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Figure 7.5: C4.5 accuracies over the (a) training collection S1, (b) test collection S2, and (c) test
collection S3.
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Figure 7.6: Classifier accuracies of the contestant classifiers over the test collection S2: (a) Team
1, (b) Team 2, and (c) Team 3.



7.8 contestant classifiers performing on the landscape 101

Figure 7.7: Clustering of the different techniques according to their domains of competence from
[Duin et al., 2010].

7.8.3 Analysis of results

In analysing the contestants’ results, we notice that the methods of Team 1 and Team 2 behave
similarly. For the majority of the problems they score the same accuracies. In a win/loss
comparison over the 300 data sets, Team 1 outperforms the others in 121 problems and Team
2 outperforms in 61 problems. For the other 118 problems, either all three techniques achieve
the same score, or just Teams 1 and 2 come to a draw. A paired t-test shows that the difference
between Teams 1 and 2 is not statistically significant, whereas their differences with respect to
Team 3 are. The accuracies of Team 3 are far below its rivals’; its average accuracy is 76% while
the others’ are about 92%.

Fig. 7.6 plots the results with the reserved test set S2. For clarity, it plots only those data
sets for which the learners achieved accuracies lower than 80%. In general, the number of
correctly classified instances is high. Nonetheless, Figs. 7.6a and 7.6b show some spots where
the accuracies are extremely low and suggest performing an in-depth study with these specific
data sets. Interestingly they are not located in the same region of the complexity space. For
both learning paradigms, there is a common set of problems that cause degradations to their
performances. These problems, despite belonging to different zones of the space, share the same
underlying concept: a wave-shaped boundary (Wave Boundary). For Team 2, a Checkerboard
distribution poses some difficulties too. This points out the significant role of the seeding learning
concept.

Regarding the domains of competence of classifiers, Team 2 applied a cluster analysis to
the matrix of all the classification errors of nineteen classifiers from PRTool2, a Matlab based
toolbox that implements a collection of learning techniques for pattern recognition [van der
Heijden et al., 2004] over the 301 data sets. Fig. 7.7 depicts the resulting dendrogram, where
reasonable relations appear. For instance 1-NN and ParzenC [Parzen, 1962] were linked, which
makes sense since both techniques are density estimators. Linear Discriminant Analysis (LDA),
logistic and linear SVMs were also put together forming the group of linear classifiers. And
the different variant of Feature-based Dissimilarity Space (FDS) were connected to radial basis
SVM (RB-SVM) making the group of nonlinear classifiers. This relation confirms the interest of
looking into domains of competence and credits the approach taken so far: complexity measures
and generation of ADS based on these estimates, which may be insightful in the experimental
methodology redefinition.

2 http://prtools.org/

http://prtools.org/
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Figure7.8:Intrinsiccomplexityofthenineteenfavoureddatasets.
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Table 7.3: Nineteen favoured data sets.

Learner D242 D47 D200 D168 D116 D291 D180 D100 D298 D82 D183 D171 D292 D286 D97 D5 D29 D24 D218

1NN .120 .328 .083 .250 .350 .321 .049 .235 .611 .302 .074 .166 .049 .101 .164 .530 .526 .416 .060

kNN .160 .220 .175 .254 .173 .272 .046 .126 .425 .300 .056 .166 .049 .101 .128 .513 .379 .296 .047

ParzenC .144 .254 .068 .284 .207 .289 .051 .162 .449 .296 .052 .366 .051 .126 .125 .533 .453 .322 .047

ParzenD .132 .323 .135 .222 .357 .403 .060 .235 .618 .279 .069 .186 .051 .086 .145 .560 .440 .382 .056

Nearest Mean .277 .427 .425 .401 .167 .580 .114 .490 .385 .378 .511 .419 .521 .373 .178 .537 .435 .330 .509

UDA .179 .267 .099 .274 .213 .075 .034 .126 .425 .253 .078 .284 .087 .220 .092 .527 .366 .270 .073

LDA .177 .263 .310 .252 .197 .557 .020 .129 .412 .250 .069 .304 .049 .207 .095 .517 .366 .279 .047

QDA .170 .272 .120 .277 .280 .164 .071 .123 .495 .260 .069 .282 .067 .202 .132 .503 .362 .335 .056

NaiveBayes .158 .293 .117 .240 .207 .170 .049 .123 .203 .265 .069 .294 .056 .188 .115 .507 .371 .305 .043

Logistic .172 .263 .304 .254 .197 .554 .034 .129 .409 .236 .069 .301 .054 .220 .099 .513 .379 .279 .052

FDS-0.2-Fish .219 .310 .175 .285 .277 .216 .034 .132 .498 .281 .048 .337 .067 .200 .102 .550 .440 .352 .047

FDS-Fish .158 .289 .182 .307 .217 .167 .031 .126 .462 .289 .056 .133 .041 .086 .095 .533 .466 .365 .047

FDS-Logistic .130 .289 .086 .240 .217 .167 .031 .123 .462 .277 .056 .137 .036 .081 .095 .543 .466 .365 .047

FDS-C-SVM .170 .280 .188 .262 .187 .226 .031 .123 .422 .289 .065 .142 .054 .072 .089 .493 .457 .343 .043

FDS-ν-SVM .157 .246 .123 .270 .193 .236 .029 .126 .432 .289 .061 .210 .051 .136 .066 .487 .388 .288 .043

PCA2-FDS-Fish .158 .319 .093 .302 .240 .197 .040 .123 .302 .352 .061 .161 .044 .099 .086 .120 .427 .403 .060

C-SVM .200 .250 .286 .242 .187 .430 .029 .129 .412 .248 .061 .308 .056 .202 .086 .517 .332 .292 .043

ν-SVM .200 .254 .286 .267 .193 .528 .037 .179 .415 .272 .061 .335 .056 .244 .092 .490 .366 .249 .043

RB-SVM .160 .254 .125 .270 .197 .174 .031 .129 .445 .279 .061 .419 .054 .136 .095 .503 .362 .288 .039
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Figure 7.9: Data sets within the collection S1 that are favoured by the nineteen classifiers.

7.9 golden benchmarks for the assessment of machine learning techniques

Duin et al. [2010] documented that among a set of classifiers, each technique found a most
favourable data set from the collection S1, all distinct. This section traverse such idea which
verifies the representativeness of our artificial sample.

They performed a comparison with nineteen classifiers and observed that each of the nineteen
classifiers they tried has a unique data set for which it is the best—a very interesting result that
is subject for further study. Table 7.3 gathers the nineteen favoured data sets (highlighted in
red), and Fig. 7.8 plots the complexity of three of them (D29 in pink, D116 in green, and D291 in
blue); we distinguish very different curves along the complexity measures.

We observe that D116 is judged as a very simple problem since Nearest Mean is the best
classifier. In terms of complexity, this problem was generated by minimising the complexity
of F2, L2, and L3 over a waved boundary to promote linearity and discriminant attributes.
For data set D291, all linear classifiers fail and perform close to random, while UDA (Naive
Gaussian) is very good. In deed, the underlying concept in that problem is an spiral—non-linear
problem—and the complexity measures based on the SVM are medium-high, especially for L1

[L1= 0.984, L2= 0.498, L3= 0.500]. Finally, data set D29 shows a nearly random performance
for all classifiers and inspired to Team 2 to include the two-dimensional subspace classifier
PCA2-FDS-Fish.

Fig. 7.9 shows the location of these nineteen data sets in the PC1-PC2 space. As we can see,
their position is well spread across the space. Fig. 7.10 details the complexity of each data set for
each measure. Again, we observe that this set of problems cover a wide region, although the
ranges of F2, L2, L3, and F4 only reach medium complexities. Despite not having a complete
space, the proposed technique to generate ADS may help to reinforce the use of prototypical data
sets to test machine learning techniques.

7.10 discussion

A big drawback experienced along this research has been the need of resources in terms of
storage and computational capacity. We find an implicit combinatorial problem—number of
complexity characteristics to evolve and the granularity of the scale of each characteristic—which
increases the number of experiments exponentially. However, the performed experiments have
shown interesting results that point out the importance of different kind of data sets and also
the problem structure. In order to better understand the learners’ behaviour or to make some
guidelines to choose the right learner any time, we have to address in detail three key points
related to the construction of the testing framework: (1) complexity measures, (2) structural
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Figure7.10:Intrinsiccomplexityofthenineteenfavoureddatasets.

dimension,and(3)completeness.Thissectionelaboratedeachoneoftheseaspectsandenvisage
someotherissuesrelatedtoresources.

Complexitymeasures.Theproposedlandscapeisbuiltusingelevenofthefourteencomplexity
measures.However,itisimportanttoanalysethecontributionofeachmeasureandhowthe
problemdistributionmaybemodifieddependingontheinsertionofmorecomplexitymeasures
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Figure 7.11: Coverage derived from each seed data set: (a) Checkerboard, (b) Pima, (c) Spiral, (d)
Wave Boundary, and (e) Yin Yang.

or the deletion of some. Moreover, it would be interesting to determine whether this space
suffices to provide some guidelines that link data characteristics to learner properties, or whether
we have to carry out an individual study for each complexity measure.

Structural limits from seeding data. The coverage of the proposed space is based on the
difficulty of the problems originating from only five seed data sets each representing a different
pair of class concepts. The nature of the seed distributions may influence the resulting testing
framework. Fig. 7.11 shows how each seed data set leads to the coverage of a different region of
the space, with some overlapping. Further work should be planned to determine the effect of
the seed data on the resulting coverage, and whether coverage originating from different seed
data would have any significant difference.

Completeness. The two aforementioned aspects lead to the concern about whether and how the
completeness of the space could be guaranteed. What is the minimum number of dimensions
needed to fully represent the difficulty of a problem? Which of these dimensions are most
suitable? What would be the proper seed data that have the furthest reach over the space?

7.11 danger of repositories and benchmarks

Although public repositories such as the UCI repository have contributed to the maturation of
experimental methodology, we have seen that there is no foundation to rely on such collection
of problems to make strong claims, the sample is not representative at all. Actually, many of
these data sets need to be preprocessed which is not indicated in the majority of contributions
and, consequently, wrongly considered as standards and a basis for fair learner comparisons.
The details of the data cleaning process of the UCI repository is found in [Macià and Bernadó-
Mansilla, 2011]. On the other hand, there is a misuse/abuse of these data sets involved in
comparisons just because they provide matrix of values—forgetting about the actual interest:
the extraction of useful knowledge or hidden patterns. Then, synthetic generation appears a
reliable mechanism and the previous step to consolidate new benchmarks for the community.
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However, compulsion for outstanding in performance based on benchmark comparison can
suppress creative work. This section warns about the risks of repositories and benchmarks.

Machine learning is meant to be the solution for mining huge amount of data or few amount
of data really complex. But, during the development of techniques, a switch in the prime goal
takes place. The validation of the techniques, the ones that have to solve challenging problems, is
made over well-known test problems that have few attributes, few instances, few classes, simple
boundaries, regular structures... No real peculiarities, i.e. peculiarities that strongly influence
the classifiers, are tested. This style of experimentation results in learners performing well—
overfitting—in a toy sample and on top of that accidentally biased the designer from the very
beginning—just focused on passing the exam. Obviously, we are not against benchmarks since
we have proposed an approach to generate ADS and leads us to the creation of benchmarks. We
pursue a change of mentality and update the experimental methodology for machine learning
techniques. This methodology would be aligned with the ideas proposed in [Prechelt, 1994], the
tuning of the methods should be done on training and once the optimal measure is obtained,
measure the performance of testing—this is basically the cross-validation method. However,
he suggested not to have previous knowledge of the data sets to use for validation. Besides,
we suggest to use a set of synthetic problems to test the correctness of the technique and its
limitations, and then validate with another test of problems with real-world structures.

Sadly, this methodology is doomed to fail because any attempt of benchmark has been
suffocated by the inertia of the UCI repository. Therefore, we believe that any change has to be
promoted from this well-known repository. This means that the UCI repository should present
two sections: (1) synthetic problems, labelled with their corresponding complexity for testing
learners’ limitations, and (2) real-world problems to validate algorithms.

Contribution.

1. Proposal of a landscape composed of artificial data sets.

2. Study of real-world and synthetic problems.

3. Analysis of learners’ behaviours over the landscape.

4. International contest.

5. Proposal of the data sets landscape as benchmarks for learner assessment.
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S U M M A RY, C O N C L U S I O N S , A N D F U T U R E W O R K

Summary. This chapter ends the thesis with a summary of the work conducted,
some conclusions, and future directions.

8.1 introduction

This thesis has provided some insights into data complexity and the generation of artificial data
sets through complexity estimates. The exploration of data complexity is a thriving field that
can enrich machine learning progress and complement data mining.

The purpose of this chapter is to summarise the work of this thesis and conclude with some
remarks and future work.

In the following, we wrap up the three main achievements—DCoL, Generator of Data Sets
(GoDS), and the adjustment of the experimental methodology—and share some observations
regarding the aim of research on machine learning. Are we looking for deep knowledge on
cognitive systems or just implementing intelligent tools to perform daily tasks? In addition, we
raise some challenges for further work on data complexity that basically require a global project.

8.2 summary

Over the last few decades, the machine learning community has designed and developed
techniques to solve real-world problems and to extract knowledge from data. To validate the
efficiency of these techniques, the most usual methodology adopted by practitioners consists in
testing new techniques over a collection of real-world problems and comparing the obtained
accuracy with other learners. Nevertheless, this procedure may lead to inaccurate conclusions
due to (1) real-world problems constraints and (2) data dependence of learners. This section
resumes the work done to address this concern.

Learners are usually tested using real-world problems from public repositories. Even though
sharing these problems benefits the obtention of a common test bed for the experiments and
facilitates the comparison between the individual researchers’ results and the community’s,
these data sets may result in misleading conclusions. On the one hand, the current sets are
composed of few problems whose independence is unknown, i.e. we ignore whether this set
of problems is representative enough to cover the whole problem space. We cannot guarantee
that these problems are diverse enough to test the learner limitations in an exhaustive way,
since there are no studies that indicate what problems, regardless of the domain to which they
belong, are structurally similar. On the other hand, the high cost of experiments, the difficulty
of conducting them, or data privacy policies hinder data collection, resulting in complex data
sets characterised by few instances, missing values, and imprecise data. The combination of
these deficiencies in the data samples goes beyond our control, blurring our knowledge of
to what extent the influence of these constraints negatively affects learner performance. Thus,
data complexity analysis is advised to build a complexity space that offers a set of problems
adequate to test learners’ limitations and validate their performance. Table 8.1 summarises the
contributions of this thesis, where the main goals have been to:

1. Provide a common implementation of complexity measures: DCoL.

2. Artificially generate new data on the ground of complexity estimates to reach a good
coverage of the problem space: GoDS.

3. Modify the experimental methodology by including data complexity analysis and testing-
validation over benchmarks from synthetic generation and public repositories.
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Table 8.1: Summary of the scientific contributions of this thesis.

Chapter Main contributions

Chapter 2 Criticism of experimental assessment of learners based on arbitrary selected
data sets.

Chapter 3 DCoL, update and implementation of the complexity measures to provide the
research community with a common base.

Chapter 4 Recommender system based on complexity measures.
Chapter 5 Characterisation of the UCI and PSP repository.
Chapter 6 Taxonomy of complexity descriptors.

GoDS, generation of ADS based on evolutionary multi-objective optimisation
using complexity measures.

Chapter 7 Collection of 80,000 synthetic problems: the landscape.
Identification of preliminary benchmarks.

In the following, we shortly describe each attainment.

DCoL. Ho and Basu [2002] proposed a set of geometrical descriptors to estimate the complexity
of the class boundary. It is not easy to find a test by which to judge whether a complexity space
is reasonable but we can at least ascertain that this set of measures can be a start. For this reason,
we have revised the definition of each complexity measure and implemented an open source
library [Orriols-Puig et al., 2010]. This provides a common implementation to perform further
fair analyses.

GoDS. Real-world problems with truth labels are expensive to obtain and difficult to control. This,
plus the lack of complexity resolution of real-world problems, has promoted the quest for search
procedures to generate artificial data sets with a specific complexity. In [Macià et al., 2010b], we
have proposed a multi-objective approach that can create synthetic problems whose structure
resemble real-world problems and meet different criteria of complexity guided by the studied
measures. This method has been utilised to build a diverse collection of problems and compare
learners’ abilities on different regions of the complexity space [Macià et al., 2010a]. Indeed,
synthetic data sets are an interesting alternative; created with the least cost and time, they can
be controlled to reach a good coverage of regions in the complexity space. Though, to employ
this alternative, it is important to ensure that the generated data have sufficient resemblance
to real-world problems and, at the same time, contain sufficient variety to represent different
aspects of data complexity.

Experimental methodology. The two previous implementations connect to the experimental
methodology and may be introduced as components of the experimental testing. We have
proposed to use them to generate data to test the limitations of the learners and validate their
performance.

On linking data complexity to classifier performance, we cannot claim that higher complexity
necessarily leads to lower classifier performance—this relationship is far more complicated. Yet,
steps towards characterising the competence domains of each classifier family is unhesitatingly
believed to be an improvement over the current state-of-the-art and an advantage over the
trial-and-error processes typically followed in practice.

8.3 conclusions

Machine learning inspired by human mechanisms may be an incredible way to simulate an
artificial scenario to explore our cognitive system. Nonetheless, this anthropological approach
has fallen apart—at least in fundamental research—and has exploded into diverse tasks such as
optimisation, prediction-classification, pattern identification, etc. So now, the major concern is
for what kind of problems does a new learning technique work well? The answer should not lay in an
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infinite combinatorial parametrisation of algorithms using a specific, small set of problems but
instead in the scientific progress. Note that, in the literature, many techniques are claimed to be
a universal approximator of an arbitrary decision function. It is the belief of the creators that
the techniques will work well in all kinds of problems. For those who hold these claims, the
above question does not even exist. Therefore, this question needs to be preceded by providing
counter-evidence to such claims. This section supports critical contributions and recommends
researchers to step back and reconsider old proposals to reinvent the experimental methodology.
Furthermore, the advances in the fields are not only on the methodology but also on the restating
of the goals.

This thesis has followed the criticism of Salzberg [1997], whose message is to be exceedingly
careful extracting conclusions regarding learners’ performance when mining large databases
composed of different problems. However, he mentions that the theoretical limitation launched
by Wolpert [1992, 1996]—simple learners equally perform, on average, over the whole space of
possible problems—may not be relevant if we just focus on a portion of the problem space, for
instance only on real-world problems. Although our main purpose has been to try to offer a
better coverage and manipulate any kind of complexity, such a reflection steers us to address
daily problems and concentrate our efforts on designing goal-oriented techniques instead of
trying to father the universal learner. In fact, although global differences may be minor, local
differences matter a lot as solutions for particular problems require the best. This view matches
the studies based on domains of competence and particular problems.

Experimental methodology has been overshadowed by the widespread heavy focus on
implementation of algorithms. Once statistical tests have been included in the evaluation process,
the validity of the methodology has been taken for granted. However, the current methodology
remains quite rudimentary and original proposals have been mostly ignored. Jensen [1991]
argued that machines should be built to compensate human weaknesses instead of duplicating
human strengths. According to him, tools would not automate model generation, they would
allow investigators to generate and guide the basic structure of new models themselves—this is
their strength since they are the experts. Alternatively, tools would automate the testing of new
models and assess the statistical significance—a human weakness. To this end, randomisation
testing was proposed to create a large number of random data. By destroying the relationship
between attributes and class, i.e. by reversing or changing the class of instances, he obtained a
large battery of randomised data that formed enough distributions to reflect whether the scores
of the best learner could be expected only by chance. With this in mind, we should reexamine
our proposal in Macià et al. [2009], which varies the labelling within the problem until reaching
the desired complexity while maintaining the values of the attributes.

We remind the reader, though, that we embarked upon a doubtful space since complexity
measures are still under study. For this reason, there is large room for improvement with respect
to the statement of common methodology to evaluate learning techniques.

8.4 future work

There is still some work to do on consolidating the use of complexity estimates. This section
points out some research lines and projects based on the improvement of, and cross-fertilising,
ideas. We present the future work following the chapter structure.

Chapter 3. Surely, some researchers are not convinced of the practicability of such estimates
because they believe that complexity of a classification task cannot be nicely captured by single numbers
or because data complexity computation cost is equal to the runtime of a considerably large
battery of learners. In this regard, the DCoL has to be improved in terms of (1) efficiency (see
some directions in Chapter 3) and (2) interpretability by attaching some explanations to the data
characterisation.

It is also a pending task to extend the measure to deal with multi-instance multi-label
problems, or at least to determine how to proceed to estimate the complexity of such kinds of
problems.
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Chapter 6. Our approach is based on evolutionary computation; a technique with a high
computational cost and which is difficult to parametrise. It is necessary to perform a more
detailed analysis to determine the best genetic operators and their configuration in order to
speed up the convergence of the algorithm. Alternatives to evolutionary computation such as
meta-heuristics to guide the search in the complexity space are appealing.

Chapter 7. Despite these issues, it is important to gain visibility as soon as possible and involve
as many people as possible in the development of complexity measures to establish a benchmark
environment. For this purpose, it would be great to start a global project which aim to study
the failure of so many data generators and would-be benchmarks released, and developing
a unique site that gathers all of these proposals revised under certain parameters—again,
this utopian project collides with the difficulty to stop local research. The site would be a
parameterisable test suite containing data sets with a broad set of characteristics to check how
the learning methods react to each different scenario. It would help to reduce the amount of
experimentation by proposing the right test bed. Indisputably, the interest would be to offer a
collection of benchmarks and recommend which ones to use to test specific behaviours. It is still
the responsibility for researchers to not limit their creativity and to not just design algorithms to
fulfil the requirement of the existing test bed.

On the other hand, it seems desirable to exploit the aspect of neutral complexity estimators.
In many contributions of machine learning to real-world applications, the data of the problems
solved are not available, most likely because of non-disclosure agreements or because the
difficulty of the task cannot be judged by the reviewers and readers. In such a case, we could
use DCoL to give an abstract description of their problem so that the reader can appreciate the
results.

Finally, after the experimental results, we acknowledge the need of providing the link between
data complexity and learners’ behaviours with a theoretical, formal framework.
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Summary. This chapter does something unusual: it examines the current
research practices and casts doubt on the meaning of researchers’ task in
machine learning. Experimentation is a valuable tool in this field. The beloved
random experimentation is, however, a danger. Inspired by the French writer
Rousseau—society corrupts the individual [Rousseau, 1972]—, the conviction of
this chapter is that the scientific community corrupts the researcher. Unwrit-
ten rules prevent the new generation of Ph.D. students from being creative
thinkers.

introduction

The scientific method has evolved throughout the centuries, and philosophers have had a
distinguished role in that change since they have been questioning the beliefs and truths used
to found discoveries. They have been challenging the veracity of theories, arguing against new
ways of thinking, sometimes without providing any answer, for the pleasure of asking questions
[Russell, 1997]. Unfortunately, during the research journey, many students have missed that
interest, passion, awakened mind. The current computer science community, especially the
empiricists, write large amounts of plain technical reports tracing experiments, oblivious to the
beauty of essays, the excitement of sharing revolutionary, outlandish ideas. Going through the
literature has often become a mechanical skimming/scanning task, seeking for the bold numbers
that highlight those few decimals that the proposed techniques outperform their competitors by.
These results sustain a sort of research, somehow, based on a mere, casual parameter tuning of
established techniques.

The purpose of this chapter is to show the disenchantment that, sometimes or often, would-be
researchers—and even some tenured researchers—suffer and to denounce the proliferation of
some questionable practices that are killing innovation.

In the following, we briefly review the effect of the modern obsession for publishing and to
what extent academic research has distorted the meaning of experimental science. We see what
calls the current methodology for assessing learners into question and how different alternatives
have simply been ignored or incomprehensibly revived at a later time. Finally, we end with a
reminder of what the purpose of Ph.D. studies could be in the midst of such confusion.

the perversion of the community

Pure research is becoming less attractive nowdays. Many research groups have abandoned some
research lines since investors are more interested in applications—in spite of the relevance of
essential, fundamental investigation. Hence, the ones that have managed to subsist are because
either their research is leading in an applicative domain or their volume of publication is high.
What is behind these numbers? Parnas [2007] makes a strong point about them and guts, one
by one, every single perversion of the scientific community—authorship in pacts, monthly
instalments, tailor-made conferences or workshops—that have encouraged superficial research
made from overly large groups, repetition, small and insignificant studies, half-baked ideas,
and so on. This section describes how the famous publish or perish has wreaked havoc on daily
research, at least in the halls of European academia.

Eventually, h-index, impact factors, or the number of citations are the fallacious indicators of
good research, of good researchers. Thus, fresh Ph.D. students, willing to know about research,
methodology, values, are burdened and frustrated junk writers after a couple of months, since
they have learnt from the feelings in their labs that their career will be measured by these
statistics, whose actual interpretation is: write as many papers as possible. The only way to
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fulfil such requirements is not to work for the long-term run at all, but to dissolve the research
and present every partial, experimental result—it is dramatic to see these students in a rush
for publishing when they have not even fully experienced research yet; and it is even worse
when this pressure comes from senior researchers who are pushing so hard in this direction just
to keep their CVs up-to-date or repay colleagues in the favour chain which promotes quantity
over substance. This tradition of compulsive publishing has plagued conferences, journals,
and the Internet with so many papers that it is getting difficult to track innovative ideas. The
more one reads, the more one bumps into similar attempts, similar flavours, déjà vus—facts
that slows down the learning curve and discourages further reading. This is the price to pay
for the democratisation of research, which raises a sharp debate between top-notch research
from recognisable researchers and results from obligatory projects that allow young people
to participate [Duin, 2011]. Undoubtedly, high level research is still done. Good papers are
still written, but they are hidden in vast amount of less relevant works from Ph.D projects.
Showing off the abilities of regular methods to non-technical experts and cherry-picking results
from much wider experimentation are the most common schemes. Both serve to bridge theory
and practice. However, the function of empiricism has been abused and now entails repeated
preliminary results with no further continuation.

machine learning : experimental science

Experimental computer science, defined as “an apparatus to be measured, a hypothesis to
be tested, and systematic analysis of the data (to see whether its supports the hypothesis)”
by Denning [1980], is recurrent in machine learning, algorithms, and software engineering.
Nevertheless, experimental methodology has been twisted; instead of sustaining conjectures,
experiments are run to provide material to decide them retroactively, to give birth to a posteriori
theories or feed useless, partial conclusions. Machine learning, for instance, is based on trials
with performance measures, learners, and data. The combination of these elements made Langley
[1988] encourage practitioners to join empirical testing, as it contributes to the process of theory
formation. This section comments on the subsequent chaos of such a call: competition testing—a
term coined by Hooker [1995] in relation to heuristics.

Many years later, no new learning paradigm has been introduced, some progress in standards
has been made, and micro-tuning of the existing techniques is the trendy research. Superiority
of techniques is shown usually following a three-step procedure: select data sets, typically from
public repositories, choose specific referenced learners to compare the new approach with, and
extract performance conclusions supported by erroneous statistical tests. With a pessimistic but
very realistic description of the current scene, Demšar [2008] has been able to cope with the
concerns about the meaning of such experimentation and the way it should be. Conventional
statistical models are designed to test single learners in isolation; they are ill-suited to perform
multiple comparisons. Hypothesis testing is useful to say whether the probability of the apparent
accuracy of a learner is only due to chance, but its power goes down as the number of models
examined increases. Then, it is worth determining what the ideal size of the test set is, what
problems have to be involved, and empowering the testing methodology by sufficient data
analysis. These—old claims—are the kind of things that one expects to be delighted with when
reading papers. Yet, there are complicated milestones and many negative results are derived
from the studies. Although these are meaningful to lead progress as well, the community does
not consider them. This forces researchers to move back to the classical developments—safe bets
to reach the approval. In addition, groundless rejections cause frustration in new researchers,
which is reflected in their subsequent reviews. In turn, after being taught that going against
the current is not fruitful, they will be unwittingly stopping promising ideas, frustrating new
generations again.
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gaming the system in lieu of research

Gascuel and Caraux [1992] gave an early indication that the Bonferroni-type approximation
was adequate to compare results obtained from applying different systems on the same—or
different—test samples. In a lapse of twenty years, the t-test, despite being the wrong method,
has been the most popular. Why? Because of trends and because results looked statistically
stronger; because of trends. This section shares a view about the clout of journals and reviewers
and the inertia of the machine learning community as a society.

Current research is like politics—each tendency has its own press. No matter the thoroughness
of the content, if the work submitted to a journal is not aligned with the thought of its staff,
it will never get the green light. In his inspiring four-page paper Demšar [2008] suggests the
(im)possible solution: web-to-peer review. This unlikely idea seems to offer favourable conditions
for critical and fair evaluations of “correctness, interestingness, usefulness, beauty, novelty”.
Solution or not, this evidences the urge to adopt other measures of productivity and recognition
to end with the fake tenure of rigour, truths, and biased opinions. The new peer-review process
should give back credibility to publications, and researchers should not be able to game it. Dietz
et al. [2007] studied the citation influences. In this work, the following paragraph may catch ones
eye: “Papers can be cited as background, reading for politeness, fear of receiving an adverse
review from an aggrieved reviewer, or as related work that was argued against.” Indeed, the
analysis of references is interesting from a social point of view and has a crucial role in the
shallow statistics—impact factors and indexes. Everyone knows they provide the information
for the productivity computation. Thus, self-citations, citations to friends and the community
clique, or citations to publications from particular journals are some of the mechanisms to scale.
Citing has lost its traditional purpose: guiding the reader to obtain the background necessary
to understand the paper and enlarge his knowledge with valuable contributions; valuable
knowledge for the basis of Ph.D. studies.

setting any thesis in context

Pressure for publishing is also destabilising the framework of Ph.D. studies and deflecting them
from their goal. This section tries to find its place nowadays.

The objective of any thesis is to master a subject—not randomly investigate. When applying
for some grants, one of the ever-present sections is to justify the relevance of the topic and the
profit of further achievements for society. Mostly, thesis investigations in computer science are
too specialised, of interest to tiny communities. In general, it is about impractical idealism that
just serves well in the ivory tower, not in the real world. For this reason, the community should
accept unusual ideas with an open mind or significant experimental results to gain soundness
across different knowledge areas. Saitta and Langley’s words should be taken up again: machine
learning is much more than running algorithms on apparent ready-to-use data sets [Saitta and
Neri, 1998]. The machine learning discipline emerged to gain an insight into complex tasks such
as reasoning, problem solving, and language processing [Langley, 2011]. On the other hand, the
true essence of Ph.D. studies, and by extension of fundamental research, is to keep curiosity
alive, to learn how to become a researcher, and to push boundaries. Basically, Ph.D. students are
still in training to become the elite of technical advances, and this is what people seem to have
forgotten. So putting aside the expertise, Ph.D. students should acquire other skills to be a great
asset to industry too. Therefore, there is a lot to do in Ph.D. programmes to hone communication
skills, critical assessment ability, leadership... under an intensive level of advisory—more than
just passive supervision. This means that supervisors have to be dedicated to at most a few
students at a time, and a generous amount of hours have to be booked into their work load to
closely follow the evolution of the would-be researchers, to consolidate their knowledge, and
remind them of the existence and importance of ethics. Researchers should publish their work
only when it is mature, relevant enough, and the community can benefit from it. The rate of
publications has to be slowed down in order to gain in quality.
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Summary. This appendix contains all the large tables that summarise the
detailed experimentation analysed in Chapter 5.

Table A.1: Description of the external characteristics of the UCI collection. Data sets are alphabet-
ically sorted. #Cl is the number of classes, #Inst is the number of instances, and #Att
is the number of attributes. #Real, #Int and #Nom indicate the number of real-, integer-
and nominal-valued attributes respectively. %missInst, %missAtt, and %missVal corre-
sponds to the percentage of instances with missing values, attributes with missing
values, and the total percentage of missing values. Finally, %Maj is the percentage of
instances of the majority class and %Min is the percentage of instances of the minority
class.

Dataset #Inst #Att #Real #Int #Nom %missAtt %mistInst %missVal %Maj %Min

aba.2c0 4177 8 7 0 1 0.00 0.00 0.00 99.98 0.02
adl 48842 14 0 6 8 21.43 7.41 0.95 76.07 23.93
ann.2c0 898 38 6 0 32 0.00 0.00 0.00 99.11 0.89
asbestos 83 3 0 1 2 0.00 0.00 0.00 55.42 44.58
aud.2c0 226 69 0 0 69 10.14 98.23 2.03 78.76 21.24
aut.2c0 205 25 15 0 10 28.00 22.44 1.15 98.54 1.46
authors.2c0 841 70 0 70 0 0.00 0.00 0.00 62.31 37.69
bal.2c0 625 4 4 0 0 0.00 0.00 0.00 53.92 46.08
bankruptcy 50 5 5 0 0 0.00 0.00 0.00 50.00 50.00
benford.2c0 9 6 0 0 6 0.00 0.00 0.00 88.89 11.11
bondrate.2c0 57 10 0 4 6 10.00 1.75 0.18 89.47 10.53
bpa 345 6 6 0 0 0.00 0.00 0.00 57.97 42.03
briv1.2c0 105 11 0 4 7 63.64 33.33 5.28 84.76 15.24
briv2.2c0 105 11 0 1 10 63.64 33.33 5.28 84.76 15.24
car.2c0 1728 6 0 0 6 0.00 0.00 0.00 70.02 29.98
cmc.2c0 1473 9 0 2 7 0.00 0.00 0.00 57.30 42.70
col 368 22 7 0 15 95.45 98.10 23.80 63.04 36.96
crx 690 15 3 3 9 53.33 5.51 0.66 55.51 44.49
drm.2c0 366 34 0 33 1 2.94 2.19 0.06 69.40 30.60
ech 74 11 6 2 3 72.73 17.57 2.83 67.57 32.43
euc.2c0 736 19 7 7 5 47.37 12.91 3.20 75.54 24.46
flg.2c0 194 28 0 10 18 0.00 0.00 0.00 79.38 20.62
fourclass 862 2 2 0 0 0.00 0.00 0.00 64.39 35.61
gls.2c0 214 9 9 0 0 0.00 0.00 0.00 67.29 32.71
gru.2c0 155 8 0 2 6 0.00 0.00 0.00 68.39 31.61
h-s 270 13 13 0 0 0.00 0.00 0.00 55.56 44.44
hab 306 3 0 3 0 0.00 0.00 0.00 73.53 26.47
hay.2c0 159 4 0 0 4 0.00 0.00 0.00 59.75 40.25
hep 155 19 2 4 13 78.95 48.39 5.67 79.35 20.65
hrs 368 27 8 4 15 77.78 98.10 19.39 63.04 36.96
ion 351 34 34 0 0 0.00 0.00 0.00 64.10 35.90
irs.2c0 150 4 4 0 0 0.00 0.00 0.00 66.67 33.33
krk.2c0 28056 6 0 0 6 0.00 0.00 0.00 90.03 9.97
krkp 3196 36 0 0 36 0.00 0.00 0.00 52.22 47.78
liv 345 6 1 5 0 0.00 0.00 0.00 57.97 42.03
lng.2c0 32 56 0 0 56 3.57 15.63 0.28 71.88 28.13
mag 19020 10 10 0 0 0.00 0.00 0.00 64.84 35.16
msh 8124 22 0 0 22 4.55 30.53 1.39 51.80 48.20
nrs.2c0 12960 8 0 0 8 0.00 0.00 0.00 66.67 33.33
opt.2c0 5620 64 0 64 0 0.00 0.00 0.00 90.14 9.86
pas.2c0 36 22 15 6 1 0.00 0.00 0.00 66.67 33.33
pbc.2c0 5473 10 4 6 0 0.00 0.00 0.00 89.77 10.23
pen.2c0 10992 16 0 16 0 0.00 0.00 0.00 89.60 10.40
pim 768 8 8 0 0 0.00 0.00 0.00 65.10 34.90
pos.2c0 90 8 0 1 7 12.50 3.33 0.42 97.78 2.22
seg.2c0 2310 19 19 0 0 0.00 0.00 0.00 85.71 14.29
shs.2c0 52 24 6 15 3 29.17 3.85 0.56 55.77 44.23
shu.2c0 52 23 5 15 3 34.78 17.31 3.26 53.85 46.15
spa 4601 57 55 2 0 0.00 0.00 0.00 60.60 39.40
spect 267 22 0 0 22 0.00 0.00 0.00 79.40 20.60
spectf 267 44 0 44 0 0.00 0.00 0.00 79.40 20.60
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TableA.1 – continued from previous page

Dataset #Inst #Att #Real #Int #Nom %missAtt %mistInst %missVal %Maj %Min

statlog-
sgm.2c0

2310 19 19 0 0 0.00 0.00 0.00 85.71 14.29

tae.2c0 151 5 0 1 4 0.00 0.00 0.00 67.55 32.45
tao 1888 2 2 0 0 0.00 0.00 0.00 50.00 50.00
thy.2c0 215 5 5 0 0 0.00 0.00 0.00 69.77 30.23
tis 13375 927 924 0 3 0.00 0.00 0.00 75.24 24.76
tnc 2201 3 0 0 3 0.00 0.00 0.00 67.70 32.30
trn 10 32 0 10 22 31.25 70.00 15.94 50.00 50.00
veh.2c0 846 18 18 0 0 0.00 0.00 0.00 74.94 25.06
vot 435 16 0 0 16 100.00 46.67 5.63 61.38 38.62
wav21.2c0 5000 21 21 0 0 0.00 0.00 0.00 66.86 33.14
wav40.2c0 5000 40 40 0 0 0.00 0.00 0.00 66.16 33.84
wbcd 699 9 0 9 0 11.11 2.29 0.25 65.52 34.48
wdbc 569 30 30 0 0 0.00 0.00 0.00 62.74 37.26
whi.2c0 63 31 27 0 4 0.00 0.00 0.00 60.32 39.68
win.2c0 178 13 11 2 0 0.00 0.00 0.00 66.85 33.15
wne.2c0 178 13 13 0 0 0.00 0.00 0.00 66.85 33.15
wpbc 198 33 33 0 0 3.03 2.02 0.06 76.26 23.74
yea.2c0 1484 8 8 0 0 0.00 0.00 0.00 68.80 31.20
zoo.2c0 101 16 0 0 16 0.00 0.00 0.00 59.41 40.59
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Table A.2: Complexity measures on the UCI repository.

Data set F1 F1v F2 F3 F4 L1 L2 L3 N1 N2 N3 N4 T1 T2

aba.2c0 14.032 33.605 0.000 1.000 1.000 0.002 2.394e-04 0.500 4.788e-04 0.026 2.394e-04 0.000 0.648 522.125

adl 0.346 2.725 0.233 0.030 0.035 1.065 0.166 0.275 0.290 0.446 0.201 0.269 0.996 3488.714

ann.2c0 2.526 59.494 0.000 0.728 1.000 0.099 0.009 0.500 0.007 0.135 0.001 0.021 0.960 23.632

asbestos 0.316 1.549 0.885 0.012 0.012 0.581 0.193 0.229 0.398 0.562 0.229 0.199 0.602 27.667

aud.2c0 0.022 16.957 0.000 0.407 0.872 0.462 0.212 0.500 0.235 0.607 0.119 0.175 1.000 3.275

aut.2c0 2.061 14.036 0.000 0.985 1.000 0.034 0.015 0.500 0.049 0.285 0.020 0.010 1.000 8.200

authors.2c0 1.877 19.663 3.858e-13 0.225 0.998 0.413 0.002 5.945e-04 0.012 0.772 0.004 5.945e-04 1.000 12.014

bal.2c0 0.385 0.418 1.000 0.000 0.000 0.570 0.048 0.066 0.184 0.623 0.138 0.101 0.902 156.250

bankruptcy 1.121 1.673 0.001 0.620 0.960 0.922 0.160 0.220 0.240 0.632 0.140 0.090 0.920 10.000

benford.2c0 73.143 9.130 0.000 1.000 1.000 0.236 0.111 0.500 0.556 0.831 0.333 0.444 1.000 1.500

bondrate.2c0 0.904 1.386 9.068e-05 0.474 1.000 0.213 0.105 0.500 0.228 0.813 0.158 0.167 1.000 5.700

bpa 0.055 0.148 0.073 0.032 0.107 0.841 0.420 0.500 0.574 0.913 0.374 0.342 1.000 57.500

briv1.2c0 3.234 57.275 0.000 0.714 0.714 0.377 0.019 0.014 0.095 0.264 0.048 0.005 1.000 9.545

briv2.2c0 0.415 44.742 0.000 0.714 0.714 0.395 0.010 0.024 0.076 0.379 0.048 0.014 1.000 9.545

car.2c0 0.024 1.308 0.250 0.333 0.556 0.857 0.136 0.153 0.234 0.902 0.175 0.472 1.000 288.000

cmc.2c0 0.029 0.289 0.750 0.002 0.002 0.788 0.356 0.383 0.583 0.877 0.406 0.370 0.944 163.667

col 0.305 12.965 0.187 0.038 0.098 0.561 0.073 0.030 0.201 0.689 0.114 0.030 1.000 16.727

crx 0.364 8.962 0.001 0.032 0.068 0.290 0.145 0.154 0.290 0.563 0.181 0.117 0.999 46.000

drm.2c0 7.789 3.031 0.000 0.541 0.989 0.323 0.000 0.000 0.016 0.443 0.005 0.000 0.981 10.765

ech 4.221 15.976 0.000 0.973 1.000 0.362 0.054 0.014 0.135 0.433 0.095 0.000 0.973 6.727

euc.2c0 2.722 16.211 3.990e-07 0.170 0.471 0.559 0.132 0.217 0.192 0.336 0.113 0.158 0.999 38.737

flg.2c0 1.545 4.211 0.000 0.093 0.232 0.444 0.206 0.500 0.294 0.770 0.175 0.157 1.000 6.929

fourclass 0.952 1.372e-04 0.649 0.239 0.278 0.720 0.215 0.314 0.009 0.091 0.000 0.229 0.452 431.000

gls.2c0 0.649 0.579 3.648e-05 0.290 0.486 0.671 0.327 0.500 0.322 0.432 0.182 0.227 0.991 23.778

gru.2c0 3.240 1.388 0.486 0.077 0.123 0.653 0.316 0.500 0.497 0.825 0.342 0.300 0.994 19.375

hab 0.185 0.002 0.718 0.029 0.033 0.530 0.265 0.500 0.539 0.754 0.353 0.368 0.931 102.000

hay.2c0 0.025 0.686 0.296 0.082 0.195 0.805 0.403 0.500 0.384 0.442 0.258 0.450 1.000 39.750

hep 1.040 6.249 0.000 0.232 0.568 0.467 0.194 0.490 0.284 0.623 0.187 0.026 0.987 8.158

hrs 0.305 17.615 0.000 0.038 0.141 0.546 0.073 0.037 0.193 0.684 0.106 0.024 1.000 13.630

h-s 0.760 4.344 0.196 0.015 0.093 0.532 0.156 0.104 0.367 0.672 0.244 0.107 1.000 20.769

ion 0.614 3.728 0.000 0.191 0.994 0.453 0.117 0.150 0.231 0.631 0.131 0.162 0.946 10.324

irs.2c0 16.822 25.477 0.005 0.573 0.573 0.310 0.000 0.000 0.013 0.096 0.000 0.000 0.453 37.500

krk.2c0 0.011 0.053 1.000 0.000 0.000 0.200 0.100 0.500 0.545 0.846 0.462 0.487 1.000 4676.000

krkp 0.002 6.688 0.000 0.183 0.433 0.753 0.062 0.084 0.273 0.714 0.156 0.264 1.000 88.778

liv 0.055 0.148 0.073 0.032 0.107 0.841 0.420 0.500 0.574 0.913 0.374 0.322 1.000 57.500

lng.2c0 0.655 18.432 0.000 0.281 0.969 0.546 0.281 0.500 0.469 0.962 0.375 0.000 1.000 0.571

mag 0.559 58.946 0.081 0.006 0.018 0.717 0.214 0.233 0.293 0.650 0.188 0.236 1.000 1902.000

msh 0.038 11.452 0.000 0.201 0.419 0.491 0.043 0.068 0.003 0.377 0.000 0.033 1.000 369.273
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Data set F1 F1v F2 F3 F4 L1 L2 L3 N1 N2 N3 N4 T1 T2

nrs.2c0 0.002 9.722 0.500 1.000 1.000 0.667 0.000 0.000 1.543e-04 1.000 7.716e-05 0.000 1.000 1620.000

opt.2c0 4.729 0.050 0.000 0.471 0.865 1.685 0.002 0.003 7.117e-04 0.408 1.779e-04 0.003 0.991 87.812

pas.2c0 1.628 15.391 1.093e-06 0.583 0.972 0.637 0.333 0.500 0.306 0.646 0.194 0.028 1.000 1.636

pbc.2c0 0.511 176.800 2.100e-05 0.016 0.026 0.319 0.095 0.484 0.068 0.184 0.037 0.213 0.988 547.300

pen.2c0 3.475 0.001 0.755 0.109 0.120 1.973 0.014 0.049 0.001 0.163 3.639e-04 0.019 0.899 687.000

pim 0.576 1.414 0.252 0.007 0.022 0.689 0.350 0.500 0.438 0.840 0.294 0.289 0.999 96.000

pos.2c0 0.172 2.138 0.000 0.478 0.733 0.045 0.022 0.500 0.056 0.415 0.033 0.500 1.000 11.250

seg.2c0 1.798 18.828 8.627e-14 0.734 1.000 0.484 0.143 0.500 0.010 0.114 0.003 0.038 0.933 121.579

shs.2c0 1.127 -3.500e+00 2.705e-05 0.327 1.000 0.642 0.192 0.163 0.327 0.789 0.154 0.183 1.000 2.167

shu.2c0 6.788 9.850 0.005 0.250 0.885 0.748 0.404 0.423 0.519 0.899 0.288 0.125 1.000 2.261

spa 0.347 12.078 2.533e-33 0.091 0.383 0.772 0.394 0.500 0.155 0.376 0.082 0.113 0.986 80.719

spect 0.017 2.114 0.000 0.142 0.210 0.580 0.206 0.500 0.337 0.785 0.270 0.476 1.000 12.136

spectf 0.553 6.159e-04 3.603e-19 0.296 0.993 0.423 0.206 0.500 0.337 0.803 0.251 0.099 1.000 6.068

statlog-sgm.2c0 1.798 11.204 8.627e-14 0.734 1.000 0.484 0.143 0.500 0.010 0.114 0.003 0.037 0.933 121.579

tae.2c0 6.316 0.814 0.559 0.079 0.146 0.653 0.325 0.500 0.450 0.378 0.199 0.427 0.960 30.200

tao 1.395 0.031 0.479 0.360 0.362 0.590 0.163 0.110 0.077 0.157 0.043 0.155 0.398 944.000

thy.2c0 0.256 0.543 0.001 0.186 0.414 0.588 0.302 0.500 0.102 0.310 0.028 0.151 0.837 43.000

tis 0.472 7.410 0.000 0.033 0.234 1.415 0.070 0.084 0.345 0.853 0.260 0.013 1.000 14.428

tnc -11 0.754 1.000 0.000 0.000 0.448 0.224 0.304 0.682 0.033 0.677 0.500 1.000 733.667

trn 18.000 4.734 0.000 0.500 0.500 0.706 0.000 0.000 0.400 0.832 0.100 0.000 1.000 0.312

veh.2c0 0.185 1.006 5.339e-04 0.037 0.223 0.504 0.251 0.500 0.365 0.712 0.248 0.353 0.999 47.000

vot 0.066 28.884 1.000 0.000 0.000 0.354 0.037 0.010 0.115 0.348 0.064 0.008 1.000 27.188

wav21.2c0 1.182 0.150 0.036 0.123 0.183 1.020 0.141 0.086 0.238 0.795 0.170 0.109 1.000 238.095

wav40.2c0 1.168 0.130 0.015 0.149 0.211 1.000 0.143 0.081 0.273 0.900 0.196 0.062 1.000 125.000

wbcd 3.568 0.068 0.248 0.119 0.232 0.457 0.034 0.012 0.059 0.335 0.041 0.030 0.801 77.667

wdbc 3.405 56.726 5.683e-11 0.517 0.998 0.539 0.049 0.022 0.072 0.558 0.047 0.022 0.998 18.967

whi.2c0 2.188 6.654 1.019e-06 0.222 0.968 0.687 0.381 0.492 0.492 0.948 0.333 0.063 1.000 2.032

win.2c0 4.290 22.879 3.962e-05 0.764 1.000 0.371 0.056 0.028 0.067 0.490 0.028 0.003 0.994 13.692

wne.2c0 4.290 22.879 3.962e-05 0.764 1.000 0.371 0.056 0.031 0.067 0.490 0.028 0.022 0.994 13.692

wpbc 0.472 4.823 1.422e-06 0.177 0.990 0.485 0.237 0.500 0.424 0.914 0.278 0.217 1.000 6.000

yea.2c0 0.214 0.736 0.056 0.127 0.177 0.624 0.312 0.500 0.450 0.710 0.296 0.340 1.000 185.500

zoo.2c0 0.344 86.450 0.000 0.802 0.802 0.142 0.000 0.000 0.020 0.200 0.000 0.000 1.000 6.312

1 Value -1 indicates that the complexity measure could not be calculated. For instance, it can happen for F1v if the algorithm for diagonalising the bi-diagonal form loops over

the singular values and does not converge before reaching the maximum number of iterations.
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Table A.3: Complexity measures on the PSP repository.

Data set F1 F1v F2 F3 F4 L1 L2 L3 N1 N2 N3 N4 T1 T2

aa-uf-2c-w0 0.001 0.005 1.000 0.000 0.000 0.975 0.511 0.493 0.386 -nan 0.386 0.486 1.000 257560.000
aa-uf-2c-w1 0.004 0.005 1.000 0.000 0.000 0.975 0.511 0.493 0.435 0.320 0.418 0.486 1.000 85853.336
aa-uf-2c-w2 0.004 0.009 1.000 0.000 0.000 0.976 0.497 0.486 0.535 0.947 0.422 0.483 1.000 51512.000
aa-uf-2c-w3 0.004 0.013 1.000 0.000 0.000 0.975 0.486 0.478 0.571 0.972 0.421 0.483 1.000 36794.285
aa-uf-2c-w4 0.004 0.016 1.000 0.000 0.000 0.974 0.476 0.469 0.561 0.981 0.422 0.482 1.000 28617.777
aa-uf-2c-w5 0.004 0.024 1.000 0.000 0.000 0.969 0.469 0.459 0.576 0.985 0.422 0.480 1.000 23414.545
aa-uf-2c-w6 0.004 0.027 1.000 0.000 0.000 0.967 0.465 0.455 0.571 0.987 0.421 0.477 1.000 19812.309
aa-uf-2c-w7 0.004 0.028 1.000 0.000 0.000 0.966 0.465 0.454 0.582 0.988 0.421 0.477 1.000 17170.666
aa-uf-2c-w8 0.004 0.028 1.000 0.000 0.000 0.965 0.464 0.452 0.582 0.989 0.423 0.474 1.000 15150.588
aa-uf-2c-w9 0.004 0.029 1.000 0.000 0.000 0.964 0.463 0.449 0.588 0.990 0.424 0.472 1.000 13555.789

aa-ul-2c-w0 0.002 5.295e-04 1.000 0.000 0.000 0.599 0.299 0.500 0.304 -nan 0.304 0.493 1.000 257560.000
aa-ul-2c-w1 0.004 8.899e-04 1.000 0.000 0.000 0.599 0.299 0.500 0.374 0.178 0.356 0.493 1.000 85853.336
aa-ul-2c-w2 0.004 0.003 1.000 0.000 0.000 0.599 0.299 0.500 0.467 0.909 0.363 0.492 1.000 51512.000
aa-ul-2c-w3 0.004 0.005 1.000 0.000 0.000 0.599 0.299 0.500 0.494 0.951 0.361 0.491 1.000 36794.285
aa-ul-2c-w4 0.004 0.010 1.000 0.000 0.000 0.599 0.299 0.500 0.489 0.969 0.361 0.489 1.000 28617.777
aa-ul-2c-w5 0.004 0.017 1.000 0.000 0.000 0.599 0.299 0.500 0.499 0.974 0.360 0.487 1.000 23414.545
aa-ul-2c-w6 0.004 0.021 1.000 0.000 0.000 0.599 0.299 0.500 0.497 0.978 0.360 0.484 1.000 19812.309
aa-ul-2c-w7 0.004 0.023 1.000 0.000 0.000 0.599 0.299 0.500 0.506 0.980 0.362 0.483 1.000 17170.666
aa-ul-2c-w8 0.004 0.025 1.000 0.000 0.000 0.599 0.299 0.500 0.504 0.982 0.361 0.480 1.000 15150.588
aa-ul-2c-w9 0.004 0.025 1.000 0.000 0.000 0.599 0.299 0.500 0.508 0.984 0.363 0.478 1.000 13555.789

pssm-uf-2c-w0 0.466 0.096 0.877 9.318e-05 1.009e-04 0.825 0.263 0.209 0.451 0.914 0.318 0.312 1.000 12878.000
pssm-uf-2c-w1 0.466 0.110 0.688 9.318e-05 1.553e-04 0.855 0.253 0.195 0.425 0.903 0.302 0.283 1.000 4292.667
pssm-uf-2c-w2 0.466 0.120 0.575 9.318e-05 1.864e-04 0.869 0.248 0.190 0.412 0.891 0.295 0.227 1.000 2575.600
pssm-uf-2c-w3 0.466 0.127 0.513 9.318e-05 1.941e-04 0.890 0.241 0.181 0.405 0.885 0.290 0.181 1.000 1839.714
pssm-uf-2c-w4 0.466 0.152 0.457 9.318e-05 2.019e-04 0.903 0.235 0.173 0.402 0.883 0.291 0.156 1.000 1430.889
pssm-uf-2c-w5 0.466 0.375 0.359 9.318e-05 2.640e-04 0.906 0.234 0.173 0.402 0.884 0.295 0.143 1.000 1170.727
pssm-uf-2c-w6 0.466 0.405 0.320 9.318e-05 2.718e-04 0.909 0.233 0.171 0.405 0.886 0.301 0.133 1.000 990.615
pssm-uf-2c-w7 0.466 0.169 0.285 9.318e-05 2.795e-04 0.910 0.232 0.171 0.408 0.889 0.310 0.129 1.000 858.533
pssm-uf-2c-w8 0.466 0.270 0.236 9.318e-05 3.223e-04 0.913 0.231 0.170 0.413 0.892 0.321 0.125 1.000 757.529
pssm-uf-2c-w9 0.466 0.090 0.197 9.318e-05 3.572e-04 0.913 0.231 0.170 0.414 0.895 0.325 0.121 1.000 677.787

pssm-ul-2c-w0 0.550 0.090 0.944 3.883e-06 3.883e-06 0.779 0.233 0.286 0.391 0.881 0.274 0.337 1.000 12878.000
pssm-ul-2c-w1 0.550 0.104 0.694 2.330e-05 8.153e-05 0.846 0.216 0.260 0.351 0.881 0.242 0.303 1.000 4292.667
pssm-ul-2c-w2 0.550 0.113 0.534 5.047e-05 1.902e-04 0.858 0.211 0.250 0.336 0.872 0.232 0.236 1.000 2575.600
pssm-ul-2c-w3 0.550 0.116 0.476 5.047e-05 1.980e-04 0.884 0.203 0.237 0.327 0.869 0.226 0.185 1.000 1839.714
pssm-ul-2c-w4 0.550 0.118 0.394 5.047e-05 2.524e-04 0.907 0.197 0.227 0.323 0.869 0.226 0.148 1.000 1430.889
pssm-ul-2c-w5 0.550 0.129 0.309 5.047e-05 3.028e-04 0.910 0.197 0.224 0.324 0.872 0.229 0.135 1.000 1170.727
pssm-ul-2c-w6 0.550 0.181 0.222 5.047e-05 4.426e-04 0.915 0.196 0.223 0.322 0.875 0.232 0.123 1.000 990.615
pssm-ul-2c-w7 0.550 0.132 0.186 6.212e-05 5.009e-04 0.921 0.195 0.222 0.324 0.878 0.238 0.124 1.000 858.533
pssm-ul-2c-w8 0.550 0.153 0.134 6.212e-05 6.134e-04 0.922 0.194 0.221 0.329 0.883 0.250 0.117 1.000 757.529
pssm-ul-2c-w9 0.550 0.139 0.098 6.212e-05 7.260e-04 0.924 0.194 0.221 0.315 0.886 0.241 0.112 1.000 677.789
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Table A.4: Complexity measures on the Checkerboard collection.

Data set F1 F1v F2 F3 F4 L1 L2 L3 N1 N2 N3 N4 T1 T2

Checkerboard4x4-I1000-R 0.0093 0.0707 0.9213 0.0091 0.0819 0.6710 0.9996 0.4968 0.2041 0.9443 0.4472 0.4300 1.0000 48.6000
Checkerboard4x4-I1000-STD0.1 0.0098 0.0752 0.0895 0.0092 0.0867 0.6591 1.0007 0.5020 0.2387 0.9773 0.4708 0.4658 1.0000 48.6000
Checkerboard4x4-I1000-STD0.2 0.0096 0.0739 0.0909 0.0091 0.0870 0.6597 1.0009 0.5031 0.2380 0.9779 0.4761 0.4728 1.0000 48.6000
Checkerboard4x4-I1000-STD0.3 0.0095 0.0737 0.0864 0.0093 0.0883 0.6597 1.0008 0.5029 0.2397 0.9774 0.4715 0.4655 1.0000 48.6000
Checkerboard4x4-I1000-STD0.4 0.0099 0.0715 0.0856 0.0094 0.0883 0.6579 1.0003 0.5013 0.2419 0.9771 0.4701 0.4681 1.0000 48.6000
Checkerboard4x4-I1000-STD0.5 0.0099 0.0677 0.0861 0.0094 0.0887 0.6606 1.0006 0.5032 0.2425 0.9772 0.4655 0.4638 1.0000 48.6000
Checkerboard4x4-I1000-STDR 0.0089 0.0617 0.0890 0.0090 0.0843 0.6549 0.9984 0.4897 0.2430 0.9807 0.4738 0.4692 1.0000 48.6000
Checkerboard4x4-I5000-R 0.0018 0.0136 0.9842 0.0019 0.0157 0.6695 0.9990 0.4975 0.3042 0.9763 0.4745 0.4700 1.0000 248.4000
Checkerboard4x4-I1000-STD0.1 0.0026 0.0147 0.1616 0.0019 0.0166 0.6506 0.9979 0.4920 0.3307 0.9829 0.4766 0.4723 1.0000 248.4000
Checkerboard4x4-I5000-STD0.2 0.0023 0.0146 0.1640 0.0018 0.0161 0.6488 0.9978 0.4898 0.3289 0.9826 0.4761 0.4725 1.0000 248.4000
Checkerboard4x4-I5000-STD0.3 0.0022 0.0156 0.1646 0.0017 0.0162 0.6499 0.9980 0.4912 0.3292 0.9816 0.4753 0.4706 1.0000 248.4000
Checkerboard4x4-I5000-STD0.4 0.0023 0.0159 0.1650 0.0018 0.0161 0.6504 0.9978 0.4916 0.3287 0.9811 0.4754 0.4735 1.0000 248.4000
Checkerboard4x4-I000-STD0.5 0.0025 0.0154 0.1536 0.0017 0.0162 0.6531 0.9978 0.4942 0.3302 0.9817 0.4747 0.4690 1.0000 248.4000
Checkerboard4x4-I5000-STDR 0.0018 0.0125 0.1679 0.0018 0.0169 0.6531 0.9981 0.4956 0.3286 0.9841 0.4768 0.4746 1.0000 248.4000
Checkerboard4x4-I5000-R 0.0014 0.0070 0.9917 0.0010 0.0076 0.6730 1.0005 0.5020 0.3404 0.9833 0.4828 0.4791 1.0000 498.6000
Checkerboard4x4-I10000-STD0.1 0.0011 0.0069 0.1781 0.0010 0.0081 0.6481 0.9961 0.4861 0.3619 0.9865 0.4830 0.4798 1.0000 498.6000
Checkerboard4x4-I10000-STD0.2 0.0010 0.0069 0.1965 0.0010 0.0080 0.6467 0.9958 0.4846 0.3608 0.9866 0.4833 0.4806 1.0000 498.6000
Checkerboard4x4-I10000-STD0.3 0.0011 0.0069 0.2085 0.0010 0.0079 0.6487 0.9958 0.4852 0.3596 0.9866 0.4837 0.4797 1.0000 498.6000
Checkerboard4x4-I10000-STD0.4 0.0011 0.0077 0.1985 0.0010 0.0080 0.6508 0.9965 0.4877 0.3600 0.9854 0.4832 0.4780 1.0000 498.6000
Checkerboard4x4-I10000-STD0.5 0.0012 0.0074 0.1894 0.0010 0.0080 0.6496 0.9963 0.4869 0.3614 0.9856 0.4835 0.4801 1.0000 498.6000
Checkerboard4x4-I10000-STDR 0.0008 0.0059 0.1792 0.0010 0.0083 0.6475 0.9960 0.4846 0.3631 0.9878 0.4839 0.4814 1.0000 498.6000
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Summary. This appendix describes some tracked statistics about the imple-
mented data complexity library.

The DCoL was released in March, 2009 on SourceForge.net. Since then, the library has
accumulated 250 downloads as shown in Fig. B.1. However, it was not properly publicised
until December, 2010 when version 1.1 was released and when the site registered its maximum
activity—in ten months it reached 129 downloads.

Figure B.1: DCoL downloads.

Fig. B.2 profiles the user demographic. In the second period of the DCoL life, the top five user
countries are:

1. Spain 22 downloads

2. United States 22 downloads

3. United Kingdom 21 downloads

4. Brazil 13 downloads

5. Pakistan 9 downloads

Figure B.2: DCoL user demographic.

129

SourceForge.net
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