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A B S T R A C T

Machine learning techniques have a wide range of practical applications, and algorithms for
supervised classification, which infer a decision boundary from a set of training instances, are at
the core of fascinating uses. The diversity of domains—medicine, industry, or learning—provides
extremely disparate data sets regarding properties such as the type of attributes, volume of
instances, and data distribution. All of these characteristics have led to the implementation of
different strategies to tackle each problem properly, since learner performance depends partly on
the algorithm design. Tremendous progress has been made in refining such algorithms. Actually,
the development of techniques has reached an advanced state of maturity offering thousands
of methods, all of them very competitive, and providing accurate models from data which
are generalised from a sample of the problem at hand. However, despite the progress in data
classification, questions such as how the intrinsic characteristics of the data sets affect learners
remain unanswered. This, coupled with the little leeway for improvement and the uncertainty of
the ability of techniques to fully capture the underlying knowledge of data, induces us to look
toward other elements involved in the learning process. At this point, data steal the limelight
from learners.

This thesis takes a close view of data complexity and its role shaping the behaviour of
machine learning techniques in supervised learning and explores the generation of synthetic
data sets through complexity estimates. The work has been built upon four principles which
have naturally followed one another. (1) A critique about the current methodologies used by
the machine learning community to evaluate the performance of new learners unleashes (2)
the interest for alternative estimates based on the analysis of data complexity and its study.
However, both the early stage of the complexity measures and the limited availability of real-
world problems for testing inspires (3) the generation of synthetic problems, which becomes
the backbone of this thesis, and (4) the proposal of artificial benchmarks resembling real-world
problems.
Reliable assessment? Indeed, one of the challenges in supervised learning is how to evaluate
the quality of the models evolved by different machine learning techniques. Performance, in
terms of accuracy, is highly data-dependent. In addition, error estimates are generally obtained
by running methods over a small test bed composed of toy real-world problems selected without
following any criteria. Empirical tests show how the design of experiments can result in different
conclusions and stress the relevance of a priori data analysis.
Data complexity. The previous concern feeds the investigation of independent measures focused
on the data; measures able to give an estimate of the apparent complexity. Literature presents a
very promising set of complexity measures that estimate the difficulty of classification problems
by evaluating the geometrical complexity of the class boundary. A review of the state-of-the-art
reveals some limitations of the measures, which motivates our implementation and further
testing.
Artificial data sets. Moreover, the unknown inherent characteristics of the problems used in
experimentation and the bias of learners often lead to inconclusive results. Thus, the need
for working under a controlled scenario arises. Our tentative list of relevant features is used
to generate synthetic problems by means of an evolutionary multi-objective approach which
incorporates the data complexity estimates as guidance.
Benchmarks. Finally, the raison d’être of these synthetic problems is to provide an exhaustive
and configurable test framework. However, to rely on them, we have to build realistic structures.
A study between real-world problems and synthetic problems consolidates the new framework
as a benchmark.

The ultimate goal of this research flow is, in the long run, to provide practitioners (1) with
some guidelines to choose the most suitable learner given a problem and (2) with a collection of
benchmarks to either assess the performance of the learners or test their limitations.
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The dissertation comprises a bonus chapter which gathers a personal point of the PhD journey,
lessons learnt, and the origin of frequent existential crises.
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R E S U M

Les tècniques d’aprenentatge artificial tenen un ampli ventall d’aplicació i, els algorismes de
classificació—aprenentatge supervisat—, els quals infereixen la frontera de decisió a partir d’un
conjunt d’instàncies d’entrenament, són el nucli d’usos fascinants. La diversitat de dominis—
medicina, indústria o educació—proporciona però problemes extremadament diversos pel que
fa a tipus d’atributs, volum d’instàncies i distribució de dades, entre d’altres. Totes aquestes
característiques han portat a la implementació de diferents estratègies per abordar cada problema
de la manera més adequada, ja que el rendiment del sistema d’aprenentatge depèn en part del
disseny del seu algorisme. S’han aconseguit grans progressos refinant aquests algorismes, tant
que el desenvolupament de tècniques ha assolit un nivell de maduresa que ofereix milers de
mètodes, tots ells força competitius i capaços d’ajustar models acurats a partir de mostres del
problema a resoldre. No obstant això, i malgrat l’avenç en la classificació de dades, encara queden
algunes qüestions per resoldre, sense anar més lluny com les característiques intrínseques de les
dades afecten els sistemes d’aprenentatge. Això, conjuntament amb el poc marge de millora i la
incertesa en l’habilitat de les tècniques per capturar completament el coneixement de les dades,
indueix a mirar cap altres elements que formen part del procés d’aprenentatge. És aleshores que
les dades concentren tot el protagonisme.

Aquesta tesi estudia la complexitat de les dades i el seu rol en la definició del comportament
de les tècniques d’aprenentatge supervisat i explora la generació artificial de conjunts de dades
mitjançant estimadors de complexitat. El treball s’ha construït sobre quatre principis que s’han
succeït de manera natural. (1) La crítica de la metodologia actual utilitzada per la comunitat
científica per avaluar el rendiment de nous sistemes d’aprenentatge ha desencadenat (2) l’interès
per estimadors alternatius basats en l’anàlisi de la complexitat de les dades i el seu estudi. Ara
bé, l’estat primerenc tant de les mesures de complexitat com de la disponibilitat limitada de
problemes del món real per fer el seu test ha inspirat (3) la generació sintètica de problemes, la
qual ha esdevingut l’eix central de la tesi, i (4) la proposta de fer servir estàndards artificials
amb semblança als problemes reals.
Una avaluació fiable? Efectivament, un dels reptes en aprenentatge supervisat és com avaluar la
qualitat dels models evolucionats per diferents tècniques d’aprenentatge ja que el seu rendiment
en termes de precisió està altament lligat a les dades. Una dependència que empitjora pel fet que
els estimadors d’error s’obtinguin de l’execució de diferents mètodes sobre un reduït conjunt
de prova format per problemes del món real seleccionats sense seguir cap mena de criteri.
Tests empírics mostren com el disseny dels experiments pot alterar les conclusions i ressalta la
rellevància d’una anàlisi de dades a priori.
Complexitat de les dades. La preocupació relativa als estimadors d’error nodreix la investigació
de mesures independents centrades en les dades, mesures capaces de donar una estimació de la
complexitat aparent. En la literatura es troba un prometedor conjunt de mesures de complexitat
que estimen la dificultat dels problemes de classificació a partir de l’avaluació de la complexitat
geomètrica de la frontera entre classes. La revisió de l’estat de l’art revela algunes limitacions
d’aquestes mesures i motiva la seva implementació i test.
Conjunts de dades artificials. A tot això cal afegir que, el desconeixement de les característiques
inherents als problemes utilitzats en l’experimentació i el biaix dels sistemes d’aprenentatge
deriven sovint en resultats no conclusius que fan que sorgeixi la necessitat de treballar sota un
entorn controlat. La nostra proposta d’una llista provisional dels atributs més rellevants ajuda a
caracteritzar els conjunts de dades i és utilitzada per generar problemes sintètics a partir d’una
aproximació evolutiva multiobjectiu que incorpora estimadors de la complexitat de les dades
com a guia.
Estàndards. Finalment, la raó de ser d’aquests problemes sintètics és establir un marc de prova
precís i configurable amb menys temps i menys cost. Això comporta que, per realment confiar
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en ells, haguem de generar problemes que continguin estructures realistes. Un estudi entre
problemes del món real i problemes sintètics consolida el nou marc de treball com a estàndard.

L’objectiu que es persegueix a llarg termini amb aquesta recerca és proporcionar als usuaris
(1) unes directrius per escollir el sistema d’aprenentatge idoni per resoldre el seu problema i (2)
una col·lecció de problemes per, o bé avaluar el rendiment dels sistemes d’aprenentatge, o bé
provar les seves limitacions.

Aquesta dissertació inclou un capítol extra que recull un punt de vista molt personal sobre el
camí a recórrer en una tesi, les lliçons apreses i l’origen de freqüents crisis existencials.
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R E S U M E N

Las técnicas de aprendizaje automático tienen gran aplicación y los algoritmos de clasificación—
aprendizaje supervisado—, los cuales infieren la frontera de decisión a partir de un conjunto
de instancias de entrenamiento, son el núcleo de usos fascinantes. La diversidad de dominios—
medicina, industria o educación—proporciona sin duda problemas dispares en lo que atañe a
tipo de atributos, volumen de instancias y distribución de datos. Todas estas características han
llevado a la implementación de diferentes estrategias para abordar cada problema de la manera
más adecuada, ya que el rendimiento del sistema de aprendizaje depende en parte del diseño
de su algoritmo. Se han logrado progresos considerables refinando dichos algoritmos, tanto que
el desarrollo de técnicas ha alcanzado su nivel de madurez ofreciendo miles de métodos, todos
ellos ciertamente competitivos y capaces de ajustar modelos precisos a partir de muestras del
problema a resolver. No obstante, y a pesar del avance en la clasificación de datos, quedan aún
cuestiones pendientes, sin ir más lejos cómo las características intrínsecas de los datos afectan a
los sistemas de aprendizaje. Esto, juntamente con el poco margen de mejora y la incertidumbre
en la habilidad de las técnicas para capturar completamente el conocimiento que encierran los
datos, induce a mirar otros elementos que forman parte del proceso de aprendizaje. Es entonces
cuando los datos acaparan el protagonismo.

Esta tesis se adentra en el estudio de la complejidad de los datos y su papel en la definición
del comportamiento de las técnicas de aprendizaje supervisado, y explora la generación artificial
de conjuntos de datos mediante estimadores de complejidad. El trabajo se ha construido
sobre cuatro pilares que se han sucedido de manera natural. (1) La crítica de la metodología
actual utilizada por la comunidad científica para evaluar el rendimiento de nuevos sistemas de
aprendizaje ha desatado (2) el interés por estimadores alternativos basados en el análisis de la
complejidad de los datos y su estudio. Sin embargo, el estado primerizo tanto de las medidas
de complejidad como de la limitada disponibilidad de problemas del mundo real para su testeo
ha inspirado (3) la generación sintética de problemas, considerada el eje central de la tesis, y (4)
la propuesta del uso de estándares artificiales con parecido a los problemas reales.
¿Una evaluación fiable? Efectivamente, uno de los retos en el aprendizaje supervisado es como
evaluar la calidad de los modelos evolucionados por diferentes técnicas de aprendizaje ya
que su rendimiento en términos de precisión está estrechamente vinculado a los datos. Una
dependencia que empeora con el hecho de que los estimadores de error se obtengan de la
ejecución de diferentes métodos sobre un conjunto reducido de prueba formado por problemas
del mundo real seleccionados al azar. Pruebas empíricas muestran como el diseño de los
experimentos puede alterar las conclusiones y resalta la relevancia de un análisis de datos a
priori.
Complejidad de los datos. La preocupación relativa a los estimadores de error alimenta la
investigación de medidas independientes centradas en los datos, medidas capaces de dar una
estimación de la complejidad aparente. En la literatura se halla un prometedor conjunto de
medidas de complejidad que estiman la dificultad de los problemas de clasificación a partir de
la evaluación de la complejidad geométrica de la frontera entre clases. La revisión del estado del
arte revela algunas limitaciones de dichas medidas que motivan su implementación y testeo.
Conjuntos de datos artificiales. A todo ello hay que sumarle que el desconocimiento de las
características inherentes a los problemas utilizados en la experimentación y la desviación de
los sistemas de aprendizaje a menudo derivan en resultados inconcluyentes que hacen que surja
la necesidad de trabajar bajo un entorno controlado. Nuestra propuesta de una lista provisional
de los atributos más relevantes ayuda a caracterizar los conjuntos de datos y es utilizada para
generar problemas sintéticos a partir de una aproximación evolutiva multiobjetivo que incorpora
estimadores de la complejidad de los datos como guía.
Estándares. Finalmente, la razón de ser de estos problemas sintéticos es establecer un marco de
prueba preciso y configurable con menos tiempo y menos coste. Esto conlleva que realmente
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para confiar en ellos tengamos que generar problemas que contengan estructuras realistas. Un
estudio entre problemas del mundo real y problemas sintéticos consolida el nuevo marco de
trabajo como estándar.

El objetivo que se persigue a largo plazo con esta investigación es el de proporcionar a los
usuarios (1) unas pautas pare escoger el sistema de aprendizaje más idóneo para resolver su
problema y (2) una colección de problemas para evaluar el rendimiento de los sistemas de
aprendizaje o probar sus limitaciones.

Esta disertación incluye un capítulo extra que recoge un punto de vista muy personal sobre
el camino a recorrer en una tesis, las lecciones aprendidas y el origen de frecuentes crisis
existenciales.
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1
W H Y A T H E S I S A B O U T D ATA C O M P L E X I T Y ?

Summary. This chapter contains the motivation and purpose of this thesis, a
stimulating endeavour to understand data complexity and its importance in
supervised learning. We detect two issues in the evaluation of learners: (1) a
partially founded methodology to assess learners’ performance and (2) the
lack of an exhaustive, representative set of real-world problems to perform
the testing. To combat these difficulties, we examine the current methodology
and consider data complexity analysis to improve the data selection phase
and generate artificial data sets. In addition, this chapter provides the road
map of the dissertation.

1.1 introduction

The will of knowing and mastering the details of our lives seems a challenging topic for many
people, and a business for many more. With the advances in technology and capacity for storing
the data of everything from everywhere, databases accumulate a deluge of terabytes which
are waiting to be deciphered and explored [Mitchell, 2009]. In this area, when human beings
have difficulties to comprehend large amounts of data, machine learning comes to the rescue
and enables us to get some insight into underlying knowledge or hidden patterns. Machine
learning consists of designing and developing programs that use experience to solve given
problems [Bishop, 2006; Mitchell, 1997]. Over the last few decades, many new supervised
leaning techniques based on different learning paradigms have been developed, all of them very
competitive—and according to their respective authors, each one outperforms the rest. Most
of such assertions are, however, fundamentally flawed by the methodologies used to evaluate
and compare the performance of the algorithms. The main reason is that classifiers’ accuracy
depends both on the constraints of the algorithm and the intrinsic complexities of the data [Ho
and Basu, 2002], the latter ignored in the majority of the analyses.

The purpose of this thesis is, therefore, to point out a concern about the current methodology
of learner assessment and investigate how to amend it by examining data complexity and its
influence on the behaviour of machine learning techniques.

In the following section, we identify two aspects that threaten the conclusions reached by
many contributions to the machine learning community and which will set the motivation for
this thesis.

1.2 two issues in supervised learning

The design of learners lives on a plane of error and computational cost. Recently, authors have
focused on refining and tuning learners, reaching an advanced state of maturity. But, when
automatic classifiers are not perfect—in terms of accuracy—, is it a deficiency of the algorithm
by design or a difficulty intrinsic to the given classification task? We do not really know whether
the learner has fully captured the knowledge embedded in the training data set. To shed some
light on this mystery, some authors have devoted their research to the analysis of the source of
difficulty [Basu and Ho, 2006]. These studies are aimed at determining the nature of the class
distribution and numerically characterising the class boundary to find a match between learners
and data. Nonetheless, such crucial exploration of data is not part of the actual methodology to
assess learners’ performance. This results in an incomplete procedure that can lead to partial or
inexact conclusions. On the other hand, data available for testing are not representative enough,
limiting the progress of the methodology and the study of data complexity as well. Hence, we
acknowledge the two following issues:

3



4 why a thesis about data complexity?

Data selection Error estimation Performance measures Statistical tests

∅ Resubstitution validation
Hold-out validation
k-fold cross-validation
Leave-one-out cross-validation
Repeated k-fold cross-validation
Random sub-sampling
Separate subsets
...

Accuracy
Kappa statistic
Mean F-measure
Macro average arithmetic
Macro average geometric
AUC of each class vs. the rest,
– using the uniform class distr.
AUC of each class vs. the rest,
– using the a priori class distr.
AUC of each class vs. each other,
– using the uniform class distr.
AUC of each class vs. each other,
– using the a priori class distr.
Scored AUC
Probabilistic AUC
Macro average mean probability rate
Mean probability rate
Mean absolute error
Mean squared error
LogLoss
Calibration loss
Calibration by bins
...

Averaging over data sets
Paired t-test
Wilcoxon signed-ranks test
Wins, losses and ties
Repeated-measures ANOVA
Friedman’s test
Bonferroni-Dunn test
Nemeny’s test
Holm’s test
Hommel’s test
...

Figure 1.1: Overview of the methodology for assessing and comparing learners’ performance.

1. Methodologies for the assessment of learners are not yet well-founded.

2. Available data sets do not suffice for performing rigourous testing.

Methodologies. Learner performance is usually evaluated in terms of accuracy, interpretability,
and efficiency. The first of these measures is the most significant to determine the learner
quality and is generally estimated by running the learner over different data sets. Unless the
development of the learner is problem-oriented, culling data sets for the experiments is often
an obscured phase. The lack of detail and guidance in that selection manifests itself in a badly
supported procedure to evaluate learners that involves biased conclusions; a cautionary note
already made by Salzberg [1997]. Fig. 1.1 shows the steps to evaluate the learners’ performance
and summarises the flipping pieces along this process to select data sets, performance measures
[Ferri et al., 2009], validation methods [Dietterich, 1998; Demšar, 2006], and statistical tests.
Huge differences in the achievements for each phase—selection, modelling, performance, and
validation—bring the attention to data set selection, which is a far-reaching implication.
Data sets. There are two types of data used to carry out the evaluation of learners’ performance:
data coming (1) from real-world problems and (2) from synthetic data sets. Public repositories
such as the University of California at Irvine (UCI) repository [Frank and Asuncion, 2010]
have become popular as repetitive test bed scenarios, from which authors pick a small sample
of problems to perform their experimentation. Although making these collections accessible
contributes to subsequent works being comparable, they are not big nor representative enough—
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in number and diversity—to get conclusive results. Synthetic data sets may solve both issues and
allow us to build problems with predefined characteristics at only a minor cost. Indeed, in spite
of being accustomed to storing data on a vast scale due to the current information age, there
are still many knowledge domains where the high cost or difficulty of performing experiments
hinder data collection [Jeske et al., 2005]. On the other hand, the use of artificial data sets
offers better understanding of learners’ behaviour since the complexity of the problem under
study is known. For example, under a controlled framework, Japkowicz and Stephen [2002]
investigated algorithm dependence on different degrees of class imbalance. Other issues that are
often present in real-world problems but cannot be easily identified nor taken separately (e.g.
data sparsity, noise, missing values, or dimensionality) can also be introduced in a controlled
way. Actually, the approach of using synthetic data sets has closely been followed in fields such
as evolutionary optimisation, where the design of the so-called boundedly-difficult problems
has provided great insights into the real behaviour of optimisation techniques [Goldberg, 2002].
However, this approach has rarely been pursued in supervised learning due to (1) the complexity
of defining what a difficult supervised learning problem is, (2) the inability of finding real-world
problems with truly different complexity—assuming that complexity can be evaluated—, and
(3) the lack of investigations about generating artificial problems with a certain complexity. For
these reasons, the use of synthetic data sets is still far away from being wide spread and if any
work uses them is with very specific homemade data sets, which are not representative enough
to become benchmarks.

The objectives of this thesis, articulated in more detail in the next section, cope with the two
aforementioned drawbacks, which are intimately related to the selection and generation of data
sets.

1.3 thesis objectives

Although there is no standardised procedure on the evaluation of learners—i.e. different data
sets, different reference techniques, different performance measures, and different statistical
procedures are used—, recent works have tried to systematise or provide guidelines for each
phase. Efforts have been made to identify the most influential learning techniques [Wu et al.,
2007], to design procedures to estimate learners’ error [Dietterich, 1998], and to define a statistical
framework to extract significant and reliable conclusions from results [Demšar, 2006; García and
Herrera, 2008]. These advances have quickly been accepted by practitioners; however, in the
majority of these studies data set selection is still unexamined.

After sifting through the current methodology used to analyse the performance of learners
and taking into account that learner performance is strongly dependent on data characteristics,
we start by empirically building evidence of how data can influence the conclusions and we
then stress the need of further probing their complexity.

Thus, the objectives of this thesis consist in transferring thoughts, sharing observations, and
making some contributions to the field about the:

1. Study of a set of complexity measures as an alternative/complementary method to analyse
the behaviour and performance of machine learning techniques.

2. Development of a framework for experimental analyses based on artificial problems.

3. Consolidation of artificial problems as benchmarks.

In the following, each objective is elaborated.

Study of a set of complexity measures as an alternative/complementary method to analyse

the behaviour and performance of machine learning techniques. A closer reading of data com-
plexity can help practitioners to understand the performance of supervised learning techniques
and their behaviour. Previous attempts have been made to link the resultant characterisation of
data complexity to accuracies achievable by different classifiers [Bernadó-Mansilla, 2004]. Early
evidence showed that the domains of competence of certain classifier families are separable
in such a space of data complexity measures [Duin and Pekalska, 2006; Basu and Ho, 2006;
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Luengo and Herrera, 2010; Macià et al., 2010a]. We revive this train of thoughts and add some
experiments to bolster the inclusion of data complexity analysis in the evaluation of learners’
performance as an essencial procedure to guide the selection of data sets according to the
purpose of the experimentation.

Development of a framework for experimental analyses based on artificial problems. The
idyllic landscape refers to a landscape providing a complete coverage of the characteristic space,
as small as possible but able to map all problems and have enough resolution, granularity in the
complexity values. This framework can help to (1) better understand the domain of competence
of different learners and (2) compare different learners on the complexity space. The creation of
this space is not trivial since there are many ways to characterise a problem and its linkage to
the properties of the learners is not a direct function. We rely on evolutionary computation to
evolve different complexity dimensions defined by the complexity measures proposed by Ho
and Basu [2002] and produce artificial data sets.

Consolidation of artificial problems as benchmarks. Boundedly-difficult problems are very
helpful to test learners under specific conditions. However, synthetic data sets with real-world
structures are preferable. We study real-world problems and try to achieve similar structures
with artificial data sets in order to define some benchmarks and provide practitioners with a
common baseline.

1.4 road map

The dissertation is organised as follows.
Chapter 2. Assessment of learners in machine learning. Reliable enough? reviews the work
of the research community regarding the development and improvement of machine learning
techniques. Lackadaisical decisions in the evaluation procedure, such as which data sets have
to be used in the experimentation and how many1, lead us to call the interest of this kind of
research into question and propel the use of data complexity analysis.
Chapter 3. Data hold the key of learnable patterns introduces data complexity and some
complexity measures proposed by Ho and Basu [2002]. These measures, which estimate the
geometry of the class boundary, have been revised and implemented in the Data Complexity
Library (DCoL) [Orriols-Puig et al., 2010].
Chapter 4. Complexity measures may explain supervised learning behaviour envisions the
complexity characterisation as a basis to study data set selection and design a meta-learner that,
given a new classification problem, automatically suggests which algorithm should be utilised
to maximise the learner accuracy. Besides, it describes other usage of the complexity measures
in the literature thus far. Nevertheless, despite their popularity, the publicly available data sets
appear to be a scarce sample which should be perused.
Chapter 5. Real-world problems vs. Artificial data sets analyses the coverage of the avail-
able testing problems on the complexity space. It shows the difference—in terms of intrinsic
complexity—among real-world problems and some popular artificial data sets, and highlights a
few gaps in certain dimensions of complexity. Standing in the way of enlarging the diversity of
the problems is the concern of providing artificial problems with real-world structure and high
dimensionality.
Chapter 6. Generation of artificial data sets presents our approach which combines complexity
measures and evolutionary computation in a quest to create synthetic problems with realistic
structures. Thanks to this synthesising technique, we are able to build boundedly-difficult
problems and fill some holes of the complexity space.
Chapter 7. The landscape details the generation of a large collection of synthetic problems
which provide sufficient diversity to cover several gaps of the complexity measurement space
and may help preliminary benchmarks for learner assessment to blossom. This may encourage

1 How many learners should be involved in the comparison, which ones, and what statistical tests should be
applied are also other considerations to take into account in the experimental design. However, this thesis
focuses on the data analysis.
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the search of golden standards—term used in medicine—and contribute to the improvement of
the UCI repository.
Chapter 8. Summary, conclusions, and future work ends the dissertation with a summary of
the scientific content of this thesis and several future directions for investigation.

Each chapter ends with the scientific contributions of this thesis to the community, which
have pushed the boundaries of the field.

Finally, the epilogue Philosophical doubts... contains some comments born from existential
crises about randomness, caprice, and surprise in research, some comments about what research
means and what research really is from my point of view.





2
A S S E S S M E N T O F L E A R N E R S I N M A C H I N E L E A R N I N G . R E L I A B L E
E N O U G H ?

Summary. This chapter reviews the literature of the different methodologies
employed in learner comparison and performance evaluation, and highlights
some bad practices, which are empirically supported by a case study where
well-known supervised learning techniques are compared over different col-
lections of problems. Contradictory conclusions about the excellence of the
learners lead to stressing the key role of data set selection, as well as the
importance of data complexity analysis.

2.1 introduction

Increasing interest in pattern recognition and machine learning has fed the growth of a rich set of
brand-new learning techniques which have been designed with the aim of improving existing
algorithms. This kind of research has resulted in several benchmarking studies which claim the
superiority of new learners by comparing their performances with those of a set of reference
learners. These comparisons have usually been built through a three-phase procedure: (1) select
a collection of data sets, typically from public repositories, (2) choose the methods to compare
the new approach with, and (3) extract statistical conclusions, often from tables of performance
measures of each learner on each problem. Although there is no standardised agreement on
the comparison methodology, recent works have tried to systematise or provide guidelines for
each phase. For instance, Wu et al. [2007] determined the most influential learning techniques,
Dietterich [1998] proposed procedures to estimate learners’ error, and Demšar [2006], Martorell
[2007], and García and Herrera [2008] defined statistical frameworks to extract significant and
reliable conclusions from results. Despite these important advances, which have been accepted
and adopted by practitioners, data set selection is still overlooked in the majority of the studies;
data sets are haphazardly selected without a detailed analysis of their characteristics. A proper
selection is, however, a critical aspect in any comparison since results are built upon the selected
data sets, and therefore, a change in the data collection may cause variations in the final
conclusions. A likely explanation of why data analysis is not amply performed in this field is
because it does not fall neatly into the class of approaches with which most practitioners are
familiar.

The purpose of this chapter is to highlight the importance of data set selection by studying
whether it can belie the conclusions resulting from evaluations and comparisons of supervised
learning techniques. To answer this question, we conduct a systematical comparison of three well-
known learners over different collections of real-world problems with no apparent difference
between them.

In the following, we first briefly review techniques and methodologies for the assessment of
supervised learning and we then replicate the most popular approach for learner comparison. We
present a case study which empirically proves that conclusions can be very different according
to the collections of data sets used and motivates us to proceed in the face of criticism.

2.2 supervised learning : techniques and methodologies

In the past few years, the literature has been extended with a vast amount of new machine
learning techniques. Among these proposals, we can distinguish enhanced techniques from
the referenced learners of each learning paradigm—logic-based algorithms, perceptron-based
techniques, statistical learning algorithms, instance-based learning, and support vector machines
[Kotsiantis et al., 2006]. Certainly, learning approaches and knowledge representation will be

9
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Table 2.1: Overview of the current state of data set selection in the experiments.

PR ICML

2008 2009 2010 2008 2009 2010 Total

Total published papers 322 315 353 158 160 152 1460

Papers relevant to our study 31 50 48 35 27 24 215

Source of data sets2

Repositories 25 32 36 31 22 20 166 (77.2%)
Homemade 8 17 14 3 3 4 49 (22.8%)
Specific 2 11 5 3 2 1 24 (11.2%)

Number of data sets3

1 7 19 12 6 6 5 55 (25.5%)
(1,10] 16 22 28 23 16 14 119 (55.3%)
(10,30] 7 7 8 4 5 5 36 (16.7%)
>30 1 2 0 2 0 0 5 (2.3%)

Number of classes

2 8 11 9 3 2 2 35

>2 14 13 10 5 5 4 51

Number of instances

(0,1000] 14 11 14 2 3 3 47

(1000,10000] 9 7 10 8 6 3 43

(10000,100000] 3 1 6 4 3 2 19

>100000 2 1 1 0 1 1 6

Number of attributes

(0,10] 10 13 12 3 4 3 45

(10,25] 11 12 13 3 5 3 57

(25,100] 11 10 12 3 4 3 43

>100 4 2 3 6 3 2 20

essential aspects to take into consideration to bridge complexity and learners’ performance.
But, how has the community demonstrated the relevance of new learning techniques so far?
This section presents a literature review that shows the different ways in which the research
community has been assessing the performance of classifiers.

First of all, we analyse papers from journals and proceedings of machine learning and pattern
recognition, particularly Pattern Recognition (PR) (2008-2010) and International Conference on
Machine Learning (ICML) (2008-2010)1. We focus on those papers where a particular classifier
has been analysed through the comparison of its performance with at least one other classifier
on a set of problems. Actually, we select those which are categorised as classification or contained
this word and derivatives in the title or abstract. Thus, among 1,460 papers, 215 constituted our
panel study. Table 2.1 summarises the test beds used most frequently in the literature.

1 2008: http://icml2008.cs.helsinki.fi/abstracts.shtml
2009: http://www.machinelearning.org/archive/icml2009/abstracts.html
2010: http://www.icml2010.org/abstracts.html#main

http://icml2008.cs.helsinki.fi/abstracts.shtml
http://www.machinelearning.org/archive/icml2009/abstracts.html
http://www.icml2010.org/abstracts.html#main
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Number of papers using the data set

0 10 20 30 40

Iris Classification − 40
Wine Recognition − 39

Ionosphere − 39
Glass Identification − 31

Breast Cancer (Wisconsin) − 31
Sonar Classification − 26

Vehicle − 24
Breast cancer − 24

Heart − 22
Letter Recognition − 21

Voting − 18
Diabetes − 18

Balance Scale − 18
Vowel − 17

Pima Indians Diabetes − 17
Liver Disorders (bupa) − 17

Waveform−5000 − 14
Soybean − 14

Segment − 13
Pen Digits − 13

German Credits − 13
Ecoli − 13

Image − 11
Yeast − 10

Tic−Tac−Toe Endgame − 10
Splice Gene Sequences − 10

Isolet − 10
Hepatitis − 10

Car − 10

Figure 2.1: The thirty most commonly used data sets according to our overview. The x-axis refers
to the number of papers from the study that use the data set in the experimentation.

The majority of the papers resort to data sets from public repositories (77.2%), the UCI

repository being the most popular (63.9%). We observe that certain data sets from the UCI

repository are frequently used with no apparent reason, e.g. Iris classification, Wine recognition,
Ionosphere, Glass identification, and Breast cancer (Wisconsin) (see histogram in Fig. 2.1). This list
partly matches the popularity ranking maintained by the UCI repository (see Table 2.2). Fig. 2.2
shows the distribution for PR and ICML separately; both communities seem to apply the same
data sets with the same frequency. We indicate though that this is an approximate picture since
sometimes data sets are altered for the experimentation or their version is not specified—very
common for Breast cancer, Glass identification problems. Popularity promotes a higher use of these
data sets since authors often need to place the learner performance with respect to well known
expected performances. These problems happen to be popular, easy to use due to the size of
the data set, the type of attributes, or the presence of missing data—considered as extrinsic
characteristic in our taxonomy, see Chapter 6. Other papers (22.8%) use synthetic data sets
specifically designed for the particular purpose of the paper, and a smaller percentage (11.2%)
uses a given problem which must be addressed.

Regarding the size of the test bed, the majority of the works select a small set of problems.
Particularly, more than 50% of the papers use around 2–10 data sets. In general, the selection is
composed of at most thirty data sets (16.7%) and in a very few cases (2.3%) works exceed this
threshold. The mean value is eight data sets when data sets are picked from the UCI repository,
but there is not any defined reason for such a value; it is mostly due to the compromise between
what is normally understood as a representative amount of problems and the computational
cost.

The dimensionality of the problems tends to be small. Data sets with fewer than 1,000 instances
and data sets with up to 100 attributes are the most common. Nonetheless, it is very difficult to
parse such information because it was often not included in the papers. As seen in the low values
reported in Table 2.1, few papers mention these characteristics—although this trend is reversing.
Since October 2008, most of the papers from Pattern Recognition show a table with the observable
(also referred to as extrinsic) characteristics of the data sets—i.e. the number of attributes, classes,
and instances—and justify their selection under the basis of diversity. However, there is no

2 The sum of the three sources can be greater than the number of studied papers since some works are used
in the experimentation data sets from different sources at the same time.

3 In sub-sections number of classes, number of instances, and number of attributes, the number of papers can be
lower than the number of studied papers since.
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Figure 2.2: Data sets from the UCI repository used in PR and ICML.
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Table 2.2: Most popular classification data sets from the UCI repository according to
http://archive.ics.uci.edu/ml/ on Jan, 19 2010 (hits counted since 2007) and their
characteristic description. #Cl is the number of classes, #Inst is the number of instances,
and #Att is the number of attributes. #Real, #Int and #Nom indicate the number of
real-, integer- and nominal-valued attributes respectively. %missInst, %missAtt, and
%missVal correspond to the percentage of instances with missing values, attributes
with missing values, and the total percentage of missing values respectively. Finally,
%Maj is the percentage of instances of the majority class and %Min is the percentage
of instances of the minority class.

Data set Hits #Cl #Inst #Att #Real #Int #Nom %missInst %missAtt %missVal %Maj %Min

Iris 177422 3 150 4 4 0 0 0.00 0.00 0.00 33.33 33.33

Adult 130239 2 48842 14 0 6 8 7.41 21.43 0.95 76.07 23.93

Wine 115366 3 178 13 13 0 0 0.00 0.00 0.00 39.89 26.97

Breast Cancer Wis. (Diagnostic) 94377 2 699 9 0 9 0 2.29 11.11 0.25 65.52 34.48

Abalone 74795 29 4177 8 7 0 1 0.00 0.00 0.00 16.50 0.02

Car Evaluation 71042 4 1728 6 0 0 6 0.00 0.00 0.00 70.02 3.76

Poker Hand 70613 10 1025010 11 0 5 6 0.00 0.00 0.00 50.12 7.80e-4

Yeast 51539 10 1484 8 8 0 0 0.00 0.00 0.00 31.20 0.34

Internet Advertisements 49457 2 3279 1558 3 0 1555 28.06 0.19 0.05 86.03 13.97

SPECT Heart 46258 2 267 22 0 0 22 0.00 0.00 0.00 79.40 20.60

guarantee that diversity of the dimensionality also implies diversity of intrinsic complexity. Even
though this has happened, it is also debatable that one can conclude any quality of the method
across several types of problems [Wolpert, 1992, 1996].

On a side note, we are not suggesting to neglect any of these characteristics since relating
difficulty factors to performance will be essential to assess learners—their robustness, scalability,
and predictive accuracy. For example, learner scalability can be tested by varying the number of
features and the number of instances. Noise, missing values, or ambiguity as well as irrelevant
and redundant attributes are suitable characteristics to test the learner robustness. Determining
the number of classes of the problem adds another layer of difficulty, since the interaction
between classes can be interpreted differently depending on how they are grouped.

The estimation of classifiers’ performance and the use of statistical tests are not directly
relevant to this work. Nevertheless, it is worth mentioning that performance assessment includes
some steps to support the experiments. For instance, usually cross validation or leave-one-out
methods are applied to estimate the error, which is especially needed when only small data
set samples are available. Across the literature, we observe that there is no agreement in the
parametrisation of the error estimation and the well-known k-fold cross validation can be set as
k= {4,5,10,20}. Classifiers’ performance is measured almost exclusively by classification accuracy
or error, although Receiver Operating Characteristic (ROC) curves provide more information
about the error of the classifiers thanks to measures like the specificity and sensitivity [Swets,
1996; Fawcett, 2006]. Statistical tests are used to confer reliability on the observed differences
between the methods. However, most of them are based on pairwise comparisons even though
several classifiers are involved. Multiple comparison tests have still not been applied despite the
recommendation by Demšar [2006].

After examining the papers published by leading journals on neural networks in 1993 and 1994,
Prechelt [1996] sadly pointed out that 78% of the contributions did not even meet the following
soft requirement: an evaluation that “uses a minimum of two real or realistic problems and compares
the results to those of at least one alternative algorithm”. Substantial progress in experimental testing
has been made since this remark; regrettably, his concerns are still valid and the evaluation
of the learning techniques is very often not performed thoroughly enough. The suggestion of
striving for better assessment practices, and increasing the number of publications using easily
accessibly benchmark problems remain a milestone.
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Our impression is that the community is aware of the need for a proper methodology for
estimating performance and statistical significance, but has not paid much attention to the data
set selection. When it seems that there is some interest, indications like “we have chosen these
datasets because they vary greatly in size, number of classes, and other characteristics such as class
distribution” or “selection criteria for this subset of the repository were minimum requirements on sample
size and number of attributes” are not accompanied by any analysis. In addition, “we chose the
first four data sets that represented standard regression problems and had a few hundred instances; no
other data sets were tried” in parenthesis or “these datasets cover a full spectrum of values for each of
the characteristics” when the test bed is just composed of fifteen problems appear to be quick
justifications added to satisfy some reviewers’ comments and mask the fact that data selection is
still shallow. We conjecture that data set selection is a critical aspect that may cause a strong
bias in the results. A good choice of the data collection is the basis for a good experimental
framework over which the rest of the statistical methodology should be sustained.

Choosing data set carelessly from large repositories may thwart the statistical analysis,
especially when data sets with similar characteristics are selected; some significant differences
may not be detected if certain types of problems are not represented in the collection of data
sets. Conversely, having a large collection of data sets with different complexities may lead to
the conclusion that the learners perform the same on average, as shown in the case study that
follows.

2.3 learner 1 , learner 2 , and learner 3 : ready to rumble

The previous section showed that the literature often analyses the performance of learners by
means of comparisons between several techniques on a moderate number of data sets. This
section replicates this approach and evidences the risks behind multiple learner comparisons. In
the following, we present a case study—methodological description and analysis of results—
where three learners are compared upon three different collections to empirically prove that,
although a correct statistical analysis is performed, contradictory conclusions can be reached
depending on the collection of data sets used.

2.3.1 Methodology for learner comparison

For the analysis that we conduct, we depart from the classical methodology: (1) selection of
data sets, (2) selection of learners, and (3) performance analysis which involves the selection of
statistical tests to better support the conclusions.

Firstly, we collect 88 data sets from the following repositories: the UCI machine learning4,
Delve5, LibSVM6, and Kent Ridge Bio-Medical7. For problems that contain more than two
classes, each discrimination of a class with respect to all the other classes are considered as an
individual data set. Therefore, for an m-class problem (m> 2), the data set are transformed
into m two-class problems. This data preprocessing results in 308 binary classification problems.
Among them, we deliberately build three collections of twenty data sets each—twice the average
number used in the literature as seen in Sect. 2.2. Each collection enables each particular learner
to statistically outperform the others. To avoid biasing the results, we do not insert two data
sets generated from the same m-class problem into the same collection. Also, following the
community’s belief about diversity in data set selection, extrinsic characteristics of the data sets,
in terms of number of attributes and number of instances, are summarised in Fig. 2.3. We can
see that the picked samples are spread and reach a good coverage in the space defined by these
two dimensions.

4 http://mlearn.ics.uci.edu/MLRepository.html

5 http://www.cs.toronto.edu/~delve/

6 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

7 http://sdmc.lit.org.sg/GEDatasets/Datasets.html

http://mlearn.ics.uci.edu/MLRepository.html
http://www.cs.toronto.edu/~delve/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://sdmc.lit.org.sg/GEDatasets/Datasets.html
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Figure 2.3: Extrinsic characteristics—number of instances and number of attributes—of the data
sets included in the three collections. Blue squares represent data sets from collection
1, red points, data sets from collection 2, and green triangles, data sets from collection
3.

Secondly, we select three widely-used learning techniques from different learning paradigms:
Instance-based learning (IBk) [Aha et al., 1991], Random Forest (RF) [Breiman, 2001], and
Sequential Minimal Optimisation (SMO) [Platt, 1999]. IBk is an implementation of the near-
est neighbour algorithm; to classify a previously unseen instance, it searches the k nearest
neighbours and returns the majority class among them. RF builds an ensemble of decision trees
which are generated with a group of randomly selected attributes from the sampled training
set; the output of new test instances is inferred by considering the most popular class among
the trees. This is Breiman’s modification of the random decision forest method proposed by Ho
[1995, 1998]. SMO is an efficient implementation of support vector machines [Vapnik, 1995]. All
these methods are run using the WEKA package [Witten and Frank, 2005] with the following
configurations: (1) k= 7 for IBk, (2) a polynomial kernel of order 5 for SMO, and (3) the rest of
the parameters set to their default value. The performance of each technique is estimated with
stratified ten-fold cross validation [Dietterich, 1998].

Finally, we compare the results of the three learners with multiple comparison procedures
based on non-parametrical tests as suggested by Demšar [2006]. The statistical analysis first
applies the Friedman’s test [Friedman, 1937, 1940], equivalent to the repeated-measures ANOVA
[Fisher, 1959], to check the null hypothesis that all the learning algorithms perform equivalently
on average. If the Friedman’s test rejects the null hypothesis, post hoc tests are applied to
identify which learners behave differently. Then, the aim turns to analyse whether all the
methods perform equivalently to the best ranked learner. To this end, we use the Bonferroni-
Dunn test [Dunn, 1961], which identifies significant differences between a control learner (in our
case, the best ranked method) and the others. The Bonferroni-Dunn test indicates that a method
is significantly different from a control learner if the corresponding average rank differs by at
least a critical distance (CD), which is computed as

CD=
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∣
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, (2.1)

where nℓ and nds are the number of learners and the number of data sets respectively, and qα

is the critical value based on the studentized range [Sheskin, 2000].

2.3.2 Analysis of results: And the winner is...

Tables 2.3 and 2.4, 2.5 report the average test classification accuracies obtained by each learner
on the problems of collection 1, collection 2, and collection 3, respectively. The row Frd is the
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Table 2.3: Comparison of IBk, RF, and SMO on the first collection of data sets (DS1). The main
entries correspond to the average test classification accuracies obtained by each learner
over a ten-fold cross-validation. The row Frd reports the p-value resulting of applying
the Friedman’s test and the row Rank provides the average rank of each learner.

DS1 IBk RF SMO

aba-17 98.99 98.97 98.97

ann-3 100 100 100

authors-2 100 99.76 100

bal-2 94.24 87.36 92.80

bondrate-2 78.95 78.95 77.19

briv1-2 85.71 84.76 79.05

cmc-1 76.44 74.54 69.86

drm-5 100 99.45 99.18

euc-1 86.14 84.10 82.34

krk-1 99.90 99.93 99.95

let-21 99.73 99.61 99.69

lng-2 84.38 81.25 75.00

nrs-0 100 100 100

opt-0 99.96 99.73 99.89

pen-2 99.84 99.57 99.70

pos-1 73.33 62.22 61.11

statlog-sgm-1 100 100 100

wav21-3 100 100 100

wbcd 96.57 96.14 94.99

yea-8 99.12 98.65 99.07

Frd 2.42 · 10−4

Rank 1.35 2.30 2.35

p-value obtained from applying the Friedman’s test, and the row Rank provides the average
rank of each learner, which is calculated as follows. For each data set, we rank the learning
algorithms according to their test classification accuracy; the learner with highest accuracy holds
the first position of the ranking. If a group of learners has the same performance, we assign the
average rank of the group to each of the learners8. The detailed information about accuracies is
visualised in Fig. 2.4.

Fig. 2.4a plots the classification accuracies of IBk, RF, and SMO obtained over the first collection
of data sets. At first glance, we have no chance of finding any difference among the learners
since their accuracies lie within similar intervals. In the same vein, we do not detect differences
in Figs. 2.4b and 2.4c that refer to the accuracies reached over the second and third collection
of data sets. However, note that for the three collections the Friedman’s test rejected the null

8
The table below is an illustrative example of how to calculate learners’ ranking, especially how to proceed
in case of multiple ties.

Data set Accuracy Rank

IBk RF SMO IBk RF SMO

dataset1 94.09 86.41 92.98 1 3 2
dataset2 97.98 97.97 97.98 1.5 3 1.5
dataset3 94.00 94.00 97.98 1 2.5 2.5
dataset4 100 100 100 2 2 2
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Table 2.4: Comparison of IBk, RF, and SMO on the second collection of data sets (DS2). The main
entries correspond to the average test classification accuracies obtained by each learner
over a ten-fold cross-validation. The row Frd reports the p-value resulting of applying
the Friedman’s test and the row Rank provides the average rank of each learner.

DS2 IBk RF SMO

aba-2 99.57 99.59 99.64

aud-6 93.36 95.13 96.90

aut-5 91.22 97.56 93.66

briv1-3 87.62 89.52 88.57

car-3 97.28 98.55 100

drm-3 96.45 97.81 95.36

ech 91.89 98.65 90.54

euc-0 89.95 92.12 91.85

gls-0 80.37 84.11 78.50

ion 85.19 93.45 86.04

irs-1 96.00 94.67 66.00

pbc-0 95.78 97.61 94.61

spa 90.18 94.83 61.60

thy-0 92.56 93.49 87.44

veh-3 93.50 95.74 97.40

wav40-2 87.84 88.22 87.16

win-1 96.63 98.31 96.07

wne-1 96.63 98.31 96.07

yea-1 75.61 75.34 75.00

zoo-2 95.05 97.03 95.05

Frd 5.78 · 10−4

Rank 2.33 1.30 2.38
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Figure 2.4: Test classification accuracies of IBk, RF, and SMO over (a) the first collection of data
sets, (b) the second collection of data sets, and (c) the third collection of data sets.

hypothesis. The three p-values {FrdDS1 = 2.42 · 10−4,FrdDS2 = 5.78 · 10−4,FrdDS3 = 4.51 · 10−4}
are less than 0.05, the critical value, and it can be concluded that at least two of the learners are
significantly different from each other. As a consequence, the Bonferroni-Dunn test is applied
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Table 2.5: Comparison of IBk, RF, and SMO on the third collection of data sets (DS3). The main
entries correspond to the average test classification accuracies obtained by each learner
over a ten-fold cross-validation. The row Frd reports the p-value resulting of applying
the Friedman’s test and the row Rank provides the average rank of each learner.

DS3 IBk RF SMO

aba-8 81.25 78.96 83.50

aud-4 99.12 100 100

bal-1 92.16 86.40 92.16

car-1 93.87 91.20 98.09

flg-4 97.94 97.42 97.94

hay-1 79.25 77.99 80.50

hrs 60.60 69.02 74.18

hrt-0 82.51 79.21 76.90

krk-17 98.90 98.91 99.42

krkp 95.40 98.87 99.22

lns-2 62.50 70.83 75.00

pas-1 72.22 80.56 80.56

pim 74.74 73.83 75.13

shu-2 92.31 90.38 96.15

tae-2 66.23 80.13 75.50

tic 98.75 93.01 99.69

veh-1 76.71 77.07 85.11

vot 77.64 79.15 79.46

whi-3 98.41 98.41 98.41

yea-7 97.98 97.78 97.98

Frd 4.51 · 10−4

Rank 2.33 2.35 1.33

Table 2.6: Results obtained by IBk, RF, and SMO over the three collections of data sets. Each
cell reports the average rank of each learner and, the significantly best learner of each
comparison is marked in bold. The last column reports the p-value according to the
Friedman’s test.

IBk RF SMO Friedman

Collection 1 1.33 2.30 2.35 2.42 · 10−4

Collection 2 2.33 1.30 2.38 5.78 · 10−4

Collection 3 2.33 2.35 1.33 4.51 · 10−4

All data sets 1.99 1.98 2.02 0.91430

to find out which methods significantly degraded the performance with respect to the best
method at a significance level of 0.05, which corresponds to a CD = 0.70 (see Eq. 2.1). Table 2.6
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(a) (b) (c)

Figure 2.5: Critical difference diagram for (a) collection 1, (b) collection 2, and (c) collection 3.
CD is the critical distance for the Bonferroni post hoc correction.
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Figure 2.6: Post hoc Friedman’s test applied to discover significant differences among pairs of
learners over (a) the first collection of data sets, (b) the second collection of data sets,
and (c) the third collection of data sets. Green boxplots indicate the pair of learners
that present significant differences.

summarises the rank results for each learner over each collection and shows the average rank of
each learner. The last column reminds us of the p-value of the Friedman’s test.

After crunching the numbers, for the first collection of data sets, IBk presents significantly
better results than RF and SMO (see Fig. 2.5a). For the second collection, RF presents significantly
better results than IBk and SMO (see Fig. 2.5b). And, for the third collection, SMO presents
significantly better results than IBk and RF (see Fig. 2.5c).

The post hoc Friedman’s test supports the results of the previous statistical test and shows that
the difference between the three learners in the first collection is due to differences between IBk

and RF (p-value 1.6 · 10−3) and between IBk and SMO as well (p-value 8.4 · 10−4)(see Fig. 2.6a). We
also confirm the conclusions for the other two collections where there are significant differences
between pairs of classifiers. Fig. 2.6b shows that RF outranks IBk (p-value 3.17 · 10−3) and SMO
(p-value 1.93 · 10−3) and Fig. 2.6c shows that SMO outperforms IBk (p-value 2.26 · 10−3) and RF

(p-value 1.65 · 10−3).
So, apparently each collection has its own best classifier. However, no significant differences

can be found when all the data sets are considered in a single comparison (see the last row
of Table 2.6)—the distance between ranks is hardly of some decimals. Similar conclusions can
be obtained with other statistical procedures such as the Holm’s test [Holm, 1979] and the
Hommel’s test [Hommel, 1988].

Therefore, the experimental results determine that there is no overall winner since contra-
dictory conclusions are extracted from different collections of data sets despite the statistical
analysis—only local winners for each collection. Reliability of this methodology is challenged by
an arbitrary selection of data sets.
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2.4 critique of the current methodologies for the performance evaluation

The case study evidences the principal limitation of the typical comparisons: conclusions reached
over a collection of data sets are strictly valid only for that collection of data sets. Trying to
extrapolate the conclusions to other domains may lead to incorrect claims. This section just
emphasises the need to revise the current methodology. We suggest to examine the data—
complexity and distribution—before any experimentation since these things are at the heart of
what supervised learning methodologies need to master to be effective.

The case study exemplifies two of the most common situations that can be found in com-
parative analyses. On the one hand, a comparison that considers just a single collection of
data sets may result in conclusions too specialised to the chosen domains. In general, specific
learning techniques may be overrated if the comparison is made over collections that contain
data sets with certain characteristics which happen to be well-suited to the given learner. On
the other hand, a comparison that considers all the data sets from the three collections yields
the conclusion that all techniques are equivalent on average, providing no valuable information
to the practitioner. Actually, this conclusion is announced by the No-Free-Lunch (NFL) theo-
rem9 [Wolpert, 1992, 1996], which formally demonstrates that no learner can systematically
outperform any other if all possible classification problems are contemplated.

These observations not only exhibit how tricky multiple learner comparisons are, but also
how relevant the study of data set characteristics are to boost the comparative analysis. If data
difficulty was characterised, we could try to identify the sweet spot in the problem complexity
space where each learner actually excels the others. With this idea in mind, the next chapter
introduces data complexity analysis as a basis for identifying problem complexity.

Contribution.

1. Empirical demonstration of the NFL theorem.

2. Evidence of inconclusive results about the claim of the excellence of supervised learning
techniques in the literature due to a badly supported performance/comparison methodol-
ogy.

3. A motivation to advocate the data complexity analysis and scrutinise its influence on
supervised learning.

9 The NFL theorem is not valid for classifiers systems such as boosting, bagging, and ensemble; just only for
simple classifiers.



3
D ATA H O L D T H E K E Y O F L E A R N A B L E PAT T E R N S

Summary. This chapter introduces data complexity in supervised leaning
as an essential component to design experiments and understand learners’
limitations. It shifts from theoretical estimates to practical complexity mea-
sures, where it becomes more natural to talk about approximations and their
implication as well as implementations and computational efficiency. It also
introduces our open source code that provides researchers with a common im-
plementation; a software to consider for the analysis of data and the analysis
of learners’ behaviour.

3.1 introduction

Machine learning, as a mature discipline, has great advantage over data complexity. However, in
an era where highly-competitive learners abound in the field, the interest of some researchers
has turned to go over particular machine learning techniques with a fine-tooth comb to better
understand their strengths and weaknesses; and to this end, they have moved back to complexity
estimates. Since the performance of these techniques depends on the data distribution and
the knowledge representation used, several works have paid special attention to data and
quantitatively estimate different sources of problem difficulty to investigate their influence on
performance [Basu and Ho, 2006]. The construction of a complexity space is expected to reveal
the bonds between data and learners—why and how data affects learners’ performance. This
may have a strong influence on the methodology for learner comparison by endowing it with
new procedures based on previous analysis of the characteristics of the test bed.

The purpose of this chapter is to examine and discuss the state-of-the-art of data complexity
and primarily focus on its practical side which can allow us to find commonality in the intricacy
and interwoven nature of data.

In the following, we walk the road of data complexity from theory to practice and introduce
in detail a set of complexity measures designed to evaluate the difficulty of the class boundary
for classification problems [Ho and Basu, 2002]. We then present their implementation under
the open source DCoL [Orriols-Puig et al., 2010] which should be empowered by multi-threaded
optimisation and distributed computing to face large-scale problems and improve its efficiency.

3.2 data complexity: from theory to practice

Universal complexity of a data set is defined by the Kolmogorov complexity [Kolmogorov, 1965],
which is related to several extant principles from machine learning such as Occam’s razor and
the Bayesian paradigm. This section describes some of these theory-based complexities, mentions
some practical approaches, and announces the need for both independent and computable
measures. We first formally define classification problems in supervised learning and the error
of learning models. We then review theoretical complexity measures—Kolmogorov, universal
data, and learning model-based complexity. Last, we present some related work about practical
measures to later provide the detailed formulation of those proposed by Ho and Basu [2002],
which are the backbone of the thesis.

3.2.1 Catch up on notation and definitions

Before addressing data complexity measures, we need to have a look at some definitions in
machine learning and get used to the corresponding notation.

21
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Let us start with the definition of machine learning phrased by Mitchell [1997, p. 2]: “a computer
program is said to learn from experience E with respect to some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by P, improves with experience E”. This experience
E can be seen as a data set or training set composed of instances (also referred to as examples,
observations, or cases) which are described by a set of attributes (also referred to as features,
variables, or dimensions). In particular, classification problems have a specific attribute, the class
(also referred to as label), whose value identifies the concept or category of each instance. For
many of these data sets, there is an unknown function f which is a deterministic mapping from
the input space X (instances) to the output space Y (classes), the latter defined as Y ∈ {0,1} for
binary classification problems. This mapping, called concept, is denoted as f : X 7→ {0,1}.

To sum up, an instance z is in the form of an input-output pair (x,y), where x = {x1,x2, ...,xn}
is independently generated from an unknown probability distribution PX and, y is computed as
y= f(x). Hence, the data set is formally defined as

D : {zi|zi = (xi,yi)}ni=1, (3.1)

where n is the number of instances contained in the data set, i.e. the size of D, which is denoted
as n= |D|.

In supervised learning, the learning model produces a hypothesis h (also referred to as
prediction), from the possible set of candidates H, whose out-of-sample error—i.e. the expected
error—is defined as

π(h) =

{

0 if h(x) = f(x),

1 otherwise.
(3.2)

However, taking into account that the probability distribution PX and the concept f are
unknown, the learning technique has to extract the information from the training set D and look
for a hypothesis that minimises the number of errors, which is defined as

eD(h) =

n
∑

i=1

[h(xi) 6= yi], (3.3)

where the Boolean test [·] returns 1 if the condition is true and 0 otherwise.

Definition 1. A class is apparently learnable if there is an algorithm, when given any set of labelled
instances z = {(x1,y1),(x2,y2), ...,(xn,yn)}, where xi ∈X and yi ∈ Y, finds a concept c ∈ C, where C is
the space of learnable concepts, that is consistent with the whole set (i.e. f(xi) = yi for all i) or correctly
indicates that there is no such concept otherwise.

We meticulously specify that a concept is apparently learnable since no error does not entail a
low out-of-sample error. Memorising all the instances is an example of the lack of generalisation
and, as a consequence, may incur high error rates over unseen instances. Such overfitting,
usually due to a learning model excessively complex or flexible, is regulated by controlling the
hypotheses’ complexity.

The Bayes’ rule indicates that, given a training set D, the most probable hypothesis h—
Maximum A Posteriori (MAP) hypothesis—is the one with highest likelihood Pr{D|h} and prior
probability Pr{h} (see Eq. 3.4 and Eq. 3.5).

Pr{h|D}= argmax
{

Pr{D|h} · Pr{h}

Pr{D}

}

(3.4)

hMAP = argmax
h∈H

Pr{h|D} (3.5)

Having fewer errors results in greater likelihood, but again it is not a guarantee of high prior
probability. This modification follows Occam’s razor in the sense that it values simple hypotheses,
which should have higher prior probabilities. The statement entities should not be multiplied beyond
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necessity [Li and Vitanyi, 1993] leads to define measures to estimate the simplicity or complexity
of hypothesis such as Kolmogorov complexity and universal distribution.

Moreover, real-world problems hinder the hypothesis generalisation because of imperfections
in the training sets. Instances can have contaminated inputs and/or outputs, which leads us
to consider other layers of difficulty coined such as noise, inconsistency, missing values, and
uncertainty.

3.2.2 Universal complexities

The Kolmogorov complexity is a universal measure that deals with complexity from a descrip-
tive point of view. Such complexity is also related to the universal probability distribution
[Solomonoff, 2003] which approximates any computable distributions. In the following, we
review these complexity measures.

3.2.2.1 Kolmogorov complexity and universal distribution

Given a universal Turing machine U [Turing, 1936], the Kolmogorov complexity determines the
complexity of a string s as the length of the shortest program p which is able to output s on U,
i.e.

KU(s) =min{|p| : U(p) = s}, (3.6)

where |p| is the length of the program p in bits.

Theorem 1. For two universal Turing machines U1 and U2, there exists a constant c that only depends
on U1 and U2 such that for any string s,

KU1
(s)6 KU2

(s) + c. (3.7)

As the choice of the Turing machine just affects the complexity by a constant that depends
only on U (see Eq. 3.7), Eq. 3.6 can be rewritten as K(s), dropping the U. Then, the Kolmogorov
complexity K(s) becomes a special case—empty string x—from the conditional Kolmogorov
complexity, which is defined as

K(s|x) =min{|p| : U(p,x) = s}. (3.8)

This is the length of the shortest program that outputs the string s using the auxiliary string x

and it can be interpreted as the additional information in bits that are required to compute s

given a known x.
Many programs can output an arbitrary string s for a universal Turing machine U. Then, the

probability that a random program prints out s is

PU(s) =
∑

p:U(p)=s

2−|p|, |p|> 0. (3.9)

Again according to Eq. 3.7, the choice of the Turing machine is independent and only affects by
a constant, so Eq. 3.9 can be rewritten as P(s), which is known as the universal distribution or
universal prior.

The Kolmogorov complexity can be approximated by taking the logarithm of the universal
distribution: K(s) ≈ − logP(s). If we then use the prior probability to rewrite the Bayes’ rule
from Eq. 3.4, we obtain

− logPr{h|D}=− logPr{D|h}− logPr{h}+ logPr{D}. (3.10)

This means that the most probable hypothesis h given a training set D will minimise
− logPr{h|D}. By representing h with a string s, − logPr{h} (− logPr{s}) will be approximately
the length of the program that outputs s, and − logPr{D|h} will be the shortest length of the
D given h. This corresponds to the Minimal Description Length (MDL) principle proposed by
Rissanen [1997, nd].
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3.2.2.2 Universal data complexity

As universal measures, the Kolmogorov complexity and the universal prior probability are
applied to estimate the universal data complexity, which essentially consists in replicating the
underlying input-output relationship of a training set.

First, the conditional Kolmogorov complexity was used to find the program with the shortest
length which was able to generate the correct outputs by taking the whole set of input instances.

K(y1,y2, ...,yn|z). (3.11)

However, this measure can perform some permutations of the instances that may mislead the
amount of information needed to encode the mapping function. Then, considering that the
order of the instances is not striking, the Kolmogorov complexity is defined as follows. Given a
universal Turing machine U, the data complexity of the training set D is

CU(D) =min{|p| : ∀(x,y) ∈D,U(p,x) = y}. (3.12)

CU(D) provides the length of the shortest program that correctly maps the input space x to
the corresponding output.

Unfortunately, neither of them—Kolmogorov complexity or universal distribution—are com-
putable, as proven by Li [2006].

3.2.2.3 Models of learning

By an additional association, the previous reasoning was refined on machine learning. Assuming
that the learning model represents all possible programs, the data complexity is considered as
the length of the shortest hypothesis that captures the description of the data set. However, such
an assumption is not plausible; the learning model only includes a limited set of hypotheses.
Therefore, the data complexity of a training set D given a learning model H is defined as

CH(D) =min{|h| : h ∈H and ∀(x,y) ∈D,h(x) = y}. (3.13)

This definition of data complexity is not universal since it depends on the learning model and
its encoding scheme. Certainly, for the same learning model more than one scheme can coexist.
For instance, the encoding scheme of a Genetic Algorithm (GA) [Goldberg, 2002] would be the
concatenation of the population size, the individual size, the crossover and mutation rates, etc.
Moreover, we have to keep in mind that complexity is subject not only to the learning model
constraints, but also to data characteristics—because the same parameterisation does not work
for every problem.

Then, if the data set is not consistent—i.e. contains noisy instances—, some exception control
has to be implemented. This means adding a program p that maintains a lookup table with the
problematic instances such as

p= if input is x1, then output y1, else run the interpreter pH on h. (3.14)

By including lookup tables, the definition of Eq. 3.13 can be slightly modified as follows.

CH,λ(D) =min{|h|+ λeD(h) : h ∈H}, (3.15)

where the constant λ corresponds to the complexity cost of one error.
However, again, these measures are either non-computable or infeasible for practical applica-

tions.

1. CU(·) is not computable because there is no effective way to decide whether a program
halts and therefore find the shortest program.

2. CH(D) may be computable for some H but finding consistent hypotheses is a NP-complete
problem.

3. CH,λ(D) suffers from a high computational cost searching for the shortest hypothesis.

Thus, approximations have to be designed.
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3.2.3 Some practical complexity measures: Related work

Without despising the relevance of theoretical estimates, we firmly believe that to tame data
complexity practical measures have to be implemented.

The first attempts were made by Gamberger and Lavrac [1997] using the number of different
literals required to build an inductive learning by logic minimisation system as a complexity
measure. At the same time, Wolpert and Macready [1997] suggested a measure based on
self-dissimilarities which revealed different structural patterns in data.

Later, Ho and Basu [2002] designed quantitative estimates of the boundary complexity, and
more specifically, of different notions of difficulty associated with (1) overlaps in the feature
values from different classes, (2) class separability, and (3) geometry, topology, and density of
manifolds. Shortly after, Singh [2003] reviewed the data complexity field—from Bayes’ error-
based approaches to non-parametric measures [Ho and Basu, 2002]—and proposed two new
indicators based on feature space partitioning: (1) purity and (2) neighbourhood separability. In
turn, Mollineda et al. [2005] extended some of Ho and Basu’s measures to m-class problems
and defined three more measures which estimated data density: (1) the average number of
instances per unit of volume (D1), (2) the average volume taken by the k-nearest neighbours of
each training instance (D2), and (3) the class density in the overlap regions (D3).

Recently, Li and Abu-Mostafa [2006] studied data complexity in two learning problems: (1)
data decomposition, where they observed that data are better approximated by their principal
subsets and (2) data pruning, where they showed that outliers have high complexity contribu-
tions. On the other hand, Baumgartner and Somorjai [2006] defined specific measures based
on singular value decomposition analysis to assess the data complexity for under-sampled
classification problems. Duin and Pekalska [2006] presented margin based methods as a comple-
mentary measure to evaluate the complexity of the decision boundary and provide a description
of the degree of separation between two classes. This measure attempts to change the knowledge
representation so that the problem can be solved by other machine learning techniques. The idea
is to simplify the problem to adapt it to simple learning schemes or detect complex structures
that may demand more complex tools.

Finally, it is important to mention that there are two notions of complexity that should not be
confused. For instance, Vapnik-Chervonenkis (VC) dimensions [Vapnik and Chervonenkis, 1971]
correspond to the maximum number of training points that can be quartered by a set of given
functions. This is a measure of the complexity/capacity of the classifier functions, not a measure
of the complexity of a classification problem. Our goal is to characterise the problems to the
extent that the chosen measures are suitable for, without specific reference to a fixed family of
functions. For this reason, we focus on the measures proposed by [Ho and Basu, 2002] which
are intended to serve as an alternative to non-computable measures such as the Kolmogorov
complexity.

3.3 geometrical complexity measures in supervised learning

After whizzing around pure complexities and some approximations, we focus on the work
done by Ho et al. [2006] which deals with the characterisation of the class boundary under
a geometrical point view. This section introduces and extends this work. We first acquaint
the reader with the different sources of problem difficulty in supervised learning and then
provide the formal description of the complexity measures designed to specifically estimate the
boundary complexity.

3.3.1 Sources of problem difficulty

The complexity of classification problems [Basu and Ho, 2006] has been attributed to three main
sources: (1) class ambiguity, (2) boundary complexity, and (3) sample sparsity and feature space
dimensionality. In the following, these three sources of data complexity are discussed in some
detail.
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(a) (b) (c) (d)

Figure 3.2: Binary classification problems with different geometrical complexity: (a) linearly
separable problem with wide margins on the boundary and compact classes, (b)
linearly separable problem with narrow margins on the boundary and spread classes,
(c) non-linear problem, and (d) problem with highly interleaving classes following a
checkerboard layout.

revised and updated from their initial definitions [Orriols-Puig et al., 2010], are explained in
more detail in the next subsection.

3.3.2 Complexity measures

The set of complexity measures, extended to fourteen measures, can be divided into three
categories: (1) measures of overlap in the feature values from different classes, (2) measures of
class separability, and (3) measures of geometry, topology, and density of manifolds.

In the following, we quickly run over the description of each group and list the name of the
measures that are included.

Measures of overlap in the feature values from different classes focus on the capacity of the features to
separate examples of different classes. For each individual attribute, they examine the range and
spread of the values of instances of different classes and check the discriminant power of a single
attribute or a combination of them. This category comprises the following measures: (1) the
maximum Fisher’s discriminant ratio (F1), (2) the overlap of the per-class bounding boxes (F2),
and (3) the maximum (individual) feature efficiency (F3). In addition, we designed two extra
measures based on the previous ones: (4) the directional-vector maximum Fisher’s discriminant
ratio (F1v), inspired by F1, and (5) the collective feature efficiency (F4), inspired by F3.

Measures of class separability estimate to what extent the classes are separable by examining the
length and the linearity of the class boundary. This category comprises the following measures:
(1) the minimised sum of the error distance of a linear classifier (L1), (2) the training error of a
linear classifier (L2), (3) the fraction of points on the class boundary (N1), (4) the ratio of average
intra/inter class nearest neighbour distance (N2), and (5) the leave-one-out error rate of the
one-nearest neighbour classifier (N3).

Measures of geometry, topology, and density of manifolds provide an indirect characterisation of the
class separability. They assume that the problem is composed of several manifolds spanned
by each class. The shape, position, and interconnectedness of these manifolds give some hints
on how well the classes are separated and on the density or population of each manifold. This
category comprises the following measures: (1) the non-linearity of a linear classifier (L3), (2) the
non-linearity of the one-nearest neighbour classifier (N4), (3) the fraction of maximum covering
spheres (T1), and (4) the average number of points per dimension (T2).

The next three subsubsections, corresponding to each category of complexity measures,
describe all the measures and provide their formal definition.



28 data hold the key of learnable patterns

3.3.2.1 Measures of overlap in the feature values from different classes

We start off with the description of the five measures that estimate different complexities related
to the discriminative power of the attributes.

Maximum Fisher’s discriminant ratio (F1). This measure computes the maximum discrimina-
tive power of each attribute, that is,

F1= maxmj=1FDRj, (3.16)

where m is the number of input attributes, and FDRj is the Fisher’s discriminant ratio of each
attribute. FDRj is calculated differently depending on whether the data set has two classes or
more than two classes.

1. For two-class data sets, the ratio for each attribute j is computed as

FDRj =
(µ

(j)
1 − µ

(j)
2 )2

(σ
(j)
1 )2 + (σ

(j)
2 )2

, (3.17)

where, for continuous attributes, µ(j)
k and (σ

(j)
k )2 are the mean and the variance of the

attribute j for class k respectively. For nominal attributes, each value is mapped onto an
integer number—e.g. the set {red, green, blue} would be mapped as red= 0, green= 1,
and blue= 21. Then, µk is the median value of the attribute j for class k and (σk)

2 is the
variance of the attribute j for class k computed as the variance of the binomial distribution,
that is,

σk =+

√

pµk
(1− pµk

) ∗nk, (3.18)

where pµk
is the frequency of the median value µk, and nk is the total number of instances

of class k.

2. For m-class data sets (m> 2), the ratio for each attribute j is computed as

fj =

∑C
k=1

∑C+1
l=k+1pkpl(µk − µl)

2

∑C
k=1pk(σk)

2
, (3.19)

where C is the maximum number of classes and pk is the proportion of instances of class
k2.

F1 ranges in the interval [0,µk]. High values of the Fisher’s discriminant ratio indicate that
at least one of the attributes enables the learner to separate the instances of different classes
with partitions that are parallel to an axis of the feature space. Low values of this measure do
not imply that the classes are not linearly separable, but that they cannot be discriminated by
hyperplanes parallel to one of the axis of the feature space.

The directional-vector maximum Fisher’s discriminant ratio (F1v). This measure complements
F1 by searching for an oriented vector which can separate instances of two different classes.

It computes the two-class Fisher’s criterion [Malina, 2001], which takes the following form:

R(d) =
[~dT ( ~µ1 − ~µ2)]

2

~dTΣ~d
=

~dTB~d

~dTΣ~d
, (3.20)

where

1 Indeed, this ordering implies that green is in-between red and blue, which in this case is not correct
and also affects the mean computation. An alternative implementation could be to expand the nominal
variables to a set of v variables each representing one of the v-many distinct values. The variable then will
be coded as a binary vector with v components, having a one only in the position corresponding to its
original value.

2 Although we kept the original F1 formulation for two-class problems, such proportional weights for classes
of different sizes may also be needed for this measure if the classes are not balanced.
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· ~d is the directional vector on which data are projected

· ~µk is the mean vector of class k

· Σ = aΣ1 + (1− a)Σ2, 06 a6 1

· Σi is the scatter matrix of patterns for class k

· B= (~µ1 − ~µ2)(~µ1 − ~µ2)
T is the between class scatter matrix

The directional vector ~d is calculated as

~d= Σ
−1

∆, (3.21)

where ∆= ~µ1 − ~µ2 and Σ
−1

is computed as the pseudo inverse [Moore, 1920; Penrose, 1955] of
Σ.

This measure is only implemented for two-class problems.
F1v ranges in the interval [0,µk]. High values of the directional-vector maximum Fisher’s

discriminant ratio indicate that there exists a vector that can separate instances belonging to
different classes after these instances are projected onto it.

The overlap of the per-class bounding boxes (F2). This measure computes the overlap of the
tails of distributions defined by the instances of each class.

The definition of this measure for two-class data sets is the following. For each attribute, it
computes the ratio of the width of the overlap interval (i.e. the interval that has instances of both
classes) to the width of the entire interval (see Fig. 3.3). Then, the measure returns the product
of the ratios calculated for each attribute, which is defined as

F2=

m
∏

j=1

MIN_MAXj − MAX_MINj

MAX_MAXj − MIN_MINj
, (3.22)

where m is the number of input attributes and,

MIN_MAXj = min(max(j,1),max(j,2)), (3.23)

MAX_MINj = max(min(j,1),min(j,2)), (3.24)

MAX_MAXj = max(max(j,1),max(j,2)), and (3.25)

MIN_MINj = min(min(j,1),min(j,2)), (3.26)

where max(j,k) and min(j,k) are, respectively, the maximum and minimum values of the attribute
j for class k. Nominal values are mapped to integer values (for details, see Sect. 3.3.2.1 on page
28) to compute this measure.

For m-class data sets (m> 2), we compute F2 for each pair of classes, get the absolute value
of all them, and return the sum of all these values.

F2 ranges in the interval [0,1]. Low values of this measure mean that the attributes can
discriminate the instances of different classes.

The maximum (individual) feature efficiency (F3). This measure computes the discriminative
power of individual features and returns the value of the attribute that can discriminate the
largest number of training instances.

For this purpose, the following heuristic—a heuristic of local continuity—is employed. For
each attribute, we consider the overlapping region (i.e. the region where there are instances of
both classes) and return the ratio of the number of instances that are not in this overlapping
region to the total number of instances (see Fig. 3.4). Then, the maximum discriminative ratio is
taken as measure F3.

Note that a problem is easy if there is one attribute for which the ranges of the values spanned
by each class do not overlap (in this case, this would be a linearly separable problem). F3 ranges
in the interval [0,1]. High values of this measure indicate that there is an attribute which is able
to discriminate between instances of different classes.
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has turned the understanding of learners’ behaviour on its head. This motivates us to provide
the research community with a fair implementation of the measures, which they can use in their
analyses. It is also desirable since the implementation details of the measures are not supplied
by the seminal papers.

3.4 dcol : data complexity library

Providing a public and common implementation may help researchers to create their own
use of these measures and compare their achievements. This section gives the details of our
implementation DCoL, made available as open source. After a quick look at the literature,
we report the features of the library and draw some further improvements related to the
computational efficiency.

3.4.1 Whence DCoL?

By sweeping the literature, we notice that complexity measures have been used to: (1) study
the sources of problem difficulty that affect particular learners [Bernadó-Mansilla and Ho,
2005; Luengo and Herrera, 2010], (2) compare different learners on collections of problems of
bounded difficulty [Orriols-Puig and Casillas, 2010], and (3) guide data preprocessing techniques
[Luengo et al., 2010]. These works show that complexity measures have been instrumental to
gain understanding of learners behaviour in different domains and to identify their strengths
and weaknesses. Nevertheless, despite the added value of the complexity measures, there is still
a factor that may hinder researchers from applying them: the difficulty of implementing some of
the measures from their original, more conceptual description. The aim of the library, therefore,
is to provide a standard, flexible implementation of the different complexity measures that
researchers can use for their analyses. So far, the library accumulates a total of 250 downloads
since 2009 (for details, see Appendix B).

3.4.2 SourceForge release

DCoL provides the implementation of a set of measures designed to characterise the apparent
complexity of data sets for supervised learning, which were originally proposed by Ho and
Basu [2002]. More specifically, the implemented measures focus on the complexity of the class
boundary and estimate (1) the overlaps in the feature values from different classes, (2) the class
separability, and (3) the geometry, topology, and density of manifolds. In addition, two other
complementary functionalities, (4) stratified k-fold partitioning and (5) routines to transform
m-class data sets (m > 2) into m two-class data sets, are included in the library. The source code
can be compiled across multiple platforms (Linux, MacOS X, and MS Windows) and can be
easily configured and run from the command line interface. The latest version (1.1) of the data
complexity library in C++ is available at http://dcol.sourceforge.net/.

All of these measures were initially designed for two-class data sets described by continuous
attributes. However, they have been extended to deal with (1) multiple classes, (2) nominal
attributes, (3) missing values, and (4) standard input file formats.

3.4.2.1 Dealing with multiple-class data sets

Originally, all the complexity measures were defined for two-class data sets. To extend the
measures to multiple-class data sets, we followed the suggestions provided by Ho et al. [2006].
Thus, we redefined all these measures, except the three that involve the construction of a SVM

and the directional-vector maximum Fisher’s discriminant ratio, to m-class data sets (for details,
see Sect. 3.3.2). Notwithstanding, applying these measures to m-class data sets may preclude
some key observations on the complexity relative to individual classes. We recommend then
to investigate the complexity in the context of binary classification problems. This leads us to

http://dcol.sourceforge.net/
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supply a complementary function: an automatic transforming method. When this option is
specified and a data set with more than two classes is fed to the application, we transform
the m-class data set into m two-class data sets by creating a new two-class data set for each
class, which contains all the instances of one class and groups all the remaining instances in a
new, different class. Therefore, each data set is lined up with the complexity of a single class,
considering that we may map each different learning concept onto a class.

3.4.2.2 Dealing with nominal attributes

To manage both continuous and nominal/categorical attributes, we considered the most relevant
distance functions for these types of attributes [Wilson and Martinez, 1997]—functions which
have been shown to enhance the behaviour of instance-based learners. For continuous attributes,
we implemented (1) the Euclidean distance function, (2) the normalised Euclidean distance
function, and (3) the Euclidean distance function weighted by the standard deviation. For
nominal attributes, we implemented (1) the overlap distance function and (2) the Value Difference
Metric (VDM).

Regardless of the type of the attributes, the distance between two instances z1 and z2 is
calculated as

distance(z1,z2) =

√

√

√

√

m
∑

j=1

[d(x
(1)
j ,x(2)j )]2, (3.29)

where x
(i)
j is the value of attribute j for the instance i, m is the number of input attributes, and

d is the function that computes the distance between two values of the attribute j.
For continuous attributes, we implemented the following distance functions:

The Euclidean distance function is defined as

d(x
(1)
j ,x(2)j ) = x

(1)
j − x

(2)
j , (3.30)

where x
(i)
j refers to the value of the attribute j of the instance i. Note that we do not return the

absolute value of the substraction.

The normalised Euclidean distance function (i.e. the distance of each attribute is normalised
by its range) is defined as

d(x
(1)
j ,x(2)j ) =

(x
(1)
j − x

(2)
j )

rangej
, (3.31)

where rangej is the range of attribute j.

The Euclidean distance function weighted by the standard deviation is defined as

d(x
(1)
j ,x(2)j ) =

(x
(1)
j − x

(2)
j )

4σj
, (3.32)

where σj is the standard deviation of the attribute j. This metric is said to be less sensitive to
outliers. Since 95% of values in a normal distribution fall within two standard deviations (2σ) of
the mean, the difference between numeric values is divided by 4 standard deviations to scale
each value into a range whose width is usually 1.
For nominal attributes, we implement the following distance functions:

The overlap distance function is defined as

d(x
(1)
j ,x(2)j ) =

{

0 if x(1)j = x
(2)
j ,

1 otherwise.
(3.33)



36 data hold the key of learnable patterns

If two nominal attributes are equal, the distance between them is 0. Otherwise, the distance is
1.

The VDM distance function [Stanfill and Waltz, 1986] is defined as

d(x
(1)
j ,x(2)j ) =

C
∑

k=1

|Pr(j,x(1)j ,k) − Pr(j,x(2)j ,k)|, (3.34)

where C is the total number of classes in the problem and Pr(j,x(ji),k) is the conditional

probability that the output class is k given that the attribute j has the value x
(i)
j . That is,

Pr(j,x(i)j ,k) is defined as

Pr(j,x(i)j ,k) =
N(j,x(i)j ,k)

N(j,x(i)j )
, (3.35)

where N(j,x(1)j ,k) is the number of instances of class k for which the attribute j takes the value

x
(i)
j , and N(j,x(i)j ) is the total number of instances for which the attribute j takes the value x

(i)
j .

The application also permits mapping the nominal values onto integers (for detail, see
Sect. 3.3.2.1 on page 28) and applying a Euclidean distance or a normalised Euclidean distance.
Note that by combining the normalised Euclidean distance for continuous attributes with
the overlap distance for nominal attributes, we obtain the Heterogeneous Euclidean-Overlap
Metric (HEOM) [Aha et al., 1991; Giraud-Carrier and Martinez, 1995]. Moreover, the combination
of the normalised Euclidean distance for continuous attributes with the VDM distance for nominal
attributes results in the Heterogeneous Value Difference Metric (HVDM) [Wilson and Martinez,
1997].

3.4.2.3 Dealing with missing values

As some measures do not accept missing values, we implement the following policy to replace
them. For real- and integer-valued attributes, a missing value in the attribute j of an instance
that predicts class k is replaced with the average value of the attribute j computed on all the
instances that predict class k. For nominal attributes, it is replaced with the median value of the
attribute j computed on all the instances that predict class k.

3.4.2.4 Dealing with standard input file formats

The application requires an input file which must contain either (1) the data set for a single
run or (2) a list of paths for a multiple run with different data sets. The input data sets have to
follow either the Weka format [Witten and Frank, 2005] or the KEEL format [Alcalá-Fdez et al.,
2008] which is an extension of the Weka’s. The data loader checks the syntactic and semantic
correctness of the data sets. This is useful to detect anomalies in the data such as attributes with
a constant value (i.e. irrelevant attributes) or inconsistent definition of the problem (i.e. defined
classes with no instances in the sample set).

3.4.2.5 Other functionalities

In order to increase the functionalities of the software, some additional functions such as
automatic transformation of m-class data sets into m two-class data sets and k-fold cross-
validation partitioning have been included in the library.

Transformation. This functionality requires that the input data set has m classes (m >2). It
generates m new data sets (one for each class), which consist of instances of one class against
instances of all the other classes. Therefore, it creates two-class data sets in which each concept
is discriminated against the rest of the domain.
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TABLE LEGEND

F1: Maximum Fisher’s discriminant ratio

F1v: Directional-vector maximum Fisher’s discriminant ratio

F2: Overlap of the per-class bounding boxes

F3: Maximum (individual) feature efficiency

F4: Collective feature efficiency (sum of each feature efficiency)

L1: Minimized sum of the error distance of a linear classifier (linear SMO)

L2: Training error of a linear classifier (linear SMO)

L3: Nonlinearity of a linear classifier (linear SMO)

N1: Fraction of points on the class boundary

N2: Ratio of average intra/inter class nearest neighbor distance

N3: Leave-one-out error rate of the one-nearest neighbor classifier

N4: Nonlinearity of the one-nearest neighbor classifier

T1: Fraction of maximum covering spheres

T2: Average number of points per dimension

DATA SET F1 F2 F3 F4 L1 L2 L3 N1 N2 N3 N4 T1 T2

../Data/wbcd.dat 3.568 0.248 0.119 0.232 0.457 0.034 0.009 0.059 0.335 0.041 0.032 0.801 77.667

../Data/pim.dat 0.576 0.252 0.007 0.022 0.689 0.350 0.500 0.438 0.840 0.294 0.289 0.999 96.000

../Data/iris.dat.2c0 16.822 0.005 0.573 0.573 0.643 0.333 0.500 0.013 0.076 0.000 0.000 0.313 37.500

../Data/iris.dat.2c1 0.677 0.035 0.560 0.887 0.667 0.333 0.500 0.107 0.174 0.073 0.177 0.913 37.500

../Data/iris.dat.2c2 3.935 0.007 0.75 0.913 0.662 0.333 0.500 0.093 0.136 0.073 0.030 0.893 37.500

Figure 3.8: Output of the command ./dcol -i ./list2.dat -o ./Output/list2 -B -A -d

Partitioning. This functionality runs a stratified cross-validation with numFolds folds (where
numFolds > 1). If numFolds is not specified or incorrectly set (i.e. numFolds <2), it is set to ten by
default.

3.4.2.6 Format of the output

The output depends on the type of run.

· For runs concerning complexity measures, the application writes an output file which
specifies the value for each measure. In the next section there are several examples of
output files.

· For runs concerning options of transformation—-t2class—and partitioning—-cv—,
different files are created with the corresponding output data sets.

By default the system saves the computation of the complexity measures in a .txt format file
(see Fig. 3.8). There are two more formats available: LATEX(.tex) and XML (.xml). In any case,
information of the process will be displayed on the screen.

Finally, warnings and errors will be reported in file <output_file>.log where <output_file>

is the output file name specified by the user.
Orriols-Puig et al. [2010] supplies more detailed and additional information about the options

of the library and how to download, compile, and run the code.

3.4.3 The structure of the code

The object-oriented design is composed of three group of classes: (1) application core classes,
(2) distance function classes, and (3) auxiliary classes. Fig. 3.9 provides the class diagram. It
is worth highlighting that the code does not use third party libraries for compatibility across
different architectures.
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Figure 3.9: Class diagram.

Table 3.2: Computational cost of the complexity measures. n is the number of input instances,
nt is the number of test instances (applicable only to the measures that generate an
additional test set), m is the number of attributes, and c is the number of classes.
O(SMO) is the cost of building a support vector machine with linear kernel by means
of the SMO algorithm.

Label Complexity measure Computational cost

F1 Maximum Fisher’s discriminant ratio O(n ·m)

F1v Directional-vector maximum Fisher’s discriminant ratio O(n ·m+m3)

F2 Overlap of the per-class bounding boxes O(n ·m)

F3 Maximum (individual) feature efficiency O(n ·m · c)

F4 Collective feature efficiency O(n ·m2 · c)

L1 Minimised sum of the error distance of a linear classifier O(SMO)

L2 Training error of a linear classifier O(SMO)

L3 Nonlinearity of a linear classifier O(SMO+nt ·m · c)

N1 Fraction of points on the class boundary O(n2 ·m)

N2 Ratio of average intra/inter class nearest neighbour distance O(n2 ·m)

N3 Leave-one-out error rate of the one-nearest neighbour classifier O(n2 ·m)

N4 Nonlinearity of the one-nearest neighbour classifier O(nt · a · c+n ·nt ·m)

T1 Fraction of maximum covering spheres O(n2 ·m)

T2 Average number of points per dimension O(1)

3.4.4 Computational efficiency

Complexity measures are essential to build a bridge between learners’ properties and data
characteristics, but they may pose certain difficulties because of their computational cost. Table 3.2
summarises the computational cost of each complexity measure.

In the following, we elaborate the less obvious costs.

l1, l2. Their computational cost is guided by the cost of building the SVM (for further details,
see [Platt, 1999]).
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l3. Its computational cost is guided by the cost of building the SVM plus the cost of generating
the test set which increases linearly with the number of test instances, the number of
classes, and the number of attributes.

n1 . Its computational cost is determined by the cost of building the MST, which grows with the
product of the number of instances power two and the number of attributes.

n4 . Its computational cost depends on the sum of (1) the cost of generating the test instances
and (2) the cost of computing the k-NN algorithm. The former increases linearly with
the product of the number of test instances that are generated, the number of attributes,
and the number of classes. The latter depends linearly on the product of the number of
training instances, the number of test instances, and the number of attributes.

In the next section, we outline future enhancement to face new trends regarding data streams
and large-scale problems by implementing multi-threaded optimisation and distributed comput-
ing strategies—in particular, MapReduce [Dean and Ghemawat, 2010].

3.4.5 Further work

To improve the efficiency, the plan involves a two-pronged attack: (1) multi-threaded optimisation
and (2) distributed computing.
Multi-threaded optimisation. Although the library offers the possibility of individually running
each complexity measure, the main option is to sequentially compute the whole set. This should
be enhanced by running each measure in parallel, which means to code groups of complexity
measures in different threads. The composition of these groups has, however, to consider over
which bits of data each complexity measure operates to efficiently coordinate the tasks and
avoid bottlenecks in data access. Such drawback could be easily solved by storing the data
in a distributed and replicated file system [Stonebraker et al., 2010]. Thus, we are drawn to a
profitable situation that allows us to benefit from the latest distributed computing techniques as
elaborated below.
Distributed computing. Replication has been designed to overcome classical constraints of
centralised systems and provide high scalability when dealing with massive quantities of data
[Krikellas et al., 2010]. There are many tools that take the most out of distributed file systems
against the decline of consistency. Although as the most data are replicated the performance
tends to be zero [Brewer, 2000; Jiménez-Peris et al., 2002], techniques from the cloud paradigm
have maximised the scalability. Hadoop is becoming a very appealing tool since it incorporates
distributed file systems which automatically manage replication and the MapReduce processor.

Specifically, MapReduce [Dean and Ghemawat, 2010] has emerged as a platform for data
intensive computation taking advantage of the classical divide&conquer strategy, now recoined as
map&reduce. These two functions permit distributing data across thousands of machines and
processing them in a reasonable amount of time, a distribution that implies parallel computing
in the form that each CPU performs calculations on different chunks of data. Map invocations
are spread across the system by the master node, which loads the input data and preprocesses
them by automatically cutting them up into sub-jobs to be executed. Reduce invocations are
the aggregation of partial results and the communication of the final output. Fig. 3.10 reflects
the flow of a MapReduce operation. The master node picks idle workers and assigns either
map tasks or reduce tasks. All the maps need to finish before the reduce stage can begin since
the workers have to access all the values with the same identifier (ID) to perform sequential
computations with them. The parallelism is exploited by simultaneously executing the task for
the different IDs.

Back to the DCoL and profiling its code, we detected that most of the computational time of
N1 is on the construction of the MST which is implemented by the Prim’s algorithm [Prim, 1957];
the cost of this standard sequential implementation is O(n2) where n the number of vertices.

This observation leads to look into the strand of parallel computing and consider the compu-
tation model for MapReduce proposed by Karloff et al. [2010], which can compute the MST of a



40 data hold the key of learnable patterns

Figure 3.10: Overview of the flow of a MapReduce operation.

dense graph in two rounds—a value more conspicuous than the log(n) rounds needed in the
parallel random access machine model.

In fact, the strength of MapReduce is the interleaving of parallel and sequential computation
plus the execution on a Hadoop cluster, something that frees us from the scant resources of
supercomputers—where we actually carry out our calculations—, the internal configuration of
the cluster, and the exact locality of the data.

Finding the MST with MapReduce requires us to divide the process into two steps: (1) generate
the similarity matrix of the data set and (2) find the MST in the undirected complete graph,
which corresponds to the similarity matrix. Figures 3.11a and 3.11b synthesise steps 1 and 2

respectively. For more details, this approach has been successfully implemented by Chang et al.
[2010]. However, we are still vigilant since the testing on large data was based on samples
composed of 20,000 objects whereas our experimentation handles problems with up to 250,000

instances and 380 attributes (see Chapter 5).
On the other hand, DCoL is implemented in C++ and the open source implementation of

Hadoop, in Java. Although there is a package—Hadoop Pipes3—, that allows C++ code to use
Hadoop DFS and MapReduce, the library translation into Java is not an issue since its basic
version is already included in the KEEL software [Alcalá-Fdez et al., 2011]. However, it will be
important to measure the gain of the parallelisation and an interpreted language.

On a side note, we admit that there is a big gap between the single-threaded Prim’s algorithm—
taught in Computer Science 101—and MapReduce for high-performance computing. Intermedi-
ate solutions based on multi-threaded implementations such as the one proposed by Bader and
Cong [2006] for the MST algorithm should also be developed and studied.

Finally, for further research a pending task is to rethink the complexity measure algorithms in
terms of map and reduce operations as well as to connect DCoL to MapReduce and database
management systems. This latter suggestion, inspired by Stonebraker et al. [2010], has more to
do with broadness of scope than efficiency. It is meant not to restrict the computation of the
complexity measures to arff files and be able to directly attack parallel databases.

Our ideal scenario would be to harness the power of the Hadoop framework, as its distributed
file system spreads and replicates data across multiple commodity storage servers in a highly
scalable way. This would allow us to arbitrarily execute many instances of map and reduce

3 http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hadoop/mapred/pipes/

package-summary.html

http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hadoop/mapred/pipes/package-summary.html
http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hadoop/mapred/pipes/package-summary.html
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(a)

(b)

Figure 3.11: Finding the MST with MapReduce in two steps: (a) generation of the similarity
matrix and (b) construction of the MST.

functions which would locally access the data. Otherwise, with a conventional database such as
MySQL, the data would be remotely retrieved increasing computational cost.
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As a notice, we should bear in mind that these solutions, in general, reduce the computational
cost to the detriment of legibility of the code and its maintenance.

3.5 complexity measures : a referee element

Although this set of complexity measures is still preliminary and under study, they provide
an estimate of the problem difficulty without suffering the dependence from the knowledge
representation. This section points out the interest of data analysis in supervised learning.

Any conclusion cannot be generalised over a small sample of problems, and by using a wider
test bed, learners tend to behave similarly on average. This produces a deadlock situation in the
experimental design, which we expect to solve by introducing an a priori data analysis. In the
first case, complexity measures can give some explanations to why a learner outperforms another
learner based on the data characteristics and their influence on the knowledge representation. For
large amounts of data sets, complexity measures may help to select a representative sample of
problems with enough resolution and diversity to test learners’ performance and, consequently,
identify domains of competence. Indeed, if we were able to consolidate a set of benchmarks, this
would contribute to perform fair comparisons.

Contribution.

1. Revision and update of the complexity measures proposed by Ho and Basu [2002].

2. Release of DCoL which implements the complexity measures and other functionalities.



4
C O M P L E X I T Y M E A S U R E S M AY E X P L A I N S U P E RV I S E D L E A R N I N G
B E H AV I O U R

Summary. This chapter describes the usage of the complexity measures cov-
ered previously and deals with the two issues disclosed in previous chapters:
(1) data set selection and (2) guidance for learner selection. With no doubt,
data hold the key of learnable patterns, and the analysis of their complexity—
using realistic approaches—can provide guidelines that should help us to
perform some meaningful introspection on the two aforementioned issues.

4.1 introduction

Indeed, data set selection has a substantial impact on experimental conclusions. Observed
learners’ behaviours cannot be generalised over too few data sets and tend to be equal, on
average, with too many—as empirically shown in Chapter 2. Our principal motivation of using
complexity measures and characterising the difficulty of problems is, therefore, to give an answer
to the following questions: How many data sets should be used in the experimentation? Is the
applied machine learning technique the most suitable to tackle this type of problem? We believe
that data complexity analysis can be useful to (1) investigate the test bed design—number of data
sets involved, representativeness of the set—in order to test specific properties of the learners
and (2) identify learners’ domains of competence.

The purpose of this chapter is to present a different usage of the complexity measures to
answer the previous queries and discuss our achievements.

In the following, we recite the main contributions using the set of complexity measures under
study and bring the reader’s attention to specific details which help to unearth the vicious circle
between data, complexity, and learning. We then examine the impact of progressive inclusion
of problems with increasing complexity on statistical conclusions and consider the ideal size
of a test bed. Moreover, we complete the case study in Chapter 2 by providing explanations of
why each learner outperforms the other two in a determined collection of data sets. Finally, we
present a meta-learner approach that envisages ultimate goals that can be attained once data
complexity is under control.

4.2 complexity measures used for. . .

This section goes through the big picture and cites some relevant works that used the complexity
measures for four main purposes: (1) data pre-processing, (2) re-sampling, (3) analysis of learners’
behaviours, and (4) meta-learning.

Data pre-processing. Some authors have resorted to the complexity measures to analyse the
effect of pre-processing techniques. Dong and Kothari [2003] proposed a feature selection
algorithm based on the definition of classifiability. The sub-set selection was based on, given a
specific pattern, counting the similarities in the neighbourhood. This approach did not need
to construct a classifier and saved the high computational burden of wrapper methods, which
are impractical when addressing a large number of attributes due to the re-sampling procedure
required to estimate the classification error. García et al. [2009] studied the relationship between
the Fisher’s discriminant ratio (F1) and an evolutionary instance selection method in the
classification task. The analysis revealed that F1 can help to decide whether it is adequate to
improve the classification capabilities of the k-NN classifier. When F1 is low—indicating strong
overlapping—, the best accuracy is reached by applying the prototype selection technique
whereas when it is high—indicating low overlapping—, the pre-processing does not guarantee
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any improvement in the classification accuracy. Some of the drawbacks of this approach are
that, even if F1 is covered with good resolution in the interval [0.035,2.670], the collection of
problems is composed of only 24 problems—from the UCI repository—and the computation of
this measure for m-class problems is still under study. Furthermore, problems cannot be fully
characterised by just one complexity dimension.

Re-sampling. Subsequently, Luengo et al. [2010] applied a similar methodology to predict
whether the application of re-sampling techniques would be beneficial in domains with class
imbalance. The study used 44 problems—from the UCI repository again—and only F1, N4, and
L3. In particular, they obtained two rules to describe good and bad performance for C4.5 and
PART, which help to indicate the most adequate pre-processing method as well. Approximately,
F1 > 1.5 (or F1 > 0.6), N4 6 0.2, and L3 6 0.3 are intervals that indicate a high performance
of the techniques and F1 6 0.3 and N4 > 0.2, low performance. Basically, this means that for
non-overlapped and linearly separable problems, the classifier will be able to correctly learn the
concept and classify the instances.

Learners’ behaviours. Other authors focused on analysing the behaviour of learners on different
problem complexities. Bernadó-Mansilla and Ho [2005] studied the reaction of the eXtended
Classifier System (XCS), an influential genetic-based machine learning technique, on real-world
problems with different complexities and linked the behaviour of XCS to the problem difficulty
estimated by the complexity measures, obtaining what was referred to as the domain of
competence of XCS. Two opposite regions of complexity were identified: (1) Difficult problems
were characterised by a high number of points laying near the class boundary (N1), a high
percentage of adherence sub-sets (T1), a high interleaving in cluster of classes (N2), and high
non-linearities (L3 and N4). These values describe problems as interleaved classes and many
spread small clusters, which forced XCS to evolve a huge amount of rules to cover these small
regions of the space and leave little room for generalisation. (2) Easy problems were characterised
by the same complexity measures—N1, N2, N3, L3, and T1—in their low values. In addition,
the work indicated in which cases the XCS outperformed a nearest neighbour classifier, a linear
classifier, and a decision tree method. The main limitation announced by the authors was,
however, the size and representativeness of the test bed. Although 392 problems were involved
in the experimentation and their selection was not biased to any of the learners, the sample
could not be representative enough and, therefore, limited the scope of the conclusions.

Sánchez et al. [2007] analysed the effect of the data complexity in the nearest neighbour
classifier. They attempted to relate class overlapping (F2, N2), feature space dimensionality
(F1) and class density (D2, D3) to the practical accuracy of this learner. In their conclusions,
they pointed out that k-NN classification performance is strongly sensitive to class overlap and
class density, and remarked that N2, D2, and D3—mainly the latter two—are able to predict
the k-NN classification accuracy. Nonetheless, despite the small experimentation—nineteen
synthetic problems and three real-world from the UCI repository—, these achievements are not
so impressive since these measures rely on the same Euclidean distance as the classifier uses.

Luengo and Herrera [2010] examined how a fuzzy system—Fuzzy Hybrid Genetic-Based
Machine Learning (FH-GBML)—modelled some classification problems. They discovered that the
problems that led to poor results—considering poor results as those whose test accuracy was
much lower than the training accuracy—followed a certain pattern in the complexity space. The
study only considered F2, F3, L1, L2, N2, N3, N4, T2 over 438 binary classification problems
generated from pairwise combinations of 21 data sets from the UCI repository.

Meta-learning. Lastly, Orriols-Puig and Casillas [2010] compared the performance of several
fuzzy rule representations within an online learner on the complexity space, and used this
characterisation to design a meta-learner that, given a new classification problem, automatically
decided which representation should be used to maximise the test accuracy—the decision was
based on the problems’ apparent complexity reported by the complexity measures. This latter
approach is discussed in Sect. 4.4. The conclusions reached in the contribution were that F3,
N1, and N2 are not meaningful to guide the selection of the knowledge representation. The
automatic set of rules was based on T1, N3, F4, and F2, which mainly estimate the number of
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clusters present in the data and the discriminative power of the attributes. As a note, the test set
consisted of thirty problems from the UCI repository.

Across the review, we observe that complexity measures can provide some hints and explana-
tions about the behaviour of machine learning techniques. We explore this aspect in more detail,
as well as initiate a new research line with respect to data set selection analysis.

4.3 data set selection based on complexity measures

As reported in Chapter 2, the number of data sets used in experimentation has tended to increase,
since researchers aim to demonstrate the perfection of new techniques across a larger variety
of domains. Nevertheless, the size of these collections has not been incremented to a feasible
extent due to, as warned by the NFL theorem, the risk of not finding significant conclusions
if too many domains with different characteristics are considered. In any case, it is not clear
how the conclusions change as new data sets are considered in multiple learner comparisons.
This section analyses how the collection size affects the conclusions through the prism of data
complexity by examining the effect of progressively including problems of bounded difficulty
into learner comparisons. In the following, we describe the experimental methodology and then
present some results.

4.3.1 Experimental methodology

The analysis is based on the initial collection of 308 data sets, used in Chapter 2, which were
characterised by the complexity measures proposed by Ho and Basu [2002]. For each complexity
measure, we sort the data sets from the easiest to the most complex one according to that
particular dimension of complexity. The same process is repeated but sorting the data sets in the
reverse way, from the most complex to the easiest one.

For each collection sorted according to a complexity measure, we build 308 collections of data
sets, where the first collection contains only the first data set, the second collection contains
the first two data sets, and so forth, until the 308th collection contains all the data sets. Then,
we evaluate the classification accuracy of the three learners in each collection and apply the
Bonferroni-Dunn test to identify which learners significantly degrade the results obtained with
the best ranked learner. This analysis is carried out for each complexity measure.

4.3.2 Increasing complexity and size

In the first set of experiments, we sort the data sets from the easiest to the most complex one for
each complexity measure. For the sake of compactness, Fig. 4.1 gathers the most representative
results by showing the experiments of the following complexity measures: (a) F1, (b) N1, (c) N3,
and (d) N4. Each plot represents the pairwise difference between the ranks of the learners. The
horizontal axis moves along the 308 collections of data sets, built for a particular complexity
with increasing level of complexity. The CD, according to the Bonferroni-Dunn test at α= 0.05,
is depicted with a solid line. When the rank difference falls into the region delimited by the two
lines, the learners are statistically equivalent.

The plots show how the differences between learners progressively decrease as new data sets
are introduced into the comparison, providing empirical evidence of the NFL theorem. When
all the collections of data sets are considered, the rank of all the learners is approximately the
same, which means that the accuracy of the three learners is equivalent. On the other hand,
note that significant differences are not found for small collections of data sets. In these cases,
the critical distance required by the statistical tests is large due to the low number of data sets,
and the difference of ranks between learners is small; as a consequence, the statistical analysis
cannot detect significant differences. Thence, if significant differences exist, they can be found in
collections that contain, approximately, from 20 to 150 data sets.
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Figure 4.1: Absolute difference between the rank of pairs of learners considering the problems
sorted increasingly by each complexity measure.

A more detailed analysis permits the identification of the problem characteristics that pose
more difficulties to the different learners. For instance, Fig. 4.1a illustrates that SMO outperforms
the other two learners in collections of data sets that have a low F1. This type of problem is
complex for RF since the different classes cannot be discriminated by means of partitions that are
parallel to an axis of the feature space. The results also indicate that these problems are difficult
for IBk. Figures 4.1b and 4.1a point out that the problems with a low N2 and N3 especially
benefit IBk. Moreover, RF builds significantly more accurate models than those of SMO in this
type of problem. Finally, Fig. 4.1d shows an example in which the inclusion of problems, with
progressively increased complexity with respect to N4, does not affect the statistical conclusions.

Fig. 4.2 corresponds to the same study but sorting the problems from the most complex to the
easiest one. In this case, we provide the results for (a) F1, (b) F2, (c) N4, and (d) T1. Fig. 4.2a
shows no significant difference between pairs of learners for collections of data sets that consist
of problems with high values as reported by the measure F1. Note the differences of these results
with those reported in Fig. 4.1a. Whereas SMO is the best method when problems with small F1

values are considered, now, when the data sets are sorted in the converse order of complexity,
these significant differences disappear. Figures 4.2b and 4.2c illustrate that SMO significantly
outperforms the other methods on collections of data sets consisting of problems with large N4
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Figure 4.2: Absolute difference between the rank of pairs of learners considering the problems
sorted decreasingly by each complexity measure.

and large F2 values, i.e, problems whose boundary is highly non-linear and whose individual
features cannot effectively discriminate instances of different classes. Therefore, as also indicated
by the previous analysis, SMO appears to be the most robust method for problems with complex
or non-linear class boundaries. Finally, Fig. 4.2d shows that, among the three learners, IBk is
the least suited to problems with large-moderate T1 values. This means that, as expected, IBk

performs poorer than the other techniques on problems where a lot of spheres are required to
cover the clusters of instances of different classes.

The analysis conducted emphasises again the importance of studying the data complexity in
multiple method comparison and illustrates that, once a collection contains a certain number
of data sets, the progressive inclusion of new domains with similar characteristics results in
a systematic decrease of the rank differences between learners. Furthermore, we also detect
important particular aspects such as that low F1 values benefit SMO or that small N1 values
favour IBk. Nonetheless, some problems may have both characteristics, which may benefit both
learners. Therefore, the individual analysis of each complexity measure may not be able to fully
capture the relationship between combinations of complexity measures and learner ability. Thus,
characterisation of problems is, as we have seen in Chapter 3, ongoing research.
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4.4 too many mysteries about data complexity

Data complexity can be estimated in different ways. However, all of them allude to the same:
working from the details outwards should help us to move from data complexity analysis to the
understanding and improvement of supervised learning techniques. This section just reinforces
the need for investigating this direction. We analyse the characterisations manually and then
define a recursive meta-learning problem.

Why do learners’ rankings vary according to the test bed? Characteristics of data sets and
their complexity may provide an answer to this question. We believe that data complexity
analysis is an important phase in the design of experiments to get reliable conclusions. Indeed,
data characterisation should enable us to design experiments and denote for which type of
problems—or complexities—a learner—or a group of learners—is the most suitable among the
methods involved in the comparison. In order to gain comprehension of which problems are
harder for the different learners, the case study in Chapter 2 is taken to the complexity space. For
this purpose, we use the DCoL to characterise each domain of the three data set collections. In the
following, we describe the experiments and provide some clues of how complexity dimensions
explain the learners’ behaviours.

Fig. 4.3 plots all the 60 data sets projected on the complexity space. More specifically, each
scatter plot is a projection of data sets on two complexity measures. The data sets that belong to
each one of the three collections are depicted in different symbols and colours: (1) blue squares
for the data sets within the first collection, where IBk is the best learner, (2) red points for the
data sets within the second collection, where RF is the best learner, and (3) green triangles for
the data sets within the third collection, where SMO is the best learner. From all the plots, we
observe that only two projections separate the three collections in the complexity space: Fig. 4.3d,
which projects the data sets on N1 and N3, and Fig. 4.3e, which projects the data sets on N2 and
L2. The others do not provide such clear separations; therefore, the following discusses how the
three learners perform through the complexity space formed by N1, N2, N3, and L2.

The most relevant information is supplied by the projection on N1, which estimates the length
of the class boundary, and N3, which evaluates how close the examples of different classes are
by giving the leave-one-out error rate of the 1NN classifier (see Fig. 4.3d). In this complexity
space, the problems are grouped into two almost-disjoint regions that lead us to the following
observations:

1. The data sets from the second collection have higher values of N1 and N3. So, there is a
greater interleaving among instances of different classes, and instances of the same class
are more disperse. Thus, other approaches that are able to approximate complex class
boundaries, sparsity, and noise may be a better option for these type of problems. Actually,
this is the conclusion in the case study regarding the second collection, where RF achieves
the most accurate classification models.

2. The data sets from the third collection present the highest values of N1 and N3. In most of
these problems, more than half of the instances lay on the class boundary, drawing a dense
class boundary and increasing the difficulty of the problem. The experimental analysis
demonstrates that SMO significantly outranks the other two methods. For these type of
problems, the high interleaving between instances of different classes seems to prevent
decision trees from identifying the decision boundaries accurately. Yet, the flexibility
provided by the polynomial kernel used enables SMO to accurately approximate complex
class boundaries.

The projection on N2, which measures the interconnectedness of examples of the same class,
and L2, which evaluates to what extent the training data is linearly separable, also supplies
valuable information about the problem characteristics that affect each learner. IBk outperforms
the other learners in the first collection, which is composed of data sets that are linearly—or
almost linearly—separable (that is, a low value of L2). RF is the best performer in the second
collection, which contains problems with a moderate value of N2 and a medium value of
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Figure 4.3: Projection of the problems where IBk (blue squares), RF (red points), and SMO (green
triangles) are the best performers, respectively, on different complexity spaces.
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Table 4.1: Training and test performance—percentage of correctly classified instances—of the
domains of competence of IBk, RF, and SMO.

IBk RF SMO

Training 89.00% 85.22% 84.54%
Test 81.79% 79.04% 78.60%

L2 6 0.041: 0 (141.0/10.0)
L2 > 0.041

| N2 6 0.485

| | F2 6 0.000048

| | | N3 6 0.002: 0 (2.0)
| | | N3 > 0.002: 1 (35.0/5.0)
| | F2 > 0.000048

| | | N3 6 0.166: 0 (12.0/2.0)
| | | N3 > 0.166: 1 (4.0/1.0)
| N2 > 0.485: 0 (97.0/25.0)

Figure 4.4: Tree built by C4.5 for the problem of learning the domain of competence of RF.

L2. Finally, SMO is the best method in the third collection, which contains problems with
moderate-high values of both N2 and L2.

4.5 meta-learning problem

The analysis in the complexity space provided herein shows the close relation between the
learner behaviour and the complexities of the selected data sets—something already observed in
the literature. This leads to the ultimate goal of providing a set of rules to select the appropriate
learning techniques. After having studied each complexity dimension manually, we consider all
the dimensions to define the domain of competence of each learner with respect to the other
techniques, i.e. the sweet spot where a particular learner outperforms its rivals. To achieve this,
we transform the typical manual inspection of results into a problem of automatic learning
and automatically identifying the domain of each learner, as also suggested in Orriols-Puig
and Casillas [2010]. This section elaborates upon this idea to learn such domains for the three
learners used in the case study.

Let us define a classification problem Di for each learner ℓi that describes the domain of
excellence of learner ℓi. Each instance of the problem Di corresponds to one of the domains,
which is characterised by the complexity measures. The label of each instance is 1 if the given
learner ℓi obtained the best performance and 0 otherwise. With this definition, we can use any
machine learning technique to model the domain of excellence of each learner with respect to
the others. Note that this approach seems to be useful not only to analyse under which problem
characteristics each technique excels, but also to predict the best method for a new unknown
problem described by its apparent complexity.

We perform the experiments on the collection of 308 data sets and use C4.5 [Quinlan, 1995] to
learn the domain of competence of the three learners included in the comparison, i.e. IBk, RF,
and SMO. We adopt C4.5 because of its tree representation, which can easily be interpreted by
human experts. As we also aim to analyse the predictive capabilities of the resulting models, we
apply the ten-fold cross-validation procedure [Dietterich, 1998] to estimate the accuracy.

Table 4.1 summarises the training and test accuracies obtained for the models that predict (1)
when IBk is the best suited learner (first row), (2) when RF is the best suited learner (second row),
and (3) when SMO is the best suited learner (third row). The results show that all the models
have a test accuracy above 78%.
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F1v 6 0.418

| N4 6 0.38

| | F2 6 0.000012

| | | F1v 6 0.049: 0 (8.0)
| | | F1v > 0.049

| | | | F3 6 0.16: 1 (2.0)
| | | | F3 > 0.16: 0 (3.0/1.0)
| | F2 > 0.000012: 1 (45.0/13.0)
| N4 > 0.38: 0 (13.0)
F1v > 0.418

| T2 6 8.2: 0 (71.0/3.0)
| T2 > 8.2
| | T2 6 185.5
| | | T2 6 125

| | | | N2 6 0.718: 0 (76.0/11.0)
| | | | N2 > 0.718

| | | | | T2 6 30.2: 1 (7.0)
| | | | | T2 > 30.2: 0 (3.0)
| | | T2 > 125: 1 (11.0/4.0)
| | T2 > 185.5
| | | T1 6 0.801

| | | | F4 6 0.543: 1 (2.0)
| | | | F4 > 0.543: 0 (8.0)
| | | T1 > 0.801: 0 (42.0)

Figure 4.5: Tree built by C4.5 for the problem of learning the domain of competence of IBk.

This indicates that, although the complexity measures used cannot fully represent all the
sources of problem complexity, they supply enough information to build models that predict
the best suited learner to a new problem with moderate-high reliability. Fig. 4.4 shows a piece
of the tree built by C4.5 that explains the domain of excellence of RF. In this case, the model
indicates that RF may be the best performer for moderate values of N2, N3, and L2, which was
already detected in our previous analysis. Fig. 4.5 shows the tree built to explain the domain
of excellence of IBk. We observe that the number of rules substantially increases and the model
provides a more refined results than the manual analysis. However, this model contains some of
the patterns previously observed. For instance, IBk is not suited for large values of T1.

We can see that the meta-learner problem is unbalanced, and the minority class corresponds to
the dominance of the learners under study. This is due to the fact that the accuracies of the three
learners range in the same, short interval (see Fig. 4.6). The little variation in the performance
highlights the need for a collection of problems that offer more resolution in terms of accuracy
and data complexity.

4.6 data characterisation and diversity: meta-learner weaknesses

The meta-learning approach is not a new idea; projects STATLOG [Michie et al., 1994] and
MetaL1 were pioneers in this aim. The latter was an attempt to develop an assistant system
that guided users through the space of experiments either providing support with the learner
selection or data transformation. This was built upon experience, upon the past usage of machine
learning systems. The project ended in 2002; nearly ten years later no active research is visible
from it. Interestingly, the success (or failure) of such initiatives depends on the description of
the problem, i.e. the characterisation of the complexity.

In the project MetaL, the characterisation was grounded on simple measures—e.g. the number
of attributes, the number of classes, etc.—, statistical measures—e.g. mean and variance of
numerical attributes—, and information theory-based measures—e.g. entropy of classes and

1 http://www.metal-kdd.org/

http://www.metal-kdd.org/



