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"Caminante no hay camino, se hace camino al andar" 
 

Antonio Machado 

 

 

“Es una verdad muy cierta que, cuando no esté a nuestro 

alcance determinar lo que es verdad, deberemos seguir lo que es 

más probable” 

Descartes 
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Summary  

Aflatoxins are potent carcinogens that pose a significant threat to human health. Incidence 

of these mycotoxins in foodstuffs is high, thus their control and prevention is mandatory in 

the food industry. The development of appropriate predictive models that allow us to 

predict fungal growth and mycotoxin production will be a valuable tool to monitor, predict 

and prevent the mycotoxin risk. To develop accurate predictive models it is important to 

account for the real conditions that we will encounter through the food chain. Such 

conditions include: suboptimal conditions for growth and mycotoxin production, even 

distribution of spores across the food matrix, presence of different strains of the same 

species or dynamic environmental conditions.  

Given the scope and complexity of the problem there is a particular need to develop 

predictive tools that can help to manage mycotoxins in foodstuffs during transport and 

storage.  

In the present work, it has been concluded that performance of predictive models may be 

compromised under marginal conditions for growth, where more variability on the results is 

expected. The use of probabilistic models under such conditions should account for spore’s 

ability to initiate growth, since it was demonstrated that not all spores were able to initiate 

growth. 

The presence of different strains of a species in a same niche is common. Predictive models 

developed for the different isolates studied revealed that growth and aflatoxin B1 (AFB1) 

production may differ among strains, overall under marginal conditions. A. flavus isolates 

showed much more variability in probability of AFB1 production compared to growth. The 

amount of AFB1 produced was highly variable among isolates in all the studies conducted, 

ranging from 9 up to 6000 ppb under the same conditions.  

Great effect of inoculum size on fungal behavior has been proven throughout this thesis. 

Initiation of growth and toxin production was greatly delayed (up to 9 days, depending on 

the environmental condition) changing from a multispore inoculum (500 spores) to a single 

spore one. Besides, growth was stimulated by the presence of more spores in the inoculum. 

Nevertheless, AFB1 production was either stimulated or inhibited depending on the 

conditions and strains, without a clear trend. 

In addition, three studies under dynamic environmental conditions were conducted. 



   

Different approaches were envisaged including polynomial/probabilistic functions that 

included temperature and aw profiles. Predictive models have been proven to properly 

represent the growth and AFB1 production in almost all cases, with concordances between 

70-100% for nearly all profiles. Finally, validation of the dynamic predictive models on 

pistachio nuts and maize grains, showed the applicability of growth models generated at 

constant temperature either on agar media or food matrices, as long as aw is included as a 

variable in the models.  

The present work provides the basis for scientifically proven models, which can be applied in 

the food industry in order to improve postharvest control of commodities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

Resumen 

Las aflatoxinas son potentes carcinógenos que representan una amenaza significativa para la 

salud humana. La incidencia de estas micotoxinas en los alimentos es alta, por lo que su 

control y prevención es obligatoria en la industria alimentaria. El desarrollo de modelos 

predictivos apropiados que nos permitan predecir el crecimiento fúngico y la producción de 

micotoxinas es de gran utilidad como herramienta para controlar, predecir y prevenir el 

riesgo de micotoxinas en alimentos. Es importante que los modelos predictivos sean capaces 

de explicar las condiciones ambientales que se encuentran a lo largo de la cadena 

alimentaria. Entre tales condiciones encontramos: condiciones subóptimas para el 

crecimiento y producción de micotoxinas, distribución aleatoria de esporas fúngicas en el 

alimento, presencia de diferentes cepas de la misma especie o condiciones ambientales 

dinámicas. 

Dado el alcance y la complejidad del problema, existe una necesidad de desarrollar 

herramientas predictivas que puedan ayudar a controlar las micotoxinas en los alimentos, y 

que sirvan de ayuda durante el transporte y el almacenamiento. 

En este trabajo se ha demostrado que la capacidad predictiva de los modelos puede verse 

comprometida cuando las condiciones experimentales son marginales, tanto para el 

crecimiento como para la producción de micotoxinas, ya que en estas condiciones se espera 

mayor variabilidad en los resultados. Además, los modelos probabilísticos deben ser capaces 

de explicar la habilidad de iniciar el crecimiento de las esporas presentes en el sustrato, ya 

que ha quedado demostrado que no todas las esporas inoculadas fueron capaces de dar 

lugar a colonias en condiciones subóptimas.  

La presencia de diferentes cepas de una especie en un mismo nicho es común. Los modelos 

predictivos desarrollados para las diferentes cepas estudiadas revelaron que el crecimiento y 

la producción de AFB1 pueden variar entre las cepas, sobre todo a medida que las 

condiciones ambientales se vuelven más marginales. Se ha observado una mayor 

variabilidad entre cepas para la probabilidad de producción de aflatoxina B1 (AFB1) que para 

el crecimiento. La cantidad de AFB1 producida fue muy variable entre las distintas cepas, 

oscilando entre 9 y 6000 ppb para las mismas condiciones. 

En esta tesis ha quedado demostrado el gran efecto que tiene la concentración de esporas 

del inóculo inicial tanto en el crecimiento como en la producción de AFB1. Así el inicio del 



   

crecimiento como el de la producción de AFB1 se vio retrasado hasta 9 días cuando se pasó 

de un inóculo concentrado (500 esporas) a una sola espora. En cuanto a la cantidad de AFB1 

producida, no se encontró un patrón claro relacionado con la concentración de inóculo, ya 

que en ocasiones se estimuló la producción y en otras se vio inhibida.  

Además, se realizaron tres estudios bajo condiciones ambientales dinámicas. Se llevaron a 

cabo varios enfoques incluyendo funciones polinómicas/probabilísticas donde se 

introdujeron diferentes perfiles de temperatura y aw. Los modelos predictivos obtenidos 

demostraron ser capaces de predecir  tanto el crecimiento como la producción de toxina, 

con niveles de concordancia entre 70-100% para casi todos los perfiles. Finamente, la 

validación de dichos modelos predictivos dinámicos en pistachos y granos de maíz, mostró la 

aplicabilidad de los mismos para predecir el crecimiento y la producción de AFB1, siempre 

que se incluya la aw como variable en el modelo.  

El presente trabajo proporciona una base para el desarrollo de modelos científicamente 

probados, que pueden ser aplicados por  la industria alimentaria para mejorar el control de 

micotoxinas en postcosecha. 

  



   

Resum 

Les aflatoxines són potents carcinògens que representen una amenaça significativa per a la 

salut humana. La incidència d'aquestes micotoxines en els aliments és alta, de manera que el 

seu control i prevenció són necessaris en la indústria alimentària. El desenvolupament de 

models predictius apropiats que ens permetin predir el creixement fúngic i la producció de 

micotoxines és de gran utilitat com a eina per controlar, predir i prevenir el risc de 

micotoxines en aliments. És important que els models predictius siguin capaços d'explicar les 

condicions ambientals que es troben al llarg de la cadena alimentària. Entre aquestes 

condicions trobem: condicions subòptimes per al creixement i producció de micotoxines, 

distribució aleatòria d'espores en l'aliment, presència de diferents soques de la mateixa 

espècie o condicions ambientals canviants. 

Donat l'abast i la complexitat del problema, hi ha una necessitat de desenvolupar eines 

predictives que puguin ajudar a controlar les micotoxines en els aliments, i que serveixin 

d'ajuda durant el transport i l'emmagatzematge. 

En aquest treball s’ha demostrat que la capacitat predictiva dels models es pot veure 

compromesa quan les condicions experimentals són marginals, tant per al creixement com 

per a la producció de micotoxines; en aquestes condicions s'espera major variabilitat en els 

resultats. A més els models probabilístics han de ser capaços d'explicar la capacitat d'iniciar 

el creixement de les espores fúngiques presents en el substrat, ja que ha quedat demostrat 

que no totes les espores inoculades van ser capaces de donar lloc a colònies en condicions 

subòptimes. 

La presència de diferents soques d'una espècie en un mateix nínxol és un tret comú. Els 

models predictius desenvolupats per a les diferents soques estudiades van revelar que el 

creixement i la producció de aflatoxina B1 (AFB1) poden variar entre les soques, sobretot a 

mesura que les condicions ambientals es tornen més marginals. S'ha observat una major 

variabilitat entre soques per a la probabilitat de producció de AFB1 que per al creixement. La 

quantitat de AFB1 produïda va ser molt variable entre les diferents soques, oscil·lant entre 9 

i 6000 ppb per a unes mateixes condicions. 

En aquesta tesi ha quedat demostrat el gran efecte que té la concentració d'espores de 

l'inòcul tant en el creixement com en la producció de AFB1. Tant l'inici del creixement com 

l'inici de producció de AFB1 es va veure retardat fins a 9 dies quan es va passar d'un inòcul 



   

concentrat (500 espores) a una sola espora. Pel que fa a la quantitat de AFB1 produïda, no es 

va trobar un patró clar relacionat amb la concentració d'inòcul, ja que en ocasions es va 

estimular la producció i en altres es va veure inhibida. 

A més, es van realitzar tres estudis sota condicions ambientals canviants. Es van dur a terme 

diversos enfocaments incloent funcions polinòmiques / probabilístiques on es van introduir 

diferents perfils de temperatura i aw. Els models predictius obtinguts van demostrar ser 

capaços de predir tant el creixement com la producció de toxina, amb nivells de 

concordança entre 70-100% per a gairebé tots els perfils. Finament, la validació d’aquests 

models predictius dinàmics en pistatxos i grans de blat de moro, va mostrar l'aplicabilitat 

dels mateixos per predir el creixement i la producció de AFB1, sempre que s'inclogui l'aw com 

a variable en el model.  

El present treball proporciona una base per al desenvolupament de models científicament 

provats, que poden ser aplicats per la indústria alimentària per millorar el control en 

postcollita. 
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μ, maximum growth rate 

λ, estimated apparent lag time for growth  

AFB1, aflatoxin B1 

aw, water activity. 

PG, probability of growth 

PAF, probability of AFB1 production initiation 

R0, initial radius 

Rt, radius at time t 

T, temperature (°C) 

t, time 

t10, estimated time to reach 0.10 probability 

t50, estimated time to reach 0.50 probability 

t90, estimated time to reach 0.90 probability 

t100, estimated time to reach 1 probability 

tg,  Geometrical germination time 

tvg, time to visible growth 
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1. Mycotoxins in agricultural products: an overview 

The contamination of agricultural products by fungi is often an additive process, which 

begins in the field and increases during harvest, drying and storage (CAST, 2003). Fungal 

infection entails many disadvantages such as grain yield losses or decreasing the processing 

and nutritional quality of the grain (Christensen and Kaufmann, 1969). However, the losses 

incurred as a result of fungal growth are not only economic but also are of public and animal 

health concern due to the possible production of mycotoxins. 

 

Mycotoxins are secondary metabolites produced naturally by about 200 recognized 

filamentous fungi growing under a wide range of climatic conditions on different substrates 

(Atanda et al., 2011; Binder et al., 2007). Pitt (1996) defined mycotoxins as “fungal 

metabolites that when ingested, inhaled or absorbed through the skin cause illness to 

human and animal death”. Contamination of foodstuffs with mycotoxins is of concern both 

pre- and post-harvest and can represent a great risk for human and animal health. Up to 

now, it has been documented that approximately 400 secondary metabolites with toxicity 

potential are produced by more than 100 moulds. Main fungal genera producing mycotoxins 

are Aspergillus, Penicillium, Alternaria, Fusarium, and Claviceps. Key mycotoxins which are 

highly prevalent in contaminated agricultural products are aflatoxins (AFs), ochratoxin A 

(OTA), trichothecenes (deoxynivalenol (DON) and T-2 toxin), zearalenone (ZEA), fumonisins 

(FBs) and patulin (PAT). It is important to highlight that the same fungal species can produce 

different mycotoxins, for example, Aspergillus flavus produces mainly AFs but can also 

produce cyclopiazonic acid (CPA). Human exposure can occur through contaminated foods 

such as cereal grains, ground nuts, milk, meat, eggs, etc., or more unusually by the inhalation 

of polluted air and dust (Bryden, 2007). When ingested by humans or animals above a 

certain concentration, mycotoxins will cause a toxic response referred to as mycotoxicosis.  

 

Toxicological effects in humans comprise: carcinogenic (AFs, OTA and FBs), mutagenic (AFs 

and sterigmatocystin), teratogenic (ochratoxins), estrogenic (ZEA), hemorrhagic 

(trichothecenes), immunotoxic (AFs and ochratoxins), nephrotoxic (ochratoxins), 

hepatotoxic (AFs), dermotoxic (trichothecenes) and neurotoxic (ergotoxins)  effects (Marín 

et al., 2013; Steyn, 1995). As mentioned previously, besides their health impacts, mycotoxins 
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also affect the agricultural trade among countries through decreasing livestock and crop 

yield production. According to FAO surveys during the last decades, up to a 25% of world 

agriculture products are contaminated with mycotoxins. A summary of the main mycotoxins, 

the producing fungi, with description of their health effects and commodities affected is 

listed in Table 1.  

 

Modern mycotoxicology began with the discovery of AFs after the death of a large number 

of turkeys in 1961 in England which was attributed to consumption of peanut meal 

incorporated in the diets (Blount, 1961). Since then, many human and animal diseases have 

been associated with mycotoxins spoiling food and feed. Ergotism (Saint Anthony’s fire) is 

the oldest known mycotoxicosis caused by the toxic mould Claviceps purpurea that 

contaminate rye flour. Other examples are the yellow rice disease, caused by the 

consumption of rice contaminated with citreoviridin in Japan; the alimentary toxic aleukia 

(ATA) in Russia is believed to be caused by consumption of grains contaminated with T-2 and 

HT-2 toxins produced by Fusarium sporotrichioides and F. poae. The ingestion of AFs is 

related to human primary liver cancer, in Africa and South East Asia.  

Since the late 1960’s, regulations for mycotoxins have been established in food and feed in 

many countries to protect consumers from mycotoxins. International and government 

authorities in many countries have been investing in mycotoxins research, elaborating 

legislation and implementing regulatory measures for the control of mycotoxins. The current 

European legislation CE n. 1881/2006 and subsequent amendments establishes the 

maximum levels of mycotoxins allowed in human food and Directive 2003/100/EC amending 

Directive 2002/32 EC, for animal feed.  

 

Due to all of these reasons, mycotoxins control through the food chain is of paramount 

importance, and developing tools that allow their prevention, control and prediction are 

highly needed. Predictive mycology is one of these tools, since the prediction of fungal 

growth and mycotoxin production seems to be a promising approach and could play a role in 

improving the quality and safety of food (Dantigny and Panagou, 2013; Dantigny et al., 

2005). This tool may help for adequate decision making purposes, risk assessment and in the 

implementation of mitigation strategies (see section 3). 
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Table 1. (part 1 of 2) Main mycotoxins, producing fungi, with description of their health 

effects and commodities affected. 

Mycotoxin Mould Commodity Possible toxic effects 

Aflatoxins Aspergillus section 

Flavi 

Corn, peanut, cotton, 

nuts, soya beans, spices, 

dairy products  

Liver diseases (hepatotoxic, 

hepatocarcinogenic), carcinogenic 

and teratogenic effects, 

hemorrhages, reduced growth rate, 

immune suppression 

Ochratoxins Aspergillus section 

Circumdati, Aspergillus 

section Nigri, 

Penicillium 

verrucosum, 

Penicillium nordicum 

Wheat, barley, corn, 

beans, grapes, wine, 

spices, cheeses, nuts 

Carcinogenic, nephrotoxic, mild liver 

damage, teratogenic effects, poor 

feed conversion, reduced growth 

rate, immune suppression 

Fumonisins Fusarium section 

Liseola 

Corn, soya beans Equine leukoencephalomalacia 

nephrotoxic and hepatotoxic, 

immune suppression, pulmonary 

edema 

Alternariol and 

tenuazoic acid 

Alternaria spp. Tomatoes, sunflower, 

barley, apples 

Mutagenic, fetotoxic and teratogenic 

Trichothecenes Fusarium acuminatum, 

F. poae, F. 

sporotrichioides, F. 

langsethiae 

F. graminearum, F. 

culmorum, F. cerealis  

Corn, wheat, soya 

beans, animal feeds 

Digestive disorders, reduced weight 

gain; hemorrhages,  edema, oral 

lesions, dermatitis, blood disorders, 

infertility, degeneration of bone 

marrow, reduced growth rate, 

immune suppression 

Adapted from (Bennett et al., 2003; CAST, 2003; García-Cela et al., 2013). 
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Table 1. (part 2 of 2) Main mycotoxins, producing fungi, with description of their health 

effects and commodities affected. 

Mycotoxin Mould Commodity Possible toxic effects 

Zearalenone Fusarium 

graminearum, F. 

culmorum, F. equiseti, 

F. cerealis, F. 

verticillioides, F. 

incarnatum 

Corn, wheat, soya 

beans, animal feeds 

Estrogenic effects, edema of vulva, 

prolapse of vagina, enlargement of 

uterus,  atrophy of testicles, atrophy 

of ovaries,  enlargement of mammary 

glands, infertility, abortion 

Ergot alkaloids Claviceps purpurea, C. 

fusiformis, C. africana, 

Neotyphodium spp. 

Rye, wheat Nervous or gangrenous syndromes, 

digestive disorders, reduced weight 

gain, convulsion, abortion 

Cyclopiazonic 

acid 

Penicillium and 

Aspergillus species 

Peanut, sunflower, corn Necrotic effects (liver, 

gastrointestinal tissue, kidneys, 

skeletal muscles), carcinogenic, 

neurotoxic 

Citrinin Penicillium and 

Aspergillus species 

Wheat, barley, corn, rice Nephrotoxic, teratogenic, 

hepatotoxic 

Roquefortine Penicillium roqueforti, 

P. camemberti (P. 

caseicola) 

 Neurotoxic 

Patulin Penicillim expansum, 

Bysochlamis nívea, 

Aspergillus clavatus 

Apples and by-products Mutagenic, genotoxic, neurotoxic, 

immune suppression 

Adapted from (Bennett et al., 2003; CAST, 2003; García-Cela et al., 2013). 
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1.1. Aflatoxins 

Amongst mycotoxins, AFs are a highly important group of toxins of greatest concern from a 

global perspective due to their unavoidable presence in a great variety of foods and feeds 

and to their high toxicity. As mentioned in the previous section, they were discovered in 

England as a consequence to the death of 100.000 turkeys ('Turkey X disease'). AFs are 

primarily produced by Aspergillus flavus and A. parasiticus, and rarely by A. nomius. More 

than 20 different types of AFs structures have been identified, but the most prevalent and 

toxic forms are AFB1, AFB2, AFG1 and AFG2 (Pittet, 1998). 

Major aflatoxins have been classified into B and G series due to their fluorescence, being 

blue and green in UV, respectively. The B series (AFB1 and AFB2) are chemically known as 

difurocoumarocyclopentenones and the G series (AFG1 and AFG2) are 

difurocoumarolactone series. Structurally the dihydrofuran moiety, containing a 

doublebond, and the constituents linked to the coumarin moiety are of importance in 

producing biological effects. For the B series, cyclopentenone was reported to be 

responsible for the major toxicity observed (Figure 1).  

 

 

 

 

Figure 1. Structure of aflatoxins (AFB1, AFB2, AFG1 and AFG2) (Cole et al., 2003).  
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Foods most commonly contaminated by AFs include maize, rice, peanuts, pecans, almonds, 

hazelnuts, Brazil nuts, pistachio nuts, and walnuts (Barkai-Golan, 2008; Bui-Klimke et al., 

2014; Carvalho et al., 2016; Chauhan et al., 2010; Chhotaray et al., 2015; Fernane et al., 

2010; Ferre, 2016; Wu, 2015).  

AFB1, the most abundant and most toxic aflatoxin, is often referred to as the most potent 

naturally occurring carcinogen. It is classified as a Group 1 human carcinogen by the 

International Agency for Research on Cancer (IARC, 1993). 

The incidence of AFs in food and feed is relatively high in tropical and subtropical regions 

where the warm and humid climate provides optimal conditions for the growth of these 

moulds (Klich, 2007).  

 

Figure 2 illustrates the general time course trend of AFs (including production and 

diminution of content), using as a food example pistachio nuts (Figure 2a) and maize (Figure 

2b). The figure shows in a qualitative way the increase/decrease in AFs levels in these two 

agricultural products from the field to final products. From this figure it is concluded that 

postharvest stages, including transport and storage, are steps of particular risk for AFs 

accumulation.  

 

 



  

 

Figure 2. The time course of aflatoxin formation and reduction in a) pistachio nuts and b) 

maize. From Pitt et al. (2013)

 

Due to the climate change, a global increase in temperature and changes in the at

composition (gases) and humidity will occur. As a result, the pattern of mycotoxins 

distribution in the different regions of the world will change 

al (2016) using a model for climate change, forecasted that aflatoxin may become an even 

major issue in the agricultural industry, especially in a scenario where temperatures ri

°C.  

Considering the above points, greater consideration must be taken to reduce and prevent 

Aspergillus sp. in food products all over the food chain in order to protect human and animal 

health.  
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in food products all over the food chain in order to protect human and animal 
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2. Mycotoxins prevention through the food chain: Predictive mycology 

Mycotoxins can contaminate a product all over the food chain, in the field as well as during 

storage, or at later points (Figure 3). Approaches to prevent mycotoxins in foods and feeds 

include pre- and post-harvest strategies. Regarding aflatoxins, A. flavus  comes in contact 

with crops before harvest, and then the fungi can remain associated with the crop through 

harvest and storage (Lillehoj, 1987), and the agricultural product becomes contaminated 

with aflatoxins, both before and after harvest. However, aflatoxin contamination is more 

likely to occur in the post-harvest stage if the product is not handled properly to minimize 

the thriving of the fungi.  

 

PREHARVEST

HARVEST/
DRYING

STORAGE

Climatic conditions
Agronomic practices

Presence of insects, 
fungi, spore load and 
plant diseases

Water activity of the crop 
Plant variety 
Nutrient composition

Temperature
Fungi presence and 
spore load
Mechanical damage

Rewetting
Blending of grain
Final moisture content

Presence of insects and 
fungi, spore load

Water activity
Nature and composition 
of the substrate

Temperature
Mechanical damage
Addition of preservatives
Oxygen 

 

Figure 3. Brief description of the food chain and the main factors influencing fungal growth 

and mycotoxin production. Modified from Magan et al. (2004). 
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The best way to prevent fungal contamination in an agricultural product would be the 

prevention of mycotoxin formation in the field (preharvest stages), which is supported by 

proper crop rotation and fungicide administration at the right time and in overall Good 

Agricultural Practices (GAP). However, control of field factors is known to be difficult and can 

be affected by many factors such as plant varieties, environmental conditions or climate 

change. The implementation of Good Manufacturing Practices (GMP) during handling, 

storage, processing and distribution represents an important line of defense in controlling 

the postharvest contamination of commodities by mycotoxins. Post-harvest control 

measures are often categorized into physical, chemical and biological methods (Jouany, 

2007). The most common strategy to decrease mould contamination after harvest is rapid 

drying of the agricultural product in order to reduce its water activity (aw). Removal or 

detoxification of mycotoxins has been studied using physical (Liu et al., 2011; Mann et al., 

1967; Paster et al., 1985), chemical (Dombrink-Kurtzman et al., 2000; Jalili et al., 2011; 

Prudente and King, 2002) or biological (Aiko and Mehta, 2013; Das and Mishra, 2000; 

Shantha, 1999; Singh et al., 1994) methods. Efficient degradation of mycotoxins is a 

challenge since most mycotoxins are heat-stable and form toxic degradation products 

(Bullerman and Bianchini, 2007). Although several detoxification methods have been 

developed, only a few have been accepted for practical use. 

 

Beyond these strategies, predictive mycology can provide valuable information allowing 

prediction of fungal development and mycotoxins production under certain conditions and 

substrates.  Predictive mycology is a subfield of predictive microbiology which is devoted to 

predict the occurrence of food-borne pathogens, through mathematical equations, taking 

into account mould specificities. 

 

2.1. Predictive mycology, a subfield of predictive microbiology  

Predictive models are mathematical tools that can be used to assess product shelf-life and 

safety.  Models can also be used for products development, to identify areas where 

challenge testing should be undertaken or as a tool for HACCP plan and risk assessment 

development. 
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Predictive models are a very quick, efficient and cost effective way of assessing the potential 

for growth of microorganisms under specific conditions without needing practical studies. 

Predictive microbiology enables quantitative prediction based on the sequence of events in 

the whole history of the product, and can be used to determine what may happen in many 

different scenarios.  

For over 20 years, predictive microbiology has been developed for predicting the occurrence 

of food-borne pathogens, however it has been focused mainly on bacterial behavior. The 

inherent differences between bacterial and mould growth imply that such tools take into 

account for mould specificities, thus the name “predictive mycology” was coined to 

differentiate the modeling of fungal growth and mycotoxin production from that of bacteria 

(Dantigny et al., 2005).  

In the last years a growing number of studies are available in the literature dealing with 

predicting fungal growth (Astoreca et al., 2012; Battilani and Leggieri, 2015; Garcia et al., 

2013, 2010; Ioannidis et al., 2015; Marín et al., 2008; Pardo et al., 2005; Samapundo et al., 

2007b, 2005, 2007a; Tassou et al., 2007; Yogendrarajah et al., 2016) highlighting the 

importance of this field for the food and feed industry.  

 

Membré and Lambert (2008) presented some applications of predictive microbiology in 

industrial contexts, categorizing them into three groups related to food safety, namely 

“product innovation”, “operational support” and “incident support”. Predictive models are 

split up into two categories regarding their objectives: kinetic and probabilistic models. 

 

Kinetic models 

Whiting and Buchanan (1993) classified predictive models as primary, secondary and tertiary 

models.  

 

a) Primary models describe how population density changes with time in a specified 

environment. These types of models represent the basis for developing strategies in 

the food industry. Regarding mycological studies the main primary models employed 

are: Baranyi model (Baranyi and Roberts, 1994) and the modified Gompertz model. 
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b) Secondary models are the mathematical models that describe the responses of one 

or more parameters of a primary model to one or more environmental conditions. 

The most used secondary models in predictive mycology include the polynomial, 

cardinal, and logistic models. 

 

c) Tertiary models are application tools such as computer software or expert systems 

that utilize the primary and secondary models to predict the fate of microorganisms 

in foods. The primary and secondary models are the foundation for building a 

tertiary model. 

 

Dagnas and Membré (2013) and Garcia et al. (2009) reviewed the existing models regarding 

mould growth and mycotoxins production and gave a comprehensive description of them.  

 

Probabilistic models 

In predictive mycology, probabilistic models are used to predict the probability of growth or 

mycotoxin production of a microorganism under different conditions (Tienungoon et al., 

2000). Probabilistic models are useful tools where the objective is to determine whether or 

not an event, such as fungal growth or mycotoxin production, will occur. Besides, prediction 

of boundaries between growth and no growth of foodborne pathogens may be achieved 

with probabilistic models.  

 

The logistic equation relates the independent variable (X) to the probability of an event 

occurring (y), often linked to a polynomial model. 

 

�������� 	 �
 ����
1 � ���� 	 �� � � ���� 

 

Where P is the probability of the event occurring (range from 0 to 1), the coefficients bi are 

the estimated parameters, and the xi values are the independent factors (e.g., aw, 

temperature, and pH).  
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Logistic regression can be a useful method for modeling boundaries between growth and no 

growth or presence and absence of mycotoxin production by fungi (Astoreca et al., 2012; 

Garcia et al., 2011a; García-Cela et al., 2014; Koutsoumanis and Sofos, 2005; Marín et al., 

2009, 2008; Tassou et al., 2009; Vermeulen et al., 2012). 

 

3. Relevant variables to take into account for developing predictive models  

In order to make the prediction obtained through the predictive models as real and accurate 

as possible, some factors should be considered under the experimental conditions defined 

to generate the data which will be used to build the models. 

Among these factors we can find marginal environmental conditions, intraspecies variability, 

inoculum size, fluctuation of environmental conditions, etc. 

 

3.1. Marginal environmental conditions 

Contamination may occur in the field as well as during (improper) storage and is largely 

dependent on environmental factors, these environmental conditions play a key role in 

mould development and determine how the fungi will behave. In general, foods and feeds 

are stored under marginal conditions for mould growth and mycotoxin production.  Thus, in 

order to correctly extrapolate results from the experiments to real contamination scenarios 

experimental design should include such conditions. 

Lillehoj (1987) highlighted the importance of taking into account marginal conditions when 

setting the conditions of mycological experiments. They worked with AFs production in 

maize and pointed that some of the literature on aflatoxin may not be useful or realistic in 

helping to determine the likelihood of aflatoxin production because of the experimental 

conditions used. 

Some studies have also demonstrated the impact that marginal environmental factors may 

have on mould growth and mycotoxin production (Garcia et al., 2011c, 2010; Marin et al., 

1998; Pose et al., 2010; Romero et al., 2007; Tassou et al., 2007). 

 

3.2. Strain variability  

Strain variability is defined as an inherent characteristic of microorganisms that cannot be 

reduced when strains are identically treated under the same set of conditions (Whiting and 
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Golden, 2002) . 

Fungal populations in agricultural products and foods are complex communities that contain 

many different strains of a specie. Their growth and mycotoxin production potential are 

known to vary among them (Abbas et al., 2004; Adhikari et al., 2016; Singh et al., 2015; 

Yogendrarajah et al., 2016; Yousefi et al., 2009). There are many studies reporting the 

variability among isolates in terms of growth and mycotoxin production (Abbas et al., 2005; 

Astoreca et al., 2007; Bellí et al., 2004; Garcia et al., 2011a, 2011b, 2011c; Lahouar et al., 

2016; Mitchell et al., 2004; Pardo et al., 2004; Romero et al., 2007; Singh et al., 2015; 

Yogendrarajah et al., 2016).  For example, Garcia et al. (2011a) studied the growth and 

ochratoxin A (OTA) production of thirty isolates of  A. carbonarius. Their results showed a 

wide dispersion in both growth rate and mycotoxin production, especially under marginal 

conditions. Thus, accounting for intraspecies variability in mycological studies is required to 

give more realistic predictions.  

 

3.3. Inoculum size 

The vast majority of studies in predictive mycology were carried out with large spore 

inoculum sizes (Char, 2005; Garcia et al., 2013; Koutsoumanis et al., 2010; Romero et al., 

2010). However, in practice most foods are contaminated by low numbers of fungal spores 

(Burgain and Dantigny, 2016; Burgain et al., 2013; Gougouli et al., 2011). It is known that 

growth results may differ following inoculation by single spores compared with a higher 

concentration of spores (Baert et al., 2008; Burgain et al., 2013; Chulze et al., 1999; Garcia et 

al., 2010; Gougouli and Koutsoumanis, 2013; Morales et al., 2008; Sautour et al., 2003).  

Sautour et al. (2003) reported that there is a need for standardizing spore preparation in 

predictive mycology, and thus it should be considered in the design of challenge tests and in 

quantitative risk assessment. Few studies have investigated the effect of inoculum size on 

mycotoxin production (Chulze et al., 1999; Morales et al., 2008). 

 

 

 

3.4. Dynamic environmental conditions 

Most of the available information on fungal growth and mycotoxin production has been 
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developed and validated based on data from constant conditions.  However, environmental 

factors can fluctuate during transport, storage, distribution, retail and domestic storage of 

food. Such fluctuations should be taken into account, otherwise the model outcome may 

lead to wrong decisions. Only few studies have dealt with this issue (Garcia et al., 2012; 

Gougouli and Koutsoumanis, 2012, 2010; Ryu and Bullerman, 1999), thus there is a need for 

studying and modeling fungal behavior in real situations, such as dynamic temperature 

conditions. 
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Moulds can grow and produce mycotoxins during storage of raw products, and 

subsequent transport, additional storage periods, and sale causing considerable 

economic losses for food manufacturers and consumers. Predictive mycology, by 

providing tools allowing for the prediction of fungal growth and mycotoxin 

production, can play a very important role in improving the quality and safety of 

food. Among fungi, Aspergillus flavus is a worldwide widespread fungus producer of 

aflatoxins, which contaminates many agricultural products and it is responsible for 

quantitative and qualitative yield losses. In the last few years, probability models 

have been proposed as a useful alternative to predict and prevent from mycotoxin 

accumulation in raw materials. Before such models can be applied to real situations, 

a number of issues must be addressed. In order to develop realistic and accurate 

predictive models, the experimental data used to generate the models should take 

into account many factors which may affect the predictions. Such factors are strain 

variability, inoculum size, fluctuating environment and marginal conditions for 

growth. The present dissertation study was set-up and carried out to address some of 

the issues highlighted above, focusing in: 

 

a) To assess the effect of marginal environmental conditions on fungal 

behaviour and probability models development. 

 

b) To identify and study the differences among isolates in a species under 

different environments. 

 

c) To evaluate the effect of inoculum size in the outcome of predictive models. 

 

d) To determine the influence of dynamic environments on Aspergillus flavus 

grow and aflatoxin production, and to try to develop probability predictive 

models that account for such environments. 



 

To achieve these goals, the following work plan was proposed: 
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Chapter I 
Single vs multiple-spore inoculum effect on growth 

kinetic parameters and modeled probabilities of growth 

and aflatoxin B1 production of Aspergillus flavus on 

pistachio extract agar 
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 Abstract 

The objective of the present study was to assess the differences in modeled growth/AFB1 

production probability and kinetic growth parameters for Aspergillus flavus inoculated as single 

spores or in a concentrated inoculation point (~500 spores). The experiment was carried out at 

25 °C and at two water activities (0.85 and 0.87) on pistachio extract agar (3%). Binary data 

obtained from growth and AFB1 studies were modeled using linear logistic regression analysis. 

The radial growth curve for each colony was fitted to a linear model for the estimation of the lag 

phase for growth and the mycelial growth rate. In general, radial growth rate and lag phase for 

growth were not normally distributed and both of them were affected by the inoculation type, 

with lag phase for growth more affected. Changing from the multiple spore to the single spore 

inoculation led to a delay of approximately 3-5 days on the lag phase and higher growth rates 

for the multiple spore experiment were found. The same trend was observed on the probability 

models, with lower predicted probabilities when colonies came up from single spores, for both 

growth and AFB1 production probabilities. Comparing both types of models, it was concluded 

that a clear overestimation of the lag phase for growth occurred using the linear model, but only 

in the multiple spore experiment. Multiple spore inoculum gave very similar estimated time to 

reach some set probabilities (t10, t50 and t100) for growth or AFB1 production due to the 

abruptness of the logistic curve developed. The observed differences suggest that inoculum 

concentration greatly affects the outcome of the predictive models, being the estimated times 

to growth/ AFB1 production much earlier for the concentrated inoculum than for a single spore 

colony (up to 9 days). Thus the number of spores used to generate data in predictive mycology 

experiments should be carefully controlled in order to predict as accurately as possible the 

fungal behaviour in a foodstuff.  

 

 

Keywords inoculum, predictive models, probability, logistic regression, mould growth, aflatoxin, 

Aspergillus  
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 1.  Introduction 

Considering that airborne fungi are ubiquitous, mould food contamination is very likely. Once 

contamination occurs, fungal growth and hence mycelium appearance on its surface within the 

product shelf life may occur. Knowledge of environmental conditions promoting fungal growth 

and mycotoxin biosynthesis seems to be a crucial step towards minimising mycotoxin formation 

in stored products, and preventing their deleterious effects on animals and humans. A helpful 

approach to mycotoxin prevention is to minimize its production both in the field and during 

storage (Bruns, 2003), by monitoring and controlling the environment. Predictive mycology is a 

useful tool to model fungal responses such as growth and mycotoxin production in food 

products and a valuable tool in controlling parameters in the food industry environment. Due to 

the high variability in mycotoxigenic potential of different fungal strains, modeling toxin 

formation may be challenging (Marín et al., 2008). Thus the use of either growth or mycotoxin 

probability models to forecast the mycotoxin presence may be a good alternative.  

 

The vast majority of studies in predictive mycology were carried out with large spore inoculum 

size (Char, 2005; Garcia et al., 2013; Gougouli and Koutsoumanis, 2010; Parra and Magan, 2004; 

Patriarca et al., 2001; Romero et al., 2010). However, in practice most foods are contaminated 

by low numbers of fungal spores (Burgain et al., 2013; Burgain and Dantigny, 2016; Gougouli et 

al., 2011).  It is known that growth results may differ following inoculation by single spores 

compared to a higher concentration of spores (Baert et al., 2008; Burgain et al., 2013; Chulze et 

al., 1999; Garcia et al., 2010; Gougouli and Koutsoumanis, 2013; Morales et al., 2008; Sautour et 

al., 2003). Sautour et al. (2003) reported that there is a need for standardizing spore preparation 

in predictive mycology, and thus it should be considered in the design of challenge tests and in 

quantitative risk assessment. Few studies have investigated the effect of inoculum size on 

mycotoxin production (Chulze et al., 1999; Morales et al., 2008). 

Aspergillus flavus is worldwide distributed with a high frequency of occurrence in warm climates 

(Pitt and Hocking, 2009). A. flavus produces aflatoxin B1 (AFB1), a potent carcinogen which is 

listed in group I by the International Agency for Research of Cancer (IARC, 1993). Knowing and 

predicting its production is of paramount importance for the food and feed industries.  
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The objective of the present study was a) to model the probability of growth and AFB1 

production using a single spore and a concentrated inoculum, as well as b) examine the 

distribution of the kinetic growth parameters and probabilities of growth and AFB1 production 

due to the different inoculum levels. A. flavus was chosen as a model mycotoxigenic 

microorganism, and was grown in pistachio extract agar (3%) under marginal water availability 

conditions. 

 

2. Material and methods 

2.1. Fungal isolate and inoculum preparation 

The isolate used in the study, A. flavus (UdL-TA 3.267), was taken from the Food Technology 

Department Collection of the University of Lleida, and had been previously isolated from 

pistachio nuts. The isolate was sub-cultured on potato dextrose agar (PDA) medium and 

incubated at 25 °C for 7 days to enable significant sporulation. After incubation, spores were 

collected by scraping the surface of the plates, diluting them in sterile water adjusted to aw 

values of 0.85 and 0.87 with glycerol containing Tween 80 (0.05% v/v), and filtered through 

sterile glass wool into a tube. . Immediately total spore concentrations were determined using a 

Thoma counting chamber and decimal dilutions (prepared in sterile water adjusted to aw values 

of 0.85 and 0.87 with glycerol containing Tween 80 (0.05% v/v)), were prepared to 10
2
 

spores/mL for the single spore studies and to 10
5
 spores/mL for the multiple spore inoculation 

studies.  

 

2.2 Medium 

The medium used was 3% (w/v) pistachio extract agar (PEA) that was made by boiling 60 g of 

raw dehulled ground pistachio in 1 L distilled water for 30 min. After that, the extract was 

filtered and the amount of evaporated water was made up to adjust it to 6% of pistachio. Water 

activity of the media was adjusted by addition of certain amounts of glycerol for a final aw of 

0.85 and 0.87 and 3% of pistachio. Then, 12 g of agar were added per L of medium (for each aw) 

and they were autoclaved and poured into 90 mm sterile Petri dishes which were prepared 

under aseptic conditions. A total of 25 plates for the growth study and another 25 for the AFB1 
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production assessment, for each aw, were prepared for the multiple spore inoculum experiment. 

For the single spore experiment, 40 additional plates, per aw, were prepared.  

 

2.3 Inoculation and incubation  

2.3.1. Single spore inoculum growth and AFB1 production studies  

A 0.1 mL aliquot of 10
2
 spores/mL suspensions were surface plated onto PEA (3%) and spread 

with a sterile bent glass rod, in order to obtain ca. 5-10 spores per Petri dish. Ten plates were 

prepared for each aw and study (growth or AFB1 production). Thus, each Petri plate would 

contain 5 to 10 colonies, each one originating from one spore. Petri dishes with the same aw 

were enclosed in polyethylene boxes together with a glycerol–water solution at the same aw to 

maintain the relative humidity inside the boxes. Plates were incubated at 25 °C, and each Petri 

dish was checked daily (about 250 total colonies). 

 

2.3.2 Multiple spore inoculum growth and AFB1 production studies 

The inoculation was performed by pipetting 5 μL of the spore suspension (10
5
 spores/mL), onto 

four equidistant points on each of 25 Petri plates (=100 colonies). Thus, in each Petri plate there 

were 4 colonies, each one originating from approximately 500 spores. Petri dishes with the 

same aw were enclosed in polyethylene boxes and incubated at 25 °C, during which the growth 

of the colony was monitored. Growth was assessed by measuring the perpendicular colony 

diameters in millimetres periodically, without opening the dishes. The experiment was repeated 

for both aw (0.85 and 0.87) and for the AFB1 production study (200 further colonies). 

 

2.4. AFB1 determination 

AFB1 presence was determined from the first sign of growth till the end of the study (39 days). 

For the multiple spore inoculum study, the size of the inoculation drop was about 3 mm, then 

the radii of the colonies from which AFB1 presence was assessed varied from 3 mm up to 25 

mm. In the case of the single spore inoculum, colony size ranged from 0.5 to 7.5 mm radius (due 

to the presence of other colonies in the plates). Nevertheless, this range was enough to obtain 
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the required data. A 5-mm agar plug was taken from the centre of a colony at appropriate time 

intervals, 4 agar plugs were collected at each sampling time for the multiple spore experiment 

and from 3 to 6 agar plugs (depending on the number of colonies on the plate) were collected at 

each sampling time for the single spore inoculum experiment. After sampling, the plates were 

taken back to incubation, for latter assessment of the other colonies present in the Petri plates. 

Plugs were weighed and vortexed for approximately 5 seconds in 1mL of methanol and left 

stationary. After 1 hour, extracts were vortexed again and filtered (Millex
R
 SLHV 013NK, 

Millipore, Bedford, MA, USA). Extracts were dried in a nitrogen stream and stored at 4 ⁰C until 

HPLC analysis. The analysis was carried out using a previously described high performance liquid 

chromatography (HPLC) method (Aldars-García et al., 2015). For the HPLC analysis all extracts 

were resuspended with 0.5 mL of methanol:water (50:50 v/v) and 100 μL was injected in the 

HPLC system (Waters, Milford, MA, USA). The detection limit of the analysis was 0.1 ng/g of 

AFB1, based on a signal-to- noise ratio of 3:1. 

 

2.5. Model fitting 

2.5.1. Growth study through kinetic models 

During incubation, Petri plates were examined every day and the perpendicular diameters of 

each colony were measured. Radii of colonies from the multiples spores experiment were 

corrected by subtracting 1.5 mm (radius of the inoculation drop) from the diameter registered 

of each colony. Radii of growing colonies were plotted against time, and a linear model (1) was 

fitted to the growth curves to estimate maximum radial growth rate (μ, mm/day) and lag time 

for growth (λ, day) for each condition, using R statistical software (R Development Core Team, 

www.R-project.org, v 2.14.1). 

R(t) = R(0) + μ (t−λ)                                                                                                                                         (1) 

where R(t) is the radius at time t, R(0)  is 0 for both the single spore  experiment and the multiple 

spore one, and t is the incubation time (d). 

The goodness of fit was evaluated by the r
2
 and the root mean square error (RMSE). Moreover, 

the distribution of the estimated parameters was also assessed. 
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2.5.2. Probability of growth and AFB1 production 

Logistic regression was used to model the probability of growth (Eq. 2) and AFB1 production (Eq. 

3) as a function of time, using R statistical software with the glm function. The binary values 

along time (0=no visible growth/no AFB1 production; 1= growth/AFB1 production) were 

adjusted by linear logistic regression, in order to obtain the four different probability models; for 

each type of inoculum (single spore and concentrated inoculum) two models were developed: 

one for growth and another one for AFB1 production probability. From each regression curve, 

the time to reach 0.10 (t10), 0.50 (t50) and 0.90 (t90) probability was estimated by inverse 

prediction. 

��������	 
 �� 
���	
��
���	 
 �� � ���                                                                                                        (2) 

���������	 
 �� 
����	
��
����	 
 �� � ���                                                                                                     (3) 

Where PG and PAF are the probability of growth or AFB1 production (in the range of 0–1), t is the 

time, and bi are the coefficients to be estimated.  

The percentage of concordance between observed and predicted values with a cut off of 0.5 and 

the area under the curve (AUC) were calculated to measure the goodness-of-fit of the 

developed logistic models. The fitted linear logistic models described satisfactorily the 

probability of growth and AFB1 production over time for all the experiments, with concordances 

between observed and predicted values (cut off 0.5) between 85-100%. None of the Hosmer-

Lemeshow tests were significant (confidence level 95%) which demonstrated the good fitting of 

the model to the observations. The Hosmer-Lemeshow goodness-of-fit statistic involves 

grouping objects into a contingency table and calculates a Pearson ratio chi-squared statistic at 

the 95% confidence interval. When this statistic is not significant then the model fits the data 

well (Hosmer and Lemeshow, 1989). AUC values were higher than 0.93, where the target value 

is one. 
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Figure 1. Distribution of mycelium growth rates (a and b) and lag phases (c and d) for growth for 

single spore (light grey columns) and multiple spore (dark grey columns) inoculum at both aw. 
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3. Results  

3.1. Growth kinetic parameters (λ and µ) 

The colonies were monitored, and the radius vs time was adjusted through the linear model as 

described in Eq. (1). The fitted models showed acceptable goodness of fit (r
2
 > 0.83, RMSE< 

0.06). Growth was not detected (experimental data) until days 16-17 in single spore studies, but 

was detected after 8-10 days in the multiple spore inoculum ones. Significant differences (P< 

0.05) among the four estimated µ were found, with higher µ for the concentrated inoculum and 

at higher aw. Longer λ were estimated for the single spore experiments.  It must be noted that, 

under these low aw levels, the 0.02 difference between the aw levels tested had a higher effect 

on µ than the type of inoculum (Table 1). On the other hand, λ were increased in 3-5 days with 

the change of inoculum type. No correlation (neither lineal nor non-lineal) between λ and µ was 

detected. 

 

Table 1. Summary statistics for the apparent lag time for growth (λ) and the mycelium growth 

rate (μ) for both aw. 

 0.85 aw 0.87 aw 

 λ (d) μ (mm/d) λ (d) μ (mm/d) 

Mean 16.63 0.23 14.85 0.41 

Median 16.39 0.17 15.27 0.37 

Standard deviation 2.64 0.10 2.13 0.10 

Variation coefficient 0.16 0.33 0.14 0.31 

Stnd. skewness 3.51 4.56 -1.90 2.96 

Stnd. kurtosis 8.80 7.35 -0.60 2.67 

No. colonies 72 72 55 55 

 



 

The effect of aw and type of inoculum on the distribution of 

histograms in Fig. 1. From the graphs it can be 

multiple spore inoculum was normally distributed. The 

indicating that the majority of the single spores germinated and gave rise to slow growing 

colonies. This trend was much clearer for the single spore experiments, which inform on the real 

distribution of spores; when

growing spore increases, thus the distribution moves to the right, obtaining higher 

λ, due to the more significant effect of the inoculation treatment applied, the distributio

no overlap as much as the 

multiple spore inoculum, with more density of data on the right (close to the single

experiment data). By contrast, the single spore inoculum comprised a s

the distribution was skewed to the right, which means that most of the spores have long 

Figure 2. Probability of growth

conditions studied and their 

t90). Single spore (light grey lines) and multiple spore (dark grey lines) inocula at both a
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and type of inoculum on the distribution of μ and 

From the graphs it can be depicted that only λ at 0.87 a

multiple spore inoculum was normally distributed. The μ histograms were skewed to the left 

indicating that the majority of the single spores germinated and gave rise to slow growing 

colonies. This trend was much clearer for the single spore experiments, which inform on the real 

distribution of spores; when the multiple spore inoculum is used the probability to include a fast 

growing spore increases, thus the distribution moves to the right, obtaining higher 

, due to the more significant effect of the inoculation treatment applied, the distributio

no overlap as much as the μ distributions. Moreover, the values range was wider for the 

multiple spore inoculum, with more density of data on the right (close to the single

experiment data). By contrast, the single spore inoculum comprised a s

the distribution was skewed to the right, which means that most of the spores have long 

of growth models obtained through logistic regression 

and their time estimates for probabilities 0.10, 0.50 and 0.90

spore (light grey lines) and multiple spore (dark grey lines) inocula at both a

and λ is illustrated by the 

depicted that only λ at 0.87 aw and for the 

histograms were skewed to the left 

indicating that the majority of the single spores germinated and gave rise to slow growing 

colonies. This trend was much clearer for the single spore experiments, which inform on the real 

multiple spore inoculum is used the probability to include a fast 

growing spore increases, thus the distribution moves to the right, obtaining higher μ.  Regarding 

, due to the more significant effect of the inoculation treatment applied, the distributions did 

distributions. Moreover, the values range was wider for the 

multiple spore inoculum, with more density of data on the right (close to the single-spore 

experiment data). By contrast, the single spore inoculum comprised a smaller range, but also 

the distribution was skewed to the right, which means that most of the spores have long λ. 

 

models obtained through logistic regression for the four different 

0.10, 0.50 and 0.90 (t10, t50 and 

spore (light grey lines) and multiple spore (dark grey lines) inocula at both aw. 



 

Figure 3. Probability of AFB1 production

four different conditions studied

(t10, t50 and t90). Single 

both aw. 

 

3.2. Probability models 

Probability of growth raised 

showed significant growth differences depending on the type of inoculation, as the initiation of 

growth was delayed about 8 days for colonies arising from single spore inocula. 

slopes of the probability curves were smoother in the case of the single spores

curves did not clearly overlap, which 

some kind of stimulation among them. Statistical ana

differences between the two probability curves (inoculum factor) at the same a

scenarios tested.  
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of AFB1 production models obtained through logistic regression 

four different conditions studied and their time estimates for probabilities

Single spore (light grey lines) and multiple spore (dark grey lines) inocula at 

 

ised earlier for the multiple spore inoculum at both a

showed significant growth differences depending on the type of inoculation, as the initiation of 

growth was delayed about 8 days for colonies arising from single spore inocula. 

slopes of the probability curves were smoother in the case of the single spores

curves did not clearly overlap, which may mean that when spores are together there could be 

some kind of stimulation among them. Statistical analysis showed that there were significant 

differences between the two probability curves (inoculum factor) at the same a

 

models obtained through logistic regression for the 

probabilities 0.10, 0.50 and 0.90 

spore (light grey lines) and multiple spore (dark grey lines) inocula at 

earlier for the multiple spore inoculum at both aw (Fig.2). The results 

showed significant growth differences depending on the type of inoculation, as the initiation of 

growth was delayed about 8 days for colonies arising from single spore inocula. Moreover, the 

slopes of the probability curves were smoother in the case of the single spores. In fact, the two 

may mean that when spores are together there could be 

lysis showed that there were significant 

differences between the two probability curves (inoculum factor) at the same aw, for the two 
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Plots of probability of AFB1 production obtained through the logistic regression are presented in 

Fig.3.  For the multiple spore inoculum, the probability of AFB1 production quickly increased 

from 0 to 100% within a period of 2-3 days (from day 12 until day 14 for 0.85 aw and from day 4 

to 7 for 0.87 aw). For the single spores, initiation of AFB1 production was considerably delayed at 

both aw (following the initiation of growth pattern) in comparison with the multiple spore 

inoculum. Moreover, the AFB1 probability curves arising from single and multiple spore 

inoculums did not overlap, which suggests again that stimulation among spores may occur. The 

effect of aw, was more relevant for the AFB1 models, with about a 7 days delay in the multiple-

spore experiment compared to the 2-3 days delay in growth (Fig. 2 and 3). Despite the small 

difference between the two aw studied, it is interesting that in the case of the concentrated 

inoculum this difference made an important gap, which means that besides the delayed growth, 

enzymatic mechanism required for AFB1 biosynthesis are further affected by aw in the 

environment. 

 

3.3 Relationship between estimated λ and estimated probabilities of growth and AFB1 

production  

The link among λ and the different times to reach the estimated probabilities for both growth 

and AFB1 production is presented in Fig. 4. A clear progression of the 5 events studied It can be 

graphically depicted in the case of the single spore experiment. When using a single spore 

inoculum, the estimated end of lag phase came first (PG≈ 0.2), in 15.27 and 16.38 days for 0.87 

and 0.85 aw respectively. This means that when there is 0.50 probability of visible mycelium 

detection (t50 growth), the lag phase has concluded. Then 0.50 probability of AFB1 production 

(t50 AFB1) was reached (22.80 and 26.38 days for 0.87 and 0.85 aw respectively), before all 

spores have led to visible colonies (t100 growth) in 38.92 and 42.87 days for 0.87 and 0.85 aw 

respectively.  

On the other hand, the multiple spore experiment gave different results, since in both cases the 

estimated λ values were longer than the estimated times to reach 50% visible growth (t50 

growth) or even 100% (t100 growth). While the results obtained from the probability models 

agreed with the observed results, this did not occur with the estimated λ values which were 
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overestimated in almost all the cases, as can be seen in the distribution graphs where there is a 

high density of data in the right side, due to shorter λ (Figs. 1c and 1d). The possible interaction 

among spores may be the cause of such overestimation of λ. This interaction could be due to 

substances secreted by the germinating spores or some other phenomena that requires in 

depth study. In any case, stimulation among spores should be taken into account if data 

generated from highly concentrated inoculums are used to estimate growth parameters and 

develop predictive models.  

 

4. Discussion  

Studies on mould growth have been traditionally carried out with high inoculum levels of 

spores, when in fact infection of food occurs with a low number of spores, and colonies most 

likely originate from single spores. In this study, the aim was to assess the effects of inoculum 

size using two different levels (colonies arising from a single spore or colonies from 500 spores). 

Working with single spores of A. flavus and Fusarium verticillioides, Samapundo et al. (2007a) 

showed that when more limiting conditions were assessed, wider distributions of the growth 

parameters were obtained and greater degree of overlapping was observed between the 

histograms of the colony growth rates compared to those for the lag phase for growth. These 

findings are consistent with our results (see Fig. 1). The significant effect of the inoculum size on 

the fungal growth parameters  has been confirmed by several authors, who have used inoculum 

sizes ranging from 1 to 10
6
 spores (Baert et al., 2008; Burgain et al., 2013; Dagnas et al., 2015; 

Garcia et al., 2010; González et al., 1987; Gougouli et al., 2011; Morales et al., 2008; Samapundo 

et al., 2007b) (Table 2). Such investigations have shown that changes in the inoculum size 

affected the lag phase but not the growth rate  (Baert et al., 2008; González et al., 1987; 

Gougouli et al., 2011). Baert et al. (2008) studied Penicillium expansum in apples and they 

observed that using high inoculum levels resulted in smaller λ than using lower inoculum levels, 

but no significant difference was observed for the growth rate. Similar results were obtained by 

González et al. (1987) when they studied the influence of inoculum size on growth rate and lag 

phase of seven different fungi isolated from Argentinean corn. Garcia et al. (2010) reported no 

significant differences in the rate of growth of two tested moulds at 0-1, 1-10 and 10-100 

spores. On the other hand, Morales et al. (2008)  found significant differences in the growth rate 
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of fungi depending on the inoculum size, as we have found in the present study. They reported 

that colonies from conidial suspensions of 10
6
 spores/mL had faster growth rates than those 

from the 10
4
 spores/mL suspensions. They worked under marginal conditions, with apples at 1 

or 20 °C, as did we with different marginal conditions, 0.85/0.87 aw and 25 °C. From these data 

we may suggest that growth rate could be affected by the inoculum size when stressful 

conditions and very different inoculation levels are tested. Thus, it seems that in these cases, as 

the histograms in Fig 1 and Fig 2 do overlap, either some single spores dominated the behavior 

of the multiple spore inoculum or stimulation between spores took place. Similarly, working 

with bacteria, Robinson et al. (2001) envisaged two types of inoculum size effect on population 

lag time: (a) cooperative or inhibitory effects of high cell concentrations or (b) statistical effects 

at low cell concentrations arising from the variability in individual lag times. Working with 

Listeria monocytogenes they obtained that under optimal conditions the lag times were little 

affected by inoculum size. However, under stressing conditions, the lag time increased as the 

inoculum size became smaller.  

In particular, lag phase prior growth, seems to be affected by inoculum size. Our results showed 

that λ decreased when changing from a single spore to a multiple spore inoculum. Lag time 

encompasses time for germination plus the beginning of hyphal elongation (Gougouli and 

Koutsoumanis, 2013), thus studying the germination  process  would help in the understanding 

of lag phase variability. Several studies have investigated the variability in germination time 

(Chitarra et al., 2004; Chitarra and Dijksterhuis, 2007) suggesting that it may be due to biological 

sources such as self-inhibitors or auto-stimulators, which might prevent from premature 

germination of all the spores at the same time. Another study showed that inoculum 

concentration affected the rate of germination of some species of Aspergillus (Araujo and 

Rodrigues, 2004), being the germination inhibited when spores were present in high densities 

(1.4 x 10
5
 to 5 x 10

5
 conidia/mL, in RPMI 1640 medium). If germination time is altered so would 

happen to the lag phase. Gougouli and Koutsoumanis (2013) studied the effect of storage 

temperature on the kinetic behavior of Aspergillus niger and P. expansum individual spores, 

demonstrating that the lag time variability of single spores was mainly due to the germination 

variability. In our case, histograms in Fig 1c and 1d did not overlap much, thus it seems that the 

hypothesis that some single spores (fast ones) may dominate the multiple –spore inoculum is 

unlikely. The wider λvariability of the multiple spore inoculum compared to the single spore λ 
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obtained in the present study, may be explained by the interaction between spores within the 

multiple inoculum.  

 

 

The legal limit for AFB1 presence in food and feed is very low, also low amounts of this toxin 

pose a risk for human health. Moreover, there is a high variability in the amount of AFB1 

produced among isolates of the same species. Then in the present study we focused on 

probabilistic models, which determine whether or not growth or toxin production can occur or 

exceed a certain level under specific conditions (Lindblad et al., 2004; Marín et al., 2012). 

Probability models are of particular interest in managing the safety of foods which may be 

contaminated with pathogenic microorganisms and for which subsequent growth would 

increase the risk of food-borne illness. As far as we know, only one study have dealt with the 

effects of inoculum size on probability models applied to moulds (Garcia et al., 2010). They 

investigated different environmental conditions (optimal and suboptimal) and three inoculum 

levels (see table 2) and concluded that probabilistic models were not much affected by the 

inoculum size when the probabilities are low. By contrast, in the present study, both the 

probability of growth and the probability of AFB1 production were affected by the inoculum 

type. However, it should be taken into account that conditions used in this study were more 

restrictive and the change of inoculum level wider.  
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Table 2. Some publications studying the effect of different inoculation levels of spores on fungal 

growth parameters.  

Reference Fungi Medium aw/T 

Spore level (amount 

at inoculation point) 

Significantly affected 

by spore level 

μ  λ 

González et 

al., (1987) 

Aspergillus spp. 

Malt extract 

agar (MEA) 

0.95/30 °C 

10
4
, 10

3
, 10

2
, 10

1
 

 

a 
Penicillium spp. 0.99/30 °C  

Fusarium spp. 0.99/30 °C  

Sautour et 

al., (2003) 

Penicillium 

chrysogenum 

Potato 

Dextrose 

Agar (PDA) 

 

0-1, 1-10
1
, 10

1
-10

2
, 

10
2
-10

3
 

a a 

Baert et al., 

(2008) 

Penicillium 

expansum 

Apples 25, 12 and 4 °C 

2 x 10
6
, 2 x 10

5
, 2 x 

10
4
, 2x10

3
, 2 x 10

2
, 

2x 10
1
 

  
a 

Morales et 

al., (2008) 

Penicillium 

expansum 

Apples 1 and 20 °C 2 x 10
4
, 2 x 10

2 
  

a a 

Garcia et al., 

(2010) 

Aspergillus 

carbonarius 

MEA 

0.98/15 °C and 

0.90/25 °C 

0-1, 1-10
1
, 10

1
-10

2
 

  

a 

Penicillium 

expansum 

0.98/15 °C and 

0.92/25 °C 

  

Gougouli et 

al., (2011) 

Penicillium spp. 

Yogurt 

0, 5, 10, 15, 20, 

25, 27.5, 30, 33, 

35 and 40 °C 

10
5
, 10

4
, 10

3
, 10

2
, 

10
1
 

 

* 

Aspergillus spp.  

Fusarium spp.  

Mucor circineloides  

Rhizopus oryzae  

Cladosporium 

cladosporioides 

 

a
 indicates that the fungal parameter is significantly affected by the inoculum size assayed in the study.  



 

The shift from no growth/no AFB1 production to 100% probability of growth/AFB1 production is 

much sharper for the multiple spore 

through the times estimate

the same time in the four 

production), whilst for the single spore experiment these estimat

time. The differences between models 

significant underestimation of times for growth and toxin production compared to what 

happens in single spores. For example, if we estimate the probability of AFB1 production after 

20 days of incubation at 25 

probability of AFB1 presence, when the situation from one spore would be a 5

(depending on the aw). 

reported the significant effect of

They studied the effect of 

spore concentrations (10, 10

direct relationship between the level of 

 

 

 

Figure 4. Estimated λ and times for 0.5 and 1 probability of growth (t50 growth and t100 

growth) and AFB1 production (t50 AFB1 and t100 AFB1) for all the conditions assayed.
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The shift from no growth/no AFB1 production to 100% probability of growth/AFB1 production is 

multiple spore inoculum. This abrupt shift can 

estimates for probabilities 0.10, 0.50 and 0.90, which are almost obtained at 

the same time in the four multiple spore inoculum scenarios (both a

hilst for the single spore experiment these estimates are quite separated over 

differences between models suggest that the use of a concentrated

significant underestimation of times for growth and toxin production compared to what 

happens in single spores. For example, if we estimate the probability of AFB1 production after 

ion at 25 °C from the multiple spore inoculum model we will obtain a 100% 

probability of AFB1 presence, when the situation from one spore would be a 5

). The above results are in agreement with a 

ported the significant effect of the inoculum size on the toxin production 

effect of inoculum size on irradiated corn kernels inoculated with different 

spore concentrations (10, 102, 103, 105, and 106 spores/mL) of Fusarium moniliforme

direct relationship between the level of fumonisins produced and inoculum size

and times for 0.5 and 1 probability of growth (t50 growth and t100 

growth) and AFB1 production (t50 AFB1 and t100 AFB1) for all the conditions assayed.

The shift from no growth/no AFB1 production to 100% probability of growth/AFB1 production is 

 also be easily observed 

h are almost obtained at 

(both aw levels, growth/AFB1 

are quite separated over 

use of a concentrated inoculum leads to 

significant underestimation of times for growth and toxin production compared to what 

happens in single spores. For example, if we estimate the probability of AFB1 production after 

from the multiple spore inoculum model we will obtain a 100% 

probability of AFB1 presence, when the situation from one spore would be a 5-20% probability 

a previous study, which 

the inoculum size on the toxin production (Chulze et al., 1999). 

inoculated with different 

Fusarium moniliforme, obtaining a 

produced and inoculum size. 

 

and times for 0.5 and 1 probability of growth (t50 growth and t100 

growth) and AFB1 production (t50 AFB1 and t100 AFB1) for all the conditions assayed. 



Chapter I 

52 

 

Probabilistic models are built with growth/no-growth data, thus these models should reflect the 

trends observed for lag phases. λ were calculated by extrapolating the regression line to R(t)=0 

thereof, and the estimated values did not agree with the probability curves obtained for the 

multiple spore inoculum (Fig. 4). While according to the probability curves 100% of plates 

showed growth, according to λ distribution, in most of the plates the lag phase had not ended.  

A possible explanation to this issue could be found in Gougouli and Koutsoumanis (2013), who 

studied the relation between germination time and lag time of mycelium growth of individual 

fungal spores of P. expansum and A. niger under isothermal conditions ranging from 0 to 30 °C 

and 10 to 41.5 °C, respectively.  They observed an important delay between germination time 

and lag phase; this was due to the existence of two phases of hyphal development: first an early 

hyphal development which increased exponentially and then a linear growth. When estimating λ 

by extrapolating the regression line to R(t)=0, the linear part of the growth process is taken into 

account, bypassing the exponential one which may had an important significance on estimation 

of the duration of the lag phase. Therefore, the linear model could not be suitable to estimate 

this growth parameter under marginal conditions and relatively concentrated (5 x 10
2
 spores) 

inoculum, because it does not take into consideration the initial exponential growth stage. 

 

In conclusion, despite that the inoculum level was not exhaustively assessed in the present 

study, it has been shown that it can significantly affect growth kinetic parameters and 

probabilities of growth/AFB1 production. Sautour et al. (2003) studied the growth of Penicillium 

chrysogenum under different inoculation levels, observing a decrease in the lag phase duration 

as the inoculum size increased. They inferred that the lag phase was highly dependent on the 

inoculum size, thereby the inoculum level should be standardised in fungal experiments in order 

to correctly estimate the shelf life of foods.  If we estimate the shelf life (being the 0.05 

probability of growth the bound for rejecting the product) of a certain commodity from the 

single spore growth model at 0.87 aw it would result in 12.54 days but if we do the same with 

the multiple spore growth model we get 5.76 days, under the conditions studied. Thus there is 

about 7 days of difference between the two estimations. From the food safety point of view 

developing fail safe models is the most desirable approach, even though being too conservative 

may lead to economic losses for the food industry, due to rejection of safe goods. On the other 

hand, the use of single spore experiments for developing predictive models may not be the 
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safest approach to consumer’s health risk, even though the majority of food contaminations 

occur with one or very few spores.  Thus, a balance between the use of highly concentrated 

inoculums, as is usual in predictive mycology, and the use of very low inoculum size, such as only 

one spore, should be the best option for both producers and consumers. Thus, taking consumer 

safety into account, the findings provided herein have shown that the number of spores used to 

generate data for predictive models should be controlled carefully in order to simulate real 

fungal food contamination scenarios.  
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Time-course of germination, initiation of mycelium 

proliferation and probability of visible growth and 

detectable AFB1 production of an isolate of Aspergillus 

flavus on pistachio extract agar 
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Abstract 

The aim of this work was to assess the temporal relationship among germination, mycelial 

growth and aflatoxin B1 (AFB1) production from colonies coming from single spores, in order to 

predict as accurately as possible the presence of AFB1 at the early stages of contamination. 

Germination, mycelial growth, probability of growth and probability of AFB1 production of an 

isolate of Aspergillus flavus were determined at 25 °C and two water activities (0.85 and 0.87) 

on 3% Pistachio Extract Agar (PEA). The percentage of germinated spores versus time was fitted 

to the modified Gompertz equation for the estimation of the germination parameters 

(geometrical germination time and germination rate). The radial growth curve for each colony 

was fitted to a linear model for the estimation of the apparent lag time for growth and the 

growth rate, and besides the time to visible growth was estimated. Binary data obtained from 

growth and AFB1 studies were modeled using logistic regression analysis. Both water activities 

led to a similar fungal growth and AFB1 production. In this study, given the suboptimal set 

conditions, it has been observed that germination is a stage far from the AFB1 production 

process. Once the probability of growth started to increase it took 6 days to produce AFB1, and 

when probability of growth was 100%, only a 40-57% probability of detection of AFB1 

production was predicted. Moreover, colony sizes with a radius of 1-2 mm could be a helpful 

indicator of the possible AFB1 contamination in the commodity. Despite growth models may 

overestimate the presence of AFB1, their use would be a helpful tool for producers and 

manufacturers; from our data 5% probability of AFB1 production (initiation of production) 

would occur when 60% probability of growth is observed. Legal restrictions are quite severe for 

these toxins, thus their control from the early stages of contamination throughout the food 

chain is of paramount importance.  
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Germination, growth, mycelium, aflatoxin probability, predictive mycology 
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Brief description of variable abbreviations used throughout the manuscript. 

Variable Variable 

Abbreviation 

Meaning 

Geometrical germination time tg Is the intercept in the time axis of the tangent 

through the inflection point of the germination curve 

Maximum growth rate  μ 

 

In the linear growth model, is the slope of the 

regression line 

Estimated apparent lag time for 

growth 

λ In the linear growth model, is the intercept of the 

linear part of the graph to a zero increase in radius 

Time to visible growth tvg The time to reach 3 mm diameter colonies, calculated 

through the linear model 

Probability of growth  PG In the logistic model, percentage of colonies which 

were visible at a given time 

Probability of AFB1 production 

initiation 

PAF In the logistic model, percentage of colonies with 

detectable AFB1 at a given time 

Estimated times to reach 0.10 

(t10), 0.50 (t50) and 0.90 (t90) 

probabilities  

t10, t50, t90 In the logistic model, necessary time to reach the 

given probability (either for growth of AFB1 

production) 

 

 

1. Introduction 

Fungi have a worldwide distribution and grow in a wide range of habitats. Food mould spoilage 

occurs when a product is contaminated with fungal spores that germinate and form a visible 

mycelium before the end of the shelf life. As a result of the metabolic activity of moulds in a 

substrate, a number of desirable or undesirable consequences may occur. One of these 

undesirable consequences is the production of mycotoxins, which are secondary metabolites 

that are toxic to humans and animals.  

Among all mycotoxins, there is a great concern about the risk derived from consumption of food 

and feed contaminated by aflatoxin B1 (AFB1), the most potent natural hepatocarcinogen. AFB1 

is a toxic metabolite produced by some Aspergillus species (Hedayati et al., 2007). 
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Predictive mycology has dealt mainly with germination, growth and inactivation of fungi 

(Dantigny et al., 2005), while mycotoxin production has been less studied (Garcia et al., 2009). 

Studies that deal with the relationship between growth and mycotoxin production (Baert et al., 

2007b; Garcia et al., 2013; Magan and Lacey, 1984; Marín et al., 2006; Samapundo et al., 2005) 

reveal that mycotoxins, as secondary metabolites, are still produced when growth of the colony 

has already stopped (in most of the cases due to limitation of growth by the size of Petri plates). 

Few reports deal with the relation among germination, growth and toxin production of fungi. 

Spore germination, mycelium proliferation and mycotoxin production are successive and not 

independent events: knowledge of the relationship among these events is essential for the 

assessment of food safety.  Furthermore the link between the colony size and the probability of 

AFB1 production should be also studied, to determine if there is any correlation.  Some studies 

have dealt with this issue (Baert et al., 2007a; Garcia et al., 2013; Marín et al., 2006; Samapundo 

et al., 2005), proving the relation among radius/diameter/surface/weight of the colonies along 

with the concentration of mycotoxins.  

In general, fungal behavior has been studied using high inoculum levels. However, real 

contamination of food products involves single or few spores. Up until now, studies of single 

spores are still scarce. The objective of the present study was (a) to model the germination 

(population level), mycelial growth and aflatoxin B1 (AFB1) production under a single spore 

contamination scenario by Aspergillus flavus, and (b) to assess the time link among the three 

events which may be useful for predicting safe storage conditions for foodstuffs.  

 

2. Material and methods 

2.1. Single spore inoculum preparation 

This study was performed using one aflatoxigenic strain of Aspergillus flavus (UdL-TA 3.267) 

isolated from pistachio nuts purchased from a wholesaler in Lleida, Spain, and deposited in the 

Food Technology Department Collection of the University of Lleida. Briefly, samples of pistachio 

were plated on DRBC, and the isolated colonies were identified according to the taxonomical 

descriptions of Pitt and Hocking (2009). A. flavus was grown on potato dextrose agar (PDA) 

medium at 25 °C for 7 days. Spores were collected by scraping the surface of the plates and 
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diluting them in sterile water adjusted to 0.85 aw and 0.87 aw with glycerol containing Tween 80 

(0.05% v/v). These aw were selected in order to simulate fungal growth due to an inadequate 

control of the environment during transport/storage. After counting the spores on a Thoma 

chamber, the spore suspensions were then serially diluted to a concentration of 10
7
 spores/mL 

for the germination study and 10
2
 spores/mL for the single spore growth and AFB1 production 

studies. 

 

2.2 Medium 

The medium used was 3% (w/v) pistachio extract agar (PEA), prepared as follows: 60 g of raw 

dehulled ground pistachio in 1 L distilled water were boiled for 30 minutes. After that, the 

extract was filtered and the amount of evaporated water re-added to adjust it to 6% of 

pistachio. The water activity of the medium was adjusted by addition of certain amounts of 

glycerol and water for a final aw of 0.85 and 0.87 and 3% of pistachio content. 12 g of agar were 

added per L of medium (for each aw) and bottles were autoclaved and media poured into 90 mm 

sterile Petri dishes. All the experiment was prepared under aseptic conditions. 3 Petri dishes for 

the germination study per aw (0.85 and 0.87) were prepared. 10 Petri dishes for the growth 

study and further 10 plates for AFB1 production study, per aw, were prepared. 

 

2.3 Inoculation, incubation and measurement 

2.3.1 Germination study 

A 0.1 mL aliquot of the spore suspension (10
7 

spores/mL) was inoculated onto PEA (3%) 0.85 and 

0.87 aw and spread on the surface of the medium with a sterile bent glass rod as quickly as 

possible. 3 Petri dishes per aw  were incubated at 25 °C.  

Periodically three agar discs (5 mm diameter) were aseptically removed from the Petri dish using 

a cork borer, and transferred to a microscopic slide. The slides were then placed under a 

microscope (Leica DM2000, Barcelona, Spain) for examination of individual spores. 50 single 

spores per disc were observed (150 spores).  Thus for each condition 450 spores were counted 

along time, until all the spores were germinated. 
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2.3.2. Growth and AFB1 production studies  

A 0.1 mL aliquot of 10
2
 spores/mL suspensions were pipetted onto PEA (3%) and spread on the 

surface of the agar medium with a sterile bent glass rod, aiming to have ca. 5-10 spores per Petri 

dish. Ten plates were prepared for each aw. Petri dishes with the same aw were enclosed in 

polyethylene boxes together with a glycerol–water solution at the same aw to maintain the 

relative humidity inside the boxes. They were incubated at 25 °C. Two parallel experiments were 

conducted for the growth and AFB1 production studies for both aw (10x2x2, a total of 40 plates 

and about 250 colonies). 

 

2.3.3. AFB1 determination 

AFB1 production was determined from the first sign of growth up until the end of the incubation 

time (39 days for all the experiments), in different size colonies (from 0.5 to 7.5 mm radius), 

using a previously described high performance liquid chromatography (HPLC) method (Aldars-

García et al., 2015).  A 5-mm diameter agar plug from the centre of each colony was weighed 

and introduced into 3-mL vials. After sampling, the plates were taken back to incubation, for the 

assessment of the other colonies present in the Petri plates which were not sampled. 1 mL of 

methanol was added to vials and vortexed for 5 seconds. After being left stationary for 60 

minutes, the extracts were shaken again, filtered (Millex
R
 SLHV 013NK, Millipore, Bedford, MA, 

USA), dried in a nitrogen stream and stored at 4 °C until HPLC analysis. All extracts were 

resuspended with 0.5 mL of methanol:water (50:50 v/v) and a volume of 100 μL was injected 

into the HPLC system (Waters, Milford, MA, USA). The detection limit of the analysis was 0.1 

ng/g of AFB1, based on a signal-to-noise ratio of 3:1. 

 

2.4. Model fitting 

2.4.1. Germination 

Petri dishes were examined regularly to determine the percentage of germinated spores. Spores 

were considered to have germinated when the length of the germ tube was greater than or 



Chapter II 

65 

 

equal to the diameter of the greatest dimension of the swollen spore (Marín et al., 1998). The 

percentage of germinated spores was calculated as follows: 

P(%)=(Ngerminated spores / Ntotal spores)*100                                             (1) 

 

The time at which spores were suspended in the solution was defined as the initial time. For 

each condition, data of P(%) over time were fitted to the modified Gompertz equation [2] 

(Zwietering et al., 1990): 

��%	 
 �����%	��� � ��� !"#$ %&' ��	

()*�%	 + ,�-  �. � 101                                                                 (2) 

 where t (h) is the time, P(%) is the percentage of germinated spores at time t, Pmax (%) is the 

asymptotic P(%) value at t → +∞, μg (1/h) is the slope term of the tangent line through the 

inflection point (germination rate), and tg (h) is the geometrical germination time (t-axis 

intercept of the tangent through the inflection point). By replacing t with tg in Eq. (2) it can be 

demonstrated that the geometrical germination time corresponds to the time at which 6.6% of 

spores have germinated.  

Nonlinear regressions were made by using R statistical software (R Development Core Team, 

www.R-project.org, v 2.14.1). The goodness of fit of the developed models was evaluated 

graphically and by the coefficient of determination r
2
 and the root mean square error (RMSE). 

 

2.4.2. Growth study  

During incubation, Petri dishes were examined every day and the radii of the colonies were 

measured. Radii of growing colonies were plotted against time, and a lineal model with 

breakthrough (Dantigny et al., 2005) was fitted to the growth data of the colonies to estimate 

maximum radial growth rate (μ, mm/day) and apparent lag time for growth (λ, day) for each aw. 

R(t) = μ (t−λ)                                                                                                                                                   (3) 

where t is time (d), R(t) is the radius at time t, μ is the slope of the regression line (maximum 

growth rate) and λ is the estimated apparent lag time for growth. 
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The time to visible growth (tvg) (4) (Gougouli and Koutsoumanis, 2013) was defined as the time 

to reach 3 mm diameter colonies, based on the possibility to see them in a food product. tvg was 

calculated as: 

µ
λ 5.1+=vgt                                                                                                         (4) 

λ and μ values were estimated through linear regression using R statistical software. The 

goodness of fit was evaluated by the r
2
 and the root mean square error (RMSE). Moreover, the 

distribution of the estimated parameters was also assessed (with Statgraphics Plus 5.1) in order 

to generate suitable information for stochastic assessments. Two statistics, standardized 

skewness and standardized kurtosis, were used to check whether or not the data came from a 

normal distribution.  

23�4��55 
 6
�6��	�6�7	 ∑ �9:;9< 	=

>= 
 6
>=�6��	�6�7	 �2�?@AB  2?BC@D	                                                (5) 

 

2�?@AB 
 |∑� FG�F< 	H| if Xi is above the average 

 

2?BC@D 
 |∑� FG�F< 	H| if Xi is below the average 

 

Sabove is the “size” of the deviations from average when Xi is above the average, and Sbelow is the 

“size” of the deviations from average when Xi is below the average. 
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where n is the sample size, Xi is the i
th

 X value, X is the average and s is the sample standard 

deviation. 

 

2.4.3. Probability of growth and AFB1 production  

Taking into account the total final number of colonies reached in each plate at the end of the 

experiment, every incubation day a 1 value was assigned to each new visible colony, while 0 



 

values were allocated to the still non detectable colonies

from values higher than 0.1 ppb (limit of detection of the H

was applied to binary data in order to model the probability of growth and AFB1 production as a 

function of time, and AFB1 production as a function of the radius of the colony of 

using R statistical software, with the 

study are not based on any biological and/or conceptual assumption. 

 

��������	 
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���	
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where PG is the percentage of colonies which were visible at a given time.

colonies/total colonies at the end of the growth experiment. 

���������	 
 �� 
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Where PAF is the percentage of colonies 

colonies /total colonies at the end of the AFB1 production experiment. 

Where logit (PG or PAF) represents ln[P

PAF  are the probability of growth or AFB1 production 

time, and bi are the coefficients to be estimated.

The percentage of concordance (%C) between observed and predicted values with a cut off

0.5 was calculated to measure the goodness

 

 

3. Results 

3.1. Kinetic parameters from the germination and growth studies 

Germination curves (population level) were generated based on the cumulative frequency of the 

germinated spores over time. 

0.87 than at 0.85 aw (Fig. 1)
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values were allocated to the still non detectable colonies.  AFB1 was considered to be present 

from values higher than 0.1 ppb (limit of detection of the HPLC equipment). A logistic regression 

was applied to binary data in order to model the probability of growth and AFB1 production as a 

function of time, and AFB1 production as a function of the radius of the colony of 

R statistical software, with the glm function. Thus the models developed in the present 

study are not based on any biological and/or conceptual assumption.  

� 	

� 	

 �� � ���                                                                                                           

is the percentage of colonies which were visible at a given time.

colonies/total colonies at the end of the growth experiment.  

� 	

��	

 �� � ���                                                                                                     

is the percentage of colonies with detectable AFB1 at a given time

colonies /total colonies at the end of the AFB1 production experiment.  

) represents ln[PG or PAF /(1- PG or PAF)], ln is the natur

the probability of growth or AFB1 production initiation (in the range of 0

are the coefficients to be estimated. 

percentage of concordance (%C) between observed and predicted values with a cut off

0.5 was calculated to measure the goodness-of-fit of the developed logistic models.

                                                                            

3.1. Kinetic parameters from the germination and growth studies  

Germination curves (population level) were generated based on the cumulative frequency of the 

germinated spores over time. All spores developed germ tubes. Germination occurred earlier at 

(Fig. 1), tg were 56.70 hours for the 0.85 aw experiment and 45.19

.  AFB1 was considered to be present 

PLC equipment). A logistic regression 

was applied to binary data in order to model the probability of growth and AFB1 production as a 

function of time, and AFB1 production as a function of the radius of the colony of A. flavus, 

glm function. Thus the models developed in the present 

                                                                 (7)    

is the percentage of colonies which were visible at a given time. PG=detectable 

                                                (8) 

AFB1 at a given time. PAF= AFB1 positive 

 

)], ln is the natural logarithm, PG and 

(in the range of 0–1), t is the 

percentage of concordance (%C) between observed and predicted values with a cut off of 

fit of the developed logistic models. 

                                                  (9) 

Germination curves (population level) were generated based on the cumulative frequency of the 

ll spores developed germ tubes. Germination occurred earlier at 

experiment and 45.19 hours for 
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the 0.87 aw experiment. However there was not a significant difference between the two aw for 

the tg neither for the μg (p-value >0.05).  These results indicated that ability of the individual 

spores to germinate on the PEA was not significantly affected by the 0.02aw difference tested in 

this study.  

 

 

Table 1. Summary statistics for the apparent lag time for growth (λ) and the mycelium growth 

rate (μ) for both aw. 

 0.85 aw 0.87 aw 

 λ (d) μ (mm/d) λ (d) μ (mm/d) 

Mean 16.63 0.18 14.85 0.41 

Median 16.39 0.17 15.27 0.37 

Standard deviation 2.64 0.10 2.13 0.10 

Variation coefficient 0.16 0.33 0.14 0.31 

Stnd. skewness 3.51 4.56 -1.90 2.96 

Stnd. kurtosis 8.80 7.35 -0.60 2.67 

No. colonies 72 72 55 55 
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Figure 1. Percentage of germinated spores of A. flavus on PEA (3%) at 25 °C at 0.85 and 0.87 aw. 

The lines depict the fitting of the Gompertz model to the germination data. Points (○) represent 

observed values of the percentage of germinated spores. 

 

The Gompertz model described satisfactorily the percentage of germinated spores over time for 

both tested conditions with r
2
 > 0.82 and RMSE < 0.06, for 0.85 and 0.87 aw (all pooled replicates 

together).  

The suboptimal conditions for growth set for these experiments, led to a colony radius increase 

which followed a two step growth function. All growth curves showed linear fungal growth after 

an initial lag period, then a linear model was fitted to the data (Eq. (3)). The λ and the µ were 

estimated using the linear model as described in Eq. (3). No linear correlation was found 

between μ and 1/ λ. (R
2

0.85= 0.13, R
2

0.87=0.04).  

For 0.85 aw the λ values ranged from 9.48 ± 0.043 to 20.54 ± 0.15 days (r
2
 = 0.613–0.998, RMSE = 

0.004–0.03) (Table 1). At 0.87 aw, λ ranged from 9.75 ± 0.012 to 17.9 ± 0.004 days (r2 = 0.750–

0.991, RMSE = 0.005–0.06). The λ occurred after the completion of the germination process, i.e. 

100% germinated spores, shown above. 
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The distribution of λ and μ of the individual spores of A. flavus at both aw is illustrated by the 

histograms in Fig. 2. The standardized skewness and standardized kurtosis (table 1) determine 

whether the sample comes from a normal distribution; values of these statistics outside the 

range of -2 to +2 indicate significant deviation from normality, thus considering this, only the λ 

at 0.87 aw followed a normal distribution (Fig 2.) The positive skewness values for  μ for both 

conditions (Table 1) indicated that the distribution was not centered, and more density of data 

was found on the left side of the distribution, suggesting that only a small subpopulation of the 

inoculated spores led to fast growing colonies, this being more pronounced in 0.87 aw 

experiments (Fig. 2). 

 



 

Figure 2.  Distribution of the

individual spores of A. flavus

 

Results of mycelial growth indicated that 

coefficients in table 1). For the 0.87 a

narrower range than that

later case. This infers that when conditions become more stressful, more variability of the 
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Distribution of the apparent lag time for growth and mycelium growth rates of 

A. flavus at 25 °C at 0.85 and 0.87 aw. 

Results of mycelial growth indicated that μ were more widely distributed than the λ

. For the 0.87 aw experiment the apparent lag time values were within a 

at of lag time at 0.85 aw experiment, with more spread 

This infers that when conditions become more stressful, more variability of the 

 

growth and mycelium growth rates of 

were more widely distributed than the λ (variation 

lag time values were within a 

, with more spread frequencies in the 

This infers that when conditions become more stressful, more variability of the 



 

results will be found. In the case of the growth rate

were found at 0.87 aw.   

 

3.2. Probability of growth and AFB1 production ov

The probability curves for

showed that the logistic curves for each a

values for the 0.87 aw experiment. The same trend was als

probability. Concordance index, 

with a cut off of 0.5, was used 

They were 95.78% and 96.55%,

85%, for 0.85 and 0.87 a

 

 

Figure 3. Variation of the percentage of germinated spores, probability of growth and 

probability of AFB1 production over time for the conditions studied.
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In the case of the growth rates, distributions were similar, but higher rates 

 

of growth and AFB1 production over time  

The probability curves for growth and AFB1 production over time are shown in Fig. 3. The results 

showed that the logistic curves for each aw had almost the same shape but shifted to earlier 

experiment. The same trend was also reported in the AFB1 production 

probability. Concordance index, which indicates the percentage of correctly predicted values 

a cut off of 0.5, was used to assess goodness of fit of the developed probabilistic models

% and 96.55%, for 0.85 and 0.87 aw, for the growth models

0.85 and 0.87 aw, for AFB1 production models.  

Variation of the percentage of germinated spores, probability of growth and 

probability of AFB1 production over time for the conditions studied. 

, distributions were similar, but higher rates 

growth and AFB1 production over time are shown in Fig. 3. The results 

had almost the same shape but shifted to earlier 

o reported in the AFB1 production 

correctly predicted values 

goodness of fit of the developed probabilistic models. 

growth models, and 93.33% and 

 

Variation of the percentage of germinated spores, probability of growth and 
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Table 2. Mean radius and mean aflatoxin B1 concentration of A. flavus colonies at 25 °C. For 

shorter times, no AFB1 was detected. 

Incubation 

time 

(days)  

  0.85 aw experiment   0.87 aw experiment 

n  Radius (mm)  Aflatoxin B1 

(ng/g PEA)  

n Radius (mm) Aflatoxin B1 

(ng/g PEA)  

17 2 0.05 ± 0.01 - 6 0.09 ± 0.06 - 

19 3 0.05 ± 0.00 - 9 0.14 ± 0.06 0.18 ± 0.43 

22 4 0.11 ± .006 0.35 ± 0.69 4 0.18 ± 0.05 0.63 ± 0.91 

24 4 0.12 ± 0.04 0.23 ± 0.44 8 0.25 ± 0.07 0.89 ± 1.06 

26 6 0.14 ± 0.04 0.16 ± 0.39 6 0.28 ± 0.06 1.12 ± 1.09 

30 5 0.19 ± 0.04 2.99 ± 1.71 7 0.32 ± 0.13 3.63 ± 2.95 

32 5 0.17 ± 0.02 2.13 ± 0.83 5 0.34 ± 0.07 5.63 ± 2.87 

36 5 0.25 ± 0.03 11.17 ± 1.52 4 0.48 ± 0.15 7.26 ± 3.58 

39 3 0.27 ± 0.05 3.44 ±1.73 3 0.64 ± 0.21 5.09 ± 2.41 

n: number of colonies collected at each time point. Different number of colonies were collected 

depending on the total number of colonies arisen on the Petri plates for each condition. 

Values are means ± standard deviation (n). 

 

 

For this experiment, based on colonies from single spores, at both aw, no chance of predicted 

AFB1 production was obtained until almost 50% of growth probability had been reached, i.e. 

once growth reached the 100% probability, there was a probability of 40 and 57% of detecting 

AFB1 in the sample. Indeed, at 0.85 aw experimental AFB1 data showed a time delay after 100% 

of the colonies had appeared (Fig 4). From figure 4 it can be depicted that the larger the colony 

size, the higher the probability of having AFB1 production. In general, colonies smaller than 

2mm of radius contained less than 4ng AFB1/g agar (Table 2), while bigger colonies contained 

up to 14 ng AFB1/g agar (Table 2). Besides a radius threshold could be established for a certain 

AFB1 production probability, for example, at least 1 mm of colony radius was necessary to have 

any chance of AFB1 production, and colonies larger than 1.5 mm of diameter have 

approximately 20% or more probability of AFB1 production, under the studied conditions. 
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Figure 4. Correlation between observed probability of growth and observed probability of AFB1 

production. Mean radii (mm) of the colonies for the given probabilities are shown in the chart. 

 

 

Table 3. Estimated time probabilities (t10, t50 and t90 in days) of growth and AFB1 production 

at 25 °C for both aw 

  0.85 aw 0.87 aw 

Probability of 

growth 

t10 16.12 13.37 

t50 18.45 15.82 

t90 20.78 18.27 

Probability of 

AFB1 production 

t10 22.80 17.94 

t50 26.38 22.87 

t90 29.96 27.67 
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Estimated time to reach 0.10 (t10), 0.50 (t50) and 0.90 (t90) probabilty values are shown in 

Table 3.  In 4-5 days probabilities of growth shifted from 10% to 90% (Fig. 3). This suggests that 

although germination takes place in a brief lapse of time once contamination occurs (see section 

3.1.),  visible growth is a slower and progressive phenomenom. Similarly, the AFB1 production 

curves showed that aproximately 9 days were required from 10% to 90% probability of AF 

production. Probability of AFB1 production curves paralleled those for growth, but they were 

less steep, thereby slightly longer times were observed amongst the three estimated times (t10, 

t50, t90).  

 

3.3. Time-course of germination, growth and AFB1 studies 

The germination time, apparent lag time for growth and time to visible growth were compared 

(Table 4).  Germination time is the time to have 6.6% of spores germinated (see Gompertz 

model in section 2.4.1). Considering that the apparent lag time is estimated by the extrapolation 

of the mycelium radial growth curve to radius=0 (Horner and Anagnostopoulos, 1973), it would 

be expected to follow the germination time in a short period. In our case the results showed a 

significant delay of the λ compared to the tg, the differences were 14.27 and 12.89 days for 0.85 

and 0.87 aw respectively; even more, the λ occurred 9.63 and 8.40 days after 100% of the spores 

had germinated, for 0.85 and 0.87 aw respectively. These delays are explained by the fact that 

water activities of the experiment were suboptimal for mould growth. Once λ had been 

reached, another 6.52 days were needed to see the mycelium with a naked eye at 0.85 aw and 

half that time was needed (3.06 days) for the 0.87 aw experiment (Fig. 3). 

The estimated λ took place at a 0.15 probability of growth for 0.85 aw and 0.29 for 0.87 aw, 

which may be expectable, as λ is calculated as the departure from colony size equal to zero, and 

probabilities are calculated on the basis of visible colonies. On the other hand, the times to 

visible growth coincided with 0.99 and 0.87 probabilities of growth for 0.85 and 0.87 aw. 

In the case of AFB1 production probability, λ finished with only 0.06 and 0.03 probability of AFB1 

production, while probabilities were 0.11 and 0.10, at 0.85 and 0.87 aw respectively, when 

visible growth was observed. 
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Table 4. Comparison among germination time (tg), apparent lag times for growth and time to 

visible growth (tvg) for A. flavus at 25 °C, at 0.85 and 0.87 aw. 

  tg (days) λ (days) tvg (days) 

aw Mean SD Mean SD Mean SD 

0.85 2.36 0.32 16.63 2.64 23.15 3.67 

0.87 1.96 0.35 14.85 2.13 17.91 2.57 

 

The time relation of the studied events is shown in Fig. 3. In the event of one spore 

contaminating a foodstuff, a long period since germination would be needed to have a 

significant chance for AFB1 detection. Once germination had been completed, a period of 

approximately 16 and 14 days, for 0.85 and 0.87 aw respectively, was necessary for initiation of 

fungal growth, i.e. 0.01 probability of growth. Time to visible growth happened when almost 

100% probability of growth had been reached. Values were 98.82 and 86.71% probabilities of 

growth for 0.85 and 0.87 aw respectively. Once reached the tvg there was about 10% probability 

of AFB1 production at both aw. After growth had begun, the probability of AFB1 production 

arose, however at the beginning the probability values  were low, and increased slowly, thus 

until day 27 and 23 for 0.85 and 0.87 aw, respectively, the 50% probability of AFB1 production 

was not reached (Fig. 3). 

 

4. Discussion 

The data presented in this study can provide information regarding the timing of the biological 

events involved in fungal development, i.e., germination, mycelial proliferation and mycotoxin 

production under marginal conditions. Although the behavior of the fungi may vary depending 

on the food matrix and other interacting factors, experiments were carried out on PEA (3%) at 

0.85 and 0.87 aw at 25 °C, illustrating a possible contamination scenario during transport/storage 

of pistachio due to an inadequate control of the humidity of the environment, although not 

much differences were observed between these aw levels. 
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Spore germination is a stage prior mycelial growth, which involves spore swelling and germ tube 

formation (d´Enfert, 1997), thus its prevention may be the main step to prevent the 

contamination of a foodstuff with aflatoxins. In our study tg represented 14.19% and 13.20%, for 

0.85 and 0.87 aw respectively, of the λ, and 10.19% and 10.94%, for 0.85 and 0.87 aw 

respectively, of the tvg. The issue that emerges here is why the apparent lag times of single 

spores are that much higher than the tg, even if the later is a population parameter. Burgain et 

al. (2013) obtained similar results when they studied the relation between the germination time 

and the time to visible growth of Penicillium chrysogenum on potato dextrose agar (PDA) at 

room temperature (18 °C to 25 °C) with different inoculum levels (10
1
–10

5
 spores at inoculation 

point).  Their tg accounted for 18.1 to 24.3% of the tvg, being far from the λ, but as their aw was 

less limiting (0.93-0.99) than ours, their difference between the parameters was narrower.  

Gougouli and Koutsoumanis (2013) reported that estimating the apparent lag time for fungal 

growth through the linear model may lead to some overestimation of λ, thus its distance from 

the tg would be wider. According to Trinci (1969), elongation of the germ tube from the swollen 

spore is exponential for a certain period, then it becomes linear. Thus, in our case, the 

hypothesis that prevention of germination may be a way to prevent toxin production may be 

too conservative. 

 

Distribution graphs for λ showed that few spores resulted in fast growing colonies and most of 

the spores took more time to growth. When working with a large inoculum instead of a single 

spore inoculum, a small number of spores may lead to a high probability of germination and 

growth. Morales et al. (2008) reported that higher inoculum size led to shorter apparent lag 

times when working with 10
4
 and 10

6
 spores/mL inocula of Penicillium expansum in apples. 

Similar results were obtained by Baert et al. (2008) when they tested the effect of inoculum size 

on the growth of P. expansum in apples obtaining that the inoculum size influences the 

estimated growth parameters and that using a low inoculum level will also result in a larger 

variability of the estimated apparent lag time. 

Our results also showed a delay between growth and AFB1 production. Garcia et al. (2013) 

determined that aflatoxin production may follow a mixed-growth associated model suggesting 

that toxin formation does not present a clear delay in relation to growth under certain 

conditions. They worked with maize agar medium and maize grain at 0.90 and 0.99 aw at 25 °C 



Chapter II 

78 

 

with a central inoculation of 5 μL of a 10
4
 spores/mL suspension. This apparent contradiction 

could be explained by the fact that working under a less restrictive environment and a higher 

inoculum size allows the global inoculum to show simultaneous growth and aflatoxin 

production.  

 

The tvg parameter is particularly interesting as it corresponds approximately to the t10 

estimated probability of AFB1 production for both aw. A product is considered spoiled as soon as 

visible mycelium is present, then tvg not only could be used as an spoilage indicator but also as 

an AFB1 presence indicator. Colony size in early stages of growth (from 1 to 2 mm of radius), 

could be a helpful indicator of the possible AFB1 contamination in the commodity, however, the 

detection of such small size colonies could be challenging in most foodstuffs. It has been shown, 

also in pistachio medium, that the detection of AFB1 in colonies is more dependent on their size 

than on the age of such colonies (Aldars-García et al., 2016) 

Our results showed a significant delay between growth and AFB1 production models, taking 

approximately 6 days to produce AFB1 once the probability of growth started to increase. 

Several authors have reported that mild stress conditions seem to induce mycotoxin production, 

but when increasing the stress conditions an inhibitory effect is produced (Baert et al., 2007a; 

Jurado et al., 2008). The aw herein reported is rather stressful for A. flavus, thus AFB1 may not 

be inhibited but delayed. These findings may suggest that due to the limiting aw, toxin 

production would not start until all the mechanisms of growth have been launched, even when 

temperature is not a restrictive parameter. As far as AFB1 presence in the commodity is 

concerned, under the suboptimal environment set for these experiments (similar to those 

encountered during transport/storage of pistachio nuts), forecasting AFB1 presence from 

growth probability models may overestimate its presence representing a worst case scenario of 

food contamination. A safe period of 12-18 days, once germination has occurred, and 5-7 days 

from the apparent lag time (probability of growth of 0.01) is predicted before AFB1 production 

detection, if water activity does not surpass 0.87.In terms of probability of growth, a minimum 

of 0.6 would have to be reached to attain a 0.05 probability of AFB1 production in the 

commodity (in our less restrictive condition). 
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It is important to note that estimations of AFB1 production may depend on the established 

conditions to carry out the experiment, and on the limit of detection (LOD) determined in the 

HPLC method.  

In conclusion, the generated results enabled to follow the time progression of A. flavus 

development on a pistachio extract under marginal conditions. Single spore assays are a good 

approach to model the real situation in fungal contamination of commodities. Keeping in view 

the interests of the food industry, setting a maximum growth probability which may lead to, e.g. 

0.05 probability of AFB1 production is an interesting enforcement, since very small amount of 

this toxin is legally allowed. 

Developing these tools to predict the probability of presence of aflatoxins in food and 

feedstuffs, from early stages, will help to devise control strategies to shut down aflatoxin 

production through manipulation of environmental conditions.  
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Abstract 

The probability of growth and AFB1 production of 20 isolates of Aspergillus flavus was studied 

using a full factorial design with eight water activity levels (0.84 to 0.98) and six temperature 

levels (15 to 40 °C). Binary data obtained from growth studies were modelled using linear 

logistic regression analysis as a function of temperature, water activity and time, for each 

isolate.  In parallel, aflatoxin B1 was extracted at different times from newly formed colonies (up 

to 20mm of diameter). Although a total of 950 AFB1 values along time for all conditions studied 

were recorded, they were not considered to be enough to build probability models along time, 

and only models at 30 days were built. Confidence intervals of the regression coefficients of 

probability of growth models showed some differences among the 20 growth models. Further, 

to assess the growth/no growth and AFB1/no-AFB1 production boundaries, 0.05 and 0.5 

probabilities were plotted at 30 days for all the strains. Boundaries for growth and AFB1 showed 

that in general the conditions for growth were wider than those for AFB1 production.  

Probability of growth and AFB1 production initiation seemed to be less variable among strains 

than AFB1 accumulation is. Apart from AFB1 production probability models, using growth 

probability models for AFB1 probability prediction could be, although conservative, a suitable 

alternative. Predictive mycology should include a number of strains to generate data to build 

predictive models and take into account the genetic diversity of the species and thus make 

predictions as similar as possible to real fungal food contamination. 
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1. Introduction  

Mould spoilage and mycotoxin contamination of food products cause large economic losses 

(Dantigny et al., 2005; Mitchell et al., 2016) and pose a serious risk to public health (Marín et al., 

2013). Aspergillus spp. is recognized as one of the most widely distributed fungal genera in 

nature. The two most agriculturally important species are Aspergillus flavus and A. parasiticus, 

which are found all over the world, being present in both the soil and the air (Hedayati et al., 

2007; Horn and Dorner, 1998; Wicklow et al., 1998). A. flavus is the major causal agent of food 

and feed contamination with  aflatoxins (AFs)  (Klich, 2007). AFs (B1,B2,G1,and G2) are a group 

of toxic, mutagenic, carcinogenic and teratogenic secondary metabolites which are health 

hazards to humans and animals (Bottalico, 1999). Aflatoxin B1 (AFB1) is reported as the most 

toxic natural compound and is classified by the International Agency for Research on Cancer 

(IARC) as a class 1 toxin (IARC, 2002) due to its demonstrated carcinogenicity to humans. 

Both fungal growth and mycotoxin production can be influenced by different factors such as 

temperature, water activity (aw), inoculum concentration, isolate, microbial interactions, 

physiological state of mould, genotype, etc., and these factors may affect in a different way  

growth and mycotoxin production (Garcia et al., 2009). 

Populations of A. flavus in agricultural products and foods are complex communities that may 

contain many different strains. Their growth and AFB1 production potential are known to vary  

(Abbas et al., 2004; Adhikari et al., 2016; Singh et al., 2015; Yogendrarajah et al., 2016; Yousefi 

et al., 2009). There are many studies reporting the variability among isolates in terms of growth 

and mycotoxin production (Abbas et al., 2005; Astoreca et al., 2007; Belli et al., 2004; Garcia et 

al., 2011a, 2011b; Lahouar et al., 2016; Pardo et al., 2005, 2004; Parra and Magan, 2004; 

Romero et al., 2007; Singh et al., 2015; Yogendrarajah et al., 2016). Garcia et al. (2011a) studied 

the growth and ochratoxin A (OTA) production of thirty isolates A. carbonarius. Their results 

showed a wide dispersion in both growth rate and mycotoxin production, especially under 

marginal conditions. Foods are generally stored under marginal conditions, of either aw or 

temperature, for fungal growth and subsequent mycotoxin production. In these cases growth is 

compromised but still occurs, thus knowing the growth and AFs production boundaries 

(growth/no growth and toxin/no-toxin interface) of microorganisms becomes primordial for the 

food safety.  
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Predictive models are helpful tools to estimate the safety and shelf-life of foods. Within these 

predictive models, probabilistic models are used to predict the probability of growth or 

mycotoxin production of a microorganism under different conditions (Tienungoon et al., 2000). 

Logistic regression is a useful method for modelling boundaries between growth and no growth 

or mycotoxin production and no mycotoxin production of fungi (Aldars-García et al., 2016a, 

2015; Astoreca et al., 2012; Garcia et al., 2011c; García-Cela et al., 2014; Marín et al., 2012, 

2009; Tassou et al., 2009). An important aspect of predictive model development is ensuring 

that predictions made by the models are applicable to real situations. Thus, predictive models 

should take into account suboptimal conditions (the usual storage food environment) and strain 

variability, because in natural ecosystems different strain can occupy the same niche. The 

objective of the present work was to check if the intraspecies variability detected for growth and 

toxin production in kinetic models can be overcome by the use of probability models. 

The particular aim of the present work was to develop probabilistic models for 20 isolates of A. 

flavus isolated from foodstuffs on maize grain extract medium as a function of temperature and 

aw in order to explore the possibility of using models built on one strain to predict the behaviour 

of the others in the same species. 

 

2. Materials and methods 

2.1. Strains  

Twenty isolates of A. flavus isolated from maize grains, pistachio nuts, and chilli were tested in 

this study. A previous study was conducted in order to characterize the isolates in terms of their 

ability to produce AFB1 on Potato Dextrose Agar (PDA) at 25 °C, after 7 incubation days. Isolates 

were categorized as “low AF producer” if AFB1 levels were between LOD and 100 ng/g agar and 

“high AF producer” for isolates that produced concentrations higher than 100 ng/g agar. Results 

of this previous study and more details of the isolates studied are shown in Table 1. 
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Table 1. Description of the isolates used in the present study. 

Isolate code* Origin 

AFB1 production in 7 

days on PDA at 25 °C 

(ng/g agar) 

Category 

UdL-TA 3.268 Pistachio nuts 471.2 High producer 

UdL-TA 3.270 Pistachio nuts 114.8 High producer 

UdL-TA 3.318 Maize grains 1189.3 High producer 

UdL-TA 3.321 Maize grains 748.3 High producer 

UdL-TA 3.322 Maize grains 698.1 High producer 

UdL-TA 3.327 Maize grains 178.5 High producer 

UdL-TA 3.328 Maize grains 243.6 High producer 

UdL-TA 3.329 Maize grains 109.3 High producer 

UdL-TA 3.331 Maize grains 547.2 High producer 

UdL-TA 3.332 Maize grains 2114.6 High producer 

UdL-TA 3.244 Chilli 20.5 Low producer 

UdL-TA 3.267 Pistachio nuts 25.9 Low producer 

UdL-TA 3.269 Pistachio nuts 28.3 Low producer 

UdL-TA 3.319 Maize grains 39.7 Low producer 

UdL-TA 3.320 Maize grains 1.9 Low producer 

UdL-TA 3.323 Maize grains 3.9 Low producer 

UdL-TA 3.324 Maize grains 5.4 Low producer 

UdL-TA 3.325 Maize grains 1.5 Low producer 

UdL-TA 3.326 Maize grains 52.3 Low producer 

UdL-TA 3.330 Maize grains 37.2 Low producer 

*The isolate names are the codes of cultures held in the Food Technology Department Culture Collection of University 

of Lleida, Spain. 
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2.2. Inoculum  and media preparation 

The twenty isolates were sub-cultured on PDA plates and incubated at 25 °C for 7 days to obtain 

heavily sporulating cultures. After incubation, spores were collected by scraping the surface of 

the plates, diluting them in sterile water adjusted to aw values 0.84, 0.86, 0.88, 0.90, 0.92, 0.94, 

0.96 and 0.98 with glycerol containing Tween 80 (0.05% v/v), and filtered through sterile glass 

wool into a tube. Immediately total spore concentrations were determined using a Thoma 

counting chamber and decimal dilutions (in sterile water adjusted to the correspondent aw value 

with glycerol, containing Tween 80 (0.05% v/v)), were prepared to adjust the final concentration 

to 10
2
 spores/mL for each aw and strain. 

 

The basic medium used in this study was maize extract agar (MEA) adjusted to the 8 different 

aw. The medium was made by boiling 40 g of raw ground dry maize grains in 1 L distilled water 

for 30 min. After that, the extract was filtered and the amount of evaporated water was made 

up to adjust it to 4% of maize extract. Water activity of the media was adjusted by addition of 

certain amounts of glycerol-water to obtain the aw of each treatment and 2% of maize grain in 

the medium. Then, 12 g of agar were added per L of medium (for each aw) and they were 

autoclaved and poured into 90 mm sterile Petri dishes which were prepared under aseptic 

conditions. The aw of each medium was checked with an AquaLab Series 3 (Decagon Devices, 

Inc., WA, USA) with an accuracy ±0.003. 

 

2.3. Experimental design 

A full factorial design with 8 aw (0.84, 0.86, 0.88, 0.90, 0.92, 0.94, 0.96 and 0.98) and 6 

temperature (15, 20, 25, 30, 35 and 40 °C) levels was built to study the growth and AFB1 

production of several A. flavus isolates on maize extract agar (MEA) during 39 days. To carry out 

the experiment not all the combinations within the aw and temperature range were studied. We 

aimed to study those conditions were growth (and then also mycotoxin production) were 

compromised. The T-aw combinations studied are shown in Figure 1, a total of 32 T-aw 

conditions.  
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aw

T (°C)
0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98

15

20

25

30

35

40

Not studied- No growth based on bibliography Conditions studied Not studied-Optimal growth based on bibliography

 

Figure 1. Temperature and water activity combinations studied in the present study.  

 

2.4. Inoculation and incubation  

The growth andAFB1 production by A. flavus grown from single spores were assessed in the 

present study. A 0.2 mL aliquot of 10
2
 spores/mL suspensions was surface plated onto MEA (2%) 

and spread with a sterile bent glass rod, in order to obtain ca. 20 spores per Petri dish (then ca. 

20 colonies originating from one spore each). Petri dishes with the same aw were enclosed in 

polyethylene boxes together with a glycerol–water solutions at the same aw to maintain the 

relative humidity inside the boxes. Plates were incubated at the required temperature and each 

Petri dish was checked daily (one Petri dish per isolate and T-aw combination, a total of 640 Petri 

plates).  

 

2.5. Growth assessment and AFB1 determination 

Growth initiation was assessed periodically, daily or as required. Growth was considered to have 

initiated when colony diameters were greater than 2 mm. 

AFB1 presence was determined at certain time intervals depending on how many colonies had 

arisen on each Petri dish. Colony size of colonies taken for AFB1 analysis ranged from 2 to 30 

mm diameter. Growth was assessed by measuring the perpendicular colony diameters in 

millimetres. A 5-mm agar plug was taken from the centre of a colony at appropriate time 
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intervals. After sampling, the plates were taken back to incubation, for latter assessment of the 

other colonies present in the Petri plates. Plugs were weighed and vortexed for approximately 5 

seconds in 1mL of methanol and left stationary. After 1 hour, extracts were vortexed again and 

filtered (Millex
R
 SLHV 013NK, Millipore, Bedford, MA, USA). Extracts were dried in a nitrogen 

stream and stored at 4 °C until HPLC analysis. The analysis was carried out using a previously 

described high performance liquid chromatography (HPLC) method (Aldars-García et al., 2015). 

For the HPLC analysis all extracts were resuspended with 0.5 mL of methanol:water (50:50 v/v) 

and 100 μL was injected in the HPLC system (Waters, Milford, MA, USA). The detection limit of 

the analysis was 0.1 ng/g of AFB1, based on a signal-to- noise ratio of 3:1. 

 

2.6. Logistic models development 

Logistic regression was used to calculate the probabilities of growth (Eq.1)) as a function of time, 

temperature and aw and AFB1 production (Eq. 2) as a function of temperature and aw. Logistic 

regression describes the log odds of the event, which is the natural logarithm of the probability 

of the event occurring (P) divided by the probability of the event not occurring (1 − P).  

The binary values (0=no visible growth/no AFB1 detection; 1= growth/AFB1 detection) were 

adjusted by linear logistic regression, in order to obtain all the probability models; one for 

probability of growth and one for AFB1 production probability for each strain (a total of forty 

probability models).  

 

 ��������	 
 �� 
���	
��
���	 
 �� � ��� � �7O � �HP4 � �Q�7 � �R�O � �S� P4 � �TO7 �

�U� P4 � �VP47                                                                                                                                    (1) 
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 �� � ��O � �7P4 � �HO7 � �QP47 � �RO P4                           (2)             
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Where PG and PAF are the probability of growth or AFB1 production (in the range of 0–1), t is the 

time, T is the temperature in °C, aw is the water activity and bi are the coefficients to be 

estimated.  

The goodness of fit of the forty logistic models was assessed by means of the percentage of 

concordance (%C). 

As we aimed to make predictions in real scenarios were conditions are usually restrictive for 

growth and mycotoxin production, most of the conditions set in the present study were highly 

compromising for the events aforementioned.  Thus, under most of the conditions there were a 

number of spores which never germinated and developed colonies. Consequently, for each case, 

P was calculated as follows: 

� 
 �
�W

��� �K ��� XK�Y ����5��Z Y�[��5	 � 1  �
�W

�0	 

Then � 
 6
6]

���  �K ���	 

 

Where n is the number of growing colonies and nT is the potential number of colonies which 

could have grown according to the number of inoculated spores, calculated as 16 or 21 in the 

two different runs in which the experiments were performed. 

 

3. Results 

The total number of conditions studied in the present work were 32 (Fig. 1), for each strain. The 

large number of isolates included in this study permitted a comprehensive investigation of the 

relationships among growth, AFB1 and producing strains. All probability models developed 

described satisfactorily the phenomena studied. %C of the models for each strain are shown in 

Table 2. The probability models included square and interaction terms. Adding an interaction 

term to a model changes the interpretation of all of the coefficients. For example, if there were 

no interaction term, b2 in eq. 2 would be interpreted as the unique effect of temperature on the 

probability of growth. But the interactions mean that the effect of temperature on the 

probability of growth is different for example for different values of aw.  So the unique effect of 
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temperature on the probability of growth is not limited to b2 (in eq. (2)), but also depends on 

the values of other regression coefficients.  

 

 

 

 

Table2. Percentage of concordance (%C) of the 40 logistic models developed. 

Isolate name 

Probability 

growth 

models 

ProbabilityAFB1 

production 

models 

%C %C 

UdL-TA 3.268 91.08 84.91 

UdL-TA 3.270 96.23 90.00 

UdL-TA 3.318 96.63 87.04 

UdL-TA 3.321 97.80 83.33 

UdL-TA 3.322 97.38 80.36 

UdL-TA 3.327 97.83 92.10 

UdL-TA 3.328 97.95 75.00 

UdL-TA 3.329 98.32 83.02 

UdL-TA 3.331 96.68 88.89 

UdL-TA 3.332 97.70 88.89 

UdL-TA 3.244 97.47 88.00 

UdL-TA 3.267 97.86 82.50 

UdL-TA 3.269 96.60 87.18 

UdL-TA 3.319 96.68 78.95 

UdL-TA 3.320 96.71 82.00 

UdL-TA 3.323 90.03 90.52 

UdL-TA 3.324 97.95 76,60 

UdL-TA 3.325 95.31 91.67 

UdL-TA 3.326 94.56 91.11 

UdL-TA 3.330 97.72 90.00 

 

 

Effect of water activity and temperature on intraspecific differences in growth  

Firstly, n/nT was calculated for the different conditions and strains, it varied from 0 under no 

growth conditions to 1 under the most suitable conditions. A polynomial model was fitted to 

n/nT values for each strain, including only 0 values surrounding the positive growth conditions. 
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Figure 2 shows a graphical example of one of these models. Regarding this fitting, in several 

cases there was a certain disagreement between observed and predicted values at 40 °C, where 

observed data were 0 under certain aw levels (usually 0.92) and 1 when aw increased just in 0.02 

units (usually to 0.94), in such cases predicted values at 0.94-0.98 were lower than the observed 

ones.  

 

 

T (ºC)

aw

aw

T (ºC)

n
/n

T

 

 

Figure 2. Graphical example of a polynomial model fitted to n/nT values for isolate UdL-TA 3.269. 

Dots represent the observed points. 

 

As an example, Table 3 shows the percentage of spores which led to growing colonies (n/nT,) at 

20 °C and 0.88 aw. The maximum percentage of spores which developed to colonies tells us 

about the ability of each strain to initiate growth under a stressing environment. Almost all 20 

isolates found it hard to start growing under this set marginal condition, the maximum n/nT  was 
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up to ca. 30% except for isolates UdL-TA 3.370 and UdL-TA 3.318 and in to a lesser extent isolate 

UdL-TA 3.325. Notwithstanding this percentage, similar times to reach the maximum number of 

colonies under this marginal condition were obtained for the 20 isolates, most of them ranged 

between 4.3 and 6 days; suggesting a possible maximum period of time of adaptation after 

which the spores are not able to initiate growth regardless the total % of germinated spores. 

 

Table 3. Maximum proportion of spores which initiated growth n/nT) at 20 °C - 0.88 aw for the 20 

studied isolates and the incubation time (days) required to it. 

Isolate name n/nT Time (d) Isolate name n/nT Time (d) 

UdL-TA 3.268 0.22 3.90 UdL-TA 3.244 0.31 5.29 

UdL-TA 3.270 1.00 12.23 UdL-TA 3.267 0.31 6.17 

UdL-TA 3.318 0.81 5.98 UdL-TA 3.269 0.29 5.60 

UdL-TA 3.321 0.38 5.55 UdL-TA 3.319 0.29 6.15 

UdL-TA 3.322 0.28 4.77 UdL-TA 3.320 0.23 4.32 

UdL-TA 3.327 0.28 5.10 UdL-TA 3.323 0.12 2.83 

UdL-TA 3.328 0.24 4.39 UdL-TA 3.324 0.19 5.17 

UdL-TA 3.329 0.19 5.44 UdL-TA 3.325 0.56 5.98 

UdL-TA 3.331 0.19 5.49 UdL-TA 3.326 0.31 5.81 

UdL-TA 3.332 0.37 5.24 UdL-TA 3.330 0.34 6.21 

 

 

Secondly, linear logistic regressions were carried out. Tables S1 and S2 (supplementary material) 

show the regression coefficients of all models developed. Direct comparison of those 

coefficients among strains indicate existing significant differences among the models built for 

the different strains. In particular, coefficients for the T x aw terms were clearly different across 

strains. This can be confirmed from Fig. 3, where a comparison among the 20 growth models is 

shown. 0.05 and 0.5 probabilities were plotted at 30 days for all the strains, as isopleths. 0.5 

isopleth represents the points where 50% of probability exists for growth detection, while 0.05 

isopleth describes the conditions under which growth is hardly unlikely to occur. These plots are 

based in total probability, once both n/nT and logistic models have been merged.  

The growth/no growth boundaries varied among the tested A. flavus strains. Fig. 3 shows some 

differences in the curvatures of the contour lines for the 20 plots of growth. In general strains 

grew under a wider range of aw when temperature was between 25-35 °C. Greater differences 

among the 20 isolates occurred when temperature is <25 °C and >35 °C. Only isolate UdL-TA 
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3.318, showed different behaviour, its two isopleths showed a very different curvature at 17-22 

°C from the other strains, indicating a lower optimal temperature for growth. 
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Figure 3. The predicted growth/no growth boundaries after 30 days with respect to aw and 

temperature at probabilities of 0.05 and 0.5 for the 20 A. flavus isolates studied.  
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UdL-TA 3.322
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UdL-TA 3.329

UdL-TA 3.331

UdL-TA 3.332

UdL-TA 3.267
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UdL-TA 3.320

UdL-TA 3.323

UdL-TA 3.324
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UdL-TA 3.326

UdL-TA 3.330

Figure 4. The predicted AFB1/no AFB1 production boundaries after 30 days with respect to aw 

and temperature at probabilities of 0.05 and 0.5 for the 20 A. flavus isolates studied.  
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Effect of water activity and temperature on intraspecific differences in AFB1 production  

Observed probability of AFB1 production sometimes decayed in the long period, which could be 

due to the possible degradation of the AFB1 along time. Thus, only AFB1 production probability 

models at 30 days were developed.  

 

The predicted AFB1 production at probabilities of 5 and 50% for all strains after 30 days is 

shown in Figure 4. Some differences among strains can be extracted from this figure. Generally, 

temperature bellow 30 °C encompasses a wider range of aw for AFB1 production, only 2 isolates, 

namely UdL-TA 3.267 and UdL-TA 3.269 had a greater aw range for AFB1 production at higher 

temperatures. The different curvatures of the isopleths illustrate the variability in the aw and 

temperature tolerance of the different strains for AFB1 production. Both for the high and low AF 

producing strains (see Table 1) the shape of the isopleths was very similar for growth and AFB1 

production, however the conditions for AFB1 production were narrower than those for growth. 
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 Table 4. Predicted probability of AFB1 production and experimental amount of AFB1 (ng/g) 

detected in maize extract agar at two different temperature and aw combinations at day 30. 

 

Temp 

(°C) 
aw Isolate name 

AF 

probability 

AFB1 

(ng/g 

agar) 

Temp 

(°C) 
aw Isolate name 

AF 

probability 

AFB1 

(ng/g 

agar) 

25 0.9 UdL-TA 3.268 0.49 2.92 20 0.92 UdL-TA 3.268 0.42 nd 

25 0.9 UdL-TA 3.270 0.33 nd 20 0.92 UdL-TA 3.270 0.38 nd 

25 0.9 UdL-TA 3.318 0.24 nd 20 0.92 UdL-TA 3.318 0.16 nd 

25 0.9 UdL-TA 3.321 0.24 9.34 20 0.92 UdL-TA 3.321 0.28 nd 

25 0.9 UdL-TA 3.322 0.29 nd 20 0.92 UdL-TA 3.322 0.22 92.81 

25 0.9 UdL-TA 3.327 0.32 nd 20 0.92 UdL-TA 3.327 0.21 nd 

25 0.9 UdL-TA 3.328 0.34 25.37 20 0.92 UdL-TA 3.328 0.31 nd 

25 0.9 UdL-TA 3.329 0.33 nd 20 0.92 UdL-TA 3.329 0.21 nd 

25 0.9 UdL-TA 3.331 0.15 nd 20 0.92 UdL-TA 3.331 0.15 nd 

25 0.9 UdL-TA 3.332 0.06 nd 20 0.92 UdL-TA 3.332 0.12 nd 

25 0.9 UdL-TA 3.244 0.20 nd 20 0.92 UdL-TA 3.244 0.21 nd 

25 0.9 UdL-TA 3.267 0.17 nd 20 0.92 UdL-TA 3.267 0.11 nd 

25 0.9 UdL-TA 3.269 0.02 nd 20 0.92 UdL-TA 3.269 0.01 nd 

25 0.9 UdL-TA 3.319 0.04 nd 20 0.92 UdL-TA 3.319 0.06 nd 

25 0.9 UdL-TA 3.320 0.37 27.78 20 0.92 UdL-TA 3.320 0.33 1.79 

25 0.9 UdL-TA 3.323 0.42 nd 20 0.92 UdL-TA 3.323 0.05 nd 

25 0.9 UdL-TA 3.324 0.31 3.99 20 0.92 UdL-TA 3.324 0.29 10.73 

25 0.9 UdL-TA 3.325 0.40 2.12 20 0.92 UdL-TA 3.325 0.35 5.56 

25 0.9 UdL-TA 3.326 0.30 nd 20 0.92 UdL-TA 3.326 0.10 nd 

25 0.9 UdL-TA 3.330 0.21 nd 20 0.92 UdL-TA 3.330 0.13 nd 

 

 

From Table 4, at 20 °C -0.92 aw, 4 strains out of 20 produced AFB1, the amount of AFB1 

produced ranged between 1.79 and 92.81 ppb (probability 0.22-0.35 in these cases). In the same 

way, at 25 °C -0.90 aw 6 strains out of 20 were able to produce AFB1, ranging between 2.12-

27.78 ppb (probability 0.24-0.49 in these cases). No correlation was found between probability 

values and AFB1 concentrations, confirming that the amount of toxin produced is highly strain 

dependent (Table 4).  

These results show the high variability in the amount of AFB1 produced, while  one strain cannot 

produce the toxin at all, another strain under the same condition is able to produce up to 93 

ppb. From the data we can infer that predicting kinetics of the amount of AFB1 produced will be 
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highly variable among strains. On the other hand, probability models give a more common 

trend, although still differences exist. Below a probability value of 0.22 no AFB1 was detected; 

thus we can use this value as a maximum limit below which AFB1 production is very unlike to 

occur across the 20 strains.  

 

4. Discussion  

Despite the known differences in growth and mycotoxin production by individual strains, this 

field has not yet been studied in detail for mycotoxigenic fungal species. Many sources can be 

the cause of this intraspecies variability, e. g. molecular characteristics, geographical origin, 

environmental conditions, etc. The present study compared probabilities of growth and AFB1 

production of 20 isolates of A. flavus using a wide range of T-aw combinations. In this work no 

effect was observed due to the isolation source of the strains. 

It is important to highlight that the results of growth and AFB1 production in this work 

correspond to the behaviour of colonies arising from single spores. Aldars-García et al. (2016b)  

modelled the probability of growth and AFB1 production using single spores and a concentrated 

inocula in order to assess the differences between them. The effect of inoculum concentration 

greatly affected the outcome of the predictive models, growth/AFB1 production occurred much 

earlier for the concentrated inoculum than for colony arising from a single spore (up to 9 days). 

That study demonstrated that the number of spores used to generate data in predictive 

mycology experiments should be carefully controlled in order to predict as accurately as 

possible the fungal behaviour in a foodstuff. Although the aim of the present work was to assess 

the intraspecies variability, we tried to get predictions in conditions as similar as possible to real 

food storage conditions. 

 

Regarding the 20 probability growth models, the differences arises when the combination of 

variables takes place, since the regression coefficients for the interaction factors are quite 

variable among strain models (Table S1, supplementary material). This means for example that 

the use of a restrictive aw and temperature together have a greater effect on the fungal 

behaviour than restricting only one of these variables, and that the adaptation and response is 

strain dependent. Other studies also suggest that the combination of factors can be restrictive 
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on growth of A. ochraceus and OTA production affecting in a different way depending on the 

isolate (Pardo et al., 2006). Furthermore, regression coefficients for the AFB1 production 

probability models were less different among the 20 isolates (Table S2, supplementary material) 

than the growth ones, this was in general due to wider confidence intervals in the AFB1 models 

due to the lower number of observations, and also to the fact that time was not included as a 

variable in the AFB1 models. When the twenty 0.05 probability lines were superposed (Fig. 5) it 

was clear that initiation of AFB1 production was an event much more dependent on the strain 

involved than growth was. Lines in Figure 5a are closer than lines in Figure 5b. A study 

conducted with 8 strains of Penicillium expansum in apples to study fungal growth and patulin 

production showed this strain dependence of mycotoxin production (Baert et al., 2007a). In that 

study the combination of stress factors, such as temperature and O2 level, gave different results 

of patulin production depending on the strain.  

 

Boundaries for growth/no-growth or AFB1/no-AFB1 production were variable among strains. 

Regions out of the temperature range 20-35 °C, showed the highest variability. These regions 

correspond to marginal conditions. As it has been reported several times, the differences among 

isolates are more marked under marginal than under optimal conditions (Astoreca et al., 2007; 

Baert et al., 2007b; Garcia et al., 2011b; Romero et al., 2010). As an example of these studies, 

Garcia et al. (2011b) studied the impact of  suboptimal environmental conditions on the 

intraspecific variability of A. carbonarius growth and OTA production using 30 isolates and found 

higher intraspecies variability under marginal conditions of growth. 

Under almost all T-aw combinations and for all isolates, the separation between the two 

isopleths (0.05 and 0.5) is quite broad (Fig. 3 and 4). This breadth is related to the slopes of the 

probability curves, which are smaller due to the wider distributions obtained when working with 

colonies arisen from only one spore.  

 

In general, growth of A. flavus is unlikely for aw values under 0.85, regardless of the temperature 

level. Certain combinations of T-aw, especially those combinations which imposed stress on the 

fungus resulted in a significant diminution on the probability of growth and AFB1 production. 

For example, 15 °C -0.90 aw or 35 °C -0.85 aw are almost not supportive for growth. At 

temperatures beyond ca. 40 °C very small probability of AFB1 production was obtained. 
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However in this sense, high differences among isolates were found; the ability of producing 

AFB1 at high temperatures seemed to be very strain dependent.  

 

The 20 predicted boundaries for 0.05 probability were plot together with literature data for 

both growth (Fig. 5a) and AFB1 production (Fig. 5b). The two thicker lines in Figure 5a and 5b 

represent the general behaviour of the isolates that grew/produced AFB1 under the wider T-aw 

combinations and the narrower combinations.  However it proved difficult to find appropriate 

literature data to compare our logistic models as no similar approach has been employed so far 

for A. flavus colonies originating from single spores. Due to this drawback some literature data 

points in Fig. 5 showed a high probability of growth or toxin production out and around the 

boundaries that we predicted. For growth, less agreement with literature data was found at 

higher temperatures (above 25 °C). Literature data were obtained experimentally using 

inoculum sizes higher than 50 spores per inoculation point, except for 4 data points extracted 

from Aldars-García et al. (2016b), which were at 25° C and 0.85 and 0.87 aw, with ca. 100% 

probability of growth at 30 days for colonies originating from single spores. The same conclusion 

was given by (Garcia et al., 2010), while working with A. carbonarius and P. expansum at 

suboptimal conditions and different inoculum levels. Their results showed that as conditions 

become limiting and the inoculum size decreases, more variability on the growth probability is 

obtained. Then we would expect a quite variable fungal behaviour under marginal conditions 

when one spore leads the growth. Regarding AFB1 production, more variability was found in the 

literature data, as is reflected in Figure 5b (points), were for example some researchers detected 

AFB1 at 30° C-0.82 aw but others did not a 30° C -0.84 aw. The 20 isopleths for AFB1 production 

probability were more widely distributed than those for growth. Besides, Figure 5 clearly shows 

the narrower T-aw combinations that allow for AFB1 production compared to those that allow 

growth. In general, comparison with literature data showed that, despite these differences, 

growth boundaries are much more similar among strains than those for AFB1 production are.  

 



 

Figure 5a.The predicted growth/no

at day 30 were plot together with literature data (28

data;�, 0.9 < Probability < 1; 

extracted from: Aldars-García et al. (2016b), 

 

Figure 5b.The predicted AFB1 production/no AFB1 production boundaries at 0.05 probability of 

the twenty isolates at day 30 were plot together with literature data (days between 21 and 30). 

Points represent the literature data; 

studies and not detected in other; 

2014; Lahouar et al., 2016; Mohale et al., 2013; Mousa et al., 2013)

 

The amount of mycotoxi

among isolates (Garcia et al., 2011b; Yogendrarajah et al., 2016)

for toxin/no-toxin seemed to be variable, but much less than the quantity of toxin produced. 

Thus, taking into account the high variability in the amount of AFB1 produced by different 

strains, modelling of the probability of t

for AFB1 production were narrower than those for growth, thus the possibility of using 

growth/no-growth models for predicting AFB1 production, may lead to unnecessary rejection 
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The predicted growth/no-growth boundaries at 0.05 probability of the twenty isolates 

at day 30 were plot together with literature data (28-30 days). Points represent the literature 

, 0.9 < Probability < 1; � 0.2 < Probability < 0.9; �, 0.05 < Probabi

García et al. (2016b), Astoreca et al. (2012), Marín et al. (2012, 2009)

The predicted AFB1 production/no AFB1 production boundaries at 0.05 probability of 

the twenty isolates at day 30 were plot together with literature data (days between 21 and 30). 

iterature data; �, detected AFB1 in all studies; �, AFB1 detected in some 

studies and not detected in other; , AFB1 not detected. Data extracted from: 

2014; Lahouar et al., 2016; Mohale et al., 2013; Mousa et al., 2013) 

The amount of mycotoxins produced by fungi has been demonstrated to be highly variable 

(Garcia et al., 2011b; Yogendrarajah et al., 2016). On the contrary, boundaries 

toxin seemed to be variable, but much less than the quantity of toxin produced. 

Thus, taking into account the high variability in the amount of AFB1 produced by different 

strains, modelling of the probability of toxin production seems a suitable alternative. Boundaries 

for AFB1 production were narrower than those for growth, thus the possibility of using 

growth models for predicting AFB1 production, may lead to unnecessary rejection 

 

growth boundaries at 0.05 probability of the twenty isolates 

30 days). Points represent the literature 

, 0.05 < Probability < 0.2; , P=0. Data 

, Marín et al. (2012, 2009). 

The predicted AFB1 production/no AFB1 production boundaries at 0.05 probability of 

the twenty isolates at day 30 were plot together with literature data (days between 21 and 30). 

, AFB1 detected in some 

, AFB1 not detected. Data extracted from: (Astoreca et al., 

ns produced by fungi has been demonstrated to be highly variable 

. On the contrary, boundaries 

toxin seemed to be variable, but much less than the quantity of toxin produced. 

Thus, taking into account the high variability in the amount of AFB1 produced by different 

oxin production seems a suitable alternative. Boundaries 

for AFB1 production were narrower than those for growth, thus the possibility of using 

growth models for predicting AFB1 production, may lead to unnecessary rejection 
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measures. However, the food industry needs to appropriately deal with the mycotoxin risk and 

anyway this will be a “fail-safe” scenario.  

 

Results from Figures 3 and 4 show the possibility of encountering some strains with a better 

ability to grow and produce AFB1 than others. Thus, when developing the predictive models 

several strains should be taken into account in order to overcome this issue. Working separately 

with a large number of strains may be tedious, and some authors had investigated the 

possibility of using a cocktail of strains inoculum (Aldars-García et al., 2015; Garcia et al., 2014). 

Garcia et al. (2014) compared the growth among 25 isolates separately and an inoculum with 

the 25 strains together, and they concluded that the best adapted isolated led the behaviour of 

the pooled inoculum, thus it would be equivalent to work with the fastest strain, in a worst 

scenario situation. This approach would not be useful for quantitative risk assessment.  

In conclusion, the results of this work showed that under marginal conditions, the combined 

effect of temperature and aw had different effect on the 20 isolates of A. flavus tested, in terms 

of growth and AFB1 production responses.  Contour plots for each isolate satisfactorily 

predicted the response studied. However, to build better models, more information accounting 

for a wider range of strains from different climatic conditions is required.  
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Table S1. (Part 1 of 2). Regression coefficients of the 20 probability growth models. 

Parameter 

UdL-TA 3.244 UdL-TA 3.267 UdL-TA 3.269 UdL-TA 3.319 UdL-TA 3.320 

Estimate Standard error Estimate Standard error Estimate 
Standard 

error 
Estimate Standard error Estimate Standard error 

CONSTANT 558.19 49.57 1200.52 54.59 168.13 46.08 137.21 49.16 654.72 33.41 

t -0.59 0.03 -1.37 0.03 -0.48 0.02 -0.48 0.02 -0.39 0.01 

T ns ns -6.66 0.33 -5.41 0.33 -3.99 0.33 -1.82 0.19 

aw -1291.86 103.46 -2413.71 112.88 -293.48 94.15 -281.95 99.76 -1447.58 68.91 

t
2
 -1.00E-05 2.82E-06 6.96E-05 4.63E-06 -1.13E-05 1.22E-06 -1.28E-05 1.25E-06 -1.90E-05 9.18E-07 

t*T 1.00E-03 1.11E-04 0.01 1.48E-04 2.87E-03 1.10E-04 3.09E-03 1.09E-04 7.79E-04 4.98E-05 

t*aw 0.69 0.03 1.41 0.04 0.50 0.02 0.50 0.02 0.45 1.31E-02 

T
2
 -0.08 2.51E-03 -0.09 2.71E-03 -0.07 2.06E-03 -0.06 1.82E-03 -0.08 1.51E-03 

T*aw 5.51 0.32 12.60 0.43 9.60 0.38 7.87 0.36 6.58 0.22 

aw
2
 661.21 53.43 1125.73 57.44 ns ns 90.17 50.83 726.58 35.05 

  UdL-TA 3.323 UdL-TA 3.324 UdL-TA 3.325 UdL-TA 3.326 UdL-TA 3.330 

 Estimate Standard error Estimate Standard error Estimate 
Standard 

error 
Estimate Standard error Estimate Standard error 

  

CONSTANT 151.58 27.97 42.57 62.52 661.86 28.23 -563.40 25.57 92.08 63.18 

t 0.01 4.34E-03 -0.53 0.03 -0.03 4.07E-03 0.11 4.88E-03 -0.84 0.03 

T ns ns 2.16 0.44 3.85 0.16 4.29 0.17 -4.51 0.39 

aw -374.58 59.10 ns ns -1707.37 61.13 969.77 52.84 -169.50 127.72 

t
2
 -1.60E-05 5.57E-07 -2.98E-05 5.82E-06 -3.97E-05 7.60E-07 -2.10E-05 7.92E-07 ns ns 

t*T -4.24E-04 2.15E-05 2.10E-03 1.70E-04 -7.07E-04 1.61E-05 -7.28E-04 3.43E-05 2.46E-03 1.32E-04 

t*aw 0.03 4.84E-03 0.61 0.03 0.11 4.79E-03 -0.06 5.21E-03 0.93 0.03 

T
2
 -0.02 7.69E-04 -0.10 3.38E-03 -0.10 1.65E-03 -0.05 1.29E-03 -0.12 3.55E-03 

T*aw 1.40 0.15 3.57 0.44 2.15 0.15 -1.17 0.14 11.98 0.47 

aw
2
 204.10 31.31 157.07 62.72 969.74 32.79 -448.88 28.09 ns ns 

ns, not significant 
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Table S1. (Part 2 of 2). Regression coefficients of the 20 probability growth models. 

Parameter 

 

UdL-TA 3.268 UdL-TA 3.270 UdL-TA 3.318 UdL-TA 3.321 UdL-TA 3.322 

Estimate Standard error Estimate Standard error Estimate 
Standard 

error 
Estimate Standard error Estimate Standard error 

CONSTANT 291.12 15.57 -40.29 33.42 97.43 25.16 31.98 38.03 83.52 37.5638 

t -0.02 2.59E-03 -0.17 0.02 -0.11 0.01 -0.33 0.02 -0.29 0.02 

T 0.72 0.09 1.77 0.19 6.87 0.20 3.12 0.30 1.69 0.29 

aw -717.49 33.56 ns ns -561.68 54.36 -302.30 75.88 -344.55 75.44 

t
2
 -1.70E-05 3.21E-07 -2.34E-05 1.33E-06 -2.87E-05 8.03E-07 -4.03E-05 3.44E-06 -3.69E-05 2.31E-06 

t*T -3.92E-04 1.26E-05 -2.66E-04 6.27E-05 -2.23E-03 5.12E-05 3.78E-03 1.28E-04 2.65E-03 1.24E-04 

t*aw 0.05 2.94E-03 0.25 0.02 0.24 0.01 0.37 0.02 0.33 0.02 

T
2
 -0.02 5.97E-04 -0.06 1.47E-03 -0.09 1.67E-03 -0.06 1.87E-03 -0.06 1.85E-03 

T*aw 0.82 0.09 1.85 0.19 -1.27 0.16 ns ns 2.17 0.28 

aw
2
 406.43 18.02 51.61 35.76 387.75 29.58 220.68 38.22 207.41 38.25 

  UdL-TA 3.327 UdL-TA 3.328 UdL-TA 3.329 UdL-TA 3.331 UdL-TA 3.332 

 Estimate Standard error Estimate Standard error Estimate 
Standard 

error 
Estimate Standard error Estimate Standard error 

  

CONSTANT 449.04 53.87 501.32 40.16 -246.44 61.39 141.94 41.36 25.27 35.94 

t -0.45 0.03 -0.53 0.02 -0.53 0.03 -0.36 0.02 -0.24 0.02 

T -2.55 0.43 1.27 0.24 ns ns 1.47 0.24 2.55 0.29 

aw -1015.10 107.62 -1210.20 84.41 382.24 121.04 -438.38 84.69 -234.16 71.77 

t
2
 -3.42E-05 3.03E-06 -1.51E-05 1.77005E-06 -5.40E-05 3.89E-06 -7.00E-06 2.54E-06 -4.48E-05 2.25E-06 

t*T 4.37E-03 1.91E-04 -1.53E-03 9.98E-05 3.66E-03 1.56E-04 -1.70E-04 7.74E-05 2.05E-03 1.24E-04 

t*aw 0.47 0.03 0.70 0.03 0.61 0.03 0.45 0.02 0.29 0.02 

T
2
 -0.05 2.33E-03 -0.08 2.19E-03 -0.10 3.02E-03 -0.07 1.70E-03 -0.06 1.85E-03 

T*aw 5.46 0.41 4.34 0.24 7.06 0.40 2.80 0.24 0.98 0.28 

aw
2
 522.21 53.99 621.42 43.77 -228.59 60.31 232.97 43.24 155.11 36.10 

ns, not significant 



Chapter iii (Supplementary material) 

109 

 

Table S2. (Part 1 of 2). Regression coefficients of the 20 probability AFB1 production models. 

Parameter 

UdL-TA 3.244 UdL-TA 3.267 UdL-TA 3.269 UdL-TA 3.319 UdL-TA 3.320 

Estimate 
Standard 

error 
Estimate 

Standard 

error 
Estimate 

Standard 

error 
Estimate 

Standard 

error 
Estimate 

Standard 

error 

CONSTANT -75.19 21.78 -147.35 64.85 -229.43 101.67 1.07 20.61 40.77 44.46 

T 1.83 0.62 4.80 2.50 7.33 3.58 0.53 0.39 -1.93 1.78 

aw 56.85 17.60 139.36 64.93 221.47 100.34 -64.15 46.06 -60.72 47.57 

T
2
 -0.04 0.01 -0.02 0.01 -0.03 0.01 -0.01 0.01 -0.03 0.01 

aw
2
 ns ns ns ns ns ns 58.49 28.93 ns ns 

T*aw ns ns -3.72 2.38 -6.23 3.30 ns ns 3.48 1.97 

 
UdL-TA 3.323 UdL-TA 3.324 UdL-TA 3.325 UdL-TA 3.326 UdL-TA 3.330 

 Estimate 
Standard 

error 
Estimate 

Standard 

error 
Estimate 

Standard 

error 
Estimate 

Standard 

error 
Estimate 

Standard 

error   

CONSTANT -179.00 73.00 -59.79 19.06 -89.95 30.55 -77.26 25.12 -79.02 25.22 

T 4.77 2.42 1.35 0.48 3.21 1.01 2.61 0.92 1.72 0.58 

aw 123.30 47.74 47.47 15.41 57.27 22.68 45.71 16.64 60.20 21.04 

T
2
 -0.08 0.04 -0.02 0.01 -0.06 0.02 -0.05 0.02 -0.03 0.01 

aw
2
 ns ns ns ns ns ns ns ns ns ns 

T*aw ns ns ns ns ns ns ns ns ns ns 

ns, not significant 
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Table S2. (Part 2 of 2). Regression coefficients of the 20 probability AFB1 production models. 

 
UdL-TA 3.268 UdL-TA 3.270 UdL-TA 3.318 UdL-TA 3.321 UdL-TA 3.322 

 Estimate 
Standard 

error 
Estimate 

Standard 

error 
Estimate 

Standard 

error 
Estimate 

Standard 

error 
Estimate 

Standard 

error   

CONSTANT -79.96 23.17 -117.64 36.75 365.88 297.11 -52.25 15.16 -56.75 16.18 

T 1.86 0.59 1.50 0.70 2.15 0.72 0.92 0.38 1.38 0.45 

aw 62.77 18.36 106.39 31.67 -917.30 663.46 44.15 12.89 43.18 13.03 

T
2
 -0.04 0.01 -0.03 0.01 -0.04 0.01 -0.02 0.01 -0.03 0.01 

aw
2
 ns ns ns ns 532.30 364.86 ns ns ns ns 

T*aw ns ns ns ns ns ns ns ns ns ns 

 
UdL-TA 3.327 UdL-TA 3.328 UdL-TA 3.329 UdL-TA 3.331 UdL-TA 3.332 

 
Estimate 

Standard 

error 
Estimate 

Standard 

error 
Estimate 

Standard 

error 
Estimate 

Standard 

error 
Estimate 

Standard 

error   

CONSTANT -38.42 10.71 -30.00 9.01 -50.28 14.51 -88.52 26.87 -67.04 26.59 

T 1.55 0.48 1.04 0.39 1.24 0.42 1.52 0.59 1.37 0.65 

aw -0.03 0.01 -0.02 0.01 36.65 11.63 74.30 22.54 54.61 21.65 

T
2
 21.63 6.88 19.95 6.12 -0.02 0.01 -0.03 0.01 -0.03 0.01 

aw
2
 ns ns ns ns ns ns ns ns ns ns 

T*aw ns ns ns ns ns ns ns ns ns ns 

ns, not significant 
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Abstract  

Intraspecies variability in fungal growth and mycotoxin production has important implications 

for food safety. Using the Bioscreen C we have examined spectrophotometrically intraspecies 

variability of A. flavus using 10 isolates under different environments, including temperature 

shifts in terms of growth and aflatoxin B1 (AFB1) production. Among the isolates tested, there 

were five high and five low AFB1 producers. The study was conducted at 5 isothermal conditions 

(from 15 to 37 °C) and 4 dynamic scenarios (between 15 and 30 °C). The experiments were 

carried out in a semisolid YES medium at 0.92 aw and two inoculum levels, 102 and 103 

spores/mL. The Time to Detection (TTD) of growth initiation was determined and modelled as a 

function of temperature through a polynomial equation and the model was used to predict TTD 

under fluctuating conditions using a novel approach. The results obtained in this study have 

shown that a model can be developed to describe the effect of temperature fluctuations on the 

TTD for all the studied isolates and inoculum levels. Isolate variability increased as the growth 

conditions became more stressful and with a lower inoculum level. Inoculum level affected the 

intraspecies variability but not the repeatability of the experiments. In dynamic conditions, 

isolate responses depended both on the temperature shift and, predominantly, the final 

temperature level. AFB1 production was highly variable among the isolates and depended on the 

inoculum level. This suggests that, from an ecological point of view, the potential isolate 

variability and interaction with dynamic conditions should be taken into account in developing 

strategies to control growth and predicting mycotoxin risks by mycotoxigenic fungi. This type of 

study could also be useful practically in predicting relative risks in colonisation and 

contamination with AFB1 in staple stored food commodities.   

 

 

 

 

Keywords intraspecies variability; Aspergillus flavus; growth; aflatoxin; dynamic temperature; 

inoculum level 
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1. Introduction 

Fungal growth and mycotoxin contamination of food products represent an important food 

safety issue for the food industry. Aspergillus species are particularly important because of they 

are xerophilic and able to colonise a range of food matrices, resulting in spoilage problems and 

mycotoxin contamination, causing significant economic losses of staple food crops. Many factors 

can influence fungal growth in food products including nutritional composition, temperature, 

pH, water activity (aw), atmospheric composition, presence and concentration of preservatives, 

different fungal communities, as well as storage times. Inter- and intra-species differences have 

been shown to be an important source of variability in terms of fungal growth and mycotoxin 

production (Abbas et al., 2005; Astoreca et al., 2007; Belli et al., 2004; Garcia et al., 2011a, 

2011b; Lahouar et al., 2016; Romero et al., 2007; Santos et al., 2002; Singh et al., 2015; 

Yogendrarajah et al., 2016).   

Usually, spoilage by filamentous fungi is visible in the form of colonies on the surface of food 

products, especially bakery goods. In general, spoilage has been evaluated by physically 

measuring the rate of colonisation on the food surface. However, the assessment of filamentous 

fungal activity is complex because they grow in three dimensions and are able to colonise a 

greater substrate surface area than yeasts or bacteria (Dantigny et al., 2005). The measurement 

of hyphal extension rates, usually reported as radial growth rate, is probably the simplest and 

most direct method to measure fungal growth. Nevertheless, as stated by Medina et al. (2012), 

these measurements do not account for the true representation of the three-dimensional 

nature of fungal growth, although there is a relationship between radial growth and fungal 

biomass (Trinci, 1971). In addition, the whole process is time consuming and requires significant 

inputs of time and consumables. Methods based on spectrophotometry (turbidimetric 

measurements) have been widely used for bacterial growth but used in only a small number of 

fungal growth studies. Spectrophotometric assays provide fast results that are expressed in 

Optical Density (O.D.) units. Only a few authors have used this kind of approach for mycological 

studies (Medina et al., 2012; Mohale et al., 2013; Rossi-Rodrigues et al., 2009; Samsudin et al., 

2016). The use of a semi-solid agar medium has been effectively utilised to examine relative 

growth in relation to environmental factors and also in relation to different anti-fungal 

compounds (Medina et al., 2012).  
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There is interest in understanding the relationship between initial inoculum size and how this 

affects the relative growth rate in relation to environmental conditions (Aldars-García et al., 

2016; Baert et al., 2008; Barberis et al., 2012; Burgain et al., 2013; Garcia et al., 2010; Gougouli 

et al., 2011; Morales et al., 2008). In addition, how does initial inoculum size affects the capacity 

for mycotoxin production. This could be important as the initial levels of fungal contamination of 

a food matrix may influence, or indeed determine, how much mycotoxin is produced. In this 

study, we have used Aspergillus flavus as the target mycotoxigenic pathogen because it 

colonises a range of cereals, nuts and also spices and contaminates them with aflatoxins, 

especially aflatoxin B1 (AFB1) which is a class 1A carcinogen (IARC, 1993). Thus, it is an important 

model fungal species to utilise for ecophysiological studies of a mycotoxigenic species. While 

usually the fungal community consists of a range of species and isolates of the same species, we 

have focused here on different inoculum sizes of different isolates of the same species only.  

Thus, the objectives of this study were to (i) compare the impact of different steady state 

temperatures (15-35 °C) on relative initial growth of 10 isolates of A. flavus at two initial 

inoculum levels (log2, log3); (ii) examine the effect of four temperature shifts (between 15-30 

°C) and inoculum size on rates of growth using the Bioscreen C; (iii) evaluate the effect of initial 

inoculum size and steady state and temperature shifts on AFB1 production and (iv) examine 

what impact these environmental conditions/shifts have on within-isolate variation using a 

secondary metabolite conducive medium. The ten tested isolates were divided into two groups 

according to their AFB1 production ability: one high AFB1 producer and another low AFB1 

producer.  

 

 

2. Material and methods 

2.1. A. flavus isolates 

Ten isolates of A. flavus isolated from chilli powder, maize grains and pistachio nuts were used 

in this study (table 1). There were five high and five low AFB1 producers. 
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Table 1. Description of the isolates used in the present study 

Isolate code* Origin AFB1 production on 

PDA at 25 °C for 7 days 

(ng/g) 

UdL-TA 3.244 Chilli 
20.5 

UdL-TA 3.267 
Pistachio nuts 

25.9 

UdL-TA 3.269 
Pistachio nuts 

28.3 

UdL-TA 3.324 Maize grains 
5.4 

UdL-TA 3.325 Maize grains 
1.5 

UdL-TA 3.268 Pistachio nuts 
471.2 

UdL-TA 3.270 Pistachio nuts 
114.8 

UdL-TA 3.327 Maize grains 
178.5 

UdL-TA 3.331 Maize grains 
547.2 

UdL-TA 3.332 Maize grains 
2114.6 

*Isolate codes are the names of the cultures held in the Food Technology Department Culture Collection 

of University of Lleida, Spain. 

 

2.2. Inoculum preparation, culture medium and inoculation 

Isolates were sub-cultured on Malt Extract Agar (Sigma-Aldrich, Dorset, UK) at 25 °C for 7 days 

to obtain heavily sporulating cultures. After incubation, spores were collected by scraping the 

surface of the plates, diluting them in sterile water adjusted to 0.92 aw with glycerol containing 

Tween 80 (0.05% v/v), and filtered through sterile glass wool into a tube. Immediately total 

spore concentrations were determined and decimal dilutions (in sterile water adjusted to 0.92 

aw with glycerol, containing Tween 80 (0.05% v/v)), were prepared to obtain the two different 

spore concentrations: 105 and 104 spores/mL for each isolate. The basic medium used in this 

study was a semisolid Yeast Extract Sucrose (YES) agar, whose protocol of preparation was 

previously optimised by Medina et al. (2012) and adjusted to 0.92 aw. Spore suspensions were 

used to inoculate semi-solid YES medium. 100 µL of the spore suspension was pipetted into 9.9 

mL of semi-solid YES agar, for each spore concentration, thus two final concentrations of 103 

and 102 spore/mL in the semisolid YES agar were prepared for each isolate.  
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2.3. Growth assessment  

Growth was studied at 15, 20, 25, 30, 35, 37 °C and four changing profiles from 15 to 25 °C (F1), 

15 to 30 °C (F2), 20 to 25 °C (F3) and 20 to 30 °C (F4), after 48 hours at the lowest temperature.  

Optical densities, which are directly related to the fungal biomass of A. flavus (Medina et al., 

2012) were recorded using a Bioscreen C Microbiological Growth Analyser (Labsystems, Helsinki, 

Finland). 100-well microtitre plates specifically manufactured for this machine were loaded with 

the 103 and 102 spore/mL semisolid YES agar of each isolate; one plate per spore concentration 

was used. The wells of the microplate were filled with 300 µL of the inoculated medium, thus ca. 

300 and 30 spores were inoculated in each well for the 103 and 102 spores/ mL inocula, 

respectively. For each temperature condition two inoculum levels were set with 9 replicates 

(well) per isolate (10 isolates x 9 replicates=90 wells plus 10 empty wells, this means one plate 

per inoculum level and temperature condition). 

The O.D. was recorded every 30 min using the 600nm filter over a 7 days period, except for 20 

°C and 15 to 25 °C (F1), where 14 and 9 days respectively, were needed to reach the growth 

threshold set for the experiments. Data were recorded using the software Easy Bioscreen 

Experiment (EZExperiment) provided by the manufacturer and then exported to a Microsoft® 

Excel® Professional 2010 (14.0.4756.1000) (Microsoft Corporation, Redmond, Washington, USA) 

sheet for further analysis.  

 

2.4. Aflatoxin B1 assessment  

Following incubation, wells’ content was collected in order to analyse the mycotoxin 

concentration.  AFB1 extraction was carried out as follows: the content of 3 wells was collected 

for each isolate and temperature condition, in triplicate. AFB1 was extracted with 0.8 mL of 

chloroform, shaken for 1 min and left stationary for 20 min.  The chloroform phase was 

separated and the aqueous phase was re- extracted twice with 0.8 mL of chloroform. The 

organic extracts were combined and evaporated to dryness. The residues were derivatized using 

trifluoroacetic acid as described by the AOAC (2000) and transferred to a HPLC vial. All 

derivatized samples were analysed by HPLC (Agilent 1200 series HPLC (Agilent, Berkshire, UK)). 

Chromatographic separations were performed on a stainless steel, C18 column (Phenomenex 

Luna ODS2 150 x 4.6 mm, 5 µm). Methanol: water: acetonitrile (30:60:10) was used as the 
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mobile phase at a flowrate of 1mL/min. AFB1 derivative fluorescence was recorded at excitation 

and emission wavelengths of 360 and 440 nm respectively. Standard curves were constructed 

with different levels of AFB1. Aflatoxin recovery assays were performed to ensure the analytical 

quality of the results, obtaining for all the concentrations tested >87% of recovery. 

 

2.5. Data analysis 

2.5.1. TTD for static temperatures 

Raw datasets obtained from the Bioscreen C were subjected to further analysis. Before analyses, 

the average of the measurements for each well during the first 60 min was calculated and 

automatically subtracted from all subsequent measurements in order to remove the different 

signal backgrounds. Then, the TTD for an O.D. of 0.1 was obtained using a Microsoft® Excel® 

template (kindly provided by Dr. R. Lambert), which used linear interpolation between 

successive O.D. readings.  

In order to stabilise the variance, for TTD comparison, a square root transformation was used. 

However, raw data are presented in tables and graphs. The Kruskal–Wallis test was used to 

establish the differences among median TTD values of the 10 isolates under the different levels 

at p<0.05.  

Finally, based on the TTD, a polynomial model that described the TTD as a function of the 

temperature was fitted. The general expression of the polynomial model is: 

��� � ��  �  �� � � �	�	                                                                                                                    (1) 

ai are the constants to be estimated, T is the independent variable (temperature) and TTD is the 

response variable. This model was chosen as only temperature levels in the range 15-37 °C were 

tested, which were not enough to fit models considering the whole range of growth 

temperatures. 

Statistical analysis was carried out with Statgraphics® Centurion XVI.I (Statpoint, Inc., Maryland, 

USA).  

 

2.5.2. Prediction of TTD under fluctuating temperatures 

The TTDs obtained under the static temperatures were used to design the experiments for 

estimating the TTDs under fluctuating temperature conditions. The time-temperature scenarios 

studied included a single abrupt shift from a low to an upper temperature. The TTD under 
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fluctuating temperature was predicted through the model fitted at constant temperature, and 

compared to the experimental results generated under the temperature changing scenarios 

(experimental TTD). These experiments were carried out in the same way as for the static 

conditions. 

The TTD of each isolate at changing temperature (total TTD=TTDT) with a single abrupt 

temperature change from an initial temperature (TI) to a final temperature (TF) at a time ts (Fig. 

1) was calculated by the following equation: 

 

���� � 
����                                                                                               if ts � ����
���� � ����� � ����� � � �����

�� � � � ��
�����                    if ts � ����                      (2) 

Where TTDI and TTDF were calculated by substituting the corresponding temperature in the 

polynomial equation (Eq. (1)). That is, when the temperature shift occurs before the end of TTDI, 

after TTDF is consumed, the remaining TTD is a percentage of the interval (TTDI-TTDF), which 

was assumed to be proportional to i) the temperature shift, and ii) the timing of the 

temperature shift. 
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Figure 1. Schematic representation of TTD as affected by the temperature shift. 



121 
 

 

3. Results 

3.1. TTD at constant temperature conditions: isolate variability and inoculum size effect 

In the first part of the study, the objective was to determine the influence of temperature on 

the relative initial growth of the 10 A. flavus isolates and address their differences. Thus, TTDs of 

0.1, indicating initial growth of the spores, were calculated. In this study, all experiments were 

carried out at constant temperature conditions. TTDs were further fitted to a second order 

polynomial equation (Eq. (1)) in order to predict the TTD as a function of the temperature for 

each isolate. The developed polynomial models accurately predicted the influence of 

temperature on the TTD, with goodness of fit (r2) ranging from 0.980 to 0.999. Both 

temperature and its quadratic term had significant effects on TTD (Table 2).  
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Table 2. Parameter estimation of the polynomial models for TTDs of the 10 A. flavus isolates at both inoculum levels. 

Inoculum level Variable 

Coefficient estimated value a 

UdL-TA 

3.244 

UdL-TA 

3.267 

UdL-TA 

3.269 

UdL-TA 

3.324 

UdL-TA 

3.325 

UdL-TA 

3.268 

UdL-TA 

3.270 

UdL-TA 

3.327 

UdL-TA 

3.331 

UdL-TA 

3.332 

10
2
 spores/ml 

Constant 
77434.80 ± 

5282.23 
66100.10 ± 

2336.32 
75437.91 ± 

3320.37 
61534.18 ± 

2424.18 
65000.17 ±  

2643.21 
70988.46 ±  

3070.81 
64260.80 ±  

3259.81 
59395.60 ±  

1958.30 
60100.50 ±  

4172.01 
67532.80 ±  

3684.03 

T 
-4329.09 ± 

374.55 
-3643.88 ± 

168.53 
-4348.05 ± 

240.76 
-3372.45 ± 

175.77 
-3569.84 ± 

191.66 
-4096.93 ±  

222.66 
-3532.86 ±  

236.37 
-3383.57 ±  

141.99 
-3292.88 ±  

302.51 
-3777.97 ±  

260.32 

T2 
63.48 ± 

6.43 
52.89 ± 

2.92 
65.29 ±   

4.19 
48.99 ± 

3.05 
51.57 ± 

3.34 
61.71 ±  

3.87 
51.25 ±  

4.11 
50.97 ±  

2.47 
47.72 ±  

5.26 
55.74 ±   

4.45 

r2 93.58 98.22 96.67 97.77 97.63 96.54 96.25 98.00 93.20 95.32 

103 spores/ml 

Constant 
62490.8 ± 
3171.44 

51181.3 ± 
2514.44 

60660.88 
±2836.99 

51837.57 ± 
1772.97 

52029.60 ± 
2182.80 

59022.71 ± 
2360.32 

54020.90 ± 
2557.70 

45936.10  ± 
1254.28 

48765.90 ± 
2865.00 

64245.00 ± 
4101.45 

T 
-3470.54 ± 

228.74 
-2774.71 ± 

182.32 
-3488.48 ± 

205.71 
-2842.81 ± 

128.56 
-2835.64 ± 

158.27 
-3398.32 
±171.15 

-2964.15 ± 
185.46 

-2571.03  ± 
90.95 

-2643.11 ± 
207.74 

-3646.82 ± 
295.85 

T2 
50.592 ± 

3.97 
39.8439 ± 

3.17 
52.43 ±   

3.58 
41.3474 ± 

2.24 
40.76 ± 

2.75 
51.17 ± 

2.98 
42.96 ± 

3.23 
38.40  ± 

1.58 
38.04 ± 

3.62 
54.18 ±   

5.13 

r2 96.19 96.65 96.03 98.22 97.54 97.16 96.87 98.68 95.42 93.62 
a mean values ± sd 
*All coefficient estimates were significant at P < 0.05 
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All A. flavus isolates grew under all set temperature profiles tested, except for 15 °C. According 

to the Kruskal-Wallis test, there were significant differences (p<0.05) in TTD among isolates, 

however these differences depended on the temperature profile tested. TTD values followed 

the time sequence 37 <35 <30 < 25 <20 °C in all cases. This pattern is shown in Fig. 2. In general, 

all isolates showed similar TTD values at the same temperature and inoculum level. The TTDs at 

30, 35 and 37 °C did not revealed much significant differences between isolates, at the 95% 

confidence level.  
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Figure 2. TTDs at 37, 35, 30, 25 and 20 °C for the ten isolates studied at a)103 and b)102 

spores/mL.  

 

At 25 °C, differences between the 10 isolates increased (higher coefficient of variation (CV %)) 

which could suggest more within-isolate variability as temperature became more marginal for 

growth. Isolate response at 20 °C was highly variable, not only among isolates but also within 

replicates of the same isolate. Furthermore at 20 °C in some replicates, conidia failed to initiate 

grow at all. At the five constant temperatures, the isolate UdL-TA 3.327 showed the lowest 
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TTDs, and isolates UdL-TA 3.244 and UdL-TA 3.332 the highest. No differences in growth pattern 

were found between the low AFB1 producer and the high AFB1 producer groups. 

 

Statistical analysis showed a clear difference between the TTD for the two inoculum levels for all 

temperature profiles (Fig. 2). In addition, differences among isolates’ TTD increased for the 

lower initial inoculum size (102 spores /mL), i.e., the difference in time was greater at the lower 

inoculum level. The differences between the 2 inoculum levels were greater at 20 °C. For 

example, for isolates UdL-TA 3.270 and UdL-TA 3.332, the differences at 30 °C were 0.72 and 

3.54 hours for the high and the low inoculum level treatments respectively. At 20 °C these 

differences were 18.74 and 22.48 hours, respectively, for the low and the high inoculum levels.  

From Figure 2 it was also observed that the TTD was significantly affected by the spore 

concentration, and these differences were more marked as conditions became more marginal 

for conidial germination. In general, within-isolate variability was more affected by the marginal 

conditions (20 °C) than by the inoculum level. Increasing the conidial inoculum size from 102 to 

103 spores/mL, when temperature was 20 °C (a realistic practical storage temperature for 

agricultural products), had a profound effect on the ability of A. flavus to initiate growth. At this 

temperature, a difference in the prediction of growth initiation of more than 2 days occurred 

depending on the inoculum level. 

 

3.2. Prediction of relative initial growth times (TTD) as affected by temperature shifts  

Generally, under ambient transport conditions temperature is not a fixed value and fluctuates 

during distribution and the length of the food chain. Thus, it is important to better understand 

the effect of such fluctuations on fungal growth due to temperature or indeed inoculum size 

impacts on relative level of risk from growth or indeed toxin contamination. Thus, an approach 

to predict the effect of temperature shifts on the ability of fungi to grow (in our case by means 

of the TTD) was developed taking into account the results from the static temperature studies.  

In order to evaluate the suitability of the model to predict the TTD of A. flavus conidial 

germination and growth under changing temperature scenarios, the predicted TTDs derived 

from equation 2 were compared to experimental TTDs obtained by carrying out the experiment 

at set shifting temperatures profiles. 
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The four temperature shifts were imposed prior to the TTD. Agreement between model 

predictions and experimental data results was assessed by plotting predicted TTD versus 

observed TTD (Fig. 3). The observed response values agreed well with the predicted response 

values except for the temperature shift from 15 to 30 °C where a clear overestimation was 

obtained (approx. 50 hours).  
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Figure 3. Predicted TTD versus observed TTD at the four changing temperature for the ten 

isolates studied at a)103 and b)102 spores/mL and the four dynamic temperature profiles: 15 to 

25 °C (�), 20 to 25 °C (�), 15 to 30 °C (�) and 20 to 30 °C (�).   
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Nonetheless, accurate predictions were possible under the two profiles with 25 °C as the final 

temperature, with a mean underestimation of only 4 hours made. Also, good agreement 

between the experimental and predicted TTD for an initial temperature of 20 °C and a final 

temperature of 30 °C (Fig. 3) was obtained, with a mean underestimation of 9 hours.  
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Figure 4. Comparison among the calculated TTD under both static and dynamic temperature 

profiles for isolate UdL-TA 3.244 at 102 spores/ml.  

 

Results for isolate UdL-TA 3.244 at 102 spores/mL are summarised in Figure 4 which represents 

the TTD for the four shifting temperature scenarios and TTD of the static temperatures involved 

in the dynamic profiles. At the same temperature profile and inoculum concentration level the 

10 tested isolates did not differ much in their TTDs. TTDs followed the time sequence 

F4<F2<F3<F1 except for isolate UdL-TA 3.327 which was F4<F3<F2<F1 for both inoculum levels 

(Fig. 5). The highest difference among isolates was observed in the 20 to 25 °C temperature 

regimes. The harshest temperature shift to initiate growth was from 15 to 25 °C, which took 

approximately 167.67 and 141.67 hours to reach the TTD, for the low (ca. 30 spores) and higher 

inoculum (300 spores) concentration, respectively. However, the differences observed in this 
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temperature profile (F1) were more marked within isolate than among isolates (see large error 

bars). The standard deviation was always greater for those profiles where the initial 

temperature was 15 °C.  
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Figure 5. Experimental TTD obtained under the dynamic temperature profiles: 15 to 25 °C (black 

bars), 20 to 25 °C (dark grey bars), 15 to 30 °C (white bars) and 20 to 30 °C (light grey bars)  for 

the a) 103 spores/mL inoculum and the b) 102 spores/mL inoculum for the 10 isolates tested.  

 

 

 

3.3. Effect of inoculum level, temperature profiles and intra-species variability on aflatoxin B1 

production 

The amount of AFB1 produced after 7 days of growth (except for 20 °C and 15 to 25 °C which 

were 14 and 9 days respectively due to the slow growth rates) was determined for all isolates 
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and both inoculum levels (Fig. 6). First of all, AFB1 was not detected at 15 °C, when tested as a 

single constant temperature treatment. The amount of AFB1 production depended on the 

temperature, and followed the profile 35>30>25>37>20 °C, for the higher inoculum level and 

the profile 35>30>25>20>37 °C, for the lower inoculum level. For some isolates the optimum 

production was at 30 °C, for some others at 35 °C. 
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Figure 6. Aflatoxin B1 production (µg/kg) of the 10 A. flavus isolates under a) five constant 

temperature levels and  b) four dynamic scenarios at both inoculum levels.  
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The inoculum level had different effects on the AFB1 production depending on the temperature. 

AFB1 production was in general higher at the higher inoculum, except for the 37 °C steady state 

treatment, and the temperature shift from 20 to 30 °C. This pattern was more marked for the 

high AFB1 producer isolates. For example, at 37 °C, isolate UdL-TA 3.270 produced 282.97 and 

40.45 µg/kg for the 102 and 103 spores/mL inocula, respectively or to a lesser extent isolate UdL-

TA 3.268 which produced 86.45 and 1.44 µg/kg for the 102 and 103 spores/mL inocula 

respectively. The same pattern was found in the temperature shift from 20 to 30 °C (detailed 

later).  At 35, 30 and 25 °C, no differences were observed among inocula. Only at the constant 

temperature of 20 °C was more AFB1 produced at the higher inoculum level for all isolates. 

However, some isolates were not able to produce the toxin at this temperature. 

  

Looking at the low producing isolates, no AFB1 was produced at 35 °C and very low amount at 37 

°C. At 25 °C some isolates of this group produced more AFB1 than the ones in the high producer 

group, namely isolates UdL-TA 3.267, UdL-TA 3.269 and UdL-TA 3.325 at both inoculum levels. A 

similar behaviour was found at 20 °C where isolates UdL-TA 3.325, and UdL-TA 3.269 and UdL-

TA 3.325 for the 102 and 103 spores/mL inocula respectively, produced more AFB1 than some 

isolates of the high producer group at the same inoculum level. 

 

In order to determine the effect of temperature shifts, the theoretical amount of AFB1 produced 

taking into account the time periods at each temperature was calculated as follows: 

 

!�"#$"�%&' (�)��� �  �*�+,-.����/�*�+,-0��1�
��/�1                                                                                       (3) 

 

Where AFB1TI and AFB1TF correspond to the amount of toxin produced at the initial and final 

temperature respectively under the single steady state scenarios, and ts and tf are the time 

periods for the initial and final temperature respectively for each shifting temperature profile. 

Table 3 shows both theoretical and experimental AFB1 concentrations.  
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Table 3. Experimental amount of AFB1 and the calculated AFB1 produced (in µg/kg in YES medium) for the four dynamic 

scenarios, both inoculum levels and the ten strains. 

Dynamic temperature 15 to 25 °C  15 to 30 °C  20 to 25 °C  20 to 30 °C  

  
Calculated 

AFB1 

Experimental 

AFB1 

Calculated 

AFB1 

Experimental 

AFB1 

Calculated 

AFB1 

Experimental 

AFB1 

Calculated 

AFB1 

Experimental 

AFB1 

1000 spores/ml 

UdL-TA 3.244 10.05 348.41 224.57 21.71 9.23 1.20 224.57 154.89 

UdL-TA 3.267 79.01 246.21 437.89 117.92 72.75 0.73 438.08 560.09 

UdL-TA 3.269 317.75 461.84 1227.65 394.23 296.00 6.13 1231.83 1506.65 

UdL-TA 3.324 0.46 71.83 3.75 0.93 0.69 0.14 4.02 52.95 

UdL-TA 3.325 147.43 1639.31 1434.11 242.69 145.93 41.92 1444.65 1967.94 

UdL-TA 3.268 27.34 904.74 797.56 320.56 27.82 32.25 800.27 3003.27 

UdL-TA 3.270 14.02 728.72 1052.71 2197.34 15.84 12.53 1055.67 3253.55 

UdL-TA 3.327 21.04 824.82 598.63 1467.84 26.83 21.62 606.13 3069.58 

UdL-TA 3.331 31.16 484.30 571.24 541.71 28.65 1.79 571.27 297.59 

UdL-TA 3.332 14.46 818.21 625.43 19.07 26.19 16.98 638.34 2759.85 

100 spores/ml 

UdL-TA 3.244 0.22 594.31 121.42 2.79 0.20 0.00 121.42 164.94 

UdL-TA 3.267 27.81 492.69 487.17 81.80 25.54 0.00 487.17 82.73 

UdL-TA 3.269 159.54 720.58 904.19 81.78 146.59 0.00 904.27 1041.60 

UdL-TA 3.324 3.39 117.15 19.65 3.41 3.11 0.00 19.65 11.68 

UdL-TA 3.325 5.30 4606.23 885.59 131.34 6.39 0.00 887.11 2023.25 

UdL-TA 3.268 20.17 944.26 826.20 1304.90 18.68 0.12 826.36 5820.10 

UdL-TA 3.270 4.47 0.00 1045.16 1195.52 4.16 0.00 1045.21 5811.20 

UdL-TA 3.327 13.55 696.70 672.71 1587.49 14.16 2.86 674.42 5930.62 

UdL-TA 3.331 18.02 612.17 727.45 1209.34 16.59 0.00 727.49 416.03 

UdL-TA 3.332 0.82 389.94 214.84 11.30 0.80 0.00 214.89 5571.19 
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No clear pattern was found where the shifting temperature treatments were used. For the 

changing scenario F1 (15 to 25 °C) a dramatic increase in AFB1 production was detected, 

compared to the low levels detected at 15 and 25 °C, under steady state conditions. The same 

trend was observed for the shift from 20 to 30 °C, where in general an increase of 3-4 folds on 

AFB1 production in the experimental treatment was observed, when compared to the calculated 

AFB1. In contrast, the shift from 20 to 25 °C resulted in a lower AFB1 production regarding the 

amount found in the steady state at the same two temperatures.  More variability was found for 

the shift from 15 to 30 °C where for some isolates there was an overestimation and for others 

an underestimation of AFB1 production.  

 

4. Discussion 

4.1. Intraspecies variability for growth and AFB1 production 

Generally , food products are stored at suboptimal conditions to minimise mould growth and 

this may influence the intraspecies variability in both germination and initial colonisation  and 

potential for mycotoxin production (Astoreca et al., 2007; Bellí et al., 2004; Garcia et al., 2011a, 

2011b; Lahouar et al., 2016; Mohale et al., 2013; Mugrabi de Kuppler et al., 2011; Pardo et al., 

2004; Parra and Magan, 2004; Romero et al., 2007; Tassou et al., 2009; Tauk-Tornisielo et al., 

2007; Yogendrarajah et al., 2016). 

 

This study has utilised a suboptimal aw level, representing environmental stress, to examine and 

quantify effects of steady state and shifting temperatures on growth of groups of high and low 

AFB1 producing A. flavus isolates for the first time. The parameter studied was the TTD, which is 

the time in which mould growth is detected at a certain biomass level as demonstrated 

previously by Medina et al. (2012). These values are a very good approximation to understand 

the fungal growth of fungal colonies in a 3D space and at very low biomass levels. The data were 

based on spectrophotometric measurements, thus if a full model was developed and applied to 

realistic food products, thorough validation would be necessary. The present study has shown 

that it is possible to predict TTD under steady state and some shifting temperatures. The results 

obtained in the first part of the study (steady state temperatures) showed that as temperature 

became more marginal for conidial germination and mycelial growth, intraspecies variability 

increased. This trend has been observed using other criteria by some authors for other fungi.  
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For example, Romero et al. (2007) evaluated the effects of aw (0.80-0.95) and temperature (15-

35 °C) on lag phase of four A. carbonarius isolates, and found the greatest difference at limiting 

conditions. Garcia et al. (2011a) working with 79 isolates of Penicillium expansum reported 

coefficients of variation for the lag phase of 12.7 and 14.3% at 20 and 1 °C, respectively. This 

suggests that intraspecies variability is dependent on the environmental conditions, and is 

higher when conditions are closer to the boundaries for activity. In the present study, we have 

focused on steady state temperatures and shifting temperatures but under a fixed water stress 

condition. In this situation, under marginal conditions isolate variability was found to be higher.  

 

For shifting temperature scenarios, intraspecies variability did not appear to be significant, with 

only few isolates, among the 10 studied, behaving differently from the others. The final 

temperature had the major effect on intraspecies variability. Within isolate variability was more 

affected by the initial temperature than by the final temperature, since %CV was higher for 

those profiles which were set initially at 15 °C. 

Longer TTDs were observed when low inoculum levels were used. Conceptually TTD should 

parallel lag phases prior to growth. Of course, the latter parameter has been studied many times 

under different inoculum levels (Aldars-García et al., 2016; Baert et al., 2008; Burgain et al., 

2013; Chulze et al., 1999; Morales et al., 2008; Sautour et al., 2003). Such studies have shown 

that changes in the inoculum size affected and increased the length of the lag phases prior to 

growth when the inoculum size decreased. Moreover, the inoculum level was also found to be a 

critical factor in TTD intraspecies variability: as inoculum decreased, intraspecies variability 

increased.  

 

Considering the effect of temperature on AFB1 production, the amount produced was highly 

variable among the 10 isolates. Santos et al. (2002) studied the production of patulin and citrinin 

by 10 isolates of P. expansum, and showed that patulin production was isolate dependent. 

Aldars-García et al. (2015) predicted the probability of growth and AFB1 production of A. flavus 

using a cocktail inoculum of 25 isolates and an inoculum with a single isolate. Different results in 

terms of growth behaviour were obtained for both inocula but not for AFB1 production which 

gave very similar probabilities, highlighting the possibility of a homogeneous boundary of AFB1 

production among isolates, although the amount produced by isolates was different. The 
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variability in the amount of mycotoxin produced will be influenced by nutritional substrate, 

interacting environmental conditions, source, age and whether wild or sub-cultured on rich 

artificial laboratory media (Garcia et al., 2011a; Romero et al., 2010; Yogendrarajah et al., 2016). 

Of course, prevention is better than cure. However, the present work perhaps provides some 

insight into ways to minimise mycotoxin production by reducing inoculum load or controlling 

germination of conidia of such fungi.  

 

4.2. Predicting relative initial growth (TTD) and AFB1 production under shifting temperature 

scenarios  

In order to measure the effect of a temperature shift on the time needed to initiate growth, A. 

flavus isolates were subjected to sudden temperature upshifts. Adaptation to environmental 

stresses is usually explained by biological mechanisms in the cell, which requires a certain 

amount of time depending on the cells physiological state and the new environment conditions 

(Brooks et al., 2011; Swinnen et al., 2005). Many studies have been carried out under fluctuating 

temperature for bacterial pathogens (Bovill et al., 2000, 2001; Kim et al., 2008; Koseki and 

Nonaka, 2012; Muñoz-Cuevas et al., 2010; Zwietering et al., 1994) and into a lesser extent for 

fungi (Aldars-García et al., 2015; Gougouli and Koutsoumanis, 2012, 2010). In some of them 

when models included germination or growth rates, instantaneously adaptation  to the new 

environment was assumed for these rates (Gougouli and Koutsoumanis, 2012) and in other 

cases, when primary observations were modelled, for example, visible growth,  inclusion of a 

‘memory parameter’ in the models was required for acceptable predictions (Aldars-García et al., 

2015). 

 

Muñoz-Cuevas et al. (2010) developed a dynamic growth model for a Listeria monocytogenes 

isolate. They found that growth behaviour depended not only on the magnitude of the change 

between the previous and current environmental conditions but also on the current growth 

conditions. Similarly, we found that TTD under dynamic temperature depended mainly on the 

final temperature and into a lesser extent on the magnitude of the change and initial 

temperature. Figure 4 illustrates an example of this dependence for isolate UdL-TA 3.244, at 102 

spores/mL, in which all TTD for the changing temperature scenarios are around the TTD at 25 °C. 

This behaviour may suggest that 48 hours at a restrictive temperature could not be enough to 
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slow cell’s metabolism to a point which prevents them from quickly adaptation to better growth 

conditions.  

AFB1 production under dynamic temperature conditions was enhanced under some scenarios 

and inhibited under others. Several authors have described that abiotic stress is involved in the 

activation of mycotoxin biosynthetic genes  (Jurado et al., 2008; Kohut et al., 2009; Schmidt-

Heydt et al., 2009). Then, the stress induced by the temperature shift may have a similar effect, 

triggering AFB1 production. Nevertheless, in some cases, the temperature shift appeared to 

inhibit AFB1 production.   

 

Garcia et al. (2012) studied mycotoxin production by Fusarium spp. under 3 changing 

temperature scenarios (15 to 20 °C, 15 to 25 °C and 25 to 30 °C). They also found that for some 

profiles the mycotoxin production was enhanced and for other was inhibited. Furthermore, this 

pattern was different depending on the mycotoxin studied. Ryu and Bullerman (1999) studied 

the production of deoxynivalenol and zearalenone on rice with cycling temperatures, finding 

that mycotoxin production was stimulated under the temperature shifts. 

Studies on the effect of inoculum revealed different outcomes on mycotoxin production; direct 

relationship between the amount of mycotoxin produced and the inoculum size was reported by 

Aldars-García et al. (2016) and Chulze et al. (1999). On the other hand, Morales et al. (2008) 

reported that colonies from conidial suspensions of 106 spores/mL produced lower amount of 

patulin (in apples) than those from the 104 spores/mL suspensions. These results may suggest a 

possible inhibition of germination, and thus mycotoxin production, when spore concentration is 

too high. This certainly occurs in soil fungi where fungistasis can limit the number of fungal 

spores germinating to ensure survival under stress conditions (e.g. Fusarium species). Thus, 

mycotoxin production may be enhanced as inoculum size decreases. A possible explanation of 

such behaviour is that when fewer spores colonise a niche, there is more nutrient availability for 

the fungus, and then more energy to be utilised for secondary metabolite production. Further 

research on this area is required to understand how inoculum size affects the mycotoxin 

production.  

 

As conclusion, taking into account isolate variability and inoculum size in mycological studies 

would give more realistic results, since in a real scenario contamination we may encounter 
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different isolates in a food product. Furthermore, it becomes evident that temperature shifts 

have an important effect on fungal behaviour, and that there is potential for modelling and 

predicting toxigenic mould behaviour under steady state and fluctuating temperatures. The data 

generated in the present study is useful for a better understanding of the behaviour of isolates 

under dynamic temperature scenarios, in order to improve our understanding of mycotoxin 

contamination of food matrices, and thus help in the development of approaches to improve 

shelf-life of products prone to fungal spoilage and improve food safety.  
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ABSTRACT 

Human exposure to aflatoxins in foods is of great concern. The aim of this work was to use 

predictive mycology as a strategy to mitigate the aflatoxin burden in pistachio nuts postharvest. 

The probability of growth and aflatoxin B1 (AFB1) production of aflatoxigenic Aspergillus flavus, 

isolated from pistachio nuts, under static and non-isothermal conditions was studied. Four 

theoretical temperature scenarios, including temperature levels observed in pistachio nuts 

during shipping and storage, were used. Two types of inoculum were included: a cocktail of 25 

A. flavus isolates and a single isolate inoculum. Initial water activity was adjusted to 0.87. 

Logistic models, with temperature and time as explanatory variables, were fitted to the 

probability of growth and AFB1 production under a constant temperature. Subsequently, they 

were used to predict probabilities under non-isothermal scenarios, with levels of concordance 

from 90 to 100% in most of the cases. Furthermore, the presence of AFB1 in pistachio nuts could 

be correctly predicted in 70-81 % of the cases from a growth model developed in pistachio nuts, 

and in 67-81% of the cases from an AFB1 model developed in pistachio agar. The information 

obtained in the present work could be used by producers and processors to predict the time for 

AFB1 production by A. flavus on pistachio nuts during transport and storage. 
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isothermal conditions, probability model



Chapter V 

145 
 

 

1. Introduction 

 Predictive models may provide important data about the probability of mycotoxin 

contamination of foods during shipping and storage, and enable manufacturers to reduce the 

amount of tests and ensure the quality and safety of products and establish an adequate shelf-

life. It is known that sampling and analysis of mycotoxins in nuts is not always an efficient 

control measure, due to the heterogeneous distribution of mycotoxins, in particular aflatoxins 

(AFs)(García-Cela et al., 2013).  

Fungal colonization and /or mycotoxin production are generally influenced by a variety of 

factors such as water activity (aw), temperature (T), substrate or pH. However, it has been 

demonstrated that water availability is the most important environmental factor affecting 

germination and growth of moulds (Holmquist et al., 1983). Most of food commodities prone to 

mycotoxin presence rely on low aw for their safe postharvest life, thus studies in such 

commodities are required including low water availability levels. Moreover, most of the studies 

in predictive mycology focus on the effect of environmental factors, on fungal growth and 

mycotoxins production under static conditions. But in fact, the environmental conditions during 

the food chain change, especially storage temperature can fluctuate. Then it is important to take 

into account these fluctuations during the developing and validation of models, otherwise their 

applicability is compromised. Unfortunately very little information on the modelling of fungal 

germination and growth or mycotoxins production under fluctuating conditions is available 

(Dantigny and Nanguy, 2009; Gougouli and Koutsoumanis, 2012, 2010; Kalai et al., 2014; Peleg 

and Normand, 2013). On the other hand, prediction of bacterial growth under non-isothermal 

conditions has been studied during the past decade, where it has been demonstrated that the 

instantaneous specific growth rate adapts to the changing temperature practically immediately, 

except in extreme cases, when the temperature change is abrupt and close to the boundary of 

growth (Bovill et al., 2000). 

Detection of fungal growth does not imply necessarily the presence of mycotoxins, as not all the 

strains of a mycotoxigenic species are able to produce mycotoxins and, in addition, the 

conditions favorable to growth may not be conducive to mycotoxin production. Moreover, 

growth is a parameter which presents less intraspecific variability, and its kinetics are more 

known, than those of mycotoxin production (Garcia et al., 2009). It is important that the models 
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developed to predict how the microorganism will behave under certain conditions account for 

the behavior of a wide range of strains to account for the intraspecific variability. Besides, the 

use of cocktails of strains to forecast the behavior of a species has been proposed by some 

authors (Hocking and Miscamble, 1995; Patriarca et al., 2001; Romero et al., 2007; García et al., 

2014). As working with a bunch of strains is time consuming and costly, the use of a mixed 

inoculum with a variety of the strains to develop the experiment has been studied. Using a 

mixed inoculum, no significant differences between the growth rates of the mean of the single 

strains and the growth rate of cocktail inoculum were found, however a delay in the time to 

growth was observed for the mean of the single inocula, a difference which is even more 

evident when the environment conditions of the experiment are suboptimal (Baert et al., 2007; 

Garcia et al., 2011, 2012, 2014; Romero et al., 2010). Four strains of Aspergillus carbonarius 

differed in maximum ochratoxin A yield, and the toxin accumulation by the mixed inoculum 

showed intermediate levels (Romero et al., 2010). 

 

Pistachio nut (Pistacia vera L.) is one of the most popular tree nuts in the world, and is subjected 

to infection by a variety of microorganisms that can cause foodborne illness, spoilage or toxic 

effect on human (Al-Moghazy et al., 2014). Within these microorganisms, Aspergillus flavus and 

Aspergillus parasiticus, weak opportunistic plant pathogenic fungi (Mojtahedi et al., 1979), are 

the most relevant species. Both species can produce AFs, secondary metabolites produced by 

various strains (Georgiadou et al., 2012). AFs are the most important mycotoxins (World Health 

Organization (WHO) 1998), and the aflatoxin B1 (AFB1) is listed as a carcinogen of group I by the 

International Agency for Research of Cancer (IARC, 1993), and due to their hepatocarcinogenic 

potential, AFs are highly regulated (EC Regulation 165/2010). The maximum limits for AFB1 are 

12 μg/kg for pistachios to be subjected to sorting, or other physical treatment, before human 

consumption or use as an ingredient in foodstuffs, and 8 μg/kg for pistachios intended for direct 

human consumption or use as an ingredient in foodstuffs. According to the RASFF (EU Rapid 

Alert System for Food and Feed) in 2013 there have been 341 notifications related with AFs. 

From the food safety point of view, only mycotoxins entail a hazard, while yeast and moulds 

themselves may cause food spoilage but are not harmful to humans.  
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Nut infections may occur along all the food chain, but are more common to occur during 

preharvest; nevertheless it might occur in the subsequent steps (storage, manufacturing, 

transport and packaging), if minimum preventive measures are not established. During 

postharvest, fungal growth should not occur if the freshly harvested nuts are dried as soon as 

possible to 6% of moisture content and then cool stored. However, shipping of nuts is not 

always carried out under cool conditions, as this is economically costly. It is noticeable that the 

temperature fluctuations during transport and retail storage can affect the quality and food 

safety. High temperature and humidity within the bulk of pistachio nuts during transport and 

storage can provide good conditions for fungal growth and mycotoxin production. In this way, it 

is important to have a good control of the temperatures and humidity during transport and do 

not allow the pistachio bulk to reach a temperature which jeopardizes the safety of the product. 

For this reason it is advisable to install vent pipes in solid-sided trailers or transport them in 

vented pallet bins (Thompson et al., 1997). Moreover, air flow induced by transport or by fans 

can be used for cooling (Brusewitz, 1973; Kader et al., 1978). 

 

For many years, AFs have been reported in pistachios (Abdulkadar et al., 2000; Ariño et al., 

2009; Cheraghali et al., 2007; Dini et al., 2013; Fernane et al., 2010a, 2010b), and many batches 

have to be rejected (Bui-Klimke et al., 2014).Developing a model capable of predicting the 

presence of AFs in pistachio nuts may be highly suitable for the pistachio production and trade. 

Therefore the general objective of the present research was to develop a predictive model to 

assess the effect of temperature on the growth rate/aflatoxin production of A. flavus under non-

isothermal conditions, taking into account the intra- species variability. Predictive models in 

food microbiology can be splitted, according to their aim, into two main categories: kinetic and 

probability models. In the present study we will focus on probabilistic models, which determine 

whether or not growth or toxin production can occur or exceed a certain level under specific 

conditions (Lindblad et al. 2004; Marín et al. 2012). Given the above, the specific objectives of 

the present study were to: i) study the role of temperature on the growth of A. flavus; ii) model 

the probability of growth/AF production of A. flavus under non-isothermal conditions; iii) 

investigate the effect of the growth medium (pistachio agar and pistachio nuts) on such models; 

iv) compare the probability of growth and AF production of a single and a mixed inoculum of A. 
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flavus; v) validate the derived models on AFB1 data generated directly in pistachio nuts under 

non-isothermal conditions.  

 

2. Materials and methods 

2.1. Selection of aflatoxigenic isolates 

We used twenty-five A. flavus isolates in the cocktail taking into account the studies developed 

by García et al. (2012).  All of them were isolated from Iranian pistachio nuts purchased from a 

wholesaler in Lleida, Catalonia, Spain. Briefly, samples of pistachio were plated on DRBC, and the 

isolated colonies  were identified according to the taxonomical descriptions of Pitt and Hocking 

(2009). Twenty-five of the isolates found to produce AFs in coconut agar medium (CAM), were 

selected for the trials conducted in the present study. 

 

2.2. Experimental design 

A full factorial design was developed, where factors involved were: temperature, medium and 

inoculum. The inoculum factor included two levels: single inoculum of isolate TA-3.267 (taken at 

random from the 25) and mixed inoculum of 25 isolates. Regarding medium, the whole 

experiment was carried out in both pistachio agar and pistachio nuts (preparation described 

later). Regarding temperature, nine profiles were tested: five static temperatures (15, 17.5, 20, 

22.5 and 25 °C), plus four different scenarios of dynamic temperature levels (upward shift (US), 

downward shift (DS), upward ramp (UR) and downward ramp (DR) (Fig. 2, dotted lines). These 

temperature levels were chosen based on the levels which may be encountered during shipping 

of pistachios at room temperature. Both the static and changing temperatures were kept for a 

42 days period. aw was initially adjusted to 0.87, corresponding to about 15% moisture content, 

this value was chosen to simulate a postharvest product which was not safely dried, although 

still it was far from the optimal for fungal growth. The experiments were carried out with a 

minimum of ten replicates per treatment. 

 

 

2.3. Preparation of media 

Pistachio extract Agar (3%) (PEA): Pistachio extract was prepared by boiling 60g of ground 

pistachio in 1L distilled water for 30 min. After that, the extract was filtered and the amount of 
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evaporated water re-added. This concentrated extract was diluted to 3% by addition of 

water+glycerol for a final aw of 0.87. 20g of agar were added per L of medium and it was 

autoclaved and poured into 90 mm sterile Petri dishes under aseptic conditions. A total of 12 

plates per condition and type of inoculum (9x2x12, a total of 216 plates) were prepared. 

Pistachio nuts:  Iranian shelled pistachios were purchased from a wholesaler in Lleida, Catalonia, 

Spain. An initial analysis showed that AFB1 concentration was under the LOD. Pistachios were 

autoclaved (15 minutes at 121°C) in 1-L bottles filled with 300 g of pistachios. Once sterilized, 

the aw was adjusted to 0.87, by aseptically adding 1mL/10g of distilled water (Marín et al., 2008) 

to the pistachios. The bottles were cooled down to approximately 4 °C for 48 h with periodic 

hand-shaking during this period. After that, pistachios were placed in Petri dishes (55 mm 

diameter; 10g in each Petri dish) under aseptic conditions. A total of 10 plates per condition and 

type of inoculum (9x2x10, a total of 180 plates) were prepared. 

aw values in PEA and pistachio nuts were determined using an Aqualab CX2T (Decagon Devices, 

Pullman, WA, USA). 

 

2.4. Preparation of spore suspensions, inoculation and incubation 

The 25 aflatoxigenic isolates were grown on potato dextrose agar (PDA) medium at 30 °C for 7 

days, to enable significant sporulation, and  spores were collected by scraping the colony with a 

sterile spatula and then suspended in sterile distilled water containing Tween 80 (0.1% v/v). 

After counting the spores on a Thoma chamber, the spore suspensions were adjusted to 104 

spores/mL. Two types of inocula were prepared: a cocktail inoculum with all 25 isolates at a final 

concentration of 104 spores/mL and a single inoculum of isolate 3.267, at the same 

concentration.  

5 µL of the spore suspensions were point-inoculated on the center of each Petri-dish, on both 

PEA and pistachio nuts, under aseptic conditions, having then about 50 spores in each Petri 

plate. PEA and pistachio Petri-dishes were placed separately in sets of temperature inside plastic 

containers together with beakers containing distilled water in order to avoid media dehydration 

and allow moisture absorption from the environment. The containers were kept in computer 

controlled incubators (Memmert ICP-600, United Kingdom) set at the conditions designed for 

this study (see experimental design) for 42 days. 
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PEA and nuts Petri dishes were daily checked for visible growth, using a binocular magnifier 

(ZEISS, Stemi DV4) for easy viewing in the case of pistachios nuts. 

For AF analysis, a preliminary trial was performed in order to determine which range of colony 

diameters were going to be analysed in order to save time and costs. This preliminary 

experiment was carried out with strain 3.267  in pistachio nuts following the same methodology 

as described above but at 3 constant temperature levels (15, 22 and 30 °C). In this case 

pistachios were at 0.92 aw. From this experiment a relationship between colony diameter and AF 

presence was established (see section 3.1) and used to take the decision on the Petri plates that 

would undergo AF analysis in each particular day in both PEA and pistachio nuts. Consequently, 

once positive growth had been recorded, 10/12 existing Petri plates per treatment were taken 

from incubation at different time points, always when colonies were in the range 4-20 mm 

diameter (see section 3.1). While a significant number of PEA plates were analysed, only a few 

(57) colonies grown on pistachio were analysed, which were used for validation purposes 

(section 2.7).  

 

2.5. Detection and quantification of AFs by HPLC 

Extraction of the AFs from the agar was carried out by removing a 5-mm agar plug from the 

centre of each colony. Plugs were weighed and introduced into 3-mL vials. Methanol (1 mL) was 

added, and the vials were shaken for 5 s (Autovortex SA6, Surrey, UK). After being left stationary 

for 60 min, the extracts were shaken again, filtered (MillexR SLHV 013NK, Millipore, Bedford, 

MA, USA) and dried in a nitrogen stream. 

For pistachio nuts, the moldy ones were weighed and ground. Each ground sample was 

extracted (1+4 w/v) with 60% acetonitrile in water by blending for 20 min. Extracts were filtered 

and the filtrate was diluted 1:24 in phosphate-buffered saline (PBS) pH 7.4. Diluted extracts 

were passed through immunoaffinity columns (Easi-extract Aflatoxin immunoaffinity columns, 

R-Biopharm Rhône) at a flow rate of 2–3mL/min. Later, the columns were washed with 20 mL of 

PBS at a flow rate of 5 mL/min. Desorption was carried out with 3 mL of methanol slowly passed 

through the column and the eluate was finally dried in a nitrogen stream.  

 

All extracts were resuspended with 0.5 mL of methanol + water (50+50 v/v) and a volume of 

100µL was injected in the HPLC system (Waters, Milford, MA, USA). The presence of AFs was 



 

detected and quantified by HPLC with fluorescence detection (

474), using a C18 column (5 µm Waters Spherisorb, 4

(water: acetonitrile: methanol, 70: 17:

were detected in the chromatograms

AFB1 was present but AFB2 was 

common in food, was taken into account

AFB1, based on a signal-

 

2.6. Model fitting  

A logistic model was used to model the probability of growth and AFB1 production of 

a function of time under static cond
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growth was calculated as P

time was modelled. Thus t

biological and/or conceptual assumption.

The percentage of plates 
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growth initiation or AFB1 production

time of incubation (d) and b

The goodness of fit of the models w
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For the non-isothermal prediction, the approach of  

particular, they estimated the probability of the end of lag time for 

methodology could be applied here. Briefly, an R algorithm was built that for each time point in 
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detected and quantified by HPLC with fluorescence detection (Ȟexc 330 nm; 

474), using a C18 column (5 µm Waters Spherisorb, 4.6 x 250 mm ODS2). The mobile phase 

methanol, 70: 17: 17) was pumped at 1.2 mL/min

were detected in the chromatograms, the former in much higher amount, and

but AFB2 was not detected. Thus, for the present study only AFB1, the most 

common in food, was taken into account. The detection limit of the analysis was 0.1 ng/g

-to- noise ratio of 3:1.  

A logistic model was used to model the probability of growth and AFB1 production of 

a function of time under static conditions, using R statistical software (R Development Core 

project.org, v 2.14.1), with the glm function. The percentage of plates with 

growth was calculated as PG=plates with growth/total plates. For each condition, data of P

Thus the models developed in the present study 

biological and/or conceptual assumption. 

The percentage of plates with AFB1 was calculated as PAF=plates with detected AFB1

r each condition, data of PAF over time was modelled. 

 

) represents ln[P/(1-P)], ln is the natural logarithm, PG or P

initiation or AFB1 production (in the range of 0–1), T is the temperature 

and bi are the coefficients to be estimated. 

The goodness of fit of the models was determined through the calculated %concordance 

between observed and predicted values with a cut off of 0.5 probability.

isothermal prediction, the approach of  Koseki and Nonaka 

they estimated the probability of the end of lag time for Bacillus cereus

methodology could be applied here. Briefly, an R algorithm was built that for each time point in 

330 nm; Ȟem 460 nm) (Waters 

250 mm ODS2). The mobile phase 

ped at 1.2 mL/min. Both AFB1 and AFB2 

, the former in much higher amount, and in some cases 

study only AFB1, the most 

the analysis was 0.1 ng/g of 

A logistic model was used to model the probability of growth and AFB1 production of A.flavus as 

itions, using R statistical software (R Development Core 

, v 2.14.1), with the glm function. The percentage of plates with 

condition, data of PG over 

he models developed in the present study are not based on any 

 

with detected AFB1/total 

 

or PAF is the probability of 

1), T is the temperature (°C), t is the 

as determined through the calculated %concordance 

between observed and predicted values with a cut off of 0.5 probability. 

Koseki and Nonaka (2012) was used; in 

Bacillus cereus, but the same 

methodology could be applied here. Briefly, an R algorithm was built that for each time point in 
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the variable temperature profiles it took the estimation for the previously built logistic model 

using the constant temperature profiles, taking as initial assumption that the previous 

temperature levels in the profile did not affect the prediction at a certain time point. This simple 

data-driven empirical modeling procedure using logistic regression offers the possibility of 

considering the intermediate lag time as a change in the probability of the end of lag time 

(Koseki and Nonaka, 2012). 

The goodness of prediction under non-isothermal conditions was also determined through the 

calculated % concordance between observed and predicted values with a cut off of 0.5 

probability. 

Finally, we worked on the assumption that no degradation of AFB1 took place. 

 

2.7. Validation 

Growth models in PEA and pistachios and AFB1 model in PEA were validated on AFB1 data 

obtained from the pistachio experiment. The aim was to assess the goodness of prediction of 

AFB1 production probability in pistachio nuts of the 3 different models. For validation, colonies 

of size 5-20mm of diameter grown in pistachios were taken at different times from incubation 

an analysed for AFB1 presence; these colonies should be in the boundary of AFB1 

presence/absence. The results were compared with the predicted probability through growth 

models in agar and nuts, and AFB1 model in agar. 

 

3. Results  

3.1. Assessing the colony sizes leading to AFB1 presence 

The preliminary study on the relationship between colony diameter and AFB1 production for 

strain 3.267 in pistachio nuts at 15, 22 and 30 °C and 0.92 aw revealed that colonies with mean 

diameter smaller than 4 mm did not contain AFB1, while colonies with diameters over 12 mm 

always contained AFB1 regardless of the temperature level (Table 1, supplementary material). 

However, colonies between 4 and 12 mm of diameter presented different results. Consequently, 

for the present study, to save laboratory work and expenses, it was decided to specifically 

analyze colonies in the range 4-20 mm, assuming that smaller colonies do not contain 

detectable levels of toxin, while bigger colonies were always scored as positive for AFB1 

presence in section 3.6. 
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3.2. Modelling of A. flavus growth probability in pistachio agar under static temperature 

conditions 

No growth was observed at 15 °C in any case after 42 days, thus the models were built without 

this temperature level.  

 

Table 1. Coefficients ± standard errors for models developed at constant temperature levels. 

 Growth model in PEA AFB1 model in PEA Growth model in nuts 

Inoculum type Single Cocktail Single Cocktail Single Cocktail 

b0 -1214.1±255.8 -552.6±69.5 -

60.9±4.8 

-61.2±4.9 -

14.6±0.8 

-40.0±6.1 

B1 94.8±20.1 43.5±5.5 2.3±0.2 2.3±0.2 0.5±0.0 2.9±0.6 

B2 -1.9±0.4 -0.9±0.1 ns ns ns -0.1±0.0 

B3 4.1±0.8 1.7±0.2 0.5±0.0 0.5±0.0 0.1±0.0 0.2±0.0 

Residual 

deviance 

47.5 127.0 331.9 331.5 1121.3 1036.2 

Null deviance 2002.7 2104.5 1992.9 1999.2 1790.5 1839.1 

ns, not significant at p=0.05 

3.2.1. Single isolate of A. flavus 

All factors included in the probability model were significant (T, T2, t, p<0.01, Table 1), with 

99.6% concordance between observed and predicted values with a cut off of 0.5. The model 

shows an increasing delay in growth initiation with decreasing temperature, from about 5 days 

at 24-26 °C to about 34 days at 17 °C, although the increase in probability was similarly sharp at 

17-24 °C (Fig. 1a, supplementary material). No growth was predicted before 40 days at 16 °C. 

 

3.2.2 Cocktail inoculum 

Similarly, when working with the 25 strains-based cocktail inoculum, all factors were significant 

(T, T2, t, p<0.01, Table1), with 98.8% concordance between observed and predicted values with 



 

a cut off of 0.5. Looking at the coefficients 

significantly different at p=0.05. This second model showed slightly shorter delays in growth, 

mainly at the higher temperature levels, however, 

(P=1) was similar, leading to probability curves with slightly smaller slopes. This may be due to 

the presence in the inoculum of faster growing isolates than our single one. No growth was 

predicted before 40 days at 16 °C (Fig. 1b, supplementary material).

Figure 1. Observed growth probability of 

non-isothermal conditions (o) and predicted values (

 

3.3. Modelling of A. flavus

 

Probability of growth was calculated for non

at isothermal conditions, assuming no past accumulated temperature effect, as assumed in 

Koseki and Nonaka (2012) for 

(US and UR), the model predicted growth 3

experiments (data not shown). This suggests that a memory effect occurred. 

the R algorithm was modified and, instead of using the point prediction for the actual 

Chapter V 

154 

a cut off of 0.5. Looking at the coefficients of both models (single and mixed inocula), they were 

significantly different at p=0.05. This second model showed slightly shorter delays in growth, 

mainly at the higher temperature levels, however, the time at which all plates exhibited growth 

, leading to probability curves with slightly smaller slopes. This may be due to 

the presence in the inoculum of faster growing isolates than our single one. No growth was 

predicted before 40 days at 16 °C (Fig. 1b, supplementary material). 

 

Observed growth probability of A. flavus TA-3.267 in pistachio extract agar (PEA) under 

isothermal conditions (o) and predicted values (-). a) DS; b) DR; c) US; d) UR

flavus growth probability in pistachio agar under non

Probability of growth was calculated for non-isothermal profiles based on modeled probabilities 

at isothermal conditions, assuming no past accumulated temperature effect, as assumed in 

Koseki and Nonaka (2012) for B. cereus lag time. However, for increasing temperature profiles 

(US and UR), the model predicted growth 3-5 days before it was observed in non

experiments (data not shown). This suggests that a memory effect occurred. 

the R algorithm was modified and, instead of using the point prediction for the actual 

of both models (single and mixed inocula), they were 

significantly different at p=0.05. This second model showed slightly shorter delays in growth, 

the time at which all plates exhibited growth 

, leading to probability curves with slightly smaller slopes. This may be due to 

the presence in the inoculum of faster growing isolates than our single one. No growth was 

 

3.267 in pistachio extract agar (PEA) under 

). a) DS; b) DR; c) US; d) UR 

under non-isothermal conditions 

isothermal profiles based on modeled probabilities 

at isothermal conditions, assuming no past accumulated temperature effect, as assumed in 

er, for increasing temperature profiles 

5 days before it was observed in non-isothermal 

experiments (data not shown). This suggests that a memory effect occurred. As an alternative, 

the R algorithm was modified and, instead of using the point prediction for the actual 
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temperature in the variable temperature profile, the mean temperature in the preceding 10 

days was used for the prediction.  On the other hand, under decreasing temperature profiles, 

decreasing probabilities were estimated over time as a result of decreasing temperatures and 

consequent no-growth prediction. To overcome this issue, and in order to obtain a model 

suitable to be applied to real situations, we forced the R algorithm to maintain the predicted 

value over time at the higher probability value reached. Taking this modification into account, 

the percentage of concordance was 100% for DS and UR profiles, and 98% for DR and US profiles 

(Fig.1).  Interestingly, when the change of temperature was slow and held constant, the 

initiation of growth occurred sharply, in a range of 1-2 days, as it was with a sudden change in 

temperature. 

 

Very similar results were observed for a cocktail inoculum. Although the observed values were 

slightly different, the initiation of growth occurred in the same days under non-isothermal 

conditions, and lasted for the same periods of time, thus the levels of concordance with the 

predicted values through the model developed under isothermal conditions were almost the 

same (100, 95, 98 and 98% for DS, DR, US and UR, respectively) (Fig.2).  

 

3.4. Modelling of A. flavus growth probability in pistachio nuts under static temperature 

conditions 

3.4.1. Single isolate of A. flavus 

The logistic regression applied to binary data obtained in pistachio nuts showed that T and t 

were significant, but not T2, thus this term was omitted from the model (Table 1). The resulting 

model showed 81% concordance between observed and predicted data with a cut off level of 

0.5. The concordance is clearly lower than in agar as a result of a much more heterogeneous 

growth in pistachio nuts, and lower repeatability. When comparing this model for isolate 3.267 

with that in agar, a higher variability in the initiation of growth was observed, evidenced by the 

smaller slopes in the Figure 2a (supplementary material), and by the fact that probability of 1 

was rarely reached. On the other hand the fitted model overestimated the probability of growth 

during the first days, as growth was not observed till 6th, 9th and 18th day at 25, 22.5 and 20 °C, 

while the model estimated probabilities of growth of 0.05-0.15 before these days. 

 



 

3.4.2. Cocktail inoculum 

When a cocktail inoculum was used, all factors

concordance of 83%. When comparing the confidence intervals of the estimated coefficients for 

the two inocula, it was clear that both models were different, thus the inclusion of more strains 

in the inoculum led to a different overall behavior. In this case higher slopes in the probability 

curves were observed compared to the single inoculum (Fig.2b, supplementary material), with 

higher probabilities of growth from the beginning, suggesting that some faster isolat

the 25 might led the behavior of the combined inoculum. 

Fig.ure 2. Observed growth probability of 

(PEA) under non-isothermal conditions (o) and predicted values (

 

In conclusion, in spite of the overestimated predicted probability in the first days for pistachio 

nuts, the probability of growth was clearly lower in pistachios than in agar. The reason was likely 

the dramatic decrease in a

periodically checked and it was nearly constant, for the pistachio nuts a marked decrease 
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When a cocktail inoculum was used, all factors were significant (Table 1), with a percentage of 

concordance of 83%. When comparing the confidence intervals of the estimated coefficients for 

the two inocula, it was clear that both models were different, thus the inclusion of more strains 

to a different overall behavior. In this case higher slopes in the probability 

curves were observed compared to the single inoculum (Fig.2b, supplementary material), with 

higher probabilities of growth from the beginning, suggesting that some faster isolat

the 25 might led the behavior of the combined inoculum.  

Observed growth probability of A. flavus mixed inoculum in pistachio extract agar 

isothermal conditions (o) and predicted values (-). a) DS; b) DR; c) US; d) UR

In conclusion, in spite of the overestimated predicted probability in the first days for pistachio 

nuts, the probability of growth was clearly lower in pistachios than in agar. The reason was likely 

the dramatic decrease in aw in some of the treatments. While aw 

periodically checked and it was nearly constant, for the pistachio nuts a marked decrease 

significant (Table 1), with a percentage of 

concordance of 83%. When comparing the confidence intervals of the estimated coefficients for 

the two inocula, it was clear that both models were different, thus the inclusion of more strains 

to a different overall behavior. In this case higher slopes in the probability 

curves were observed compared to the single inoculum (Fig.2b, supplementary material), with 

higher probabilities of growth from the beginning, suggesting that some faster isolates among 

 

mixed inoculum in pistachio extract agar 

). a) DS; b) DR; c) US; d) UR.  

In conclusion, in spite of the overestimated predicted probability in the first days for pistachio 

nuts, the probability of growth was clearly lower in pistachios than in agar. The reason was likely 

 in the agar plates was 

periodically checked and it was nearly constant, for the pistachio nuts a marked decrease 



 

occurred both under constant and variable temperature profiles, except at 15 °C (Fig. 3). 

Previous studies used the same experimental design but placing glycerol

beakers instead of water; thus in the present work the conditions were less favorable to 

dehydration. However, the low initial a

the experimental set up to maintain the a

of pistachio nuts published in Marin et al. (2008), while a decrease in moisture content from 50 

to 18% involves a decrease in a

(from 18 to 10%) implies a decrease of a

curve determines the higher degree of dehydration, due to warm incubation temperature, when 

the initial aw is under 0.90

 

Figure 3. Checking of aw 

 

3.5. Modelling of A .flavus

 

The same assumptions than for non

single inoculum, under ascending 

and 100% concordance for US and UR, respectively) (Fig. 4). For descending temperature 

profiles, the predicted probabilities 

Chapter V 

157 

occurred both under constant and variable temperature profiles, except at 15 °C (Fig. 3). 

used the same experimental design but placing glycerol

beakers instead of water; thus in the present work the conditions were less favorable to 

dehydration. However, the low initial aw value chosen here, 0.87 aw, evidenced the limit

the experimental set up to maintain the aw value at low levels. According to the sorption curve 

of pistachio nuts published in Marin et al. (2008), while a decrease in moisture content from 50 

to 18% involves a decrease in aw from 0.99 to 0.90 aw, a loss of moisture content as small as 8% 

(from 18 to 10%) implies a decrease of aw from 0.90 to 0.80. Thus the shape of the sorption 

curve determines the higher degree of dehydration, due to warm incubation temperature, when 

is under 0.90 aw.  

 values during incubation of the different treatments in pistachio nuts.

.flavus growth probability in pistachio nuts under non

The same assumptions than for non-isothermal predictions in agar were applied here. For the 

single inoculum, under ascending temperature profiles a good prediction was observed (93% 

and 100% concordance for US and UR, respectively) (Fig. 4). For descending temperature 

profiles, the predicted probabilities of growth were always under 0.2, while observed values for 

occurred both under constant and variable temperature profiles, except at 15 °C (Fig. 3). 

used the same experimental design but placing glycerol-water solutions in the 

beakers instead of water; thus in the present work the conditions were less favorable to 

, evidenced the limitations of 

value at low levels. According to the sorption curve 

of pistachio nuts published in Marin et al. (2008), while a decrease in moisture content from 50 

, a loss of moisture content as small as 8% 

from 0.90 to 0.80. Thus the shape of the sorption 

curve determines the higher degree of dehydration, due to warm incubation temperature, when 

 

values during incubation of the different treatments in pistachio nuts. 

nuts under non-isothermal conditions 

tions in agar were applied here. For the 

temperature profiles a good prediction was observed (93% 

and 100% concordance for US and UR, respectively) (Fig. 4). For descending temperature 

.2, while observed values for 



 

continuously decreasing temperature were always under 0.3 (100% concordance). However, in 

the step descending profile, the observed probability reached values over 0.5 after 35 days, 

leading to a decreased concordance level (81%).

Figure 4. Observed growth probability of 

isothermal conditions (o) and predicted values (

 

For the cocktail inoculum, the concordance was similar, 98 and 100% for the gradual profiles, 

and 98% for the US profile, while the prediction at the step 

low probability was predicted while 0.8 probability was attained in

both inoculum types a lower slope of the probability curve was observed under increasing

temperature levels when the increase was slow. 
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continuously decreasing temperature were always under 0.3 (100% concordance). However, in 

the step descending profile, the observed probability reached values over 0.5 after 35 days, 

ecreased concordance level (81%). 

Observed growth probability of A. flavus TA-3.267 in pistachio nuts under non

isothermal conditions (o) and predicted values (-). a) DS; b) DR; c) US; d) UR.

For the cocktail inoculum, the concordance was similar, 98 and 100% for the gradual profiles, 

and 98% for the US profile, while the prediction at the step descending profile failed because 

low probability was predicted while 0.8 probability was attained in the observed data (Fig. 5). In 

both inoculum types a lower slope of the probability curve was observed under increasing

temperature levels when the increase was slow.  

continuously decreasing temperature were always under 0.3 (100% concordance). However, in 

the step descending profile, the observed probability reached values over 0.5 after 35 days, 

 

3.267 in pistachio nuts under non-

). a) DS; b) DR; c) US; d) UR. 

For the cocktail inoculum, the concordance was similar, 98 and 100% for the gradual profiles, 

descending profile failed because 

the observed data (Fig. 5). In 

both inoculum types a lower slope of the probability curve was observed under increasing 



 

Figure. 5. Observed growth probability of 

isothermal conditions (o) and predicted values (

 

When comparing with non

occurred at a similar time point; however, in pistachio nuts a longer 

significant amount of plates to show growth and, most of the times the probability did not reach 

1. Consequently, the predicted probability lines showed smaller slopes in pistachio nuts. If the 

agar models were used to predict growth i

isothermal regimes, the predictions would fail in the long term, due to overestimation of 

growth. 
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Observed growth probability of A. flavus mixed inoculum in pistachio nuts 

isothermal conditions (o) and predicted values (-). a) DS; b) DR; c) US; d) UR.

When comparing with non-isothermal agar data, it was observed that the initiation of growth 

occurred at a similar time point; however, in pistachio nuts a longer 

significant amount of plates to show growth and, most of the times the probability did not reach 

1. Consequently, the predicted probability lines showed smaller slopes in pistachio nuts. If the 

agar models were used to predict growth in pistachio nuts, either at isothermal or non

isothermal regimes, the predictions would fail in the long term, due to overestimation of 

 

mixed inoculum in pistachio nuts under non-

). a) DS; b) DR; c) US; d) UR. 

isothermal agar data, it was observed that the initiation of growth 

occurred at a similar time point; however, in pistachio nuts a longer time was taken for a 

significant amount of plates to show growth and, most of the times the probability did not reach 

1. Consequently, the predicted probability lines showed smaller slopes in pistachio nuts. If the 

n pistachio nuts, either at isothermal or non-

isothermal regimes, the predictions would fail in the long term, due to overestimation of 
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3.6. Modelling of A. flavus AFB1 production probability in pistachio agar under static 

temperature conditions 

3.6.1. Single isolate of A. flavus 

The squared term for temperature was not significant according to the logistic regression model 

(Table 1). The logistic model for prediction of toxin accumulation showed that less than 0.2 

probability of AFB1 production would be expected at <18 °C for 40 days. While AFB1 production 

was probably overestimated in the first days at 26 °C, it would start as early as about 2 days at 

24 °C, with probability over 0.5 at this temperature before 15 days. The probability curves at the 

different temperatures were quite parallel, suggesting that although the initiation of production 

was delayed by decreasing temperatures, the shift from 0 to 1 probability occurred in about 20 

days, regardless of the temperature level (Fig. 3, supplementary material). In this case the 

concordance between observed and predicted values was of 98.6%; the discrepancies occurred 

at 22.5 and 25 °C during the 4-6 days around the transition from non-production to production. 

 

3.6.2. Cocktail inoculum 

For the cocktail inoculum, T2 was neither significant (Table 1) and a 95.6% concordance between 

observed and predicted values was obtained. The non-concordant values occurred at 22.5 and 

25 °C during the days around the transition from 0% production to 100% production. The 

predicted probabilities were very similar to those for the single inoculum, and looking at the 

confidence intervals of the coefficients of both models, they were not significantly different (Fig. 

3, supplementary material).  

 

3.7. Modelling of A.flavus AFB1 production probability in pistachio agar under non-isothermal 

conditions 

AFB1 production under decreasing temperature profiles was only detected in a reduced number 

of plates in the first days. After that, growth of colonies stopped and so did the toxin production, 

thus no additional AFB1 positive plates were recorded. In these profiles, the AFB1 positive cases 

were delayed compared to growth-positive ones, and the attained probability was lower. For 

the step increase profile, no positive plate was detected till day 23, but in the 26th day 

probability of 1 was reached; by contrast, the shift from 0 to 1 probability of growth occurred 

after 18-19 days. Finally, different situations were observed in the continuously increasing 



 

profile, where AFB1 was

reached probability 1 after 29 days; however, the growth profiles were similar in both cases: the 

shift occurred between 19

one (Fig. 3, supplementary material).

 

Figure. 6. Observed AFB1 production probability of 

(PEA) under non-isothermal conditions (o) and predicted values (
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profile, where AFB1 was not detected with the single inoculum, but with the cocktail inoculum 

reached probability 1 after 29 days; however, the growth profiles were similar in both cases: the 

shift occurred between 19-23 days in the cocktail inoculum and from 21

one (Fig. 3, supplementary material).  

Observed AFB1 production probability of A. flavus TA-3.267 in pistachio extract agar 

isothermal conditions (o) and predicted values (-). a) DS; b) DR; c) US; d) UR.

not detected with the single inoculum, but with the cocktail inoculum 

reached probability 1 after 29 days; however, the growth profiles were similar in both cases: the 

23 days in the cocktail inoculum and from 21-22 days in the single 

 

3.267 in pistachio extract agar 

). a) DS; b) DR; c) US; d) UR. 



 

Figure. 7. Observed AFB1 production probability of 

agar (PEA) under non-isothermal conditions (o) and predicted values (

UR.  

 

In this case, the same assumption made for the growth models, as we

correction were used. Without such correction, estimated probability lower than observed in 

decreasing temperature profiles was predicted, which suggests that the metabolic adaptation to 

toxin accumulation occurred in the preceding days 

hand, in the increasing temperature profiles the prediction of toxin production was in much 

earlier days that in fact occurred, suggesting in this case a delay in cells predisposition to 

secondary metabolism due to

Once the correction was included in the algorithm, there was not a clear improvement for the 

prediction under decreasing temperature profiles, while an improvement was observed under 

increasing temperatures (Fig. 6 and 7), 

concordance increased from 76 to 95%, using the single inoculum. Using the modified algorithm 
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Observed AFB1 production probability of A. flavus mixed inoculum 

isothermal conditions (o) and predicted values (-

In this case, the same assumption made for the growth models, as we

correction were used. Without such correction, estimated probability lower than observed in 

decreasing temperature profiles was predicted, which suggests that the metabolic adaptation to 

toxin accumulation occurred in the preceding days under suitable temperatures. On the other 

hand, in the increasing temperature profiles the prediction of toxin production was in much 

earlier days that in fact occurred, suggesting in this case a delay in cells predisposition to 

secondary metabolism due to lower past temperature levels.  

Once the correction was included in the algorithm, there was not a clear improvement for the 

prediction under decreasing temperature profiles, while an improvement was observed under 

increasing temperatures (Fig. 6 and 7), in particular at the step increase for which the level of 

concordance increased from 76 to 95%, using the single inoculum. Using the modified algorithm 

 

mixed inoculum in pistachio extract 

-). a) DS; b) DR; c) US; d) 

In this case, the same assumption made for the growth models, as well as the ‘memory’ 

correction were used. Without such correction, estimated probability lower than observed in 

decreasing temperature profiles was predicted, which suggests that the metabolic adaptation to 

under suitable temperatures. On the other 

hand, in the increasing temperature profiles the prediction of toxin production was in much 

earlier days that in fact occurred, suggesting in this case a delay in cells predisposition to 

Once the correction was included in the algorithm, there was not a clear improvement for the 

prediction under decreasing temperature profiles, while an improvement was observed under 

in particular at the step increase for which the level of 

concordance increased from 76 to 95%, using the single inoculum. Using the modified algorithm 
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the levels of concordance for the cocktail inoculum were 100, 100, 92.9 and 90.5% for DS, DR, 

US, and UR, respectively, with a cut off of 0.5. 

 

Table 2. Observed detected AFB1 presence (>LOD) in pistachio nuts under different 

time/temperature conditions and predicted probability values through growth models in 

pistachio agar and nuts, and AFB1 model in agar under the same conditions. Experiments carried 

out using a single inoculum of A. flavus 3.267. 

Condition 
Mean 
colony 

diameter 

AFB1 
presence 
(>LOD) 

Predicted 
P from 
growth 

model in 
agar 

Predicted 
P from 
growth 

model in 
pistachio 

Predicted 
P from 
AFB1 

model in 
agar 

Predicted 
P from 
AFB1 

model in 
agar 

(cocktail) 

6d/DS 5.5 - 0.89 0.17 0.20 0.25 
6d/25 °C  5.5 - 1.00 0.19 0.29 0.35 
6d/25 °C 14 - 1.00 0.19 0.29 0.35 
6d/CD  5 - 0.99 0.13 0.06 0.07 
6d/DS  4.5 - 0.89 0.17 0.20 0.25 
6d/DS  5.5 - 0.89 0.17 0.20 0.25 
6d/DS  7 - 0.89 0.17 0.20 0.25 
7d/25 °C  6 - 1.00 0.21 0.40 0.47 
8d/22.5 °C  5 - 0.68 0.08 0.00 0.00 
13d/25 °C  11 - 1.00 0.37 0.93 0.94 
13d/22.5 °C  5.5 - 1.00 0.15 0.04 0.05 
18d/20 °C  5 - 0.99 0.09 0.00 0.00 
18d/UR  11.5 + 0.00 0.06 0.00 0.00 
21d/22.5 °C  6 + 1.00 0.33 0.70 0.73 
21d/US  8.5 - 1.00 0.15 0.02 0.02 
21d/US  5 - 1.00 0.15 0.02 0.02 
21d/US  9 - 1.00 0.15 0.02 0.02 
21d/US  12 - 1.00 0.15 0.02 0.02 
21d/UR  5.5 - 1.00 0.13 0.01 0.01 
21d/UR  8.5 - 1.00 0.13 0.01 0.01 
28d/US  15 + 1.00 0.81 1.00 1.00 
32d/25 °C  14 - 1.00 0.88 1.00 1.00 
33d/17.5 °C  7.5 - 1.00 0.17 0.01 0.01 
33d/20 °C  11 - 1.00 0.42 0.74 0.75 
33d/20 °C  17 + 1.00 0.42 0.74 0.75 
33d/US  20 + 1.00 0.89 1.00 1.00 
34d/UR  8 - 1.00 0.86 1.00 1.00 

Concordance 
observed/predicted 

  15% 81% 81% 81% 
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Table 3. Observed detected AFB1 presence (>LOD) in pistachio nuts under different 

time/temperature conditions and predicted probability values through growth models in 

pistachio agar and nuts, and AFB1 model in agar under the same conditions. Experiments carried 

out using a single a mixed inoculum of 25 isolates. 

Condition 
Mean 
colony 

diameter 

AFB1 
presence 
(>LOD) 

Predicted P 
from growth 

model in 
agar 

Predicted P 
from growth 

model in 
pistachio 

Predicted P 
from AFB1 
model in 

agar 

4d/25 °C   5.5 - 0.29 0.25 0.17 
4d/DS 3.5 - 0.29 0.25 0.17 
4d/DS   7 - 0.29 0.25 0.17 
6d/25 °C   5 - 0.93 0.32 0.35 
6d/DS   7 - 0.70 0.28 0.25 
8d/DR   5 - 0.99 0.32 0.09 
9d/25 °C   10.5 - 1.00 0.42 0.70 
11d/DS   7.5 + 0.70 0.28 0.25 
13d/20 °C   6.5 - 0.00 0.13 0.00 
13d/20 °C   7 - 0.00 0.13 0.00 
13d/20 °C   5 - 0.00 0.13 0.00 
13d/22.5 °C   6.5 - 1.00 0.39 0.05 
13d/22.5 °C   7.7 - 1.00 0.39 0.05 
13d/25 °C   6 - 1.00 0.58 0.94 
13d/25 °C   10 - 1.00 0.58 0.94 
15d/22.5 °C   5 - 1.00 0.46 0.12 
18d/22.5 °C   10 - 1.00 0.58 0.38 
18d/25 °C   12 - 1.00 0.75 0.99 
19d/US   10.5 - 0.00 0.11 0.00 
19d/US   5 - 0.00 0.11 0.00 
21d/US   12 - 1.00 0.82 0.02 
21d/US   15.5 - 1.00 0.41 0.02 
21d/UR   8 - 1.00 0.41 0.01 
22d/US   17 + 1.00 0.34 0.02 
28d/UR   14 + 1.00 0.59 0.98 
28d/UR   14.5 - 1.00 0.86 0.98 
33d/20 °C   13.5 - 1.00 0.86 0.75 
33d/25 °C   20.5 + 1.00 0.77 1.00 
33d/US   17 - 1.00 0.97 1.00 
34d/UR   5.5 - 1.00 0.97 1.00 

Concordance 
observed/predicted 

  40% 70% 67% 

 

 



Chapter V 

165 
 

3.8. Validation of the obtained models for prediction of AFB1 data obtained from pistachio nuts 

 

The results showed that the prediction of growth in pistachio agar differed from the detected 

toxin, which were only concordant in 15/40% of the cases for single and mixed inoculum, 

respectively (mostly, false positives) (Tables 2 and 3). Moreover, comparing the conditions in 

which toxin was detected in nuts with those in which probability of growth in nuts was over 

0.50, there was a 81 and 70% of concordant cases in the single and cocktail inoculum, 

respectively (although both false negatives and false positives were observed, in the mixed 

inoculum most of them were false positives, in concordance with a narrower set of conditions 

allowing AFB1 production than growth). Finally, the concordance between probabilities 

predicted for AFB1 presence in pistachio agar and observations in pistachio nuts was of 81 and 

67%, for single and cocktail inoculum, respectively. Thus the development of models for 

prediction of AFB1 presence in nuts could be based on either AFB1 experiments on agar or 

growth experiments in pistachio nuts. Still, the prediction was not accurate; however, even in 

the event of development of models from AFB1 data in situ in pistachio nuts the accuracy would 

not probably be higher. This is illustrated by the fact that, for example, the observed data in UR 

in the single inoculum where toxin was detected after 18 days but not after 21 and 34 days; 

when checking the colony diameters they were 11.5, 5.5/8.5 and 8 mm in the colonies analysed 

at the 18th, 21st and 34th days. This suggests that colony diameters in pistachio nuts are quite 

variable, and a good correlation with time may not be possible. As a result, the prediction of 

AFB1 along time may also be inaccurate. As an alternative, both time and colony sizes could be 

included as model terms. 

Moreover, looking at the prediction of the observed toxin production by the single inoculum in 

nuts, using the model for AFB1 production developed in agar with the cocktail inoculum, the 

level of concordance was the same (81%) as when the model was developed for the single 

inoculum. This suggests that the cocktail inoculum would represent the behavior of this 

particular single isolate. 
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4. Discussion 

According to the Transport Information Service of the Federation of the German Insurance 

Association (2014), the travel temperature of 0 °C is the ideal temperature for achieving the 

longest possible storage life, but higher travel temperatures (5-25 °C) are feasible (depending 

upon the duration of the voyage), so this product need not necessarily be carried as chilled 

goods, as long as ventilated containers are used. This German Federation recommends initial 

moisture content (mc) of 4-6% for safe travel, however, in the present work mc was initially 

adjusted to a somewhat risky value of 13% mc, equivalent to 0.87 aw, which would allow A. 

flavus development but far away from its optimum. Focusing just in this single low aw level, led 

as to realize that, while the classical methodological approach of initially adjusting aw values and 

consider them constant for the whole duration of experiments was good for the agar 

experiments, it was not for nut ones where although water beakers were included in the closed 

containers, aw decreased with time at temperature regimes >15 °C. Unfortunately, this decrease 

in aw does not probably occur during real bulk transport, although constant aw values are neither 

expected. As fluctuations in the aw levels are expected as a result of temperature fluctuations, 

for further development of models it would be important to characterize the aw variation as a 

function of temperature in bulk pistachio nuts. Previous models have been published on A. 

flavus growth, mostly kinetic models, including in general aw levels in the range 0.80-0.99, where 

data were produced in agar media, except for some works in maize (Samapundo et al., 2007; 

Yue et al., 2013) and rice (Mousa et al., 2013, 2011)), and the minimum aw for growth has been 

reported  around 0.82.  Similarly, minimum aw for AF production has been reported at 0.82-0.86 

in rice (Mousa et al., 2013, 2011). AF production has been rarely included in such models, due to 

the complexity and cost of building primary models. There are no additional existing works on 

the single effect of temperature at a constant aw level. 

 

4.1. Model building under isothermal conditions 

Our results on growth probabilities were concordant in general with other studies performed on 

mycelial growth of A. flavus (Astoreca et al., 2012; Marín et al., 2012; Moghadam and 

Hokmabadi, 2010; Mousa et al., 2013).  Probabilistic models reporting mould growth or 

mycotoxin production are scarce, both under constant and dynamic conditions. In 2001, the first 

one was published, using the logistic regression to develop predictive model to predict the 
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probability of growth of Aspergillus niger and Penicillium spinulosum in response to different 

factors (Battey et al., 2001). Subsequently, other authors applied them to A. flavus (Astoreca et 

al., 2012; Marín et al., 2009), but none included dynamic conditions. An observation made from 

our data is that due to the symmetrical shape of the logistic model, when conditions are less 

conducive to growth, and thus the slope of the probability curve is smaller, there is an 

overestimation of the probability of growth during the earlier days of incubation, as in those 

days no growth was observed, but the predicted probability did not overtake a 0.20 value. 

 

4.2. Impact of single/mixed inocula in models 

The work was designed to predict the behavior of A. flavus in a representative manner through 

the use of a cocktail inoculum including 25 isolates. Additionally, a single inoculum with an 

isolate taken at random was included in order to have an additional repetition of the 

temperature experiment and, at the same time to get some confirmation of the conclusions in 

Garcia et al. (2014). Certainly, the results showed an earlier initiation of growth in the mixed 

inoculum, although both inocula reached probability 1 in the same time period in agar, while in 

nuts the single inoculum showed delayed probability curves from the beginning to the end of 

the incubation period. Thus the growth probability models were significantly different for the 

two inocula but, interestingly, there was no significant difference among the AFB1 probability 

models. This point must be highlighted as this could imply that although the impact of 

intraspecific differences is known to be much higher in the level of AF produced than on growth, 

the T boundary for toxin production may be more repeatable along individual strains. No 

previous knowledge exists regarding this point. On the other hand, the observed growth/AFB1 

production probabilities for both inocula under non-isothermal conditions were very similar. 

 

4.3. Predicting A. flavus growth and AFB1 production under non-isothermal conditions 

Many studies have been carried out under fluctuating temperature for bacterial pathogens. 

Gompertz, logistic and Baranyi models have been used considering that under non-isothermal 

conditions the momentary growth rate is the isothermal growth rate at the momentary 

temperature at a time that corresponds to its instantaneous population size (Corradini and 

Peleg, 2005). As a result, besides temperature, the parameters become also a function of time. 

Consequently, the integral in the growth equation cannot be solved analytically, but numerically 
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(Runge-Kutta 4th order method) to produce the growth curve. Instead of integrating 

conventional models continuously, in the case of alternating constant temperatures, the models 

can be applied piecemeal (Koutsoumanis, 2001). It is assumed that the bacterial growth rate 

instantaneously takes the corresponding value for the changing temperature levels. While the 

past history of the population since its introduction in the growth medium was considered 

irrelevant by Corradini and Peleg (2005), Juneja et al. (2009) working with Clostridium 

perfringens required the inclusion of a ‘memory parameter’ in their standard model for 

acceptable predictions in cooked ground chicken.  In our case, when the models were applied 

piecemeal to the non-isothermal situation, delayed predicted values were observed under 

decreasing temperature profiles, while earlier growth was predicted under increasing 

temperature profiles. The issue was solved by assigning to each temperature level in the non-

isothermal profiles the mean of that temperature and those in the 9 preceding days. Memory 

effect was much more important for toxin production, suggesting that it requires more complex 

metabolic adaptation than growth does. 

 

Four different hypothetic temperature profiles were proposed as a starting point for this 

research, including increasing and decreasing temperature situations, and shift and ramp 

temperature variations.  In fact, it is traditional procedure in process engineering to use shifts or 

ramps to identify model parameters such as induced dead, or lag times of first order processes. 

Temperatures in the range 15-25 °C were included, which may be consistent with the levels that 

may occur during unrefrigerated shipping for an extended period of time. The final aim is to 

provide a tool which, for any fluctuating temperature profile derived from a temperature data 

logger located in a silo, storage room or container, provides a prediction on the risk probability. 

The results showed a good agreement between the observed values and the predicted ones 

based on the isothermal model (93-100%), with the exception of the DS profile in the model 

developed in pistachio nuts for which low probability of growth was predicted, while growth in 

fact occurred. As this occurred in nuts but not in agar, one possible reason could be that at the 

initial temperature in the profile, a clear dehydration would be expected, and then little increase 

in probability is expected in the long term from the isothermal model. However, under the 

variable profile, the temperature shifted to 15 °C in the 5th day, preventing partially from 
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dehydration (Fig. 5), and allowing for a further increase in probability in the spores that probably 

germinated during the 5 days at 25 °C (note that no growth was observed at isothermal 15 °C).  

On the other hand, the slopes of the probability curves observed with abrupt temperature 

changes were slightly higher than those observed when the temperature changes were smooth. 

Moreover, in the real situations smooth temperature changes, where prediction performance 

seems to be better, are expected rather than abrupt ones from growth to no growth conditions. 

 

Pioneer studies on modeling germination and growth of P. expansum and A. niger under 

fluctuating temperature conditions have been recently published by Gougouli et al (2010, 2012). 

The assumptions were: a temperature shift does not result in an additional lag, after a shift the 

germination and growth rates adapt instantaneously to the new temperature. Although a 

memory factor was not applied in any case, the germination function was recalculated taking 

into account the remaining %germination to reach 100%, thus a new germination rate was 

calculated which took into account the preceding situation. Probability of growth, as modeled in 

our study, is affected by germination kinetics and reflects mainly the end of the germination 

step at the population level, as once the %germination in a population of spores approaches 

100%, the first signs of hyphal growth become visible. 

Gougouli et al. (2010) indicated that during storage at a temperature below the minimum 

temperature for growth no lag time was consumed. This point was confirmed in our work in the 

US profile when memory effect was not taken into account, where even the observed initiation 

of growth was delayed compared to the predicted one. Once memory correction was applied 

such delay disappeared, confirming Gougouli et al. (2010) hypothesis: instead of consuming lag 

time, the time under no-growth conditions delayed the initiation of growth once conditions 

conducive for growth were achieved. 

 

4.4. The impact of the media and variables used for data generation in model validation 

Generating data from agar experiments can be much easier and cheaper, and also growth 

measurements are less costly than AF analysis. It can be inferred that as soon as fungal growth 

becomes visible there is some probability of finding mycotoxins in the foodstuff. In fact, from 

our preliminary experiment it was shown that colonies as small as 5 mm of diameter may 

contain <LOD-20.5 μg/kg of AFB1 depending on the condition. The European Union has 
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determined the maximum residue limit of AFB1 to be 8 μg/kg in pistachios (EC Regulation 165/ 

2010), thus there is not much room to allow for fungal growth till risky AF levels are reached.  

 

Rather to generate data for model building in pistachio nuts, two alternatives were envisaged: 

the first one, generating AF data in pistachio agar medium, the second, generating growth data 

in nuts (instead of AF data, much simple) and then assume that the conditions which prevent 

growth also prevent toxin accumulation. The first option should lead to a narrower set of 

conditions. Looking at tables 2 and 3, however, similar agreement was observed in both cases. 

The agreement with the model developed for AFB1 data in agar confirms that, similarly to what 

reported in Marin et al. (2012), the boundaries for growth and AF production are similar, 

although this point contrasts with the general agreement that toxin production conditions are 

narrower than those for growth. The difference might be the long duration of our experiments, 

leading to accounting for delayed toxin production. In this case, no deviations are expected 

derived from methodological issues, as the decreased aw levels occurred in both cases as both 

data were obtained from the same experiment in pistachio nuts. When using AFB1 data in agar 

to predict AFB1 probability in nuts, the non-concordant values were, in general, due to 

overestimated probability, thus the model was fail-safe. Such overestimation can be tentatively 

attributed to the different aw levels in both cases; while the initial level was the same, in 

pistachio nuts it decreased over time, but not in agar. 



 

Figure. 8. Percentage of AFB1 positive 

3.267; b) cocktail inoculum

 

From the 57 single AFB1 data obtained for validation in pistachio nuts, it was clearly observed 

that, although there was a rough relationship between toxin presence and co

relationship between time and toxin was weak (Fig. 11), as depending on the temperature 

conditions long time periods were required to attain significant colony sizes, likely to 

accumulate AFB1. For this reason, after 25 days, there were stil

which were AFB1-negative (more than 33%). This suggests that, besides time and environmental 

factors, including in mycotoxin models a parameter related to colony size would help. Mixed

growth associated models have been re

al., 2012; Garcia et al., 2013; Medina et al., 2007)

developed a model for patulin accumulation i

of the model.  
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Percentage of AFB1 positive A. flavus colonies as affected by colony size. a) Isolate TA

3.267; b) cocktail inoculum. 

From the 57 single AFB1 data obtained for validation in pistachio nuts, it was clearly observed 

that, although there was a rough relationship between toxin presence and co

relationship between time and toxin was weak (Fig. 11), as depending on the temperature 

conditions long time periods were required to attain significant colony sizes, likely to 

accumulate AFB1. For this reason, after 25 days, there were still a number of small size colonies 

negative (more than 33%). This suggests that, besides time and environmental 

factors, including in mycotoxin models a parameter related to colony size would help. Mixed

growth associated models have been recently applied to mycotoxin production 

al., 2012; Garcia et al., 2013; Medina et al., 2007).  Similarly, Baert et al. 

developed a model for patulin accumulation including colony surface of 

 

colonies as affected by colony size. a) Isolate TA-

From the 57 single AFB1 data obtained for validation in pistachio nuts, it was clearly observed 

that, although there was a rough relationship between toxin presence and colony size, the 

relationship between time and toxin was weak (Fig. 11), as depending on the temperature 

conditions long time periods were required to attain significant colony sizes, likely to 

l a number of small size colonies 

negative (more than 33%). This suggests that, besides time and environmental 

factors, including in mycotoxin models a parameter related to colony size would help. Mixed-

cently applied to mycotoxin production (Abdel-hadi et 

Similarly, Baert et al. (2007) previously 

ncluding colony surface of P. expansum as a term 
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4.5 Conclusions 

In this work we have generated an R-script that for any temperature profile in an spreadsheet 

file or text file that is loaded, produces the probability plot for AFB1 along the given time period 

(also numerically). Obviously, at this moment it can only be applied to lots with initial aw of 0.87, 

which is unrealistic, if they are correctly dried, and no condensation due to changes in 

temperature occur. On the other hand, the use of a cocktail inoculum for data generation seems 

sound. There is a need to refine it, in particular, solving the variable aw issue; the objective may 

not be predicting probabilities at a constant level of aw, but taking into account its fluctuation 

along time as a function of the initial aw itself and of temperature variation that may occur in 

bulk pistachios. 

 

The application of this tool would allow support decision, at storage level, on the timing for 

ventilation or use of stored raw materials, or even on the final use given to them. At the 

transport level, it would enable to decide whether refrigerated transport is required or not, 

depending on the international routes, as well as complement (or substitute) the control 

analyses at the destination ports. It is well known that sampling plans for control of 

heterogeneously distributed contaminants, such as mycotoxins, are costly and the results 

obtained are not always totally reliable (García-Cela et al., 2013), thus a prediction based on 

data loggers inserted in the containers would give an additional information on the safety of the 

shipping operation (assuming that there is no unacceptable contamination from origin).  

 

Finally, two assumptions are implicit in our approach: the presence of aflatoxigenic strains in 

stored/transported batches (this is highly expectable, thus the prediction should not be much 

affected), and the absence of insects and other pests which may interact with AF producers (if 

this is the case the predictions may be compromised). 
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Abstract 

This study developed predictive models to describe the behaviour of A. flavus in maize extract 

agar and maize grains under a dynamic environment. Growth and AFB1 production was 

recorded along time under static (20, 25, 30 and 35 °C) temperatures and different water 

activities. Afterwards, logistic models, with temperature, aw and time as explanatory variables, 

were fitted to binary data of growth and AFB1 production probability under static conditions. In 

addition, independent data were generated in maize extract agar and maize grain under two 

changing temperature profiles. During incubation air relative humidity (RH) was recorded in 

order to model aw as a function of the initial aw value, RH and time, and including it is input aw in 

probability predictions. 

Predictions of growth and AFB1 production under dynamic conditions showed different levels of 

concordance depending on the temperature profile and substrate, ranging from 66 to 100%, in 

almost all cases. For AFB1 lower concordances were obtained. In addition, maize grains were 

more conducive to AFB1 production than maize extract medium. Probability growth models in 

maize grains can be used to properly predict AFB1 in maize grains.  These results indicate that 

the mathematical models developed can be a useful in describing fungal behaviour as a function 

of temperature and aw, however, further refining of such models is required.  
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1. Introduction 

Fungi are distributed worldwide, may grow on a number of food commodities, and due to their 

capacity to utilize a variety of substrates and their relative tolerance to low water activity, 

temperature and pH they can be found in various foods and feedstuffs from almost every part of 

the world (Atanda et al., 2011). They can produce mycotoxins, toxic secondary metabolites 

structurally diverse, which can  infect food, feed and agricultural commodities, during pre-

harvest and post-harvest stages (Bryden, 2007).  Overall, water activity and temperature are 

important criteria for the evaluation and control of food safety and quality. 

Aspergillus flavus is a ubiquitous fungus in the soil where its growth is promoted by heat and 

humid environmental conditions (Klich, 2007). A. flavus produces aflatoxins, known to be 

carcinogenic. Maize is an agricultural product considered to be highly susceptible to fungal 

colonization and mycotoxins contamination worldwide (Barug et al., 2004), including A. flavus 

growth and aflatoxins production. Improper harvesting, storage or processing practices can lead 

to the occurrence of high levels of aflatoxins in maize used as human food or animal feed. 

In order to improve the control and management of food safety and quality, there is a need to 

predict microbial responses in foods using mathematical models (Dantigny et al., 2005). 

Predictive models may provide important data about fungal contamination of foods during 

shipping and storage, and enable manufacturers to reduce the amount of tests and ensure the 

quality and safety of products and establish an adequate shelf-life. Prediction and prevention of 

mould spoilage is important for the food industry, it can be accomplished by limiting the 

contamination in the whole production chain (Dagnas and Membré, 2013; Georgiadou et al., 

2012; Huang, 2014). 

 

Most of the studies in predictive mycology focus on the effect of environmental factors on 

fungal growth and mycotoxins production under static conditions. However, dynamic 

environmental conditions occur along the food chain. Unfortunately, less attention has been 

paid on such fluctuations. Only few mycological studies were developed under dynamic 

conditions (Aldars-García et al., 2015; Garcia et al., 2012; Gougouli and Koutsoumanis, 2010; 

Kalai et al., 2014; Palacios-Cabrera et al., 2004; Peleg and Normand, 2013). Palacios-Cabrera et 

al. (2004) pointed out that changing the temperature conditions may stimulate 
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growth/mycotoxin production under certain circumstances. Then it is important to take into 

account these fluctuations during the developing and validation of models, otherwise their 

applicability is compromised. Prediction of mycotoxin production has been shown to be complex 

under static temperature levels (Garcia et al., 2013, 2011a; Marín et al., 2009), thus prediction 

under changing temperature is challenging.  

The ability to grow and the amount of mycotoxin which a mould produces in the food depends 

completely on the ecological and processing parameters of the particular foodstuff (Filtenborg 

et al., 1996), as well as on its genetic ability to synthesise the toxin. Besides, fungal growth does 

not imply necessarily the presence of mycotoxins, this is explained by the fact that not all the 

strains in a mycotoxigenic species are able to produce mycotoxins, and in addition, the 

conditions favourable to growth may not be conducive to mycotoxins production. Also it is 

important to consider that the absence of fungi in a food product does not mean the absence of 

mycotoxins, because these molecules are highly resistant and may bear most industrial food 

processes. Moreover, growth is a parameter which presents less intraspecific variability, and its 

kinetics is more known, than mycotoxins production. Then, the prevention of fungal growth in 

all the steps of the food production and processing, lead to the prevention of the mycotoxins 

presence in the final food product (Marín et al., 2008). Considering all this information, we 

focussed on probabilistic models, which predict the probability of a given event occurring, such 

as fungal growth or toxin production. 

In a previous work (Aldars-García et al. 2015) in pistachio nuts, it was evidenced that for correct 

prediction of growth and toxin probabilities in real food substrates, there was a need to include 

in the model aw as a variable as function of temperature and time. The objective of this study 

was to develop a predictive model to assess the effect of variable temperature and aw on the 

growth and aflatoxin production of A. flavus at dynamic temperature conditions.   

 

2. Material and methods  

2.1. Fungal isolate 

Aspergillus flavus UdL-TA 3.327 was used in these experiments. This strain was isolated from 

maize grains purchased from a wholesaler in Lleida, Catalonia, Spain. Briefly, maize grains were 

plated on DRBC, and the isolated colonies were identified according to the taxonomical 

descriptions of (Pitt and Hocking, 2009). Aflatoxigenic capacity was assayed on Potato Dextrose 
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Agar at 25 °C, after 7 incubation days and determined by high performance liquid 

chromatography (HPLC). 

2.2. Media preparation 

Maize Extract Agar (MEA): Maize extract was prepared by boiling 40 g of raw ground dry maize 

grains in 1 L distilled water for 30 min. After that, the extract was filtered and the amount of 

evaporated water was made up to adjust it to 4% of maize extract. Water activity of the media 

was adjusted by addition of certain amounts of glycerol-water to obtain the desired aw of each 

treatment and 2% of maize grain in the medium. Then, 12 g of agar were added per L of medium 

(for each aw) and they were autoclaved and poured into 90 mm sterile Petri dishes which were 

prepared under aseptic conditions. The aw of each medium was checked with an AquaLab Series 

3 (Decagon Devices, Inc., WA, USA) with an accuracy ±0.003.  

Maize grains: An initial analysis showed that AFB1 concentration in the grain was under the LOD. 

Maize grains were autoclaved (15 min at 121 °C) in 1-L bottles filled with 300 g of maize grains. 

Once sterilized, the aw was adjusted by aseptically adding the correspondent amount of distilled 

water to the maize grains to 0.87 aw. The bottles were cooled down to approximately 4 °C for 48 

h with periodic hand-shaking during this period. After that, maize grains were placed in 90 mm 

Petri dishes under aseptic conditions.  

 

2.3. Experimental design 

In order to build a model under static conditions, the growth and AFB1 production of A. flavus 

was studied using a full factorial design, where factors involved where temperature and aw. Four 

temperature levels were studied: 20, 25, 30 and 35 °C. Regarding aw, four levels were included 

for the static experiments: 0.84, 0.86, 0.88, and 0.90. Maize extract agar 2% (MEA) was used as 

medium. For the static conditions, four plates were prepared for inoculation per T-aw 

combination (4 x 4 x4, a total of 64 plates) and two plates per T-aw combination were prepared 

(2 x 4 x4, a total of 32 plates) for controlling the aw throughout the study.  

On the other hand, experiments under changing conditions of temperature were carried out 

both in MEA and maize grains. In both cases, two temperature profiles were tested (Fig.3). 

Regarding aw, one level (0.89 aw) was set for the MEA experiments. Maize grain experiments 

were set at 0.87 aw. In this case, ten MEA plates at 0.89 aw and ten maize plates at 0.87 aw were 
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inoculated. Additionally, four MEA plates per condition and ten maize plates were prepared for 

aw determination throughout the study.  

 

2.4. Inoculum preparation and inoculation   

A. flavus UdL-TA 3.327 was grown on potato dextrose agar (PDA) medium at 25 °C for 7 days. 

Spores were collected by scraping the surface of the plates and diluting them in sterile water 

adjusted to the correspondent aw value with glycerol, containing Tween 80 (0.05% v/v)) and 

filtered through sterile glass wool into a tube. After counting the spores on a Thoma chamber, 

the spore suspensions were then serially diluted to a concentration of 105 spores/mL.  

Petri dishes (both MEA and maize grains) were inoculated with 5 μL of the spore suspension (105 

spores/mL), onto four equidistant points (4 points per plate, ca. 500 spores per point).  

For the experiments at static temperature conditions, inoculated plates of the same aw were 

sealed with Parafilm M®, in order to keep aw as constant as possible, and placed in plastic 

containers and incubated at the corresponding temperature condition for 24 days. 

For the experiments at dynamic temperature conditions (both in MEA and maize grain), after 

inoculation, plates were not sealed with Parafilm M®, and were placed in sealed containers for 

incubation at the different temperature profiles for 24 days. In this case, as Parafilm M® was not 

used, a variation in aw was expected. 

Air relative humidity sensors were placed inside the containers both under static and dynamic 

conditions in order to measure its variation with temperature. The relative humidity of the air 

inside the Petri plates was not measured. Instead aw measurements were taken along time. 

 

2.5. Growth assessment 

For both MEA and maize grains, fungal colony radii were determined from the first sign of 

growth till the end of the study (24 days), with the aid of a binocular magnifier. 

 

2.6. AFB1 analysis 

AFB1 production was determined from the first sign of growth up until the end of the incubation 

time (24 days) in different size colonies (from 3  to 18 mm radius), using a previously described 
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high performance liquid chromatography (HPLC) method (Aldars-García et al., 2015). A 5-mm 

diameter agar plug from the centre of each colony was weighed and introduced into 3-mL vials. 

After sampling, the plates were taken back to incubation, for the assessment of the other 

colonies present in the Petri plates which were not sampled. 1 mL of methanol was added to 

vials and vortexed for 5 s. After being left stationary for 60 min, the extracts were shaken again, 

filtered (MillexR SLHV 013NK, Millipore, Bedford, MA, USA), dried in a nitrogen stream and 

stored at 4 °C until HPLC analysis. All extracts were resuspended in 0.5 mL of methanol:water 

(50:50 v/v) and a volume of 100 mL was injected into the HPLC system (Waters, Milford, MA, 

USA). The detection limit of the analysis was 0.1 ng/g of AFB1, based on a signal-to-noise ratio of 

3:1 

 

2.7. Model fitting: Probability of growth and AFB1 production 

Logistic regression was used to model the probability of growth (Eq. (1)) and AFB1 production 

(Eq. (2)) as a function of aw, temperature and time, using R statistical software with the glm 

function. Using the data generated under static temperature conditions, the binary values along 

time (0=no visible growth/no AFB1 detection; 1=growth/AFB1 detection) were adjusted by 

linear logistic regression. Thus the models developed in the present study are not based on any 

biological and/or conceptual assumption. 

"234%�56� � "7 89
��89 � ∑ ;� � ;� � �� ;	 � �< � ;= � % �  ;> � �	 � ;? � �<	 �  ;@ � � �

�< � ;A � % �  �< � ;B � % � �                                                                                                                   (1) 
 
"234%�5*�� � "7 8C0

��8C0 � ∑ ;� � ;� � �� ;	 � �< � ;= � % �  ;> � �	 � ;? � �<	 � ;@ � %	 �
 ;A � � � �< � ;B � % �  �< � ;D � % � �                                                                                                   (2) 

 

logit(P) represents ln[P/(1_P)], ln is the natural logarithm, PG or PAF are the probability of growth 

initiation or AFB1 detection (in the range of 0-1), T is the temperature (°C), t is the time of 

incubation (d), aw is the water activity and bi are the coefficients to be estimated. The goodness 

of fit of the models was determined through the calculated %concordance between observed 

and predicted values with a cut off of 0.5 probability. 
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Based on these previously generated models, predictions were performed for the non-

isothermal conditions. The approach of Koseki and Nonaka (2012) was used; in particular, they 

estimated the probability of the end of lag time for Bacillus cereus, but the same methodology 

could be applied here. Briefly, an R algorithm was built that for each time point in the variable 

temperature profiles it took the estimation for the previously built logistic model using the 

constant temperature profiles, taking as initial assumption that the previous temperature levels 

determined the predicted probability in a certain time point.  However, as suggested by Aldars-

García et al. (2015), the R algorithm included a ‘memory’ correction. Thus the mean 

temperature in the ten preceding days was used as input temperature in the model. Water 

activity values were estimated at each time point under the variable temperature profiles as a 

function of initial water activity and measured relative humidity (Eq. (3),(4), (5) and (6)) 

measured by the sensors. Moreover, the algorithm was made somewhat cumulative, as 

predictions lower than those of the preceding time point were not allowed. 

The goodness of prediction under non-isothermal conditions was also determined through the 

calculated % concordance between observed and predicted values with a cut off of 0.5 

probability. 

 

3. Results and Discussion 

3.1. Dynamics of water activity and relative humidity under non-isothermal profiles 

In the experiment at constant temperature conditions, aw measurements along time revealed no 

significant differences in aw values, due to the use of parafilm to seal the plates. This allowed to 

consider both temperature and aw constant along time, consequently the probability models 

generated based on these data could subsequently be used for prediction of probabilities at 

variable profiles of both temperature and aw. 

 

Two different dynamic temperature profiles were tested in this work (dotted lines in Fig. 3). 

Through the incubation period, air relative humidity (RH) was recorded continuously; while four 

aw measurements were taken along time both in agar and maize plates. RH values recorded are 

presented in Fig. 1; for the first profile, RH varied between 60 and 75%, with a slight decrease 

along time, while for the second profile, RH remained quite constant between 75 and 85%. 
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Regarding aw, it did not vary significantly along time in the agar plates (thus it was not 

represented in Fig. 1), while it decreased significantly in maize plates. For prediction purposes, 

aw was predicted from RH profiles. Although the variation of aw in agar was not significant under 

our particular temperature conditions, to obtain a general procedure, aw was proposed to be a 

function of initial aw and the decrease in air RH (although in this case coefficients were mostly 

insignificant, aw was equivalent to initial aw): 

 

First profile: 

  �< �  474%4�" �< � 0.000181845 � �474%4�" KL � KL� �  0.00000194 � �474%4�" KL � KL�	     

(3) 

Second profile: 

  �< �  474%4�" �< � 0.00000723 � �474%4�" KL � KL� �  0.00000745 � �474%4�" KL � KL�	            

(4) 

 

For predictions in maize grain, aw was proposed to be a function of initial aw, decrease in RH and 

time (both functions and experimental points are shown in Fig 1): 

First profile: 

�< �  474%4�" �< � 0.0006547815 � �474%4�" KL � KL� �  0.000163769 � �474%4�" KL �
KL�	 �  0.005039122 � %4R&                                                                                                                 (5) 

Second profile:  

�< �  474%4�" �< � 0.031737683 � �474%4�" KL � KL� �  0.000874214 � �474%4�" KL �
KL�	 �  0.005039122 � %4R&                                                                                                                 (6) 

 

 

Predicted aw values obtained from RH correctly agreed with the experimental aw measured 

experimentally (Fig. 1). Using these models for aw would allow to know aw evolution in stored 

cereals in which initial aw is known and only air relative humidity would be required to be 

measured, which is much easier to be recorded, and in addition air RH meters are not 

expensive.  
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The knowledge and understanding of the evolution of aw in low and intermediate moisture 

stored foodstuffs is highly important in the food industry for the design and optimization of 

drying equipment, design of packages, predictions of quality, stability and shelf-life. Several 

researchers have investigated the temperature dependence of moisture or aw in such food 

products, for example Arena et al. (2013) showed a significant decrease in moisture content of 

pistachio nuts, during postharvest storage, after several days of storage at 30°C.  

 

 

 

 

Figure 1. Air relative humidity (RH) recorded continuously throughout the experimental time 

(RH profile 1 (—), RH profile 2 (– – –)), aw predicted from RH (aw profile 1 (----), and aw profile 2 

(∙∙∙∙∙)) of maize experiments. Four aw data points measured along experimental time in maize 

plates: �Experimental aw for maize under profile 1 and � experimental aw for maize under 

profile 2. 
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3.2. Prediction of A. flavus behaviour under dynamic conditions 

3.2.1. Growth prediction 

 

Linear logistic regression on isothermal data led to the following model: 

"234% �5� �  3834.8786014 � 18.3764129 � � � 8538.4207020 � �< � 74.4936756 � % �
0.1569008 � �	 �  4549.0688443 � �<	 � 31.3329125 � � � �< � 80.9958871 � �< � % �
0.3735236 � � � %                                                                                                                                       (7) 

 

 

The index of concordance of the developed model was 99%. Figure 2 shows probability lines at 

0.84 and 0.88 aw, at 20, 22, 25 and 30 °C. Growth was delayed about 5 days at 0.88 aw when 

temperature decreased from 30 to 20 °C, while at 0.84 aw, growth was delayed about 10 days 

when temperature decreased from 30 to 22 °C, and no growth was detected at 20 °C after 24 

days. When growth occurred, the increase from 0 to 1 probability was sharp. This abrupt 

increase in growth has been reported by several authors (Aldars-García et al., 2015; Astoreca et 

al., 2012; Marín et al., 2012), and usually occurs when multispore inocula are used (Aldars-

García et al., 2016). 

 

When this model was used to predict growth probability under the dynamic temperature 

profiles, with variable aw coming from the above equations, there was a certain deviation, which 

differed when predictions were made in agar or maize. Predictions in MEA are shown in Fig. 3. 

For the first profile, observed growth was delayed two days compared to the predicted one 

(93% concordance). Even though the predictions were carried out taking into account the mean 

temperature in the 10 preceding days (as suggested in Aldars-García et al. (2015)), and initiation 

of growth occurred while temperature increased, growth was still predicted earlier than 

observed. A possible explanation of this small overestimation may be due to the corrected 

values for aw and temperature (Fig. 4) (taking into account the conditions of the preceding days).  

 

Looking at the corrected values, 21-24 °C and 0.89 aw were the conditions used for prediction in 

the first days, compatible with efficient growth and responsible of the slightly earlier growth 

prediction. For the second profile, there was a 100% concordance between observed and 



 

predicted data in agar. The co

experimental conditions. 

MEA, and no concordance between observed and predicted values corresponded to “fail

scenarios in which growth is predicted but not experimentally observed. 

 

 

 

Figure 2. Probability growth lines at 0.84

25 and 30 °C. 
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predicted data in agar. The corrected aw and temperature values properly defined the 

experimental conditions. In general good agreement was obtained for both dynamic profiles

, and no concordance between observed and predicted values corresponded to “fail

growth is predicted but not experimentally observed. 

Probability growth lines at 0.84 (dotted lines) and 0.88 aw, (continuous lines) at 20, 22, 

and temperature values properly defined the 

In general good agreement was obtained for both dynamic profiles in 

, and no concordance between observed and predicted values corresponded to “fail-safe” 

growth is predicted but not experimentally observed.  

 

, (continuous lines) at 20, 22, 



 

 

Figure 3. Observed growth probability (o) and predicted values (

dynamic conditions of a) 

time 
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Observed growth probability (o) and predicted values (-) of 

a) profile 1 and b) profile 2. Dotted line represents the temperature along 

 

of A. flavus in MEA under 

. Dotted line represents the temperature along 



 

Figure 4. Corrected values for 

to predict growth under dynamic tempe

 

Considering the mean temperature of the 10 preceding days for the dynamic predictions 

suggests a “memory effect” on fungal behaviour due to the past conditions

Aldars-García et al. (2015)

parameter”  on the secondary modelling of growth o

results suggest that the inclusion of a “memory parameter” 

then is required for the proper development of the non
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Corrected values for temperature and aw (accounting for the 10 preceding days) used 

to predict growth under dynamic temperature along time. 

Considering the mean temperature of the 10 preceding days for the dynamic predictions 

suggests a “memory effect” on fungal behaviour due to the past conditions

García et al. (2015). Also, for bacterial growth, Juneja et al. (2009)

parameter”  on the secondary modelling of growth obtaining accurate estimations. These 

results suggest that the inclusion of a “memory parameter” will improve such predictions and 

is required for the proper development of the non-isothermal models.

 

(accounting for the 10 preceding days) used 

Considering the mean temperature of the 10 preceding days for the dynamic predictions 

suggests a “memory effect” on fungal behaviour due to the past conditions, as suggested in 

Juneja et al. (2009) included a “memory 

btaining accurate estimations. These 

will improve such predictions and 

isothermal models. 



 

Figure 5. Observed growth probability (o) and pred

under dynamic conditions of 

temperature along time.
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Observed growth probability (o) and predicted values (-) of A. flavus

under dynamic conditions of a) profile 1 and b) profile 2. Dotted line represents the 

. 

 

A. flavus in maize grains 

. Dotted line represents the 
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Validation was performed on maize grains under both dynamic temperature profiles. For the 

first profile, there was a delay in 4 days in observed growth, compared to the predicted one, and 

in this case the index of concordance was reduced to 84% (Fig. 5). On the 6th day observed 

probability was under 0.2 while predicted one had already reached almost 1. Looking at the 

corrected values for aw and temperature (Fig. 4) (taking into account the conditions of the 

preceding days), 21-24 °C and 0.87-0.89 aw were the conditions used for prediction in the first 

days, compatible with efficient growth in agar (Fig. 2), but not so much in maize according to 

results.  

 

For the second profile, a delay in 5 days occurred between observed and predicted data, on days 

3 to 5 observed probability was 0 while predicted one was 1, in this case the index of 

concordance was 75%. Looking at the corrected values for aw and temperature (Fig. 4), 

temperature was highly conducive to growth (25-29 °C) but aw decreased from 0.85 to 0.75 

before the 3 day were the conditions used for prediction in the first days (Fig. 4), however, 

before it decreased there was a chance for growth to initiate, and it was predicted as such, 

while in real maize growth only occurred later, when aw newly increased to almost 0.80. 

The overestimation of growth initiation in maize grains, apart from the slight deviance that may 

be attributed to the corrected aw values used for predictions, must be due to the ability to utilize 

the nutrients present in the maize compared to agar medium. It has been reported several times 

that the availability of nutrients may affect the chances of growth, specially at marginal aw 

values  (Mousa et al., 2013; Pardo et al., 2004; Yogendrarajah et al., 2016). Kapetanakou et al. 

(2011) reported that the substrate structure has an important effect on growth. Including the 

viscosity of the substrate in their experimental design, they modelled the effect of temperature, 

aw and (gel) structure on OTA production by A. carbonarius on malt extract broth and food 

matrices with different viscosities. Their results showed that growth and OTA production 

decreased as medium viscosity increased. Thus, herein when we develop the predictive models 

on agar, and extrapolate them to a food matrix, the difference in substrate structure should be 

taken into account. The same conclusion was given by Garcia et al. (2012) studying the effect of 

cycling temperatures on growth and mycotoxin production by Fusarium graminearum and F. 

verticillioides on soybean agar extract and soybean seeds. They determined the growth rate and 

the amount of zearalenone (ZEA), deoxynivalenol (DON) and fumonisins (FBs) produced in both 
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substrates. The extrapolation of growth on agar to soybeans led to overestimated values. In 

fact, this difference was already observed in predictions under non-isothermal conditions in 

pistachio nuts in Aldars-Garcia et al. (2015), however, as in that case aw was not controlled or 

modelled, the different behaviour was mainly attributed to the different aw levels and not to 

substrate composition or structure. Also, Garcia et al.(2011b) modelled the growth of A. 

parasiticus and A. ochraceus under static marginal conditions, and validated the models in maize 

grains, peanuts and coffee beans. In general, their predictions gave an overestimation of times 

to growth when used for prediction in the food matrices. To overcome these problems with 

validation, either a correction factor from agar to real foods could be applied (to apply an 

additional percentage on the predicted times) or just assume that the predictions are in the 

‘safe’ side). 

  

3.2.2. AFB1 production prediction under dynamic conditions 

 

Linear logistic regression led to the following model: 

"234% �5�  � �77.33557 � 1.049601 � � � 196.8969 � �< � 2.166014 � % � 0.01580680 �
�	 � 147.4760 � �<	 � 0.005724380 � %	 � 2.368521 � % �  �< � 2.420820 � �< � % �
0.001692884 � � � %                                                                                                                                  (8) 

 

The index of concordance of the AFB1 production probability model developed was 82%. Figure 

6 shows AFB1 production probability lines at 0.84 and 0.88 aw, at 20, 22, 25 and 30 °C. In any 

case the probability reached 1 during the 24 days. At 0.84 aw the probability never reached the 

0.5 value, while at 0.88 aw this value was reached after 15, 19 and 23 days at 30, 25 and 22 °C, 

respectively. When toxin production was detected, the departure from the 0 value was smooth. 

Probabilistic models reporting mycotoxin production are scarce, mainly due to the high amount 

of work involved. Marín et al. (2012) developed probabilistic models for growth and AFB1 

production by A. flavus on pistachio nuts as a function of time, temperature and moisture 

content. They reported a similar behaviour, under static conditions, with decreased AFB1 

production with lower aw and temperature, also reporting the smooth increase in the probability 

lines.  



 

Figure 6.  AFB1 production probability lines at 0.84

at 20, 22, 25 and 30 °C. 

 

 

When this model was used to predict AFB1 probability under the dynamic temperature profiles, 

with variable aw coming from the above equations, there was a certain deviation, which differed 

when predictions were made in agar or maize. 
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AFB1 production probability lines at 0.84 (dotted lines) and 0.88 a

 

When this model was used to predict AFB1 probability under the dynamic temperature profiles, 

coming from the above equations, there was a certain deviation, which differed 

when predictions were made in agar or maize.  

 

(dotted lines) and 0.88 aw (continuous lines) 

When this model was used to predict AFB1 probability under the dynamic temperature profiles, 

coming from the above equations, there was a certain deviation, which differed 



 

 

Figure 7. Observed AFB1 production probability (o) and predicted values (

under dynamic conditions of 

temperature along time.
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Observed AFB1 production probability (o) and predicted values (

ions of a) profile 1 and b) profile 2. Dotted line represents the 

. 

 

Observed AFB1 production probability (o) and predicted values (-) of A. flavus in MEA 

. Dotted line represents the 
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Predictions in MEA are shown in Fig. 7. For the first profile, observed AFB1 production was 

delayed nine days compared to the predicted one (only 66% concordance was observed in this 

case). Looking at the corrected values for aw and temperature, predicted AFB1 production took 

place at about 0.86 aw and 25 °C, while experimentally occurred after this point, at aw 0.83-0.84 

and 27 °C, but with a longer adaptation period. For the second profile, AFB1 was not detected 

experimentally in 24 days, and according to the model probability of 0.5 was only reached in the 

22nd day (87% concordance).In general, overestimation of AFB1 production probability was 

clearer than that in the case of growth probability. Obviously the dynamic conditions impose 

some kind of stress in the fungus, which is difficult to be reflected in the predictive model. In the 

present study we developed the predictive models that accounted for the mean temperature 

value of the 10 preceding days and so for aw. If such modification is not included in the model 

more disagreement between observed and predicted values will be obtained. Nevertheless, 

much more effort should be done in developing predictive models under dynamic 

environments, as this is what happens in a real context. 

Validation in maize, for both profiles, showed low agreement, as low probabilities of AFB1 

production were predicted. Surprisingly, AFB1 was detected experimentally at day 8 for both 

profiles, and observed probability reached 100% after 21 days in the first profile and after 10 

days in the second one (Fig. 8). Looking at the corrected values for aw and temperature, 

experimental AFB1 production occurred at the higher temperature in the first profile, although 

this coincided with the lower aw levels. For the second profile, observed AFB1 production 

occurred at about 28 °C even though aw was about 0.77. Consequently, AFB1 production took 

place at the optimal temperature level despite of the low aw levels, under which the model 

would not predict any production. Thus, as models were based on data generated in agar, it 

seems clear that even if temperature fluctuations may limit the potential for AFB1 biosynthesis, 

maize grain may trigger it, compared to agar. 

 

These results, both in MEA and maize, highlight that mycotoxin production is a complex event, 

where many factors are involved. In our study, aw was included as a monitored, uncontrolled 

variable in the model predictions, thus results can be fully interpreted using aw values. In maize, 

AFB1 was detected under low aw conditions, following conditions of more suitable values, which 

may suggest that after this period an imposed stress may trigger toxin biosynthesis.  
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Schmidt-Heydt et al. (2009) studied the aflatoxin biosynthesis gene cluster under several 

environmental conditions. They reported that under certain T-aw combinations which imposed 

stress on the fungus results in a reduction of the growth rate and an induction of the 

aforementioned cluster. Studies on patulin (Baert et al., 2007), also showed that abiotic stress 

such as reduction of oxygen or low temperature can induce patulin production. Furthermore 

substrate may play an important role in mycotoxin production, since sometimes AFB1 was 

produced in maize grains but not in agar medium under the same conditions (profile 2).  The 

previously mentioned study conducted by Garcia et al. (2012), reported a similar trend. Under 

certain environmental conditions F. graminearum produced DON in soybeans but not in agar 

medium.  

 



 

Figure 8. Observed AFB1 production probability (o) and predicted values (

grains under dynamic conditions of 

temperature along time.
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Observed AFB1 production probability (o) and predicted values (

under dynamic conditions of a) profile 1 and b) profile 2. Dotted line represents the 

. 

 

Observed AFB1 production probability (o) and predicted values (-) of A. flavus in maize 

. Dotted line represents the 
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3.3. Relationship between observed growth and AFB1 production 

For the first profile, observed growth occurred after 6 days in MEA and 9 days in maize, while 

AFB1 production was delayed till 23 days in MEA and 21 days in maize, such later observation 

was different than expected as production in MEA was expected to occur earlier than in maize. 

The model predicted AFB1 production after 14 days in MEA and no production was predicted in 

maize. For the second profile, observed growth occurred after 2 days in MEA and 7 days in 

maize, while AFB1 production was not detected in MEA and was delayed till the 10th day in 

maize. Again, AFB1 production in MEA was poorer than in maize; the model predicted AFB1 

production in day 22 in MEA and no production was predicted in maize. The low prediction in 

maize compared to MEA was due to the inclusion of the variable aw level in the model, which 

accounted for the more marked decrease in aw in maize than in agar through the experiments. 

Thus, it seems that the real impact of the decreasing aw in maize is not so limiting for AFB1 

production; probably once growth had occurred in the kernels, the decrease in aw instead of 

preventing from toxin production, triggered it. Mycotoxin production as secondary metabolism 

is expected to parallel growth but delayed in time. Thus, in our experiments, once growth 

occurred, in spite of the dramatic decrease of aw, AFB1 was synthesized. Besides, under the 

same conditions, once growth occurred, it took less time to produce AFB1 in maize grains than 

in agar medium. For the first profile, 17 and 12 days lasted between growth initiation and AFB1 

production, in MEA and maize grains, respectively. For profile 2, no AFB1 was detected in MEA 

and it was detected after 3 days of growth initiation, in maize grains. As far as we know, no 

similar observation has been reported before in the literature, mainly due to the scarce number 

of studies that determine fungal growth and mycotoxin production on both agar medium and a 

food matrix. 

 

The higher temperature levels occurring in the first part of the second profile led to more 

conducive conditions for growth and AFB1 production. As conclusion, temperature levels 

(ranging from 20 to 30 °C) were more determinant than aw variations (almost constant in MEA 

and ranging from 0.60 to 0.90 in maize). 

Due to the complexity and variability in mycotoxins production, developing models with AFB1 

data led to wrong predictions, including an underestimation in maize grains. If we compare the 
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observed growth probabilities for maize grains (Fig. 5) and experimental data of AFB1 under 

fluctuating conditions in maize (Fig. 8), good agreement was observed. Then if suitable models 

could be built for prediction of growth probability in maize, they could be applied to AFB1 

production prediction in maize. Similarly, working on pistachio nuts, Aldars-García et al. (2015) 

concluded that probability of AFB1 could be correctly predicted from either growth models 

generated on pistachio nuts or by AFB1 production models generated on pistachio extract agar. 

In conclusion, in the present work, aw was included in a probability model as a function of air RH 

and time, for the prediction of growth and toxin production under non-isothermal conditions, 

for the first time. This led to acceptable growth predictions in agar, however, there is still a gap 

between growth and toxin production in agar media and those in real food substrates. In 

particular, in the temperature profiles assayed poor correlation was found between toxin 

production on agar and maize, thus future work in this area should be focussed on prediction of 

toxin accumulation on foods from growth data generated in such foods.  
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Aflatoxin B1, mainly produced by A. flavus, A. parasiticus and less often by A. nomius, is the most 

common mycotoxin found in food and also the most toxic. The ability of aflatoxin-producing 

fungi to grow on a wide range of food commodities and the stability of aflatoxins in foods make 

them a major issue for the food industry. The food industry is responsible for supplying safe 

food to consumers, thus controlling these toxins becomes imperative.  

Control measures have been designed to prevent the contamination of crops in the field and 

during storage, or to detect and remove the contaminated material from the food supply chain. 

Besides, the application of predictive mycology as a tool allowing for the prediction of fungal 

growth and mycotoxin production through the food chain can further support decision making, 

crop management or risk management. In order to be as realistic and accurate as possible 

predictive mycological studies should account for many factors affecting fungal growth. Such 

factors include marginal conditions for growth, strain variability, inoculum size, and fluctuating 

environmental conditions. 

 

Due to the high variability in growth and mycotoxigenic potential of different fungal strains, 

kinetic modeling of growth and toxin formation may be challenging and very dependent on the 

strains and conditions studied. Thus the use of either growth or mycotoxin probability models to 

forecast the growth and mycotoxin presence/absence may be a good alternative. Besides, in 

terms of food safety, the objective is not to quantify the amount of growth, but to ensure that 

toxins are not produced. 

A particular discussion of the results found in this work has been provided in detail in the 

discussion section of each of the manuscripts included in this thesis. 

 

 

 

 

 

 

 

 



Discussion 

212 
 

 

 

This section of the Thesis has been divided into four subsections in order to address the 

different issues studied in the thesis. 

 

- Effect of marginal conditions on fungal behavior and model development 

- Predictive models outcome as affected by inoculum size 

- Effect of intraspecies variability on fungal growth and mycotoxin production 

- Prediction of fungal behavior under dynamic conditions of temperature 
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1. Effect of marginal conditions on fungal behaviour and model development  

All over the food chain, environmental conditions encountered are nearly always marginal for 

microbial growth, especially during postharvest stages, where such marginal conditions (eg. low 

temperature or water activity levels) are imposed to prevent from food spoilage. Thus, 

developing predictive models under such conditions is of paramount importance for an 

agreement of the predictive models to real situations. For this reason, all experiments carried 

out in the present work were conducted under limiting conditions for growth and mycotoxin 

production. Few works in the literature focus on such conditions; it is known that the biological 

responses under adverse conditions become more unpredictable.  

 

Garcia et al. (2010) reported that the performance of predictive models may be compromised 

under marginal conditions for fungal growth. However, they developed kinetic and probability 

models under such conditions, and found that this poor goodness of fit was more evident for 

kinetic models. Probability models may be a helpful predictive approach and may not be as 

affected by marginal conditions. 

 

The main outcomes in fungal behavior under marginal conditions found in this work are: 

 

1.1. Spore`s ability to initiate growth  

Not all the spores are able to initiate growth under marginal conditions. The development of a 

predictive model generally involves the following steps (figure 1):  

 

Figure 1. Main steps for developing a predictive model. 

 

Before data generation, we need to design the experimental conditions among which the 

amount of spores to be inoculated is set. In the three steps shown in Figure 1, we assume that 

the results obtained account for all the spores we have inoculated. Thus in the case of a 

probabilistic model, in which we obtain the probability of growth under certain conditions, with 

Data 
generation

Model 
construction

Prediction
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multiple spore inocula, we use to take for granted that all spores present in the inoculum 

contributed to the growing colonies, and directly we obtain the prediction under certain 

conditions. However, with small size inocula (or single spore ones), as we saw in chapter III, 

there is a need to develop a correction factor which takes into account the ability of spores to 

initiate growth under different environmental conditions, otherwise we overestimate the 

potential for growth. If such factor is not applied probability models may lead to inaccurate 

predictions and compromise their applicability.  

 

Table 1 shows an example of the ability of the inoculated spores to initiate growth under several 

marginal conditions for five of the isolates tested in the present work.  
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Table 1. Ability of spores to initiate growth (%) under different T-aw combinations for isolates 

UdL-TA 3.324, UdL-TA 3.325, UdL-TA 3.326, UdL-TA 3.330 and UdL-TA 3.268. 

 

Isolate 

name 

 Temperature 

( ̊C) 

aw 

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 

U
d

L-
T

A
 3

.3
2

4
 

15 
a a a 

0.00 0.00 25.00 37.50 37.50 

20 0.00 0.00 18.75 25.00 87.50 37.50 100.00 50.00 

25 0.00 25.00 31.25 31.25 
b b b b 

30 0.00 12.50 31.25 56.25 56.25 
b b b 

35 
a a 

0.00 0.00 0.00 56.25 62.50 100.00 

40 
a a a 

31.25 31.25 37.50 75.00 62.50 

U
d

L-
T

A
 3

.3
2

5
 

15 
a a a 

0.00 12.50 12.50 50.00 56.25 

20 0.00 0.00 56.25 25.00 31.25 43.75 81.25 31.25 

25 0.00 0.00 12.50 25.00 
b b b b 

30 0.00 12.50 25.00 68.75 87.50 
b b b 

35 
a a 

0.00 31.25 18.75 37.50 100.00 100.00 

40 
a a a 

0.00 0.00 100.00 75.00 75.00 

U
d

L-
T

A
 3

.3
2

6
 

15 
a a a 

0.00 56.25 56.25 68.75 93.75 

20 0.00 0.00 31.25 37.50 62.50 87.50 100.00 87.50 

25 0.00 43.75 43.75 56.25 
b b b b 

30 0.00 43.75 43.75 62.50 100.00 
b b b 

35 
a a 

25.00 0.00 100.00 100.00 100.00 100.00 

40 
a a a 

43.75 43.75 100.00 100.00 100.00 

U
d

L-
T

A
 3

.3
3

0
 

15 
a a a 

0.00 0.00 37.50 31.25 43.75 

20 0.00 0.00 37.50 37.50 37.50 100.00 62.50 93.75 

25 0.00 12.50 43.75 43.75 
b b b b 

30 0.00 12.50 37.50 100.00 87.50 
b b b 

35 
a a 

0.00 0.00 37.50 31.25 50.00 100.00 

40 
a a a 

12.50 12.50 43.75 43.75 50.00 

U
d

L-
T

A
 3

.2
6

8
 

15 
a a a 

100.00 100.00 100.00 100.00 100.00 

20 0.00 0.00 23.81 47.62 90.48 100.00 71.43 100.00 

25 0.00 33.33 38.10 100.00 
b b b b 

30 0.00 33.33 100.00 76.19 100.00 
b
 

b
 

b
 

35 
a a 

0.00 76.19 100.00 100.00 100.00 100.00 

40 
a a a 

0.00 0.00 90.48 100.00 100.00 

a
 Not studied, expected to be near 0% 

b
 Not studied, expected to be near 100%. 
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From table 1 it can be extracted that as conditions become marginal, the ability of fungal spores 

to initiate growth decreases. Besides, this ability is strain dependent (see section 4.1.2. of the 

discussion), which means that for certain strains tested most of the spores had similar potential 

for growth, and that for others more variability among spores existed. 

Other researchers, using different sizes of multispore inocula, also reported this issue. For 

example Garcia et al. (2010) observed that P. expansum and A. carbonarius led to lower 

percentages of growth under suboptimal conditions compared to more optimal ones that they 

tested.  

In chapter IV, where we measured growth by a turbidimetric method in a microtitre plate, under 

5 temperature levels (15, 20, 25, 30, 35 and 37 °C), the most restrictive one (20 °C) showed no 

growth in some wells in the plates. In general, the existence of no-growth observations is 

common in all the studies conducted under marginal conditions. Thus, one important point is to 

consider the effect of limiting conditions on the spore’s behaviour, and to find a way to manage 

the no-growth observations.  

 

1.2. Increase of the lag phase and decrease of the growth rate under marginal conditions 

Furthermore, the increase of the lag phase duration and decline of the growth rate under 

marginal conditions is obvious.  

All the experiments conducted throughout this thesis were at marginal conditions, thus a 

comparison of growth parameters between marginal and optimal conditions using only our data 

cannot be done. However, in chapter II, we worked at 25 °C and two aw, 0.85 and 0.87. Despite 

this low difference between the two aw tested, this decrease in aw had a profound effect on the 

growth of A. flavus, since time to visible growth was delayed about 5 days. All the parameters 

studied in this chapter pointed out to a slower growth at 0.85 aw and also a delay in the 

initiation of AFB1 production. These results stand out that even a small change in the 

environmental conditions (making them only a bit more marginal), has an important effect on 

both growth and AFB1 production. 

 

In order to clearly reflect this delay in growth, in Table 2 some results extracted from the 

literature together with our data of lag phases and growth rates under different environmental 

conditions are presented. Inoculum is also included in the table, as we will see later that it has 

also an important effect on lag phase and AFB1 production. 
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Table 2. (part 1 of 2) Literature data and data from this thesis, accounting for lag phase to growth and 

colony radial growth rate under different environmental conditions.  

Model 
Fungal 

species 

No. of 

isolates 

Temperature 

(°C) 
aw 

Inoculum 

size (at 

inoculation 

point) 

Lag 

(day) 

Growth 

rate 

(mm/day) 

References 

Baranyi 

and 

Roberts 

P. expansum 1 25 0.99 10
6
 0.20 3.60 

(Basak and 

Guha, 2015) 

Baranyi 

and 

Roberts 

P. expansum 1 1 Apples(0.98) 104 49 0.98 
(Morales et 

al., 2008) 

Baranyi 

and 

Roberts 

P. expansum 1 20 Apples(0.98) 104 4.20 4.30 
(Morales et 

al., 2008) 

Baranyi 

and 

Roberts 

P. expansum 1 1 Apples(0.98) 106 32 0.85 
(Morales et 

al., 2008) 

Baranyi 

and 

Roberts 

P. expansum 1 20 Apples(0.98) 10
6
 3.10 3.50 

(Morales et 

al., 2008) 

Baranyi 

and 

Roberts 

P. expansum 79 20 0.98 10–102  2.52 4.50 
(Garcia et 

al., 2011a) 

Baranyi 

and 

Roberts 

P. expansum 79 1 0.98 10–102  13.61 0.98 
(Garcia et 

al., 2011a) 
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Table 2. (part 2 of 2) Literature data and data from this thesis, accounting for lag phase to growth and 

colony radial growth rate under different environmental conditions.  

 

Model 
Fungal 

species 

No. of 

isolates 

Temperature 

(°C) 
aw 

Inoculum 

size (at 

inoculation 

point) 

Lag 

(day) 

Growth 

rate 

(mm/day) 

References 

Linear A. flavus 1 20 0.88 1 2.98 2.70 
(Samapundo 

et al., 2007) 

Linear A. flavus 1 20 0.98 1 2.65 4.60 
(Samapundo 

et al., 2007) 

Linear A. flavus 1 30 0.88 1 1.31 3.95 
(Samapundo 

et al., 2007) 

Linear A. flavus 1 30 0.98 1 0.69 5.51 
(Samapundo 

et al., 2007) 

Linear 
F. 

verticillioides 
1 20 0.92 1 4.95 1.75 

(Samapundo 

et al., 2007) 

Linear 
F. 

verticillioides 
1 20 0.98 1 3.44 3.33 

(Samapundo 

et al., 2007) 

Linear 
F. 

verticillioides 
1 30 0.92 1 1.62 3.40 

(Samapundo 

et al., 2007) 

Linear 
F. 

verticillioides 
1 30 0.98 1 1.45 4.35 

(Samapundo 

et al., 2007) 

Linear A. flavus 1 25 0.87 1 14.85 0.41 Chapter I 

Linear A. flavus 1 25 0.85 1 16.63 0.18 Chapter I 

Linear A. flavus 1 25 0.87 500 10.32 0.50 Chapter I 

Linear A. flavus 1 25 0.85 500 12.34 0.23 Chapter I 

  

 

1.3. Marginal conditions promote intraspecies variability 

As it has been reported several times, the differences among isolates are more marked under 

marginal than under optimal conditions (Astoreca et al., 2007; Baert et al., 2007; Garcia et al., 

2011b; Romero et al., 2010). As an example of these studies, Garcia et al. (2011b) studied the 

impact of  suboptimal environmental conditions on the intraspecific variability of A. carbonarius 

growth and OTA production using 30 isolates.They tested the effect of one optimal (0.98aw-25 

°C) and two suboptimal conditions (0.90aw-25 °C and 0.98aw-37 °C). Coefficient of variation of 

the growth rate was more than 4-fold higher at 0.98aw-37 °C compared to 0.98aw-25 °C, and lag 

phase was widely distributed at 0.98aw-37 °C compared to the other 2 conditions.  
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Marginal conditions highly affected isolates behavior, as the difference among isolates increased 

as conditions became more limiting for growth. For example in chapter IV, temperatures 37, 35 

and 30 °C did not lead to much differences among strains but when 25 and 20 °C were set, the 

intraspecies variability started to increase. The different ability to grow under marginal 

conditions could be attributed to the isolate origin, genetic variability, etc. Contour plots 

presented in chapter III, showed that above and below the temperature range 25-35 °C, the aw 

range for growth and AFB1 production is smaller and the differences in probability among the 

20 isolates are more marked. However these differences are not as marked as the quantitative 

growth or mycotoxin produced differences found throughout this work and in the literature. 

 

Considering the effect of marginal conditions on AF production, the amount produced was 

highly variable among strains (see chapter IV) and the boundaries for AFB1 production at 30 

days (see chapter III) were also quite variable at limiting conditions, but far less than the amount 

produced.  

 

When it comes to developing predictive models, as marginal conditions are most realistic 

situation, the inclusion of several strains should be required in order to account for the 

distribution of the behavior of all the possible strains present in a foodstuff. 

 

2. Mould growth and mycotoxin production as affected by inoculum size 

Another issue to consider is the inoculum size, as contamination of most foods occurs with a low 

number of fungal spores (Gougouli et al., 2011; Lahlali et al., 2005), or even if contamination is 

high, single spores are expected to be deposited in different positions in a food matrix. It is 

known that growth results may differ following inoculation by single spores compared with a 

higher concentration of spores (Baert et al., 2008; Burgain et al., 2013; Chulze et al., 1999; 

Garcia et al., 2010; Gougouli and Koutsoumanis, 2013; Morales et al., 2008; Sautour et al., 

2003). Sautour et al. (2003) reported that there is a need for standardizing spore preparation in 

predictive mycology, and thus it should be considered in the design of challenge tests and in 

quantitative risk assessment.  
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Some authors have studied the impact of different inoculum sizes on growth and mycotoxin 

production, and the main results are summarized in Table 2, together with the results of the 

present thesis. 

 

Results from Table 2 of this section, and Table 2 from chapter I and chapter IV, clearly 

demonstrate that inoculum size has a great effect on growth initiation. In all cases, the 

quantitative comparison of the impact of inoculum size on the lag time for growth, TTD or times 

to reach certain probabilities of growth, showed longer times for a smaller inoculum 

concentration. This is a very important issue since lag phase/growth initiation is the main focus 

in food safety and for estimating products shelf life. 

 

Regarding mycotoxin production, the inoculum level highly affected the AFB1 production 

initiation. In chapter I, we developed AFB1 production probability models under 25 °C, two aw 

(0.85 and 0.87) and two inoculum levels (a single spore and 500 spores). The inoculum level 

highly affected the AFB1 production initiation, as a difference of ca. 9 days in the estimated 

times to initiate AFB1 production (t10) was obtained through the different probability models. 

Besides, the logistic curves for the higher inocula were much more abrupt (fast increase from 0 

to 1 probability) than those for the lower ones.  

However, further research is required, in order to understand the inhibition/enhancement of 

mycotoxin production depending on the inoculum concentration. Results obtained at two 

inoculum levels and different temperatures (chapter IV), showed that depending on the 

inoculum size we can find a different pattern in mycotoxin production depending on the 

temperature, sometimes enhanced and in other cases inhibited, without an easy explanation. 

 

Finally, the relationship among lag phase to growth and 50 and 100% probability of growth and 

AFB1 production is shown in chapter I, Figure 4. The succession of the aforementioned events 

occurs almost at the same time when a 500 spores inoculum is set instead of a single spore 

inoculum. Such demeanor shows us the great impact of inoculum concentration on the 

prediction. Then, chapter II was conducted so as to build a better understanding of single 

spore´s behavior. We found that germination, initiation of growth and initiation of AFB1 

production, are quite separated events when we work with only one spore, under suboptimal 

conditions. Once the probability of growth started to increase it took 6 days till the initiation of 
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AFB1 production, and when probability of growth was 100%, only a 40-57% probability of 

detection of AFB1 production was predicted Given these results, standardization of the 

inoculum size, taking into account the most realistic spore´s contamination, in mycological 

studies should be done, to neither overestimate nor underestimate the mycotoxin risk and to 

properly develop the predictive modeling. 

Results from chapter I showed that there was a difference of approximately 8-9 days in the time 

to reach 10% probability of growth when the colonies arose from one spore or from 500 spores. 

On the other hand, the fastest growing isolate and the slowest one (chapter III) under the same 

environmental condition (25 °C -0.92 aw), need 18 and 78 hours to reach the same probability 

(10% probability of growth), which means a difference of 2.5 days. From these results we can 

infer that inoculum size has a greater effect on the results that intraspecies variability. Anyway, 

as we will see in the next section, intraspecies variability also affects (but into a lesser extent) 

the predictive outcome. 

 

3. Effect of intraspecies variability on fungal growth and mycotoxin production  

Differences in growth and mycotoxin production by individual strains are well known (Abbas et 

al., 2005; Astoreca et al., 2007; Belli et al., 2004; Garcia et al., 2011a, 2011b; Lahouar et al., 

2016; Pardo et al., 2005, 2004; Parra and Magan, 2004; Romero et al., 2007; Singh et al., 2015; 

Yogendrarajah et al., 2016). However, this field has not yet been studied in detail for fungal 

species. Many sources can be the cause of this intraspecies variability, e.g. molecular 

characteristics, geographical origin, environmental conditions, etc.  

Populations of A. flavus in agricultural products and foods are complex communities that 

contain many different strains.  

 

Regarding intraspecies variability we conducted two different studies (chapter III and chapter IV) 

in order to address the differences among isolates under different experimental conditions 

(including different environments and two inoculum sizes). 

 

In terms of growth, the differences among strains were dependent on the environmental 

conditions, as we saw in section 1.3 for marginal conditions. In chapters III and IV we observed 

that divergence among strains’ growth start to arise when conditions become limiting.  
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In these chapters we compared the growth initiation (TTD) and the probability of growth. In 

both cases, intraspecies differences were found; for example, Figure 2 in chapter IV shows the 

different TTD of the 10 isolates tested under 5 temperatures (20, 25, 30, 35, 37 °C) and at 0.92 

aw. Differences in TTD of around 30 hours (1.25 days) were found at 25-37 °C among the 10 

strains, however, at 20°C the difference was almost 3 days. In chapter III, regression coefficients 

of growth models developed indicate existing significant differences among the models built for 

the different strains, especially, for the T x aw terms (Table S1 supplementary material in chapter 

III). 

AFB1 production was variable in both studies, and did not follow a clear pattern. In chapter IV, 

we found that the amount of AFB1 produced did not follow a pattern related to the 

environmental conditions, and furthermore some strains were more able to produce AFB1 than 

others. Under the same condition (30 °C- 0.92 aw and 7 days of incubation) one strain can 

produce as much as 3000 ppb of AFB1, while others produce around 1000, 200 ppb or cannot 

produce at all. Besides AFB1 production boundaries in chapter III revealed that AFB1 production 

is highly strain dependent. For example, at 25 °C- 0.90 aw 6 strains out of 20 tested in that study, 

were able to produce AFB1, and the AFB1 probability for these 6 strains ranged between 0.24-

0.49, while for the 20 strains ranged between 0.02-0.49.  

 

As mentioned several times throughout this thesis, AFB1 legal limits in food are very strict, and 

due to the highly variable demeanor, the focus during postharvest should be on avoiding 

mycotoxin production. Then, the use of probabilistic models may be a good approach to 

properly perform this assessment. The amount of mycotoxins produced by fungi has been 

demonstrated to be highly variable among isolates (Garcia et al., 2011b; Yogendrarajah et al., 

2016). However, results in chapter III showed that boundaries for AFB1/no-AFB1 seemed to be 

variable, but much less than the quantity of toxin produced (as reported in chapter IV). Thus, 

taking into account the high variability in the amount of AFB1 produced by different strains, 

modeling of the probability of toxin production seems a suitable alternative. 

 

 

We should develop predictive models that account for the behavior of several strains. However, 

as working with a bunch of strains is time consuming and costly, the use of a mixed inoculum 

with a variety of the strains to develop the experiments has been proposed by several authors 
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(Hocking and Miscamble, 1995; Patriarca et al., 2001; Romero et al., 2007) in order to represent 

the given species. In chapter V, we compared the growth and AFB1 production behavior of a 

single isolate and a cocktail of 25 isolates. Some authors used a cocktail inoculum to minimize 

the possible variability among isolates and then account for the behavior of all of them in a 

single experiment. In all conditions tested in that chapter, growth occurred earlier for the 

cocktail inoculum. For AFB1 production, a different trend was observed, where both type of 

inocula gave similar results with no significant differences between them. From these results we 

can conclude that the cocktail inoculum is dominated by the fastest growing isolate. Then, the 

use of a cocktail inoculum will represent the “worst scenario” contamination in which the 

growth is led by a fast growing isolate. However, using a cocktail inoculum we miss the 

information on the variables distribution for the different isolates.  

 

 

4. Predicting growth and mycotoxin production under dynamic environmental conditions 

One of the main aims of this thesis was to determine the effect of dynamic environments on 

growth and aflatoxin production, and try to model it. It should be considered that steady-state is 

a very poor assumption in the environment of a food chain where non constant conditions 

prevail (Dantigny and Nanguy, 2009). Variation of the environmental conditions, during 

production and distribution chain of a food product is a common situation, therefore it is 

essential to model the microorganisms behavior as a function of some variables under 

fluctuating conditions (Giannakourou et al., 2005; Gougouli and Koutsoumanis, 2012; 

Koutsoumanis et al., 2010; Neumeyer et al., 1997). Generating mycotoxin data for model fitting 

in real food matrices is costly, thus the alternatives considered were either generating data in 

agar media or generating growth data in the food matrix, then fit the models and try to make 

predictions of mycotoxin production probability in food matrices. 

 

Predictive models developed in chapters IV, V and VI were based on predictive models 

corresponding to static conditions which were modified in order to consider the effect of 

temperature or aw changes. In chapter V, four different fluctuating temperature scenarios were 

proposed, including upshifts and downshifts, by gradual or abrupt changes. The development of 

predictive models, for both growth and AFB1 production, under dynamic temperature showed 

the need to take into account the previous temperature history. In this chapter, the 
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temperature used in the R algorithm was the mean temperature of the preceding 10 days. If 

only the temperature of each time point was used, bad agreement between predicted and 

observed data would be obtained under some temperature scenarios, especially for toxin 

production. These modifications entail a memory effect of fungal behavior. Another important 

conclusion of this chapter is that temperature fluctuations may result in aw fluctuation. Thus, in 

chapter VI we developed predictive models accounting for the fluctuation of both temperature 

and aw. Following the same approach as in chapter V the algorithm constructed accounted for 

the mean temperature of 10 days and in this case also for aw. The models obtained were used to 

make predictions of growth and AFB1 production under dynamic conditions in maize extract 

agar and maize grains. Besides, this study highlighted the effect of the food matrix in mycotoxin 

production. Since AFB1 was produced in maize grains despite of the aw decrease along time due 

to the already present mycelia in the maize grains, this behaviour was not reported in the maize 

extract agar. 

 

Furthermore, two approaches were developed in chapter IV for estimating the TTD and AFB1 

production under dynamic temperature scenarios. In both approaches the two temperatures 

included in the dynamic scenario and their duration were taken into account. Envisaged 

approaches allowed predicting TTD and amount of AFB1 under the temperature shifts studied.   

On the whole, the results of these three chapters indicate that even a small temperature 

upshift, such as from 20 to 25 °C, may induce a reduction of about 5 days in the initiation of 

growth.  

 

In general, the inclusion of the past environmental conditions in the models was necessary to 

accurately predict the events studied. Agreement between predictions and observed data under 

dynamic scenarios was found in almost all scenarios. Thus, the mathematical approaches 

developed in these 3 chapters could be satisfactorily employed to describe the phenomena 

studied under a dynamic environment.  

 

 

 

 

 



Discussion 

225 
 

5. Validation of predictive models 

Furthermore predictive microbiological models must undergo validation before they are used to 

support food safety decisions. Validation procedures involve comparing model predictions to 

the same experimental observations used to build the model (internal validation) and with data 

not used in model development (external validation). Validation is one of the most important 

aspects of model development in order to ensure that predictions made by the model are 

applicable to real situations.  

For this reasons, in the present study, two chapters were conducted in both culture media and 

food matrices (pistachio nuts and maize grains). 

 

In chapter V, predictive models obtained under fluctuating temperature were validated on 

pistachio nuts. Growth probability models obtained in pistachios and pistachio extract agar and 

AFB1 production models obtained in pistachio extract agar were used to validate AFB1 

production on pistachio nuts. Table 3 shows the agreement between the 3 different models and 

the data obtained in pistachio nuts.  

 

Table 3. Percentage of agreement between AFB1 data obtained in pistachio nuts and the three 

different probability models developed in chapter V.  

 

Type of model Type of inoculum %Agreement 

Growth probability 

model in pistachio 

extract agar 

Single strain 15% 

Cocktail of strains 40% 

AFB1 production 

probability model in 

pistachio extract agar 

Single strain 81% 

Cocktail of strains 67% 

Growth probability 

model in pistachio 

nuts 

Single strain 81% 

Cocktail of strains 70% 
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Results in Table 3 showed that prediction of AFB1 in pistachio nuts could be performed using 

AFB1 models in agar or growth models in pistachio nuts. Such models are much easier to be 

generated and cheaper, than AFB1 models generated on data from pistachio nuts.  

 

Predictive models under dynamic temperature and aw were validated on maize grains in chapter 

VI. In general, poor agreement was found for AFB1 production models, both in agar and maize 

grains. However, accounting for growth conditions, the developed growth model for maize grain 

could better predict AFB1 in maize grains, even though data used to generate that model were 

initially from growth in agar.   

As a conclusion, both food matrices showed that studying growth may help for assessing AFB1 

presence through probabilistic models, as presented in chapters V and VI. Thus the possibility of 

using growth models to predict mycotoxin production is proposed as a valuable tool in the 

assessment of mycotoxin risk, although more effort should be done to consider as many factors 

affecting fungal behaviour as possible. 

 

These works were carried out with low inoculum levels (but not single spores) and with an only 

strain; looking at the results presented in the present thesis, there is a need to include 

corrections for both factors in newly generated models. In the past, high inoculum sizes have 

been used to take the worst scenario, which according to the present work is too unrealistic. 

Strain variability has not been taken into account in most studies, according to the present work, 

the use of a cocktail inoculum would be unrealistic, for the same reason as high inoculum. As 

the intraspecies difference effect was not so big, an additional confidence interval could be 

applied to model estimations to take into account such variability.  
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The conclusions drawn in this Thesis are detailed below: 

 

� It is required to develop models under real conditions encountered in the agrifood systems 

(usually marginal for fungal growth). The presence of no growth situations under such 

conditions can be efficiently managed by the use of probability models, instead of kinetic 

models. It has been demonstrated that such conditions make model development more 

complex due to:  

- More variable growth and toxin responses under such conditions, and also more 

intraspecies variability, which means worst fittings. 

- All inoculated spores are not capable to initiate growth, thus the models built only 

represent the behavior of the germinating ones which led to colonies. As consequence, 

there is a need to model both percentage of germinated spores and growth/toxin 

production by the germinating ones, and merge both models. 

 

� Fungal growth was clearly linked to inoculum size, which had a great impact on the outcome 

of predictive models. It has been shown that growth kinetic parameters, and probability of 

growth and AFB1 production attain greater values with time when a single instead of a 

multiple spore inoculum is used. The amount of AFB1 produced was affected by inoculum 

size but sometimes it was stimulated and sometimes inhibited, without a clear trend. 

Inoculum size should be chosen according to the most realistic situation to simulate a 

possible food contamination.  

 

� Although smaller than that attributed to inoculum size, there is certain variability in the 

probability models (growth or AFB1 production) developed for different A. flavus strains. 

Such variability should be taken into account in future models in order to represent the 

species. 

 

� Dynamic conditions affected growth and mycotoxin production. Growth pattern could 

properly be predicted by the developed models, however AFB1 production was more difficult 

to predict (AFB1 biosynthesis showed much less repeatability and predictable dependence 

with environmental factors). When growth and AFB1 production under dynamic 

environmental conditions were predicted from static environmental conditions, a correction 
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factor accounting for the past conditions was required. Moreover, the resulting probability 

models should ‘accumulate’ probability, at least in the case of growth, and lead to an 

increasing function with time. 

 

� Probability of AFB1 production under non-isothermal profiles can be predicted from growth 

models generated at constant temperature either on agar media or food matrices, as long as 

aw is included as a variable in the models. Besides, there is a need to further improve these 

models by the inclusion of the impact of inoculum size and intraspecies variability. 

 

� In terms of food safety, the legal limits of AFB1 presence in a foodstuff are very low. It is 

proposed therefore to focus on predicting those conditions where low or no probability of 

neither growth nor AFB1 production occurs in postharvest.  
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Abstract 

Available information on the prediction of postharvest production of mycotoxins in recent years 

is reviewed. Predictive mycology has been focused mainly on fungal growth whereas studies on 

prediction of mycotoxins in foods are scarce. Modeling mycotoxin production is challenging due 

to the high variability in mycotoxigenic potential among species and isolates. Besides mycotoxin 

biosynthesis pathways and factors influencing them are still poorly understood. Baranyi and 

Luedeking-Piret models have been recently used as primary models for mycotoxin prediction, 

while for secondary modeling, polynomial approaches have been used. Furthermore, probability 

models can be a different alternative. In any case, media for data generation, intraspecies 

variability, and microbial interactions should not be disregarded before model application in 

food safety management systems.  
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Food industry aims to obtain good quality 

their shelf-life. Nevertheless, 

both producers and ex

animal health, produced by a wide range of fungi

worldwide problem in terms of human/animal health and furthermore can pose a heavy 

economic burden to the industry. 

chain, in the field as well as during storage

the postharvest stage, where many factors are involved in the production of each particular 

mycotoxin; (a) intrinsic nutritional factors, (b) extrinsic factors

implicit microbial factors 
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Food industry aims to obtain good quality and safe products and to maintain this throughout 

. Nevertheless, mycotoxins, as natural contaminants are not easy to control for 

both producers and exporters. Mycotoxins are secondary metabolites, toxic

animal health, produced by a wide range of fungi. Mycotoxins contamination 

worldwide problem in terms of human/animal health and furthermore can pose a heavy 

economic burden to the industry. Mycotoxins can contaminate a product all over the food 

in the field as well as during storage, or at later points (figure 1). Herein we will focus on 

the postharvest stage, where many factors are involved in the production of each particular 

(a) intrinsic nutritional factors, (b) extrinsic factors, (c), processing factors and (d) 

it microbial factors [1]. 

Brief description of the food chain and the main factors influencing fungal growth and 

mycotoxin production (Modified from Magan et al., [27]).  

maintain this throughout 

mycotoxins, as natural contaminants are not easy to control for 

. Mycotoxins are secondary metabolites, toxic to human and 

contamination represents a 

worldwide problem in terms of human/animal health and furthermore can pose a heavy 

Mycotoxins can contaminate a product all over the food 

(figure 1). Herein we will focus on 

the postharvest stage, where many factors are involved in the production of each particular 

(c), processing factors and (d) 

 

factors influencing fungal growth and 
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As a result of inadequate handling/logistic structures, fungal growth and subsequent mycotoxin 

production are allowed.  While the complete elimination of mycotoxin in contaminated 

foodstuffs is not achievable at this time, the aim is to focus on minimizing the occurrence of 

these toxins throughout the food chain. The implementation of good manufacturing practices 

(GMP) during handling, storage, processing and distribution represents an important line of 

defense in controlling the postharvest contamination of commodities by mycotoxins. To date, 

several postharvest strategies to prevent/reduce growth and mycotoxin production have been 

proposed. It is clear for the industry that drying of cereals and nuts, and temperature and 

moisture control during storage are factors of great importance, and other techniques including 

the application of  compounds with antifungal effects such as synthetic antioxidants, essential 

oils [2,3],  salts [4], natural phenolic compounds [5], or the use of modified atmospheres [6] 

have been used. In the past few years, there have been an increasing number of studies dealing 

with the use of bacteria, yeasts and moulds to control mycotoxigenic moulds in foods [7,8]. 

Beyond this, predictive mycology,  providing tools for the prediction of fungal growth and 

mycotoxin production [9,10*], seems to be a promising approach and could play a role in 

improving the quality and safety of food. This tool may help for adequate decision making 

purposes, risk assessment and in the implementation of mitigation strategies. 

 

 

Postharvest mycotoxins  

Many fungi can invade and cause damage to grains, seeds, raw materials and different foods 

and feeds during transport and storage steps, either before or after drying. Particular 

postharvest practices which may be conducive to toxin accumulation and need further control 

and prevention strategies are slow drying of fruits in certain areas [11] or postharvest ensilage 

of dairy cow feed materials [12]. Aspergillus and Penicillium are the major mycotoxigenic 

postharvest fungi. The minimal necessary water activity (aw) for most Aspergillus and Penicillium 

species is 0.75–0.85, but they can grow optimally at aw 0.93–0.98. These fungi can grow at 

temperatures between 25-40 °C [13,14]. Typical postharvest mycotoxins are ochratoxin A (OTA), 

aflatoxins (AFs) (also typical in preharvest) and, in to lesser extent, deoxynivalenol (DON) [15]. A 

special reference must be made to patulin, which is an exclusively postharvest mycotoxin which 

affects fruits, mainly apples. This review deals, however, with OTA and AFs in which more 

attention has been focused lately. 
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Recent research on predictive modeling of postharvest mycotoxins production 

Postharvest modeling tries to simulate the conditions to which food would be exposed in order 

to forecast the microbial behavior and then to optimize postharvest management.  Detailed 

predictive studies on mycotoxin production under various storage conditions are limited, but 

there is a wealth of information aiming to predict the growth of mycotoxigenic fungi and the 

influence of environmental factors on it. During the past decade several publications have dealt 

with the production of different mycotoxins over time, nevertheless, these studies rarely took 

into account the possibility to model such production. From the food safety point of view the 

target to be modeled are the mycotoxins, however modeling mycotoxin concentration could be 

an unpractical approach due to the high variability in mycotoxin potential among species and 

even more, among strains [16**]. The mycotoxins modeled and the models used in the existing 

studies presented in the following sections are listed in table 1.  

 

 

 

 

Table 1. Recent predictive mycotoxin models used in food mycology. 

 
 

 

 

 

 

 

Reference 
Type of model 

Mycotoxin 
Primary Secondary Probabilistic 

García et al. [18] Luedeking-Piret - - 

AF 

Lee et al. [17*] Baranyi Gaussian and polynomial - 

Medina et al. [21**] Luedeking-Piret - - 

Marín et al. [19] - - Logistic 

Aldars- García et al. [20**] - - Logistic 

Kapetanakou et al. [25] Baranyi Polynomial - 

OTA Ioannidis et al. [26*] Linear Polynomial - 

Lappa et al. [16**] Luedeking-Piret - - 
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Modeling aflatoxins 

Although AFs are a common problem at harvest, the situation may worsen during postharvest 

when foodstuffs are stored under conditions that promote the growth of the specific 

microorganisms that produce them, Aspergillus flavus and A. parasiticus, which primarily 

contaminate food crops such as maize, peanuts, and tree nuts in tropical and subtropical 

climates.  

Regarding AFs, several studies are available which model the effect of aw and temperature on 

synthetic media [17*] and on real food matrices like maize grain [18] or pistachio nuts [19,20**]. 

Recently, Baranyi and Luedeking-Piret models have been the two primary models used to 

predict aflatoxin (AF) production over time.  Garcia et al. [18] modeled the kinetics of aflatoxin 

B1 (AFB1) production by A. flavus using the general mixed-growth associated Luedeking-Piret 

model for product formation under the assumption that both no-growth-associated and growth-

associated toxin production existed. They considered three possibilities to estimate AFs 

formation, namely through colony radius, colony surface or  biomass dry weight, demonstrating 

that AFs were produced during active growth of the fungus and when the growth had stopped, 

therefore AF biosynthesis did not present a clear delay in relation to growth. In such approach, 

parameters α and β are estimated, where α is the growth-associated coefficient for toxin 

production (g toxin /g biomass) and β is the non-growth-associated coefficient for toxin 

production (g toxin/g biomass per unit of time). This kind of modeling allows for some 

understanding of the global physiology of fungi, and it would be of interest to know the 

variation of these parameters as a function of environmental conditions. Later, Lee et al. [17*] 

estimated the maximum AFs production rate (ng/day), and the lag phase duration for AFs (day) 

by fitting the primary model of Baranyi to the production of AFs with respect to time. In this 

approach, toxin production is modeled independently of the coexisting fungal growth, thus the 

estimated rate accounts for both the increase in toxin linked to growth plus the increase due to 

already existing biomass, but no information is given by the model on each contribution.  

Secondary modeling of AFs has been carried out by polynomial approaches. Lee et al. [17*] 

employed Gaussian and polynomial models to fit the maximum specific AFs production rate and 

the lag phase duration for AFs production, respectively, to describe the effects of aw and 

temperature on these kinetic parameters. Interestingly, Medina et al. [21**] linked AFs 

production with gene expression by developing a modified Luedeking-Piret model including 

gene expression of AFB1 production, temperature, aw and growth rate. This new approach gives 
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a helpful understanding on the relationship between environmental stressing factors and the 

genes involved in the biosynthetic pathways of mycotoxins production, and may allow for 

refining of the existing models, through tuning of the potential for toxin production depending 

on gene activation.  

 

Probability models have rarely been used to model mycotoxin production. Due to the high 

variability of toxin production (concentration) among strains, the predicted concentration from 

a model developed with one/various strains may not be applicable to other strains existing in 

nature, thus an alternative might be probability models, if they are proved not to be strain-

dependent. Marín et al. [19] obtained probabilistic models (toxin/no-toxin) to predict AFB1 

production by A. flavus including % moisture content, temperature and time. They converted 

the AFB1 experimental data into probabilities of AFB1 contamination by assigning 1 to samples 

with AFB1 presence and 0 to those without AFB1 (threshold of presence was established by the 

limit of detection of the equipment). Afterwards linear logistic regression was applied to obtain 

the probabilistic model for AFB1 production. In this case, instead of predicting the toxin 

concentration produced over time, the probability of toxin production is obtained, thus, for 

example to avoid the risk of toxin accumulation in the storage a probability under 0.5 or 0.10 

should be achieved through temperature and humidity control of the storage. 

 

For application of these models to food and feed safety management in postharvest operations, 

there is a need to go a step further and work on predictions under variable temperature/water 

activity scenarios. In a preliminary study, Aldars-García et al. [20**] attempted to predict AFB1 

formation under a changing temperature environment, using probabilistic models too, for the 

prediction of AFB1 presence in pistachio nuts. They developed predictive models that could 

predict the presence of AFB1 in pistachio nuts under a changing profile of temperatures with 67-

81 % of concordance between observed and predicted data, depending on the profiles. 
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Modeling ochratoxin A 

OTA is a mycotoxin of major concern which can be produced by several species of Aspergillus 

and Penicillium species [22], and it is a common natural postharvest contaminant in cereals, 

nuts, dried fruits, spices, etc. Few studies modeled the production of this toxin, as most of them 

just quantified the toxin, either at various time points or at a single incubation time, and related 

it to the modeled growth of the mould [23,24].  

Kapetanakou et al. [25], including the viscosity of the substrate in their experimental design, 

modeled the effect of temperature, aw and (gel) structure on OTA production on malt extract 

broth and food matrices with different viscosities. The Baranyi model was applied to estimate 

the OTA production kinetic parameters, namely OTA production rate (ppm/day) and total toxin 

accumulation (ppm), showing good fitting to the experimental data. The Luedeking-Piret model 

was applied by Lappa et al. [16**] to assess the differences in OTA production among ten 

different strains of A. carbonarius isolated from Greek vineyards. As Garcia et al. [18] did, they 

firstly determined fungal growth parameters and correlated them with OTA, and finally took 

into consideration those growth parameters with the highest correlation with OTA, i.e. colony 

diameter, colony area and biomass dry weight, excluding colony density.  Further they used 

them to model the amount of OTA produced in relation to incubation time, concluding that OTA 

was a mixed-growth associated metabolite of  A. carbonarius; this would support its early 

accumulation in fungal cultures.   Besides, OTA production revealed a wide dispersion among 

isolates, pointing out the importance of taking into account the intraspecies variability in the 

predictive models.  

 

Ioannidis et al. [26*] studied the effect of sodium metabisulphite (NaMBS) as a control 

technique in grapes during postharvest. OTA production over time was modeled with linear 

primary model to estimate the OTA production rate. To fit the model, they plotted the OTA 

concentrations against sampling times (3, 7, 10, 14, 17 days). However, in most of the cases a 

decrease in OTA amount was detected in the last two OTA sampling points, thus these points 

were excluded from the regression, to take into account only the linear part. Existing studies on 

most mycotoxins have shown that toxin concentration in open solid systems usually increases 

with time till a plateau is reached and sometimes a decrease is observed; however there are no 

concluding works on how and why degradation takes place. It is a pity that some of the latest 

studies on primarily modeling of toxins did not include the plots of their raw data over time, as 
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there is a lack of availability of such data in order to decide on which primary model should be 

used.  

 

Finally, as for AFs, polynomial models are the main mathematical tools used for secondary 

modeling of OTA formation under different environmental conditions. Kapetanakou et al. [25] 

modeled the square root of the OTA production rate using a polynomial model and a cardinal 

model. Nonetheless, the latter model showed poor adjustment possibly due to the narrow 

range of temperatures and aw assessed in the experiment.  Using a quadratic polynomial model, 

Ioannidis et al. [26*] described the effect of temperature, aw, NaMBS concentration on the OTA 

production rate by A. carbonarius on grape juice based medium. The statistical indices used to 

assess the goodness of fit of the models displayed the difficulty of predicting the toxin formation 

in comparison with growth parameters.  

 

Conclusions 

Postharvest mycotoxins pose a threat for the safety of food products during transport, storage 

and distribution. Despite the high cost of data generation, and the challenging variability of 

mycotoxin data, a significant effort for developing predictive models for estimating mycotoxin 

contamination has been made during the past years and it is still in progress.  There are a 

number of points which still need to be addressed: 

(i) Most models include aw and temperature as the most critical factors which 

determine mycotoxin production. It is known that pH plays a minor role in most 

food and feed materials, however, it would be of interest to take into account in the 

models the impact of microbial interactions, which may be the main source of 

biased predictions. 

(ii) Mycotoxin production in agar systems is quite different from that in real food and 

feed matrices, there is an urgent need for validation of the developed models in real 

substrates; or even to generate the data directly in foods and feeds. 

(iii) Intraspecific variability in mycotoxin production is still a challenge, if even 

probability models result to be strain-dependent, the last resource would be to use 

growth models to predict growth boundaries and apply them to prevent toxin 

production, in a worst scenario approach.   
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Overall, the prediction of the accumulation of mycotoxins in foods and feeds is a challenging 

task due to the variety of factors influencing their production such as temperature, aw, 

inhibitors, fungal strains, accompanying microbiota, etc., and the need to understand the 

mycotoxin biosynthesis more deeply.  
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