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Resum 

En la darrera dècada han incrementat molt els estudis del microbioma –conjunt de microbis 

que habiten un microhàbitat comú– gràcies a la millora de les tècniques de seqüenciació 

massiva. Aquesta nova manera d’analitzar les comunitats microbianes ha permès detectar una 

gran diversitat abans ignorada en infinitat d’ambients diferents, entre ells diferents parts del 

cos. 

El microbioma associat a certes parts del cos presenta un gran interès per la seva interacció 

amb les cèl·lules i la immunitat de l’hoste. En un estat normal, aquestes interaccions 

microbioma – hoste promouen la salut de l’individu. En canvi, en una patologia, aquestes 

interaccions es troben alterades.  

L’objectiu d’aquesta tesis és definir la variabilitat pròpia del gos sa, principalment a nivell de 

microbioma cutani però també en immunitat innata. Per tal d’aconseguir aquest objectiu 

utilitzem tècniques de seqüenciació massiva i procedim a: i) caracteritzar la immunitat innata 

dels gossos sans a nivell de polimorfisme en Toll-like Receptors –primers sensors de patògens; ii) 

caracteritzar el microbioma de la pell en dues cohorts de gossos sans; iii) provar la 

seqüenciació de tercera generació (single-molecule seqüencing) per nanopors aplicada a la 

caracterització del microbioma. 

S’ha caracteritzat la diversitat genètica del Toll-like Receptors en una població d’estudi amplia per 

representar la gran diversitat genètica pròpia de les espècies de cànids (set races diferents de 

gossos i dues poblacions de llops). S’han descobert noves variants genètiques, i s’han detectat 

d’altres prèviament identificades. S’ha dissenyat i validat un xip de genotipatge individual amb 

64 sondes per detectar algunes de les variants amb possible efecte a la proteïna (mutacions no 

sinònimes), ja que són les que poden estar afectant a la resposta immunitària.  

El microbioma de la pell en gossos sans s’ha avaluat en 8 regions diferents de la pell i en dues 

cohorts de gossos sans. S’han inclòs diferents regions representatives de la diversitat cutània i 

se n’han pogut determinar certes característiques comunes. Entre totes les regions de la pell 

incloses, la cara interna del pavelló auricular és la que presenta valors més grans de diversitat 

mentre que la regió perianal i nasal les que presenten valors més baixos. Tot i això, hem 

detectat que les diferents regions cutànies són més semblants en un mateix individu, tan en 

gossos d’ambient diferents com en gossos vivint en un mateix espai i interaccionant entre ells. 

Per tant, l’efecte individual és el factor més determinant tan de l’estructura com de composició 

del microbioma de la pell dels gossos. Hem d’entendre aquest efecte individual, com un 

conjunt entre l’hoste, el seu ambient i el seu comportament.  

Finalment, hem provat una nova estratègia per caracteritzar el microbioma basada en la 

seqüenciació de tercera generació per nanopors. L’estratègia més usual en l’estudi de 

microbioma està basada en la seqüenciació d’un gen marcador de bacteris i arqueobacteris 

(16S rRNA) utilitzant fragments curts i seqüenciadors de segona generació. La seqüenciació de 
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tercera generació (single-molecule seqüencing) permet seqüenciar fragments més llargs d’ADN, 

permeten analitzar tot el gen marcador sencer. Tot i la baixa precisió de la tècnica escollida, 

hem detectat encara més diversitat en la pell dels gossos i hem pogut assignar la taxonomia a 

nivells inferiors. La tecnologia avaluada té molt de potencial, però probablement altres 

aproximacions experimentals donarien resultats més satisfactoris en l’estudi del microbioma 

mitjançant gens marcadors. 

En conclusió, s’han pogut ampliar els coneixements en la variabilitat pròpia del gos sa sobretot 

a nivell de microbioma de la pell, però també en immunitat innata. Per altra banda, aquest 

projecte de Doctorat Industrial conjunt amb Vetgenomics ha permès obrir i posar a punt una 

nova línia estratègica a l’empresa. 
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Summary 

The community of microorganisms that inhabits a specific environment is named as the 

microbiome. In the last decade, microbiome studies have boosted due to the apparition and 

development of next-generation sequencing (NGS) techniques that allow massive sequencing 

of DNA. This new way of analyzing microbial communities allowed detecting a wide range of 

diversity previously ignored in many different environments, including the body. 

The microbiome associated to different body sites, interacts to host cells and immunity to 

contribute to the host functions as well as promote health. In contrast, in a pathology these 

microbiome-host interactions are altered. 

The aim of this thesis is to define the intrinsic variability of the healthy dog, mainly at skin 

microbiome level, but also at innate immunity. To achieve this goal we use massive sequencing 

techniques and proceed to: i) characterize the innate immunity of healthy dogs at 

polymorphism level in Toll-like Receptors, which are the first sensors of pathogens; ii) 

characterize the skin microbiome of two cohorts of healthy dogs; iii) test the third generation 

sequencing (single-molecule sequencing) by nanopores applied to microbiome studies. 

We characterized the genetic diversity of the Toll-like receptors in a wide population to 

represent the genetic diversity of the canid species (seven different breeds of dogs and two 

populations of wolves). New genetic variants have been discovered and others previously 

identified have also been detected. We designed and validated a genotyping chip with 64 

individual probes to detect some of the variants with a likely effect in the protein (non-

synonymous mutations), since they may be affecting the immune response. 

The skin microbiome in healthy dogs has been evaluated in eight different regions of the skin 

and in two cohorts of healthy dogs. Different regions representing the skin diversity have 

been included and some common trends identified. Among all the skin regions, the inner part 

of the ear presented higher alpha diversity values, whereas nasal and perianal regions 

presented the lowest ones. However, we found that different skin regions on the same dog 

resemble more than the same skin region in different dogs, either in dogs living in different 

environments or in dogs living in the same space and interacting with each other. Therefore, 

the individual effect is the main factor driving the structure and composition of the skin 

microbiome in dogs. We must understand this effect as the individual, together with its 

environment and its behavior. 

Finally, we tested a new strategy to characterize the microbiome based on third generation 

sequencing by nanopores. The usual approach in microbiome studies is targeting of a marker 

gene for bacteria and archaea (16S rRNA) with short primers and second-generation 

sequencers. The third-generation sequencing (single-molecule sequencing) can sequence long 

DNA fragments, and hence analyze the full-length marker gene (1,500 bp). Despite the low 

accuracy of the technique chosen, we were able to detect even more diversity in the skin of 

dogs and we could assign sequences to lower taxonomic levels. The technology assessed has a 
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great potential, but probably other experimental approaches would give better results in the 

study of the microbiome by marker genes. 

In conclusion, we have been able to expand the knowledge on the variability of the healthy 

dog, especially at the skin microbiome level, but also at innate immunity one. Moreover, this 

Industrial Doctorate project together in collaboration with Vetgenomics allowed us to open 

and consolidate a new strategic business area for the company. 
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1. Introduction 

In the present section we will provide an extensive overview of the topics covered in this 

thesis.  

The first part will provide the technical framework needed to fully understand a microbiota 

study, from the experimental design, to the sample collection and extraction, further 

processing and sequencing to the final bioinformatics analyses and interpretation of the 

results.  

The second part will provide the biological background to understand the object of this study, 

which is the skin. It will review skin anatomy and ecology on dogs, as well as genetic variability 

in genes responsible for skin innate immunity.  

The final part of the introduction will review the present state of the art of skin microbiota on 

human and dogs, both in health and in disease.   
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1.1. Conducting a microbiota study 

Microbiome studies have boosted since the apparition of next-generation sequencing (NGS) 

techniques that allow sequencing DNA massively and in parallel to obtain a huge amount of 

data (Kuczynski et al., 2011) (Section 1.1.2). The microbiome is defined as the microbial 

community (bacteria, virus, fungi, etc.) that inhabits a specific environment (Box 1) (Marchesi 

and Ravel, 2015). Thus, a microbiome sample is synonymous of thousands of different DNA 

targets and NGS is the key tool to understand all this complexity. See Box 1 for a collection of 

the main key concepts on microbiome research. 

Microbiome studies can follow either an amplicon-based approach or a shotgun whole 

genome sequencing (WGS) one (Figure 1a). On one hand, amplicon-based approaches aim to 

describe the taxonomic composition and diversity of a community amplifying some regions of 

16S rRNA marker gene, which is highly conserved among prokaryotes but also has 

hypervariable regions that differ among taxa (Section 1.1.1.1.3). On the other hand, WGS 

approach aims to sequence all the DNA present within an ecological niche, thus seeing the 

entire community (bacteria, archaea, fungi, virus, etc.) with all their genes (Kuczynski et al. 

2011; Grice and Segre 2012). This approach gives both taxonomical and functional 

information although it is more expensive and computationally challenging (Luo et al., 2013). 

Once the design of the study is clear and well defined, samples need to be collected using a 

consistent method from the defined skin site/s. Then, researchers should choose the most 

adequate DNA extraction protocol and PCR primer sets for their specific environment, if 

following an amplicon-based approach. After that, DNA is ready to be sequenced using NGS 

techniques. The last step is analyzing the output data using several bioinformatics tools (Figure 

1b).  

In this thesis we have chosen an amplicon-based approach (16S rRNA gene) to study skin 

microbiota in healthy dogs. In the following sections we will provide a more detailed overview 

of the workflow to follow when performing an amplicon-based microbiota study of skin 

samples. We will review step by step the process, from the experimental considerations and 

the main NGS techniques to the data analysis.  
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Figure 1. Performing a microbiota study. In a) main approaches depending on the objective; (from Grice and 

Segre 2012). in b) main steps of a skin microbiota study (adapted from Kong et al. 2017). 
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Box 1. Summary of the main nomenclature used on microbiota studies. 

Microbiome Collection of microorganisms together with their genes, 

in a defined microenvironment 

Microbiota Collection of microorganisms in a defined 

microenvironment 

Metagenome Collection of genes and genomes present in a defined 

microenvironment obtained with WGS approaches. 

Whole genome shotgun 

sequencing (WGS) 

From each defined microenvironment DNA is 

collected, which can contain bacteria, fungi, viruses and 

even host DNA. This DNA is randomly sheared into 

small pieces and sequenced. Afterwards, they are 

assembled into continuous longer sequences. 

16S rRNA sequencing 16S rRNA gene is universal among prokaryotes and can 

be used to taxonomically classify bacteria. This 

taxonomic resolution comes from its gene structure: 

nine hypervariable regions surrounded by highly 

conserved regions. 

Operational Taxonomic Unit 

(OTU) 

Cluster of microorganisms that have similar DNA 

sequences on a taxonomic marker gene at specific 

threshold (97%, 99%, etc.). They are usually 

representing a specific bacterial species or taxon. 

Taxonomic microbial 

composition 

Relative abundances of different microorganisms of the 

microbiota. 

Alpha diversity Measures the number and distribution of OTUs (~taxa) 

within a unique sample. 

  Richness Alpha diversity metrics that consider only the number 

of OTUs (e.g. Observed species) 

  Evenness Alpha diversity metrics that consider the number of 

OTUs and their relative abundances (e.g. Shannon 

index) 

Beta diversity Measures the similarity (~shared OTUs) between 

bacterial communities. It computes distance matrices 

that can be plotted. 

  Unweighted UniFrac Beta diversity metrics to assess divergences in 

microbiota composition (phylogeny and 

presence/absence of OTUs). 

  Weighted UniFrac Beta diversity metrics to assess divergences in 

microbiota structure (phylogeny, presence/absence of 

OTUs and relative abundances). 
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1.1.1. Experimental considerations 

Microbiome studies using next-generation sequencing need to be designed considering many 

technical variables (Kuczynski et al., 2011; Rogers and Bruce, 2010). Researchers have seen 

divergences on microbiome composition depending on: sample collection and storage 

(Dominianni et al., 2014); DNA extraction protocols (Wagner Mackenzie et al., 2015; 

Wesolowska-Andersen et al., 2014); primers chosen for amplification (Kuczynski et al., 2011; 

Meisel et al., 2016); sequencing platform used (Castelino et al., 2017; Clooney et al., 2016; 

Fouhy et al., 2016) or even clustering method employed on the bioinformatics analyses 

(Kopylova et al., 2016; Schmidt et al., 2014, 2015).  

Skin microbiota samples are more challenging to process than those from other body sites 

(Kong et al., 2017). Thus, researchers have to deal with some extra factors such as: low 

microbial biomass linked with a higher risk of sample contamination (Salter et al., 2014); or 

the fact that skin has different microenvironments and harbors site-specific microbiota 

(Costello et al. 2009; Grice et al. 2009). At least, sample collection methods (Chng et al. 2016; 

Grice et al. 2008) or storage conditions (Lauber et al., 2010) seem not to be affecting 

significantly skin microbiota structure or composition. 

In this dissertation most of the experimental factors were chosen following the recommended 

procedures of the Human Microbiome Project consortium (Human Microbiome Project 

Consortium., 2012). 

1.1.1.1. Microbiota study design  

The first step when performing a microbiota study is the study design, which needs to be 

appropriate to answer the research question. On one hand, cross-sectional studies including 

different skin sites allow describing and assessing skin microbiota variability and diversity on 

healthy individuals. Cross-sectional studies can also be case-control studies for assessing skin 

microbiota changes during a dermatological disease or any other disruption that affects the 

skin. On the other hand, longitudinal studies will allow assessing skin microbiota stability 

through time, either under normal conditions or under any disruption (disease, environmental 

change). 

Cross-sectional studies targeting healthy skin are found in the early stages of the microbiota 

research and allow creating a background and determining the normal variability of the skin 

microbiota. In human skin microbiota, first studies assessed the normal variability on healthy 

individuals using a cross-sectional approach (Grice et al. 2009; Costello et al. 2009). On dog 

skin microbiota, only one study aimed to assess the normal variability of different skin sites in 

healthy dogs (Rodrigues Hoffmann et al., 2014). Later on, we can find more case-control and 

longitudinal studies aimed to assess altered states. 

Besides choosing an appropriate study design, one should also define the target population. 

To do that, the researcher needs to define which metadata to collect, inclusion and exclusion 

criteria, and sample size.  
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Assessment of the metadata is really important on a microbiota study, to account for possible 

confounder factors. Commonly collected metadata include age, sex, antibiotic use, and 

sampling sites, but also other factors may influence the skin microbiome, such as cohabitation, 

hygiene, season, time of day, country of birth, mode of delivery, or diet (Kong et al., 2017). 

Moreover, inclusion and exclusion criteria that define the study population should be very well 

defined and also the appropriate cohort sample size to reach significant results should be 

previously estimated (Kong et al., 2017). Some approaches and tools have been proposed to 

assess the suitable sample size (Kelly et al., 2015; La Rosa et al., 2012) 

(https://github.com/biocore/Evident). 

 

1.1.1.2. DNA extraction 

Microbiota harbors a wide range of microorganisms with different characteristics, so a robust 

protocol to extract DNA of all the representatives is needed. For example, gram-positive 

bacteria present a cell wall with thick layers of peptidoglycan difficult to break. These 

differences in cell wall composition can cause bacterial cell lysis to be less efficient on gram-

positive bacteria, and that in turn can distort the apparent microbiota composition and 

diversity (Kong et al., 2017; Yuan et al., 2012).  

Thus, to avoid this bias different researchers have evaluated the effect of adding a mechanical 

disruption step by bead beating to the conventional DNA extraction procedure, which had led 

to improved results (Albertsen et al., 2015; Santiago et al., 2014; Sergeant et al., 2012; Walker 

et al., 2015; Yuan et al., 2012). After the lysis, DNA can be purified by alcohol precipitation or 

by binding to affinity columns. 

 

1.1.1.3. Amplicon-based approach: 16S RNA marker gene 

The 16S small ribosomal subunit gene (16S rRNA) is the most widely used marker gene for 

microbiota studies(Kuczynski et al., 2011), due to: (1) it is a gene ubiquitously found in 

bacteria and archaea; (2) its structure includes both conserved regions, which can be used for 

designing “universal” amplification primers, as well as nine hypervariable regions (V1-V9), 

which can be effectively used to distinguish among taxa (Clarridge, 2004) (Figure 2); (3) it has 

several large databases of reference sequences and taxonomies, such as Greengenes (DeSantis 

et al., 2006; McDonald et al., 2012), SILVA (Quast et al., 2013) or the Ribosomal Database 

Project (Cole et al., 2014). 
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Figure 2. 16S rRNA marker gene. a) 16S rRNA gene secondary structure with hypervariable regions indicated 
(from Yarza et al. 2014); and b) 16S rRNA gene scheme with the most widely used primers for microbiota 
assessment (modified from Kuczynski et al. 2011).  
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When working with 16S rRNA gene to assign taxonomy, different similarity thresholds are 

applied to define a bacterial species. Archaeal and bacterial species were classically defined as a 

group of strains with: (a) certain degree of phenotypic consistency, (b) 70% of DNA–DNA 

hybridization and (c) at least 97% of gene-sequence identity on their 16S rRNA (Gevers et al., 

2005). Later, another characteristic was added: (d) 94 - 96% of average sequence identities of 

shared genes (Richter and Rossello-Mora, 2009). 

When focusing on 16S rRNA gene to define a species, the 97% identity cut-off was not 

enough within some bacterial genera to discriminate among different species and several 

researchers proposed that a 98.7% similarity threshold was more adequate (Stackebrandt and 

Ebers, 2006; Yarza et al., 2014). This identity cut-off should probably be adapted within each 

bacterial genus (Rossi-Tamisier et al., 2015).  

The most commonly used strategy to assess microbiota composition is sequencing specific 

hypervariable regions of 16S rRNA gene and clustering the sequences using a similarity 

threshold of 97%. Thus, many authors assessed the specificity and universality of several 16S 

primers sets (Chakravorty et al., 2007; Jumpstart Consortium Human Microbiome Project 

Data Generation Working Group, 2012; Klindworth et al., 2013; Kuczynski et al., 2011; 

Mizrahi-Man et al., 2013). These 16S hypervariable regions are sequenced using NGS 

platforms, which are classified as 2nd or 3rd generation platforms (reviewed in Section 1.1.2), 

depending on the sequencing technology they use.  

On one hand, 2nd generation sequencers have sequencing length limitations, so researchers 

have to choose primers targeting specific hypervariable regions to obtain short amplicons. 

Among the different options, the most universal primer set is F515-R806 (region V4) that 

captures both bacteria and archaea. However, it fails to amplify Propionibacterium, which is an 

abundant genus on the skin, thus in this dissertation we have worked with F27-F338 (region 

V1-V2), which was more suitable for our skin microbiota samples (Kuczynski et al., 2011; 

Walters et al., 2011).  

On the other hand, 3rd generation sequencers can sequence long reads, so researchers choose 

amplifying the full (or almost full) length 16S rRNA gene using several universal primers 

(Klindworth et al., 2013). This approach gives a better and more accurate assessment of 

taxonomic diversity (Yarza et al., 2014). Here in this dissertation we used mainly primer set 

F27-R1492 (region V1-V9) and also F27-R1391 (region V1-V8) when testing Oxford 

Nanopore MinION™ 3rd generation sequencer. These two primer sets have low non-coverage 

rates even at phylum level being a good choice to assess microbiota diversity (Mao et al., 

2012). 
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1.1.2. Next generation sequencing (NGS)  

Once the sample has been successfully processed, the next step is transforming the DNA into 

data. The development of NGS has allowed obtaining huge amount of data in short periods 

of time, although with higher associated error rates (~0.1–15%) when compared to classical 

Sanger sequencing (Goodwin et al., 2016).  

Main aspects to consider when choosing the appropriate sequencing platform for a specific 

study are: length of the reads; number of the reads (sequencing depth); and error rate and type 

(Vincent et al., 2016). The length of the reads is linked to the amount of information obtained 

from a single molecule, which is particularly significant when the aim is to phylogenetically 

differentiate 16S rRNA gene fragments (Jumpstart Consortium Human Microbiome Project 

Data Generation Working Group, 2012; Schloss et al., 2016a). The total number of reads is 

the most important parameter for quantitative applications (Vincent et al., 2016), such as 

determining the microbiota diversity and composition. The combination of read length and 

number of reads defines the throughput of an instrument in number of bases per run. Both 

the error rate and the different types of errors are specific of each sequencing technology and 

can be minimized with an increased coverage (Vincent et al., 2016)(Goodwin et al., 2016). 

Conventionally NGS platforms have been divided in two groups: 2nd and 3rd generation 

platforms. 2nd generation sequencing aim is to obtain large amounts of data by massive 

sequencing in parallel millions of short reads at an affordable cost. The sequencing process 

requires a previous PCR-amplification of the DNA. In contrast, 3rd generation platforms use a 

single-molecule real-time sequencing approach, which means that they can sequence individual 

DNA molecules avoiding the necessity of PCR amplification and its associated bias. Another 

advantage is their ability to sequence long fragments (Glenn, 2011; Goodwin et al., 2016; 

Mardis, 2017). 

Some of the most commonly used platforms of 2nd generation sequencing are 454, Illumina 

and Ion Torrent, which have some common and distinctive traits (Figure 3). The first step in 

the sequencing process is the library preparation, were the DNA is fragmented and the 

sequencing adaptors ligated. The following step is the clonal amplification of the individual 

DNA fragments that can be bead-based (454 and Ion Torrent) or solid-state (Illumina). The 

last step is the sequencing process itself. 

Both 454 and Ion Torrent perform a bead-based amplification prior to sequencing, where 

each DNA molecule is immobilized in a single bead and clonally amplified using emulsion 

PCR (emPCR) (Figure 3b.1) (Dressman et al., 2003). In the case of Illumina a solid-state 

amplification is used with covalently bound forward and reverse primers where DNA 

molecules attach and clonally amplify forming clusters of sequences (Figure 3c.1).  
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Figure 3. 2nd generation sequencing platforms and chemistries. a) Chronological timeline with the 
launching dates of the main platforms. In b) 454 and Ion Torrent sequencing technologies: b.1) bead-based 
clonal amplification, prior to b.2) 454 sequencing or b.3) Ion Torrent sequencing. In c) Illumina sequencing 
technology: c.1) solid-state clonal amplification (bridge amplification) prior to c.2) sequencing with Illumina and 
its sequencing strategy (Figure modified from Goodwin, McPherson, and McCombie 2016) 
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The three 2nd generation platforms reviewed here use sequencing by synthesis (SBS) 

approaches, so they rely on DNA polymerases. They differ mainly on the sequencing 

chemistry and the produced secondary signals.  

- 454 pyrosequencing (Figure 3b.2) was the first 2nd generation platform that 

successfully achieved commercial introduction, and it was released on 2004 (Mardis, 

2017). Once a polymerase incorporates a dNTP into a strand, it releases a 

pyrophosphate molecule that produces a bioluminescence signal through an enzymatic 

cascade. Differences on light signal intensity will indicate how many dNTPs are 

incorporated, which sometimes can lead to homopolymer errors (Goodwin et al., 

2016). 

    

- IonTorrent PGM (Figure 3b.3) was the first 2nd generation platform to sequence 

without optical sensing (Rothberg et al., 2011). Once a polymerase incorporates a 

nucleotide to a sequence, a proton (H+) is liberated producing a measurable change in 

the pH. The pH change is detected through a sensor and it is proportional to the 

number of nucleotides incorporated. However, it is not perfectly linear and presents 

certain problems with homopolymers (Goodwin et al., 2016; Morey et al., 2013). 

 

- In Illumina platforms (Figure 3c.2), each nucleotide is labeled with a base-specific 

cleavable fluorophore and then blocked, which allows incorporating one nucleotide 

per cycle. The posterior identification is achieved through total internal reflection 

fluorescence (TIRF) microscopy (Goodwin et al., 2016). Among the different Illumina 

platforms, the most commonly used in microbiota studies is MiSeq. 

 

Main limitations of 2nd generation platforms in a microbiota project are: i) the short read 

length, which makes difficult the correct taxonomic classification up to species level using 

specific hypervariable regions of 16S rRNA (Schloss et al., 2016a); and ii) the need of a PCR-

amplification step previous to sequencing, which can bias the original microbiota composition 

of an specific environment. 3rd generation sequencers emerged to overcome some of these 

limitations. Nowadays, the  main technologies and sequencers in the market are: Single 

Molecule Real Time Sequencing from Pacific Biosciences (PacBio RS II platform) and Single-

Molecule Nanopore sequencing from Oxford Nanopore Technologies (ONT: MinION, 

GridION and PromethION platforms) (Glenn, 2011; Goodwin et al., 2016; Heather and 

Chain, 2016; Mardis, 2017). The main aim of these platforms is sequencing single molecules at 

real-time, without short-length limitation and high-throughput, although lower than 2nd 

generation platforms.  
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Figure 4. 3rd generation sequencing platforms and chemistries. a) Chronological timeline with the launching 
of the main platforms. In b) Pacific Biosciences and c) Oxford Nanopore Technologies sequencing. (Figure 
modified from Goodwin, McPherson, and McCombie 2016)  
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Sequencing technologies behind these two sequencers are very different: while PacBio 

continues using sequencing by synthesis, Oxford Nanopore Technology relies on direct-

sequencing through nanopores. More detailed: 

- Pacific Biosciences (PacBio, http://www.pacb.com/) platform is based on the single-

molecule real-time (SMRT) sequencing approach (Eid et al., 2009). DNA molecules 

will be sequenced in SMRT-bell structure, which consists on a double-stranded region 

(DNA insert of interest) ligated with a single-stranded hairpin loop on both ends that 

provides a binding site for the primer. This structure enables multiple passes of the 

polymerase per DNA molecule, increasing the accuracy by creating a circular 

consensus sequence (CCS) (Travers et al., 2010). Sequencing reactions take place in 

picoliter wells called zero-mode waveguides (ZMW) (Levene et al., 2003) that have in 

their transparent bottom a fixed polymerase. By having a constant location of 

nucleotide incorporation, the optical system can focus on a single molecule and once a 

fluorophore is cleaved it diffuses away from the sensor. Thus, each dNTP 

incorporated on a single-molecule template emits a light that is continuously recorded 

and later basecalled (converted) to a DNA read (Goodwin et al., 2016). 

 

- Oxford Nanopore Technologies (ONT, https://nanoporetech.com) launched in 2014 

a small, USB-like, portable sequencer based on nanopore sequencing: MinION™ (Ip 

et al., 2015). Unlike other technologies, nanopore sequencing directly detects the DNA 

composition of a native single strand DNA molecule rather than a secondary signal 

(light, pH, colour, etc.) derived from the synthesis of a complementary strand 

(Goodwin et al., 2016). A DNA strand is sequenced as it passes through the nanopore 

while electrical current passes through the pore (Clarke et al., 2009). DNA molecules 

passing through the nanopore produce blockages in electrical conductivity that can be 

used to discriminate individual nucleotides (Olasagasti et al., 2010; Wang et al., 2015). 

Each subset of nucleotide bases (k-mer) translocating through the nanopore produces 

a unique shift of voltage called squiggle, which is the raw signal that will be basecalled to 

a DNA read. DNA template used in ONT platforms presents a leader sequence that 

interacts with the nanopore to direct the DNA through it, and a hairpin that joins the 

template and complement DNA strands when performing bidirectional sequencing 

with 2D chemistry (Goodwin et al., 2016)(Goodwin et al., 2016). Since May 2017, 2D 

sequencing chemistry has been discontinued and 1D2 is replacing it. This new 

sequencing strategy does not require a hairpin anymore, avoiding secondary structure 

problems and improving accuracy and throughput (Brown, 2017). 
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Several reviews aimed to compare different sequencing technologies available on the market 

from different perspectives (van Dijk et al., 2014; Glenn, 2011; Goodwin et al., 2016; Loman 

et al., 2012; Morey et al., 2013; Reuter et al., 2015; Vincent et al., 2016). In general, 3rd 

generation sequencers allow obtaining longer reads but they present higher error rates when 

compared to 2nd generation sequencers. Some other divergences can be found in Table 1.  

Table 1. Main sequencing platforms used in microbiota studies and their main characteristics. 

Platform 
Type of 
instrument 

Amplification 
Sequencing 
chemistry 

Secondary 
signal 

Read length 
(bp) 

Ion Torrent PGM Benchtop emPCR Synthesis H+ (pH change) 200-400 

Illumina MiSeq Benchtop solid-state Synthesis Light 150-300 

454 Roche Benchtop emPCR Synthesis Light 400-650 

PacBio RS High-end machine  - Synthesis Light up to 60,000 

MinION Portable - - - ultra-long reads* 

 

*Nanopore sequencing read length is only limited by high-molecular weight DNA extraction, the longest read 

obtained at date 16/05/2017 is close to 1 Mb by Josh Quick & Nick Loman (Quick and Loman, 2017). 

In this dissertation, we work with data from Ion Torrent PGM™ to assess skin microbiota 

composition (Chapter 3.2 and 3.3). Moreover, we assess the potential of nanopore sequencing 

at technical level for microbiota studies using MinION™ by ONT (chapter 3.4).  

 

1.1.3. Bioinformatics analysis 

The starting point of a microbiota bioinformatics analysis is the raw data obtained from the 

sequencing platform. In this dissertation, we have mainly worked with output from Ion 

Torrent PGM™ (as a 2nd generation sequencer). Moreover, we have also tested nanopore 

sequencing using MinION™ (as a 3rd generation sequencer). For more details on nanopore 

data processing see Chapter 3.4. 

In this section, we will cover the main analytical steps performed in a microbiota study 

illustrating them with the bioinformatics tools and the metrics used in this thesis.  

Usually microbiota studies rely on pipelines that gather together many different bioinformatics 

tools. In this thesis, we mainly used Quantitative Insights Into Microbial Ecology (QIIME 

v1.9.1) (Caporaso et al., 2010a) and in Chapter 3.3 also VSEARCH in some steps (Rognes et 

al., 2016a). Another equivalent and widely used pipeline is mothur although we have not used it 

(Schloss et al., 2009).  

The analytical workflow is divided in three main steps: (i) pre-processing of the sequences, (ii) 

operational taxonomic unit (OTU) picking and OTU table building and (iii) downstream 

analysis (Figure 5).  
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This taxonomic-based analysis can be completed with tools predicting the functional potential 

of the microbial community. We have used Phylogenetic Investigation of Communities by 

Reconstruction of Unobserved States (PICRUSt) (Langille et al., 2013), but other tools such as 

Tax4fun (Aßhauer et al., 2015) and PanFP (Jun et al., 2015) can be used for the same aim. 

Finally, Linear Discriminant Analysis Effect Size (LEfSe) (Segata et al., 2011)) software is 

usually used to assess statistically which taxa is under or overrepresented between different 

groups of samples. 

 

Figure 5. Overview of the bioinformatics workflow used in this thesis to analyze the microbiota. 
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1.1.3.1. Pre-processing step 

Each Ion Torrent PGM™ run contains a pool of several barcoded samples, with an average 

length of 350 bp for primers 27F-R338R targeting V1-V2 regions of 16S rRNA gene. Raw 

data from Ion Torrent PGM™ is given demultiplexed, which means separated by barcodes, 

thus we have a unique file per sample included in the run. 

The pre-processing steps are performed using Quantitative Insights Into Microbial Ecology 

(QIIME v1.9.1) software (Caporaso et al., 2010a). We need two input files, one containing the 

DNA sequences and the other its associated metadata. Whereas the DNA sequences are the 

output of Ion Torrent, the mapping file with all the metadata needs to be created by the 

researcher. This should contain all the technical information and metadata about the samples: 

sample ID, forward and reverse primers, treatment, description, age, or any other relevant 

information. 

The following step is merging the sequencing file with the mapping file for each sample. 

Reading the information on the mapping file, the script trims the primers and labels the 

sequences with their sample ID.  

Moreover, this script performs the initial quality control of the sequences discarding those 

ones shorter than 300 bp, with quality phred scores below 25, with mismatches on the primer 

and other default parameters (script: split_libraries.py).  

1.1.3.2. Operational taxonomic unit (OTU) picking and OTU table building 

The basic unit when working with 16S data is the Operational Taxonomic Unit (OTU), which 

is constituted by a group of sequences that share a certain percentage of similarity. Usually 

sequences with 97% of similarity are clustered together constituting an OTU, but other 

percentages have been proposed.  

There are two main strategies to pick OTUs: de novo, which clusters the sequences among 

them considering a specific percentage of similarity (97% of similarity in our studies); and 

closed, which clusters the sequences against a reference database (previously clustered at the 

similarity threshold chosen). The first approach allows all the sequences to be clustered, 

although it is usually computationally expensive. The second approach is faster, but sequences 

that are not in the database are excluded for further analysis. QIIME preferred option is a 

combined one, which is called open reference: It first clusters the sequences against a database 

and the ones that do not match are clustered de novo among them (Rideout et al., 2014). We 

have used both open and closed reference approaches in Chapter 3.2, see further details in 

material and methods section (script: pick_open_references_otus.py). When working with 

VSEARCH (Rognes et al., 2016b) we have used the de novo strategy because it runs faster than 

its homologous in QIIME. See further details in Chapter 3.3, in the material and methods 

section. 

Chimeras are amplification artifacts really common in microbiota surveys (Ashelford et al., 

2005), due to the large amount of PCR targets within a single reaction. Thus, an aborted 
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extension can work as a primer for another target forming a chimeric artifact. If chimeras are 

not removed from the data, they are incorrectly identified as novel taxa and that leads to an 

inflated microbial diversity (Ashelford et al., 2005; Haas et al., 2011). Chimeric artifacts can be 

minimized by the correct choice of 16S rRNA primers and an adjusted number of PCR cycles 

among others (Schloss et al., 2011). Moreover, once you have already sequenced the data, 

several bioinformatics tools have been designed to identify chimeric sequences and remove 

them. Here we have used ChimeraSlayer (Haas et al., 2011) after OTU picking on QIIME and 

UCHIME (Edgar et al., 2011) in VSEARCH pipeline.  

Once we have picked OTUs and removed the invalid and low-quality sequences from the 

analysis, we assign the taxonomy to our sequences as well as align them to create a 

phylogenetic tree. Taxonomic assignment of the OTUs is performed using the RDP Classifier 

(Wang et al., 2007) against Greengenes v13.8 database (DeSantis et al., 2006; McDonald et al., 

2012). Alignment of sequences is performed using PyNast (Caporaso et al., 2010b) as default 

in QIIME pipeline. 

 

1.1.3.3. Downstream analysis 

1.1.3.3.1. Taxa summary 

The simplest way to describe a microbial community is with a list of the bacteria together with 

their abundances, which are usually plotted in bar graphs.  

V1 and V2 hypervariable regions of 16S allow classification of the sequences mostly up to 

family level, some of them even up to the genus level. Taxa analysis can be summarized at a 

specific taxonomic level or can be global.  

1.1.3.3.2. Microbial ecology measures: alpha and beta diversity 

Microbial diversity is assessed using metrics that can take into account: OTU counts, relative 

abundances and/or phylogenetic information. When bacterial community diversity is assessed 

within a community, it is called alpha diversity. On the other hand, when bacterial diversity is 

compared and assessed among different communities, it is called beta diversity.  

Many different ecological indexes have been described for assessing both alpha and beta 

diversity, which can be classified depending on which properties they take into account: (1) 

qualitative, when only presence/absence data is considered; or  (2) quantitative, when also 

relative abundances are taken into account; they can also be (3) species-based, when different 

taxa are treated as equally related; or (4) divergence-based, when phylogenetic distances among 

each pair of taxa are considered (Lozupone and Knight, 2008, 2007). 

In this dissertation we choose two species-based methods to assess alpha diversity: Observed 

species (qualitative) and Shannon index (quantitative) (Shannon and Weaver, 1949). On the 

other hand, for beta diversity analysis we choose two divergence-based methods: Unweighted 
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UniFrac (qualitative) (Lozupone and Knight, 2005) and Weighted UniFrac (quantitative) 

(Lozupone et al., 2011). 

Alpha diversity 

Alpha diversity assesses diversity within a community. As a qualitative index we used 

Observed Species metric, which assesses richness of the sample by simply counting the unique 

OTUs found. As a quantitative index we used Shannon index (Shannon and Weaver, 1949), 

which assesses the evenness of a sample. Shannon index value gets larger as the number of 

species increases and as the distribution of species becomes even. 

Alpha diversity is usually highly dependent on sequencing depth. For that reason, it is 

common to use rarefaction curves to show the cumulative number of species as a function of 

sampling depth (Figure 6a and 6b)(Hughes and Hellmann, 2005). Consequently alpha diversity 

should always be given at a specific sequencing depth. Alpha diversity values can be 

represented in tables, or in plots similar to those shown in Figure 6. 

Finally, as an example to better understand the concepts, we should now have a look at Figure 

6. We have a study cohort of nine samples that belong to two groups (A in red and B in blue). 

In Figure 6a we can see the rarefaction curves of all the samples included in one study, and 

despite presenting uneven sequencing depths, all reach the sequencing depth of 8,300 reads 

per sample. So, we decide to work at this sequencing depth and now we group the samples 

from the same group together and create a second rarefaction plot (Figure 6b). Finally, we can 

visually compare groups using boxplots (Figure 6c) and even assess statistical significance 

using non-parametric tests, e.g. Monte Carlo permutation test. 
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Figure 6. Alpha diversity plots. Red and blue represent two different biological categories. a) Alpha diversity 
rarefaction plot of all the samples at their own sequencing depth; all the samples reach 8,300 sequences per 
sample so further analyses are performed at this depth. b) Alpha diversity rarefaction plot of the two groups. c) 
Boxplots representing alpha diversity values distribution within each group. 

 

Beta diversity 

Beta diversity assesses differences among bacterial communities computing distance matrices 

that can be combined with multivariate statistical techniques, such as principal coordinate 

analysis (PCoA) and hierarchical clustering. These statistical analyses allow plotting the results 

graphically as well as detecting patterns and clusters of samples.  

Because sample depth can affect beta diversity results and to prove its robustness, it is always 

recommended to apply a jackknifing protocol. Jackknifing consists on subsampling randomly 

and repeatedly the initial sample using a specific sequencing depth (Zahl, 1977). 
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In this dissertation, we choose UniFrac metrics that takes into account the phylogenetic 

distance among bacteria. Thus, two communities sharing similar phylogenetic lineages will be 

more similar, despite not sharing the same exact species. 

UniFrac distance matrix (Lozupone and Knight, 2005) measures the phylogenetic distance 

between two collections of sequences as the fraction of branch length in a phylogenetic tree 

that leads to descendants of one sample or the other, but not both. Besides phylogenetic 

information, when these metrics consider only the presence and absence of the different 

bacteria found in the community it is called Unweighted UniFrac, whereas when they take into 

account relative abundances it is called Weighted UniFrac (Figure 7) (Lozupone et al., 2007).  

 

Figure 7. Unweighted and Weighted UniFrac metrics plots. Beta diversity represents distances among the 
bacterial communities using either UPGMA trees or PCoA plots. Bacterial community B has the same bacterial 
species as bacterial community C, A presents one more species. On the other hand A and B present similar 
relative abundances of the main bacteria, whereas C presents a predominant bacterium. a) Unweighted UniFrac, 
which only considers composition and phylogeny, B and C will be more similar and b) Weighted UniFrac, which 
also considers relative abundances, A and B will be more similar. 
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To assess the extent and significance of the clustering of the samples regarding a specific 

grouping variable, non-parametric statistical tests such as ANOSIM (analysis of 

similarities)(Clarke, 1993) and adonis are commonly used. ANOSIM test give an R value that 

when it is closer to +1 means that the dissimilarity among groups is high, whereas when it is 

closer to 0 means that there is no grouping based in that variable. Adonis test computes an R2 

value (effect size) that shows the percentage of variation explained by the grouping category. 

Both tests also output a p-value to determine the statistical significance. 

 

1.1.3.3.3. Functional prediction using PICRUSt 

Profiling 16S rRNA gene is a widely used method to provide insights into microbial 

community, although a more complete view would include information about community’s 

functional capabilities. This can be achieved with metagenomics approaches, but when only 

16S data is available it is also possible by predictive tools such as PICRUSt (Langille et al., 

2013). 

PICRUSt needs an OTU table obtained through a closed reference approach, since the 

prediction is based on a reference database. The first step is normalizing the OTU table by 

dividing the OTU counts by predicted marker gene copy number. The second step is inferring 

metagenomes, multiplying the inferred number of OTUs per sample by the predicted gene 

content. The final output is a matrix of the gene count with samples as columns and 

functional pathways as rows (Figure 8). 

To assess the reliability of the software, Langille and colleagues used this tool with the Human 

Microbiome Project dataset (Human Microbiome Project Consortium, 2012) obtaining 

sufficiently accurate results, even for skin samples (Langille et al., 2013). 

 

 

 

Figure 8. The PICRUSt workflow. The metagenome inference workflow takes a closed-reference OTU table, 
as well as the copy number of the marker gene in each OTU and the gene content of each OTU and outputs a 
metagenome table (i.e., counts of functional pathways per sample) (Figure adapted from Langille et al. 2013). 
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1.1.3.3.4. Detecting differentially distributed features using LEfSe 

In both taxonomic and predicted functions analyses, we usually want to assess which features 

are statistically different among groups. To assess that, here in this dissertation we choose to 

use Linear Discriminant Analysis (LDA) Effect Size (LEfSe) algorithm (Segata et al., 2011). 

LEfSe algorithm first uses the non-parametric factorial Kruskal-Wallis (KW) sum-rank test 

(Kruskal and Wallis, 1952) to identify features that are statistically different among biological 

classes. Biological significance is subsequently assessed using a set of pairwise tests among 

subclasses (when provided). As a last step, LEfSe uses Linear Discriminant Analysis (Fisher, 

1936) to estimate the effect size of each differentially abundant feature. 

1.1.3.3.5. Building ecological networks using CoNet 

The microbiome is a complex ecosystem where microbes compete and cooperate. These 

microbial interactions can support health or promote disease. Thus identifying and 

characterizing them will allow us to better understand microbial dynamics. 

We used CoNet software (Faust and Raes, 2016) in Chapter 3.3, which is implemented as an 

application in Cytoscape (Shannon et al., 2003), to obtain an overview of the microbial 

dynamics underlying canine skin microbiota.  

The input file needed is an OTU table that will be first pre-processed normalizing the data and 

removing the taxa with too many zero values, which can lead to spurious interactions. In the 

next step, you can select the methods used to compute the networks that can be correlations, 

similarities and/or dissimilarities metrics. Most of these association measures allow assigning a 

positive or negative sign to a predicted relationship, which will be plotted on the network 

using a green or red edge respectively. The recommended approach is to choose multiple 

metrics and then combine networks, and if in any edge measures disagree on the sign, it is 

discarded (Faust and Raes, 2016).  
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1.2. Overview of the skin  

Skin is an anatomical barrier that separates the animal from the outer environment. However, 

it is not only an anatomical barrier but also a living barrier, covered by thousands of 

microorganisms that cross-talk with the host cells as well as the immune system, maintaining 

the homeostasis and equilibrium (Naik et al., 2012a). Besides being a physical and 

immunological barrier, skin also percepts different kind of stimuli; facilitates motion and gives 

shape; produces adnexa (such as sweat and sebaceous glands, claws or hairs); regulates body 

temperature; stores fat, proteins, vitamins or water among others; may indicate the general 

health status or sexual identity; gives pigmentation; has antimicrobial properties; produces 

vitamin D; and secretes and excretes (Miller et al., 2013). 

The object of study in this dissertation is the skin, so we will delve into its anatomy and 

physiology as well as into its cellular composition and histology. Finally we will provide some 

background on skin innate immune functions and specifically Toll-like Receptors as the first 

sensors of microbes.  
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1.2.1. Anatomy and physiology of the canine skin 

On dogs, a dense hair coat, also named fur, covers the skin. The hair coat insulates the skin 

thermally and sense stimuli, as well as protects the skin against chemical, physical and 

microbial damage (Miller et al., 2013). Breeds have been classified regarding their hair coat 

length in four main groups: short, wire, long, and curly. These phenotypes and some 

combinations and variations have been associated to alleles located in three genes: FGF5, 

RSPO2 and KRT71 (Figure 9) (Cadieu et al., 2009). 

 

Figure 9. Hair coat phenotypes on dogs. Different combinations of alleles located on FGF5, RSPO2 and KRT71 genes 
produce most of the hair coat phenotypes on dogs (Figure from Cadieu et al. 2009) 

Both the skin and the hair coat vary dynamically within individual canine species in quantity 

and quality depending on many factors such as the age, the sex, the skin site, the breed and 

even the individual (Miller et al., 2013). Daily growth rate of the hair shaft is both season 

dependent –being greater during the colder season– and site dependent (Al-Bagdadi, 2013). 

In general, skin thickness decreases dorsally to ventrally on the trunk and proximally to distally 

on the limbs. Thus, the hair coat is usually thickest over the dorsolateral regions of the body 

and thinnest ventrally, on the concave part of the pinnae and on the undersurface of the tail 

(Miller et al., 2013; Scott et al., 1995). 

The skin of haired mammals is usually acidic, however normal pH values on dog skin have 

been reported to range from 4.84 to 9.95 (Miller et al., 2013). A dynamic study assessing pH 

on healthy dogs (Ruedisueli et al., 1998) reported that: 1) pH values differ day to day and 

among skin sites; 2) males and spayed females had significantly higher pH values on all skin 

sites than females and intact females, respectively; 3) black Labrador retrievers had 

significantly higher pH values than yellow ones; and 4) some breeds had significantly different 

pH values when compared to other breeds. 
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1.2.2. Histology of the canine skin 

Three main cellular layers constitute the dog skin: the epidermis, the dermis and the 

hypodermis (or subcutis). Moreover, the skin presents invaginations and appendages that go 

from the deep dermis to the skin surface, being the main ones sweat and sebaceous glands and 

hair follicles (Miller et al., 2013). 

 

1.2.2.1. The epidermis 

The epidermis is mostly constituted by keratinocytes (~85% of the epidermal cells), followed 

by Langerhans cells (~3-8%), melanocytes (~5%) and Merkel cells (~2%) (Figure 10) (Miller 

et al., 2013). Keratinocytes and Langerhans cells are members of the skin immune system, 

being the keratinocytes the first line of defense against invading pathogens (Suter et al., 2009) 

whereas Langerhans cells are antigen-presenting cells (White and Yager, 1995). Melanocytes 

are the pigment (melanin) producers and Merkel cells are mechanoreceptors involved in light 

touch sensation (Miller et al., 2013). 

The epidermis of the dog is usually subdivided into four to five cell layers anchored to the 

dermis: the stratum basale, the stratum spinosum, the stratum granulosum, the stratum lucidum and the 

stratum corneum (Figure 10). Each epidermic layer is mainly representing different maturation 

stages of the keratinocytes (Miller et al., 2013). 

 

Figure 10. Skin anatomy and main cells. The epidermis is constituted by keratinocytes at different stages and 
they form layers called the stratum basale, the stratum spinosum, the stratum granulosum and the outermost 
layer, the stratum corneum. Specialized cells in the epidermis include melanocytes, which produce pigment 
(melanin), and Langerhans cells (Figure modified from Nestle et al. 2009). 

Stratum basale is made of a single layer of columnar cells, mostly of them dividing and non-

dividing keratinocytes. As basal keratinocytes reproduce and mature, they move towards the 
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outer layer of skin, initially forming the stratum spinosum. In this layer, keratinocytes are 

connected one to other through intercellular bridges. Continuing their transition to the surface 

the keratinocytes of the stratum granulosum flatten, their nuclei are reduced and their cytoplasm 

appears granular (Miller et al., 2013). Stratum lucidum is only present in footpads and nasal 

planum, and it is a fully keratinized compact layer of dead cells (Schwarz et al., 1979). Finally, 

the stratum corneum is made of non-viable terminally differentiated keratinocytes known as 

corneocytes. These cells (bricks) are embedded in a lipid-rich matrix (mortar) which helps to 

hold them together (Leigh and Watt, 1994), as well as retain the water.  

1.2.2.2. Appendages and invaginations of the dog skin 

In dog skin, the main cutaneous invaginations and appendages are sebaceous glands and sweat 

glands (apocrine and eccrine), and the hair follicle. These different cutaneous structures with 

their secretions allow creating different microenvironments, which likely influence the 

microbiota they harbor as suggested in human skin (Figure 11) (Grice and Segre 2011). 

 

Figure 11. Skin structure: main layers, appendages and associated microbiota. (Figure from Grice and 

Segre 2011). 

Sebaceous glands are simple or branched alveolar glands distributed throughout all haired skin 

in mammals with association to hair follicles. However they are absent in the dog’s footpads 

and nasal planum. They are larger and more abundant near mucocutaneous junctions, in the 

interdigital spaces, on the dorsal part of the neck and rump, on the chin and on the dorsal tail 

(Miller et al., 2013). They secrete sebum that is an oily substance composed mainly by 

triglycerides and wax esters (Clarys and Barel, 1995), which bacteria metabolize to convert 

them to free fatty acids. The sebum provides a hydrophobic coating of the hair and skin that 



27 
 

protects from overwetting and may have a role on heat insulation (Smith and Thiboutot, 

2008). 

Sweat glands can be epitrichal (apocrine) or atrichial (eccrine) and, unlike humans, they do not play a 

significant role in thermoregulation (Cotton et al., 1975). Epitrichal sweat glands are distributed 

throughout all haired skin in exception of footpads or nasal planum. Epitrichal sweat has 

probably pheromonal and antimicrobial properties (Miller et al., 2013). Atrichial sweat glands 

release a watery secretion and are only found in the nasal planum and footpads placed deeply 

in the dermis and subcutis (Scott et al., 1995). 

The hair follicles of the adult dog are complex and consist of bundles of hairs sharing a 

common opening on the skin surface. Usually a primary larger hair is surrounded by few 

secondary and thinner hairs forming a hair follicle complex. Each hair has its own sebaceous 

gland, but only the primary hairs are associated with an epitrichal sweat gland and an arrector 

pili muscle. The contraction of this muscle empties the contents of the glands on the skin 

surface (Al-Bagdadi, 2013). There are breed differences regarding both the number of hairs 

using a same hair follicle orifice and the density of hair follicles in skin surface. 

 

1.2.3. Skin immunity 

In skin we can find complex immunological processes of both innate and adaptive immune 

system (Bangert et al., 2011; Pasparakis et al., 2014). Keratinocytes are the first active 

participant in the skin immune response, but also Langerhans cells (Nestle et al., 2009) and 

even mast cells seem to have a role in skin immunity (Kumar and Sharma, 2010). 

The main functions of the innate immune system are detecting pathogens and presenting their 

antigens to the adaptive immune system, as well as differentiating self vs non-self cells and 

microorganisms. All microorganisms –commensals and pathogens– have structures with 

conserved molecular patterns called microbial-associated molecular patterns (MAMPs), when 

these ones are specific from a pathogen they are called pathogen-associated molecular patterns 

(PAMPs). PAMPs are present in bacteria, fungi, viruses and other parasites and can be nucleic 

acids or structural components of the membrane or the envelope. Sensors of pathogens of the 

innate immune system are called PAMPs Recognition receptors (PRRs) and major families 

include Toll-like Receptors (TLRs), RIG-I like Receptors (RLRs) and Nod-like Receptors 

(NLRs) (Kawai and Akira, 2009). 

The innate immunity of a healthy individual is capable to defend against pathogens as well as 

not reacting against its own cells. However, immunological dysregulations occur and create 

inflammation. On one hand, innate immune pathways can be improperly activated by host 

cells or endogenous DNA, causing an autoimmune response (Beutler, 2009; Fischer and 

Ehlers, 2008). On the other hand, a defect on innate immunity can make someone more 

susceptible to infections or even can transform a normal infection to a chronic one (Kumar et 

al., 2013) (Figure 12).  
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Figure 12. Skin in homeostasis and inflammation states. a) In a healthy individual, all the microorganisms 
are in equilibrium and pathogens are controlled with the innate immune system. b) When immunity defects exist 
or occur, innate immune system can detect own cells and microbiota as pathogens and overreact against them 
producing an autoimmunity reaction. c) When immunity defects exist or occur, pathogens can easily invade and 
colonize the skin, innate immune system fails to control the overgrowth and that produces an infection. 

This dissertation is focused on microbiota analyses, not innate immunity; however they are 

two sides of the same coin. Therefore, we also describe innate immunity of dog skin by 

screening polymorphisms on Toll-like Receptor genes and here we present a little overview of 

these innate immune receptors. 

 

1.2.3.1. Toll-like Receptors (TLRs) 

Toll-like receptors are considered to be the first sensors of microbes, through their microbial 

associated molecular patterns (MAMPs) (Werling and Jungi, 2003). The pool of microbes they 

have to sense is huge and comes both from the environment and from the own microbiota. 

Despite the high variable microbial world, some molecular structures (MAMPs and PAMPs) 

are highly conserved across them and are sensed through TLRs (Beutler, 2004; Kumar et al., 

2009) (Figure 13).  

TLRs are transmembrane proteins constituted by leucine-rich repeat (LRR) domains, a unique 

intramembrane domain and a Toll/Interleukin-1 receptor (TIR) domain. MAMPs and PAMPs 

are sensed through the LRR domain, and signals are transduced through the TIR domain, 

which is always located in the cytoplasm, in order to activate innate immunity response. 

Several crystallography studies elucidated TLRs structure: TLRs act in dimers and create 

structures together with their ligands (Gay and Gangloff, 2007; Kang and Lee, 2011; O’Neill 

et al., 2013). 
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Figure 13. The hourglass shape of innate immune response. Ten Toll-like receptors (TLRs), four TIR  
adaptors and two protein kinases are required for most microbial perception (Figure excerpted from Beutler 
2004). 

Up to date, 10 functional TLRs have been described in humans and 12 in mice (Kawai and 

Akira, 2009). Public repositories have sequences for 10 TLRs in dogs.  

TLRs have been classically classified depending on their cellular localization and their ligands: 

extracellular or intracellular TLRs. TLR1, 2, 4, 5, 6 and 10 are located in the cellular membrane 

and usually recognize components of the microorganism cell wall or membrane, whereas TLR 

3, 7, 8 and 9 are usually located in intracellular vesicles and recognize mainly nucleic acids 

(Kawai and Akira, 2010). Once TLRs detect PAMPs, they send a signal trough an adapter 

molecule (MyD88 or TRIF) to initiate in the nucleus the production of transcription factors 

(NFκB, IRF3 or IRF7) that will activate pro-inflammatory cytokines and type 1 interferons 

(Figure 14) (Kumar et al., 2011; Netea et al., 2012) . 
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Figure 14. TLRs and their main ligands. Extracellular TLRs (above) and intracellular TLRs (below) act in 

dimeric form to detect their ligands and initiate the innate immune response that leads to the stimulation of 

proinflammatory cytokines.  

 

1.2.3.1.1. Evolution and variability of TLR genes 

TLRs are innate immune genes that are highly conserved among different vertebrates (Roach 

et al., 2005)(Song et al., 2012). As all the other PRRs, TLR genes evolve under both non-

adaptive and adaptive forces. The non-adaptive evolution is common to all genes within a 

species and is produced through genetic drifts, bottlenecks and migration routes. The adaptive 

evolution is stronger on PRRs genes and is mainly caused by infectious pressures (Netea et al., 

2012). In general, when novel DNA variants appear in a population they can be under three 

types of selection: purifying, positive or balancing (Harris and Meyer, 2006; Quintana-Murci, 

2016) (Box 2).  

When looking at TLR evolution throughout different vertebrates, it was seen that purifying 

selection is mostly acting in intracellular domains that have to give the signal that triggers 

immunity; and positive selection is mostly acting in extracellular domains that have to 

recognize different pathogens and adapt to different infectious pressures (Werling et al., 2009; 
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Zhou et al., 2007). Despite being highly conserved, signatures of different types of selection 

have been detected on TLR genes when comparing different species or even populations that 

show the infectious pressures they have undergone (Barreiro et al., 2009; Netea et al., 2012; 

Quach et al., 2013). 

On human TLRs, different selection forces were described to drive genetic variation. Purifying 

selection has been detected in intracellular TLRs (TLR3, 7, 8 and 9) and not in extracellular 

TLRs (TLR1, 2, 4, 5, 6 and 10) suggesting that intracellular TLRs have an essential non-

redundant role in host survival (Barreiro et al., 2009; Wlasiuk and Nachman, 2010). On the 

other hand, extracellular TLRs evolved under less evolutionary pressure and tolerate more 

damaging mutations, which suggests their likely immunological redundancy (Barreiro et al., 

2009). In contrast, Mukherjee and colleagues found that also TLR2 and 4 were under 

purifying selection (Mukherjee et al., 2009, 2014). Moreover, another study also reported that 

human TLR genes were unequally polymorphic: TLR1, 5, 6 and 10 had a greater number of 

alleles when compared to TLR2, 3, 4, 7, and 9, which is in line with the previous works 

(Georgel et al., 2009). Finally, balancing selection was also detected on TLR1, 6 and 10 

(Ferrer-Admetlla et al., 2008). These divergent results are elucidating the differences among 

populations. 

 Box 2. Types of natural selection. (Figure adapted from Quintana-Murci 2016) 
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Thus, variability of the TLRs should be assessed within the same host species, or even breed, 

because it has been seen that the type of selection and the number of genetic variants differed 

on certain populations from different geography (Ferrer-Admetlla et al., 2008)(Barreiro et al., 

2009); and TLRs responses differ in a species-specific manner (Werling et al., 2009).  

In Chapter 3.1, we describe the genetic polymorphisms of TLRs on canids. Both adaptive and 

non-adaptive evolution should be considered in dogs. Non-adaptive evolution has probably a 

more significant role than in other species due to dogs were under a first bottleneck with 

domestication and a second one with the artificial selection of breeds (Figure 15) (Lindblad-

Toh et al., 2005). For this reason it should be taken into account the need for dealing with 

different breeds, and even with other wild canids such as the wolf for the analysis of canine 

TLR polymorphism. 

 

 

Figure 15. Evolution forces acting on TLR genes. Adaptive evolution caused by infections, combined with 

non-adaptive evolution caused by genetic drift, population bottlenecks and migration routes, contribute to TLR 

polymorphisms. Some polymorphisms can lead to resistance to infections, and other to autoimmunity 

phenomena. (Figure adapted from Netea, Wijmenga, and O’Neill 2012). 

 

1.2.3.1.2. TLRs in skin diseases 

Toll-like receptors are innate immune sensors that have a role in both identifying commensal 

microbiota and maintaining the homeostasis, and in disease establishment. On one hand, 

TLRs promote mutually beneficial commensal-host interactions (Kubinak and Round, 2012). 

On the other hand, they are responsible for some diseases, including cutaneous ones (Table 

2). 
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TLRs are expressed not only at innate immune cells, but also at skin cells such as 

keratinocytes, mast cells, stromal cells and adipocytes (Nestle et al., 2009). Some relationships 

between skin diseases and TLRs have been described. Thus, for specific skin diseases either 

certain TLR polymorphisms are correlated to increased susceptibility or resistance or TLR 

expression is increased or decreased (Table 2). Due to this clear link TLR-disease, therapies 

targeting TLRs are being assessed for dermatological diseases, using for example molecules 

that have the ability to modulate TLR expression (TLR agonists and antagonists) (Matin et al., 

2015). 

Specifically on dog skin, only Leishmania infected dogs have reported an altered expression of 

TLR2, 3, 4 and 9 (Figueiredo et al., 2013; Hosein et al., 2015; Melo et al., 2014). When 

assessing other canine diseases some links have been reported in both differential TLR 

expression and polymorphisms.  

In gastrointestinal pathologies, differential expression of TLR2 has been described in 

Inflammatory Bowel Disease (IBD) (McMahon et al., 2010); TLR2, 4, 5 and 9 in chronic 

enteropathies in German Shepherd (Burgener et al., 2008)(Allenspach et al., 2010); and TLR2 

and 4 in inflammatory colorectal polyps (Yokoyama et al., 2017). Moreover, genetic 

polymorphisms in TLR4 and TLR5 have been associated with IBD in German Shepherd dogs 

(Kathrani et al., 2010), but only protective SNPs from TLR5 have been associated with IBD in 

other 38 dog breeds (Kathrani et al., 2011). Other pathologies presented differential 

expression of TLRs, such as TLR4 in osteoarthritis (Kuroki et al., 2010) and in infected canine 

endometrium (Chotimanukul and Sirivaidyapong, 2011); TLR2 and 7 in arthritis (Riggio et al., 

2014); and TLRs 1-4, 6-10 in sino-nasal aspergillosis and idiopathic lymphoplasmacytic rhinitis 

(Mercier et al., 2012).  
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Table 2. Dermatological diseases associated with an alteration on Toll-like Receptors. 

Skin disease TLRs alterations References 

Infectious diseases  

Acne vulgaris Increased expression of TLR2, correlated with severity (Bakry et al., 2014; Kim et al., 2002) 

Candidiasis TLR9-deficient mice resistant to candidiasis (Kasperkovitz et al., 2011) 

Leishmaniosis Increased expression of TLRs 2, 4 and 9 (Tuon et al., 2010) 

Leprosy Hypo-functional TLR1 variant protected against leprosy (Wong et al., 2010) 

 

Polymorphisms on TLRs 1, 2 and 4 associated with susceptibility (Bochud et al., 2009) 

 

Increased expression of TLR1 and 2 (Krutzik et al., 2003) 

Rosacea Increased expression of TLR2 (Yamasaki et al., 2011) 

Staphyloccocal infections Increased expression of TLR2 (Hilmi et al., 2014) 

Immunological diseases 

Atopic dermatitis Polymorphisms on TLR2 associated with the disease (Potaczek et al., 2011) 

 

Decreased expression of TLR2 and 4 (Lesiak et al., 2012) 

Psoriasis Increased expression of TLR1, 2, 4, 5, 9 (Begon et al., 2007) 

Lichen planus Increased expression of TLR4 and reduced expression of TLR2 (Janardhanam et al., 2012) 

 

Increased expression of TLR4 and 9 (Siponen et al., 2012) 

 

Decreased expression of TLR1 and 2 (Salem et al., 2013) 

Pemphigus Increased expression of TLRs 2, 3 and 4 (Abida et al., 2013) 

Systemic autoimmune diseases (with skin manifestations) 

Systemic Lupus Erythematosus Pathogenic role for TLR7 and protective role for TLR9 (Celhar et al., 2012) 

Sarcoidosis Increased expression of TLRs 2, 3, 4, 5, 6, 7, and 8 (Huizenga et al., 2015) 

Systemic sclerosis Increased expression of TLR3 (Agarwal et al., 2011; Farina et al., 2010) 

Cancer 

Basal cell carcinoma Higher expression of TLRs 1, 2, 3, 5, 6, 7, 8 (Muehleisen et al., 2012) 

Squamous cell carcinoma Higher expression of TLRs 1, 2, 3, 5, 6, 7, 8 (Muehleisen et al., 2012) 

Other skin diseases 

  Stevens–Johnson syndrome Polymorphisms on TLR3 associated with the disease (Ueta et al., 2007) 
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1.3. Skin microbiota 

The microbiota is defined as a collection of microorganisms that inhabit a specific 

environment (Marchesi and Ravel, 2015), thus the canine skin microbiota is the collection of 

microorganisms that inhabits the skin of dogs.  

Until today (June 2017), 637 out of 846 studies found in pubmed regarding skin microbiota are 

human-based, so we will provide an extensive overview of skin microbiota focusing first on 

what is known for human and then specifically for dog in health (Chapter 1.3.1, 1.3.2 and 

1.3.3) and disease (Chapter 1.3.4).  We will finish this chapter reviewing the clinical potential 

of the microbiota (Chapter 1.3.5).  
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1.3.1. What is living on healthy skin? 

The human skin microbiota is predominantly inhabited by bacteria, followed by fungi and 

viruses with lower abundances (Oh et al., 2014). Microbiota members mostly inhabit the skin 

surface, hair follicles and other appendages (Figure 16)(Grice and Segre 2011). Moreover, 

Nakatsuji and colleagues also detected bacteria in the deep dermis and subcutaneous tissues of 

healthy individuals (Nakatsuji et al., 2013). 

 

Figure 16. Human skin microhabitats and their associated microbiota. Human skin has three main 
microhabitats: dry, moist and sebaceous. Each of them has its different skin appendages and specific 
physicochemical properties that define the microbiota they harbor (Figure from Barnard and Li 2017). 

First human microbiota studies using next-generation sequencing techniques elucidated in skin 

that the three main microhabitats harbor specific bacteria creating bacterial signatures. So, 

sebaceous sites are inhabited by Propionibacterium spp; moist sites, by Staphylococcus and 

Corynebacterium spp; and dry sites with gram-negative microorganisms (Grice et al. 2009; 

Costello et al. 2009; Grice and Segre 2011) (Figure 17a). Dry skin sites present higher diversity 

values when compared to the others. Similarly, when compared to other body site 

microbiotas, skin presents higher diversity values despite the lower microbial load (Belkaid and 

Segre, 2014a). 

Dog skin is almost entirely covered by a dense fur creating a more uniform 

microenvironment, so no clearly defined microhabitats have been identified. Bacteria from the 

Proteobacteria phylum are the most abundant all over the dog skin (Figure 17b) ( Song et al. 

2013; Rodrigues Hoffmann et al. 2014), contrasting with the microhabitat-specific taxa on 

human. Within the skin sites, haired skin regions usually present higher alpha diversity values 

when compared to mucosal or mucocutaneous regions (Rodrigues Hoffmann et al., 2014). 
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Besides skin site divergences, a large diversity between individuals has also been reported 

(Hoffmann et al., 2014).  

 

Figure 17. Skin microbiota composition per skin site. In a) human skin microbiota classified by microhabitat 
(Figure from Grice and Segre 2011) and in b) dog skin microbiota (Figure from Rodrigues Hoffmann et al. 2014). 
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Human skin microbiota presents high variability, not only between skin sites or microhabitats 

–intra-individual variability–, but also between individuals –inter-individual variability (Grice 

and Segre, 2011; Human Microbiome Project Consortium, 2012; Oh et al., 2014).  

Individual signatures of the skin microbiota have the ability to identify items that an individual 

came in contact with (Fierer et al., 2010; Lax et al., 2015; Meadow et al., 2014). Despite the 

temporal stability is a personalized feature (Flores et al., 2014; Oh et al., 2016), skin microbiota 

in sebaceous and dry sites is relatively constant over time (Figure 18) (Oh et al., 2016). Finally 

strain-level differences in Propionibacterium acnes were individual-specific, whereas those in 

Staphylococcus epidermidis were more site-specific (Oh et al., 2014). For all these reasons 

demonstrating individual signatures in skin, microbiota analyses have even been proposed as a 

new tool for forensic science (Hampton-Marcell et al., 2017). 

 

Figure 18. Temporal stability of the human skin microbiota. Healthy adults maintain their skin microbial 
communities at sebaceous and dry sites over time despite the constant exposure to external environment. 
(Excerpted from Oh et al. 2016). 

 

Microbial diversity is not limited to bacteria; microorganisms such as archaea, fungi, and 

viruses also have major roles in human health and disease (Eckburg et al., 2003; Handley, 

2016; Peleg et al., 2010) and whole genome sequencing approaches have allowed deciphering 

this global picture. Depending on the habitat, the abundance of fungi and viruses varies from 

<0.1% of microorganisms in the gastrointestinal tract to up to 10% and 40% on skin, 

respectively (Oh et al. 2014; Belkaid and Segre 2014). Archaea can be found on 

gastrointestinal tract with <1% (Arumugam et al., 2011) and are nearly absent on skin (Oh et 

al., 2014). 
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Figure 19. Microbial community of the skin using shotgun metagenomics. Relative abundances of viral, 
bacterial, and fungal components per skin site. Sites represent three skin microhabitats: sebaceous (blue), dry 
(red), and moist (green) (excerpted from  Belkaid and Segre 2014) 
 

 

Fungal microbiota can also be retrieved using amplicon-based approaches targeting their 

rRNA gene to amplify the Internal Transcribed Spacer (ITS) regions or 18S (Halwachs et al., 

2017).  

 

Malassezia species were detected as the main colonizers of the human skin in forearm and face 

(Paulino et al., 2006; Zhang et al., 2011). Findley and colleagues found that in fact most of the 

skin sites in healthy individuals were colonized by Malassezia, detecting site signatures only at 

species level. By contrast, the three foot sites analyzed presented more diversity being 

colonized by a combination of Malassezia, Aspergillus, Cryptococcus, Rhodotorula, Epicoccum, and 

others (Findley et al., 2013). This pattern seemed to be specific to adult population, whereas 

pre-pubertal skin presented higher diversity (Jo et al., 2016). When analyzed with 

metagenomics approaches, fungi presented high abundances near the ears and forehead, but 

low representation in the feet (<1%) despite the high diversity observed in the previous 

amplicon-based studies (Oh et al., 2014). 

 

On dog skin using an amplicon-based approach, Meason-Smith and colleagues found that the 

most abundant fungi were Alternaria and Cladosporium independently from the skin site, which 

was not an influencing factor on mycobiota composition and structure (Figure 20). In fact, 

different skin sites tended to be similar within a dog (Meason-smith et al., 2015). Alternaria and 

Cladosporium were also the most abundant fungi on cat skin mycobiota (Meason-Smith et al., 

2017). 
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Figure 20. Skin mycobiota composition on healthy dogs per skin site. (Excerpted from Meason-smith et al. 
2015). 

The viruses are the most forgotten microbiota members, and main insights on human skin 

come from whole shotgun metagenomics approaches (Foulongne et al., 2012; Oh et al., 2014, 

2016; Wylie et al., 2012). Only one study enriched viral particles and assessed cross-sectional 

diversity within different skin sites, which found that skin virome was highly site-specific and 

modulated by occlusion and exposure, in addition to sebum and moisture (Hannigan et al., 

2015). 

 

The virome can be classified within two main groups: prokaryotic virome, which includes 

viruses affecting prokaryotes, such as bacteriophages; and eukaryotic virome, which includes 

viruses affecting eukaryotic cells (Virgin, 2014). Among the prokaryotic virome the most 

abundant members were Propionobacterium and Staphylococcus phages (Hannigan et al., 2015; Oh 

et al., 2014, 2016) and Pseudomonas and Bacillus phages (Hannigan et al., 2015). In eukaryotic 

skin virome, Papillomaviruses as well as Polyomavirus were the most commonly found (Foulongne 

et al., 2012; Oh et al., 2014, 2016; Wylie et al., 2012); however the most abundant viruses were 

specific to single individuals (Oh et al., 2016).  On dog skin, the virome has not been assessed 

yet. 
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1.3.2. Factors shaping bacterial skin microbiota 

The key variables driving human skin microbiota structure and composition are skin site 

followed by the individual, as seen in the previous section. Besides, many other variables are 

affecting its composition and structure, which can be globally classified as: intrinsic factors (or 

host-specific) and extrinsic factors (or environment-specific) (Grice and Segre 2011).  

On one hand, host factors include those relative to the individual such as the age, gender, 

racial origin or immune system and all of them seem to have an effect on skin microbiota 

(Sanmiguel and Grice, 2015).  

Regarding the age, skin microbiota evolves over the first year of life, showing an initial 

colonization by Staphylococci that decreases with age as diversity increases (Capone et al., 2011). 

Moreover, progressive microbial shifts in skin and nares have been detected in different sexual 

maturation stages and when comparing children to adults (Oh et al., 2012). Cohorts usually 

include people from both genders, but only few studies have found a strong link between 

gender and skin microbiota structure and composition in hands (Fierer et al., 2008), upper 

buttock (Zeeuwen et al., 2012) and axillary vault (Callewaert et al., 2013). Racial origin or 

ethnicity presented a strong effect on skin microbiota when linked to clinical metadata, as it 

was shown by Human Microbiome Project that included around 300 individuals from 

different genetic backgrounds (Asian, Black, Mexican, Puerto Rican and White) (Human 

Microbiome Project Consortium, 2012). Other studies detected differences in skin microbiota 

of Chinese people when compared to other racial groups (Leung, Wilkins, and Lee 2015). 

Also, a recent study including six different ethnic groups living in New York City detected 

racial origin as a secondary factor shaping skin microbiota after skin site (Perez Perez et al., 

2016). Finally, the immune system is the main responsible of recognizing the microorganisms 

and it definitely affects skin microbiota, as well as skin microbiota affects immunity (Naik et 

al. 2012; Naik et al. 2015). This part is covered in the following section (Chapter 1.3.3). 

On the other hand, extrinsic or environmental factors include those derived from the 

surroundings (geography, urbanization or cohabitation) or personal habits (hygiene, cosmetics 

use or diet).  

Tribal populations that spend more time outdoors presented higher abundances of 

environmental-derived taxa and increased alpha diversity values when compared to other 

populations (Clemente et al., 2015; Hospodsky et al., 2014). Skin microbiota varied also when 

comparing different environments of a delimitated region (Hanski et al., 2012; Ying et al., 

2015). In line with this, individuals cohabiting together –even when including pets– shared a 

larger proportion of skin microbiota if compared to other individuals (Song et al. 2013; Misic 

et al. 2015).  Regarding personal habits, Fierer and colleagues found that skin hand microbiota 

was influenced not only by gender, but also by the time since the last hand washing. In fact, 

the gender differences they reported could also have been due to extrinsic factors such as the 

use of cosmetics or moisturizers (Fierer et al., 2008). A recent study found that soap and 

shampoo practices were secondary factors shaping skin microbiota on New Yorkers (Perez 

Perez et al., 2016).  
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Finally some of these microbial drivers are both intrinsic and extrinsic (racial origin – different 

environment; or sex – different hygiene practices), and even some of them are a combination 

of both. For example, Lehtimäki and colleagues recently reported that geography shapes 

microbiota in an age-dependent way: environmental effects decrease as age increase 

(Lehtimäki et al., 2017). 

In canine skin, all of these factors have the potential to drive skin microbiota composition and 

structure. Moreover, those derived from the environment are likely having a major impact in 

dogs than in humans. On one hand, as host factors we could include sex, age, skin site, 

individual, immune system, genetic background or even hair coat. On the other hand, as 

environmental factors we could include cohabitation, lifestyle, environment, season, diet, 

hygiene or geography (Figure 21).  

 

 

Figure 21. Canine skin microbiota is potentially shaped by both host and environmental factors.  

Few of these factors have been tested as potential drivers of skin microbiota structure and 

composition in healthy dogs. 

Rodrigues-Hoffmann and colleagues described the skin site effect on dog skin microbiota, 

showing mucosal and muco-cutaneous regions less diversity when compared to haired skin 

sites. They also detected an individual effect, despite not assessing it directly. Other factors 

such as the presence of fleas, time spend outdoors vs indoors, the sex and age were assessed as 

potential drivers of canine skin microbiota without finding any relationship. This could have 

been due to they worked with a small (N=12) and heterogeneous cohort including dogs from 

different households, genetic backgrounds and ages, so true effect could have been obscured 

(Rodrigues Hoffmann et al., 2014). Besides, animals cohabiting together (similar to humans) 

share more skin microbiota and moreover cohabitation was affecting skin microbiota of the 

pet owner, increasing its bacterial diversity (Song et al. 2013). 
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1.3.3. Commensal microbiota functions on the skin 

Skin is one of the main interfaces with the environment and it is constantly exposed to 

external microorganisms, which some of them can be potential pathogens. Besides that, skin is 

not only exposed but also colonized by many microorganisms that constitute the skin 

microbiota.  

This living barrier that is the skin microbiota contributes to the skin immunity mainly in three 

different ways: directly inhibiting pathogen growth; enhancing host innate immunity; and 

educating and priming adaptive immunity (Figure 22) (Sanford and Gallo, 2013). We will not 

review how the skin microbiota shapes the adaptive immunity, as it is beyond the scope of this 

dissertation. 

 

Figure 22. Skin microbiota immune functions on health. Host cells and skin microbiota are associated and 

their cross-talks help skin immunity through several mechanisms. (Excerpted from Sanford and Gallo 2013). 

Skin microbiota members are inter-communicated (bacteria-bacteria interactions) and 

moreover interact with host cells establishing cross-talks (bacteria-host cells interactions). 

These interactions can be classified in three main categories: commensalism, when one 

benefits from the other; mutualism, when both benefit; and detrimental relationship, when 

one harms the other (Figure 23) (Schommer and Gallo, 2013).  
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Figure 23. Dynamics of microbial interaction at the skin surface. Members of the microbiota form complex 
interaction networks, with both microbe-microbe and microbe-host interactions. (Excerpted from Schommer 
and Gallo 2013).. 

Usually these interactions and their functions are studied in individual commensal members of 

the microbiota. Among all the bacteria inhabiting skin microbiota, we delve into the functions 

of the two most well-characterized microbiota members on human skin:  Propionibacterium acnes 

and Staphylococcus epidermidis (Table 3). 

Table 3. Propionibacterium acnes and Staphylococcus epidermidis contributions to the innate 

immunity functions. 

Commensal bacteria Functions in skin health 

Propionibacterium acnes Producing SCFAs that inhibit growth of other microorganisms 

 Maintaining acidic skin pH 

 Producing bacteroicins 

 Promoting commensal growth 

Staphylococcus epidermidis Producing AMPs and bacteroicins 

 
Promoting host immune to produce host AMP 

 
Promoting host immune responses via TLR signaling 

 

Propionibacterium acnes mechanisms that contribute to skin immunity are mostly based on 

directly inhibiting pathogen growth, which is achieved by: 1) metabolizing triglycerides from 

the sebum to short chain fatty acids, which have antimicrobial properties and contribute to 

acidic pH of the skin (Shu et al., 2013; Ushijima et al., 1984); and 2) producing bacteroicins 

(Faye et al., 2011), which are toxins that inhibit the growth of similar bacteria. Moreover, P. 

acnes strains associated with healthy skin –not those ones associated with acne–, carry genes 

that synthesize thiopeptides, which are antimicrobial compounds that inhibit the growth of 

gram-positive species (Christensen and Brüggemann, 2014). 
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Staphylococcus epidermidis contributes to skin immunity by both enhancing and modulating innate 

immunity via TLR signaling (Lai et al., 2009; Wanke et al., 2011) and by directly inhibiting 

pathogen growth producing antimicrobial peptides (Bastos et al., 2009; Cogen et al., 2010). 

For example, Staphylococcus epidermidis was able to amplify the innate immune response against 

the invading pathogen Staphylococcus aureus by increasing antimicrobial peptides expression and 

abolishing the inhibition of NF-κB signaling asserted by the pathogen (Figure 24) (Wanke et 

al., 2011).  

 

 

Figure 24. Staphylococcus epidermidis cross-talk with innate immunity. Staphylococcus epidermidis produces 
antimicrobial peptides to act as a barrier against colonization of potentially pathogens. In addition, it secretes a 
small molecule, which increases expression of defensins through TLR2 signaling. (Excerpted from Gallo and 
Nakatsuji 2011).  
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1.3.4. Skin microbiota and dermatological diseases 

In a healthy skin, homeostasis is maintained through a cross-talk between immune system and 

microbiota and when dysregulated produces inflammation (Belkaid and Segre 2014). In 

humans, several studies have associated skin diseases to dysbiosis, which is an imbalance of 

microbiota (Table 4 and Figure 25). However, if dysbiosis is the cause or the consequence of 

the disease in most cases still remains to be clarified. On dogs, only few studies have been 

performed and are focused on canine atopic dermatitis (Table 4). 

 

Figure 25. Dermatological diseases associated with dysbiosis on skin microbiota. (Excerpted from 
(Barnard and Li, 2017). 
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Table 4. Dermatological diseases associated with skin microbiota alterations.  

Disease Skin microbiota alterations References 

Acne vulgaris Strain-level differences in P. acnes are associated with acne. (Fitz-Gibbon et al., 2013) 

 
Balance between acne- and health-associated species determines health status. (Barnard and Li, 2017) 

 
Increased Staphylococci, correlated with severity. (Dreno et al., 2017) 

Atopic dermatitis (AD) Increased Staphylococcus, correlated with severity. Decreased diversity during flares. (Kong et al., 2012a) 

 
Increased Staphylococcus and Corynebacterium, correlated with severity (in AD and PID). (Oh et al., 2013) 

 
Differences btw affected vs unaffected skin. Stenotrophomonas prevalent in therapy responders. (Seite and Bieber, 2015) 

 
1-year-old infants with AD were not colonized with S. aureus before developing AD. (Kennedy et al., 2017) 

 
Signature in AD-prone skin: enriched in Streptococcus and Gemella but depleted in Dermacoccus. (Chng et al., 2016) 

Bacterial infection (H. ducreyi) Resolvers and pustule formers have distinct skin bacterial communities (Rensburg et al., 2015) 

Primary immunodeficency 
Decreased site specificity and temporal stability. Colonization with species not found in 
controls. (Oh et al., 2013) 

 
Increased Gram-negative bacteria, especially Acinetobacter. Decreased Corynebacterium. (Smeekens et al., 2013) 

Psoriasis vulgaris Increased Firmicutes and Actinobacteria. (Gao et al., 2008) 

 
Decreased Staphylococci and Propionibacteria. (Fahlén et al., 2012) 

 
Increased Corynebacterium, Propionibacterium, Staphylococcus, and Streptococcus. (Alekseyenko et al., 2013) 

Vitiligo Decreased diversity. Altered networks: Firmicutes as central nodes (Actinobacteria in health) (Ganju et al., 2016) 

Wounds (non-chronic) Troughout healing process, wound microbiota became increasingly similar to adjacent skin. (Hannigan et al., 2014) 

Wounds (chronic) Prevalent anaerobic bacteria (from Clostridiales family XI) (Price et al., 2009) 

 
Prevalent uncharacterized Bacteroidales, anaerobes and Staphylococcus, Corynebacterium, and Serratia (Wolcott et al., 2009) 

 
Increased anaerobic bacteria and Corynebacterium and Staphylococcus. (Gontcharova et al., 2010) 

Canine atopic dermatitis Decreased species richness on allergic dogs. (Rodrigues Hoffmann et al., 2014) 

 
Decreased bacterial diversity, increased Staphylococcus (S. pseudintermedius) and Corynebacterium. (Bradley et al., 2016a) 

 
Increased abundance of S. pseudintermedius at the site of lesion induction. (Pierezan et al., 2016) 
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In most of the previous studies, affected skin showed lower diversity when compared to 

healthy one, independently from the skin pathology. This lower diversity was usually linked 

to an overgrowth of specific taxa, which sometimes was also correlated to severity. 

Staphylococcus is a genus that was overrepresented in acne vulgaris (Dreno et al., 2017), 

atopic dermatitis (Kong et al. 2012; Oh et al. 2013), primary immunodeficiencies (Oh et al., 

2013), psoriasis (Alekseyenko et al., 2013) and chronic wounds (Gontcharova et al., 2010; 

Wolcott et al., 2009) and it was correlated with severity for acne (Dreno et al., 2017), atopic 

dermatitis (Kong et al. 2012; Oh et al. 2013)  and primary immunodeficiencies (Oh et al., 

2013). However, another study in Psoriasis detected a decrease on this genus (Fahlén et al., 

2012). Corynebacterium was also a common genus altered in several pathologies: increased in 

atopic dermatitis and primary immunodeficiencies (Oh et al., 2013), psoriasis (Alekseyenko 

et al., 2013), and chronic wounds (Gontcharova et al., 2010; Wolcott et al., 2009); and also 

decreased in primary immunodeficiencies (Smeekens et al., 2013). Besides these highly 

common trends, each skin disease presented its own microbial characteristics and even 

some studies lead to contradictory results (Table 4). 

In dogs, the three studies targeting atopic dermatitis found also that affected skin presented 

lower diversity when compared to healthy one (Bradley et al., 2016a; Pierezan et al., 2016; 

Rodrigues Hoffmann et al., 2014). Staphylococcus pseudointermedius increased in affected skin, 

either when compared to healthy dogs (Bradley et al. 2016) or the same dog in a non-

affected site (Pierezan et al., 2016). Also Corynebacterium increased in affected skin (Bradley 

et al., 2016). 

1.3.5. Skin microbiota as a clinical tool 

As skin microbiota differs in health and disease, some researchers have suggested that 

microbiota analyses have the potential to be used in clinics as a diagnosis, prognosis and 

even therapeutic tool (Grice 2014; Grice 2015). 

All these potential clinical approaches are based on microbiota property to sense its 

environment and respond against alterations. These alterations can be harmful or 

beneficial. They are harmful when they create a dysbiotic state, which can be produced by 

pathogens, environmental stimuli or immune defects among others. Beneficial alterations 

are usually intentioned and aim to recover the homeostasis, which can be achieved using 

products such as pre- and pro-biotics or even antibiotics (Egert and Simmering, 2016). 

As previously seen, some skin diseases have a kind of bacterial signature, with some 

overrepresentation of specific bacteria (Table 4). Moreover, as seen in acne vulgaris, 

sometimes a skin disease is not due to the presence of a specific set of bacteria but to an 

altered balance between health- and disease-specific bacteria (Barnard and Li, 2017). So, 

microbiota analysis could be used as a diagnosis tool for certain skin diseases identifying 

the microbial balance and signature.  

Regarding prognosis, higher proportions of specific bacteria are associated to increased 

severity of certain dermatological diseases, such as atopic dermatitis or acne vulgaris 

(Dreno et al., 2017; Kong et al., 2012b; Oh et al., 2013). Moreover, certain skin microbiota 
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compositions make you a resolver or a pustule former in an infection with Haemophylus 

ducreyi (Rensburg et al., 2015) and also people prone to atopic dermatitis have a different 

skin microbiota when compared to healthy individuals (Chng et al., 2016). In non-chronic 

wounds, a specific microbiota profile was correlated with future complication (Hannigan et 

al., 2014). Thus, different researchers have confirmed the potential to use the microbiota as 

a prognosis tool in several skin conditions. 

Finally, the most promising tool in clinics is using microbiota manipulation as a therapeutic 

approach to resolve certain diseases (Grice, 2014; Reid et al., 2011). These manipulations 

can be divided in two main groups: the classical antimicrobial approach, to reduce the 

number of pathogenic microorganisms; and the novel pre- and pro-biotic approach, to 

increase a specific subset of beneficial bacteria (Egert and Simmering, 2016). Despite the 

function of antibiotics is to restore the healthy status through pathogen elimination, it also 

affects microbiota and has detrimental effects such as killing beneficial microorganisms and 

creating antibiotic resistances with its long-term use. Moreover, antibiotics perturb the 

original microbiota and the altered version is more likely to present overgrowth of 

opportunistic pathogens (for a review on microbiota alterations due to antibiotics use, see 

Ferrer et al. 2017). All these concerns about antibiotics use led researchers to investigate 

the novel approach of using pre- and probiotics as a therapy or complement for certain 

diseases. 

Prebiotics are non-digestible food ingredient that affects the host by stimulating the growth 

or activity of specific beneficial bacteria, whereas probiotics are products containing living 

microorganisms in sufficient numbers, so they can alter the microbiota and produce 

beneficial health effects in the host (Schrezenmeir and de Vrese, 2001) (Fig 26A). When 

developing pre- and pro-biotics, researchers need to target specific bacterial products that 

are beneficial for the skin (Fig 26B) and therefore find the bacterial strain that metabolizes 

that product or the substrate that promotes the growth of that specific strain (Lew and 

Liong, 2013). Microbiota studies are invaluable to understand the mechanisms and 

dynamics of these novel products and to ensure their safety. Most of pre- and pro-biotics 

aim to manipulate the gastrointestinal microbiota rather than the skin, even when treating 

dermatological problems (Baquerizo Nole et al., 2014; Krutmann, 2009). Some topical 

probiotics have shown an effect until the date: Lactobacillus rhamnosus for atopic dermatitis 

(Hoang et al., 2010; Viljanen et al., 2005) ; Bifidobacterium longum for sensitive skin (Guéniche 

et al., 2009); and kefir –uncharacterized probiotic mixture– for wound healing (Huseini et 

al., 2012). Also sphingomyelinase produced by Streptococcus thermophilus was shown to 

increase skin-ceramide levels in aged subjects (Dimarzio et al., 2008). 
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Figure 26. Pre- and probiotics for the skin. a) An example to illustrate the concepts of pre- and pro-biotics 
for skin and b) bacterial products with beneficial effects on the skin (Figures from (Egert and Simmering, 
2016) (a) and (Lew and Liong, 2013) (b)). 
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When speaking about microbiota used as a therapy, we must include microbiota 

transplantation from healthy donors to affected receptor. Fecal transplants have already 

been used in human to treat Clostridium difficile recurrent infection since 40 years ago with a 

success rate up to 92%-100% (Gough et al., 2011), but the underlying microbiota dynamics 

are just beginning to be understood (Song et al. 2013; Fuentes et al. 2014; Leber et al. 2015; 

Seekatz et al. 2016; Staley et al. 2017). On the skin of a murine model for atopic dermatitis, 

Myles and colleagues tried some kind of “microbiota transplantation” –only culturable 

gram-negative bacteria– that led the mice to an improved outcome (Myles et al., 2016). 

Most pre- and probiotics products worked without understanding its dynamics and mainly 

in the gut. Networks dynamics aim to give light in these mechanisms, and are classified in 

three types: individual dynamics; group dynamics; and universal dynamics (Figure 27) 

(Bashan et al., 2016). Nowadays, network studies on microbiota dynamics of healthy 

individuals elucidated that some body sites presented universal dynamics (similar among 

the individuals), whereas others were highly personalized (Bashan et al., 2016). In fact, the 

healthy gut microbiota presented universal dynamics, which could be the reason why most 

of the pre- and pro-biotics work on this body site. In contrast, among the several skin sites 

included in this study only the retroauricular crease presented universal dynamics, whereas 

forehead, palm, and antecubital fossa presented individual dynamics.  Thus, generic 

microbiota manipulations may result ineffective or even detrimental in some body sites 

(Bashan et al., 2016). 
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Figure 27. Alternative scenarios of microbial dynamics across different healthy individuals. Nodes 
represent microbial species and edges represent interspecies interactions (green and red edges represent co-
ocurrence or mutual exclusion interactions, respectively). The three main scenarios are: a) individual 
dynamics, where the underlying dynamics is unique for each individual; b) group dynamics, where dynamics 
are shared across different groups; and c) universal dynamics, where different subjects have the same 
underlying dynamics. (Excerpted from Bashan et al. 2016) 

 

To conclude, microbiota analyses have the potential to diagnose, prognose and even treat 

several skin diseases. To design safe products and accurate diagnoses and prognoses tests, 

healthy and altered microbiota should be better defined, as well as microbial dynamics 

should be fully understood. 
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2. Objectives 

The overall goal of this thesis is to expand the knowledge on what defines the healthy 

status of skin in dogs, first at innate immunity level but mainly characterizing skin 

microbiota. Moreover, this is an industrial PhD project in collaboration with Vetgenomics, 

SL., so this knowledge will provide the scientific background and the know-how needed to 

develop a new strategic business area on Vetgenomics focused on microbiota analyses.  

To provide insights on dog innate immune system (Chapter 3.1), we aim to: 

- Design and validate an individual genotyping array of non-synonymous 

polymorphisms on canine Toll-like Receptor (TLR) genes; creating a tool to 

characterize the innate immune system at TLR level. 

- Describe the normal variability of TLR genes on different cohorts of healthy dogs 

and wolves. 

To provide insights on skin microbiota in healthy dogs, we aim to: 

- Assess the effect of breed, individual or skin site on shaping skin microbiota in a 

pilot and heterogeneous cohort (Chapter 3.2).  

- Assess the effect of either host or environmental factors (such as skin site, surgery, 

sex, date of birth date, pigmentation, and time spent in the kennel) on shaping skin 

microbiota (Chapter 3.3). 

- Finally, we aim to assess the potential of the 3rd generation single-molecule 

sequencing technology for microbiota studies using Nanopore sequencing (Chapter 

3.4). 
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3. Results 

This section, divided in four chapters, encompasses a description of the results obtained in 

four different studies I carried out during the last three years. 

Chapter 3.1 describes the genetic variability in canine TLR genes focusing on non-

synonymous mutations, by massive sequencing and individual genotyping. 

Chapter 3.2 depicts the skin microbiota structure and composition on a heterogeneous 

cohort of nine healthy dogs, from three different breeds inhabiting different households. 

Chapter 3.3 depicts the skin microbiota structure and composition on a homogeneous 

cohort of thirty-five healthy dogs, from the same cross-breed sharing a common 

environment. 

Chapter 3.4 assesses the potential of sequencing the full-length 16S rRNA gene with 

MinION™ (3rd generation sequencer) to perform a microbiota study.  
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3.1. Non-synonymous genetic variation in 

exonic regions of canine Toll-like receptors 

This chapter consists of the article entitled “Non-synonymous genetic variation in exonic 

regions of canine Toll-like receptors” published in Canine Genetics and Epidemiology 

journal in October 2014 (1:1). 

Supplementary material of this article is available at Canine Genetics and Epidemiology 

online: https://cgejournal.biomedcentral.com/articles/10.1186/2052-6687-1-11 
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Background: Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) considered to be the primary
sensors of pathogens in innate immunity. Genetic variants could be associated to differences in breed innate
immune response to pathogens and thus to susceptibility to infections or autoimmune diseases. There is therefore
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Results: Polymorphisms in canine TLRs have been characterized by massive sequencing after enrichment of their
exonic regions. DNAs from 335 dogs (seven different breeds) and 100 wolves (two different populations) were used
in pools. The ratio of SNP discovery was 76.5% (in relation to CanFam 3.1); 155 out of 204 variants identified were
new. Functional annotation identified 64 non-synonymous variants (43 new), 73 synonymous variants (56 new) and
67 modifier variants (57 new). 12 out of 64 non-synonymous variants are breed or wolf specific. TLR5 has been
found to be the most polymorphic among canine TLRs. Finally, a TaqMan OpenArray® plate containing 64 SNPs
with a possible functional effect in the protein (4 frameshifts and 60 non-synonymous codons) has been designed
and validated.

Conclusions: Non-synonymous genetic variation has been characterized in exonic regions of canine Toll-like Receptors.
The TaqMan OpenArray® plate developed to capture the individual variability that affects protein function will allow
high-throughput genotyping either to study association to infection susceptibility or even TLR evolution in the canine
genome.
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Lay summary
Toll-like receptors (TLRs) are pattern recognition recep-
tors (PRRs) and are the primary sensors of pathogens in
the body. Genetic variants could be associated with differ-
ences in breed response to pathogens and also to suscepti-
bility to infections and/or autoimmune diseases. There is
great interest in the characterization of canine TLRs.
Genetic variation in canine TLRs has been characterized

using massive parallel sequencing. DNA from 335 dogs
(seven breeds: Beagle, German Shepherd dog, Yorkshire
terrier, French bulldog, Boxer, Labrador and Shar Pei) plus
100 wolves (two populations: Iberian and Russian) were
sequenced in 16 pools of 25 dogs or 50 wolves. In total,
we found 204 variants, of which 155 were new. Compa-
rison of these variants with the published dog genome

sequence (called CanFam 3.1) Functional annotation iden-
tified 64 non-synonymous variants (43 new), 73 synonym-
ous variants (56 new) and 67 modifier variants (57 new).
Twelve of 64 non-synonymous variants were breed or wolf
specific. TLR5 has been found to be the most polymorphic
among canine TLRs. Finally, a TaqMan OpenArray(R)
plate containing 64 SNPs with a possible functional effect
in the protein (4 frameshifts and 60 non-synonymous
codons) has been designed and validated.
Non-synonymous genetic variation has been character-

ized in exonic regions of canine Toll-like Receptors. The
TaqMan OpenArray(R) plate developed to capture the in-
dividual variability that affects protein function will allow
high-throughput genotyping either to study association to
infection susceptibility or even TLR evolution in the canine
genome.
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Background
Toll-like receptors (TLRs) are the most widely studied
pattern recognition receptors (PRRs) and are considered
to be the primary sensors of pathogens in innate im-
munity. These molecules are constituted by leucine-rich
repeat (LRR) domains, a unique intramembrane domain
and a Toll/Interleukin-1 receptor (TIR) domain. Pathogen-
associated molecular Patterns (PAMPs) are sensed through
LRR domain, and signals are transduced through TIR
domain, which is always located in the cytoplasm, in order
to activate innate immunity response (for a review, see [1]).
Ten TLRs have been identified in dogs. TLRs can be

classified into groups, depending on the PAMPs detected
and their cellular location. TLR 1, 2, 4, 5 and 6 detect
pathogen extracellular components. TLRs 3, 7, 8 and 9
target nucleic acids. The ligand for TLR10 is unknown [2].
Another way to classify TLRs is their cellular location.

TLRs 1, 5, 6 and 10 are expressed at the cell surface and
mainly recognize bacterial products. On the other hand,
TLRs 3, 7, 8 and 9 are located almost exclusively in
intracellular compartments and are specialized in recog-
nition of nucleic acids, with self versus non-self discrim-
ination provided by the exclusive localization of the
ligands rather than their different molecular structure
from that of the host. TLRs 2 and 4 can be located both
on the cell surface and intracellular [2,3]. In this study,
TLRs will be divided in two groups: TLRs 1, 2, 4, 5, 6
and 10 as extracellular TLRs and TLRs 3, 7, 8 and 9 as
intracellular TLRs and nucleic acid sensors.
TLRs are conserved through evolution, from Drosophila

to mammals (reviewed at [4]), because of its essential role
in innate immunity. However, there are significant distinc-
tions between intracellular and extracellular TLRs. Intra-
cellular TLRs do not accept much variability, because they
have evolved under strong purifying selection [5]. Viruses
can only be detected through their nucleic acids; therefore
intracellular TLRs have an essential non-redundant role in
host survival. Moreover, mutations in those TLRs could
end up with an autoimmune disease against own nucleic
acids or with high susceptibility to some viral infections.
On the other hand, membrane or extracellular TLRs
have evolved under less evolutionary pressure, due to they
can recognize one pathogen through different PAMPs
(immunological redundancy). So they show a higher rate
of damaging non-synonymous and STOP mutations.
Although infective pressure that has reached these

molecules is one of the main mechanisms of evolution,
it is not the only one. Non-adaptative evolution has also
an important role, through genetic drift, bottlenecks and
migratory routes [6]. This kind of evolution should be
seen in dogs, due to a first bottleneck with domestica-
tion and a second one for the artificial selection of
breeds [7]. For these reason it should be taken into
account the need for dealing with different breeds, and

even with the wolf, for the analysis of canine TLR
polymorphism.
In humans, many studies are addressed to find out pos-

sible links between some TLR polymorphism and suscep-
tibility or resistance to disease (for a review see [6]). Some
genetic variants in TLRs in dogs could be associated to
differences in breed innate immune response to pathogens
and thus to susceptibility to infections or autoimmune
diseases. So far, polymorphisms in TLR4 and TLR5 have
been associated with Inflammatory Bowel disease (IBD) in
German Shepherd dogs (GSD) [8], but only protective
SNPs from TLR5 have been associated with IBD in other
38 dog breeds [9] There is therefore great interest in the
characterization of canine TLRs. TLR5 risk-associated
haplotype for canine IBD confers hyper-responsiveness to
flagellin [10]. Moreover, dogs with spontaneous IBD ex-
hibit alterations in the enteric microbiota, which bear
resemblance to dysbiosis reported in humans with chronic
intestinal inflammation [11].
Although no other polymorphisms have been associ-

ated to illness in dogs until date, some studies have
reported differential expression of some TLRs related to
inflammatory or infectious diseases, such as TLR2 in
IBD [12], TLRs 2, 4, 5 and 9 in chronic enteropathies in
German Shepherd [13,14]; TLR4 in osteoarthritis [15]
and in infected canine endometrium [16]; TLRs 1-4, 6-
10 in sino-nasal aspergillosis and idiopathic lymphoplas-
macytic rhinitis [17]; and TLR2 and TLR9 in Leishmania
infected dogs [18,19].
So our aim is the analysis of genetic variation in exonic

regions of canine TLRs by massive sequencing, focusing in
non-synonymous substitutions and their segregation in
different dog breeds and wolf populations. A second
objective is to design and validate a TaqMan OpenArray®
plate of SNPs with a possible functional effect in the pro-
tein (STOP, frameshift and non-synonymous codons).
High-throughput genotyping of canine TLRs with this
TaqMan OpenArray® plate will allow studying the associ-
ation of non-synonymous variants with individual differ-
ences in immune response, their relationship with either
the commensal or the disease associated microbiota and
TLR evolution in the canine genome.

Results
We have identified 156 new variants in canine TLRs by
massive sequencing after the enrichment of exonic re-
gions. DNAs from 335 dogs (seven breeds) and 100 wolves
(two populations) were pooled in 16 pools and sequenced
in 2 lanes of Illumina Hiseq, with a mean coverage value
of 15,162.23. Dog breeds included were Beagle, Labrador,
German Shepherd, Yorkshire, French Bulldog, Boxer and
Shar Pei. Wolves included were Iberian (Canis lupus
signatus) and Russian (European grey wolf, Canis lupus
lupus). A total of 204 variants were detected: 193 SNP and
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11 insertions or deletions (1 to 18 bases). Only one of the
indels (insertion/deletion) mapped to an exonic region
(TLR7 3′ UTR), meanwhile the others were mapping to
intronic regions (5 out of 11) and intergenic regions up-
stream or downstream a TLR gene (5 out of 11). The SNPs
identified were classified by functional annotation from
ENSEMBL [20] (effect and effect impact): 73 synonymous
variants, 64 non-synonymous variants and 67 modifier
variants which include intergenic (upstream and down-
stream a TLR gene), intronic and 3′ UTR (untranslated re-
gion) variants (see Table 1). None of the variants detected
in the pools analyzed had a high effect (STOP codon,
frameshift mutation or splicing) on the protein function.
The ratio of SNP discovery was 76.5% (in relation to
CanFam 3.1); 156 out of 204 variants identified were new:
43/64 non-synonymous variants (nsSNP), 56/73 synonym-
ous variants (synSNP) and 57/67 modifier variants.
Genetic variation differs among all TLRs. Variants de-

tected in either extracellular or intracellular canine TLRs
by massive sequencing and its classification according
their effect in the protein are shown in Table 1. TLR5 gene
presents the highest polymorphism, with 28 synonymous
changes and 23 non-synonymous changes (Additional
file 1, Table 1), although it also codifies for the longest
annotated protein (1422 aminoacids).
Table 2 shows the aminoacid (AA) change ratio, which

are AA changes caused by nsSNPs or frameshift mutations
divided by total number AA for each one of the TLRs.
The AA change ratio confirms that indeed TLR5 and
TLR4 are the most polymorphic ones. On the other hand,
TLR3 seem to be the most conserved receptor, just
presenting one AA change in 905 AA.

Non-synonymous SNPs
A more exhaustive analysis was performed for the 64
nsSNP detected through massive sequencing, because
they are expected to have a greater effect on the protein
function. First, a glimpse on allelic frequencies of the

nsSNP was performed. The frequencies of the alternative
allele for all 64 nsSNPs are shown for each breed and
wolf pools in Additional file 2.
Allelic frequencies for alternative variants in nsSNPs

differ among breeds. Beagle and Russian wolf are the
most variable pools, with 35 out of 64 nsSNPs segregat-
ing. Some of the variants identified are breed-specific (8
out of 64) or wolf-specific (4 out of 64). Most of the
breed specific variants are found in TLR5 and TLR4,
which as seen before, are the most polymorphic TLRs.
German Shepherd dogs (GSD) and wolf share 3 nsSNPs,
all located in TLR4. The same happens with Shar Pei
and wolf, they share 3 nsSNPs located in TLR2, TLR5
and TLR6.
SNPs with a MAF (Minor allele frequency) <0.05 have

been considered to be fixed in the cohort [21]. Usually it
is the reference allele the one which is fixed, but in some
cases (perhaps due to bad annotation of the SNP) is the
alternative one. Iberian wolves’ cohort is the one with
more fixed variants, with only 24 out of 64 that are
segregating, followed by Yorkshire and Boxer, with 25
out of 64 segregating variants.

Predicted impact of canine TLRs amino acid substitutions
Polyphen-2 [22,23], SIFT [24,25], and PROVEAN [26,27]
tools were used in order to predict the effect of each
nsSNP in the protein structure. Each of these tools uses a
different algorithm to predict the consequence of the ami-
noacid change on the protein and classifies it as benign/
tolerated/neutral or damaging/affect protein function/
deleterious (for more detail, see Methods). 28 out of 64
nsSNPs were predicted to have an effect on the protein
structure by at least one of the tools used (Table 3). When
frequency of the alternative variant was high for all the
cohorts tested, the alternative allele was exchanged with
the reference allele in ENSEMBL sequences [20] in order
to perform the Polyphen-2 analysis with the less frequent
variant as the “alternative variant”. Therefore, SNPs with

Table 1 Variants detected in canine TLRs by massive sequencing

Extracellular TLRs Intracellular TLRs

Effect impact SNP effect TLR1 TLR2 TLR4 TLR5 TLR6 TLR10 TLR3 TLR7 TLR8 TLR9 Total

Low Syn coding 2 5 4 28 2 5 6 6 8 7 73

Moderate Non-syn coding 4 3 12 23 4 3 1 3 4 7 64

Total coding SNP (cSNP) 6 8 16 51 6 8 7 9 12 14 137

Modifier Downstream 1 4 0 0 2 3 0 0 2 1 12

Intron 0 0 6 3 0 0 10 7 0 2 28

Upstream 0 6 0 0 2 1 1 1 1 0 12

UTR 3′ 0 0 4 0 0 0 0 10 0 0 14

Total non coding SNP (ncSNP) 1 10 10 3 4 4 11 18 3 3 66

Total SNP 7 18 26 54 10 12 18 27 15 17 204

Variants are classified according to their effect on the protein and their spread along cell surface or intracellular TLRs.
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frequencies greater than 0.25 for the alternative allele were
tested also for the annotated reference allele. Then, 3 more
SNPs were predicted to affect the protein structure (indi-
cated as reference on the column dbSNP ID in Table 3).
When considering also these ones, 31 out of 64 nsSNPs
(48%) were predicted to have an impact on the protein
structure. Results from Polyphen-2, SIFT and PROVEAN
were convergent in predicting damaging effects for 8 out
of 31 nsSNPs (27%). On the other hand, 6 out of 64
nsSNPs were not correctly predicted, giving unknown or
low confidence results, because they were not aligning to
enough similar sequences to give a reliable result. Curi-
ously most of this nsSNPs were located on the N-terminal
region of TLR5.
Protein structure of the canine TLRs was assessed

using SMART [28,29], which predicts domains taking
into account aminoacid sequences: 6 out of 31 nsSNPs
predicted to be damaging in canine TLRs were found to
be in a Leucine Rich Repeat C-terminal (LRRCT) or
really close to it. Only 1 out of 31 was found to affect
TIR domain in TLR 5, other 2 were found to be really
close to this domain in TLR5 and 10. With the excep-
tion of these last ones, nsSNPs were in most cases
located in the sensor domain of TLRs (Table 3).
Frequencies in Table 3 are an average of all dog pools

tested and both wolf populations respectively, so all vari-
ants are polymorphic (MAF > 0.05) at least in one breed.
17 out of 31 show a MAF > 0.05 when considering the
average frequencies in all the pools together (15 out of
31 with MAF > 0.05 in wolf populations). However, as
mentioned above, frequencies of nsSNPs differ among
breeds (see Additional file 2). It’s worthy to note the
differences on the alternative allele frequency observed
for the 8 nsSNPs that were predicted to affect protein
function by the three tools used (Figure 1).

TaqMan open array design and SNP validation
A TaqMan OpenArray® plate has been developed for the
validation of the nsSNPs by individual genotyping (Table 4).
This panel contains (i) 27 out of 31 nsSNPs that were pre-
dicted to have an impact on the protein structure (4 wolf-
specific SNPs were not considered for the array: TLR1
A525V, TLR5 N833K, TLR6 P579L and TLR10 F787L; see
Table 3); (ii) 28 out of the 33 remaining nsSNPs segregat-
ing in dogs (5 SNPs that were not suitable for a correct
primer design were rejected for posterior analysis: TLR4
T36A, TLR4 T36I, TLR5 T243A, TLR5 Q213R and TLR9
A442V); and (iii) 4 frameshift and 4 non-synonymous TLR
polymorphisms described on CanFam 3.1 but not detected
in our cohorts (see Table 4). One of the non-synonymous
variants added (rs23572381, TLR1 N634K) was designed
with two different TaqMan assays due to the presence of
other variants close to the interrogated SNP.
A total of 99 DNA samples of the first massive sequen-

cing pools were chosen to be individually genotyped in
order to validate the SNPs with the TaqMan Open Array®
designed: 15 Beagle, 15 Boxer, 14 French bulldog, 15
Labrador, 15 German Shepherd dog, 13 Yorkshire and 12
Shar Pei were used. One Shar-Pei and 2 Yorkshires do not
pass the quality control for samples (call rate > 0.9) and
were removed from the posterior analysis. Finally, analysis
was performed with a total of 96 individuals. Fifty-nine
out of the 64 SNPs (92%) included in the OpenArray have
been successfully validated and all of them had a call rate
greater than 0.9.
Some downstream analyses have been performed with

the individual genotypes. However, it should be taken
into account that these are just preliminary results,
which need to be validated with larger cohorts of dogs.
All the TLR SNPs were in Hardy-Weinberg Equilibrium

(HWE) on Beagle, Boxer, German Shepherd, Labrador and

Table 2 Total number of variants affecting protein in extracellular and intracellular TLRs

Canine gene ENSEMBL protein ID Protein length (aa) AA change ratioa

Extracellular TLRs

TLR1 ENSCAFP00000032660 790 1/113

TLR2 ENSCAFP00000012269 785 1/196

TLR4 ENSCAFP00000031395 833 1/69

TLR5 ENSCAFP00000016726 1422 1/53

TLR6 ENSCAFP00000023836 797 1/199

TLR10 ENSCAFP00000023840 807 1/269

Intracellular TLRs

TLR3 ENSCAFP00000011004 905 1/905

TLR7 ENSCAFP00000017193 1121 1/374

TLR8 ENSCAFP00000031505 1038 1/260

TLR9 ENSCAFP00000030804 1032 1/129

Variants from CanFam 3.1 have been added to variants identified by massive sequencing in this table. aAA change ratio: aminoacid changes caused by nsSNPs or
frameshift mutations divided by the length of the protein in aminoacids.
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Shar-Pei. In Yorkshire, TLR10 has two SNPs in linkage dis-
equilibrium which are not in HWE, one of them is predicted
to affect protein function by the algorithms tested (Table 3).
French Bulldog was the breed that had more SNPs that did
not follow HWE proportions, with 3 SNPs in TLR4 and one
SNP in TLR5 (Table 5). TLR7 and 8 were not included
because they are both located in chromosome X.

Principal components analysis (PCA) combined data
from the individual genotypes obtained for the subset of
SNPs which were not in linkage disequilibrium. It was used
to illustrate if dogs cluster by breed for genetic variants in
TLRs. The first two components from the PCA have been
plotted in Figure 2. Visual examination of this plot
shows overlapping for most breeds, excluding Labrador

Table 3 Non-synonymous SNPs predicted to impact protein function either by Polyphen-2, SIFT or PROVEAN

Canine
gene

Position SNP dbSNP ID AA
Subst

Protein
domaina

Polyphen-2
result

SIFT result Provean
result

Variant freq
(dog)b

Variant freq
(wolf)b

EXTRACELLULAR TLRs

TLR1 3:73542337 G/T rs23585044 S29I ncp Pos. damaging Tolerated Neutral 0,36 0,77

3:73543092 T/G new S281A ncp Pos. damaging Tolerated Neutral 0,06 0,00

3:73543825 C/T new A525V LRRCT2 Pos. damaging Tolerated Deleterious 0 0,11

TLR2 15:51463020 C/A rs22410121 S46Y ncp Pos. damaging Tolerated Neutral 0,10 0,00

15:51464430 C/T new S516L ncp Prob. damaging Aff. function Deleterious 0,14 0

TLR3 16:44623632 C/G new E176D ncp Pos. damaging Tolerated Neutral 0,16 0,12

TLR4 11:71356420 C/T reference1 A8V ncp Prob. damaging Tolerated Neutral 0,77 0,57

11:71360887 G/A new V82M ncp Pos. damaging Tolerated Neutral 0,09 0,15

11:71364581 T/C rs22145736 L167P ncp Prob. damaging Aff. function Deleterious 0,15 0

11:71364681 A/C reference1 Q200H ncp Pos. damaging Aff. function Neutral 0,88 0,23

11:71365810 A/G new T577A LRRCT3 Pos. damaging Aff. function Neutral 0,01 0

TLR5 38:23702837 C/T rs9070447 R269C ncp Prob. damaging Aff. function Neutral 0,19 0,01

38:23702918 G/A new V296I ncp Pos. damaging Tolerated Neutral 0,05 0,26

38:23703629 G/A new G533S ncp Prob. damaging Tolerated Neutral 0,02 0

38:23704331 G/T new D767Y ncp Prob. damaging Tolerated Deleterious 0,04 0

38:23704531 C/G new N833K LRRCT Pos. damaging Tolerated Deleterious 0 0,06

38:23704562 C/T new R844C LRRCT Pos. damaging Tolerated Neutral 0,04 0,39

38:23704581 C/T reference1 S850L LRRCT Prob. damaging Aff. function Deleterious 0,68 0,02

38:23704695 T/G new F888C low
complexity

Prob. damaging Aff. function Deleterious 0,04 0

38:23705081 C/T new H1017Y TIR Benign Aff. function Neutral 0,02 0

38:23705264 G/A new A1078T TIR4 Pos. damaging Aff. function Neutral 0,07 0,00

TLR6 3:73521250 A/G new Y182C ncp Prob. damaging Tolerated Deleterious 0,01 0,09

3:73522074 C/T new L457F ncp Prob. damaging Aff. function Deleterious 0,03 0

3:73522242 G/A rs23570247 D513N ncp Pos. damaging Tolerated Neutral 0,73 1,00

3:73522441 C/T new P579L LRRCT Pos. damaging Aff. function Deleterious 0,01 0,07

TLR10 3:73569402 C/T rs23518574 T361M ncp Prob. damaging Aff. function Deleterious 0,13 0,12

3:73570681 T/A new F787L TIR5 Pos. damaging Low
confidence

Neutral 0,00 0,39

INTRACELLULAR TLRs

TLR8 X:9397240 T/C new V157A ncp Pos. damaging Aff. function Deleterious 0,06 0

TLR9 20:37544129 G/A new V87I ncp Benign Aff. function Neutral 0,02 0

20:37546230 C/T new P787L ncp Pos. damaging Tolerated Neutral 0,22 0,24

20:37546454 C/T new R862W ncp Prob. damaging Tolerated Neutral 0,2 0

In italics, SNPs that are predicted to have an effect on protein function by the three algorithms. ancp, no confident prediction. bObserved frequency by massive
sequencing. 1reference allele tested as the alternative in the SNP. 2Leucine Rich Repeat C-terminal (LRRCT) domain predicted from aminoacid 528 to 582. 3LRRCT
domain predicted from aminoacid 579 to 629. 4TIR domain predicted from aminoacid 927 to 1074. 5TIR domain predicted from aminoacid 641 to 784.
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and perhaps German Shepherd, which seem to be more
differentiated for these receptors.

Discussion
Canine breed specific variants in TLRs could be associated to
differences in breed innate immune response to pathogens
and thus to susceptibility to infections or autoimmune dis-
eases. So far, polymorphisms in TLR4 and TLR5 have been
associated with IBD in German Shepherd dogs [8], but only
protective SNPs from TLR5 have been associated with IBD
in other 38 dog breeds [9]. There is therefore great interest in
the characterization of canine TLRs. Different dog breeds and
2 different populations of wolves (Iberian and Russian) were
included in the analysis to represent some of the major
phylogenetic radiations: Wolves, Ancient&Spitz breeds, Scent
hounds, Working dogs, Mastiff-like dogs, Small Terriers and
Retrievers [30]. A total of 204 variants have been discovered
and functionally annotated in exonic regions of canine TLRs
by massive sequencing: 155 of the variants were new in rela-
tion to the most recent annotation of the canine genome
(CanFam 3.1; September 2012). Variants have been function-
ally annotated and correspond to 64 non-synonymous vari-
ants (43 new), 73 synonymous variants (56 new) and 67
modifier variants (57 new). None of the variants detected in
the pools analyzed had a high effect (STOP codon, frameshift
mutation or splicing) on the protein function, although 4
frameshift mutations are annotated in CanFam 3.1.
SNPs functionally annotated as non-synonymous are

expected to have a greater effect on protein function, and
therefore a more exhaustive analysis was performed on
them. Although allelic frequencies for nsSNPs differ
among breeds and 12.5% of them are breed-specific (6.25%
are wolf specific), dogs from different breeds share most
non-synonymous variants in TLRs.

A TaqMan OpenArray® plate containing 64 SNPs with a
possible functional effect in the protein (4 frameshifts and
60 nsSNPs) has been designed and validated. 55 out of 64
SNPs contained in the OpenArray® plate have been identi-
fied in this work through massive sequencing by HISEQ;
the remaining 9 were obtained from CanFam 3.1.
As shown in Figure 2, the individual genotypes are not

clustering by breed, with the exception of Labrador and
German Shepherd dogs.
The functional impact of non-synonymous variants in

dog TLRs was predicted using Polyphen-2, SIFT and PRO-
VEAN. Knowing that TLRs are highly conserved recep-
tors, it is not unexpected that half non-synonymous
mutations in dogs have a benign effect, which agrees with
results from similar approaches in other non-primate
species such as bovine [31]. In dogs, TLR5 is the one that
presents more damaging non-synonymous mutations (pos-
sibly damaging + probably damaging), followed by TLR4,
both of them extracellular receptors.
Results from SIFT and Polyphen-2 from some nsSNPs

located in TLR5 returned no output and no prediction
(“unknown” or “low confidence”). In dogs, TLR5 was de-
scribed as a longer protein compared to their homologs in
other species. In CanFam 3.1 TLR5 has 1422 aminoacids,
however other species like human, cow and pig have 858
aa, 858 aa and 856 aa, respectively. A protein BLAST was
performed with the extra 5′ and 3′ TLR5 fragments, but
no result was obtained. Furthermore, the 5′ sequence
begins with ATG codon in the same phase as the initial
coding ATG in other species, whereas the 3′ sequence
eliminates the STOP codon due to some repeats in
tandem (data not shown). So, bad annotation of this gene
in CanFam3.1 is suggested. However, SNPs have been
found in this region. In fact, there are 2 SNPs that had
already been wrongly described as an aminoacid change
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Table 4 Non-synonymous SNPs and frameshift mutations of canine TLRs in the TaqMan Open Array plate

Canine gene SNP Chr:bp position dbSNP ID AA Subst Previous detecteda Validated?

TLR1 G/T 3:73542337 rs23585044 S29I Massive seq YES

T/G 3:73543092 new S281A Massive seq YES

G/A 3:73543185 new V312I Massive seq YES

T/A 3:73544153 rs23572381 N634K1 CanFam 3.1 YES2

T/A 3:73544153 rs23572381 N634K1 CanFam 3.1 NO

G/A 3:73544221 rs23572380 S657N CanFam 3.1 YES2

TLR2 C/A 15:51463020 rs22410121 S46Y Massive seq YES

A/0 15:51464076 rs8958543 A398- CanFam 3.1 YES2

C/T 15:51464430 new S516L Massive seq YES

C/T 15:51464700 new T606M Massive seq YES

TLR3 C/G 16:44623632 new E176D Massive seq YES

TLR4 T/C 11:71356420 rs22120766 V8A Massive seq NO

G/C 11:71360743 rs22157966 A34P Massive seq YES

G/A 11:71360887 new V82M Massive seq YES

T/C 11:71364581 rs22145736 L167P Massive seq YES

C/A 11:71364681 rs22189454 H200Q Massive seq YES

A/G 11:71364769 rs22189456 K230E Massive seq YES

G/A 11:71365120 new A347T Massive seq YES

A/T 11:71365652 rs22124023 E524V Massive seq YES

A/G 11:71365810 new T577A Massive seq YES

G/A 11:71365888 rs22123995 E603K Massive seq YES

TLR5 G/A 38:23702193 rs24029590 G54E CanFam 3.1 NO

0/C 38:23702251 rs9070448 -74C CanFam 3.1 YES2

A/G 38:23702514 rs9070450 Y161C CanFam 3.1 NO

A/C 38:23702539 new E169D Massive seq YES

G/A 38:23702562 new S177N Massive seq YES

G/C 38:23702640 rs9070451 R203P Massive seq YES

T/C 38:23702684 rs9070452 W218R Massive seq NO

C/T 38:23702837 rs9070447 R269C Massive seq YES

G/A 38:23702918 new V296I Massive seq YES

T/C 38:23703180 new L383S Massive seq YES

G/A 38:23703237 new R402Q Massive seq YES

G/A 38:23703279 new R416Q Massive seq YES

T/0 38:23703591 rs9125247 T520- CanFam 3.1 YES2

G/A 38:23703629 new G533S Massive seq YES

G/A 38:23704233 new R734Q Massive seq YES

G/T 38:23704331 new D767Y Massive seq YES

C/T 38:23704562 new R844C Massive seq YES

T/C 38:23704581 rs24029975 L850S Massive seq YES

T/G 38:23704695 new F888C Massive seq YES

G/A 38:23704718 new A896T Massive seq YES

C/T 38:23705081 new H1017Y Massive seq YES
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(in ENSEMBL) moreover in this study 5 more SNPs
have been detected. So it would be interesting to either
determine the existence and functionality of these extra
fragments in canine TLR5 cDNA or correctly annotate it
in CanFam 3.1.
Intracellular TLRs, which detect nucleic acids, have

less nsSNPs (15), moreover these are predicted to be less
damaging variants than those identified in extracellular
TLRs, suggesting that intracellular TLRs are selectively
constrained. TLR9 is the intracellular TLR that accepts

more nsSNPs in dogs, but the predicted effect of these
nsSNPs is usually benign.
These results agree with previously reported data reveal-

ing major differences in the intensity of selection acting
upon the different members of the TLR family. Different
TLRs differ in their immunological redundancy, reflecting
their distinct contributions to host defense [5,32]. Intracel-
lular TLRs act as nucleic acid sensors and have evolved
under strong purifying selection, indicating their essential
non-redundant role in host survival. Higher rates of

Table 4 Non-synonymous SNPs and frameshift mutations of canine TLRs in the TaqMan Open Array plate (Continued)

G/A 38:23705090 new G1020S Massive seq YES

G/A 38:23705178 new R1049Q Massive seq YES

G/A 38:23705264 new A1078T Massive seq YES

TLR6 A/G 3:73521250 new Y182C Massive seq YES

C/T 3:73522074 new L457F Massive seq YES

G/A 3:73522242 rs23570247 D513N Massive seq YES

TLR7 C/G X:9334108 new A16G Massive seq YES2

C/A X:9355727 new F167L Massive seq YES

C/T X:9358423 new P1066L Massive seq YES

TLR8 T/C X:9397240 new V157A Massive seq YES

G/A X:9397663 new R298Q Massive seq YES

G/A X:9398094 rs24607342 G442S Massive seq YES

G/A X:9398827 rs24607358 R686H Massive seq YES

TLR9 G/A 20:37544129 new V87I Massive seq YES

0/A 20:37544851 rs9188882 -328A CanFam 3.1 YES2

A/G 20:37545011 new K381E Massive seq YES

C/A 20:37545245 new P459T Massive seq YES

A/G 20:37546031 rs22882109 S721G Massive seq YES

C/T 20:37546230 new P787L Massive seq ND3

C/T 20:37546454 new R862W Massive seq YES

TLR10 C/T 3:73569402 rs23518574 T361M Massive seq YES

A/G 3:73570094 new M592V Massive seq YES
aMassive seq indicates a SNP variant detected in our cohorts. An “rs” name is indicated in dbSNP ID if the SNP is annotated in CanFam 3.1. 1SNP considered twice
with a different surrender SNP in order to detect it. 2Assay has been validated technically, although not genetically because all individuals have only the reference
allele. 3ND (not determined), there are incongruent results: massive sequencing showed that this SNP was present at a frequency of 0.2 in all breeds tested,
whereas it has not been genotyped through TaqMan OA plate.

Table 5 SNPs in different breeds that are not in Hardy-Weinberg Equilibrium (p < 0.05)

Breed Canine gene AA change SNP Genotypesa p-value SNP predictionb

Yorkshire TLR10 T361M C/T 1/1/9 0.0416978 Prob. damaging

Yorkshire TLR10 M592V A/G 1/1/9 0.0416978 Benign

French B. TLR4 V82M G/A 4/2/8 0.0099493 Pos. damaging

French B. TLR4 H200Q C/A 6/1/7 0.0013535 Pos. damaging*

French B. TLR4 K230E A/G 6/1/7 0.0013535 Benign

French B. TLR5 S177N G/A 0/11/3 0.0154748 Benign
agenotypes, indicate genotype count for reference homozygotes, heterozygotes and alternative homozygotes. bSNP prediction, using Polyphen-2 classification.
*possibly damaging when reference allele is tested as alternative in the SNP.
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damaging non-synonymous and nonsense mutations are
tolerated in cell-surface or extracellular TLRs, which
recognize compounds other than nucleic acids, suggesting
a higher redundancy.
Location of the SNPs in the protein was approached

using the software SMART [28], which identifies TLR
domains using the aminoacid sequence. The intracellular
TIR domain is highly conserved between different TLRs
and species due to its involvement in intracellular signal-
ing [33]. Also in dogs, TIR domains have few SNPs; only
one is present in the predicted TIR domain (TLR5
H1017Y) and another two are really close to it (TLR5
A1078T and TLR10 F787L). Extracellular domains of
TLRs are those that recognize PAMPs, and they have an
enhanced susceptibility to mutate adapting to different
microbiologic environments [33]. It can also be seen that
a high number of mutations (some with damaging effects)
are located in LRR domains, which form the extracellular
domain of TLRs.
So far, polymorphisms in TLRs have been associated with

Inflammatory Bowel disease (IBD) in German Shepherd
dogs (GSD) and in other breeds. Variants in TLR5 previ-
ously reported to be associated to IBD (G22A, C100T and
T1844C from [8,9]) have been also detected in our cohorts
and correspond with TLR5 T243A, TLR5 R269C and TLR5
L850S respectively.
SNP G22A, where the risk allele is A in G22A (corre-

sponding to Thr in TLR5 T243A as named in this work),
is found to be an additive allele. So when a GSD is
homozygous for the risk allele it has more susceptibility
to suffer IBD. This risk allele is not segregating in our
GSD cohort. This could be due to the difference in the
geographical origin of the GSD cohort between both
studies. In [9] GSD are from UK, whilst our cohort is
from Spain. SNPs C100T and T1844C were found to
be significantly protective against canine IBD in many

breeds [9]. The frequencies of the protective alleles (T in
C100T and T in T1844C or Cys in TLR5 R269C and Leu
in TLR5 L850S as named in this work) differ among
breeds (Figure 3), with a frequency higher than 0.5 in
Yorkshire and GSD.

Conclusions
Polymorphisms in the exonic regions of canine TLRs
have been characterized by massive sequencing and
156 out of 204 variants identified were new: 43/64
non-synonymous variants, 56/73 synonymous variants
and 57/67 modifier variants. None of the variants
detected in the pools analyzed had a high effect (STOP
codon, frameshift mutation or splicing) on the protein
function.
A TaqMan OpenArray® plate containing 64 SNPs with

a possible functional effect in the protein (4 frameshifts
and 60 nsSNPs) has been designed and validated to
allow the high throughput genotyping of canine TLRs.

Methods
Ethics statement
The dogs in the study were examined during routinary
veterinary procedures by the veterinary clinics participat-
ing in the study. All samples were collected for routine
diagnostic and clinical purposes. The samples were
obtained during veterinary procedures that would have
been carried out anyway and DNA was extracted from
residual surplus of samples and used in the study with
verbal owner consent. This is a very special situation in
veterinary medicine. As the data are from client-owned
dogs that underwent normal veterinary exams, there was
no “animal experiment” according to the legal defini-
tions in Spain and the United Kingdom, and approval by
an ethical committee was not necessary.
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DNA sources
Samples available from the DNA bank at the SVGM
(Molecular Genetics Veterinary Service, UAB) were used.
Total DNA from blood cells had been extracted either as
described elsewhere [34] or using QIAamp DNA Mini Kit
(Qiagen).
DNAs from 7 different dog breeds, including 50 Beagle,

50 German Shepherd, 50 Yorkshire, 35 French bulldog, 75
Boxer, 50 Labrador and 25 Shar Pei were used. All the
dogs included in this study are from Spain region, and
come from hospital population or normal pet dogs. Also 2
different populations of wolves, with 50 Iberian (Canis
lupus signatus) and 50 Russian (European grey wolves,
Canis lupus lupus), were analyzed. DNA pools were
prepared with 200 ng of DNA from 25 unrelated dogs
(with the exception of one pool of French bulldogs, with
only 10 dogs). Two pools of each breed were analyzed, in
exception of Shar Pei (only 1 pool) and Boxer (3 pools).
Pools of wolves were of 50 individuals.
Some DNA samples of the first massive sequencing

analyses were chosen to be individually genotyped in order
to validate SNPs in the TaqMan Open Array® designed
(15 Beagle, 15 Boxer, 14 French bulldog, 15 Labrador, 15
German Shepherd, 13 Yorkshire and 12 Shar Pei).

Exon capture and massive sequencing for SNP discovery
Twenty exonic regions of 10 canine TLR genes annotated
in CanFam 2.0 were chosen to perform the enrichment
(see Additional file 3 with corresponding coordinates in
CanFam 3.1).
Oligonucleotides were first automatically designed for

the enrichment of selected regions [35]. Regions rejected
in the automated design, because of the presence of gaps,
repeats or shorter sizes than required (at least 120 nucleo-
tides) were manually redesigned. Finally 235 ultra-long
120-mer biotinylated cRNA baits were designed to capture
the exonic regions of canine TLRs (28,200 bases) by the
Agilent Sure Select technique. High-throughput sequencing

was performed using 2 lanes of Illumina HISEQ, with
8-labelled pools each, at CNAG (Centre Nacional d’Anàlisi
Genòmica, Barcelona, Spain).
Sequences obtained were mapped to CanFam 3.1 (re-

leased September 2012). All pools were analysed together
for variant calling, for better comparison. Alternative
variant frequencies were estimated for each breed pool
and wolf populations. The variants were annotated with
statistical information from the Genome Analysis Tool Kit
(GATK) and functional annotations were added from
Ensembl using snpEff [36].

Prediction of functional impact of non-synonymous SNPs
The functional impact of non-synonymous mutations
detected was predicted using Polyphen-2 [22,23], SIFT
[25,24] and PROVEAN [27,26]. When the mean frequency
of an alternative variant on the dog population analyzed
was more than 0.25, both alleles of those SNPs were
tested with algorithms mentioned before as reference
and alternative.
Polyphen-2 classifies mutations in three categories: be-

nign, possibly damaging and probably damaging. Polyphen
algorithm considers protein structure and/or sequence con-
servation information for each gene [23]. SIFT is based on
the evolutionary conservation of the amino acids within
protein families performing multiple sequencing analyses
using PSI-Blast algorithm. Highly conserved positions tend
to be intolerant to substitution, whereas those with a low
degree of conservation tolerate most substitutions. There-
fore, it classifies each non-synonymous polymorphism as
tolerated or affect protein function and provides also a
confidence measure [24]. PROVEAN introduced a region-
based “delta alignment score” which measures the impact
of an amino acid variation not only based on the amino
acid residue at the position of interest but also the quality
of sequence alignment derived from the neighborhood
flanking sequences. It classifies variants either as neutral or
deleterious [26].
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SMART was used in order to identify protein domains
of each TLR using their aminoacid sequence [28].

TaqMan OpenArray® design
A TaqMan OpenArray® was designed for genotyping and
validating 64 SNPs with a possible functional effect in the
protein. Selected SNPs and their surrounding sequences, 60
nucleotides upstream and 60 nucleotides downstream were
introduced in Custom TaqMan® Assay Design Tool web
site [37] from Life Technologies® to validate if the sequences
were suitable for TaqMan assay design. Other SNPs in the
context sequences were indicated with an “N” before the
assays design. SNPs included are listed in Table 4.
Analysis was performed with the TaqMan Genotyper

software v.1.3 (Applied Biosystems). Further analysis of
individual genotypes was performed with SVS (version 7)
of Golden Helix Inc. SNPs or samples that do not pass call
rate >0.9 were removed for posterior analysis.

Additional files

Additional file 1: Total number of detected synonymous and
non-synonymous SNPs for each canine Toll-like receptor.

Additional file 2: Frequencies of coding variants obtained by massive
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frequency per dog and wolf species. Frequency of the SNP is represented as
the frequency of the alternative allele.

Additional file 3: Coordinates of exonic regions of 10 canine TLR
genes as annotated in CanFam 3.1.
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3.2. Individual Signatures Define Canine Skin 

Microbiota Composition and Variability  

This chapter consists of the article entitled “Individual Signatures Define Canine Skin 

Microbiota Composition and Variability” published in Frontiers in Veterinary Science in 

February 2017 (4:6). 

See Section 3.2.1 Annex 1: Erratum: Figure 3 to see the newest version of Figure 3,  

The Supplementary Material for this article can be found online at: 

http://journal.frontiersin.org/article/10.3389/fvets.2017.00006/full#supplementary-

material. 
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Dogs present almost all their skin sites covered by hair, but canine skin disorders are 
more common in certain skin sites and breeds. The goal of our study is to characterize 
the composition and variability of the skin microbiota in healthy dogs and to evaluate the 
effect of the breed, the skin site, and the individual. We have analyzed eight skin sites of 
nine healthy dogs from three different breeds by massive sequencing of 16S rRNA gene 
V1–V2 hypervariable regions. The main phyla inhabiting the skin microbiota in healthy 
dogs are Proteobacteria, Firmicutes, Fusobacteria, Actinobacteria, and Bacteroidetes. 
Our results suggest that skin microbiota composition pattern is individual specific, with 
some dogs presenting an even representation of the main phyla and other dogs with 
only a major phylum. The individual is the main force driving skin microbiota composition 
and diversity rather than the skin site or the breed. The individual is explaining 45% of 
the distances among samples, whereas skin site explains 19% and breed 9%. Moreover, 
analysis of similarities suggests a strong dissimilarity among individuals (R  =  0.79, 
P = 0.001) that is mainly explained by low-abundant species in each dog. Skin site also 
plays a role: inner pinna presents the highest diversity value, whereas perianal region 
presents the lowest one and the most differentiated microbiota composition.

Keywords: skin, microbiota, microbiome, dog, canine, coat, skin site, 16S

INTRODUCTION

The skin is the living interface between an individual and the exogenous environment. It is covered 
with millions of microorganisms (1) interacting together with hosts’ cells and immune receptors to 
maintain the equilibrium (2). Bacteria are the most abundant microorganisms living on skin surface 
(3), and their whole population is defined as the microbiota. The high variability of the microbiota 
in the healthy skin has been captured during the last years using next-generation sequencing tech-
niques [for a review, see Ref. (4)]. Marker-based approaches, mainly using 16S rRNA gene, focus on 
detecting who is living there—bacterial composition and diversity.

Main phyla inhabiting human skin are Actinobacteria, Firmicutes, Bacteroidetes, and 
Proteobacteria. A feature of human cutaneous microbiota is the existence of different microhabitats, 
which are characterized by the predominance of a specific taxa: sebaceous sites (occiput, glabella, alar 
crease, and manubrium) with Propionibacterium spp; moist sites (nare, axilla, and inguinal crease) 
with Staphylococcus and Corynebacterium spp; and dry sites (palms and butlock) with gram-negative 
microorganisms (5). According to the first extensive study reported, dogs harbor mainly the same 
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FIGURE 1 | Skin sites sampled per dog.
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phyla as human skin (6). Fusobacteria was also detected as a main 
phylum, when only considering the paws and the forehead (7) 
and also in a recent study considering the groins (8). In humans, 
the variation is higher among different microhabitat skin sites of 
the same individual than among skin sites from the same micro-
habitat in different individuals (5, 9). Several differences among 
skin sites have been described in dogs (6), but to our knowledge, 
no microhabitats have been defined.

Different factors such as the environment, host genetic 
variation, lifestyle, or hygiene cause shifts on the microbial com-
munities of the skin (10). These shifts on the microbiota structure 
and composition could establish a dysbiotic state, which if not 
recovered could result on a dermatologic affliction. Dysbiosis 
of the skin microbiota has been associated with several skin 
afflictions in humans, such as atopic dermatitis (11, 12), psoriasis 
(13, 14), and acne vulgaris (15). In canine microbiota studies, 
association between atopic dermatitis and microbiota has been 
assessed showing less richness on affected animals, either when 
considering bacteria (6, 16) or fungal communities (17). However, 
in allergen-induced canine atopic dermatitis, no significant 
differences on diversity were reported (8). Moreover, recent 
studies have reported significant increases of Staphylococcus and 
Corynebacterium in dogs with this disease (8, 16). Nevertheless, 
a better characterization of the cutaneous microbiota of healthy 
dogs seems to be necessary before understanding its role in 
disease conditions.

There is much less knowledge about the potential functions 
of the mammals’ microbiota. The potential function of a bacte-
rial community can be assessed either directly, using shotgun 
metagenomics, or indirectly, using 16S data and a predictive 
software such as Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States (PICRUSt) (18). Langille 
et al. used this tool with the Human Microbiome Project dataset 
(19) obtaining sufficiently accurate results, even for skin samples 
(18). In canine intestinal microbiota studies, shotgun metagen-
omics has been used to study microbiota variability when feeding 
animals with two different diets (20), and PICRUSt was used in 
dogs suffering idiopathic inflammatory bowel disease (21). To 
our knowledge, no studies have assessed potential functions of 
the microbiota at the skin level.

Our aim was to characterize the composition and variability of 
the skin microbiota on healthy dogs, considering the breed—spe-
cially the hair coat—the skin site, and the individual. We sampled 
nine healthy dogs from three breeds representing the diversity 
of canine hair coats: French Bulldog (FB; short hair), German 
Shepherd (GS; long hair with undercoat), and West Highland 
White Terriers (WHs; wired hair) (22). These three breeds were 
also selected because they are among the most predisposed to 
suffer from atopic dermatitis (23). We also aimed to predict the 
functional profile of the microbiota of different skin sites using 
PICRUSt.

MATERIALS AND METHODS

Ethics Statement
The dogs in the study were examined during routine veterinary 
procedures by the veterinary clinics participating in the study. 

All samples were collected and used in the study with verbal 
owner consent. As the data are from client-owned dogs that 
underwent normal preventative veterinary examinations, there 
was no “animal experiment” according to the legal definitions in 
Spain, and approval by an ethical committee was not necessary.

Individuals Included and Sample 
Collection
A cross-sectional study was performed in nine healthy dogs to 
analyze skin microbiota variability in several skin sites, con-
sidering the breed, the hair coat, and the individual. They were 
all pure-breed dogs ranging from 3  months to 12  years of age 
and from different households visiting the veterinary clinic for 
routine procedures (Table S1 in Supplementary Material). All of 
them lived in urban or periurban environment. Samples from 
three FBs (FB1, FB2, and FB3), three GSs (GS1, GS2, and GS3), 
and three West Highland WHs (WH1, WH2, and WH3) were 
included. Skin samples were collected from eight skin regions: 
chin, inner pinna, nasal skin, axilla, back, abdomen, interdigital 
area, and perianal region. These regions are named as 1, 2, 3, 4, 
5, 6, 7, and 8, respectively (Figure  1). Samples were obtained 
by firmly rubbing each area using Sterile Catch-All™ Sample 
Collection Swabs (Epicentre Biotechnologies) soaked in sterile 
SCF-1 solution (50 mM Tris buffer (pH = 8), 1 mM EDTA, and 
0.5% Tween-20). To minimize sample cross-contamination, the 
person sampling wore a fresh pair of sterile gloves for each indi-
vidual. Swabs were stored at 4°C until DNA extraction, within 
the following 24 h.

DNA Extraction
Bacterial DNA was extracted from the swabs using the PowerSoil™ 
DNA isolation kit (MO BIO) under manufacturer’s conditions, 
with one modification. At the first lysis step, the swab tip with 
the sponge was cut and introduced in the beads’ tube, until the 
first transference of the supernatant to a new tube. The remaining 
steps were performed as described by the manufacturer. DNA 
samples (100 µl) were stored at −20°C until further processing.

To assess for contaminations from the laboratory or reagents, 
a sterile swab tip was processed in the same conditions as the skin 
microbiota samples, giving negative results.
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PCR Amplification and Massive 
Sequencing
V1–V2 regions of 16S rRNA gene were amplified using the widely 
used primer pair F27 (5′-AGAGTTTGATCCTGGCTCAG-3′) 
and R338 (5′-TGCTGCCTCCCGTAGGAGT-3′). PCR mixture 
(50  uL) contained 5  µl of DNA template (~5  ng), 5  µl of 10× 
AccuPrime™ PCR Buffer II, 0.2  µM of each primer, and 1  U 
of AccuPrime™ Taq DNA Polymerase High Fidelity (Life 
Technologies). The PCR thermal profile consisted of an initial 
denaturation for 2 min at 94°C, followed by 30 cycles for 1 min 
at 94°C, 1 min at 55°C, 1 min at 72°C, and a final step for 7 min 
at 72°C. To assess possible reagent contamination, each PCR 
reaction included a no template control sample, which did not 
amplify. For each amplicon, quality and quantity were assessed 
using Agilent Bioanalyzer 2100 and Qubit™ fluorometer. Both 
primers included sequencing adaptors at the 5′ end, and forward 
primers were tagged with different barcodes to pool samples in 
the same sequencing reaction. Each pool contained 8 barcoded 
samples. A total of 9 pools were sequenced on an Ion Torrent 
Personal Genome Machine (PGM) with the Ion 318 Chip Kit 
v2 and the Ion PGM™ Sequencing 400 Kit (Life Technologies) 
under manufacturer’s conditions. The raw sequences have been 
deposited in NCBI under the Bioproject accession number 
PRJNA357691.

Quality Control of the Sequences and 
Operational Taxonomic Unit (OTU) Picking
Raw sequencing reads were demultiplexed, quality filtered, and 
analyzed using QIIME 1.9.1 (24). Reads included had a length 
greater than 300  bp; a mean quality score above 25 in sliding 
window of 50 nucleotides; no mismatches on the primer; and 
default values for other quality parameters. Quality-filtered reads 
were clustered into OTUs at 97% similarity, using UCLUST (25) 
in an open reference approach for taxonomy analyses and a 
closed reference approach for functional profiling. Taxonomic 
assignment of representative OTUs was performed using the 
RDP Classifier (26) against Greengenes v13.8 database (27). 
Alignment of sequences was performed using PyNast (28) as 
default in QIIME pipeline. Chimera checking was performed 
using Chimera Slayer (29).

We applied two extra filtering steps in aligned and taxonomy-
assigned OTU table. First, sequences that belonged to chloroplasts 
class were filtered out. After that, sequences representing less than 
0.005% of total OTUs were also filtered out [as previously done in 
Ref. (30)] from the chloroplast filtered OTU table. After these two 
extra filtering steps, we lost a mean of 27% of sequences (median 
of 25%, ranging from 2 to 77%) and a mean of 21% of sequences 
(median of 15%, ranging from 1 to 77%) in open and closed refer-
ence approaches, respectively (Data Sheet S1 in Supplementary 
Material).

Downstream Bioinformatics Analyses: 
Diversity, Composition, Potential 
Functions, and Statistical Tests
Downstream analyses were performed using QIIME 1.9.1 
(24) with the filtered OTU table. Reads are clustered against a 

reference sequence collection, and all of the reads that do not 
hit a sequence in the reference sequence collection are excluded 
from downstream analyses in a closed reference approach or are 
subsequently clustered de novo in an open reference approach. To 
standardize samples with unequal sequencing depths, analyses 
were performed using random subsets of 25,000 sequences per 
sample in the open reference approach and random subsets of 
10,000 sequences per sample in the closed reference approach. 
The perianal sample of one FB (FB1.8) failed this parameter and 
was discarded for posterior analyses.

Alpha diversity analysis assesses the diversity within a sample. 
In alpha diversity, we used two different metrics: observed spe-
cies to assess richness and Shannon index to assess evenness. We 
assessed statistical significance with 999 permutations using the 
non-parametric Monte Carlo permutation test and corrected the 
P value through false discovery rate.

To assess the differences in the alpha diversity and composition 
at the individual level, we collapsed the eight skin samples from a 
dog using QIIME v1.9.1 to form a unique sample representing the 
individual. Therefore, the sample size for analyzing the individual 
effect is nine.

To assess the differences in the alpha diversity and compo-
sition when considering the breed, we used two approaches: 
(A)  analyzing each skin site independently and (B) using the 
QIIME collapsed values from the eight skin site samples for each 
dog (n = 9). In the first approach, we group the three samples 
corresponding to a skin site from a breed and assessed differences 
in breeds per skin site; e.g., GS1.1, GS2.1, and GS3.1 as GS_chin 
and we compared them to FB_chin and WH_chin. In the second 
approach, we group the three collapsed individual samples from 
each breed; e.g., GS1, GS2, and GS3 as GS and we compared them 
to FB and WH.

Beta diversity analysis assesses the similarities among 
samples of the same community. Beta diversity was performed 
using both weighted and unweighted UniFrac distance metrics 
(31). Weighted UniFrac considers phylogeny, taxa, and relative 
abundances, whereas unweighted UniFrac only considers phy-
logeny and taxa. Those distance matrices were used to create 
PCoA plots and unweighted pair group method with arithmetic 
mean (UPGMA) trees. Trees were plotted using FigTree (REF). 
ANOSIM and adonis statistical methods were applied to evaluate 
if some variables were determining grouping and to which extent.

PICRUSt (18) was used to predict the functional profile of skin 
bacterial communities using 16S rRNA gene data obtained using 
a closed reference approach in QIIME v1.9.1. Kyoto Encyclopedia 
of Genes and Genomes (KEGG) (32) Ortholog (KO) hierarchy 
was used to make inferences of the functional gene content.

Linear discriminant analysis (LDA) effect size (LEfSe) (33) was 
used to compare groups and to identify differentially abundance 
distribution in both taxa and predicted functions (α = 0.05 and 
with an LDA score >3.0).

RESULTS

To assess variability and composition of dog skin microbiota, 
we performed a cross-sectional study with healthy dogs from 
three breeds. We have analyzed 72 samples from 9 dogs: 3 FBs, 
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3 GSs, and 3 West Highland WH. We sampled eight skin sites: 
chin, inner pinna, nasal skin, axilla, back, abdomen, interdigital 
region, and perianal area, which are named as 1, 2, 3, 4, 5, 6, 7, 
and 8, respectively (Figure 1). These anatomic sites were selected 
to represent the regional diversity of the canine skin (34).

We found a total of 2,092 bacterial OTUs living on dog 
skin, which were taxonomically classified into 20 phyla, 51 
classes, 69 orders, 132 families, and 245 genera. Data Sheet S2 
in Supplementary Material contains several OTU tables: the 
complete OTU table for the 72 samples, the OTU table at family 
level obtained for all the samples, the OTU table collapsed by site, 
and the OTU table collapsed by individual.

The abundances of the main phyla differed on each sample 
(Figure  2A). The main phyla on skin samples were Proteo
bacteria (1–73%), Firmicutes (3–93%), Fusobacteria (0–58%), 
Bacteroidetes (0–69%), and Actinobacteria (0–35%), followed 
by Cyanobacteria, Tenericutes, TM7, and others with lower 
abundances.

Alpha diversity values were also very variable among samples 
(Data Sheet S3 and Figure S1 in Supplementary Material). The 
richness (observed species) ranged from 145.6 in the chin of 
WH1 to 928.8 in the inner pinna of GS1 (average of 488.42). 
The evenness (Shannon Index) ranged from 0.959 in the axilla of 
WH3 to 8.559 in the abdomen of WH2 (average of 5.8).

To assess if the variability of the dog skin microbiota depended 
on individual, breed, and/or skin site and to which extent, we 
clustered the samples using UPGMA trees and assessed statisti-
cal significance using adonis and ANOSIM tests (Figures 2B,C). 
We found that the main force driving the variability in dog skin 
microbiota composition is the individual, followed by the skin 
site and the breed.

Despite the high variability detected among samples, all of 
them were skin microbiota of healthy dogs and in fact shared 
some of their taxonomy. Thus, to assess the homogeneity of 
the samples, we analyzed the core microbiota. To complete the 
analysis, we assessed the potential functions of the bacterial com-
munity using PICRUSt.

Individual
Samples from the same individual tended to cluster together 
(Figures  2B,C). Statistical analysis using adonis test con-
firmed this result: the clustering of samples per individual 
significantly explained 40% (unweighted UniFrac) and 45% 
(weighted UniFrac; Figure S2A in Supplementary Material) 
of the distances among samples. Moreover, ANOSIM R value 
was close to +1 (R = 0.79, P = 0.001) in unweighted UniFrac, 
suggesting a strong dissimilarity among groups that was mainly 
explained by low-abundant species in each dog. Therefore, the 
individual was the variable that explained most differences 
among samples.

Seven of nine dogs had a taxonomic profile with the main 
bacterial phyla: Firmicutes and Proteobacteria with higher abun-
dances than Actinobacteria or Bacteroidetes (Figure 2A). From 
these dogs, FB2, FB3, and WH1 presented also Fusobacteria as 
one of the main phyla if not the greatest one, whereas in GS1, GS2, 
GS3, and FB1, this phylum was almost absent. Two of nine dogs 
presented a predominant phylum (>50% of the total abundance) 

over the others, WH2 with Proteobacteria and WH3 with 
Firmicutes. The abundances of these two phyla and others were 
differentially distributed (Figure S2B in Supplementary Material) 
(α = 0.05, LDA score >3).

The abundances differed in each individual, not only at the 
phylum level but also at the deeper taxonomic levels, such as 
family level (Data Sheet S2 in Supplementary Material). We can 
detect some individual-specific families, when looking at the most 
abundant families (Table  1): Listeriaceae representing a 22.5% 
of total microbiota composition for GS2; Porphyromonadaceae 
with a 26.1% for WH1; and or Enterobacteriaceae with a 12% for 
FB1. On the other hand, Streptococcaceae was present in all the 
individuals with low percentages, in exception of WH3 with 59% 
of the total composition that making it the individual with the 
lowest evenness value (3.71 of Shannon Index, Data Sheet S3 in 
Supplementary Material). Depending on the individual, families 
representing more than 5% (Table 1) were describing from 36.3 
to 78.6% of total microbiota composition.

Skin Site
Clustering samples per skin site significantly explained 19% of the 
distances, when considering composition, phylogeny, and relative 
abundances (weighted UniFrac; Figure 3A). Visually inspecting 
the beta diversity plot, we found that perianal samples cluster 
together.

Inner pinna presented the highest diversity value with an 
average richness of 610.82 observed species and an average 
evenness of 6.85 of Shannon index, whereas the perianal region 
presented the lowest diversity, with only 323.1 observed species 
and a Shannon index of 4.41 (Data Sheet S3 in Supplementary 
Material). These two skin regions were significantly different 
between each other when considering evenness (Figure  3B; 
P = 0.028).

Most of the skin sites had Proteobacteria and Firmicutes as the 
most abundant phyla, adding up to more than 55% of the total 
microbiota composition (Figure 3C). Chin had also Bacteroidetes 
as an abundant phylum with a 14.6% of Porphyromonadaceae, 
becoming the main family of this skin site. The perianal region 
was the exception and presented the most different composition 
profile (Figure 3 and Table 2; Data Sheet S2 in Supplementary 
Material). In perianal region, Bacteroidetes was the main 
phylum, followed by Firmicutes and Fusobacteria. Moreover, 
Proteobacteria, which is one of the main phyla inhabiting dog 
skin, was almost absent. The three main families inhabiting 
perianal region were Bacteroidaceae with 32.5% (Bacteroidetes), 
Fusobacteriaceae with 25.6% (Fusobacteria), and Lachnospiraceae 
with 6.4% (Firmicutes).

We detected differentially distributed abundances on skin 
sites with LEfSe analyses (α = 0.05, LDA score >3) at the phylum 
and class level (Figure  3D) and up to the family level (Figure 
S3 in Supplementary Material). At the phylum and class level, 
Proteobacteria was significantly overrepresented at inner pinna, 
mainly due to the members of Alphaproteobacteria class; and 
Actinobacteria were overrepresented at the back. Some of the 
lowest abundant phyla were significantly more represented in a 
specific skin site: GN02 and TM7 at chin and [Thermi] (mainly 
from the Deinococci class) at inner pinna.
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FIGURE 2 | Individual signatures on dog skin. (A) Taxonomy bar plot of each sample at phylum level. The first two letters with the number represent the breed 
and individual; and the numbers represent each skin site. (B) PCoA plot using unweighted UniFrac metrics colored by individual with values of ANOSIM and adonis 
statistical tests. (C) Unweighted pair group method with arithmetic mean tree associated with (B); branches are colored by individual.
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Breed
The breed explained fewer differences among the samples, but 
it did explain some differences. Clustering samples per breed 
significantly explained 10% (unweighted UniFrac) and 9% 

(weighted UniFrac) of the distances among samples (Figures 
S4A,B in Supplementary Material).

To assess the effect of the breed in diversity and composition, 
we used two approaches: (A) analyzing each skin site separately 
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FIGURE 3 | Dog skin microbiota analysis considering site. (A) PCoA plot using weighted UniFrac metrics colored by skin site with values of ANOSIM and 
adonis statistical tests. Perianal region is circled in brown. (B) Boxplots of alpha diversity values. Marked with a red asterisk the two comparisons that were 
statistically different when using Monte Carlo permutation test (P < 0.05). (C) Bar plot representing skin microbiome composition at phylum level per skin site; each 
bar represents the mean values of the nine dogs per each skin site. (D) Histogram of linear discriminant analysis (LDA) effect size scores for differentially abundance 
distribution (α = 0.05, LDA score >3) of bacterial phyla and classes among individuals.

TABLE 1 | Skin microbiota composition at family level for each individual.

Phylum Family FB1 FB2 FB3 GS1 GS2 GS3 WH1 WH2 WH3

Proteobacteria Rhodospirillaceae 0.4% 1.5% 1.7% 2.4% 1.2% 5.5% 0.2% 10.9% 0.5%
Proteobacteria Sphingomonadaceae 2.5% 3.3% 1.5% 3.0% 1.2% 1.9% 0.7% 9.0% 0.7%
Proteobacteria Enterobacteriaceae 12.0% 0.2% 0.1% 0.2% 0.3% 0.1% 0.1% 0.0% 0.2%
Proteobacteria Pasteurellaceae 6.4% 1.2% 0.1% 0.2% 0.9% 0.4% 0.4% 0.1% 0.2%
Proteobacteria Moraxellaceae 0.8% 0.2% 0.3% 0.3% 2.0% 0.4% 0.5% 6.6% 0.4%
Firmicutes Listeriaceae 0.1% 0.0% 0.0% 0.1% 22.5% 0.5% 0.2% 0.1% 0.0%
Firmicutes Staphylococcaceae 10.2% 4.6% 7.0% 5.6% 1.2% 10.6% 0.8% 3.9% 0.3%
Firmicutes Streptococcaceae 2.2% 2.6% 1.1% 1.0% 3.3% 1.6% 0.2% 0.1% 59.1%
Firmicutes Clostridiaceae 0.5% 0.5% 8.2% 4.9% 1.4% 1.6% 0.9% 0.4% 2.6%
Firmicutes Lachnospiraceae 0.4% 0.3% 6.9% 1.8% 0.6% 1.0% 2.9% 0.9% 0.7%
Fusobacteria Fusobacteriaceae 0.6% 21.2% 23.9% 1.9% 2.3% 5.4% 32.2% 3.4% 3.6%
Fusobacteria Leptotrichiaceae 0.3% 5.9% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%
Bacteroidetes Bacteroidaceae 0.4% 3.1% 6.6% 6.2% 9.0% 8.6% 1.4% 5.7% 0.3%
Bacteroidetes Porphyromonadaceae 1.8% 1.6% 3.3% 0.2% 4.7% 1.0% 26.1% 1.4% 8.5%
Bacteroidetes Weeksellaceae 5.4% 0.8% 0.3% 0.8% 3.5% 1.8% 1.7% 1.0% 0.2%
Actinobacteria Corynebacteriaceae 4.8% 0.5% 1.4% 6.7% 1.0% 2.6% 2.1% 1.4% 1.3%
Actinobacteria Intrasporangiaceae 5.2% 1.4% 0.4% 0.9% 0.3% 2.6% 2.5% 0.3% 0.0%

% of microbiota explained by taxa >5% 53.9% 48.9% 62.8% 36.3% 55.6% 45.6% 72.6% 45.0% 78.6%

List of the taxa that represent >5% of the total microbiota composition and their abundances considering the individual.
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TABLE 3 | Skin core microbiota at family level for each individual and skin site.

Phylum Family GS1 GS2 GS3 FB1 FB2 FB3 WH1 WH2 WH3

Actinobacteria Corynebacteriaceae 6.7% 1.0% 2.6% 4.8% 0.5% 1.4% 2.1% 1.4% 1.3%
Firmicutes Streptococcaceae 1.0% 3.3% 1.6% 2.2% 2.6% 1.1% 0.2% 0.1% 59.1%

Lachnospiraceae 1.8% 0.6% 1.0% 0.4% 0.3% 6.9% 2.9% 0.9% 0.7%
Fusobacteria Fusobacteriaceae 1.9% 2.3% 5.4% 0.6% 21.2% 23.9% 32.2% 3.4% 3.6%
Proteobacteria Comamonadaceae 3.3% 1.5% 1.8% 1.6% 1.1% 0.6% 0.9% 1.9% 0.8%

Oxalobacteraceae 2.8% 3.4% 2.2% 1.1% 0.9% 0.5% 0.6% 3.5% 3.9%
 Neisseriaceae 1.6% 3.9% 1.5% 4.6% 0.8% 1.0% 1.9% 4.9% 0.4%

% of microbiota explained by core taxa 19.1% 16.1% 16.2% 15.3% 27.5% 35.5% 40.7% 16.0% 69.9%

Phylum Family Chin Inner  
pinna

Nasal  
skin

Axilla Back Abdomen Interdigital Perianal

Actinobacteria Corynebacteriaceae 6.2% 2.6% 1.2% 2.0% 1.8% 1.6% 0.9% 3.1%
Firmicutes Streptococcaceae 5.2% 4.3% 10.6% 11.1% 6.2% 9.5% 11.0% 5.8%

Lachnospiraceae 1.1% 0.7% 0.6% 0.8% 1.0% 0.7% 3.0% 6.4%
Fusobacteria Fusobacteriaceae 7.8% 6.7% 11.6% 10.6% 7.4% 13.5% 3.5% 25.6%
Proteobacteria Comamonadaceae 1.7% 1.4% 1.9% 2.0% 1.9% 1.8% 1.2% 0.1%

Oxalobacteraceae 1.5% 3.2% 1.6% 2.0% 2.6% 2.1% 3.6% 0.2%
 Neisseriaceae 4.9% 1.3% 3.3% 1.5% 0.6% 1.1% 5.1% 0.0%

% of microbiota explained by core taxa 28.4% 20.2% 30.8% 30.0% 21.4% 30.4% 28.2% 41.2%

List of the taxa shared in all samples included in the study, their abundances, and distributions by individual and skin site.

TABLE 2 | Skin microbiota composition at family level for each skin site.

Phylum Family Chin Inner pinna Nasal skin Axilla Back Abdomen Interdigital Perianal

Proteobacteria Rhodospirillaceae 2.3% 6.6% 2.9% 3.1% 3.0% 0.8% 2.9% 0.1%
Proteobacteria Neisseriaceae 4.9% 1.3% 3.3% 1.5% 0.6% 1.1% 5.1% 0.0%
Proteobacteria Enterobacteriaceae 0.3% 6.7% 2.1% 0.6% 0.2% 0.1% 0.1% 0.5%
Proteobacteria Moraxellaceae 1.0% 0.2% 6.7% 0.6% 0.5% 0.6% 0.3% 0.1%
Firmicutes Listeriaceae 1.7% 2.9% 0.2% 6.9% 5.7% 2.7% 0.8% 0.1%
Firmicutes Staphylococcaceae 4.5% 2.2% 12.9% 1.7% 5.1% 9.6% 1.6% 0.5%
Firmicutes Streptococcaceae 5.2% 4.3% 10.6% 11.1% 6.2% 9.5% 11.0% 5.8%
Firmicutes Clostridiaceae 1.6% 2.6% 1.1% 0.8% 1.5% 1.4% 5.4% 4.6%
Firmicutes Lachnospiraceae 1.1% 0.7% 0.6% 0.8% 1.0% 0.7% 3.0% 6.4%
Fusobacteria Fusobacteriaceae 7.8% 6.7% 11.6% 10.6% 7.4% 13.5% 3.5% 25.6%
Bacteroidetes Bacteroidaceae 0.4% 0.2% 0.4% 3.1% 0.6% 2.5% 0.5% 32.5%
Bacteroidetes Porphyromonadaceae 14.6% 3.3% 7.3% 5.2% 4.4% 2.8% 4.3% 1.3%
Bacteroidetes Weeksellaceae 6.0% 0.8% 2.4% 0.8% 0.6% 1.1% 1.5% 0.0%
Actinobacteria Corynebacteriaceae 6.2% 2.6% 1.2% 2.0% 1.8% 1.6% 0.9% 3.1%

% of microbiota explained by taxa >5% 57.5% 41.2% 63.3% 48.8% 38.3% 48.1% 40.8% 80.6%

List of the taxa that represent >5% of the total microbiota composition and their abundances considering the skin site.
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considering the breed and (B) analyzing each collapsed dog 
sample per breed, adding up together all the values of the eight 
skin sites to form an individual dog value and grouping the three 
dogs from the same breed.

At taxonomic composition level, when analyzing each skin 
site per breed, we saw some differences (α  =  0.05, LDA score 
>3) (Figure S4C in Supplementary Material). At phylum level, 
Tenericutes were overrepresented at nasal skin of FB. At family 
level, GS had an overrepresentation of Dermabacteraceae at axilla 
and Corynebacteriaceae and Williamsiaceae at the interdigital 
region, whereas FB had Burkholderiaceae and Bacillaceae at 
axilla, Gemellaceae at the interdigital region, and Gordoniaceae 
at back and chin. When collapsing all the eight skin sites to 
obtain an individual sample, we only detected three families 
with differentially distributed abundances: Sphingobacteriaceae 
and Dermabacteraceae in GS and Enterococcaceae in FB (Figure 

S4D in Supplementary Material). All of these taxa had low relative 
abundances (Data Sheet S2 in Supplementary Material).

In alpha diversity analysis, we detected no statistical differ-
ences, both when analyzing each skin site separately (Figure S5A 
in Supplementary Material) and when analyzing the collapsed 
dog samples (Figure S5B in Supplementary Material).

Core Skin Microbiota
Each dog had its own microbiota profile, but there were also taxa 
shared among all samples even at low-abundant level, which we 
can define as the skin core microbiota of our cohort of individuals.

Families found in all the skin samples analyzed in this study 
were Corynebacteriaceae (Actinobacteria); Streptococcaceae and 
Lachnospiraceae (Firmicutes); Fusobacteriaceae (Fusobacteria); 
and Comamonadaceae, Oxalobacteraceae, and Neisseriaceae 
(Proteobacteria) (Table 3).
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The skin core microbiota at family level explained from 15.3 
to 40.7% of the individual composition and from 20.2 to 41.2% of 
the skin site composition. It reached 69.9% for WH3 (with 59.1% 
of Streptococcaceae). Although a group of families constituted 
the core microbiota, their abundances were specific for each 
individual and site.

When we consider that the skin core microbiota is defined by 
taxa present in 85% of the samples (61 of 71 samples; to exclude 
some specific site or specific individual), the skin core microbiota 
explained a mean of 78% of the skin composition at both the indi-
vidual and the skin site level, and we found 39 different families 
(Data Sheet S4 in Supplementary Material).

Predicted Functions
We used 16S rRNA gene sequencing data to predict the func-
tional profile of dog skin microbiota samples, applying PICRUSt. 
PICRUSt developers (18) and more recently Meisel et  al. (35) 
reported strong correlations between human metagenomic data 
sets and 16S-based functional prediction in skin microbiota.

We found up to 41 predicted functions for the dog skin 
microbiota, when considering the second level of KO hierarchy. 
Membrane transport (environmental information processing); 
replication and repair (genetic information processing); and 
amino acid, carbohydrate, and energy metabolism (metabolism) 
are the functions more spread and represented, with a mean rela-
tive abundance of 12, 7.9, 10.3, 10.4, and 5.6%, respectively (Data 
Sheet S6 in Supplementary Material).

Taxa composition profiles became more uniform when con-
verting them to predicted functions (Figures  4A,B). However, 
we found some differentially distributed abundances in predicted 
functions at breed, individual, and skin site level (α = 0.05, LDA 
score >3). We focused on assessing differences on the functional 
prediction among skin sites (Figure 4C).

Some predicted functions were overrepresented in back, chin, 
perianal region, and inner pinna and differentially distributed 
from all other sites. In pinna, we found overrepresentation of 
cellular processes and cell motility (cellular processes) and also 
signal transduction (environmental information processing). In 
perianal region, three metabolism pathways were increased: car-
bohydrate metabolism, glycan biosynthesis and metabolism, and 
nucleotide metabolism. In chin, we found overrepresentation of 
genetic information processing and its sublevel pathways—repli-
cation and repair and translation. In the back, three metabolism 
pathways were increased: xenobiotics biodegradation and 
metabolism, lipid metabolism, and metabolism of terpenoids and 
polyketides. Figure S6 in Supplementary Material contains LEfSe 
plots of differentially abundant predicted functions at level 3 of 
KEGG Orthology for skin site.

DISCUSSION

Our results suggest that the main force driving the variability in 
microbiota composition in dogs is the individual, rather than the 
breed—hair coat—or the skin site. This is true both considering 
the community structure (weighted UniFrac), but mainly when 
looking at the less abundant species (unweighted UniFrac). 
Several human studies have reported that interindividual 

variation is high and defines a “personal microbiome” (9, 19, 36). 
These low abundant bacterial signatures have been even used to 
identify individuals (37).

Meason et al. found recently this same pattern for canine skin 
mycobiome (fungal community) (17). Moreover, Rodrigues-
Hoffmann et  al. observed great differences on individuals, 
although they focused on detecting skin site differences and 
not on assessing the effect of the individual directly (6). On 
the other hand, human skin has three main microhabitats or 
ecological niches, depending on the physiological properties: 
sebaceous, dry, and moist areas and different microbiota is 
associated with each microhabitat (5). Conversely, dogs present 
almost all their skin sites covered by hair that creating a more 
uniform habitat.

Previous research had detected Proteobacteria (6, 7) or 
Firmicutes (38) as the main phyla inhabiting dog skin microbiota. 
Our results suggest that either Proteobacteria or Firmicutes or 
a combination of both can be the main phyla, depending on 
the individual. We also found Fusobacteria as one of the most 
abundant phyla for three of nine dogs, and when it was present, it 
spread over all the skin sites. Rodrigues-Hoffmann et al. detected 
Fusobacteria as one phylum specific to perianal regions (6); other 
studies also found them in groins (8) and paws and forehead (7), 
but with lower abundances than those seen here.

At the family level, taxa found in our cohort resemble 
those found in other canine skin microbiota studies (6–8, 18). 
Rodrigues-Hoffmann et  al. found that Oxalobacteraceae, spe-
cifically Ralstonia spp., was the most abundant and extended 
taxa on dog skin (6), specially on healthy dogs; however, none 
of our Oxalobacteraceae sequences were from Ralstonia spp. 
Pierezan et al. have suggested that this could be due to the use 
of different supplies for the collection of samples, modifications 
in sample storage, extraction methods, and/or changes in the 
high-throughput sequencing platform used (8). Ralstonia spp. 
had been also detected in “blank” controls in microbiota studies 
and could be contaminants from the laboratory or the kits and 
reagents used (39).

Among all the individuals included, WH3 was very different 
with its skin mostly inhabited by Streptococcaceae that suggest-
ing a colonization event. The representative sequence of the 
most abundant Streptococcaceae OTU in WH3 corresponds to 
Streptococcus canis, which are considered opportunistic patho-
gens inhabiting healthy dog skin. Their overgrowth has been 
associated to dermatitis (40) and even necrotizing fasciitis (41). 
Moreover, WH3 was the less diverse individual. Low alpha diver-
sity values were characterizing skin microbiota in dogs affected 
by atopic dermatitis (6, 18), and in humans, they had been linked 
to elderly people (42). Therefore, we have two hypotheses for 
WH3: although considered healthy by the clinicians, the dog was 
beginning to develop some skin affliction; or the effect could be 
due to its advanced age. Further studies would be needed to assess 
the effect of age on healthy dog skin microbiota. Reanalyzing 
results excluding this sample have shown similar results for both 
ANOSIM and adonis tests (data not shown), confirming that the 
individual is the main force driving microbiota structure and 
composition and that the inclusion of this dog does not interfere 
with the results obtained.

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


FIGURE 4 | Skin microbiota relative abundances: taxa vs predicted functions. Bar plots obtained through a closed reference approach to be comparable 
between them (see Section “Materials and Methods”). Each stacked bar represents relative abundances of each sample included in the study. Relative abundances 
of (A) bacteria at phylum level and (B) predicted functions (second level of the Kyoto Encyclopedia of Genes and Genomes Ortholog hierarchy) based on 
Phylogenetic Investigation of Communities by Reconstruction of Unobserved States data set. (C) Histogram of linear discriminant analysis (LDA) effect size scores 
for differentially abundance distribution (α = 0.05, LDA score >3) of predicted functions. Complete list of predicted functions on dog skin and their relative 
abundances is available in Data Sheet S6 in Supplementary Material.
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Despite the major force driving microbiota composition 
and variability was the individual, skin site also plays a role 
explaining the variability observed. The variability of the skin 
microbiota regarding the site could be due to the influences of 
other body site microbiota, such as the perianal region with the 
gastrointestinal microbiota or the chin with the oral microbiota, 
or due to the specific physiological properties of each skin site, 
such as the back with higher sebum production. Perianal region 
presented the most different composition profile: Bacteroidetes 
followed by Firmicutes and Fusobacteria were the main phyla, 
whereas Proteobacteria presented lower abundances. Moreover, 
Erysipelotrichi and Clostridia classes were overrepresented. 
This phyla pattern and taxa are more similar to that seen on 
canine gastrointestinal microbiota than that from the skin 
(20, 43). At the functional level profiling, some metabolic 
pathways were significantly overrepresented in the perianal 
region. Swanson et  al. detected carbohydrate metabolism as 
one of the main pathways in intestinal microbiota of dogs, with 
values similar to those detected here (20) that are differentially 
higher than the other skin sites included. In chin, the most 
abundant phyla were Bacteroidetes, followed by Proteobacteria 
and Firmicutes. Sturgeon et al. have detected those same three 
phyla as the most abundant ones on canine oral microbiota (44). 
Moreover GN02 and TM7, two of the lowest abundant phyla, 
were overrepresented and differentially distributed on that 
region. These two phyla have been previously detected in canine 
oral microbiota (45). We also found that Porphyromonadaceae 
and Fusobacteraceae are the most abundant families in chin, 
coinciding with Bradley et  al. who detected Porphyromonas 
and Fusobacterium (among others) as abundant genera in 
canine oral microbiome (16). On the other hand, physiological 
properties of the back skin could be influencing the microbiota 
function of that region. The dorsal parts of the neck, the trunk, 
and the tail have larger sebaceous glands than other skin regions 
(46). Moreover, the dorsal region has the densest hair coat, so 
a larger number of sebaceous glands associated with the hair 
follicles (46). Consequently, more sebum is produced than in 
other skin sites, which is mainly composed of lipid compounds. 
The higher abundance of this substrate could be explaining the 
increased lipid metabolism and fatty acid metabolism pathways 
in microbiota inhabiting back.

Even when our results show that the main force driving skin 
microbiota structure and composition is the individual, we 
cannot rule out the influence of the environment and lifestyle. 
The individual should be understood as the dog, its lifestyle, 
and its environment. In fact, the chloroplasts sequences that we 
detected and discarded for the ulterior analysis were not evenly 
distributed, but more represented in three dogs (Data Sheet S1 
in Supplementary Material), suggesting that these individuals 
had a greater or more recent exposure to outdoor environment 
and may have more transient bacterial members detected as 
skin microbiota. On the other hand, despite being the human 
skin constantly exposed to extrinsic factors, healthy adults have 
shown to maintain their skin microbial communities over time 
(36). This last hypothesis should be assessed in dogs, because 
they are exposed to extrinsic factors, such as environment or 

human contact. In this study, we cannot distinguish whether this 
individual factor is solely host specific or it also includes extrinsic 
properties from the environment.

Some of the differences when comparing our results to 
previous studies could be due to differences in the methodolo-
gies chosen such as the 16S region analyzed or the sequencing 
platform used. We are amplifying 400 bp of the V1–V2 hyper-
variable regions that had been suggested to be a better choice for 
skin microbiota in humans among others (47). Hypervariable 
regions V1–V3 are the most commonly used on dog skin 
microbiota studies (6, 18), but only V2 region has also been 
used (7). Recently, Pierezan et  al. used V4 (8). On the other 
hand, Clooney et al. found that the factor responsible for the 
greatest variance in microbiota composition was the chosen 
methodology, when comparing Illumina HiSeq, Illumina 
MiSeq, and Ion Torrent PGM. This problem was larger in 
Illumina MiSeq rather than in Ion Torrent PGM when analyz-
ing 16S rRNA V1–V2 region amplicons (48). In another study 
comparing microbial profiles using V1–V2 regions, the authors 
concluded that the output generated from PGM Ion Torrent 
and 454 yielded concurrent results (49). Finally, PICRUSt is 
a tool that was mainly developed for the human microbiome. 
However, dogs share skin microbiota with their owners [as seen 
in Ref. (7)]. So, using PICRUSt for skin in pets is probably a 
valid approach. Moreover, PICRUSt has already been used in 
fecal samples of dogs (21).

CONCLUSION

The individual seems to be the main force driving skin micro-
biota composition and diversity in dogs, and dissimilarity is 
mainly explained by low-abundant species in each dog. The main 
phyla inhabiting the dog skin in our cohort are Proteobacteria, 
Firmicutes, Fusobacteria, Actinobacteria, and Bacteroidetes, and 
their abundance patterns differ among individuals.

The skin site also plays a role: the composition and function 
of microorganisms inhabiting chin and perianal region could be 
influenced by other body site microbiota. Moreover, the specific 
physiological properties of the back, with higher abundance of 
sebum, could favor the growth of specific microorganisms. We 
observed distinctive taxa composition profiles for each sample, 
but relative abundances become more uniform when converting 
them to predicted functions.

As the diversity among individuals is the highest, a good 
choice to better assess the dog skin microbiota would probably 
be comparing affected vs unaffected regions from the same dog 
rather than comparing different dogs in case–control studies, so 
each dog is its own control; and an accurate assessment of the 
environmental factor, controlling variables such as geographical 
region, season, lifestyle, or cohabitation with other animals.
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3.2.1. Annex 1. Erratum: Figure 3 

In the production step, an older version of Figure 3 was published instead of the newer. 

The published Figure 3 is not incorrect, it only does not match with the legend or text 

associated. 

  

Figure 3. Dog skin microbiota analysis considering site. (A) PCoA plot using weighted UniFrac metrics 

colored by skin site with values of ANOSIM and adonis statistical tests. Perianal region is circled in brown. 

(B) Boxplots of alpha diversity values. Marked with a red asterisk the two comparisons that were statistically 

different when using Monte Carlo permutation test (P < 0.05). (C) Bar plot representing skin microbiome 

composition at phylum level per skin site; each bar represents the mean values of the nine dogs per each skin 

site. (D) Histogram of linear discriminant analysis (LDA) effect size scores for differentially abundance 

distribution (α = 0.05, LDA score >3) of bacterial phyla and classes among individuals.   
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3.3. Individual signatures and environmental 

factors shape skin microbiota on healthy 

dogs 

This chapter consists of the article entitled “Individual signatures and environmental 

factors shape skin microbiota on healthy dogs” recently submitted to Microbiome journal.  

Supplementary material of this article is available online at the following link: 

https://www.dropbox.com/sh/kcd1bo4adzlh439/AADsgFQ5MwNYTieimIITZUUAa?dl=0 
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Abstract 

Background. The individual, together with its environment, has been reported as the main 

force driving composition and structure of skin microbiota in healthy dogs. Therefore, one 

of the major concerns when analyzing canine skin microbiota is the likely influence of the 

environment. Despite the dense fur covering, certain skin diseases exhibit differential 

prevalence among skin sites, dog breeds and individuals.  

Results. Here we aimed to assess the variability of the skin microbiota in healthy dogs 

cohabiting together, by analyzing eight different skin sites in a large and homogeneous 

cohort of Golden-Labrador Retriever crossbred dogs (N=35). We found that microbiota 

composition was driven by the individual, but when considering abundances, the 

microbiota structure was driven both by the individual and by the skin site. Network 

analyses elucidated bacterial interactions within and between skin sites, especially in chin, 

abdomen, axilla and the perianal region, with the highly shared interactions probably 

representing an environmental component. When analyzing each skin site independently to 

assess host-specific factors, we found that season of birth or the time spent in the kennel 

was shaping skin microbiota in all skin sites. The most abundant taxon driving this 

difference was Sphingomonas, which is an air-borne bacterium that cannot be cultivated at 

elevated temperatures. We also found some taxonomic differences linked to sex on 

abdomen, axilla and back. Finally, the USA and European cohorts were grouping by 

geographical origin in two different and well-defined clusters, even when the European 

individuals were very heterogeneous.  

Conclusions. We observed a large inter-individual variability and effects of different host 

variables, such as season of birth or time spent in the kennel and sex, even in an 

environmental homogenous cohort.  

Keywords: skin, canine, microbiota, microbiome, dog, season, skin site, pinna, 16S, 

environment 



Introduction 

Skin is a complex ecosystem inhabited by a high diversity of microorganisms, collectively 

referred to as the microbiota. These microbial communities not only inhabit, but also 

interact with the host cells impacting cellular function and immunity; likewise the host cells 

influence the microbes (1). This cross-talk between the host cells and the microorganisms 

maintains the homeostasis and the healthy status of an individual, and when disrupted 

usually indicates disease (2). 

The dense fur that covers almost all of a dog’s skin creates a homogenous 

microenvironment. However, some skin diseases show a preference for certain skin sites 

and for specific breeds (3). Previous studies have described skin microbiota on healthy 

dogs (4–9) , but only three of them included several skin sites to assess differences that may 

exist due to the anatomical location sampled (6,8,9). Results from Rodrigues-Hoffmann 

and colleagues showed that haired skin regions presented higher diversity values than 

mucosal areas and mucocutaneous junctions (6), and a similar result was reported when 

comparing the inner pinna and the perianal region (8). No differences among skin sites 

were detected when including only dorsal neck, axilla and abdomen (9). 

Dog skin microbiota studies aimed at detecting differences between health and disease 

status have already been performed for canine atopic dermatitis (6,7,10). Skin affected with 

atopic dermatitis in dogs presented a less diverse microbiota (6,7) and increased 

proportions of Staphylococcus and Corynebacterium (7). Moreover, dogs with allergen-induced 

atopic dermatitis presented higher proportions of Staphylococcus on the challenged site 

compared to the contralateral site (10). 

In humans, skin microbiota differs among skin sites and among individuals (11). On one 

hand, skin presents three main microhabitats depending on the physicochemical properties: 

sebaceous sites, inhabited with Propionibacterium spp; moist sites, with Staphyloccocus and 

Corynebacterium spp; and dry sites, with gram-negative microorganisms (11,12). On the other 

hand, individual signatures of the skin microbiota are usually driven by low abundant 

species (13). Following those first human studies describing skin microbiota, research then 

targeted key variables to ascertain if they drove skin microbiota structure and composition 

in the healthy individual. Variables assessed and found to have some effect on microbiota 

diversity, composition and structure included those related to host such as sex (14–16), age 

(17–19) and racial origin (20–22); or related to environment such as birth delivery mode 

(23), hygiene (14,22), cohabitation (5,24), geography (21,25,26) and urbanization (19,27,28). 

One of the major concerns when performing skin microbiota studies on dogs is the likely 

influence of the environment (29). Our previous results suggest that the individual 

(together with its environment) was the main force driving skin microbiota composition 

and structure in a population of dogs from three different breeds and hair coats (8). 

Rodrigues-Hoffmann and colleagues assessed some environmental variables, such as 

presence of fleas, time spent indoors vs outdoors, sex, or age and did not detect significant 

associations between the microbiota and a particular environmental factor (6). However, 

the dog cohort assessed was very variable and included 12 individuals from different 



breeds, ages, and households and therefore it is likely that any environmental effects may 

have been obscured. Two studies reported that dogs cohabiting together shared more skin 

microbiota (5,9). A recent study using a cohort of 40 healthy dogs sampled in three skin 

sites across seasons assessed the effects of age, sex, breed, hair type, skin site, season at 

time of collection and cohabitation. They found that season was the only variable 

significantly stratifying microbiota community structure and samples from different skin 

sites were more similar within the same dog (9).  

Skin microbiota has been suggested as a potential clinical tool in susceptibility, diagnosis, 

and treatment of dermatological diseases (30), therefore characterizing the variability of 

skin microbiota in healthy dogs and determining which host and environmental variables 

are defining its structure and composition will extend the background to better design 

studies aimed to assess the altered skin microbiota on disease.  

Here we aimed to assess the variability of the canine skin microbiota in healthy dogs 

cohabiting together by analyzing eight different skin sites in a large and homogeneous 

cohort of Golden-Labrador Retriever crossbred dogs (N=35). As most of the 

environmental variables were fixed, we also aimed to elucidate if any of the host factors 

were driving skin microbiota structure and composition in some skin sites. Finally, we 

aimed to assess the effect of the geographical region, thus we compared the findings from 

the US cohort with those obtained for a group of European dog samples. 

Individuals included and sample collection 

A cross-sectional study was performed in 35 healthy dogs to analyze skin microbiota 

variability in eight skin sites. All dogs were companion dogs, Golden-Labrador Retriever 

crosses, with ages ranging from 1 year and 7 months to 2 years and 3 months. They were 

born in different households, where they had been raised until 8 weeks of age, and then 

they had gone to individual puppy raisers until entering training at ~18 months of age. This 

cohort was composed of 20 female and 15 male dogs living and playing together in a 

shared environment in Santa Rosa, California. 6 females and 6 males presented a black 

coat, and the rest presented a yellow one. This will be named the USA cohort. Additional 

File 1 and Additional File 2 contain all the metadata associated with the dogs.  

Skin microbiota samples were collected from eight regions taken from the right side of the 

dog: inner pinna, chin, nasal skin, back, axilla, abdomen, interdigital area and perianal 

region. These regions are named as A, B, C, D, E, F, G and H respectively (Figure 1A). 

Samples were obtained by firmly rubbing each area using Sterile Catch-All™ Sample 

Collection Swabs (Epicentre Biotechnologies) soaked in sterile SCF-1 solution (50 mM Tris 

buffer (pH=8), 1 mM EDTA, and 0.5% Tween-20). To minimize sample cross-

contamination, the person sampling wore a fresh pair of sterile gloves for each individual. 

To minimize bias in sampling, only AO and AC sampled the dogs. Swabs were stored at 

4ºC until DNA extraction, within the following 8 days (3 days, 2-day stop, 3 days). 

On the other hand, the European cohort included 11 dogs of different breeds (Beagle, 

French Bulldog, German Shepherd, and West Highland white terrier), ages and 



households. Nine of the dogs were previously published and described (8), whereas two of 

them sampled later remain unpublished. All samples were processed following the same 

DNA extraction protocol, PCR and sequencing approach. All samples were analyzed 

together following the steps explained below.  

 

 

Figure 1. (A) Skin sites sampled and (B) Taxonomic composition per sample included at phylum 
level. 



 

DNA extraction 

Bacterial DNA was extracted from the swabs using the PowerSoil™ DNA isolation kit 

(MO BIO) under manufacturer’s conditions, with one modification. At the first lysis step, 

the swab tip with the sponge was cut and placed in the bead tube, until the first 

transference of the supernatant to a new tube. The remaining steps were performed as 

described by the manufacturer in exception of the elution step, which was performed on 

50µL of C6 instead of 100µL to obtain a higher concentration. Samples from different skin 

sites and individuals were randomly extracted to avoid confounding a batch effect with an 

actual effect. DNA extractions were performed within the following 8 days in random 

batches of samples to avoid confounding technical biases with actual ones. DNA samples 

(50 μl) were stored at -20°C until further processing. To assess for contamination from the 

laboratory or reagents two blank samples were processed: one with a sterile swab tip and 

the other without the sterile swab tip.  

PCR amplification and massive sequencing 

V1-V2 regions of 16S rRNA gene were amplified using the widely used primer pair F27 (5’-

AGAGTTTGATCCTGGCTCAG-3’) and R338 (5’-TGCTGCCTCCCGTAGGAGT-3’). 

We choose V1–V2 hypervariable regions because they had been suggested to be a better 

choice for human skin microbiota among others (31). PCR mixture (25 μl) contained 2 μl 

of DNA template, 5 μl of 5x Phusion® High Fidelity Buffer, 2.5 μL of dNTPs (2 mM), 0.2 

μM of each primer and 0.5 U of Phusion® Hot Start II Taq Polymerase (Thermo Fisher).  

The PCR thermal profile consisted of an initial denaturation of 30 sec at 98 °C, followed by 

30 cycles of 15 sec at 98 °C, 15 sec at 55 °C, 20 sec at 72 °C and a final step of 7 min at 72 

°C. Samples that did not amplify the first time were repeated increasing cycles to 33. To 

assess possible reagent contamination, each PCR reaction included a no template control 

(NTC) sample.  

For each amplicon, quality and quantity were assessed using Agilent Bioanalyzer 2100 and 

QubitTM fluorometer, respectively. Both primers included sequencing adaptors at the 5′ 

end and forward primers were tagged with different barcodes to pool samples in the same 

sequencing reaction.  

Each sequencing pool included forty barcoded samples that were sequenced on an Ion 

Torrent Personal Genome Machine (PGM) with the Ion 318 Chip Kit v2 and the Ion 

PGM™ Sequencing 400 Kit (Life Technologies) under manufacturer’s conditions.  

Quality control of the sequences and OTU picking 

Raw sequencing reads were demultiplexed and quality-filtered using QIIME 1.9.1 (32). 

Reads included presented: a length greater than 300 bp; a mean quality score above 25 in 

sliding window of 50 nucleotides; no mismatches on the primer; and default values for 



other quality parameters. After that, quality-filtered reads were processed using vsearch 

v1.1 pipeline (33):  a first de-replication step was applied, followed by clustering into 

operational taxonomic units (OTUs) at 97% similarity with a de novo approach and finally 

chimera checking was performed using uchime de novo. The raw OTU table was transferred 

into QIIME 1.9.1 and taxonomic assignment of representative OTUs was performed using 

the Ribosomal Database Project (RDP) Classifier (34) against Greengenes v13.8 database 

(35). Alignment of sequences was performed using PyNast (36). We sequentially applied 

some extra filtering steps in aligned and taxonomy-assigned OTU table to filter out: 1) 

sequences that belonged to Chloroplasts class; 2) sequences representing less than 0.005% 

of total OTUs (as previously done in (37)); 3) sequences that belonged to Shewanellaceae and 

Halomonadaceae families, which were highly represented in the NTC of the repetition chip 

(performed with an increased cycle number) and considered contamination from the 

reagents.  

Samples 17G and 27A did not amplify and they could not be sequenced. We performed 

downstream analysis at a depth of 11,000 sequences per sample: 1D, 30C, 6G and 8G 

failed this parameter and were discarded for posterior analyses. Also, NTC and Blank with 

a swab tip (S-blank) presented some amplification, but failed to reach 11,000 sequences per 

sample; Blank without the swab tip (N-blank) could not amplify.  

Downstream bioinformatics analyses  

Downstream analyses were performed using QIIME 1.9.1 (32) with the filtered OTU table. 

To standardize samples with unequal sequencing depths, analyses were performed using 

random subsets of 11,000 sequences per sample.  

Alpha diversity analysis assesses the diversity within a sample. Two different metrics were 

used for the alpha diversity: observed species to assess richness and Shannon index to 

assess evenness. We assessed statistical significant differences in alpha diversity values 

among groups with 999 permutations using the non-parametric Monte Carlo permutation 

test and corrected the p-value through false discovery rate.  

Beta diversity analysis assesses the similarities among samples of the same community. Beta 

diversity was performed using both weighted and unweighted UniFrac distance metrics 

(38). Weighted UNIFRAC considers phylogeny, taxa and relative abundances; whereas 

unweighted UNIFRAC only considers phylogeny and taxa. Those distance matrices were 

used to create PCoA plots. ANOSIM and adonis statistical methods were applied to 

evaluate if some variables were determining grouping and to which extent. 

Linear Discriminant Analysis (LDA) Effect Size (LEfSe) (39) was used to compare groups 

and to identify differentially abundance distribution in taxa (α=0.05 and with an LDA score 

> 3.0). 

CoNet (40), which is implemented as an application in Cytoscape (41), was applied to infer 

networks among skin sites using bacterial families that presented a median relative 

abundance higher than 0.05% in each specific site. In CoNet we used a combination of five 

different algorithms (Pearson’s correlation, Spearman’s correlation, Kullback-Leibler 



dissimilarity distances, Bray-Curtis dissimilarity distances and mutual information 

similarity). The results of the five methods were merged using Simes p-value. We 

performed a first permutation step, followed by a bootstrap analysis corrected for false 

discovery rate (α=0.05). 

Results 

We analyzed the variability of the canine skin microbiota in eight different skin sites from a 

healthy homogenous and well-controlled cohort of Golden-Labrador Retriever crossbred 

dogs cohabiting together in the same kennel in the United States (N=35) (see Additional 

File 1 and Additional File 2 for the associated metadata). We sampled microbiota from 

eight skin sites: inner pinna, chin, nasal skin, dorsal back, axilla, abdomen, interdigital 

region and perianal area, which are respectively named as A, B, C, D, E, F, G and H 

(Figure 1A). These anatomic sites were selected to represent the regional diversity of the 

canine skin (3) and to compare with our previous study (8). Samples 17G, 27A, 1D, 30C, 

6G and 8G failed at some processing point and were discarded for posterior analyses (see 

material and methods for more detail). 

We found a total of 2,216 bacterial OTUs living on dog skin (Additional File 3) that were 

taxonomically classified into 17 phyla, 41 classes, 62 orders, 128 families and 242 genera.  

The abundance of the main phyla differed on each sample (Figure 1B) and were 

Proteobacteria (median: 33%; range: 0-99%), Firmicutes (median: 17%; range: 0-97%), 

Bacteroidetes (median: 12%, range: 0-74%) Actinobacteria (median: 5%; range: 0-95%), 

Cyanobacteria (median: 5%; range: 0%-5%) and Fusobacteria (median: 3%; range: 0-64%), 

followed by Tenericutes, TM7 and others with lower abundances.  

Alpha diversity values were also very variable among samples with a median value of 5.9 

for Shannon index and 414.37 for observed species. The range is broad and goes from 27.8 

observed species and 0.27 Shannon index in axilla of Dog 25 to 989.9 observed species in 

chin of Dog 33 or 8.5 Shannon index in dorsal back of Dog 34 (Additional File 4A). None 

of the dogs was significantly more or less diverse than any other, because there were large 

differences in diversity values within the same dog. Those dogs that could seem less diverse 

because most of the skin sites presented less diversity, usually presented average values in 

inner pinna or perianal region giving no statistical significant differences among individuals 

(Additional File 4A).  

We performed sample clustering to assess if the variability of the dog skin microbiota 

depended on the individual and/or the skin site and to which extent, assessing statistical 

significance using Adonis and ANOSIM tests. We also performed an independent analysis 

for each skin site to assess the effect of the individual-specific variables, such as sex, coat 

color, season of birth or time spent in the kennel.  



Individual is driving skin microbiota structure and composition, followed 

by skin site 

The dogs included in this study were all Golden-Labrador crossbreds with similar ages (~2 

years old) and interacted and lived together in a shared environment. Moreover, in most 

cases a dog shared genetic background with others: 33 out of 35 dogs presented at least 

one half-sibling or littermate and only dogs 31, 19 and 14 were born from different sets of 

progenitors (Additional File 2). Grouping the samples per individual significantly explained 

23% and 22% of the variation in Unweighted and Weighted UniFrac distance matrices 

(Table 1), suggesting that the main force driving the variability of skin microbiota in our 

samples was the individual. On the other hand, clustering samples per skin site explained 

12% and 17% of the variation respectively and even presented an ANOSIM R value larger 

(R=+0.21) than the individual (R=+0.14) when considering OTUs abundance with the 

Weighted UNIFRAC distance matrix. Thus, composition of skin microbiota (Unweighted 

UniFrac) on healthy dogs was better explained by the individual, whereas structure of the 

skin microbiota when abundance was taken into account (Weighted UniFrac) was better 

explained by both individual and skin site. 

When comparing individual profiles at the phylum level (Figure 1B), we detected that 

Proteobacteria was usually the main phylum found on the skin of our cohort: 28 out of 35 

dogs presented a higher median value of Proteobacteria than any other phylum. For 5 of 

the sampled dogs, Firmicutes was the main phylum. Fusobacteria were most frequently 

found in the perianal regions, however when Fusobacteria colonized the haired-skin, the 

distribution was individual-specific. That is, there were a few individual dogs with a high 

abundance of Fusobacteria in several regions whereas other dogs had almost no 

Fusobacteria. Within the Fusobacteria enriched individuals, usually the highest percentages 

were found in the abdomen samples. Finally, Cyanobacteria phylum was mainly present 

with high abundances in the abdomen, interdigital region and the chin of specific 

individuals. 

Table 1. Clustering of the samples per biological and technical variables. Beta diversity statistics 
ANOSIM and Adonis values. (**) p-value=0.001, (*) p-value<0.05 (-) indicates no significant clustering. 

 

  Unweighted UniFrac Weighted UniFrac 

  adonis R2 ANOSIM R adonis R2 ANOSIM R 

Individual 0.23** 0.20** 0.22** 0.14** 

Skin site 0.12** 0.19** 0.17** 0.21** 

Storage time 0.05** 0.07** 0.05** 0.05** 

Chip 0.03* 0.03* - - 

Person extracting 0.02* - 0.02* - 

Sampler 0.01* 0.03* 0.01* 0.03* 

 

 

 



Analysis of individual-specific variables  

In order to assess if any individual-specific variable defined the skin microbiota 

composition or structure in any of the skin sites, we inspected the alpha and beta diversity 

of each skin site grouped by the different dog-specific variables such as sex, coat color, 

season of birth, time spent in the kennel, or recent surgery and assessed statistical 

significance except for the recent surgery due to the small sample size. Depending on the 

season of birth, the dogs can be classified in two groups: dogs born from January to May 

and dogs born from June to September. The time spent in the kennel coincided with the 

season of birth because older dogs (born from January to May) had been in the kennel for 

at least 6 months, whereas younger dogs (born from June to September) had been in the 

kennel for 3 months. We also considered the pedigree information of the dogs (Additional 

File 2): most of the dogs shared some genetic background to at least one other dog (half-

siblings) even across the two main groups. 

The season of the year when the dog was born or the time spent in the kennel significantly 

affected the microbiota composition (Unweighted UniFrac) and also the community 

structure (Weighted UniFrac) in all skin sites (Table 2; Additional File 5). This effect was 

especially large on the inner pinna, almost coincident with PC1 component, explaining 26% 

of the variation among samples and with an ANOSIM R value of 0.84 (Table 2, Figure 

2A). In the other skin sites, these two variables explained more than 9% of the variation 

(except for nasal skin), with an R-value ranging from 0.24 to 0.38.  

Either the season of birth or the time spent in the kennel was the variable that explained 

ubiquitously a significant amount of variation for all the skin sites. Delving into the effect 

of these variables on the inner pinna skin microbiota, we corroborated the pattern in the 

unweighted UniFrac consensus tree (Figure 2B): two clear clusters were elucidated 

matching with the season of birth or the time spent in the kennel (except Dog 8). 

Moreover, littermates were usually as similar as any other dog in the same group (except 

Dog 2 and 3) and sharing the sire did not make dogs resemble more in skin microbiota. 

Moreover, dogs born from January to May or dogs that had spent at least six months in the 

kennel were significantly more diverse than the other group (Figure 2C). Finally, LEFSe 

analysis detected 61 families differentially distributed in inner pinna when clustering in 

these two groups (Additional File 6) and those with higher relative abundances are plotted 

in Figure 2D. The greatest difference is provided by Sphingomonadaceae that is highly present 

in the inner pinna of individuals born from January to May that had been in the kennel for 

6 months, whereas it is almost absent on those dogs born from June to September that had 

been in the kennel for 3 months.  

 

  



Table 2. Individual-specific variables that cluster samples in specific skin sites. 

    Unweighted UniFrac Weighted UniFrac 

Skin site Variable 
ANOSIM 

R 
adonis R2 

ANOSIM 
R 

adonis R2 

Inner Pinna 
Season of birth / 
Time in the kennel 

0.84** 0.26** 0.41** 0.22** 

Axilla 
Season of birth / 
Time in the kennel 

0.38** 0.11** 0.09* 0.07* 

Dorsal 
back 

Season of birth / 
Time in the kennel 

0.37** 0.13** 0.28** 0.14** 

Interdigital 
Season of birth / 
Time in the kennel 

0.28** 0.11** 0.09* 0.07* 

Abdomen 
Season of birth / 
Time in the kennel 

0.28** 0.10** 0.09* 0.07* 

Perianal 
Season of birth / 
Time in the kennel 

0.27** 0.09** - - 

Chin 
Season of birth / 
Time in the kennel 

0.24* 0.10* 0.10* 0.08* 

Abdomen Sex 0.13* 0.05* 0.24* 0.11** 

Nasal skin 
Season of birth / 
Time in the kennel 

0.11* 0.05* 0.06* - 

Back Sex - 0.05* - - 

Axilla Sex - - - 0.06* 

 



 

Figure 2. Season of birth or time spent in the kennel effect on inner pinna. Color blue represents Jan-
May group that had been in the kennel for at least 6 months and color red, Jun-Sep group that had been in 
the kennel for 3 months. (A) Unweighted UniFrac PCoA beta diversity plot. (B) Unweighted UniFrac 
consensus tree: dogs sharing sire present same-colored branches and littermates are circled and colored with a 
common pattern within a group (C) alpha diversity rarefaction curves using observed species metrics, and (D) 
Boxplots of the main differentially distributed families: those include families with abundances > 1% in any 

group and also LefSe significant (LDA-score > 3.0, p-value < 0.05). 

The sex of the dog also explained some variation. The microbiota community structure in 

the abdomen was better explained by the variable sex (11% of the variation in the weighted 

UNIFRAC plot and ANOSIM R value +0.24) rather than the season of birth or time spent 

in the kennel. This variable also explained to a lesser extent some variability of the 

microbiota composition in the dorsal back and the community structure in the axilla (Table 

2). Considering the three skin sites affected by sex (abdomen, back and axilla), we could see 

that males had an overrepresentation of bacteria from Fusobacteria phylum, with Sneathia 

and Fusobacterium genera; also other genera such as Actinomycetospora, Gemella, Parvimonas, 



Brevundimonas and phylum SR1 were also overrepresented on males. Females had an 

overrepresentation of Enterobacteriaceae family (Table 3).  

Table 3. Differentially abundant taxa associated to sex. 

  

Abdomen Axilla Back 

Phylum Family or genus Female Male Female Male Female Male 

Fusobacteria 
Fusobacteriales 

(order) 
1.70% 21.45% 1.64% 13.44% 3.54% 9.55% 

Fusobacteria Leptotrichiaceae 0.23% 2.70% 0.24% 3.53% 0.82% 3.00% 

Fusobacteria Sneathia 0.01% 0.34% 0.05% 0.25% 0.21% 0.47% 

Fusobacteria Fusobacterium NS NS 1.41% 9.91% 2.72% 6.54% 

Actinobacteria Actinomycetospora NS NS 0.00% 0.04% 0.00% 0.15% 

Firmicutes Gemella 0.19% 3.04% 0.51% 1.61% NS NS 

Firmicutes Parvimonas NS NS 0.16% 1.82% 0.55% 1.15% 

Proteobacteria Brevundimonas NS NS 0.00% 0.01% 0.00% 0.01% 

SR1 SR1 NS NS 0.05% 0.19% 0.14% 0.44% 

Proteobacteria Enterobacteriaceae 14.08% 1.31% 7.78% 0.69% NS NS 

Relative abundances of main taxa found to be differentially distributed (LDA-score >3, p-value < 

0.05) between males and females in at least two out of the three skin sites affected. NS, stands for 

no significant differences. 

We delved deeper into the five dogs that had undergone surgery, followed by a medical 

treatment prior to sampling (Table 4 and Additional File 4B). Dogs 14, 15, 16 and 17 

presented reduced alpha diversity values in several skin sites, being chin and abdomen 

always affected; whereas alpha diversity values of inner pinna, nasal skin and back were not 

reduced in any dog. Dog 20, who underwent surgery three months before sampling, 

presented average alpha diversity values.  

Finally, the coat color was not significantly explaining the skin microbiota structure or 

composition in any skin site. 

  



 

Table 4. Information of the dogs that had undergone surgery prior to sampling. 

Individual 
Surgery 
date 

Surgery 
type 

Medicines From / To 
Sites w. reduced 
α-diversity1 

Dog 14 08/04/2016 Spay 
Amoxicillin 
(antibiotic) + Previcox 
(antiinflamatory) 

08/04/2016  
13/04/2016 

Chin and 
abdomen 

Dog 15 18/04/2016 Spay 
Amoxicillin 
(antibiotic) + Previcox 
(antiinflamatory) 

18/04/2016 
23/04/2016 

Chin, axilla, 
abdomen and 
ID region 

Dog 16 30/03/2016 
GI 
obstruction 

Pepcid AC 
(antihistamine) + 
Tramadol (analgesic) 

01/04/2016 
06/04/2016 

Chin, axilla, 
abdomen, ID 
region and 
perianal area 

Dog 17 12/04/2016 Spay 
Previcox 
(antiinflamatory) 

12/04/2016 
16/04/2016 

Chin, axilla, 
abdomen and 
perianal 

Dog 20 05/01/2016 Spay 
Rimadyl 
(antiinflamatory) 

05/01/2016 
10/01/2016 

None 

1Reduced alpha diversity values include those ones that are half or less than the median alpha 

diversity of that specific skin site of the dogs that had not undergone recent surgery (Additional File 

4B). 

 

Influence of other variables on the skin microbiota 

The main factors driving skin microbiota in our cohort were the individual and the skin site 

as sample associated variables and the sex, the season of birth or the time spent in the 

kennel as individual associated variables. However, other sample associated variables 

influenced albeit to a lesser extent, with all of them explaining 5% or less of the variation in 

the PCoA plots (Table 1). The most significant variable was storage time of the sample 

before DNA extraction, with extractions undertaken within the first 3 days being 

significantly more diverse than samples extracted in the last 3 days, both in terms of 

observed species and Shannon Index (Additional File 4C). Of note, the samples from dogs 

that had previously undergone surgery were extracted in the last 3 days, so the analyses 

were repeated excluding those individuals and there were still significant differences due to 

storage time (Additional File 4D). 

We could also detect person extracting was influencing the diversity found in the samples, 

that was probably not a real effect though. Differences are detected among AC and AI 

extractions: AC was extracting the first 3-days, while AI extracted the last 3-days. So the 

samples from that one who extracted the last 3-days are less diverse probably due to 

surgery dogs included and due to the later extraction. 

 



Skin sites: Network analysis 

A network analysis detects bacterial relationships, within and among different ecological 

niches. The global network for all the skin sites considering the most abundant families 

allowed us to understand more deeply skin microbiota relationships in our cohort (Figure 

3, Table 5 and Additional File S7). Some bacterial species interacted specifically in the same 

skin site, whereas other bacterial species interacted among different skin sites. Thus, we 

have different ecological niches within the skin. 

Chin, abdomen, axilla and perianal region had the highest number of interactions, with 373, 

226, 179 and 93 respectively, and also some extra interactions among families of other skin 

sites (Table 5 and Additional File 7). On the other hand, inner pinna, nasal skin, interdigital 

region and dorsal back presented a lower number of interactions and no inter-site 

interactions, as shown in Figure 2. Inner pinna had 35 family interactions; interdigital 

region, 23; nasal skin, 7; and dorsal back, only 2. 

Table 5. Summary statistics of microbial interactions in the skin of a cohort of healthy dogs. 

  Chin 
Abdo-

men 
Axilla 

Perianal 
region 

Inner 
Pinna 

Nasal 
skin 

ID area 
Dorsal 

back 

Total 
Interactions 

373 226 179 93 35 7 23 2 

Common 
Interaction 

139 103 104 43 13 4 13 2 

Unique 
Interactions 

234 123 75 50 22 3 10 0 

Inter-site 
interaction* 

3 20 10 12 0 0 0 0 

% of 
unique 
interactions 

63% 54% 42% 54% 63% 43% 43% 0% 

% of co-
occurence 

92% 88% 79% 100% 100% 100% 100% 100% 

ID stands for interdigital.*Inter-site interactions represent families from a specific skin site affecting 

other families from another skin site 

 

In some cases, specific taxonomic interactions were found within different skin sites. We 

identified six  interactions highly spread among different skin sites (present in 4 out of 8 

skin sites): Neisseriaceae -> Weeksellaceae; Neisseriaceae -> Xenococcaceae (in chin, axilla, 

abdomen and perianal); Sphingomonadaceae -> Caulobacteraceae (in inner pinna, axilla, 

abdomen and perianal); Sphingomonadaceae -> Nocardioidaceae (in inner pinna, axilla, 

abdomen and interdigital region); Sphingomonadaceae -> Oxalobacteraceae (in inner 

pinna, chin, abdomen and interdigital); and Weeksellaceae -> Flavobacteriaceae (in chin, 

axilla, abdomen and interdigital). However, most interactions (517 out of 703) were 

exclusive from one specific skin site (Additional File 7). 



This global network demonstrated that most interactions in canine skin were co-ocurrence 

relationships rather than mutual exclusion. Among mutual exclusion interactions, few 

nodes were negatively linked to many different families within a skin site (circles marked 

with a wider black line in Figure 3), showing an apparent invasive pattern. That was seen 

for Pseudomonadaceae family in axilla, chin and abdomen and also for Enterobacteriaceae 

family in abdomen. When blasting the most abundant OTUs from the highly connected 

mutual exclusion nodes, we found that the main genera were Pseudomonas (for 

Pseudomonadaceae) and Erwinia and Pantoea (for Enterobacteriaceae) (Additional File 8). 

 

Figure 3. Significant co-occurrence and co-exclusion interactions among the abundant families 
(>0.005%) in the dog skin microbiota. Nodes are colored depending on the skin site they are found; nodes 
with a black circle are those highly connected mutual exclusion nodes; edges are green to represent co-
occurrence patters and red to represent co-exclusions. Data associated with the complete network can be 
found at Additional File 7. 

Skin sites: taxonomy and diversity analysis 

Alpha and beta diversity analyses were undertaken to create an overall characterization of 

the canine skin microbiota that accounted for skin sites. Differences in alpha diversity 

among skin sites were prevalent.  The inner pinna displayed the greatest diversity when 

compared to all the other sites and was statistically different to all but the chin site (p-value 

= 0.028). The chin, when considering observed species, was significantly more diverse than 



the axilla (p-value = 0.028) (Additional File 4C). As seen previously in Table 1, clustering 

samples per skin site explained up to 17% of the differences in beta diversity analysis when 

considering OTUs abundance (Weighted UniFrac). Differences in microbiota structure 

were also significant among almost all skin sites, with the exception of the interdigital 

region when compared to abdomen or axilla. We found the greatest differences when 

comparing any skin site to the perianal region followed by the nasal skin (Additional File 9).  

Focusing on taxonomic analyses, we found that bacteria from Gammaproteobacteria class 

were the most abundant in dog skin microbiota, with the exception of perianal regions 

where Bacilli class from Firmicutes phylum were the most abundant.  

Skin sites shared most of the taxa, but presented also specific taxonomic patterns: the 

abundance and distribution varied significantly among skin sites and unique taxa were 

identified in some of the sites. Figure 4A shows different bar plots, colored by the main 

families found in skin. The families that were differentially distributed (LDA score >3, p-

value = 0.05) are shown in Additional File 10. 

The inner pinna had a higher amount of Proteobacteria phylum when compared to other 

skin sites, with Gammaproteobacteria, Alphaproteobacteria and Betaproteobacteria classes 

being the main representatives. Bacilli (Firmicutes) and Flavobacteriia (Bacteroidetes) were 

present in similar abundances to Proteobacteria. Moreover, inner pinna presented many 

different and less abundant bacteria. 

The chin region was enriched in Gammaproteobacteria, with Pseudomonadaceae as the 

main representative family. The nasal skin was also enriched in Gammaproteobacteria, but 

the main representative family was Pasteurellaceae. Both families were differentially 

distributed in their respective skin site. 

Back and axilla had quite similar taxonomic patterns: the main bacterial class was 

Gammaproteobacteria, with Moraxellaceae as the main family, followed by Bacilli, with 

Lactobacillaceae as one of the main families. The greatest taxonomic difference between both 

sites was the higher abundance of Staphylococcaceae (Bacilli class) in the axilla, which was also 

differentially distributed when compared to the other skin sites.   

The abdomen and interdigital regions had similar taxonomic patterns, where most of the 

bacteria were Gammaproteobacteria, specifically from Enterobacteriaceae, Moraxellaceae and 

Pseudomonadaceae families; followed by Cyanobacteria, specifically Xenococcaceae family. 

However, Planococcaceae was found in abdomen but not in interdigital region.   

Finally, the perianal region was the skin site that presented the most differentiated pattern 

in dog skin microbiota. The main phylum was Firmicutes, especially Bacilli, followed by 

Actinobacteria. Many different families from different phyla were differentially distributed 

in the perianal region, indicating that it was the most divergent skin site (Additional File 

10). Most of the abundant families in perianal region were also differentially distributed 

when compared to the other skin sites. Some of them were: Erysipelotrichaceae, 

Lachnospiraceae, Lactobacillaceae and Veillonellaceae (Firmicutes); Corynebacteriaceae 

(Actinobacteria); and Bacteroidaceae (Bacteroidetes). The perianal region was also enriched in 



Fusobateriaceae, despite not being statistically differentially distributed when compared to 

other skin sites. 

 

Figure 4. Taxonomic profiles per skin site. Taxa summary bar plots per class colored by main families 
within each skin site. 

Influence of sample geographical origin: abdomen and dorsal back 

To assess if the geographical origin of the samples had an effect on the microbiota, we 

performed an additional analysis with only abdomen and back regions, comparing this USA 

cohort with some European dogs (see Material and Methods for more details). While the 

USA cohort presented uniform characteristics (same crossbred dogs, similar ages, shared 

environment, etc.), the European cohort was much more variable including individuals 

from different breeds, ages and inhabiting in different households. Thus, we would expect 

a clear cluster for the USA controlled cohort and a diffuse if any clustering of Europe 

individuals. Samples were processed following the same protocol and the European cohort 

was re-analyzed together with the USA cohort, following the previously described analyses 

in Material and Methods section. 

We visualized two clusters in both abdomen and back when considering the composition 

(Unweighted UniFrac), but those clusters lost power when analyzing the community 

structure (Weighted UniFrac). The grouping of back samples when considering the 



geographical origin was strong (ANOSIM R=+0.68) and it significantly explained 12% of 

the variation in Unweighted UniFrac (Additional File 11A). In abdomen samples, grouping 

by geographical origin was lower (ANOSIM R=+0.26) and only explained 6% of the 

variation (Additional File 11B). Therefore, the back was better at explaining the differences 

in microbiota composition among geographical origin than the abdomen site. However, it 

is important to note that the back samples composition and structure is more uniform and 

less variable among individuals when compared to abdomen samples.  

In conclusion, both in back and abdomen samples, the geographical origin explained some 

variation that was larger when looking at microbiota composition (Unweighted UniFrac). 

Thus, even when comparing two differently constituted cohorts, where European dogs 

were not homogenized by any variable, two clusters were clearly identified in beta diversity 

analyses representing geographical origin.  

Discussion 

Our results suggest that the main force driving the skin microbiota composition is the 

individual, rather than the skin site, even in a homogeneous cohort of dogs cohabiting and 

interacting together. This is in line with what we found previously in a cohort of nine 

healthy dogs from three different breeds, although in that study we could not elucidate 

whether the individual effect was real or represented an environmental influence (8). Here, 

we homogenized the cohort to account for different effects: same crossbreed dogs, same 

age and environment. Our results confirm the individual as the main factor determining 

skin microbiota composition in healthy dogs, when abundance of the bacterial species was 

not taken into account (Unweighted UniFrac). In human skin microbiota, low abundant 

species are those defining individuality and their signatures have the ability to identify items 

that the person came in contact with (13,42,43) and are relatively constant over time (44). 

An individual effect had also been reported as the main driver of fungal skin microbiota 

structure and composition in dogs from heterogeneous cohorts (45) and had been 

suggested to affect also bacterial skin microbiota in dogs, despite the individual was not 

assessed directly (6). 

Our results also suggest that when relative abundances of the bacteria were taken into 

account (Weighted UniFrac), both skin site and individual affected the skin microbiota 

structure of healthy dogs. Similarly, these two factors also shaped human skin microbiota, 

with great variability within several skin sites of an individual and between individuals 

having been reported (11,46,47). Human skin has three main microhabitats (moist, dry and 

sebaceous) inhabited by specific taxa (12,48). Although the three microhabitats clearly 

identified in humans were not seen in dogs (29), Rodrigues-Hoffmann and colleagues 

reported significant differences between haired and mucosal or muco-cutaneous junctions 

(6), which coincides with our current observation. Here, we found that perianal region and, 

to lower extent, nasal skin presented different community structure (Weighted UniFrac) as 

well as lower alpha diversity values when compared to all other haired skin regions.  



Globally in our cohort, Gammaproteobacteria followed by Bacilli were the most abundant 

classes in all regions in exception of perianal region with the same classes but the opposite 

order. A previous study including dorsal neck, abdomen and axilla samples from 40 

domestic dogs inhabiting different households found Gammaproteobacteria and Bacilli as 

main classes, but also Actinobacteria (9). On the other hand, Hoffmann and colleagues (6) 

detected different abundant classes depending on the skin site: Betaproteobacteria was the 

most common in the concave pinna, dorsal lumbar and ear; Actinobacteria, in the axilla 

and interdigital skin; Gammaproteobacteria, in the nostril; and Clostridia and Bacteroidia, 

in the perianal region. Finally, in our previous study, we found Bacilli as the main class for 

all the skin sites with the exception of inner pinna that had Alphaproteobacteria (8). Thus, 

as the inter-individual variability is large, independent studies led to similar results only 

when a large number of individuals are included. 

Network analysis elucidated the overall community organization throughout the skin of our 

canine cohort, with more than 40% of the interactions exclusive of each site, 

demonstrating a skin site signature. Back skin presented only two interactions and both of 

them were back-exclusive, probably other interactions remain hidden because only 

abundant families were included for network analysis. Among all skin sites, the inner pinna 

and chin were the sites that presented a higher proportion of unique interactions, 

suggesting stronger specialization or influences. On one hand, the inner pinna is an 

anatomically and environmentally isolated skin site when compared to others. On the other 

hand, we suggest that chin presented influences of both drinking water and oral 

microbiota. The most abundant families were Xenococcaceae and Pseudomonadaceae, which had 

been isolated in several water sources (49)(50). Moreover, the following abundant families, 

such as Fusobacteriaceae, Moraxellaceae, Porphyromonadaceae, Neisseriaceae and Flavobacteriaceae, 

were previously found as main taxa in canine oral microbiota (7,51). 

Network analysis detected that most of the interactions among abundant families on the 

skin of Golden-Labrador Retriever crossbreds were co-occurrence rather than co-

exclusion, which contrasts with what was previously seen for human microbiome with a 

balanced ratio of co-occurrence vs co-exclusion relationships within a body site (52). 

Despite the majority of co-occurrence interactions, few families presented a high number 

of mutual exclusions: Pseudomonadaceae and Enterobacteriaceae in abdomen and 

Pseudomonadaceae in axilla and chin. When blasting the OTUs that presented this apparently 

invasive pattern (Additional File 8), we found that the ones belonging to 

Enterobacteriaceae family had been mainly isolated from soil or plant surfaces (53,54); 

whereas those from Pseudomonadaceae family had been mainly isolated from soil and 

different sources of water (50). Thus, we suggest that this pattern is representing a recent 

exposure to the environment prior to sampling of some dogs. Other bacteria were 

suspected to have an environmental origin, despite not showing a co-exclusion pattern, 

such as Xenococcaceae with Chroococcidiopsis as its main genus. Bacteria from this genus had 

been mainly isolated from freshwater environments including lakes, soil, or inside of rocks 

(49). Moreover, they have already been detected on healthy dog skin (6,8). The presence of 

these bacteria with high abundance on the interdigital and abdomen regions may suggest 



these two regions are more susceptible to environmental influences, which seems 

reasonable since these two skin sites have direct contact with the ground.  

The skin sites could be classified based upon two patterns. The first pattern included sites 

having a high number of interactions among abundant families, with some interactions 

with other skin sites (chin, axilla, abdomen, and perianal region). The second pattern 

included sites having a lower number of interactions among abundant families and 

displayed exclusively within-site interactions (pinna, nasal skin, dorsal back and interdigital 

area). We suggest that the inter-site relationships could be explained due to topographical, 

behavioral and environmental factors. The chin is juxtaposed to the mouth, which is a 

main entrance for the environment through licking, eating, or drinking water. Dogs could 

lap the same water in which they are playing, and they usually lick themselves, which could 

explain some interactions among those sites. Additionally, the abdomen and axilla are 

anatomically continuous on the ventral side of the dog and close to the ground facilitating 

interactions with the environment and between the two skin sites. Furthermore, dogs may 

come into contact with fecal matter, which could explain shared OTUs among the 

abdomen, axilla and perianal regions. Main families of the second pattern, constituted by 

the inner pinna, dorsal back, interdigital area and nasal skin, were only interacting with 

other families in the same skin site, suggesting that both anatomical isolation and stronger 

effects of other microbiota (nostril microbiota, for nasal skin and soil microbiota for 

interdigital region) may account for the exclusive within-site interactions.   

With this general overview, we sought to elucidate if any individual-specific variable 

determined the observed diversity, composition, and/or community structure in any of the 

skin sites. When considering the season of birth or the time spent in the kennel as variable, 

we observed two significantly different groups: dogs born from January to May that had 

spent 6 months in the kennel were different from those born from June to September that 

had spent 3 months in the kennel. This effect was highest on the inner pinna, with a 

significant ANOSIM R value of +0.84. Main taxonomic difference among inner pinna 

from both groups was due to Sphingomonadaceae, specifically Sphingomonas. These taxa are 

classically considered air- and dust-borne (55), although they had also been identified on 

dog skin microbiota (5,8) and in animal sheds (55,56), even specifically on dogs’ (57). These 

classically considered air- and dust-borne bacteria are cultivable at temperatures ranging 

from 4–28 °C, but not at 37 °C (55). Independent studies of grapevine microbiome show a 

link between Sphingomonadaceae and lower temperatures: in leaves Sphingobacteriaceae was 

significantly overrepresented on samples from May when compared to July (58); and in 

grapes, samples from a colder year presented increased levels of Sphingomonadaceae (59). 

Thus, we suggest two alternate hypotheses. If the variable explaining those differences was 

the season of birth, maybe the maximum temperatures reached in the summer time, usually 

overpassing 28ºC, implied lower Sphingomonadaceae presence in the air, in dust and on dogs’ 

hair coats, avoiding its establishment as a component of the dogs’ skin microbiota. In 

human studies, infant skin microbiota resembled the maternal one up to six weeks after 

birth, contrasting with microbiota from stool, nares or oral cavity which significantly 

differed (60). Thus, applying few concepts of ecology theory (61), we suggest that the 

bacterial pool of the environment and the air was shaped with the season characteristics 



(humidity, UV light, temperature, etc.), which in turn was shaping to some extent the skin 

microbiota of dogs (environmental selection). Thus, when a dog was born it had a different 

available bacterial pool depending on the season that will affect the invasion order: some 

species were more abundant, so more likely to be the first to colonize the skin. Or perhaps 

the dam had an increased number of season-specific bacteria on her shed, transferring 

them to the puppies and therefore becoming resident inhabitants of the puppy skin 

microbiota by historical contingency processes, where the order of invasion matters and it 

could randomly differ among littermates (for example, being born first vs second). If the 

time spent in the kennel was the variable explaining these divergences, we could be 

detecting again an environmental effect: those dogs that were during the autumn and 

winter in the kennel were exposed for a longer period of time to the environment and were 

more likely to harbor bacteria from it. In this case we should accept a high influence of the 

environment in the skin microbiota composition, entitling even a replacement of the main 

families depending on the time of cohabitation and the household placement conditions. 

Finally, we should not forget the possible role of progenitors’ genetics, but in both groups 

there are some common sires despite different dams discarding the possible effect of sire 

genetics. Moreover, inner pinna skin microbiota is not more similar when comparing two 

littermate’s than when comparing any other two dogs within the same group (in exception 

of Dog 2 and 3).  

Although it is difficult to elucidate which bacteria are really microbiota and which others 

are only transient members from the environment, the pattern seems clear for 

Sphingomonadaceae. All the samples were obtained the same day and a significant difference 

was found regarding the season of birth or time spent in the kennel. Therefore, 

Sphingomonadaceae, classically regarded as air- and dust-borne bacteria, should be considered 

also a normal colonizer of dog skin microbiota. Similarly as dog skin with Sphingomonadaceae, 

researchers had found taxa classically regarded as environmental being part of human skin 

microbiota. For example, the genus Enhydrobacter was commonly found in air and surfaces 

of built environment of Hong Kong (62) and also presented high abundances in skin of 

Chinese individuals (21,63). Another example would be Amerindian individuals, which 

presented a very different skin microbiota profile with high proportion of bacteria 

commonly regarded as environmental (25).  

Besides the season of birth or the time spent in the kennel, sex had a significant effect on 

the abdomen, back and axilla microbiota of our cohorts. Female dogs presented an 

overrepresentation of Enterobacteriales and Enterobacteriaceae families, coinciding with what 

was previously reported on the hands of humans (14).  

Dogs that had undergone surgery within the previous month presented lower alpha 

diversity values, always in abdomen and chin. The surgery procedures that had undergone 

implied shaving the abdomen and were followed by oral medication administration 

(sometimes antibiotics), which would probably explain the lowered alpha diversity values. 

Finally, geography also affected dog skin microbiota, most significantly its composition. 

The European cohort was comprised of pet dogs that did not interact with each other, 

were from different households, age groups and genetic backgrounds, and their samples 



were collected in different seasons of the year. Even considering this heterogeneity, the 

European dogs clustered together in a single group differing from the environmental well-

controlled USA cohort. That is in line with what has already been described for humans 

with geography (21,26), geographical isolation (25) or urbanization (27,28)(19) grouping 

differently skin microbial communities. 

Focusing on the technique, our results showed that skin microbiota samples collected with 

swabs and stored at 4ºC for more than 5 days presented significantly less diversity when 

compared to those extracted sooner; this was true even when the dogs who had surgery, 

and were therefore less diverse, were excluded (Additional File 4D). Each day a different 

set of random samples was extracted and our results demonstrate that there were no 

impacts of extraction within the first 3-days; neither were differences detectable among the 

last 3-days. However, microbiota diversity values differed when extraction for weeks one 

and two were compared. This contrasts with the results reported by Lauber and colleagues 

that assessed stability of the skin microbiota samples when stored in different temperatures. 

They found no differences on diversity when they were stored either at 4ºC or 20ºC for up 

to two weeks (64). However, they worked at a sequencing depth 10 times lower than our 

study:  1,000 vs 11,000 sequences per sample. The lower coverage may have obscured the 

loss of diversity because the lower prevalent species may not have been detected at the 

lower sequencing depth. Thus, we recommend extracting microbial DNA from skin swab 

samples within 3-days of sample collection with storage at 4ºC. Finally, it is important to 

note that this decrease in the diversity only slightly affected skin community structure and 

composition (explaining ≤5% of the variation). 

Conclusions 

In summary, we have characterized the normal variability of dog skin microbiota in a well-

controlled cohort of a large number of dogs with similar ages, related genetic background, 

and a shared environment. We found that microbiota composition was driven by the 

individual, but when considering the abundances, microbiota structure was driven both by 

the individual and by the skin site. Network analyses elucidated that both exclusive and 

shared interactions existed depending on the skin site, with the highly shared interactions 

probably representing an environmental origin. When analyzing each skin site 

independently to assess host-specific factors we found that season of birth or time spent in 

the kennel affected all skin sites. The most abundant taxon driving this difference was 

Sphingomonas, which is an air-borne bacterium that cannot be cultivated at elevated 

temperatures. We also found taxonomic differences among male and female dogs on 

abdomen, axilla and back. Moreover, the USA and European cohorts were grouping by 

geographical origin in two different and well-defined clusters, even when the European 

individuals were very heterogeneous. In conclusion, we observed a large inter-individual 

variability and effects of different host variables, even in an environmental well-controlled 

cohort.  



Thus, to overcome the individual variability inherent to skin microbiota studies, we would 

recommend longitudinal studies assessing divergences between health and disease 

comparing affected vs unaffected regions within an individual through time; or alternatively 

the cohort should be large enough and well controlled if case-control studies are preferred. 

Understanding the skin microbiota of healthy skin will allow a better knowledge of the 

intrinsic variability in health and the assessment of what is an altered state. It will also 

provide a background to develop its clinical applications (30) such as identifying an altered 

skin microbiota landscape or developing personalized therapies aimed at shifting the 

balance toward a healthy skin microbiota, promoting beneficial bacteria growth rather than 

killing all bacteria. 
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Using MinION™ to characterize dog skin 
microbiota through full-length 16S rRNA gene 

sequencing approach 

Introduction 
Bacteria, fungi, viruses and archaea are the main microorganisms constituting the 
microbiota, which is defined as the microbial communities inhabiting a specific 
environment (1). In humans, many efforts have been made to characterize the different 
body site ecosystems and their associated microbial communities, mainly at bacterial level 
(2,3), which are the most abundant microorganisms on the human-associated microbiota 
(4,5). 

Studying host-associated microbiota has provided many insights on health and diseases for 
many different body sites (6,7). In human skin, alterations on skin microbiota have been 
associated to numerous cutaneous diseases, such as acne vulgaris (8,9), psoriasis (10–12), or 
atopic dermatitis (13–17). Not only humans, but also dogs presented altered microbiota 
states during atopic dermatitis disease (18–20).  

The most common strategy to assess bacterial microbiota is amplifying and sequencing 
specific regions of 16S rRNA gene using 2nd generation massive sequencing technologies 
(for a review see (21)). This bacterial marker gene is ubiquitously found in bacteria, and has 
nine hypervariable regions (V1-V9) that can be used to infer taxonomy (22).  

The ability to classify sequences to the genus or species level is a function of read length, 
sample type and the reference database (23). High-quality short-reads obtained from 2nd 
generation sequencers (250-350 bp) bias and limit the taxonomic resolution of this gene. 
The more usual regions amplified with Illumina MiSeq or Ion Torrent PGM™ for bacterial 
taxonomic classification are V4 or V4-V5, but these regions fail in amplifying some 
significant species for skin microbiota studies, such as Propionibacterium acnes. So, when 
performing a skin microbiota study the preferred choice is V1-V2 regions, although they 
lack sensitivity for the genus Bifidobacterium and poorly amplify the phylum Verrucomicrobia 
(21). On the other hand, near full-length 16S rRNA gene sequences are required for 
accurate richness estimations especially at higher taxa (24), which are necessary on 
microbiota studies. Besides, full-length reference sequences are needed for performing 
phylogenetic analyses or designing lineage specific primers (23), especially in species 
different to human or mouse, in which previous metagenomics approaches deciphered the 
richness of bacterial species in the great and different variety of microbiome samples 
analyzed.  



With the launching of 3rd generation single-molecule technology sequencers, these short-
length associated problems can be overcome by sequencing the full or almost full-length of 
16S rRNA gene with different sets of universal primers (25). Results for full-length 16S 
rRNA gene have been reported for Pacific Biosciences (PacBio) platform (23,26–30). 
Schloss and collaborators reported the possibility of generating near full-length 16S rRNA 
gene sequences with error rates slightly higher, but comparable to the 2nd generation 
platforms (0.03%)(23). The primary limitation on the PacBio platform is the accessibility to 
the sequencers and the cost of generating the data.  

MinIONTM sequencer of Oxford Nanopore Technologies (ONT) 
(https://nanoporetech.com) is a 3rd generation sequencer that is portable, affordable with a 
small budget and offers long-read output (only limited by DNA extraction protocol). 
Besides, it can provide a rapid real-time and on-demand analysis very useful on clinical 
applications. Several studies targeting the full 16S rRNA gene have already been performed 
using MinIONTM to: i) identify pure bacterial culture (31); ii) characterize artificial and 
already-characterized bacterial communities (mock community) (32–34); and to iii) 
characterize complex microbiota samples, from mouse gut (35), wastewater (31) and pleural 
effusion from a patient with empyema (34). 

Here we aim to assess the potential of Nanopore sequencing in complex microbiota 
samples using the full-length 16S rRNA (1,500bp). First set-up step is performed using a 
staggered mock community (HM-783D). Then, we sequenced a pool of several skin 
microbiota samples previously sequenced by Ion Torrent PGM™.  

Material and methods 

Samples included 

As simple microbial community, we used a Microbial Mock Community HM-783D kindly 
donated by BEI resources (http://www.beiresources.org) that contained genomic DNA 
from 20 bacterial strains with staggered ribosomal RNA operon counts (1,000 to 1,000,000 
copies per organism per μL). This mock community allowed us to perform the MinIONTM 
sequencing and analysis protocol set-up. 

As complex microbial community, we used a sample pool from skin microbiota of healthy 
dogs (inner pinna), which had been previously characterized using Ion Torrent PGM™. 
We assessed skin microbiota from inner pinna samples: 1A, 7A, 18A, 20A and 29A from 
(36) (or Chapter 3.3). 

Sample collection and DNA extraction 

For the complex microbial community, skin microbiota samples were collected using 
Sterile Catch-All™ Sample Collection Swabs (Epicentre Biotechnologies) soaked in sterile 
SCF-1 solution (50 mM Tris buffer (pH = 8), 1 mM EDTA, and 0.5% Tween-20). 



Bacterial DNA was extracted from the swabs using the PowerSoil™ DNA isolation kit 
(MO BIO) (for further details on sample collection and DNA extraction see (37)). 

PCR amplification and barcoding 

To prepare the DNA and the library we followed the Oxford Nanopore protocol 1D PCR 
barcoding amplicons (SQK-LSK108), however we used the Phusion Taq polymerase rather 
than the LongAmp Taq recommended in this protocol. Specifically, we amplified ~1,500bp 
fragments of the full 16S rRNA gene. 

Bacterial DNA was amplified using a nested PCR with a first round to add the 16S rRNA 
gene primer sets and a second round to add the barcodes. In this study we used two sets of 
16S universal primers. On one hand, primer set 27F-1391R (also named S-D-Bact-0008-c-
S-20 and S-D-Bact-1391-a-A-17 (38)) amplified V1-V8 hypervariable regions of 16S rRNA 
gene. On the other hand, primer set 27F-1492R (also named S-D-Bact-0008-c-S-20 and S-
D-Bact-1492-a-A-22 (38)) amplified V1-V9 hypervariable regions of 16S rRNA gene. 
These two sets of universal primers are the most commonly used when assessing full-
length 16S rRNA gene, because they have shown a really low non-coverage rate, even at 
phylum level (39). The primers used in this study are listed in Table 1 and contain some 
ambiguous bases previously described to make the primers more universal (25).  

Table 1. Primer sequences and hypervariable regions (HVR) targeted for full-length 16S rRNA gene 
amplification and sequencing. 

Complete name       Short 
name HVR Sequence (5' --> 3') Melting 

T 

S-D-Bact-0008-c-S-20 27F  V1 AGRGTTYGATYMTGGCTCAG 54.4 ºC 
S-D-Bact-1391-a-A-17 1391R V8 GACGGGCGGTGWGTRCA 59.5 ºC 
S-D-Bact-1492-a-A-22 1492R V9 TACCTTGTTAYGACTT 41.6 ºC 
 

We will distinguish among primer sets used referring to the hypervariable regions they are 
amplifying, so: 27F-338R will be V1-V2; 27F-1391R will be V1-V8; and 27F-1492R will be 
V1-V9. 

We ordered the 16S rRNA gene primers with the Oxford Nanopore Universal Tag added 
to their 5’ end. The universal tag was 5’-TTTCTGTTGGTGCTGATATTGC-3’ for 
forward primers and 5’-ACTTGCCTGTCGCTCTATCTTC-3’ for reverse primers. These 
universal tags will allow the second barcoding PCR using the PCR Barcoding kit (EXP-
PBC001). 

In the first round, PCR mixture (25 μl) contained initial DNA sample (1 μl of DNA for the 
mock community PCR and 5 μl of DNA for the skin microbiota PCR), 5 μl of 5X Phusion 
Buffer HF, 0.2 mM of dNTPs, 0.02 U/μl of Phusion High Fidelity Taq Polymerase 
(Thermo Scientific). Primer concentrations were adapted to each primer set: for 27F-
1391R, 0.4 μM of each primer and for 27F-1492R, 0.4μM of 27F and 0.8μM of 1492R. The 
PCR thermal profile consisted of an initial denaturation step for 30s at 98°C, followed by 



25 cycles for 15s at 98°C, 15s at primer-adjusted annealing temperature, 45s at 72°C for 
extension, and a final step for 7 min at 72°C. The annealing temperature was also adjusted 
to the primer set: 55ºC for 27F-1391R and 51ºC for 27F-1492R. To assess possible reagent 
contamination, each PCR reaction included a no template control sample, which did not 
amplify. 

In the second round, PCR mixture (100 μl) contained 0.5 nM of the first-round PCR 
product, 20 μl of 5X Phusion Buffer HF, 0.2 mM of dNTPs, 0.02 U/μl of Phusion High 
Fidelity Taq Polymerase (Thermo Scientific), and 2 μl of each specific barcode  (EXP-
PBC001) as recommended in the Oxford Nanopore protocol 1D PCR barcoding 
amplicons (SQK-LSK108). The PCR thermal profile consisted of an initial denaturation 
step for 30s at 98°C, followed by 15 cycles for 15s at 98°C, 15s at 62ºC for annealing, 45s 
at 72°C for extension, and a final extension step for 7 min at 72°C. 

Following each PCR round, a clean-up step using AMPure XP beads at 0.5X concentration 
was used to discard short fragments as recommended by the manufacturer. DNA quantity 
was assessed using Qubit fluorimeter.  

A final equimolar pool containing 1ug of the barcoded DNA samples in 45 uL of DNAse 
and RNAse free water will be used to prepare the sequencing library. 

Library preparation 

The Ligation Sequencing Kit 1D (SQK-LSK108) was used to prepare the amplicon library 
to load into the MinIONTM following the instructions of the 1D PCR barcoding amplicon 
protocol of ONT. Input DNA samples were1 μg of the barcoded DNA pool in a volume 
of 45 μL and 5 μL of DNA CS (DNA from lambda phage, used as a sequencing positive 
control). The DNA was processed for end repair and dA-tailing using the NEBNext End 
Repair / dA-tailing Module (New England Biolabs). A purification step using Agencourt 
AMPure XP beads (Beckman Coulter) was performed and approximately the expected 
700ng of total DNA were recovered as assessed by Qubit quantification. 

For the adapter ligation step, a total of 0.2 pmol of the end-prepped DNA (approximately 
200 ng of our 1,500 bp fragment) were added in a mix containing 50μL of Blunt/TA ligase 
master mix (New England Biolabs) and 20μL of adapter mix, and were incubated at room 
temperature for 10 min. We performed a purification step using Agencourt AMPure XP 
beads (Beckman Coulter) and Adapter Bead Binding buffer provided on SQK-LSK108 kit 
to finally obtain the DNA library also called pre-sequencing mix. 

Preparing and loading the flow cell 

We used SpotON Flow Cell Mk I (R9.4) (FLO-MIN106), which had been previously 
stored at 4ºC. We fitted the flow cell to the MinIONTM and performed the Quality Control. 
We continue with the priming of the flowcell with a mixture of Running Buffer with fuel 
mix (RBF from SQK-LSK108) and Nuclease-free water (500 μL + 500 μL).  



We prepared the pre-sequencing mix (12 μL of DNA library) to be loaded by mixing it 
with Library Loading beads (25.5 μL) and Running Buffer with fuel mix (37.5 μL). 
Immediately after priming, the nanopore sequencing library was loaded in a dropwise 
fashion using the spot-on port. 

We run a total of two flow cells including several barcoded samples. The first one 
contained the mock communities amplified using V1-V9 primer set (M1 and M2 are 
technical replicates) together with other skin microbiota samples not included in this study. 
The second flow cell included the skin microbiota sample from the inner pinna amplified 
using V1-V8 and V1-V9 primer sets (biological replicates) described in this study, among 
others. 

Once the library was loaded we initiated a standard 48h sequencing protocol using the 
MinKNOW™ software.  

For the mock communities, basecalling was performed using the Metrichor™ agent 1D 
barcoding for pre-existing basecalls and demultiplexing using Epi2me debarcoding 
workflow. Finally, fast5 files were converted to fastq files using poRe (40)(Watson et al., 
2015) and adapters were trimmed using Porechop (41). 

On the other hand, for the skin microbiota samples basecalling was performed using 
Albacore v0.8.4 software. Again, fast5 files were converted to fastq files using poRe (40). 
Afterwards sequences were demultiplexed and adapters trimmed using Porechop (41).  

As a final step, we trimmed the universal tags of the sequences using a custom script and 
filtered out those sequences shorter than 1,100 bp for V1-V8 and 1,200 bp for V1-V9 
amplifications respectively, using split_libraries.py from QIIME software (42). 

Downstream analyses 

For both the mock community and the skin microbiota samples, we performed the analysis 
using NanoOK (43) with LAST aligner (44) against two databases. We used a subset of 
Greengenes database (45,46) and the rrn database (33). 

Greengenes database offers annotated, chimera-checked, and full-length 16S rRNA gene 
sequences and it is one of the most commonly used databases when performing microbiota 
analyses(45,46). We used the Greengenes database clustered at 99% of similarity to reduce 
redundancy and filtered out those sequences that did not reach species level or that did not 
have a minimum length of 1,400bp. This database contained 20,745 sequences belonging to 
3,147 different species. 

rrn database is a custom database created by Benitez-Paez and Sanz to analyze the rrn 
operons. It contains information of the ribosomal RNA operon (16S-ITS-23S genes) 
retrieved from bacterial genomes of GenBank at NCBI. This database contained 22,351 
sequences belonging to 2,384 different species (33). 

 



Results and discussion 

Mock community analyses 

We amplified full-length 16S rRNA sequences from the staggered community with primers 
V1-V9 by duplicate (M1 and M2). We processed a total of 11,284 sequences for M1 and 
22,995 for M2. The taxonomic results obtained are shown in Table 2, both for Greengenes 
and rrn databases.   

Table 2. Taxonomic assignment of the mock community at species level. Results obtained after 
MinIONTM sequencing of two replicates of the staggered mock community (M1 and M2) aligned against 
Greengenes and rrn databases. Relative abundances that correlated to operon counts are in bold. (*) Is the 
species annotated in the database?  

 
  Greengenes database rrn database 

Taxonomy nº of 
operons 

Tax at 
sps?* 

% reads 
M1 

% reads 
M2 

Tax at 
sps?* 

% reads 
M1 

% reads 
M2 

Escherichia coli 1,000,000 Yes 15.29 16.45 Yes 22.49 23.92 
Rhodobacter sphaeroides 1,000,000 Yes 8.54 7.19 Yes 8.18 6.85 
Staphylococcus epidermidis 1,000,000 Yes 18.81 19.04 Yes 15.99 16.71 
Streptococcus mutans 1,000,000 No - - Yes 17.34 17.12 
Bacillus cereus 100,000 Yes 2.26 2.1 Yes 0.93 0.96 
Clostridium beijerinckii 100,000 No - - Yes 0.46 0.67 
Pseudomonas aeruginosa 100,000 Yes 0.01 0.03 Yes 0.85 0.88 
Staphylococcus aureus 100,000 Yes 1.59 1.81 Yes 6.81 6.49 
Streptococcus agalactiae 100,000 Yes 1.27 1.42 Yes 2.36 2.36 
Acinetobacter baumannii 10,000 No - - Yes 0.11 0.09 
Helicobacter pylori 10,000 Yes 0.1 0.14 Yes 0.11 0.13 
Lactobacillus gasseri 10,000 No - - Yes 0.17 0.12 
Listeria monocytogenes 10,000 Yes 0.21 0.29 Yes 0.12 0.23 
Neisseria meningitides 10,000 No - - Yes 0.14 0.24 
Propionibacterium acnes 10,000 Yes 0.17 0.22 Yes 0.03 0.05 
Actinomyces odontolyticus 1,000 Yes - - Yes 0 0 
Bacteroides vulgatus 1,000 No - - Yes 0.02 0.01 
Deinococcus radiodurans 1,000 No - - No - - 
Enterococcus faecalis 1,000 No - - Yes 0.11 0.02 
Streptococcus pneumoniae 1,000 No - - Yes 3.63 3.38 
 

Greengenes is one of the most commonly used databases in microbiota studies because it is 
curated and checked for chimeras (46). However, half of the bacterial species of the mock 
community were not annotated in the database up to the species level, so we expected 
seeing only genus level (marked as “No” Table 2).  

rrn database (33) contains information of the ribosomal RNA operon (16S-ITS-23S genes) 
for 22,351 sequences belonging to 2,384 different species. This database lacks information 
for only one member of the mock community (Deinococcus radiodurans). 



On one hand, Greengenes contains taxonomic annotation up to the species level for 10 out 
of 20 bacterial species included in the mock bacterial community. From these, we were able 
to detect all of them. Moreover, it’s worthy to note that despite Streptococcus mutans was not 
in Greengenes database at species level, we detected the closely related species Streptococcus 
sobrinus in high abundance (M1=14.4% and M2=11.3%); in fact both belong to the mutans 
group (47). Moreover, we saw Streptococcus infantis (M1=9.6 and M2= 7.9%) as another 
abundant species. On the other hand, rrn database contained species level information 
from 19 out of the 20 bacterial species of the mock community and we were able to detect 
all of them (Table 2). 

The overall trend when looking at relative abundances is that operon counts correlated to 
relative abundances: when operon count changed in one magnitude order also relative 
abundances did. The exceptions were Rhodobacter sphaeroides, Pseudomonas aeruginosa and 
Actinomyces odontolyticus, which were detected at lower abundances than expected or not 
detected at all.  

When looking at the results of rrn database, we could see that not only Rhodobacter 
sphaeroides and Pseudomonas aeruginosa were underrepresented but also Bacillus cereus and 
Clostridium beijerinckii. Finally, Streptococcus pneumoniae was overrepresented, probably 
suggesting that the sequencing errors together with the large amount of Streptoccous 
entries in the rrn database (44 Streptococcus species in rrn vs 9 Streptococcus species in 
Greengenes) produced an incorrect identification of this species. Thus, some of these 
biases could be explained by sequencing errors, primers used, or low resolution of 16S 
rRNA gene to distinguish among species from certain genera. 

At the genus level, we were able to identify all the members of the mock community except 
Actinomyces odontolyticus even when it was represented on both databases (Table 3). 
Aproximately 10% of the reads for Greengenes and 2% for rrn database belonged to other 
genera theoretically not present in the mock community. Among those “other genera”, the 
most abundant belonged to Shigella, Enterobacter and Salmonella, which are closely related to 
Escherichia coli (48). If we not consider these taxa probably wrongly assigned because they 
are closely related to Escherichia coli, only ~2.5% and ~0.5 % of the reads of Greengenes 
and rrn database respectively belong to other genera rather than the expected, which could 
be due to sequencing errors or to cross-contamination from dog skin microbiota samples. 

 

  



Table 3. Taxonomic assignment of the mock community at genus level. Results obtained at the genus 
level after MinIONTM sequencing of two replicates of the staggered mock community (M1 and M2) aligned 
against Greengenes and rrn databases. 

  
Greengenes rrn 

Genus Expected 
abund. 

% of reads 
M1 

% of reads 
M2 

% of reads 
M1 

% of reads 
M2 

Streptococcus ++++ 33.99 33.44 35.44 34.82 
Staphylococcus ++++ 24.00 24.30 24.32 24.73 
Escherichia ++++ 15.41 16.52 22.91 24.23 
Rhodobacter ++++ 8.58 7.21 8.35 6.99 
Bacillus +++ 3.66 3.69 3.28 3.37 
Clostridium +++ 1.31 1.46 1.25 1.3 
Pseudomonas +++ 1.04 1.05 1.07 1.01 
Listeria ++ 0.27 0.30 0.20 0.30 
Neisseria ++ 0.17 0.27 0.17 0.30 
Propionibacterium ++ 0.17 0.22 0.13 0.17 
Lactobacillus ++ 0.27 0.17 0.28 0.18 
Helicobacter ++ 0.10 0.14 0.12 0.13 
Acinetobacter ++ 0.13 0.12 0.13 0.11 
Enterococcus + 0.14 0.11 0.12 0.06 
Bacteroides + 0.02 0.01 0.02 0.01 
Deinococcus + 0.02 0 0.02 0.01 
Actinomyces + 0 0 0 0 
Other genera* - 10.72 10.99 2.19 2.28 

 

We can conclude from mock community analyses that full-length 16S rRNA sequencing 
with Oxford Nanopore is able to detect taxonomy assignments and retrieve diversity 
information, provided that the target species are in the database. At the genus level, we 
were able to accurately retrieve the mock community composition. It’s also worthy to note 
the good technical replicates obtained for M1 and M2 samples. 

Evaluation of primer sets V1-V8 and V1-V9 in microbial richness 

Dog skin microbiota samples were sequenced as a pool with MinIONTM after amplification 
of full-length 16S rRNA gene with primers targeting regions V1-V8 or V1-V9 (see Table 
1). These complex microbiota samples were basecalled with Albacore v0.8.4 (Oxford 
Nanopore Technologies) and fast5 files were converted to fastq files. After demultiplexing, 
adapters and universal tags were trimmed and sequences analyzed using NanoOK (43) with 
LAST aligner (44). We finally obtained a total of 79,083 sequences for V1-V9 and 74,243 
for V1-V8.  

The same samples had been previously sequenced individually with Ion Torrent PGM™ 
with primers targeting V1-V2 hypervariable regions. In that case sequences were analyzed 
with QIIME 1.9.1 (42) with operational taxonomic units (OTUs) picking a representative 



sequence of a group of sequences with a 97% similarity and taxonomy was assigned with 
RDP classifier (49) against the whole Greengenes database (45,46)(that contains many 
entries that do not reach low taxonomic levels). Using RDP classifier, if the taxonomy 
assignment does not reach a specific threshold, the sequences included in the OTU are set 
as “Other”. We finally obtained a total of 249,572 sequences for V1-V2 region. 

We performed the evaluation of the primer sets using exclusively the Greengenes database, 
because V1-V2 short-reads were analyzed using this same database. We used a subset of 
the Greengenes database that contained only those taxa that reached species level for the 
long-reads obtained for V1-V8 and V1-V9 regions with MinIONTM. As a consequence of 
the stricter criteria for taxonomy assignment of V1-V2 short-reads, lower taxonomic levels 
were poorly annotated. Thus, we compared diversity estimates of higher taxa (from 
kingdom to order). 

Both V1-V8 and V1-V9 primer sets for long-reads were able to retrieve more bacterial taxa 
than V1-V2 short reads. The bacterial richness was higher at different taxonomic levels 
when assessed with long-reads rather than with short-reads, as seen in Table 4, and this 
trend increased as we were lowering taxonomic level.  

Table 4. Bacterial richness estimates for skin microbiota samples. Bacterial richness retrieved with 
different primer pairs targeting short (V1-V2) or full-length (V1-V8 and V1-V9) 16S rRNA gene. 

  
V1-V2 

(~350 bp) 
V1-V8 

(~1300 bp) 
V1-V9 

(~1400 bp) 
Kingdom 1 2 2 
Phylum 16 22 22 
Class 33 46 47 
Order 53 88 91 

 

At the highest taxonomic level, we were able to detect not only Bacteria but also Archaea 
kingdom, despite using universal primers specific for Bacteria (25). However, they were 
present at really low proportions (< 0.01% of total reads), which agrees with results 
previously reported on human skin microbiota samples (50). 

Delving into phylum level, we detected that the most common and better characterized 
phyla were retrieved by all the primers. These taxa represented >98% of the total skin 
microbiota composition. Long-read primers were able to detect 8 phyla previously unseen 
using V1-V2 short-reads (Table 5). It has already been reported the low coverage of this 
primer set for some specific phyla (21,51). Some phyla were only detected with a specific 
primer set, such as Lentisphaerae with V1-V8 or Fibrobacteres with V1-V9. On the other 
hand, GN02, TM7 and Thermi phyla belong to candidate divisions and none of their 
members have been cultivated (52)(Camanocha et al., 2014), so databases do not have 
taxonomy information up to species level. Thus, since we used the Greengenes subset 
database with species-level sequences, no representative of those phyla were included for 
taxonomy assignment of V1-V8 and V1-V9 long-reads and that is probably the reason why 
they are only detected with V1-V2 primers.  



Table 5. Microbial richness on skin samples. Table containing all the observed phyla per primer subset. 
Long-reads taxonomy was obtained from a species-level subset of Greengenes database (see materials and 
methods) that did not contain information of GN02, SR1 and TM7. *phyla that belong to Archaea kingdom. 
** phyla with no representative at the spp level in the database used for assigning taxonomy to long-reads 
(V1-V8 and V1-V9).  

  Long-reads Short-reads 

Phylum V1-V9 V1-V8 V1-V2 
[Thermi] + + + 
Acidobacteria + + + 
Actinobacteria + + + 
Bacteroidetes + + + 
Chlorobi + + + 
Chloroflexi + + + 
Cyanobacteria + + + 
Deferribacteres + + + 
Firmicutes + + + 
Fusobacteria + + + 
Proteobacteria + + + 
Spirochaetes + + + 
Tenericutes + + + 
Aquificae + + 
Chlamydiae + + 
Crenarchaeota* + + 
Elusimicrobia + + 
Euryarchaeota* + + 
Planctomycetes + + 
Synergistetes + + 
Verrucomicrobia + + 
Fibrobacteres + 
Lentisphaerae + 
GN02** + 
SR1** + 
TM7**     + 
Total 22/26 22/26 16/26 

 

So, we were able to detect previously unseen bacteria phyla on dog skin using MinIONTM 
long-amplicons for full-length 16S rRNA sequences, which provided better richness 
estimates. These previously unseen bacteria phyla presented low relative abundances on 
canine skin microbiota, but the use of long-amplicons in more uncharacterized 
environments will provide better diversity estimates. In conclusion, as previously reported, 
the ability to classify sequences to the genus or species level is a function of read length, 
but also of sample type and the reference database (23). 



Skin microbiota analyses 

We could see from the mock community results that species-level resolution was a little bit 
tricky because sometimes the target species was not present in the database. However, here 
we aimed to compare the taxonomies at species level obtained from two independent 
databases containing different taxonomic annotations. We considered a species-level 
assignment valid when two unrelated databases gave identical annotation. 

When comparing the most abundant species (>1% of total relative abundances), we could 
see 7 bacterial species identified by two independent databases: Bergeyella zoohelcum, 
Capnocytophaga canimorsus, Pasteurella multocida, Neisseria shayeganii, Lactobacillus reuteri, 
Bibersteinia trehalosi, and Neisseria weaver (Figure 1). 

This study included 5 skin microbiota samples together in a pool, which had been 
previously sequenced individually using V1-V2 short-reads and Ion Torrent PGM™. 
Figure 2A shows the microbiota profile of the most abundant taxa per individual sample 
(taxa representing > 0.5%). We can see that all of them have been identified up to family 
level and some of them also to genus level (Figure 2A). Despite working with an equimolar 
pool of these samples for nanopore sequencing, we could see in Figure 2B that this 
experiment is not representing equally all the individual samples and is missing some taxa. 

When comparing the results of nanopore sequencing with the short reads, we could detect 
that Lactobacillus species were exclusive to one single sample of the pool (18A), so probably 
not the most abundant taxa on the inner pinna skin microbiota. Fusobacteriaceae (specifically 
Fusobacterium genus) is one of the most abundant families on the inner pinna skin 
microbiota, and both databases detected that pattern at family level. However, Greengenes 
database was not able to identify any Fusobacterium, since the database lacked entries of the 
genus at the species level. Porphyromonadaceae was also another abundant member of skin 
microbiota, but species level taxonomy differed in each database giving different results. 
Long-reads allowed us reaching lower taxonomic levels confirmed by two independent 
databases for: 1) [Weeksellaceae] family, with Bergeyella zoohelcum; 2) Neisseriaceae, with Neisseria 
shayeganii and Neisseria weaveri; 3) Pasteurellaceae, with Pasteurella multocida and 4) 
Flavobacteriaceae, with Capnocitophaga canimorsus. 

 



 

Figure 1. Skin microbiota composition at species level. Comparison of the species detected against the 
(a) Greengenes and (b) rrn databases in the dog skin microbiota samples amplified with V1-V8 and V1-V9 
16S rRNA primers and sequenced with MinIONTM. (*) coincident taxonomic assignments using independent 
databases. 



 

    

Figure 2. Skin microbiota taxonomic profile using long and short reads. Bar plots of (a) the most 
abundant taxa on individual skin samples sequenced with V1-V2 primers in short-reads. “g__” means there is 
no information at genus level; and b) main families on dog skin microbiota when sequencing the full-length 
16S rRNA gene (V1-V9 and V1-V8) on a pool of samples and representation of the same families when 
sequencing V1-V2 region on the individual samples that constituted the pool. 

  



Conclusions 
Nanopore sequencing of the full-length 16S rRNA gene allowed us inferring microbiota 
composition from both simple and complex microbial communities. Moreover, long-reads 
were able to retrieve increased richness estimates, which show us previously unseen phyla 
on dog skin, despite being at really low abundances. 

Taxonomy assignment down to species level was not always feasible because of both the 
high error rate of 1D reads and the absence of some bacterial taxa on the databases. With 
the nanopore reads, we assigned taxonomy through alignment strategies executing all-vs-all 
comparisons that need many computational resources, so we needed a small database to 
obtain results. When working with a 16S database subset, we should be sure to include the 
most relevant taxa even if they do not have representative members at species level. Using 
only species-level taxonomy, we lost insights of candidate division phyla such as SR1, 
GN02 or TM7. Oxford nanopore offers other bioinformatics tools, such as the cloud-
based EPI2ME platform. However, we run out of memory on our hard disk when trying to 
perform these analyses. 

Finally, we should keep in mind that delving into species level with only 16S is sometimes 
difficult because there are bacterial species that share almost all their 16S rRNA sequences 
(60). Recently, Benitez-Paez and colleagues proposed to sequence the whole rrn operon 
constituted by 16S-ITS-23S to obtain better species-level resolution (33). 

In conclusion, nanopore sequencing of the full-length 16S rRNA gene allowed identifying 
bacterial species even from a complex community, obtaining a microbiota profile and 
improving richness estimates. So, nanopore sequencing has the potential to be used to 
assess microbial communities. Future studies should be relying on the new 1D2 kit that 
presents higher accuracy and, since sequencing length is not an impediment, other 
experimental strategies could be assessed. 
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4. Discussion 

This thesis intends to shed light onto the skin microbiota on healthy dogs as well as 

providing a tool to assess genetic variability in innate immunity. 

In the research article “Non-synonymous genetic variation in exonic regions of canine Toll-like 

receptors” we characterized by massive sequencing the genetic polymorphisms of Toll-like 

receptors on dogs from seven different breeds and on wolves from two populations. 

Finally we developed a TaqMan OpenArray® panel with 64 non-synonymous SNPs with a 

likely functional effect on the TLR proteins and we validated it using a subset of the 

previously sequenced animals. 

In the research article “Individual signatures define canine skin microbiota composition and variability” 

we characterized the variability of the skin microbiota by analyzing eight different skin sites 

in a cohort of nine healthy dogs from three different breeds: German Shepherd, French 

Bulldog and West Highland White Terrier. We assessed factors such as breed, skin site and 

individual as potential microbiota drivers. We found that the individual was the main factor 

driving skin microbiota structure and composition, followed by the skin site. We clarified 

that this individual effect should be understood as the dog, its lifestyle, and its 

environment. Finally, we detected no effect of the breed, however only three animals per 

breed were used so this effect should be better assessed. 

To resolve if that individual effect shaping skin microbiota on healthy dogs came from the 

dog itself or from the environment we performed a third research article “Individual 

signatures and environmental factors shape skin microbiota on healthy dogs”. Here we characterized 

the variability of the skin microbiota in healthy dogs cohabiting together in a shared 

environment, by analyzing eight different skin sites in a cohort of thirty-five Golden-

Labrador Retriever crossbred dogs. Even for this cohort with a shared environment, we 

found that microbiota composition was driven by the individual, confirming the results of 
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the second research article. When considering abundances, the microbiota structure was 

driven both by the individual and by the skin site. Considering that the cohort was 

environmentally uniform, we were able to detect the effect of host-specific factors: the 

season when the animal was born or the time spent in the kennel was a factor shaping skin 

microbiota in all skin sites. 

Finally in the chapter “Using MinION™ to characterize dog skin microbiota through full-length 16S 

rRNA gene sequencing approach” we assessed the potential of Nanopore sequencing for 

microbiota analyses using the full-length 16S rRNA gene. We first sequenced a simple 

microbial mock community containing 20 bacterial species (HM-783D) and then a 

complex microbial community represented by a pool of different skin microbiota samples 

from the inner pinna. Despite using 1D chemistry, which presents low accuracy, we were 

able to obtain better richness estimates and some information at species level. However, we 

should consider using the new 1D2 chemistry from now on, and exploiting the potential of 

this technology performing other approaches. 

In each of these four chapters the obtained results are thoroughly discussed. Thus, the 

purpose of the present section is to review and unify the four independent studies, as well 

as to discuss the pitfalls and to propose future directions. 
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4.1. Dual assessment of innate immunity and 

skin microbiota 

In the research article “Non-synonymous genetic variation in exonic regions of canine Toll-like 

receptors” (Chapter 3.1), we characterized by massive sequencing the genetic variability in the 

coding regions of the 10 Toll-like Receptor (TLRs) genes in 355 dogs from 7 breeds and in 

100 wolves from 2 populations. We functionally annotated the different variants and 

predicted the likely effect of non-synonymous SNPs (nsSNPs) on the TLR proteins that 

act as the first sensors of microbes. We found that the frequencies of nsSNPs differed 

among breeds and that some of them were breed- or species-specific. 

Finally, we developed a TaqMan OpenArray genotyping plate with 60 non-synonymous 

SNPs and 4 frameshift mutations. This tool allows obtaining an innate immunity profile on 

single dogs by genotyping their TLR polymorphisms. It can be used in many areas, such as 

characterizing genetic variability on different dog breeds (Chapter 3.1) and even performing 

evolution studies when including other canid species; screening case-control cohorts to 

identify variants associated to a certain disease; and finally, characterizing innate immune 

profile of individual dogs that are also analyzed in a microbiota study. 

When we screened the genetic variability of TLRs on several dogs from different breeds, 

we found that Labrador and German Shepherd dogs clustered separately (Figure 28a). 

Thus, some breeds present different innate immune profiles that could be influencing their 

predisposition and outcome to certain diseases, as well as their microbiota structure and 

composition.  

Three of the nsSNPs from TLR5 gene identified by massive sequencing had been 

previously associated with Inflammatory Bowel diseases in German Shepherd (Kathrani et 

al., 2010) and in other breeds (Kathrani et al., 2011). In our cohort of healthy dogs, we 

found that the risk allele for IBD in German Shepherd was absent in this breed although it 

presented different frequencies in other breeds (Figure 28b). TLR5 is the innate immune 

receptor for flagellin that is the principal protein component of bacterial flagella (Leifer et 

al., 2014). German Shepherd dogs carrying this risk allele for canine IBD showed hyper-

responsiveness to flagellin and Kathrani and colleagues suggested that this altered innate 

immunity-microbiota cross-talk could be responsible for the inappropriate inflammation 

observed in this disease (Kathrani et al., 2012). More recently, Vazquez-Baeza and 

collaborators confirmed that dogs with IBD presented an altered fecal microbiota that in 

fact could be used as a diagnosis tool to distinguish them from the healthy individuals 

(Vázquez-Baeza et al., 2016). Similarly on human IBD, Knights and collaborators reported 

a significant association between risk alleles of the innate immune receptor NOD2 and an 

increased relative abundance of Enterobacteriaceae in gastrointestinal microbiota (Knights et 

al., 2014).   
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Figure 28. Genetic variation on canine Toll-like Receptors. In a) Principal Component Analysis of dogs 
individually genotyped using TaqMan Open Array plate. In b) allele frequencies in our cohort of non-
synonymous SNPs obtained through massive sequencing and associated to IBD (From Chapter 3.1, Cuscó et 
al., 2014). 

Regarding the aim of this dissertation, this tool will allow us to perform a dual assessment 

of the dog in health and disease: innate immune profile and microbiota composition.  

In healthy skin, microbiota and immunity interact to maintain the homeostasis in front of 

disruptions. In fact, mice studies have demonstrated impaired and weakened skin immune 

responses in Germ free mice when compared to Pathogen-Specific Free mice (Naik et al., 

2012b). In healthy human skin, some of these cross-talks between specific commensals and 

innate immunity have already been characterized (Barnard and Li, 2017; Holmes et al., 

2015; Nakamizo et al., 2015). Staphylococcus epidermidis is one of the most studied 

commensals and interacts with host cell’s TLRs to modulate innate immunity against 

pathogens (Table 3, Figure 24). Other commensals such as Propionibacterium acnes, 

Pseudomonas aeruginosa or Staphylococcus aureus contribute to skin immunity by producing 

antimicrobial substances (Holmes et al., 2015).  

In dermatological diseases, the equilibrium and cross-talks between skin immunity and 

microbiota are disrupted. As we have extensively reviewed in the introduction, most of the 

cutaneous diseases are associated with an altered microbiota or dysbiosis (Table 4), and/or 

an altered innate immunity, either through genetic polymorphisms or altered expression of 

TLRs (Table 2). When comparing the two tables, some common cutaneous diseases appear 



135 
 

to present both an altered microbiota and an altered skin immunity profile. As an example, 

some links between disease and TLR-microbiota have been merged in Table 5.  

Table 5. TLR-microbiota associations in main cutaneous diseases. 

Disease TLR-microbiota link 

Atopic dermatitis  - During AD flare S. aureus increases, but also S. epidermidis which might be a 

compensatory mechanism (see Table 3 for specific mechanisms) 

  - Topical probiotic of Vitreoscilla filiformis reduced AD score, increasing IL-10 

production via TLR2 (Volz et al., 2014) 

Psoriasis  - Polymorphisms on innate immune system receptor (e.g. TLRs) facilitate the 

initiation of an inflammatory response to commensal microbiota (Fry et al., 

2015) 

Acne vulgaris  - P. acnes strains are individual-specific, some virulent and some not (Fitz-

Gibbon et al., 2013) 

  - Health-associated phylotypes produce thiopeptides, which are antimicrobial 

compounds that inhibit the growth of gram-positive bacteria (Christensen and 

Brüggemann, 2014) 

 

Some correlations between host genetic variation and certain microbiota composition have 

already been described in health and disease. Knights and colleagues, as we have previously 

explained, found a link between innate immune receptor NOD2 and increased 

Enterobacteriaceae on gastrointestinal microbiota. Moreover, they suggested that genetically 

altered host functional pathways can shape microbiome structure (Knights et al., 2014). 

Blekham and colleagues approach was retrieving the host sequences of the shotgun 

metagenomics dataset of the Human Microbiome Project. First they correlated host 

functional pathways (groups of aggregated SNPs and genes) with overall microbiome 

composition and found significant enrichment in several genes involved in (i) complex 

diseases that have already been linked to the microbiome (such as obesity and 

Inflammatory Bowel disease); and (ii) other immunity-related pathways, including the Role 

of Pattern Recognition Receptors in Recognition of Bacteria and Viruses. They also 

correlated host variation to specific microbiome members and found key host genes related 

to immunity involved. For example, genetic variants on HLA-DRA and TLR1 were 

correlated to Selenomonas presence on throat microbiota and Lautropia in the tongue 

dorsum, respectively (Blekhman et al., 2015). 

To sum up, TLRs serve the dual function of sensing pathogens and symbionts and this 

sensing leads to very different outcomes for both microbes (clearance vs. symbiosis) and 

host (inflammation vs. immune homeostasis) (Chu and Mazmanian, 2013). Genetic variants 

on these genes can affect these responses. Thus, future uses of the canine TLR chip with 

the non-synonymous SNPs could be in both health and disease: in health, to elucidate if 

some specific TLR variants are associated to specific microbiota compositions; and in 

disease, to elucidate if some specific TLR variants are associated to some specific diseases 

and maybe in turn with an altered microbiota composition.  
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Finally, we should not forget the third piece of this puzzle: the environment. An excellent 

example of interaction between host genome, microbiome and environment is observed in 

humans by the interaction among LCT gene, Bifidobacterium and diet (dairy consumption). 

Lactose is the main sugar of dairy products and can be metabolized in the gastrointestinal 

tract either by Bifidobacterium of the microbiota or the lactase enzyme of the host, which is 

codified by LCT gene. Lactose intolerance in adults is associated with the SNP rs4988235 

with genotype GG in LCT gene. Only in GG carriers, Bifidobacterium abundance is 

correlated with dairy consumption suggesting that microbiota is replacing and/or 

complementing the host genetics function (Figure 29) (Bonder et al., 2016). Thus, 

microbiota can adapt to different host genetics backgrounds to complement functions 

using environmental resources. 

 

 

Figure 29. Example of an interaction between host genome, microbiota and environment: LCT 
gene, Bifidobacterium and dairy consumption. In individuals that present the GG genotype in LCT gene, 
the dairy consumption is positively correlated with the presence of Bifidobacterium in the GI tract (excerpted 
from Bonder et al., 2016). 

Taken together, these findings motivate the need for larger association studies to 

characterize host genetic variation linked to the microbiome in the context of various 

health conditions, environmental effects, and genetic backgrounds. 
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4.2. Skin site signatures on canine skin 

microbiota 

Human skin is mainly divided in three microhabitats depending on its physicochemical 

properties that harbor specific microbiota: sebaceous sites, with Propionibacterium spp; 

moist sites with Staphylococcus and Corynebacterium spp; and dry sites, with gram-negative 

microorganisms (Costello et al., 2009; Grice and Segre, 2011; Grice et al., 2009b). 

Dog skin is more uniform and almost totally covered by a dense fur, and despite the 

anatomical and physicochemical differences among certain skin sites (reviewed at Chapter 

1.2) these are not as large as in humans. Moreover, environment has probably a 

homogenizing effect hiding some skin-site bacterial signatures. Despite the more 

homogeneous microhabitat, skin diseases present different prevalence depending on skin 

sites (Miller et al., 2013). 

Even with this uniformity, the first cross-sectional study of skin microbiota on healthy 

dogs identified that hairy skin presented higher diversity values when compared to mucosal 

surfaces or muco-cutaneous junctions, as well as skin-site specific taxonomic profiles 

(Rodrigues Hoffmann et al., 2014). We have expanded this knowledge, performing two 

more cross-sectional studies on healthy dogs and obtaining similar results for diversity, with 

low diversity values in perianal and nasal skin microbiota samples (Chapter 3.2 and 3.3, 

Cuscó et al., 2017a, 2017b).  

Identifying skin-site bacterial signatures is biologically meaningful, and reflects the 

anatomical and physicochemical differences present on dog skin (Figure 30). We found 

influences of gastrointestinal and oral microbiota on the perianal region and the chin, 

reflecting their physical proximity (Chapter 3.2 and 3.3, Cuscó et al., 2017a, 2017b). These 

other body site microbiotas present higher bacterial concentrations than the skin (Belkaid 

and Segre, 2014a; Sender et al., 2016). The inner pinna presented the most uniform skin 

microbiota composition among individuals despite being the most diverse skin site when 

compared to the other skin sites, probably because it was the most isolated part of the skin 

of the dogs included in our studies (Chapter 3.2 and 3.3, Cuscó et al., 2017a, 2017b).  

To obtain first insights on the functional potential of a microbial community, predictive 

tools that work with 16S rRNA gene data, such as PICRUSt (Langille et al., 2013), PanFP 

(Jun et al., 2015) or Tax4fun (Aßhauer et al., 2015) have proven to be useful. At the 

predicted functional level, we were able to detect an increase on lipid metabolism on back 

skin, where sebaceous glands are larger and more abundant (Figure 30c). This last finding 

suggested that microbiota was adapting to the specific microhabitat or resource.  
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Figure 30. Microbiota of healthy dogs depending on the skin site. In a) microbiota profile at phylum 
level of the 9 dogs cohort. In b) boxplots of the diversity values depending of each skin site, marked with an 
asterisk those significantly different skin sites. In c) differentially distributed predicted functions on different 
skin sites (Figures from Cuscó et al., 2017a). 

Further studies assessing the metagenomes, using shotgun whole genome sequencing, will 

allow detecting rather than predicting the functional potential of the microbial community. 

However, metagenomics studies on the skin are especially challenging due to the low 

biomass obtained from this tissue (Kong et al., 2017). 

To conclude, we have detected different skin site microbial signatures that elucidate the 

need of cross-sectional studies and the avoidance of general results or even therapies 

focused on “the skin” as a unique microhabitat. Specifically, we found few examples on 

how skin site properties shape its specific microbiota, even one at the functional level. The 

next step will be finding out how these specific microbial signatures contribute to skin 

functions to promote health or disease. 
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4.3. Individual signatures on skin microbiota 

Inter-individual diversity is high in human skin microbiota (Grice and Segre, 2011; Human 

Microbiome Project Consortium, 2012) and can even be used to identify individuals by 

matching them to objects that the person came in contact with (Fierer et al., 2010; Lax et 

al., 2015; Meadow et al., 2014). Generally low-abundant microorganisms are the ones with 

the highest identification power, tend to be spread over all the skin sites, and their 

abundances remain relatively constant through time (Oh et al., 2016).  

Despite prior studies suggested individuality was affecting canine skin microbiota 

(Rodrigues Hoffmann et al., 2014), they did not assess this factor directly. Here, we 

specifically found that the individual was the main factor shaping dog skin microbiota 

composition: samples resembled more each other within the same dog, even when 

including different skin sites (Figure 31) (Chapter 3.2 and 3.3, Cuscó et al., 2017a, 2017b). 

In Chapter 3.2, we could not distinguish if that effect was purely the individual or maybe it 

was due to their unique associated environment (the 9 dogs came from different 

households). However, in Chapter 3.3 we worked with a large cohort of same-breed dogs 

cohabiting together in the same environment and our results confirmed that the individual 

was the main factor shaping skin microbiota. 

 

Figure 31. Skin microbiota profile of healthy dogs at phylum level. A, B, C, D, E, F, G and H represent 
inner pinna, chin, nasal skin, dorsal back, axilla, abdomen, interdigital region and perianal region. (Figure 
modified from Cuscó et al., 2017a). 
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This individuality of the skin microbiota should be taken into account on disease 

treatments. Skin microbiota is altered during several cutaneous diseases on humans and on 

atopic dermatitis on dogs (reviewed at Section 1.3.4). Considering that fact together with 

host genetics, generic therapies are probably not the best option. These individual effects 

could explain the differences on efficacy of the different treatments for skin diseases, such 

as those seen for canine atopic dermatitis (Olivry and Bizikova, 2013).  

Microbiota manipulation can be potentially used to treat diseases as reviewed previously on 

Section 1.3.5. Using a skin microbiota survey, Bradley and colleagues found Staphylococcus 

and Corynebacterium increased in canine atopic dermatitis (Figure 32a). Despite these general 

characteristics, they treated the affected dogs with antimicrobials and see a highly 

personalized trend on both the degree of improvement (Figure 32b, Visit 2) and the 

outcome after antibiotics removal (Figure 32b, Visit 3) (Bradley et al., 2016b).  

 

Figure 32. Dog skin microbiota on atopic dermatitis. a) Microbiota profile at genus level on healthy and 
atopic dermatitis groups. b) Atopic dermatitis score through time: visit 1, is the initial point; visit 2, during 
antimicrobial treatment; visit 3, after removing antimicrobials (Figures from Bradley et al., 2016). 

Besides classical antimicrobial administration, other therapies such as administration of pre- 

and probiotics could be used to treat or prevent certain diseases. In the light of our results, 

where the individual is the main factor shaping dog skin microbiota, assessing individual 

microbiota profile for each dog would help to understand the different outcomes to a 

common treatment between individuals. The study from Bradley and colleagues 

demonstrates the necessity to assess the individual microbial signatures and to use this 

information to develop personalized therapies (Bradley et al., 2016b). 

These individual signatures are often seen at low taxonomic levels, such as species level 

(Oh et al., 2014). To achieve that, we assessed 3rd generation sequencing technologies using 

MinION™ and found that species-level assignment was possible in some cases when 

sequencing the full-length 16S rRNA gene (Chapter 3.4). 

These individual-specific characteristics of skin microbiota have been seen not only at 

compositional level, but also in the dynamics of microbial populations using network 

studies. Bashan and colleagues found that among the skin sites tested (left and right 

antecubital fossae and retro-auricular creases), only retro-auricular creases skin microbiota 

presented universal dynamics in humans (Bashan et al., 2016). 
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In conclusion, individuality of dog skin microbiota is a fact that veterinary clinicians and 

researchers should account for, especially when developing new treatments to modify or 

alter skin microbiota. It is worthy to note that individuality is not synonymous of host 

genetics neither host environment, but it is probably a combination of many factors and it 

remains to be clarified to which extent one affect to the other. Despite this individuality, it 

will also be interesting to assess if any universal interactions exist in specific skin sites, as 

those seen in retro-auricular creases in human (Bashan et al., 2016). If microbial dynamics 

of dog skin are not universal, generic microbiota manipulations may result ineffective or 

even detrimental.  
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4.4. Environmental bacteria on skin: transient 

or resident microbiota? 

A recent study on caterpillars has demonstrated that they lack a resident gut microbiota, 

and they only have bacteria that come from the environment and the ingested food, with 

more than 80% of the 16S rRNA reads belonging to chloroplasts. Treating the animals 

with antibiotics did not affect their fitness or survival, demonstrating that the transient 

microbiota was not contributing on their overall health (Hammer et al., 2017). 

In a relatively isolated environment such as the gut, it is easier to control whether the 

microbiota comes from the environment or not. However that is much more difficult in 

the skin, which is totally exposed to the outer environment. For example, tribal populations 

that live mostly outdoors and have close contact with nature presented an incredible rich 

microbiota with many environmental-derived bacteria, when compared to westernized 

civilizations (Clemente et al., 2015; Hospodsky et al., 2014). 

In Chapter 3.2 and 3.3 we assessed skin microbiota of healthy dogs and detected a clear 

influence of the environment, both by the chloroplast amplification (ranging from 2 to 

77% of the total sequences per sample in Chapter 3.2) and by the environmental-associated 

bacteria such as Xenococcaceae, Sphingomonadaceae or Pseudomonadaceae (Cuscó et al., 

2017a)(Cuscó et al., 2017b). Previous studies also detected environmental-derived bacteria 

on canine skin microbiota (Rodrigues Hoffmann et al., 2014; Song et al., 2013a; Torres et 

al., 2017).  

Song and colleagues suggested that dogs not only harbor a resident microbiota but also 

shed a transient one (Song et al., 2013a). Even some built environment microbiota studies 

considered dogs as vectors of the outer environment to the household, increasing indoors-

bacterial diversity (Kettleson et al., 2015; Miletto and Lindow, 2015).  

The large proportion of chloroplasts sequences seen on some dog skin microbiota samples 

probably showed their close and recent contact with vegetation and could be indicating 

that some of the bacteria that we detected on these samples come from plants (Figure 33). 

Comparing low-chloroplast with high-chloroplast skin microbiota samples after 

chloroplasts removal will give powerful insights in identifying environment-associated 

microbiota. Moreover in future studies it will be interesting to sample not only the dog skin 

but also the environment (the soil where it walks, the plants which it interacts with, the 

water where it plays, etc.).  
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Figure 33. Dogs interacting with the environment. 

In conclusion, we detected that a variable proportion of the skin microbiota on dogs came 

from the outer environment. Temporal studies through seasons can give some clues of 

environmental-derived taxa (Torres et al., 2017), but if they interact or not with the host 

microbial dynamics and the resident microbiota remains to be elucidated and it will 

probably be harder to determine. Using some of the approaches proposed here could help 

to give light to this question. 
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4.5. Conducting microbiota studies: 16S rRNA 

gene and beyond 

Depending on the research question to answer, alternative experimental scenarios can be 

used besides targeting specific 16S rRNA gene hypervariable regions and sequencing them 

using 2nd generation sequencers. In Figure 34, we provide an overview of the main 

experimental approaches to perform a microbiota study and their main benefits and 

pitfalls. 

 

Figure 34. Experimental approaches to perform a microbiota study. (Source: own preparation) 
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Amplicon-based approach targeting specific hypervariable regions of 16S rRNA gene using 

second generation sequencing is the preferred choice when conducting microbiota studies. 

This approach, despite working with short fragments, allows high sequencing depth, low 

error rates and affordable prices (depending on the technology chosen). Moreover, a broad 

range of bioinformatics’ tools are freely available to analyze the data. Thus, the main 

approach used on this dissertation will be valid for future analyses.  

The most commonly used primers for microbiota studies are F27–R338 that amplify V1-

V2 hypervariable regions and F515–R806 that amplify V4 (Kuczynski et al., 2011). In this 

thesis we choose the primer set F27-R338 (V1-V2), because despite F515–R806 (V4) 

primer set is more universal (Walters et al., 2011), it lacks sensitivity for Propionibacterium 

acnes, which is a common commensal of human skin microbiota (Figure 35)(Grice et al., 

2009).  

 

Figure 35. Taxonomic coverage at phylum level for bacteria of two universal 16S rRNA gene primer 
sets. In a) the 27F-338R primer set (used in this study) and in b) the 515F/806R primer set. The y-axes 
represent percent coverage and the value on top of each bar is the total number of reference sequences in 
each taxon (adapted from Walters et al., 2011). 
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On the other hand, when working with other biological samples rather than skin, 

researchers should choose the most appropriate primer set. In GI microbiota the most 

suitable primer set is F515–R806 (V4), considering that F27–R338 (V1-V2) lacks sensitivity 

for Bifidobacterium or the whole phylum Verrumicrobia, both expected to be in the GI tract 

(Kuczynski et al., 2011). For example, the primer set used in this thesis is not able to 

identify Akkermansia muciniphila (from Verrumicrobia phylum), one of the species with the 

highest anti-inflammatory effects that is being studied as a potential probiotic. Moreover, it 

is associated with weight-loss and lean phenotypes and also its relative abundance on GI 

microbiota is lower in several metabolic diseases, such as obesity or inflammatory bowel 

diseases, when compared to health status (Belzer and de Vos, 2012; Derrien et al., 2017; 

Gómez-Gallego et al., 2016). 

Therefore, in the light of our results (Chapter 3.2 and Chapter 3.3), where Propionibacterium 

species represented really low abundances of the total skin microbiota on healthy dogs, it 

would also be interesting to replicate the analyses with F515–R806 (V4) primer set, 

especially in cases where an anti-inflammatory effect is studied. 

When analyzing short-reads, most bioinformatics approaches rely on operational 

taxonomic units (OTUs). Working with OTUs helps to reduce data volume and facilitates 

the posterior analyses by clustering together all the sequences above a specific threshold 

(usually 97%). As it has to process all the sequences, this step is usually slow and is 

considered as the bottleneck on microbiota data analyses. This methodology can present 

several disadvantages, such as 1) irreproducibility, OTU clustering algorithms lead to 

divergent result from a same dataset (Schmidt et al., 2015); 2) instability, sequences forming 

an OTUs vary depending on the number of sequences in the analysis, unless clustering 

against a database (He et al., 2015); 3) inaccuracy, OTU diversity estimates can be inflated 

due to sequencing errors or PCR artifacts (Patin et al., 2013). Recently, new algorithms 

have been developed aimed at improving velocity and accuracy of OTU picking, such as 

OptiClust (Westcott and Schloss, 2017), Deblur (Amir et al., 2017) or DADA2 (Callahan et 

al., 2016) among many others. 

To sum up, if using second generation sequencing and 16S rRNA gene, the hypervariable 

region targeted and the universal primer sets used should be carefully chosen depending on 

the sample of interest. Moreover, using the most recently released software and applying 

strict quality filters will allow obtaining more accurate and reliable results. 

 

As we have seen in chapters 3.2 and 3.3, taxonomy assignments of short fragments of 16S 

rRNA obtained through second generation massive sequencing do not reach species level. 

The main reasons are that: i) fragment length analyzed cannot discriminate among several 

bacterial species and full 16S rRNA gene is required (Drancourt et al., 2000; Janda and 

Abbott, 2007; Schloss et al., 2016a; Yarza et al., 2014); ii) analyses of microbiota data rely 

on OTU-based clustering approaches, where all the sequences that are similar above a 

specific threshold (usually 97%) are considered the same species altering diversity estimates 

(He et al., 2015; Patin et al., 2013; Rossi-Tamisier et al., 2015); and iii) RDP taxonomy 
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classifier only computes reliable assignments up to genus level (Schloss et al., 2016a; Wang 

et al., 2007). 

Third generation sequencing generates longer reads that allow targeting the full 16S rRNA 

gene and obtaining better richness estimates and taxonomic resolution (Yarza et al., 2014). 

In fact, the ability to classify a sequence to the genus or species level is a function of read 

length, sample type and the reference database (Schloss et al., 2016a). Thus, to overcome 

some of the short-read associated problems, we tested 3rd generation MinION™ platform 

to sequence the full 16S rRNA gene. On one hand, we were able to obtain information 

down to species level, as well as we did see increased bacterial richness. On the other hand, 

this was not possible in all the cases because of the databases and data analyses used were 

not optimum, and the chemistry used (1D reads) still presented low accuracy values. 

Moreover, the single 16S rRNA gene has high sequence similarity and not enough 

taxonomic resolution for some species. 

Benitez-Paez and Sanz suggested another approach to improve taxonomic resolution using 

nanopore sequencing by targeting not only 16S rRNA gene, but the whole ribosomal RNA 

operon (rrn region) constituted by 16S-ITS-23S (~4,500 bp). This approach allowed 

obtaining a better taxonomic resolution at species level as well as seeing 2-fold more 

diversity than when using only 16S rRNA gene (Benitez-Paez and Sanz, 2017). 

Some of the pitfalls associated with the sequencing technology are being improved by 

Oxford Nanopore Technologies. They have recently launched the 1D2 sequencing 

chemistry (May 2017), which improves the accuracy of the reads by sequencing both 

template and complement strands (Figure 36). To improve accuracy, Intramolecular-ligated 

Nanopore Consensus Sequencing (INC-Seq) approach could be applied to microbiota 

studies. INC-Seq uses rolling circle amplification of circularized templates to generate linear 

products (with tandem copies of the template) that can be sequenced on the nanopore 

platform (Li et al., 2016). Besides that, several bioinformatics tools and strategies have been 

suggested to further correct the raw sequences, such as NanoCORR (Goodwin et al., 2015) 

that corrects with an hybrid approach combining the long nanopore reads with  short high-

quality reads or Nanocorrect and Nanopolish (Loman et al., 2015) that use self-correction 

algorithms. Some genome assemblers, such as canu (Koren et al., 2017) also perform 

previous steps of correcting and consensus sequences that can improve accuracy. These 

tools are mostly developed for de novo genome assembly, and take advantage of the fact that 

you are sequencing one genome and some regions overlap, which is not so useful for 

amplicon-based microbiota studies. Further studies of microbiota should be using 1D2 

sequencing kit together with suitable correction methods. 
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Figure 36. Evolution on the accuracy of Oxford Nanopore Technologies sequencing kits (Figure from 
ONT, Brown, 2017). 

Sometimes 16S rRNA marker gene is not enough. It has several disadvantages such as: i) 

“universal primers” used to amplify this gene were designed using sequences obtained from 

cultured microorganisms, which could be biasing the actual diversity (Rajendhran and 

Gunasekaran, 2011; Schloss and Handelsman, 2004); ii) databases are ecosystem-skewed 

(Schloss et al., 2016b); 3) the copy number of rRNA operons per bacterial genome varies 

from 1 to 15 (Klappenbach et al., 2001), which can lead to inflated bacterial diversity 

estimates for some species; and 4) some species present a high similarity in this gene, as we 

have corroborated in Chapter 3.4 for Streptococcus mutans or for Escherichia coli.  

To overcome the first issue, Karst and colleagues developed a primer-free amplification of 

SSU rRNA based on tagging single cDNA molecules obtained from size-selected rRNA 

(aimed to enrich SSU rRNA). When comparing to SILVA database, they found that 30% 

of all bacterial OTUs were novel and that the degree of novelty was highly ecosystem 

specific, ranging from 36% in soil sample to 5% in human gut sample (Karst et al., 2016). 

This approach elucidated that databases are environmental-skewed (Figure 37), and the 

authors suggested that creating, maintaining and using an environment-specific 16S rRNA 

gene database would be more feasible and appropriate to analyze specific 

microhabitats(Karst et al., 2016), such as The Human Oral Microbiome Database (Chen et 

al., 2010). 



149 
 

 

Figure 37. Coverage of the tree of life. The percent identity of SSU rRNA gene sequences in the samples 
compared to their closest relatives in the SILVA database. Red, green, and blue represent archaea, bacteria, 
and eukarya, respectively (Figure from Karst et al., 2016). 

To overcome the third and fourth problems, which are more linked to the biological 

properties of 16S rRNA gene, some researchers rely on another universal barcode for 

bacteria: cpn60 protein coding gene. This gene is usually present as a single copy on 

bacteria, which would improve relative abundance profiles. As exceptions to this general 

rule Chlamydia, and some members of Rhizobia and Actinobacteria, present multiple copies of 

the gene (Lund, 2009) (Figure 38a), whereas several species of Mycoplasma and Ureaplasma 

parvum lack this gene (Hill et al., 2004). Links and colleagues compared the two bacterial 

barcodes under the framework of the International Barcode of Life project and found that 

the most informative regions of the 16S rRNA gene (V1-V3 region) are less taxonomically 

informative than the most conserved segments of the cpn60 UT, for which average 

sequence identity does not exceed 92% (Figure 38b). Thus, cpn60 UT has more taxonomic 

resolution and is able to reach species and even subspecies level (Links et al., 2012). 

Moreover, this marker gene also has a curated reference database: cpnDB (Hill et al., 2004). 

Another approach would be sequencing RNA directly, which is now possible with 

nanopore sequencing (Garalde et al., 2016) and even has been optimized for 16S rRNA 

specifically (Smith et al., 2017). Some divergences at strain level can be consequence of 

base modifications on the 16S rRNA. For example, 16S ribosomal RNA methylation has 

been associated to resistance against aminoglycosides on several bacterial species (Doi and 

Arakawa, 2007). Using direct RNA sequencing on MinION, Smith and colleagues were 

able to detect the modified bases of Escherichia coli, which can identify a pathogenic strain 

(Smith et al., 2017). Thus, this approach has potential to be used on microbiota studies to 

assess taxonomy without PCR bias as well as to detect epigenetic divergences among 

bacterial strains.  
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Figure 38. Comparison of universal bacterial barcodes: 16S rRNA and Cpn60. In a) pie charts 
representing the number of bacterial barcode gene copies per bacterial genome; in parenthesis number of 
genomes included per taxa. In b) sequence diversity across the 16S rRNA gene and cpn60 UT. Figure a) data 
from Větrovský and Baldrian, 2013 for 16S and Lund, 2009 for cpn60. Figure b) Excerpted from Links et al., 
2012. 

The broadest approach to study the microbiota is whole-genome sequencing that allows 

getting the complete picture by sequencing all microbial members, including bacteria, 

archaea, fungi, viruses or even eukaryotes. This approach aims to sequence all the genomes 

in a specific environment and not only a marker gene, which means getting information of 

the functional potential of the community as well as strain level identification (Kong et al., 

2017; Meisel et al., 2016). Few studies on human skin have already used it (Chng et al., 

2016; Oh et al., 2014, 2016). The main challenge of this technique is data analysis 

complexity and host-associated DNA contamination. Moreover, skin samples present low 

DNA biomass, which could add more contamination problems associated with laboratory 

reagents or laboratory environment (Kong et al., 2017; Salter et al., 2014). Moreover, on 

dog skin we would also expect to see contamination from chloroplasts DNA, as we have 

already detected with 16S rRNA (Chapter 3.2 and 3.3, Cuscó et al., 2017a, 2017b). 

Thus, plenty of options have already been proposed and assessed to characterize 

microbiota structure and composition (Figure 34) and in this thesis we focused on two of 

them. In the near future, new technologic and bioinformatics advances will allow creating 

and developing new strategies and some of the new approaches stated here will become 

routine. It is always important to keep in mind that depending on the research question to 

answer, some scenarios are more suitable than others. 
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5. Conclusions 

Regarding the innate immunity on healthy dogs, we can conclude that: 

1. Genetic variation on TLR genes is greater than previously reported, we have 

identified 105 novel coding variants by massive sequencing on different dog breeds 

and wolf populations.  

2. Frequencies of TLR genetic variants differ among dog breeds and wolf 

populations, even some of them are breed-specific or species-specific. 

3. The extracellular TLR5 is the most polymorphic among all the canine TLR genes. 

4. We designed and validated a TaqMan OpenArray plate containing 60 non-

synonymous variants and 4 frameshift mutations spread in the 10 canine TLR 

genes.  

5. Individual genotyping of some dogs representing different breeds allowed us 

detecting that Labrador and to lesser extent German Shepherd breeds presented 

different innate immune profiles, when screening TLR genes. 

 

Regarding the skin microbiota on healthy dogs, we can conclude that: 

6. The individual is the main factor shaping skin microbiota: different skin sites within 

the same dog resemble more than the same skin site between different dogs. That is 

true even in a homogeneous environment. 

7. The skin site is defining skin microbiota structure and composition. The inner 

pinna (hairy skin) is the skin site with the highest diversity, whereas nasal skin and 

the perianal region (muco-cutaneous regions) are the skin sites with the lowest. 

8. The season of birth or the time spent in the kennel was affecting dog skin 

microbiota in all the skin sites of dogs cohabiting together for at least 3 months. 

Sphingomonas was the most abundant bacterium driving this difference. 
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9. Bacteria from the environment are highly present on dog skin microbiota, although 

whether they are transient or permanent members of the microbiota remains to be 

elucidated.  

10. Other factors such as breed, sex and surgery seem to be affecting canine skin 

microbiota, although larger studies should be performed to obtain stronger 

evidence. 

 

Regarding the assessment of single molecule sequencing experimental approach to obtain 

microbiota data, we can conclude that: 

11. Nanopore sequencing of full-length 16S rRNA gene using MinION™ allowed 

obtaining better richness estimates and detecting previously unseen taxa on dog 

skin microbiota. 

12. Nanopore sequencing of full-length 16S rRNA gene using MinION™ allowed 

obtaining taxonomy assignment at lower levels, even at species level in some cases. 
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