i is

� si =
1 + wi �H (�)

1 + nH (�)
+

nH (�)

1 + nH (�)
(wi � �w)

The optimal level of provision of each neighbourhood is formed by an intrin-
sic component that simply depends on its own level of income and the (harmonic)
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mean of the �'s of all neighbourhoods. This intrinsic component is larger the
larger is its own income level and the smaller it is the harmonic mean of �'s,
i.e. whenever the direct externalities are larger. The second component depends
on the wealth distribution on the whole city. The larger is the income level of
one neighbourhood compared with the city's mean income level, the more the
neighbourhood contributes. This effect is more severe when the harmonic mean
of �'s is larger. Again, the intuition for this result is simple.

Proposition 3 For the case of homogeneous spillovers and equally wealthy dis-
tricts, there is always underinvestment with respect to the socially optimal level,
and underinvestment decreases in � for any � > n�

3
2 . Furthermore, the dif-

ference between individual utility at the social optimum and individual utility at
equilibrium is decreasing in � for any � > 0.

This results highlights that the collective action problem still exists even if
there are no differences in wealth or in the pattern of spatial spillovers. As
Olson (1971) notes this is a natural feature on players' actions in most games
of public good provision. In particular, the presence of positive externalities do
not dilute the underinvestment effect. To the contrary the difference between
the socially optimal action and the equilibrium action increases when aggregate
direct externalities increase. An this is also true when we compare differences in
utilities.

3.4 Conclusions
Both sections of this chapter highlight an aspect that economic analysis has
tended to neglect but that other social sciences are taking into account when
analyzing questions of importance for citizens well-being, such as the case of
criminal activity. Namely, taking as an example the case of a city, that even
if public services are assigned at a very local level, its effects can exceed the
�ctitious institutional boundaries by which the city is divided into neighbour-
hoods. These institutional boundaries have a role on the possible magnitude of
this spillover effects since they determine both the possible divisions of available
resources the government can choose and the interneighbourhoods spillovers that
any division will generate.
In particular we have focused on two different questions. First, from a social

planner perspective an important choice, before public services are implemented,
is in which form should districts be designed to optimally take into account
the possible externalities that these public services will generate. That is, how
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a government should take into account geographical dispersion and its social
consequences.
Second, a particular division has also consequences on the incentives districts

have to provide the necessary inputs to produce such public services. We have
followed in this case the perspective of a public good provision game, in which
each neighbourhood, in the form of a local representative, chooses a level of
provision taking into account spatial spillovers as well as other socioeconomic
determinants, such as the distribution of wealth between the different neighbour-
hoods of the city.
We have only provided some tentative answers to these questions. And, in

Olson's words:

Reality is almost always too complex to permit policy recommenda-
tions derived solely from a single model, much less a premodel of the
sort alumbrated here. Olson (1969)

The answers we have provided are surely not de�nitive solid conclusions to
that questions. However, we think that our model can show up some features
relevant to express and discuss these issues.
Several different approaches could also have been taken to study these issues.

First, when comparing the two different divisions into neighbourhoods of the
city of Barcelona we have made very strong assumptions on the form of direct
spillovers from one neighbourhood to another. In particular we have assumed
that these direct spillovers only depend on the population distribution among the
different neighbourhoods, following a closed-form expression that depends on
this distribution. Of course, it is dif�cult to provide a correct theoretical measure
that incorporates this and other socioeconomic variables into account. Empiri-
cal work should be addressed to test if some particular closed-form expressions
perform suf�ciently well to try to analysis much more rigorously this question.
As mentioned in the introduction there is a lot of work on spatial econometrics
related with criminal activity. Maybe this literature can be an initial source of
inspiration for such an attempt (see Anselin, 2003, for an introduction to this
literature with some applications relevant to public economic issues for local
governments).
With respect to the second section of this chapter, an alternative approach to

the production of public services could be to select heterogenous taxation levels
for the different neighbourhoods of the city. This would be another alternative
model to analyze an intermediate approach in the theory of �scal federalism
from the two polar perspectives of purely homogeneous level of taxation at the
city level and complete decentralization of the control of public services to the
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different neighbourhoods (Oates, 1972, is a classical reference on this issue, and
Besley and Coates, 2003, and Lockwood, 2002, are modern approaches that
incorporate externalities to this analysis). The introduction of spatial spillovers
in a taxation model with externalities �owing from one neighbourhood to another
would enrich the possible conclusions in such issues.
Of course, our model is based in several assumptions that require further con-

sideration. We have here imposed a particular timing on the game of provision
and distribution of the public good. And in the second stage of this game we
have considered a particular solution to the distributional con�ict for resources.
Moreover, we have neglected the role of free mobility of citizens. The possibility
of a voting-with�their-feet mechanism (see Tiebout, 1956) is an important issue
to be considered when dealing with local public good provision.
To study the robustness of our results to other game speci�cations as well

as how to include other aspects, such as reallocation, into the model we have
sketched here are important questions that we leave for future research.

3.5 Proofs
Proof of Proposition 1:

If there exists an interior equilibrium, in which � �i 2 (0; wi) for all i, it solves
the following system of equations:

� �i +
n�i

1 + n�i
� ��i =

1 + wi � n�i
1 + n�i

i 2 N

Let si = 1+wi�n�i
1+n�i

, and let ai = n�i
1+n�i

. LetA be the matrix with ones in the
diagonal and aij = ai if j 6= i. Then the interior equilibrium is equal to

� � = A�1 � s

It is a simple exercise of linear algebra to prove that

A�1
ij =

8<: (1 + n�i)
1+n

P
k 6=i

�k

1+n2��
if i = j

� (1 + n�j) n�i
1+n2��

if i 6= j

Therefore,� �i =
nP
j=1

A�1
ij sj =

1+wi�n�i
1+n2��

+ n
1+n2��

P
j 6=i
[�j (1 + wi)� �i (1 + wj)] :
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Some algebra shows thatX
j 6=i

[�j (1 + wi)� �i (1 + wj)] = n
�
(1 + �w)

�
�� � �i

�
� �� ( �w � wi)

�
�
Proof of Proposition 2:
The �rst-order conditions of the social planner problem, in the case that the

social optimum is interior are:

� si +
H (�)

1 +H (�)
� s�i =

1 + wi �H (�)

1 +H (�)
i 2 N

where � s�i =
P
j 6=i

� sj . These �rst-order conditions form a system of linear

equations with a unique solution. Let ri = 1+wi�H(�)
1+H(�)

, and let � = H(�)
1+H(�)

. Let
Z be the matrix with zii = 1 for all i 2 N
and zij = � whenever i 6= j. The solution to the above system of linear

equations is:

� s = Z�1 � r

Some algebra leads to:

Z�1ij =

(
(1+H(�))(1+(n�1)H(�))

(1+nH(�))
if i = j

� (1+H(�))H(�)
(1+nH(�))

if i 6= j

Plugging this back in � si =
nP
j=1

Z�1ij r, and rearranging terms we obtain the

desired result. �
Proof of Proposition 3:
We omit the proof. The result follows from direct comparison of the expres-

sions obtained. �
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Chapter 4
Communication Processes: Knowledge

and Decisions

with
Antoni Calvó-Armengol

4.1 Introduction
Communication between individuals fosters cooperation within the group and
improves decision-making in uncertain environments. Organizations, in fact,
are often described as an authority structure whose role is precisely to assign
communication capabilities and decision-making tasks among its different hier-
archy levels. According to this view, it is the formal authority structure of the
organization that determines its performance. Organizations are optimal when
their hierarchy architecture is suitably designed for that purpose.
However, beyond the formal working relationships institutionalized in the or-

ganization chart, informal working relationships also emerge and stabilize spon-
taneously. Such informal ties result from social processes in the workplace and
often arise in response to speci�c needs encountered by organization members.
Informal organizations, that overlap with the formal chart, have always been
present in the modern corporation. With the development of communication
technologies and new forms of group work that bring together geographically
dispersed collaborators around a common project, informal organizations are
becoming ubiquitous.
The aim of this paper is precisely to analyze informal organizations, to eval-

uate their performance and to �nd out their optimal inner con�guration.
The environment
Our model of informal organizations has two main ingredients.
First, we envision informal organizations as a group of individual facing a

common task with cooperative work. More precisely, individuals exert their
action for the group while facing both an external and an internal concern. The
external concern corresponds to the common task ascribed to the group, and
whose characteristics display some degree of uncertainty. The internal concern
re�ects the coordination bene�t from aligning ones' action with the actions of
one's collaborators.

98
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Second, informal communication is pervasive inside groups, be it by E-mail,
face-to-face meetings, etc. Our premise is that informal communication is, pre-
cisely, the most important working relationship operating inside the group.
Altogether, an informal organization is characterized by its information-processing

needs and its information-processing capabilities. Information-processing needs
correspond to the nature of the information uncertainty about the task to be per-
formed, and to the exact balance between the external and the internal concern
faced by each member of the group. Information-processing capabilities corre-
spond to the communication process used to transmit information.
The results
The internal coordination problem together with the uncertain external con-

cern de�ne an incomplete information game. The communication process dis-
seminates within the group any private information held by individuals about the
task. The form and characteristics of this communication process determines the
information structure available to all organization members and, ultimately, their
choices. We map this decentralized information-sharing scheme to individual
optimal choices, and relate changes in the communication structure to variations
in individual and aggregate payoffs. We provide a closed-form expression for the
unique Bayes-Nash equilibrium, which is linear in individual information, for a
rich class of correlated signals. We also provide monotone comparative statics
results about the aggregate equilibrium payoffs with respect to the individual
preferences and to the information structure, and compare it to the social opti-
mum. In the next chapter we apply this general results to the study of a particular
family of networked communication processes.
At a Bayes-Nash equilibrium, individuals best-respond to their own assess-

ment of other's choices. Equilibrium also requires that everybody correctly an-
ticipates each others' choices. This presumes that players can keep track of own
beliefs about the task to be performed, as well as own beliefs about others' be-
liefs, own beliefs about others' beliefs about both own and others' beliefs, and so
on. The communication process shapes the information held by each individual
as well as the information overlap across different individuals. This information
overlap is crucial to build cross inferences about each others' information and,
ultimately, to compute the (arbitrary) high order beliefs that enter the equilibrium
determination.
In this setup, we characterize the unique Bayes-Nash equilibrium for general

communication processes. The equilibrium strategies are linear and depend on
the knowledge index of each agent, computed for the information structure in-
duced by the prevailing communication process. The knowledge index, which
we introduce, measures the (arbitrary) high-order beliefs each agent entertains
about every other agents' information, and thus re�ects the communication possi-
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bilities available to everyone. Beyond re�ecting the geometry of communication
possibilities, the knowledge index also depends on the exact balance between
internal and external concerns for the organization members�their information-
processing needs� that enters the �xed-point equilibrium calculation. This index
is formally reminiscent of standard centrality measures in sociology, but is com-
puted with an information correlation matrix rather than with socio-metric data.
Altogether, we provide a closed-form expression for equilibrium play where

the role of information needs and communication possibilities is apparent. To
establish uniqueness and linearity of the equilibrium play we rely on a central
result in team theory due to Radner (1962).
We provide a closed-form expression for equilibrium payoffs and work out

their comparative statics with respect to the exogenous payoff parameters, com-
prising the balance of the internal versus the external concern and the accuracy of
the private signals about the task to be performed, and with respect to the accu-
racy and correlations of private reports that characterize the information structure
derived from a particular communication process.

4.2 Related Literature
This paper uses team theory to analyze the role of communication in organi-
zations. We analyze a bayesian game with common interests with a unique
equilibrium. This unicity result relies on the seminal work of Radner (1962)
on the theory of team decisions.
Team theory complements the principal-agent view of organizations and it

has been used to answer a variety of questions on the theory of organizations. For
example, building on Marschak and Radner (1972), there is an extensive litera-
ture that analyzes in a team-theoretical framework the optimal inner structure of
an organization that begins with Crémer (1980) and is followed by Aoki (1986),
Geanakoplos an Milgrom (1991), Dessein and Santos (2006) and Dessein et al.
(2006).
In particular, Dessein and Santos and Dessein et al. highlight some commu-

nicational aspects of organizations, as we try to do in this work. However, the
communication structure in these set of papers differs from ours and we answer
complementary questions to those they analyze. A main difference is that in these
works communication is strategic. In our case, communication is non-strategic
due to the complete alignment of preferences of all agents.
Another question analyzed in the team-theoretical literature of organizations,

and also closely related to our work, is on the optimal information structure of an
organization. Crémer (1993) analyzes, in a two agents family of quadratic payoff
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functions, when shared knowledge, in which all agents receive the same signal
about the state of the world, is superior to decentralized knowledge, in which
each agent receives a different signal of the state of the world. Building on this
work, Prat (2002) extends this analysis to more general setups, allowing for any
�nite number of agents and general team payoff structures.
Our work also relates to some of the recent literature on the social value of

information. Morris and Shin (2002) analyze in a game with a similar payoff
structure with the one we analyze here the impact of public information on
social welfare. They show that in this game with strategic complementarities
public information can reduce welfare. Morris and Shin (2006) complements this
analysis with the introduction of semi-public signals that act as a restricted com-
munication process, and provide some comparisons between public and semi-
public information with respect to welfare. Angeletos and Pavan (2007) extends
the analysis of the social value of information to a broader class of games that
include the possibility of both strategic complementarities and substitutability.
Van Zandt and Vives (2007) provide general results on the equilibria of bayesian
games with complementarities making use of tools from lattice theory.
While the payoff structure of our model is similar to that in Morris and Shin

(2002, 2006) we depart from this literature in two different directions: �rst, we
suppose there is a �nite number of agents, while this literature has assumed a
continuum of players, and we allow for heterogeneous accuracies and correla-
tions of information between pairs of players, while this literature has assumed,
if any, several restrictions on the possible heterogeneity on the information struc-
ture. Our model therefore highlights how distributional aspects of information,
accuracies and correlations, impact players' actions and social welfare. This is
re�ected in the knowledge index, that subsumes informational heterogeneity and
characterizes idiosyncratic equilibrium actions.
From a more abstract perspective, our work also relates to the literature on

global games, higher-order beliefs and common knowledge in games (Rubin-
stein, 1989; Geanakoplos, 1992, Morris and Shin, 2003). The knowledge index
we introduce provides a tractable tool to aggregate all higher order beliefs into
a scalar value that measures how informative is his communication report to
strategically internalize both the decision problem and the coordination motive.
Finally, there are alternative approaches to communication in organizations

that are interested in different questions than those we pursue here. Crémer et
al. (2007), building in some early discussions by Arrow on communication in
organizations (see Arrow, 1974), study the language with which information is
transmitted in organizations. They analyze which is the optimal organizational
language and how it affects �rm structure. Dewatripont and Tirole (2005) analyze
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a model of communication in which there are strategic interactions between the
communication efforts of the members of an organization. Efforts determine if
communication is informative or not. We abstract from this question and suppose
that when agents communicate information, this information is hard, meaning
that there is no loss or noise in the communication process.

4.3 The game

4.3.1 Actions and payoffs
Consider a population of n players, each choosing an action ai 2 R. Payoffs
depend on own and others actions, and on some exogenous parameter � 2 R.
More precisely, we focus on payoffs that re�ect two different concerns. On one
hand, players want to match their action ai to the value of �. On the other hand,
pressed by conformity, they all want to align their choice with that of the others.
We consider the following quadratic payoffs:54

ui (a1; :::; an; �) = � (1� r) (ai � �)2� r 1

n� 1
X
j 6=i

(ai � aj)
2 ; i = 1; :::; n:

(4.1)
The �rst term is a quadratic loss between own's action and the target�the ex-

ternal concern. The second term is the average discrepancy (or distance) between
own's and others' actions for all possible pair-wise comparisons �the internal
concern. The parameter 0 � r � 1 measures the balance of the external target
concern (that binds at r = 0) versus the internal coordination concern (that binds
at r = 1).
If the exact value of � is known to everybody, a�i = � for all players i is the

unique (�rst-best) Nash equilibrium. We analyze instead the case of incomplete
information, where the exact value of � is not known.

4.3.2 Information structure
In the incomplete information case, the value of � is determined by nature, � �
N (�0; �0).
Players don't know the exact realization of �. There is a private signal for

each of the players, conditionally independent. Players share their private signals
54 An alternative measure of mis-coordination is the quadratic loss between own action and the
average of others' action. Formally, vi (a1; :::; an; �) = � (1� r) (ai � �)2 � r (ai �A�i)2 ;
i = 1; :::; n;where A�i = (

P
j 6=i aj)= (n� 1) which is reminiscent of the discrete population

counterpart of the beauty contest game for a continuum of agents in Morris and Shin (2002). One
can readily check that the Bayes-Nash equilibria of the incomplete information game with these
payoffs is the same than that with payoffs (4.1). Equilibrium payoffs, however, differ.
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according to some communication process, which delivers some output signal
yi = � + "i. We assume that the vector of output signal follows a multinormal
distribution:

yj� � N (�1n;�) ; (4.2)

where 1n is the n�dimensional vector of 1s, and� = [�ij] is a general (n�square
and symmetric) variance-covariance matrix.
This general speci�cation of output signals allows for any correlation pattern

across individual signals. For instance, when output signals are (conditionally)
independent, we have:

� =

24 �11 � � � 0
... . . . ...
0 � � � �nn

35 ;
with �11 = � � � = �nn if signals are identically distributed. Instead, when output
signals have a common public component, we have:

� = �

24 1 � � � �
... . . . ...
� � � � 1

35 ;
where 0 � � � 1 is the correlation across signals induced by the public compo-
nent.
More generally, the variance-covariance matrix � can take any value. In

Section 6, we analyze a particular family of communication processes by which
players mix their conditionally independent private signals to obtain individual
communication reports (the output signals) that can exhibit arbitrary correlation
patterns.
Denote by Ei [�] = E [�jbyi] the expectation operator by player i conditional

on his signal realization being byi. Standard algebra on normal distributions leads
to:55

Ei [�] = (1� fi) �0 + fibyi and Ei [yj] = (1� !ji) �0 + !jibyi; (4.3)
where

fi (�) =
��

�� + �ii
and !ji (�) =

�� + �ij
�� + �ii

;

for all i = 1; :::; n and j 6= i.

55 See the appendix for more details.
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We gather together all the possible values (4.3) for pair-wise inferences about
each other's signals into an n�square matrix:


 (�) =

24 0 !ij (�)
. . .

!ij (�) 0

35 :
We set !ii = 0, for all i. Each of the n (n� 1) out-of-diagonal cells in


 (�) gives the factor by which the row player i multiplies his own report to
compute his forecast of every other column player j's report. Notice that the
matrix 
 (�) is symmetric only when the diagonal cells of � are identical, i.e,
�11 = � � � = �nn. In words, i need not make the same inferences about j's
reports than j about i.
We omit the parameter� when no confusion is possible.

4.4 High-order beliefs and the knowledge index

4.4.1 Best-responses and high-order beliefs
A strategy maps output signals to actions. At equilibrium, each player maximizes
his expected payoffs, where the expectation is taken over the target parameter �
as well as others' actions, and is conditional on own information.
Let � = r= (n� 1). Given that payoffs are concave in own action, player i's

best response is obtained from @Ei [ui (a; �)] =@ai = 0. We get:

BRi (a�i) = (1� r)Ei [�] + �
X
j 6=i

Ei [aj] , for all i = 1; :::; n: (4.4)

The Bayes-Nash equilibria are given by the signal functions or strategies
ai (byi) that solve (4.4). It turns out that the linearity of both best-responses and
the Gaussian information structure imply that the only signal functions that solve
(4.4) are linear in own information.
Before stating and proving formally this result, we provide a simple heuristic

that suggests that equilibrium strategies should indeed be linear, and that paves
the way towards our closed-form equilibrium characterization.
Nesting best-responses into each other in (4.4) gives:

BRi (a�i) = (1� r)Ei [�] + (1� r) �
X
j 6=i

EiEj [�] + �2
X
j 6=i

X
k 6=j

EiEj [ak] ,

so that optimal actions depend on �rst and second-order iterated expectations
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about �.
Recursively iterating the process, one can easily check that BRi (�) can be

written as an in�nite sum of arbitrarily high-order iterated expectations of the
target value �:

Ei1Ei2 � � �Eip [�] ; (4.5)

which we denote as Ei1;i2;:::;ip [�], weighted by the geometrically decaying factor
�p.
For the sake of illustration, suppose that �0 = 0. Then, using (4.3) recur-

sively, we can write these iterated expectations as a function of the inferences
players make about each others' output signals:

Ei1;i2;:::;ip [�] = fip!ipip�1 : : : !i2i1byi1 . (4.6)

Two comments are in order.
First, arbitrarily high-order iterated expectations by player i can be expressed

as a linear function of his own output report byi, which suggests a linear solution
to (4.4). Indeed, we characterize below a linear equilibrium, which turns out to
be the unique equilibrium of the game (provided r < 1).
Second, high-order iterated expectations (4.6) depend both on the number of

iterations and on the ordered identities of the players along the chain of iterated
expectations (expectations about whom expectations, about whom expectations
...). This is not surprising. Indeed, the entries of
 allow for up to n (n� 1) dif-
ferent inferences technologies of each others's signals depending on the identity
of the two involved players, the inferring one and the inferred one.
In general, we cannot invoke nor construct some average belief operator to

compute high-order beliefs, neither expect symmetric behavior from the part of
the players. Rather, high-order iterated expectations are an-isotropic, and change
with the particular ordered chain of pair-wise inferences. This an-isotropy very
likely sustains asymmetric choices across players.56 This an-isotropy rules out
symmetric equilibria, in general.
When �0 = 0, using the expression for high-order iterated expectations (4.6),

we de�ne high-order beliefs about the value of � by agent i as follows:

� order one beliefs are E1i [�] = Ei [�] = fiyi;
� order two beliefs are E2i [�] =

P
j 6=i Ei;j [�] =

P
j 6=i fj!jiyi

56 Note that Ei;j [�] = fj!jibyi 6= fi!ijbyj = Ej;i [�], unless byi = byj (notice that fj!ji = fi!ij).
More generally, Ei1;i2;:::;ip [�] 6= E�(i1);�(i2);:::;�(ip) [�] for all non-trivial permutation � of
fi1; :::; ipg. Therefore, beyond the identity of the players in the chain of iterated expectations, the
order also matters.
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� order p � 2 beliefs are Epi [�] =
P

ip 6=���6=i2 6=i Ei;i2;:::;ip [�] =P
ip 6=���6=i2 6=i fip!ipip�1 : : : !i2iyi

4.4.2 The knowledge index
We now de�ne a knowledge index that proves useful to provide a closed-form
expression for the equilibrium.
The inference matrix 
 keeps track of the pair-wise inference coef�cients

!ij across all pairs of players. The pth power 
p = 
(p times)::: 
 keeps track
of the inference coef�cients !ipip�1 : : : !i2i1 for all p�order chains of iterated
inferences that enter the calculation of order p beliefs.
The coordinates of 
1n sum, for all row player, the pair-wise inference co-

ef�cients about every other player's signal, !i1 + :::: + !in. More generally,
the coordinates of 
p1n sum, for all row player, all the compound inference
coef�cients that enter the calculation of p�order iterated expectations (4.6).
Consider the following in�nite sum:

1n+�
1n+�
2
21n+�

3
31n+� � � =
+1X
p=0

�p
p1n = [In � �
]�1 1n; (4.7)

where In is the n�identity matrix. The coef�cients of the vector [In � �
]�1 1n
sum all compound inference coef�cients that enter the calculation of arbitrary
high-order iterated expectations for each player, weighted by the geometrically
decaying factor �p.57

Notice that (4.7) is well-de�ned for low enough values of �. It turns out
that an exact strict upper bound for convergence to obtain is the inverse of the
largest eigenvalue of 
 (Debreu and Herstein, 1953). This largest eigenvalue is
sometimes called the spectral index of the matrix.
Suppose that �ij � �ii, for all i 6= j. Then, 0 � !ij � 1, for all i 6= j.

Together with the fact that !ii = 0, for all i, we conclude that an upper bound
for the spectral index of
 is n� 1. Therefore, the in�nite series (4.7) converges
when � < 1= (n� 1) or, equivalently, r < 1.

De�nition 1 Let r < 1 and � such that �ij � �ii, for all i 6= j. The vector of
individual knowledge indexes is:

k(r;�) = (1� r) [In � �
 (�))]�1 1n: (4.8)
57 The �rst term 1n corresponds to the individual forecast of � based on own information. The
higher order terms correspond to individual forecast of � that involve inferences about some other
players' reports.
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Suppose �rst that output signals are perfectly informative about the true value
of �, that is,� = 0n�n. Then, !ij = 1 for all i 6= j and ki(r;0n�n) = 1, for all
i. With complete information, the knowledge index is one for all players.
Under incomplete information, instead, the knowledge index takes a value

smaller than one for every player, 0 � ki(r;�) � 1, for all i. The fact that
k(r;�) is non-negative derives from the fact that the matrix [In � �
]�1 is non-
negative when the spectral index condition holds (Debreu and Herstein, 1953),
which is true in this case by the discussion above. When there is no coordination
concern, the knowledge index is one for all players, ki(0;�) = 1, for all i.
In general, the knowledge index varies across players in a way that re�ects the

anisotropy of high-order iterated expectations. This index is formally reminiscent
of standard centrality measures in sociology, but is computed with an information
correlation matrix rather than with socio-metric data.
The knowledge index also depends on the value of r. Indeed, it is the coor-

dination concern that triggers the high-order iterated expectations that boil down
to (4.8). How the knowledge changes with r is not trivial, as [In � �
]�1 is
an increasing (in�nite) polynomial in r whereas the multiplicative factor (1� r)
decreases with r. The next result shows that the latter effect dominate. However,
because of these two con�icting effects, the elasticity of the knowledge index
with respect to r is smaller than one.

Proposition 1 k(r;�) is non-increasing with r.

4.5 Equilibrium
We are now ready to state the next result that establishes uniqueness of the Bayes-
Nash equilibrium, fully characterized in terms of the knowledge index.

Theorem 1 Let r < 1 and � such that �ij � �ii, for all i 6= j. The unique
Bayes-Nash equilibrium has strategies linear in output signals given by:

a�i (byi) = (1� ki) �0 + kiEi [�] = (1� ki) �0 + kifibyi; (4.9)

for all i = 1; :::; n, where ki(r;�) is the knowledge index de�ned in (4.8).

When r = 0, players face a simple decision problem, ui (a; �) = � (ai � �)2.
The optimal action is their individual forecast Ei [�] = fibyi; the knowledge index
is ki (0;�) = 1.
When 0 < r < 1, instead, payoffs are interdependent. Players now need to

conciliate the decision problem with the coordination concern. At equilibrium,
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they rely on their own signal in proportion to their knowledge index. Otherwise,
the mean prior acts as a focal action. The equilibrium behavior re�ects the
anisotropy of the chains of pair-wise inferences, itself related to the details of
the variance-covariance matrix of individual signals.
Notice that the focal action (here, the mean prior �0 of the target value) serves

very well the purpose of minimizing the coordination loss. However, it induces
an individual decision loss equal to � (1� r)��, proportional to the variance of
the prior distribution. This is exactly the same loss that players would incur if
no output signal were available. Instead, if players use some of the information
contained in their output signal, they can reduce this decision loss. On top of
that, and even more when individual signals are correlated, players can also use
individual signals to draw inferences about others' information. Output signals
can thus also be useful on the coordination front. The knowledge index, which
depends both on the salience of the coordination problem r, and on the variance-
covariance matrix of output signals �, re�ects the optimal equilibrium use of
private information to reduce both decision and coordination losses. The focal
action is used in proportion with the lack of knowledge.
The uniqueness and linearity result follow from a central theorem by Radner

(1962) on teams, and the fact that our quadratic game payoffs admit a potential
that represents common (team) interests for all players, as pointed out by Ui
(2004). The particular closed-form for the equilibrium strategy, that involves ex-
plicitly the knowledge index, exploits the intimate connection between quadratic
games and centrality indexes in sociology established by Ballester et al. (2006).
Combining Theorem and Proposition1, we can conclude that when the coor-

dination problem becomes more acute (that is, r increases), players shift weight
from their information to the focal action. Note, however, that the decrease in
the information weight is smaller than the increase in the coordination concern.
Indeed, the elasticity of k with respect to r is smaller than one. This is because,
as explained above, information also serves (partly) the purpose of coordinating
actions.
Theorem 1 establishes existence, uniqueness and linearity of the Bayes-Nash

equilibrium when r < 1 and �ij � �ii, for all i 6= j. This last condition on� is
always true if signal accuracies are all the same, �11 = � � � = �nn. Otherwise, it
imposes bounds on the signal correlations. Indeed, writing covariances as �ij =

ij
p
�ii�jj , where 0 � 
ij � 1 is the correlation coef�cient, the condition

becomes 
2ij � �jj=�ii, for all i; j.
However, this condition on� can be relaxed, as stated below.

Remark 1 Let r and � such that the largest eigenvalue of �
(�) is strictly
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smaller than one. Then, (4.8) is well-de�ned and the unique Bayes-Nash equilib-
rium has strategies linear in output signals given by (4.9).

4.6 Welfare
From now on, we suppose that � such that �ij � �ii, for all i 6= j, unless
otherwise speci�ed. We also assume that �0 = 0 to simplify computations
without altering the qualitative conclusions.
We compute the aggregate ex ante equilibrium payoffs given by:

U� (r;�) = E�E(y1;:::;yn)j�[
nX
i=1

ui (a
� (y)) j�]: (4.10)

De�ne the following diagonal matrix of forecast coef�cients (4.3), with zeros
off-diagonal:

F (�) =

24 f1 (�) 0
. . .

0 fn (�)

35 :
Straight algebra leads to the following expression.

Proposition 2 Let r < 1. The aggregate ex ante equilibrium payoffs (4.10)
are:

U� (r;�) = �� (1� r)
�
kt (r;�)F (�)k (r;�)� n

�
� 0: (4.11)

There are two sources of welfare losses, coordination losses and decision
losses.
Decision losses correspond to the external target concern. They re�ect the

inaccuracies of the individual information to correctly forecast the true value of
�. When r = 0, the expression for ex ante payoffs (4.11) becomes:

U� (0;�) = ��

"
nX
i=1

fi (�)� n

#
;

which is an increasing function of the forecast coef�cients fi, i = 1; :::; n. The
forecast coef�cients are monotone increasing with the individual signal accura-
cies 1=�ii.
Coordination losses correspond to the internal coordination concern. Mis-

coordination re�ects the heterogeneity in equilibrium play, itself related to the
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heterogeneity in knowledge indexes. Indeed, straightforward algebra shows that
coordination losses are proportional to

P
i fi (ki � k2i ). Coordination losses are

small if ki is close to zero for all i, that is, all players take an action very close to
the focal action. Coordination losses are also small when ki is close to one for all
i, that is, either coordination concerns vanish (r = 0) or there is no incomplete
information (� = 0n�n).
Information structure and welfare
Expression (4.11) implies that U� (r;�) is an increasing function of

kt (r;�)F (�)k (r;�)

from which we derive the following result.

Theorem 2 Let �;�0 such that F (�0) � F (�) and 
(�0) � 
 (�). Then,
U� (r;�0) � U� (r;�).

This general comparative statics result of equilibrium welfare with respect to
the variance-covariance matrix has a number of implications that we now explore.
We �rst establish comparative statics result with respect to information accu-

racy and correlations.
We write covariances as �ij = 
ij

p
�ii�jj , where 0 � 
ij � 1 is the corre-

lation coef�cient. In other words, the variance-covariance matrix � is uniquely
de�ned by a vector of accuracies:

� = (�11; :::; �nn)

and a symmetric correlation matrix:

� =

24 1 
ij
. . .


ij 1

35 :
Proposition 3 U� (r;�) is non-decreasing with � and non-increasing with �
(for the component-wise partial order)

Aggregate welfare increases when individual information becomes more ac-
curate and/or correlation increases.

Remark 2 Suppose that equilibrium existence is obtained under the general
spectral index condition of Remark1. Then, the monotonicity with respect to �
always holds. The monotonicity with respect to � holds if correlations are not
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too high, that is, 
ij � 2
p
�ii=�jj , for all i; j. A suf�cient condition is that

individual accuracies are not too different, that is,maxif�iig � 4minif�iig.

We now establish a comparative statics result with respect to the correlation
pattern.

Proposition 4 Suppose that �11 = � � � = �nn. Let j; l such that kl (r;�) >
kj (r;�) and i 6= j; l such that 
ij > 
il. Let �0 obtained from � by swapping

ij and 
il. Then k (r;�0) > k (r;�) and U� (r;�0) > U� (r;�) :

In words, the knowledge index increases for all players when players with a
higher knowledge index make better inferences about every other player's infor-
mation than players with a lower knowledge index. As a consequence, aggregate
welfare is higher.

4.6.1 Payoffs and welfare
Payoffs are a weighted sum of an external target concern and an internal coor-
dination concern, with weights 1 � r and r, respectively. The external target
concern induces a loss that depends on the forecast accuracy of the value of �.
This loss increases when players receive noisier information. The coordination
concern induces a loss that depends on the discrepancy of actions across play-
ers. When the dispersed information available to players differs widely across
them, the coordination loss is higher the more individual actions are sensitive to
private information. As a matter of fact, Proposition 1 together with (4.9) imply
that players shift weight from their information towards the focal action when r
increases. If the information available to them is not very accurate to start with,
this allows players to decrease coordination losses while alleviating the burden
of the decision loss.

Proposition 5 U� (r;�) is monotone increasing with r whenever �ii � �, for
all i = 1; :::; n for some �.

In words, when the information available to players is noisy, decreasing the
forecast problem and increasing the coordination problem reduces equilibrium
welfare loss.

The social optimum
We now compare the equilibrium use of information with the ef�cient use of

information. The next result characterizes the optimal actions a social planner
would implement.
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Proposition 6 Let r < 1. The socially optimal action for each player is:

aSi (byi) = �1� ki

�
2r

1 + r
;�

��
�0 + ki

�
2r

1 + r
;�

�
Ei [�] :

The social optimal action is equal to the equilibrium action of a game where
the weight assigned to the coordination loss is increased from r to 2r=(1 + r).
Notice that Proposition 1 implies that k (2r=(1 + r);�) � k (r;�). At equilib-
rium, agents overuse their private information compared to the social optimum.
Indeed, at the socially optimal actions each player relies more on the prior infor-
mation and less on the private information than at the equilibrium action.

4.7 Discussion
We have developed a model of communication in organizations that encompasses
many different possible communication processes. A communication process
determines how individual information on the common task to be performed
�ows between organization's members, and therefore the quality of the �nal
report each agent handles (accuracy) as well as the level of common information
between pairs of individuals (correlations). We have been able to characterize for
the game that models the common interests of all agents its unique Bayes-Nash
equilibrium. This characterization provides a neat picture of how higher-order
beliefs are formed and how this higher-order beliefs are embedded in the equilib-
rium actions pro�le. This embeddedness is subsumed in the knowledge index of
each agent, that determines the heterogeneity on agents' actions. The knowledge
index measures how much an agent can rely on the information subsumed in his
communication report to strategically internalize the double concern, the decision
problem and the coordination motive, to infer correctly the state of the world
and the actions of the rest of players. Furthermore, knowledge indexes prove
useful not only to characterize equilibrium actions but also equilibrium payoffs.
Finally, we have been able to provide comparative statics results on the different
parameters that characterize communication processes, and compare the socially
optimal actions to the equilibrium actions.
We believe that our methodology can be extended to more general payoff

structures, with either strategic complementarities or substitutabilities. As far as
we maintain quadratic payoffs, a natural assumption in the literature of games
with complementarities, we can probably ensure unicity for some range of para-
meters, and the linearity of best-responses suggests that similar knowledge index
structures could be obtained.
The literature of information aggregation in political economy (see, for ex-
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ample, Sobel, 2006 and references therein) provides a rich set of questions in
which communication is a crucial element before deliberation. For example,
different aspects of decisions made by committees have been studied (Li et al.,
2001 and Swank and Visser, 2007). Adapting our model to analyze decisions by
committees, we could study how different communication protocols affect the
�nal decision of the committee.
Industrial organization and �nance are some other areas in which information

aggregation is an important element (Vives, 1988). Vives (2007) provides an
exhaustive survey of the literature on information aggregation in markets. Our
tools could be applied for example to analyze in an oligopoly setup how different
forms of collaboration structures, derived from needs to communicate informa-
tion about uncertain aspects of markets, impacts �rms' decisions and market
outcomes.
In some of these other environments there can exist an strategic component

on communication that in our model is missing. To which extend some of these
related questions can be addressed with a similar methodology that the one we
have developed here is a question that we plan to pursue in future work.

4.8 Proofs
From (4.2) we deduce that (�; y1; :::; yn) follows the following multinormal dis-
tribution:

(�; y1; :::; yn) � N(0n+1;

�
�� ��1

t
n

��1n �

�
);

where 0n+1 is the (n+ 1)�dimensional vector of all zeros. The previous ex-
pression leads to:

(y1; :::; yn) � N (0n; ��Jn +�) ; (4.12)

where Jn is the n�square matrix of all ones.

Proof of Proposition 1: LetM = [In � �
]�1. Noticing thatM� [In � �
] =
In and differentiating with respect to � leads to:

@

@�
M = 
 �M2;

and thus
@

@r
M =

1

n� 1
 �M
2: (4.13)
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From k = (1� r)M � 1n and (4.13) we obtain:

@

@r
k = � 1

1� r
k+

1� r

n� 1
Mk;

and thus, since [In � �
]
 = 
 [In � �
] and [In � �
]M = In,

[In � �
]
@

@r
k = � 1

1� r
[In � �
]k+

1� r

n� 1 [In � �
]
Mk

= �1n +
1� r

n� 1
k.

We know that 0n � k � 1n, and that 1
n�1
1n � 1n (from the fact that

0 � !ij � 1 for all i; j). Therefore, 1�rn�1
k � 1n, that is,

[In � �
]
@

@r
k � 0: (4.14)

We show that @ki=@r � 0, for all i. Suppose not. Let i� 2 argmaxf@ki=@r :
i = 1; :::; ng. By assumption, @ki�=@r > 0. We have:

�

@

@r
k � @ki�

@r
�
1n � r

@ki�

@r
1n:

The i�� th coordinate of the left-hand side of (4.14) is thus bounded from below
by:

(1� r)
@ki�

@r
> 0;

which contradicts (4.14).

Proof of Theorem 1: We look for a linear equilibrium strategy, ai (byi) =
�i + �ibyi. Plugging back into (4.4), we obtain a linear system of equations with
unknowns f�i; �igi=1;:::;n:

�i + �ibyi = (1� r)Ei [�] + �
X
j 6=i

�
�j + �jEi [yj]

�
, (4.15)

for all byi 2 R and i = 1; :::; n.
We �rst show that (4.9) is indeed a Bayes-Nash equilibrium. Plugging back

(4.3) into (4.15), and subtracting �0 from both sides of (4.15), we get the follow-
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ing equilibrium conditions:

�i = �
X
j 6=i

�j , for all i = 1; :::; n,

Therefore, �i = 0, for all i, and:

�i = (1� r) fi + �
X
j 6=i

�j!ji, for all i = 1; :::; n: (4.16)

Notice that fj!ji = fi!ij , for all i,j. Let 
i = �i=fi. Dividing equation i
by fi in (4.16) leads to:


i = (1� r) + �
X
j 6=i

!ij
j , for all i = 1; :::; n.

Notice also that c (i; j) � gj , and thus !ij � 1, for all i; j. Denote by � (A)
the largest eigenvalue of a matrix A. Then, � (
) � � (In � Jn) = n � 1.
Therefore �� (
) < 1 is equivalent to r < 1. From Theorem 1 in Ballester et
al. (2006) we deduce that �i = fiki(r;�).
We now show that the linear equilibrium identi�ed in (4.9) is the unique

equilibrium. We proceed in two steps.
First, de�ne the following payoff function:

V (a1; :::; an) = � (1� r)
nX
i=1

(ai � �)2 � 1
2
�

nX
i=1

X
j 6=i

(ai � aj)
2 : (4.17)

It is readily checked that @E [ui (a) jyi] =@ai = @E [V (a) jyi] =@ai, for all
action pro�le and information. In words, V (�) is a potential for the game payoffs
ui.58 Therefore, the Bayesian Nash equilibria coincide with the team person-by-
person maximal decisions for the team objective function (4.17) and the infor-
mation structure (4.2).
Second, Theorem 4 in Radner (1962) gives a suf�cient condition for unique-

ness of the optimal and the person-by-person maximal team decision functions
(which, then, necessarily coincide) when team payoffs are quadratic as in (4.17).
This condition boils down to the n�square matrix of cross derivatives Q =

58 See Ui (2004) for a formal de�nition and a general existence result of a (Bayesian) potential
for Bayesian quadratic games with symmetric cross-derivatives of payoffs.



116 Chapter 4 Communication Processes: Knowledge and Decisions

[qij] = [@
2V (a) =@ai@aj] being negative de�nite. We have:

qij =

�
�1, if i = j
�, if i 6= j

:

We compute the determinant ofQ:

det (Q) = (�1)n

���������
1 �� � � � ��
�� . . . . . . ...
... . . . . . . ��
�� � � � �� 1

���������
= (�1)n (1� r)

���������
1 �� � � � ��
1

. . . . . . ...
... �� . . . ��
1 �� 1

���������
= (�1)n (1� r)

��������
1 �� � � � ��
0 1 + � 0
... � � � � � � ��
0 � � � 0 1 + �

��������
= (�1)n (1� r) (1 + �)n�1

The �rst equality is obtained by adding up all the columns to the �rst one, and
then factorizing by the common term 1 � r. The second equality is obtained by
subtracting the �rst row to every other row. We are left with an upper triangular
matrix; the determinant is just the product of the diagonal terms.
The determinant ofQ has thus the same sign than (�1)n. Mutatis mutandis,

we deduce that the minors of order p ofQ have the sign of (�1)p. The matrixQ
is thus de�nite negative, and this concludes the proof.

Proof of Proposition 2: Developing the square terms and summing over all
is gives:

nX
i=1

ui (a
� (y)) = � (1� r)

"
n�2 +

nX
i=1

a�2i � 2�
nX
i=1

a�i

#
(4.18)

��
"
2 (n� 1)

nX
i=1

a�2i � 2
nX
i=1

nX
j=1

a�i a
�
j

#
:
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Then, noticing that E [�] = 0 and E
�
�2
�
= �0, we obtain the following

identities:

E�E(y1;:::;yn)j� [a�i j�] = ��fiki(r;�)

E�E(y1;:::;yn)j�
�
a�2i j�

�
= ��fik

2
i (r;�)

E�E(y1;:::;yn)j�
�
a�i a

�
j j�
�
= ��fi!ijki(r;�)kj(r;�), i 6= j

Using (4.18) and the previous identities, we obtain:

U�(r;�) = � (1� r)n�� + 2���

nX
i=1

nX
j=1

fi!ijki(r;�)kj(r;�)�

� (1 + r)��
nX
i=1

fik
2
i (r;�) + 2��

nX
i=1

fiki(r;�):

Next, notice that:
nX
i=1

nX
j=1

fi!ijki(r;�)kj(r;�) = (Fk)
t
k = ktF
k =

1

�
ktF [k� 1n] .

Plugging back into the previous expression for U�(r;�) and simplifying
gives the desired result.

Proof of Theorem 2: It is clear that U� (r;�) increases with F and with k
(for the component-wise ordering). It is also clear that F (�) increases with �.
We show that k (r;�) increases with 
. Let 
0 � 
. We write 
0 = 
+D,
with dij � 0 for all i; j. Then,

[In � �
]k =
1

1� r
= [In � �
0]k0 = [In � �
]k0 � �Dk0;

from which we obtain:

k0 � k = � [In � �
]�1Dk0;

and thus k0 � k � 0 from the fact that [In � �
]�1 is a non-negative matrix
when the spectral index condition holds (Debreu and Herstein, 1953).
Proof of Proposition 3: The proof uses the comparative statics of the knowl-

edge index with respect to 
 established in the proof of Theorem 2, and the
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following calculations:

@!ji
@�ii

=
@

@�ii

�
�� + 
ij

p
�ii�jj

�� + �ii

�
=

1

(�� + �ii)
2

�
1

2

ij

r
�jj
�ii
(�� + �ii)�

�
�� + 
ij

p
�ii�jj

��
=

1

(�� + �ii)
2

�
1

2
��
ij

r
�jj
�ii

� 1
2

ij
p
�ii�jj � ��

�
Let

F (x) =
1

2
x
ij

r
�jj
�ii

� 1
2

ij
p
�ii�jj � x:

A suf�cient condition for @!ji=@�ii � 0 is that F (x) � 0 for all x � 0.
Notice that F (0) � 0. So, it suf�ces to check that F 0 (x) � 0 for all x � 0, that
is:


ij

r
�jj
�ii

� 2, �ij � 2�ii; for all i; j;

which is true under the conditions of Theorem .

Proof of Proposition 4: Let 
 (�) be a matrix identical to 
 but for cells
i; j and k; l where the new coef�cients are, respectively, (1� �)!ij + �!kl and
(1� �)!kl + �!ij , with 0 � � � 1. Notice that
 (0) = 
. We have:

@

@�
M = �M

�
@

@�



�
M;

and thus
@

@�
k = �M

�
@

@�



�
k.

Notice that @
=@� is a matrix with all cells equal to zero but for cells i; j and
k; l equal, respectively, to � (!ij � !kl) and !ij � !kl. When i = k, we have:

@

@�
k = � (!ij � !il) (kl � kj)

24 m1i
...

mni

35 ;
and thus the sign of @k=@� is that of (!ij � !il) (kl � kj). The result follows
from the fact that swapping is equivalent to setting � = 1.
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Proof of Proposition 5: Recall that equilibrium payoffs are

U�(r;�) = �0 (1� r)
�
ktFk� n

�
:

Therefore:

1

��

@

@r
U�(r;�) = n� ktFk+ (1� r)

�
@

@r
k

�t
Fk: (4.19)

Notice that n � ktFk � 0 while (@k=@r)tFk � 0, so that (4.19) is the
sum of a positive and a negative term, with ambiguous overall sign. However,

,M, and k all take values in a compact set when � 2 Rn�n, with �ij � �ii,
for all i; j. By (4.14), so does @k=@r. Also, lim(�11;:::;�nn)"+1F(�) = 0n�n.
Therefore,

lim
(�11;:::;�nn)"+1

1

��

@

@r
U� = n:

Proof of Proposition 6: The expression in (4.18) is valid for any pro�le of
actions. Renormalizing it we have:

eU = � (1 + r) nX
i=1

a2i + 2 (1� r) �
nX
i=1

ai + 2�
nX
i=1

nX
j=1

aiaj:

Let's compute the optimal linear social actions of each agent, aS (yi) = �Si +
�Si fiyi, that maximize ex ante social welfare E�Eyj� ~U . Straightforward algebra
gives:

E�Eyj� eU = � (1 + r)
X
i

�
�2i + 2�i�ifi�0 + �2i f

2
i

�
�ii + �� + �20

��
+

+2 (1� r)
X
i

�
�i�0 + �ifi

�
�� + �20

��
+ (4.20)

+2�
X
i

X
j 6=i

�
�i�j + �i�jfj�0 + �j�ifi�0 + �ifi�jfj (�ij + �� + �0)

�
The �rst-order conditions to maximize E�Eyj� eU are
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@E�Eyj� eU
@�i

= � (1 + r) (2�i + 2�ifi�0)

+2 (1� r) �0 + 4�
X
j 6=i

�
�j + �jfj�0

�
= 0

@E�Eyj� eU
@�i

= � (1 + r)
�
�ifi�0 + �if

2
i

�
�ii + �� + �20

��
+ (1� r) fi

�
�� + �20

�
+(4.21)

+2�
X
j 6=i

�
�jfi�0 + �jfifj

�
�ij + �� + �20

��
= 0(4.22)

We can rewrite the �rst-order conditions with respect to the �s as

aSi (�0) =
1� r

1 + r
�0 +

2r

1 + r

1

n� 1
X
j 6=i

aSj (�0) : (4.23)

The social optimal action of each agent evaluated at �0 is a weighted sum of
�0 and the mean of the other player's actions evaluated at �0.
Similarly, the �rst-order conditions with respect to the �s can be rewritten,

whenever �0 6= 0, as

aSi

�
�0 +

1

�0
(�� + �ii)

�
=

1� r

1 + r

�
�0 +

��
�0

�
(4.24)

+
2r

1 + r

1

n� 1
X
j 6=i

aSj

�
�0 +

1

�0
(�� + �ij)

�
:

Subtracting (4.23) from (4.24) we obtain the following linear system of equa-
tions for the �s:

�Si fi =
1� r

1 + r
fi +

2r

1 + r

1

n� 1
X
j 6=i

�Sj fj!ji; for all i = 1; : : : ; n: (4.25)

Notice that fj!ji = fi!ij , for all i; j. Dividing equation i by fi in (4.25)
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leads to:

�Si =
1� r

1 + r
+

2r

1 + r

1

n� 1
X
j 6=i

!ij�
S
j

=

�
1� 2r

1 + r

�
+

2r

1 + r

1

n� 1
X
j 6=i

!ij�
S
j

Hence, we obtain:

�Si = ki

�
2r

1 + r
;�

�
:

Plugging this back in (4.23), and with the use of some straightforward alge-
bra, we obtain:

�Si =

�
1� ki

�
2r

1 + r
;�

�
fi (�)

�
�0

The result then follows.



Chapter 5
On Optimal Communication Networks

with

Antoni Calvó-Armengol

5.1 Introduction
In this chapter we model informal interactions by means of a network. The net-
work nodes are the individual members of the organization, and the network links
keep track of who communicates with whom. The network of communications
represents the pattern of ongoing communications inside the group.
We build on the model we have developed in the previous chapter to try to

provide a theory of optimal communication structures in informal organizations.
An informal organization is characterized by its information-processing needs
and its information-processing capabilities. Information-processing needs corre-
spond to the nature of the information uncertainty about the task to be performed,
and to the exact balance between the external and the internal concern faced by
each member of the group. Information-processing capabilities correspond to the
network of communications.
The communication network disseminates within the group any private infor-

mation held by individuals about the task. The geometry of this communication
network determines the information structure available to all organization mem-
bers and, ultimately, their choices. We map the network geometry to individual
optimal choices, and relate changes in the communication structure to variations
in individual and aggregate payoffs.
At the unique Bayes-Nash equilibrium we have characterized in the previ-

ous chapter, individuals best-respond to their own assessment of other's choices.
Equilibrium also requires that everybody correctly anticipates each others' choices.
This presumes that players can keep track of own beliefs about the task to be
performed, as well as own beliefs about others' beliefs, own beliefs about others'
beliefs about both own and others' beliefs, and so on. Beyond delimiting who
communicates with whom, the communication network also determines how
much information any two given individuals have in common by singling out
their common interlocutors. Altogether, the communication network shapes the
information held by each individual as well as the information overlap across
different individuals. This information overlap is crucial to build cross inferences

122
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about each others' information and, ultimately, to compute the (arbitrary) high
order beliefs that enter the equilibrium determination.
More precisely, consider three individuals that can all communicate with each

other. The communication network is a close triad �a triangle. In this case, all
agents have access to the same information. They entertain similar beliefs about
the task characteristics, as well as similar beliefs about such beliefs and so on.
High order beliefs are then easy to compute, and coincide with the average high
order beliefs for the group.
Suppose now that two individuals among the three cannot communicate with

each other anymore. The communication network is then an open triad with a
hub and two spokes �a star. Because all players do not have access to the same
information, the hub and the spokes have different (order one) beliefs about the
task to perform. Also, the hub is aware of every piece of information privately
held by a given spoke agent (he is his sole interlocutor), while the other spoke
agent is not. Therefore, the hub and any spoke agent have different (order two)
beliefs about the (order one) beliefs of the other spoke agent. For similar reasons,
any spoke agent has different (order two) beliefs about the (order one) beliefs of
the hub and the other spoke agent. And this is also true for higher order beliefs.
To summarize, the kind of high order inferences involved in the computation

of high order beliefs rely on chains of pair-wise inferences for agents having
interlocutors in common. Beyond the identity of the agents in these chains of
pair-wise inferences, their order also matters. As such, high order beliefs are an-
isotropic and vary across individuals with the exact geometry of the ego-centred
communication possibilities available to them. We give a closed-form expression
for these high order beliefs that re�ects the ability of each individual to infer the
information held by the other group members after communication has occurred
and as a function of their location in the communication network.
The comparative statics of the equilibrium payoffs with respect to the com-

munication network is directly inherited from that of the knowledge index.
Add some communication links to a given network. We get a denser network,

which includes the original one as a subset. We say that this denser network is
a closure of the original one if the impact of the added links is to increase the
number of close triads (triangles) in the network and to decrease the number of
open triads, both simultaneously. It turns out that a network closure increases
the knowledge index of every agent, and thus increases equilibrium payoffs from
them all. The intuition is straightforward. The external concern requires more
accurate estimations of the characteristics of the common task. A denser net-
work aggregates better all the available information for all agents, and can only
increase this accuracy. The internal coordination concern, instead, requires that
individuals anticipate each others' efforts better. Within close triads, agents fully
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share all their private information with each other, which allows them to build
more accurate cross inferences about each others knowledge. A network closure
thus also improves on coordination.
One implication of monotone equilibrium payoffs with respect to network

closure is that the optimal communication structure is the complete graph, where
everyone can communicate with everyone else.
However, communication urbi et orbi need not be costless or even possible

and, in fact, empirical evidence tracking down the structure of informal com-
munication structures shows that the complete network is a very rare exception
rather than the rule. We inquiry about the optimal communication network for
a �xed supply of communication links. Because network closure de�nes a pre-
order that does not allow to rank all networks unambiguously, we cannot make
use of our previous comparative statics result to single out the optimal geometric
arrangement of a �xed supply of network links.
When the internal coordination problem is not too overwhelming (compared

to the external concern), and the uncertainty about the characteristics of the
group task to be performed is large enough, the optimal �t between information-
processing needs and capabilities is achieved by a centralized and clustered net-
work. More precisely, the optimal geometric arrangement is the one that max-
imizes a network span index that we de�ne.59 Instead, when the internal coor-
dination concern is more demanding, the optimal network is regular (and thus
distributed).
Finally, we discuss some extensions of the model that check the robustness

of our results to a different speci�cation of the coordination problem, and to the
inclusion of publicly shared information about the external concern.

5.2 Related Literature
Besides the more general literature relating communication and information struc-
tures to the performance of organizations surveyed in the previous chapter, an in-
creasing amount of research in economics and related areas is devoted to analyze
more precisely the particular inner network structure of organizations.
The experimental psychology literature has long ago documented the crucial

role of communication time and communication pattern for information aggre-
gation purposes is reported in the seminal work by Bavelas (1950) followed by
Leavitt (1951). These works initiated a plethora of empirical research comparing
centralized versus decentralized network organizational structures but it was not
59 For instance, the star is the network with maximum span among the minimally connected
networks �the trees.
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accompanied by much theoretical development. Shaw (1964) provides a review
of this literature.
Organizational theorists have recently emphasized the important role of net-

works within organizations, and try to analyze with the use of tools from social
network analysis (see Wasserman and Faust, 1994, for a formal approach to this
topic) which are the relevant variables of the network structure of an organization
in management. Krackhardt and Hanson (1993), Ahuja and Carley (1999) and
Cummings and Cross (2003) are some relevant examples in which the particular
networked communication structure of real-world organizations is sketched. A
common �nding of this literature is that the network structure of communication
substantially differs from the formal chart of the organization. Furthermore,
communication networks tend to be clearly incomplete.
The literature on the optimal formal organization has highlighted the role of

hierarchies, a particular form of network structures, to reduce costs associated to
communication transmission and information processing. Sah and Stiglitz (1987)
is an early example on this direction, in which the authors compare two different
organizational structures, polyarchies and hierarchies, and its respective bene-
�ts to reduce possible errors when processing the information the organization
receives and communicates.
Besides, building on Radner (1993), the work by Bolton and Dewatripont

(1994), Van Zandt (1999a), Garicano (2000), Guimerà et al. (2002) and Doots et
al. (2003) highlights the importance of hierarchies, and more general network
structures, to diminish the costs related to processing information that �ows
through the network of contacts. This literature is surveyed by Van Zandt (1999b)
and Ioannides (2003).
From a more theoretical perspective, our work also relates to the literature of

games of incomplete information played in a network, such as Morris (2000) and
Chwe (2000). In particular, Chwe (2000) is closer in spirit to our work. Chwe
analyzes a game in which agents want to coordinate their binary decisions and
guess the action of others from the local information that agents communicate
to their neighbours in the network. Anyhow, our model, and the procedure of
our analysis, differs in several points from Chwe. We analyze a game with a
continuum of possible actions and agents do not only pursue to coordinate, but
also to attain the real state of the world. These differences re�ect in the way
agents rely on the network to form higher order expectations in both models.

5.3 A network communication process
So far, the communication process is characterized by the distribution over its
output signals. We now describe a particular instance of a communication process
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for which we can explicitly compute this distribution over output signals.
The networked class of decentralized communication devices we consider

is the following. Agents connected through a given network, and only them,
communicate in pairs and for a �xed number of rounds. At each round, agents av-
erage the stream of signals previously received from their network contacts, and
communicate this average signal back to them. Averaging reduces the volume of
information prior to its retransmission, and thus saves on information-processing
costs. However, from round two onwards, this simple heuristic that treats signals
in the stream as de facto mutually independent, fails to adjust properly for re-
dundant information from a common third-party. In fact, DeMarzo et al. (2003)
show that the converging beliefs dynamics for this simple rule over-weight the
private information of more �central� agents in the communication network. For
this reason, asymptotic beliefs are not correct when the underlying network is
irregular.
Here, we analyze how this decentralized information-sharing scheme shapes

individual and organization decisions and outcomes when the network geometry
varies and for arbitrary communication rounds.

5.3.1 A class of communication processes, P t (g)
Players receive a conditionally independent private signal, xij� � N (�; �").
We model the communication possibilities by a network g. We set gij =

gji = 1 if i and j communicate with each other, and gij = 0 otherwise. Of
course, gii = 1, while gi = gi1+ � � �+ gin is the total number of interlocutors to
player i, including oneself.
This communication process disseminates idiosyncratic signals in the popu-

lation. After the �rst communication round the information available to player i
is:

x1i (g) =
1

gi

nX
j=1

gijxj: (5.1)

The communication report x1i (g) averages private signals across all informa-
tion sources available to i, which include communication partners in the network
g and oneself.
More generally, denote by G = [gij] the network adjacency matrix of com-

munication links, and byG = [gij=gi] its row normalization. A compact notation
for the communication report after one communication round is x1 = Gx.
When players communicate repeatedly with their network interlocutors in

the network g, and average the incoming stream of signals before sending it
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back to them, the resulting communication reports after t completed rounds of
communication are xt = Gt

x. We denote this communication process by Pt (g).
The covariance between the output signals xti and xtj is then readily com-

puted:

�tij (g) =
nX
k=1

g
[t]
ikg

[t]
jk; for all i; j;

where Gt
=
h
g
[t]
ij

i
. In matrix notation, we have �t+1 (g) = G

t+1
G
t+10

=

G�t (g)G
0. The equilibrium actions can then be readily computed from Theo-

rem 1.

5.3.2 One communication round, P 1 (g)
Let � = �"=��. Then, it is readily checked that

fi (g) =
1

1 + �
gi

and !ij (g) = fj (g)

�
1 + �

cij (g)

gigj

�
;

where cij (g) = #fk : gikgkj = 1g is the number of common interlocutors to
both i and j in the network of communication g.60 In particular, cij (g) = 0 for
all two players that do not share any common information source with each other,
and cij (g) � 1, otherwise.
Consider, for instance, a regular communication networks such that gi = d

for every i. Then,
Pn

j=1 cij = d2, for all i,61 and thus
P

j !ij = $ (d) for all i,
where

$ (d) =
n� 1 + � (d� 1)

d+ �
:

Therefore, each of the terms in the in�nite sum (4.7) can be written as �p
p =
�p$p (
=$)p = �p$p (
=$), where the last equality uses the fact that 
=$
is a double-stochastic matrix, that is, a non-negative matrix with all rows and
columns adding up to one. The knowledge index in a regular network is then
readily computed:

ki (�; d) =
1� r

1� �$ (d)
, for all i: (5.2)

60 Given our assumption that gii = 1, cii (g) = gi, for all i, while cij (g) = 2 for all two players
who are one-link away from each other in the network of communication (gij = 1):
61 The adjacency matrix of a regular network of degree d is G = dM, whereM is a double
stochastic matrix. Hence,G2 = d2M2, whereM2 is also a double stochastic matrix.
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5.4 On the Optimal Communication Structure

5.4.1 Ordering Networks
In general, the impact of adding new links on both the knowledge index and the
equilibrium payoffs depends very critically on the geometry of both the origi-
nal and the resulting network. To �x ideas, let n = 3, and consider the three
following networks in Figure 1.

r r r
1 3

2

g
��

� r r r
1 3

2

g0
��

�HHH r r r
1 3

2

g00
��

�HHH

Figure 1.

Adding link 23 leads from g to g0, while adding link 13 leads from g0 to g00.
Consider �rst the change from g0 to g00. With the new link 13, both the

number of information sources for players 2 and 3, and the sources overlap for
all three players increase. As a result, all the inference coef�cients increase,
that is, 
00 � 
0, and so do the knowledge indexes of each player, that is,
k (�;
00) � k (�;
0).
Consider now the change from g to g0. With the new link 23, players 2 and

3 widen their information sources, thus making better inferences about others'
reports. Formally, !02i � !2i and !03i � !3i, for all i. Instead, player 1 retrieves
information from the same sources in g and in g0, but loses grip on 2's true value
of the report in the new network g0 compared to the old one g. Formally,

!012 =
1 + �

3

1 + �
2

< 1 = !12:

As the previous example illustrates, the inference matrix need not be monotonic
to link addition. New links that close triples (e.g., from g0 to g00) create a common
grounding in information sources, and thus allow for better cross inferences.
Instead, new links that lead to open triples (e.g., from g to g0) spread away
information sources and dampen the accuracy of cross reports by adding noise
on each others' awareness. The impact of link addition on the knowledge index
and equilibrium payoffs is not clear (see Proposition ) and depends on the relative
balance of both forces.62

To keep track of the impact of link addition on the number of close and open

62 For the case of n = 3 players, one can readily check that k
�
�;
0

�
� k (�;
) although

!012 < !12. Below we give an example where link addition actually decreases the knowledge
index.
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triples, we de�ne:

� (g) = #f(i; j; l) : gijgjlgli = 1; i 6= j 6= l 6= ig;

and

� (g) = #f(i; j; l) : gijgjl = 1; gli = 0; i 6= j 6= l 6= ig:
By de�nition, � (g) (resp. � (g)) gives the number of close (resp. open) triples in
g.

De�nition 1 Let g; g0 two networks. We say that g0 is a closure of g, denoted
g0 D g, when both g0 � g and (� (g0) ;�� (g0)) � (� (g) ;�� (g)).

In words, a network closure amounts to adding links such that the number of
close triples (weakly) decreases whereas that of open triples (weakly) decreases.
Suppose, for instance, that g is a star with one hub and n � 1 spokes. Then,

� (g) = 0 and � (g) = (n� 1) (n� 2). Let g0 deduced from g by adding `
spoke-to-spoke links. Then, �(g0) = 2` and � (g0) = � (g) � 2`. Therefore,
g0 D g, that is, g0 is a closure of g.
We have the following result.

Proposition 1 If g0 D g, then k (r;�1 (g0)) � k (r;�1 (g)) and

U�
�
r;�1 (g0)

�
� U�

�
r;�1 (g)

�
In particular, denoting by gN the complete network where all communication
links are active, U�

�
r;�1

�
gN
��
� U� (r;�1 (g)), for all network g.

The next example shows that adding links without satis�cing the closure
condition can indeed be detrimental for the knowledge index of some players.
Consider the two networks in Figure 2, where g0 is deduced from g by adding

the link 14.

rr r
1

2 3

g

r
4
�
�

@
@

��HH
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�
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��HH

Figure 2.

Using (4.7) and (4.8), we can write, at a �rst order in r:

k
�
r;�1 (g0)

�
� k

�
r;�1 (g)

�
= � (1� r)

�

1 (g0)�
1 (g)

�
1n + o (r) :
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In particular, k1 (r;�1 (g0)) � k1 (r;�
1 (g)) is proportional to (!012 � !12) +

(!014 � !14) + o (r), where:

!012 � !12 = �
�
9

1 + �
3

< 0

!014 � !14 =
1 + 2�

3(g4+1)

1 + �
g4+1

� 1

1 + �
g4

!
g4!+1

0

Therefore, for a small enough r and a high enough g4, we have k1 (r;�1 (g0)) <
k1 (r;�

1 (g)) despite g � g0. Note that � (g) = � (g0), while � (g0) > � (g),
implying that g0 is not a closure of g.

5.4.2 Optimal communication networks for P1 (g)
Proposition 1 suggests that the complete network is the optimal communication
network. But, as Marshak and Radner (1972) warn: �Ideally, one would like to
compare information structures on the basis of net value of information, namely
gross value of information minus the cost of both the information and the as-
sociated best decision function. Therefore, any comparison between the gross
values of two information structures is meaningful only in the context of some
assumption about the relative costs of the two structures� (p. 224).
In our model, information structures are fully determined by the underlying

communication network. Abstracting away from cognitive decision costs, we
assume in what follows that communication links are costly (to set up and main-
tain). More precisely, we �x to some value 
 2 fn � 1; :::; n (n� 1) =2g the
total number of communication links available, and we solve for the following
optimal network design problem:

max
g
fU�

�
r;�1 (g)

�
:
X
i;j

gij � 2
g: (5.3)

This is a �nite optimization problem, that admits at least one solution. For
instance, when 
 = n (n� 1) =2, the complete network gN solves (5.3). More
generally, the optimal network corresponds to the geometric arrangement of the
available communication resources that best accounts for the weighted external
and internal concern of all players.
Although a full characterization of the solutions to (5.3) is not available, the

next discussion clari�es the forces at play.
Suppose �rst that � takes a very small value. Then, private signals allow for a

very accurate estimation of the true value of �, and the more so do communication
reports. The external target concern and its associated welfare loss are then of
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secondary importance. Instead, the internal coordination concern becomes more
(relatively) demanding. Therefore, the optimal network architecture is the one
that primarily solves the coordination problem, namely, a regular or distributed
network.63

Suppose now that � takes a large value. Then, private signals are very noisy.
More inaccurate predictions of the underlying exogenous parameter increase the
welfare loss from the external target concern. Suppose further that r is very small.
Then, the external target concern is the driver for the optimal network solving
(5.3). In this case, two opposite forces are at work. On one hand, a distributed
or regular network homogenizes the forecasts about � across players, but sets a
common upper bound 2
=n on the information sources available to every player.
On the other hand, a centralized or irregular network leads to heterogeneous
forecast about �. But, by allocating most of the available information sources
to a handful of players, it allows those ones to make a more accurate predictions
that in the dispersed network.
The optimal network is the one that solves this trade-off optimally. Formally,

given a network g, let ci (g) =
Pn

j=1 cij (g), the number of two-link away
contacts of player i in the network. Then, ci (g) =gi is the ratio of two-link away
contacts per direct link. It measures the range of indirect contacts. A high (resp.
low) value of the ratio ci (g) =gi corresponds to a long-range (resp. a short-span)
of indirect contacts.
Consider for instance a star encompassing n players, where player 1 is the

hub and players 2; :::; n are the spokes. Through a spoke-to-hub link, a spoke
gains indirect access to every other spoke in the star. Instead, the spoke-to-hub
link does not add any indirect contact to the hub but for the spoke itself. A spoke-
to-hub link thus warrants a long-range of indirect contacts to the spoke but a
short-span to the hub. Formally, c2 (g) =g2 = n=2 > 2 (n� 1) =n = c1 (g) =g1.
De�ne now:

S (g) =
nX
i=1

ci (g)

gi
:

This is the aggregate span or range of indirect contacts per network link. This
span index increases with the number of super-connectors in the network, that
give access to a wide range of indirect contacts to the nodes appending to them.
It also increases with the number of triangles in the network. In other words, a
high (resp. low) span index is tantamount to an irregular (resp. distributed) and
clustered (resp. open-knitted) network geometry.
63 Or, to be more precise, the most regular network available given the link resource constraint

.
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We have the following result.

Proposition 2 Fix 
. There exists � > 0 and 0 � r < 1 such that, for all � �
� and r � r, the optimal network that solves (5.3) is g� 2 argmaxgfS (g) :P

i;j gij � 2
g;

Fix the total number of network links available. Different geometric arrange-
ments of these links lead to different network structures.
When the internal coordination problem is not too overwhelming and the

signals about the exogenous target value are suf�ciently noisy, the optimal geo-
metric arrangement maximizes the aggregate network span. Namely, optimal
networks are clustered and display an irregular distribution of connectivities.
We illustrate this point below with two examples.
Suppose �rst that 
 = n � 1. This is the minimal number of links required

to get a connected network, where each player is indirectly linked to every other
one. Minimally connected networks are known as trees. The line and the star are
two examples of trees.

Remark 1 For suf�ciently high � and low r, the optimal tree is the star.

In words, the tree with maximal span is the most irregular one (for the distri-
bution of connectivities).
In a star, spoke players play the same strategy, but the hub a different one.

This mismatch induces a coordination loss. When r is small, this coordination
loss is not much of a concern, and the optimal geometry is the one that reduces
the welfare loss induced by external target concern.
The hub of a star makes as accurate as possible a prediction about the exoge-

nous target value than any other node in any alternative tree con�guration. This
is because the hub has access trough the communication channels available to
him to every other private signal in the population. On the contrary, the predic-
tion made by spokes is as inaccurate as possible �they only have access to one
additional source of information. When private signals are suf�ciently noisy, the
gain in accuracy for the hub compensates for the loss in accuracy for the spokes,
and the star is the optimal tree.
Consider, for example, the two network architectures in Figure with n = 4

players and 
 = 4 links, that we name the kite and the wheel.

rr r r
kite

1

2
3 4

��
QQ rr rr

1

2 3

4

wheel
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Figure 3:

One can readily checked that S (g) is worth 38/3 for the kite, and 12 for
the wheel. According to Proposition 2, the kite is the optimal network (yielding
higher aggregate payoffs) for high enough values of � and low enough values of
r.

5.4.3 In�nite communication rounds, P1 (g)
Suppose now that players communicate an in�nite number of rounds, t! +1.
WritingGt+1

= GG
t, one can view G as the Markov transition matrix for the

row probability vectors
�
g
[t]
i1 ; :::; g

[t]
in

�
of the row-normalized matrixG. We thus

have limt!+1 g
[t]
j = g1j , where g1j is the unique invariant distribution of the

irreducible and aperiodic Markov process with transitions G. In turn, the fact
that all row vectors of are identical implies that long-run beliefs for P1 (g) are
common to all players, that is:

x1i = x1 = g11 x1 + � � �+ g1n xn; for all i;

a weighted sum of private input signals.
We compute the weights. With an undirected network we have gig

[t]
ij = g

[t]
jigj

from simple algebra, from which we obtain gig1j = g1i gj at the limit, and thus
g1i = gi= (g1 + � � �+ gn). Because averages of incoming signal streams at each
communication round do not discount properly for redundant information from
common sources, better connected players in the communication network end up
credited with a higher weight in the emergent long-run consensual beliefs.
When all players share the same beliefs, the knowledge index hits its upper

bound of one. Aggregate long-run payoffs then take the following simple form:

U� (r;�1 (g)) = n (1� r)��

24 1

1 + �
g21+���+g2n
(g1+���+gn)2

� 1

35 :
Fix the total supply of links, (g1 + � � �+ gn) =2. Then, these payoffs are maxi-
mal when g21 + � � � + g2n is minimal, namely, on a regular network. Aggregate
payoffs are thus higher for the wheel than for the kite in Figure 3.
We can compare the corresponding equilibrium payoffs for these two differ-

ent network geometries, the kite and the wheel, and for various communication
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rounds to get a sense of the cost for the installed communication capacity. The
next graphic shows the comparison of welfare from the kite (the blue line) and
the while (the red line) for the case in which r = 1=2 and � = 5 and with the
number of periods ranging from 1 to 5:

In this graphic we can clearly observe the kind of polarization result with
respect to the number of communication rounds. When there is only one round,
the kite, the more irregular network between the two, performs better than the
wheel. Instead, as the number of rounds increases the wheel, a regular network
with the same number of links than the kite, becomes the preferred choice.

5.5 Extensions

5.5.1 On the payoffs
The payoffs considered so far are a weighted average of an external concern and
an internal coordination concern. The coordination payoffs in (4.1) add up the
quadratic losses between own action and every other players' action, and then
average them all.
An alternative measure of mis-coordination is the quadratic loss between own

action and the average of others' action.
Formally,

vi (a1; :::; an; �) = � (1� r) (ai � �)2 � r (ai � A�i)
2 ; i = 1; :::; n; (5.4)

where A�i = (
P

j 6=i aj)= (n� 1). The expression (5.4) are the discrete popula-
tion counterpart of the beauty contest game for a continuum of agents in Morris
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and Shin (2002).
Straight algebra leads to:

vi (a; �) = ui (a; �) +
r

n� 1
X
j 6=i

(aj � A�i)
2 .

In particular, this implies that the Bayes-Nash equilibria of the incomplete
information game with communication and payoffs (5.4) are characterized in
Proposition . This equilibrium is thus unique, linear and given by:

a�i (yi) = fi (g) ki(�;
 (g))yi, for all i = 1; :::; n:

The new payoffs, however, lead to a different expression for equilibrium
payoffs.

Remark 2 Let r < 1. The aggregate ex ante equilibrium payoffs are now:

V � (g) = �0 (1� r)

�
1

n� 1k
t(�;
)Fk(�;
) +

n� 2
n� 1k

t(�;
)F1� n

�
� 0:

Observe that if n is large enough, this expression is close to

�0 (1� r)

"X
i

fiki � n

#
that coincides with the expression of welfare we have obtained with the payoffs
analyzed in the previous sections except that the term on ki is linear and not
quadratic.

5.5.2 Public and private signals
Beyond receiving a private signal xi, organization members also receive a public
signal z about the true value of the task characteristics. We have zj� � N (�; �z),
independent of the private signals xi. This public signal is shared by all organi-
zation members and has no connection with the details of the communication
network.
The best-response is still given by (4.4):

ai = (1� r)Ei [�] + �
X
j 6=i

Ei [aj] , for all i = 1; :::; n;

except that now the expected values are computed based on the information
fyi (g) ; zg available to each agent, that is, Ei [�] = Ei [�jyi (g) ; z].
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We �rst compute E [�jyi (g) ; z]. This is a weighted average, with weights
proportional to the precisions of three distributions: the prior distribution of �,
the posterior distribution of yi (g), and the posterior distribution of z. We have:

E [�jyi (g) ; z] =
1

1
�0
+ gi

�
+ 1

�z

�
gi
�
yi (g) +

1

�z
z

�
Let � = �=�0 and �z = �=�z. De�ne:

f zi (g) =
gi

gi + �z + �
and hi (g) =

�z
gi + �z + �

Straightforward algebra gives:

E [�jyi (g) ; z] = f zi (g) yi (g) + hi (g) z:

The more agent i has contacts with, the more valuable is the communication
report to him, and the less valuable the common signal (in relative terms). We
omit the parameter g when there is no risk of confusion.
For all player i = 1; :::; n, de�ne:

�i = hi

"
1 +

�

1� r

X
j 6=i

f zj kj(�;
)

�
1� cij

gi

�#
:

Let � be the matrix with a zero diagonal and out-of-diagonal entries given
by �ij = �j=�i.

Proposition 3 When r < 1, the incomplete information game with communi-
cation network g has a unique Bayes-Nash equilibrium strategy linear in private
reports and in the public signal, and given by:

a�i (yi; z) = f zi ki(�;
) yi + �iki(�;�) z , for all i = 1; :::; n: (5.5)

The public signal translates into an increase from � to � + �z as captured
by f zi with respect to the case without public signal. Therefore the entries of 

decrease, and the coordinates of the knowledge index also decrease. In words,
the public signal helps in building cross inferences about each others information,
and thus dampens the value of the communication network to build these cross
inferences. The more precise this public signal, the less important the informa-
tion conveyed by the communication reports yi (g).
The public signal has an added effect captured by �iki(�;�). Indeed, the

public signal acts as a focal point for the coordination problem and thus has a
multiplier effect on players' actions.
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5.6 Conclusion
In this chapter we have extended the analysis of the previous one by analyzing
a family of network communication processes. Any element of this family does
not only add some geometric structure to the personal relations exhibited in an
organization but also introduces two other important dimensions of communica-
tion processes. First, a temporal dimension expressed by the number of rounds
of communication. Second, information processing technologies, by limiting the
ability of agents to process the mean of signals he receives at each period and not
the whole string of signals.
These three dimensions of a communication process seem suf�cient to repre-

sent a variety of situations. In particular, an interesting avenue of future research
would be to explore which are the reasons and incentives to communicate in-
stead of obtaining better information about the real state of the world through
individual experimentation. This trade-off is not trivial: while communication
helps to share information and hence to partially avoid coordination motive, it
can be optimal for some individuals to individually experiment for some periods
and to communicate this information in the future. This information obtained is
therefore more precise and when communicated to the rest of individuals in the
future it can be understood by everybody as a superior source of information by
each one that receives it and also help to avoid the coordination motive, as well as,
because of the precision of this signal, help to obtain a more close approximation
to the state of the world.
Other situations can involve a more strategical concern for the communica-

tion of information. Due to the common interest feature of the game we analyze,
every agent �nds optimal to communicate truthfully his information. However
this is not necessarily the case when instead of a game with strategic comple-
ments we were dealing with a game with strategic substitutes, or in which com-
petition for superior information is an issue. This could be the case for example
when different sections of a �rm can share through some partially decentralized
mechanisms their information. This is the case for example in Dessein et al.
in which they analyze in a two sections �rm the possible trade-off's between
centralization and decentralization of information in a similar setup than ours.
Our model and tools developed can be helpful to extend this analysis to �rms
with more than two sections and intermediate speci�cations of intersectional
communication are possible.
Our model of networked communication might also be applied to the analysis

of networks of collaboration. In an oligopoly setup it can be optimal for some
�rms to share some of the informations they have about the industry. How these
�rms form networks of communication and how this network structure impacts
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�rms' decisions an market outcomes is a question for future research.
Finally, there are some political economy questions in which communication

is relevant. How voters communicate among them information about the can-
didates in an election, added to the public information voters can receive from
different sources as newspapers and polls, and how this spread of information
affects the �nal voting decisions of the population is a relevant question that has
been initially analyzed in Myatt (2006). Also, how leadership form in political
parties is an issue that involves communication and information transmission.
This question is addresses in Dewan and Myatt (2007). How our model could be
adopted to extend the analysis of such issues is an open question that deserves
future consideration.

5.7 Proofs
Proof of Proposition 1: Let ij =2 g. We have:

!ij (g) =
gj

�+ gj

�
1 + �

cij (g)

gigj

�
;

and

!ij (g + ij) =
gj + 1

�+ gj + 1

�
1 + �

cij (g) + 2

(gi + 1) (gj + 1)

�
:

Tedious algebra then gives:

!ij (g + ij)� !ij (g) =
�

gi (gi + 1) (�+ gj) (�+ gj + 1)
�

� [gi (gi + 1 + 2gj + �)� cij (g) (gi + 1 + gj + �)] :

Noticing that cij (g) � gi, we can conclude that the term in brackets is non-
negative, and thus:

!ij (g + ij) � !ij (g) :

Let now x; y such that i; j =2 fx; yg. Then, clearly, !xy (g + ij) = !xy (g).
Finally, let k 6= j. We have:

!ik (g) =
gk

�+ gk

�
1 + �

cik (g)

gigk

�
;

and

!ik (g + ij) =
gk

�+ gk

�
1 + �

cik (g + ij)

(gi + 1) gk

�
:



5.7 Proofs 139

We distinguish two cases.
First, gjk = 1. Then, cik (g + ij) = cij (g)+1, and we can easily check that

!ik (g + ij) � !ik (g).
Second, gjk = 0. Then, cik (g + ij) = cik (g), and thus !ik (g + ij) <

!ik (g), for all � > 0.
Therefore, let g0 obtained from g by adding some links, that is, g � g0.

Then, if any new link between two new partners i and j is such that gik = 1
implies that gjk = 1, for all k, and for all pair of newly linked partners i; j; then

 (g0) � 
 (g). Otherwise, the inequality need not hold.
Proof of Proposition 2: At a �rst order in r, we have:

k2i (r;�
1 (g)) = 1� 2r + 2�

nX
j=1

!ij (g) + o (r) : (5.6)

In particular, if g is a regular network with degree d we have
Pn

j=1 !ij (g) =

$ (d).
For large values of �, (5.6) can be rewritten as:

k2i (r;�
1 (g)) = 1� 2r + 2�ci (g)

gi
+O (1=�) + o(r):

Denoting by fi (d) the forecast coef�cient in a regular network of degree d, we
have:

fi (g)

fi (d)
= 1 +O(1=�):

Denoting by U� (d) the ex ante aggregate equilibrium payoffs in a regular net-
work, we have:

U�(r;�1 (g))

U� (d)
=
1� 2r + 2 �

n

Pn
i=1

ci(g)
gi

1� 2r + 2�$ (d) +O(1=�) + o(r);

and the result follows.
Proof of Remark 1: We establish the result by induction on the size n of the

population.
When n = 2; 3 the only trees are the star, so the result holds trivially in these

cases.
When n = 4, the only two possible trees are the star and the line. Straight

algebra gives S (gstarn=4) = 23=2 > 31=3 = S
�
gwheeln=4

�
. So the result also holds

for n = 4. Notice that, strictly speaking, the induction argument does not require



140 Chapter 5 On Optimal Communication Networks

to check the validity of the result for n = 4 given that it already holds for n =
2; 3. However, the induction argument that follows is established for n � 5, and
so the case n = 4 needs to be worked out separately.
Suppose thus that S (gstarn ) 2 argmaxfS (g) : g a tree on n playersg.

Straight algebra leads to:

S
�
gstarn

�
=
n (n� 1)

2
+
2 (n� 1)

n
:

Consider an arbitrary tree gn+1 on n+1 players. Let i 2 f1; :::; n+1g such
that gij;n+1 = 1 for some unique j 6= i. In words, the link ij is a loose-end of the
tree gn+1. Notice that gn+1 being a tree implies that at least two such loose-ends
exist.
Given that ij is a loose-end, g�ijn+1 (the network deduced from gn+1 by elimi-

nating the link ij) is a tree on n players. Noticing that ck (gn+1)� ck
�
g�ijn+1

�
=

gkj , for all i 6= j 6= k, we have:

S (gn+1) = S
�
g�ijn+1

�
+
ci (gn+1)

gi;n+1
+
cj (gn+1)

gj;n+1
�
cj
�
g�ijn+1

�
gj;n+1 � 1

+
X
j 6=k 6=i

gkj;n+1
gk;n+1

:

Notice that cj
�
g�ijn+1

�
= cj (gn+1)� 2 and that ci (gn+1) =gi;n+1 = gj;n+1=2.

Also, by the induction hypothesis, S
�
g�ijn+1

�
� S (gstarn ). Therefore, S (gn+1) �

S
�
gstarn+1

�
is equivalent to:

gj;n+1
2

+
2

gj;n+1 � 1
� cj (gn+1)

gj;n+1 (gj;n+1 � 1)
+
X
j 6=k 6=i

gkj;n+1
gk;n+1

�

� S
�
gstarn+1

�
� S

�
gstarn

�
= n+

2

n (n+ 1)
.

Notice that gk;n+1 � 2, for all k, and thus
P

j 6=k 6=i gkj;n+1=gk;n+1 � (n� 1) =2.
It thus suf�ces to show that:

gj;n+1
2

+
2

gj;n+1 � 1
+
n� 1
2

� n+
2

n (n+ 1)
.

It is easily checked that

gj;n+1
2

+
2

gj;n+1 � 1
� n

2
+

2

n� 1 , for all n � 3.
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We are thus left to show that
2

n� 1 �
1

2
+

2

n (n+ 1)
;

which is true for all n � 5.
Proof of Remark 2: Let �i =

P
j 6=i (aj � A�i)

2. The following equality is
straightforward X

j 6=i

(ai � aj)
2 = (n� 1) (ai � A�i) + �i

Hence,

�
X
j 6=i

(ai � aj)
2 = r (ai � A�i) + ��i

This implies that vi = ui + ��i and therefore, if � =
P

i �i,

V � = U� +
r

n� 1E [�]

We have that �i =
P

j 6=i a
2
j � (n� 1)A2�i. Since

A2�i =
1

(n� 1)2

 X
j 6=i

a2j +
X

k 6=l;k;l 6=i

akal

!
we obtain that:

�i =

�
1� 1

n� 1

�X
j 6=i

a2j �
1

n� 1
X

k 6=l;k;l 6=i

akal

Therefore,

� =

�
n� 2
n� 1

�
(n� 1)

X
i

a2i �
1

n� 1 (n� 2)
X
k 6=l

akal

= (n� 2)
 X

i

a2i �
1

n� 1
X
k 6=l

akal

!
We obtain that E [�] = (n� 2)�0: Rearrenging, we obtain

E [�] = (n� 2)�0
1� r

r

 X
i

fi
�
ki � k2i

�!
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Hence,

V � = U� +
n� 2
n� 1�0 (1� r)

 X
i

fi
�
ki � k2i

�!
Finally, we get that

V � = �0 (1� r)

"�
1

n� 1

�X
i

fik
2
i +

n� 2
n� 1

X
i

fiki � n

#
or, in vector notation,

V � (g) = �0 (1� r)

�
1

n� 1k
t(�;
)Fk(�;
) +

n� 2
n� 1k

t(�;
)F1

�
� 0:

Proof Proposition 3: Suppose that the optimal equilibrium action of agent i is
of the following linear form:

a�i = �i + �iyi + 
iz

The equilibrium actions are then obtained from the system described by the n
equations in (4.4). Observe that, if i 6= j,

E
�
a�j jyi; z

�
= E

�
�j + �jyj + 
jzjyi; z

�
= �j + 
jz + �jE [yjjyi; z]

We now computeE [yjjyi; z]. We know that (z; y1; :::; yn) j� � N
�
�1n+1; �~�

�
where ~� is the following (n+ 1)� (n+ 1) matrix

~� =

�
1=�z 0tn
0n �

�
where 0n is the n-dimensional vector with all entries equal to 0, and� is the ma-
trix de�ned in (4.2). From this, we deduce that(�; z; y1; :::; yn) � N (0n+2;�),
where � is the following (n+ 2)� (n+ 2) matrix:

� =

�
�0 �0 � 1tn+1

�0 � 1n+1 �0Jn+1 + � ~�

�
;

where Jn+1 is the (n+ 1)� (n+ 1) matrix with all entries equal to 1.
From this, we deduce that the unconditional distribution of the information

vector (z; y1; :::; yn) is (z; y1; :::; yn) � N (0n+1;	) where

	 =

�
�0 + �z �0 � 1tn
�0 � 1n �0Jn + ��

�
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Now, making use of the identities about the multinormal we obtain that:

E [yjjyi; z] =
�z (�ii � �ij)

1 + (�+ �z)�ii
z +

1 + (�+ �z)�ij
1 + (�+ �z)�ii

yi = �jiz + !zjiyi

Observe that this is consistent with the results obtained without public signal.
If the variance of z tends to +1 (and therefore public information becomes
irrelevant) then �z tends to 0 and we recover the expression for E [yjjyi] in (??).
We can now solve (4.4), that we rewrite as:

�i + �iyi + 
iz = (1� r) (fiyi + hiz)+

+�
X
j 6=i

�
�j + �j

�
!zijyi + � ijz

�
+ 
jz

�
; i 2 N (5.7)

This system can be divided into three different ones: one that relates inde-
pendent terms, another one that involves the coef�cients of y's, and the other one
for the coef�cients of z. We solve them sequentially.
The system for independent terms is quite simple:

�i = �
X
j 6=i

�j; i 2 N (5.8)

The unique solution to this system is �i = 0 for all i 2 N .
The system for terms that multiply yi's is

�i = (1� r) fi + �
X
j 6=i

�j!
z
ij (5.9)

Therefore, �i = fiki(�;
).
Finally, the system that involves the terms that multiply z is


i = (1� r)hi + �
X
j 6=i

�
�j� ij + 
j

�
; i 2 N (5.10)

Since we know the values of hi, �j ,64 and �ji for all i; j, we can de�ne the

constant �i = hi + �
�P

j 6=i �j� ij

�
= (1� r). The system in (5.10) is then

equivalent to


i = (1� r)�i + �
X
j 6=i


j (5.11)

64 Observe that it is important the order in which we solve the three systems.
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Let � be the matrix with a zero diagonal and out-of-diagonal entries given by
�ij = �j=�i. Then, the solution to (5.11) is 
i = �iki(�;�).
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